

June 29, 2022

Mr. Zach Trujillo Environmental Protection Specialist Colorado Division of Reclamation, Mining & Safety Department of Natural Resources 1313 Sherman Street, Room 215 Denver, CO 80203

RE: Colowyo Coal Company L.P. Permit No. C-1981-019 Technical Revision No. 154 (TR-154) Adequacy Response

Dear Mr. Trujillo,

Tri-State Generation and Transmission Association Inc. (Tri-State), is the parent company to Axial Basin Coal Company, which is the general partner to Colowyo Coal Company L.P. (Colowyo). Therefore, Tri-State on behalf of Colowyo is submitting this adequacy response for technical revision 154 (TR-154) to Permit No. C-1981-019.

Tri-State received the two adequacy letters from the Division dated June 10 and June 24, 2022 respectively, and has the following responses to the Division's concerns:

1. When reviewing the proposed Volume 20, Exhibit 23, Item 3 (Item 3) conducted by Agapito Associates, Inc. (AA), it appears to the Division that this exhibit is an addendum to Exhibit 23, Item 2 (Item 2) which is an updated iteration of the Collom Spoil Pile from Exhibit 23, Item 1 (Item 1). Under Item 2, an update to the location of the underdrain(s) occurred with Drain A and Drain B while maintaining the specifications of the underdrain approved under Item 1. In the initial discussion of Item 3 AA states, "[t]he report does not consider any underdrain or surfacewater control requirements for either the temporary dump or the final reclaimed surface." It is unclear to the Division whether design specifications approved under Item 1 and the location of Drain A and Drain B from Item 2 are still valid and applicable for the proposed design of the permanent Collom Spoil Pile and Valley Fill. Please provide the Division with additional clarification and discussion on the design specification and location(s) of the underdrain to ensure Rules 4.09 and 4.10 are satisfied for the proposed Colom Permanent Spoil Pile and Valley Fill.

Response: The design configurations (not locations) for Drain A and B from Exhibit 23, Item 1 were utilized to construct the underdrain under the proposed Little Collom Valley Fill. A

June 29, 2022 Page 2

description of the construction of the drain under the proposed Little Collom Valley Fill was included in the TR-154 application materials in Volume 15, Section 4.09, <u>Construction Plan</u> for the Division's review. A figure has been created and included in this adequacy response in Volume 15 to demonstrate the location of the drain under the proposed Little Collom Valley Fill for the Division, and some clarifying language has also been included in Volume 15, Section 4.09.

2. Based on the proposed Volume 15, Rule 4, Section 4.09, the maximum volume of the Collom Spoil Pile will reach approximately 28 million CY, with approximately 17.3 million CY remaining permanent as the Collom Permanent Spoil Pile and approximately 4.1 million CY remaining permanent as the Collom Valley Fill. The remaining amount is proposed to be hauled as final backfill for the Collom Pit reclamation. The Division understands that these volumes and proposed permanent Collom Spoil Pile and Valley Fill are based on the operations of the full life of mine for the Collom Pit which doesn't reflect the current spoil volumes and approved on-the ground disturbance under the cumulative bond schedule for the Collom Pit under Exhibit 13C as it shouldn't. It's the Division's understanding that as mining progresses in the Collom Pit, future spoil will be used as immediate backfill. Based on Collom's cumulative bond schedule, these disturbances have not yet been approved yet which would currently require the majority of the spoil be removed from the approved Temporary Spoil Pile to backfill the Collom Pit. At this time, it is unclear if the currently approved Exhibit 13C accurately reflects current reclamation operations based on the current on-the-ground disturbances with the addition of the Collom Permanent Spoil Pile and Valley Fill if the Division were to perform the reclamation. Please review Exhibit 13C to ensure all disturbances are reflected accurately based on current reclamation volumes and activities as well as the addition of the Permanent Spoil Pile and *Valley Fill. Based on the complexity of this topic, the Division would like to suggest a meeting* with Colowyo to help clarify any comments, concerns and questions each party may have.

Response: As discussed with the Division on June 21 and 28, 2022, Exhibit 13C provides reclamation cost items (specifically the Collom out of pit stockpile), a volume of material that is available and bonded for reclamation of the Collom Pit. This volume of material currently in the Exhibit 13C is greater than what is proposed to be left as permanent excess spoil under TR-154.

The Division has indicated that it would be acceptable to update Exhibit 13C to demonstrate how much material would be needed to backfill the Collom Pit in relation to the permanent excess spoil (out of pit) that is proposed under TR-154, or at given points in time during the advancement of the Collom Pit. At this time, Tri-State believes that would be a tedious exercise and by bonding for the entire excess spoil (up to 28 million cubic yards eventually) the Division will be holding more than appropriate amount of bond to ensure reclamation of the Collom Pit.

June 29, 2022 Page 3

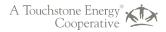
Finally, under TR-154, the mine plan proposes to reduce the total box cut depth and utilize a dragline in the upper seam of a sizable portion of the Collom Pit. Tri-State understands that Exhibit 13C will have to be updated and appropriate bonding be in place and approved by the Division prior to using a dragline to conduct mining activities in the Collom Pit. Tri-State views this similar to other activities (e.g., topsoil removal to support advancement of mining or additional material to be place in the temporary spoil pile) that is approved for Collom Pit under the current mine plan but may not be included to the cumulative bond schedule to date.

3. The Division is currently reviewing all surface hydrology related items associated with TR-154. The Division will provide any related adequacy comments and/or questions in a future adequacy letter.

Response: Please see responses below to items 1 - 3 for sediment control review from June 24, 2022 adequacy letter.

1. The figures with watersheds during mining (Figure 7-23B-1 and Figure 7-23C-1) do not indicate channels and ponds, which are very important for understanding the respective SEDCAD models. Please add the channels and ponds to the figures.

Response: A layer that was turned off on Figures 7-23B-1 and 723C-1 has been restored showing the temporary channels and sediment ponds locations.


2. No SEDCAD output pages were provided for Exhibit 7, Item 23, Part I (Section 25 Pond, post-mining condition). Please provide these pages.

Response: SEDCAD output pages for Exhibit 7, Item 23, Part I have been provided.

3. On page Exhibit 7-23J-2, the text states that the 25-year event in the Section 26 Pond peaks at an elevation of 6,985.5 feet. However, in the associated SEDCAD model the peak elevation is 6,984.44 feet for this structure. Please explain this apparent discrepancy, and adjust the text or model, as necessary.

Response: The peak storm elevation for the 25-year, 24-hour storm event in Exhibit 7, Item 23, Part J has been revised to 6,9844.4 as noted.

If you should have any additional questions or concerns, please feel free to contact Tony Tennyson at (970) 824-1232 at your convenience.

June 29, 2022 Page 4


Sincerely,

DocuSigned by: Chris Gilbreath -D250C711D0BF450.

Chris Gilbreath Senior Manager, Remediation and Reclamation

CG:TT:der

cc: Tony Tennyson (via email) File: C. F. 1.1.2.139 - G471-11.3(21)b

LIST OF FIGURES

Figure 2.04.6-5 Figure 2.04.7-33 Figure 2.04.7-34	Geologic Cross Sections A Aquifer Test Results Water-Level Contour Map for F Sandstone Wells
Figure 2.04.7-35	Water-Level Contour Map for F/G Sequence Wells
Figure 2.04.7-36	Hydrographs of Valley-Fill Wells
Figure 2.04.7-37	Hydrographs of Bedrock Wells
Figure 2.04.7-38	Trilinear Diagram of Groundwater Quality in Valley-Fill Wells
Figure 2.04.7-39	Trilinear Diagram of Groundwater Quality in Bedrock Wells
Figure 2.04.7-40	Surface Water Hydrograph: Upper Collom Gulch (UCG)
Figure 2.04.7-41	Surface Water Hydrograph: Lower Collom Gulch (LCG)
Figure 2.04.7-42	Surface Water Hydrograph: West Fork of Jubb Creek (WFJC)
Figure 2.04.7-43	Surface Water Hydrograph: Confluence of Jubb Creek (CJC)
Figure 2.04.7-44	Trilinear Diagram of Surface Water Quality: Upper Collom Gulch (UCG)
Figure 2.04.7-45	Trilinear Diagram of Surface Water Quality: Lower Collom Gulch (LCG)
Figure 2.04.7-46	Trilinear Diagram of Surface Water Quality: West Fork of Jubb Creek (WFJC)
Figure 2.04.7-47	Trilinear Diagram of Surface Water Quality: Confluence of Jubb Creek (CJC)
Figure 2.04.7-48	Trilinear Diagram of Surface Water Quality: Collom Gulch Springs/Seeps
Figure 2.04.7-49	Trilinear Diagram of Surface Water Quality: Little Collom Gulch Springs/Seeps
Figure 2.04.7-50	Trilinear Diagram of Surface Water Quality: Jubb Creek Springs/Seeps
Figure 2.05.5-1	Post-mine Land Use letter of support from Colowyo Land Management Staff
Figure 2.05.5-2	Post-mine Land Use letter of support from BLM
Figure 2.05.5-3	Post-mine Land Use letter of support from Colorado State Land Board
Figure 2.05.6-3	CPW Letter Documenting Greater Sage Grouse Fence Demarcation Locations
Figure 4.09-1	Little Collom Valley Fill Rock Drain Location

mine topography shown on Map 19C. The final configuration of the fill is designed to minimize erosion. The final outslope will not exceed 3h:1v. A geotechnical evaluation of the stability of the permanent out of pit excess overburden is provided in Volume 20 Exhibt 23, Item 3.

Two terrace ditches will be constructed on the face of the Little Collom Valley Fill. Please refer to Volume 18B Exhibit 7, Iem 23, Part I for the location and design configuration of the terrace ditches. Both terrace ditches will be backsloped to direct runoff against the face to prevent flows from overflowing the edge of the ditch. These terrace ditches will direct surface runoff perpendicular to the face into a permanent drainage channel designed to pass safely the runoff from a 100-year, 24 hour precipitation event.

CONSTRUCTION PLAN

All available topsoil will be removed for the Little Collom Valley Fill and either stockpiled for later use or direct hauled to a reclaimed area.

The Little Collom Valley Fill drain has been constructed to the design configuations (not locations) presented in Volume 20 Exhibit 23, Item 1. Given the smaller footprint of the temporary and final out of pit stockpile materials than is shown in Volume 20 Exhibit 23, Item 1, Figure 4.09-1 presents the adjusted location of the constructed rock drain and the as constructed dimensions of the drain under the Little Collom Valley Fill. The rock drain was constructed as follows.

Prior to overburden placement, an 820 feet long by 24 feet wide rock drain was constructed. This rock drain was constructed from large sandstone rock sorted on-site from existing excess spoil areas, and the sorted rock was placed with loaders and dozers. Once the rock drain was completed, excess spoil was placed over the rock drain, rising in approximately 50-foot-high lifts until reaching a final height of 130 feet above the valley floor at the north edge of the rock drain.

North of the constructed rock drain, natural dump sorting was used to create the remaining excess spoil rock drain. When material is placed at heights over 100 feet, the larger boulders and rock roll down the slope effectively sorting the material and making a natural drain at the toe of the spoil. This method has been implmented at Colowyo for many years and is further described in Volume 20 Exhibit 23 Item 1 report. This report states in Section 8.2, "In our opinion, a drain extending the full distance from the downstream toe to the upstream toe is not required, particularly for a temporary spoil fill. Our experience and observations indicate that the spoil and placement methods at Colowyo produce a relatively free draining layer at the base of each lift of spoil." Once a suitable height that allowed for natural dump sorting was achieved, the Little Collom Valley Fill construction progressed towards the northern limits of its overall footprint.

INSPECTION PLAN

During construction of the Little Collom Valley Fill, Colowyo will provide certified reports as required by Rule 4.09.1(11). Inspections will be conducted at quarterly during the construction period, final grading, and revegetation.

Each inspection report will be provided to the Division within two weeks after the end of each quarter of the year, and the report will be certified by a professional engineer. Each report will certify that the fill has been constructed as specified in the minimum design approved by the Division. The reports will include a description of any appearances of instability, structural weakness and other hazardous conditions observed during the inspection.

Section 25 Pond Effluent Demonstration

10-Year 24-Hour Storm Event Post-Mining Condition

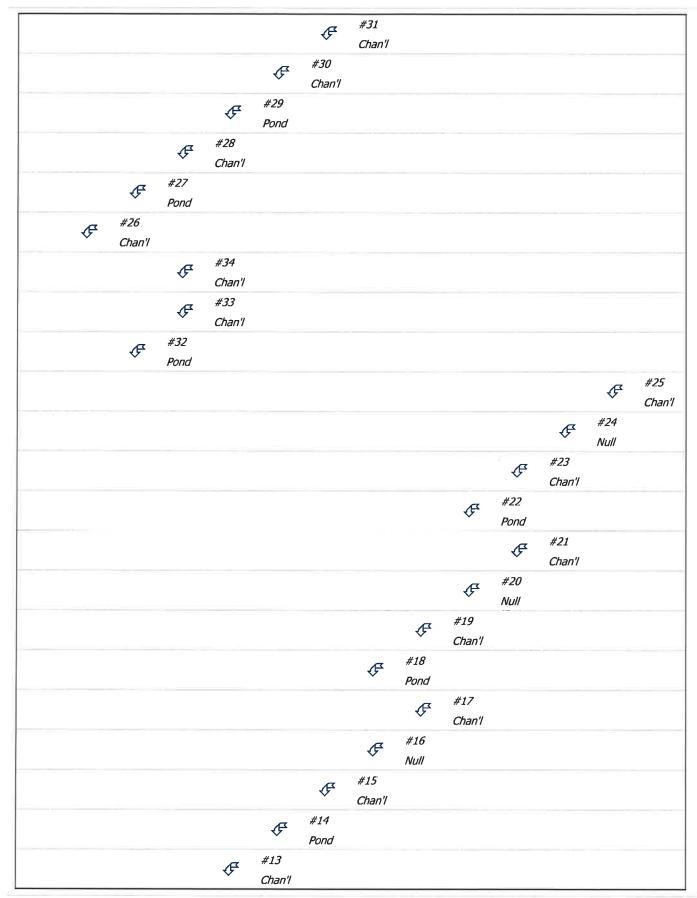
Tony Tennyson

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	10 yr - 24 hr
Rainfall Depth:	1.800 inches

Particle Size Distribution:


Size (mm)	Colowyo Particle Size
4.7500	100.000%
0.0750	73.000%
0.0400	33.000%
0.0010	20.000%

Structure Networking:

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Null	#1	==>	End	0.000	0.000	Null Below Section 25 Pond
Pond	#2	==>	#1	0.000	0.000	Section 25 Pond
Channel	#3	==>	#2	0.000	0.000	Little Collom Gulch Natural Channel
Null	#4	==>	#3	0.000	0.000	Null at Confluence with D-3 Ditch
Channel	#5	==>	#4	0.000	0.000	D-3 Ditch
Channel	#6	==>	#3	0.000	0.000	Little Collom Gulch 0+00 to LCG-1
Null	#7	==>	#6	0.000	0.000	Null at Confluence Lower Terrace Ditch
Channel	#8	==>	#7	0.000	0.000	Lower Terrace Ditch
Null	#10	==>	#6	0.000	0.000	Null at Confluence Upper Terrace Ditch
Channel	#11	==>	#10	0.000	0.000	Upper Terrace Ditch
Pond	#12	==>	#6	0.000	0.000	LCG-1 Stockpond
Channel	#13	==>	#12	0.000	0.000	Little Collom Gulch LCG-1 to LCG-2
Pond	#14	==>	#13	0.000	0.000	LCG-2 Stockpond
Channel	#15	==>	#14	0.000	0.000	Little Collom Gulch LCG-2 to LCG-3
Nuli	#16	==>	#15	0.000	0.000	Null at Confluence with Sage Draw
Channel	#17	==>	#16	0.000	0.000	Sage Draw
Pond	#18	==>	#15	0.000	0.000	LCG-3 Stockpond
Channel	#19	==>	#18	0.000	0.000	Little Collom Gulch LCG-3 to LCG-4
Null	#20	==>	#19	0.000	0.000	Null at Confluence with Grouse Draw
Channel	#21	==>	#20	0.000	0.000	Grouse Draw
Pond	#22	==>	#19	0.000	0.000	LCG-4 Stockpond
Channel	#23	==>	#22	0.000	0.000	Little Collom Gulch LCG-4 to 102+79
Null	#24	==>	#23	0.000	0.000	Null at Confluence with Sharpie Draw
Channel	#25	==>	#24	0.000	0.000	Sharpie Draw
Channel	#26	==>	#2	0.000	0.000	Natural Channel Middle Pond to Section 25 Pond
Pond	#27	==>	#26	0.000	0.000	Middle Pond
Channel	#28	==>	#27	0.000	0.000	Natural Channel Middle Pond to Section 36 Pond
Pond	#29	==>	#28	0.000	0.000	Section 36 Pond
Channel	#30	==>	#29	0.000	0.000	Natural Channel Section 36 Pond to Upper Bobcat Draw
Channel	#31	==>	#30	0.000	0.000	Upper Bobcat Draw 0+00 to 21+33
Pond	#32	==>	#3	0.000	0.000	Coal Stockpile Pond
Channel	#33	==>	#32	0.000	0.000	D-5 Ditch
Channel	#34	==>	#32	0.000	0.000	D-7 Ditch

Printed 04-27-2022

Convright 1998 -2010 Pamela I. Schwah

Filename: Section 25 10-Year 24-Hour Event Post Mining Final.sc4

Printed 04-27-2022

4

-					
			Æ	#12 Pond	
				Pona	
				Æ	#11
				~	Chan'l
			Æ	#10	
			\sim	Null	
				Æ	#8
				v	Chan'l
			Æ	#7	
			45	Null	
		æ	#6		
		v	Chan'l		
			Æ	#5	
			v	Chan'l	
		Æ	#4		
		₹¢	Null		
	Æ	#3			
		Chan'l			
F	#2				
	Pond				
#1					
Null					

right 1998 -2010 Pamela I. Schwah

Immediate Total Total Peak Peak Peak Contributing Contributing Runoff Sediment Sediment Settleable 24VW Discharge Area Area Volume Conc. Conc. (tons) (ml/l)(cfs) (ac) (ac) (ac-ft) (mg/l)(ml/l)#31 163.300 163.300 22.75 2.66 168.5 94,141 47.61 22.99 #30 24.800 188.100 23.20 2.82 170.8 92,571 46.90 22.04 In 23.20 2.82 170.8 92,571 46.90 22.04 #29 0.000 188.100 Out 8.95 2.81 45.9 14,013 0.19 0.17 #28 19.600 207.700 8.95 2.81 45.9 14,008 0.19 0.17 In 8.95 2.81 45.9 14,008 0.19 0.17 #27 0.000 207.700 Out 3.55 2.79 36.7 11,320 0.00 0.00 #26 75.400 283.100 3.55 2.79 36.7 11,316 0.00 0.00 #34 69.600 69.600 8.10 1.43 5.3 4,997 2.05 1.11 #33 96.600 96.600 28.17 2.77 190.1 102,973 55.10 26.27 In 30.61 4.20 195.4 92,488 49.18 17.80 #32 0.000 166.200 Out 0.00 0.00 195.4 0 0.00 0.00 #25 22.900 22.900 2.33 0.17 4.0 41,824 23.84 9.82 #24 0.000 22.900 2.33 23.84 9.82 0.17 4.0 41,824 #23 204.600 227.500 11.80 1.09 22.7 45,468 25.88 8.64 In 11.80 1.09 22.7 45,468 25.88 8.64 #22 0.000 227.500 Out 0.00 0.00 22.7 0 0.00 0.00 #21 44.200 44.200 13.21 0.96 29.0 53,065 30.25 12.48 #20 0.000 44.200 13.21 0.96 29.0 53,065 30.25 12.48 #19 132.800 404.500 22.50 2.59 82.4 26.64 10.25 43,600 In 22.50 2.59 82.4 43,600 26.64 10.25 #18 0.000 404.500 Out 0.76 0.00 0.51 0.0 0 0.00 #17 163.400 163.400 0.78 0.54 0.4 718 0.36 0.30 #16 0.000 163.400 0.78 0.54 0.4 718 0.30 0.36 #15 162.100 730.000 17.63 29.1 3.45 19,088 9.09 3.17 In 17.63 19,088 3.45 29.1 9.09 3.17 #14 0.000 730.000 Out 1.76 0.0 0 1.37 0.00 0.00 109.300 #13 839.300 19.81 3.56 337.2 324,745 184.29 45.14 In 19.81 3.56 337.2 324,745 184.29 45.14 #12 0.000 839.300 Out 1.30 0.00 1.45 0.0 0 0.00 37.000 #11 37.000 3.40 0.35 14.2 89,272 50.87 16.87 #10 0.000 37.000 3.40 0.35 14.2 50.87 16.87 89,272 **#8** 14.500 14.500 1.75 0.16 10.3 123,862 70.58 25.71 #7 0.000 14.500 1.75 0.16 10.3 123,862 70.58 25.71 #6 15.300 906.100 12.47 2.49 125.6 204,953 38.50 116.81 #5 14.800 14.800 0.02 0.01 2.37 0.1 4,152 1.57 #4 0.000 14.800 0.02 2.37

0.01

0.1

4,152

Structure Summary:

Filename: Section 25 10-Year 24-Hour Event Post Mining Final sc4

Printed 04-27-2022

1.57

		Immediate Contributing Area (ac)	Total Contributing Area (ac)	Peak Discharge (cfs)	Total Runoff Volume (ac-ft)	Sediment (tons)	Peak Sediment Conc. (mg/l)	Peak Settleable Conc. (ml/l)	24VW (ml/l)
#3		196.500	1,283.600	12.47	2.59	321.1	204,953	145.50	44.4
#2	In	0.000	1,566.700	12.49	5.39	357.8	204,680	130.40	15.0
# Z	Out	0.000	1,300.700	1.42	2.83	7.7	2,236	0.00	0.00
#1		0.000	1,566.700	1.42	2.83	7.7	2,235	0.00	0.0

 \mathcal{X}

Particle Size Distribution(s) at Each Structure

Structure #31 (Upper Bobcat Draw 0+00 to 21+33):

Size (mm)	In/Out
4.7500	100.000%
0.0750	93.417%
0.0400	42.229%
0.0010	25.594%

Structure #30 (Natural Channel Section 36 Pond to Upper Bobcat Draw):

Size (mm)	In/Out
4.7500	100.000%
0.0750	93.145%
0.0400	42.107%
0.0010	25.519%

Structure #29 (Section 36 Pond):

Size (mm)	In	Out
4.7500	100.000%	100.000%
0.0750	93.145%	100.000%
0.0400	42.107%	100.000%
0.0010	25.519%	94.918%

Structure #28 (Natural Channel Middle Pond to Section 36 Pond):

In/Out
100.000%
100.000%
100.000%
94.918%

Sti	ructure ;	#27 (Midd	dle Pond)
	Size (mm)	In	Out
ſ	4.7500	100.000%	100.000%
	0.0750	100.000%	100.000%
	0.0400	100.000%	100.000%
	0.0010	94.918%	100.000%

Structure #26 (Natural Channel Middle Pond to Section 25 Pond):

	and a second
Size (mm)	In/Out
4.7500	100.000%
0.0750	100.000%
0.0400	100.000%
0.0010	100.000%

Structure #34 (D-7 Ditch):

Size (mm)	In/Out
4.7500	100.000%
0.0750	100.000%
0.0400	55.949%
0.0010	33.908%

Structure #33 (D-5 Ditch):

Size (mm)	In/Out
4.7500	100.000%
0.0750	84.067%
0.0400	38.003%
0.0010	23.032%

Structure #32 (Coal Stockpile Pond):

Size (mm)	In	Out
4.7500 100.000% 0.00		0.000%
0.0750	84.496%	0.000%
0.0400	38.486%	0.000%
0.0010	23.325%	0.000%

 	11 23	(Sinal pic	-
S	ize (mm)	In/Out	
	4.7500	100.000%	
	0.0750	73.000%	
	0.0400	33.000%	
	0.0010	20.000%	

Structure #25 (Sharpie Draw):

Structure #24 (Null at Confluence with Sharpie Draw):

Size (mm)	In/Out
4.7500	100.000%
0.0750	73.000%
0.0400	33.000%
0.0010	20.000%

Structure #23 (Little Collom Gulch LCG-4 to 102+79):

	Size (mm)	In/Out
ſ	4.7500	100.000%
	0.0750	73.261%
	0.0400	33.118%
	0.0010	20.071%

Structure #22 (LCG-4 Stockpond):

Size (mm)	In	Out
4.7500	100.000%	0.000%
0.0750	73.261%	0.000%
0.0400	33.118%	0.000%
0.0010	20.071%	0.000%

Structure #21 (Grouse Draw):

Size (mm)	In/Out
4.7500	100.000%
0.0750	73.000%
0.0400	33.000%
0.0010	20.000%

Structure #20 (Null at Confluence with Grouse Draw):

Size (mm)	In/Out
4.7500	100.000%
0.0750	73.000%
0.0400	33.000%
0.0010	20.000%

Structure #19 (Little Collom Gulch LCG-3 to LCG-4):

Size (mm)	In/Out
4.7500	72.392%
0.0750	59.958%
0.0400	27.104%
0.0010	16.427%

Structure #18 (LCG-3 Stockpond):

Size (mm)	In	Out
4.7500	72.392%	100.000%
0.0750	59.958%	100.000%
0.0400	27.104%	100.000%
0.0010	16.427%	100.000%

Structure #17 (Sage Draw):

Size (mm)	In/Out
4.7500	100.000%
0.0750	94.202%
0.0400	42.585%
0.0010	25.809%

Structure #16 (Null at Confluence with Sage Draw):

Size (mm)	In/Out
4.7500	100.000%
0.0750	94.202%
0.0400	42.585%
0.0010	25.809%

Structure #15 (Little Collom Gulch LCG-2 to LCG-3):

Size (mm)	In/Out
4.7500	100.000%
0.0750	99.882%
0.0400	46.474%
0.0010	28.166%

Structure #14 (LCG-2 Stockpond):

Size (mm)	In	Out
4.7500	100.000%	100.000%
0.0750	99.882%	100.000%
0.0400	46.474%	100.000%
0.0010	28.166%	100.000%

Structure #13 (Little Collom Gulch LCG-1 to LCG-2):

Size (mm)	In/Out
4.7500	100.000%
0.0750	73.704%
0.0400	33.354%
0.0010	20.215%

Structure #12 (LCG-1 Stockpond):

Size (mm)	In	Out
4.7500	100.000%	100.000%
0.0750	73.704%	100.000%
0.0400	33.354%	100.000%
0.0010	20.215%	100.000%

Structure #11 (Upper Terrace Ditch):

Size (mm)	In/Out
4.7500	100.000%
0.0750	73.044%
0.0400	33.020%
0.0010	20.012%

Structure #10 (Null at Confluence Upper Terrace Ditch):

Size (mm)	In/Out
4.7500	100.000%
0.0750	73.044%
0.0400	33.020%
0.0010	20.012%

Structure #8 (Lower Terrace Ditch):

Size (mm)	In/Out
4.7500	100.000%
0.0750	73.037%
0.0400	33.017%
0.0010	20.010%

Structure #7 (Null at Confluence Lower Terrace Ditch):

Size (mm)	In/Out
4.7500	100.000%
0.0750	73.037%
0.0400	33.017%
0.0010	20.010%

Structure #6 (Little Collom Gulch 0+00 to LCG-1):

Size (mm)	In/Out
4.7500	100.000%
0.0750	73.008%
0.0400	33.004%
0.0010	20.002%

Structure #5 (D-3 Ditch):

Size (mm)	In/Out
4.7500	100.000%
0.0750	73.000%
0.0400	33.000%
0.0010	20.000%

Structure #4 (Null at Confluence with D-3 Ditch):

Size (mm)	In/Out
4.7500	100.000%
0.0750	73.000%
0.0400	33.000%
0.0010	20.000%

Structure #3 (Little Collom Gulch Natural Channel):

Size (mm)	In/Out
4.7500	39.155%
0.0750	28.589%
0.0400	12.924%
0.0010	7.833%

Structure #2 (Section 25 Pond):

Size (mm)	In	Out
4.7500	45.395%	100.000%
0.0750	35.913%	100.000%
0.0400	21.854%	100.000%
0.0010	17.285%	100.000%

Structure #1:

Size (mm)	In/Out
4.7500	100.000%
0.0750	100.000%
0.0400	100.000%
0.0010	100.000%

Structure Detail:

Structure #31 (Riprap Channel)

Upper Bobcat Draw 0+00 to 21+33

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Slope (%) Ratio		Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
10.00	3.0:1	3.0:1	8.3	3.76		

Riprap Channel Results:

Simons/OSM Method - Steep Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	22.75 cfs	
Depth:	0.24 ft	4.00 ft
Top Width:	11.43 ft	33.99 ft
Velocity*:		
X-Section Area:	2.55 sq ft	
Hydraulic Radius:	0.222 ft	
Froude Number*:		
Manning's n*:		
Dmin:	2.00 in	
D50:	6.00 in	
Dmax:	7.50 in	

Velocity and Manning's n calculations may not apply for this method.

Structure #30 (Vegetated Channel)

Natural Channel Section 36 Pond to Upper Bobcat Draw

Trapezoidal Vegetated Channel Inputs:

Material: Tall fescue

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Retardance Classes	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)	Limiting Velocity (fps)
5.00	2.0:1	2.0:1	12.9	D, B				5.0

Vegetated Channel Results:

Convidint 1998 -2010 Pamela I. Schwah

	Stability	Stability	Capacity	Capacity
	Class D w/o Freeboard	Class D w/ Freeboard	Class B w/o Freeboard	Class B w/ Freeboard
Design Discharge:	23.20 cfs		23.20 cfs	
Depth:	0.52 ft		0.81 ft	
Top Width:	7.08 ft		8.24 ft	
Velocity:	7.40 fps		4.33 fps	
X-Section Area:	3.13 sq ft		5.35 sq ft	
Hydraulic Radius:	0.428 ft		0.621 ft	
Froude Number:	1.96		0.95	
Roughness Coefficient:	0.0410		0.0898	

Structure #29 (Pond)

Section 36 Pond

Pond Inputs:

Initial Pool Elev:	7,116.00 ft
Initial Pool:	0.97 ac-ft
*Sediment Storage:	0.00 ac-ft
Dead Space:	0.00 %
and a second s	

*No sediment capacity defined

Perforated Riser

Riser Diameter (in)	Riser Height (ft)	Barrel Diameter (in)	Barrel Length (ft)	Barrel Slope (%)	Manning's n	Spillway Elev (ft)	Number of Holes per Elev
18.00	11.00	18.00	170.00	3.00	0.0150	7,118.00	2

Emergency Spillway

Spillway Elev	Crest Length	Left	Right	Bottom
	(ft)	Sideslope	Sideslope	Width (ft)
7,125.00	46.00	3.00:1	3.00:1	30.00

Pond Results:

Peak Elevation:	7,119.12 ft
H'graph Detention Time:	3.35 hrs
Pond Model:	CSTRS
Dewater Time:	0.95 days
Trap Efficiency:	73.11 %

Dewatering time is calculated from peak stage to lowest spillway

levation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
7,105.00	0.000	0.000	0.000		Top of Sed. Storage
7,106.00	0.010	0.003	0.000		
7,107.00	0.025	0.020	0.000		
7,108.00	0.038	0.052	0.000		
7,109.00	0.053	0.097	0.000		
7,110.00	0.075	0.161	0.000		
7,111.00	0.093	0.244	0.000		
7,112.00	0.112	0.347	0.000		
7,113.00	0.132	0.469	0.000		
7,114.00	0.154	0.611	0.000		
7,115.00	0.178	0.777	0.000		
7,116.00	0.205	0.969	0.000		Low hole SPW #1
7,117.00	0.235	1.188	0.473	5.63*	
7,118.00	0.267	1.439	0.669	5.40	Spillway #1
7,119.00	0.301	1.723	8.509	11.50	
7,119.12	0.308	1.763	8.948	0.25	Peak Stage
7,120.00	0.340	2.043	12.033		
7,121.00	0.387	2.407	14.738		
7,122.00	0.433	2.816	17.018		
7,123.00	0.485	3.275	19.026		
7,124.00	0.538	3.786	20.842		
7,125.00	0.599	4.355	22.512		Spillway #2
7,126.00	0.664	4.986	82.907		
7,127.00	0.732	5.684	248.131		
7,128.00	0.813	6.456	490.139		
7,129.00	0.915	7.319	829.643		
7,130.00	1.043	8.298	1,243.042		

Elevation-Capacity-Discharge Table

*Designates time(s) to dewater have been extrapolated beyond the 50 hour hydrograph limit.

Detailed Discharge Table

			Combined
Elevation (ft)	Perf. Riser (cfs)	Emergency	Total
		Spillway (cfs)	Discharge
			(cfs)
7,105.00	0.000	0.000	0.000
7,106.00	0.000	0.000	0.000
7,107.00	0.000	0.000	0.000
7,108.00	0.000	0.000	0.000

			Combined
Elevation	Perf. Riser (cfs)	Emergency	Total
(ft)		Spillway (cfs)	Discharge
			(cfs)
7,109.00	0.000	0.000	0.000
7,110.00	0.000	0.000	0.000
7,111.00	0.000	0.000	0.000
7,112.00	0.000	0.000	0.000
7,113.00	0.000	0.000	0.000
7,114.00	0.000	0.000	0.000
7,115.00	0.000	0.000	0.000
7,116.00	3.00>0.000	0.000	0.000
7,117.00	0.473	0.000	0.473
7,118.00	0.669	0.000	0.669
7,119.00	8.509	0.000	8.509
7,120.00	12.033	0.000	12.033
7,121.00	14.738	0.000	14.738
7,122.00	17.018	0.000	17.018
7,123.00	19.026	0.000	19.026
7,124.00	20.842	0.000	20.842
7,125.00	22.512	0.000	22.512
7,126.00	24.066	58.841	82.907
7,127.00	25.526	222.604	248.131
7,128.00	26.907	463.232	490.139
7,129.00	28.220	801.423	829.643
7,130.00	29.205	1,213.837	1,243.042

Structure #28 (Vegetated Channel)

Natural Channel Middle Pond to Section 36 Pond

Trapezoidal Vegetated Channel Inputs:

Material: Tall fescue

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Retardance Classes	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)	Limiting Velocity (fps)
5.00	2.0:1	2.0:1	6.4	D, B				6.0

Vegetated Channel Results:

	Stability	Stability	Capacity	Capacity
	Class D w/o Freeboard	Class D w/ Freeboard	Class B w/o Freeboard	Class B w/ Freeboard
Design Discharge:	8.95 cfs		8.95 cfs	
Depth:	0.43 ft		0.76 ft	

Filename: Section 25 10-Year 24-Hour Event Post Mining Final.sc4

SEDCAD 4 for Windows Convright 1998 -2010 Parnela L Schwah

	Stability	Stability	Capacity	Capacity
	Class D w/o Freeboard	Class D w/ Freeboard	Class B w/o Freeboard	Class B w/ Freeboard
Top Width:	6.72 ft		8.03 ft	
Velocity:	3.55 fps		1.81 fps	
X-Section Area:	2.52 sq ft		4.94 sq ft	
Hydraulic Radius:	0.364 ft		0.589 ft	
Froude Number:	1.02		0.41	
Roughness Coefficient:	0.0539		0.1461	

Structure #27 (Pond)

Middle Pond

Pond Inputs:

Initial Pool Elev:	7,057.00 ft
Initial Pool:	0.53 ac-ft
*Sediment Storage:	0.00 ac-ft
Dead Space:	0.00 %

*No sediment capacity defined

Perforated Riser

Riser Diameter (in)	Riser Height (ft)	Barrel Diameter (in)	Barrel Length (ft)	Barrel Slope (%)	Manning's n	Spillway Elev (ft)	Number of Holes per Elev
18.00	10.00	18.00	198.00	5.00	0.0150	7,061.00	2

Emergency Spillway

Spillway Elev	Crest Length (ft)	Left Sideslope	Right Sideslope	Bottom Width (ft)
7,066.00	38.00	3.00:1	3.00:1	24.00

Pond Results:

Peak Elevation:	7,061.34 ft
H'graph Detention Time:	5.92 hrs
Pond Model:	CSTRS
Dewater Time:	1.27 days
Trap Efficiency:	20.09 %

Dewatering time is calculated from peak stage to lowest spillway

Elevation-Capacity-Discharge Table

Convisiont 1998 -2010 Pamela I. Schwah

levation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time	
7,048.00	0.000	0.000	0.000	(hrs)	Top of Sed. Storage
					TOP OF Sed. Storage
7,049.00	0.009	0.003	0.000		
7,050.00	0.021	0.018	0.000		
7,051.00	0.035	0.045	0.000		
7,052.00	0.050	0.088	0.000		
7,053.00	0.063	0.144	0.000		
7,054.00	0.078	0.214	0.000		
7,055.00	0.095	0.301	0.000		
7,056.00	0.113	0.405	0.000		
7,057.00	0.132	0.527	0.000		Low hole SPW #1
7,058.00	0.158	0.672	0.473	3.71*	
7,059.00	0.183	0.842	0.669	4.40	
7,060.00	0.210	1.038	0.819	4.60	
7,061.00	0.248	1.267	0.945	7.55	Spillway #1
7,061.34	0.260	1.359	3.554	10.15	Peak Stage
7,062.00	0.284	1.533	8.509		
7,063.00	0.327	1.838	12.033		
7,064.00	0.371	2.187	14.738		
7,065.00	0.417	2.581	17.018		
7,066.00	0.465	3.022	19.026		Spillway #2
7,067.00	0.522	3.515	71.605		
7,068.00	0.576	4.064	211.288		
7,069.00	0.628	4.665	418.987		
7,070.00	0.685	5.322	716.430		
7,071.00	0.760	6.044	1,074.454		

*Designates time(s) to dewater have been extrapolated beyond the 50 hour hydrograph limit.

Detailed Discharge Table

			Combined
Elevation (ft)	Perf. Riser (cfs)	Emergency	Total
		Spillway (cfs)	Discharge
			(cfs)
7,048.00	0.000	0.000	0.000
7,049.00	0.000	0.000	0.000
7,050.00	0.000	0.000	0.000
7,051.00	0.000	0.000	0.000
7,052.00	0.000	0.000	0.000
7,053.00	0.000	0.000	0.000
7,054.00	0.000	0.000	0.000

Convright 1998 -2010 Pamela I. Schwah

			Combined
Elevation	Perf. Riser (cfs)	Emergency	Total
(ft)		Spillway (cfs)	Discharge
			(cfs)
7,055.00	0.000	0.000	0.000
7,056.00	0.000	0.000	0.000
7,057.00	3.00>0.000	0.000	0.000
7,058.00	0.473	0.000	0.473
7,059.00	0.669	0.000	0.669
7,060.00	0.819	0.000	0.819
7,061.00	0.945	0.000	0.945
7,062.00	8.509	0.000	8.509
7,063.00	12.033	0.000	12.033
7,064.00	14.738	0.000	14.738
7,065.00	17.018	0.000	17.018
7,066.00	19.026	0.000	19.026
7,067.00	20.842	50.763	71.605
7,068.00	22.512	188.776	211.288
7,069.00	24.066	394.921	418.987
7,070.00	25.526	690.903	716.430
7,071.00	26.907	1,047.547	1,074.454

Structure #26 (Vegetated Channel)

Natural Channel Middle Pond to Section 25 Pond

Trapezoidal Vegetated Channel Inputs:

Material: Tall fescue

ļ	Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Retardance Classes	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)	Limiting Velocity (fps)
	5.00	2.0:1	2.0:1	6.4	D, B				6.0

Vegetated Channel Results:

	Stability	Stability	Capacity	Capacity
	Class D w/o Freeboard	Class D w/ Freeboard	Class B w/o Freeboard	Class B w, Freeboard
Design Discharge:	3.55 cfs		3.55 cfs	
Depth:	0.29 ft		0.57 ft	
Top Width:	6.16 ft		7.30 ft	
Velocity:	2.19 fps		1.01 fps	
X-Section Area:	1.62 sq ft		3.53 sq ft	
Hydraulic Radius:	0.258 ft		0.466 ft	
Froude Number:	0.75		0.26	

Convright 1998 -2010 Pamela I. Schwah

	Stability	Stability	Capacity	Capacity
	Class D w/o Freeboard	Class D w/ Freeboard	Class B w/o Freeboard	Class B w/ Freeboard
Roughness Coefficient:	0.0694		0.2250	

Structure #34 (Vegetated Channel)

D-7 Ditch

Trapezoidal Vegetated Channel Inputs:

Materia	: 1	Tall	fescue

	Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Retardance Classes	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)	Limiting Velocity (fps)
Į	5.00	2.0:1	2.0:1	6.0	D, B	2.25			6.0

Vegetated Channel Results:

	Stability	Stability	Capacity	Capacity
	Class D w/o Freeboard	Class D w/ Freeboard	Class B w/o Freeboard	Class B w/ Freeboard
Design Discharge:	8.10 cfs		8.10 cfs	
Depth:	0.42 ft	2.67 ft	0.75 ft	3.00 ft
Top Width:	6.68 ft	15.68 ft	8.00 ft	17.00 ft
Velocity:	3.30 fps		1.66 fps	
X-Section Area	2.45 sq ft		4.88 sq ft	
Hydraulic Radius:	0.357 ft		0.584 ft	
Froude Number:	0.96		0.37	
Roughness Coefficient:	0.0555		0.1537	

Structure #33 (Riprap Channel)

D-5 Ditch

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
12.00	2.0:1	2.0:1	2.0	3.69		

Riprap Channel Results:

Simons/OSM Method - Steep Slope Design

Convright 1998 -2010 Pamela I. Schwah

	w/o Freeboard	w/ Freeboard
Design Discharge:	28.17 cfs	
Depth:	0.31 ft	4.00 ft
Top Width:	13.22 ft	27.98 ft
Velocity*:		
X-Section Area:	3.85 sq ft	
Hydraulic Radius:	0.288 ft	
Froude Number*:		
Manning's n*:		
Dmin:	2.00 in	
D50;	6.00 in	
Dmax:	7.50 in	

Velocity and Manning's n calculations may not apply for this method.

Structure #32 (Pond)

Coal Stockpile Pond

Pond Inputs:

Initial Pool Elev	v: 7,213.00 ft
Initial Poo	l: 2.70 ac-ft
*Sediment Storage	e: 0.00 ac-ft
Dead Space	e: 20.00 %

*No sediment capacity defined

Emergency Spillway

	Spillway Elev	Crest Length (ft)	Left Sideslope	Right Sideslope	Bottom Width (ft)
j	7,217.00	25.00	3.00:1	3.00:1	20.00

Pond Results:

	Peak Elevation:	7,216.58 ft
l l	Hgraph Detention Time:	0.00 hrs
	Pond Model:	CSTRS
	Dewater Time:	0.00 days
	Trap Efficiency:	0.00 %

Dewatering time is calculated from peak stage to lowest spillway

Elevation-Capacity-Discharge Table

Convright 1998 -2010 Pamela I. Schwah

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
7,210.00	0.779	0.000	0.000		Top of Sed. Storage
7,211.00	0.860	0.819	0.000		
7,212.00	0.928	1.713	0.000		
7,213.00	1.049	2.701	0.000		
7,214.00	1.090	3.770	0.000		
7,215.00	1.175	4.903	0.000		
7,216.00	1.268	6.124	0.000		
7,216.58	1.345	6.896	0.000	0.00	Peak Stage
7,217.00	1.390	7.452	0.000		Spillway #1
7,218.00	1.513	8.903	47.313		
7,219.00	1.632	10.475	170.230		

Detailed Discharge Table

		Combined
Elevation	Emergency	Total
(ft)	Spillway (cfs)	Discharge
		(cfs)
7,210.00	0.000	0.000
7,211.00	0.000	0.000
7,212.00	0.000	0.000
7,213.00	0.000	0.000
7,214.00	0.000	0.000
7,215.00	0.000	0.000
7,216.00	0.000	0.000
7,217.00	0.000	0.000
7,218.00	47.313	47.313
7,219.00	170.230	170.230

Structure #25 (Riprap Channel)

Sharpie Draw

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
10.00	3.0:1	3.0:1	22.0	2.95		

Riprap Channel Results:

w/o Freeboard w/ Freeboard Design Discharge: 2.33 cfs Depth: 0.03 ft 2.98 ft Top Width: 27.87 ft 10.17 ft Velocity*: X-Section Area: 0.28 sq ft Hydraulic Radius: 0.028 ft Froude Number*: Manning's n*: 2.00 in Dmin: D50: 6.00 in Dmax: 7.50 in

Simons/OSM Method - Steep Slope Design

Velocity and Manning's n calculations may not apply for this method.

Structure #24 (Null)

Null at Confluence with Sharpie Draw

Structure #23 (Riprap Channel)

Little Collom Gulch LCG-4 to 102+79

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
10.00	3.0:1	3.0:1	7.4	3.80		

Riprap Channel Results:

Simons/OSM Method - Steep Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	11.80 cfs	
Depth:	0.14 ft	3.94 ft
Top Width:	10.87 ft	33.67 ft
Velocity*:		
X-Section Area:	1.51 sq ft	
Hydraulic Radius:	0.139 ft	
Froude Number*:		
Manning's n*:		
Dmin:	1.00 in	

Convright 1998 -2010 Pamela + Schwah

	w/o Freeboard	w/ Freeboard
D50:	3.00 in	
Dmax:	3.75 in	

Velocity and Manning's n calculations may not apply for this method.

Structure #22 (Pond)

LCG-4 Stockpond

Pond Inputs:

	Initial Pool Elev:	102.00 ft
	Initial Pool:	0.34 ac-ft
*S	ediment Storage:	0.00 ac-ft
	Dead Space:	0.00 %

*No sediment capacity defined

Emergency Spillway

Spi	illway Elev	Crest Length (ft)	Left Sideslope	Right Sideslope	Bottom Width (ft)
	107.00	20.00	2.00:1	2.00:1	15.00

Straight Pipe

Barrel	Barrel	Damal	Manuturala	Catllerer	Entrance	Tailwater
Diameter	Length	Barrel	Manning's	Spillway	Loss	Depth
(in)	(ft)	Slope (%)	11	Elev (ft)	Coefficient	(ft)
12.00	100.00	2.00	0.0150	105.00	0.90	0.00

Pond Results:

Peak Elevation:	103.71 ft
H'graph Detention Time:	0.00 hrs
Pond Model:	CSTRS
Dewater Time:	0.00 days
Trap Efficiency:	0.00 %

Dewatering time is calculated from peak stage to lowest spillway

Elevation-Capacity-Discharge Table

26

Convright 1998 -2010 Pamela I. Schwah

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
100.00	0.016	0.000	0.000		Top of Sed. Storage
101.00	0.096	0.050	0.000		
102.00	0.539	0.338	0.000		
103.00	0.654	0.933	0.000		
103.71	0.707	1.428	0.000	0.00	Peak Stage
104.00	0.735	1.628	0.000		
105.00	0.843	2.416	0.000		Spillway #2
106.00	0.872	3.273	2.094		
107.00	0.872	4.145	4.414		Spillway #1
108.00	0.872	5.017	42.121		

Detailed Discharge Table

			Combined	
Elevation	Emergency	Straight Pipe	Total	
(ft)	Spillway (cfs)	(cfs)	Discharge	
			(cfs)	
100.00	0.000	0.000	0.000	
101.00	0.000	0.000	0.000	
102.00	0.000	0.000	0.000	
103.00	0.000	0.000	0.000	
104.00	0.000	0.000	0.000	
105.00	0.000	0.000	0.000	
106.00	0.000	(3)>2.094	2.094	
107.00	0.000	(5)>4.414	4.414	
108.00	36.939	(6)>5.182	42.121	

Structure #21 (Riprap Channel)

Grouse Draw

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
10.00	3.0:1	3.0:1	16.8	3.90		

Riprap Channel Results:

Simons/OSM Method - Steep Slope Design

Convright 1998 -2010 Pamala | Schwah

	w/o Freeboard	w/ Freeboard
Design Discharge:	13.21 cfs	
Depth:	0.13 ft	4.03 ft
Top Width:	10.76 ft	34.16 ft
Velocity*:		
X-Section Area:	1.32 sq ft	
Hydraulic Radius:	0.122 ft	
Froude Number*:		
Manning's n*:		
Dmin:	2.00 in	
D50:	6.00 in	
Dmax:	7.50 in	

Velocity and Manning's n calculations may not apply for this method.

Structure #20 (Null)

Null at Confluence with Grouse Draw

Structure #19 (Riprap Channel)

Little Collom Gulch LCG-3 to LCG-4

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
10.00	3.0:1	3.0:1	7.8	3.76		

Riprap Channel Results:

Simons/OSM Method - Steep Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	22.50 cfs	
Depth:	0.24 ft	4.00 ft
Top Width:	11.42 ft	33.98 ft
Velocity*:		
X-Section Area:	2.53 sq ft	
Hydraulic Radius:	0.220 ft	
Froude Number*:		
Manning's n*:		
Dmin:	2.00 in	
D50:	6.00 in	
Dmax:	7.50 in	

Velocity and Manning's n calculations may not apply for this method.

Structure #18 (Pond)

LCG-3 Stockpond

Pond Inputs:

Initial Pool Elev:	102.00 ft
Initial Pool:	0.34 ac-ft
*Sediment Storage:	0.00 ac-ft
Dead Space:	0.00 %

*No sediment capacity defined

Emergency Spillway

Spillway Elev	Crest Length (ft)	Left Sideslope	Right Sideslope	Bottom Width (ft)
107.00	20.00	2.00:1	2.00:1	15.00

Straight Pipe

Barrel	Barrel	Parrol	Manningla	Coillean	Entrance	Tailwater
Diameter	Length	Barrel	Manning's	Spillway	Loss	Depth
(in)	(ft)	Slope (%)	n	Elev (ft)	Coefficient	(ft)
12.00	100.00	2.00	0.0150	105.00	0.90	0.00

Pond Results:

Peak Elevation:	105.36 ft
H'graph Detention Time:	10.91 hrs
Pond Model:	CSTRS
Dewater Time:	1.04 days
Trap Efficiency:	100.00 %

Dewatering time is calculated from peak stage to lowest spillway

Area Capacity Discharge Table

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
100.00	0.016	0.000	0.000		Top of Sed. Storage
101.00	0.096	0.050	0.000		
102.00	0.539	0.338	0.000		
103.00	0.654	0.933	0.000		

Convright 1998 -2010 Pamela I. Schwah

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
104.00	0.735	1.628	0.000		
105.00	0.843	2.416	0.000		Spillway #2
105.36	0.828	2.726	0.756	25.00	Peak Stage
106.00	0.872	3.273	2.094		
107.00	0.872	4.145	4.414		Spillway #1
108.00	0.872	5.017	42.121		

Detailed Discharge Table

			Combined
Elevation	Emergency	Straight Pipe	Total
(ft)	Spillway (cfs)	(cfs)	Discharge
			(cfs)
100.00	0.000	0.000	0.000
101.00	0.000	0.000	0.000
102.00	0.000	0.000	0.000
103.00	0.000	0.000	0.000
104.00	0.000	0.000	0.000
105.00	0.000	0.000	0.000
106.00	0.000	(3)>2.094	2.094
107.00	0.000	(5)>4.414	4.414
108.00	36.939	(6)>5.182	42.121

Structure #17 (Riprap Channel)

Sage Draw

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
5.00	3.0:1	3.0:1	2.1	2.89		

Riprap Channel Results:

Simons/OSM Method - Mild Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	0.78 cfs	
Depth:	0.11 ft	3.00 ft
Top Width:	5.68 ft	23.02 ft
Velocity:	1.29 fps	

Convright 1998 -2010 Pamela I. Schwah

	w/o Freeboard	w/ Freeboard
X-Section Area:	0.61 sq ft	
Hydraulic Radius:	0.106 ft	
Froude Number:	0.69	
Manning's n:	0.0377	
Dmin:	2.00 in	
D50:	9.00 in	
Dmax:	12.00 in	

Structure #16 (Null)

Null at Confluence with Sage Draw

Structure #15 (Riprap Channel)

Little Collom Gulch LCG-2 to LCG-3

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
10.00	3.0:1	3.0:1	4.7	3.77		

Riprap Channel Results:

Simons/OSM Method - Steep Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	17.63 cfs	
Depth:	0.19 ft	3.96 ft
Top Width:	11.17 ft	33.79 ft
Velocity*:		
X-Section Area:	2.06 sq ft	
Hydraulic Radius:	0.184 ft	
Froude Number*:		
Manning's n*:		
Dmin:	1.00 in	
D50:	3.00 in	
Dmax:	3.75 in	

Velocity and Manning's n calculations may not apply for this method.

Structure #14 (Pond)

LCG-2 Stockpond

Filename: Section 25 10-Year 24-Hour Event Post Mining Final.sc4

Pond Inputs:

 Initial Pool Elev:	102.00 ft
Initial Pool:	0.34 ac-ft
*Sediment Storage:	0.00 ac-ft
Dead Space:	0.00 %

*No sediment capacity defined

Emergency Spillway

Spillway Elev	Crest Length	Left	Right	Bottom
	(ft)	Sideslope	Sideslope	Width (ft)
107.00	30.00	2.00:1	2.00:1	20.00

Straight Pipe

Barrel Diameter (in)	Barrel Length (ft)	Barrel Slope (%)	Manning's n	Spillway Elev (ft)	Entrance Loss Coefficient	Tailwater Depth (ft)
18.00	100.00	2.00	0.0150	105.00	0.90	0.00

Pond Results:

	Peak Elevation:	105.56 ft
н	graph Detention Time:	8.64 hrs
	Pond Model:	CSTRS
	Dewater Time:	1.21 days
	Trap Efficiency:	100.00 %

Dewatering time is calculated from peak stage to lowest spillway

Elevation-Capacity-Discharge Table

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
100.00	0.016	0.000	0.000		Top of Sed. Storage
101.00	0.096	0.050	0.000		
102.00	0.539	0.338	0.000		
103.00	0.654	0.933	0.000		
104.00	0.735	1.628	0.000		
105.00	0.843	2.416	0.000		Spillway #2
105.56	0.842	2.898	1.764	25.75	Peak Stage
106.00	0.872	3.273	3.142		
107.00	0.872	4.145	8.425		Spillway #1
108.00	0.872	5.017	56.073		

*Designates time(s) to dewater have been extrapolated beyond the 50 hour hydrograph limit.

·			Combined
Elevation	Emergency	Straight Pipe	Total
(ft)	Spillway (cfs)	(cfs)	Discharge
			(cfs)
100.00	0.000	0.000	0.000
101.00	0.000	0.000	0.000
102.00	0.000	0.000	0.000
103.00	0.000	0.000	0.000
104.00	0.000	0.000	0.000
105.00	0.000	0.000	0.000
106.00	0.000	(3)>3.142	3.142
107.00	0.000	(5)>8.425	8.425
108.00	43.900	(5)>12.173	56.073

Detailed Discharge Table

Structure #13 (Riprap Channel)

Little Collom Gulch LCG-1 to LCG-2

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
10.00	3.0:1	3.0:1	4.9	3.72		

Riprap Channel Results:

Simons/OSM Method - Steep Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	19.81 cfs	
Depth:	0.21 ft	3.93 ft
Top Width:	11.28 ft	33.60 ft
Velocity*:		
X-Section Area:	2.28 sq ft	
Hydraulic Radius:	0.201 ft	
Froude Number*:		
Manning's n*:		
Dmin:	2.00 in	
D50:	6.00 in	
Dmax:	7.50 in	

Velocity and Manning's n calculations may not apply for this method.

Structure #12 (Pond)

LCG-1 Stockpond

Pond Inputs:

Initial P	ool Elev:	102.00 ft
Ini	tial Pool:	0.34 ac-ft
*Sediment	Storage:	0.00 ac-ft
Dea	d Space:	0.00 %

*No sediment capacity defined

Emergency Spillway

Spillway Elev	Crest Length	Left	Right	Bottom
	(ft)	Sideslope	Sideslope	Width (ft)
107.00	30.00	2.00:1	2.00:1	20.00

Straight Pipe

Barrel Diameter (in)	Barrel Length (ft)	Barrel Slope (%)	Manning's n	Spillway Elev (ft)	Entrance Loss Coefficient	Tailwater Depth (ft)
12.00	100.00	2.00	0.0150	105.00	0.90	0.00

Pond Results:

Peak Elevation:	105.62 ft
H'graph Detention Time:	11.33 hrs
Pond Model:	CSTRS
Dewater Time:	1.20 days
Trap Efficiency:	100.00 %

Dewatering time is calculated from peak stage to lowest spillway

Elevation-Capacity-Discharge Table

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
100.00	0.016	0.000	0.000		Top of Sed. Storage
101.00	0.096	0.050	0.000		
102.00	0.539	0.338	0.000		
103.00	0.654	0.933	0.000		

Convright 1998 -2010 Pamela I. Schwah

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
104.00	0.735	1.628	0.000		
105.00	0.843	2.416	0.000		Spillway #2
105.62	0.846	2.949	1.303	23.90	Peak Stage
106.00	0.872	3.273	2.094		
107.00	0.872	4.145	4.414		Spillway #1
108.00	0.872	5.017	49.083		

*Designates time(s) to dewater have been extrapolated beyond the 50 hour hydrograph limit.

			Combined
Elevation	Emergency	Straight Pipe	Total
(ft)	Spillway (cfs)	(cfs)	Discharge
			(cfs)
100.00	0.000	0.000	0.000
101.00	0.000	0.000	0.000
102.00	0.000	0.000	0.000
103.00	0.000	0.000	0.000
104.00	0.000	0.000	0.000
105.00	0.000	0.000	0.000
106.00	0.000	(3)>2.094	2.094
107.00	0.000	(5)>4.414	4.414
108.00	43.900	(6)>5.182	49.083

Detailed Discharge Table

Structure #11 (Vegetated Channel)

Upper Terrace Ditch

Triangular Vegetated Channel Inputs:

Material: Tall fescue

Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Retardance Classes	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)	Limiting Velocity (fps)
1.5:1	3.0:1	2.0	D, B	1.55			7.0

Vegetated Channel Results:

	Stability	Stability	Capacity	Capacity
	Class D w/o Freeboard	Class D w/ Freeboard	Class B w/o Freeboard	Class B w/ Freeboard
Design Discharge:	3.40 cfs		3.40 cfs	
Depth:	0.90 ft	2.45 ft	1.45 ft	3.00 ft

Filename: Section 25 10-Year 24-Hour Event Post Mining Final.sc4

Convright 1998 -2010 Pamala I. Schwah

	Stability	Stability	Capacity	Capacity	
	Class D w/o Freeboard	Class D w/ Freeboard	Class B w/o Freeboard	Class B w/ Freeboard	
Top Width:	4.07 ft	11.05 ft	6.53 ft	13.51 ft	
Velocity:	1.85 fps		0.72 fps		
X-Section Area:	1.84 sq ft		4.74 sq ft		
Hydraulic Radius:	0.413 ft		0.663 ft		
Froude Number:	0.48		0.15		
Roughness Coefficient:	0.0633		0.2235		

Structure #10 (Null)

Null at Confluence Upper Terrace Ditch

Structure #8 (Vegetated Channel)

Lower Terrace Ditch

Triangular Vegetated Channel Inputs:

Material: Tall fescue

Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Retardance Classes	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)	Limiting Velocity (fps)
1.5:1	3.0:1	2.0	D, B				7.0

Vegetated Channel Results:

	Stability	Stability	Capacity	Capacity		
	Class D w/o Freeboard	Class D w/ Freeboard	Class B w/o Freeboard	Class B w/ Freeboard		
Design Discharge:	1.75 cfs		1.75 cfs			
Depth:	0.74 ft 1		1.25 ft			
Top Width:	3.35 ft	3.35 ft		5.64 ft		
Velocity:	1.40 fps		0.50 fps			
X-Section Area:	1.25 sq ft		3.54 sq ft			
Hydraulic Radius:	0.340 ft		0.573 ft			
Froude Number:	0.41 0.11		0.11			
Roughness Coefficient:	0.0731		0.2934			

Structure #7 (Null)

Null at Confluence Lower Terrace Ditch

Structure #6 (Riprap Channel)

Little Collom Gulch 0+00 to LCG-1

Filename: Section 25 10-Year 24-Hour Event Post Mining Final.sc4

Convright 1998 -2010 Pamela I. Schwah

Trapezoidal Riprap Channel Inputs:

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
15.00	3.0:1	3.0:1	16.6	3.94		

Material: Riprap

Riprap Channel Results:

	w/o Freeboard	w/ Freeboard
Design Discharge:	12.47 cfs	
Depth:	0.06 ft	4.00 ft
Top Width:	15.39 ft	39.03 ft
Velocity*:		
X-Section Area:	0.99 sq ft	
Hydraulic Radius:	0.064 ft	
Froude Number*:		
Manning's n*:		
Dmin:	2.00 in	
D50:	6.00 in	
Dmax:	7.50 in	

Simons/OSM Method - Steep Slope Design

Velocity and Manning's n calculations may not apply for this method.

Structure #5 (Riprap Channel)

D-3 Ditch

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
12.00	2.0:1	2.0:1	16.1	2.98		

Riprap Channel Results:

Simons/OSM Method - Mild Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	0.02 cfs	
Depth:	0.02 ft	3.00 ft
Top Width:	12.07 ft	23.99 ft

	w/o Freeboard	w/ Freeboard
Velocity:	0.11 fps	
X-Section Area:	0.21 sq ft	
Hydraulic Radius:	0.017 ft	
Froude Number:	0.15	
Manning's n:	0.0322	
Dmin:	2.00 in	
D50:	6.00 in	
Dmax:	9.00 in	

Structure #4 (Null)

Null at Confluence with D-3 Ditch

Structure #3 (Vegetated Channel)

Little Collom Gulch Natural Channel

Trapezoidal Vegetated Channel Inputs:

Material: Tall fescue

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Retardance Classes	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)	Limiting Velocity (fps)
5.00	2.0:1	2.0:1	5.7	D, B				6.0

Vegetated Channel Results:

	Stability	Stability	Capacity	Capacity
	Class D w/o Freeboard	Class D w/ Freeboard	Class B w/o Freeboard	Class B w/ Freeboard
Design Discharge:	12.47 cfs		12.47 cfs	
Depth:	0.51 ft		0.87 ft	
Top Width:	7.05 ft		8.48 ft	
Velocity:	4.04 fps		2.13 fps	
X-Section Area:	3.08 sq ft		5.86 sq ft	
Hydraulic Radius:	0.423 ft		0.660 ft	
Froude Number:	1.08		0.45	
Roughness Coefficient:	0.0495		0.1265	

Structure #2 (Pond)

Section 25 Pond

Pond Inputs:

Initial Pool Elev:	6,868.00 ft
Initial Pool:	4.36 ac-ft
*Sediment Storage:	0.00 ac-ft
Dead Space:	0.00 %

*No sediment capacity defined

Perforated Riser

Riser Diameter (in)	Riser Height (ft)	Barrel Diameter (in)	Barrel Length (ft)	Barrel Slope (%)	Manning's n	Spillway Elev (ft)	Number of Holes per Elev
18.00	16.00	18.00	182.00	5.00	0.0150	6,872.00	2

Emergency Spillway

Spillway Elev	Crest Length (ft)	Left Sideslope	Right Sideslope	Bottom Width (ft)
6,875.00	45.00	2.00:1	2.00:1	20.00

Pond Results:

 Peak Elevation:	6,872.06 ft
H'graph Detention Time:	8.69 hrs
Pond Model:	CSTRS
Dewater Time:	2.41 days
Trap Efficiency:	97.85 %

Dewatering time is calculated from peak stage to lowest spillway

Elevation-Capacity-Discharge Table

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
6,855.00	0.047	0.000	0.000		Top of Sed. Storage
6,856.00	0.102	0.073	0.000		
6,857.00	0.156	0.201	0.000		
6,858.00	0.191	0.374	0.000		
6,859.00	0.228	0.583	0.000		
6,860.00	0.266	0.830	0.000		
6,861.00	0.306	1.116	0.000		
6,862.00	0.348	1.443	0.000		
6,863.00	0.391	1.812	0.000		
6,864.00	0.436	2.225	0.000		
6,865.00	0.483	2.684	0.000		
6,866.00	0.532	3.192	0.000		

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
6,867.00	0.582	3.749	0.000		
6,868.00	0.635	4.357	0.000		Low hole SPW #1
6,869.00	0.689	5.019	0.473	16.94*	
6,870.00	0.746	5.736	0.669	12.98*	
6,871.00	0.804	6.511	0.819	11.45*	
6,872.00	0.864	7.345	0.945	10.67*	Spillway #1
6,872.06	0.869	7.401	1.424	5.85	Peak Stage
6,873.00	0.927	8.240	8.509		
6,874.00	0.991	9.199	12.033		
6,875.00	1.060	10.224	14.738		Spillway #2
6,876.00	1.125	11.316	56.584		
6,877.00	1.187	12.472	168.142		
6,878.00	1.250	13.691	330.639		
6,879.00	1.318	14.974	558.801		
6,880.00	1.386	16.326	834.822		

*Designates time(s) to dewater have been extrapolated beyond the 50 hour hydrograph limit.

Detailed Discharge Table

			Combined
Elevation	Perf. Riser (cfs)	Emergency	Total
(ft)	ren. Kiser (cis)	Spillway (cfs)	Discharge
			(cfs)
6,855.00	0.000	0.000	0.000
6,856.00	0.000	0.000	0.00
6,857.00	0.000	0.000	0.00
6,858.00	0.000	0.000	0.000
6,859.00	0.000	0.000	0.00
6,860.00	0.000	0.000	0.000
6,861.00	0.000	0.000	0.000
6,862.00	0.000	0.000	0.000
6,863.00	0.000	0.000	0.00
6,864.00	0.000	0.000	0.000
6,865.00	0.000	0.000	0.000
6,866.00	0.000	0.000	0.000
6,867.00	0.000	0.000	0.000
6,868.00	3.00>0.000	0.000	0.000
6,869.00	0.473	0.000	0.473
6,870.00	0.669	0.000	0.669
6,871.00	0.819	0.000	0.819

SEDCAD 4 for Windows Convright 1998 -2010 Pamela L Schwah

			Combined
Elevation		Emergency	Total
(ft)	Perf. Riser (cfs)	Spillway (cfs)	Discharge
			(cfs)
6,872.00	0.945	0.000	0.945
6,873.00	8.509	0.000	8.509
6,874.00	12.033	0.000	12.033
6,875.00	14.738	0.000	14.738
6,876.00	17.018	39.567	56.584
6,877.00	19.026	149.116	168.142
6,878.00	20.842	309.797	330.639
6,879.00	22.512	536.289	558.801
6,880.00	24.066	810.756	834.822

Structure #1 (Null)

Null Below Section 25 Pond

Stru	SWS	SWS Area	Time of Conc	Musk K	Musk X	Curve	UHS	Peak Discharge	Runoff Volume
#	#	(ac)	(hrs)	(hrs)		Number		(cfs)	(ac-ft)
#31	1	29.000	0.087	0.000	0.000	62.000	м	0.22	0.11
	2	68.200	0.303	0.000	0.000	80.000	F	22.34	2.37
	3	38.800	0.277	0.000	0.000	47.000	S	0.00	0.00
	4	1.100	0.032	0.000	0.000	47.000	S	0.00	0.00
	5	4.000	0.055	0.000	0.000	62.000	М	0.03	0.01
	6	18.300	0.110	0.000	0.000	47.000	S	0.00	0.00
	7	3.900	0.075	0.000	0.000	80.000	F	2.01	0.14
	Σ	163.300						22.75	2.65
#30	1	19.400	0.122	0.000	0.000	47.000	S	0.00	0.00
	2	4.300	0.123	0.000	0.000	80.000	F	2.22	0.15
	3	1.100	0.053	0.000	0.000	62.000	М	0.00	0.00
	Σ	188.100						23.20	2.81
#29	Σ	188.100						23.20	2.81
#28	1	19.600	0.122	0.000	0.000	47.000	S	0.00	0.00
	Σ	207.700						8.95	2.81
#27	Σ	207.700						8.95	2.81
#26	1	75.400	0.381	0.000	0.000	47.000	S	0.00	0.00
	Σ	283.100						3.55	2.79
#34	1	69.600	0.574	0.000	0.000	74.000	F	8.10	1.42
	Σ	69.600						8.10	1.42
#33	1	1.800	0.024	0.000	0.000	47.000	S	0.00	0.00
	2	65.100	0.181	0.000	0.000	80.000	F	25.39	2.31
	3	15.600	0.063	0.000	0.000	47.000	S	0.00	0.00
	4	0.900	0.043	0.000	0.000	47.000	S	0.00	0.00
	5	11.100	0.059	0.000	0.000	80.000	F	5.72	0.41
	6	2.100	0.064	0.000	0.000	74.000	F	0.63	0.04
	Σ	96.600						28.17	2.77
#32	Σ	166.200						30.61	4.19
#25	1	7.800	0.050	0.000	0.000	74.000	F	2.33	0.16
	2	15.100	0.117	0.000	0.000	47.000	S	0.00	0.00
	Σ	22.900						2.33	0.16
#24	Σ	22.900						2.33	0.16

Subwatershed Hydrology Detail:

Filename: Section 25 10-Year 24-Hour Event Post Mining Final.sc4

Printed 04-27-2022

Stru	SWS	SWS Area	Time of Conc	Musk K	Musk X	Curve	UHS	Peak Discharge	Runoff Volume
#	#	(ac)	(hrs)	(hrs)		Number		(cfs)	(ac-ft)
#23	1	32.600	0.025	0.000	0.000	62.000	М	0.25	0.13
	2	137.700	0.339	0.000	0.000	57.000	м	0.17	0.09
	3	31.700	0.054	0.000	0.000	74.000	F	9.47	0.68
	4	2.600	0.107	0.000	0.000	47.000	S	0.00	0.00
	Σ	227.500						11.80	1.09
#22	Σ	227.500						11.80	1.09
#21	1	44.200	0.101	0.000	0.000	74.000	F	13.21	0.96
	Σ	44.200						13.21	0.96
#20	Σ	44.200						13.21	0.96
#19	1	64.500	0.092	0.000	0.000	62.000	м	0.49	0.26
	2	65.600	0.187	0.000	0.000	74.000	F	12.91	1.36
	3	2.700	0.038	0.000	0.000	47.000	S	0.00	0.00
	Σ	404.500						22.50	2.58
#18	Σ	404.500						22.50	2.58
#17	1	163.400	0.197	0.000	0.000	62.000	М	0.78	0.53
	Σ	163.400						0.78	0.53
#16	Σ	163.400						0.78	0.53
#15	1	5.200	0.062	0.000	0.000	62.000	М	0.04	0.02
	2	47.800	0.189	0.000	0.000	62.000	м	0.23	0.15
	3	109.100	0.301	0.000	0.000	74.000	F	17.63	2.23
	Σ	730.000						17.63	3.45
#14	Σ	730.000						17.63	3.45
#13	1	27.700	0.095	0.000	0.000	62.000	М	0.21	0.11
	2	32.900	0.045	0.000	0.000	80.000	F	16.95	1.21
	3	42.000	0.302	0.000	0.000	74.000	F	6.78	0.86
	4	6.700	0.096	0.000	0.000	47.000	S	0.00	0.00
	Σ	839.300						19.81	3.56
#12	Σ	839.300						19.81	3.56
#11	1	30.400	0.137	0.000	0.000	62.000	М	0.15	0.10
	2	6.600	0.033	0.000	0.000	80.000	F	3.40	0.24
	Σ	37.000						3.40	0.34
#10	Σ	37.000						3.40	0.34
#8	1	11.100	0.133	0.000	0.000	62.000	M	0.05	0.03
	2	3.400	0.011	0.000	0.000	80.000	F	1.75	0.12

Filename: Section 25 10-Year 24-Hour Event Post Mining Final.sc4

Printed 04-27-2022

Stru #	SWS #	SWS Area (ac)	Time of Conc (hrs)	Musk K (hrs)	Musk X	Curve Number	UHS	Peak Discharge (cfs)	Runoff Volume (ac-ft)
	Σ	14.500						1.75	0.163
#7	Σ	14.500						1.75	0.163
#6	1	14.200	0.050	0.000	0.000	80.000	F	7.32	0.526
	2	1.100	0.013	0.000	0.000	62.000	М	0.00	0.000
	Σ	906.100						12.47	2.489
#5	1	14.800	0.083	0.000	0.000	57.000	F	0.02	0.013
	Σ	14.800						0.02	0.013
#4	Σ	14.800						0.02	0.013
#3	1	27.800	0.146	0.000	0.000	62.000	м	0.14	0.093
	2	168.700	0.579	0.000	0.000	47.000	S	0.00	0.000
	Σ	1,283.600						12.47	2.594
#2	Σ	1,566.700						12.49	5.385
#1	Σ	1,566.700						1.42	2.828

Subwatershed Sedimentology Detail:

Stru #	SWS #	Soil K	L (ft)	S (%)	С	Ρ	PS #	Sediment (tons)	Peak Sediment Conc. (mg/l)	Peak Settleable Conc (ml/l)	24VW (ml/l)
#31	1	0.300	200.00	11.60	0.0100	0.3800	1	0.0	303	0.17	0.13
	2	0.300	400.00	8.10	0.8000	0.3800	1	163.3	95,354	48.03	24.76
	3	0.300	400.00	7.10	0.0310	0.9000	1	0.0	1	0.00	0.00
	4	0.300	75.00	8.90	0.0310	0.9000	1	0.0	1	0.00	0.00
	5	0.300	100.00	10.00	0.0100	0.3800	1	0.0	124	0.07	0.05
	6	0.300	300.00	10.00	0.0310	0.9000	1	0.0	1	0.00	0.00
	7	0.300	200.00	7.00	0.8000	0.3800	1	5.2	56,291	32.08	14.93
	Σ							168.5	94,141	47.61	22.99
#30	1	0.300	300.00	7.70	0.0310	0.9000	1	0.0	1	0.00	0.00
	2	0.300	200.00	3.20	0.8000	0.3800	1	2.3	22,546	12.85	5.95
	3	0.300	75.00	3.10	0.0100	0.3800	1	0.0	1	0.00	0.00
	Σ							170.8	92,571	46.90	22.04
#29	Σ							170.8	92,571	46.90	22.04
#28	1	0.300	400.00	10.80	0.0310	0.9000	1	0.0	1	0.00	0.00
	Σ							45.9	14,008	0.19	0.17

Filename: Section 25 10-Year 24-Hour Event Post Mining Final.sc4

Printed 04-27-2022

Stru #	SWS #	Soil K	L (ft)	S (%)	с	Ρ	PS #	Sediment (tons)	Peak Sediment Conc. (mg/l)	Peak Settleable Conc (ml/l)	24VW (ml/l)
#27	Σ							45.9	14,008	0.19	0.17
#26	1	0.300	400.00	9.60	0.0310	0.9000	1	0.0	1	0.00	0.00
	Σ							36.7	11,316	0.00	0.00
#34	1	0.300	400.00	7.00	0.0700	0.3800	1	5.3	4,997	2.05	1.11
	Σ							5.3	4,997	2.05	1.11
#33	1	0.300	25.00	2.00	0.0310	0.9000	1	0.0	1	0.00	0.00
	2	0.300	400.00	8.10	0.8000	0.3800	1	170.9	106,542	56.60	28.0
	3	0.300	200.00	11.90	0.0310	0.9000	1	0.0	1	0.00	0.00
	4	0.300	100.00	4.00	0.0310	0.9000	1	0.0	1	0.00	0.0
	5	0.300	200.00	8.00	0.8000	0.3800	1	19.1	72,075	41.08	19.10
	6	0.300	100.00	6.00	0.0700	0.3800	1	0.1	2,999	1.71	0.70
	Σ							190.1	102,973	55.10	26.27
#32	Σ							195.4	92,488	49.18	17.8
#25	1	0.300	200.00	33.00	0.0700	0.3800	1	4.0	41,824	23.84	9.8
	2	0.300	400.00	14.00	0.0310	0.9000	1	0.0	1	0.00	0.0
	Σ							4.0	41,824	23.84	9.8
#24	Σ							4.0	41,824	23.84	9.82
#23	1	0.300	100.00	31.00	0.0100	0.3800	1	0.1	643	0.37	0.2
	2	0.300	400.00	14.00	0.0850	0.3800	1	0.5	4,580	2.45	2.1
	3	0.300	200.00	31.00	0.0700	0.3800	1	18.1	46,363	26.43	10.8
	4	0.300	100.00	4.00	0.0310	0.9000	1	0.0	1	0.00	0.00
	Σ							22.7	45,468	25.88	8.64
#22	Σ							22.7	45,468	25.88	8.64
#21	1	0.300	400.00	23.00	0.0700	0.3800	1	29.0	53,065	30.25	12.4
	Σ							29.0	53,065	30.25	12.4
#20	Σ							29.0	53,065	30.25	12.4
#19	1	0.300	400.00	15.00	0.0100	0.3800	1	0.2	706	0.40	0.3
	2	0.300	400.00	20.00	0.0700	0.3800	1	30.5	35,312	17.99	8.3
	3	0.300	20.00	2.00	0.0310	0.9000	1	0.0	1	0.00	0.0
	Σ							82.4	43,600	26.64	10.2
#18	Σ							82.4	43,600	26.64	10.2
#17	1	0.300	400.00	15.60	0.0100	0.3800	1	0.4	718	0.36	0.3
	Σ							0.4	718	0.36	0.30

Stru #	SWS #	Soil K	L (ft)	S (%)	с	Ρ	PS #	Sediment (tons)	Peak Sediment Conc. (mg/l)	Peak Settleable Conc (ml/l)	24VW (ml/l)
#16	Σ							0.4	718	0.36	0.3
#15	1	0.300	200.00	12.00	0.0100	0.3800	1	0.0	258	0.15	0.1
	2	0.300	400.00	16.00	0.0100	0.3800	1	0.1	639	0.32	0.2
	3	0.300	400.00	13.00	0.0700	0.3800	1	28.5	19,088	9.08	4.4
	Σ							29.1	19,088	9.09	3.1
#14	Σ							29.1	19,088	9.09	3.1
#13	1	0.300	200.00	11.00	0.0100	0.3800	1	0.0	280	0.16	0.1
	2	0.300	400.00	18.00	0.8000	0.3800	1	328.4	366,518	208.90	101.8
	3	0.300	400.00	12.00	0.0700	0.3800	1	8.8	15,308	7.28	3.5
	4	0.300	200.00	9.00	0.0310	0.9000	1	0.0	1	0.00	0.0
	Σ							337.2	324,745	184.29	45.1
#12	Σ							337.2	324,745	184.29	45.1
#11	1	0.300	400.00	10.00	0.0100	0.3800	1	0.0	276	0.14	0.1
	2	0.300	100.00	12.00	0.8000	0.3800	1	14.2	89,272	50.88	23.7
	Σ							14.2	89,272	50.87	16.8
#10	Σ							14.2	89,272	50.87	16.8
#8	1	0.300	400.00	14.00	0.0100	0.3800	1	0.0	458	0.23	0.2
	2	0.300	50.00	24.00	0.8000	0.3800	1	10.3	123,862	70.60	33.1
	Σ							10.3	123,862	70.58	25.7
#7	Σ							10.3	123,862	70.58	25.7
#6	1	0.300	200.00	21.00	0.8000	0.3800	1	101.1	272,821	155.50	74.6
	2	0.300	50.00	26.00	0.0100	0.3800	1	0.0	1	0.00	0.0
	Σ							125.6	204,953	116.81	38.5
#5	1	0.300	400.00	19.00	0.0310	0.9000	1	0.1	4,152	2.37	1.5
	Σ							0.1	4,152	2.37	1.5
#4	Σ							0.1	4,152	2.37	1.5
#3	1	0.300	400.00	12.00	0.0100	0.3800	1	0.0	418	0.21	0.1
	2	0.300	400.00	8.00	0.0310	0.9000	1	0.0	1	0.00	0.0
	Σ							321.1	204,953	145.50	44.4
#2	Σ							357.8	204,680	130.40	15.0
#1	Σ							7.7	2,235	0.00	0.0

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#3	1	3. Short grass pasture	12.00	175.72	1,464.33	2.770	0.146
#3	1	Time of Concentration:					0.146
#3	2	3. Short grass pasture	8.00	377.06	4,713.25	2.260	0.579
#3	2	Time of Concentration:					0.579
#5	1	3. Short grass pasture	19.00	199.94	1,052.31	3.480	0.083
#5	1	Time of Concentration:					0.083
#6	1	5. Nearly bare and untilled, and alluvial valley fans	21.00	174.93	833.00	4.580	0.050
#6	1	Time of Concentration:					0.050
#6	2	3. Short grass pasture	26.00	50.05	192.50	4.070	0.013
#6	2	Time of Concentration:					0.013
#8	1	3. Short grass pasture	14.00	200.44	1,431.71	2.990	0.133
#8	1	Time of Concentration:					0.133
#8	2	5. Nearly bare and untilled, and alluvial valley fans	24.00	49.92	208.00	4.890	0.011
#8	2	Time of Concentration:					0.011
#11	1	3. Short grass pasture	10.00	124.64	1,246.40	2.520	0.137
#11	1	Time of Concentration:					0.137
#11	2	5. Nearly bare and untilled, and alluvial valley fans	12.00	49.91	415.91	3.460	0.03
#11	2	Time of Concentration:					0.033
#13	1	3. Short grass pasture	11.00	99.97	908.81	2.650	0.095
#13	1	Time of Concentration:					0.09
#13	2	5. Nearly bare and untilled, and alluvial valley fans	18.00	124.68	692.66	4.240	0.04
#13	2	Time of Concentration:					0.045
#13	3	3. Short grass pasture	12.00	362.28	3,019.00	2.770	0.302
#13	3	Time of Concentration:					0.302
#13	4	3. Short grass pasture	9.00	75.29	836.55	2.400	0.09
#13	4	Time of Concentration:					0.096
#15	1	3. Short grass pasture	12.00	75.11	625.91	2.770	0.062
#15	1	Time of Concentration:					0.062
#15	2	3. Short grass pasture	16.00	349.80	2,186.25	3.200	0.189
#15	2	Time of Concentration:					0.189
#15	3	3. Short grass pasture	13.00	406.64	3,128.00	2.880	0.30
#15	3	Time of Concentration:					0.301
#17	1	3. Short grass pasture	15.60	349.44	2,240.00	3.150	0.197
#17	1	Time of Concentration:					0.197
#19	1	3. Short grass pasture	15.00	154.05	1,027.00	3.090	0.092
#19	1	Time of Concentration:					0.092
#19	2	3. Short grass pasture	20.00	481.40	2,407.00	3.570 [,]	0.187
#19	2	Time of Concentration:					0.187

Filename: Section 25 10-Year 24-Hour Event Post Mining Final.sc4

Printed 04-27-2022

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#19	3	3. Short grass pasture	2.00	3.16	158.00	1.130	0.038
#19	3	Time of Concentration:					0.03
#21	1	3. Short grass pasture	23.00	320.85	1,395.00	3.830	0.10
#21	1	Time of Concentration:					0.10
#23	1	3. Short grass pasture	31.00	125.24	404.00	4.450	0.02
#23	1	Time of Concentration:					0.02
#23	2	3. Short grass pasture	14.00	511.84	3,656.00	2.990	0.33
#23	2	Time of Concentration:					0.33
#23	3	3. Short grass pasture	31.00	272.18	878.00	4.450	0.05
#23	3	Time of Concentration:					0.054
#23	4	3. Short grass pasture	4.00	24.88	622.00	1.600	0.10
#23	4	Time of Concentration:					0.10
#25	1	3. Short grass pasture	33.00	275.22	834.00	4.590	0.05
#25	1	Time of Concentration:					0.05
#25	2	3. Short grass pasture	14.00	176.68	1,262.00	2.990	0.11
#25	2	Time of Concentration:					0.11
#26	1	3. Short grass pasture	9.60	325.53	3,391.00	2.470	0.38
#26	1	Time of Concentration:					0.38
#28	1	3. Short grass pasture	10.80	124.52	1,153.00	2,620	0.12
#28	1	Time of Concentration:			-,		0.12
#30	1	3. Short grass pasture	7.70	74.92	973.00	2.210	0.12
#30	1	Time of Concentration:					0.12
#30	2	5. Nearly bare and untilled, and alluvial valley fans	3.20	25.28	790.00	1.780	0.12
#30	2	Time of Concentration:					0.12
#30	3	3. Short grass pasture	3.10	8.30	268.00	1.400	0.05
#30	3	Time of Concentration:					0.05
#31	1	3. Short grass pasture	11.60	99.64	859.00	2.720	0.08
#31	1	Time of Concentration:					0.08
#31	2	5. Nearly bare and untilled, and alluvial valley fans	8.10	251.18	3,101.00	2.840	0.30
#31	2	Time of Concentration:					0.30
#31	3	3. Short grass pasture	7.10	150.87	2,125.00	2.130	0.27
#31	3	Time of Concentration:					0.27
#31	4	3. Short grass pasture	8.90	25.00	281.00	2.380	0.03
#31	4	Time of Concentration:		242-242			0.03
#31	5	3. Short grass pasture	10.00	50.00	500.00	2.520	0.05
#31	5	Time of Concentration:					0.05
#31	6	3. Short grass pasture	10.00	100.30	1,003.00	2.520	0.11
#31	6	Time of Concentration:	10.00	100.00	2,000,00	2,520	0.11
#31	7	5. Nearly bare and untilled, and alluvial valley fans	7.00	49.91	713.00	2.640	0.07
#31	7	Time of Concentration:					0.07

Filename: Section 25 10-Year 24-Hour Event Post Mining Final.sc4

Printed 04-27-2022

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#33	1	3. Short grass pasture	2.00	2.00	100.00	1.130	0.024
#33	1	Time of Concentration:					0.024
#33	2	Nearly bare and untilled, and alluvial valley fans	8.10	150.01	1,852.00	2.840	0.181
#33	2	Time of Concentration:					0.181
#33	3	3. Short grass pasture	11.90	74.85	629.00	2.750	0.063
#33	3	Time of Concentration:					0.063
#33	4	Nearly bare and untilled, and alluvial valley fans	5.90	75.10	1,273.00	2.420	0.146
#33	4	Time of Concentration:					0.043
#33	5	 Nearly bare and untilled, and alluvial valley fans 	8.00	48.64	608.00	2.820	0.059
#33	5	Time of Concentration:					0.059
#33	6	3. Short grass pasture	6.00	27.06	451.00	1.950	0.064
#33	6	Time of Concentration:					0.064
#34	1	3. Short grass pasture	7.00	305.62	4,366.00	2.110	0.574
#34	1	Time of Concentration:					0.574

Section 25 Pond Emergency Spillway Demonstration

25-Year 24-Hour Storm Event Post-Mining Condition

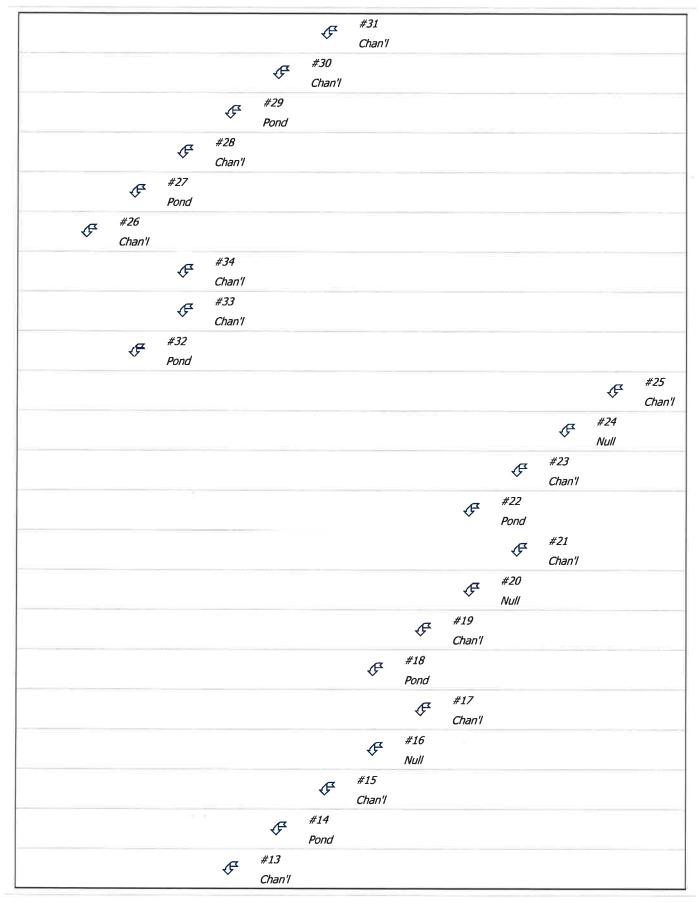
Tony Tennyson

Filename: Section 25 25-Year 24-Hour Event Post Mining Final.sc4

.

Printed 04-27-2022

General Information


Storm Information:

Storm Type:	NRCS Type II
Design Storm:	25 yr - 24 hr
Rainfall Depth:	2.300 inches

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Nulí	#1	==>	End	0.000	0.000	Null Below Section 25 Pond
Pond	#2	==>	#1	0.000	0.000	Section 25 Pond
Channel	#3	==>	#2	0.000	0.000	Little Collom Gulch Natural Channel
Null	#4	==>	#3	0.000	0.000	Null at Confluence with D-3 Ditch
Channel	#5	==>	#4	0.000	0.000	D-3 Ditch
Channel	#6	==>	#3	0.000	0.000	Little Collom Gulch 0+00 to LCG-1
Null	#7	==>	#6	0.000	0.000	Null at Confluence Lower Terrace Ditch
Channel	#8	==>	#7	0.000	0.000	Lower Terrace Ditch
Null	#10	==>	#6	0.000	0.000	Null at Confluence Upper Terrace Ditch
Channel	#11	==>	#10	0.000	0.000	Upper Terrace Ditch
Pond	#12	==>	#6	0.000	0.000	LCG-1 Stockpond
Channel	#13	==>	#1 2	0.000	0.000	Little Collom Gulch LCG-1 to LCG-2
Pond	#14	==>	#13	0.000	0.000	LCG-2 Stockpond
Channel	#15	==>	#14	0.000	0.000	Little Collom Gulch LCG-2 to LCG-3
Nuli	#16	==>	#15	0.000	0.000	Null at Confluence with Sage Draw
Channel	#17	==>	#16	0.000	0.000	Sage Draw
Pond	#18	==>	#15	0.000	0.000	LCG-3 Stockpond
Channel	#19	==>	#18	0.000	0.000	Little Collom Gulch LCG-3 to LCG-4
Null	#20	==>	#19	0.000	0.000	Null at Confluence with Grouse Draw
Channel	#21	==>	#20	0.000	0.000	Grouse Draw
Pond	#22	==>	#19	0.000	0.000	LCG-4 Stockpond
Channel	#23	==>	#22	0.000	0.000	Little Collom Gulch LCG-4 to 102+79
Null	#24	==>	#23	0.000	0.000	Null at Confluence with Sharpie Draw
Channel	#25	==>	#24	0.000	0.000	Sharpie Draw
Channel	#26	==>	#2	0.000	0.000	Natural Channel Middle Pond to Section 25 Pond
Pond	#27	==>	#26	0.000	0.000	Middle Pond
Channel	#28	==>	#27	0.000	0.000	Natural Channel Middle Pond to Section 36 Pond
Pond	#29	==>	#28	0.000	0.000	Section 36 Pond
Channel	#30	==>	#29	0.000	0.000	Natural Channel Section 36 Pond to Upper Bobcat Draw
Channel	#31	==>	#30	0.000	0.000	Upper Bobcat Draw 0+00 to 21+33
Pond	#32	==>	#3	0.000	0.000	Coal Stockpile Pond
Channel	#33	==>	#32	0.000	0.000	D-5 Ditch
Channel	#34	==>	#32	0.000	0.000	D-7 Ditch

Structure Networking

Convright 1998 -2010 Pamela I Schwah

Filename: Section 25 25-Year 24-Hour Event Post Mining Final.sc4

Printed 04-27-2022

			¢	#12 Pond	
	_			Ропа	
				a	#11
				¢	Chan'l
				"10	
			F	#10	
			•	Null	
				a	#8
				¢	Chan'l
					Churr
			Æ	#7	
			~	Null	
		7	#6		
		Æ	Chan'l		
			Chairi		
			Æ	#5	
			\sim	Chan'l	
		_	#4		
		Æ	Null		
			IVUII		
	F	#3			
	\sim	Chan'l			
-	#2				
F					
	Pond				
#1					
Null					

		Immediate Contributing Area	Total Contributing Area	Peak Discharge	Total Runoff Volume
		(ac)	(ac)	(cfs)	(ac-ft)
#31		163.300	163.300	41.75	4.7
#30		24.800	188.100	42.52	4.99
	In			42.52	4.99
#29	Out	0.000	188.100	15.09	4.9
#28		19.600	207.700	15.09	4.9
"	In	0.000	207 722	15.09	4.9
#27	Out	0.000	207.700	10.60	4.9
#26		75.400	283.100	10.60	4.9
#34		69.600	69.600	18.51	2.7
#33		96.600	96.600	50.74	4.7
	In			58.22	7.4
#32	Out	0.000	166.200	3.45	1.6
#25		22.900	22.900	4.53	0.3
#24		0.000	22.900	4.53	0.3
#23		204.600	227.500	27.45	2.7
	In	0.000	227 500	27.45	2.7
#22	Out	0.000	227.500	0.94	0.6
#21		44.200	44.200	25.68	1.84
#20		0.000	44.200	25.68	1.8
#19		132.800	404.500	57.81	5.9
#10	In	0.000	404 500	57.81	5.9
#18	Out	0.000	404.500	2.89	3.8
#17		163.400	163.400	7.93	1.7
#16		0.000	163.400	7.93	1.7
#15		162.100	730.000	49.22	10.4
#14	In	0.000	720.000	49.22	10.4
#14	Out	0.000	730.000	7.18	8.3
#13		109.300	839.300	41.37	12.4
#17	In	0.000	000 000	41.37	12.4
#12	Out	0.000	839.300	9.35	10.24
#11		37.000	37.000	5.95	0.74
#10		0.000	37.000	5.95	0.74
#8		14.500	14.500	3.02	0.33
#7		0.000	14.500	3.02	0.33
#6		15.300	906.100	21.23	12.22
#5		14.800	14.800	0.22	0.09
#4		0.000	14.800	0.22	0.09

Structure Summary:

		Immediate Contributing Area (ac)	Total Contributing Area (ac)	Peak Discharge (cfs)	Total Runoff Volume (ac-ft)
#3		196.500	1,283.600	21.53	14.31
#2	In	0.000	1 566 700	21.62	19.27
#2	Out	0.000	1,566.700	12.72	16.42
#1		0.000	1,566.700	12.72	16.42

Structure Detail:

Structure #31 (Riprap Channel)

Upper Bobcat Draw 0+00 to 21+33

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
10.00	3.0:1	3.0:1	8.3	3.62		

Riprap Channel Results:

Simons/OSM Method - Steep Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	41.75 cfs	
Depth:	0.38 ft	4.00 ft
Top Width:	12.30 ft	34.02 ft
Velocity*:		
X-Section Area:	4.27 sq ft	
Hydraulic Radius:	0.344 ft	
Froude Number*:		
Manning's n*:		
Dmin:	2.00 in	
D50:	6.00 in	
Dmax:	7.50 in	

Velocity and Manning's n calculations may not apply for this method.

Structure #30 (Vegetated Channel)

Natural Channel Section 36 Pond to Upper Bobcat Draw

Trapezoidal Vegetated Channel Inputs:

Material: Tall fescue

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Retardance Classes	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)	Limiting Velocity (fps)
5.00	2.0:1	2.0:1	12.9	D, B				5.0

Convright 1998 -2010 Pamela I. Schwah

Vegetated Channel Results:

	Stability	Stability	Capacity	Capacity
	Class D w/o Freeboard	Class D w/ Freeboard	Class B w/o Freeboard	Class B w/ Freeboard
Design Discharge:	42.52 cfs		42.52 cfs	
Depth:	0.67 ft		0.97 ft	
Top Width:	7.68 ft		8.88 ft	
Velocity:	10.01 fps		6.32 fps	
X-Section Area:	4.25 sq ft		6.73 sq ft	
Hydraulic Radius:	0.531 ft		0.721 ft	
Froude Number:	2.37		1.28	
Roughness Coefficient:	0.0350		0.0681	

Structure #29 (Pond)

Section 36 Pond

Pond Inputs:

			Initial Pool	Elev: 7	7,116.00 ft		
			Initial	Pool:	0.97 ac-ft		
			Perforat	ed Riser			
Riser Diameter (in)	Riser Height (ft)	Barrel Diameter (in)	Barrel Length (ft)	Barrel Slope (%)	Manning's n	Spillway Elev (ft)	Number of Holes per Elev
18.00	11.00	18.00	170.00	3.00	0.0150	7,118.00	2

Emergency Spillway

Spillway Elev	Crest Length (ft)	Left Sideslope	Right Sideslope	Bottom Width (ft)
7,125.00	46.00	3.00:1	3.00:1	30.00

Pond Results:

Peak Elevation:	7,121.16 ft
Dewater Time:	0.96 days

Dewatering time is calculated from peak stage to lowest spillway

Elevation-Capacity-Discharge Table

Convright 1998 -2010 Pamela I. Schwah

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
7,105.00	0.000	0.000	0.000		
7,106.00	0.010	0.003	0.000		
7,107.00	0.025	0.020	0.000		
7,108.00	0.038	0.052	0.000		
7,109.00	0.053	0.097	0.000		
7,110.00	0.075	0.161	0.000		
7,111.00	0.093	0.244	0.000		
7,112.00	0.112	0.347	0.000		
7,113.00	0.132	0.469	0.000		
7,114.00	0.154	0.611	0.000		
7,115.00	0.178	0.777	0.000		
7,116.00	0.205	0.969	0.000		Low hole SPW #1
7,117.00	0.235	1.188	0.473	5.63*	
7,118.00	0.267	1.439	0.669	5.35	Spillway #1
7,119.00	0.301	1.723	8.509	10.35	
7,120.00	0.340	2.043	12.033	0.75	
7,121.00	0.387	2.407	14.738	0.70	
7,121.16	0.394	2.470	15.091	0.20	Peak Stage
7,122.00	0.433	2.816	17.018		
7,123.00	0.485	3.275	19.026		
7,124.00	0.538	3.786	20.842		
7,125.00	0.599	4.355	22.512		Spillway #2
7,126.00	0.664	4.986	82.907		
7,127.00	0.732	5.684	248.131		
7,128.00	0.813	6.456	490.139		
7,129.00	0.915	7.319	829.643		
7,130.00	1.043	8.298	1,243.042		

*Designates time(s) to dewater have been extrapolated beyond the 50 hour hydrograph limit.

Detailed Discharge Table

			Combined	
Elevation	Perf. Riser (cfs)	Emergency	Total	
(ft)	Pent Riser (CIS)	Spillway (cfs)	Discharge	
			(cfs)	
7,105.00	0.000	0.000	0.000	
7,106.00	0.000	0.000	0.000	
7,107.00	0.000	0.000	0.000	
7,108.00	0.000	0.000	0.000	
7,109.00	0.000	0.000	0.000	

Convright 1998 -2010 Pamela I. Schwah

			Combined
Elevation	Perf. Riser (cfs)	Emergency	Total
(ft)		Spillway (cfs)	Discharge
			(cfs)
7,110.00	0.000	0.000	0.000
7,111.00	0.000	0.000	0.000
7,112.00	0.000	0.000	0.000
7,113.00	0.000	0.000	0.000
7,114.00	0.000	0.000	0.000
7,115.00	0.000	0.000	0.000
7,116.00	3.00>0.000	0.000	0.000
7,117.00	0.473	0.000	0.473
7,118.00	0.669	0.000	0.669
7,119.00	8.509	0.000	8.509
7,120.00	12.033	0.000	12.033
7,121.00	14.738	0.000	14.738
7,122.00	17.018	0.000	17.018
7,123.00	19.026	0.000	19.026
7,124.00	20.842	0.000	20.842
7,125.00	22.512	0.000	22.512
7,126.00	24.066	58.841	82.907
7,127.00	25.526	222.604	248.131
7,128.00	26.907	463.232	490.139
7,129.00	28.220	801.423	829.643
7,130.00	29.205	1,213.837	1,243.042

Structure #28 (Vegetated Channel)

Natural Channel Middle Pond to Section 36 Pond

Trapezoidal Vegetated Channel Inputs:

Material: Tall fescue

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Retardance Classes	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)	Limiting Velocity (fps)
5.00	2.0:1	2.0:1	6.4	D, B				6.0

Vegetated Channel Results:

	Stability	Stability	Capacity	Capacity
	Class D w/o Freeboard	Class D w/ Freeboard	Class B w/o Freeboard	Class B w/ Freeboard
Design Discharge:	15.09 cfs		15.09 cfs	
Depth:	0.54 ft	0.54 ft 0.89 ft		
Top Width:	7.14 ft		8.55 ft	

Convright 1998 -2010 Pamela | Schwah

	Stability	Stability	Capacity	Capacity
	Class D w/o Freeboard	Class D w/ Freeboard	Class B w/o Freeboard	Class B w/ Freeboard
Velocity:	4.64 fps		2.51 fps	
X-Section Area:	3.25 sq ft	6.02 sq ft		
Hydraulic Radius:	0.440 ft		0.671 ft	
Froude Number:	1.21		0.53	
Roughness Coefficient:	0.0469		0.1150	

Structure #27 (Pond)

Middle Pond

Pond Inputs:

 Initial Pool Elev:	7,057.00 ft
Initial Pool:	0.53 ac-ft

Perforated Riser

Riser Diameter (in)	Riser Height (ft)	Barrel Diameter (in)	Barrel Length (ft)	Barrel Slope (%)	Manning's n	Spillway Elev (ft)	Number of Holes per Elev
18.00	10.00	18.00	198.00	5.00	0.0150	7,061.00	2

Emergency Spillway

Spillway Elev	Crest Length (ft)	Left Sideslope	Right Sideslope	Bottom Width (ft)
7,066.00	38.00	3.00:1	3.00:1	24.00

Pond Results:

Peak Elevation:	7,062.59 ft
Dewater Time:	1.29 days

Dewatering time is calculated from peak stage to lowest spillway

Elevation-Capacity-Discharge Table

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
7,048.00	0.000	0.000	0.000		
7,049.00	0.009	0.003	0.000		
7,050.00	0.021	0.018	0.000		
7,051.00	0.035	0.045	0.000		
7,052.00	0.050	0.088	0.000		

Filename: Section 25 25-Year 24-Hour Event Post Mining Final.sc4

Convright 1998 -2010 Pamala | Schwah

Elevation	Area	Capacity	Discharge	Dewater Time	
	(ac)	(ac-ft)	(cfs)	(hrs)	
7,053.00	0.063	0.144	0.000		
7,054.00	0.078	0.214	0.000		
7,055.00	0.095	0.301	0.000		
7,056.00	0.113	0.405	0.000		
7,057.00	0.132	0.527	0.000		Low hole SPW #1
7,058.00	0.158	0.672	0.473	3.71*	
7,059.00	0.183	0.842	0.669	4.40	
7,060.00	0.210	1.038	0.819	4.55	
7,061.00	0.248	1.267	0.945	7.30	Spillway #1
7,062.00	0.284	1.533	8.509	10.00	
7,062.59	0.311	1.714	10.599	1.05	Peak Stage
7,063.00	0.327	1.838	12.033		
7,064.00	0.371	2.187	14.738		
7,065.00	0.417	2.581	17.018		
7,066.00	0.465	3.022	19.026		Spillway #2
7,067.00	0.522	3.515	71.605		
7,068.00	0.576	4.064	211.288		
7,069.00	0.628	4.665	418.987		
7,070.00	0.685	5.322	716.430		
7,071.00	0.760	6.044	1,074.454		

*Designates time(s) to dewater have been extrapolated beyond the 50 hour hydrograph limit.

			Combined
Elevation	Perf. Riser (cfs)	Emergency	Total
(ft)	Pert. Riser (CIS)	Spillway (cfs)	Discharge
			(cfs)
7,048.00	0.000	0.000	0.000
7,049.00	0.000	0.000	0.000
7,050.00	0.000	0.000	0.000
7,051.00	0.000	0.000	0.000
7,052.00	0.000	0.000	0.000
7,053.00	0.000	0.000	0.000
7,054.00	0.000	0.000	0.000
7,055.00	0.000	0.000	0.000
7,056.00	0.000	0.000	0.000
7,057.00	3.00>0.000	0.000	0.000
7,058.00	0.473	0.000	0.473
7,059.00	0.669	0.000	0.669

Detailed Discharge Table

Convrint 1998 -2010 Pamela I. Schwah

			Combined
Elevation	Dorf Dicor (cfo)	Emergency	Total
(ft)	Perf. Riser (cfs)	Spillway (cfs)	Discharge
			(cfs)
7,060.00	0.819	0.000	0.819
7,061.00	0.945	0.000	0.945
7,062.00	8.509	0.000	8.509
7,063.00	12.033	0.000	12.033
7,064.00	14.738	0.000	14.738
7,065.00	17.018	0.000	17.018
7,066.00	19.026	0.000	19.026
7,067.00	20.842	50.763	71.605
7,068.00	22.512	188.776	211.288
7,069.00	24.066	394.921	418.987
7,070.00	25.526	690.903	716.430
7,071.00	26.907	1,047.547	1,074.454

Structure #26 (Vegetated Channel)

Natural Channel Middle Pond to Section 25 Pond

Trapezoidal Vegetated Channel Inputs:

Material: Tall fescue

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Retardance Classes	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)	Limiting Velocity (fps)
5.00	2.0:1	2.0:1	6.4	D, B				6.0

Vegetated Channel Results:

	Stability	Stability	Capacity	Capacity
	Class D w/o Freeboard	Class D w/ Freeboard	Class B w/o Freeboard	Class B w/ Freeboard
Design Discharge:	10.60 cfs		10.60 cfs	
Depth:	0.46 ft		0.80 ft	
Top Width:	6.84 ft		8.19 ft	
Velocity:	3.88 fps		2.01 fps	
X-Section Area:	2.73 sq ft		5.26 sq ft	
Hydraulic Radius:	0.387 ft		0.614 ft	
Froude Number:	1.08		0.44	
Roughness Coefficient:	0.0515		0.1352	

Structure #34 (Vegetated Channel)

D-7 Ditch

Trapezoidal Vegetated Channel Inputs:

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Retardance Classes	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)	Limiting Velocity (fps)
5.00	2.0:1	2.0:1	6.0	D, B	2.04			6.0

Material: Tall fescue

Vegetated Channel Results:

	Stability	Stability	Capacity	Capacity
	Class D w/o Freeboard	Class D w/ Freeboard	Class B w/o Freeboard	Class B w/ Freeboard
Design Discharge:	18.51 cfs		18.51 cfs	
Depth:	0.59 ft	2.63 ft	0.96 ft	3.00 ft
Top Width:	7.38 ft	15.54 ft	8.85 ft	17. 01 ft
Velocity:	5.03 fps		2.78 fps	
X-Section Area:	3.68 sq ft		6.67 sq ft	
Hydraulic Radius:	0.481 ft		0.717 ft	
Froude Number:	1.25		0.56	
Roughness Coefficient:	0.0445		0.1053	

Structure #33 (Riprap Channel)

D-5 Ditch

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
12.00	2.0:1	2.0:1	2.0	2.52		

Riprap Channel Results:

Simons/OSM Method - Steep Slope Design

1	w/o Freeboard	w/ Freeboard
Design Discharge:	50.74 cfs	
Depth:	0.48 ft	3.00 ft
Top Width:	13.92 ft	24.00 ft
Velocity*:		
X-Section Area:	6.22 sq ft	
Hydraulic Radius:	0.440 ft	
Froude Number*:		

Convright 1998 -2010 Pamela I. Schwah

	w/o Freeboard	w/ Freeboard
Manning's n*:		
Dmin:	2.00 in	
D50:	6.00 in	
Dmax:	7.50 in	

Velocity and Manning's n calculations may not apply for this method.

Structure #32 (Pond)

Coal Stockpile Pond

Pond Inputs:

	Initial Pool Elev:	7,212.00 ft
	Initial Pool:	1.71 ac-ft
S	Emergency Spill	way

Spillway ElevCrest Length
(ft)Left
SideslopeRight
SideslopeBottom
Width (ft)7,217.0025.003.00:13.00:120.00

Pond Results:

Peak Elevation:	7,217.07 ft
Dewater Time:	0.37 days

Dewatering time is calculated from peak stage to lowest spillway

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
7,210.00	0.779	0.000	0.000		
7,210.50	0.820	0.400	0.000		
7,211.00	0.860	0.819	0.000		
7,212.00	0.928	1.713	0.000		
7,213.00	1.049	2.701	0.000		
7,214.00	1.090	3.771	0.000		
7,215.00	1.175	4.903	0.000		
7,216.00	1.268	6.124	0.000		
7,217.00	1.390	7.452	0.000		Spillway #1
7,217.07	1.399	7.558	3.446	8.85	Peak Stage
7,218.00	1.513	8.904	47.313		
7,219.00	1.632	10.476	170.230		

Elevation-Capacity-Discharge Table

Conviriant 1998 -2010 Pamola T. Schwah

		Combined
Elevation	Emergency	Total
(ft)	Spillway (cfs)	Discharge
		(cfs)
7,210.00	0.000	0.000
7,210.50	0.000	0.000
7,211.00	0.000	0.000
7,212.00	0.000	0.000
7,213.00	0.000	0.000
7,214.00	0.000	0.000
7,215.00	0.000	0.000
7,216.00	0.000	0.000
7,217.00	0.000	0.000
7,218.00	47.313	47.313
7,219.00	170.230	170.230

Detailed Discharge Table

Structure #25 (Riprap Channel)

Sharpie Draw

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
10.00	3.0:1	3.0:1	22.0	3.96		

Riprap Channel Results:

Simons/OSM Method - Steep Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	4.53 cfs	
Depth:	0.04 ft	4.00 ft
Top Width:	10.26 ft	34.02 ft
Velocity*:		
X-Section Area:	0.44 sq ft	
Hydraulic Radius:	0.043 ft	
Froude Number*:		
Manning's n*:		
Dmin:	2.00 in	
D50:	6.00 in	
Dmax:	7.50 in	

Velocity and Manning's n calculations may not apply for this method.

Convright 1998 -2010 Pamela | Schwah

Structure #24 (Null)

Null at Confluence with Sharpie Draw

Structure #23 (Riprap Channel)

Little Collom Gulch LCG-4 to 102+79

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
10.00	3.0:1	3.0:1	7. 4]	3.72		

Riprap Channel Results:

Simons/OSM Method - Steep Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	27.45 cfs	
Depth:	0.28 ft	4.00 ft
Top Width:	11.66 ft	33.98 ft
Velocity*:		
X-Section Area:	3.00 sq ft	
Hydraulic Radius:	0.255 ft	
Froude Number*:		
Manning's n*:		
Dmin:	2.00 in	
D50:	6.00 in	
Dmax:	7.50 in	

Velocity and Manning's n calculations may not apply for this method.

Structure #22 (Pond)

LCG-4 Stockpond

Pond Inputs:

	Initia	al Pool Elev:	102.00 ft	t	
		Initial Pool:	0.34 ac-ft	t	
Emergency Spillway					
Spillway Elev	Crest Length (ft)	Left Sideslope	Right Sideslope	Bottom Width (ft)	
107.00	20.00	2.00:1	2.00:1	15.00	

Convright 1998 -2010 Pamela I Schwah

Straight Pipe												
Barrel	Barrel	Barrel	Manning's	Spillway	Entrance	Tailwater						
Diameter	Length					Slope (%)			- · · ·	Elev (ft)	Loss	Depth
(in)	(ft)	Slope (%)	n		Coefficient	(ft)						
12.00	100.00	2.00	0.0150	105.00	0.90	0.00						

Pond Results:

Peak Elevation:	105.45 ft
Dewater Time:	1.29 days

Dewatering time is calculated from peak stage to lowest spillway

Elevation	Area	Capacity	Discharge	Dewater Time	
- COLICIT	(ac)	(ac-ft)	(cfs)	(hrs)	
100.00	0.016	0.000	0.000		
101.00	0.096	0.050	0.000		
102.00	0.539	0.338	0.000		
103.00	0.654	0.933	0.000		
104.00	0.735	1.628	0.000		
105.00	0.843	2.416	0.000		Spillway #2
105.45	0.834	2.802	0.943	25.95	Peak Stage
106.00	0.872	3.273	2.094		
107.00	0.872	4.145	4.414		Spillway #1
108.00	0.872	5.017	42.121		

Elevation-Capacity-Discharge Table

Detailed Discharge Table

			Combined
Elevation	Emergency	Straight Pipe	Total
(ft)	Spillway (cfs)	(cfs)	Discharge
			(cfs)
100.00	0.000	0.000	0.000
101.00	0.000	0.000	0.000
102.00	0.000	0.000	0.000
103.00	0.000	0.000	0.000
104.00	0.000	0.000	0.000
105.00	0.000	0.000	0.000
106.00	0.000	(3)>2.094	2.094
107.00	0.000	(5)>4.414	4.414
108.00	36.939	(6)>5.182	42.121

Convright 1998 -2010 Pamela 1. Schwah

Structure #21 (Riprap Channel)

Grouse Draw

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
10.00	3.0:1	3.0:1	16.8	3.90		

Riprap Channel Results:

Simons/OSM Method - Steep Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	25.68 cfs	
Depth:	0.21 ft	4.11 ft
Top Width:	11.27 ft	34.67 ft
Velocity*:		
X-Section Area:	2.26 sq ft	
Hydraulic Radius:	0.199 ft	
Froude Number*:		
Manning's n*:		
Dmin:	3.00 in	
D50:	9.00 in	
Dmax:	11.25 in	

Velocity and Manning's n calculations may not apply for this method.

Structure #20 (Null)

Null at Confluence with Grouse Draw

Structure #19 (Riprap Channel)

Little Collom Gulch LCG-3 to LCG-4

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)	Le <mark>ft</mark> Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
10.00	3.0:1	3.0:1	7.8	3.50		

Riprap Channel Results:

Convright 1998 -2010 Pamala | Schwah

	w/o Freeboard	w/ Freeboard
Design Discharge:	57.81 cfs	
Depth:	0.50 ft	4.00 ft
Top Width:	12.97 ft	33.97 ft
Velocity*:		
X-Section Area:	5.69 sq ft	
Hydraulic Radius:	0.433 ft	
Froude Number*:		
Manning's n*:		
Dmin:	3.00 in	
D50:	9.00 in	
Dmax:	11.25 in	

Simons/OSM Method - Steep Slope Design

Velocity and Manning's n calculations may not apply for this method.

Structure #18 (Pond)

LCG-3 Stockpond

Pond Inputs:

Initial Pool Elev:	102.00 ft
Initial Pool:	0.34 ac-ft
and an	

Emergency Spillway

Spillway Elev	Crest Length	Left	Right	Bottom
	(ft)	Sideslope	Sideslope	Width (ft)
107.00	20.00	2.00:1	2.00:1	15.00

Straight Pipe

Barrel Diameter (in)	Barrel Length (ft)	Barrel Slope (%)	Manning's n	Spillway Elev (ft)	Entrance Loss Coefficient	Tailwater Depth (ft)
12.00	100.00	2.00	0.0150	105.00	0.90	0.00

Pond Results:

Peak Elevation:	106.34 ft
Dewater Time:	0.55 days

Dewatering time is calculated from peak stage to lowest spillway

Elevation-Capacity-Discharge Table

Convright 1998 -2010 Pamala | Schwah

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
100.00	0.016	0.000	0.000		
101.00	0.096	0.050	0.000		
102.00	0.539	0.338	0.000		
103.00	0.654	0.933	0.000		
104.00	0.735	1.628	0.000		
105.00	0.843	2.416	0.000		Spillway #2
106.00	0.872	3.273	2.094	4.95*	
106.34	0.862	3.573	2.892	8.35	Peak Stage
107.00	0.872	4.145	4.414		Spillway #1
108.00	0.872	5.017	42.121		

Detailed Discharge Table

			Combined	
Elevation	Emergency	Straight Pipe	Total	
(ft)	Spillway (cfs)	(cfs)	Discharge	
			(cfs)	
100.00	0.000	0.000	0.000	
101.00	0.000	0.000	0.000	
102.00	0.000	0.000	0.000	
103.00	0.000	0.000	0.000	
104.00	0.000	0.000	0.000	
105.00	0.000	0.000	0.000	
106.00	0.000	(3)>2.094	2.094	
107.00	0.000	(5)>4.414	4.414	
108.00	36.939	(6)>5.182	42.121	

Structure #17 (Riprap Channel)

Sage Draw

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
5.00	3.0:1	3.0:1	2.1	2.79		

Riprap Channel Results:

Simons/OSM Method - Steep Slope Design

Convright 1998 -2010 Pamela I. Schwah

	w/o Freeboard	w/ Freeboard
Design Discharge:	7.93 cfs	
Depth:	0.21 ft	3.00 ft
Top Width:	6.29 ft	23.03 ft
Velocity*:		
X-Section Area:	1.21 sq ft	
Hydraulic Radius:	0.190 ft	
Froude Number*:		
Manning's n*:		
Dmin:	2.00 in	
D50:	6.00 in	
Dmax:	7.50 in	

Velocity and Manning's n calculations may not apply for this method.

Structure #16 (Null)

Null at Confluence with Sage Draw

Structure #15 (Riprap Channel)

Little Collom Gulch LCG-2 to LCG-3

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
10.00	3.0:1	3.0:1	4.7	3.55		

Riprap Channel Results:

Simons/OSM Method - Steep Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	49.22 cfs	
Depth:	0.45 ft	4.00 ft
Top Width:	12.70 ft	34.00 f
Velocity*:		
X-Section Area:	5.10 sq ft	
Hydraulic Radius:	0.397 ft	
Froude Number*:		
Manning's n*:		
Dmin:	2.00 in	
D50:	6.00 in	
Dmax:	7.50 in	

23

Velocity and Manning's n calculations may not apply for this method.

Structure #14 (Pond)

LCG-2 Stockpond

Pond Inputs:

Initial Pool Elev:	102.00 ft
Initial Pool:	0.34 ac-ft

Emergency Spillway

Spillway Elev	Crest Length	Left	Right	Bottom
	(ft)	Sideslope	Sideslope	Width (ft)
107.00	30.00	2.00:1	2.00:1	20.00

Straight Pipe

Barrel Diameter (in)	Barrel Length (ft)	Barrel Slope (%)	Manning's n	Spillway Elev (ft)	Entrance Loss Coefficient	l aılwater Depth (ft)
18.00	100.00	2.00	0.0150	105.00	0.90	0.00

Pond Results:

Peak Elevation:	106.76 ft
 Dewater Time:	0.53 days

Dewatering time is calculated from peak stage to lowest spillway

Elevation-Capacity-Discharge Table

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
100.00	0.016	0.000	0.000		
101.00	0.096	0.050	0.000		
102.00	0.539	0.338	0.000		
103.00	0.654	0.933	0.000		
104.00	0.735	1.628	0.000		
105.00	0.843	2.416	0.000		Spillway #2
106.00	0.872	3.273	3.142	3.30*	
106.76	0.869	3.939	7.175	9.50	Peak Stage
107.00	0.872	4.145	8.425		Spillway #1
108.00	0.872	5.017	56.073		

Convright 1998 -2010 Pamela I. Schwah

			Combined
Elevation	Emergency	Straight Pipe	Total
(ft)	Spillway (cfs)	(cfs)	Discharge
			(cfs)
100.00	0.000	0.000	0.000
101.00	0.000	0.000	0.000
102.00	0.000	0.000	0.000
103.00	0.000	0.000	0.000
104.00	0.000	0.000	0.000
105.00	0.000	0.000	0.000
106.00	0.000	(3)>3.142	3.142
107.00	0.000	(5)>8.425	8.425
108.00	43.900	(5)>12.173	56.073

Detailed Discharge Table

Structure #13 (Riprap Channel)

Little Collom Gulch LCG-1 to LCG-2

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
10.00	3.0:1	3.0:1	4.9	3.61		

Riprap Channel Results:

Simons/OSM Method - Steep Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	41.37 cfs	
Depth:	0.39 ft	4.00 ft
Top Width:	12.35 ft	34.01 ft
Velocity*:		
X-Section Area:	4.37 sq ft	
Hydraulic Radius:	0.350 ft	
Froude Number*:		
Manning's n*:		
Dmin:	2.00 in	
D50:	6.00 in	
Dmax:	7.50 in	

Velocity and Manning's n calculations may not apply for this method.

Structure #12 (Pond)

LCG-1 Stockpond

Pond Inputs:

	Initia	al Pool Elev:	102.00 f	t			
		0.34 ac-f	t				
Emergency Spillway							
Spillway Elev	Crest Length (ft)	Left Sideslope	Right Sideslope	Bottom Width (ft)			
107.00	30.00	2.00:1	2.00:1	20.00			

Straight Pipe

Barrel	Barrel	Barrel	Barrel Manning's Spillway		Entrance	Tailwater
Diameter (in)	Length (ft)	Slope (%)	n	Elev (ft)	Loss Coefficient	Depth (ft)
12.00	100.00	2.00	0.0150	105.00	0.90	0.00

Pond Results:

Peak Elevation:	107.11 ft
Dewater Time:	0.94 days

Dewatering time is calculated from peak stage to lowest spillway

Elevation-Capacity-Discharge Table

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)		
100.00	0.016	0.000	0.000			
101.00	0.096	0.050	0.000			
102.00	0.539	0.338	0.000			
103.00	0.654	0.933	0.000			
104.00	0.735	1.628	0.000			
105.00	0.843	2.416	0.000		Spillway #2	
106.00	0.872	3.273	2.094	4.95*		
107.00	0.872	4.145	4.414	9.35	Spillway #1	
107.11	0.872	4.242	9.346	8.20	Peak Stage	
108.00	0.872	5.017	49.083			

Detailed Discharge Table

Convright 1998 -2010 Pamela I. Schwah

			Combined
Elevation	Emergency	Straight Pipe	Total
(ft)	Spillway (cfs)	(cfs)	Discharge
			(cfs)
100.00	0.000	0.000	0.000
101.00	0.000	0.000	0.000
102.00	0.000	0.000	0.000
103.00	0.000	0.000	0.000
104.00	0.000	0.000	0.000
105.00	0.000	0.000	0.000
106.00	0.000	(3)>2.094	2.094
107.00	0.000	(5)>4.414	4.414
108.00	43.900	(6)>5.182	49.083

Structure #11 (Vegetated Channel)

Upper Terrace Ditch

Triangular Vegetated Channel Inputs:

Material: Tall fescue

Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Retardance Classes	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)	Limiting Velocity (fps)
1.5:1	3.0:1	2.0	D, B	1.36			7.0

Vegetated Channel Results:

	Stability	Stability	Capacity	Capacity
	Class D w/o Freeboard	Class D w/ Freeboard	Class B w/o Freeboard	Class B w/ Freeboard
Design Discharge:	5.95 cfs		5.95 cfs	
Depth:	1.07 ft	2.43 ft	1.64 ft	3.00 ft
Top Width:	4.80 ft	10.92 ft	7.40 ft	13.52 ft
Velocity:	2.32 fps		0.98 fps	
X-Section Area:	2.56 sq ft		6.08 sq ft	
Hydraulic Radius:	0.488 ft		0.751 ft	
Froude Number:	0.56		0.19	
Roughness Coefficient:	0.0561		0.1778	

Structure #10 (Null)

Null at Confluence Upper Terrace Ditch

Structure #8 (Vegetated Channel)

Lower Terrace Ditch

Triangular Vegetated Channel Inputs:

Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Retardance Classes	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)	Limiting Velocity (fps)
1.5:1	3.0:1	2.0	D, B	1.59			7.0

Material: Tall fescue

Vegetated Channel Results:

	Stability	Stability	Capacity	Capacity
	Class <mark>D w</mark> /o Freeboard	Class D w/ Freeboard	Class B w/o Freeboard	Class B w/ Freeboard
Design Discharge:	3.02 cfs		3.02 cfs	
Depth:	0.87 ft	2.46 ft	1.41 ft	3.00 ft
Top Width:	3.93 ft	11.09 ft	6.36 ft	13.52 ft
Velocity:	1.76 fps		0.67 fps	
X-Section Area:	1.72 sq ft		4.50 sq ft	
Hydraulic Radius:	0.399 ft		0.646 ft	
Froude Number:	0.47		0.14	
Roughness Coefficient:	0.0650		0.2348	

Structure #7 (Null)

Null at Confluence Lower Terrace Ditch

Structure #6 (Riprap Channel)

Little Collom Gulch 0+00 to LCG-1

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
15.00	3.0:1	3.0:1	16.6	3.89		

Riprap Channel Results:

Simons/OSM Method - Steep Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	21.23 cfs	
Depth:	0.11 ft	4.00 ft
Top Width:	15.68 ft	39.02 ft
Velocity*:		

Convright 1998 -2010 Pamela | Schwah

	w/o Freeboard	w/ Freeboard
X-Section Area:	1.73 sq ft	
Hydraulic Radius:	0.110 ft	
Froude Number*:		
Manning's n*:		
Dmin:	2.00 in	
D50:	6.00 in	
Dmax:	7.50 in	

Velocity and Manning's n calculations may not apply for this method.

Structure #5 (Riprap Channel)

D-3 Ditch

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
12.00	2.0:1	2.0:1	16.1	2.98		

Riprap Channel Results:

Simons/OSM Method - Steep Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	0.22 cfs	
Depth:	0.02 ft	3.00 ft
Top Width:	12.07 ft	23.99 ft
Velocity*:		
X-Section Area:	0.22 sq ft	
Hydraulic Radius:	0.019 ft	
Froude Number*:		
Manning's n*:		
Dmin:	2.00 in	
D50:	6.00 in	
Dmax:	7.50 in	

Velocity and Manning's n calculations may not apply for this method.

Structure #4 (Null)

Null at Confluence with D-3 Ditch

Structure #3 (Vegetated Channel)

Little Collom Gulch Natural Channel

Trapezoidal Vegetated Channel Inputs:

Material: Ta	Il fescue
--------------	-----------

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Retardance Classes	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)	Limiting Velocity (fps)
5.00	2.0:1	2.0:1	5.7	D, B				6.0

Vegetated Channel Results:

	Stability	Stability	Capacity	Capacity
	Class D w/o Freeboard	Class D w/ Freeboard	Class B w/o Freeboard	Class B w/ Freeboard
Design Discharge:	21.53 cfs		21.53 cfs	
Depth:	0.64 ft		1.02 ft	
Top Width:	7.58 ft		9.10 ft	
Velocity:	5.32 fps		2.98 fps	
X-Section Area:	4.05 sq ft		7.22 sq ft	
Hydraulic Radius:	0.514 ft		0.753 ft	
Froude Number:	1.28	1.28 0.59		
Roughness Coefficient:	0.0429		0.0987	

Structure #2 (Pond)

Section 25 Pond

Pond Inputs:

			Initial Pool	Elev: 6	5,868.00 ft		
			Initial	Pool:	4.36 ac-ft		
			Perforat	ed Riser			
Riser Diameter (in)	Riser Height (ft)	Barrel Diameter (in)	Barrel Length (ft)	Barrel Slope (%)	Manning's n	Spillway Elev (ft)	Number of Holes per Elev
18.00	16.00	18.00	182.00	5.00	0.0150	6,872.00	2

Emergency Spillway

Spillway Elev	Crest Length	Left	Right	Bottom
	(ft)	Sideslope	Sideslope	Width (ft)
6,875.00	45.00	2.00:1	2.00:1	20.00

Pond Results:

Peak Elevat	ion: 6,874.25 ft
Dewater Ti	me: 3.21 days

Dewatering time is calculated from peak stage to lowest spillway

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
6,855.00	0.047	0.000	0.000		
6,856.00	0.102	0.073	0.000		
6,857.00	0.156	0.201	0.000		
6,858.00	0.191	0.374	0.000		
6,859.00	0.228	0.583	0.000		
6,860.00	0.266	0.830	0.000		
6,861.00	0.306	1.116	0.000		
6,862.00	0.348	1.443	0.000		
6,863.00	0.391	1.812	0.000		
6,864.00	0.436	2.225	0.000		
6,865.00	0.483	2.684	0.000		
6,866.00	0.532	3.192	0.000		
6,867.00	0.582	3.749	0.000		
6,868.00	0.635	4.357	0.000		Low hole SPW #1
6,869.00	0.689	5.019	0.473	16.94*	
6,870.00	0.746	5.736	0.669	12.98*	
6,871.00	0.804	6.511	0.819	11.45*	
6,872.00	0.864	7.345	0.945	10.67*	Spillway #1
6,873.00	0.927	8.240	8.509	18.55	
6,874.00	0.991	9.199	12.033	2.60	
6,874.25	1.010	9.459	12.719	3.80	Peak Stage
6,875.00	1.060	10.224	14.738		Spillway #2
6,876.00	1.125	11.316	56.584		
6,877.00	1.187	12.472	168.142		
6,878.00	1.250	13.691	330.639		
6,879.00	1.318	14.974	558.801		
6,880.00	1.386	16.326	834.822		

Elevation-Capacity-Discharge Table

*Designates time(s) to dewater have been extrapolated beyond the 50 hour hydrograph limit.

Detailed Discharge Table

			Combined
Elevation	Perf. Riser (cfs)	Emergency	Total
(ft)	Pent Riser (Cis)	Spillway (cfs)	Discharge
			(cfs)
6,855.00	0.000	0.000	0.000
6,856.00	0.000	0.000	0.000
6,857.00	0.000	0.000	0.000
6,858.00	0.000	0.000	0.000
6,859.00	0.000	0.000	0.000
6,860.00	0.000	0.000	0.000
6,861.00	0.000	0.000	0.000
6,862.00	0.000	0.000	0.000
6,863.00	0.000	0.000	0.000
6,864.00	0.000	0.000	0.000
6,865.00	0.000	0.000	0.000
6,866.00	0.000	0.000	0.000
6,867.00	0.000	0.000	0.000
6,868.00	3.00>0.000	0.000	0.000
6,869.00	0.473	0.000	0.473
6,870.00	0.669	0.000	0.669
6,871.00	0.819	0.000	0.819
6,872.00	0.945	0.000	0.945
6,873.00	8.509	0.000	8.509
6,874.00	12.033	0.000	12.033
6,875.00	14.738	0.000	14.738
6,876.00	17.018	39.567	56.584
6,877.00	19.026	149.116	168.142
6,878.00	20.842	309.797	330.639
6,879.00	22.512	536.289	558.801
6,880.00	24.066	810.756	834.822

Structure #1 (Null)

Null Below Section 25 Pond

Stru #	SWS #	SWS Area (ac)	Time of Conc (hrs)	Musk K (hrs)	Musk X	Curve Number	UHS	Peak Discharge (cfs)	Runoff Volume (ac-ft)
#31	1	29.000	0.087	0.000	0.000	62.000	М	4.00	0.38
	2	68.200	0.303	0.000	0.000	80.000	F	39.96	4.03
	3	38.800	0.277	0.000	0.000	47.000	S	0.00	0.00
	4	1.100	0.032	0.000	0.000	47.000	S	0.00	0.00
	5	4.000	0.055	0.000	0.000	62.000	м	0.55	0.05
	6	18.300	0.110	0.000	0.000	47.000	S	0.00	0.0
	7	3.900	0.075	0.000	0.000	80.000	F	3.33	0.2
	Σ	163.300						41.75	4.71
#30	1	19.400	0.122	0.000	0.000	47.000	S	0.00	0.0
	2	4.300	0.123	0.000	0.000	80.000	F	3.67	0.2
	3	1.100	0.053	0.000	0.000	62.000	м	0.15	0.0
	Σ	188.100						42.52	4.99
#29	Σ	188.100						42.52	4.99
#28	1	19.600	0.122	0.000	0.000	47.000	S	0.00	0.0
	Σ	207.700						15.09	4.98
#27	Σ	207.700						15.09	4.98
#26	1	75.400	0.381	0.000	0.000	47.000	S	0.01	0.0
	Σ	283.100						10.60	4.96
#34	1	69.600	0.574	0.000	0.000	74.000	F	18.51	2.7
	Σ	69.600						18.51	2.72
#33	1	1.800	0.024	0.000	0.000	47.000	S	0.00	0.0
	2	65.100	0.181	0.000	0.000	80.000	F	44.02	3.9
	3	15.600	0.063	0.000	0.000	47.000	S	0.00	0.00
	4	0.900	0.043	0.000	0.000	47.000	S	0.00	0.00
	5	11.100	0.059	0.000	0.000	80.000	F	9.47	0.69
	6	2.100	0.064	0.000	0.000	74.000	F	1.22	0.0
	Σ	96.600						50.74	4.70
#32	Σ	166.200						58.22	7.43
#25	1	7.800	0.050	0.000	0.000	74.000	F	4.53	0.32
	2	15.100	0.117	0.000	0.000	47.000	S	0.00	0.00
	Σ	22.900						4.53	0.32

Subwatershed Hydrology Detail:

Filename: Section 25 25-Year 24-Hour Event Post Mining Final.sc4

Stru	SWS	SWS Area	Time of Conc	Musk K	Musk X	Curve	UHS	Peak Discharge	Runoff Volume
#	#	(ac)	(hrs)	(hrs)		Number		(cfs)	(ac-ft)
#23	1	32.600	0.025	0.000	0.000	62.000	М	4.50	0.43
	2	137.700	0.339	0.000	0.000	57.000	м	1.07	0.69
	3	31.700	0.054	0.000	0.000	74.000	F	18.42	1.31
	4	2.600	0.107	0.000	0.000	47.000	S	0.00	0.00
	Σ	227.500						27.45	2.76
#22	Σ	227.500						27.45	2.76
#21	1	44.200	0.101	0.000	0.000	74.000	F	25.68	1.83
	Σ	44.200						25.68	1.83
#20	Σ	44.200						25.68	1.83
#19	1	64.500	0.092	0.000	0.000	62.000	М	8.91	0.85
	2	65.600	0.187	0.000	0.000	74.000	F	27.80	2.60
	3	2.700	0.038	0.000	0.000	47.000	S	0.00	0.00
	Σ	404.500						57.81	5.98
#18	Σ	404.500						57.81	5.98
#17	1	163.400	0.197	0.000	0.000	62.000	М	7.93	1.74
	Σ	163.400						7.93	1.74
#16	Σ	163.400						7.93	1.74
#15	1	5.200	0.062	0.000	0.000	62.000	м	0.72	0.06
	2	47.800	0.189	0.000	0.000	62.000	м	2.38	0.51
	3	109.100	0.301	0.000	0.000	74.000	F	38.73	4.26
	Σ	730.000						49.22	10.48
#14	Σ	730.000						49.22	10.48
#13	1	27.700	0.095	0.000	0.000	62.000	М	3.82	0.36
	2	32.900	0.045	0.000	0.000	80.000	F	28.07	2.06
	3	42.000	0.302	0.000	0.000	74.000	F	14.90	1.64
	4	6.700	0.096	0.000	0.000	47.000	S	0.00	0.00
	Σ	839.300						41.37	12.45
#12	Σ	839.300						41.37	12.45
#11	1	30.400	0.137	0.000	0.000	62.000	М	1.62	0.33
	2	6.600	0.033	0.000	0.000	80.000	F	5.63	0.41
	Σ	37.000						5.95	0.74
#10	Σ	37.000						5.95	0.74
#8	1	11.100	0.133	0.000	0.000	62.000	М	0.59	0.12
	2	3.400	0.011	0.000	0.000	80.000	F	2.90	0.21

Filename: Section 25 25-Year 24-Hour Event Post Mining Final.sc4

Printed 04-27-2022

Stru #	SWS #	SWS Area (ac)	Time of Conc (hrs)	Musk K (hrs)	Musk X	Curve Number	UHS	Peak Discharge (cfs)	Runoff Volume (ac-ft)
	Σ	14.500						3.02	0.334
#7	Σ	14.500						3.02	0.334
#6	1	14.200	0.050	0.000	0.000	80.000	F	12.11	0.891
	2	1.100	0.013	0.000	0.000	62.000	М	0.15	0.011
	Σ	906.100						21.23	12.222
#5	1	14.800	0.083	0.000	0.000	57.000	F	0.22	0.092
	Σ	14.800						0.22	0.092
#4	Σ	14.800						0.22	0.092
#3	1	27.800	0.146	0.000	0.000	62.000	М	1.48	0.302
	2	168.700	0.579	0.000	0.000	47.000	S	0.01	0.001
	Σ	1,283.600						21.53	14.306
#2	Σ	1,566.700						21.62	19.274
#1	Σ	1,566.700						12.72	16.418

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#3	1	3. Short grass pasture	12.00	175.72	1,464.33	2.770	0.146
#3	1	Time of Concentration:					0.146
#3	2	3. Short grass pasture	8.00	377.06	4,713.25	2.260	0.579
#3	2	Time of Concentration:					0.579
#5	1	3. Short grass pasture	19.00	199.94	1,052.31	3.480	0.083
#5	1	Time of Concentration:					0.083
#6	1	 Nearly bare and untilled, and alluvial valley fans 	21.00	174.93	833.00	4.580	0.050
#6	1	Time of Concentration:					0.050
#6	2	3. Short grass pasture	26.00	50.05	192.50	4.070	0.013
#6	2	Time of Concentration:					0.013
#8	1	3. Short grass pasture	14.00	200.44	1,431.71	2.990	0.133
#8	1	Time of Concentration:					0.133
#8	2	Nearly bare and untilled, and alluvial valley fans	24.00	49.92	208.00	4.890	0.011
#8	2	Time of Concentration:					0.011
#11	1	3. Short grass pasture	10.00	124.64	1,246.40	2.520	0.137
#11	1	Time of Concentration:					0.137
#11	2	 Nearly bare and untilled, and alluvial valley fans 	12.00	49.91	415.91	3.460	0.033

Filename: Section 25 25-Year 24-Hour Event Post Mining Final.sc4

Printed 04-27-2022

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#11	2	Time of Concentration:					0.03
#13	1	3. Short grass pasture	11.00	99.97	908.81	2.650	0.09
#13	1	Time of Concentration:					0.09
#13	2	5. Nearly bare and untilled, and alluvial valley fans	18.00	124.68	692.66	4.240	0.04
#13	2	Time of Concentration:					0.04
#13	3	3. Short grass pasture	12.00	362.28	3,019.00	2.770	0.30
#13	3	Time of Concentration:					0.30
#13	4	3. Short grass pasture	9.00	75.29	836.55	2.400	0.09
#13	4	Time of Concentration:					0.09
#15	1	3. Short grass pasture	12.00	75.11	625.91	2.770	0.06
#15	1	Time of Concentration:					0.06
#15	2	3. Short grass pasture	16.00	349.80	2,186.25	3.200	0.18
#15	2	Time of Concentration:					0.18
#15	3	3. Short grass pasture	13.00	406.64	3,128.00	2.880	0.30
#15	3	Time of Concentration:					0.30
#17	1	3. Short grass pasture	15.60	349.44	2,240.00	3.150	0.19
#17	1	Time of Concentration:					0.19
#19	1	3. Short grass pasture	15.00	154.05	1,027.00	3.090	0.09
#19	1	Time of Concentration:					0.09
#19	2	3. Short grass pasture	20.00	481.40	2,407.00	3.570	0.18
#19	2	Time of Concentration:					0.18
#19	3	3. Short grass pasture	2.00	3.16	158.00	1.130	0.03
#19	3	Time of Concentration:					0.03
#71	1	3. Short grass pasture	23.00	320.85	1,395.00	3.830	0.10
#21	1	Time of Concentration:					0.10
#23	1	3. Short grass pasture	31.00	125.24	404.00	4.450	0.02
#23	1	Time of Concentration:					0.02
#23	2	3. Short grass pasture	14.00	511.84	3,656.00	2.990	0.33
#23	2	Time of Concentration:					0.33
#23	3	3. Short grass pasture	31.00	272.18	878.00	4.450	0.05
#23	3	Time of Concentration:					0.05
#23	4	3. Short grass pasture	4.00	24.88	622.00	1.600	0.10
#23	4	Time of Concentration:					0.10
#25	1	3. Short grass pasture	33.00	275.22	834.00	4.590	0.05
#25	1	Time of Concentration:					0.05
#25	2	3. Short grass pasture	14.00	176.68	1,262.00	2.990	0.11
#25	2	Time of Concentration:					0.11
#26	1	3. Short grass pasture	9.60	325.53	3,391.00	2.470	0.38
#26	1	Time of Concentration:					0.38
#28	1	3. Short grass pasture	10.80	124.52	1,153.00	2.620	0.12
#28	1	Time of Concentration:					0.12

Filename: Section 25 25-Year 24-Hour Event Post Mining Final.sc4

36

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#30	1	3. Short grass pasture	7.70	74.92	973.00	2.210	0.12
#30	1	Time of Concentration:					0.12
#30	2	5. Nearly bare and untilled, and alluvial valley fans	3.20	25.28	790.00	1.780	0.12
#30	2	Time of Concentration:					0.123
#30	3	3. Short grass pasture	3.10	8.30	268.00	1.400	0.05
#30	3	Time of Concentration:					0.05
#31	1	3. Short grass pasture	11.60	99.64	859.00	2.720	0.08
#31	1	Time of Concentration:					0.08
#31	2	 Nearly bare and untilled, and alluvial valley fans 	8.10	251.18	3,101.00	2.840	0.30
#31	2	Time of Concentration:					0.30
#31	3	3. Short grass pasture	7.10	150.87	2,125.00	2.130	0.27
#31	3	Time of Concentration:					0.27
#31	4	3. Short grass pasture	8.90	25.00	281.00	2.380	0.03
#31	4	Time of Concentration:					0.03
#31	5	3. Short grass pasture	10.00	50.00	500.00	2.520	0.05
#31	5	Time of Concentration:					0.05
#31	6	3. Short grass pasture	10.00	100.30	1,003.00	2.520	0.11
#31	6	Time of Concentration:					0.11
#31	7	 Nearly bare and untilled, and alluvial valley fans 	7.00	49.91	713.00	2.640	0.07
#31	7	Time of Concentration:					0.07
#33	1	3. Short grass pasture	2.00	2.00	100.00	1.130	0.02
#33	1	Time of Concentration:					0.02
#33	2	5. Nearly bare and untilled, and alluvial valley fans	8.10	150.01	1,852.00	2.840	0.18
#33	2	Time of Concentration:					0.18
#33	3	3. Short grass pasture	11.90	74.85	629.00	2.750	0.06
#33	3	Time of Concentration:					0.06
#33	4	 Nearly bare and untilled, and alluvial valley fans 	5.90	75.10	1,273.00	2.420	0.14
#33	4	Time of Concentration:					0.04
#33	5	Nearly bare and untilled, and alluvial valley fans	8.00	48.64	608.00	2.820	0.05
#33	5	Time of Concentration:					0.05
#33	6	3. Short grass pasture	6.00	27.06	451.00	1.950	0.06
#33	6	Time of Concentration:					0.064
#34	1	3. Short grass pasture	7.00	305.62	4,366.00	2.110	0.57
#34	1	Time of Concentration:					0.574

Little Collom Gulch Post Mine Channel Configurations

100-Year 24-Hour Storm Event Post-Mining Condition

Tony Tennyson

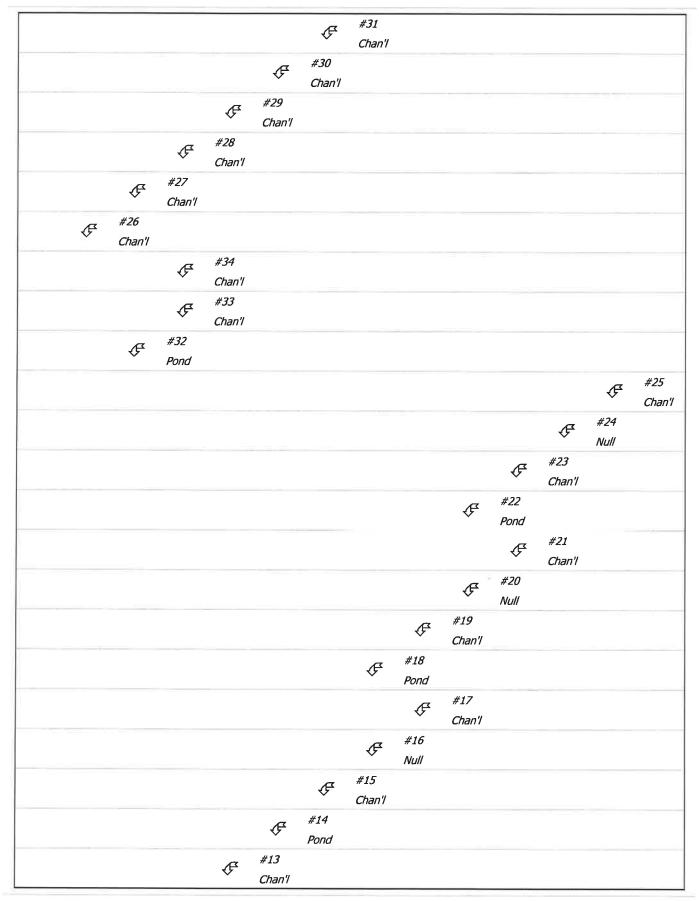
Filename: Little Collom Gulch 100-Year 24-Hour Event Post Mining.sc4

Printed 04-27-2022

1

General Information

Storm Information:


Storm Type:	NRCS Type II
Design Storm:	100 yr - 24 hr
Rainfall Depth:	2.700 inches

Convright 1998 -2010 Pamela I Schwah

		Str	uctu	ire Ne	twork	king:
Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Null	#1	==>	End	0.000	0.000	Null Below Section 25 Pond
Pond	#2	==>	#1	0.000	0.000	Section 25 Pond
Channel	#3	==>	#2	0.000	0.000	Little Collom Gulch Natural Channel
Null	#4	==>	#3	0.000	0.000	Null at Confluence with D-3 Ditch
Channel	#5	==>	#4	0.000	0.000	D-3 Ditch
Channel	#6	==>	#3	0.000	0.000	Little Collom Gulch 0+00 to LCG-1
Null	#7	==>	#6	0.000	0.000	Null at Confluence Lower Terrace Ditch
Channel	#8	==>	#7	0.000	0.000	Lower Terrace Ditch
Null	#10	==>	#6	0.000	0.000	Null at Confluence Upper Terrace Ditch
Channel	#11	==>	#10	0.000	0.000	Upper Terrace Ditch
Pond	#12	==>	#6	0.000	0.000	LCG-1 Stockpond
Channel	#13	==>	#12	0.000	0.000	Little Collom Gulch LCG-1 to LCG-2
Pond	#14	==>	#13	0.000	0.000	LCG-2 Stockpond
Channel	#15	==>	#14	0.000	0.000	Little Collom Gulch LCG-2 to LCG-3
Null	#16	==>	#15	0.000	0.000	Null at Confluence with Sage Draw
Channel	#17	==>	#16	0.000	0.000	Sage Draw
Pond	#18	==>	#15	0.000	0.000	LCG-3 Stockpond
Channel	#19	==>	#18	0.000	0.000	Little Collom Gulch LCG-3 to LCG-4
Null	#20	==>	#19	0.000	0.000	Null at Confluence with Grouse Draw
Channel	#21	==>	#20	0.000	0.000	Grouse Draw
Pond	#22	==>	#19	0.000	0.000	LCG-4 Stockpond
Channel	#23	==>	#22	0.000	0.000	Little Collom Gulch LCG-4 to 102+79
Null	#24	==>	#23	0.000	0.000	Null at Confluence with Sharpie Draw
Channel	#25	==>	#24	0.000	0.000	Sharpie Draw
Channel	#26	==>	#2	0.000	0.000	Natural Channel Middle Pond to Section 25 Pond
Channel	#27	==>	#26	0.000	0.000	Lower Bobact Draw (Middle Pond)
Channel	#28	==>	#27	0.000	0.000	Natural Channel Middle Pond to Section 36 Pond
Channel	#29	==>	#28	0.000	0.000	Middle Bobcat Draw (Section 36 Pond)
Channel	#30	==>	#29	0.000	0.000	Natural Channel Section 36 Pond to Upper Bobcat Draw
Channel	#31	==>	#30	0.000	0.000	Upper Bobcat Draw 0+00 to 21+33
Pond	#32	==>	#3	0.000	0.000	Coal Stockpile Pond
Channel	#33	==>	#32	0.000	0.000	D-5 Ditch
Channel	#34	==>	#32	0.000	0.000	D-7 Ditch

Structure Notworking

Convright 1998 -2010 Pamela I. Schwah

Filename: Little Collom Gulch 100-Year 24-Hour Event Post Mining.sc4

Printed 04-27-2022

4

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			_			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Æ		
Image: Second Secon				~	Pond	
Image: Chan'i Image: Chan'i Image: Chan'i					Æ	
Image:					V	Chan'l
Null #8 Chan'l #7 Mull #7 Mull #7 Mull #6 Chan'l Chan'l E #7 Chan'l E #8 Chan'l E #4 Chan'l E #4 Chan'l E #4 Chan'l E E E E E E E E E E E E E E E E E E E E E E E E E <th<< td=""><td></td><td></td><td></td><td>Ā</td><td>#10</td><td></td></th<<>				Ā	#10	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					Null	
Kall Kall Image: Second sec					Ā	#8
Image: Will Will Image: Will Image: Will Image: Will Image: Will Image:					Ŷ	Chan'l
Null Image: Provide state s			Ā	#7		
Image: Chan'l Image: Chan'l Image: Chan'l					Null	
Chan'l #5 Chan'l Chan'l Image: Chan'l Image: Chan'l <td></td> <td></td> <td>Ā</td> <td>#6</td> <td></td> <td></td>			Ā	#6		
Image: Second			₹¢	Chan'l		
$ \frac{1}{\sqrt{2}} \frac{4}{\sqrt{2}} $					#5	
Null Image: State of the				v	Chan'l	
Null #3 Chan'l #2 Pond #1			Æ	#4		
<i>Chan'l Chan'l #2 Pond #1</i>			₹ v	Null		
#2 Pond #1		д	#3			
Pond #1		₹¢	Chan'l			
#1	A	#2				
	V.	Pond				
Null	#1					
	Null					

5

		Immediate Contributing Area	Total Contributing Area	Peak Discharge	Total Runoff Volume
		(ac)	(ac)	(cfs)	(ac-ft)
#31		163.300	163.300	59.37	6.69
#30		24.800	188.100	64.62	7.11
#29		0.000	188.100	64.62	7.11
#28		19.600	207.700	64.62	7.14
#27		0.000	207.700	64.62	7.14
#26		75.400	283.100	64.62	7.2
#34		69.600	69.600	28.81	3.95
#33		96.600	96.600	70.65	6.46
	In			84.04	10.41
#32	Out	0.000	166.200	10.12	4.67
#25		22.900	22.900	6.51	0.49
#24		0.000	22.900	6.51	0.49
#23		204.600	227.500	43.19	4.67
	In			43.19	4.67
#22	Out	0.000	227.500	2.32	2.58
#21		44.200	44.200	36.89	2.66
#20		0.000	44.200	36.89	2.66
#19		132.800	404.500	93.23	10.56
	In			93.23	10.56
#18	Out	0.000	404.500	8.80	8.44
#17		163.400	163.400	21.46	3.12
#16		0.000	163.400	21.46	3.12
#15		162.100	730.000	88.39	18.79
	In			88.39	18.79
#14	Out	0.000	730.000	22.34	16.66
#13		109.300	839.300	62.39	22.53
	In	0.000		62.39	22.53
#12	Out	0.000	839.300	27.22	20.23
#11		37.000	37.000	9.78	1.15
#10		0.000	37.000	9.78	1.15
#8		14.500	14.500	4.70	0.51
#7		0.000	14.500	4.70	0.51
#6		15.300	906.100	31.06	23.14
#5		14.800	14.800	1.78	0.20
#4		0.000	14.800	1.78	0.20
#3		196.500	1,283.600	41.08	28.70

Structure Summary:

		Immediate Contributing Area (ac)	Total Contributing Area (ac)	Peak Discharge (cfs)	Total Runoff Volume (ac-ft)
#2	In	0.000	1 566 700	99.50	35.91
# Z	Out	0.000	1,566.700	43.36	32.99
#1		0.000	1,566.700	43.36	32.99

Structure Detail:

Structure #31 (Riprap Channel)

Upper Bobcat Draw 0+00 to 21+33

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
10.00	3.0:1	3.0:1	8.3	3.50		

Riprap Channel Results:

Simons/OSM Method - Steep Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	59.37 cfs	
Depth:	0.50 ft	4.00 ft
Top Width:	13.02 ft	34.02 ft
Velocity*:		
X-Section Area:	5.79 sq ft	
Hydraulic Radius:	0.439 ft	
Froude Number*:		
Manning's n*:		
Dmin:	3.00 in	
D50:	9.00 in	
Dmax:	11.25 in	

Velocity and Manning's n calculations may not apply for this method.

Structure #30 (Vegetated Channel)

Natural Channel Section 36 Pond to Upper Bobcat Draw

Trapezoidal Vegetated Channel Inputs:

Material: Tall fescue

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Retardance Classes	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)	Limiting Velocity (fps)
5.00	2.0:1	2.0:1	12.9	D, B				5.0

Convisiont 1998 -2010 Pamala I. Schwah

Vegetated Channel Results:

	Stability	Stability	Capacity	Capacity
	Class D w/o Freeboard	Class D w/ Freeboard	Class B w/o Freeboard	Class B w/ Freeboard
Design Discharge:	64.62 cfs		64.62 cfs	
Depth:	0.80 ft		1.10 ft	
Top Width:	8.19 ft		9.40 ft	
Velocity:	12.28 fps		8.16 fps	
X-Section Area:	5.26 sq ft		7.92 sq ft	
Hydraulic Radius:	0.614 ft		0.798 ft	
Froude Number:	2.70		1.57	
Roughness Coefficient:	0.0315		0.0564	

Structure #29 (Riprap Channel)

Middle Bobcat Draw (Section 36 Pond)

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
10.00	3.0:1	3.0:1	5.0	3.44		

Riprap Channel Results:

Simons/OSM Method - Steep Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	64.62 cfs	
Depth:	0.56 ft	4.00 ft
Top Width:	13.34 ft	33.98 ft
Velocity*:		
X-Section Area:	6.49 sq ft	
Hydraulic Radius:	0.480 ft	
Froude Number*:		
Manning's n*:		
Dmin:	3.00 in	
D50:	9.00 in	
Dmax:	11.25 in	

Velocity and Manning's n calculations may not apply for this method.

Structure #28 (Vegetated Channel)

Natural Channel Middle Pond to Section 36 Pond

Trapezoidal Vegetated Channel Inputs:

|--|

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Retardance Classes	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)	Limiting Velocity (fps)
5.00	2.0:1	2.0:1	6.4	D, B				6.0

Vegetated Channel Results:

	Stability	Stability	Capacity	Capacity
	Class D w/o Freeboard	Class D w/ Freeboard	Class B w/o Freeboard	Class B w/ Freeboard
Design Discharge:	64.62 cfs		64.62 cfs	
Depth:	0.98 ft		1.37 ft	
Top Width:	8.94 ft		10.48 ft	
Velocity:	9.42 fps		6.09 fps	
X-Section Area:	6.86 sq ft		10.61 sq ft	
Hydraulic Radius:	0.729 ft		0.954 ft	
Froude Number:	1.90		1.07	
Roughness Coefficient:	0.0324		0.0599	

Structure #27 (Riprap Channel)

Lower Bobact Draw (Middle Pond)

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
10.00	3.0:1	3.0:1	6.4	3.45		

Riprap Channel Results:

Simons/OSM Method - Steep Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	64.62 cfs	
Depth:	0.55 ft	4.00 ft
Top Width:	13.29 ft	33.99 ft
Velocity*:		
X-Section Area:	6.38 sq ft	
Hydraulic Radius:	0.474 ft	

	w/o Freeboard	w/ Freeboard
Froude Number*:		
Manning's n*:		
Dmin:	3.00 in	
D50;	9.00 in	
Dmax:	11.25 in	

Velocity and Manning's n calculations may not apply for this method.

Structure #26 (Vegetated Channel)

Natural Channel Middle Pond to Section 25 Pond

Trapezoidal Vegetated Channel Inputs:

Material: Tall fescue

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Retardance Classes	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)	Limiting Velocity (fps)
5.00	2.0:1	2.0:1	6.4	D, B				6.0

Vegetated Channel Results:

	Stability	Stability	Capacity	Capacity
	Class D w/o Freeboard	Class D w/ Freeboard	Class B w/o Freeboard	Class B w/ Freeboard
Design Discharge:	64.62 cfs		64.62 cfs	
Depth:	0.98 ft		1.37 ft	
Top Width:	8.94 ft		10.48 ft	
Velocity:	9.42 fps		6.09 fps	
X-Section Area:	6.86 sq ft		10.61 sq ft	
Hydraulic Radius:	0.729 ft		0.954 ft	
Froude Number:	1.90		1.07	
Roughness Coefficient:	0.0324		0.0599	

Structure #34 (Vegetated Channel)

D-7 Ditch

Trapezoidal Vegetated Channel Inputs:

Material: Tall fescue

11

Convright 1998 -2010 Pamela | Schwah

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Retardance Classes	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)	Limiting Velocity (fps)
5.00	2.0:1	2.0:1	6.0	D, B	2.04			6.0

Vegetated Channel Results:

	Stability	Stability	Capacity	Capacity
	Class D w/o Freeboard	Class D w/ Freeboard	Class B w/o Freeboard	Class B w/ Freeboard
Design Discharge:	28.81 cfs		28.81 cfs	
Depth:	0.72 ft	2.76 ft	1.10 ft	3.14 ft
Top Width:	7.87 ft	16.03 ft	9.40 ft	17.56 ft
Velocity:	6.25 fps		3.64 fps	
X-Section Area:	4.61 sq ft		7.92 sq ft	
Hydraulic Radius:	0.562 ft		0.798 ft	
Froude Number:	1. 4 4		0.70	
Roughness Coefficient:	0.0397		0.0863	

Structure #33 (Riprap Channel)

D-5 Ditch

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
12.00	2.0:1	2.0:1	2.0	2.52		

Riprap Channel Results:

Simons/OSM Method - Steep Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	70.65 cfs	
Depth:	0.61 ft	3.13 ft
Top Width:	14.45 ft	24.53 ft
Velocity*:		
X-Section Area:	8.11 sq ft	
Hydraulic Radius:	0.550 ft	
Froude Number*:		
Manning's n*:		
Dmin:	2.00 in	
D50:	6.00 in	

Convright 1998 -2010 Pamela I. Schwah

	w/o Freeboard	w/ Freeboard
Dmax:	7.50 in	

Velocity and Manning's n calculations may not apply for this method.

Structure #32 (Pond)

Coal Stockpile Pond

Pond Inputs:

	Initia	al Pool Elev:	7,212.00 f	t l
	Initial Pool;		1.71 ac-f	t
1	Emer	gency Spil	llway	
Spillway Elev	Crest Length (ft)	Left Sideslope	Right Sideslope	Bottom Width (ft)
7,217.00	25.00	3.00:1	3.00:1	20.00

Pond Results:

Peak Elevation:	7,217.21 ft
Dewater Time:	0.54 days

Dewatering time is calculated from peak stage to lowest spillway

Elevation-Capacity-Discharge Table

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
7,210.00	0.779	0.000	0.000		
7,210.50	0.820	0.400	0.000		
7,211.00	0.860	0.819	0.000		
7,212.00	0.928	1.713	0.000		
7,213.00	1.049	2.701	0.000		
7,214.00	1.090	3.771	0.000		
7,215.00	1.175	4.903	0.000		
7,216.00	1.268	6.124	0.000		
7,217.00	1.390	7.452	0.000		Spillway #1
7,217.21	1.417	7.763	10.121	12.85	Peak Stage
7,218.00	1.513	8.904	47.313		
7,219.00	1.632	10.476	170.230		

Detailed Discharge Table

Convright 1998 _2010 Pamela | Schwah

		Combined
		Combined
Elevation	Emergency	Total
(ft)	Spillway (cfs)	Discharge
		(cfs)
7,210.00	0.000	0.000
7,210.50	0.000	0.000
7,211.00	0.000	0.000
7,212.00	0.000	0.000
7,213.00	0.000	0.000
7,214.00	0.000	0.000
7,215.00	0.000	0.000
7,216.00	0.000	0.000
7,217.00	0.000	0.000
7,218.00	47.313	47.313
7,219.00	170.230	170.230

Structure #25 (Riprap Channel)

Sharpie Draw

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
10.00	3.0:1	3.0:1	22.0	3.94		

Riprap Channel Results:

Simons/OSM Method - Steep Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	6.51 cfs	
Depth:	0.06 ft	4.00 ft
Top Width:	10.34 ft	33.98 ft
Velocity*:		
X-Section Area:	0.58 sq ft	
Hydraulic Radius:	0.056 ft	
Froude Number*:		
Manning's n*;		
Dmin:	2.00 in	
D50:	6.00 in	
Dmax:	7.50 in	

Velocity and Manning's n calculations may not apply for this method.

CONVERTING STORE SCHWAR

Structure #24 (Null)

Null at Confluence with Sharpie Draw

Structure #23 (Riprap Channel)

Little Collom Gulch LCG-4 to 102+79

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
10.00	3.0:1	3.0:1	7.4	3.60		

Riprap Channel Results:

Simons/OSM Method - Steep Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	43.19 cfs	
Depth:	0.40 ft	4.00 ft
Top Width:	12.38 ft	33.98 ft
Velocity*:		
X-Section Area:	4.44 sq ft	
Hydraulic Radius:	0.355 ft	
Froude Number*:		
Manning's n*:		192
Dmin:	2.00 in	
D50:	6.00 in	
Dmax:	7.50 in	

Velocity and Manning's n calculations may not apply for this method.

Structure #22 (Pond)

LCG-4 Stockpond

Pond Inputs:

	Initial Pool Elev: 102.00 ft							
Initial Pool: 0.34 ac-ft								
	Emergency Spillway							
Spillway Elev	Crest Length (ft)	Left Sideslope	Right Sideslope	Bottom Width (ft)				
107.00	20.00	2.00:1	2.00:1	15.00				

Filename: Little Collom Gulch 100-Year 24-Hour Event Post Mining.sc4

Convright 1998 -2010 Pamela | Schwah

Straight Pipe

Barrel Diameter (in)	Barrel Length (ft)	Barrel Slope (%)	Manning's n	Spillway Elev (ft)	Entrance Loss Coefficient	Tailwater Depth (ft)
12.00	100.00	2.00	0.0150	105.00	0.90	0.00

Pond Results:

Peak Elevation:	106.10 ft
Dewater Time:	0.41 days

Dewatering time is calculated from peak stage to lowest spillway

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
100.00	0.016	0.000	0.000		
101.00	0.096	0.050	0.000		
102.00	0.539	0.338	0.000		
103.00	0.654	0.933	0.000		
104.00	0.735	1.628	0.000		
105.00	0.843	2.416	0.000		Spillway #2
106.00	0.872	3.273	2.094	4.95*	
106.10	0.859	3.357	2.317	4.90	Peak Stage
107.00	0.872	4.145	4.414		Spillway #1
108.00	0.872	5.017	42.121		

Elevation-Capacity-Discharge Table

*Designates time(s) to dewater have been extrapolated beyond the 50 hour hydrograph limit.

Detailed Discharge Table

			Combined
Elevation	Emergency	Straight Pipe	Total
(ft)	Spillway (cfs)	(cfs)	Discharge
		(cfs)	
100.00	0.000	0.000	0.000
101.00	0.000	0.000	0.000
102.00	0.000	0.000	0.000
103.00	0.000	0.000	0.000
104.00	0.000	0.000	0.000
105.00	0.000	0.000	0.000
106.00	0.000	(3)>2.094	2.094

Convright 1998 -2010 Pamela I. Schwah

ſ				Combined
	Elevation	Emergency	Straight Pipe	Total
	(ft)	Spillway (cfs)	(cfs)	Discharge
				(cfs)
	107.00	0.000	(5)>4.414	4.414
	108.00	36.939	(6)>5.182	42.121

Structure #21 (Riprap Channel)

Grouse Draw

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
10.00	3.0:1	3.0:1	16.8	3.72		

Riprap Channel Results:

Simons/OSM Method - Steep Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	36.89 cfs	
Depth:	0.28 ft	4.00 ft
Top Width:	11.69 ft	34.01 ft
Velocity*:		
X-Section Area:	3.05 sq ft	
Hydraulic Radius:	0.259 ft	
Froude Number*:		
Manning's n*:		
Dmin:	3.00 in	
D50:	9.00 in	
Dmax:	11.25 in	

Velocity and Manning's n calculations may not apply for this method.

Structure #20 (Null)

Null at Confluence with Grouse Draw

Structure #19 (Riprap Channel)

Little Collom Gulch LCG-3 to LCG-4

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Convright 1008 -2010 Pamela I Schwah

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
10.00	3.0:1	3.0:1	7.8	3.30		

Riprap Channel Results:

Simons/OSM Method - Steep Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	93.23 cfs	
Depth:	0.70 ft	4.00 ft
Top Width:	14.22 ft	34.02 ft
Velocity*:		
X-Section Area:	8.52 sq ft	
Hydraulic Radius:	0.590 ft	
Froude Number*:		
Manning's n*:		
Dmin:	3.00 in	
D50:	9.00 in	
Dmax:	11.25 in	

Velocity and Manning's n calculations may not apply for this method.

Structure #18 (Pond)

LCG-3 Stockpond

Pond Inputs:

Initial Pool:	0.34 ac-ft
Initial Pool Elev:	102.00 ft

Emergency Spillway

Spillway Elev	Crest Length	Left	Right	Bottom
	(ft)	Sideslope	Sideslope	Width (ft)
107.00	20.00	2.00:1	2.00:1	15.00

Straight Pipe

Barrel Diameter (in)	Barrel Length (ft)	Barrel Slope (%)	Manning's n	Spillway Elev (ft)	Entrance Loss Coefficient	Tailwater Depth (ft)
12.00	100.00	2.00	0.0150	105.00	0.90	0.00

Pond Results:

Filename: Little Collom Gulch 100-Year 24-Hour Event Post Mining.sc4

SEDCAD 4 for Windows Convright 1998 -2010 Pamela L Schwah

Peak Elevation:	107.12 ft
Dewater Time:	0.88 days

Dewatering time is calculated from peak stage to lowest spillway

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
100.00	0.016	0.000	0.000		
101.00	0.096	0.050	0.000		
102.00	0.539	0.338	0.000		
103.00	0.654	0.933	0.000		
104.00	0.735	1.628	0.000		
105.00	0.843	2.416	0.000		Spillway #2
106.00	0.872	3.273	2.094	4.95*	
107.00	0.872	4.145	4.414	5.70	Spillway #1
107.12	0.872	4.247	8.800	10.35	Peak Stage
108.00	0.872	5.017	42.121		

Elevation-Capacity-Discharge Table

*Designates time(s) to dewater have been extrapolated beyond the 50 hour hydrograph limit.

Detailed Discharge Table

			Combined	
Elevation	Emergency	Straight Pipe	Total Discharge	
(ft)	Spillway (cfs)	(cfs)		
			(cfs)	
100.00	0.000	0.000	0.000	
101.00	0.000	0.000	0.000	
102.00	0.000	0.000	0.000	
103.00	0.000	0.000	0.000	
104.00	0.000	0.000	0.000	
105.00	0.000	0.000	0.000	
106.00	0.000	(3)>2.094	2.094	
107.00	0.000	(5)>4.414	4.414	
108.00	36.939	(6)>5.182	42.121	

Structure #17 (Riprap Channel)

Sage Draw

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Convright 1998 -2010 Pamela I. Schwah

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
5.00	3.0:1	3.0:1	2.1	3.61		

Riprap Channel Results:

Simons/OSM Method - Steep Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	21.46 cfs	
Depth:	0.39 ft	4.00 ft
Top Width:	7.36 ft	29.02 ft
Velocity*:		
X-Section Area:	2.43 sq ft	
Hydraulic Radius:	0.325 ft	
Froude Number*:		
Manning's n*:		
Dmin:	3.00 in	
D50:	9.00 in	
Dmax:	11.25 in	

Velocity and Manning's n calculations may not apply for this method.

Structure #16 (Null)

Null at Confluence with Sage Draw

Structure #15 (Riprap Channel)

Little Collom Gulch LCG-2 to LCG-3

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
10.00	3.0:1	3.0:1	4.7	3.30		

Riprap Channel Results:

Simons/OSM Method - Steep Slope Design

	w/o Freeboard	w/ Freeboard	
Design Discharge:	88.39 cfs		
Depth:	0.70 ft	4.00 ft	
Top Width:	14.20 ft	34.00 ft	

Convright 1998_2010 Pamela | Schwah

	w/o Freeboard	w/ Freeboard
Velocity*:		
X-Section Area:	8.48 sq ft	
Hydraulic Radius:	0.588 ft	
Froude Number*:		
Manning's n*:		
Dmin:	3.00 in	
D50:	9.00 in	
Dmax:	11.25 in	

Velocity and Manning's n calculations may not apply for this method.

Structure #14 (Pond)

LCG-2 Stockpond

Pond Inputs:

Initial Pool Elev:	102.00 ft
Initial Pool:	0.34 ac-ft
Emergency Spill	way

Spillway Elev	Crest Length	Left	Right	Bottom
	(ft)	Sideslope	Sideslope	Width (ft)
107.00	30.00	2.00:1	2.00:1	20.00

Straight Pipe

Barrel	Barrel	Dennel	Manada	0	Entrance	Tailwater
Diameter	Length	Barrel	Manning's	Spillway Elev (ft)	Loss	Depth
(in)	(ft)	Slope (%)			Coefficient	(ft)
18.00	100.00	2.00	0.0150	105.00	0.90	0.00

Pond Results:

Pe	ak Elevation:	107.29 ft
De	ewater Time:	0.80 days

Dewatering time is calculated from peak stage to lowest spillway

Elevation-Capacity-Discharge Table

Convright 1998 -2010 Pamela | Schwah

Elevation	Area	Capacity	Discharge	Dewater Time	
	(ac)	(ac-ft)	(cfs)	(hrs)	
100.00	0.016	0.000	0.000		
101.00	0.096	0.050	0.000		
102.00	0.539	0.338	0.000		
103.00	0.654	0.933	0.000		
104.00	0.735	1.628	0.000		
105.00	0.843	2.416	0.000		Spillway #2
106.00	0.872	3.273	3.142	3.30*	
107.00	0.872	4.145	8.425	5.40	Spillway #1
107.29	0.872	4.400	22.341	10.50	Peak Stage
108.00	0.872	5.017	56.073		

*Designates time(s) to dewater have been extrapolated beyond the 50 hour hydrograph limit.

Detailed Discharge Table

Combined Total Elevation Emergency Straight Pipe (ft) Spillway (cfs) (cfs) Discharge (cfs) 100.00 0.000 0.000 0.000 101.00 0.000 0.000 0.000 102.00 0.000 0.000 0.000

0.000

0.000

0.000

(3)>3.142

(5)>8.425

(5)>12.173

0.000

0.000

0.000

3.142

8.425

56.073

0.000

0.000

0.000

0.000

0.000

43.900

Structure #13 (Riprap Channel)

Little Collom Gulch LCG-1 to LCG-2

103.00

104.00

105.00

106.00

107.00

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
10.00	3.0:1	3.0:1	4.9	3.46		

Riprap Channel Results:

Simons/OSM Method - Steep Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	62.39 cfs	
Depth:	0.54 ft	4.00 ft
Top Width:	13.25 ft	34.01 ft
Velocity*:		
X-Section Area:	6.29 sq ft	
Hydraulic Radius:	0.469 ft	
Froude Number*:		
Manning's n*:		
Dmin:	3.00 in	
D50:	9.00 in	
Dmax:	11.25 in	

Velocity and Manning's n calculations may not apply for this method.

Structure #12 (Pond)

LCG-1 Stockpond

Pond Inputs:

	Initia	al Pool Elev:	102.00 f	ť
		Initial Pool:	0.34 ac-f	t
	Emer	gency Spi	illway	
pillwav Elev	Crest Length	Left	Right	Bottom

Spillway Elev	Crest Length (ft)	Left Sideslope	Right Sideslope	Bottom Width (ft)
107.00	30.00	2.00:1	2.00:1	20.00

Straight Pipe

Barrel	Barrel	Barrel	Manningla	Spillwov	Entrance	Tailwater
Diameter	Length		Manning's	Spillway	Loss	Depth
(in)	(ft)	Slope (%)	n	Elev (ft)	Coefficient	(ft)
12.00	100.00	2.00	0.0150	105.00	0.90	0.00

Pond Results:

Peak Elevation:	107.51 ft
Dewater Time:	1.22 days

Dewatering time is calculated from peak stage to lowest spillway

Elevation-Capacity-Discharge Table

SEDCAD 4 for Windows Convright 1998 -2010 Pamela L Schwah

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
100.00	0.016	0.000	0.000	· · ·	
101.00	0.096	0.050	0.000		
102.00	0.539	0.338	0.000		
103.00	0.654	0.933	0.000		
104.00	0.735	1.628	0.000		
105.00	0.843	2.416	0.000		Spillway #2
106.00	0.872	3.273	2.094	4.95*	
107.00	0.872	4.145	4.414	10.40	Spillway #1
107.51	0.872	4.591	27.218	13.85	Peak Stage
108.00	0.872	5.017	49.083		

*Designates time(s) to dewater have been extrapolated beyond the 50 hour hydrograph limit.

			Combined
Elevation	Emergency	Straight Pipe	Total
(ft)	Spillway (cfs)	(cfs)	Discharge
			(cfs)
100.00	0.000	0.000	0.000
101.00	0.000	0.000	0.000
102.00	0.000	0.000	0.000
103.00	0.000	0.000	0.000
104.00	0.000	0.000	0.000
105.00	0.000	0.000	0.000
106.00	0.000	(3)>2.094	2.094
107.00	0.000	(5)>4.414	4.414
108.00	43.900	(6)>5.182	49.083

Detailed Discharge Table

Structure #11 (Vegetated Channel)

Upper Terrace Ditch

Triangular Vegetated Channel Inputs:

Material: Tall fescue

Left Sideslo Ratio	pe Sidesloj	be Slope (%)	Retardance Classes	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)	Limiting Velocity (fps)
	5:1 3	.0:1 2.	D D, B	1.16			7.0

Vegetated Channel Results:

Convright 1998 -2010 Pamela I. Schwah

	Stability	Stability	Capacity	Capacity
	Class D w/o Freeboard	Class D w/ Freeboard	Class B w/o Freeboard	Class B w/ Freeboard
Design Discharge:	9.78 cfs		9.78 cfs	
Depth:	1.24 ft	2.40 ft	1.84 ft	3.00 ft
Top Width:	5.56 ft	10.78 ft	8.26 ft	13.48 ft
Velocity:	2.85 fps		1.29 fps	
X-Section Area:	3.43 sq ft		7.58 sq ft	
Hydraulic Radius:	0.564 ft		0.838 ft	
Froude Number:	0.64		0.24	
Roughness Coefficient:	0.0504		0.1450	

Structure #10 (Null)

Null at Confluence Upper Terrace Ditch

Structure #8 (Vegetated Channel)

Lower Terrace Ditch

Triangular Vegetated Channel Inputs:

Material: Tall fescue

s	Left iideslope Ratio	Right Sideslope Ratio	Slope (%)	Retardance Classes	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)	Limiting Velocity (fps)
	1.5:1	3.0:1	2.0	D, B	1.44			7.0

Vegetated Channel Results:

	Stability	Stability	Capacity	Capacity
	Class D w/o Freeboard	Class D w/ Freeboard	Class B w/o Freeboard	Class B w/ Freeboard
Design Discharge:	4.70 cfs		4.70 cfs	
Depth:	1.00 ft	2.44 ft	1.56 ft	3.00 ft
Top Width:	4.48 ft	10.96 ft	7.02 ft	13.50 ft
Velocity:	2.11 fps		0.86 fps	
X-Section Area:	2.23 sq ft		5.48 sq ft	
Hydraulic Radius:	0.455 ft		0.713 ft	
Froude Number:	0.53		0.17	
Roughness Coefficient:	0.0591		0.1957	

Structure #7 (Null)

Null at Confluence Lower Terrace Ditch

Structure #6 (Riprap Channel)

Little Collom Gulch 0+00 to LCG-1

Trapezoidal Riprap Channel Inputs:

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
15.00	3.0:1	3.0:1	16.6	3.84		

Material: Riprap

Riprap Channel Results:

Simons/OSM Method - Steep Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	31.06 cfs	
Depth:	0.16 ft	4.00 ft
Top Width:	15.98 ft	39.02 ft
Velocity*:		
X-Section Area:	2.54 sq ft	
Hydraulic Radius:	0.158 ft	
Froude Number*;		
Manning's n*:		
Dmin:	2.00 in	
D50:	6.00 in	
Dmax:	7.50 in	

Velocity and Manning's n calculations may not apply for this method.

Structure #5 (Riprap Channel)

D-3 Ditch

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of <mark>Depth</mark>	Freeboard Mult. x (VxD)
12.(00 2.0:1	2.0:1	16.1	2.97		

Riprap Channel Results:

Simons/OSM Method - Steep Slope Design

SEDCAD 4 for Windows Convright 1998_2010 Pamela | Schwah

	w/o Freeboard	w/ Freeboard
Design Discharge:	1.78 cfs	
Depth:	0.03 ft	3.00 ft
Top Width:	12.12 ft	24.00 ft
Velocity*:		
X-Section Area:	0.35 sq ft	
Hydraulic Radius:	0.029 ft	
Froude Number*:		
Manning's n*:		
Dmin:	2.00 in	
D50:	6.00 in	
Dmax:	7.50 in	

Velocity and Manning's n calculations may not apply for this method.

Structure #4 (Null)

Null at Confluence with D-3 Ditch

Structure #3 (Vegetated Channel)

Little Collom Gulch Natural Channel

Trapezoidal Vegetated Channel Inputs:

Material: Tall fescue

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Retardance Classes	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)	Limiting Velocity (fps)
5.00	2.0:1	2.0:1	5.7	D, B				6.0

Vegetated Channel Results:

	Stability	Stability	Capacity	Capacity
	Class D w/o Freeboard	Class D w/ Freeboard	Class B w/o Freeboard	Class B w/ Freeboard
Design Discharge:	41.08 cfs		41.08 cfs	
Depth:	0.84 ft		1.24 ft	
Top Width:	8.38 ft		9.97 ft	
Velocity:	7.28 fps		4.42 fps	
X-Section Area:	5.64 sq ft		9.30 sq ft	
Hydraulic Radius:	0.643 ft		0.881 ft	
Froude Number:	1.56		0.81	
Roughness Coefficient:	0.0364		0.0739	

Structure #2 (Pond)

Filename: Little Collom Gulch 100-Year 24-Hour Event Post Mining.sc4

Printed 04-27-2022

Convright 1998 -2010 Pamela I. Schwah

Section 25 Pond

Pond Inputs:

			Initial Pool	Elev: 6	5,868.00 ft		
			Initial	Pool:	4.36 ac-ft		
			Perfora	ted Riser			
er	Riser Height	Barrel Diameter	Barrel	Barrel Slope	Manning's n	Spillway Elev	Nur Ho

Riser Diameter (in)	Riser Height (ft)	Barrel Diameter (in)	Barrel Length (ft)	Barrel Slope (%)	Manning's n	Spillway Elev (ft)	Number of Holes per Elev
18.00	16.00	18.00	182.00	5.00	0.0150	6,872.00	2

Emergency Spillway

Spillway Elev	Crest Length	Left	Right	Bottom
	(ft)	Sideslope	Sideslope	Width (ft)
6,875.00	45.00	2.00:1	2.00:1	20.00

Pond Results:

Peak Elevation:	6,875.68 ft
Dewater Time:	3.52 days

Dewatering time is calculated from peak stage to lowest spillway

Dewater Area Capacity Discharge Time Elevation (ac) (ac-ft) (cfs) (hrs) 6,855.00 0.000 0.047 0.000 6,856.00 0.102 0.073 0.000 6,857.00 0.156 0.201 0.000 6,858.00 0.191 0.374 0.000 6,859.00 0.228 0.583 0.000 6,860.00 0.266 0.830 0.000 6,861.00 0.306 1.116 0.000 6,862.00 0.348 1.443 0.000 6,863.00 0.391 1.812 0.000 6,864.00 0.436 2.225 0.000 6,865.00 0.483 2.684 0.000 6,866.00 0.532 3.192 0.000 6,867.00 0.582 3.749 0.000 6,868.00 0.635 4.357 0.000 Low hole SPW #1 6,869.00 0.689 5.019 0.473 16.94* 6,870.00 0.746 5.736 0.669 12.98*

Elevation-Capacity-Discharge Table

Filename: Little Collom Gulch 100-Year 24-Hour Event Post Mining sc4

SEDCAD 4 for Windows Convright 1998 -2010 Pamela L Schwab

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time	
	()	()	(0.0)	(hrs)	
6,871.00	0.804	6.511	0.819	11.45*	
6,872.00	0.864	7.345	0.945	10.67*	Spillway #1
6,873.00	0.927	8.240	8.509	18.30	
6,874.00	0.991	9.199	12.033	2.15	
6,875.00	1.060	10.224	14.738	2.10	Spillway #2
6,875.68	1.104	10.971	43.357	9.95	Peak Stage
6,876.00	1.125	11.316	56.584		
6,877.00	1.187	12.472	168.142		
6,878.00	1.250	13.691	330.639		
6,879.00	1.318	14. 9 74	558.801		
6,880.00	1.386	16.326	834.822		

*Designates time(s) to dewater have been extrapolated beyond the 50 hour hydrograph limit.

			Combined
Elevation	Perf. Riser (cfs)	Emergency	Total
(ft)	Ferr. Riser (Cis)	Spillway (cfs)	Discharge
			(cfs)
6,855.00	0.000	0.000	0.000
6,856.00	0.000	0.000	0.000
6,857.00	0.000	0.000	0.000
6,858.00	0.000	0.000	0.000
6,859.00	0.000	0.000	0.000
6,860.00	0.000	0.000	0.000
6,861.00	0.000	0.000	0.000
6,862.00	0.000	0.000	0.000
6,863.00	0.000	0.000	0.000
6,864.00	0.000	0.000	0.000
6,865.00	0.000	0.000	0.000
6,866.00	0.000	0.000	0.000
6,867.00	0.000	0.000	0.000
6,868.00	3.00>0.000	0.000	0.000
6,869.00	0.473	0.000	0.473
6,870.00	0.669	0.000	0.669
6,871.00	0.819	0.000	0.819
6,872.00	0.945	0.000	0.945
6,873.00	8.509	0.000	8.509
6,874.00	12.033	0.000	12.033
6,875.00	14.738	0.000	14.738

Detailed Discharge Table

			Combined
Elevation	Douf Disou (cfs)	Emergency	Total
(ft)	Perf. Riser (cfs)	Spillway (cfs)	Discharge
			(cfs)
6,876.00	17.018	39.567	56.584
6,877.00	19.026	149.116	168.142
6,878.00	20.842	309.797	330.639
6,879.00	22.512	536.289	558.801
6,880.00	24.066	810.756	834.822

Structure #1 (Null)

Null Below Section 25 Pond

Stru #	SWS #	SWS Area	Time of Conc	Musk K	Musk X	Curve	UHS	Peak Discharge	Runoff Volume
#	#	(ac)	(hrs)	(hrs)		Number		(cfs)	(ac-ft)
#31	1	29.000	0.087	0.000	0.000	62.000	М	8.90	0.68
	2	68.200	0.303	0.000	0.000	80.000	F	55.49	5.50
	3	38.800	0.277	0.000	0.000	47.000	S	0.06	0.03
	4	1.100	0.032	0.000	0.000	47.000	S	0.00	0.00
	5	4.000	0.055	0.000	0.000	62.000	М	1.23	0.09
	6	18.300	0.110	0.000	0.000	47.000	S	0.04	0.02
	7	3.900	0.075	0.000	0.000	80.000	F	4.46	0.33
	Σ	163.300						59.37	6.68
#30	1	19.400	0.122	0.000	0.000	47.000	S	0.05	0.02
	2	4.300	0.123	0.000	0.000	80.000	F	4.92	0.36
	3	1.100	0.053	0.000	0.000	62.000	М	0.34	0.02
	Σ	188.100						64.62	7.10
#29	Σ	188.100						64.62	7.10
#28	1	19.600	0.122	0.000	0.000	47.000	S	0.05	0.02
	Σ	207.700						64.62	7.13
#27	Σ	207.700						64.62	7.13
#26	1	75.400	0.381	0.000	0.000	47.000	S	0.12	0.07
	Σ	283.100						64.62	7.20
#34	1	69.600	0.574	0.000	0.000	74.000	F	28.81	3.95
	Σ	69.600						28.81	3.953
#33	1	1.800	0.024	0.000	0.000	47.000	S	0.00	0.00
	2	65.100	0.181	0.000	0.000	80.000	F	60.68	5.36
	3	15.600	0.063	0.000	0.000	47.000	S	0.04	0.02
	4	0.900	0.043	0.000	0.000	47.000	S	0.00	0.00
	5	11.100	0.059	0.000	0.000	80.000	F	12.69	0.95
	6	2.100	0.064	0.000	0.000	74.000	F	1.75	0.12
	Σ	96.600						70.65	6.459
#32	Σ	166.200						84.04	10.412
#25	1	7.800	0.050	0.000	0.000	74.000	F	6.51	0.470
	2	15.100	0.117	0.000	0.000	47.000	S	0.04	0.02
	Σ	22.900						6.51	0.49
#24	Σ	22.900						6.51	0.491

Subwatershed Hydrology Detail:

Filename: Little Collom Gulch 100-Year 24-Hour Event Post Mining.sc4

Printed 04-27-2022

Stru	SWS	SWS Area	Time of Conc	Musk K	Musk X	Curve	UHS	Peak Discharge	Runoff Volume
#	#	(ac)	(hrs)	(hrs)	, raon yr	Number	ene	(cfs)	(ac-ft)
#23	1	32.600	0.025	0.000	0.000	62.000	М	10.01	0.77
	2	137.700	0.339	0.000	0.000	57.000	М	3.91	1.49
	3	31.700	0.054	0.000	0.000	74.000	F	26.46	1.91
	4	2.600	0.107	0.000	0.000	47.000	S	0.00	0.00
	Σ	227.500						43.19	4.66
#22	Σ	227.500						43.19	4.66
#21	1	44.200	0.101	0.000	0.000	74.000	F	36.89	2.66
	Σ	44.200						36.89	2.66
#20	Σ	44.200						36.89	2.66
#19	1	64.500	0.092	0.000	0.000	62.000	М	19.80	1.53
	2	65.600	0.187	0.000	0.000	74.000	F	41.57	3.77
	3	2.700	0.038	0.000	0.000	47.000	S	0.00	0.00
	Σ	404.500						93.23	10.55
#18	Σ	404.500						93.23	10.55
#17	1	163.400	0.197	0.000	0.000	62.000	М	21.46	3.11
	Σ	163.400						21.46	3.11
#16	Σ	163.400						21.46	3.11
#15	1	5.200	0.062	0.000	0.000	62.000	М	1.60	0.12
	2	47.800	0.189	0.000	0.000	62.000	м	6.40	0.91
	3	109.100	0.301	0.000	0.000	74.000	F	59.44	6.19
	Σ	730.000						88.39	18.79
#14	Σ	730.000						88.39	18.79
#13	1	27.700	0.095	0.000	0.000	62.000	м	8.51	0.65
	2	32.900	0.045	0.000	0.000	80.000	F	37.62	2.82
	3	42.000	0.302	0.000	0.000	74.000	F	22.86	2.38
	4	6.700	0.096	0.000	0.000	47.000	S	0.02	0.00
	Σ	839.300						62.39	22.53
#12	Σ	839.300						62.39	22.53
#11	1	30.400	0.137	0.000	0.000	62.000	М	4.29	0.58
	2	6.600	0.033	0.000	0.000	80.000	F	7.55	0.56
	Σ	37.000						9.78	1.15
#10	Σ	37.000						9.78	1.15
#8	1	11.100	0.133	0.000	0.000	62.000	М	1.57	0.21
	2	3.400	0.011	0.000	0.000	80.000	F	3.89	0.29

Filename: Little Collom Gulch 100-Year 24-Hour Event Post Mining.sc4

Printed 04-27-2022

Convright 1008 -2010 Pamala | Schwah

Stru #	SWS #	SWS Area (ac)	Time of Conc (hrs)	Musk K (hrs)	Musk X	Curve Number	UHS	Peak Discharge (cfs)	Runoff Volume (ac-ft)
	Σ	14.500						4.70	0.506
#7	Σ	14.500						4.70	0.506
#6	1	14.200	0.050	0.000	0.000	80.000	F	16.24	1.217
	2	1.100	0.013	0.000	0.000	62.000	м	0.34	0.026
	Σ	906.100						31.06	23.138
#5	1	14.800	0.083	0.000	0.000	57.000	F	1.78	0.200
	Σ	14.800						1.78	0.200
#4	Σ	14.800						1.78	0.200
#3	1	27.800	0.146	0.000	0.000	62.000	М	3.93	0.538
	2	168.700	0.579	0.000	0.000	47.000	S	0.26	0.158
	Σ	1,283.600						41.08	28.703
#2	Σ	1,566.700						99.50	35.911
#1	Σ	1,566.700						43.36	32.991

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#3	1	3. Short grass pasture	12.00	175.72	1,464.33	2.770	0.146
#3	1	Time of Concentration:					0.146
#3	2	3. Short grass pasture	8.00	377.06	4,713.25	2.260	0.579
#3	2	Time of Concentration:					0.579
#5	1	3. Short grass pasture	19.00	199.94	1,052.31	3.480	0.083
#5	1	Time of Concentration:					0.083
#6	1	5. Nearly bare and untilled, and alluvial valley fans	21.00	174.93	833.00	4.580	0.050
#6	1	Time of Concentration:					0.050
#6	2	3. Short grass pasture	26.00	50.05	192.50	4.070	0.013
#6	2	Time of Concentration:					0.013
#8	1	3. Short grass pasture	14.00	200.44	1,431.71	2.990	0.133
#8	1	Time of Concentration:					0.133
#8	2	 Nearly bare and untilled, and alluvial valley fans 	24.00	49.92	208.00	4.890	0.011
#8	2	Time of Concentration:					0.011
#11	1	3. Short grass pasture	10.00	124.64	1,246.40	2.520	0.137
#11	1	Time of Concentration:					0.137
#11	2	 Nearly bare and untilled, and alluvial valley fans 	12.00	49.91	415.91	3.460	0.033

Filename: Little Collom Gulch 100-Year 24-Hour Event Post Mining.sc4

Printed 04-27-2022

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#11	2	Time of Concentration:					0.033
#13	1	3. Short grass pasture	11.00	99.97	908.81	2.650	0.095
#13	1	Time of Concentration:					0.095
#13	2	5. Nearly bare and untilled, and alluvial valley fans	18.00	124.68	692.66	4.240	0.045
#13	2	Time of Concentration:					0.045
#13	3	3. Short grass pasture	12.00	362.28	3,019.00	2.770	0.302
#13	3	Time of Concentration:					0.30
#13	4	3. Short grass pasture	9.00	75.29	836.55	2.400	0.09
#13	4	Time of Concentration:					0.090
#15	1	3. Short grass pasture	12.00	75.11	625.91	2.770	0.06
#15	1	Time of Concentration:					0.063
#15	2	3. Short grass pasture	16.00	349.80	2,186.25	3.200	0.18
#15	2	Time of Concentration:					0.18
#15	3	3. Short grass pasture	13.00	406.64	3,128.00	2.880	0.30
#15	3	Time of Concentration:					0.30
#17	1	3. Short grass pasture	15.60	349.44	2,240.00	3.150	0.19
#17	1	Time of Concentration:					0.19
#19	1	3. Short grass pasture	15.00	154.05	1,027.00	3.090	0.09
#19	1	Time of Concentration:					0.09
#19	2	3. Short grass pasture	20.00	481.40	2,407.00	3.570	0.18
#19	2	Time of Concentration:					0.18
#19	3	3. Short grass pasture	2.00	3.16	158.00	1.130	0.03
#19	3	Time of Concentration:					0.038
#21	1	3. Short grass pasture	23.00	320.85	1,395.00	3.830	0.10
#21	1	Time of Concentration:					0.10
#23	1	3. Short grass pasture	31.00	125.24	404.00	4.450	0.02
#23	1	Time of Concentration:					0.02
#23	2	3. Short grass pasture	14.00	511.84	3,656.00	2.990	0.33
#23	2	Time of Concentration:					0.33
#23	3	3. Short grass pasture	31.00	272.18	878.00	4.450	0.054
#23	3	Time of Concentration:					0.054
#23	4	3. Short grass pasture	4.00	24.88	622.00	1.600	0.10
#23	4	Time of Concentration:					0.107
#25	1	3. Short grass pasture	33.00	275.22	834.00	4.590	0.05
#25	1	Time of Concentration:					0.050
#25	2	3. Short grass pasture	14.00	176.68	1,262.00	2.990	0.11
#25	2	Time of Concentration:					0.117
#26	1	3. Short grass pasture	9.60	325.53	3,391.00	2.470	0.38
#26	1	Time of Concentration:					0.381
#28	1	3. Short grass pasture	10.80	124.52	1,153.00	2.620	0.122
#28	1	Time of Concentration:					0.122

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#30	1	3. Short grass pasture	7.70	74.92	973.00	2.210	0.122
#30	1	Time of Concentration:					0.122
#30	2	5. Nearly bare and untilled, and alluvial valley fans	3.20	25.28	790.00	1.780	0.123
#30	2	Time of Concentration:					0.123
#30	3	3. Short grass pasture	3.10	8.30	268.00	1.400	0.053
#30	3	Time of Concentration:					0.053
#31	1	3. Short grass pasture	11.60	99.64	859.00	2.720	0.087
#31	1	Time of Concentration:					0.087
#31	2	5. Nearly bare and untilled, and alluvial valley fans	8.10	251.18	3,101.00	2.840	0.303
#31	2	Time of Concentration:					0.303
#31	3	3. Short grass pasture	7.10	150.87	2,125.00	2.130	0.277
#31	3	Time of Concentration:					0.277
#31	4	3. Short grass pasture	8.90	25.00	281.00	2.380	0.032
#31	4	Time of Concentration:					0.032
#31	5	3. Short grass pasture	10.00	50.00	500.00	2.520	0.055
#31	5	Time of Concentration:					0.055
#31	6	3. Short grass pasture	10.00	100.30	1,003.00	2.520	0.110
#31	6	Time of Concentration:					0.110
#31	7	 Nearly bare and untilled, and alluvial valley fans 	7.00	49.91	713.00	2.640	0.075
#31	7	Time of Concentration:					0.075
#33	1	3. Short grass pasture	2.00	2.00	100.00	1.130	0.024
#33	1	Time of Concentration:					0.024
#33	2	5. Nearly bare and untilled, and alluvial valley fans	8.10	150.01	1,852.00	2.840	0.181
#33	2	Time of Concentration:					0.181
#33	3	3. Short grass pasture	11.90	74.85	629.00	2.750	0.063
#33	3	Time of Concentration:					0.063
#33	4	Nearly bare and untilled, and alluvial valley fans	5.90	75.10	1,273.00	2.420	0.146
#33	4	Time of Concentration:					0.043
#33	5	5. Nearly bare and untilled, and alluvial valley fans	8.00	48.64	608.00	2.820	0.059
#33	5	Time of Concentration:					0.059
#33	6	3. Short grass pasture	6.00	27.06	451.00	1.950	0.064
#33	6	Time of Concentration:					0.064
#34	1	3. Short grass pasture	7.00	305.62	4,366.00	2.110	0.574
#34	1	Time of Concentration:					0.574

The as-built configuration for the Section 26 Pond is presented on Figure 7-23J-1, and the as-built configuration for the Sidehill Pond is presented on Figure 7-23J-2. Figure 7-23J-3 provides the breakdown of drainage areas and hydrologic conditions for all areas in the watershed reporting to these two sediment ponds. The Sidehill Pond as part of the Section 26 Pond sediment control system is utilized to reduced peak flows and provide additional sediment storage if need. All discharges from the Sidehill Pond flow directly to the Section 26 Pond through the D-1 Ditch, and the Section 26 Pond is the final discharge location.

The following pages present the results of the SEDCADTM models for the post mining condition. At this stage all areas that have been disturbed by mining activities in the Section 26 watershed has been reclaimed with the newest or younger (topsoil and seeded) reclamation is in the central and northern areas of the Section 26 Pond watershed. The farthest northern portion of the watershed is relatively undisturbed.

The SEDCADTM model herein provides the results of the 10-year 24-hour design storm and demonstrates the Section 26 Pond will meet the applicable settleable solids standard under this modeled storm event. The second SEDCADTM model demonstrates that the Section 26 Pond emergency spillway elevation is capable of containing the 25-year 24-hour storm.

In summary, for the post mining case at the Section 26 Pond, the 10-year 24-hour storm produces 5.6 acre feet of runoff, and the peak settleable solids concentration is 0.00 ml/l. The 25-year 24-hour storm event peaks at the 6,984.4 elevation, which below the emergency spillway elevation of 6,986.0'

Section 26 Pond Temporary Post Mine Channels

One temporary channel is necessary during the reclamation of areas within the Section 26 Pond watershed. This temporary channel (D-6 Ditch) will route water from reclamation areas to the upper reaches of the permanent post mine channel Bear Draw as shown on Figure 7-23J-3. Once Phase II bond release has been achieved in the entire sub-watershed reporting to the D-6 Ditch, it will be reclaimed.

A SEDCADTM model (25 Year 24 Hour Channel Demonstration model) has been included which evaluates the peak flow for this temporary channel. The minimum channel configurations are summarized below

Name	Peak Flow (CFS)	<u>Average</u> <u>Slope</u> (%)	<u>Channel</u> <u>Type</u>	Side Slopes	<u>Minimum</u> <u>Depth</u> (Feet)	Erosion Protection
D-6 Ditch	12.09	6.0	Trapezoidal 5' bottom	2H:1V	3.0	Vegetation