Lennberg - DNR, Patrick <patrick.lennberg@state.co.us>

### **Letter Requesting Removal from Cease and Desist**

1 message

#### Daniel Takami <danieltakami@gmail.com>

Tue, Jul 12, 2022 at 1:24 PM

To: Patrick Lennberg - DNR <patrick.lennberg@state.co.us>

Cc: Sergio Rivera <sergio.rivera@novametallix.com>, Richard Mittasch <rmittasch@nedmining.com>

Mr. Lennberg,

Enclosed is our letter requesting removal from the Cease and Desist order that we are currently under. Also included in this email are the 2nd Quarter Wet Test Results, The Quarterly Mercury Results and the June Compliance Samples. All of the files are available at CDPHE as they were filed yesterday. If you have any questions, feel free to contact me.

Respectfully,

#### Daniel J. Takami

President, Sustainable Metal Solutions, LLC President, Nederland Mining Consultants Inc. President, Grand Island Resources, LLC danieltakami@gmail.com 501.256.4444

#### 4 attachments



Signed GIR to DRMS Letter requesting removal of Cease and Desist.pdf 577K



NetDMR\_COR\_6287016\_CO0032751\_001\_X\_20220630.zip



NetDMR\_COR\_6287015\_CO0032751\_001\_Q\_20220630.zip 1157K



NetDMR\_COR\_6287014\_CO0032751\_001\_A\_20220630.zip 1880K



Division of Reclamation, Mining & Safety c/o Mr. Patrick Lennberg 1001 E 62nd Ave, Room 215
Denver, CO 80216

July 12, 2022

### SUBJECT: REQUEST FOR REMOVAL OF CEASE-AND-DESIST ORDER

Mr. Lennberg

Grand Island Resources (GIR) hereby respectfully requests the Removal of the Mined Land Reclamation Board (Board) Cease and Desist Order and Corrective Actions Order. GIR Management believes that the GIR has met the Board Mandated Corrective Actions.

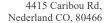
GIR for the second quarter of 2022 has had no violations for any of his discharge reports During the month of June 2022 there were no exceedances at Outfall 001. This includes the test results for low-level mercury taken during the 2nd quarter and the 2nd quarter WET test taken 6/13/2022 - 6/15/2022. Every sampling event passed without issue.

On February 18, 2022 the Colorado Mined Land Reclamation Board (Board) issued to Grand Island Resources LLC (Operator) it's Findings of Fact, Conclusions of Law and Order (Appendix A) on the matter of Notice of Violation No. MV-2021-017 brought before the Board by the Division of Reclamation, Mining & Safety (DRMS) on December 15, 2021 indicating possible violation by the Operator, Civil Penalties, Cease and Desist Order and Corrective Actions for Failure to Minimize Disturbances to the Prevailing Hydrologic Balance, File No. M-1977-410.

The Board found the Operator in violation of section 34-32-116(7)(g), C.R.S. and Rule 3.1.6(1).

The Operator (GIR) has addressed the Corrective Actions Mandated by the Board, as follows:

#### 1.1. CEASE AND DESIST


**BOARD ORDER:** The Operator shall Cease and Desist any further activities underground, except for those activities approved by the Division, in writing, as necessary to comply with the conditions of the Order, protect water quality, prevent damage to off-site areas, complete reclamation, or to protect public health and safety, until all the corrective actions have been resolved to the satisfaction of the Division.

**OPERATORS ACTIONS:** The Operator have taken the following actions

### 1.1.1. Underground Exploration and Ore Production Activities

The operator stopped all activities on November 30, 2021

### 1.1.2. DRMS Approved Activities





On December 21, 2021, the Operator requested in written form, approval from DRMS to conduct 17 specific activities underground activities considered by the Operator to be most pressing to comply with the intent of the Cease-and-Desist Order.

The Operator is in frequent communications with DRMS and continue to request approval for activities underground that are considered essential by the Operator for continued compliance with the intent of the Cease-and-Desist Order.

### 1.2. CORRECTIVE ACTIONS

# 1.2.1. Board Ordered Corrective Action #1 - Technical Revision Water Treatment Modifications

On February 28, 2022, the Operator filed with DRMS a Request for Technical Revision (namely TR-10) in response to a Service of Notice of Violation/Cease and Desist Order (Number IO-211130-1) from Colorado Department of Public Health and Environment (CDPHE) dated November 30, 2021, in conjunction with Permit No. M-1977-410.

TR10 describes the Water Treatment Pilot System currently in operation at the site, including additional equipment to increase the current treatment capacity; water quality results and performance of the current system; a Ground Water Monitoring Plan (GWMP) and a Surface Water Monitoring Plan (SWP) as required by the NOV/C&D Order. In addition, measures that have been taken and are further proposed at the site to address water quality baseline data collection.

DRMS issued to the Operator on March 25, 2022, a Preliminary Adequacy Review Letter (Cross Gold Mine, Permit No. M-1977-410, Technical Revision No. 10 (TR-10)) The Preliminary Adequacy Review Letter by DRMS presented 27 main topics and 29 subtopics requiring clarification and/or additional information from the Operator and, given that a decision date was set for April 28, 2022, the Operator requested an extension from the DRMS (Appendix C-3).

DRMS granted the extension to April 14, 2022, via written notification dated March 28, 2022

The Operator submitted to DRMS responses to the Preliminary Adequacy Review Letter on April 17, 2022

DRMS issued to the Operator on April 22, 2022, Adequacy Letter #2

The Operator submitted to DRMS responses to Adequacy Letter # 2 on April 27, 2022

DRMS issued to the Operator on April 28, 2022, Adequacy Letter # 3

The Operator responded to DRMS Adequacy Letter # 3 on April 28, 2022

DRMS issued to the Operator on April 28, 2022, Adequacy Letter #4 whereby Technical Revision 10 (TR10) is approved by DRMS.



# 1.2.2. Board Mandated Corrective Action #2 -Financial Warranty to Operate the Water Treatment System

On March 16, 2022, the Operator filed with DRMS a Financial Warranty, Check for Deposit in the State Treasury Form, Check No. 125 for \$162,841.00 (One Hundred and Sixty-Two Thousand Eight Hundred and Forty-One Dollars) the check was deposited by the Operator on March 21, 2022.

As a result of responses to Board Mandated Corrective Action #1, on April 28, 2022 DRMS increased the Water Treatment Financial Warranty to \$180,939.00.

The Operator will submit to the State Treasury a check for \$18,098.00 to bond the additional Financial Warranty estimated by DRMS.

### 1.2.3. Board Mandated Corrective Action #3 - Written Quarterly Report

On March 30, 2022, the Operator issued the First Quarterly Report (Q1 2022) to the Board.

# 1.2.4. Board Mandated Corrective Action #4 - Appear Before the MLRB - December 2022

Hearing date to be scheduled by the Board.

### 1.2.5. Board Order Financial Fine for Violations

On March 21, 2022, the Operator issued to DRMS a check for \$5,000.00 as payment to the Board Ordered Financial Fine for the violations.

Grand Island Resources LLC, Directors, Management and Technical Personnel appreciate the approval by DRMS of Technical Revision #10 and takes the opportunity to emphasize our commitment to the development of a mining operation that is compliant with all applicable regulatory framework. Our staff has been working diligently and tirelessly to address the temporary shortcoming faced by the operation. The Corporation has committed the necessary financial and personnel resources required to implement measures to ensure that the violations cited by the Board are remedied and that do not occur in the future and look forward to continuing exploring and identifying the metal resources contained within our mining district and advance the development of our mining operation.

Respectfully Submitted,

Dig J. The

Daniel J. Takami

President, Grand Island Resources LLC,





July 12, 2022

Permits and Enforcement Section Water Quality Control Division CPDHE 4300 Cherry Creek Dr. South Denver, CO 80246-1530

Subject: Discharge Monitoring Report for June 2022 Cross Gold Mine C00032751

#### To whom it may concern,

During the month of June 2022 there were no exceedances at Outfall 001. This includes the test results for low-level mercury taken during the  $2^{nd}$  quarter and the  $2^{nd}$  quarter WET test taken 6/13/2022 - 6/15/2022. Every sampling event passed without issue.

Please contact me with any questions.

Sincerely,

Patrick M. Delaney

**Environmental Manager** 

Black Fox Mining LLC

1508 Ridge Road, Nederland, CO 80466

Itale Doly

Phone 315-414-6986

www.blackfoxmining.com | pdelaney@blackfoxmining.com

### **DMR Copy of Record**

Permit

Permit #: C00032751

Major: No

Permittee: Grand Island Resources LLC

Permittee Address: 12567 W Cedar Dr

Lakewood, CO 80228

Treated Mine Water to Coon Track Creek

Discharge: 001-A

Report Dates & Status

**Permitted Feature:** 

Monitoring Period: From 06/01/22 to 06/30/22

001

External Outfall

DMR Due Date: 07/28/22

Status:

NetDMR Validated

CROSS AND CARIBOU MINES

CROSS AND CARIBOU MINES BOULDER COUNTY, CO 80466

**Considerations for Form Completion** 

Oil and grease - see I.A.2, pg 3. 30 day average is the highest monthly average during period reported.

**Principal Executive Officer** 

First Name:

Last Name:

Title:

Telephone:

Facility:

**Facility Location:** 

No Data Indicator (NODI)

Form NODI:

|       | Parameter                          | Monitoring            | Season |      |                  |                |  | ty or Loading |       |                |                |                |                     |              | Quality or Concentration |               |     |                            | Sample Type          |
|-------|------------------------------------|-----------------------|--------|------|------------------|----------------|--|---------------|-------|----------------|----------------|----------------|---------------------|--------------|--------------------------|---------------|-----|----------------------------|----------------------|
| Code  | Name                               | Location              | #      | NODI |                  | Qualifier<br>1 |  | Value 2       | Units | Qualifier<br>1 | Value 1        | Qualifier<br>2 | Value 2             | Qualifi<br>3 |                          | Units         | Ex. | Analysis                   |                      |
|       |                                    |                       |        |      | Sample           |                |  |               |       |                |                | =              | 6.66                | =            | 13.7                     | 04 - deg<br>C |     | 99/99 - Continuous         | RC - Recorder (auto) |
| 00010 | Temperature, water deg. centigrade | 1 - Effluent          | 0      |      | Permit           |                |  |               |       |                |                |                | Req Mon MX WK       |              | Reg Mon DAILY MX         | 04 - deg      | 0   | 99/99 - Continuous         | RC - Recorder        |
|       |                                    | Gross                 |        |      | Req.<br>Value    |                |  |               |       |                |                |                | AV                  |              |                          | С             |     |                            | (auto)               |
|       |                                    |                       |        |      | NODI             |                |  |               |       |                |                |                |                     |              |                          |               |     | 00/00 Tuiss Dan            |                      |
|       |                                    |                       |        |      | Sample           |                |  |               |       |                | 6.72           |                |                     | =            | 8.29                     | 12 - SU       |     | 02/30 - Twice Per<br>Month | GR - GRAB            |
| 00400 | pH                                 | 1 - Effluent<br>Gross | 0      |      | Permit<br>Req.   |                |  |               |       | >=             | 6.5<br>MINIMUM |                |                     | <=           | 9.0 MAXIMUM              | 12 - SU       | 0   | 02/30 - Twice Per<br>Month | GR - GRAB            |
|       |                                    |                       |        |      | Value<br>NODI    |                |  |               |       |                |                |                |                     |              |                          |               |     |                            |                      |
|       |                                    |                       |        |      | Sample           |                |  |               |       |                |                | <              | 4.0                 | <            | 4.0                      | 19 - mg/l     | L   | 01/30 - Monthly            | GR - GRAB            |
| 00530 | Solids, total suspended            | 1 - Effluent          | 0      |      | Permit<br>Req.   |                |  |               |       |                |                | <=             | 30.0 30DA AVG       | <=           | 45.0 DAILY MX            | 19 - mg/l     | L   | 01/30 - Monthly            | GR - GRAB            |
| 00000 | Johns, total Suspenden             | Gross                 |        |      | Value            |                |  |               |       |                |                |                |                     |              |                          |               |     |                            |                      |
|       |                                    |                       |        |      | NODI<br>Sample   |                |  |               |       |                |                | <              | 5.0                 |              |                          | 28 - ug/L     |     | 01/30 - Monthly            | GR - GRAB            |
| 00079 | Arsenic, total recoverable         | 1 - Effluent          | 0      |      | Permit           |                |  |               |       |                |                |                | Req Mon 30DA<br>AVG |              |                          | 28 - ug/L     |     | 01/30 - Monthly            | GR - GRAB            |
| 00976 | Arsenic, total recoverable         | Gross                 | U      |      | Req.<br>Value    |                |  |               |       |                |                |                | AVG                 |              |                          |               | - 0 |                            |                      |
|       |                                    |                       |        |      | NODI<br>Sample   |                |  |               |       |                |                | <              | 100.0               |              |                          | 28 - ug/L     |     | 01/30 - Monthly            | GR - GRAB            |
|       |                                    | 1 - Effluent          |        |      | Permit           |                |  |               |       |                |                |                | Reg Mon 30DA        |              |                          | 28 - ug/L     |     | 01/30 - Monthly            | GR - GRAB            |
| 00980 | Iron, total recoverable            | Gross                 | 0      |      | Req.<br>Value    |                |  |               |       |                |                |                | AVĠ                 |              |                          |               | 0   | ,                          |                      |
|       |                                    |                       |        |      | NODI             |                |  |               |       |                |                | _              | 10.0                |              | 10.0                     | 28 - ug/L     |     | 01/30 - Monthly            | GR - GRAB            |
|       |                                    | 1 - Effluent          |        |      | Sample<br>Permit |                |  |               |       |                |                | <=             | 750.0 30DA AVG      | <            | 1500.0 DAILY MX          | 28 - ug/L     |     | 01/30 - Monthly            | GR - GRAB            |
| 01094 | Zinc, total recoverable            | Gross                 | 0      |      | Req.<br>Value    |                |  |               |       |                |                | _              | 730.0 30DA AVO      | _            | 1300.0 DAILT WA          | 20 - ug/L     | 0   | 0 1/30 - Worlding          | OK - OKAB            |
|       |                                    |                       |        |      | NODI             |                |  |               |       |                |                |                |                     |              |                          |               |     |                            |                      |
|       |                                    | 4 544                 |        |      | Sample<br>Permit |                |  |               |       |                |                | <              | 1.0                 | <            | 1.0                      | 28 - ug/L     |     | 01/30 - Monthly            | GR - GRAB            |
| 01113 | Cadmium, total recoverable         | 1 - Effluent<br>Gross | 0      |      | Req.             |                |  |               |       |                |                | <=             | 50.0 30DA AVG       | <=           | 300.0 DAILY MX           | 28 - ug/L     | 0   | 01/30 - Monthly            | GR - GRAB            |
|       |                                    |                       |        |      | Value<br>NODI    |                |  |               |       |                |                |                |                     |              |                          |               |     |                            |                      |
|       |                                    |                       |        |      | Sample           |                |  |               |       |                |                | =              | 2.4                 | =            | 2.25                     | 28 - ug/L     |     | 02/30 - Twice Per<br>Month | GR - GRAB            |
| 01114 | Lead, total recoverable            | 1 - Effluent<br>Gross | 0      |      | Permit<br>Req.   |                |  |               |       |                |                | <=             | 300.0 30DA AVG      | <=           | 600.0 DAILY MX           | 28 - ug/L     | . 0 | 02/30 - Twice Per<br>Month | GR - GRAB            |
|       |                                    | Gioss                 |        |      | Value            |                |  |               |       |                |                |                |                     |              |                          |               |     | Widhar                     |                      |
|       |                                    |                       |        |      | NODI             |                |  |               |       |                |                |                | 0.0                 |              |                          | 00 "          |     | 02/30 - Twice Per          | OD OD45              |
|       |                                    | 1 - Effluent          |        |      | Sample           |                |  |               |       |                |                |                | 2.0                 | <            | 2.0                      | 28 - ug/L     |     | Month                      | GR - GRAB            |
| 01119 | Copper, total recoverable          | Gross                 | 0      |      | Permit<br>Req.   |                |  |               |       |                |                | <=             | 150.0 30DA AVG      | <=           | 300.0 DAILY MX           | 28 - ug/L     | . 0 | 02/30 - Twice Per<br>Month | GR - GRAB            |
|       |                                    |                       |        |      | Value<br>NODI    |                |  |               |       |                |                |                |                     |              |                          |               |     |                            |                      |
|       |                                    |                       |        |      | Sample           |                |  |               |       |                |                | <              | 20.0                | <            | 20.0                     | 28 - ug/L     | -   | 01/30 - Monthly            | GR - GRAB            |
| 01220 | Chromium, hexavalent dissolved [as | 1 - Effluent          | 0      |      | Permit<br>Req.   |                |  |               |       |                |                |                | Req Mon 30DA<br>AVG |              | Req Mon DAILY MX         | 28 - ug/L     | 0   | 01/30 - Monthly            | GR - GRAB            |
|       |                                    |                       |        |      |                  |                |  |               |       |                |                |                |                     |              |                          |               |     |                            |                      |

|                  | nc, potentially dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |   | Sample             |  | <  | 10.0                       |    | 10.0                                           | 28 - ug/L |   | 02/30 - Twice Per                   |         |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---|--------------------|--|----|----------------------------|----|------------------------------------------------|-----------|---|-------------------------------------|---------|
|                  | nc, potentially dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |   |                    |  |    | 10.0                       | <  | 10.0                                           | ZO dg/L   | - | Month                               | GR - GR |
| 1304 <b>Sil</b>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 - Effluent<br>Gross | 6 | <br>Permit<br>Req. |  | <= | 262.0 30DA AVG             | <= | 301.0 DAILY MX                                 | 28 - ug/L | 0 | 02/30 - Twice Per<br>Month          | GR - GR |
| 1304 <b>Sil</b>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |   | Value<br>NODI      |  |    |                            |    |                                                |           |   |                                     |         |
| 1304 <b>Sil</b>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |   | Sample             |  | =  | 0.0                        | <  | 0.5                                            | 28 - ug/L |   | 02/30 - Twice Per<br>Month          | GR - GF |
| 1001             | lver, potentially dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 - Effluent          | 6 | <br>Permit         |  | <= | 0.17 30DA AVG              | <= | 4.7 DAILY MX                                   | 28 - ug/L |   | 02/30 - Twice Per                   | GR - GF |
|                  | The state of the s | Gross                 |   | Req.<br>Value      |  |    |                            |    |                                                | - 3       |   | Month                               |         |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |   | NODI               |  |    |                            |    |                                                |           |   | 02/30 - Twice Per                   | -       |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 - Effluent          |   | Sample Permit      |  | <  | 2.0                        | <  | 2.0                                            | 28 - ug/L |   | Month<br>02/30 - Twice Per          | GR - GI |
| 1306 <b>Co</b>   | opper, potentially dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Gross                 | 6 | <br>Req.           |  | <= | 13.0 30DA AVG              | <= | 20.0 DAILY MX                                  | 28 - ug/L | 0 | Month                               | GR - G  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |   | Value<br>NODI      |  |    |                            |    |                                                |           |   |                                     |         |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |   | Sample<br>Permit   |  |    |                            | <  | 5.0                                            | 28 - ug/L |   | 01/30 - Monthly                     | GR - G  |
| 1309 <b>Ar</b>   | rsenic, potentially dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 - Effluent<br>Gross | 0 | <br>Req.           |  |    |                            |    | Req Mon DAILY MX                               | 28 - ug/L | 0 | 01/30 - Monthly                     | GR - G  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |   | Value<br>NODI      |  |    |                            |    |                                                |           |   |                                     |         |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |   | Sample             |  | <  | 0.5                        | <  | 0.5                                            | 28 - ug/L |   | 02/30 - Twice Per<br>Month          | GR - G  |
| 1313 <b>C</b> a  | admium, potentially dissolvd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 - Effluent<br>Gross | 6 | <br>Permit<br>Req. |  | <= | 0.89 30DA AVG              | <= | 3.7 DAILY MX                                   | 28 - ug/L | 0 | 02/30 - Twice Per<br>Month          | GR - G  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000                 |   | Value              |  |    |                            |    |                                                |           |   |                                     |         |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |   | NODI<br>Sample     |  | <  | 20.0                       |    |                                                | 28 - ug/L |   | 01/30 - Monthly                     | GR - G  |
|                  | nromium, trivalent, potentially                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 - Effluent          | 0 | <br>Permit<br>Req. |  |    | Req Mon 30DA<br>AVG        |    |                                                | 28 - ug/L | 0 | 01/30 - Monthly                     | GR - G  |
| dis              | ssolvd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gross                 |   | Value<br>NODI      |  |    |                            |    |                                                |           |   |                                     |         |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |   | Sample             |  | _  | 1.7                        | _  | 1.8                                            | 28 - ug/L |   | 02/30 - Twice Per                   | GR - G  |
| 4040 La          | and materially discolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 - Effluent          |   | Permit             |  |    |                            |    |                                                |           |   | Month<br>02/30 - Twice Per<br>Month |         |
| 1318 <b>Le</b>   | ead, potentially dissolvd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Gross                 | 6 | <br>Req.<br>Value  |  | <= | 5.4 30DA AVG               | <= | 140.0 DAILY MX                                 | 28 - ug/L | 0 | Month                               | GR - G  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |   | NODI               |  |    |                            |    |                                                |           |   |                                     |         |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 - Effluent          |   | Sample<br>Permit   |  | <  | 2.0<br>Req Mon 30DA        | <  | 2.0 Req Mon DAILY MX                           | 28 - ug/L |   | 01/30 - Monthly                     | GR - G  |
| 1319 <b>M</b> a  | anganese, potentially dissolvd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Gross                 | 0 | <br>Req.<br>Value  |  |    | AVĠ                        |    | Red MOII DAILT MIX                             | 26 - ug/L | 0 | 01/30 - Monthly                     | GR - G  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |   | NODI               |  |    | 0.0                        |    |                                                | 00 "      |   | 04/00 14 11                         | 00.0    |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 - Effluent          |   | Sample Permit      |  | <  | 2.0<br>Req Mon 30DA<br>AVG | <  | 2.0 Req Mon DAILY MX                           | 28 - ug/L |   | 01/30 - Monthly                     | GR - GI |
| 1322 <b>Ni</b> d | ckel, potentially dissolvd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gross                 | 0 | <br>Req.<br>Value  |  |    | AVG                        |    | Rey WOLL WIX                                   | 28 - ug/L | 0 | 01/30 - Monthly                     | GK - G  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |   | NODI               |  |    | F.0                        |    | 5.0                                            | 20//      |   | 04/20 Monthly                       | GR - G  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 - Effluent          |   | Sample Permit      |  | <  | 5.0<br>Req Mon 30DA<br>AVG | <  | 5.0<br>Req Mon DAILY MX                        | 28 - ug/L |   | 01/30 - Monthly<br>01/30 - Monthly  | GR - G  |
| 1323 <b>Se</b>   | elenium, potentially dissolvd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gross                 | 0 | <br>Req.<br>Value  |  |    | AVG                        |    | TOOL MICH BAILT MAX                            | 20 dg/L   | 0 | 01/30 Working                       | OK O    |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |   | NODI               |  |    |                            |    |                                                |           |   |                                     |         |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |   | Sample Permit      |  |    |                            | <= | 10.0 INST MAX                                  | 19 - mg/L |   | 77/77 - Contingent                  | GR - G  |
| 3582 <b>Oi</b>   | il and grease                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 - Effluent<br>Gross | 0 | <br>Req. Value     |  |    |                            |    | 9 - Conditional Monitoring - Not Required This | 10g/2     |   |                                     |         |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |   | NODI               |  |    |                            |    | Period                                         |           |   |                                     |         |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |   | Sample             |  |    |                            | <  | 20.0                                           | 28 - ug/L |   | 01/30 - Monthly                     | GR - G  |
| 4262 <b>C</b> h  | hromium, trivalent total recoverable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 - Effluent<br>Gross | 0 | <br>Permit<br>Req. |  |    |                            |    | Req Mon DAILY MX                               | 28 - ug/L | 0 | 01/30 - Monthly                     | GR - G  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |   | Value<br>NODI      |  |    |                            |    |                                                |           |   |                                     |         |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |   | Sample             |  | =  | 0.307822                   | =  | 0.446976                                       | 03 - MGD  | ) | 99/99 - Continuous                  | RC - Re |
| 0050 Fi          | ow, in conduit or thru treatment plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 - Effluent          | 6 | <br>Permit         |  | <= | 0.458 30DA AVG             |    | Req Mon DAILY MX                               | 03 - MGD  | 0 | 99/99 - Continuous                  | RC - Re |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gross                 |   | Req.<br>Value      |  |    |                            |    |                                                |           |   |                                     | (auto)  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |   | NODI<br>Sample     |  | <  | 1.0                        |    |                                                | 19 - mg/L |   | 01/30 - Monthly                     | GR - GI |
| 1202 Su          | ulfide-hydrogen sulfide<br>ndissociated]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 - Effluent          | 0 | <br>Permit         |  |    | Req Mon 30DA<br>AVG        |    |                                                |           |   | 01/30 - Monthly                     | GR - G  |
| [ur              | ndissociated]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gross                 | U | Req.<br>Value      |  |    | AVG                        |    |                                                |           | U |                                     |         |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |   | NODI<br>Sample     |  | <  | 0.2                        | =  | 0.2                                            | 28 - ug/L |   | 01/30 - Monthly                     | GR - GI |

| 71900 | Mercury, total [as Hg] | 1 - Effluent          | 0 |  | Req.           |   |                     |                       | <= | = | 1.0 30DA AVG <= 2.0 DAILY MX | 28 - ug/L | . 0 | 01/30 - Monthly            | GR - GRAB   |
|-------|------------------------|-----------------------|---|--|----------------|---|---------------------|-----------------------|----|---|------------------------------|-----------|-----|----------------------------|-------------|
|       |                        | Gross                 |   |  | Value<br>NODI  |   |                     |                       |    |   |                              |           |     |                            |             |
|       | Oil and grease visual  | 1 - Effluent<br>Gross |   |  | Sample         | = | 0.0                 | AB -<br>abst=0;prst=1 |    |   |                              |           |     | 02/30 - Twice Per<br>Month | VI - VISUAL |
| 84066 |                        |                       | 0 |  | Permit<br>Req. |   | Req Mon INST<br>MAX | AB -<br>abst=0;prst=1 |    |   |                              |           | 0   | 02/30 - Twice Per<br>Month | VI - VISUAL |
|       |                        |                       |   |  | Value<br>NODI  |   |                     |                       |    |   |                              |           |     |                            |             |

Submission Note

If a parameter row does not contain any values for the Sample nor Effluent Trading, then none of the following fields will be submitted for that row: Units, Number of Excursions, Frequency of Analysis, and Sample Type.

**Edit Check Errors** 

No errors.

Comments

Attachments

| Name                                     | Туре | Size     |
|------------------------------------------|------|----------|
| 2022_06_CrossCaribouMine_Results_1.pdf   | pdf  | 951590.0 |
| 2022_06_CrossCaribouMine_Results_2.pdf   | pdf  | 881583.0 |
| 2022_06_CrossCaribouMine_CoverLetter.pdf | pdf  | 192807.0 |

Report Last Saved By

**Grand Island Resources LLC** 

User: pdelaney@alexcoresource.com

Name: Patrick Delaney

E-Mail: pdelaney@blackfoxmining.com

Date/Time: 2022-07-12 00:35 (Time Zone: -06:00)

Report Last Signed By

User: pdelaney@alexcoresource.com

Name: Patrick Delaney

E-Mail: pdelaney@blackfoxmining.com
Date/Time: 2022-07-12 00:36 (Time Zone: -06:00)



# **Environment Testing America**

### **ANALYTICAL REPORT**

Eurofins Denver 4955 Yarrow Street Arvada, CO 80002 Tel: (303)736-0100

Laboratory Job ID: 280-163315-1

Client Project/Site: Wastewater Discharge - Nederland, CO

For:

GS Mining Company LLC 422 Gregory Street Central City, Colorado 80427

Attn: Patrick Delaney

Authorized for release by: 6/24/2022 9:58:57 AM

Dylan Bieniulis, Project Manager I (303)736-0138

Dylan.Bieniulis@et.eurofinsus.com

····· Links ·····

Review your project results through

**Have a Question?** 



Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

**5** 

\_\_\_\_\_

10

46

## **Table of Contents**

| Cover Page            | 1  |
|-----------------------|----|
| Table of Contents     | 2  |
| Definitions           | 3  |
| Case Narrative        | 4  |
| Detection Summary     | 7  |
| Method Summary        | 8  |
| Sample Summary        | 9  |
| Client Sample Results | 10 |
| QC Sample Results     | 12 |
| QC Association        | 19 |
| Chronicle             | 22 |
| Certification Summary | 23 |
| Chain of Custody      | 24 |
| Receipt Checklists    | 25 |

Δ

6

8

10

40

13

### **Definitions/Glossary**

Client: GS Mining Company LLC Job ID: 280-163315-1

Project/Site: Wastewater Discharge - Nederland, CO

Qualifier Description

### **Qualifiers**

| Metals    |  |
|-----------|--|
| Qualifier |  |

| <b>4</b> | The state of the s |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В        | Compound was found in the blank and sample.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| J        | Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

**General Chemistry** 

| Qualifier | Qualifier Description                                                                                |
|-----------|------------------------------------------------------------------------------------------------------|
| ^1+       | Initial Calibration Verification (ICV) is outside acceptance limits, high biased.                    |
| F2        | MS/MSD RPD exceeds control limits                                                                    |
| Н         | Sample was prepped or analyzed beyond the specified holding time                                     |
| HF        | Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. |

### Glossarv

| Ciocoaiy       |                                                                                                             |
|----------------|-------------------------------------------------------------------------------------------------------------|
| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 |
| n              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |
| %R             | Percent Recovery                                                                                            |
| CFL            | Contains Free Liquid                                                                                        |
| CFU            | Colony Forming Unit                                                                                         |
| CNF            | Contains No Free Liquid                                                                                     |
| DER            | Duplicate Error Ratio (normalized absolute difference)                                                      |
| Dil Fac        | Dilution Factor                                                                                             |
| DL             | Detection Limit (DoD/DOE)                                                                                   |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |
| DLC            | Decision Level Concentration (Radiochemistry)                                                               |
| EDL            | Estimated Detection Limit (Dioxin)                                                                          |
| LOD            | Limit of Detection (DoD/DOE)                                                                                |
| LOQ            | Limit of Quantitation (DoD/DOE)                                                                             |
|                |                                                                                                             |

MPN MQL

MCL

MDA

MDC

MDL

ML Minimum Level (Dioxin) Most Probable Number Method Quantitation Limit Not Calculated

Method Detection Limit

NC

Not Detected at the reporting limit (or MDL or EDL if shown) ND

EPA recommended "Maximum Contaminant Level"

Minimum Detectable Concentration (Radiochemistry)

Minimum Detectable Activity (Radiochemistry)

NEG Negative / Absent POS Positive / Present

PQL **Practical Quantitation Limit** 

**PRES** Presumptive QC **Quality Control** 

**RER** Relative Error Ratio (Radiochemistry)

RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ** 

TNTC Too Numerous To Count

**Eurofins Denver** 

Page 3 of 25

### **Case Narrative**

Client: GS Mining Company LLC

Project/Site: Wastewater Discharge - Nederland, CO

Job ID: 280-163315-1

**Laboratory: Eurofins Denver** 

Narrative

### **CASE NARRATIVE**

**Client: GS Mining Company LLC** 

Project: Wastewater Discharge - Nederland, CO

Report Number: 280-163315-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

#### **RECEIPT**

The samples were received on 06/10/2022; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 11.9 C.

Receipt temperature is considered acceptable as the samples were collected and submitted to the laboratory on the same date.

#### **TOTAL RECOVERABLE METALS (ICP)**

Sample OUTFALL-001 (280-163315-1) was analyzed for Total Recoverable Metals (ICP) in accordance with EPA Method 200.7. The samples were prepared on 06/20/2022 and analyzed on 06/21/2022.

Iron was detected in method blank MB 280-578373/1-A at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### POTENTIALLY DISSOLVED METALS (ICPMS)

Sample OUTFALL-001 (280-163315-1) was analyzed for potentially dissolved metals (ICPMS) in accordance with EPA Method 200.8. The samples were prepared on 06/17/2022 and analyzed on 06/20/2022.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **TOTAL RECOVERABLE METALS (ICPMS)**

Sample OUTFALL-001 (280-163315-1) was analyzed for total recoverable metals (ICPMS) in accordance with EPA Method 200.8. The samples were prepared and analyzed on 06/20/2022.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **TOTAL MERCURY (CVAA)**

Sample OUTFALL-001 (280-163315-1) was analyzed for total mercury (CVAA) in accordance with EPA Method 245.1. The samples were prepared on 06/13/2022 and analyzed on 06/14/2022.

Job ID: 280-163315-1

Eurofins Denver 6/24/2022

### **Case Narrative**

Client: GS Mining Company LLC

Project/Site: Wastewater Discharge - Nederland, CO

### Job ID: 280-163315-1 (Continued)

### **Laboratory: Eurofins Denver (Continued)**

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### TRIVALENT CHROMIUM - POTENTIALLY DISSOLVED

Sample OUTFALL-001 (280-163315-1) was analyzed for Trivalent Chromium - Potentially Dissolved in accordance with SM3500\_CR3\_B. The samples were analyzed on 06/23/2022.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **TRIVALENT CHROMIUM - TOTAL RECOVERABLE**

Sample OUTFALL-001 (280-163315-1) was analyzed for Trivalent Chromium - Total Recoverable in accordance with SM3500\_CR3\_B. The samples were analyzed on 06/23/2022.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **SPECIFIC CONDUCTIVITY**

Sample OUTFALL-001 (280-163315-1) was analyzed for specific conductivity in accordance with SM20 2510B. The samples were analyzed on 06/14/2022.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

### **TOTAL SUSPENDED SOLIDS**

Sample OUTFALL-001 (280-163315-1) was analyzed for total suspended solids in accordance with SM20 2540D. The samples were analyzed on 06/15/2022.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **HEXAVALENT CHROMIUM**

Sample OUTFALL-001 (280-163315-1) was analyzed for hexavalent chromium in accordance with SM 3500 CR B. The samples were analyzed on 06/10/2022.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **HEXAVALENT CHROMIUM**

Sample OUTFALL-001 (280-163315-1) was analyzed for hexavalent chromium in accordance with 3500\_CR\_B. The samples were analyzed on 06/10/2022.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **CORROSIVITY (PH)**

Sample OUTFALL-001 (280-163315-1) was analyzed for corrosivity (pH) in accordance with SM20 4500 H+ B. The samples were analyzed on 06/20/2022.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### SULFIDE

Sample OUTFALL-001 (280-163315-1) was analyzed for sulfide in accordance with SM20 4500 S2 D. The samples were analyzed on 06/17/2022.

Sulfide exceeded the RPD limit for the MSD of sample OUTFALL-001 (280-163315-1) in batch 280-578440. Sample matrix interference is suspected. Refer to the QC report for details.

The initial calibration verification (ICV) result for batch 280-578440 was above the upper control limit. Sample results were non-detects, and have been reported as qualified data.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

Job ID: 280-163315-1

4

5

7

8

10

12

13

### **Case Narrative**

Client: GS Mining Company LLC

Project/Site: Wastewater Discharge - Nederland, CO

Job ID: 280-163315-1

### Job ID: 280-163315-1 (Continued)

**Laboratory: Eurofins Denver (Continued)** 

### **HYDROGEN SULFIDE**

Sample OUTFALL-001 (280-163315-1) was analyzed for Hydrogen Sulfide in accordance with SM20 4500 S2 H. The samples were analyzed on 06/24/2022.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

6

4

5

6

6

9

10

12

13

11/

### **Detection Summary**

Client: GS Mining Company LLC

Project/Site: Wastewater Discharge - Nederland, CO

**Client Sample ID: OUTFALL-001** 

### Lab Sample ID: 280-163315-1

Job ID: 280-163315-1

| Analyte              | Result | Qualifier | RL  | MDL  | Unit     | Dil Fac | D | Method        | Prep Type             |
|----------------------|--------|-----------|-----|------|----------|---------|---|---------------|-----------------------|
| Iron                 | 55     | J B       | 100 | 9.1  | ug/L     | 1       | _ | 200.7 Rev 4.4 | Total                 |
|                      |        |           |     |      |          |         |   |               | Recoverable           |
| Copper               | 1.3    | J         | 2.0 | 0.71 | ug/L     | 1       |   | 200.8         | Total                 |
|                      | 0.4    |           | 4.0 | 0.00 | 4        |         |   | 000.0         | Recoverable           |
| Lead                 | 2.1    |           | 1.0 | 0.23 | ug/L     | 1       |   | 200.8         | Total                 |
| Zinc                 | 4.2    |           | 10  |      | ua/l     |         |   | 200.8         | Recoverable<br>Total  |
| Zilic                | 4.2    | J         | 10  | 2.0  | ug/L     | '       |   | 200.0         | Recoverable           |
| Copper               | 1.2    | J         | 2.0 | 0.71 | ug/L     | 1       |   | 200.8         | Potentially           |
| - 11                 |        |           |     |      | J        |         |   |               | Dissolved             |
| Lead                 | 1.6    |           | 1.0 | 0.23 | ug/L     | 1       |   | 200.8         | Potentially           |
|                      |        |           |     |      |          |         |   |               | Dissolved             |
| Manganese            | 0.95   | J         | 2.0 | 0.51 | ug/L     | 1       |   | 200.8         | Potentially           |
|                      |        | _         |     |      |          |         |   |               | Dissolved             |
| Zinc                 | 6.8    | J         | 10  | 2.0  | ug/L     | 1       |   | 200.8         | Potentially           |
| Specific Conductance | 89     |           | 2.0 | 2.0  | umhos/cm | 1       |   | SM 2510B      | Dissolved<br>Total/NA |
| pH adj. to 25 deg C  |        | HF        | 0.1 |      | SU       |         |   | SM 4500 H+ B  | Total/NA              |
|                      |        |           |     |      |          | 1       |   |               |                       |
| Temperature          | 19.8   | HF        | 1.0 | 1.0  | J        | 1       |   | SM 4500 H+ B  | Total/NA              |
| Field pH             | 7.1    |           | 1.0 |      | SU       |         |   | SM4500 S2 H   | Total/NA              |
| Field Temperature    | 20     |           | 1.0 | 1.0  | Celsius  | 1       |   | SM4500 S2 H   | Total/NA              |
| Specific Conductance | 89     |           | 2.0 | 2.0  | umhos/cm | 1       |   | SM4500 S2 H   | Total/NA              |

### **Method Summary**

Client: GS Mining Company LLC

Project/Site: Wastewater Discharge - Nederland, CO

| Method        | Method Description                          | Protocol | Laboratory |
|---------------|---------------------------------------------|----------|------------|
| 200.7 Rev 4.4 | Metals (ICP)                                | EPA      | TAL DEN    |
| 200.8         | Metals (ICP/MS)                             | EPA      | TAL DEN    |
| 245.1         | Mercury (CVAA)                              | EPA      | TAL DEN    |
| SM 2510B      | Conductivity, Specific Conductance          | SM       | TAL DEN    |
| SM 2540D      | Solids, Total Suspended (TSS)               | SM       | TAL DEN    |
| SM 3500 CR B  | Chromium, Hexavalent                        | SM       | TAL DEN    |
| M 4500 H+ B   | рН                                          | SM       | TAL DEN    |
| M 4500 S2 D   | Sulfide, Total                              | SM       | TAL DEN    |
| M3500 CR B    | Chromium, Trivalent                         | SM       | TAL DEN    |
| M4500 S2 H    | Unionized Hydrogen Sulfide                  | SM       | TAL DEN    |
| 00.7          | Preparation, Total Recoverable Metals       | EPA      | TAL DEN    |
| 00.8          | Preparation, Total Recoverable Metals       | EPA      | TAL DEN    |
| 45.1          | Preparation, Mercury                        | EPA      | TAL DEN    |
| ILTRATION     | Sample Filtration                           | None     | TAL DEN    |
| oten Diss Met | Filtration for Potentially Dissolved Metals | EPA      | TAL DEN    |

#### **Protocol References:**

EPA = US Environmental Protection Agency

None = None

SM = "Standard Methods For The Examination Of Water And Wastewater"

#### **Laboratory References:**

TAL DEN = Eurofins Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

Job ID: 280-163315-1

3

4

5

7

10

12

13

### **Sample Summary**

Client: GS Mining Company LLC

Project/Site: Wastewater Discharge - Nederland, CO

 Lab Sample ID
 Client Sample ID
 Matrix
 Collected
 Received

 280-163315-1
 OUTFALL-001
 Water
 06/10/22 13:10
 06/10/22 15:07

Job ID: 280-163315-1

2

3

4

**O** 

7

Ö

46

11

Client: GS Mining Company LLC

Project/Site: Wastewater Discharge - Nederland, CO

Method: 200.7 Rev 4.4 - Metals (ICP) - Total Recoverable

**Client Sample ID: OUTFALL-001** 

Date Collected: 06/10/22 13:10 Date Received: 06/10/22 15:07

Analyte RL **MDL** Unit Result Qualifier D Prepared Analyzed Dil Fac 100 9.1 ug/L 06/20/22 08:27 06/21/22 21:27 Iron 55 JB

Method: 200.8 - Metals (ICP/MS) - Total Recoverable

Client Sample ID: OUTFALL-001 Lab Sample ID: 280-163315-1 Date Collected: 06/10/22 13:10 **Matrix: Water** 

| ate Received: 06/10/22 15:07 |                                          |                                                                                                                                                                      |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Result Qualifier             | RL                                       | MDL                                                                                                                                                                  | Unit                                                                                                                                                                                                                                                       | D                                                                                                                                                                                                                                                                                                                                        | Prepared                                                                                                                                                                                                                                                                                                                                           | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                               | Dil Fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| ND ND                        | 5.0                                      | 0.50                                                                                                                                                                 | ug/L                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                          | 06/20/22 08:20                                                                                                                                                                                                                                                                                                                                     | 06/20/22 23:15                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| ND                           | 1.0                                      | 0.088                                                                                                                                                                | ug/L                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                          | 06/20/22 08:20                                                                                                                                                                                                                                                                                                                                     | 06/20/22 23:15                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| ND                           | 3.0                                      | 0.88                                                                                                                                                                 | ug/L                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                          | 06/20/22 08:20                                                                                                                                                                                                                                                                                                                                     | 06/20/22 23:15                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| 1.3 J                        | 2.0                                      | 0.71                                                                                                                                                                 | ug/L                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                          | 06/20/22 08:20                                                                                                                                                                                                                                                                                                                                     | 06/20/22 23:15                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| 2.1                          | 1.0                                      | 0.23                                                                                                                                                                 | ug/L                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                          | 06/20/22 08:20                                                                                                                                                                                                                                                                                                                                     | 06/20/22 23:15                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| 4.2 J                        | 10                                       | 2.0                                                                                                                                                                  | ug/L                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                          | 06/20/22 08:20                                                                                                                                                                                                                                                                                                                                     | 06/20/22 23:15                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|                              | Result Qualifier  ND  ND  ND  1.3 J  2.1 | Result         Qualifier         RL           ND         5.0           ND         1.0           ND         3.0           1.3 J         2.0           2.1         1.0 | Result         Qualifier         RL         MDL           ND         5.0         0.50           ND         1.0         0.088           ND         3.0         0.88           1.3         J         2.0         0.71           2.1         1.0         0.23 | Result         Qualifier         RL         MDL         Unit           ND         5.0         0.50         ug/L           ND         1.0         0.088         ug/L           ND         3.0         0.88         ug/L           1.3         J         2.0         0.71         ug/L           2.1         1.0         0.23         ug/L | Result         Qualifier         RL         MDL         Unit         D           ND         5.0         0.50         ug/L           ND         1.0         0.088         ug/L           ND         3.0         0.88         ug/L           1.3         J         2.0         0.71         ug/L           2.1         1.0         0.23         ug/L | Result         Qualifier         RL         MDL Unit         D         Prepared           ND         5.0         0.50 ug/L         06/20/22 08:20           ND         1.0         0.088 ug/L         06/20/22 08:20           ND         3.0         0.88 ug/L         06/20/22 08:20           1.3         J         2.0         0.71 ug/L         06/20/22 08:20           2.1         1.0         0.23 ug/L         06/20/22 08:20 | Result ND         Qualifier         RL ND         MDL ug/L Ug/L Ug/L         D 06/20/22 08:20         Analyzed 06/20/22 23:15           ND         1.0         0.088 ug/L 06/20/22 08:20         06/20/22 08:20         06/20/22 23:15           ND         3.0         0.88 ug/L 06/20/22 08:20         06/20/22 08:20         06/20/22 23:15           1.3         J 2.0         0.71 ug/L 06/20/22 08:20         06/20/22 08:20         06/20/22 23:15           2.1         1.0         0.23 ug/L 06/20/22 08:20         06/20/22 08:20         06/20/22 23:15 |  |  |  |  |  |

Method: 200.8 - Metals (ICP/MS) - Potentially Dissolved

Client Sample ID: OUTFALL-001 Lab Sample ID: 280-163315-1 Date Collected: 06/10/22 13:10 **Matrix: Water** 

| e Received: 06/10/22 15:10 |                                                                                      |                                                                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                            | IVIALI IX.                                                                      | . water |
|----------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------|---------------------------------------------------------------------------------|---------|
| 15:07                      |                                                                                      |                                                                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                            |                                                                                 |         |
| Result C                   | Qualifier                                                                            | RL                                                                  | MDL                     | Unit                                                                                                                                                                                                                                                                                                                                                                                                                            | D                       | Prepared                   | Analyzed                                                                        | Dil Fac |
| ND                         |                                                                                      | 5.0                                                                 | 0.50                    | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | 06/17/22 08:32             | 06/20/22 16:31                                                                  | 1       |
| ND                         |                                                                                      | 1.0                                                                 | 0.088                   | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | 06/17/22 08:32             | 06/20/22 16:31                                                                  | 1       |
| ND                         |                                                                                      | 3.0                                                                 | 0.88                    | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | 06/17/22 08:32             | 06/20/22 16:31                                                                  | 1       |
| 1.2 J                      | J                                                                                    | 2.0                                                                 | 0.71                    | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | 06/17/22 08:32             | 06/20/22 16:31                                                                  | 1       |
| 1.6                        |                                                                                      | 1.0                                                                 | 0.23                    | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | 06/17/22 08:32             | 06/20/22 16:31                                                                  | 1       |
| 0.95 J                     | J                                                                                    | 2.0                                                                 | 0.51                    | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | 06/17/22 08:32             | 06/20/22 16:31                                                                  | 1       |
| ND                         |                                                                                      | 2.0                                                                 | 0.28                    | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | 06/17/22 08:32             | 06/20/22 16:31                                                                  | 1       |
| ND                         |                                                                                      | 5.0                                                                 | 1.0                     | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | 06/17/22 08:32             | 06/20/22 16:31                                                                  | 1       |
| ND                         |                                                                                      | 0.50                                                                | 0.045                   | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | 06/17/22 08:32             | 06/20/22 16:31                                                                  | 1       |
| 6.8 J                      | J                                                                                    | 10                                                                  | 2.0                     | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | 06/17/22 08:32             | 06/20/22 16:31                                                                  | 1       |
|                            | 15:07  Result (1)  ND  ND  ND  1.2  1.6  0.95  ND  ND  ND  ND  ND  ND  ND  ND  ND  N | 15:07  Result Qualifier  ND  ND  ND  1.2 J  1.6  0.95 J  ND  ND  ND | Result   Qualifier   RL | Result         Qualifier         RL         MDL           ND         5.0         0.50           ND         1.0         0.088           ND         3.0         0.88           1.2         J         2.0         0.71           1.6         1.0         0.23           0.95         J         2.0         0.51           ND         2.0         0.28           ND         5.0         1.0           ND         0.50         0.045 | ND   S.0   O.088   Ug/L | ND   S.0   O.50   Unit   D | ND   Solid Result   Qualifier   RL   MDL   Unit   D   Prepared   06/17/22 08:32 | ND      |

Method: 245.1 - Mercury (CVAA)

**Client Sample ID: OUTFALL-001** Lab Sample ID: 280-163315-1 **Matrix: Water** 

Date Collected: 06/10/22 13:10 Date Received: 06/10/22 15:07

Analyte Result Qualifier RL Dil Fac **MDL** Unit Prepared Analyzed 06/13/22 20:30 06/14/22 16:56 Mercury ND 0.20 0.061 ug/L

General Chemistry

Client Sample ID: OUTFALL-001 Lab Sample ID: 280-163315-1 Date Collected: 06/10/22 13:10 **Matrix: Water** 

Date Received: 06/10/22 15:07

| Date Received: 06/10/22 15:07 |        |           |       |        |           |   |          |                |         |
|-------------------------------|--------|-----------|-------|--------|-----------|---|----------|----------------|---------|
| Analyte                       | Result | Qualifier | RL    | MDL    | Unit      | D | Prepared | Analyzed       | Dil Fac |
| Specific Conductance          | 89     |           | 2.0   | 2.0    | umhos/cm  |   |          | 06/14/22 08:59 | 1       |
| Total Suspended Solids        | ND     |           | 4.0   | 1.1    | mg/L      |   |          | 06/15/22 17:17 | 1       |
| Chromium, hexavalent          | ND     |           | 0.020 | 0.0040 | mg/L      |   |          | 06/10/22 17:16 | 1       |
| pH adj. to 25 deg C           | 7.1    | HF        | 0.1   | 0.1    | SU        |   |          | 06/20/22 16:39 | 1       |
| Temperature                   | 19.8   | HF        | 1.0   | 1.0    | Degrees C |   |          | 06/20/22 16:39 | 1       |

**Eurofins Denver** 

6/24/2022

Job ID: 280-163315-1

**Matrix: Water** 

Lab Sample ID: 280-163315-1

Page 10 of 25

### Client Sample Results

Client: GS Mining Company LLC Job ID: 280-163315-1

Project/Site: Wastewater Discharge - Nederland, CO

**General Chemistry (Continued)** 

Client Sample ID: OUTFALL-001 Lab Sample ID: 280-163315-1 Date Collected: 06/10/22 13:10 **Matrix: Water** 

Date Received: 06/10/22 15:07

| Posult | Qualifier                   | DI              | MDI                                          | Unit                                                                                                                                   | n                                                                                                                                                                                        | Droparod                                                                                                                                                             | Analyzod                                                                                                                                                                                 | Dil Fac                                                                                                                                                                                                                                                             |
|--------|-----------------------------|-----------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kesuit | Qualifier                   |                 | MIDE                                         | OIIIL                                                                                                                                  |                                                                                                                                                                                          | riepaieu                                                                                                                                                             | Allalyzeu                                                                                                                                                                                | Dil Fac                                                                                                                                                                                                                                                             |
| ND     | F2 ^1+                      | 0.050           | 0.022                                        | mg/L                                                                                                                                   |                                                                                                                                                                                          |                                                                                                                                                                      | 06/17/22 21:25                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                   |
| ND     |                             | 1.0             | 1.0                                          | mg/L                                                                                                                                   |                                                                                                                                                                                          |                                                                                                                                                                      | 06/24/22 07:29                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                   |
| 7.1    |                             | 1.0             | 1.0                                          | SU                                                                                                                                     |                                                                                                                                                                                          |                                                                                                                                                                      | 06/24/22 07:29                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                   |
| 20     |                             | 1.0             | 1.0                                          | Celsius                                                                                                                                |                                                                                                                                                                                          |                                                                                                                                                                      | 06/24/22 07:29                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                   |
| 89     |                             | 2.0             | 2.0                                          | umhos/cm                                                                                                                               |                                                                                                                                                                                          |                                                                                                                                                                      | 06/24/22 07:29                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                   |
| ND     |                             | 4.0             | 4.0                                          | mg/L                                                                                                                                   |                                                                                                                                                                                          |                                                                                                                                                                      | 06/24/22 07:29                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                   |
|        | ND<br>ND<br>7.1<br>20<br>89 | 7.1<br>20<br>89 | ND F2 ^1+ 0.050 ND 1.0 7.1 1.0 20 1.0 89 2.0 | ND     F2 ^1+     0.050     0.022       ND     1.0     1.0       7.1     1.0     1.0       20     1.0     1.0       89     2.0     2.0 | ND     F2 ^1+     0.050     0.022     mg/L       ND     1.0     1.0     mg/L       7.1     1.0     1.0     SU       20     1.0     1.0     Celsius       89     2.0     2.0     umhos/cm | ND     F2 ^1+     0.050     0.022 mg/L       ND     1.0     1.0 mg/L       7.1     1.0     1.0 SU       20     1.0     1.0 Celsius       89     2.0     2.0 umhos/cm | ND     F2 ^1+     0.050     0.022     mg/L       ND     1.0     1.0     mg/L       7.1     1.0     1.0     SU       20     1.0     1.0     Celsius       89     2.0     2.0     umhos/cm | ND     F2 ^1+     0.050     0.022 mg/L     06/17/22 21:25       ND     1.0     1.0 mg/L     06/24/22 07:29       7.1     1.0     1.0 SU     06/24/22 07:29       20     1.0     1.0 Celsius     06/24/22 07:29       89     2.0     2.0 umhos/cm     06/24/22 07:29 |

**General Chemistry - Total Recoverable** 

Client Sample ID: OUTFALL-001 Lab Sample ID: 280-163315-1

Date Collected: 06/10/22 13:10 Date Received: 06/10/22 15:07

MDL Unit Analyte RL Dil Fac Result Qualifier D Prepared Analyzed Chromium, trivalent ND H 0.020 0.020 mg/L 06/23/22 12:35

General Chemistry - Dissolved

**Client Sample ID: OUTFALL-001** Lab Sample ID: 280-163315-1 **Matrix: Water** 

Date Collected: 06/10/22 13:10 Date Received: 06/10/22 15:07

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 06/10/22 17:19 Chromium, hexavalent ND 0.020 0.0040 mg/L

**General Chemistry - Potentially Dissolved** 

**Client Sample ID: OUTFALL-001** Lab Sample ID: 280-163315-1 Date Collected: 06/10/22 13:10 **Matrix: Water** 

Date Received: 06/10/22 15:07

Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Chromium, trivalent (dissolved) ND 0.020 0.020 mg/L 06/23/22 12:37

**Matrix: Water** 

Client: GS Mining Company LLC Job ID: 280-163315-1

Project/Site: Wastewater Discharge - Nederland, CO

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MB 280-578373/1-A

**Matrix: Water** 

Analyte

Iron

Iron

Analysis Batch: 578742

Client Sample ID: Method Blank **Prep Type: Total Recoverable Prep Batch: 578373** MB MB

Analyzed Result Qualifier RL **MDL** Unit Dil Fac Prepared 100 57.0 J 9.1 ug/L 06/20/22 08:27 06/21/22 21:15

Lab Sample ID: LCS 280-578373/2-A

**Matrix: Water** 

**Analysis Batch: 578742** 

Analyte

Spike

Sample Sample

Result Qualifier

55 J.B

ND

ND

Added 10000

Spike

Added

10000

Spike

Added

10000

Spike

Added

10000

Result Qualifier 9470

LCS LCS

LCSD LCSD

MS MS

MSD MSD

Result Qualifier

**MDL** Unit

0.88 ug/L

0.23 ug/L

2.0 ug/L

ug/L

0.50 ug/L

880.0

0.71 ug/L

LCS LCS

36.7

Result Qualifier

9830

10200

RL

5.0

1.0

3.0

2.0

1.0

10

10100

ug/L

D %Rec Unit 95

Limits 85 - 115

%Rec

Limits

85 - 115

Client Sample ID: OUTFALL-001

%Rec

Limits

**Prep Type: Total Recoverable** 

%Rec

**Prep Type: Total Recoverable** 

**Prep Batch: 578373** 

**Prep Batch: 578373** 

**Prep Batch: 578373** 

RPD

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup **Prep Type: Total Recoverable** 

%Rec

101

Lab Sample ID: LCSD 280-578373/3-A **Matrix: Water** 

**Analysis Batch: 578742** 

Analyte Iron

Lab Sample ID: 280-163315-1 MS

**Matrix: Water** 

**Matrix: Water** 

Analyte

Iron

**Analysis Batch: 578742** 

Lab Sample ID: 280-163315-1 MSD

Analysis Batch: 578742

Analyte

Sample Sample Result Qualifier 55 JB Iron

Method: 200.8 - Metals (ICP/MS)

Lab Sample ID: MB 280-578359/1-A

**Matrix: Water** 

Cadmium

Chromium

Analysis Batch: 578598

MR MR Analyte Result Qualifier Arsenic ND

Copper ND Lead ND Zinc ND

Lab Sample ID: LCS 280-578359/2-A **Matrix: Water** 

**Analysis Batch: 578598** 

Spike Added Analyte Arsenic 40.0 Result Qualifier Unit ug/L

Result Qualifier Unit

Unit

ug/L

Unit

ug/L

%Rec ug/L

70 - 130 Client Sample ID: OUTFALL-001

%Rec

101

Prep Type: Total Recoverable **Prep Batch: 578373** 

%Rec **RPD** Limits Limit 70 - 130 20

**Client Sample ID: Method Blank Prep Type: Total Recoverable** 

**Prep Batch: 578359** 

Prepared Analyzed Dil Fac 06/20/22 08:20 06/20/22 23:08 06/20/22 08:20 06/20/22 23:08 06/20/22 08:20 06/20/22 23:08 06/20/22 08:20 06/20/22 23:08 06/20/22 08:20 06/20/22 23:08 06/20/22 08:20 06/20/22 23:08

**Client Sample ID: Lab Control Sample Prep Type: Total Recoverable** 

**Prep Batch: 578359** 

%Rec Limits %Rec 92 89 - 111

**Eurofins Denver** 

6/24/2022

**RPD** 

Limit

Client: GS Mining Company LLC

Project/Site: Wastewater Discharge - Nederland, CO

Method: 200.8 - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 280-578359/2-A

**Matrix: Water** 

Analysis Batch: 578598

**Client Sample ID: Lab Control Sample Prep Type: Total Recoverable** 

Job ID: 280-163315-1

**Prep Batch: 578359** 

|          | <b>Бріке</b> | LUS    | LCS       |      |   |      | %Rec     |  |
|----------|--------------|--------|-----------|------|---|------|----------|--|
| Analyte  | Added        | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Cadmium  | 40.0         | 38.3   |           | ug/L |   | 96   | 89 - 111 |  |
| Chromium | 40.0         | 38.6   |           | ug/L |   | 97   | 86 - 115 |  |
| Copper   | 40.0         | 40.8   |           | ug/L |   | 102  | 90 - 115 |  |
| Lead     | 40.0         | 39.2   |           | ug/L |   | 98   | 88 - 115 |  |
| Zinc     | 40.0         | 42.2   |           | ug/L |   | 106  | 88 - 115 |  |

Lab Sample ID: 280-163315-1 MS

**Matrix: Water** 

**Analysis Batch: 578598** 

**Client Sample ID: OUTFALL-001 Prep Type: Total Recoverable** 

**Prep Batch: 578359** 

|          | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec     |  |
|----------|--------|-----------|-------|--------|-----------|------|---|------|----------|--|
| Analyte  | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Arsenic  | ND     |           | 40.0  | 39.7   |           | ug/L |   | 99   | 79 - 120 |  |
| Cadmium  | ND     |           | 40.0  | 38.5   |           | ug/L |   | 96   | 89 - 111 |  |
| Chromium | ND     |           | 40.0  | 39.4   |           | ug/L |   | 99   | 86 - 115 |  |
| Copper   | 1.3    | J         | 40.0  | 40.5   |           | ug/L |   | 98   | 90 - 115 |  |
| Lead     | 2.1    |           | 40.0  | 42.8   |           | ug/L |   | 102  | 88 - 115 |  |
| Zinc     | 4.2    | J         | 40.0  | 44.6   |           | ug/L |   | 101  | 88 - 115 |  |

Lab Sample ID: 280-163315-1 MSD

**Matrix: Water** 

Analysis Batch: 578598

Client Sample ID: OUTFALL-001 **Prep Type: Total Recoverable** 

**Prep Batch: 578359** 

| -        | Sample | Sample    | Spike | MSD    | MSD       |      |   |      | %Rec     |     | RPD   |
|----------|--------|-----------|-------|--------|-----------|------|---|------|----------|-----|-------|
| Analyte  | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |
| Arsenic  | ND     |           | 40.0  | 38.1   |           | ug/L |   | 95   | 79 - 120 | 4   | 20    |
| Cadmium  | ND     |           | 40.0  | 38.1   |           | ug/L |   | 95   | 89 - 111 | 1   | 20    |
| Chromium | ND     |           | 40.0  | 39.7   |           | ug/L |   | 99   | 86 - 115 | 1   | 20    |
| Copper   | 1.3    | J         | 40.0  | 41.0   |           | ug/L |   | 99   | 90 - 115 | 1   | 20    |
| Lead     | 2.1    |           | 40.0  | 42.2   |           | ug/L |   | 100  | 88 - 115 | 1   | 20    |
| Zinc     | 4.2    | J         | 40.0  | 45.1   |           | ug/L |   | 102  | 88 - 115 | 1   | 20    |

Lab Sample ID: MB 280-577817/1-B

**Matrix: Water** 

Analysis Batch: 578570

**Client Sample ID: Method Blank Prep Type: Potentially Dissolved** 

Prep Batch: 578261

| Analysis Baton, or our o |        |           |      |       |      |   |                | i icp Batcii.  | 0,0201  |
|--------------------------|--------|-----------|------|-------|------|---|----------------|----------------|---------|
|                          | MB     | MB        |      |       |      |   |                |                |         |
| Analyte                  | Result | Qualifier | RL   | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                  | ND     |           | 5.0  | 0.50  | ug/L |   | 06/17/22 08:32 | 06/20/22 15:41 | 1       |
| Cadmium                  | ND     |           | 1.0  | 0.088 | ug/L |   | 06/17/22 08:32 | 06/20/22 15:41 | 1       |
| Chromium                 | ND     |           | 3.0  | 0.88  | ug/L |   | 06/17/22 08:32 | 06/20/22 15:41 | 1       |
| Copper                   | ND     |           | 2.0  | 0.71  | ug/L |   | 06/17/22 08:32 | 06/20/22 15:41 | 1       |
| Lead                     | ND     |           | 1.0  | 0.23  | ug/L |   | 06/17/22 08:32 | 06/20/22 15:41 | 1       |
| Manganese                | ND     |           | 2.0  | 0.51  | ug/L |   | 06/17/22 08:32 | 06/20/22 15:41 | 1       |
| Nickel                   | ND     |           | 2.0  | 0.28  | ug/L |   | 06/17/22 08:32 | 06/20/22 15:41 | 1       |
| Selenium                 | ND     |           | 5.0  | 1.0   | ug/L |   | 06/17/22 08:32 | 06/20/22 15:41 | 1       |
| Silver                   | ND     |           | 0.50 | 0.045 | ug/L |   | 06/17/22 08:32 | 06/20/22 15:41 | 1       |
| Zinc                     | ND     |           | 10   | 2.0   | ug/L |   | 06/17/22 08:32 | 06/20/22 15:41 | 1       |
|                          |        |           |      |       |      |   |                |                |         |

Client: GS Mining Company LLC Job ID: 280-163315-1

Project/Site: Wastewater Discharge - Nederland, CO

Method: 200.8 - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 280-577817/2-B

Analysis Batch: 578570

Client Sample ID: Lab Control Sample **Prep Type: Potentially Dissolved Matrix: Water** 

**Prep Batch: 578261** Spike LCS LCS %Rec Added Result Qualifier %Rec Limits Analyte Unit D Arsenic 40.0 40.8 ug/L 102 89 - 111 Cadmium 40.0 40.7 ug/L 102 89 - 111 40.0 40.5 Chromium ug/L 101 86 - 115 Copper 40.0 41.3 ug/L 103 90 - 115 Lead 40.0 38.0 ug/L 95 88 - 115 40.0 39.3 ug/L 98 87 - 115 Manganese 40.0 Nickel 40.6 ug/L 102 86 - 115 Selenium 40.0 42.0 ug/L 105 85 - 114 Silver 40.0 40.1 ug/L 100 90 - 114

40.0

Method: 245.1 - Mercury (CVAA)

Lab Sample ID: MB 280-577883/1-A **Client Sample ID: Method Blank** 

41.0

ug/L

ug/L

103

88 - 115

**Matrix: Water** 

Zinc

**Analysis Batch: 578022** MB MB

RLAnalyte Result Qualifier **MDL** Unit Prepared Analyzed Dil Fac Mercury ND 0.20 0.061 ug/L 06/13/22 20:30 06/14/22 15:45

Lab Sample ID: LCS 280-577883/2-A **Client Sample ID: Lab Control Sample** Prep Type: Total/NA **Matrix: Water Analysis Batch: 578022 Prep Batch: 577883** 

LCS LCS Spike %Rec

Limits Analyte Added Result Qualifier Unit %Rec Mercury 5.00 4.67 93 90 - 110 ug/L

Lab Sample ID: LCSD 280-577883/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Water Prep Type: Total/NA** 

**Analysis Batch: 578022 Prep Batch: 577883** Spike LCSD LCSD %Rec **RPD Analyte** Added Result Qualifier Unit %Rec

4.80

Method: SM 2510B - Conductivity, Specific Conductance

Lab Sample ID: MB 280-577924/5 **Client Sample ID: Method Blank** 

**Matrix: Water** 

Mercury

**Analysis Batch: 577924** 

MB MB Analyte Result Qualifier RL **MDL** Unit Analyzed Prepared

5.00

Specific Conductance  $\overline{\mathsf{ND}}$ 2.0 2.0 umhos/cm 06/14/22 08:58

Lab Sample ID: LCS 280-577924/4

**Matrix: Water** 

**Analysis Batch: 577924** 

|                      | Spike | LCS    | LCS       |          |   |      | %Rec     |      |
|----------------------|-------|--------|-----------|----------|---|------|----------|------|
| Analyte              | Added | Result | Qualifier | Unit     | D | %Rec | Limits   |      |
| Specific Conductance | 1410  | 1480   |           | umhos/cm | _ | 105  | 90 - 110 | <br> |

**Eurofins Denver** 

6/24/2022

Limits **RPD** Limit 10

Prep Type: Total/NA

**Prep Batch: 577883** 

90 - 110

Prep Type: Total/NA

Dil Fac

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA

Client: GS Mining Company LLC Job ID: 280-163315-1

Project/Site: Wastewater Discharge - Nederland, CO

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 280-578154/3 Client Sample ID: Method Blank Prep Type: Total/NA

**Matrix: Water** 

Analysis Batch: 578154

MB MB

Analyzed Result Qualifier RL **MDL** Unit Dil Fac Analyte D Prepared 4.0 06/15/22 17:17 **Total Suspended Solids** ND 1.1 mg/L

Lab Sample ID: LCS 280-578154/1 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

**Matrix: Water** 

**Analysis Batch: 578154** 

Spike LCS LCS %Rec Added Result Qualifier D %Rec Limits Analyte Unit 100 **Total Suspended Solids** 80.0 mg/L 80 79 - 114

Lab Sample ID: LCSD 280-578154/2 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

**Matrix: Water** 

Analysis Batch: 578154

Spike LCSD LCSD %Rec RPD Limits Added Result Qualifier RPD Analyte Unit %Rec Limit Total Suspended Solids 100 89.6 90 79 - 114 20 mg/L

Method: SM 3500 CR B - Chromium, Hexavalent

Lab Sample ID: MB 280-577801/10 Client Sample ID: Method Blank Prep Type: Total/NA

**Matrix: Water** 

**Analysis Batch: 577801** 

MB MB

Analyte Result Qualifier

RL MDL Unit Prepared Analyzed Dil Fac Chromium, hexavalent  $\overline{\mathsf{ND}}$ 0.020 0.0040 mg/L 06/10/22 17:16

Lab Sample ID: LCS 280-577801/8 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

**Analysis Batch: 577801** 

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits Chromium, hexavalent 0.100 0.102 mg/L 102 91 - 112

Lab Sample ID: LCSD 280-577801/9 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

**Matrix: Water** 

Analysis Batch: 577801

Spike LCSD LCSD RPD %Rec Added Result Qualifier RPD Limit Analyte Unit %Rec Limits Chromium, hexavalent 0.100 0.102 102 91 - 112 mg/L

Lab Sample ID: 280-163315-1 MS Client Sample ID: OUTFALL-001 Prep Type: Total/NA

**Matrix: Water** 

**Analysis Batch: 577801** 

Sample Sample Spike MS MS %Rec Result Qualifier Added Result Qualifier Unit %Rec Limits Chromium, hexavalent ND 0.100 0.102 102 mg/L 91 - 112

**Eurofins Denver** 

Job ID: 280-163315-1

**Prep Type: Total/NA** 

Project/Site: Wastewater Discharge - Nederland, CO

Method: SM 3500 CR B - Chromium, Hexavalent (Continued)

Lab Sample ID: 280-163315-1 MSD Client Sample ID: OUTFALL-001

**Matrix: Water** 

Analysis Batch: 577801

Client: GS Mining Company LLC

Sample Sample Spike MSD MSD %Rec **RPD** Result Qualifier Added Result Qualifier Unit Limits RPD Limit Analyte %Rec 0.100 Chromium, hexavalent ND 0.102 mg/L

Lab Sample ID: 280-163315-1 DU Client Sample ID: OUTFALL-001 **Prep Type: Total/NA** 

**Matrix: Water** 

**Analysis Batch: 577801** 

Sample Sample DU DU **RPD** Result Qualifier Result Qualifier Unit RPD Limit Chromium, hexavalent NΠ ND mg/L NC.

Lab Sample ID: MB 280-577791/3-A Client Sample ID: Method Blank **Matrix: Water Prep Type: Dissolved** 

**Analysis Batch: 577801** 

MB MB

ND

RL **MDL** Unit Analyte Result Qualifier Prepared Analyzed Dil Fac Chromium, hexavalent  $\overline{\mathsf{ND}}$ 0.020 0.0040 mg/L 06/10/22 17:19

Lab Sample ID: LCS 280-577791/1-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Dissolved** 

**Analysis Batch: 577801** 

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit %Rec Limits 0.100 0.102 Chromium, hexavalent mg/L 102 91 - 112

Lab Sample ID: LCSD 280-577791/2-A Client Sample ID: Lab Control Sample Dup **Prep Type: Dissolved** 

**Matrix: Water** 

Analysis Batch: 577801

LCSD LCSD RPD Spike %Rec Added Result Qualifier Analyte Unit %Rec Limits **RPD** Limit Chromium, hexavalent 0.100 0.102 mg/L 102 91 - 112

Lab Sample ID: 280-163315-1 MS Client Sample ID: OUTFALL-001 **Prep Type: Dissolved** 

**Matrix: Water** 

**Analysis Batch: 577801** 

Sample Sample Spike MS MS %Rec Result Qualifier Added Result Qualifier Analyte Unit D %Rec Limits 0.100 Chromium, hexavalent ND 0.102 mg/L 102 91 - 112

Lab Sample ID: 280-163315-1 MSD Client Sample ID: OUTFALL-001 **Prep Type: Dissolved** 

**Matrix: Water** 

**Analysis Batch: 577801** 

Sample Sample Spike MSD MSD %Rec **RPD** Result Qualifier Added Result Qualifier Limits RPD Limit Unit %Rec Chromium, hexavalent NΩ 0.100 0.104 mg/L 104 91 - 112

Lab Sample ID: 280-163315-1 DU Client Sample ID: OUTFALL-001 **Prep Type: Dissolved** 

**Matrix: Water** 

Chromium, hexavalent

**Analysis Batch: 577801** DU DU **RPD** Sample Sample Result Qualifier **RPD** Analyte Result Qualifier Unit D Limit

ND

mg/L

**Eurofins Denver** 

NC

20

6/24/2022

Job ID: 280-163315-1

Prep Type: Total/NA

Client: GS Mining Company LLC

Project/Site: Wastewater Discharge - Nederland, CO

Method: SM 4500 H+ B - pH

**Client Sample ID: Lab Control Sample** Lab Sample ID: LCS 280-578603/4

**Matrix: Water** 

Analysis Batch: 578603

Spike LCS LCS %Rec Added Result Qualifier %Rec Limits Analyte Unit SU 99 - 101 pH adj. to 25 deg C 7.00 7.0 100

Method: SM 4500 S2 D - Sulfide, Total

Lab Sample ID: MB 280-578440/11 **Client Sample ID: Method Blank** Prep Type: Total/NA

**Matrix: Water** 

Analysis Batch: 578440

MB MB

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte Prepared 0.050 Sulfide ND ^1+ 0.022 mg/L 06/17/22 21:25

Lab Sample ID: LCS 280-578440/9 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

**Analysis Batch: 578440** 

Spike LCS LCS %Rec Added Result Qualifier Limits Analyte Unit %Rec Sulfide 0.501 0.541 ^1+ mg/L 108 81 - 122

Lab Sample ID: LCSD 280-578440/10 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

**Analysis Batch: 578440** 

LCSD LCSD Spike %Rec **RPD** Added Result Qualifier Analyte Unit D %Rec Limits RPD Limit Sulfide 0.501 0.564 ^1+ 113 81 - 122 mg/L

Lab Sample ID: 280-163315-1 MS Client Sample ID: OUTFALL-001 Prep Type: Total/NA

**Matrix: Water** 

**Analysis Batch: 578440** 

MS MS Sample Sample Spike %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits 0.425 ^1+ Sulfide ND F2 ^1+ 0.501 mg/L 81 - 122

Lab Sample ID: 280-163315-1 MSD Client Sample ID: OUTFALL-001 Prep Type: Total/NA

**Matrix: Water** 

Analysis Batch: 578440

Spike RPD MSD MSD %Rec Sample Sample Result Qualifier Added Result Qualifier RPD Analyte Unit %Rec Limits Limit 0.501 0.553 F2 ^1+ Sulfide ND F2 ^1+ 110 81 - 122 26 10 mg/L

Method: SM4500 S2 H - Unionized Hydrogen Sulfide

Lab Sample ID: MB 280-579003/1 **Client Sample ID: Method Blank** Prep Type: Total/NA

**Matrix: Water** 

**Analysis Batch: 579003** 

|                             | MB MB         |         |     |          |   |          |                |         |
|-----------------------------|---------------|---------|-----|----------|---|----------|----------------|---------|
| Analyte                     | Result Qualif | fier RL | MDL | Unit     | D | Prepared | Analyzed       | Dil Fac |
| Un-ionized Hydrogen Sulfide | ND            | 1.0     | 1.0 | mg/L     |   |          | 06/24/22 07:29 | 1       |
| Field pH                    | ND            | 1.0     | 1.0 | SU       |   |          | 06/24/22 07:29 | 1       |
| Field Temperature           | ND            | 1.0     | 1.0 | Celsius  |   |          | 06/24/22 07:29 | 1       |
| Specific Conductance        | ND            | 2.0     | 2.0 | umhos/cm |   |          | 06/24/22 07:29 | 1       |

**Eurofins Denver** 

### **QC Sample Results**

Client: GS Mining Company LLC Job ID: 280-163315-1

Project/Site: Wastewater Discharge - Nederland, CO

Method: SM4500 S2 H - Unionized Hydrogen Sulfide (Continued)

Lab Sample ID: MB 280-579003/1 Matrix: Water

**Analysis Batch: 579003** 

MB MB

| Analyte | Result | Qualifier | RL  | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------|--------|-----------|-----|-----|------|---|----------|----------------|---------|
| Sulfide | ND     |           | 4.0 | 4.0 | mg/L |   |          | 06/24/22 07:29 | 1       |

**Prep Type: Total/NA** 

**Client Sample ID: Method Blank** 

### **QC Association Summary**

Client: GS Mining Company LLC

Project/Site: Wastewater Discharge - Nederland, CO

### Metals

| Filtration | Ratch: | 577Q17 |
|------------|--------|--------|
| гинанон    | Dalli. | 3//01/ |

| Lab Sample ID      | Client Sample ID   | Prep Type             | Matrix | Method         | Prep Batch |
|--------------------|--------------------|-----------------------|--------|----------------|------------|
| 280-163315-1       | OUTFALL-001        | Potentially Dissolved | Water  | Poten_Diss_Met |            |
| MB 280-577817/1-B  | Method Blank       | Potentially Dissolved | Water  | Poten_Diss_Met |            |
| LCS 280-577817/2-B | Lab Control Sample | Potentially Dissolvec | Water  | Poten_Diss_Met |            |

### **Prep Batch: 577883**

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| 280-163315-1        | OUTFALL-001            | Total/NA  | Water  | 245.1  |            |
| MB 280-577883/1-A   | Method Blank           | Total/NA  | Water  | 245.1  |            |
| LCS 280-577883/2-A  | Lab Control Sample     | Total/NA  | Water  | 245.1  |            |
| LCSD 280-577883/3-A | Lab Control Sample Dup | Total/NA  | Water  | 245.1  |            |

### **Analysis Batch: 578022**

| Lab Sample ID<br>280-163315-1 | Client Sample ID OUTFALL-001 | Prep Type Total/NA | Matrix<br>Water | Method 245.1 | Prep Batch 577883 |
|-------------------------------|------------------------------|--------------------|-----------------|--------------|-------------------|
| MB 280-577883/1-A             | Method Blank                 | Total/NA           | Water           | 245.1        | 577883            |
| LCS 280-577883/2-A            | Lab Control Sample           | Total/NA           | Water           | 245.1        | 577883            |
| LCSD 280-577883/3-A           | Lab Control Sample Dup       | Total/NA           | Water           | 245.1        | 577883            |

### Prep Batch: 578261

| Lab Sample ID      | Client Sample ID   | Prep Type             | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------------------|--------|--------|------------|
| 280-163315-1       | OUTFALL-001        | Potentially Dissolved | Water  | 200.8  | 577817     |
| MB 280-577817/1-B  | Method Blank       | Potentially Dissolvec | Water  | 200.8  | 577817     |
| LCS 280-577817/2-B | Lab Control Sample | Potentially Dissolved | Water  | 200.8  | 577817     |

### **Prep Batch: 578359**

| Lab Sample ID      | Client Sample ID   | Prep Type         | Matrix | Method | Prep Batch |
|--------------------|--------------------|-------------------|--------|--------|------------|
| 280-163315-1       | OUTFALL-001        | Total Recoverable | Water  | 200.8  |            |
| MB 280-578359/1-A  | Method Blank       | Total Recoverable | Water  | 200.8  |            |
| LCS 280-578359/2-A | Lab Control Sample | Total Recoverable | Water  | 200.8  |            |
| 280-163315-1 MS    | OUTFALL-001        | Total Recoverable | Water  | 200.8  |            |
| 280-163315-1 MSD   | OUTFALL-001        | Total Recoverable | Water  | 200.8  |            |

### **Prep Batch: 578373**

| <b>Lab Sample ID</b> 280-163315-1 | Client Sample ID OUTFALL-001 | Prep Type  Total Recoverable | Matrix<br>Water | Method 200.7 | Prep Batch |
|-----------------------------------|------------------------------|------------------------------|-----------------|--------------|------------|
| MB 280-578373/1-A                 | Method Blank                 | Total Recoverable            | Water           | 200.7        |            |
| LCS 280-578373/2-A                | Lab Control Sample           | Total Recoverable            | Water           | 200.7        |            |
| LCSD 280-578373/3-A               | Lab Control Sample Dup       | Total Recoverable            | Water           | 200.7        |            |
| 280-163315-1 MS                   | OUTFALL-001                  | Total Recoverable            | Water           | 200.7        |            |
| 280-163315-1 MSD                  | OUTFALL-001                  | Total Recoverable            | Water           | 200.7        |            |

### **Analysis Batch: 578570**

| Lab Sample ID      | Client Sample ID   | Prep Type             | Matrix | Method F | rep Batch |
|--------------------|--------------------|-----------------------|--------|----------|-----------|
| 280-163315-1       | OUTFALL-001        | Potentially Dissolved | Water  | 200.8    | 578261    |
| MB 280-577817/1-B  | Method Blank       | Potentially Dissolved | Water  | 200.8    | 578261    |
| LCS 280-577817/2-B | Lab Control Sample | Potentially Dissolvec | Water  | 200.8    | 578261    |

### **Analysis Batch: 578598**

| Lab Sample ID     | Client Sample ID | Prep Type         | Matrix | Method | Prep Batch |
|-------------------|------------------|-------------------|--------|--------|------------|
| 280-163315-1      | OUTFALL-001      | Total Recoverable | Water  | 200.8  | 578359     |
| MB 280-578359/1-A | Method Blank     | Total Recoverable | Water  | 200.8  | 578359     |

**Eurofins Denver** 

Page 19 of 25 6/24/2022

2

Job ID: 280-163315-1

A

5

\_

ŏ

10

11

12

13

### **QC Association Summary**

Client: GS Mining Company LLC

Project/Site: Wastewater Discharge - Nederland, CO

### **Metals (Continued)**

### **Analysis Batch: 578598 (Continued)**

| Lab Sample ID      | Client Sample ID   | Prep Type         | Matrix | Method | Prep Batch |
|--------------------|--------------------|-------------------|--------|--------|------------|
| LCS 280-578359/2-A | Lab Control Sample | Total Recoverable | Water  | 200.8  | 578359     |
| 280-163315-1 MS    | OUTFALL-001        | Total Recoverable | Water  | 200.8  | 578359     |
| 280-163315-1 MSD   | OUTFALL-001        | Total Recoverable | Water  | 200.8  | 578359     |

### **Analysis Batch: 578742**

| Lab Sample ID       | Client Sample ID       | Prep Type         | Matrix | Method        | Prep Batch |
|---------------------|------------------------|-------------------|--------|---------------|------------|
| 280-163315-1        | OUTFALL-001            | Total Recoverable | Water  | 200.7 Rev 4.4 | 578373     |
| MB 280-578373/1-A   | Method Blank           | Total Recoverable | Water  | 200.7 Rev 4.4 | 578373     |
| LCS 280-578373/2-A  | Lab Control Sample     | Total Recoverable | Water  | 200.7 Rev 4.4 | 578373     |
| LCSD 280-578373/3-A | Lab Control Sample Dup | Total Recoverable | Water  | 200.7 Rev 4.4 | 578373     |
| 280-163315-1 MS     | OUTFALL-001            | Total Recoverable | Water  | 200.7 Rev 4.4 | 578373     |
| 280-163315-1 MSD    | OUTFALL-001            | Total Recoverable | Water  | 200.7 Rev 4.4 | 578373     |

### **General Chemistry**

### Filtration Batch: 577791

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method     | Prep Batch |
|---------------------|------------------------|-----------|--------|------------|------------|
| 280-163315-1        | OUTFALL-001            | Dissolved | Water  | FILTRATION |            |
| MB 280-577791/3-A   | Method Blank           | Dissolved | Water  | FILTRATION |            |
| LCS 280-577791/1-A  | Lab Control Sample     | Dissolved | Water  | FILTRATION |            |
| LCSD 280-577791/2-A | Lab Control Sample Dup | Dissolved | Water  | FILTRATION |            |
| 280-163315-1 MS     | OUTFALL-001            | Dissolved | Water  | FILTRATION |            |
| 280-163315-1 MSD    | OUTFALL-001            | Dissolved | Water  | FILTRATION |            |
| 280-163315-1 DU     | OUTFALL-001            | Dissolved | Water  | FILTRATION |            |

### Analysis Batch: 577801

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method       | Prep Batch |
|---------------------|------------------------|-----------|--------|--------------|------------|
| 280-163315-1        | OUTFALL-001            | Dissolved | Water  | SM 3500 CR B | 577791     |
| 280-163315-1        | OUTFALL-001            | Total/NA  | Water  | SM 3500 CR B |            |
| MB 280-577791/3-A   | Method Blank           | Dissolved | Water  | SM 3500 CR B | 577791     |
| MB 280-577801/10    | Method Blank           | Total/NA  | Water  | SM 3500 CR B |            |
| LCS 280-577791/1-A  | Lab Control Sample     | Dissolved | Water  | SM 3500 CR B | 577791     |
| LCS 280-577801/8    | Lab Control Sample     | Total/NA  | Water  | SM 3500 CR B |            |
| LCSD 280-577791/2-A | Lab Control Sample Dup | Dissolved | Water  | SM 3500 CR B | 577791     |
| LCSD 280-577801/9   | Lab Control Sample Dup | Total/NA  | Water  | SM 3500 CR B |            |
| 280-163315-1 MS     | OUTFALL-001            | Dissolved | Water  | SM 3500 CR B | 577791     |
| 280-163315-1 MS     | OUTFALL-001            | Total/NA  | Water  | SM 3500 CR B |            |
| 280-163315-1 MSD    | OUTFALL-001            | Dissolved | Water  | SM 3500 CR B | 577791     |
| 280-163315-1 MSD    | OUTFALL-001            | Total/NA  | Water  | SM 3500 CR B |            |
| 280-163315-1 DU     | OUTFALL-001            | Dissolved | Water  | SM 3500 CR B | 577791     |
| 280-163315-1 DU     | OUTFALL-001            | Total/NA  | Water  | SM 3500 CR B |            |

### **Analysis Batch: 577924**

| Lab Sample ID 280-163315-1 | Client Sample ID OUTFALL-001 | Prep Type Total/NA | Matrix Water | Method<br>SM 2510B | Prep Batch |
|----------------------------|------------------------------|--------------------|--------------|--------------------|------------|
| MB 280-577924/5            | Method Blank                 | Total/NA           | Water        | SM 2510B           |            |
| LCS 280-577924/4           | Lab Control Sample           | Total/NA           | Water        | SM 2510B           |            |

### Analysis Batch: 578154

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method   | Prep Batch |
|---------------|------------------|-----------|--------|----------|------------|
| 280-163315-1  | OUTFALL-001      | Total/NA  | Water  | SM 2540D |            |

**Eurofins Denver** 

Page 20 of 25 6/24/2022

Job ID: 280-163315-1

3

5

6

0

10

12

13

### **QC Association Summary**

Client: GS Mining Company LLC

Project/Site: Wastewater Discharge - Nederland, CO

### **General Chemistry (Continued)**

### **Analysis Batch: 578154 (Continued)**

| Lab Sample ID     | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|-------------------|------------------------|-----------|--------|----------|------------|
| MB 280-578154/3   | Method Blank           | Total/NA  | Water  | SM 2540D |            |
| LCS 280-578154/1  | Lab Control Sample     | Total/NA  | Water  | SM 2540D |            |
| LCSD 280-578154/2 | Lab Control Sample Dup | Total/NA  | Water  | SM 2540D |            |

### **Analysis Batch: 578440**

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method       | Prep Batch |
|--------------------|------------------------|-----------|--------|--------------|------------|
| 280-163315-1       | OUTFALL-001            | Total/NA  | Water  | SM 4500 S2 D |            |
| MB 280-578440/11   | Method Blank           | Total/NA  | Water  | SM 4500 S2 D |            |
| LCS 280-578440/9   | Lab Control Sample     | Total/NA  | Water  | SM 4500 S2 D |            |
| LCSD 280-578440/10 | Lab Control Sample Dup | Total/NA  | Water  | SM 4500 S2 D |            |
| 280-163315-1 MS    | OUTFALL-001            | Total/NA  | Water  | SM 4500 S2 D |            |
| 280-163315-1 MSD   | OUTFALL-001            | Total/NA  | Water  | SM 4500 S2 D |            |

### **Analysis Batch: 578603**

| Lab Sample ID    | Client Sample ID   | Prep Type | Matrix | Method       | Prep Batch |
|------------------|--------------------|-----------|--------|--------------|------------|
| 280-163315-1     | OUTFALL-001        | Total/NA  | Water  | SM 4500 H+ B |            |
| LCS 280-578603/4 | Lab Control Sample | Total/NA  | Water  | SM 4500 H+ B |            |

### **Analysis Batch: 578940**

| Lab Sample ID | Client Sample ID | Prep Type         | Matrix | Method      | Prep Batch |
|---------------|------------------|-------------------|--------|-------------|------------|
| 280-163315-1  | OUTFALL-001      | Total Recoverable | Water  | SM3500 CR B |            |

### **Analysis Batch: 578941**

| Lab Sample ID | Client Sample ID | Prep Type             | Matrix | Method      | Prep Batch |
|---------------|------------------|-----------------------|--------|-------------|------------|
| 280-163315-1  | OUTFALL-001      | Potentially Dissolved | Water  | SM3500 CR B |            |

### **Analysis Batch: 579003**

| Lab Sample ID   | Client Sample ID | Prep Type | Matrix | Method      | Prep Batch |
|-----------------|------------------|-----------|--------|-------------|------------|
| 280-163315-1    | OUTFALL-001      | Total/NA  | Water  | SM4500 S2 H |            |
| MB 280-579003/1 | Method Blank     | Total/NA  | Water  | SM4500 S2 H |            |

Job ID: 280-163315-1

### **Lab Chronicle**

Client: GS Mining Company LLC Job ID: 280-163315-1

Project/Site: Wastewater Discharge - Nederland, CO

**Client Sample ID: OUTFALL-001** 

Lab Sample ID: 280-163315-1 Date Collected: 06/10/22 13:10 **Matrix: Water** 

Date Received: 06/10/22 15:07

| _                     | Batch      | Batch          |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------------------|------------|----------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type             | Type       | Method         | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total Recoverable     | Prep       | 200.7          |     |        | 50 mL   | 50 mL  | 578373 | 06/20/22 08:27 | PFM     | TAL DEN |
| Total Recoverable     | Analysis   | 200.7 Rev 4.4  |     | 1      |         |        | 578742 | 06/21/22 21:27 | MAB     | TAL DEN |
| Potentially Dissolved | Filtration | Poten_Diss_Met |     |        | 250 mL  | 250 mL | 577817 | 06/10/22 21:15 | LRD     | TAL DEN |
| Potentially Dissolved | Prep       | 200.8          |     |        | 50 mL   | 50 mL  | 578261 | 06/17/22 08:32 | KMS     | TAL DEN |
| Potentially Dissolved | Analysis   | 200.8          |     | 1      |         |        | 578570 | 06/20/22 16:31 | LMT     | TAL DEN |
| Total Recoverable     | Prep       | 200.8          |     |        | 50 mL   | 50 mL  | 578359 | 06/20/22 08:20 | KMS     | TAL DEN |
| Total Recoverable     | Analysis   | 200.8          |     | 1      |         |        | 578598 | 06/20/22 23:15 | LMT     | TAL DEN |
| Total/NA              | Prep       | 245.1          |     |        | 30 mL   | 50 mL  | 577883 | 06/13/22 20:30 | CEH     | TAL DEN |
| Total/NA              | Analysis   | 245.1          |     | 1      |         |        | 578022 | 06/14/22 16:56 | CEH     | TAL DEN |
| Total/NA              | Analysis   | SM 2510B       |     | 1      |         |        | 577924 | 06/14/22 08:59 | KEG     | TAL DEN |
| Total/NA              | Analysis   | SM 2540D       |     | 1      | 250 mL  | 250 mL | 578154 | 06/15/22 17:17 | CAI     | TAL DEN |
| Dissolved             | Filtration | FILTRATION     |     |        | 2 mL    | 2 mL   | 577791 | 06/10/22 16:31 | SVC     | TAL DEN |
| Dissolved             | Analysis   | SM 3500 CR B   |     | 1      | 2 mL    | 2 mL   | 577801 | 06/10/22 17:19 | SVC     | TAL DEN |
| Total/NA              | Analysis   | SM 3500 CR B   |     | 1      | 2 mL    | 2 mL   | 577801 | 06/10/22 17:16 | SVC     | TAL DEN |
| Total/NA              | Analysis   | SM 4500 H+ B   |     | 1      |         |        | 578603 | 06/20/22 16:39 | KEG     | TAL DEN |
| Total/NA              | Analysis   | SM 4500 S2 D   |     | 1      | 2 mL    | 2 mL   | 578440 | 06/17/22 21:25 | LRB     | TAL DEN |
| Potentially Dissolved | Analysis   | SM3500 CR B    |     | 1      |         |        | 578941 | 06/23/22 12:37 | DNM     | TAL DEN |
| Total Recoverable     | Analysis   | SM3500 CR B    |     | 1      |         |        | 578940 | 06/23/22 12:35 | DNM     | TAL DEN |
| Total/NA              | Analysis   | SM4500 S2 H    |     | 1      |         |        | 579003 | 06/24/22 07:29 | SAH     | TAL DEN |

#### **Laboratory References:**

TAL DEN = Eurofins Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

### **Accreditation/Certification Summary**

Client: GS Mining Company LLC

Project/Site: Wastewater Discharge - Nederland, CO

### **Laboratory: Eurofins Denver**

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

| Authority              | Program               | Identification Number | <b>Expiration Date</b> |
|------------------------|-----------------------|-----------------------|------------------------|
| A2LA                   | Dept. of Defense ELAP | 2907.01               | 10-31-23               |
| A2LA                   | ISO/IEC 17025         | 2907.01               | 10-31-23               |
| Alabama                | State Program         | 40730                 | 09-30-12 *             |
| Alaska (UST)           | State                 | 18-001                | 02-08-23               |
| Arizona                | State                 | AZ0713                | 12-20-22               |
| Arkansas DEQ           | State                 | 19-047-0              | 06-01-22 *             |
| California             | State                 | 2513                  | 01-09-23               |
| Connecticut            | State                 | PH-0686               | 09-30-22               |
| Florida                | NELAP                 | E87667-57             | 06-30-22               |
| Georgia                | State                 | 4025-011              | 01-08-23               |
| Illinois               | NELAP                 | 2000172019-1          | 04-30-23               |
| lowa                   | State                 | IA#370                | 12-02-22               |
| Kansas                 | NELAP                 | E-10166               | 05-31-22 *             |
| Kentucky (WW)          | State                 | KY98047               | 12-31-22               |
| Louisiana              | NELAP                 | 30785                 | 06-30-14 *             |
| Louisiana              | NELAP                 | 30785                 | 06-30-22               |
| Minnesota              | NELAP                 | 1788752               | 12-31-22               |
| Nevada                 | State                 | CO000262020-1         | 07-31-22               |
| New Hampshire          | NELAP                 | 205319                | 04-28-20 *             |
| New Jersey             | NELAP                 | 190002                | 06-30-22               |
| New York               | NELAP                 | 59923                 | 04-01-23               |
| North Carolina (WW/SW) | State                 | 358                   | 12-31-22               |
| North Dakota           | State                 | R-034                 | 01-08-23               |
| Oklahoma               | NELAP                 | 8614                  | 08-31-22               |
| Oregon                 | NELAP                 | 4025-011              | 01-09-23               |
| Pennsylvania           | NELAP                 | 013                   | 07-31-22               |
| South Carolina         | State                 | 72002001              | 01-08-23               |
| Texas                  | NELAP                 | TX104704183-08-TX     | 09-30-09 *             |
| Texas                  | NELAP                 | T104704183-21-19      | 10-01-22               |
| US Fish & Wildlife     | US Federal Programs   | 058448                | 07-31-22               |
| USDA                   | US Federal Programs   | P330-20-00065         | 03-06-23               |
| Utah                   | NELAP                 | QUAN5                 | 06-30-13 *             |
| Utah                   | NELAP                 | CO000262019-11        | 07-31-22               |
| Virginia               | NELAP                 | 10490                 | 06-14-23               |
| Washington             | State                 | C583-19               | 08-03-22               |
| West Virginia DEP      | State                 | 354                   | 11-30-22               |
| Wisconsin              | State                 | 999615430             | 08-31-22               |
| Wyoming (UST)          | A2LA                  | 2907.01               | 10-31-22               |

Job ID: 280-163315-1

3

4

5

9

10

12

13

<sup>\*</sup> Accreditation/Certification renewal pending - accreditation/certification considered valid.

|       | <b>Eurofins TestAmerica, Denver</b><br>4955 Yarrow Street<br>Arvada, CO 80002<br>Phone (303) 736-0100 Phone (303) 431-7171 | ပ်                                | ain of Custody Record       | dy Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ord                                       |                                                               |                                               |                                                |                |             | 💸 eurofins                                  | Environment Testing<br>  America                                                      |
|-------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------|-----------------------------------------------|------------------------------------------------|----------------|-------------|---------------------------------------------|---------------------------------------------------------------------------------------|
|       | Client Information                                                                                                         | Sampler:                          |                             | Lab PM:<br>Bieniulis,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dylan T                                   |                                                               | 0                                             | Carrier Tracking No(s)                         | g No(s):       |             | COC No:                                     |                                                                                       |
|       | Client Contact<br>Patrick Delaney                                                                                          | 1-90                              | 819                         | E-Mail:<br>Dylan.Bie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E-Mail:<br>Dylan Bieniulis@Eurofinset.com | nset.com                                                      | Ø                                             | State of Origin                                |                |             | Page:                                       |                                                                                       |
|       | Company:<br>Grand Island Resources                                                                                         |                                   | PWSID:                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | Analy                                                         | Analysis Requested                            | ested                                          |                |             | Job #:                                      |                                                                                       |
|       | Address:<br>12567 West Cedar Road Suite 250                                                                                | Due Date Requested:               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -+                                        | P                                                             |                                               |                                                |                |             | Preservation Codes                          |                                                                                       |
|       | City:<br>Lakewood                                                                                                          | TAT Requested (days):             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H 0091                                    | ns (A3                                                        | pəziud                                        |                                                |                | *           | A - HCL<br>B - NaOH<br>C - Zn Acetate       | M - Hexane<br>N - None<br>O - AsNaO2                                                  |
|       | State, Zip:<br>CO, 80466                                                                                                   | llance Project: △ Yes             | D No                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WS 'S                                     | TJIA 8.                                                       |                                               |                                                |                |             | D - Nitric Acid<br>E - NaHSO4               |                                                                                       |
|       | Phone:                                                                                                                     | Po #:<br>Advance Payment Required | -                           | (6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ST - Q(                                   | Cr (LA                                                        |                                               |                                                |                | Ly"         |                                             |                                                                                       |
|       | Email:<br>pdelaney@blackfoxmining.com                                                                                      |                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | valent<br>nt Cr (c                                            |                                               | COVET                                          | (151) 1        | * \$        |                                             |                                                                                       |
|       | Project Name:<br>Wastewater Discharge - Nederland, CO                                                                      | Project #:<br>28022821            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | sxəH t<br>riyaler                                             | (                                             | 9A listo                                       | ьегті          | nənist      |                                             | W - pH 4-5<br>Z - other (specify)                                                     |
|       | Site:<br>Surface Water-Sempling—                                                                                           | SSOW#:                            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | ssolves<br>T bavlo                                            | olso) el                                      | T - 1.81                                       | цшош           | of con      | Other:                                      |                                                                                       |
|       |                                                                                                                            | Sample                            | Sample I<br>Type (C=comp, o | Matrix (w-water, S-solid, O-waste/oil, Albumate/oil, Album | 10B - Specific                            | / Temp<br>00_CR_B - To<br>tentially Diss                      | 4500_S2_D -<br>drogen Sulfic<br>31E - Low Lev | 8.002 - 8.01<br>1.81 list)<br>1.7 / 200.8 / 24 | st half of the | tedmuM list |                                             |                                                                                       |
| Pa    | Sample Identification                                                                                                      | Sample Date Time                  | 画養                          | ill X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           | Hq 35(                                                        | _                                             | 2 500<br>bei                                   | 14)            | 01 X        |                                             | Special Instructions/Note:                                                            |
| пе    |                                                                                                                            | 1:                                | į                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | 7                                                             |                                               |                                                |                |             | 76                                          | potentially dissolved metals                                                          |
| 24 n  | 001747-001                                                                                                                 | 0/10/27 12 19                     | D                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | <<br><                                                        |                                               | <i>k</i>                                       |                | * **        |                                             | permit list = 200.8 (As, Cd, Cr, Cu, Pb, Mn,<br>Ni, Se, Ag, Zn)                       |
| f 25  |                                                                                                                            |                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                               |                                               |                                                |                | ***         |                                             | *Surface water total recoverable metals list = 200.7 (Fe), 200.8 (As, Cd, Cr, Cu, Pb, |
|       |                                                                                                                            |                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                               |                                               |                                                |                | 24          | Zn), and 245.1 (                            | Нд)                                                                                   |
|       |                                                                                                                            |                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                               |                                               |                                                |                | j.          |                                             |                                                                                       |
|       |                                                                                                                            |                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                               |                                               |                                                |                | 7.7         | pH =                                        | %.9                                                                                   |
|       |                                                                                                                            |                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                               |                                               |                                                |                | 8.          |                                             |                                                                                       |
|       |                                                                                                                            |                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                               |                                               |                                                |                |             | temp                                        | J.& =                                                                                 |
|       |                                                                                                                            |                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                               |                                               |                                                |                |             |                                             |                                                                                       |
|       |                                                                                                                            |                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 280-163315 Chain of Custody               | Chain of C                                                    | ustody                                        |                                                | 1              | 71          |                                             |                                                                                       |
|       | Possible Hazard Identification                                                                                             | [                                 |                             | - 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ample Dispo                               | sal ( A fee n                                                 | nay be ass                                    | essed if s                                     | amples a       | re retain   | <br>ed longer than                          | 1 month)                                                                              |
|       | ole Skin Irritant Skin Skin Skin Irritant                                                                                  | Poison B Unknown                  | Radiological                | ď                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Special Instructions/OC Requirements      | o Client                                                      | Dis                                           | oosal By L                                     | ab             | Arct        | Charial Instructions (IC) Benuitements: Mon | Months                                                                                |
|       | Frank, Kit Delination of the                                                                                               | <u>.</u>                          |                             | <u>}_</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |                                                               |                                               | . Г                                            |                |             |                                             |                                                                                       |
|       | Empty rat reginquisited by.                                                                                                | Date/Time:                        |                             | Lime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | boxiioool                                 | ,                                                             |                                               | Memod                                          | r snipment     |             | ,                                           |                                                                                       |
|       | Relinguished by:                                                                                                           | 0/10/2022 /                       | 70.0                        | Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Received by:                              | KIN                                                           |                                               |                                                | Date/Time:     | 13          | 1567                                        | Company                                                                               |
| 3/24/ | Relinquished by:                                                                                                           | Date/Time:                        | Corr                        | Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Received by:                              |                                                               |                                               |                                                | Date/Time:     |             |                                             | Company                                                                               |
| 202   | Custody Seals Intact: Custody Seal No.:                                                                                    |                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cooler Tempe                              | Cooler Temperature(s) <sup>o</sup> C and Other Remarks: / / S | d Other Rema                                  | rks: / / . /                                   | 3              | 6           | (C + D)                                     |                                                                                       |
| 2     |                                                                                                                            |                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                               |                                               | )<br>-                                         |                | 4           |                                             | Ver: 01/16/2019                                                                       |

### **Login Sample Receipt Checklist**

Client: GS Mining Company LLC Job Number: 280-163315-1

Login Number: 163315 List Source: Eurofins Denver

List Number: 1

Creator: Roehsner, Karen P

| Creator: Roensner, Karen P                                                                                 |        |                                     |
|------------------------------------------------------------------------------------------------------------|--------|-------------------------------------|
| Question                                                                                                   | Answer | Comment                             |
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td> | True   |                                     |
| The cooler's custody seal, if present, is intact.                                                          | N/A    |                                     |
| Sample custody seals, if present, are intact.                                                              | True   |                                     |
| The cooler or samples do not appear to have been compromised or tampered with.                             | True   |                                     |
| Samples were received on ice.                                                                              | False  | Refer to Job Narrative for details. |
| Cooler Temperature is acceptable.                                                                          | True   |                                     |
| Cooler Temperature is recorded.                                                                            | True   |                                     |
| COC is present.                                                                                            | True   |                                     |
| COC is filled out in ink and legible.                                                                      | True   |                                     |
| COC is filled out with all pertinent information.                                                          | True   |                                     |
| Is the Field Sampler's name present on COC?                                                                | True   |                                     |
| There are no discrepancies between the containers received and the COC.                                    | True   |                                     |
| Samples are received within Holding Time (excluding tests with immediate HTs)                              | True   |                                     |
| Sample containers have legible labels.                                                                     | True   |                                     |
| Containers are not broken or leaking.                                                                      | True   |                                     |
| Sample collection date/times are provided.                                                                 | True   |                                     |
| Appropriate sample containers are used.                                                                    | True   |                                     |
| Sample bottles are completely filled.                                                                      | True   |                                     |
| Sample Preservation Verified.                                                                              | N/A    |                                     |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                           | True   |                                     |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                            | N/A    |                                     |
| Multiphasic samples are not present.                                                                       | True   |                                     |
| Samples do not require splitting or compositing.                                                           | True   |                                     |
| Residual Chlorine Checked.                                                                                 | N/A    |                                     |

3

4

5

7

10

12

13



# **Environment Testing America**

### **ANALYTICAL REPORT**

Eurofins Denver 4955 Yarrow Street Arvada, CO 80002 Tel: (303)736-0100

Laboratory Job ID: 280-163773-1

Client Project/Site: Wastewater Discharge - Nederland, CO

For:

GS Mining Company LLC 422 Gregory Street Central City, Colorado 80427

Attn: Patrick Delaney

Authorized for release by: 7/5/2022 2:57:34 PM

Dylan Bieniulis, Project Manager I (303)736-0138

Dylan.Bieniulis@et.eurofinsus.com

flo Bit-

Review your project results through EO L.

Have a Question?

Ask
The

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

7

Ŏ

10

4.6

13

## **Table of Contents**

| Cover Page            | 1  |
|-----------------------|----|
| Table of Contents     | 2  |
| Definitions           | 3  |
| Case Narrative        | 4  |
| Detection Summary     | 5  |
| Method Summary        | 6  |
| Sample Summary        | 7  |
| Client Sample Results | 8  |
| QC Sample Results     | 9  |
| QC Association        | 10 |
| Chronicle             | 11 |
| Certification Summary | 12 |
| Chain of Custody      | 13 |
| Receipt Checklists    | 14 |

-6

4

6

8

9

11

12

### **Definitions/Glossary**

Client: GS Mining Company LLC Job ID: 280-163773-1

Project/Site: Wastewater Discharge - Nederland, CO

### **Qualifiers**

| M | eta | Is |
|---|-----|----|
|   |     |    |

Qualifier Qualifier Description

B Compound was found in the blank and sample.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

### **Glossary**

| Abbreviation | These commonly used abbreviations may or may not be present in this report. |
|--------------|-----------------------------------------------------------------------------|
|--------------|-----------------------------------------------------------------------------|

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

**Eurofins Denver** 

Page 3 of 14

•

3

Δ

5

6

0

9

11

12

13

М

Client: GS Mining Company LLC

Project/Site: Wastewater Discharge - Nederland, CO

Job ID: 280-163773-1

**Laboratory: Eurofins Denver** 

Narrative

### **CASE NARRATIVE**

**Client: GS Mining Company LLC** 

Project: Wastewater Discharge - Nederland, CO

Report Number: 280-163773-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

#### **RECEIPT**

The samples were received on 06/24/2022; the samples arrived in good condition and properly preserved. The temperature of the coolers at receipt was 12.2 C.

#### POTENTIALLY DISSOLVED METALS (ICPMS)

Sample OUTFALL-001 (280-163773-1) was analyzed for potentially dissolved metals (ICPMS) in accordance with EPA Method 200.8. The samples were prepared on 06/28/2022 and analyzed on 06/29/2022.

Copper and Zinc were detected in method blank MB 280-579117/1-C at levels that were above the method detection limit but below the reporting limit. The values should be considered estimates, and have been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **TOTAL RECOVERABLE METALS (ICPMS)**

Sample OUTFALL-001 (280-163773-1) was analyzed for total recoverable metals (ICPMS) in accordance with EPA Method 200.8. The samples were prepared and analyzed on 06/29/2022.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

9

Job ID: 280-163773-1

3

\_

6

7

8

9

11

4.0

10

### **Detection Summary**

Client: GS Mining Company LLC

Project/Site: Wastewater Discharge - Nederland, CO

**Client Sample ID: OUTFALL-001** 

Lab Sample ID: 280-163773-1

Job ID: 280-163773-1

| Analyte | Result | Qualifier | RL  | MDL  | Unit | Dil Fac | D | Method | Prep Type   |
|---------|--------|-----------|-----|------|------|---------|---|--------|-------------|
| Copper  | 1.3    | J         | 2.0 | 0.71 | ug/L | 1       | _ | 200.8  | Total       |
|         |        |           |     |      |      |         |   |        | Recoverable |
| Lead    | 2.4    |           | 1.0 | 0.23 | ug/L | 1       |   | 200.8  | Total       |
|         |        |           |     |      |      |         |   |        | Recoverable |
| Copper  | 0.92   | JB        | 2.0 | 0.71 | ug/L | 1       |   | 200.8  | Potentially |
|         |        |           |     |      |      |         |   |        | Dissolved   |
| Lead    | 1.8    |           | 1.0 | 0.23 | ug/L | 1       |   | 200.8  | Potentially |
|         |        |           |     |      |      |         |   |        | Dissolved   |
| Zinc    | 9.5    | JB        | 10  | 2.0  | ug/L | 1       |   | 200.8  | Potentially |
|         |        |           |     |      |      |         |   |        | Dissolved   |

3

-

6

9

10

12

13

4 /

### **Method Summary**

Client: GS Mining Company LLC

Project/Site: Wastewater Discharge - Nederland, CO

| Method         | Method Description                          | Protocol | Laboratory |
|----------------|---------------------------------------------|----------|------------|
| 200.8          | Metals (ICP/MS)                             | EPA      | TAL DEN    |
| 200.8          | Preparation, Total Recoverable Metals       | EPA      | TAL DEN    |
| Poten_Diss_Met | Filtration for Potentially Dissolved Metals | EPA      | TAL DEN    |

#### **Protocol References:**

EPA = US Environmental Protection Agency

### **Laboratory References:**

TAL DEN = Eurofins Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

Job ID: 280-163773-1

### **Sample Summary**

Client: GS Mining Company LLC

Project/Site: Wastewater Discharge - Nederland, CO

 Lab Sample ID
 Client Sample ID
 Matrix
 Collected
 Received

 280-163773-1
 OUTFALL-001
 Water
 06/24/22 11:45
 06/24/22 12:58

Job ID: 280-163773-1

16

4

0

9

10

11

13

### **Client Sample Results**

Client: GS Mining Company LLC

Project/Site: Wastewater Discharge - Nederland, CO

Method: 200.8 - Metals (ICP/MS) - Total Recoverable

Client Sample ID: OUTFALL-001 Lab Sample ID: 280-163773-1 Date Collected: 06/24/22 11:45 **Matrix: Water** 

Date Received: 06/24/22 12:58

| Analyte | Result | Qualifier | RL  | MDL  | Unit | D | Prepared       | Analyzed       | Dil Fac |
|---------|--------|-----------|-----|------|------|---|----------------|----------------|---------|
| Copper  | 1.3    | J         | 2.0 | 0.71 | ug/L |   | 06/29/22 08:53 | 06/29/22 19:20 | 1       |
| Lead    | 2.4    |           | 1.0 | 0.23 | ug/L |   | 06/29/22 08:53 | 06/29/22 19:20 | 1       |

Method: 200.8 - Metals (ICP/MS) - Potentially Dissolved

**Client Sample ID: OUTFALL-001** Lab Sample ID: 280-163773-1 **Matrix: Water** 

Date Collected: 06/24/22 11:45

| Date Received: 06/24/22 1 |                  |      |       |      |   |                | Matrix         | vater   |
|---------------------------|------------------|------|-------|------|---|----------------|----------------|---------|
| Analyte                   | Result Qualifier | RL   | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Cadmium                   | ND ND            | 1.0  | 0.088 | ug/L |   | 06/28/22 08:35 | 06/29/22 18:09 | 1       |
| Copper                    | 0.92 JB          | 2.0  | 0.71  | ug/L |   | 06/28/22 08:35 | 06/29/22 18:09 | 1       |
| Lead                      | 1.8              | 1.0  | 0.23  | ug/L |   | 06/28/22 08:35 | 06/29/22 18:09 | 1       |
| Silver                    | ND               | 0.50 | 0.045 | ug/L |   | 06/28/22 08:35 | 06/29/22 18:09 | 1       |
| Zinc                      | 9.5 J B          | 10   | 2.0   | ug/L |   | 06/28/22 08:35 | 06/29/22 18:09 | 1       |

Job ID: 280-163773-1

**Eurofins Denver** 

### QC Sample Results

Client: GS Mining Company LLC

Project/Site: Wastewater Discharge - Nederland, CO

Method: 200.8 - Metals (ICP/MS)

Lab Sample ID: MB 280-579309/1-A

**Matrix: Water** 

Analysis Batch: 579562

Client Sample ID: Method Blank **Prep Type: Total Recoverable** 

**Prep Batch: 579309** 

Job ID: 280-163773-1

Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac 2.0 06/29/22 08:53 06/29/22 17:55 Copper ND 0.71 ug/L Lead ND 1.0 0.23 ug/L 06/29/22 08:53 06/29/22 17:55

MB MB

Lab Sample ID: LCS 280-579309/2-A

**Matrix: Water** 

**Analysis Batch: 579562** 

**Client Sample ID: Lab Control Sample Prep Type: Total Recoverable** 

**Prep Batch: 579309** 

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits Copper 40.0 41.4 ug/L 103 90 - 115 40.0 42.2 ug/L 106 Lead 88 - 115

Lab Sample ID: MB 280-579117/1-C

**Matrix: Water** 

**Analysis Batch: 579561** 

**Client Sample ID: Method Blank** 

**Prep Type: Potentially Dissolved** 

**Prep Batch: 579181** 

MB MB RL **MDL** Unit Analyte Result Qualifier Prepared Dil Fac Analyzed Cadmium ND 1.0 0.088 ug/L 06/28/22 08:35 06/29/22 17:16 0.963 J 2.0 0.71 ug/L 06/28/22 08:35 06/29/22 17:16 Copper Lead ND 1.0 0.23 ug/L 06/28/22 08:35 06/29/22 17:16 Silver ND 0.50 0.045 ug/L 06/28/22 08:35 06/29/22 17:16 Zinc 9.72 J 10 2.0 ug/L 06/28/22 08:35 06/29/22 17:16

Lab Sample ID: LCS 280-579117/2-C

**Matrix: Water** 

**Analysis Batch: 579417** 

**Client Sample ID: Lab Control Sample Prep Type: Potentially Dissolved Prep Batch: 579181** 

LCS LCS %Rec Spike Added Analyte Result Qualifier D %Rec Limits Unit Cadmium 40.0 42.5 106 89 - 111 ug/L 40.0 43.1 Copper ug/L 108 90 - 115 Lead 40.0 41.4 ug/L 104 88 - 115 40.0 42.9 107 Silver ug/L 90 - 114

Client: GS Mining Company LLC

Project/Site: Wastewater Discharge - Nederland, CO

**Metals** 

Filtration Batch: 579117

| Lab Sample ID      | Client Sample ID   | Prep Type             | Matrix | Method     | Prep Batch |
|--------------------|--------------------|-----------------------|--------|------------|------------|
| MB 280-579117/1-C  | Method Blank       | Potentially Dissolved | Water  | FILTRATION |            |
| LCS 280-579117/2-C | Lab Control Sample | Potentially Dissolved | Water  | FILTRATION |            |

Filtration Batch: 579143

| Lab Sample ID | Client Sample ID | Prep Type             | Matrix | Method         | Prep Batch |
|---------------|------------------|-----------------------|--------|----------------|------------|
| 280-163773-1  | OUTFALL-001      | Potentially Dissolved | Water  | Poten_Diss_Met |            |

**Prep Batch: 579181** 

| Lab Sample ID      | Client Sample ID   | Prep Type             | Matrix | Method F | rep Batch |
|--------------------|--------------------|-----------------------|--------|----------|-----------|
| 280-163773-1       | OUTFALL-001        | Potentially Dissolved | Water  | 200.8    | 579143    |
| MB 280-579117/1-C  | Method Blank       | Potentially Dissolved | Water  | 200.8    | 579117    |
| LCS 280-579117/2-C | Lab Control Sample | Potentially Dissolvec | Water  | 200.8    | 579117    |

**Prep Batch: 579309** 

| Lab Sample ID      | Client Sample ID   | Prep Type         | Matrix | Method | Prep Batch |
|--------------------|--------------------|-------------------|--------|--------|------------|
| 280-163773-1       | OUTFALL-001        | Total Recoverable | Water  | 200.8  |            |
| MB 280-579309/1-A  | Method Blank       | Total Recoverable | Water  | 200.8  |            |
| LCS 280-579309/2-A | Lab Control Sample | Total Recoverable | Water  | 200.8  |            |

**Analysis Batch: 579417** 

| Lab Sample ID      | Client Sample ID   | Prep Type             | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------------------|--------|--------|------------|
| LCS 280-579117/2-C | Lab Control Sample | Potentially Dissolved | Water  | 200.8  | 579181     |

**Analysis Batch: 579561** 

| Lab Sample ID     | Client Sample ID | Prep Type             | Matrix | Method P | rep Batch |
|-------------------|------------------|-----------------------|--------|----------|-----------|
| 280-163773-1      | OUTFALL-001      | Potentially Dissolved | Water  | 200.8    | 579181    |
| MB 280-579117/1-C | Method Blank     | Potentially Dissolved | Water  | 200.8    | 579181    |

**Analysis Batch: 579562** 

| Lab Sample ID      | Client Sample ID   | Prep Type         | Matrix | Method | Prep Batch |
|--------------------|--------------------|-------------------|--------|--------|------------|
| 280-163773-1       | OUTFALL-001        | Total Recoverable | Water  | 200.8  | 579309     |
| MB 280-579309/1-A  | Method Blank       | Total Recoverable | Water  | 200.8  | 579309     |
| LCS 280-579309/2-A | Lab Control Sample | Total Recoverable | Water  | 200.8  | 579309     |

Job ID: 280-163773-1

### **Lab Chronicle**

Client: GS Mining Company LLC Job ID: 280-163773-1

Project/Site: Wastewater Discharge - Nederland, CO

**Client Sample ID: OUTFALL-001** 

Date Received: 06/24/22 12:58

Lab Sample ID: 280-163773-1 Date Collected: 06/24/22 11:45

**Matrix: Water** 

Batch Batch Dil Initial Batch Final Prepared Method Factor or Analyzed **Prep Type** Type Run **Amount Amount** Number Analyst Lab 250 mL Potentially Dissolvec Filtration Poten\_Diss\_Met 250 mL 579143 06/26/22 14:30 LRD TAL DEN Potentially Dissolvec Prep 50 mL 50 mL 579181 06/28/22 08:35 KMS TAL DEN 200.8 Potentially Dissolvec Analysis 200.8 1 579561 06/29/22 18:09 LMT TAL DEN Total Recoverable TAL DEN Prep 200.8 50 mL 50 mL 579309 06/29/22 08:53 PFM Total Recoverable Analysis 200.8 1 579562 06/29/22 19:20 LMT TAL DEN

#### **Laboratory References:**

TAL DEN = Eurofins Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

### **Accreditation/Certification Summary**

Client: GS Mining Company LLC

Project/Site: Wastewater Discharge - Nederland, CO

### **Laboratory: Eurofins Denver**

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

| Authority              | Program               | Identification Number | Expiration Date |
|------------------------|-----------------------|-----------------------|-----------------|
| A2LA                   | Dept. of Defense ELAP | 2907.01               | 10-31-23        |
| A2LA                   | ISO/IEC 17025         | 2907.01               | 10-31-23        |
| Alabama                | State Program         | 40730                 | 09-30-12 *      |
| Alaska (UST)           | State                 | 18-001                | 02-08-23        |
| Arizona                | State                 | AZ0713                | 12-20-22        |
| Arkansas DEQ           | State                 | 19-047-0              | 06-01-22 *      |
| California             | State                 | 2513                  | 01-09-23        |
| Connecticut            | State                 | PH-0686               | 09-30-22        |
| Florida                | NELAP                 | E87667-57             | 06-30-22        |
| Georgia                | State                 | 4025-011              | 01-08-23        |
| Illinois               | NELAP                 | 2000172019-1          | 04-30-23        |
| lowa                   | State                 | IA#370                | 12-02-22        |
| Kansas                 | NELAP                 | E-10166               | 05-31-22 *      |
| Kentucky (WW)          | State                 | KY98047               | 12-31-22        |
| Louisiana              | NELAP                 | 30785                 | 06-30-14 *      |
| Louisiana              | NELAP                 | 30785                 | 06-30-22        |
| Minnesota              | NELAP                 | 1788752               | 12-31-22        |
| Nevada                 | State                 | CO000262020-1         | 07-31-22        |
| New Hampshire          | NELAP                 | 205319                | 04-28-23        |
| New Jersey             | NELAP                 | 190002                | 06-30-22        |
| New York               | NELAP                 | 59923                 | 04-01-23        |
| North Carolina (WW/SW) | State                 | 358                   | 12-31-22        |
| North Dakota           | State                 | R-034                 | 01-08-23        |
| Oklahoma               | NELAP                 | 8614                  | 08-31-22        |
| Oregon                 | NELAP                 | 4025-011              | 01-09-23        |
| Pennsylvania           | NELAP                 | 013                   | 07-31-22        |
| South Carolina         | State                 | 72002001              | 01-08-23        |
| Texas                  | NELAP                 | TX104704183-08-TX     | 09-30-09 *      |
| Texas                  | NELAP                 | T104704183-21-19      | 10-01-22        |
| US Fish & Wildlife     | US Federal Programs   | 058448                | 07-31-22        |
| USDA                   | US Federal Programs   | P330-20-00065         | 03-06-23        |
| Utah                   | NELAP                 | QUAN5                 | 06-30-13 *      |
| Utah                   | NELAP                 | CO000262019-11        | 07-31-22        |
| Virginia               | NELAP                 | 10490                 | 06-14-23        |
| Washington             | State                 | C583-19               | 08-03-22        |
| West Virginia DEP      | State                 | 354                   | 11-30-22        |
| Wisconsin              | State                 | 999615430             | 08-31-22        |
| Wyoming (UST)          | A2LA                  | 2907.01               | 10-31-22        |

Job ID: 280-163773-1

3

4

5

0

10

11

13

 $<sup>^{\</sup>star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$ 

Eurofins Denver

Carrier Tracking No(s):

Chain of Custody Record

Eurofins TestAmerica, Denver

Phone (303) 736-0100 Phone (303) 431-7171

Arvada, CO 80002 4955 Yarrow Street

Sampler:

\*Second half of the month total recoverable metals permit list = 200.8 (Cu, Pb) TSP Dodecahydrate dissolved metals permit list = 200.8 (Cd, Cu, Pb, Ag, Zn) ZX ZX Special Instructions/Note Second half of the month potentially Z - other (specify) P - Na2O4S Q - Na2SO3 R - Na2S2O3 S - H2SO4 U - Acetone V - MCAA W - pH 4-5 12001 N - None O - AsNaO2 Months Sompany Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mont Preservation Codes DH = 70 temp= A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
E - ManSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid ONX I - Ice J - DI Water K - EDTA L - EDA Page: Total Number of containers アクナルノ Date/Time: Method of Shipment: State of Origin: **Analysis Requested** Cooler Temperature(s) °C and Other Remarks: 280-163773 Chain of Custody Special Instructions/QC Requirements: 5 E-Mail: Dylan.Bieniulis@Eurofinset.com ン、たな 13 2003 - Potentially Dissol month permit list) 2003 - Total Recoverable Received by: Received by: Received by: Lab PM: Bieniulis, Dylan T Time: Perform MS/MSD (Yes or No) Field Filtered Sample (Yes or No) (W=water, S=solid, O=waste/oil, Preservation Code: Matrix 3 Company Company 303-506-1618 Type (C=comp, Radiological G=grab) 0 Compliance Project: A Yes A No 11:45 Advance Payment Required WO #: Sample Time Unknown FAT Requested (days): BM Due Date Requested: 27/2/0 Sample Date Project #: 28022821 Date/Time: Phone: Poison B Custody Seal No.: Urop Of 8 9869 and Contact: Patrick Delaces X67. Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify) <u>8000</u> Empty Kit Relinquished by: Wastewater Discharge - Nederland, CO 12567 West Cedar Road Suite 250 Rossible Hazard Identification hone: 42-345 3 (5-1) second half of the month event mail: Dalelaney Custody Seals Intact: △ Yes △ No Grand Island Resources Client Information Sample Identification ロントアタン Non-Hazard telinquished by: elinquished by State, Zip: CO, 80466 akewood

### **Login Sample Receipt Checklist**

Client: GS Mining Company LLC Job Number: 280-163773-1

Login Number: 163773 List Source: Eurofins Denver

List Number: 1

Creator: Roehsner, Karen P

| Creator: Roehsner, Karen P                                                                                 |        |         |
|------------------------------------------------------------------------------------------------------------|--------|---------|
| Question                                                                                                   | Answer | Comment |
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td> | True   |         |
| The cooler's custody seal, if present, is intact.                                                          | N/A    |         |
| Sample custody seals, if present, are intact.                                                              | True   |         |
| The cooler or samples do not appear to have been compromised or tampered with.                             | True   |         |
| Samples were received on ice.                                                                              | True   |         |
| Cooler Temperature is acceptable.                                                                          | True   |         |
| Cooler Temperature is recorded.                                                                            | True   |         |
| COC is present.                                                                                            | True   |         |
| COC is filled out in ink and legible.                                                                      | True   |         |
| COC is filled out with all pertinent information.                                                          | True   |         |
| Is the Field Sampler's name present on COC?                                                                | True   |         |
| There are no discrepancies between the containers received and the COC.                                    | True   |         |
| Samples are received within Holding Time (excluding tests with immediate HTs)                              | True   |         |
| Sample containers have legible labels.                                                                     | True   |         |
| Containers are not broken or leaking.                                                                      | True   |         |
| Sample collection date/times are provided.                                                                 | True   |         |
| Appropriate sample containers are used.                                                                    | True   |         |
| Sample bottles are completely filled.                                                                      | True   |         |
| Sample Preservation Verified.                                                                              | N/A    |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                           | True   |         |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                            | N/A    |         |
| Multiphasic samples are not present.                                                                       | True   |         |
| Samples do not require splitting or compositing.                                                           | True   |         |
| Residual Chlorine Checked.                                                                                 | N/A    |         |

9

5

4

\_

\_\_\_\_

9

1 1

12

12





July 12, 2022

Permits and Enforcement Section Water Quality Control Division CPDHE 4300 Cherry Creek Dr. South Denver, CO 80246-1530

Subject: Discharge Monitoring Report for June 2022 Cross Gold Mine C00032751

#### To whom it may concern,

During the month of June 2022 there were no exceedances at Outfall 001. This includes the test results for low-level mercury taken during the  $2^{nd}$  quarter and the  $2^{nd}$  quarter WET test taken 6/13/2022 - 6/15/2022. Every sampling event passed without issue.

Please contact me with any questions.

Sincerely,

Patrick M. Delaney

**Environmental Manager** 

Black Fox Mining LLC

1508 Ridge Road, Nederland, CO 80466

Itale Doly

Phone 315-414-6986

www.blackfoxmining.com | pdelaney@blackfoxmining.com

### **DMR Copy of Record**

| Permit    |                                                            |                      |          |              |                |                    |           |             |           |                                            |             |          |               |          |            |                      |                  |                                                   |        |                         |               |
|-----------|------------------------------------------------------------|----------------------|----------|--------------|----------------|--------------------|-----------|-------------|-----------|--------------------------------------------|-------------|----------|---------------|----------|------------|----------------------|------------------|---------------------------------------------------|--------|-------------------------|---------------|
| Permit    | #:                                                         | CO0032751            |          |              | Permit         | ttee:              |           |             | Grand     | Islan                                      | d Resour    | ces LL   | .C            |          | Facility   | <b>/</b> :           | CR               | OSS AN                                            | D CA   | RIBOU MINES             |               |
| Major:    | I                                                          | No                   |          |              | Permit         | Permittee Address: |           |             |           | 12567 W Cedar Dr<br>Lakewood, CO 80228     |             |          |               | Facility |            |                      |                  | ROSS AND CARIBOU MINES<br>OULDER COUNTY, CO 80466 |        |                         |               |
| Permitt   | Permitted Feature: 001 External Outfall                    |                      |          | Discha       |                |                    |           |             |           | <b>001-Q</b> Quarterly Monitoring for 001A |             |          |               |          |            |                      |                  |                                                   |        |                         |               |
| Report    | Dates & Status                                             |                      |          |              | •              |                    |           |             |           |                                            |             |          |               |          |            |                      |                  |                                                   |        |                         |               |
| Monito    | Monitoring Period: From 04/01/22 to 06/30/22 DMR Due Date: |                      |          |              |                | 07/28/             | 22        |             |           |                                            |             | Status:  | :             | Net      | DMR Va     | lidate               | ed               |                                                   |        |                         |               |
| Consid    | lerations for Form Comp                                    | letion               |          |              | ·              |                    |           |             |           |                                            |             |          |               |          | •          |                      |                  |                                                   |        |                         |               |
| Quarter   | ly monitoring - see I.C.18,                                | pg 3.                |          |              |                |                    |           |             |           |                                            |             |          |               |          |            |                      |                  |                                                   |        |                         |               |
| Princip   | al Executive Officer                                       |                      |          |              | _              |                    |           |             |           |                                            |             |          |               |          | _          |                      |                  |                                                   |        |                         |               |
| First Na  | ame:                                                       |                      |          |              | Title:         |                    |           |             |           |                                            |             |          |               |          | Teleph     | one:                 |                  |                                                   |        |                         |               |
| Last Na   | ame:                                                       |                      |          |              |                |                    |           |             |           |                                            |             |          |               |          |            |                      |                  |                                                   |        |                         |               |
| No Dat    | a Indicator (NODI)                                         |                      |          |              |                |                    |           |             |           |                                            |             |          |               |          |            |                      |                  |                                                   |        |                         |               |
| Form N    | IODI:                                                      | · <del>-</del>       |          |              |                |                    |           |             |           |                                            |             |          |               |          |            |                      |                  |                                                   |        |                         |               |
| Codo      | Parameter                                                  | Monitoring Location  | Season # | # Param. NO  | DDI            | Qualifier          |           | ty or Loadi |           | Linito                                     | Ouglifier 1 | Volue    | 1 Ouglifier 2 |          | y or Conce | ntration Qualifier 3 | 3 Value 3        |                                                   | # of E | x. Frequency of Analysi | s Sample Type |
| Code      | Name                                                       |                      |          |              | Sample         | Qualifier          | 1 value 1 | Qualifier 2 | z value z | Units                                      | Qualifier   | value    | 1 Qualifier 2 | 0.0019   | alue 2     | = Qualifier 3        | 0.0019           | Units<br>28 - ug/L                                |        | 01/90 - Quarterly       | GR - GRAB     |
| 50286     | Mercury, total [low level]                                 | 1 - Effluent Gross   | 0        |              | Permit Req     | ļ.                 |           |             |           |                                            |             |          |               |          | 30DA AVG   |                      | Req Mon DAILY MX |                                                   | 0      | 01/90 - Quarterly       | GR - GRAB     |
|           | , -                                                        |                      |          |              | Value NOD      | П                  |           |             |           |                                            |             |          |               |          |            |                      |                  |                                                   |        |                         |               |
| Submis    | ssion Note                                                 |                      |          |              |                |                    |           |             |           |                                            |             |          |               |          |            |                      |                  |                                                   |        |                         |               |
| If a para | ameter row does not conta                                  | in any values for th | e Sample | e nor Efflue | ent Trading, t | then none          | of the    | ollowing    | fields w  | ill be                                     | submitted   | d for th | at row: Un    | its, Num | ber of Exc | cursions,            | Frequency of Ana | lysis, an                                         | d Sar  | mple Type.              |               |
| Edit Ch   | neck Errors                                                |                      |          |              |                |                    |           |             |           |                                            |             |          |               |          |            |                      |                  |                                                   |        |                         |               |
| No erro   | rs.                                                        |                      |          |              |                |                    |           |             |           |                                            |             |          |               |          |            |                      |                  |                                                   |        |                         |               |
| Commo     | ents                                                       |                      |          |              |                |                    |           |             |           |                                            |             |          |               |          |            |                      |                  |                                                   |        |                         |               |
|           |                                                            |                      |          |              |                |                    |           |             |           |                                            |             |          |               |          |            |                      |                  |                                                   |        |                         |               |
| Attachi   | ments                                                      |                      |          |              |                |                    |           |             |           |                                            |             |          |               |          |            |                      |                  |                                                   |        |                         |               |
|           |                                                            |                      |          |              | Na             | ıme                |           |             |           |                                            |             |          |               |          |            |                      | Туре             |                                                   |        | Size                    |               |
| 2022_2r   | ndQuarter_LL_Mercury_Test                                  | _GIR.pdf             |          |              |                |                    |           |             |           |                                            |             |          |               |          |            | pdf                  |                  | 109                                               | 2511.0 | 0                       |               |
| 2022_06   | 6_CrossCaribouMine_Coverl                                  | _etter.pdf           |          |              |                |                    |           |             |           |                                            |             |          |               |          |            | pdf                  |                  | 192                                               | 307.0  |                         |               |
| Report    | Last Saved By                                              |                      |          |              |                |                    |           |             |           |                                            |             |          |               |          |            |                      |                  |                                                   |        |                         |               |
| Grand     | Island Resources LLC                                       |                      |          |              |                |                    |           |             |           |                                            |             |          |               |          |            |                      |                  |                                                   |        |                         |               |
| User:     |                                                            |                      | pdelane  | y@alexco     | resource.con   | n                  |           |             |           |                                            |             |          |               |          |            |                      |                  |                                                   |        |                         |               |
| Name:     |                                                            |                      | Patrick  | Delaney      |                |                    |           |             |           |                                            |             |          |               |          |            |                      |                  |                                                   |        |                         |               |
| E-Mail:   |                                                            |                      | pdelane  | y@blackfo    | xmining.com    | า                  |           |             |           |                                            |             |          |               |          |            |                      |                  |                                                   |        |                         |               |
| Date/Ti   | me:                                                        |                      | 2022-07  | 7-12 00:35   | (Time Zone     | e: -06:00)         |           |             |           |                                            |             |          |               |          |            |                      |                  |                                                   |        |                         |               |
| Report    | Last Signed By                                             |                      |          |              |                |                    |           |             |           |                                            |             |          |               |          |            |                      |                  |                                                   |        |                         |               |
| User:     |                                                            |                      | pdelane  | y@alexco     | resource.con   | n                  |           |             |           |                                            |             |          |               |          |            |                      |                  |                                                   |        |                         |               |
| Name:     |                                                            |                      |          | Delaney      |                |                    |           |             |           |                                            |             |          |               |          |            |                      |                  |                                                   |        |                         |               |
| E-Mail:   |                                                            |                      | pdelane  | ey@blackfo   | xmining.com    | า                  |           |             |           |                                            |             |          |               |          |            |                      |                  |                                                   |        |                         |               |
| Date/Ti   | me:                                                        |                      | 2022-07  | 7-12 00:36   | (Time Zone     | e: -06:00)         |           |             |           |                                            |             |          |               |          |            |                      |                  |                                                   |        |                         |               |
|           |                                                            |                      |          |              |                |                    |           |             |           |                                            |             |          |               |          |            |                      |                  |                                                   |        |                         |               |



# **Environment Testing America**

## **ANALYTICAL REPORT**

Eurofins Denver 4955 Yarrow Street Arvada, CO 80002 Tel: (303)736-0100

Laboratory Job ID: 280-161049-1

Client Project/Site: Wastewater Discharge - Nederland, CO

For:

GS Mining Company LLC 422 Gregory Street Central City, Colorado 80427

Attn: Patrick Delaney

Authorized for release by: 4/28/2022 11:42:49 AM

Dylan Bieniulis, Project Manager I (303)736-0138

Dylan.Bieniulis@et.eurofinsus.com

.....LINKS

Review your project results through

Total Access

**Have a Question?** 



Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

6

a

10

46

13

\_\_\_

# **Table of Contents**

| Cover Page            | 1  |
|-----------------------|----|
| Table of Contents     | 2  |
| Definitions           | 3  |
| Case Narrative        | 4  |
| Detection Summary     | 7  |
| Method Summary        | 8  |
| Sample Summary        | 9  |
| Client Sample Results | 10 |
| QC Sample Results     | 12 |
| QC Association        | 18 |
| Chronicle             | 21 |
| Certification Summary | 22 |
| Chain of Custody      | 24 |
| Receipt Checklists    | 26 |

Δ

**5** 

9

10

12

13

### **Definitions/Glossary**

Client: GS Mining Company LLC Job ID: 280-161049-1

Project/Site: Wastewater Discharge - Nederland, CO

Qualifier Description

### Qualifiers

| Metals    |  |
|-----------|--|
| Qualifier |  |

| <b></b> | - Caraminer 2000. Parent                                                             |
|---------|--------------------------------------------------------------------------------------|
| ^+      | Continuing Calibration Verification (CCV) is outside acceptance limits, high biased. |
| В       | Compound was found in the blank and sample.                                          |

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

#### **General Chemistry**

| Qualifier | Qualifier Description                                                                                          |
|-----------|----------------------------------------------------------------------------------------------------------------|
| *+        | LCS and/or LCSD is outside acceptance limits, high biased.                                                     |
| *1        | LCS/LCSD RPD exceeds control limits.                                                                           |
| ^2        | Calibration Blank (ICB and/or CCB) is outside acceptance limits.                                               |
| Н         | Sample was prepped or analyzed beyond the specified holding time                                               |
| HF        | Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.           |
| J         | Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. |

### **Glossarv**

DLC

**EDL** 

| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 |
|----------------|-------------------------------------------------------------------------------------------------------------|
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |
| %R             | Percent Recovery                                                                                            |
| CFL            | Contains Free Liquid                                                                                        |
| CFU            | Colony Forming Unit                                                                                         |
| CNF            | Contains No Free Liquid                                                                                     |
| DER            | Duplicate Error Ratio (normalized absolute difference)                                                      |
| Dil Fac        | Dilution Factor                                                                                             |
| DL             | Detection Limit (DoD/DOE)                                                                                   |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |

Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE) MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry)

Minimum Detectable Concentration (Radiochemistry) MDC MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

Decision Level Concentration (Radiochemistry)

NEG Negative / Absent POS Positive / Present PQL **Practical Quantitation Limit** 

**PRES** Presumptive QC **Quality Control** 

**RER** Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

Relative Percent Difference, a measure of the relative difference between two points RPD

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ** 

**TNTC** Too Numerous To Count

**Eurofins Denver** 

Page 3 of 27 4/28/2022

Client: GS Mining Company LLC

Project/Site: Wastewater Discharge - Nederland, CO

Job ID: 280-161049-1

**Laboratory: Eurofins Denver** 

**Narrative** 

### **CASE NARRATIVE**

**Client: GS Mining Company LLC** 

Project: Wastewater Discharge - Nederland, CO

Report Number: 280-161049-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

#### **RECEIPT**

The samples were received on 04/15/2022; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 5.6 C.

Due to laboratory error the low level mercury sampling kit bag containing the sample containers holding sample volume collected for OUTFALL-001 (280-161049-1) was briefly opened during login procedures. Actual containers were not opened. The bag was re-sealed to await subcontracting to the laboratory performing the analysis. The laboratory will proceed with the requested analysis unless instructed otherwise. The client was notified on 4/15/2022.

#### **TOTAL RECOVERABLE METALS (ICP)**

Sample OUTFALL-001 (280-161049-1) was analyzed for Total Recoverable Metals (ICP) in accordance with EPA Method 200.7. The samples were prepared on 04/19/2022 and analyzed on 04/20/2022.

Iron was detected in method blank MB 280-572174/1-A at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### POTENTIALLY DISSOLVED METALS (ICPMS)

Sample OUTFALL-001 (280-161049-1) was analyzed for potentially dissolved metals (ICPMS) in accordance with EPA Method 200.8. The samples were prepared on 04/20/2022 and analyzed on 04/21/2022.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **TOTAL RECOVERABLE METALS (ICPMS)**

Sample OUTFALL-001 (280-161049-1) was analyzed for total recoverable metals (ICPMS) in accordance with EPA Method 200.8. The samples were prepared on 04/18/2022 and analyzed on 04/20/2022.

The continuing calibration verification (CCV) associated with batch 280-572522 recovered at 111% which is above the upper control limit (110%) for Arsenic. The samples associated with this CCV were <RL for the affected analytes; therefore, the data have been reported. The associated samples are impacted: OUTFALL-001 (280-161049-1), (CCV 280-572522/134), (LCS 280-572186/2-A), and (MB

Job ID: 280-161049-1

5

4

5

6

8

9

11

13

Client: GS Mining Company LLC

Project/Site: Wastewater Discharge - Nederland, CO

### Job ID: 280-161049-1 (Continued)

### **Laboratory: Eurofins Denver (Continued)**

280-572186/1-A).

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **TOTAL MERCURY (CVAA)**

Sample OUTFALL-001 (280-161049-1) was analyzed for total mercury (CVAA) in accordance with EPA Method 245.1. The samples were prepared on 04/18/2022 and analyzed on 04/19/2022.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### TRIVALENT CHROMIUM - POTENTIALLY DISSOLVED

Sample OUTFALL-001 (280-161049-1) was analyzed for Trivalent Chromium - Potentially Dissolved in accordance with SM3500\_CR3\_B. The samples were analyzed on 04/27/2022.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### TRIVALENT CHROMIUM - TOTAL RECOVERABLE

Sample OUTFALL-001 (280-161049-1) was analyzed for Trivalent Chromium - Total Recoverable in accordance with SM3500\_CR3\_B. The samples were analyzed on 04/27/2022.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **SPECIFIC CONDUCTIVITY**

Sample OUTFALL-001 (280-161049-1) was analyzed for specific conductivity in accordance with SM20 2510B. The samples were analyzed on 04/18/2022.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **TOTAL SUSPENDED SOLIDS**

Sample OUTFALL-001 (280-161049-1) was analyzed for total suspended solids in accordance with SM20 2540D. The samples were analyzed on 04/20/2022.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **DISSOLVED HEXAVALENT CHROMIUM**

Sample OUTFALL-001 (280-161049-1) was analyzed for dissolved hexavalent chromium in accordance with SM 3500 CR B. The samples were analyzed on 04/15/2022.

Chromium, hexavalent failed the recovery criteria high for LCS 280-572067/1-A. The analyte recovered within control limits in the associated laboratory control sample duplicate (LCSD). Associated client sample result was less than the reporting limit. Data has been qualified and reported. Refer to the QC report for details.

The continuing calibration blank (CCB) for preparation batch 280-572067 contained hexavalent chromium above the reporting limit (RL). None of the samples associated with this CCB contained the target compound above the reporting limit; therefore, re-extraction and/or re-analysis of samples were not performed. Data has been qualified and reported: OUTFALL-001 (280-161049-1), (CCB1 280-572071/25) and (280-161049-1 DU).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **HEXAVALENT CHROMIUM**

Sample OUTFALL-001 (280-161049-1) was analyzed for hexavalent chromium in accordance with 3500\_CR\_B. The samples were analyzed on 04/15/2022.

Chromium, hexavalent was detected in method blank MB 280-572071/10 at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above

3

Job ID: 280-161049-1

4

5

6

8

9

11

13

Client: GS Mining Company LLC

Project/Site: Wastewater Discharge - Nederland, CO

# Job ID: 280-161049-1 (Continued)

### **Laboratory: Eurofins Denver (Continued)**

the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

Chromium, hexavalent failed the recovery criteria high for LCSD 280-572071/9. The associated laboratory control sample (LCS) recovered within control limits. Chromium, hexavalent exceeded the RPD limit. The associated client sample result was less than the reporting limit. Data has been qualified and reported. Refer to the QC report for details.

The continuing calibration blank (CCB) for preparation batch 280-572067 contained hexavalent chromium above the reporting limit (RL). None of the samples associated with this CCB contained the target compound above the reporting limit; therefore, re-extraction and/or re-analysis of samples were not performed. Data has been qualified and reported: OUTFALL-001 (280-161049-1), (CCB1 280-572071/25) and (280-161049-1 DU).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

### **CORROSIVITY (PH)**

Sample OUTFALL-001 (280-161049-1) was analyzed for corrosivity (pH) in accordance with SM20 4500 H+ B. The samples were analyzed on 04/25/2022.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **SULFIDE**

Sample OUTFALL-001 (280-161049-1) was analyzed for sulfide in accordance with SM20 4500 S2 D. The samples were analyzed on 04/19/2022.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

### **HYDROGEN SULFIDE**

Sample OUTFALL-001 (280-161049-1) was analyzed for Hydrogen Sulfide in accordance with SM20 4500 S2 H. The samples were analyzed on 04/28/2022.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **LOW LEVEL MERCURY**

Sample OUTFALL-001 (280-161049-1) was analyzed for Low Level Mercury in accordance with EPA 1631. The samples were prepared on 04/19/2022 and analyzed on 04/22/2022.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

2

Job ID: 280-161049-1

5

4

5

0

8

9

11

13

### **Detection Summary**

Client: GS Mining Company LLC

Project/Site: Wastewater Discharge - Nederland, CO

**Client Sample ID: OUTFALL-001** 

Lab Sample ID: 280-161049-1

| Analyte              | Result | Qualifier | RL    | MDL    | Unit      | Dil Fac D | Method        | Prep Type   |
|----------------------|--------|-----------|-------|--------|-----------|-----------|---------------|-------------|
| Mercury              | 1.9    |           | 0.50  | 0.20   | ng/L      | 1 -       | 1631E         | Total/NA    |
| Iron                 | 36     | JB        | 100   | 9.1    | ug/L      | 1         | 200.7 Rev 4.4 | Total       |
|                      |        |           |       |        |           |           |               | Recoverable |
| Lead                 | 0.84   | J         | 1.0   | 0.23   | ug/L      | 1         | 200.8         | Total       |
|                      |        |           |       |        |           |           |               | Recoverable |
| Zinc                 | 3.5    | J         | 10    | 2.0    | ug/L      | 1         | 200.8         | Total       |
|                      |        |           |       |        |           |           |               | Recoverable |
| Lead                 | 0.76   | J         | 1.0   | 0.23   | ug/L      | 1         | 200.8         | Potentially |
|                      |        |           |       |        |           |           |               | Dissolved   |
| Zinc                 | 6.9    | J         | 10    | 2.0    | ug/L      | 1         | 200.8         | Potentially |
|                      |        |           |       |        |           |           |               | Dissolved   |
| Specific Conductance | 210    |           | 2.0   | 2.0    | umhos/cm  | 1         | SM 2510B      | Total/NA    |
| pH adj. to 25 deg C  | 7.5    | HF        | 0.1   | 0.1    | SU        | 1         | SM 4500 H+ B  | Total/NA    |
| Temperature          | 17.6   | HF        | 1.0   | 1.0    | Degrees C | 1         | SM 4500 H+ B  | Total/NA    |
| Field pH             | 7.5    |           | 1.0   | 1.0    | SU        | 1         | SM4500 S2 H   | Total/NA    |
| Field Temperature    | 18     |           | 1.0   | 1.0    | Celsius   | 1         | SM4500 S2 H   | Total/NA    |
| Specific Conductance | 210    |           | 2.0   | 2.0    | umhos/cm  | 1         | SM4500 S2 H   | Total/NA    |
| Chromium, hexavalent | 0.011  | J ^2 *+   | 0.020 | 0.0040 | mg/L      | 1         | SM 3500 CR B  | Dissolved   |

### **Method Summary**

Client: GS Mining Company LLC

Project/Site: Wastewater Discharge - Nederland, CO

| <b>l</b> lethod | Method Description                          | Protocol | Laboratory |
|-----------------|---------------------------------------------|----------|------------|
| 631E            | Mercury, Low Level (CVAFS)                  | EPA      | TAL PEN    |
| 200.7 Rev 4.4   | Metals (ICP)                                | EPA      | TAL DEN    |
| 200.8           | Metals (ICP/MS)                             | EPA      | TAL DEN    |
| 245.1           | Mercury (CVAA)                              | EPA      | TAL DEN    |
| SM 2510B        | Conductivity, Specific Conductance          | SM       | TAL DEN    |
| SM 2540D        | Solids, Total Suspended (TSS)               | SM       | TAL DEN    |
| SM 3500 CR B    | Chromium, Hexavalent                        | SM       | TAL DEN    |
| SM 4500 H+ B    | pH                                          | SM       | TAL DEN    |
| M 4500 S2 D     | Sulfide, Total                              | SM       | TAL DEN    |
| M3500 CR B      | Chromium, Trivalent                         | SM       | TAL DEN    |
| M4500 S2 H      | Unionized Hydrogen Sulfide                  | SM       | TAL DEN    |
| 631E            | Preparation, Mercury, Low Level             | EPA      | TAL PEN    |
| 200.7           | Preparation, Total Recoverable Metals       | EPA      | TAL DEN    |
| 8.00            | Preparation, Total Recoverable Metals       | EPA      | TAL DEN    |
| 45.1            | Preparation, Mercury                        | EPA      | TAL DEN    |
| ILTRATION       | Sample Filtration                           | None     | TAL DEN    |
| oten_Diss_Met   | Filtration for Potentially Dissolved Metals | EPA      | TAL DEN    |

#### **Protocol References:**

EPA = US Environmental Protection Agency

None = None

SM = "Standard Methods For The Examination Of Water And Wastewater"

#### **Laboratory References:**

TAL DEN = Eurofins Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100
TAL PEN = Eurofins Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

Job ID: 280-161049-1

3

4

6

Я

9

11

12

### **Sample Summary**

Client: GS Mining Company LLC

Project/Site: Wastewater Discharge - Nederland, CO

 Lab Sample ID
 Client Sample ID
 Matrix
 Collected
 Received

 280-161049-1
 OUTFALL-001
 Water
 04/15/22 10:15
 04/15/22 11:30

•

Job ID: 280-161049-1

3

6

9

10

13

Client: GS Mining Company LLC

Project/Site: Wastewater Discharge - Nederland, CO

Method: 1631E - Mercury, Low Level (CVAFS)

Client Sample ID: OUTFALL-001 Date Collected: 04/15/22 10:15

Date Received: 04/15/22 11:30

Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac 0.50 0.20 ng/L 04/19/22 16:45 04/22/22 12:13 Mercury 1.9

Method: 200.7 Rev 4.4 - Metals (ICP) - Total Recoverable

Client Sample ID: OUTFALL-001 Date Collected: 04/15/22 10:15

Date Received: 04/15/22 11:30

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 100 9.1 ug/L 04/19/22 11:40 04/20/22 19:49 Iron 36 JB

Method: 200.8 - Metals (ICP/MS) - Total Recoverable

Client Sample ID: OUTFALL-001 Date Collected: 04/15/22 10:15

Date Received: 04/15/22 11:30

Dil Fac Result Qualifier **Analyte** RL MDL Unit Prepared Analyzed Arsenic ND ^+ 5.0 0.50 04/18/22 12:10 04/20/22 23:08 ug/L 04/18/22 12:10 04/20/22 23:08 Cadmium ND 1.0 880.0 ug/L Chromium ND 3.0 0.88 ug/L 04/18/22 12:10 04/20/22 23:08 04/18/22 12:10 04/20/22 23:08 Copper ND 20 0.71 ug/L Lead 0.84 J 1.0 0.23 ug/L 04/18/22 12:10 04/20/22 23:08 **Zinc** 3.5 J 10 2.0 ug/L 04/18/22 12:10 04/20/22 23:08

Method: 200.8 - Metals (ICP/MS) - Potentially Dissolved

Client Sample ID: OUTFALL-001 Date Collected: 04/15/22 10:15

Date Received: 04/15/22 11:30 Analyte Result Qualifier RI MDI Unit **Prepared** Analyzed Dil Fac Arsenic ND 5.0 0.50 ug/L 04/20/22 09:02 04/21/22 02:05 Cadmium ND 1.0 0.088 ug/L 04/20/22 09:02 04/21/22 02:05 04/20/22 09:02 04/21/22 02:05 Chromium ND 3.0 0.88 ug/L Copper ND 2.0 0.71 ug/L 04/20/22 09:02 04/21/22 02:05 04/20/22 09:02 04/21/22 02:05 Lead 0.76 J 1.0 0.23 ug/L Manganese ND 2.0 0.51 ug/L 04/20/22 09:02 04/21/22 02:05 04/20/22 09:02 04/21/22 02:05 Nickel ND 20 0.28 ug/L Selenium ND 5.0 1.0 ug/L 04/20/22 09:02 04/21/22 02:05 Silver ND 1.0 0.045 ug/L 04/20/22 09:02 04/21/22 02:05 **Zinc** 6.9 J 10 04/20/22 09:02 04/21/22 02:05 2.0 ug/L

Method: 245.1 - Mercury (CVAA)

Client Sample ID: OUTFALL-001

Date Collected: 04/15/22 10:15

Date Received: 04/15/22 11:30 Analyte Result Qualifier RL MDL Unit Prepared Dil Fac Analyzed ND 0.20 0.061 ug/L 04/18/22 19:18 04/19/22 01:49 Mercury

Job ID: 280-161049-1

**Matrix: Water** 

**Matrix: Water** 

**Matrix: Water** 

**Matrix: Water** 

Lab Sample ID: 280-161049-1

**Matrix: Water** 

### Client Sample Results

Client: GS Mining Company LLC Job ID: 280-161049-1

Project/Site: Wastewater Discharge - Nederland, CO

### **General Chemistry**

**Client Sample ID: OUTFALL-001** Lab Sample ID: 280-161049-1 Date Collected: 04/15/22 10:15 **Matrix: Water** 

| Date Received: 04/15/22 11:30 |        |           |       |        |           |   |          |                |         |
|-------------------------------|--------|-----------|-------|--------|-----------|---|----------|----------------|---------|
| Analyte                       | Result | Qualifier | RL    | MDL    | Unit      | D | Prepared | Analyzed       | Dil Fac |
| Specific Conductance          | 210    |           | 2.0   | 2.0    | umhos/cm  |   |          | 04/18/22 09:36 | 1       |
| Total Suspended Solids        | ND     |           | 4.0   | 1.1    | mg/L      |   |          | 04/20/22 16:13 | 1       |
| Chromium, hexavalent          | ND     | *+ *1     | 0.020 | 0.0040 | mg/L      |   |          | 04/15/22 18:56 | 1       |
| pH adj. to 25 deg C           | 7.5    | HF        | 0.1   | 0.1    | SU        |   |          | 04/25/22 15:12 | 1       |
| Temperature                   | 17.6   | HF        | 1.0   | 1.0    | Degrees C |   |          | 04/25/22 15:12 | 1       |
| Sulfide                       | ND     |           | 0.050 | 0.022  | mg/L      |   |          | 04/19/22 15:06 | 1       |
| Un-ionized Hydrogen Sulfide   | ND     |           | 1.0   | 1.0    | mg/L      |   |          | 04/28/22 09:15 | 1       |
| Field pH                      | 7.5    |           | 1.0   | 1.0    | SU        |   |          | 04/28/22 09:15 | 1       |
| Field Temperature             | 18     |           | 1.0   | 1.0    | Celsius   |   |          | 04/28/22 09:15 | 1       |
| Specific Conductance          | 210    |           | 2.0   | 2.0    | umhos/cm  |   |          | 04/28/22 09:15 | 1       |
| Sulfide                       | ND     |           | 4.0   | 4.0    | mg/L      |   |          | 04/28/22 09:15 | 1       |

### **General Chemistry - Total Recoverable**

**Client Sample ID: OUTFALL-001** Lab Sample ID: 280-161049-1 **Matrix: Water** 

Date Collected: 04/15/22 10:15 Date Received: 04/15/22 11:30

Analyte Result Qualifier MDL Unit RL D Prepared Analyzed Dil Fac Chromium, trivalent ND H 0.020 0.020 mg/L 04/27/22 17:00

### General Chemistry - Dissolved

**Client Sample ID: OUTFALL-001** Lab Sample ID: 280-161049-1 Date Collected: 04/15/22 10:15 **Matrix: Water** 

Date Received: 04/15/22 11:30

Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac **Chromium, hexavalent** 0.011 J ^2 \*+ 0.020 0.0040 mg/L 04/15/22 19:00

### General Chemistry - Potentially Dissolved

**Client Sample ID: OUTFALL-001** Lab Sample ID: 280-161049-1 Date Collected: 04/15/22 10:15 **Matrix: Water** 

Date Received: 04/15/22 11:30

Analyte Result Qualifier RL **MDL** Unit D Prepared Dil Fac Analyzed Chromium, trivalent (dissolved) ND 0.020 0.020 mg/L 04/27/22 17:01

Client: GS Mining Company LLC Job ID: 280-161049-1

RL

0.50

Spike

Added

5.00

Spike

Added

5.00

Spike

Added

5.00

Spike

Added

5.00

**MDL** Unit

0.20 ng/L

LCS LCS

LCSD LCSD

MS MS

MSD MSD

5.98

Result Qualifier

6.07

Result Qualifier

5.46

Result Qualifier

5.28

Result Qualifier

Unit

ng/L

Unit

ng/L

Unit

ng/L

Unit

ng/L

Project/Site: Wastewater Discharge - Nederland, CO

Method: 1631E - Mercury, Low Level (CVAFS)

ND

Sample Sample

Sample Sample

1.9

Result Qualifier

MR MR Result Qualifier

23.0 J

1.9

Result Qualifier

Lab Sample ID: MB 400-574810/3-A **Matrix: Water** 

**Analysis Batch: 574905** 

Mercury

MB MB

Result Qualifier Analyte

**Matrix: Water** 

**Analysis Batch: 574905** 

Analyte

Mercury

Lab Sample ID: LCS 400-574810/4-A

Lab Sample ID: LCSD 400-574810/5-A **Matrix: Water** 

**Analysis Batch: 574905** 

Analyte

Mercury

Lab Sample ID: 280-161049-1 MS

**Matrix: Water** 

**Analysis Batch: 574905** 

Analyte

Mercury

Mercury

Analyte

Lab Sample ID: 280-161049-1 MSD **Matrix: Water** 

**Analysis Batch: 574905** 

Analyte

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MB 280-572174/1-A **Matrix: Water** 

**Analysis Batch: 572617** 

Iron

Lab Sample ID: LCS 280-572174/2-A **Matrix: Water** 

Analysis Batch: 572617

Analyte Iron

Added

10000

Spike

RL

100

10100

LCS LCS

Result Qualifier

**MDL** Unit

9.1 ug/L

Unit ug/L

%Rec 101

Prepared

85 - 115

**Prep Batch: 574810** Dil Fac

Prep Type: Total/NA

Analyzed 04/21/22 16:36 04/22/22 10:03

**Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Client Sample ID: Method Blank

**Prep Batch: 574810** 

%Rec Limits

79 - 121

Client Sample ID: Lab Control Sample Dup

Prepared

D %Rec

106

%Rec

%Rec

82

109

Prep Type: Total/NA

**Prep Batch: 574810** %Rec

**RPD** Limits RPD Limit

79 - 121

Client Sample ID: OUTFALL-001

**Prep Type: Total/NA** 

**Prep Batch: 574810** 

%Rec Limits

%Rec 71 - 125

Client Sample ID: OUTFALL-001

Prep Type: Total/NA

**Prep Batch: 574810** 

**RPD** 

Limit 24

%Rec Limits

71 - 125

Client Sample ID: Method Blank

**Prep Type: Total Recoverable** Prep Batch: 572174

04/19/22 11:40 04/20/22 20:09

Analyzed

**Prep Type: Total Recoverable** 

Prep Batch: 572174

%Rec Limits

**Eurofins Denver** 

4/28/2022

Dil Fac

Client: GS Mining Company LLC

MD MD

Project/Site: Wastewater Discharge - Nederland, CO

Method: 200.8 - Metals (ICP/MS)

Lab Sample ID: MB 280-572186/1-A

**Matrix: Water** 

**Analysis Batch: 572522** 

**Client Sample ID: Method Blank Prep Type: Total Recoverable** Prep Batch: 572186

Job ID: 280-161049-1

|         | IVID     | IVID      |     |       |      |   |                |                |         |
|---------|----------|-----------|-----|-------|------|---|----------------|----------------|---------|
| Analyt  | e Result | Qualifier | RL  | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenio | ND       | ^+        | 5.0 | 0.50  | ug/L |   | 04/18/22 12:10 | 04/20/22 22:23 | 1       |
| Cadmi   | ım ND    |           | 1.0 | 0.088 | ug/L |   | 04/18/22 12:10 | 04/20/22 22:23 | 1       |
| Chrom   | um ND    |           | 3.0 | 0.88  | ug/L |   | 04/18/22 12:10 | 04/20/22 22:23 | 1       |
| Coppe   | ND       |           | 2.0 | 0.71  | ug/L |   | 04/18/22 12:10 | 04/20/22 22:23 | 1       |
| Lead    | ND       |           | 1.0 | 0.23  | ug/L |   | 04/18/22 12:10 | 04/20/22 22:23 | 1       |
| Zinc    | ND       |           | 10  | 2.0   | ug/L |   | 04/18/22 12:10 | 04/20/22 22:23 | 1       |
|         |          |           |     |       |      |   |                |                |         |

Lab Sample ID: LCS 280-572186/2-A

**Matrix: Water** 

**Analysis Batch: 572522** 

**Client Sample ID: Lab Control Sample Prep Type: Total Recoverable** 

Prep Batch: 572186

%Rec Spike LCS LCS Analyte Added Result Qualifier Limits Unit D %Rec Arsenic 40.0 42.1 ^+ 89 - 111 ug/L 105 Cadmium 40.0 40.7 ug/L 102 89 - 111 Chromium 40.0 40.2 ug/L 101 86 - 115 40.0 42.6 90 - 115 Copper ug/L 107 Lead 40.0 39.6 ug/L 99 88 - 115 Zinc 40.0 43.3 108 ug/L 88 - 115

Lab Sample ID: MB 280-571923/1-C

**Matrix: Water** 

Analysis Batch: 572514

**Client Sample ID: Method Blank Prep Type: Potentially Dissolved** 

**Prep Batch: 572302** 

|           | MB     | MB        |     |       |      |   |                |                |         |
|-----------|--------|-----------|-----|-------|------|---|----------------|----------------|---------|
| Analyte   | Result | Qualifier | RL  | MDL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic   | ND     |           | 5.0 | 0.50  | ug/L |   | 04/20/22 09:02 | 04/21/22 01:05 | 1       |
| Cadmium   | ND     |           | 1.0 | 0.088 | ug/L |   | 04/20/22 09:02 | 04/21/22 01:05 | 1       |
| Chromium  | ND     |           | 3.0 | 0.88  | ug/L |   | 04/20/22 09:02 | 04/21/22 01:05 | 1       |
| Copper    | ND     |           | 2.0 | 0.71  | ug/L |   | 04/20/22 09:02 | 04/21/22 01:05 | 1       |
| Lead      | ND     |           | 1.0 | 0.23  | ug/L |   | 04/20/22 09:02 | 04/21/22 01:05 | 1       |
| Manganese | ND     |           | 2.0 | 0.51  | ug/L |   | 04/20/22 09:02 | 04/21/22 01:05 | 1       |
| Nickel    | ND     |           | 2.0 | 0.28  | ug/L |   | 04/20/22 09:02 | 04/21/22 01:05 | 1       |
| Selenium  | ND     |           | 5.0 | 1.0   | ug/L |   | 04/20/22 09:02 | 04/21/22 01:05 | 1       |
| Silver    | ND     |           | 1.0 | 0.045 | ug/L |   | 04/20/22 09:02 | 04/21/22 01:05 | 1       |
| Zinc      | ND     |           | 10  | 2.0   | ug/L |   | 04/20/22 09:02 | 04/21/22 01:05 | 1       |

Lab Sample ID: LCS 280-571923/2-C

**Matrix: Water** 

Analysis Batch: 572514

**Client Sample ID: Lab Control Sample Prep Type: Potentially Dissolved** 

**Prep Batch: 572302** 

| Analysis Baton. 072014 |       |        |           |      |   |      | i icp Baton. or |  |
|------------------------|-------|--------|-----------|------|---|------|-----------------|--|
|                        | Spike | LCS    | LCS       |      |   |      | %Rec            |  |
| Analyte                | Added | Result | Qualifier | Unit | D | %Rec | Limits          |  |
| Arsenic                | 40.0  | 39.3   |           | ug/L |   | 98   | 89 - 111        |  |
| Cadmium                | 40.0  | 39.9   |           | ug/L |   | 100  | 89 - 111        |  |
| Chromium               | 40.0  | 39.4   |           | ug/L |   | 99   | 86 - 115        |  |
| Copper                 | 40.0  | 40.5   |           | ug/L |   | 101  | 90 - 115        |  |
| Lead                   | 40.0  | 40.9   |           | ug/L |   | 102  | 88 - 115        |  |
| Manganese              | 40.0  | 40.8   |           | ug/L |   | 102  | 87 - 115        |  |
| Nickel                 | 40.0  | 39.0   |           | ug/L |   | 97   | 86 - 115        |  |
| Selenium               | 40.0  | 40.6   |           | ug/L |   | 101  | 85 - 114        |  |
| Silver                 | 40.0  | 38.5   |           | ug/L |   | 96   | 90 - 114        |  |

**Eurofins Denver** 

Page 13 of 27

Client: GS Mining Company LLC

Project/Site: Wastewater Discharge - Nederland, CO

Method: 200.8 - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 280-571923/2-C **Matrix: Water** 

Analysis Batch: 572514

**Prep Type: Potentially Dissolved Prep Batch: 572302** 

Job ID: 280-161049-1

Prep Type: Total/NA

Prep Batch: 572206

Prep Batch: 572206

Prep Type: Total/NA

Prep Batch: 572206

%Rec

**Client Sample ID: Lab Control Sample** 

Analyte Added Result Qualifier Unit %Rec Limits Zinc 40.0 42 5 ug/L 106 88 - 115

Spike

Method: 245.1 - Mercury (CVAA)

Lab Sample ID: MB 280-572206/1-A Client Sample ID: Method Blank

**Matrix: Water** 

Analysis Batch: 572314

Lab Sample ID: LCSD 280-572206/3-A

MB MB

Analyte Result Qualifier RL **MDL** Unit **Prepared** Analyzed Dil Fac Mercury ND 0.20 0.061 ug/L 04/18/22 19:18 04/19/22 00:56

Lab Sample ID: LCS 280-572206/2-A **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

**Matrix: Water** 

**Matrix: Water** 

**Analyte** 

Mercury

Analysis Batch: 572314

**Analysis Batch: 572314** 

Analyte Mercury

Spike Added 5.00

Result Qualifier

LCS LCS

4.96

4.85

LCS LCS

LCSD LCSD Result Qualifier

Unit ug/L

Unit

ug/L

D %Rec 97

%Rec

99

Client Sample ID: Lab Control Sample Dup

Limits 90 - 110

%Rec

%Rec

Limits

90 - 110

RPD Limit 2 10

Method: SM 2510B - Conductivity, Specific Conductance

Lab Sample ID: MB 280-572146/5 Client Sample ID: Method Blank Prep Type: Total/NA

Spike

Added

5.00

**Matrix: Water** 

Analysis Batch: 572146

MB MB

Analyte Specific Conductance Result Qualifier ND

RL 2.0

MDL Unit 2.0 umhos/cm Prepared

Analyzed 04/18/22 09:36

Dil Fac

Lab Sample ID: LCS 280-572146/4 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

**Matrix: Water** 

**Analysis Batch: 572146** 

Analyte Specific Conductance

Spike Added 1410

LCS LCS Result Qualifier 1460

Unit umhos/cm %Rec 104

%Rec Limits 90 - 110

**Client Sample ID: Method Blank** 

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 280-572487/2

**Matrix: Water** 

**Analysis Batch: 572487** 

MB MB

Analyte Result Qualifier Total Suspended Solids ND

RL 4.0

**MDL** Unit 1.1

mg/L

D Prepared

Analyzed Dil Fac 04/20/22 16:13

Prep Type: Total/NA

**Eurofins Denver** 

Job ID: 280-161049-1

Prep Type: Total/NA

Project/Site: Wastewater Discharge - Nederland, CO

Method: SM 2540D - Solids, Total Suspended (TSS) (Continued)

Lab Sample ID: LCS 280-572487/1 **Client Sample ID: Lab Control Sample** 

**Matrix: Water** 

Analysis Batch: 572487

Client: GS Mining Company LLC

Spike LCS LCS %Rec Added Result Qualifier %Rec Limits Analyte Unit D **Total Suspended Solids** 100 90.4 mg/L 90 79 - 114

Method: SM 3500 CR B - Chromium, Hexavalent

Lab Sample ID: MB 280-572071/10 **Client Sample ID: Method Blank** Prep Type: Total/NA

**Matrix: Water** 

Analysis Batch: 572071

MB MB

Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 0.020 0.0040 mg/L 0.00731 J 04/15/22 18:56 Chromium, hexavalent

Lab Sample ID: LCS 280-572071/8 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

**Analysis Batch: 572071** 

Spike LCS LCS %Rec Added Result Qualifier Limits Analyte Unit D %Rec Chromium, hexavalent 0.100 0.103 mg/L 103 91 - 112

Lab Sample ID: LCSD 280-572071/9 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

**Analysis Batch: 572071** 

LCSD LCSD Spike %Rec **RPD** RPD Analyte Added Result Qualifier Unit %Rec Limits Limit Chromium, hexavalent 0.100 0.136 \*+ \*1 136 91 - 112 mg/L

Lab Sample ID: 280-161049-1 MS Client Sample ID: OUTFALL-001 **Prep Type: Total/NA** 

**Matrix: Water** 

**Analysis Batch: 572071** 

MS MS %Rec Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits ND \*+ \*1 Chromium, hexavalent 0.100 0.105 mg/L 105 91 - 112

Lab Sample ID: 280-161049-1 MSD Client Sample ID: OUTFALL-001

**Matrix: Water** 

Analysis Batch: 572071

Spike RPD Sample Sample MSD MSD %Rec Result Qualifier Added Result Qualifier RPD Limit Analyte Unit %Rec Limits Chromium, hexavalent ND \*+ \*1 0.100 0.105 105 91 - 112 mg/L

Lab Sample ID: 280-161049-1 DU Client Sample ID: OUTFALL-001 Prep Type: Total/NA

**Matrix: Water** 

**Analysis Batch: 572071** 

DU DU **RPD** Sample Sample Result Qualifier Result Qualifier Unit D **RPD** Limit Chromium, hexavalent ND \*+ \*1 ND \*+ \*1 mg/L NC 20

**Eurofins Denver** 

Prep Type: Total/NA

4/28/2022

Job ID: 280-161049-1

**Prep Type: Dissolved** 

Prep Type: Total/NA

Client Sample ID: OUTFALL-001

Client Sample ID: OUTFALL-001

Client Sample ID: OUTFALL-001

**Client Sample ID: Lab Control Sample** 

Client Sample ID: Method Blank

**Client Sample ID: Lab Control Sample** 

Client Sample ID: Lab Control Sample Dup

Project/Site: Wastewater Discharge - Nederland, CO

Method: SM 3500 CR B - Chromium, Hexavalent (Continued)

Lab Sample ID: MB 280-572067/3-A

**Matrix: Water** 

Analysis Batch: 572071

Client: GS Mining Company LLC

MB MB

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte D Prepared 0.020 04/15/22 19:00 Chromium, hexavalent ND 0.0040 mg/L

Lab Sample ID: LCS 280-572067/1-A

**Matrix: Water** 

**Analysis Batch: 572071** 

Spike LCS LCS %Rec Added Result Qualifier D %Rec Limits Analyte Unit 0.100 0.123 \*+ Chromium, hexavalent mg/L 123 91 - 112

Lab Sample ID: LCSD 280-572067/2-A **Matrix: Water** 

**Analysis Batch: 572071** 

Spike LCSD LCSD %Rec **RPD** Added Result Qualifier Limits RPD Limit Analyte Unit %Rec Chromium, hexavalent 0.100 0.104 104 91 - 112 mg/L

Lab Sample ID: 280-161049-1 MS

**Matrix: Water** 

**Analysis Batch: 572071** 

Spike MS MS Sample Sample %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits 0.011 J ^2 \*+ 0.100 0.106 Chromium, hexavalent mg/L 91 - 112

Lab Sample ID: 280-161049-1 MSD

**Matrix: Water** 

Analysis Batch: 572071

MSD MSD RPD Sample Sample Spike %Rec Result Qualifier Added Analyte Result Qualifier Unit %Rec Limits Limit Chromium, hexavalent 0.011 J ^2 \*+ 0.100 0.105 94 91 - 112 mg/L

Lab Sample ID: 280-161049-1 DU

**Matrix: Water** 

**Analysis Batch: 572071** 

DU DU Sample Sample **RPD** Result Qualifier Result Qualifier **RPD** Limit Analyte Unit D 0.011 J ^2 \*+ Chromium, hexavalent ND mg/L NC 20

Method: SM 4500 H+ B - pH

Lab Sample ID: LCS 280-572977/6

**Matrix: Water** 

**Analysis Batch: 572977** 

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits 7.00 7.0 SU pH adj. to 25 deg C 100 99 - 101

**Eurofins Denver** 

### QC Sample Results

Client: GS Mining Company LLC

Project/Site: Wastewater Discharge - Nederland, CO

Job ID: 280-161049-1

Method: SM 4500 S2 D - Sulfide, Total

Lab Sample ID: MB 280-572346/11

**Matrix: Water** 

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 572346

MB MB

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac **Prepared** 0.050 0.022 mg/L 04/19/22 13:44 Sulfide ND

Lab Sample ID: LCS 280-572346/9 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 572346

Spike LCS LCS %Rec Analyte Added Result Qualifier D %Rec Limits Unit Sulfide 0.501 0.487 mg/L 97 81 - 122

Lab Sample ID: LCSD 280-572346/10 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

**Analysis Batch: 572346** 

Spike LCSD LCSD %Rec RPD Added Result Qualifier Limits RPD Limit **Analyte** Unit %Rec Sulfide 0.501 0.491 81 - 122 10 mg/L

Method: SM4500 S2 H - Unionized Hydrogen Sulfide

Lab Sample ID: MB 280-573236/1 Client Sample ID: Method Blank Prep Type: Total/NA

**Matrix: Water** 

**Analysis Batch: 573236** 

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Un-ionized Hydrogen Sulfide ND 1.0 1.0 mg/L 04/28/22 09:15 SU Field pH ND 1.0 1.0 04/28/22 09:15 Field Temperature ND 1.0 Celsius 04/28/22 09:15 Specific Conductance ND 2.0 2.0 umhos/cm 04/28/22 09:15 Sulfide ND 4.0 4.0 mg/L 04/28/22 09:15

Client: GS Mining Company LLC

Project/Site: Wastewater Discharge - Nederland, CO

**Metals** 

| Eiltration        | Patch: | <b>571022</b> |
|-------------------|--------|---------------|
| <b>Filtration</b> | Batch: | 5/1923        |

| Lab Sample ID      | Client Sample ID   | Prep Type             | Matrix | Method     | Prep Batch |
|--------------------|--------------------|-----------------------|--------|------------|------------|
| MB 280-571923/1-C  | Method Blank       | Potentially Dissolved | Water  | FILTRATION |            |
| LCS 280-571923/2-C | Lab Control Sample | Potentially Dissolved | Water  | FILTRATION |            |

### Filtration Batch: 572073

| Lab Sample ID | Client Sample ID | Prep Type             | Matrix | Method         | Prep Batch |
|---------------|------------------|-----------------------|--------|----------------|------------|
| 280-161049-1  | OUTFALL-001      | Potentially Dissolved | Water  | Poten_Diss_Met |            |

### **Prep Batch: 572174**

| Lab Sample ID      | Client Sample ID   | Prep Type         | Matrix | Method | Prep Batch |
|--------------------|--------------------|-------------------|--------|--------|------------|
| 280-161049-1       | OUTFALL-001        | Total Recoverable | Water  | 200.7  | _          |
| MB 280-572174/1-A  | Method Blank       | Total Recoverable | Water  | 200.7  |            |
| LCS 280-572174/2-A | Lab Control Sample | Total Recoverable | Water  | 200.7  |            |

### **Prep Batch: 572186**

| Lab Sample ID<br>280-161049-1 | Client Sample ID OUTFALL-001 | Prep Type  Total Recoverable | Matrix<br>Water | Method 200.8 | Prep Batch |
|-------------------------------|------------------------------|------------------------------|-----------------|--------------|------------|
| MB 280-572186/1-A             | Method Blank                 | Total Recoverable            | Water           | 200.8        |            |
| LCS 280-572186/2-A            | Lab Control Sample           | Total Recoverable            | Water           | 200.8        |            |

### **Prep Batch: 572206**

| Lab Sample ID<br>280-161049-1 | Client Sample ID OUTFALL-001 | Prep Type<br>Total/NA | Matrix<br>Water | Method | Prep Batch |
|-------------------------------|------------------------------|-----------------------|-----------------|--------|------------|
| MB 280-572206/1-A             | Method Blank                 | Total/NA              | Water           | 245.1  |            |
| LCS 280-572206/2-A            | Lab Control Sample           | Total/NA              | Water           | 245.1  |            |
| LCSD 280-572206/3-A           | Lab Control Sample Dup       | Total/NA              | Water           | 245.1  |            |

### **Prep Batch: 572302**

| Lab Sample ID      | Client Sample ID   | Prep Type             | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------------------|--------|--------|------------|
| 280-161049-1       | OUTFALL-001        | Potentially Dissolved | Water  | 200.8  | 572073     |
| MB 280-571923/1-C  | Method Blank       | Potentially Dissolved | Water  | 200.8  | 571923     |
| LCS 280-571923/2-C | Lab Control Sample | Potentially Dissolved | Water  | 200.8  | 571923     |

### Analysis Batch: 572314

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| 280-161049-1        | OUTFALL-001            | Total/NA  | Water  | 245.1  | 572206     |
| MB 280-572206/1-A   | Method Blank           | Total/NA  | Water  | 245.1  | 572206     |
| LCS 280-572206/2-A  | Lab Control Sample     | Total/NA  | Water  | 245.1  | 572206     |
| LCSD 280-572206/3-A | Lab Control Sample Dup | Total/NA  | Water  | 245.1  | 572206     |

### Analysis Batch: 572514

| Lab Sample ID      | Client Sample ID   | Prep Type             | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------------------|--------|--------|------------|
| 280-161049-1       | OUTFALL-001        | Potentially Dissolved | Water  | 200.8  | 572302     |
| MB 280-571923/1-C  | Method Blank       | Potentially Dissolved | Water  | 200.8  | 572302     |
| LCS 280-571923/2-C | Lab Control Sample | Potentially Dissolved | Water  | 200.8  | 572302     |

### **Analysis Batch: 572522**

| Lab Sample ID      | Client Sample ID   | Prep Type         | Matrix | Method | Prep Batch |
|--------------------|--------------------|-------------------|--------|--------|------------|
| 280-161049-1       | OUTFALL-001        | Total Recoverable | Water  | 200.8  | 572186     |
| MB 280-572186/1-A  | Method Blank       | Total Recoverable | Water  | 200.8  | 572186     |
| LCS 280-572186/2-A | Lab Control Sample | Total Recoverable | Water  | 200.8  | 572186     |

**Eurofins Denver** 

Page 18 of 27

Client: GS Mining Company LLC

Project/Site: Wastewater Discharge - Nederland, CO

### **Metals**

### Analysis Batch: 572617

| Lab Sample ID      | Client Sample ID   | Prep Type         | Matrix | Method        | Prep Batch |
|--------------------|--------------------|-------------------|--------|---------------|------------|
| 280-161049-1       | OUTFALL-001        | Total Recoverable | Water  | 200.7 Rev 4.4 | 572174     |
| MB 280-572174/1-A  | Method Blank       | Total Recoverable | Water  | 200.7 Rev 4.4 | 572174     |
| LCS 280-572174/2-A | Lab Control Sample | Total Recoverable | Water  | 200.7 Rev 4.4 | 572174     |

### **Prep Batch: 574810**

| <b>Lab Sample ID</b> 280-161049-1 | Client Sample ID OUTFALL-001 | Prep Type Total/NA | Matrix<br>Water | Method<br>1631E | Prep Batch |
|-----------------------------------|------------------------------|--------------------|-----------------|-----------------|------------|
| MB 400-574810/3-A                 | Method Blank                 | Total/NA           | Water           | 1631E           |            |
| LCS 400-574810/4-A                | Lab Control Sample           | Total/NA           | Water           | 1631E           |            |
| LCSD 400-574810/5-A               | Lab Control Sample Dup       | Total/NA           | Water           | 1631E           |            |
| 280-161049-1 MS                   | OUTFALL-001                  | Total/NA           | Water           | 1631E           |            |
| 280-161049-1 MSD                  | OUTFALL-001                  | Total/NA           | Water           | 1631E           |            |

### **Analysis Batch: 574905**

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| 280-161049-1        | OUTFALL-001            | Total/NA  | Water  | 1631E  | 574810     |
| MB 400-574810/3-A   | Method Blank           | Total/NA  | Water  | 1631E  | 574810     |
| LCS 400-574810/4-A  | Lab Control Sample     | Total/NA  | Water  | 1631E  | 574810     |
| LCSD 400-574810/5-A | Lab Control Sample Dup | Total/NA  | Water  | 1631E  | 574810     |
| 280-161049-1 MS     | OUTFALL-001            | Total/NA  | Water  | 1631E  | 574810     |
| 280-161049-1 MSD    | OUTFALL-001            | Total/NA  | Water  | 1631E  | 574810     |

### **General Chemistry**

### Filtration Batch: 572067

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method     | Prep Batch |
|---------------------|------------------------|-----------|--------|------------|------------|
| 280-161049-1        | OUTFALL-001            | Dissolved | Water  | FILTRATION |            |
| MB 280-572067/3-A   | Method Blank           | Dissolved | Water  | FILTRATION |            |
| LCS 280-572067/1-A  | Lab Control Sample     | Dissolved | Water  | FILTRATION |            |
| LCSD 280-572067/2-A | Lab Control Sample Dup | Dissolved | Water  | FILTRATION |            |
| 280-161049-1 MS     | OUTFALL-001            | Dissolved | Water  | FILTRATION |            |
| 280-161049-1 MSD    | OUTFALL-001            | Dissolved | Water  | FILTRATION |            |
| 280-161049-1 DU     | OUTFALL-001            | Dissolved | Water  | FILTRATION |            |

### **Analysis Batch: 572071**

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method       | Prep Batch |
|---------------------|------------------------|-----------|--------|--------------|------------|
| 280-161049-1        | OUTFALL-001            | Dissolved | Water  | SM 3500 CR B | 572067     |
| 280-161049-1        | OUTFALL-001            | Total/NA  | Water  | SM 3500 CR B |            |
| MB 280-572067/3-A   | Method Blank           | Dissolved | Water  | SM 3500 CR B | 572067     |
| MB 280-572071/10    | Method Blank           | Total/NA  | Water  | SM 3500 CR B |            |
| LCS 280-572067/1-A  | Lab Control Sample     | Dissolved | Water  | SM 3500 CR B | 572067     |
| LCS 280-572071/8    | Lab Control Sample     | Total/NA  | Water  | SM 3500 CR B |            |
| LCSD 280-572067/2-A | Lab Control Sample Dup | Dissolved | Water  | SM 3500 CR B | 572067     |
| LCSD 280-572071/9   | Lab Control Sample Dup | Total/NA  | Water  | SM 3500 CR B |            |
| 280-161049-1 MS     | OUTFALL-001            | Dissolved | Water  | SM 3500 CR B | 572067     |
| 280-161049-1 MS     | OUTFALL-001            | Total/NA  | Water  | SM 3500 CR B |            |
| 280-161049-1 MSD    | OUTFALL-001            | Dissolved | Water  | SM 3500 CR B | 572067     |
| 280-161049-1 MSD    | OUTFALL-001            | Total/NA  | Water  | SM 3500 CR B |            |
| 280-161049-1 DU     | OUTFALL-001            | Dissolved | Water  | SM 3500 CR B | 572067     |
| 280-161049-1 DU     | OUTFALL-001            | Total/NA  | Water  | SM 3500 CR B |            |

Page 19 of 27

Client: GS Mining Company LLC

Project/Site: Wastewater Discharge - Nederland, CO

### **General Chemistry**

| Analy | /sis | Batch: | 572146 |
|-------|------|--------|--------|
| Allul | 7010 | Duton. | 012170 |

| Lab Sample ID    | Client Sample ID   | Prep Type | Matrix | Method   | Prep Batch |
|------------------|--------------------|-----------|--------|----------|------------|
| 280-161049-1     | OUTFALL-001        | Total/NA  | Water  | SM 2510B |            |
| MB 280-572146/5  | Method Blank       | Total/NA  | Water  | SM 2510B |            |
| LCS 280-572146/4 | Lab Control Sample | Total/NA  | Water  | SM 2510B |            |

### Analysis Batch: 572346

| Lab Sample ID<br>280-161049-1 | Client Sample ID OUTFALL-001 | Prep Type Total/NA | Matrix<br>Water | Method<br>SM 4500 S2 D | Prep Batch |
|-------------------------------|------------------------------|--------------------|-----------------|------------------------|------------|
| MB 280-572346/11              | Method Blank                 | Total/NA           | Water           | SM 4500 S2 D           |            |
| LCS 280-572346/9              | Lab Control Sample           | Total/NA           | Water           | SM 4500 S2 D           |            |
| LCSD 280-572346/10            | Lab Control Sample Dup       | Total/NA           | Water           | SM 4500 S2 D           |            |

### **Analysis Batch: 572487**

| Lab Sample ID 280-161049-1 | Client Sample ID OUTFALL-001 | Prep Type Total/NA | Matrix<br>Water | Method<br>SM 2540D | Prep Batch |
|----------------------------|------------------------------|--------------------|-----------------|--------------------|------------|
| MB 280-572487/2            | Method Blank                 | Total/NA           | Water           | SM 2540D           |            |
| LCS 280-572487/1           | Lab Control Sample           | Total/NA           | Water           | SM 2540D           |            |

### **Analysis Batch: 572977**

| Lab Sample ID    | Client Sample ID   | Prep Type | Matrix | Method       | Prep Batch |
|------------------|--------------------|-----------|--------|--------------|------------|
| 280-161049-1     | OUTFALL-001        | Total/NA  | Water  | SM 4500 H+ B |            |
| LCS 280-572977/6 | Lab Control Sample | Total/NA  | Water  | SM 4500 H+ B |            |

### **Analysis Batch: 573197**

| Lab Sample ID | Client Sample ID | Prep Type         | Matrix | Method      | Prep Batch |
|---------------|------------------|-------------------|--------|-------------|------------|
| 280-161049-1  | OUTFALL-001      | Total Recoverable | Water  | SM3500 CR B |            |

### **Analysis Batch: 573198**

| Lab Sample ID | Client Sample ID | Prep Type             | Matrix | Method      | Prep Batch |
|---------------|------------------|-----------------------|--------|-------------|------------|
| 280-161049-1  | OUTFALL-001      | Potentially Dissolved | Water  | SM3500 CR B |            |

### **Analysis Batch: 573236**

| Lab Sample ID   | Client Sample ID | Prep Type | Matrix | Method      | Prep Batch |
|-----------------|------------------|-----------|--------|-------------|------------|
| 280-161049-1    | OUTFALL-001      | Total/NA  | Water  | SM4500 S2 H |            |
| MB 280-573236/1 | Method Blank     | Total/NA  | Water  | SM4500 S2 H |            |

**Eurofins Denver** 

4/28/2022

### **Lab Chronicle**

Client: GS Mining Company LLC Job ID: 280-161049-1

Project/Site: Wastewater Discharge - Nederland, CO

**Client Sample ID: OUTFALL-001** 

Lab Sample ID: 280-161049-1 Date Collected: 04/15/22 10:15 **Matrix: Water** Date Received: 04/15/22 11:30

|                       | Batch      | Batch          |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------------------|------------|----------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type             | Type       | Method         | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA              | Prep       | 1631E          |     |        | 40 mL   | 40 mL  | 574810 | 04/19/22 16:45 | VLC     | TAL PEN |
| Total/NA              | Analysis   | 1631E          |     | 1      |         |        | 574905 | 04/22/22 12:13 | VLC     | TAL PEN |
| Total Recoverable     | Prep       | 200.7          |     |        | 50 mL   | 50 mL  | 572174 | 04/19/22 11:40 | MB      | TAL DEN |
| Total Recoverable     | Analysis   | 200.7 Rev 4.4  |     | 1      |         |        | 572617 | 04/20/22 19:49 | MAB     | TAL DEN |
| Potentially Dissolved | Filtration | Poten_Diss_Met |     |        | 250 mL  | 250 mL | 572073 | 04/15/22 20:30 | LRD     | TAL DEN |
| Potentially Dissolved | Prep       | 200.8          |     |        | 50 mL   | 50 mL  | 572302 | 04/20/22 09:02 | MB      | TAL DEN |
| Potentially Dissolved | Analysis   | 200.8          |     | 1      |         |        | 572514 | 04/21/22 02:05 | LMT     | TAL DEN |
| Total Recoverable     | Prep       | 200.8          |     |        | 50 mL   | 50 mL  | 572186 | 04/18/22 12:10 | KMS     | TAL DEN |
| Total Recoverable     | Analysis   | 200.8          |     | 1      |         |        | 572522 | 04/20/22 23:08 | LMT     | TAL DEN |
| Total/NA              | Prep       | 245.1          |     |        | 30 mL   | 50 mL  | 572206 | 04/18/22 19:18 | CEH     | TAL DEN |
| Total/NA              | Analysis   | 245.1          |     | 1      |         |        | 572314 | 04/19/22 01:49 | CEH     | TAL DEN |
| Total/NA              | Analysis   | SM 2510B       |     | 1      |         |        | 572146 | 04/18/22 09:36 | KEG     | TAL DEN |
| Total/NA              | Analysis   | SM 2540D       |     | 1      | 250 mL  | 250 mL | 572487 | 04/20/22 16:13 | SVC     | TAL DEN |
| Dissolved             | Filtration | FILTRATION     |     |        | 1.0 mL  | 1.0 mL | 572067 | 04/15/22 18:17 | SJD     | TAL DEN |
| Dissolved             | Analysis   | SM 3500 CR B   |     | 1      | 2 mL    | 2 mL   | 572071 | 04/15/22 19:00 | SJD     | TAL DEN |
| Total/NA              | Analysis   | SM 3500 CR B   |     | 1      | 2 mL    | 2 mL   | 572071 | 04/15/22 18:56 | SJD     | TAL DEN |
| Total/NA              | Analysis   | SM 4500 H+ B   |     | 1      |         |        | 572977 | 04/25/22 15:12 | KEG     | TAL DEN |
| Total/NA              | Analysis   | SM 4500 S2 D   |     | 1      | 2 mL    | 2 mL   | 572346 | 04/19/22 15:06 | LRB     | TAL DEN |
| Potentially Dissolved | Analysis   | SM3500 CR B    |     | 1      |         |        | 573198 | 04/27/22 17:01 | DNM     | TAL DEN |
| Total Recoverable     | Analysis   | SM3500 CR B    |     | 1      |         |        | 573197 | 04/27/22 17:00 | DNM     | TAL DEN |
| Total/NA              | Analysis   | SM4500 S2 H    |     | 1      |         |        | 573236 | 04/28/22 09:15 | SAH     | TAL DEN |

### **Laboratory References:**

TAL DEN = Eurofins Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

TAL PEN = Eurofins Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

### **Accreditation/Certification Summary**

Client: GS Mining Company LLC

Project/Site: Wastewater Discharge - Nederland, CO

Job ID: 280-161049-1

### **Laboratory: Eurofins Denver**

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

| Authority              | Program               | Identification Number | <b>Expiration Date</b> |
|------------------------|-----------------------|-----------------------|------------------------|
| A2LA                   | Dept. of Defense ELAP | 2907.01               | 10-31-23               |
| A2LA                   | ISO/IEC 17025         | 2907.01               | 10-31-23               |
| Alabama                | State Program         | 40730                 | 09-30-12 *             |
| Alaska (UST)           | State                 | 18-001                | 02-08-23               |
| Arizona                | State                 | AZ0713                | 12-20-22               |
| Arkansas DEQ           | State                 | 19-047-0              | 06-01-22               |
| California             | State                 | 2513                  | 01-09-23               |
| Connecticut            | State                 | PH-0686               | 09-30-22               |
| Florida                | NELAP                 | E87667-57             | 06-30-22               |
| Georgia                | State                 | 4025-011              | 01-08-23               |
| Illinois               | NELAP                 | 2000172019-1          | 04-30-23               |
| Iowa                   | State                 | IA#370                | 12-02-22               |
| Kansas                 | NELAP                 | E-10166               | 04-30-22               |
| Kentucky (WW)          | State                 | KY98047               | 12-31-22               |
| Louisiana              | NELAP                 | 30785                 | 06-30-14 *             |
| Louisiana              | NELAP                 | 30785                 | 06-30-22               |
| Minnesota              | NELAP                 | 1788752               | 12-31-22               |
| Nevada                 | State                 | CO000262020-1         | 07-31-22               |
| New Hampshire          | NELAP                 | 205319                | 04-29-22               |
| New Jersey             | NELAP                 | 190002                | 06-30-22               |
| New York               | NELAP                 | 59923                 | 04-01-23               |
| North Carolina (WW/SW) | State                 | 358                   | 12-31-22               |
| North Dakota           | State                 | R-034                 | 01-08-23               |
| Oklahoma               | NELAP                 | 8614                  | 08-31-22               |
| Oregon                 | NELAP                 | 4025-011              | 01-08-23               |
| Pennsylvania           | NELAP                 | 013                   | 07-31-22               |
| South Carolina         | State                 | 72002001              | 01-08-23               |
| Texas                  | NELAP                 | TX104704183-08-TX     | 09-30-09 *             |
| Texas                  | NELAP                 | T104704183-21-19      | 10-01-22               |
| US Fish & Wildlife     | US Federal Programs   | 058448                | 07-31-22               |
| USDA                   | US Federal Programs   | P330-20-00065         | 03-06-23               |
| Utah                   | NELAP                 | QUAN5                 | 06-30-13 *             |
| Utah                   | NELAP                 | CO000262019-11        | 07-31-22               |
| Virginia               | NELAP                 | 10490                 | 06-14-22               |
| Washington             | State                 | C583-19               | 08-03-22               |
| West Virginia DEP      | State                 | 354                   | 11-30-22               |
| Wisconsin              | State                 | 999615430             | 08-31-22               |
| Wyoming (UST)          | A2LA                  | 2907.01               | 10-31-22               |

### **Laboratory: Eurofins Pensacola**

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

| Authority    | Program       | Identification Number | Expiration Date |
|--------------|---------------|-----------------------|-----------------|
| Alabama      | State         | 40150                 | 06-30-22        |
| ANAB         | ISO/IEC 17025 | L2471                 | 02-23-23        |
| Arkansas DEQ | State         | 88-0689               | 09-01-22        |
| California   | State         | 2510                  | 06-30-22        |
| Florida      | NELAP         | E81010                | 06-30-22        |
| Georgia      | State         | E81010(FL)            | 06-30-22        |
| Illinois     | NELAP         | 200041                | 10-09-22        |

<sup>\*</sup> Accreditation/Certification renewal pending - accreditation/certification considered valid.

**Eurofins Denver** 

### **Accreditation/Certification Summary**

Client: GS Mining Company LLC

Project/Site: Wastewater Discharge - Nederland, CO

Job ID: 280-161049-1

### **Laboratory: Eurofins Pensacola (Continued)**

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

| Authority              | Program             | Identification Number | <b>Expiration Date</b> |
|------------------------|---------------------|-----------------------|------------------------|
| Kansas                 | NELAP               | E-10253               | 10-31-22               |
| Kentucky (UST)         | State               | 53                    | 06-30-22               |
| Kentucky (WW)          | State               | KY98030               | 12-31-22               |
| Louisiana              | NELAP               | 30976                 | 06-30-22               |
| Louisiana (DW)         | State               | LA017                 | 12-31-22               |
| Maryland               | State               | 233                   | 09-30-22               |
| Massachusetts          | State               | M-FL094               | 06-30-22               |
| Michigan               | State               | 9912                  | 06-30-22               |
| North Carolina (WW/SW) | State               | 314                   | 12-31-22               |
| Oklahoma               | NELAP               | 9810                  | 08-31-22               |
| Pennsylvania           | NELAP               | 68-00467              | 01-31-23               |
| South Carolina         | State               | 96026                 | 06-30-22               |
| Tennessee              | State               | TN02907               | 06-30-22               |
| Texas                  | NELAP               | T104704286            | 09-30-22               |
| US Fish & Wildlife     | US Federal Programs | 058448                | 07-31-22               |
| USDA                   | US Federal Programs | P330-21-00056         | 05-17-24               |
| Virginia               | NELAP               | 460166                | 06-14-22               |
| West Virginia DEP      | State               | 136                   | 05-31-22               |

9

-0

6

8

9

10

12

13

| Eurofins TestAmerica, Denver<br>4955 Yarrow Street<br>Arvada, CO 80002<br>Phone (303) 736-0100 Phone (303) 431-7171 | J                              | Chain of Custody Record | f Cust             | ody Re             | corc                       |                                           |               |                                                                      |          |                                                                                  |            |             | 💸 eurofins Environment<br>America                                                                      | at Tecting           |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------|--------------------|--------------------|----------------------------|-------------------------------------------|---------------|----------------------------------------------------------------------|----------|----------------------------------------------------------------------------------|------------|-------------|--------------------------------------------------------------------------------------------------------|----------------------|
| Client Information                                                                                                  | Sampler: P. VEL                | PANEY                   | 7                  | Lab PM:<br>Bieniul | :<br>lis, Dvlar            |                                           |               |                                                                      | Carrier  | Carrier Tracking No(s):                                                          | No(s):     |             | COC No:                                                                                                |                      |
| Client Contact PATRICK DELANEY                                                                                      | Phone: 35                      | さって                     | 9869-              |                    | Bieniulis                  | E-Mail:<br>Dylan.Bieniulis@Eurofinset.com |               |                                                                      | State    | State of Origin:                                                                 |            |             | Page:                                                                                                  |                      |
| Company:<br>Grand Island Resources                                                                                  |                                |                         | PWSID:             |                    |                            |                                           | ¥             | Analysis Requested                                                   | equest   | pe                                                                               |            |             | Job #:                                                                                                 |                      |
| Address:<br>12567 West Cedar Road Suite 250                                                                         | Due Date Requested:            | ed:                     |                    |                    |                            | -+1                                       |               | nı nı                                                                | quo      |                                                                                  |            |             |                                                                                                        |                      |
| City:<br>Lakewood                                                                                                   | TAT Requested (d               | ays):                   |                    |                    |                            | H_0024W                                   |               |                                                                      | w eq. yo |                                                                                  |            |             | A - HOL<br>M - HEXAILE<br>B - NAOH N - NONE<br>C - ZN Acetate O - ASNAOZ<br>D - Mitric Acid D - NA2OAS |                      |
| State, ZIp:<br>CO, 80466                                                                                            | Compliance Project:            | ct: △ Yes △ No          | No                 |                    |                            | NS 'SS                                    |               | un - H                                                               |          |                                                                                  |            |             |                                                                                                        |                      |
| 9869-414-518                                                                                                        | PO #: Advance Payment Required | ent Required            |                    |                    | (0)                        | T - Q0 <del>1</del>                       |               | (cslc)                                                               |          | erable N                                                                         |            |             |                                                                                                        | cahydrate            |
| Paelaney@plac                                                                                                       |                                |                         |                    |                    |                            | ce, 25                                    |               | ont Cr<br>SM35                                                       |          | GCOA                                                                             |            | SJ.         | Vater<br>⊤∧                                                                                            |                      |
| Project Name: Wastewater Discharge - Nederland, CO                                                                  | Project #:<br>28022821         |                         |                    | ,,,                | The same of the same of    | luctan                                    |               | Trivale<br>le and<br>c)                                              |          | A IstoT                                                                          |            | ənistn      | L - EDA Z - other (specify)                                                                            | cify)                |
| Site:<br>First half of the month event + quarterly LL Hg                                                            | SSOW#:                         |                         |                    |                    |                            | puo 3                                     |               | olved<br>Sulfid                                                      | -        | - 1.24                                                                           |            | oo to       | Other:                                                                                                 |                      |
| Some of the different of the second                                                                                 | ote Colomb                     | σ                       |                    |                    | ield Filtered<br>MSM myèrè | fioeq2 - 8013                             | 500_CR_B - To | 500_CR_B - Diss<br>otentially Diss<br>M4500_S2_D -<br>lydrogen Sulfi | 91 wo    | 0.005 - 7 0.005<br>1 0.005   200.00   2<br>1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 |            | otal Number | Snecial Inefructions/Note:                                                                             |                      |
| Sample Identification                                                                                               | ) dample Date                  | +                       | Preservation Code: | 3                  |                            | ZZ                                        | E Z           | 1 8                                                                  |          |                                                                                  |            | ١X          |                                                                                                        |                      |
| 1.00 J. 1.00                                                                                                        | 415/263                        | ر<br>ک                  | 6)                 | 1                  | 1 2                        | >                                         | 7             | ×                                                                    |          | ~                                                                                |            |             | *First half of the month potentially                                                                   | y dissolved          |
| イン・アン                                                                                                               | 132 [6]                        | <u>درم</u>              | 3                  |                    |                            | -                                         | <             | -                                                                    |          |                                                                                  |            |             | metals permit list = 200.8 (As, Cd, Cr, Cu,<br>Pb, Mn, Ni, Se, Ag, Zn)                                 | ,<br>,<br>,          |
| of 22                                                                                                               |                                |                         |                    |                    |                            |                                           |               |                                                                      |          |                                                                                  |            |             | *First half of the month total recoverable metals permit list = 200.7 (Fe), 200.8 (As.                 | verable<br>00.8 (As. |
|                                                                                                                     |                                |                         |                    |                    |                            |                                           | ļ             |                                                                      |          |                                                                                  |            |             | Cd, Cr, Cu, Pb, Zn), and 245.1 (F                                                                      | Hg)                  |
|                                                                                                                     |                                |                         |                    |                    | _                          |                                           |               |                                                                      |          |                                                                                  |            |             | 2.ナニヤウ                                                                                                 |                      |
|                                                                                                                     |                                |                         |                    |                    |                            |                                           |               |                                                                      |          |                                                                                  |            |             | temp=40C                                                                                               |                      |
|                                                                                                                     |                                |                         |                    |                    |                            |                                           |               |                                                                      |          |                                                                                  |            |             |                                                                                                        |                      |
|                                                                                                                     |                                |                         |                    |                    |                            |                                           |               |                                                                      |          |                                                                                  |            |             |                                                                                                        |                      |
| 280-16:1049 Chain of Custody                                                                                        |                                |                         |                    |                    |                            |                                           |               |                                                                      |          |                                                                                  |            |             |                                                                                                        |                      |
|                                                                                                                     |                                |                         |                    |                    | _                          |                                           |               |                                                                      |          |                                                                                  | -          |             |                                                                                                        |                      |
|                                                                                                                     |                                |                         |                    |                    | Samp                       | le Dispo                                  | sal (A)       | ee may b                                                             | e assess | ed if sa                                                                         | mples ar   | e retain    | Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month)                   |                      |
| V, Other (specify)                                                                                                  | TOISOT B CITATIONI             |                         | nadiological       |                    | Specia                     | al Instructions/QC                        | tions/QC      | Special Instructions/QC Requirements                                 | nents:   | Disposal by Lab<br>ents:                                                         |            | 3           | NOTES INCIDENT                                                                                         |                      |
| Empty Kit Relinquished by:                                                                                          |                                | Date:                   |                    |                    | Time:                      |                                           |               |                                                                      | ٦        | Method of Shipment:                                                              | Shipment:  |             |                                                                                                        |                      |
| Religioushed by: Al Run                                                                                             | Date/Time: /2                  | 2 10:5                  | 17:35pm            | Сотрапу            | - Re                       | Received by:                              | 13X           | 3                                                                    | 1 (      |                                                                                  | Date/Time: | 12          | 1235 Company                                                                                           | V30                  |
| Relinquished by:                                                                                                    |                                |                         | 0                  | Company            | Re                         | Received by:                              |               | Orth :                                                               |          |                                                                                  | A          | 123         | (130 Formany)                                                                                          | 7                    |
| 1                                                                                                                   | Date/Time:                     |                         | υ                  | Сотрапу            | &                          | Received by:                              | 5             |                                                                      | Y)       | 15                                                                               | Date/Time; |             | Company Company                                                                                        |                      |
| Custody Seals Intact: Custody Seal No.:  △ Yes △ No                                                                 |                                | )<br>i                  |                    |                    | ပိ                         | oler Tempe                                | rature(s)     | Cooler Temperature(s) °C and Other Remarks:                          | Remarks: | = 1                                                                              |            |             |                                                                                                        |                      |
|                                                                                                                     |                                |                         |                    |                    | 1                          |                                           |               | 1                                                                    | 1        | -                                                                                |            |             | Ver: 01/16/2019                                                                                        | 910                  |

1631E/1631E\_Prep

Sample Matrix
Type (wwwater, Senotid, C=Comp, Senotid, G=grab) BIT-TISSUE, APARI) II

Sample Time

Sample Date

Preservation Code:

Perform MS/MSD (Yes or No) Field Filtered Sample (Yes or No)

Project #: 28022821 SSOW#:

# OM

850-474-1001(Tel) 850-478-2671(Fax)

State, Zip: FL, 32514 Pensacola

Project Name: Wastewater Discharge - Nederland, CO

×

Water

Mountain 10:15

4/15/22

Special Instructions/Note:

J

N - None
O - Ashaoo
P - Na2O4S
P - Na2O4S
Q - Na2SO3
R - Na2SO3
S - H2SO4
I - TSP Dodecahydrate
U - Acetone
U - Acetone
W - PH 4-5
Z - other (specify)

I - Ice J - DI Water K - EDTA L - EDA

A - HCL
B - NaOH
C - Zn Acetate
C - Nitric Acid
E - NaHSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid

280-161049-1 Preservation Codes:

Due Date Requested: 5/1/2022 TAT Requested (days):

Phone

Client Information (Sub Contract Lab)

Client Contact: Shipping/Receiving

Company: Eurofins Environment Testing Southeast,

Address. 3355 McLemore Drive,

Arvada, CO 80002 Phone: 303-736-0100 Fax: 303-431-7171

**Eurotins Denver** 

4955 Yarrow Street

COC No: 280-610861.1 Page: Page 1 of 1

13 14

| 1 2 3 6 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Note: Since laboratory accreditations are subject to change, Eurofins TestAmerica places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently restAmerica alterition in the State of Origin listed above for analysis/lests/matrix being analyzed, the samples must be shipped back to the Eurofins TestAmerica alterition in an intercept accreditation structure are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica.  Possible Hazard Intentification | ples are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Spe                        | Time:      | O Company Received Ski: Company Old Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Company Received by: Date/fine: Company | Company Received by: Company Company | Cooler Temperature(s) °C and Other Remarks: 5-4 for 7M // |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------|-----------------------------------------------------------|
| Note: Since laboratory accreditations are subject to change, Eurofins TestAmerica places the ownership of method, an maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be TestAmerica attention inmediately. If all requested accreditations are current to date, return the signed Chain of Custo Unconfirmed  Deliverable Requested T, II, III, IV, Other (specify)  Frimary Deliverable Rank: 2  Empty Kit Relinquished by:  Relinquished by:  Relinquished by:  Custody Seals Intact: Custody Seal No.:  A Yes A No  Custody Seals Intact: Custody Seal No.: | Note: Since laboratory accreditations are subject to change, Eurofins TestAmerica places the ownership maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the san TestAmerica attention immediately. If all requested accreditations are current to date, return the signed Possible Hazard Identification                                                                                                                                                                                                                                                                                                | Unconfirmed Dalisace in the control of the control | , III, IV, Other (specify) | i <u>.</u> | The state of the s |                                         |                                      | Oustody seals intact: Custody Seal No.:  A Yes A No       |

Sample Identification - Client ID (Lab ID) OUTFALL-001 (280-161049-1) Client: GS Mining Company LLC Job Number: 280-161049-1

Login Number: 161049 List Source: Eurofins Denver

List Number: 1

Creator: Roehsner, Karen P

| Cleator. Nochisher, Narch P                                                                                |        |         |
|------------------------------------------------------------------------------------------------------------|--------|---------|
| Question                                                                                                   | Answer | Comment |
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td> | True   |         |
| The cooler's custody seal, if present, is intact.                                                          | True   |         |
| Sample custody seals, if present, are intact.                                                              | True   |         |
| The cooler or samples do not appear to have been compromised or tampered with.                             | True   |         |
| Samples were received on ice.                                                                              | True   |         |
| Cooler Temperature is acceptable.                                                                          | True   |         |
| Cooler Temperature is recorded.                                                                            | True   |         |
| COC is present.                                                                                            | True   |         |
| COC is filled out in ink and legible.                                                                      | True   |         |
| COC is filled out with all pertinent information.                                                          | True   |         |
| Is the Field Sampler's name present on COC?                                                                | True   |         |
| There are no discrepancies between the containers received and the COC.                                    | True   |         |
| Samples are received within Holding Time (excluding tests with immediate HTs)                              | True   |         |
| Sample containers have legible labels.                                                                     | True   |         |
| Containers are not broken or leaking.                                                                      | True   |         |
| Sample collection date/times are provided.                                                                 | True   |         |
| Appropriate sample containers are used.                                                                    | True   |         |
| Sample bottles are completely filled.                                                                      | True   |         |
| Sample Preservation Verified.                                                                              | N/A    |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                           | True   |         |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                            | N/A    |         |
| Multiphasic samples are not present.                                                                       | True   |         |
| Samples do not require splitting or compositing.                                                           | True   |         |
| Residual Chlorine Checked.                                                                                 | N/A    |         |

Client: GS Mining Company LLC

Job Number: 280-161049-1

Login Number: 161049

List Source: Eurofins Pensacola

List Number: 2 List Creation: 04/19/22 12:37 PM

| Creator: Perez, Trina M                                                                                   |        |             |
|-----------------------------------------------------------------------------------------------------------|--------|-------------|
| Question                                                                                                  | Answer | Comment     |
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> | N/A    |             |
| The cooler's custody seal, if present, is intact.                                                         | True   |             |
| Sample custody seals, if present, are intact.                                                             | N/A    |             |
| The cooler or samples do not appear to have been compromised or tampered with.                            | True   |             |
| Samples were received on ice.                                                                             | True   |             |
| Cooler Temperature is acceptable.                                                                         | True   |             |
| Cooler Temperature is recorded.                                                                           | True   | 5.0°C IR-10 |
| COC is present.                                                                                           | True   |             |
| COC is filled out in ink and legible.                                                                     | True   |             |
| COC is filled out with all pertinent information.                                                         | True   |             |
| Is the Field Sampler's name present on COC?                                                               | True   |             |
| There are no discrepancies between the containers received and the COC.                                   | True   |             |
| Samples are received within Holding Time (excluding tests with immediate HTs)                             | True   |             |
| Sample containers have legible labels.                                                                    | True   |             |
| Containers are not broken or leaking.                                                                     | True   |             |
| Sample collection date/times are provided.                                                                | True   |             |
| Appropriate sample containers are used.                                                                   | True   |             |
| Sample bottles are completely filled.                                                                     | True   |             |
| Sample Preservation Verified.                                                                             | N/A    |             |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                          | True   |             |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                           | N/A    |             |
| Multiphasic samples are not present.                                                                      | True   |             |
| Samples do not require splitting or compositing.                                                          | True   |             |
| Residual Chlorine Checked.                                                                                | N/A    |             |





July 12, 2022

Permits and Enforcement Section Water Quality Control Division CPDHE 4300 Cherry Creek Dr. South Denver, CO 80246-1530

Subject: Discharge Monitoring Report for June 2022 Cross Gold Mine C00032751

### To whom it may concern,

During the month of June 2022 there were no exceedances at Outfall 001. This includes the test results for low-level mercury taken during the  $2^{nd}$  quarter and the  $2^{nd}$  quarter WET test taken 6/13/2022 - 6/15/2022. Every sampling event passed without issue.

Please contact me with any questions.

Sincerely,

Patrick M. Delaney

**Environmental Manager** 

Black Fox Mining LLC

1508 Ridge Road, Nederland, CO 80466

Itale Doly

Phone 315-414-6986

www.blackfoxmining.com | pdelaney@blackfoxmining.com

### **DMR Copy of Record**

| Pormit |  |  |
|--------|--|--|

Permit #: CO0032751

Permittee: Grand Island Resources LLC

Permittee Address: 12567 W Cedar Dr

Lakewood, CO 80228

Facility Location:

Facility:

CROSS AND CARIBOU MINES
CROSS AND CARIBOU MINES

BOULDER COUNTY, CO 80466

Permitted Feature:

001 External Outfall

No

Discharge:

001-X CHRONIC WET TESTING FOR 001A

Report Dates & Status

Major:

Monitoring Period: From 04/01/22 to 06/30/22 DMR Due Date: 07/28/22 Status: NetDMR Validated

**Considerations for Form Completion** 

See I.B.3 for details of test procedure. Report NOEC using test code "S". Report IC25 using test code "P". Report highest number between "P" and "S" at "T" for each parameter. IWC=73% (1st qtr), 52%(2nd/4th qtr) and 53% (3rd qtr).

**Principal Executive Officer** 

First Name: Title: Telephone:

Last Name:

No Data Indicator (NODI)

Form NODI:

| Form N | JDI:                                             |                     |          |             |            |                     |                |                 |                  |                                       |                    |                        |                 |
|--------|--------------------------------------------------|---------------------|----------|-------------|------------|---------------------|----------------|-----------------|------------------|---------------------------------------|--------------------|------------------------|-----------------|
|        | Parameter                                        | Monitoring Location | Season # | Param. NODI |            |                     | ty or Loading  |                 |                  | Quality or Concentration              | # of               | Ex. Frequency of Analy | sis Sample Type |
| Code   | Name                                             |                     |          |             |            | Qualifier 1 Value 1 | Qualifier 2 Va | lue 2 Units Qua | lifier 1 Value 1 | Qualifier 2 Value 2 Qualifier 3 Value | 3 Units            |                        |                 |
|        |                                                  |                     |          |             | Sample     |                     |                | >               | 100.0            |                                       | 2G - tox chronic   | 01/90 - Quarterly      | G3 - GRAB-3     |
| TKP3B  | Static Renewal 7 Day Chronic Ceriodaphnia dubia  | P - See Comments    | 0        |             | Permit Req |                     |                |                 | Req Mon SINGSAMF |                                       | 2G - tox chronic 0 | 01/90 - Quarterly      | G3 - GRAB-3     |
|        | , ,                                              |                     |          |             | Value NOD  |                     |                |                 |                  |                                       |                    |                        |                 |
|        |                                                  |                     |          |             | Sample     |                     |                | =               | 100.0            |                                       | 2G - tox chronic   | 01/90 - Quarterly      | G3 - GRAB-3     |
| TKP3B  | Static Renewal 7 Day Chronic Ceriodaphnia dubia  | S - See Comments    | 0        |             | Permit Req |                     |                |                 | Req Mon MN VALUE |                                       | 2G - tox chronic 0 | 01/90 - Quarterly      | G3 - GRAB-3     |
|        | .,                                               |                     |          |             | Value NOD  |                     |                |                 |                  |                                       |                    |                        |                 |
|        |                                                  |                     |          |             | Sample     |                     |                | >               | 100.0            |                                       | 2G - tox chronic   | 01/90 - Quarterly      | G3 - GRAB-3     |
| TKP3B  | Static Renewal 7 Day Chronic Ceriodaphnia dubia  | T - See Comments    | 2        |             | Permit Req |                     |                | >=              | 52.0 MN VALUE    |                                       | 2G - tox chronic 0 | 01/90 - Quarterly      | G3 - GRAB-3     |
|        |                                                  |                     | _        |             | Value NOD  |                     |                |                 |                  |                                       |                    |                        |                 |
|        |                                                  |                     |          |             | Sample     |                     |                | >               | 100.0            |                                       | 2G - tox chronic   | 01/90 - Quarterly      | G3 - GRAB-3     |
| TKP6C  | Static Renewal 7 Day Chronic Pimephales promelas | P - See Comments    | 0        |             | Permit Req |                     |                |                 | Req Mon SINGSAMF |                                       | 2G - tox chronic 0 | 01/90 - Quarterly      | G3 - GRAB-3     |
| 55     | Cana tonoria i Day Cinonio i inoprimo pionicia   |                     |          |             | Value NOD  | 1                   |                |                 |                  |                                       |                    |                        |                 |
|        |                                                  |                     |          |             | Sample     |                     |                | =               | 100.0            |                                       | 2G - tox chronic   | 01/90 - Quarterly      | G3 - GRAB-3     |
| TKP6C  | Static Renewal 7 Day Chronic Pimephales promelas | S - See Comments    | 0        |             | Permit Req |                     |                |                 | Req Mon MN VALUE |                                       | 2G - tox chronic 0 | 01/90 - Quarterly      | G3 - GRAB-3     |
|        | .,                                               |                     |          |             | Value NOD  |                     |                |                 |                  |                                       |                    |                        |                 |
|        |                                                  |                     |          |             | Sample     |                     |                | >               | 100.0            |                                       | 2G - tox chronic   | 01/90 - Quarterly      | G3 - GRAB-3     |
| TKP6C  | Static Renewal 7 Day Chronic Pimephales promelas | T - See Comments    | 2        |             | Permit Req |                     |                | >=              | 52.0 MN VALUE    |                                       | 2G - tox chronic 0 | 01/90 - Quarterly      | G3 - GRAB-3     |
| 30     | pionida                                          | 200 20              | _        |             | Value NOD  |                     |                |                 |                  |                                       |                    |                        |                 |

**Submission Note** 

If a parameter row does not contain any values for the Sample nor Effluent Trading, then none of the following fields will be submitted for that row: Units, Number of Excursions, Frequency of Analysis, and Sample Type.

Edit Check Errors

No errors.

**Comments** 

Attachments

| Name                                     | Туре | Size      |
|------------------------------------------|------|-----------|
| 2022_2ndQuarter_WET_Test_GIR.pdf         | pdf  | 8539792.0 |
| 2022_06_CrossCaribouMine_CoverLetter.pdf | pdf  | 192807.0  |

Report Last Saved By

Grand Island Resources LLC

User: pdelaney@alexcoresource.com

Name: Patrick Delaney

E-Mail: pdelaney@blackfoxmining.com

Date/Time: 2022-07-12 00:35 (Time Zone: -06:00)

Report Last Signed By

User: pdelaney@alexcoresource.com

Name: Patrick Delaney

E-Mail: pdelaney@blackfoxmining.com

Date/Time: 2022-07-12 00:36 (Time Zone: -06:00)



June 27, 2022

Patrick Delaney Grand Island Resources, LLC 4415 Caribou Road Nederland, CO 80466

Dear Patrick:

Enclosed is the report for chronic biomonitoring tests performed for Grand Island Resources, LLC on effluent from the Cross and Caribou Mines 001A outfall. There was no statistically significant toxicity to either test species at any effluent concentration. The effluent passes WET (Whole Effluent Toxicity) testing requirements for this sampling period.

If you have any questions or concerns, please do not hesitate to contact me at (303) 661-9324.

Best regards,

Haley West

Laboratory Supervisor Enclosure(s): Invoice

Report

Hally West



500 S Arthur Ave. Suite 450 Louisville, CO 80027-3065 (303) 661-9324 Phone (303) 661-9325 Fax **Invoice** 

Invoice Number: 422292.B Invoice Date: June 27, 2022

| TYT | * |      | 70       | ž  |
|-----|---|------|----------|----|
| BIL |   | 9.5% | $\Gamma$ | ٠. |
| DIL |   |      | $\cdot$  | ٠. |

**Grand Island Resources, LLC** P.O. Box 3395 Nederland, CO 80466

| Customer Contact | Customer PO# | Terms                | Customer ID                    |
|------------------|--------------|----------------------|--------------------------------|
| Patrick Delaney  |              | Payable Upon Receipt | Grand Island<br>Resources, LLC |

| QTY | Description                                                                                                                                   | Unit Price | Extended Price |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|
| 1   | Chronic biomonitoring tests conducted on effluent from the Cross and Caribou mines 001A discharge using Ceriodaphnia dubia and fathead minnow | \$2,240.00 | \$2,240.00     |
|     |                                                                                                                                               |            |                |

**Total:** \$2,240.00

All invoices are due and payable upon receipt.

Outstanding balances over 30-days are subject to a finance charge of 1.5% per month.

### REPORT OF CHRONIC BIOMONITORING TESTS CONDUCTED FOR GRAND ISLAND RESOURCES, LLC ON EFFLUENT FROM THE CROSS AND CARIBOU MINES 001A OUTFALL

### Prepared for:

Patrick Delaney
Grand Island Resources, LLC
4415 Caribou Road
Nederland, CO 80466

Prepared by:

Haley West
SeaCrest Group
500 S Arthur Ave. Suite 450
Louisville, Colorado 80027-3065
(303) 661-9324

June 27, 2022

SCG Project No.: 422292.B Project: Quarterly WET

### TABLE OF CONTENTS

| CHRONIC TOXICITY TEST SUMMARY                                                |             |
|------------------------------------------------------------------------------|-------------|
| ABSTRACT WITH RESULTS                                                        | 4           |
| INTRODUCTION                                                                 | 5           |
| MATERIALS AND METHODS                                                        | 5           |
| SAMPLE COLLECTION                                                            | 5<br>5<br>6 |
| RESULTS                                                                      | 7           |
| CERIODAPHNIA DUBIA TEST RESULTSFATHEAD MINNOW TEST RESULTSTEST ACCEPTABILITY | 8<br>8      |
| DISCUSSION                                                                   | 9           |
| REFERENCES                                                                   | 9           |
| APPENDIX 1 – CHAIN OF CUSTODY WITH SAMPLE RECEIPT FORMS                      |             |
| APPENDIX 2 – DATA SHEETS FOR THE CERIODAPHNIA DUBIA TEST                     | 17          |
| WET TEST REPORT FORM - CHRONIC                                               | 18          |
| APPENDIX 3 – DATA SHEETS FOR THE FATHEAD MINNOW TEST                         | 25          |
| WET TEST REPORT FORM - CHRONIC                                               | 26          |
| APPENDIX 4 – QA/QC AND REFERENCE TOXICANT TEST CHARTS                        | 32          |
|                                                                              |             |
| LIST OF TABLES                                                               |             |
| TABLE 1: STATISTICAL METHODS USED IN TESTING                                 | 7           |
| TABLE 2: SUMMARY OF CERIODAPHNIA DUBIA TEST RESULTS                          | 7           |
| TABLE 3: SUMMARY OF FATHEAD MINNOW TEST RESULTS                              | 8           |
| TABLE 4: PMSD FOR CHRONIC TEST PARAMETERS                                    | 8           |

CO-0032751

SCG Project No.: 422292.B Project: Quarterly WET

### **Chronic Toxicity Test Summary**

|                       | 7-day static renewal using Ceriodaphnia dubia                   |
|-----------------------|-----------------------------------------------------------------|
| Test:                 | 7-day static renewal using fathead minnow (Pimephales promelas) |
| Client:               | Grand Island Resources, LLC                                     |
| T D                   | G : 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1                       |
| Test Procedure        | Ceriodaphnia dubia: EPA/821/R-02-013. Method 1002.0 (2002)      |
| Followed:             | fathead minnow: EPA/821/R-02-013. Method 1000.0 (2002)          |
|                       |                                                                 |
| Sample Number:        | 422292.B                                                        |
|                       |                                                                 |
| Dilution Water:       | moderately hard laboratory reconstituted water                  |
|                       |                                                                 |
| Test Organism Source: | SeaCrest Group                                                  |
|                       | .50                                                             |
| Reference Toxicant:   | Sodium Chloride                                                 |

| Sample     | Time of<br>Collection |            |      | Date of Receipt |  |
|------------|-----------------------|------------|------|-----------------|--|
| Effluent 1 | 1500                  | 06-13-2022 | 1653 | 06-13-2022      |  |
| Effluent 2 | 1500                  | 06-14-2022 | 1637 | 06-14-2022      |  |
| Effluent 3 | 1400                  | 06-15-2022 | 1605 | 06-15-2022      |  |

|                      | Ceriodaphnia dubia | fathead minnow |
|----------------------|--------------------|----------------|
| Test Initiation Time | 1130               | 1350           |
| Test Initiation Date | 06-14-2022         | 06-14-2022     |
| Test Completion Time | 1230               | 1330           |
| Test Completion Date | 06-20-2022         | 06-21-2022     |

CO-0032751

SCG Project No.: 422292.B Project: Quarterly WET

### **Abstract with Results**

| Test Concentrations:               | Control (0%), 13%, 26%, 52%, 76%, 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    | 10 for Ceriodaphnia dubia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Number of Organisms/Concentration: | 10 margin   10 |

Replicates at each Concentration: 10 for *Ceriodaphnia dubia* 4 for fathead minnow

|                                          | Ceriodaphnia dubia              | fathead minnow   |
|------------------------------------------|---------------------------------|------------------|
| Test vessel size/Exposure volume         | 30ml/15ml                       | 500ml/200ml      |
| Sub-lethal NOEL/IC25                     | 100%/>100%                      | 100%/>100%       |
| Pass/Fail Status                         | PASS                            | PASS             |
| Temperature Range (°C)                   | 24.1 - 25.8                     | 24.1 - 25.9      |
| Dissolved Oxygen Range (mg/L)            | 6.7 - 8.2                       | 5.0 - 7.7        |
| pH Range                                 | 7.2 - 8.3                       | 7.7 - 8.3        |
|                                          |                                 |                  |
|                                          | Control<br>( <i>Cerio</i> /FHM) | Effluent Sample  |
| Hardness (mg/L as CaCO <sub>3</sub> )    | 82/86                           | 81/67/88         |
| Alkalinity (mg/L as CaCO <sub>3</sub> )  | 59/62                           | 60/66/70         |
| Total residual chlorine (mg/L)           | < 0.01                          | < 0.01           |
| Total ammonia (mg/L as NH <sub>3</sub> ) | < 0.03                          | <0.03/<0.03/0.04 |

CO-0032751 SCG Project No.: 422292.B Project: Quarterly WET Site: 001A

### INTRODUCTION

Biomonitoring provides an effective means by which the toxicity of discharges from municipal, industrial, and mining operations can be tested. Among the advantages of biomonitoring is the ability to test complex effluents containing a broad range of contaminants. Biomonitoring, when used in conjunction with chemical analyses, can generate data capable of identifying a much wider range of contaminants.

The Colorado Water Quality Control Division requires certain NPDES permittees to perform acute and/or chronic biomonitoring tests. The chronic test measures significant differences in lethality and in reproduction (Ceriodaphnia dubia) or growth (fathead minnow – Pimephales promelas) between control and effluent-exposed organisms.

The present report discusses the results of chronic biomonitoring tests conducted on effluent from the Grand Island Resources, LLC 001A discharge. These tests were conducted in accordance with EPA and State of Colorado procedures in June 2022.

### MATERIALS AND METHODS

### Sample Collection

Two gallons of the effluent were collected on three separate dates as specified in Permit CO-0032751. Samples were delivered chilled to the SeaCrest lab where they were held at 0-6°C. Chain of custody forms showing sample collection and laboratory arrival times are included (Appendix 1).

### Dilution Water

Laboratory reconstituted water was used as both the dilution water source and the control for the tests. Reconstituted water for the Ceriodaphnia dubia test was produced by adding sodium bicarbonate, calcium sulfate, magnesium sulfate, potassium chloride, and sodium selenate to deionized water. Reconstituted water for the fathead minnow test was produced by adding sodium bicarbonate, calcium sulfate, magnesium sulfate, and potassium chloride to deionized water.

### Test Organisms

The biomonitoring test used *Ceriodaphnia dubia*, cultured in the SeaCrest laboratory. The organisms are cultured in brood culture boards from which individual females are monitored for survival and reproduction for periods of up to two weeks. Neonates less than 24-hours old, released from third or subsequent broods of eight or more within an 8-hour period, are collected from the brood chambers and used in tests. The animals are fed daily with a mixture of Yeast, Cereal Leaves, and Trout Chow (YCT), produced in-house. This is supplemented with cultured green algae (Selenastrum capricornutum) provided by Aquatic Biosystems.

Less than one-day-old fathead minnow, cultured in the laboratory, were also used in the test. Adult fish are maintained in 10-gallon aquaria where females deposit their eggs on the under-surface of split PVC pipe sections. The eggs are collected daily and transferred to aerated containers where they hatch after three to four days. The larval fish are fed newly hatched brine shrimp (Artemia sp.) at least twice per day.

SCG Project No.: 422292.B Project: Quarterly WET

In-house organisms are tested monthly in a reference toxicant test using sodium chloride to monitor overall health and test reproducibility (Appendix 4).

### Test Procedures

Upon receipt at the lab, samples were analyzed for alkalinity, ammonia, chlorine, conductivity, dissolved oxygen, hardness, and pH.

### Methods used in chemical analysis

| Alkalinity       | EPA 310.2                        | Hach 8203         | I-2030-85.2            |
|------------------|----------------------------------|-------------------|------------------------|
| Ammonia          | SM4500-NH <sub>3</sub> , C-E1997 | ASTM D1426-08     |                        |
| Chlorine         | SM4500-Cl D                      | Hach 10026        |                        |
| Conductivity     | SM2510                           |                   |                        |
| Dissolved Oxygen | SM4500-O                         | Electrode: G-2001 | Winkler (QC): B-F-2001 |
| Hardness         | SM2340 B or C                    | Hach 8213         |                        |
| pH               | SM4500-H+ B-2000                 |                   |                        |

The test followed procedures in EPA³ and CDPHE⁴ guidelines. Exposure concentrations included control (0%), 13%, 26%, 52%, 76%, and 100% mixtures, diluted with moderately hard laboratory reconstituted water.

Individual *Ceriodaphnia dubia* were placed in 30ml plastic containers containing approximately 15ml of exposure medium. Ten replicates at each concentration were used. The animals were fed daily with the YCT mixture and an equal volume of the green algae *(Selenastrum capricornutum)*. The exposure medium was changed daily in each container and the number of young released overnight were counted and recorded. Young were removed from the containers daily and discarded. Routine measurements were made each day of temperature, dissolved oxygen, and pH before and after the water changes.

Fathead minnow were exposed in 500ml plastic cups to which 250ml of media was replaced daily. Four replicates were used at each concentration. Ten fish, less than 24-hours old, were placed in each cup. The fish were monitored daily for survival and fed live brine shrimp at least twice per day. After seven days, the fish were removed from the cups, euthanized with isopropyl alcohol, and then placed in aluminum pans and dried in an oven for a minimum of six hours at 100°C. The pans were then weighed on a five-place analytical balance to determine the average dry weight of the fish from each replicate.

### Data Analysis

Data from the tests were analyzed on a personal computer using the CETIS program (developed by Tidepool Scientific Software). Statistical tests used in the analyses are shown in Table 1. Test acceptability was determined using control survival and reproduction/growth criteria, concentration-response relationships, and percent minimum significant differences (USEPA 5,6).

CO-0032751 SCG Project No.: 422292.B Site: 001A Project: Quarterly WET

Table 1. Statistical methods used in testing for significant differences in test parameters.

| V                  | ariance                               | Distribution Shapiro-Wilk W Normality Test |                                 |                  |  |
|--------------------|---------------------------------------|--------------------------------------------|---------------------------------|------------------|--|
| Bartlett Equali    | ty of Variance Test                   |                                            |                                 |                  |  |
|                    | Statistical                           | Difference                                 |                                 |                  |  |
| Species            | Survival                              | Growth                                     | Reproduction                    | IC <sub>25</sub> |  |
| Ceriodaphnia dubia | Fisher Exact/Bonferroni-<br>Holm Test | N/A                                        | Steel Many-One<br>Rank Sum Test | ICp              |  |
| fathead minnow     | Steel Many-One Rank<br>Sum Test       | Dunnett Multiple<br>Comparison Test        | N/A                             | ICp              |  |

### RESULTS

### Ceriodaphnia dubia Test Results

Test results for the Ceriodaphnia dubia are summarized in Table 2 and provided on the data sheets located in Appendix 2. Survival was 100% in the 100% effluent and ranged from 90% - 100% in the remaining effluent concentrations. Control survival was 100%. No statistically significant lethality was measured in any effluent concentrations when compared to the control. The NOEL (No Observed Effect Level) for lethality was 100% and the LC<sub>25</sub> (Lethal Concentration 25) for lethality was >100%.

Average number of neonates was 25.3 in the 100% effluent concentration and ranged from 21.6 - 23.9 in the remaining effluent concentrations. Average number of neonates in the control was 21.6 for statistical analyses and test acceptability criteria. No statistically significant differences in the number of neonates were found between the control and any effluent concentrations. The NOEL for reproduction was 100% and the IC<sub>25</sub> (Inhibition Concentration 25) for reproduction was >100%.

Table 2. Summary of Ceriodaphnia dubia test results. An asterisk (\*) denotes a statistically significant difference from the control.

|               | Percent  | Mean     |      |      | Significant Difference |         |
|---------------|----------|----------|------|------|------------------------|---------|
| Concentration | Survival | Neonates | Min. | Max. | Lethality              | Reprod. |
| Control (0%)  | 100      | 21.6     | 17   | 29   |                        |         |
| 13%           | 100      | 23.9     | 16   | 32   |                        |         |
| 26%           | 100      | 23.6     | 17   | 30   |                        |         |
| 52%           | 100      | 23.0     | 16   | 34   |                        |         |
| 76%           | 90       | 21.6     | 0    | 34   |                        |         |
| 100%          | 100      | 25.3     | 20   | 31   |                        |         |

SCG Project No.: 422292.B Project: Quarterly WET

### Fathead Minnow Test Results

Fathead minnow results are summarized in Table 3 and are provided on data sheets in Appendix 3. Survival was 100% in the 100% effluent concentration and was 100% in the remaining effluent concentrations. Control survival was 98%. No statistically significant lethality was measured in any effluent concentration when compared to the control. The NOEL for lethality was 100% and the  $LC_{25}$  for lethality was >100%.

Average weight in the 100% effluent concentration was 0.338mg and ranged from 0.316mg - 0.350mg per individual in the remaining effluent concentrations. Average weight for the control fish was 0.335mg for statistical analyses and test acceptability criteria. No statistically significant differences for growth were measured in any effluent concentrations when compared to the control. The NOEL for growth was 100% and the IC<sub>25</sub> for growth was 100%.

Table 3. Summary of fathead minnow test results. An asterisk (\*) denotes a statistically

significant difference from the control.

|               | Percent  | Average     |       |       | Significant | Difference |
|---------------|----------|-------------|-------|-------|-------------|------------|
| Concentration | Survival | Weight (mg) | Min.  | Max.  | Lethality   | Growth     |
| Control (0%)  | 98       | 0.335       | 0.310 | 0.345 |             |            |
| 13%           | 100      | 0.316       | 0.259 | 0.353 |             |            |
| 26%           | 100      | 0.329       | 0.278 | 0.357 |             |            |
| 52%           | 100      | 0.350       | 0.270 | 0.398 |             |            |
| 76%           | 100      | 0.334       | 0.301 | 0.359 |             |            |
| 100%          | 100      | 0.338       | 0.284 | 0.379 |             |            |

### Test Acceptability

Acceptable control survival (80%) was achieved in both tests. Similarly, *Ceriodaphnia dubia* reproduction (average 15 neonates/organism) and fathead minnow growth (average 0.250mg/test container) in control organisms met required levels. PMSD was within the required limits for an acceptable test (Table 4).

Table 4. PMSD for chronic test parameters.

|                                   | fathead minnow growth   |    | C. dubia reproduction |             |
|-----------------------------------|-------------------------|----|-----------------------|-------------|
|                                   | Lower bound Upper bound |    | Lower bound           | Upper bound |
| PMSD                              | 12                      | 30 | 13                    | 47          |
| (% Minimum ignificant difference) | 20.4                    |    | 26.3                  |             |

SCG Project No.: 422292.B Project: Quarterly WET

### DISCUSSION

A failed test for this discharge occurs when there is an NOEL or IC<sub>25</sub> less than the IWC (Instream Waste Concentration) of 52%. The NOEL represents the highest effluent concentration at which no statistically significant effect is observed. The IC<sub>25</sub> represents an estimate of the effluent concentration that would cause a 25 percent reduction of a non-quantal biological measurement. A violation for this discharge occurs when both the NOEL and the IC<sub>25</sub> are less than the IWC. Since neither test species demonstrated statistically significant differences meeting these criteria, the discharge passes WET testing requirements for this sampling period.

### REFERENCES

- 1. **Hach Chemical Company.** 2008. *Hach's Water Analysis Handbook.* Fifth Edition. Hach Chemical Company, Loveland, Colorado. Digital Medium.
- 2. **APHA/AWWA/WEF.** 1998. Standard Methods for the Examination of Water and Wastewater. 20<sup>th</sup> Edition. American Public Health Association, Washington, D.C.
- 3. **USEPA.** 2002. Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms. EPA-821-R-02-013. 335 pp.
- 4. **CDPHE** (Colorado Department of Public Health and Environment). 1998. Laboratory Guidelines for Conducting Whole Effluent Toxicity Tests. Water Quality Control Division.
- 5. **USEPA.** 2000. Method of Guidance and Recommendations for Whole Effluent Toxicity (WET) Testing (40 CFR Part 136). EPA/821/B-00/004.
- 6. **USEPA**. 2000. Understanding and Accounting for Method Variability in Whole Effluent Toxicity Applications under the National Pollutant Discharge Elimination System Program. EPA/833/R-00/003.

Client: Grand Island Resources, LLC Site: 001A

CO-0032751

SCG Project No.: 422292.B Project: Quarterly WET

Appendix 1 - Chain of Custody with Sample Receipt Forms

500 S. Arthur Avenue, Unit 450 - Louisville, CO 80027 CHAIN OF CUSTODY

Seacrest Group

(303) 661.9324 - FAX (303) 661.9325 34 **Total Volume** Other (List Below) Number of Containers Received By (2) Test Species: Kathead Minnow R Cerio daphnia Daphnia magna Daphnia pulex Other Analysis (List Below) Analysis (Check all applicable) BOD/COD (Circle) Coliform (Total/Fecal/E-Coli) (Circle) Signature Other: Pimephies Promelas Oil and Grease Chromium III/VI (Circle) Date/Time (wol98 tziJ) znoinA Solids (TS/TDS/TSS) (Circle) Relinquished By (2) Metals (List Below) WET: PTI/TIE/TRE (Indicate Below) WET: Accelerated (Indicate Below) WET: Chronic (Indicate Below) Signature Special Instructions/Comments: WET: Acute (Indicate Below) COMP 422292,8# 22/51/3 Lab ID Date/Time Client/Project Name: Grand Island Resources Received By (1) Grab/ Comp 12567 W, Cedar Dr. 'Ste. 250 Address: Lakewood, CO 80228 Sampler: BM & 7:00m Time FAX 6-9 Day 1-2 Day E-Mail: Delaney 6/13/22 **Turnaround Requirements** Date N PP (Analytical Testing Only) Phone #315-414-6986 Relinquished By (1) Standard (10 days) 00-Contact: Northick Sample Location or ID Mail Requested Report Date: P. O./Project Number: CUTTALL 3-5 Day Report By: Signature Fax#

### Sample Receipt Form

Form #: 42 Effective: January 2022

| Project # 422 292.8  Date: 06/322                                                             |         | Sample #:  Initials:                  | SW          | _    |
|-----------------------------------------------------------------------------------------------|---------|---------------------------------------|-------------|------|
| Samples Were:  1. FedEx UPS  Notes:                                                           | Courier | Hand Delivery                         | (circle     | one) |
| 2. Chilled to Ship                                                                            |         | Ambie                                 | ent Chilled |      |
| Cooler Received Broken or Leaking     Notes:                                                  |         | Υ                                     | N           | NA   |
| Sample Received Broken or Leaking     Notes:                                                  |         | Υ                                     | N           |      |
| 5. Received Within 36hr Holding Time Notes:                                                   |         | Y                                     | N           |      |
| 6. Aeration necessary                                                                         |         | Υ                                     | N           |      |
| 7. pH adjustment necessary                                                                    |         | Υ                                     | N           |      |
| 8. Sample Received at Temperature be Notes:                                                   |         | Υ                                     | N           | NA   |
| 9. Description of Sample (Color, Odor, a Effluent: Receiving: N/A Presence of native species: |         | f Particulate Matter<br>いいてなりしゃか<br>Y | r):<br>(N)  |      |

| Lab#   | Temp | D.O.    | pН  | Cond |
|--------|------|---------|-----|------|
| 2.5P5  | 8.8  | 8-0     | 7.4 | 131  |
| C10123 | 8.0  | <u></u> | 1.0 | 17.  |

### **Custody Seals:**

| 1. Present on Outer Package  | Υ | (N)                    |      |
|------------------------------|---|------------------------|------|
| 2. Unbroken on Outer Package | Υ | N                      | (NA) |
| 3. Present on Sample         | Y | $(\mathbf{N})$         |      |
| 4. Unbroken on Sample        | Υ | $\stackrel{\smile}{N}$ | (NA) |

**Custody Documentation (Chain of Custody):** 

1. Present Upon Receipt of Sample



Ν

500 S. Arthur Avenue, Unit 450 - Louisville, CO 80027 **CHAIN OF CUSTODY** 

(303) 661.9324 - FAX (303) 661.9325

SeatrestGroup

Other (List Below) Date/Time Number of Containers Received By (2) Test Species: 🔀 Fathead Minnow 🛚 Cerio daphnia 🔃 Daphnia magna 🔲 Daphnia pulex Other Analysis (List Below) Analysis (Check all applicable) BOD/COD (Circle) Coliform (Total/Fecal/E-Coli) (Circle) Signature Oil and Grease Chromium III/VI (Circle) Other: Pimephles Promelas Date/Time (wol98 tziJ) znoinA Solids (TS/TDS/TSS) (Circle) Relinquished By (2) Metals (List Below) WET: PTI/TIE/TRE (Indicate Below) WET: Accelerated (Indicate Below) WET: Chronic (Indicate Below) Signature Special Instructions/Comments: WET: Acute (Indicate Below) arbirary blackfox 06427 Lab ID Client/Project Name: Grand 15 land Kesources Received By (1) Comp COMP E-Mail: Podelaney & Grab/ Ste. 250 3:00pm Sampler: PM Time 6-9 Day FAX 1-2 Day 12567 W. Cedar Dr. Ste Lakewood, Co 8022 72/41/9 Delaney **Turnaround Requirements** Date N PDF Phone # 315 - 414-6986 (Analytical Testing Only) Address: Lakewood Relinquished By (1) Standard (10 days) contact: Portrick Sample Location or ID 00-FA1-00 Requested Report Date: Mail P. O./Project Number: 3-5 Day Report By: Signature Fax#

48

Total Volume

### Sample Receipt Form

Form #: 42 Effective: January 2022

| Project # 422 292-6  Date: 0 0 1422                            |         | Sample #:       | 2<br>W        |      |
|----------------------------------------------------------------|---------|-----------------|---------------|------|
| Samples Were:  1. FedEx UPS  Notes:                            | Courier | Hand Deliver    | (circle       | one) |
| 2. Chilled to Ship                                             |         | Am              | bient Chilled |      |
| Cooler Received Broken or Leaking     Notes:                   |         | Y               | N             | NA   |
| 4. Sample Received Broken or Leaking Notes:                    |         | Y               | N             |      |
| 5. Received Within 36hr Holding Time Notes:                    |         | Y               | ) <b>N</b>    |      |
| 6. Aeration necessary                                          |         | Υ               | N             |      |
| 7. pH adjustment necessary                                     |         | Υ               | N             |      |
| 8. Sample Received at Temperature be Notes:                    | 2       | Υ               | N             | NA   |
| 9. Description of Sample (Color, Odor, a Effluent: Charles MA) |         | Particulate Mat | ter):         |      |
| Presence of native species:                                    |         | Υ               | (N)           |      |

| Lab#  | Temp | D.O. | рН  | Cond |
|-------|------|------|-----|------|
| 29242 | 8.0% | 8.2  | 7.4 | 130  |
|       |      |      |     |      |

### **Custody Seals:**

| <ol> <li>Present on Outer Package</li> </ol> | Υ | (N) |      |
|----------------------------------------------|---|-----|------|
| 2. Unbroken on Outer Package                 | Υ | N   | NA.  |
| 3. Present on Sample                         | Υ | (N) |      |
| 4. Unbroken on Sample                        | Υ | M   | (NA) |

### Custody Documentation (Chain of Custody):

1. Present Upon Receipt of Sample



Ν

500 S. Arthur Avenue, Unit 450 - Louisville, CO 80027 (303) 661.9324 - FAX (303) 661.9325

| CHAIN OF CUSTODY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| CHAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rocalificas                                |
| Seacrestering Services COURTS OF THE SERVICES | Client/Project Name: Control   A   Control |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Clie                                       |

| i.e.                                     |                       |                          |                             | ners                               |                                  |                                                         | nadmuM<br>oV lstoT                                                           | + ~                   |  |  |     |  | Other (List Below)                                |                            |                 |                        |                                     | Date/Time                  |
|------------------------------------------|-----------------------|--------------------------|-----------------------------|------------------------------------|----------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------|-----------------------|--|--|-----|--|---------------------------------------------------|----------------------------|-----------------|------------------------|-------------------------------------|----------------------------|
| Analysis (Check all applicable)          | (ə                    | (כויכا                   | (lilo2)                     | (Cin<br>(7)<br>(Sircle)<br>(Sal/E- | Below<br>I/VI (C<br>se<br>:al/Fe | JT\ZT<br>J tsiJ)<br>III mu<br>Greas<br>Great<br>In (Tot | Metals (<br>Solids (<br>Anions<br>Chromit<br>Oil and<br>Coliforn<br>Coliforn |                       |  |  |     |  | ☐ Daphnia magna ☐ Daphnia pulex ☐                 | C                          | Fromelas        |                        | Relinquished By (2) Received By (2) | Date/Time Signature        |
|                                          | <b></b>               | (w                       | vola8                       | etsoil                             | onl) o                           | hroni                                                   | WET: P                                                                       | ×                     |  |  |     |  | now Kerio daphnia                                 | ents:                      | inephles        |                        | Relinquis                           | Signature                  |
| Resources                                |                       |                          |                             | E-Mail: Pdelaney@ blackfox         |                                  |                                                         | Grab/ Lab ID (MB UX Omly)                                                    | 2:00pm COMP 4222928#3 |  |  |     |  | Test Species: X Fathead Minnow                    | Special Instructions/Cor   | Other D         | 141 = Williams         | Received By (1)                     | May 6/15/22                |
| Client/Project Name: Grand Island Resour | P. O./Project Number: | contact: Patrick Delaney | Address: Lakewood, CO 80228 | 86                                 | Sampler: B                       | ☐ Mail 🔀 PDF ☐ FAX                                      | Sample Location or ID Date Time                                              | 1-001 6/15/22         |  |  |     |  | Turnaround Requirements (Analytical Testing Only) | Standard (10 days) 6-9 Day | 3-5 Day 1-2 Day | Requested Report Date: | Relinquished By (1)                 | Mozam 4:05pm               |
| Client/Proj                              | P. O./Proje           | Contact: F               | ا<br>Address: ا             | Phone #3                           | Fax #                            | Report By:                                              | Sample                                                                       | DUTTA                 |  |  | ļ , |  |                                                   | Zt.                        |                 | Requested              | 11:                                 | Signature<br>Seconda<br>WW |

### Sample Receipt Form

Form #: 42 Effective: January 2022

| Project #         |                                                                                  | ., B                             | Sample #: 3                          | <u> </u>                                     |      |
|-------------------|----------------------------------------------------------------------------------|----------------------------------|--------------------------------------|----------------------------------------------|------|
| Date:             | 06/522                                                                           |                                  | Initials:                            | <u> </u>                                     |      |
| Samples  1. FedEx |                                                                                  | Courier                          | Hand Delivery                        | (circle                                      | one) |
| 2. Chilled        | I to Ship                                                                        |                                  | Ambi                                 | ent Chille                                   | d    |
| 3. Cooler         | Received Broken or L<br>Notes:                                                   | eaking                           | Υ                                    | $ \begin{pmatrix} \mathbf{N} \end{pmatrix} $ | NA   |
| 4. Sampl          | e Received Broken or I<br>Notes:                                                 | Leaking                          | Y                                    | N                                            |      |
| 5. Receiv         | ved Within 36hr Holding<br>Notes:                                                | g Time                           | Y                                    | N                                            |      |
| 6. Aeratio        | on necessary                                                                     |                                  | Υ                                    | N                                            |      |
| 7. pH adj         | ustment necessary                                                                |                                  | Y                                    | N                                            |      |
| 8. Sample         | e Received at Tempera<br>Notes:                                                  | ature between 0-6°C.<br>Same day | Υ                                    | N                                            | NA   |
| 9. Descrip        | otion of Sample (Color,<br>Effluent:<br>Receiving: ////<br>Presence of native sp |                                  | of Particulate Matte<br>no visable p |                                              |      |

| Lab # | Temp | D.O. | pН   | Cond |
|-------|------|------|------|------|
| 292.B | 9.7  | 7.6  | 8077 | 146  |
|       |      |      |      |      |

| Custody Seals:               |   |                            |      |
|------------------------------|---|----------------------------|------|
| 1. Present on Outer Package  | Y | $\left( \mathbb{N}\right)$ |      |
| 2. Unbroken on Outer Package | Υ | N                          | (NA) |
| 3. Present on Sample         | Υ | (N)                        |      |
| 4. Unbroken on Sample        | Υ | Ν                          | (NA) |

Custody Documentation (Chain of Custody):

1. Present Upon Receipt of Sample



Ν

Client: Grand Island Resources, LLC Site: 001A

CO-0032751

SCG Project No.: 422292.B Project: Quarterly WET

Appendix 2 – Data Sheets for the Ceriodaphnia dubia Test

Accelerated \( \square\)

SCG Project No.: 422292.B Project: Quarterly WET

|  | WE | T | ΓEST | REPORT | FORM - | CHRONIC |
|--|----|---|------|--------|--------|---------|
|--|----|---|------|--------|--------|---------|

Permittee:

Grand Island Resources, LLC

Permit No.:

CO-0032751

**Outfall:** 

001A - IWC: 52%

Test Type:

Routine 🖂

Screen

**Test Species:** 

Ceriodaphnia dubia

| <b>Fest Start Time</b> | <b>Test Start Date</b> | <b>Test End Time</b> | <b>Test End Date</b> |
|------------------------|------------------------|----------------------|----------------------|
| 1130                   | 06-14-2022             | 1230                 | 06-20-2022           |

| Test Results                               | Lethality/TCP3B | Reproduction/TKP3B |
|--------------------------------------------|-----------------|--------------------|
| S code: NOEL                               | 100%            | 100%               |
|                                            | PASS            | PASS               |
| P code: LC <sub>25</sub> /IC <sub>25</sub> | >100%           | >100%              |
|                                            | PASS            | PASS               |
| T code:                                    | >100%           | >100%              |

**Test Summary** 

| Measurements       | Control (0%) | 13%  | 26%  | 52%  | 76%  | 100% |
|--------------------|--------------|------|------|------|------|------|
| Exposed organisms  | 10           | 10   | 10   | 10   | 10   | 10   |
| Survival for day 1 | 10           | 10   | 10   | 10   | 10   | 10   |
| Survival for day 2 | 10           | 10   | 10   | 10   | 10   | 10   |
| Survival for day 3 | 10           | 10   | 10   | 10   | 9    | 10   |
| Survival for day 4 | 10           | 10   | 10   | 10   | 9    | 10   |
| Survival for day 5 | 10           | 10   | 10   | 10   | 9    | 10   |
| Survival for day 6 | 10           | 10   | 10   | 10   | 9    | 10   |
| Mean 3 Brood Total | 21.6         | 23.9 | 23.6 | 23.0 | 21.6 | 25.3 |

Hardness (mg/L) - Receiving Water: N/A Alkalinity (mg/L) – Receiving Water: N/A Effluent: 81/67/88

Recon Water: 82

Chlorine (mg/L) – Effluent: <0.01

Effluent: 60/66/70

Recon Water: 59 pH (initial/final) – Control: 8.3/8.3 100%: 7.6/8.2

Total Ammonia as NH<sub>3</sub> (mg/L) - Effluent: <0.03/<0.03/0.04

Were all Test Conditions in Conformance with Division Guidelines? YES NO

If **NO**, list deviations from test specifications: N/A

Laboratory: SeaCrest Group

Comments:

Analyst's Name: Julie McKenney, Daniela Thornton, Haley West, and Lindsay Rutherford

Haly West Signature

Date JUNE 27, 2022

### Ceriodaphnia Chronic Benchsheet

Form #: 101a Effective: March 2022

### Ceriodaphnia Chronic Benchsheet

Form #: 101a Effective: March 2022

|                  | 0    | 1         | 2         | 3         | 4         | 5         | 6    | 7     | Total | 1             |
|------------------|------|-----------|-----------|-----------|-----------|-----------|------|-------|-------|---------------|
| (4)              | 0    | 0         | 0         | 4         | 0         |           | 15   |       | 30    | ]             |
|                  | 0    | 0         | 0         | 0         | 5         | 9         | 10   |       | 24    |               |
|                  | 0    | 0         | 0         | 0         | 4         | 10        | 10   |       | 24    |               |
|                  | 0    | 0         | 0         | O         | 5         | 7         | 0    |       | 12    |               |
|                  | 0    | 0         | 0         | 4         | 0         | 7         | 14   |       | 25    |               |
| 16               | 0    | 0         | 0         | 0 0       |           |           |      |       | - 0   | $\mathcal{D}$ |
| 14               | 0    | 0         | 0         | 0         | 4         | 8         | il   |       | 23    |               |
| l .              | 0    | 0         | 0         | 5         | 0         | [ [ ]     | 18   |       | 34    | ]             |
|                  | 0    | 0         | 0         | 0         | 4         | 8         | 12   |       | 24    |               |
|                  | 0    | 0         | 0         | 0         | 7         | 0         | 13   |       | 20    |               |
| DO               | 7.8  | 6.9 8.0   | 7.4 7.7   | 7-1 17-8  | 6.7 17.9  | 6.811.8   | 10.8 |       |       | 1             |
| Temp             | 25.3 | 25.1 24.1 | 25.5 24.2 | 25.4 25.3 | 25.6 25.5 | 25.5 75.4 | 25.8 |       | 0110  |               |
| рН               | 7.8  | 7.8 7.6   | 8.1 7.7   | 8.2 7.7   | 7.9 7.4   | 1.9 7.1   | 8.2  |       | 21.6  |               |
| Cond             | 175  | 172       | 160       | 11)       | 178       | 179       |      |       |       |               |
| (5)              | 0    | 0         | 0         | 0         | ч         | 12        | 14   |       | 30    | 1             |
|                  | 0    | 0         | 0         | 0         | ч         | 8         | 8    |       | 20    | 1             |
|                  | 0    | 0         | 0         | Ó         | 4         | 12        | 13   |       | 19    | 29            |
|                  | 0    | 0         | 0         | 0         | 5         | 9         | 11   |       | 25    | 1             |
| 100              | 0    | 0         | 0         | 0         | 0         | 8         | 13   |       | 21    | 1             |
| 100              | 0    | 0         | 0         | 0         | Ч         | 8         | 10   |       | 22    | 1             |
|                  | 0    | 0         | 0         | 0         | 4         |           | 10   |       | 25    | 1             |
|                  | 0    | 0         | 0         | Ц         | 6         | 0         | 16   |       | 26    | 1             |
|                  | 0    | - 0       | 0         | 0         | 4         | 10        | 10   |       | 24    | 1             |
|                  | 0    | 0         | 0         | Ч         | 0         | 12        | 15   |       | 31    | 1             |
| DO               | 8.0  | 6.9 8.2   | 7.9 7.9   | 7.1 80    | 6.7 8.1   | 18-8 8.0  | 6.8  |       |       | 1             |
| Temp             | 25.6 | 25.1 24.1 | 25.5 24.2 | 15.4 25.6 | 25.6 25.5 | 25.5 25.4 | 25.8 |       | 15.3  |               |
| рН               | 7.6  | 7.7 7.4   | 81 1.4    | 8.2 7.6   | 7.9 7.2   | 7.9 17.5  | 8.2  |       | 100   |               |
| Cond             | 131  | 130       | 129       | 129       | 136       | 135       |      |       |       | l             |
| Algae            | A155 | ABS       | A35       | 435       | AB5       | ABS       |      |       |       | 1             |
| YCT              | 2204 | 2204      | 2204      | 2204      | 2204      | 2704      |      |       |       |               |
| H <sub>2</sub> O | 1.1  | 2         | 3         | 1         | 2         | 3         |      |       |       |               |
| Initials         | M    | JC        | 000       | MU        | ЭT        | Hw        | 42   |       |       |               |
|                  | )    | Eff #1    | Eff       |           | Eff       | #3        |      | econ  |       |               |
| Hardness         |      | 81        | 67        | 2         | 8         | 8         |      | 82    |       |               |
| Alkalinity       |      | 60        | le        | 6         | 71        |           |      | 59    | 1     |               |
| Chlorine         |      | 20.01     |           | 0.01      |           | اد.       |      | -0.01 | 1     |               |
| Ammonia          | 10   | 20.03     | 2         | 0.43      | 0         | 04        |      | 60.03 | J     |               |

Exposure Chamber: Total Capacity: 30mL Total Solution Volume: 15ml

Feeding Schedule: Fed daily

Food used: YCT, Algae

Units:

DO: mg/L Temp: °C Hardness: mg/L Alkalinity: mg/L

pH: N/A Cond: µS/cm3

Chlorine: mg/L Ammonia: mg/L

Comments:

and mobile

x:y:z = board #:row:column

|    |    |     |    |     |    |    | ,  |     |    |
|----|----|-----|----|-----|----|----|----|-----|----|
| 1  | 2  | 3   | 4  | 5   | 6  | 7  | 8  | 9   | 10 |
| A8 | BZ | 137 | B8 | 110 | DI | D3 | P5 | DIO | 色? |

Report Date: Test Code/ID: 22 Jun-22 13:18 (p 1 of 1)

D: 422292.cd / 08-7610-9503

| Ceriodaphnia   | a 7-d Surviva | l and Rep | roduction Te | est            |                |                 |          |          |            | Sea         | Crest Grou  |
|----------------|---------------|-----------|--------------|----------------|----------------|-----------------|----------|----------|------------|-------------|-------------|
| Analysis ID:   | 13-1044-38    | 94        | Endpoint:    | 7d Survival Ra | ate            |                 | CETIS    | Version: | CETIS      | v1.9.6      |             |
| Analyzed:      | 22 Jun-22 1   | 3:18      | Analysis:    | STP 2xK Con    | tingency Tab   | les             | Status   | s Level: | 1          |             |             |
| Batch ID:      | 00-9776-74    | 16        | Test Type:   | Reproduction-  | -Survival (7d) |                 | Analys   | st: Lab  | Tech       |             |             |
| Start Date:    | 14 Jun-22     |           | Protocol:    | EPA/821/R-02   | 2-013 (2002)   |                 | Diluer   | nt: Red  | onstituted | Water       |             |
| Ending Date:   | 20 Jun-22     |           | Species:     | Ceriodaphnia   | dubia          |                 | Brine:   | : Not    | Applicable | е           |             |
| Test Length:   | 6d 0h         |           | Taxon:       | Branchiopoda   |                |                 | Sourc    | e: In-F  | louse Cult | ure         | Age:        |
| Sample ID:     | 01-7506-909   | 93        | Code:        | 422292.B       |                |                 | Projec   | et: WE   | T Quarterl | y Complian  | ce Test (2Q |
| Sample Date:   | 13 Jun-22     |           | Material:    | POTW Effluer   | nt             |                 | Sourc    | e: NPI   | DES Perm   | it # (XX999 | 99999)      |
| Receipt Date:  | 13 Jun-22     |           | CAS (PC):    |                |                |                 | Statio   | n: 001   | Α          |             |             |
| Sample Age:    | 24h           |           | Client:      | Grand Island I | Resources      |                 |          |          |            |             |             |
| Data Transfor  | rm            | Alt I     | Нур          |                |                | NOI             | <u>L</u> | LOEL     | TOEL       | TU          |             |
| Untransformed  | d             | C > 7     | Т            |                |                | 100             |          | >100     | n/a        | 1           |             |
| Fisher Exact/  | Bonferroni-l  | Holm Test |              |                |                |                 |          |          |            |             |             |
| Control        | vs Grou       | р         | Test S       | Stat P-Type    | P-Value        | Decision(a:5%   | )        |          |            |             |             |
| Dilution Water | 13            |           | 1.000        | 0 Exact        | 1.0000         | Non-Significant | Effect   |          |            |             |             |
|                | 26            |           | 1.000        | 0 Exact        | 1.0000         | Non-Significant | Effect   |          |            |             |             |
|                | 52            |           | 1.000        | 0 Exact        | 1.0000         | Non-Significant | Effect   |          |            |             |             |
|                | 76            |           | 0.500        | 0 Exact        | 1.0000         | Non-Significant | Effect   |          |            |             |             |
|                |               |           | 1.000        | 0 Exact        | 1.0000         | Non-Significant |          |          |            |             |             |

Prop NR

1

1

1

1

1

0.9

Prop R

0

0

0

0

0

0.1

%Effect

0.0%

0.0%

0.0%

0.0%

10.0%

0.0%

Conc-%

0

13

26

52

76

100

Code

NR

10

10

10

10

9

10

R

0

0

0

0

1

0

NR + R

10

10

10

10

10

10

Report Date: Test Code/ID: 22 Jun-22 13:18 (p 1 of 2) 422292.cd / 08-7610-9503

| Cerioda  | aphnia | 7-d Survival an | d Repro | oduction T | est              |               |               |              |                     | SeaCrest Group    |
|----------|--------|-----------------|---------|------------|------------------|---------------|---------------|--------------|---------------------|-------------------|
| Analysi  | s ID:  | 01-3283-8555    |         | Endpoint:  | 7d Survival Rat  | e             |               | CETIS Vers   | sion: CETISv1.9.6   |                   |
| Analyze  | ed:    | 22 Jun-22 13:18 | 3       | Analysis:  | Linear Interpola | ation (ICPIN) |               | Status Lev   | el: 1               |                   |
| Batch II | D:     | 00-9776-7416    | j       | Test Type: | Reproduction-S   | Survival (7d) |               | Analyst:     | Lab Tech            |                   |
| Start Da | ate:   | 14 Jun-22       | i       | Protocol:  | EPA/821/R-02-    | 013 (2002)    |               | Diluent:     | Reconstituted Water |                   |
| Ending   | Date:  | 20 Jun-22       |         | Species:   | Ceriodaphnia d   | ubia          |               | Brine:       | Not Applicable      |                   |
| Test Le  |        |                 | •       | Taxon:     | Branchiopoda     |               |               | Source:      | In-House Culture    | Age:              |
| Sample   | ID:    | 01-7506-9093    |         | Code:      | 422292.B         |               |               | Project:     | WET Quarterly Com   | pliance Test (2Q) |
| Sample   | Date:  | 13 Jun-22       | ı       | Material:  | POTW Effluent    |               |               | Source:      | NPDES Permit # (XX  | (99999999)        |
|          |        | 13 Jun-22       |         | CAS (PC):  |                  |               |               | Station:     | 001A                |                   |
| Sample   |        |                 |         | Client:    | Grand Island R   | esources      |               |              |                     |                   |
| Linear I | nterpo | lation Options  |         |            |                  |               |               |              |                     |                   |
| X Trans  | form   | Y Transform     | 1 5     | Seed       | Resamples        | Exp 95% CL    | Method        |              |                     |                   |
| Linear   |        | Linear          |         | 1989272    | 1000             | Yes           | Two-Point I   | nterpolation |                     | :4                |
| Point Es | stimat | es              |         |            |                  |               |               |              |                     |                   |
| Level    | %      | 95% LCL         | 95% U   | ICL TU     | 95% LCL          | 95% UCL       |               |              |                     |                   |
| LC5      | 100    | 60              | n/a     | 1          | n/a              | 1.667         |               |              |                     |                   |
| LC10     | >100   | n/a             | n/a     | <1         | n/a              | n/a           |               |              |                     |                   |
| LC15     | >100   | n/a             | n/a     | <1         | n/a              | n/a           |               |              |                     |                   |
| LC20     | >100   | n/a             | n/a     | <1         | n/a              | n/a           |               |              |                     |                   |
| LC25     | >100   | n/a             | n/a     | <1         | n/a              | n/a           |               |              |                     |                   |
| LC40     | >100   | n/a             | n/a     | <1         | n/a              | n/a           |               |              |                     |                   |
| LC50     | >100   | n/a             | n/a     | <1         | n/a              | n/a           |               |              |                     |                   |
| 7d Surv  | ival R | ate Summary     |         |            |                  | Calculated    | l Variate(A/B | )            |                     | sotonic Variate   |

| 7 d Survival Nate Sullillary |      |       |        | Calculated Variate(AD) |        |         |        |         |       |      | ino variato |
|------------------------------|------|-------|--------|------------------------|--------|---------|--------|---------|-------|------|-------------|
| Conc-%                       | Code | Count | Mean   | Min                    | Max    | Std Dev | CV%    | %Effect | A/B   | Mean | %Effect     |
| 0                            | D    | 10    | 1.0000 | 1.0000                 | 1.0000 | 0.0000  | 0.00%  | 0.0%    | 10/10 | 1    | 0.0%        |
| 13                           |      | 10    | 1.0000 | 1.0000                 | 1.0000 | 0.0000  | 0.00%  | 0.0%    | 10/10 | 1    | 0.0%        |
| 26                           |      | 10    | 1.0000 | 1.0000                 | 1.0000 | 0.0000  | 0.00%  | 0.0%    | 10/10 | 1    | 0.0%        |
| 52                           |      | 10    | 1.0000 | 1.0000                 | 1.0000 | 0.0000  | 0.00%  | 0.0%    | 10/10 | 1    | 0.0%        |
| 76                           |      | 10    | 0.9000 | 0.0000                 | 1.0000 | 0.3162  | 35.14% | 10.0%   | 9/10  | 0.95 | 5.0%        |
| 100                          |      | 10    | 1.0000 | 1.0000                 | 1.0000 | 0.0000  | 0.00%  | 0.0%    | 10/10 | 0.95 | 5.0%        |
|                              |      |       |        |                        |        |         |        |         |       |      |             |

Analyst: HW QA: TM

003-715-114-2 CETIS™ v1.9.6.14

Report Date: Test Code/ID: 22 Jun-22 13:18 (p 1 of 1) 422292.cd / 08-7610-9503

| Ceriodaphnia        | a 7-d S | Survival an | d Reprod    | uction To | est  |               |          |        |           |         |          |                  |              | SeaC       | rest Group  |
|---------------------|---------|-------------|-------------|-----------|------|---------------|----------|--------|-----------|---------|----------|------------------|--------------|------------|-------------|
| Analysis ID:        | 13-6    | 607-0525    | En          | dpoint:   | Rep  | oroduction    |          |        |           | CE      | TIS Vers | ion:             | CETISv1      | 1.9.6      |             |
| Analyzed:           | 22 J    | un-22 13:18 | An An       | alysis:   | Nor  | nparametric-  | -Control | l vs T | reatments | Sta     | tus Leve | el:              | 1            |            |             |
| Batch ID:           | 00-9    | 776-7416    | Te          | st Type:  | Rep  | oroduction-S  | urvival  | (7d)   |           | Ana     | alyst:   | Lab <sup>-</sup> | Tech         | 18         |             |
| Start Date:         | 14 Ju   | un-22       | Pr          | otocol:   | EP   | A/821/R-02-   | 013 (20  | 02)    |           | Dile    | uent:    | Reco             | nstituted V  | Nater      |             |
| <b>Ending Date:</b> | 20 Ju   | ın-22       | Sp          | ecies:    | Cer  | iodaphnia d   | ubia     |        |           | Bri     | ne:      | Not A            | Applicable   |            |             |
| Test Length:        | 6d 0    | h           | Та          | xon:      | Bra  | nchiopoda     |          |        |           | Sou     | ırce:    | In-Ho            | ouse Cultu   | re         | Age:        |
| Sample ID:          | 01-7    | 506-9093    | Co          | de:       | 422  | 292.B         |          |        |           | Pro     | ject:    | WET              | Quarterly    | Compliance | e Test (2Q) |
| Sample Date:        | : 13 Ju | ın-22       | Ma          | terial:   | PO   | TW Effluent   |          |        |           | Sou     | ırce:    | NPD              | ES Permit    | # (XX99999 | 9999)       |
| Receipt Date:       | : 13 Ju | ın-22       | CA          | S (PC):   |      |               |          |        |           | Sta     | tion:    | 001A             |              |            |             |
| Sample Age:         | 24h     |             | Cli         | ent:      | Gra  | ind Island Re | esource  | es     |           |         |          |                  |              |            |             |
| Data Transfo        | rm      |             | Alt Hyp     |           |      |               |          |        |           | NOEL    | LOEL     |                  | TOEL         | TU         | PMSD        |
| Untransformed       | d       |             | C > T       |           |      |               |          |        |           | 100     | >100     |                  | n/a          | 1          | 26.26%      |
| Steel Many-O        | ne Ra   | nk Sum Te   | est         |           |      |               |          |        |           |         |          |                  |              |            |             |
| Control             | vs      | Conc-%      |             | Test 9    | Stat | Critical      | Ties     | DF     | P-Type    | P-Value | Decis    | ion(c            | ı:5%)        |            |             |
| Dilution Water      | 1       | 13          |             | 121       |      | 75            | 4        | 18     |           | 0.9924  | Non-S    | Signifi          | cant Effec   | t          |             |
|                     |         | 26          |             | 118.5     | 6    | 75            | 5        | 18     | CDF       | 0.9860  | Non-S    | Signifi          | cant Effec   | t          |             |
|                     |         | 52          |             | 112.5     | [i]  | 75            | 3        | 18     | CDF       | 0.9503  |          | •                | cant Effec   |            |             |
|                     |         | 76          |             | 118       |      | 75            | 3        | 18     | CDF       | 0.9843  | Non-S    | Signifi          | cant Effec   | t          |             |
|                     |         | 100         |             | 133       |      | 75            | 5        | 18     | CDF       | 0.9998  | Non-S    | Signifi          | cant Effec   | t          |             |
| ANOVA Table         | )       |             |             |           |      |               |          |        |           |         |          |                  |              |            |             |
| Source              |         | Sum Squa    | ares        | Mean      | Squ  | ıare          | DF       |        | F Stat    | P-Value | Decis    | ion(c            | 1:5%)        |            |             |
| Between             |         | 102.133     |             | 20.42     | 67   | 583           | 5        |        | 0.6652    | 0.6514  | Non-S    | Signifi          | cant Effec   | t          |             |
| Error               |         | 1658.2      |             | 30.70     | 74   |               | 54       |        | _         |         |          |                  |              |            |             |
| Total               |         | 1760.33     |             |           |      |               | 59       |        |           |         |          |                  |              |            |             |
| ANOVA Assu          | mptio   | ns Tests    |             |           |      |               |          |        |           |         |          |                  |              |            |             |
| Attribute           |         | Test        |             |           |      |               | Test S   | Stat   | Critical  | P-Value | Decis    | ion(c            | ı:1%)        |            |             |
| Variance            |         | Bartlett Eq | uality of V | ariance 1 | Γest |               | 13.52    |        | 15.09     | 0.0189  | Equal    | Varia            | ances        |            |             |
| Distribution        |         | Shapiro-W   | ilk W Norr  | nality Te | st   |               | 0.941    | 7      | 0.9459    | 0.0064  | Non-N    | Norma            | al Distribut | ion        |             |
| Reproduction        | Sum     | mary        |             |           |      |               |          |        |           |         |          |                  |              |            |             |
| Conc-%              |         | Code        | Count       | Mean      | 0    | 95% LCL       | FATAR S  | JCL    |           | Min     | Max      |                  | Std Err      | CV%        | %Effect     |
| 0                   |         | D           | 10          | 21.6      |      | 19.01         | 24.19    |        | 21.5      | 17      | 29       |                  | 1.147        | 16.79%     | 0.00%       |
| 13                  |         |             | 10          | 23.9      |      | 20.75         | 27.05    |        | 23.5      | 16      | 32       |                  | 1.394        | 18.44%     | -10.65%     |
| 26                  |         |             | 10          | 23.6      |      | 20.45         | 26.75    |        | 23        | 17      | 30       |                  | 1.392        | 18.65%     | -9.26%      |
| 52                  |         |             | 10          | 23        |      | 19.26         | 26.74    |        | 22        | 16      | 34       |                  | 1.653        | 22.73%     | -6.48%      |
| 76                  |         |             | 10          | 21.6      |      | 14.79         | 28.41    |        | 24        | 0       | 34       |                  | 3.012        | 44.09%     | 0.00%       |
| 100                 |         |             | 10          | 25.3      |      | 22.6          | 28       |        | 25        | 20      | 31       |                  | 1.193        | 14.91%     | -17.13%     |

Report Date:

22 Jun-22 13:18 (p 2 of 2)

| entranta de la companya del companya del companya de la companya d | Test Code/ID: | 422292.cd / 08-7610-9503 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------|
| urvival and Reproduction Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | SeaCrest Group           |

| Ceriodaphnia              | a 7-d Survival and R            | eproduction T          | est                                          |                        |                     | SeaCrest Group     |
|---------------------------|---------------------------------|------------------------|----------------------------------------------|------------------------|---------------------|--------------------|
| Analysis ID:<br>Analyzed: | 08-1391-0818<br>22 Jun-22 13:18 | Endpoint:<br>Analysis: | Reproduction<br>Linear Interpolation (ICPIN) | CETIS Vei<br>Status Le |                     | )                  |
| Batch ID:                 | 00-9776-7416                    | Test Type:             | Reproduction-Survival (7d)                   | Analyst:               | Lab Tech            |                    |
| Start Date:               | 14 Jun-22                       | Protocol:              | EPA/821/R-02-013 (2002)                      | Diluent:               | Reconstituted Water | er                 |
| <b>Ending Date:</b>       | 20 Jun-22                       | Species:               | Ceriodaphnia dubia                           | Brine:                 | Not Applicable      |                    |
| Test Length:              | 6d 0h                           | Taxon:                 | Branchiopoda                                 | Source:                | In-House Culture    | Age:               |
| Sample ID:                | 01-7506-9093                    | Code:                  | 422292.B                                     | Project:               | WET Quarterly Con   | npliance Test (2Q) |
| Sample Date:              | 13 Jun-22                       | Material:              | POTW Effluent                                | Source:                | NPDES Permit # (X   | (X99999999)        |
| Receipt Date:             | 13 Jun-22                       | CAS (PC):              |                                              | Station:               | 001A                |                    |
| Sample Age:               | 24h                             | Client:                | Grand Island Resources                       |                        |                     |                    |

**Linear Interpolation Options** 

| X Transform    | Y Transform | Seed     | Resamples | Exp 95% CL | Method                  |  |
|----------------|-------------|----------|-----------|------------|-------------------------|--|
| Linear         | Linear      | 1613151  | 1000      | Yes        | Two-Point Interpolation |  |
| Point Estimate | s           |          |           |            |                         |  |
| Level %        | 95% LCL 95  | % UCL TU | 95% LCL   | 95% UCL    |                         |  |

| Level | %    | 95% LCL | 95% UCL | TU | 95% LCL | 95% UCL |
|-------|------|---------|---------|----|---------|---------|
| IC5   | >100 | n/a     | n/a     | <1 | n/a     | n/a     |
| IC10  | >100 | n/a     | n/a     | <1 | n/a     | n/a     |
| IC15  | >100 | n/a     | n/a     | <1 | n/a     | n/a     |
| IC20  | >100 | n/a     | n/a     | <1 | n/a     | n/a     |
| IC25  | >100 | n/a     | n/a     | <1 | n/a     | n/a     |
| IC40  | >100 | n/a     | n/a     | <1 | n/a     | n/a     |
| IC50  | >100 | n/a     | n/a     | <1 | n/a     | n/a     |

| Reproduction Summary |      |       | 1400 |     |     | Isotonic Variate |        |         |       |         |
|----------------------|------|-------|------|-----|-----|------------------|--------|---------|-------|---------|
| Conc-%               | Code | Count | Mean | Min | Max | Std Dev          | CV%    | %Effect | Mean  | %Effect |
| 0                    | D    | 10    | 21.6 | 17  | 29  | 3.627            | 16.79% | 0.0%    | 23.17 | 0.0%    |
| 13                   |      | 10    | 23.9 | 16  | 32  | 4.408            | 18.44% | -10.65% | 23.17 | 0.0%    |
| 26                   |      | 10    | 23.6 | 17  | 30  | 4.402            | 18.65% | -9.26%  | 23.17 | 0.0%    |
| 52                   |      | 10    | 23   | 16  | 34  | 5.228            | 22.73% | -6.48%  | 23.17 | 0.0%    |
| 76                   |      | 10    | 21.6 | 0   | 34  | 9.524            | 44.09% | 0.0%    | 23.17 | 0.0%    |
| 100                  |      | 10    | 25.3 | 20  | 31  | 3.773            | 14.91% | -17.13% | 23.17 | 0.0%    |

Analyst: W QA: M

Client: Grand Island Resources, LLC Site: 001A

CO-0032751

SCG Project No.: 422292.B Project: Quarterly WET

Appendix 3 – Data Sheets for the Fathead Minnow Test

CO-0032751

Accelerated

SCG Project No.: 422292.B Project: Quarterly WET

### WET TEST REPORT FORM - CHRONIC

Permittee:

Grand Island Resources, LLC

Permit No.:

CO-0032751

**Outfall:** 

001A - IWC: 52%

Test Type:

Routine 🖂

Screen

**Test Species:** 

fathead minnow

| Test Start Time | Test Start Date | <b>Test End Time</b> | <b>Test End Date</b> |
|-----------------|-----------------|----------------------|----------------------|
| 1350            | 06-14-2022      | 1330                 | 06-21-2022           |

| Test Results                               | Lethality/TCP6C | Growth/TKP6C |
|--------------------------------------------|-----------------|--------------|
| S code: NOEL                               | 100%            | 100%         |
|                                            | PASS            | PASS         |
| P code: LC <sub>25</sub> /IC <sub>25</sub> | >100%           | >100%        |
|                                            | PASS            | PASS         |
| T code:                                    | >100%           | >100%        |

**Test Summary** 

| Measurements       | Control<br>(0%) | 13%   | 26%   | 52%   | 76%   | 100%  |
|--------------------|-----------------|-------|-------|-------|-------|-------|
| Exposed organisms  | 40              | 40    | 40    | 40    | 40    | 40    |
| Survival for day 1 | 40              | 40    | 40    | 40    | 40    | 40    |
| Survival for day 2 | 39              | 40    | 40    | 40    | 40    | 40    |
| Survival for day 3 | 39              | 40    | 40    | 40    | 40    | 40    |
| Survival for day 4 | 39              | 40    | 40    | 40    | 40    | 40    |
| Survival for day 5 | 39              | 40    | 40    | 40    | 40    | 40    |
| Survival for day 6 | 39              | 40    | 40    | 40    | 40    | 40    |
| Survival for day 7 | 39              | 40    | 40    | 40    | 40    | 40    |
| Mean Dry Wt. (mg)  | 0.335           | 0.316 | 0.329 | 0.350 | 0.334 | 0.338 |

Hardness (mg/L) – Receiving Water: N/A Alkalinity (mg/L) – Receiving Water: N/A Effluent: 81/67/88 Effluent: 60/66/70 Recon Water: 86 Recon Water: 62

Chlorine (mg/L) – Effluent: <0.01

pH (initial/final) - Control: 8.3/8.2 100%: 7.9/7.9

Total Ammonia as NH<sub>3</sub> (mg/L) - Effluent: <0.03/<0.03/0.04

Were all Test Conditions in Conformance with Division Guidelines? YES NO

If NO, list deviations from test specifications: N/A

Laboratory: SeaCrest Group

Comments:

Analyst's Name: Shanna Wepman and Catherine McDonald

Signature Hally West Date June 27, 2022

26

SeaCrest Group
Louisville, CO

### Fathead Minnow Chronic Benchsheet

Form #: 103a Effective: March 2022

|                        |                 | Ave wt      |          | 235       |                |          |          | 216       | ,        |         |         | 6329      | )       |          |          | 355       | )        |           |        | 727      |         |          |         | 855 y         | 0.0      |            |    |      |    |    |          |          |                  |                 |                       |                         |                          |               |            |               |           |
|------------------------|-----------------|-------------|----------|-----------|----------------|----------|----------|-----------|----------|---------|---------|-----------|---------|----------|----------|-----------|----------|-----------|--------|----------|---------|----------|---------|---------------|----------|------------|----|------|----|----|----------|----------|------------------|-----------------|-----------------------|-------------------------|--------------------------|---------------|------------|---------------|-----------|
| 6. Ividicii 2022       | 2               | Fish Wt mg  | 0.341    |           | 2              | 0.345    | 0.333    | 6.239     | _        | 115.0   | 1.357   | 812.0     | 0.354   | 6.328    | 487FA    | 0.398     | 0.391    | 0.341     | 0.301  | 0.389    | 6.344   | 125.0    | h82.0   | 6.379         | 715-0    | 175.0      |    |      |    |    |          |          |                  | OL29 *          |                       |                         |                          |               |            |               |           |
|                        | 2011            | Tare        | 1        | 7         |                | 1.15661  | t        | 12622     | +-       | 1.16292 |         |           |         |          | 14 600   | h88h1'1   | (335)    | П         | 13947  | 15270    | 13889   |          | _       | 114468        | 1.(3193  | 17571      |    |      |    |    | 1.16366  |          | · mobile         |                 |                       |                         |                          |               |            |               |           |
| i c                    |                 | Fish & Tare |          | _         | 1,14239        | 1.16006  | 1.15332  | 1887      | 3644     | 1.16609 | 1       | 10621     | 1.17961 | 1.14650  | 02841    | 78251     | 374Z     | 781911    | 84241  | 15629    | 14233   | 1.13649  | 13238   | 84841         | 1.13505  | 17947      |    |      |    |    | 1.16368  | 4 1      | active +         |                 |                       |                         |                          |               |            |               |           |
| )<br>jiii<br>jiii      |                 | # Fis       | #        | #2        | ¥              | #4       | 1.) 5#   | (, 1      | 1. 1     | 1 8#    | 6#      | #10   (   | #11     | #12      | #13      | #14       | #15    . | 1,1 91# ( | #17 /  | #18      | #19     | #50      | #21     | #22           | #23      | #24        | #  | #    | #  | #  | #        | 1        |                  |                 |                       |                         |                          |               |            |               |           |
| 25                     | ditions:        | 2 9         | 01 01    | ř         | 01             | 10 10    | 01 0)    | 01 11     | 01 01    | 10 (0   | 01 01   | 01 01     | 01 01   | 10 10    | 10 10    | 10 10     | 01 01    | 21 91     | 01 01  | 01 01    | 10 10   | 0) 01    | 01 01   | 01 01         | 0) 0)    | 01 01      |    |      |    |    | pretest  |          | Comments:        |                 |                       |                         |                          |               |            |               |           |
| i Swi                  | lŏ              | 4 5         | 0) (1)   | 6         | 9)<br>()       | 0 0      | 0 0      | 0) 0      | 0) 0     | (0)     | 01 01   | 0] (0)    | 0) 0    | (0)      | 10 01    | 10 10     | 0 0      | 10 10     | 0(0)   | 0 0      | 0) (0   | 10 10    | 9] 01   | 10 10         | 0) 01    | (0 16      |    |      |    |    |          |          |                  | Hard: mg/L      | Alk: mg/L             | Chlor: mg/L             | NH <sub>3</sub> : mg/L   |               |            |               |           |
|                        | ₽               | 2 3         | 01 01    | 6         | 10 10          | 01 01    | 10 10 1  | 10 10     | 01 01    | 01 0    | 01 01   | 01 01     | 10 10   | 01 01    | 01 0     | 01 0      | 01 0     | 0) (0)    | 0) 0)  | 01 0     | 10 10   | 0 10     | 0! 0    | 0) 0          | 0) 01    | 10 10      |    |      |    |    |          |          | Units:           | Har             | Ā                     |                         |                          |               |            |               |           |
| Po. (1/4/3)            | Template:       | 1           | 9        |           | 10             | 01       | 01       | 9         | (0)      | 9       | 101     | 10        | 9       | 0        | 0        | 2         | 0 10 10  | (0)       | 0!     | 0)       | 0       | 101      | 10      | 10            | 9        | 10         | 0  | )    |    |    |          |          |                  | DO: mg/L        | Temp: °C              | pH: N/A                 | Cond: µS/cm <sup>3</sup> |               |            |               |           |
| Sample Date: (No.1322) | Ten             | 2 0         | 5.3 10   | 25.9 10   | 8.2 10         | 10       |          | 25.4 10   | 3.2 10   | 10      | 5.3 10  | 24.9 10   | 3.1 10  | 10       | 5.4 10   | 24.10 10  | 8.0 10   | 10        | 5.4 10 | 24.3 10  | 7.9 10  | 10       | 6.4 10  | 24.1 10       | $\dashv$ | 10         | 10 | 10   | 10 | 10 | IW.      |          |                  |                 |                       | Т                       | +                        |               | 1          | <u>m</u>      | Н         |
| v.                     | IN              | 9           |          | 245 2     | 8.3            | <u> </u> | $\vdash$ | 24.8 2    | 8.2 8    | 508282  | 68 6    |           | 8.2     | 3        | 6.7      | 00        | 8.1      | 3         | 6.7 6  | _        | 7.9 -   | 182.7    | -       | 1559 12       | $\neg$   | 8          | -  |      |    | 30 | )   ~    | 210      |                  | 500 mL          | 250 mL                | 50.2 cr                 | 6.5 cr                   | <u>.</u><br>ම | 2x per day | <24hr artemia |           |
| 423017                 | 0: (HO)         |             | 54       |           | 2.8            | 346      | 5.3      |           | 8.2      |         |         | 2.KZ 8    | 5.      | 82       | 57.7     | 7.12      | -<br>80  |           |        |          | ∞i      |          | 52      |               | 8        | 137        |    |      |    |    | MS       | 3        | hamber           |                 |                       |                         |                          | Sched         | , ,        | 7             |           |
| Lab #: 42              | S               | 5           | 6.0 17.0 |           | 2 83           | 5        | 6.0 P    |           | 8.2 8.2  | 305     |         | 7.        | 18      | 862      |          |           | 0.8      | 238       |        |          | 7.77    | 180      |         | 24.3 125.4    |          | 135.2      |    |      |    |    | 35       | 8        | Exposure Chamber |                 | me:                   | ace Area:               | stant):                  | Feeding       |            |               |           |
|                        | Sp              |             | 9 8·9    | _         | 8387           | 3        | 7.0 5.9  | 1.12 1.15 | 878      | 2       | 7.1 5.9 | 24.9 2    | 1.00    | 8        | 7.2 5.8  | 78.1 1.57 | S        | · S       | 7.358  | 25.3 243 | 7.9     |          | 7.5 5.7 | $\neg$        | 3        | a-         |    |      |    |    |          |          |                  | pacity:         | Test Solution Volume: | lest Solution Surface A | Water Depth (constant):  |               | Fed:       | Food Used:    |           |
| 3                      | 3               | 4           | 0.5      | 25.9      | <br>00         | 34       |          | 13.7      | į.       | 318     | 57      | JS: C     | ~<br>%  | 250      | Sissi    | 75.5      | i,       | 23        | 54     | 25425    | Ġ       | 201      | 5.5     | $\rightarrow$ | <u>~</u> | 161.9      |    |      |    |    | S        | 7        |                  | Total Capacity: | Test Sol              | lest Sol                | Water D                  | I             | $\neg$     | 3             |           |
| Site:                  | 22 J.F., J.M.   | 3           | 8.01 C   | 23        | 1.00           | 357      | 7.1      | -         | 20.00    | -       | 473     | 5         | -<br>-  |          | S. B 7 J | 5.5 257   | 7.8.0    | 117       | 77.6   | 25.2 250 | 7.80    | 205      | 577     | 1 25.6        | 27.9     | 143.C      |    |      |    |    | CWJ      | 6,5      | 3 MR             | -               | +                     | 1                       | +                        | +             | $\neg$     | 3>            | N M       |
|                        | : OGZ122        |             |          |           | 30<br>20<br>20 | 7        | 5        | 25.4 23   | ©<br>-   | ```     | 7.0     |           | 8.08    |          | $\neg$   | 2         | 7.9 6.7  |           |        | . 0      | 7.8 8   | -        |         | 24.3 25       | Ó<br>Z   | 7:7        |    |      |    |    |          |          | Rcv 2 Rcv 3      |                 | 1                     |                         | 1                        | 4             | -          | 3,5           | ر<br>السن |
|                        | Test End:       |             | 57 68    | _         | 8.1 8.3        | 35       | - 1      |           | 8.18.1   | 328     |         | -         | 8       | 304      | 1        | -7        | 8.0      | 252       | 5.6    | 2 1.42   | 8.0 7   |          |         |               | -1       | 146        |    |      |    |    | S        |          | Rcv 1            |                 |                       | 1                       | ď                        | 7             |            |               | SW 0      |
| (5) and                | 350             |             | P.0      | 25.0      | 8.5            | 55       | 7.0      | 24.8      | 1)<br>10 | 33      | 7.2     | 24.10     | _<br>00 | 2        | 7.4      | 1.12      | 0<br>0   | 202       | 7.0    | _        | Ω<br>() | 07       |         | 24.0          | 7.0      | 7          |    |      |    |    | W        | ~        | -                | 36              | 20                    | -                       | Ÿ                        | 7             | > (        | 3             | 35        |
|                        | 22              |             | 3        |           | 3 8.2          | -        | 9        | \$        | 2.8.2    | 5       | 一       | 9         | (D)     | +        | 4.07     | 4.42      | $\alpha$ | , ,       | 3 6.0  |          | 900     | 7        | +       | 220           | Ċ        | 144        |    |      | 4  | 4  |          | -        | -                | $\dashv$        |                       | -                       | 0.0T                     | - ;           | > {        |               | NW /      |
| Grand                  | Test Start: 이 ( |             | PO 6.9   | Temp 25.4 | œ              | Cond 352 | 7        | 75.<br>TS | Ö        | 32<br>p | r       | Temp 25.2 | -       | Cond 201 | 00       | emp 25.   |          | Cond 249  |        | an<br>B  |         | Cond 204 | DO 7.5  | 32 du         |          | Cond 142.1 | 0  | Temp | _  | p  | ls CW    | $\dashv$ | 1                |                 | _                     |                         | 02 50                    | O Bu          |            | S             | ls (My    |
| Client:                | Test Sta        | Conc Read   | Q        | ě<br>(    |                | Ű        |          | Z.        | 표<br>>   | Ö       | ۵       | 2)S       |         | Ö        | 의        | ふった       |          | Ú         |        | 2        |         | Ű        |         | S<br>1        |          | Ö          | 8  | ř]   | 핍  | Ö  | Initials | Water #  | 100              | 5               |                       |                         | NH <sub>3</sub> (L)      | reeding       | AIVI       | PM            | Initials  |

Report Date: Test Code/ID: 22 Jun-22 13:06 (p 1 of 3) 422292.fhm / 07-4598-7004

|                |        |             |             |                         |       |                |         |      |                |                |                | 16311036      | 20.2.2002000000000000000000000000000000 | AN CONTROLLE DOOR |
|----------------|--------|-------------|-------------|-------------------------|-------|----------------|---------|------|----------------|----------------|----------------|---------------|-----------------------------------------|-------------------|
| Fathead Minn   | ow 7   | d Larval S  | urvival a   | nd Growt                | h Tes | st             |         |      |                |                |                |               | SeaC                                    | rest Grou         |
| Analysis ID:   | 13-3   | 766-8804    | Е           | ndpoint:                | 7d S  | urvival Rate   | е       |      |                | CET            | IS Version:    | CETISv1       | .9.6                                    |                   |
| Analyzed:      |        | un-22 13:04 |             | nalysis:                |       | parametric-    |         | vs T | reatments      | Stat           | us Level:      | 1             |                                         |                   |
| Batch ID:      | 08-5   | 353-4090    | Т           | est Type:               | Grov  | vth-Surviva    | l (7d)  |      |                | Anal           | yst: Lab       | Tech          |                                         |                   |
| Start Date:    | 14 Ju  | un-22       | P           | rotocol:                | EPA   | /821/R-02-0    | 013 (20 | 02)  |                | Dilu           |                | constituted V | Vater                                   |                   |
| Ending Date:   | 21 J   | un-22       | S           | pecies:                 | Pime  | ephales pro    | melas   |      |                | Brin           | e: Not         | Applicable    |                                         |                   |
| Test Length:   | 7d C   | )h          | T           | axon:                   | Actir | nopterygii     |         |      |                | Sou            | rce: In-l      | House Cultur  | re                                      | Age:              |
| Sample ID:     | 13-5   | 785-5620    | С           | ode:                    | 4222  | 292.B          |         |      |                | Proj           |                | T Quarterly   |                                         |                   |
| Sample Date:   | 13 J   | un-22       | N           | laterial:               | POT   | W Effluent     |         |      |                | Sou            | rce: NP        | DES Permit    | # (XX9999                               | 9999)             |
| Receipt Date:  | 13 J   | un-22       | C           | AS (PC):                |       |                |         |      |                | Stati          | ion: 001       | Α             |                                         |                   |
| Sample Age:    | 24h    |             | С           | lient:                  | Gran  | nd Island Re   | esource | s    |                |                |                |               |                                         |                   |
| Data Transfor  | m      |             | Alt Hy      | p                       |       |                |         |      |                | NOEL           | LOEL           | TOEL          | TU                                      | PMSD              |
| Angular (Corre | cted)  |             | C > T       |                         |       |                |         |      | 1              | 100            | >100           | n/a           | 1                                       | 4.02%             |
| Steel Many-O   | ne Ra  | ank Sum Te  | est         |                         |       |                |         |      |                |                |                |               |                                         |                   |
|                | vs     | Conc-%      |             | Test S                  | Stat  | Critical       | Ties    | DF   | P-Type         | P-Value        | Decision       |               |                                         |                   |
| Dilution Water |        | 13          |             | 20                      |       | 10             | 1       | 6    | CDF            | 0.9516         |                | ificant Effec |                                         |                   |
|                |        | 26          |             | 20                      |       | 10             | 1       | 6    | CDF            | 0.9516         |                | ificant Effec |                                         |                   |
|                |        | 52          |             | 20                      |       | 10             | 1       | 6    | CDF            | 0.9516         |                | ificant Effec |                                         |                   |
|                |        | 76          |             | 20                      |       | 10             | 1       | 6    | CDF            | 0.9516         |                | ificant Effec |                                         |                   |
|                |        | 100         |             | 20                      |       | 10             | 1       | 6    | CDF            | 0.9516         | Non-Sign       | ificant Effec | Į.                                      |                   |
| ANOVA Table    | is .   |             |             |                         |       |                |         |      |                |                |                |               |                                         |                   |
| Source         |        | Sum Squ     | ares        | Mean                    | Squa  | are            | DF      |      | F Stat         | P-Value        | Decision       |               | ui -                                    |                   |
| Between        |        | 0.0055332   | 2           | 0.001                   | 1066  |                | 5       |      | 1              | 0.4457         | Non-Sign       | ificant Effec | t                                       |                   |
| Error          |        | 0.0199198   | 5           | 0.001                   | 1066  |                | 18      |      |                |                |                |               |                                         |                   |
| Total          |        | 0.0254527   | 7           |                         |       |                | 23      |      | χ              |                |                |               |                                         |                   |
| ANOVA Assur    | mptic  | ns Tests    |             |                         |       |                |         |      |                |                |                |               |                                         |                   |
| Attribute      |        | Test        |             |                         |       |                | Test S  | Stat | Critical       | P-Value        | Decision       |               |                                         |                   |
| Variance       |        | Bartlett Ed | quality of  | Variance 1              | Γest  |                |         |      |                |                | Indeterm       |               |                                         |                   |
| Distribution   |        | Shapiro-V   | Vilk W No   | rmality Te              | st    |                | 0.463   | 4    | 0.884          | 2.5E-08        | Non-Norr       | nal Distribut | ion                                     |                   |
| 7d Survival R  | ate S  | ummary      |             |                         |       |                |         |      |                |                |                |               |                                         |                   |
| Conc-%         |        | Code        | Count       | Mean                    |       | 95% LCL        | 95% L   | JCL  | Median         | Min            | Max            | Std Err       | CV%                                     | %Effec            |
| 0              |        | D           | 4           | 0.975                   | 0     | 0.8954         | 1.000   | 0    | 1.0000         | 0.9000         | 1.0000         | 0.0250        | 5.13%                                   | 0.00%             |
| 13             |        |             | 4           | 1.000                   |       | 1.0000         | 1.000   |      | 1.0000         | 1.0000         | 1.0000         | 0.0000        | 0.00%                                   | -2.56%            |
| 26             |        |             | 4           | 1.000                   |       | 1.0000         | 1.000   |      | 1.0000         | 1.0000         | 1.0000         | 0.0000        | 0.00%                                   | -2.56%            |
| 52             |        |             | 4           | 1.000                   |       | 1.0000         | 1.000   |      | 1.0000         | 1.0000         | 1.0000         | 0.0000        | 0.00%                                   | -2.56%            |
| 76             |        |             | 4           | 1.000                   |       | 1.0000         | 1.000   |      | 1.0000         | 1.0000         | 1.0000         | 0.0000        | 0.00%                                   | -2.56%            |
| 100            |        |             | 4           | 1.000                   | 0     | 1.0000         | 1.000   | 0    | 1.0000         | 1.0000         | 1.0000         | 0.0000        | 0.00%                                   | -2.56%            |
| Angular (Corr  | rected | d) Transfor | med Sur     | nmary                   |       |                |         |      |                |                |                | <u> </u>      |                                         | 0                 |
| Conc-%         |        | Code        | Count       | Mean                    |       | 95% LCL        | 95% l   |      | Median         | Min            | Max            | Std Err       | CV%                                     | %Effec            |
| 0              |        | D           | 4           | 1.371                   |       | 1.242          | 1.501   |      | 1.412          | 1.249          | 1.412          | 0.04074       | 5.94%                                   | 0.00%             |
| 13             |        |             | 4           | 1.412                   |       | 1.412          | 1.412   |      | 1.412          | 1.412          | 1.412          | 0             | 0.00%                                   | -2.97%            |
|                |        |             | 4           | 1.412                   |       | 1.412          | 1.412   |      | 1.412          | 1.412          | 1.412          | 0             | 0.00%                                   | -2.97%<br>-2.97%  |
| 26             |        |             |             |                         |       | 1.412          | 1.412   |      | 1.412          | 1.412          | 1.412          | 0             | 0.00%                                   | -2.91%            |
| 52             |        |             | 4           | 1.412                   |       |                |         |      |                |                |                |               |                                         | 2 070/            |
|                |        |             | 4<br>4<br>4 | 1.412<br>1.412<br>1.412 |       | 1.412<br>1.412 | 1.412   |      | 1.412<br>1.412 | 1.412<br>1.412 | 1.412<br>1.412 | 0             | 0.00%<br>0.00%                          | -2.97%<br>-2.97%  |

Report Date: Test Code/ID: 22 Jun-22 13:06 (p 1 of 2) 422292.fhm / 07-4598-7004

| Fathea  | d Minn   | ow 7-d Larval S | urvival ar | nd Grow  | th Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |           |          |               |         |             | SeaC         | rest Group  |
|---------|----------|-----------------|------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|----------|---------------|---------|-------------|--------------|-------------|
| Analys  | is ID:   | 19-2441-0856    | Er         | ndpoint: | 7d Survival Ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ite           |           |          | CETIS V       | ersion: | CETIS       | /1.9.6       |             |
| Analyz  | ed:      | 22 Jun-22 13:06 | S Ar       | nalysis: | Linear Interpol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lation (ICPIN | 1)        |          | Status L      | evel:   | 1           |              |             |
| Batch   | ID:      | 08-5353-4090    | Te         | st Type: | Growth-Surviv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | al (7d)       |           |          | Analyst:      | Lab     | Tech        |              |             |
| Start D | ate:     | 14 Jun-22       | Pr         | otocol:  | EPA/821/R-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -013 (2002)   |           |          | Diluent:      | Rec     | constituted | Water        |             |
| Ending  | Date:    | 21 Jun-22       | Sp         | ecies:   | Pimephales pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | omelas        |           |          | Brine:        | Not     | Applicable  | 9            |             |
| Test Le | ength:   | 7d 0h           | Та         | xon:     | Actinopterygii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |           |          | Source:       | In-F    | louse Cult  | ure          | Age:        |
| Sample  | e ID:    | 13-5785-5620    | Co         | de:      | 422292.B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |           |          | Project:      | WE      | T Quarterl  | y Complianc  | e Test (2Q) |
| Sample  | e Date:  | 13 Jun-22       | Ma         | aterial: | POTW Effluen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t             |           |          | Source:       | NPI     | DES Permi   | it # (XX9999 | 9999)       |
| Receip  | t Date:  | 13 Jun-22       | CA         | AS (PC): |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |           |          | Station:      | 001     | Α           |              |             |
| Sample  | e Age:   | 24h             | CI         | ient:    | Grand Island F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Resources     |           |          |               |         |             |              |             |
| Linear  | Interpo  | lation Options  |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |           |          |               |         |             |              |             |
| X Trans | sform    | Y Transform     | n Se       | ed       | Resamples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Exp 95%       | CL M      | ethod    |               |         |             |              |             |
| Linear  |          | Linear          | 14         | 97436    | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Yes           | Tv        | wo-Point | Interpolation | on      |             |              |             |
| Point E | stimate  | es              |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |           |          |               |         |             |              |             |
| Level   | %        | 95% LCL         | 95% UC     |          | 95% LCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 95% UCL       | <u> </u>  |          |               |         |             | 4            |             |
| LC5     | >100     | n/a             | n/a        | <1       | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a           |           |          |               |         |             |              |             |
| LC10    | >100     | n/a             | n/a        | <1       | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a           |           |          |               |         |             |              |             |
| LC15    | >100     | n/a             | n/a        | <1       | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a           |           |          |               |         |             |              |             |
| LC20    | >100     | n/a             | n/a        | <1       | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a           |           |          |               |         |             |              |             |
| LC25    | >100     |                 | n/a        | <1       | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a           |           |          |               |         |             |              |             |
| LC40    | >100     | n/a             | n/a        | <1       | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a           |           |          |               |         |             |              |             |
| LC50    | >100     | n/a             | n/a        | <1       | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a           |           |          |               |         |             |              |             |
| 7d Sur  | vival Ra | te Summary      |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Calcu         | ılated Va | riate(A/ | B)            |         |             | Isotor       | nic Variate |
| Conc-%  | 6        | Code            | Count      | Mean     | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Max           | Std De    | v CV     | % %E          | ffect   | A/B         | Mean         | %Effect     |
| 0       |          | D               | 4          | 0.975    | 0.9000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0000        | 0.0500    | 5.13     | 3% 0.0        | %       | 39/40       | 0.9958       | 0.0%        |
| 13      |          |                 | 4          | 1.000    | 0 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000        | 0.0000    | 0.0      | 0% -2.        | 56%     | 40/40       | 0.9958       | 0.0%        |
| 26      |          |                 | 4          | 1.000    | 0 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000        | 0.0000    | 0.0      | 0% -2.        | 56%     | 40/40       | 0.9958       | 0.0%        |
| 52      |          |                 | 4          | 1.000    | COLO MUNICIPAL POR CONTRACTOR CON | 1.0000        | 0.0000    | 0.0      |               | 56%     | 40/40       | 0.9958       | 0.0%        |
| 76      |          |                 | 4          | 1.000    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0000        | 0.0000    | 0.00     |               | 56%     | 40/40       | 0.9958       | 0.0%        |
| 100     |          |                 | 4          | 1.000    | 0 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000        | 0.0000    | 0.00     | 0% -2.        | 56%     | 40/40       | 0.9958       | 0.0%        |
| 7d Surv | vival Ra | te Detail       |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |           |          |               |         |             |              |             |
| Conc-%  | 6        | Code            | Rep 1      | Rep 2    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rep 4         |           |          |               |         |             |              |             |
| 0       |          | D               | 1.0000     | 0.900    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0000        |           |          |               |         |             |              |             |
| 13      |          |                 | 1.0000     | 1.000    | 0 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000        |           |          |               |         | *           |              |             |
| 26      |          |                 | 1.0000     | 1.000    | 0 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000        |           |          |               |         |             |              |             |
| 52      |          |                 | 1.0000     | 1.000    | 0 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000        |           |          |               |         |             |              |             |
| 76      |          |                 | 1.0000     | 1.000    | 0 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000        |           |          |               |         |             |              |             |

100

1.0000

1.0000

1.0000

1.0000

| CETIS Analytical Report | r | p | e | R | ı | a | ic | ti | y | al | n | Α | S | П | E. | С |
|-------------------------|---|---|---|---|---|---|----|----|---|----|---|---|---|---|----|---|
|-------------------------|---|---|---|---|---|---|----|----|---|----|---|---|---|---|----|---|

Report Date: Test Code/ID: 22 Jun-22 13:06 (p 3 of 3) 422292.fhm / 07-4598-7004

| Fathead Minr              | now 7-d Larval S               | Survival ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd Growth   | Test                           |             |          |         |                 |                | Sea       | Crest Grou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------|-------------|----------|---------|-----------------|----------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Analysis ID:<br>Analyzed: | 17-8206-3880<br>22 Jun-22 13:0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Mean Dry Bior<br>Parametric-Co |             | atments  |         | IS Version      | : CETISv1      | .9.6      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Batch ID:                 | 08-5353-4090                   | Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | st Type:    | Growth-Surviva                 | al (7d)     |          | Ana     | lyst: Lat       | Tech           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Start Date:               | 14 Jun-22                      | Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | otocol:     | EPA/821/R-02                   | -013 (2002) |          | Dilu    | ent: Re         | constituted V  | Vater     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>Ending Date:</b>       | 21 Jun-22                      | Sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | Pimephales pr                  |             |          | Brin    | e: No           | t Applicable   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Test Length:              |                                | Ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | Actinopterygii                 |             |          | Sou     |                 | House Cultur   | е         | Age:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sample ID:                | 13-5785-5620                   | Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | de:         | 422292.B                       |             |          | Proj    | ect: WE         | T Quarterly    | Complianc | e Test (20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sample Date:              |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | POTW Effluen                   | t           |          | Sou     |                 | DES Permit     |           | Commence of the Commence of th |
| Receipt Date:             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S (PC):     |                                |             |          | Stat    |                 |                | . (       | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sample Age:               |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Grand Island F                 | Resources   |          | Otal    |                 |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Data Transfor             | rm                             | Alt Hyp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                |             |          | NOEL    | LOEL            | TOEL           | TU        | PMSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Untransformed             | 5590                           | C > T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                                |             |          | 100     | >100            | n/a            | 1         | 20.36%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Dunnett Multi             | iple Comparisor                | n Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                                |             |          | -       |                 |                |           | N WILLIAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 20 27 XXX                 | vs Conc-%                      | and the state of t | Test St     | tat Critical                   | MSD DI      | F P-Type | P-Value | Decision        | (a:5%)         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dilution Water            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.6717      | 2.407                          | 0.068 6     | CDF      | 0.5709  |                 | ificant Effect |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                           | 26                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1855      | 2.407                          | 0.068 6     | CDF      | 0.7729  | Section Section | ificant Effect |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                           | 52                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.5476     | 2.407                          | 0.068 6     | CDF      | 0.9459  |                 | ificant Effect |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                           | 76                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0266      | 4 2.407                        | 0.068 6     | CDF      | 0.8254  |                 | ificant Effect |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                           | 100                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.1246     | 2.407                          | 0.068 6     | CDF      | 0.8674  |                 | ificant Effect |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ANOVA Table               |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                |             |          |         |                 |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Source                    | Sum Squ                        | ares                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mean S      | Square                         | DF          | F Stat   | P-Value | Decision        | (a:5%)         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Between                   | 0.002543                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00050     | 087                            | 5           | 0.3177   | 0.8958  | Non-Sign        | ificant Effect |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Error                     | 0.028819                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00160     | 011                            | 18          |          |         |                 |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total                     | 0.0313629                      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                | 23          |          |         |                 |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ANOVA Assur               | mptions Tests                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                |             |          |         |                 |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Attribute                 | Test                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                | Test Stat   | Critical | P-Value | Decision        | (α:1%)         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Variance                  | Bartlett Ed                    | quality of V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ariance Te  | st                             | 4.732       | 15.09    | 0.4495  | Equal Var       | riances        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Distribution              | Shapiro-W                      | lilk W Norr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nality Test |                                | 0.9361      | 0.884    | 0.1332  | Normal D        | istribution    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mean Dry Bio              | mass-mg Sumn                   | nary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                |             |          |         |                 |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Conc-%                    | Code                           | Count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mean        | 95% LCL                        | 95% UCL     | Median   | Min     | Max             | Std Err        | CV%       | %Effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0                         | D                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3345      | 0.3084                         | 0.3606      | 0.3415   | 0.31    | 0.345           | 0.008213       | 4.91%     | 0.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 13                        |                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3155      | 0.2512                         | 0.3798      | 0.325    | 0.259   | 0.353           | 0.02022        | 12.82%    | 5.68%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 26                        |                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3293      | 0.2711                         | 0.3874      | 0.341    | 0.278   | 0.357           | 0.01828        | 11.11%    | 1.57%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 52                        |                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.35        | 0.256                          | 0.444       | 0.366    | 0.27    | 0.398           | 0.02953        | 16.88%    | -4.63%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 76                        |                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3337      | 0.2945                         | 0.373       | 0.3375   | 0.301   | 0.359           | 0.01233        | 7.39%     | 0.23%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 100                       |                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.338       | 0.2622                         | 0.4138      | 0.3445   | 0.284   | 0.3791          | 0.02381        | 14.09%    | -1.05%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Mean Dry Bio              | mass-mg Detail                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                |             |          |         |                 |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Conc-%                    | Code                           | Rep 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rep 2       | Rep 3                          | Rep 4       |          |         |                 |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0                         | D                              | 0.341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.31        | 0.342                          | 0.345       |          |         |                 |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| J                         |                                | 0 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.259       | 0.353                          | 0.317       |          |         |                 |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                           |                                | 0.333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.233       | 0.000                          |             |          |         |                 |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13                        |                                | 0.357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.278       | 0.354                          | 0.328       |          |         |                 |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0<br>13<br>26<br>52       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0.354                          | 0.328       |          |         |                 |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13                        |                                | 0.357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.278       |                                |             |          |         |                 |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Analyst: W QA: M

003-715-114-2 CETIS™ v1.9.6.14

Report Date: Test Code/ID: 22 Jun-22 13:06 (p 2 of 2) 422292.fhm / 07-4598-7004

|                               |          |                 |                      |                         |                                      |                                |                                         |                                                                | Test Cod                                | le/ID:           | 422         | 292.fnm / 0                        | -4598-700                         |
|-------------------------------|----------|-----------------|----------------------|-------------------------|--------------------------------------|--------------------------------|-----------------------------------------|----------------------------------------------------------------|-----------------------------------------|------------------|-------------|------------------------------------|-----------------------------------|
| Fathe                         | ad Minn  | ow 7-d Larval S | urvival an           | d Growt                 | h Test                               |                                |                                         |                                                                |                                         |                  |             | SeaC                               | est Group                         |
| Analys                        | sis ID:  | 00-4808-4509    |                      | point:                  | Mean Dry Biom                        | William Charles                |                                         |                                                                | CETIS V                                 |                  | CETISv1     | .9.6                               |                                   |
| Analy                         | zed:     | 22 Jun-22 13:06 | An:                  | alysis:                 | Linear Interpola                     | tion (ICPIN)                   | )                                       |                                                                | Status Lo                               | evel:            | 1           |                                    |                                   |
| Batch                         | ID:      | 08-5353-4090    | Tes                  | t Type:                 | Growth-Surviva                       | l (7d)                         |                                         |                                                                | Analyst:                                | Lab <sup>1</sup> | Tech        |                                    |                                   |
| Start I                       | Date:    | 14 Jun-22       | Pro                  | tocol:                  | EPA/821/R-02-                        | 013 (2002)                     |                                         |                                                                | Diluent:                                | Reco             | nstituted V | Vater                              |                                   |
| Endin                         | g Date:  | 21 Jun-22       | Spe                  | cies:                   | Pimephales pro                       | melas                          |                                         |                                                                | Brine:                                  | Not A            | Applicable  |                                    |                                   |
| Test L                        | ength:   | 7d 0h           | Tax                  | on:                     | Actinopterygii                       |                                |                                         |                                                                | Source:                                 | In-Ho            | ouse Cultur | е                                  | Age:                              |
| Samp                          | le ID:   | 13-5785-5620    | Co                   | de:                     | 422292.B                             |                                |                                         |                                                                | Project:                                | WET              | Quarterly   | Compliance                         | Test (2Q)                         |
|                               |          | 13 Jun-22       | Ma                   | erial:                  | POTW Effluent                        |                                |                                         |                                                                | Source:                                 | NPD              | ES Permit   | # (XX99999                         | 999)                              |
| Recei                         | ot Date: | 13 Jun-22       | CA                   | S (PC):                 |                                      |                                |                                         |                                                                | Station:                                | 001A             | i.          |                                    |                                   |
| Samp                          | le Age:  | 24h             | Clie                 | ent:                    | Grand Island Re                      | esources                       |                                         |                                                                |                                         |                  |             |                                    |                                   |
| Linear                        | Interpo  | olation Options |                      |                         |                                      |                                |                                         |                                                                |                                         |                  |             |                                    |                                   |
| X Trar                        | sform    | Y Transform     | See                  | d                       | Resamples                            | Exp 95%                        | CL M                                    | ethod                                                          |                                         |                  |             |                                    |                                   |
| Linear                        |          | Linear          | 190                  | 1970                    | 1000                                 | Yes                            | Tv                                      | vo-Point                                                       | Interpolation                           | on               |             |                                    |                                   |
| Point                         | Estimat  | es              |                      |                         |                                      |                                |                                         |                                                                |                                         |                  |             |                                    |                                   |
| Level                         | %        | 95% LCL         | 95% UCL              | TU                      | 95% LCL                              | 95% UCL                        |                                         |                                                                |                                         |                  |             |                                    |                                   |
| IC5                           | >100     | n/a             | n/a                  | <1                      | n/a                                  | n/a                            |                                         |                                                                |                                         |                  |             |                                    |                                   |
| IC10                          | >100     | n/a             | n/a                  | <1                      | n/a                                  | n/a                            |                                         |                                                                |                                         |                  |             |                                    |                                   |
| C15                           | >100     | n/a             | n/a                  | <1                      | n/a                                  | n/a                            |                                         |                                                                |                                         |                  |             |                                    |                                   |
| C20                           | >100     | n/a             | n/a                  | <1                      | n/a                                  | n/a                            |                                         |                                                                |                                         |                  |             |                                    |                                   |
| C25                           | >100     | n/a             | n/a                  | <1                      | n/a                                  | n/a                            |                                         |                                                                |                                         |                  |             |                                    |                                   |
| C40                           | >100     | n/a             | n/a                  | <1                      | n/a                                  | n/a                            |                                         |                                                                |                                         |                  |             |                                    |                                   |
| IC50                          | >100     | n/a             | n/a                  | <1                      | n/a                                  | n/a                            |                                         |                                                                |                                         |                  |             |                                    |                                   |
| Mean                          | n n:     | mass-mg Summ    |                      |                         |                                      | Cal                            | culated                                 | Variate                                                        |                                         |                  |             | Isoton                             |                                   |
|                               | Dry Bio  | mass-my Summ    | iary                 |                         |                                      | Cai                            | culateu                                 | variate                                                        |                                         |                  |             |                                    | ic Variate                        |
| Conc-                         |          | Code            | Count                | Mean                    | Min                                  | Max                            | Std De                                  |                                                                | % %E                                    | ffect            |             | Mean                               | ic Variate<br>%Effect             |
| Conc-                         |          |                 |                      | <b>Mean</b> 0.334       | 9 35768545                           |                                |                                         | v CV                                                           | 1000                                    |                  |             | 67274                              | DIAL CONTRACTOR OF                |
| Conc-                         |          | Code            | Count                | BEST STATE              | 5 0.31                               | Max                            | Std De                                  | v CV                                                           | 1% 0.0                                  |                  |             | Mean                               | %Effect                           |
| <b>Conc-</b><br>0<br>13       |          | Code            | Count<br>4           | 0.334                   | 5 0.31<br>5 0.259                    | <b>Max</b> 0.345               | Std De<br>0.0164                        | v CV <sup>9</sup><br>3 4.9 <sup>2</sup><br>4 12.8              | 1% 0.0<br>32% 5.6                       | )%               |             | <b>Mean</b> 0.3345                 | %Effect<br>0.0%                   |
| <b>Conc-</b><br>0<br>13<br>26 |          | Code            | Count<br>4<br>4      | 0.334<br>0.315          | 5 0.31<br>5 0.259                    | Max<br>0.345<br>0.353          | O.01643                                 | v CV <sup>9</sup> 3 4.9 <sup>2</sup> 4 12.8 7 11. <sup>2</sup> | 1% 0.0<br>32% 5.6<br>11% 1.5            | )%<br>68%        |             | Mean<br>0.3345<br>0.3333           | %Effect<br>0.0%<br>0.36%          |
|                               |          | Code            | Count<br>4<br>4<br>4 | 0.334<br>0.315<br>0.329 | 5 0.31<br>5 0.259<br>3 0.278<br>0.27 | Max<br>0.345<br>0.353<br>0.357 | Std De<br>0.01643<br>0.04044<br>0.03653 | 3 4.9°<br>4 12.8<br>7 11.°<br>7 16.8                           | 1% 0.0<br>32% 5.6<br>11% 1.5<br>38% -4. | )%<br>68%<br>67% |             | Mean<br>0.3345<br>0.3333<br>0.3333 | %Effect<br>0.0%<br>0.36%<br>0.36% |

| Mean Dry Bio | mass-mg | Detail |
|--------------|---------|--------|
|--------------|---------|--------|

| Conc-% | Code | Rep 1 | Rep 2  | Rep 3 | Rep 4 |
|--------|------|-------|--------|-------|-------|
| 0      | D    | 0.341 | 0.31   | 0.342 | 0.345 |
| 13     |      | 0.333 | 0.259  | 0.353 | 0.317 |
| 26     |      | 0.357 | 0.278  | 0.354 | 0.328 |
| 52     |      | 0.27  | 0.398  | 0.391 | 0.341 |
| 76     |      | 0.301 | 0.359  | 0.344 | 0.331 |
| 100    |      | 0.284 | 0.3791 | 0.312 | 0.377 |

Analyst: HN QA: M

Client: Grand Island Resources, LLC Site: 001A

CO-0032751

SCG Project No.: 422292.B Project: Quarterly WET

Appendix 4 - QA/QC and Reference Toxicant Test Chart

CO-0032751

SCG Project No.: 422292.B Project: Quarterly WET

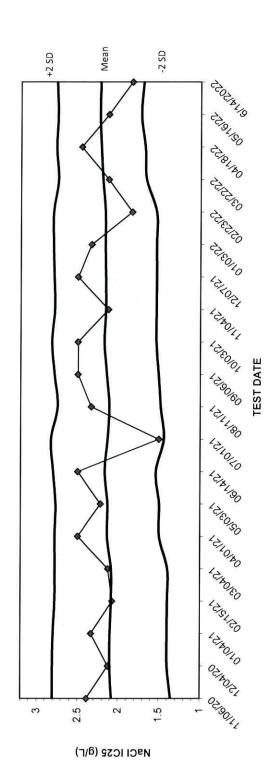
Y

### Quality Assurance Check List - Chronic Whole Effluent Toxicity Test

| Client:                                  | Grand Island Resour                        | ces, LLC                               |
|------------------------------------------|--------------------------------------------|----------------------------------------|
| SeaCrest Sample No:                      | 422292.B                                   |                                        |
| Species Tested:                          | Ceriodaphnia dubia                         | and fathead minnow                     |
| Sample Dates<br>06-13-2022<br>06-14-2022 | Start Date of Test<br>(Ceriodaphnia dubia) | Start Date of Test<br>(fathead minnow) |
| 06-14-2022                               | 06-14-2022                                 | 06-14-2022                             |
|                                          |                                            |                                        |
| Sample received in lab properl           |                                            | N*                                     |
| Sample received at laboratory            |                                            | Y                                      |
| Sample delivered on ice or equ           |                                            | Y                                      |
| Test initiated within 36-hours of        | of collection?                             | $\mathbf{Y}^{c}$                       |
| Test protocol conforms to CDI            | PHE guidelines (Ceriodaphnia dubia)?       | Y                                      |
| Test protocol conforms to CDI            | PHE guidelines (fathead minnow)?           | Y                                      |
| Average test temp. ±1°C (Ceric           | odaphnia dubia)?                           | Y                                      |
| Average test temp. ±1°C (father          | ad minnow)?                                | Y                                      |
| DO level ≥4.0mg/L; no super-s            | saturation (Ceriodaphnia dubia)?           | Y                                      |
| DO level ≥4.0mg/L; no super-s            | saturation (fathead minnow)?               | Y                                      |
| Survival in control ≥80% (Cer            | iodaphnia dubia)?                          | Y                                      |
| Survival in control ≥80% (fath           | ead minnow)?                               | Y                                      |
| Ceriodaphnia dubia neonates <            | <24-hours old?                             | Y                                      |
| Fathead minnow larvae <24-ho             | ours old?                                  | Y                                      |
| Appropriate reference toxicity           | test conducted?                            | Y                                      |
|                                          |                                            |                                        |

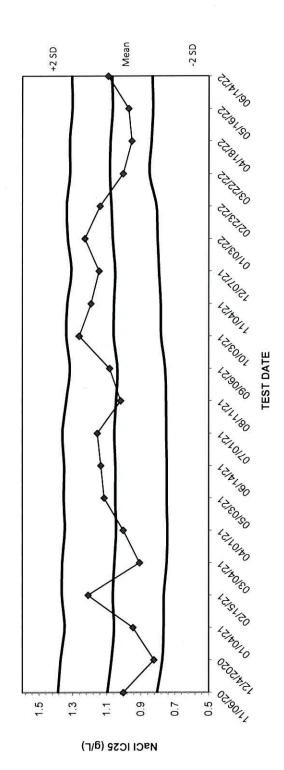
Reference toxicity test results within the confidence limits for the lab?

Author Supervisor


Position: Laboratory Supervisor

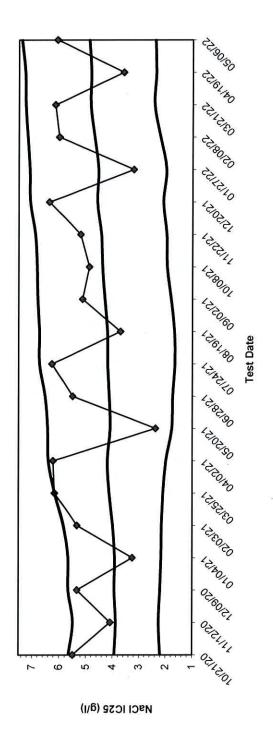
Date June 27, 2022

<sup>\*</sup>The samples were received at 8.8°C, 8.0°C, and 9.7°C on the same day as sampling.


| Method                 | Analyte                | Date      | LCS (rec) | %REC      | %RPD       | QC LIMITS                               |
|------------------------|------------------------|-----------|-----------|-----------|------------|-----------------------------------------|
| 2320 B                 | Alkalinity - Total     | 5/5/2000  | 404 0087  | 7010      |            | Burner Code (CC)                        |
| 2320 B                 | Alkalinity Total       | 5/3/2/22  | 104.00%   | 80.08     | 0.00%      | ± 5.00%                                 |
| 0,000                  |                        | 2707/61/6 | 103.20%   | 98.48%    | %00.0      | ± 5.00%                                 |
| 2320 B                 | Alkalinity - I otal    | 5/19/2022 | 103.20%   | 89.26%    | 2.41%      | ± 5.00%                                 |
| 2320 B                 | Alkalinity - Total     | 5/25/2022 | 104.80%   | 97.98%    | -2.79%     | %00 S +                                 |
| 4500 NH <sub>3</sub> D | Ammonia                | 5/5/2022  | %00.96    | 100.60%   | 2.51%      | + 10.00%                                |
| 4500 NH <sub>3</sub> D | Ammonia                | 5/13/2022 | %09:36    | 96.15%    | -4.10%     | + 10 00%                                |
| 4500 NH <sub>3</sub> D | Ammonia                | 5/19/2022 | 96.20%    | %08'36    | -3.45%     | %00°C++                                 |
| 4500 NH <sub>3</sub> D | Ammonia                | 5/26/2022 | 99.40%    | 95.48%    | -3.80%     | %0°C +                                  |
| 4500 CI D              | Chlorine               | 5/26/2022 | 103.03%   | 102.94%   | 0.00%      | *00 02 + 00 5 +                         |
| 2340 B                 | Hardness - Total       | 5/5/2022  | 103.51%   | 100.28%   | -1.01%     | %00.54<br>+ 5 00%                       |
| 2340 B                 | Hardness - Total       | 5/11/2022 | 103.51%   | 98.29%    | 1.39%      | %00 +<br>%00 +                          |
| 2340 B                 | Hardness - Total       | 5/19/2022 | 100.00%   | 89.70%    | -1.12%     | %00:0 +<br>+                            |
| 2340 B                 | Hardness - Total       | 5/24/2022 | 102.00%   | 102.00%   | 2.70%      | + 5.00%                                 |
|                        |                        |           | LCS (rec) | %REC M1   | %RFC M2    | of a                                    |
| 4500 O                 | DO - Winkler           | 5/5/2022  | N/A       | 98.36%    | 95.24%     | + 6 00%                                 |
| 4500 O                 | DO - Winkler           | 5/12/2022 | N/A       | 98.57%    | 98.57%     | %00.5 H<br>+ + 00.00                    |
| 4500 O                 | DO - Winkler           | 5/19/2022 | A/N       | 100 00%   | 100 00%    | 00.00 H                                 |
| 4500 O                 | DO - Winkler           | 5/25/2022 | A/Z       | 98.55%    | 98.55%     | ± 5.00%                                 |
|                        |                        |           | Blank     | %REC MR S | %RPD       | ejimi I JO                              |
| 2540 D                 | Suspended Solids (TTL) | 5/26/2022 | 100.00%   | 90.92%    | %00.0      | + 15%                                   |
| 2540 C                 | Dissolved Solids (TTL) | 5/26/2022 | 100.00%   | 92.25%    | %00.0      | + 15%                                   |
|                        |                        | 1         |           | **        |            |                                         |
| Signature:             | Jaly WW                |           |           |           | Signature: | Jan |
| Date:                  | June 1, 2022           |           |           |           | Date:      | 1 July 2022                             |
|                        |                        |           |           |           |            |                                         |

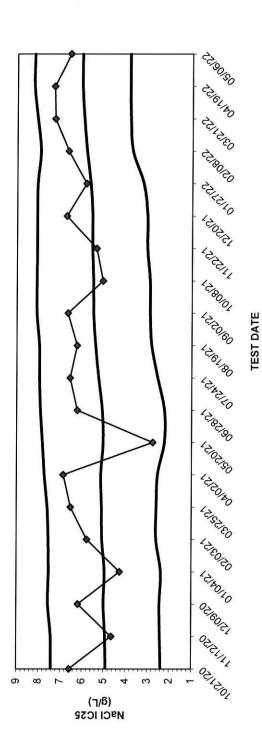
# CERIODAPHNIA SURVIVAL LC25 NaCI REFTOX




| +2 SD | 2.8053   | 2.8032   | 2.7956   | 2.7747   | 2.7747   | 2.7769   | 2.7664   | 2.7966   | 2.8252   | 2.7425   | 2.7816   | 2.8150   | 2.7797   | 2.7874   | 2.7982   | 2.7982   | 2.7374   | 2.7626   | 2.7453   | 2.7582    |
|-------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|
| -2 SD | 1.3517   | 1.3962   | 1.3979   | 1.3939   | 1.3939   | 1.4948   | 1.4945   | 1.5357   | 1.4386   | 1,4777   | 1.5041   | 1.5342   | 1.5338   | 1.5310   | 1.5330   | 1.5330   | 1.6590   | 1.6774   | 1.7257   | 1.6951    |
| Mean  | 2.0785   | 2.0997   | 2.0968   | 2.0843   | 2.0843   | 2.1359   | 2.1304   | 2.1661   | 2.1319   | 2.1101   | 2.1429   | 2.1746   | 2.1568   | 2.1592   | 2.1656   | 2.1656   | 2.1982   | 2.2200   | 2.2355   | 2.2267    |
| IC25  | 2.3890   | 2.1250   | 2.3330   | 2.0710   | 2.1250   | 2.5000   | 2.2190   | 2.5000   | 1.5000   | 2.3330   | 2.5000   | 2.5000   | 2.1250   | 2.5000   | 2.3330   | 1.8330   | 2.1250   | 2.4580   | 2.1250   | 1.8330    |
| Date  | 11/06/20 | 12/04/20 | 01/04/21 | 02/15/21 | 03/04/21 | 04/01/21 | 05/03/21 | 06/14/21 | 07/01/21 | 08/11/21 | 09/06/21 | 10/03/21 | 11/04/21 | 12/07/21 | 01/03/22 | 02/23/22 | 03/22/22 | 04/18/22 | 05/16/22 | 6/14/2022 |

# CERIODAPHNIA REPRODUCTION IC25 NaCI REFTOX




| +2 SD | 1.3853   | 1.370055745 | 1.3470   | 1.3625   | 1.3605   | 1.3461   | 1.3521   | 1.3499   | 1.3599   | 1.3375   | 1.3162   | 1.3367   | 1.3311   | 1.3076   | 1.3284   | 1.3354   | 1.3154   | 1.3174   | 1.3025   | 1.3053   |
|-------|----------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| -2 SD | 0.8049   | 0.772964255 | 0.7653   | 0.7646   | 0.7475   | 0.7439   | 0.7472   | 0.7475   | 0.7508   | 0.7516   | 0.7574   | 0.7807   | 0.7830   | 0.7931   | 0.8016   | 0.8084   | 0.8489   | 0.8376   | 0.8293   | 0.8330   |
| Mean  | 1.0951   | 1.07151     | 1.0562   | 1.0635   | 1.0540   | 1.0450   | 1.0496   | 1.0487   | 1.0553   | 1.0445   | 1.0368   | 1.0587   | 1.0570   | 1.0503   | 1.0650   | 1.0719   | 1.0821   | 1.0775   | 1.0659   | 1.0691   |
| IC25  | 1.0020   | 0.8229      | 0.9453   | 1.2100   | 0.9062   | 1.0030   | 1.1140   | 1.1340   | 1.1550   | 1.0180   | 1.0820   | 1.2630   | 1.1930   | 1.1450   | 1.2300   | 1.1390   | 1.0040   | 0.9527   | 0.9716   | 1.0920   |
| Date  | 11/06/20 | 12/4/2020   | 01/04/21 | 02/15/21 | 03/04/21 | 04/01/21 | 05/03/21 | 06/14/21 | 07/01/21 | 08/11/21 | 09/06/21 | 10/03/21 | 11/04/21 | 12/07/21 | 01/03/22 | 02/23/22 | 03/22/22 | 04/18/22 | 05/16/22 | 06/14/22 |

## FHM SURVIVAL LC25 NaCI REFTOX



| +2 SD | 5.6597   | 5.4949   | 5.6685   | 5.6702   | 5.8429   | 6.1596   | 6.3925   | 6.4155   | 6.5101   | 6.7224   | 6.7226   | 6.7904   | 6.8135   | 6.8799   | 7.0713   | 7.0900   | 7.1688   | 7.2464   | 7.2622   | 7.3872   |
|-------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| -2 SD | 2.2040   | 2.2576   | 2.2017   | 2.1591   | 2.1464   | 2.0920   | 1.9849   | 1.7621   | 1.7345   | 1.6465   | 1.6644   | 1.7899   | 1.9442   | 1.9620   | 2.0849   | 1.9736   | 2.2009   | 2.4258   | 2.3657   | 2.3955   |
| Mean  | 3.9318   | 3.8762   | 3.9351   | 3.9146   | 3.9947   | 4.1258   | 4.1887   | 4.0888   | 4.1223   | 4.1844   | 4.1935   | 4.2901   | 4.3788   | 4.4210   | 4.5781   | 4.5318   | 4.6848   | 4.8361   | 4.8140   | 4.8914   |
| IC25  | 5.5000   | 4.0770   | 5.3330   | 3.2500   | 5.3330   | 6.1583   | 6.2160   | 2.3750   | 5.5000   | 6.2580   | 3.7000   | 5.1250   | 4.8750   | 5.2000   | 6.3570   | 3.2000   | 6.0000   | 6.1400   | 3.5870   | 6.0670   |
| Date  | 10/21/20 | 11/12/20 | 12/09/20 | 01/04/21 | 02/03/21 | 03/25/21 | 04/02/21 | 05/20/21 | 06/28/21 | 07/24/21 | 08/19/21 | 09/02/21 | 10/08/21 | 11/22/21 | 12/20/21 | 01/27/22 | 02/08/22 | 03/21/22 | 04/19/22 | 05/06/22 |

### FHM GROWTH IC25 NaCI REFTOX



| _     |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|-------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| +2 SD | 7.4156   | 7.4194   | 7.5481   | 7.5231   | 7.5375   | 7.5919   | 7.7295   | 7.8162   | 7.9113   | 7.9582   | 7.9619   | 8.0895   | 8.0905   | 8.0771   | 8.0788   | 8.0692   | 7.9266   | 8.0729   | 8.2271   | 8.2074   |
| -2 SD | 2.3802   | 2.4172   | 2.4402   | 2.3784   | 2.6088   | 2.5891   | 2.5395   | 2.2272   | 2.2267   | 2.5384   | 2.8247   | 2.8982   | 2.9074   | 3.0315   | 3.0309   | 3.2082   | 3.7120   | 3.8121   | 3.8358   | 3.8376   |
| Mean  | 4.8979   | 4.9183   | 4.9941   | 4.9508   | 5.0732   | 5.0905   | 5.1345   | 5.0217   | 5.0690   | 5.2483   | 5.3933   | 5.4939   | 5.4990   | 5.5543   | 5.5549   | 5.6387   | 5.8193   | 5.9425   | 6.0314   | 6.0225   |
| IC25  | 6.5770   | 4.6370   | 6.1720   | 4.2580   | 5.7680   | 6.5280   | 6.8650   | 2.7590   | 6.2200   | 6.5530   | 6.2310   | 6.6650   | 5.0481   | 5.3520   | 6.7310   | 5.8200   | 6.6580   | 7.2690   | 7.2990   | 6.5630   |
| Date  | 10/21/20 | 11/12/20 | 12/09/20 | 01/04/21 | 02/03/21 | 03/25/21 | 04/02/21 | 05/20/21 | 06/28/21 | 07/24/21 | 08/19/21 | 09/02/21 | 10/08/21 | 11/22/21 | 12/20/21 | 01/27/22 | 02/08/22 | 03/21/22 | 04/19/22 | 05/06/22 |