Groundwater flows in this area are substantially controlled by fracture flow, flows along vein structures, and historic mine workings. As a result, no substantial change in groundwater hydrology is expected with mining at elevations higher than the elevation of the Pandora Mill flow-control bulkhead near Telluride and the Camp Bird Mine in the Revenue group of the Sneffels District.

Mine working flows are seasonally driven by snow melt. Work conducted by Idarado to install a bulkhead at the Pandora Mill Tunnel level is estimated to cause a range of water elevations (Newmont 2018), none of which exceed 600 feet above the bulkhead, therefore not reaching the Revenue Tunnel elevation.

The deposit host rock through which the Revenue Tunnel is driven is the propyliticly-altered San Juan Tuff. Chemical alteration of the San Juan Tuff has resulted in a neutralizing host rock, as demonstrated by the approximately 100-year history of Revenue Tunnel drainage with measured pH values ranging from 7.0 to 8.5. In addition to the neutralizing host rock, the primary target vein (the Virginius) is neutralizing as well and because no new veins would be intercepted, no substantial changes to groundwater quality are expected.

8.3 Site Geology

The Revenue Mine's local geology is predominantly controlled by fractures and vein structures that cross the various volcanic formations in the area. The Regional Geology of the area along with main fracture/vein systems is shown on the Map C-5 located in Exhibit C. The veins of the Ouray-Telluride mining district seem to occupy structures that are related to the San Juan and Silverton Calderas as radial and concentric structures extending for several miles northwest of the actual caldera margin. These structures were apparently influenced by the contemporaneous emplacement of the Stony Mountain Stock as evidenced by their propensity to merge with the radial pattern of faulting surrounding the Stony Mountain Stock. The dominant rock formation in the Project area is the 35 to 30 Ma andesitic San Juan Formation. This is a thick package of mostly water-lain volcaniclastic rocks with minor lava flows.

As noted above, water storage and transmission is not driven by lithology but rather fracture flow. There is no primary water bearing zone, formation, or even intrusion. Historically, when new tunnels and drifts were driven at lower elevations in the area and dewatered, the upper areas dried out. Additionally, mine water flows fluctuate seasonally due to infiltration from snowmelt.

The quartz veins that penetrated the San Juan Formation are primarily 1' to 5' wide and are comprised of up to 20% sulfide minerals with rare free gold and silver. The Virginius vein is a quartz carbonate structure with acid neutralizing potential. Most of the rock surrounding the veins is andesite but is lamprophyritic by composition – meaning it contains carbonates in its

matrix. These lamprophyre volcanic deposits are similar in age and composition to deposits in the Silverton area that are being used to neutralize acid mine drainage.

The quartz veins have four principal metallic minerals:

- galena (PbS)
- sphalerite (ZnS)
- chalcopyrite (CuFeS₂)
- Tetrahedrite (Cu₁₂Sb₄S₁₃) with a variant freibergite which has some silver (Ag) replacing some of the copper.

8.4 Groundwater/Mine Water

Groundwater in the Revenue Mine area is almost completely supplied by infiltration of highelevation surface water seeping through fracture systems. No sedimentary aquifers are found in the area. Additionally, the groundwater regime is strongly influenced by historical mining activity. As such, it is not possible to identify all groundwater sources and flows. From historical documentation of the Revenue/Virginius mining activity in the area, it is known that only the original Virginius mining area is located above and connected to the Revenue tunnel. Other mines are located above the Revenue tunnel, such as the Atlas Mine and historic mines in Governor Basin, but at this time do not connect to the revenue tunnel.

The primary drivers of the groundwater at the Revenue Mine consist of:

- the old Virginius vein development above the Revenue Tunnel in the Monongahela workings;
- groundwater intercepts in the historic workings; and
- groundwater produced by new mine development intercepting fracture zones and vein structures above the new workings.

See Section 7.3 and Maps G-2, G-2a, C-4 and C-5 for more detail about the geology of the site and its influence on groundwater flow in the area.

8.5 Hydrology of the Area Impacted by DMO Activities

Maps U-1 and U-2 show the locations of the EPFs on the main Revenue Mine site. Maps G-2, G-2a and C-4 show the groundwater regime and the areas of influence both on site and within 2 miles of the permit areas.

The Reagent Room and Mill are enclosed structures and the designated chemicals stored and used in these areas are protected from the elements and contained within buildings or underground facilities. The Atlas and Revenue TSFs are designed to allow water to percolate

through to groundwater but only after it is demonstrated that the leachate from the tailings placed on the TSFs achieves applicable groundwater standards after being subject to various leaching procedures (i.e., SPLP and TCLP). Given the proximity of the main Revenue Mine site to Sneffels Creek, it is expected that groundwater eventually connects with surface water. Groundwater wells to monitor water quality down gradient of the TSFs are checked on a quarterly basis to assess the potential impacts from these facilities.

The five-stage passive mine water treatment system is constructed of lined ponds designed to prevent untreated mine water from discharging to groundwater. This water flows through the treatment system and is discharged directly to Sneffels Creek following treatment via a permitted outfall.

A well to be installed down gradient of the site in the summer of 2022 will be used to monitor groundwater quality from the entire site including the mill / process area. Surface water samples also are collected downstream of the permit area to monitor potential surface water quality impacts from operations.

There are no EPFs on the Hubb Reed / Monongahela Raise area or the 960 and Yellow Rose raises. However, surface water sampling downstream of the Hubb Reed / Monongahela Raise is performed to evaluate water quality in Governor Basin.

9 Groundwater Quality Data

9.1 Groundwater Uses (Current and Future)

In general, the local groundwater and surface water regime that impacts the mine site is limited to the area that lies to the northeast of the San Miguel / Ouray County Line (county line) and to the south of Sneffels Creek. This area is shown in the hatched area on Map G-2. Groundwater and surface water to the southwest of the county line flows towards Telluride. Groundwater and surface water that flow off the drainages to the north of Sneffels Creek are captured by Sneffels Creek and are not expected to come in contact with the mine site. Likewise, water that flows off the Revenue Mine eventually makes its way into Sneffels Creek and does not impact the drainages located to the north of Sneffels.

Groundwater that originates in the Revenue Mine is used for a variety of activities on site.

- Groundwater intercepted at the Anglo/Saxon Tunnel is captured and used for makeup water in the mill;
- Groundwater generated at the Terrible Vein is used for mining operations, including drilling and dust control; and
- Groundwater intercepted at a vault approximately 0.5 miles back in the Revenue Tunnel is used for the mine's drinking water supply. This water is treated prior to use.

There are no drinking water or process water wells located on the site or within 2 miles of the site. The only wells that are present are the on-site groundwater monitoring wells used to monitor groundwater quality.

OSMI is unaware of any plans to install drinking water wells or other process-related wells within 2 miles of the permit boundary. This is supported by the fact that, in October 2016, the Ouray County Board of County Commissioners adopted Section 24 to the County Land Use Code, which prohibits non-mining development on patented mining claims and mill sites at or higher than 9,480 feet elevation.

9.2 Groundwater Data

Groundwater is high quality and generally meets the Permitted numeric protection limits for groundwater quality. Groundwater standards are based on a hybrid of agricultural groundwater standards from Table 3 of Regulation 41, surface water standards from Regulation 35 and established background concentrations from historic data. These standards were developed under the original permit application in 2012 and revised as part of Amendment 01 in 2015. The groundwater standards currently in use were approved by DRMS in a letter dated April 15, 2015.

Groundwater quality within the permit boundary at the Revenue Mine area is measured at six groundwater monitoring wells (GW-1A, GW-1B, GW-2A, GW-2B, GW-3R, and GW-3B). See Table U-5. Wells GW-1A (shallow) and GW-1B (deep) are located at the western edge of the permit boundary to monitor the Atlas TSF. Wells GW-2A and GW-2B, which are adjacent to the Mine Water Pond, and GW-3R, and GW-3B, which are adjacent to the bioreactor (Pond #2), monitor the groundwater potentially impacted by the Revenue TSF.

A seventh well is being proposed to monitor groundwater downgradient of the entire site including the mill/process area. This proposed well will be located to the east of the main mine area and to the south of Sneffels Creek. An approximate location of this new well is shown on Map U-1. The actual location of the proposed downgradient well will be identified once the snow melts. Once drilled, a revised Map U-1 and updated Exhibit U will be developed.

A more detailed discussion of well locations, construction, analytical suites, and practical quantification limits can be found in under the Water Quality Monitoring Section (Section 11 of this EPP).

In addition to the monitoring wells on the surface, mine water quality is monitored via five underground (UG) water sample points. Groundwater and underground sampling points and their descriptions are listed in Table U-5 and shown on Maps U-1 and U-2. Underground locations are sampled to characterize source water locations to better understand water quality as it enters the passive mine water treatment system.

Station ID	Location	Sampling Status					
Groundwater Monitoring Wells							
GW-1A	Downgradient of the Atlas TSF	Active					
GW-1B	Downgradient of the Atlas TSF	Active					
GW-2A	Downgradient of Mine Water Pond #1	Active					
GW-2B	Downgradient of Mine Water Pond #1	Active					
GW-3B	Downgradient of the Revenue TSF and Mine Water Pond #2	Active					
GW-3R	Downgradient of Mine Water Pond #2	Active					

Table U-5 Groundwater and Underground Water Quality Sampling Locations

Station ID	Location	Sampling Status
Groundwate	er Monitoring Wells	
GW-4R	Downgradient of the main portal area	Proposed – to be installed summer 2022
Undergrour	nd Sampling Locations	
UG-1	Yellow Rose	Inactive
UG-2	Main line above Yellow Rose	Sampled Quarterly
UG-3	Atlas/Cumberland	Inactive
UG-4	Main line above Atlas/Cumberland	Sampled annually
UG-5	Main line - Portal	Sampled Quarterly
UG-7	Main line below Yellow Rose	Optional
UG-8	Main line below Atlas/Cumberland	Sampled Quarterly
UG-9	Main line below Terrible	Optional
UG-10	Main line above Terrible	Sampled Annually

A summary of groundwater quality collected from monitoring wells for the past 5 calendar quarters (Q1-2021 through Q1-2022) is presented in the attached Table U-6. Note GW-3R exceeded the approved groundwater standards for lead, copper and silver in June 2021. The well was resampled in July 2021 and all parameters were below approved groundwater standards. The bioreactor (Mine Water Pond #2) of the passive mine water treatment system was being commissioned at this time, and it is believed that some untreated water may have reached the monitoring wells. Water quality at GW-3R has met approved standards since July 2021. This

issue was reported to DRMS in a letter dated July 21, 2021, with a follow-up letter dated August 13, 2021.

A five-stage passive mine water treatment system became operational in May 2021 to treat groundwater (i.e., mine water) exiting the Portal at UG-5. The treatment system, described in detail in Section 9 of this Exhibit U, was designed and tested to meet both DRMS and CDPHE requirements for water quality and function into closure with minimal maintenance, low waste production, limited power requirements, and positive aesthetic value. Analysis of the passive mine water treatment system is performed voluntarily to inform systems operations and best management practices. Compliance of mine discharge is evaluated under CDPS Industrial Wastewater permit CO-0000003.

Table U-7 Mine Discharge Water Quality Data from Mine Water Treatment System
(Outfall 002A)

		Permit Limits			_		
Analyte	Units	30 day avg / daily max (ug/l)	Minimum	Maximum	Average	Non-detect Count	Sample Count
Arsenic, total recoverable	mg/L	Report	0.0016	0.0101	0.0040	4	4
Bicarbonate as CaCO3	mg/L	NA	51.3	51.3	51.3	1	1
Cadmium, potentially dissolved	mg/L	0.74/2.2	0.00015	0.00227	0.00077	17	17
Cadmium, total	mg/L	50/100	0.000651	0.008	0.003	4	4
Carbonate as CaCO3	mg/L	NA	2	2	2	1	1
Chromium, total recoverable	mg/L	NA	0.0005	0.0027	0.0011	4	4
Chromium, Trivalent Total Recoverable	mg/L	Report	0.005	0.005	0.005	4	4
Copper, potentially dissolved	mg/L	12.5/ Report	0.0008	0.0102	0.0022	17	17
Copper, total	mg/L	150/300	0.00114	0.0144	0.0073	4	4
Cyanide, WAD	mg/L	NA/5.6	0.003	0.003	0.003	17	17
Dissolved Chromium, Hexavalent	mg/L	NA	0.005	0.005	0.005	5	5
Hydroxide as CaCO3	mg/L	NA	2	2	2	1	1
Iron, total recoverable	mg/L	1276/NA	0.06	5.59	0.81	17	17

Analyte	Units	Permit Limits 30 day avg / daily max (ug/l)	Minimum	Maximum	Average	Non-detect Count	Sample Count
Lead, potentially dissolved	mg/L	2.6/100	0.0003	0.179	0.018	17	17
Lead, total	mg/L	300/600	0.03	0.235	0.046	17	17
Manganese, potentially dissolved	mg/L	2076/ 4127	0.356	1.53	0.762	17	17
Mercury, total	mg/L	1/2	0.0002	0.0002	0.0002	16	16
Mercury, total (low level)	ng/L	0.011/NA	0.3	4.2	2.0	4	4
Oil and Grease	mg/L	Visual/NA	1.9	1.9	1.9	2	2
pH (lab)	s.u.	6.5-9	7.8	8.5	8.12	17	17
Total Dissolved Solids	mg/L	Report	200	264	230	5	5
Total Suspended Solids	mg/L	20/30	5	126	17	17	17
Silver, potentially dissolved	mg/L	0.08/ Report	0.0001	0.00017	0.0001	17	17
Total Alkalinity	mg/L	NA	51.3	51.3	51.3	1	1
Zinc, potentially dissolved	mg/L	126/166	0.0278	0.646	0.233	17	17
Zinc, total	mg/L	750/1500	0.173	0.63	0.35	4	4
pH (field)	s.u.	6.5-9	7.63	9	8.3	0	25
Water Temperature (field)	deg. C	Report	0.1	15.2	7.42	0	25
Flow (field) ¹	CFS	1.75 MGD	0.0305	1.84	0.881	0	25

Notes: All non-detect values included at the method detection limit

1 - Flow measurements based on staff gauge readings flow is also monitored and reported by continuous monitor and reported on discharge monitoring reports.

10 Surface Water Control & Containment Facilities

Surface water flows shown on Maps G-1, G-2 and C-1a at the Revenue Mine are dominated by Sneffels Creek and the associated drainage basin (i.e., Yankee Boy Basin and Governor Basin). Yankee Boy Basin is approximately 2,000 acres with a high point of 14,150 feet (peak of Mt. Sneffels) and comprises the upper reaches of Sneffels Creek. Governor Creek drains the 870-acre Governor Basin with a high point of 13,581 feet at Mount Emma, joining Sneffels Creek in the valley floor above the Revenue Portal area. The proposed change in this amendment expands the footprint of the hoist and refuge chamber in Governor Basin from 100 square feet (0.23 acres) to approximately 1.39 acres to allow for safer winter operations, secondary escapeway, and stormwater management. There is no established stream in the vicinity of the proposed Governor Basin permit boundary.

Sneffels Creek just upstream of the Revenue Mine ranges in flow from a peak recorded flow of 19,000 gallons per minute (GPM) in summer months to less than 400 GPM in the winter season. These flows are supplied by surface runoff, fracture flow, and historic open mine workings such as the Atlas Mine, Ruby Trust and Lower Mountain Top. Water quality in Sneffels Creek upstream of the Revenue Mine does not meet use classifications or water quality standards for cadmium, lead and zinc.

The surface water flows at the Revenue Mine report to Sneffels Creek, which is Stream Segment 9 of the Uncompahgre River basin (COGUUN09) as designated by Regulation 35 of the Colorado Water Quality Control Commission (5 CCR-1002-35). Sneffels Creek near the mine alternates between shallow wide sections and very narrow, steep, high-energy, canyons. The stream drops from 10,670 feet elevation at the upper edge of the permit to 10,580 feet at the bottom of the permit area, over a distance of 2,400 feet with a grade of approximately 3.75%. The grade steepens just northeast of the permit area as the creek flows towards Canyon Creek and the Camp Bird Mine. From there, the combined flow meets the Uncompahgre River at Ouray, approximately 5 miles downstream from the mine.

10.1 Design Specifications

Each of the environmental control features at the Revenue Mine are designed to contain designated chemicals at the mill and to divert and convey surface runoff away from features that could cause acid mine drainage.

10.1.1 Mill and Associated Features

The mill was constructed in accordance with the designs submitted as part of TR-15. Detailed design drawings certified by a Professional Engineer were provided as part of TR-15. The mill is underground and has more secondary containment than required to contain 100% of the reagents

used in the process. The pipes that transport reagents from the Reagent Room to the mill are either over secondary containment or double walled to prevent loss of containment in case of a leak. The tailings thickener tank is located within secondary containment with a capacity to contain 123% of the tank should it overtop or rupture. A building will be constructed over the top of the Tailings Thickener Tank to prevent snow and rain from entering secondary containment.

Stormwater at this part of the site is diverted around the mill area by stormwater Diversion Ditch #1, which is designed to collect stormwater and divert it around the site to the wetlands on the western side of the permit area. See Map U-1 for details. Stormwater that falls on the disturbed areas including the Reagent Room, Tailings Thickener area and Mill Building is directed to a low point near the security building where it infiltrates into the ground. A proposed new sediment pond will capture stormwater to infiltrate into groundwater.

10.1.2 Reagent Room

The New Reagent Room is a fully contained building and was designed to contain 220% of the reagents stored in the building. Piping from the Reagent Room to the mill is fully contained or double walled. A concrete apron outside the building will be constructed in 2022 to contain spills should they occur during offloading of reagents. The Reagent Room was designed by a professional engineer. Designs were submitted to DRMS as part of TR-14.Stormwater at this part of the site is diverted around the mill area by stormwater Diversion Ditch #1, which is designed to collected stormwater and divert it around the site to the wetlands located on the western portion of the site. See Map U-1 for details. Stormwater that falls on the disturbed areas including the Reagent Room is collected in Mine Water Pond #2 and treated in the passive mine water treatment system.

10.1.3 <u>Revenue TSF</u>

The Revenue TSF was designed by Greg Lewicki, P.E. of Lewicki & Associates. The designs are provided as Attachment D to the 2015 Tailings and Waste Rock Management Plan, which is included in Appendix 6 of Amendment 02. The TSFs are dry stack facilities and are constructed to allow meteoric water to percolate through to groundwater. This is possible because the tailings generated by the milling operation have been sampled and are non acid generating.

Stormwater is controlled by diverting water around the TSF via Stormwater Collection Ditch #2.

10.1.4 Atlas TSF

The Atlas TSF also was designed by Greg Lewicki, P.E., of Lewicki & Associates. Similar to the Revenue TSF, the Atlas TSF is a dry stack tailings facility, which allows meteoric water to percolate to groundwater. The Atlas TSF is graded to direct stormwater runoff that comes in contact with the tailings towards the southeast to a sediment pond where it is allowed to either infiltrate or evaporate. Stormwater run-on that is coming off the native hillside to the south of the Atlas TSF is

diverted around the facility and directed towards the wetlands located between the Atlas and Revenue TSF on the western side of the permit boundary.

10.1.5 Passive Mine Water Treatment System

The following discussion of mine water discharge management is broken into three segments, describing the treatment process and changes in configuration for each of the three ponds. Each of the ponds was expanded to accommodate the passive treatment system, to accommodate additional flows should such capacity be required in the future, and to contain flows from a 10-year 24 hour storm event.

The ponds and water conveyances associated with the passive treatment system were designed by a Professional Engineer from Merdiam Partners. All three ponds are lined (a combination of membrane and clay liners) or contained in pipe.

- Chemical Flocculant the first stage of the treatment system is the option to use a chemical flocculant to encourage settlement of total suspended solids in the mine water as it exits the portal. A drum of ferric chloride outfitted with a small pump can be used to enhance settling in the mine water as it enters the first pond. Chemical flocculant is used on an as needed basis.
- Mine Water Pond # 1 is the first pond encountered by mine water after it leaves the portal. The pond size was increased, and Collection Ditch 2 was routed into Pond #1 to allow for the pond's expansion. Outfall 001A remains in place under Modification 5 of CDPS permit CO-0000003 although this outfall is not currently used as a discharge point. This pond contains settling capacity, a silt curtain removes additional sediment, and a sand filter to further filter the water and to remove sediment before it enters the anaerobic bioreactor cell (Mine Water Pond #2). Two feet of free board will be maintained in Mine Water Pond #1, as demonstrated by area capacity curves. Pond # 1 is lined with a combination of an HDPE liner (reused from the original mine water pond) and clay liners to create a pond that contributes to the natural environment with perimeter vegetation growth, as requested by the Army Corps of Engineers during a 2017 inspection.
- Mine Water Pond# 2 (formally Pond #2) has been expanded and reconfigured to serve as a sulfate reducing bioreactor. Organic material (e.g., manure, straw, and wood chips) along with limestone are used to support bacterial growth. The pond is lined and maintained in a saturated state. Water from Mine Water Pond #1 is piped under the substrate and allowed to flow up through the bioreactor where sulfates in the water are reduced to sulfides and metals precipitate out as metal sulfides. Water reports from the surface of Mine Water Pond #2 to an open channel and then a pipeline before cascading down a waterfall to Mine Water Pond #3.

- Mine Water Pond #3 (formally Pond #3) is a polishing pond transitioning the water back to aerobic conditions and encouraging settling using passive wetlands. Water from Mine Water Pond #3 discharges through Outfall 002A, which is the point of compliance pursuant to CDPS Permit No. CO-0000003. Details of the mine water treatment system can be found in TR-10.

10.2 Stormwater Management Plan

Stormwater at the Revenue Portal area and the three ventilation shafts is managed under a Stormwater Permit Certification COR-040289 and the Stormwater Management Plan (SWMP), which details the mining activities, effluent limitation guidelines, stormwater management controls, identification of potential pollutant sources, best management practices, schedules and procedures, training, comprehensive inspections requirements, and maintenance. Stormwater management features are inspected on a quarterly basis and following significant precipitation events.

Meteoric water that falls on the permit boundary is controlled through diversion ditches, conveyances and sediment control ponds or is allowed to collect near the main entrance where it either infiltrates or evaporates prior to leaving the property boundary. The SWMP is updated on a regular basis as control features on the mine site change. A copy of the current SWMP is provided in Appendix 2 of Amendment 02.

11 Surface Water Quality Data

The following section describes the standards for the receiving streams including current and potential future uses. Surface water quality and flow data collected during quarters when it is safe to do so, also are discussed.

11.1 Stream Standards

Water quality standards have been developed for the entire Upper Gunnison River Basin, Colorado Code of Regulations, Regulation No. 35 – Classifications and Numeric Standards for Gunnison and Dolores River Basins (5 CCR 1002-35, Regulation 35). The main portal area along with the Yellow Rose and 960 Raise discharge into Segment 9 (COGUUN09) and Governor Basin into Segment 5 (COGUUN05). Water quality in Sneffels Creek is monitored approximately 1 mile downstream just above the Camp Bird Mine, which is also part of Segment 9. The water quality standards for the Revenue Mine extend all the way to where Canyon Creek confluences with the Uncompany River, which is approximately 5.2 miles downstream of the main portal.

11.1.1 COGUUN09 - Main Portal, Yellow Rose and 960 Raise

Water from the main portal area, the Yellow Rose and the 960 Raise drains to the portion of Sneffels Creek, which is considered Segment 9 of the Upper Gunnison River Basin. Segment 9 is classified as agriculture, aquatic life cold water 2, and recreation P. It is not classified as a drinking water source.

COGUUN09 Classifications		Physical and	Biological		Metals (ug/L)		
Designation	Agriculture Aq Life		DM	MWAT		acute	chronic
Reviewable	Cold 2 Recreation P	Temperature °C	CS-I	CS-I	Arsenic	340	
			acute	chronic	Arsenic(T)		7.6
Qualifiers: Fish Ingestion		D.O. (mg/L)		6.0	Cadmium	TVS	TVS
		D.O. (spawning)		7.0	Chromium III	TVS	TVS
Other:		рН	6.5 - 9.0		Chromium III(T)		100
*Uranium(acut details.	e) = See 35.5(3) for	chlorophyll a (mg/m ²)		150	Chromium VI	TVS	TVS
	nic) = See 35.5(3) for	E. coli (per 100 mL)		205	Copper	TVS	TVS
dotano.					lron(T)		1000
		Inorg	ganic (mg/L)		Lead	TVS	TVS
			acute	chronic	Manganese	TVS	TVS
		Ammonia	TVS	TVS	Mercury(T)		0.01
		Boron		0.75	Molybdenum(T)		150
		Chloride	-		Nickel	TVS	TVS
		Chlorine	0.019	0.011	Selenium	TVS	TVS
		Cyanide	0.005		Silver	TVS	TVS(tr)

9. Mainstem of Imogene Creek from its source to its confluence with Sneffels Creek. Mainstem and all tributaries of Sneffels Creek from a point 1.5 miles above its confluence with

Table U-8 Regulation 35 Water Quality Standards for Segment 9

9. Mainstem of Imogene Creek from its source to its confluence with Sneffels Creek. Mainstem and all tributaries of Sneffels Creek from a point 1.5 miles above its confluence with Imogene Creek at 37.974979, -107.753960 (WGS84) to its confluence with Imogene Creek. Mainstem of Canyon Creek from its inception at the confluence of Imogene Creek and Sneffels Creek to the confluence with the Uncompany River.

COGUUN09	Classifications	Physical and Biological				Metals (ug/L)	
		Nitrate	100		Uranium	varies*	varies*
		Nitrite		0.05	Zinc	TVS	TVS
		Phosphorus		0.11			
		Sulfate					
		Sulfide		0.002			

All metals are dissolved unless otherwise noted

T = total recoverable, tr = trout, sc = sculpin

D.O = dissolved oxygen

DM = daily maximum'

MWAT = maximum weekly average temperature

See 35.6 for details in applied standards

Segment 9 is listed on the State of Colorado 303(d) list for impaired waters. Specifically, the portion of Segment 9 upstream and at the main portal area is impaired for dissolved lead and zinc and for aquatic life use (Regulation 93).

11.1.2 COGUUN05 - Governor Basin

Water that falls on the 1.39 acre permit area located in Governor Basin is diverted around the site and historic mine waste and eventually flows into Governor Creek, which confluences with Sneffels Creek just below the Ruby Trust Mine. Water from Governor Basin is part of the Upper Gunnison River Basin, Segment 5 (COGUUN05) under Regulation 35 and is classified as agriculture, aquatic life cold 2, recreation E, and water supply. There are no water supply uses in Governor Basin.

Table U-9 Regulation 35 Water Quality Standards for Segment 5

COGUUN05	Classifications	Physical and	Biological	Metals (ug/L)			
Designation	Agriculture		DM	MWAT		acute	chronic
Reviewable	Aq Life Cold 2 Reviewable Recreation E	Temperature °C	CS-I	CS-I	Arsenic	340	
Water Supply		acute	chronic	Arsenic(T)		0.02-10	
		D.O. (mg/L)		6.0	Cadmium	TVS	TVS
Qualifiers:		D.O. (spawning)		7.0	Cadmium(T)	5.0	
Other:		рН	6.5 - 9.0		Chromium III		TVS
	e) = See $35.5(3)$ for details. nic) = See $35.5(3)$ for details.	chlorophyll a (mg/m2)		150	Chromium III(T)	50	
,	, , , , ,	E. coli (per 100 mL)		126	Chromium VI	TVS	TVS
					Copper	TVS	TVS
		Inorg	anic (mg/L)		Iron		WS
			acute	chronic	lron(T)		1000
		Ammonia	TVS	TVS	Lead	TVS	TVS
	Boron		0.75	Lead(T)	50		
	Chloride		250	Manganese	TVS	TVS/WS	
		Chlorine	0.019	0.011	Mercury(T)		0.01

COGUUN05	Classifications	Physical	Physical and Biological			Metals (ug/L)		
		Cyanide	0.005		Molybdenum(T)		150	
		Nitrate	10		Nickel	TVS	TVS	
		Nitrite		0.05	Nickel(T)		100	
		Phosphorus		0.11	Selenium	TVS	TVS	
		Sulfate		WS	Silver	TVS	TVS(tr)	
		Sulfide		0.002	Uranium	varies*	varies*	
					Zinc	TVS	TVS	

All metals are dissolved unless otherwise noted

T = total recoverable, tr = trout, sc = sculpin

D.O = dissolved oxygen

DM = daily maximum'

MWAT = maximum weekly average temperature

See 35.6 for details in applied standards

Segment 5 is listed on the State of Colorado 303(d) list for impaired waters. Specifically, the portion of Segment 5-C, Governor Basin is on the State of Colorado 303(d) list for impaired waters for dissolved lead, cadmium, copper, zinc, manganese, and total lead. The impairment to water quality in Governor Basin is a function of both natural mineralization in the basin as well as impacts to water quality from historic mining activities. Farther downstream, Segment 5-E, which is described as Sneffels Creek below Governor Basin and above Segment 9, is impaired for dissolved cadmium, zinc, manganese, and lead as well as macroinvertebrates (Regulation 93)

11.2 Surface Water Quality

Surface water quality is sampled on a routine basis at various locations in the drainage and along Sneffels Creek at the mine site and upstream and downstream of the site. A table summarizing the surface water sampling locations is provided in Table U-10. Surface water quality data is discussed in Exhibit G. In addition, a summary of surface water quality is provided in attached Table U-11, which includes available surface water quality data for the past 5 quarters sampled.

Table U-10 Surface Water Quality Sampling Locations

Sample Description	Map Location
Atlas Mine Drainage	SW-1
Sneffels Below Governor Basin Confluence, above Atlas Mill	SW-2
Revenue Seep	SW-3
Sneffels Downstream of Outfall	SW-4
Sneffels above Permit Boundary & Below Atlas Tails	SW-15
Sneffels Below Atlas Mine Drainage	SW-16
Sneffels Above Governor Basin and Below Ruby Trust	SW-17

Sample Description	Map Location
Sneffels Just Above Camp Bird	SW-21

Sampling occurs approximately three times per year during the rising limb of the hydrograph (April/May), high flow (June/July) and low flow conditions (September/October) but does not occur on a quarterly basis due to limited winter access to the drainage and the safety concerns with avalanche danger in the vicinity of the sample locations.

The surface water sample locations were chosen to bracket water quality at various features upstream and downstream of the mine site as described in the sample location descriptions in Table U-10 These locations were chosen to assess ambient water quality in Sneffels Creek both upstream and downstream of the permit boundary.

The analytical detection limits for surface water quality are established as practical quantification limits (PQLs). The laboratory often can achieve detection limits that are lower than the PQLs. These lower limits are reported as Method Detection Limits (MDLs). Both the laboratory PQL and MDL are provided on Table U-11.

12 Water Quality Monitoring Plan

Groundwater and surface water quality is monitored on a regular basis to assess the protectiveness of the EPFs and to demonstrate that the conditions of the EPP are being met. The following section provides an overview of the water quality monitoring program for surface water, mine water, stormwater, groundwater and industrial wastewater., Sample locations are shown on Map G-1 and listed in Tables U-5 (Groundwater and Underground Water Quality Sampling Location), U-7 (Water Quality Data from Treatment System (Outfall 002A)), and U-10 (Surface Water Quality Sampling Locations)

12.1 Water Quality Parameters

In general, the main parameters of concern for the site are cadmium, total iron, lead, and zinc. The following sections describe the parameters that are monitored for industrial discharge water quality, stormwater quality, surface water, groundwater, underground samples, and tailings leaching.

Table U-12 summarizes the different parameters that are monitored for each type of water quality monitoring performed.

Parameter	Industrial	Stormwater	Surface	Groundwater	UG Water
	Discharge	Discharge	Water		Mine water
Flow	X	NA	Х	NA	Х
Field Temp	NA	NA	NA	X	Х
Conductivity (Field)	NA	NA	NA	X	Х
ORP (Field)	NA	NA	NA	X	Х
DO (Field)	NA	NA	NA	X	Х
Temp (daily Max)	X	NA	Х	NA	NA
Temp MWAT	X	NA	Х	NA	NA
pН	Х	Х	Х	X	Х
TSS	Х	Х	NA	X	Х
Oil & Grease	Х	NA	NA	NA	NA
TDS	Х	NA	NA	X	Х
Turbidity	NA	X	NA	NA	NA
Aluminum	NA	NA	NA	X	Х
Antimony, Total	NA	X	NA	X	Х
As, Dissolved	NA	NA	Х	X	Х
As, Total	NA	NA	Х	NA	NA
As, TR	X	NA	Х	NA	NA

Table U-12: List of Parameters Monitored for Water Quality Programs

Parameter	Industrial Discharge	Stormwater Discharge	Surface Water	Groundwater	UG Water Mine water
Barium, Dissolved	NA	NA	NA	X	X
Be, Dissolved	NA	NA	NA	X	X
Be, Total	NA	X	NA	NA	NA
Boron, Dissolved	NA	NA	X	X	X
Bicarbonate as CaC03	NA	NA	NA	X	X
Chloride	NA	NA	NA	X	X
Chlorine	NA	NA	Х	NA	NA
Cd, Total	X	X	NA	NA	NA
Cd, PD	X	X	NA	NA	NA
Cd, Dissolved	NA	NA	Х	X	X
Cr+3, Dissolved	NA	NA	Х	X	Х
Cr+3, Total	NA	NA	Х	NA	NA
Cr+3, TR	Х	NA	NA	NA	NA
Cu, Dissolved	NA	NA	Х	X	Х
Cu, Total	Х	X	NA	NA	NA
Cu, PD	Х	NA	NA	NA	NA
CN, WAD	X	NA	Х	NA	NA
CN	NA	NA	Х	X	Х
Fluoride	NA	NA	NA	X	Х
Fe, TR	X	NA	NA	NA	NA
Fe, Total	NA	X	Х	NA	NA
Fe, Dissolved	NA	X	NA	Х	Х
Pb, Dissolved	NA	NA	Х	Х	Х
Pb, Total	X	X	NA	NA	NA
Pb, PD	X	NA	NA	NA	NA
Phosphorous	NA	NA	Х	Х	Х
Potassium, Dissolved	NA	NA	NA	Х	Х
Mg, Dissolved	NA	NA	NA	Х	Х
Mn, Dissolved	NA	NA	Х	Х	Х
Mn, PD	X	NA	NA	NA	NA
Mo, Total	NA	NA	Х	NA	NA
Mo, Dissolved	NA	NA	NA	Х	Х
Ni, Dissolved	NA	NA	Х	Х	Х
Ni, Total	NA	X	NA	NA	NA
Nitrate	NA	NA	Х	Х	Х
Nitrite	NA	NA	Х	X	Х

Parameter	Industrial	Stormwater	Surface	Groundwater	UG Water
	Discharge	Discharge	Water		Mine water
Nitrate/Nitrite as N	NA	NA	NA	X	Х
Hg, dissolved	NA	NA	NA	X	Х
Hg, total (LL)	X	NA	NA	NA	NA
Hg, total	X	X	Х	NA	NA
Ag, PD	X	NA	NA	NA	NA
Ag, Dissolved	NA	NA	Х	X	Х
Ag, Total	NA	X	NA	NA	NA
Se, Dissolved	NA	NA	NA	X	Х
Se, Total	NA	X	Х	NA	NA
Silica, Dissolved	NA	NA	NA	X	Х
Sodium, Dissolved	NA	NA	NA	X	Х
Sulfate	NA	NA	NA	X	Х
Sulfide	NA	NA	Х	NA	NA
Thallium, Dissolved	NA	NA	NA	X	Х
Total Alkalinity	NA	NA	NA	X	Х
Uranium, Dissolved	NA	NA	NA	X	Х
Vanadium, Dissolved	NA	NA	NA	X	Х
Zn, Dissolved	NA	NA	Х	X	Х
Zn, Total	X	X	NA	NA	NA
Zn, PD	X	X	NA	NA	NA
Whole Effluent	X	NA	NA	NA	NA
Toxicity (Chronic)					

NA – not applicable for that monitoring requirement

12.2 Sampling Locations and Frequency

Samples are collected on an appropriate frequency to monitor the effectiveness of the EPFs or as required to meet discharge permit requirements.

The following table U-13 lists the various water monitoring programs and the frequency of each. Locations are shown on Map U-1 and in the tables U-5 and U-8.

Table U-13 – Monitoring Frequency

Monitoring Program	Quarterly	Bi-Monthly	Annual	Other*
Groundwater	X			
Underground	X		Х	
Surface Water				Х
Industrial Wastewater	X	Х		
Stormwater (if there is a discharge)	Х			
Tailings SPLP/TCLP/ ABA	Х			

* Note – sampling for surface water occurs approximately 3 times per year based on flow conditions and depending on whether it is safe to access the sampling locations in Sneffels Creek.

13 Climate Data

The following section provides available climate data for the site, which is used to perform a water balance for all liquid containment systems open to the environment that are used to contain designated chemicals or acid generating materials.

I The entire permitted area including the Revenue Mine, the Yellow Rose and 960 Raises, and the Monongahela/Hubb Reed Raise is above 6,500 feet of elevation. As such, mean annual precipitation for the past five years, the average direction and velocity of prevailing winds, the mean monthly temperature ranges for the past five years, and evaporation rates are provided in Tables U-14, U-15 and U-16.

The climate data is limited to data that is collected in the City of Ouray, which is at an elevation of 7,900 compared with the mine site, which is at 10,600 feet and a weather station located on Mount Abrams at 11,841 feet elevation. A weather station was added to Governor Basin in 2021 so more representative climate data will be collected year-round on a going forward basis.

Wind data was gathered from the National Oceanic and Atmospheric Administration for weather station #CAABR, which is located at 11,841 feet elevation on Mount Abrams in Ouray County. Prevailing winds appear to dominate from the southwest, south and northwest/north northwest.

Year		2021										2022			
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
Average (mph)	8.4	12.7	11.4	10.9	11.2	9.1	7	8.1	7.8	9.5	8	14.5	8	9.1	9.2
Min (mph)	0.1	0	0.3	0	0	0.1	0.1	0.1	0.6	0	0.7	0.7	0.4	0.7	0.9
Max (mph)	29.4	49.9	36.2	32.7	34.3	29.5	23.5	23.4	23.4	28.4	37.2	42.7	46.1	31.9	29

 Table U-14: Average, Min and Max Wind Speeds in mph for 2021 and Q1 2022

Wind data from Mt. Abrams Weather Station at 11,841' elevation courtesy of NOAA.

		I	able U-15	Monthly 7	Total Pred	cipitation	ı in Inche	s for OUI	RAY NO.	2, CO			
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
2000	М	М	М	М	М	1.21	М	М	М	М	М	М	М
2001	М	М	М	М	М	М	М	М	М	М	М	1.25	М
2002	М	М	М	1.32	М	М	М	М	4.33	2.42	М	М	М
2003	0.68	М	М	М	М	М	М	М	М	М	М	М	М

		Т	able U-15	Monthly T	Cotal Pre	cipitation	ı in Inche	s for OUI	RAY NO.	2, CO			
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annua
2004	М	М	0.82	М	М	М	2.75	М	М	1.95	3.24	1.11	М
2005	2.44	М	2.11	2.63	1.22	М	М	М	2.44	3.43	0.90	М	М
2006	1.74	0.59	М	М	0.99	0.47	4.94	3.62	2.22	3.79	1.19	1.38	М
2007	1.11	1.98	1.91	3.18	2.88	0.79	1.81	3.27	2.64	1.78	0.70	5.06	27.11
2008	2.94	2.20	2.05	2.41	2.18	0.29	2.88	2.08	2.06	1.49	1.51	3.62	25.71
2009	1.38	1.35	2.00	2.85	1.57	2.17	2.50	0.91	1.70	2.80	1.04	1.66	21.93
2010	0.69	2.32	4.47	2.49	1.15	1.15	3.98	2.96	0.62	2.58	0.97	1.86	25.24
2011	1.52	1.97	1.59	4.42	3.57	0.37	2.23	1.76	1.99	2.56	1.44	1.14	24.56
2012	1.40	1.75	0.96	1.24	0.09	0.36	5.34	2.03	1.65	0.43	0.45	3.21	18.91
2013	2.34	2.19	0.82	2.00	0.79	0.10	3.28	3.58	4.90	3.13	1.87	0.93	25.93
2014	1.27	2.36	1.58	2.47	2.26	0.12	1.54	2.39	3.77	0.97	2.39	1.61	22.73
2015	0.35	1.54	1.41	1.32	5.07	1.74	2.03	1.58	1.63	2.25	2.85	2.11	23.88
2016	1.86	1.31	1.01	2.57	2.22	0.69	1.84	4.16	1.59	0.76	1.67	2.21	21.89
2017	2.91	1.30	3.49	1.89	2.14	0.17	3.09	1.67	2.23	0.75	0.99	0.36	20.99
2018	1.93	2.26	0.86	2.64	0.50	0.33	3.54	1.99	0.68	3.06	0.55	1.72	20.06
2019	1.92	2.13	4.62	1.50	3.67	1.24	2.31	1.61	0.40	1.03	2.15	1.84	24.42
2020	1.76	0.75	1.48	1.29	0.57	1.28	2.54	0.87	1.29	0.80	2.52	1.85	17.00
2021	0.72	1.99	2.76	1.43	2.70	1.17	2.67	1.78	1.62	2.21	0.24	1.88	21.17
2022	0.90	2.14	М	М	М	М	М	М	М	М	М	М	М
Mean	1.57	1.77	2.00	2.21	1.97	0.80	2.90	2.27	2.10	2.01	1.48	1.93	22.77
Max	2.94	2.36	4.62	4.42	5.07	2.17	5.34	4.16	4.90	3.79	3.24	5.06	27.11
	2008	2014	2019	2011	2015	2009	2012	2016	2013	2006	2004	2007	2007
Min	0.35	0.59	0.82	1.24	0.09	0.10	1.54	0.87	0.40	0.43	0.24	0.36	17.00
	2015	2006	2004	2012	2012	2013	2014	2020	2019	2012	2021	2017	2020

Data from NOAA, National Weather Service

M = Missing Data

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
2000	26.7	М	М	45.2	55.2	63.6	М	66.3	М	М	М	М	51.4
2001	М	М	33.8	43.3	53.3	63.9	67.5	63.1	58.2	М	М	22.6	50.7
2002	22.8	22.0	М	47.1	М	68.9	70.3	65.0	55.7	42.6	30.5	М	47.2
2003	29.8	М	М	М	52.4	61.2	72.6	66.2	53.7	50.0	М	М	55.1
2004	23.2	22.6	37.4	43.8	54.4	61.8	64.7	М	М	44.0	31.1	М	42.6
2005	30.2	М	32.2	39.7	53.0	58.9	М	М	57.4	46.4	М	М	45.4
2006	24.6	26.4	М	М	54.3	64.3	67.0	62.4	52.6	44.0	37.5	26.6	46.0
2007	23.1	29.5	37.8	42.9	51.3	61.8	68.2	65.6	58.7	45.5	39.1	23.4	45.6
2008	19.4	26.6	32.1	38.3	48.4	60.2	65.9	64.6	57.4	47.0	37.9	25.8	43.6
2009	27.9	31.7	36.8	38.8	55.3	57.6	66.1	63.6	57.0	41.5	37.9	20.9	44.6
2010	25.7	23.7	31.0	41.2	48.0	62.2	65.7	63.0	59.6	47.8	31.7	33.6	44.4
2011	21.9	22.9	36.3	40.2	46.3	61.3	65.7	66.0	56.8	45.2	35.2	25.1	43.6
2012	28.3	26.6	37.8	46.5	54.6	65.7	66.1	64.8	57.6	47.6	39.7	27.3	46.9
2013	21.0	22.5	34.9	39.5	51.7	64.3	67.5	62.6	57.2	42.5	35.0	22.9	43.5
2014	28.4	30.3	35.4	40.8	49.7	60.9	66.7	62.3	59.5	48.0	34.2	28.6	45.4

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
2015	29.1	33.7	39.3	43.4	47.9	63.0	63.4	64.0	60.4	50.7	32.7	25.4	46.1
2016	25.0	31.3	37.0	41.4	49.2	64.5	65.3	60.5	56.8	51.5	39.4	26.9	45.7
2017	25.6	35.0	40.5	43.1	49.2	64.5	66.3	63.4	58.2	47.0	42.5	31.6	47.2
2018	30.3	30.4	36.8	44.3	55.6	64.9	68.6	65.9	61.1	45.3	32.4	25.7	46.8
2019	24.2	25.5	34.3	44.4	45.0	58.9	66.9	66.0	61.6	42.1	36.8	26.4	44.3
2020	25.6	27.4	38.0	43.4	55.4	62.4	66.5	69.7	58.0	49.1	37.4	24.5	46.5
2021	25.2	27.1	33.8	43.3	51.4	64.1	67.7	64.9	60.6	44.9	41.0	31.7	46.3
2022	27.0	25.0	М	М	М	М	М	М	М	М	М	М	26.0
Mean	25.7	27.4	35.8	42.4	51.3	62.6	66.9	64.4	57.9	46.1	36.2	26.4	46.1
Max	30.3	35.0	40.5	47.1	55.6	68.9	72.6	69.7	61.6	51.5	42.5	33.6	55.1
	2018	2017	2017	2002	2018	2002	2003	2020	2019	2016	2017	2010	
Min	19.4	22.0	31.0	38.3	45.0	57.6	63.4	60.5	52.6	41.5	30.5	20.9	26.0
	2008	2002	2010	2008	2019	2009	2015	2016	2006	2009	2002	2009	

Table U-16: Monthly Mean Avg Temperature Degrees F for OURAY NO. 2, CO 2000-2021

Data from NOAA, National Weather Services M = Missing Data

The published evaporation rate for Ouray County and the Revenue Mine Area according to the NOAA Annual Evaporation Chart presented in Exhibit K is 35 inches per year. Subtracting the average evaporation from average precipitation suggests the Revenue Mine is in an area of net evaporation of approximately 12 inches per year. Applying this information to a water balance to assess containment systems open to the environmental and intended to contain designated chemicals or acid-generating materials suggests there is sufficient reserve capacity to contain designated chemicals. Furthermore, most of the secondary containment for designated chemicals is located inside buildings or other structures that protect the containment from the elements. Ponds used for treatment or stormwater controls have been constructed to contain the 10-year 24 hour storm event at a minimum.

A more specific water balance for the mine and mill operations is presented in Exhibit G.

14 Geochemical Data and Analysis

Mill tailings generated at the mill will be placed on-site in either the Revenue or Atlas TSF. Waste rock is used to backfill mined out stopes underground, hauled to surface and crushed for use as road base, or blended with tailings and placed in the TSFs. A geochemical evaluation of tailings and waste rock was completed as required by TR-09 and TR-15. Summaries of the results received thus far are provided in Tables U-17 through U-19 and discussed below.

14.1 Tailings

Tailings generated by the mill have undergone initial testing for Acid Based Accounting (ABA, Synthetic Precipitation Leaching Procedure (SPLP), and Toxic Characteristic Leachate Procedure (TCLP). The results of these tests are summarized below.

14.1.1 Acid Based Accounting

ABA is the balance between the acid-producing and acid-consuming properties of a mine-waste material. The aim of ABA analysis is to produce an Acid Production Potential (AP) value and a Neutralization Potential (NP) value. With these values a Net Neutralization Potential (NNP) can be calculated: NNP=NP-AP. If the NNP is greater than 20 t CaCO3/Kt, it is generally accepted that the material is non-acid producing. The calculated NNP for the tailings made in the Revenue Mill is 70.6 t CaCO3/Kt, which is well above 20 and therefore, the tailings generated at the mill are considered acid neutralizing.

14.1.2 Synthetic Precipitation Leaching Procedure

SPLP is a leachate procedure that passes pH 5.00 water through the sample material and the resulting leachate is analyzed. Generally, SPLP is specific to soil or other surface materials and is performed to evaluate the potential of contaminants present in such materials to leach into groundwater. The results of the SPLP performed on the tailings generated in the Revenue Mill are summarized in Table U-17 below.

ANALYTE	GW Standard (mg/L)	Revenue Tailings (mg/L)
Aluminum	5	0.232
Antimony	Report	0.00778
Arsenic	0.1	0.00840
Barium	Report	0.0809
Beryllium	0.1	<0.0008
Boron	0.75	<0.03
Cadmium	0.001	<0.00005

	TTable	U-17	SPLP	Results
--	--------	------	------	---------

ANALYTE	GW Standard (mg/L)	Revenue Tailings (mg/L)
Calcium	Report	12.2
Chromium	0.1	<0.0005
Copper	0.009	<0.0008
Iron	1	<0.06
Lead	0.044	0.00397
Magnesium	Report	0.86
Manganese	1.672	0.0870
Mercury	0.01	<0.0002
Molybdenum	Report	0.0123
Nickel	0.05	<0.0004
Potassium	Report	6.51
Selenium	0.005	<0.0001
Silica	Report	3.4
Silver	0.0001	<0.0001
Sodium	Report	1.23
Thallium	Report	0.00013
Uranium	Report	<0.0001
Vanadium	0.1	<0.0005
Zinc	5	<0.006

14.1.3 Toxic Characteristic Leachate Procedure

TCLP is a chemical analysis used to determine whether there are hazardous elements present in a waste material. TCLP is typically used for waste characterization for disposal at a landfill and is not applicable to mine-related wastes. The procedure uses extraction fluid with a pH of 2.88 to simulate leaching through a landfill and is not representative of meteoric water that would come in contact with the mill tailings at the Revenue Mine. This procedure was done at the request of DRMS. TCLP results are summarized below in Table U-18 and show that mill tailings are well below the levels considered hazardous to the environment.

TTable U-18 TCLP Results

ANALYTE	TCLP Limit (mg/L)	Revenue Tailings (mg/L)	
Arsenic (TCLP)	5	0.0	17

ANALYTE	TCLP Limit (mg/L)	Revenue Tailings (mg/L)
Barium (TCLP)	100	0.898
Cadmium (TCLP)	1	<0.008
Chromium (TCLP)	5	<0.02
Lead (TCLP)	5	0.979
Mercury (TCLP)	0.2	<0.0002
Selenium (TCLP)	1	<0.05
Silver (TCLP)	5	<0.01

14.2 Waste Rock

Waste rock is generally comprised of the San Juan Tuff, which is a calcium rich host rock. Most waste rock generated on site will be used to backfill mined out stopes, but some waste rock is hauled to the surface and stockpiled for use as road base or blended with tailings and placed in the TSFs. The waste rock has been approved for use as a road base providing it passes leachability tests (See TR-09).

Waste rock is tested on a routine basis per TR-09 for leachability using the SPLP test to confirm it is suitable for use as road base in offsite locations.

A summary of the SPLP results for waste rock tested since 2016 is provided in Table U-19, which show the waste rock meets all applicable groundwater standards.

Table U-19 – Waste Rock SPLP Analyses since 2016

Analyte	Units	GW Standards	7/19/2016	7/26/2017	8/5/2019	10/2/2019	7/20/2020	6/29/2021	8/23/2021
Aluminum (1312)	mg/L	5	0.73	0.31	0.33	0.1	0.59	0.307	0.349
Antimony (1312)	mg/L	Report	0.0009	0.02	0.0039	0.0144	0.003	0.00303	0.00415
Arsenic (1312)	mg/L	0.1	0.003	0.01	0.0091	0.0045	0.0035	0.0125	0.00993
Barium (1312)	mg/L	Report	0.01	0.15	0.0534	0.122	0.191	0.108	0.118
Beryllium (1312)	mg/L	0.1	ND	ND	ND	ND	ND	ND	ND
Bicarbonate as CaCO3	mg/L	Report	13.80	17.00	28.1	27.6	13.5	15.5	16.9

Analyte	Units	GW Standards	7/19/2016	7/26/2017	8/5/2019	10/2/2019	7/20/2020	6/29/2021	8/23/2021
Boron (1312)	mg/L	0.75	0.01	0.03	ND	ND	ND	ND	ND
Bromide (1312-DI)	mg/L	NA	ND	ND	1.14	0.101	0.553	ND	0.37
Cadmium (1312)	mg/L	0.001	ND	ND	ND	ND	ND	ND	ND
Calcium (1312)	mg/L	Report	9.60	9.30	9.9	14.2	7.5	11.7	12.2
Carbon, total organic (TOC) (1312-DI)	mg/L	NA	ND	ND	ND	ND	ND	ND	ND
Carbonate as CaCO3	mg/L	Report	27.50	4.20	ND	ND	3.7	ND	ND
Chloride (1312-DI)	mg/L	250	ND	ND	ND	ND	ND	ND	ND
Chromium (1312)	mg/L	0.1	ND	ND	ND	ND	ND	0.00072	ND
Cobalt (1312)	mg/L	NA	0.00	0.00	ND	0.00005	ND	0.000099	ND
Conductivity @25C (1312-DI)	umhos/c m	Report	91.5	70.3	78.5	112	54.1	91.0	87.0
Copper (1312)	mg/L	0.009	ND	ND	0.0013	ND	ND	ND	0.0015
Fluoride (1312 DI)	mg/L	2	0.11	0.14	ND	ND	0.1	ND	ND
Hardness as CaCO3 (1312)	mg/L	Report	25	24	27	37	20	32	33
Hydroxide as CaCO3	mg/L	Report	ND	ND	ND	ND	ND	ND	ND
Iron (1312)	mg/L	1	0.09	0.03	ND	ND	ND	ND	ND
Lead (1312)	mg/L	0.044	0.0011	0.021	0.0001	0.0375	0.0003	0.00058	0.00223
Lithium (1312)	mg/L	NA	ND	ND	0.014	ND	ND	ND	ND
Magnesium (1312)	mg/L	Report	0.30	0.20	0.5	0.3	0.2	0.61	0.49
Manganese (1312)	mg/L	1.672	0.0038	0.0046	0.0112	0.0177	0.0035	0.00686	0.00916
Mercury (1312)	mg/L	0.01	ND	ND	ND	ND	ND	ND	ND
Molybdenum (1312)	mg/L	Report	0.001	0.04	0.0025	0.0454	0.0027	0.0088	0.0111
Nickel (1312)	mg/L	0.05	ND	ND	ND	ND	ND	0.0016	ND
Nitrate (1312 DI)	mg/L	NA	0.06	0.16	ND	1.75	0.07	4.5	3.33
Nitrate/Nitrite as N (1312-DI)	mg/L	100	0.06	0.21	ND	1.75	0.07	4.46	3.33
Nitrite as N (1312-DI)	mg/L	NA	ND	0.05	ND	ND	ND	ND	ND
Nitrogen, ammonia (1312-DI)	mg/L	NA	0.64	0.15	ND	ND	ND	ND	0.06
pH	s.u.	6-9	9.50	9.50	9.2	8.9	9.3	9	9.1
pH measured at	С	NA	23.30	21.60	23.50	19.50	20.80	20.9	20.6
Phosphorus, ortho dissolved (1312-DI)	mg/L	NA	ND	ND	ND	ND	ND	ND	0.014
Phosphorus, Total (1312-DI)	mg/L	NA	ND	ND	0.01	ND	3.1	1.6	ND
Potassium (1312)	mg/L	Report	1.50	3.10	2.9	3.50	42	70	1.39
Residue, Filterable (TDS) @180C (1312)	mg/L	400	58.00	46.00	48	74.00	ND	ND	58
Residue, Non-Filter (TSS) @180C (1312)	mg/L	Report	ND	ND	ND	ND	ND	ND	ND
Selenium (1312)	mg/L	0.005	ND	0.0003	0.0008	0.0004	ND	ND	ND
Silica (1312)	mg/L	Report	7.70	5.60	5.4	3.70	5	5.5	5.70
Silver (1312)	mg/L	0.0001	ND	ND	ND	0.0001	ND	ND	ND
Sodium (1312)	mg/L	Report	1.80	1.40	2.1	1.7	1.5	4.44	3.53
Strontium (1312)	mg/L	NA	0.20	0.25	0.188	0.205	0.217	0.358	0.468
Sulfate (1312-DI)	mg/L	250	1.54	6.32	7.26	17	3.28	4.4	4.48
Thallium (1312)	mg/L	Report	ND	ND	ND	ND	ND	ND	ND
Tin (1312)	mg/L	NA	ND	ND	ND	ND	ND	ND	ND

Analyte	Units	GW Standards	7/19/2016	7/26/2017	8/5/2019	10/2/2019	7/20/2020	6/29/2021	8/23/2021
Total Alkalinity	mg/L	Report	41.30	21.10	28.1	27.6	17.2	16.9	16.9
Uranium (1312)	mg/L	Report	ND	ND	ND	ND	ND	ND	ND
Vanadium (1312)	mg/L	0.1	0.00	0.00	0.001	ND	0.0019	0.00136	0.00067
Zinc (1312)	mg/L	5	ND	0.01	0.006	ND	0.007	ND	ND

NA = not applicable

ND = below laboratory detection limit

15 Construction Schedule Information

Several EPFs are still under construction and will be completed during the summer of 2022 as summarized in the following section.

15.1 Reagent Room

Construction of the Reagent Room EPF is being performed in accordance with TR-15 and is being performed in phases as required by Rule 7.3.1 with inspections by DRMS to assess each phase of construction. Construction QA/QC for the Reagent Room is provided to DRMS during inspections (see Section 15 of this EPF).

Remaining work to be performed on the Reagent Room includes the following:

- Seal the concrete floor with approved chemical resistant sealant
- Pour concrete apron outside the Reagent Room to provide containment during offloading of designated chemicals
- Complete piping and equipment installation
- Schedule QA/QC DRMS inspections before final sign off.

This remaining work is expected to be completed during the 2022 construction season.

15.2 Mill and Related Structures

Construction of the mill was completed in 2015 with updates to certain equipment in 2020 and 2021. Remaining work to be performed on the mill include the following:

- Construct building over the tailings thickener tank;
- Install a roof over the area between the Reagent Room and the tailings thickener building

This work is expected to be completed during the summer / fall of 2022.

15.3 TSFs

Construction of the TSF pads was completed in October 2021 to prepare the TSFs for tailings placement. Construction of the Revenue TSF was completed in 2014. Construction of the Atlas TSF was completed in 2021.

A preliminary as-built drawing of the Atlas TSF was provided to DRMS in a letter dated March 30, 2022. A final as-built drawing for the Atlas TSF will be provided once the snow melts. Ongoing construction and management of the TSFs as tailings are being placed, graded and compacted is

being performed in accordance with the 2015 Tailings and Waste Rock Management Plan (Appendix 7) and in accordance with Section 15 of this EPP.

15.4 Passive Mine Water Treatment System

Construction of the five-stage passive mine water treatment system was completed in 2021 and the system was commissioned and brought online in May 2021.

16 Quality Assurance and Quality Control Program and Measures

Quality Assurance and Quality Control (QA/QC) is performed during construction of EPFs and as part of ongoing use of the EPFs. QA/QC documentation is provided to DRMS during phased inspections as construction of these facilities progresses as required by Rule 6.4.21(16).

A brief description of the QA/QC Programs for each of the EPFs is provided below.

16.1 Reagent Room

Each phase of the construction of the reagent room was inspected by DRMS prior to initiation of the next phase up through construction of the steel structure. Construction on the reagent room was curtailed for the winter and will resume during the 3rd quarter of 2022. QA/QC documentation for what has been completed to date and the remaining Reagent Room construction activities will be provided to DRMS per TR-14 requirements and include:

- Existing Construction / Disturbance: DRMS inspected the construction and disturbance of the reagent room on July 6, 2021.
- Remaining Excavation / Concrete Prep Work: DRSM inspection the concrete rep work on July 12, 2021.
- Building Erection (concrete work): DRMS inspection the concrete work on September 27, 2021.
- Building Erection (Structural Steel): DRMS inspection the structural steel on October 19, 2021.
- Secondary Containment / Floor Sealant: This work is ongoing. Completion of secondary containment and applying a floor sealant were put on hold due to difficulty in procuring the appropriate floor sealant. A DRMS QA/QC inspection will be scheduled following installation of this task.
- Equipment Installation: OSMI received approval from DRMS to begin installing equipment in advance of applying floor sealant due to the inability to procure epoxy. Equipment installation began during the 4th quarter of 2021 but was curtailed due to winter conditions. Equipment installed prior to applying the floor sealant will be sealed with caulk to prevent process water from seeping underneath equipment. Once equipment installation is complete, an QA/QC task inspection will be scheduled.
- Final: Once Reagent Room construction is complete, DRMS will perform a final inspection to sign off on all of the QA/QC tasks listed above and as stated in the TR-14 approval letter.

16.2 Mill

The following QA/QC commitments were made as part of Technical Revision 15.

- Process Water: Sample the mill circuit as a baseline twice during mill commissioning once during the early commissioning and once late in the commission to assess mill water quality. The mill water is analyzed for the groundwater parameters as well as total organics. One sample of mill water was collected during the early stages of mill startup. However, the mill has been placed on standby until mining resumes. Once the mill starts up again, a second sample will be collected and analyzed.
- Tailings: During commissioning of the mill, a baseline characterization of the mill tailings was performed using SPLP, TCLP and ABA. Results of this characterization are provided in Section 13 of this EPP. Tailings and waste rock will be managed in accordance with the 2015 Tailings and Waste Rock Management Plan until such time that plan is updated.
- Concentrate: A Safety Data Sheet (SDS) for lead concentrate was developed following completion of the first batch of concentrate. An SDS for the zinc concentrate will be developed once a batch of zinc concentrate has been made.
- As Built Drawings: As built drawings of the final mill configuration will be submitted once the mill construction is complete.

16.3 Atlas and Revenue TSF

The construction of the TSFs has been completed however, as tailings are placed for permanent disposal, there are certain QA/QC measures that must be completed during buildout of the TSFs. These are:

- Compaction testing during placement of lifts using a nuclear density gauge to confirm the tailings meet the required compaction.
- Moisture content testing.
- SPLP testing at a minimum every 6 months or if the milling process is changed.
- Routine surveys to confirm construction is being performed according to designs.

16.4 Passive Mine Water Treatment System

Construction on the passive mine water treatment system was completed in the spring of 2021. Ongoing QA/QC of the treatment system includes:

- Bi-monthly and quarterly sampling of the outfall to assess compliance with CDPS Permit No. CO-0000003.
- Monthly inspections of the toe of Pond #3 to assess whether the pond is leaking.
- Routine pond inspections to assess the conditions of the ponds and channel between pond #2 and #3.

16.5 Stormwater BMPs

Stormwater BMPs are inspected on a quarterly basis or after a significant storm event as described in the site stormwater management plan and in accordance with CDPS Permit No. COR-040289.

17 Plant Growth Medium (Soils)

The soil types and boundaries for the area are shown on Map I-1 and are described in Exhibit I. Most of the permit area has been previously disturbed due to historical mining activities at a time when topsoil was not salvaged. Therefore, there is little topsoil available to salvage for reclamation purposes. A summary of the soil types found in the permit areas is provided in Table U-20.

Table U-20 Soil Types

Map Unit Symbol	Map Unit Name / Soil Type
104	Borolls - Rock outcrop complex, 40 to 90 percent slopes
112	Cryorthents - Rock outcrop complex, 50 to 120 percent slopes, extremely stony
114	Dumps, mine
129	Moran very gravelly load, 30 to 65 percent slopes, extremely stony
130	Moran, extremely stony - Telluride, extremely stony - Rock outcrop complex, 5 to 40 percent slopes
145	Rock outcrop
150	Rubble land
171	Whitecross - Rock outcrop complex, 45 to 75 percent slopes, extremely stony

Some topsoil does exist in 3 areas of the permit area and these soils support vegetation. These three areas are the wetlands located between the Revenue and the Atlas TSFs, the wetlands between mine water pond #2 and #3 and the wooded area that comprises the southern boundary of the permit area. These areas will not be disturbed during mining activities.

Topsoil, from newly disturbed areas, if any will be salvaged and used for reclamation. Addition topsoil will be imported for final reclamation.

The estimated soil salvage volumes are given in Exhibit E. The plans for stockpiling topsoil also are explained in Exhibit D. All stockpiles will be seeded with the mix described in the Reclamation Plan (Exhibit E) once the piles are established.

18 Wildlife Protection

Information about expected wildlife in the permit area is provided in Exhibit H. Disturbed areas will be reclaimed to wildlife habitat, thus increasing the wildlife value post-reclamation. As described in the Reclamation Plan (Exhibit E) and shown on Reclamation maps (Exhibit F) the site will be fully reclaimed to wildlife habitat once the mine is closed, except for a small portion of the area where the main buildings are located for commercial use after the mine is closed (see Exhibit F maps for details).

The main Revenue Tunnel will be fitted with a bat gate for bat habitat. The Colorado Division of Parks and Wildlife commented in its evaluation letter to the DRMS as part of the initial permit application that this was acceptable.
19 Disposal of Tailings and Sludges in Mine Workings

At this time, no tailings or sludges will be disposed in underground mine workings. However, development rock generated during underground mining activities is used to backfill stopes and other workings as underground mining progresses. In addition, the feasibility of backfilling crushed waste rock and tailings into the mine as a sand backfill is currently under evaluation. Should mining techniques change such that sand backfill is deemed feasible, OSMI will seek approval via a new technical revision prior to initiating such activity.

Previous approvals from DRMS allow development rock to be used for site road maintenance, backfill or placement in TSFs or to be sold to the County for use off site.

20 Emergency Response Plan

OSMI has several plans used to address emergencies on site. These Plans include:

- The Emergency Response Plan (ERP) developed for use by employees as a guide to respond to emergencies encountered at the mine;
- The SPCC Plan to address spills of petroleum products; and
- Materials Containment Plan to address spills of designated chemicals and other nonpetroleum related chemicals

Copies of the ERP, SPCC and MCP are provided in Appendix 1.

 Table U-21: Events Requiring Reporting (Rule 8.2.1 and 8.2.2)

Emergency Scenario	Permit Criteria	Reporting Timeframe
Release of process solutions containing designated chemicals outside of an EPF	Telephone notice during regular business hours Outside of business hours call Emergency and Incident reporting line through CDPHE	Verbal reporting to DRMS within 24 hours Followed up by written report within 5 days
Failure or imminent failure of impoundment, embankment, stockpile, or slope that poses potential danger to human health, property or environment	Telephone notice during regular business hours Outside of business hours call Emergency and Incident reporting line through CDPHE	Verbal reporting to DRMS within 24 hours Followed up by written report within 5 days

In the event of a failure or imminent failure of a designated EPF, notification will be provided to DRMS within 24 hours. The notification will include the following information:

- 1) Identify that this is a notification of an emergency condition
- 2) The nature of the condition including chemicals and toxic or acid producing materials involved
- 3) An estimate of the quantity of chemical, toxic or acid-forming material that has been or could be released

M-2012-032 Amendment 02 Exhibit U Updated March 2022

- 4) The time and duration of the occurrence and if it is on-going, or urgency of the pending situation
- 5) Any known or anticipated impacts to human health, property, or the environment
- 6) Precautions and corrective actions taken by OSMI
- 7) OSMI's contact information

For spills that require reporting to an agency other than DRMS, as identified in Rule 3.1.13 of the Hard Rock, Metal and DMOs, OSMI commits to notifying DRMS and providing the following information.

- 1) Operation name, DRMS permit number and name of person reporting the spill,
- 2) Telephone number of a responsible company official for the Office staff to use as a contact,
- 3) Date and time of spill,
- 4) Type of material spilled (CAS number if applicable, from the SDS),
- 5) Estimate of the amount spilled, whether any material has left the permit area, and where the spilled material went, and
- 6) Initial measures taken to contain and clean up spill.

21 References

- 1. Chemical Safety Data Sheets for Designated Chemicals (see Appendix 8).
- Colorado Discharge Permit System, Permit No. CO-0000003, Modification 5, August 31, 2018.
- 3. Colorado Discharge Permit System, Stormwater Certification No. CO-040289, August 1, 2016, and administratively continued under General Permit COR-040000.
- 4. Colorado Drinking Water Program, Non-Transient, Non-Community Groundwater Public Water System ID No. CO-0246283, 2014.
- 5. Colorado Water Quality Control Commission, Regulation 35. 5 CCR-1002-35, Effective June 30, 2021.
- 6. Division of Reclamation, Mining and Safety Permit No. M-2012-032, Amendment 2, Exhibit D, December 2021.
- 7. Division of Reclamation, Mining and Safety Permit No. M-2012-032, Amendment 2, Exhibit E, December 2021.
- 8. Division of Reclamation, Mining and Safety Permit No. M-2012-032, Amendment 2, Exhibit F, December 2021.
- 9. Division of Reclamation, Mining and Safety Permit No. M-2012-032, Amendment 2, Exhibit G, December 2021.
- Division of Reclamation, Mining and Safety Permit No. M-2012-032, Technical Revision 09, Approved March 16, 2017.
- Division of Reclamation, Mining and Safety Permit No. M-2012-032, Technical Revision 10, Approved September 27, 2018.
- 12. Division of Reclamation, Mining and Safety Permit No. M-2012-032, Technical Revision 14, Submitted April 16, 2021.
- 13. Division of Reclamation, Mining and Safety Permit No. M-2012-032, Technical Revision 15, Conditionally Approved July 21, 2021.
- 14. Emergency Response Plan for the Revenue Mine, Updated XX, 2021
- 15. Environmental Assessment for BLM and USFS Fringe Lease, May 2021
- Final Design Documents, New Reagent Room, Barr Engineering. DRMS Permit No. M-2012-032, TR-14, April 16, 2021.
- 17. Hard Rock, Metal, and Designated Mining Operations. Mineral Rules and Regulations of the Colorado Mined Land Reclamation Board. July 15, 2019.
- 18. Materials Containment Plan for the Revenue Mine, February 1, 2017.
- 19. Spill Prevention, Control and Countermeasures Plan for the Revenue Mine, Updated May 12, 2021.
- 20. Stormwater Management Plan for the Revenue Mine, Updated November 2021.
- 21. Tailings and Waste Rock Management Plan Revenue Mine, Greg Lewicki and Associates, PLLC, July 2015.

22. Ouray County Board of County Commissioners, Land Use Code, Section 24, November 02, 2016.

Tables

M-2012-032 Amendment 02 Exhibit U Updated March 2022

Designated Chemical	Purpose of use	Location for Use and Dosing Rate	Location for Storage	Typical Quantities Used and/or Stored on Site	Secondary Containment Provided (gal)	Fate of Chemical	Manufacturer	Alt Names	Human Health \$ 2: SDS HCS 2012 (29CFR 1910.1200)	Environmental Impacts §12: SDS
AeroFloat 242 Promoter	This is the ammonium salt of AEROFLOAT 31 promoter. Widely used for flotation of Pb from Pb/Zn ores and Cu/Pb from Cu/Pb/Zn ores. Improves Ag recovery from these ores.	Mill Reagent Room Mill Dosing Rate approximately 0.01 Ibs/short ton	Staged at the Warehouse in Ouray, CO and transported to the site via truck. Only stored in the reagent room or temporarily stored in the mill tunnel.	300 gallons stored in mixing /storage tanks 70 gallons stored in day tanks	6072	To be consumed by mill circuit	Solvay (distributor for Cytec Industries Inc.)	NA	Acute toxicity, Category 4→ Acute toxicity, Category 3→ Skin Corrosion, Category 1B→ Serious eye damage, Category 1→ Skin Sensitization, Category 1→ Skin Sensitization, Category 2→ H318: Causes serious eye damage H317: May cause an allergic skin reaction exposure, Category 2→ H361: Suspected of damaging fertility or the unborn child H373: May cause damage to organs through prolonged or repeated exposure.	Toxicity to microorganisms Not tested M-Factor Ammonium hydroxide Acute aquatic toxicity = 1 Biodegradability < 70% - 28 Days Toxicity to benthic organisms Not tested Toxicity to soil dwelling organisms Not tested Toxicity to terrestrial plants Not tested
Danafloat 067 (alternative to AeroFloat 242)	Flotation Agent		Staged at the Warehouse in Ouray, CO and transported to the site via truck. Only stored in the reagent room or temporarily stored in the mill tunnel.	300 gallons stored in mixing /storage tanks 70 gallons stored in day tanks.	6072	To be consumed by mill circuit	Quadra Chemicals Inc.	NA	Acute toxicity, Category 4→ Acute toxicity, Category 3→ H311: Toxic in contact with skin Skin Corrosion, Category 1→ H314: Causes severe skin burns and Serious eye damage, Category 1→ eye damage H318: Causes serious eye damage	Acute EC50 5 to 10ppm Marine Water - Species: Algae - Exposure 4 days macrocystic pyrifera - young Acute EC50 7000 μg/l fresh water - Crustaceans - Grammarus 48 Hours fasciatus Acute LC50 10000 μg/l fresh water Fish - lepomis macrochirus 96 Hours
Aerophine 3418 Promoter	AEROPHINE 3418A has application in flotation of copper- and lead-sulfide minerals, particularly where these are found in complex sulfide ores containing sphalerite zinc mineralization, and ores with high levels of pyrite and/or pyrrhotite.		Staged at the Warehouse in Ouray, CO and transported to the site via truck. Only stored in the reagent room or temporarily stored in the mill tunnel.	300 gallons stored in mixing /storage tanks 70 gallons stored in day tanks.		To be consumed by mill circuit	Solvay (distributor for Cytec Industries Inc.)	NA	Serious eye damage, Category 1→ Skin sensitization, Sub - Category 1B→ Health hazards not otherwise classified, Category 1→ Category 1→ Category 1→ Category 1→ Contact with acids liberates toxic gases	Acute toxicity to fish Not harmful (LC LL50>100mg/L) Acute toxicity to daphnia and other aquatic invertebrates Not harmful (EC/EL50>100mg/L) Toxicity to aquatic plants Not harmful (EC/EL50>100mg/L) Toxicity to microorganisms Not tested Chronic toxicity to fish Not tested Chronic to daphnia and other aquatic invertebrates Not tested Toxicity to benthic organisms Not tested Toxicity to soil dwelling organisms Not tested Toxicity to terrestrial plants Not tested Toxicity to above ground organisms Not tested
Copper Sulfate Pentahydrate	Used in Zinc flotation as an activator of sphalerite		Staged at the Warehouse in Ouray, CO and transported to the site via truck. Only stored in the reagent room or temporarily stored in the mill tunnel.	240 gallons in storage and 70 gallons in day tank	6072	To be consumed by mill circuit	Quadra Chemicals LTD,	cupric sulfate, blue vitriol, bluestone	Acute Toxicity - Oral Category 4→ Skin Corrosion/Irritation Category 2→ Eye damage/Irritation Category 2→ Eye damage/Irritation	Ecotoxicity Very toxic to aquatic life with long lasting Persistence and degradability effects Bioaccumulation Not determined Mobility Not determined Other Adverse Effects May be mobile due to water solubility Not Determined

Designated Chemical	Purpose of use	Location for Use and Dosing Rate	Location for Storage	PPE §8: SDS	NFPA - Classification §16 SDS	EPA List of Lists §12 SDS	Corrosivity	Incompatible Materials
	This is the ammonium salt of AEROFLOAT 31 promoter. Widely used for flotation of Pb from Pb/Zn ores and Cu/Pb from Cu/Pb/Zn ores. Improves Ag recovery from these ores.	Mill Reagent Room Mill Dosing Rate approximately 0.01 Ibs/short ton	the site via truck. Only stored in the reagent room or temporarily stored in the mill tunnel.	Chemical resistant, tightly fitting goggles Impervious clothing Change working clothes after each shift Handle in accordance with good industrial hygiene and safety practice Wash hands before breaks/at the end of workday When using do not eat, drink or smoke Eye wash bottles/stations in compliance with applicable standards Ensure that eyewash stations and showers are close to the workstation location	Health - 3 Serious Flammability - 1 Slight Instability or Reactivity - 0 Minimal	Ammonium Hydroxide CAS - No. 1336-21-6 1000lb	corrosion of	Oxidizing agents, strong acids or bases, and amines
Danafloat 067 (alternative to AeroFloat 242)	Flotation Agent	Mill Reagent Room Mill Dosing Rate approximately 0.01 Ibs/short ton	the site via truck. Only stored in the reagent room or temporarily	Chemical resistant, tightly fitting goggles Impervious clothing Change working clothes after each shift Handle in accordance with good industrial hygiene and safety practice Wash hands before breaks/at the end of workday When using do not eat, drink or smoke Eye wash bottles/stations in compliance with applicable standards Ensure that eyewash stations and showers are close to the workstation location	Health - 3 Flammability - 0 Physical Hazards - 0	Ammonium O, O- bis(methylphenyl) dithiophosphate 49- 51 % CAS -No. 587373-83-4 mix-cresol 0-7% CAS No. 1319-77-3 ammonia 0-7% CAS No. 1336-21-6	Corrosive to the respiratory system and digestive tract	Acids
Aerophine 3418 Promoter	AEROPHINE 3418A has application in flotation of copper- and lead-sulfide minerals, particularly where these are found in complex sulfide ores containing sphalerite zinc mineralization, and ores with high levels of pyrite and/or pyrrhotite.	Mill Reagent Room Mill Dosing Rate approximately 0.01 Ibs/short ton	the site via truck. Only stored in the reagent room or temporarily stored in the mill tunnel.	Impervious gloves - Nitrile or fluorinated rubber gloves Chemical resistant goggles, tightly fitting Impervious clothing Full protective suit Change working clothes after each shift contaminated work clothing should not be allowed out of the workplace Handle in accordance with good industrial hygiene and safety practice Wash hands before breaks and at the end of workday When using do not eat, drink, smoke Eye wash bottles/stations in compliance with applicable standards Ensure that eyewash stations and safety showers are close to the work station location.	Health - 3 Serious Flammability - 1 Slight Instability or Reactivity - 0 Minimal	N/A	Not corrosive to metals	Mineral acids, strong oxidizing agents, strong acids or bases
Copper Sulfate Pentahydrate	Used in Zinc flotation as an activator of sphalerite	Mill Reagent Room Mill Dosing Rate approximately 0.22 Ibs/short ton	Ouray, CO and transported to the site via truck. Only stored in the reagent room or temporarily stored in the mill tunnel.	Safety glasses with side shields/goggles Long sleeved shirt, long pants, and shoes plus socks Water proof gloves Discard clothing and other absorbent materials that have been drenched or heavily contaminated with products concentrate Wash PPE Separately from other laundry. Wear an approved respirator for dusts or mists Handle in accordance with good industrial hygiene and safety practices.	Health - 3 Serious Flammability - 0 Instability or Reactivity - 0 Minimal	CAS/313 Category Codes N100 & (CERCLA) 313	-	Aluminum powder, acetylene gas, hydroxylamine, magnesium and moisture

Designated Chemical	Purpose of use	Location for Use and Dosing Rate	Location for Storage	Typical Quantities Used and/or Stored on Site	Secondary Containment Provided (gal)	Fate of Chemical	Manufacturer	Alt Names	Human Health § 2: SDS HCS 2012 (29CFR 1910.1200)	Environmental Impacts §12: SDS		
Floquat FL 2949	Used as a settling agent, A flocculant causes the suspended mineral to form into small masses. This will make the thickener load settle.	Mill Reagent Room Mill Dosing Rate: approximately 0.2% concentration	Staged at the Warehouse in Ouray, CO and transported to the site via truck. Only stored in the reagent room or temporarily stored in the mill tunnel.	310 gallons stored 70 gallon mixing tank feeding 240 gallon solution tank.	6758	To be consumed by mill circuit	SNF, Inc.		No known hazards to humans Aqueous solutions or powders that become wet render surfaces extremely slippery	Acute toxicity to fish LC50/Danio rerio/96 hours > 10-100mg/L Acute toxicity to invertebrates (OECD 203) Acute toxicity to algae LC50/Fathead minnow/96 hours > 10- Chronic toxicity to fish 100mg/L (OECD 203) Chronic toxicity to invertebrates Algal inhibition tests are not appropriate. Toxicity to microorganisms No Data Effects on terrestrial organisms No Data Sediment toxicity No Data No known effects No Data		
Hyperfloc AF 309 (alternative to Floquat)	Used as a settling agent, A flocculant causes the suspended mineral to form into small masses. This will make the thickener load settle.	Mill Reagent Room Mill Dosing Rate: approximately 0.2% concentration	Staged at the Warehouse in Ouray, CO and transported to the site via truck. Only stored in the reagent room or temporarily stored in the mill tunnel.	310 gallons stored 70 gallon mixing tank feeding 240 gallon solution tank.	6758	To be consumed by mill circuit	SNF, Inc.	NA	No known hazards to humans Aqueous solutions or powders that become wet render surfaces extremely slippery	Acute toxicity to fish LC50/Danio rerio/96 hours > 100mg/L Acute toxicity to invertebrates (OECD 203) Acute toxicity to algae LC50/Fathead minnow/96 hours > Chronic toxicity to fish 100mg/L (OECD 203) Chronic toxicity to invertebrates LC50/Scenedesmus subspicatus/72 ho Toxicity to microorganisms > 100mg/L (OECD 201) Effects on terrestrial organisms No Data Sediment toxicity No Data No Data No known effects No Data		
Hydrated Lime	Lime is used to adjust the pH to aid in the collector adsorption by controlling the pulp chemistry. It also aids in the depression of certain minerals	Mill Reagent Room Mill Lime is added at a concentration necessary to achieve pH > 11 s.u.	Staged at the Warehouse in Ouray, CO and transported to the site via truck. Only stored in the reagent room or temporarily stored in the mill tunnel.	Stored in 1800 lb. supersacks until used 9200 gallons used/stored in mixing day tank 1320 gallons stored in reagent room	12281		Lhoist North America	NA	Eye damage Category 1→ Carcinogen Category 1→ Skin irritation Skin Irritation Category 2→ Specific Target Organ Toxicity Single Exposure Category 3→ Specific Target Organ Toxicity Repeat Exposure Category 1→ Hydrated lime is not listed as a carcinogen, however this product contains crystalline silica, which is classified as carcinogenic to humans when inhaled.	Reacts with atmospheric CO2 overtime to form calcium carbonate No bioaccumulation effect or food chain concentration toxicity Minimal mobility in soil. Reacts with clay portion of soil to form calcium silicates and calcium aluminates This material is alkaline and if released into water or moist soil will cause an increase in pH. 15 mg/m3 ACGIH TLV: 5 mg/m3 ACGIH TLV: 10 mg/m3 Crystalline Silica 14808-60-7 OSHA PEL: 0.050mg/m3 as an 8 hr. TWA (respirable) ACGIH TLV: 0.025 mg/m3 (respirable)		

Designated Chemical	Purpose of use	Location for Use and Dosing Rate	Location for Storage	PPE §8: SDS	NFPA - Classification §16 SDS	EPA List of Lists §12 SDS	Corrosivity	Incompatible Materials
Floquat FL 2949	Used as a settling agent, A flocculant causes the suspended mineral to form into small masses. This will make the thickener load settle.	Mill Reagent Room Mill Dosing Rate: approximately 0.2% concentration	the site via truck. Only stored in	Safety glasses with side shields PVC or other plastic material gloves Coverall and/or chemical apron and rubber footwear where physical contact can occur. No personal respiratory protective equipment normally required Wash hands before breaks and immediately after handling the product.	Health - 0 Flammability - 0 Instability - 0	N/A	Not classified re: corrosion of metals	None known
Hyperfloc AF 309 (alternative to Floquat)	Used as a settling agent, A flocculant causes the suspended mineral to form into small masses. This will make the thickener load settle.	Mill Reagent Room Mill Dosing Rate: approximately 0.2% concentration	Ouray CO and transported to the site via truck. Only stored in	Safety glasses with side shields Plastic material gloves Work clothes protecting arms, legs and body Dust safety masks recommended where working powder concentration is more than 10 mg/m3. Wash hands before breaks and immediately after handling the product.	Health - 0 Flammability - 0 Instability - 0	CERCLA - Hazardous substances list (40 CFR 302.4) - RQ - Not concerned	Not classified re: corrosion of metals	Strong bases, oxidizing agents
Hydrated Lime	Lime is used to adjust the pH to aid in the collector adsorption by controlling the pulp chemistry. It also aids in the depression of certain minerals	Mill Reagent Room Mill Lime is added at a concentration necessary to achieve pH > 11 s.u.	the site via truck. Only stored in	NIOSH Approved respirators if airborne concentration exceeds PEL Safety Glasses with side shields or safety goggles. Contact lenses should not be work when working with the lime products. Wear appropriate clothing and gloves to prevent contact Eye wash fountain and emergency showers close to work station location	N/A	N/A	Not classified re: corrosion of metals	Acids, reactive fluoridated or brominated compounds, reactive powdered metals, organic acid anhydrides, nitro-organic compounds, reactive phosphorous compounds, interhalogenated compounds

Designated Chemical	Purpose of use	Location for Use and Dosing Rate	Location for Storage	Typical Quantities Used and/or Stored on Site	Secondary Containment Provided (gal)	Fate of Chemical	Manufacturer			Environmental Impacts §12: SDS
Oreprep F-549 Frother	A frothing agent used to create a stable surface for sulfide mineral to adhere.	Mill Reagent Room Mill Add as needed - no dosing rate specified.	Staged at the Warehouse in Ouray, CO and transported to the site via truck. Only stored in the reagent room or temporarily stored in the mill tunnel.	300 gallons stored in storge tank in reagent room	793	To be consumed by mill circuit	Solvay (distributor for Cytec Canada Inc.)	NA	Skin irritation Category 2→ H315: Causes skin irritation Eye irritation Category 2A→ H319: Causes serious eye irritation	Acute toxicity to fish No Data Acute toxicity to daphnia and other aquatic invertebrates No Data Toxicity to aquatic plants No Data Toxicity to microorganisms No Data Chronic toxicity to fish No Data Chronic toxicity to daphnia and other aquatic invertebrates No Data Abiotic degradation No Data physical and photo-chemical elimination No Data Biodegradation No Data Adsorption potential No Data Known distribution to environmental compartments No Data Other adverse effects No Data
Polyfroth W20 (Alternative to Oreprep)	A frothing agent used to create a stable surface for sulfide mineral to adhere.	Mill Reagent Room Mill Add as needed - no dosing rate specified.	Staged at the Warehouse in Ouray, CO and transported to the site via truck. Only stored in the reagent room or temporarily stored in the mill tunnel.	300 gallons stored in storge tank in reagent room	793	To be consumed by mill circuit	Quadra Chemicals Inc.	NA	While this material is not considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200), this SDS contains valuable information critical to the safe handling and proper us o the product. This SDS should be retained and available for employee's and other users of this product No known significant effects or critical hazards.	No known significant effects or critical hazards. Ecotoxicity - Not available Persistence and degradability - Not available.
	Xanthate is commonly used in the flotation process of sulfide minerals. Xanthate is a combination of alcohol, sodium hydroxide and carbon dioxide, which is an anionic collector.	Mill Reagent Room Mill Dosing Rate approximately 0.03 Ibs/short ton	Staged at the Warehouse in Ouray, CO and transported to the site via truck. Only stored in the reagent room or temporarily stored in the mill tunnel.	240 gallons in storage and 70 gallons in day tank	1031	To be consumed by mill circuit	Charles Tennant & Company	NA	Sodium Isopropylxanthate→ Proxan Sodium (Synonym) Self heating substances and mixtures H251: Self Heating: may catch fire Category 1→ H302: Harmful if swallowed Acute toxicity (oral) Category 4→ H315: Causes skin Irritation Skin irritation Category 2→ Eye irritation Category 2A→ Catches Fire spontaneously if exposed to air→ air→ Harmful if swallowed or in contact with skin→ Causes skin irritation→	Acute Aquatic Toxicity Category 2→ H411: Toxic to aquatic life long lasting effects Do not allow to enter soil, water ways or waste water. This product may be harmful to aquatic life Biodegradability All waste from this product including all empty containers must be disposed of in accordance with municipal, provincial and federal regulations.
NAX 31 (Sodium Isopropyl Xanthate alternative)	Xanthate is commonly used in the flotation process of sulfide minerals. Xanthate is a combination of alcohol, sodium hydroxide and carbon dioxide, which is an anionic collector.	Mill Reagent Room Mill Dosing Rate approximately 0.03 Ibs/short ton	Staged at the Warehouse in Ouray, CO and transported to the site via truck. Only stored in the reagent room or temporarily stored in the mill tunnel.	Stored in 50 lb. bags until used. 240 gallons in storage and 70 gallons in day tank	NA (stored dry)	To be consumed by mill circuit	Prospec Chemicals (Charles Tennant & CO 3rd party supplier of Xanthate. Cascade Columbia is a Distributor for Charles Tennant).	NA	Acute Toxicity Oral Category 1→ Acute Toxicity Dermal Category 4→ Acute Toxicity Dermal Category 4→ Acute Toxicity Skin Irritation→ Eye irritation Category 2→ Danger Category 2→ NA	NA NA

Designated Chemical	Purpose of use	Location for Use and Dosing Rate	Location for Storage	PPE §8: SDS	NFPA - Classification §16 SDS	EPA List of Lists §12 SDS
Frother	A frothing agent used to create a stable surface for sulfide mineral to adhere.	Mill Reagent Room Mill Add as needed - no dosing rate specified.	stored in the mill tunnel.	Change work clothes after each work shift Contaminated work clothing should not be allowed out of the workplace Handle in accordance with good industrial hygiene and safety practice Wash hands before breaks and at end of workday Do not eat, drink or smoke while using this product.	Health - 2 Moderate Flammability - 1 Instability or reactivity - 0 or Minimal.	N/A
Polyfroth W20 (Alternative to Oreprep)	A frothing agent used to create a stable surface for sulfide mineral to adhere.	Mill Reagent Room Mill Add as needed - no dosing rate specified.	Staged at the Warehouse in Ouray, CO and transported to the site via truck. Only stored in the reagent room or temporarily stored in the mill tunnel.	Chemical resistant, impervious gloves, complying with an approved standard should be worn at tall times when handling chemical products if a risk assessment indicates this is necessary	Health - 0 Flammability - 0 Instability - 0	NA
	Xanthate is commonly used in the flotation process of sulfide minerals. Xanthate is a combination of alcohol, sodium hydroxide and carbon dioxide, which is an anionic collector.	Mill Reagent Room Mill Dosing Rate approximately 0.03 Ibs/short ton	stored in the mill tunnel.	Wear impervious gloves when there is greater exposure risk If respiratory protection is required institute a complete respiratory protection program including selection, fit testing, training, maintenance and inspection. NIOSH or MSHA approved respirator for acidic vapors Face shield, safety glasses with side shields. Safety Boots Adequate protective clothing An eye wash station/safety shower should be near the work station Explosion proof mechanical ventilation to limit vapor concentration below T.L.V.	Health - 2 Flammability - 0 Instability - 2	CAS/313 Category Codes 7440-23-5 CERCLA RQ 10
Isopropyl Xanthate alternative)	Xanthate is commonly used in the flotation process of sulfide minerals. Xanthate is a combination of alcohol, sodium hydroxide and carbon dioxide, which is an anionic collector.	Mill Reagent Room Mill Dosing Rate approximately 0.03 Ibs/short ton		Wear impervious gloves. If respiratory protection is required, institute a complete respiratory protection program including selection, fit testing, training, maintenance and inspection. Refer tot eh CAS standard Z94.4-m1982 Selection, care and use of respirators. If vapors are present, use a NIOSH or MSHA approved respirator for acidic vapors or a self contained breathing apparatus. Face shield, safety goggles. Rubber safety boots, adequate protective clothing. Eye wash station and safety shower should be near the work area.	NA	NA

Corrosivity	Incompatible Materials
Not corrosive to metals	Strong oxidizing agents
NA	No specific test data related to reactivity available for this product or it's ingredients. The product is stable Under normal conditions of storage and use, hazardous
Not classified re: corrosion of metals	Strong oxidizing agents, strong acids, strong bases, flammable liquids, heat, moisture
Not classified re: corrosion of metals	Strong oxidizing agents, strong acids, strong bases, flammable liquids, heat, moisture

Designated Chemical	Purpose of use	Location for Use and Dosing Rate	Location for Storage	Typical Quantities Used and/or Stored on Site	Secondary Containment Provided (gal)	Fate of Chemical	Manufacturer	Alt Names	Human Health § 2: SDS HCS	2012 (29CFR 1910.1200)	Environmental Impacts §12:	SDS
Sodium Metabisulfite	Sodium Metabisulfite aka MBS is used for pH control in froth flotation to control Pyrite depression It is also used to prevent flotation of sphalerite by copper activation in the presence of Tennantite/Covellite in the ore.	Mill Reagent Room Mill Dosing Rate approximately 0.5 Ibs/short ton	Staged at the Warehouse in Ouray, CO and transported to the site via truck. Only stored in the reagent room or temporarily stored in the mill tunnel.	Stored in 50 lb. bags until used. 140 gallon mixing tank feeds 140 gallon solution tank. 70 gallons stored in day tank	NA (stored dry)	To be consumed by mill circuit	Ouadra Chemicals LTD. (Prospect Chemicals 2nd/3rd party distributor/supplier)	Sodium Pyrosulfite, Disodium Pyrosulfite, Pyrosulfurous Acid, Disodium Salt, Sodium Disulphite.	Acute Toxicity Oral Category 4→ Acute Toxicity Dermal Category 5→ Serious Eye Irritant Category 1→	Harmful in contact with skin	Ecotoxicity: Sodium Metabisulfite is a non hazardous solid commonly used as a waste water dechlorination agent. High concentrations will contribute to elevated chemical oxygen demand in aquatic environments.	
Zinc Sulphate Monohydrate	The established lead- zinc ore flotation processing scheme is to add zinc sulphate (ZnSO4) to the grind to control metal ion activation (sphalerite depression) Sphalerite that is rejected into the lead flotation tails is then floated in a second flotation step after activation with copper sulphate.	Mill Reagent Room Mill Dosing Rate approximately 0.5 Ibs/short ton	Staged at the Warehouse in Ouray, CO and transported to the site via truck. Only stored in the reagent room or temporarily stored in the mill tunnel.	Stored in 50 lb. bags until used. 240 gallon mixing tank in reagent room	NA (stored dry)	To be consumed by mill circuit	Zinc Nacional	White vitriol, Goslarite	Specific target organ toxicity, single exposure, Respiratory tract irritation	H315: Causes skin irritation H318: Causes serious eye damage H335: May cause respiratory irritation	LC50 24 Hours fish (rainbow trout) 1.24 mg/L LC50 48 Hours fish (rainbow trout) 2.4 - 5mg/L LC50 96 Hours fish (rainbow trout) .2483 mg/L LC50 96 Hours Daphnia 7.4 mg/L	and its zinc and manganese contents are

Designated Chemical	Purpose of use	Location for Use and Dosing Rate	Location for Storage	PPE §8: SDS	NFPA - Classification §16 SDS	EPA List of Lists §12 SDS	Corrosivity	Incompatible Materials
Sodium Metabisulfite	Sodium Metabisulfite aka MBS is used for pH control in froth flotation to control Pyrite depression It is also used to prevent flotation of sphalerite by copper activation in the presence of Tennantite/Covellite in the ore.	Mill Reagent Room Mill Dosing Rate approximately 0.5 Ibs/short ton	Ouray, CO and transported to the site via truck. Only stored in the reagent room or temporarily stored in the mill tunnel.	General and local exhaust ventilation systems to maintain airborne concentrations If necessary, wear and MSHA/NIOSH approved respirator. Protective boots, gloves, and clothing to prevent excessive skin contact. Protective eye glasses, safety glasses with side shields, or goggles. emergency eye wash stations, showers, and washing facilities available in the work area. Remove this material from PPE as needed. Do not eat, drink or smoke in work areas.	Health - 2 Serious Flammability - 0 Instability or Reactivity - 0 Minimal	Hazardous Substance (40 CFR 302.4) RQ N/A	corrosion of	Acid and water produce sulfur oxides. Powdered potassium, sodium metal, alkali agents, oxidizing agents, and chlorates.
	The established lead- zinc ore flotation processing scheme is to add zinc sulphate (ZnSO4) to the grind to control metal ion activation (sphalerite depression) Sphalerite that is rejected into the lead flotation tails is then floated in a second flotation step after activation with copper sulphate.	Mill Reagent Room Mill Dosing Rate approximately 0.5 Ibs/short ton	the site via truck. Only stored in the reagent room or temporarily stored in the mill tunnel.	protection should be worn where dust is generated and there is a potential that eye	Does not burn or support combustion § 5 Fire Fighting Measures SDS	CERCLA RQ 1000 Section 313c		Strong oxidizers, acids, strong bases

Attachment B Summary of Groundwater Data for Past 5 Quarters GW-1A

Attachment B Summary of Grou			2020 Q4	2021 Q1	2021 Q2	2021 Q3	2021 Q4
Analyte	Units	GW Std	(11/12/2020)	(3/25/2021)	(6/17/2021)	(9/24/2021)	(10/28/2021)
Aluminum, dissolved	mg/L	5			0.05		
Antimony, dissolved	mg/L	Report			0.00095		
Arsenic, dissolved	mg/L	0.1			0.00079		
Barium, dissolved	mg/L	Report			0.0314		
Beryllium, dissolved	mg/L	0.1			0.00008		
Bicarbonate as CaCO3	mg/L	Report			33		
Boron, dissolved	mg/L	0.75			0.03		
Cadmium, dissolved	mg/L	0.001			0.00014		
Calcium, dissolved	mg/L	Report			19.7		
Carbonate as CaCO3	mg/L	Report			2		
Chloride	mg/L	250			0.58		
Chromium, dissolved	mg/L	0.1			0.0005		
Conductivity @25C	μS/cm	Report			129		
Copper, dissolved	mg/L	0.009			0.00102		
Cyanide, total	mg/L	0.005			0.003		
Fluoride	mg/L	2			0.23		
Hardness as CaCO3 (dissolved)	mg/L	Report			56		
Hydroxide as CaCO3	mg/L	Report			2		
Iron, dissolved	mg/L	1			0.06		
Lead, dissolved	mg/L	0.044			0.00224		
Magnesium, dissolved	mg/L	Report			1.61		
Manganese, dissolved	mg/L	1.672			0.01		
Mercury, dissolved	mg/L	0.01			0.0002		
Molybdenum, dissolved	mg/L	Report			0.00088		
Nickel, dissolved	mg/L	0.05			0.008		
Nitrate/Nitrite as N	mg/L	100			0.259		
pH (lab)	s.u.	6-9			7.7		
Phosphorus, total	mg/L	NA			0.01		
Potassium, dissolved	mg/L	Report			0.64		
Total Dissolved Solids	mg/L	400			72		
Total Suspended Solids	mg/L	Report			5		
Selenium, dissolved	mg/L	0.005			0.00016		
Silica, dissolved	mg/L	Report			4.6		
Silver, dissolved	mg/L	0.0001			0.0001		
Sodium, dissolved	mg/L	Report			1.98		
Sulfate	mg/L	250			25.1		
Thallium, dissolved	mg/L	Report			0.0001		
Total Alkalinity	mg/L	Report			33		
Uranium, dissolved	mg/L	Report			0.0001		
Vanadium, dissolved	mg/L	0.1			0.01		
Zinc, dissolved	mg/L	5			0.054		
pH (field)	s.u.	0.713			8.34		
Water Temperature (field)	deg. C				7.6		
ORP (field)	mV				281		
Conductivity (field)	μS/cm				309		
Disolved Oxygen (field)	%				51.9		
*Well dry Q4 2020, Q1 2021, Q3	2021 & 04	2021					

*Well dry Q4 2020, Q1 2021, Q3 2021 & Q4 2021

Attachment B Summary of Groundwater Data for Past 5 Quarters GW-1B

Attachment B Summary of Grou			2020 Q4	2021 Q1	2021 Q2	2021 Q3	2021 Q4
Analyte	Units	GW Std	(11/12/2020)	(3/25/2021)	(6/17/2021)	(9/24/2021)	(10/28/2021)
Aluminum, dissolved	mg/L	5	0.05	0.05	0.05	0.05	0.05
Antimony, dissolved	mg/L	Report	0.00101	0.00072	0.0004	0.00094	0.00079
Arsenic, dissolved	mg/L	0.1	0.00062	0.00044	0.00054	0.00056	0.00053
Barium, dissolved	mg/L	Report	0.05722	0.0545	0.0309	0.0523	0.0466
Beryllium, dissolved	mg/L	0.1	0.00008	0.00008	0.00008	0.00008	0.00008
Bicarbonate as CaCO3	mg/L	Report	34.5	46.3	32.6	35.6	35.1
Boron, dissolved	mg/L	0.75	0.02	0.02	0.03	0.03	0.03
Cadmium, dissolved	mg/L	0.001	0.000125	0.000133	0.000127	0.000135	0.000135
Calcium, dissolved	mg/L	Report	34.9	36.3	19.9	30.6	28.6
Carbonate as CaCO3	mg/L	Report	2	2	2	2	2
Chloride	mg/L	250	0.6	0.98	0.5	0.99	0.75
Chromium, dissolved	mg/L	0.1	0.0005	0.0005	0.0005	0.0005	0.0005
Conductivity @25C	μS/cm	Report	210	227	128	205	185
Copper, dissolved	mg/L	0.009	0.0001	0.0008	0.0008	0.0008	0.0008
Cyanide, total	mg/L	0.005	0.003	0.003	0.003	0.003	0.003
Fluoride	mg/L	2	0.17	0.15	0.02	0.21	0.15
Hardness as CaCO3 (dissolved)	mg/L	Report	100	103	56	87	81
Hydroxide as CaCO3	mg/L	Report	2	2	2	2	2
Iron, dissolved	mg/L	1	0.06	0.06	0.06	0.06	0.06
Lead, dissolved	mg/L	0.044	0.00012	0.0002	0.00019	0.00015	0.00014
Magnesium, dissolved	mg/L	Report	3.07	2.98	1.64	2.6	2.43
Manganese, dissolved	mg/L	1.672	0.01	0.01	0.01	0.01	0.01
Mercury, dissolved	mg/L	0.01	0.0002	0.0002	0.0002	0.0002	0.0002
Molybdenum, dissolved	mg/L	Report	0.00138	0.00102	0.00091	0.00117	0.00081
Nickel, dissolved	mg/L	0.05	0.008	0.008	0.008	0.008	0.008
Nitrate/Nitrite as N	mg/L	100	0.098	0.337	0.26	0.071	0.073
pH (lab)	s.u.	6-9	7.8	8	7.7	8	7.8
Phosphorus, total	mg/L	NA	0.01	0.01	0.01	0.01	0.01
Potassium, dissolved	mg/L	Report	0.46	0.39	0.6	0.62	0.4
Total Dissolved Solids	mg/L	400	148	154	72	120	122
Total Suspended Solids	mg/L	Report	10	10	5	5	5
Selenium, dissolved	mg/L	0.005	0.00041	0.00036	0.00019	0.00023	0.00025
Silica, dissolved	mg/L	Report	4.3	4.9	4.7	5	4.6
Silver, dissolved	mg/L	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
Sodium, dissolved	mg/L	Report	2.74	2.28	1.74	1.9	1.78
Sulfate	mg/L	250	69.2	59.1	34.3	51.1	45.1
Thallium, dissolved	mg/L	Report	0.0001	0.0001	0.0001	0.0001	0.0001
Total Alkalinity	mg/L	Report	34.5	46.3	32.6	35.6	35.1
Uranium, dissolved	mg/L	Report	0.0001	0.00012	0.0001	0.0001	0.0001
Vanadium, dissolved	mg/L	0.1	0.01	0.01	0.01	0.01	0.01
Zinc, dissolved	mg/L	5	0.052	0.068	0.05	0.059	0.066
pH (field)	s.u.		7.48	7.75	8.29	6.68	7.34
Water Temperature (field)	deg. C		1.2	1.4	7.6	8.4	3.5
ORP (field)	mV		241	290	211	479	135.3
Conductivity (field)	μS/cm		6			204.1	198.9
Disolved Oxygen (field)	%				57.2	69.2	66.2

Attachment B Summary of Groundwater Data for Past 5 Quarters GW-2A

Attachment B Summary of Grou			2020 Q4	2021 Q1	2021 Q2	2021 Q3	2021 Q4
Analyte	Units	GW Std	(11/12/2020)	(3/29/2021)	(6/17/2021)	(9/15/2021)	(10/28/2021)
Aluminum, dissolved	mg/L	5	0.05	0.05	0.05	0.05	0.05
Antimony, dissolved	mg/L	Report	0.00102	0.00102	0.0004	0.00094	0.00093
Arsenic, dissolved	mg/L	0.1	0.00042	0.00042	0.00025	0.00025	0.00033
Barium, dissolved	mg/L	Report	0.0548	0.0626	0.0374	0.0479	0.0511
Beryllium, dissolved	mg/L	0.1	0.00008	0.00008	0.00008	0.00008	0.00008
Bicarbonate as CaCO3	mg/L	Report	25.2	27.6	26	26	28.3
Boron, dissolved	mg/L	0.75	0.02	0.03	0.03	0.03	0.03
Cadmium, dissolved	mg/L	0.001	0.000631	0.000699	0.000479	0.000527	0.000637
Calcium, dissolved	mg/L	Report	28.5	37.7	24.1	26.9	29.8
Carbonate as CaCO3	mg/L	Report	2	2	2	2	2
Chloride	mg/L	250	0.5	1.18	0.5	0.73	0.73
Chromium, dissolved	mg/L	0.1	0.0005	0.00252	0.0005	0.0005	0.0005
Conductivity @25C	μS/cm	Report	193	268	161	184	199
Copper, dissolved	mg/L	0.009	0.0008	0.0008	0.0008	0.0008	0.00083
Cyanide, total	mg/L	0.005	0.003	0.003	0.003	0.003	0.003
Fluoride	mg/L	2	0.23	0.27	0.25	0.24	0.28
Hardness as CaCO3 (dissolved)	mg/L	Report	80	106	68	76	84
Hydroxide as CaCO3	mg/L	Report	2	2	2	2	2
Iron, dissolved	mg/L	1	0.06	0.06	0.06	0.06	0.06
Lead, dissolved	mg/L	0.044	0.00014	0.00018	0.00042	0.00013	0.00013
Magnesium, dissolved	mg/L	Report	2.19	2.92	1.9	2.1	2.28
Manganese, dissolved	mg/L	1.672	0.01	0.01	0.01	0.01	0.01
Mercury, dissolved	mg/L	0.01	0.0002	0.0002	0.0002	0.0002	0.0002
Molybdenum, dissolved	mg/L	Report	0.0009	0.00109	0.00094	0.00096	0.00092
Nickel, dissolved	mg/L	0.05	0.008	0.008	0.008	0.008	0.008
Nitrate/Nitrite as N	mg/L	100	0.127	0.588	0.588	0.272	1.03
pH (lab)	s.u.	6-9	7.4	4	7.5	7.7	7.4
Phosphorus, total	mg/L	NA	0.01	0.024	0.01	0.01	0.01
Potassium, dissolved	mg/L	Report	0.52	0.44	0.71	0.46	0.5
Total Dissolved Solids	mg/L	400	118	164	100	112	126
Total Suspended Solids	mg/L	Report	5	7	32	5	5
Selenium, dissolved	mg/L	0.005	0.00039	0.00039	0.00011	0.00022	0.0003
Silica, dissolved	mg/L	Report	5.4	5.6	4.9	5.5	0.5
Silver, dissolved	mg/L	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
Sodium, dissolved	mg/L	Report	2.03	2.31	1.66	2.07	2.15
Sulfate	mg/L	250	57.7	83.1	42.8	52.4	54
Thallium, dissolved	mg/L	Report	0.0001	0.0001	0.0001	0.0001	0.0001
Total Alkalinity	mg/L	Report	25.2	2	26	26	28.3
Uranium, dissolved	mg/L	Report	0.0001	0.0001	0.0001	0.0001	0.0001
Vanadium, dissolved	mg/L	0.1	0.01	0.01	0.01	0.01	0.01
Zinc, dissolved	mg/L	5	0.512	0.552	0.379	0.451	0.486
pH (field)	s.u.	0.713	6.95	6.83	8.39	6.33	6.71
Water Temperature (field)	deg. C		5.2	1.6	14.4	6.7	4.7
ORP (field)	mV		258	251	229	367.6	200.1
Conductivity (field)	μS/cm				216	177.5	211.4
Disolved Oxygen (field)	%				45.3	64.4	52

Attachment B Summary of Groundwater Data for Past 5 Quarters GW-2B

Attachment B Summary of Grou			2020 Q4	2021 Q1	2021 Q2	2021 Q3	2021 Q4
Analyte	Units	GW Std	(11/12/2020)	(3/25/2021)	(6/17/2021)	(9/15/2021)	(10/28/2021)
Aluminum, dissolved	mg/L	5	0.05	0.05	0.05	0.05	0.05
Antimony, dissolved	mg/L	Report	0.0011	0.00065	0.00069	0.00076	0.00077
Arsenic, dissolved	mg/L	0.1	0.00032	0.0002	0.00025	0.00022	0.0003
Barium, dissolved	mg/L	Report	0.0589	0.0676	0.064	0.0534	0.055
Beryllium, dissolved	mg/L	0.1	0.00008	0.00008	0.00008	0.00008	0.00008
Bicarbonate as CaCO3	mg/L	Report	26.4	29.2	29.3	28	29.1
Boron, dissolved	mg/L	0.75	0.02	0.02	0.03	0.03	0.03
Cadmium, dissolved	mg/L	0.001	0.00024	0.000262	0.000244	0.000187	0.000217
Calcium, dissolved	mg/L	Report	27.1	37.3	34.5	26.6	27.9
Carbonate as CaCO3	mg/L	Report	2	2	2	2	2
Chloride	mg/L	250	0.5	0.93	0.65	0.61	0.59
Chromium, dissolved	mg/L	0.1	0.0005	0.0005	0.0005	0.0005	0.0005
Conductivity @25C	μS/cm	Report	179	235	222	180	184
Copper, dissolved	mg/L	0.009	0.0008	0.0008	0.0008	0.0008	0.0008
Cyanide, total	mg/L	0.005	0.003	0.003	0.003	0.003	0.003
Fluoride	mg/L	2	0.22	0.15	0.26	0.22	0.23
Hardness as CaCO3 (dissolved)	mg/L	Report	77	105	98	75	79
Hydroxide as CaCO3	mg/L	Report	2	2	2	2	2
Iron, dissolved	mg/L	1	0.06	0.06	0.06	0.06	0.06
Lead, dissolved	mg/L	0.044	0.0001	0.0001	0.0001	0.0001	0.0001
Magnesium, dissolved	mg/L	Report	2.22	2.99	2.79	2.17	2.26
Manganese, dissolved	mg/L	1.672	0.01	0.01	0.01	0.01	0.01
Mercury, dissolved	mg/L	0.01	0.0002	0.0002	0.0002	0.0002	0.0002
Molybdenum, dissolved	mg/L	Report	0.00088	0.00082	0.00074	0.00078	0.00079
Nickel, dissolved	mg/L	0.05	0.008	0.008	0.008	0.008	0.008
Nitrate/Nitrite as N	mg/L	100	0.113	0.094	0.321	0.173	0.388
pH (lab)	s.u.	6-9	7.5	7.6	7.5	7.8	7.5
Phosphorus, total	mg/L	NA	0.01	0.01	0.01	0.01	0.01
Potassium, dissolved	mg/L	Report	0.52	0.52	0.77	0.5	0.55
Total Dissolved Solids	mg/L	400	110	160	154	112	112
Total Suspended Solids	mg/L	Report	5	5	5	5	5
Selenium, dissolved	mg/L	0.005	0.00038	0.00035	0.00023	0.00021	0.0003
Silica, dissolved	mg/L	Report	5.6	5	5.5	5.9	5.8
Silver, dissolved	mg/L	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
Sodium, dissolved	mg/L	Report	1.92	2.25	2.08	1.99	1.99
Sulfate	mg/L	250	52.1	80.3	70.3	49	46.4
Thallium, dissolved	mg/L	Report	0.0001	0.0001	0.0001	0.0001	0.0001
Total Alkalinity	mg/L	Report	26.4	29.2	29.3	28	29.1
Uranium, dissolved	mg/L	Report	0.0001	0.0001	0.0001	0.0001	0.0001
Vanadium, dissolved	mg/L	0.1	0.01	0.01	0.01	0.01	0.01
Zinc, dissolved	mg/L	5	0.276	0.356	0.324	0.259	0.275
pH (field)	s.u.		7.17	7.87	8.46	6.34	6.81
Water Temperature (field)	deg. C		3.7	1.3	5.5	5.9	4.7
ORP (field)	mV		250	228	246	365.6	188.4
Conductivity (field)	μS/cm		1	14	319	174.1	198.4
Disolved Oxygen (field)	%				50.4	60.2	47.6

Attachment B Summary of Groundwater Data for Past 5 Quarters GW-3B

Attachment B Summary of Grou			2020 Q4	2021 Q1	2021 Q2	2021 Q3	2021 Q4
Analyte	Units	GW Std	(11/12/2020)	(3/25/2021)	(6/17/2021)	(9/15/2021)	(10/28/2021)
Aluminum, dissolved	mg/L	5	0.05		0.05	0.05	0.05
Antimony, dissolved	mg/L	Report	0.00079		0.0007	0.0004	0.0004
Arsenic, dissolved	mg/L	0.1	0.00038		0.00031	0.0002	0.0002
Barium, dissolved	mg/L	Report	0.051		0.047	0.0469	0.05
Beryllium, dissolved	mg/L	0.1	0.00008		0.00008	0.00008	0.00008
Bicarbonate as CaCO3	mg/L	Report	25.9		30.1	30.3	31.5
Boron, dissolved	mg/L	0.75	0.02		0.03	0.03	0.03
Cadmium, dissolved	mg/L	0.001	0.000082		0.000082	0.00005	0.00005
Calcium, dissolved	mg/L	Report	27		31.5	32.6	35.2
Carbonate as CaCO3	mg/L	Report	2		2	2	2
Chloride	mg/L	250	0.5		0.5	0.73	0.74
Chromium, dissolved	mg/L	0.1	0.0005		0.0005	0.0005	0.0005
Conductivity @25C	μS/cm	Report	194		198	216	210
Copper, dissolved	mg/L	0.009	0.0008		0.0008	0.0008	0.0008
Cyanide, total	mg/L	0.005	0.003		0.003	0.003	0.003
Fluoride	mg/L	2	0.19		0.2	0.16	0.16
Hardness as CaCO3 (dissolved)	mg/L	Report	84		87	92	99
Hydroxide as CaCO3	mg/L	Report	2		2	2	2
Iron, dissolved	mg/L	1	0.06		0.06	0.06	0.06
Lead, dissolved	mg/L	0.044	0.00021		0.00348	0.0001	0.0001
Magnesium, dissolved	mg/L	Report	2.06		2.12	2.5	2.65
Manganese, dissolved	mg/L	1.672	0.01		0.013	0.01	0.01
Mercury, dissolved	mg/L	0.01	0.0002		0.0002	0.0002	0.0002
Molybdenum, dissolved	mg/L	Report	0.00072		0.00062	0.00033	0.00032
Nickel, dissolved	mg/L	0.05	0.008		0.008	0.008	0.008
Nitrate/Nitrite as N	mg/L	100	0.192		0.404	0.199	0.141
pH (lab)	s.u.	6-9	7.5		7.5	7.9	7.6
Phosphorus, total	mg/L	NA	0.01		0.01	0.01	0.01
Potassium, dissolved	mg/L	Report	0.51		0.75	0.48	0.59
Total Dissolved Solids	mg/L	400	126		128	136	142
Total Suspended Solids	mg/L	Report	5		5	5	5
Selenium, dissolved	mg/L	0.005	0.00042		0.00027	0.00022	0.00022
Silica, dissolved	mg/L	Report	5.5		5.3	6.3	7
Silver, dissolved	mg/L	0.0001	0.0001		0.0001	0.0001	0.0001
Sodium, dissolved	mg/L	Report	2.38		2.21	2.13	2.24
Sulfate	mg/L	250	61		60.7	66	58.4
Thallium, dissolved	mg/L	Report	0.0001		0.0001	0.0001	0.0001
Total Alkalinity	mg/L	Report	25.9		30.1	30.3	31.5
Uranium, dissolved	mg/L	Report	0.0001		0.0001	0.0001	0.0001
Vanadium, dissolved	mg/L	0.1	0.01		0.01	0.01	0.01
Zinc, dissolved	mg/L	5	0.098		0.125	0.02	0.02
pH (field)	s.u.	0.713	7.01		8.49	6.63	6.82
Water Temperature (field)	deg. C		6.91		8.9	5.6	4.8
ORP (field)	mV		240		249	442.8	130.4
Conductivity (field)	μS/cm		101		211	208.3	212.4
Disolved Oxygen (field) *GW-3B not sampled Q1 of 2021	%				53.1	44.3	31.9

*GW-3B not sampled Q1 of 2021 due to unsafe conditions - avalanche danger

Attachment B Summary of Groundwater Data for Past 5 Quarters GW-3R

Attachment B Summary of Grou						2021 Q2		
			2020 Q4	2021 Q1	2021 Q2	Resample	2021 Q3	2021 Q4
Analyte	Units	GW Std	(11/12/2020)	(3/25/2021)	(6/17/2021)	(7/20/2021)	(9/15/2021)	(10/28/2021)
Aluminum, dissolved	mg/L	5	0.05	0.05	0.05	0.05	0.05	0.05
Antimony, dissolved	mg/L	Report	0.00101	0.0008	0.00291	0.00103	0.00108	0.00103
Arsenic, dissolved	mg/L	0.1	0.00064	0.0005	0.00478	0.00043	0.00052	0.00051
Barium, dissolved	mg/L	Report	0.0392	0.0419	0.0446	0.0309	0.0357	0.0368
Beryllium, dissolved	mg/L	0.1	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008
Bicarbonate as CaCO3	mg/L	Report	41	23.7	34.2	30.5	33.8	27
Boron, dissolved	mg/L	0.75	0.02	0.03	0.03	0.03	0.03	0.03
Cadmium, dissolved	mg/L	0.001	0.00026	0.000402	0.000481	0.000226	0.000268	0.000309
Calcium, dissolved	mg/L	Report	33	38.9	28.1	28.1	33.8	35.1
Carbonate as CaCO3	mg/L	Report	2	2	2	2	2	2
Chloride	mg/L	250	0.5	0.9	0.92	0.5	0.61	0.67
Chromium, dissolved	mg/L	0.1	0.0005	0.0005	0.00843	0.0005	0.0005	0.0005
Conductivity @25C	μS/cm	Report	205	251	184	181	219	225
Copper, dissolved	mg/L	0.009	0.0009	0.0008	0.0139	0.0008	0.0008	0.0008
Cyanide, total	mg/L	0.005	0.003	0.003	0.003	0.003	0.003	0.003
Fluoride	mg/L	2	0.14	0.15	0.16	0.21	0.15	0.15
Hardness as CaCO3 (dissolved)	mg/L	Report	90	106	77	77	28	96
Hydroxide as CaCO3	mg/L	Report	2	2	2	2	2	2
Iron, dissolved	mg/L	1	0.06	0.06	0.535	0.06	0.06	0.06
Lead, dissolved	mg/L	0.044	0.00013	0.146	0.146	0.0001	0.0001	0.0001
Magnesium, dissolved	mg/L	Report	1.89	2.14	1.54	1.61	1.92	2
Manganese, dissolved	mg/L	1.672	0.01	0.01	0.247	0.01	0.01	0.01
Mercury, dissolved	mg/L	0.01	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
Molybdenum, dissolved	mg/L	Report	0.00071	0.00057	0.0016	0.00074	0.00079	0.00071
Nickel, dissolved	mg/L	0.05	0.008	0.008	0.008	0.008	0.008	0.008
Nitrate/Nitrite as N	mg/L	100	0.242	0.165	0.417	0.266	0.289	0.339
pH (lab)	s.u.	6-9	7.5	7.3	7.5	7.8	7.8	7.5
Phosphorus, total	mg/L	NA	0.01	0.01	0.207	0.01	0.01	0.01
Potassium, dissolved	mg/L	Report	0.46	0.33	1.75	0.52	0.42	0.45
Total Dissolved Solids	mg/L	400	134	162	116	108	138	132
Total Suspended Solids	mg/L	Report	5	5	21	5	5	5
Selenium, dissolved	mg/L	0.005	0.00026	0.00035	0.00015	0.00016	0.00014	0.00019
Silica, dissolved	mg/L	Report	4.7	5.5	7.5	4.8	5.1	5
Silver, dissolved	mg/L	0.0001	0.0001	0.0001	0.00019	0.0001	0.0001	0.0001
Sodium, dissolved	mg/L	Report	2.63	2.41	3.42	2.92	2.81	2.68
Sulfate	mg/L	250	68.7	81.7	46.4	46.8	66.6	68.2
Thallium, dissolved	mg/L	Report	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
Total Alkalinity	mg/L	Report	41	23.7	34.2	30.5	28	27
Uranium, dissolved	mg/L	Report	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
Vanadium, dissolved	mg/L	0.1	0.01	0.01	0.01	0.01	0.01	0.01
Zinc, dissolved	mg/L	5	0.161	0.225	0.195	0.138	0.156	0.168
pH (field)	s.u.	0.713	7.48	7.55	8.75	7.7	6.56	6.81
Water Temperature (field)	deg. C	1	3.9	0.2	6.9	9.3	6	4.6
ORP (field)	mV	1	233	216	344	255	374.9	184.8
Conductivity (field)	μS/cm		30	1	351	179.2	212.8	239.5
Disolved Oxygen (field)	%		6.7		63.1	78.2	59.5	48.8

Sample	Collection	Analyte	Result	Lab	Units	MDL	PQL
Location	Date			Qualifier			~
SW-0		Sum of Cations	0.401		meq/L		
SW-0		Lead, dissolved	0.00011		mg/L	0.0001	0.0005
SW-0		Magnesium, dissolved	0.49		mg/L	0.2	1
SW-0		Sodium, dissolved	0.67	В	mg/L	0.2	1
SW-0		Calcium, dissolved	6.61		mg/L	0.1	0.5
SW-0		TDS (ratio - measured/calculated)					
SW-0		Zinc, dissolved	0.022	В	mg/L	0.02	0.05
SW-0		Aluminum, total recoverable	0.0588		mg/L	0.005	0.015
SW-0	12/9/2020	Sulfate	1.3	В	mg/L	1	5
SW-0	12/9/2020	Iron, total recoverable	0.0676		mg/L	0.007	0.02
SW-0	12/9/2020	Cation-Anion Balance			%		
SW-0	12/9/2020	Hardness as CaCO3 (dissolved)	19		mg/L	0.2	5
SW-0	12/9/2020	TDS (calculated)	9.09		mg/L		
SW-0	12/9/2020	Carbon, dissolved organic (DOC)		U	mg/L	1	5
SW-0	12/9/2020	Aluminum, dissolved		U	mg/L	0.005	0.015
SW-0	12/9/2020	Arsenic, dissolved		U	mg/L	0.0002	0.001
SW-0	12/9/2020	Arsenic, total recoverable		U	mg/L	0.0002	0.001
SW-0	12/9/2020	Cadmium, dissolved		U	mg/L	0.00005	0.0003
SW-0	12/9/2020	Copper, dissolved		U	mg/L	0.0008	0.002
SW-0	12/9/2020	Iron, dissolved		U	mg/L	0.007	0.02
SW-0	12/9/2020	Manganese, dissolved		U	mg/L	0.01	0.05
SW-0		Mercury, total (low level)		U	ng/L	0.3	1
SW-0		Potassium, dissolved		U	mg/L	0.2	1
SW-0		Bicarbonate as CaCO3		U	mg/L	2	20
SW-0		Carbonate as CaCO3		U	mg/L	2	20
SW-0	12/9/2020			U	mg/L	0.5	2
SW-0	12/9/2020			U	mg/L	0.11	0.35
SW-0		Hydroxide as CaCO3		U	mg/L	2	
SW-0		, Nitrate/Nitrite as N		U	mg/L	0.02	0.1
SW-0		Residue, Filterable (TDS) @180C		U	mg/L	20	
SW-0		Residue, Non-Filterable (TSS) @105C		U	mg/L	5	20
SW-0	12/9/2020	Sum of Anions		U	meq/L		
SW-0		Total Alkalinity		U	mg/L	2	20
SW-0		Silver, dissolved		U	mg/L	0.0001	0.0005
SW-15		Nitrate/Nitrite as N	0.067		mg/L	0.02	0.1
SW-15		Aluminum, total recoverable	0.0073		mg/L	0.005	0.015
SW-15		Arsenic, dissolved	0.00075		mg/L	0.0002	0.001
SW-15		Arsenic, total recoverable	0.00087		mg/L	0.0002	0.001
SW-15		Cadmium, dissolved	0.000069		mg/L	0.00005	0.0003
SW-15		Mercury, total (low level)	0.3		ng/L	0.00003	1
SW-15		Potassium, dissolved	0.35		mg/L	0.3	1

Table U-11 Q3 2020 Surface Water Sampling Results

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-15	12/2/2020	Zinc, dissolved	0.033	В	mg/L	0.02	0.05
SW-15	12/2/2020	Fluoride	0.22	В	mg/L	0.11	0.35
SW-15	12/2/2020	Hardness as CaCO3 (dissolved)	99		mg/L	0.2	5
SW-15	12/2/2020	Cation-Anion Balance	-2.3		%		
SW-15	12/2/2020	Bicarbonate as CaCO3	37.4		mg/L	2	20
SW-15	12/2/2020	Sodium, dissolved	2.8		mg/L	0.2	1
SW-15	12/2/2020	Magnesium, dissolved	2.68		mg/L	0.2	1
SW-15	12/2/2020	Calcium, dissolved	35.1		mg/L	0.1	0.5
SW-15	12/2/2020	Sum of Anions	2.2		meq/L		
SW-15	12/2/2020	Residue, Filterable (TDS) @180C	154		mg/L	20	40
SW-15	12/2/2020	Sulfate	67.6		mg/L	5	25
SW-15	12/2/2020	Total Alkalinity	37.4		mg/L	2	20
SW-15	12/2/2020	TDS (ratio - measured/calculated)	1.17				
SW-15	12/2/2020	TDS (calculated)	132		mg/L		
SW-15	12/2/2020	Sum of Cations	2.1		meq/L		
SW-15	12/2/2020	Carbon, dissolved organic (DOC)		U	mg/L	1	5
SW-15	12/2/2020	Hydroxide as CaCO3		U	mg/L	2	20
SW-15	12/2/2020	Aluminum, dissolved		U	mg/L	0.005	0.015
SW-15	12/2/2020	Copper, dissolved		U	mg/L	0.0008	0.002
SW-15	12/2/2020	Iron, dissolved		U	mg/L	0.007	0.02
SW-15	12/2/2020	Iron, total recoverable		U	mg/L	0.007	0.02
SW-15	12/2/2020	Lead, dissolved		U	mg/L	0.0001	0.0005
SW-15	12/2/2020	Manganese, dissolved		U	mg/L	0.01	0.05
SW-15	12/2/2020	Carbonate as CaCO3		U	mg/L	2	20
SW-15	12/2/2020	Residue, Non-Filterable (TSS) @105C		U	mg/L	5	20
SW-15	12/2/2020	Chloride		U	mg/L	0.5	2
SW-15	12/2/2020	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-15	12/2/2020	Water Temperature (field)	-0.5		С		
SW-15	12/2/2020	Specific Conductance (field)	-17		uS/cm		
SW-15	12/2/2020	pH (field)	8.01		units	0.1	0.1
SW-15	12/2/2020	ORP (field) (field)	343		mV		
SW-15	12/2/2020	Flow	0.276		CFS		
SW-15		Dissolved Oxygen (field)		N	%		
SW-16	12/2/2020	Arsenic, dissolved	0.00094	В	mg/L	0.0002	0.001
SW-16	12/2/2020	Cadmium, dissolved	0.000079	В	mg/L	0.00005	0.0003
SW-16	12/2/2020	Copper, dissolved	0.00108	В	mg/L	0.0008	0.002
SW-16	12/2/2020	Lead, dissolved	0.00014	В	mg/L	0.0001	0.0005
SW-16	12/2/2020	Mercury, total (low level)	0.84	В	ng/L	0.3	1
SW-16	12/2/2020	Zinc, dissolved	0.042	В	mg/L	0.04	0.1
SW-16		Carbon, dissolved organic (DOC)	2.2	В	mg/L	1	5
SW-16		Residue, Non-Filterable (TSS) @105C	9	В	mg/L	5	20

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-16	12/2/2020	Fluoride	0.22	В	mg/L	0.11	0.35
SW-16	12/2/2020	Sodium, dissolved	2.89		mg/L	0.4	2
SW-16	12/2/2020	Sum of Anions	2.2		meq/L		
SW-16	12/2/2020	Sum of Cations	2.1		meq/L		
SW-16	12/2/2020	TDS (calculated)	132		mg/L		
SW-16	12/2/2020	Residue, Filterable (TDS) @180C	156		mg/L	20	40
SW-16	12/2/2020	Total Alkalinity	37.8		mg/L	2	20
SW-16	12/2/2020	Hardness as CaCO3 (dissolved)	96		mg/L	0.5	10
SW-16	12/2/2020	Bicarbonate as CaCO3	37.8		mg/L	2	20
SW-16	12/2/2020	Magnesium, dissolved	2.55		mg/L	0.4	2
SW-16	12/2/2020	Iron, total recoverable	0.0765		mg/L	0.007	0.02
SW-16	12/2/2020	Calcium, dissolved	34.4		mg/L	0.2	1
SW-16	12/2/2020	Arsenic, total recoverable	0.00149		mg/L	0.0002	0.001
SW-16	12/2/2020	Aluminum, total recoverable	0.0641		mg/L	0.005	0.015
SW-16	12/2/2020	Cation-Anion Balance	-2.3		%		
SW-16	12/2/2020	Sulfate	68.7		mg/L	5	25
SW-16	12/2/2020	TDS (ratio - measured/calculated)	1.18				
SW-16	12/2/2020	Specific Conductance (field)	22		uS/cm		
SW-16	12/2/2020	Water Temperature (field)	-1		С		
SW-16	12/2/2020	pH (field)	8.25		units	0.1	0.1
SW-16	12/2/2020	ORP (field) (field)	173		mV		
SW-16	12/2/2020	Flow	0.84		CFS		
SW-16		Dissolved Oxygen (field)	54		%		
SW-16	12/2/2020	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-16	12/2/2020	Aluminum, dissolved		U	mg/L	0.005	0.015
SW-16	12/2/2020	Iron, dissolved		U	mg/L	0.007	0.02
SW-16	12/2/2020	Potassium, dissolved		U	mg/L	0.4	2
SW-16	12/2/2020	Carbonate as CaCO3		U	mg/L	2	20
SW-16	12/2/2020	Chloride		U	mg/L	0.5	2
SW-16	12/2/2020	Hydroxide as CaCO3		U	mg/L	2	20
SW-16	12/2/2020	Nitrate/Nitrite as N		U	mg/L	0.02	0.1
SW-17	12/2/2020	Sodium, dissolved	5.95		mg/L	0.2	1
SW-17	12/2/2020	Sulfate	89.5		mg/L	5	25
SW-17	12/2/2020	Residue, Filterable (TDS) @180C	204		mg/L	20	40
SW-17	12/2/2020	Hardness as CaCO3 (dissolved)	125		mg/L	0.2	5
SW-17	12/2/2020	Fluoride	0.68		mg/L	0.11	0.35
SW-17	12/2/2020	Chloride	6.72		mg/L	0.5	2
SW-17	12/2/2020	Sum of Cations	2.8		meq/L		
SW-17		Bicarbonate as CaCO3	50		mg/L	2	20
SW-17		TDS (calculated)	182		mg/L		
SW-17		Silver, dissolved	0.00122		mg/L	0.0001	0.0005
SW-17		Magnesium, dissolved	1.98		mg/L	0.2	1
SW-17		Iron, total recoverable	0.0486		mg/L	0.007	0.02

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-17	12/2/2020	Calcium, dissolved	46.9		mg/L	0.1	0.5
SW-17		Arsenic, total recoverable	0.0029		mg/L	0.0002	0.001
SW-17		Arsenic, dissolved	0.00258		mg/L	0.0002	0.001
SW-17		Aluminum, total recoverable	0.052		mg/L	0.005	0.015
SW-17		Cation-Anion Balance	-5.1		%		
SW-17		Sum of Anions	3.1		meq/L		
SW-17		Mercury, total (low level)	0.56	В	ng/L	0.3	1
SW-17		Total Alkalinity	50		mg/L	2	20
SW-17	12/2/2020	TDS (ratio - measured/calculated)	1.12				
SW-17	12/2/2020	Nitrate/Nitrite as N	0.042	В	mg/L	0.02	0.1
SW-17	12/2/2020	Copper, dissolved	0.001	В	mg/L	0.0008	0.002
SW-17	12/2/2020	Carbon, dissolved organic (DOC)	2.1	В	mg/L	1	5
SW-17	12/2/2020	Hydroxide as CaCO3		U	mg/L	2	20
SW-17	12/2/2020	Aluminum, dissolved		U	mg/L	0.005	0.015
SW-17	12/2/2020	Cadmium, dissolved		U	mg/L	0.00005	0.0003
SW-17	12/2/2020	Iron, dissolved		U	mg/L	0.007	0.02
SW-17	12/2/2020	Lead, dissolved		U	mg/L	0.0001	0.0005
SW-17	12/2/2020	Manganese, dissolved		U	mg/L	0.01	0.05
SW-17	12/2/2020	Potassium, dissolved		U	mg/L	0.2	1
SW-17	12/2/2020	Carbonate as CaCO3		U	mg/L	2	20
SW-17	12/2/2020	Residue, Non-Filterable (TSS) @105C		U	mg/L	5	20
SW-17	12/2/2020	Zinc, dissolved		U	mg/L	0.02	0.05
SW-17	12/2/2020	Specific Conductance (field)	5		uS/cm		
SW-17	12/2/2020	pH (field)	7.88		units	0.1	0.1
SW-17	12/2/2020	pH (field)	7.88		units	0.1	0.1
SW-17	12/2/2020	ORP (field) (field)	174		mV		
SW-17	12/2/2020	ORP (field) (field)	174		mV		
SW-17	12/2/2020	Flow		Ν	CFS		
SW-17	12/2/2020	Flow	8.59		CFS		
SW-17	12/2/2020	Dissolved Oxygen (field)	99		%		
SW-17	12/2/2020	Water Temperature (field)	3.8		С		
SW-17	12/2/2020	Water Temperature (field)	3.8		С		
SW-17	12/2/2020	Dissolved Oxygen (field)		Ν	%		
SW-17	12/2/2020	Specific Conductance (field)	5		uS/cm		
SW-2	12/2/2020	Arsenic, dissolved	0.00032	В	mg/L	0.0002	0.001
SW-2	12/2/2020	Arsenic, total recoverable	0.0004	В	mg/L	0.0002	0.001
SW-2	12/2/2020	Cadmium, dissolved	0.000206	В	mg/L	0.00005	0.0003
SW-2	12/2/2020	Lead, dissolved	0.00013	В	mg/L	0.0001	0.0005
SW-2	12/2/2020	Potassium, dissolved	0.33	В	mg/L	0.2	1
SW-2	12/2/2020	Carbon, dissolved organic (DOC)	4.3	В	mg/L	1	5
SW-2	12/2/2020	Nitrate/Nitrite as N	0.083	В	mg/L	0.02	0.1
SW-2	12/2/2020	Fluoride	0.25	В	mg/L	0.11	0.35

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-2	12/2/2020	Cation-Anion Balance	0		%		
SW-2	12/2/2020	Bicarbonate as CaCO3	33.8		mg/L	2	20
SW-2	12/2/2020	Zinc, dissolved	0.146		mg/L	0.02	0.05
SW-2	12/2/2020	Sodium, dissolved	2.15		mg/L	0.2	1
SW-2	12/2/2020	Magnesium, dissolved	2.37		mg/L	0.2	1
SW-2	12/2/2020	Calcium, dissolved	31.3		mg/L	0.1	0.5
SW-2	12/2/2020	TDS (calculated)	117		mg/L		
SW-2	12/2/2020	TDS (ratio - measured/calculated)	1.15				
SW-2	12/2/2020	Sum of Cations	1.9		meq/L		
SW-2	12/2/2020	Sum of Anions	1.9		meq/L		
SW-2	12/2/2020	Sulfate	59.6		mg/L	5	25
SW-2	12/2/2020	Residue, Filterable (TDS) @180C	134		mg/L	20	40
SW-2	12/2/2020	Hardness as CaCO3 (dissolved)	88		mg/L	0.2	5
SW-2	12/2/2020	Total Alkalinity	33.8		mg/L	2	20
SW-2	12/2/2020	Hydroxide as CaCO3		U	mg/L	2	20
SW-2	12/2/2020	Residue, Non-Filterable (TSS) @105C		U	mg/L	5	20
SW-2	12/2/2020	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-2	12/2/2020	Chloride		U	mg/L	0.5	2
SW-2		Carbonate as CaCO3		U	mg/L	2	20
SW-2	12/2/2020	Aluminum, dissolved		U	mg/L	0.005	0.015
SW-2	12/2/2020	Aluminum, total recoverable		U	mg/L	0.005	0.015
SW-2	12/2/2020	Copper, dissolved		U	mg/L	0.0008	0.002
SW-2	12/2/2020	Iron, dissolved		U	mg/L	0.007	0.02
SW-2	12/2/2020	Iron, total recoverable		U	mg/L	0.007	0.02
SW-2	12/2/2020	Manganese, dissolved		U	mg/L	0.01	0.05
SW-2	12/2/2020	Mercury, total (low level)		U	ng/L	0.3	1
SW-2	12/2/2020	Water Temperature (field)	1.1		С		
SW-2	12/2/2020	Specific Conductance (field)	7		uS/cm		
SW-2	12/2/2020	pH (field)	8.04		units	0.1	0.1
SW-2	12/2/2020	ORP (field) (field)	213		mV		
SW-2	12/2/2020	Flow	1.14		CFS		
SW-2	12/2/2020	Dissolved Oxygen (field)	100		%		
SW-21	12/9/2020	Hardness as CaCO3 (dissolved)	103		mg/L	0.2	5
SW-21	12/9/2020	Cation-Anion Balance	0		%		
SW-21	12/9/2020	Bicarbonate as CaCO3	37.3		mg/L	2	20
SW-21	12/9/2020	Zinc, dissolved	0.11		mg/L	0.02	0.05
SW-21	12/9/2020	Sodium, dissolved	3.54		mg/L	0.2	1
SW-21	12/9/2020	Magnesium, dissolved	2.53		mg/L	0.2	1
SW-21	12/9/2020	Iron, total recoverable	0.0219		mg/L	0.007	0.02
SW-21	12/9/2020	Aluminum, total recoverable	0.0185		mg/L	0.005	0.015
SW-21	12/9/2020	TDS (calculated)	136		mg/L		
SW-21	12/9/2020	Nitrate/Nitrite as N	0.235		mg/L	0.02	0.1

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
		Arconia total recoverable	0.00006	,	m a /l	0.0002	0.001
SW-21		Arsenic, total recoverable	0.00096		mg/L	0.0002	0.001
SW-21		Cadmium, dissolved	0.000236		mg/L	0.00005	0.0003
SW-21		Lead, dissolved	0.0002		mg/L	0.0001	0.0005
SW-21		Mercury, total (low level)			ng/L	0.3	1
SW-21		Potassium, dissolved	0.49		mg/L		1
SW-21	12/9/2020		0.24	В	mg/L	0.11	0.35
SW-21		Sum of Anions	2.2 69.6		meq/L	-	25
SW-21 SW-21	12/9/2020	Sum of Cations			mg/L	5	25
			2.2	D	meq/L	0.0002	0.001
SW-21		Arsenic, dissolved	0.00076	В	mg/L	0.0002	0.001
SW-21		TDS (ratio - measured/calculated)	1.16		ma m /1	20	40
SW-21		Residue, Filterable (TDS) @180C	158		mg/L	20	40
SW-21		Total Alkalinity	37.3		mg/L	2	20
SW-21		Calcium, dissolved	37.2		mg/L	0.1	0.5
SW-21		Iron, dissolved		U	mg/L	0.007	0.02
SW-21	12/9/2020		1	U	mg/L	0.5	2
SW-21		Specific Conductance (field)	-1		uS/cm	0.1	0.1
SW-21	12/9/2020		8.1		units	0.1	0.1
SW-21		ORP (field) (field)	230		mV		
SW-21	12/9/2020			N	CFS		
SW-21	12/9/2020	Dissolved Oxygen (field)		N	%		
SW-21	12/9/2020	Residue, Non-Filterable (TSS) @105C		U	mg/L	5	20
SW-21	12/9/2020	Hydroxide as CaCO3		U	mg/L	2	20
SW-21	12/9/2020	Aluminum, dissolved		U	mg/L	0.005	0.015
SW-21	12/9/2020	Copper, dissolved		U	mg/L	0.0008	0.002
SW-21	12/9/2020	Manganese, dissolved		U	mg/L	0.01	0.05
SW-21	12/9/2020	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-21	12/9/2020	Carbon, dissolved organic (DOC)		U	mg/L	1	5
SW-21	12/9/2020	Carbonate as CaCO3		U	mg/L	2	20
SW-21	12/9/2020	Water Temperature (field)	0.6		С		
SW-3	12/2/2020	Potassium, dissolved	0.4	В	mg/L	0.2	1
SW-3	12/2/2020	Carbon, dissolved organic (DOC)	2.1	В	mg/L	1	5
SW-3	12/2/2020	Chloride	0.53	В	mg/L	0.5	2
SW-3	12/2/2020	Fluoride	0.23	В	mg/L	0.11	0.35
SW-3	12/2/2020	Residue, Non-Filterable (TSS) @105C	9	В	mg/L	5	20
SW-3	12/2/2020	Arsenic, dissolved	0.00059	В	mg/L	0.0002	0.001
SW-3		Manganese, dissolved	0.018		mg/L	0.01	0.05
SW-3		Total Alkalinity	37.9		mg/L	2	20
SW-3		TDS (ratio - measured/calculated)	1.21		- 10 -		
SW-3		TDS (calculated)	152		mg/L		
SW-3		Sum of Cations	2.4		meq/L		

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-3	12/2/2020	Sum of Anions	2.5		meq/L		
SW-3	12/2/2020	Sulfate	81.1		mg/L	5	25
SW-3	12/2/2020	Residue, Filterable (TDS) @180C	184		mg/L	20	40
SW-3	12/2/2020	Cation-Anion Balance	-2		%		
SW-3	12/2/2020	Nitrate/Nitrite as N	0.423		mg/L	0.02	0.1
SW-3	12/2/2020	Cadmium, dissolved	0.000296		mg/L	0.00005	0.0003
SW-3	12/2/2020	Bicarbonate as CaCO3	37.9		mg/L	2	20
SW-3	12/2/2020	Zinc, dissolved	0.198		mg/L	0.02	0.05
SW-3	12/2/2020	Sodium, dissolved	3.47		mg/L	0.2	1
SW-3	12/2/2020	Mercury, total (low level)	40.6		ng/L	1.5	5
SW-3	12/2/2020	Magnesium, dissolved	2.04		mg/L	0.2	1
SW-3	12/2/2020	Lead, dissolved	0.00201		mg/L	0.0001	0.0005
SW-3	12/2/2020	Calcium, dissolved	40.9		mg/L	0.1	0.5
SW-3	12/2/2020	Arsenic, total recoverable	0.00393		mg/L	0.0002	0.001
SW-3	12/2/2020	Aluminum, total recoverable	0.726		mg/L	0.005	0.015
SW-3	12/2/2020	Hardness as CaCO3 (dissolved)	111		mg/L	0.2	5
SW-3	12/2/2020	Iron, total recoverable	0.584		mg/L	0.007	0.02
SW-3	12/2/2020	Flow	0.72		CFS		
SW-3	12/2/2020	Dissolved Oxygen (field)		N	%		
SW-3	12/2/2020	Aluminum, dissolved		U	mg/L	0.005	0.015
SW-3	12/2/2020	Copper, dissolved		U	mg/L	0.0008	0.002
SW-3	12/2/2020	Iron, dissolved		U	mg/L	0.007	0.02
SW-3	12/2/2020	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-3	12/2/2020	Carbonate as CaCO3		U	mg/L	2	20
SW-3	12/2/2020	Hydroxide as CaCO3		U	mg/L	2	20
SW-3	12/2/2020	Water Temperature (field)	-1.1		С		
SW-3	12/2/2020	Specific Conductance (field)	-84		uS/cm		
SW-3	12/2/2020	pH (field)	7.76		units	0.1	0.1
SW-3	12/2/2020	ORP (field) (field)	207		mV		
SW-4	12/9/2020	Lead, dissolved	0.00154		mg/L	0.0001	0.0005
SW-4	12/9/2020	Cadmium, dissolved	0.000528		mg/L	0.00005	0.0003
SW-4	12/9/2020	Aluminum, total recoverable	0.0223		mg/L	0.005	0.015
SW-4	12/9/2020	TDS (ratio - measured/calculated)	1.16				
SW-4	12/9/2020	TDS (calculated)	140		mg/L		
SW-4	12/9/2020	Calcium, dissolved	38.2		mg/L	0.1	0.5
SW-4	12/9/2020	Sum of Anions	2.2		meq/L		
SW-4	12/9/2020	Bicarbonate as CaCO3	30.3		mg/L	2	20
SW-4	12/9/2020	Cation-Anion Balance	2.2		%		
SW-4	12/9/2020	Fluoride	0.36		mg/L	0.11	0.35
SW-4	12/9/2020	Hardness as CaCO3 (dissolved)	106		mg/L	0.2	5
SW-4	12/9/2020	Nitrate/Nitrite as N	0.249		mg/L	0.02	0.1
SW-4	12/9/2020	Iron, total recoverable	0.0246		mg/L	0.007	0.02
SW-4	12/9/2020		76.4		mg/L	5	25

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-4	12/9/2020	Sum of Cations	2.3		meq/L		
SW-4		Sodium, dissolved	3.5		mg/L	0.2	1
SW-4	12/9/2020	Mercury, total (low level)	14.4		ng/L	0.3	1
SW-4		Magnesium, dissolved	2.61		mg/L	0.2	1
SW-4	12/9/2020	Zinc, dissolved	0.233		mg/L	0.02	0.05
SW-4	12/9/2020	Residue, Filterable (TDS) @180C	162		mg/L	20	40
SW-4	12/9/2020	Potassium, dissolved	0.53	В	mg/L	0.2	1
SW-4	12/9/2020	Manganese, dissolved	0.046	В	mg/L	0.01	0.05
SW-4	12/9/2020	Arsenic, total recoverable	0.0007	В	mg/L	0.0002	0.001
SW-4	12/9/2020	Arsenic, dissolved	0.00067	В	mg/L	0.0002	0.001
SW-4	12/9/2020	Total Alkalinity	30.3		mg/L	2	20
SW-4	12/9/2020	Dissolved Oxygen (field)		Ν	%		
SW-4	12/9/2020	Flow	2.44		CFS		
SW-4	12/9/2020	ORP (field) (field)	232		mV		
SW-4	12/9/2020	Water Temperature (field)	1.2		С		
SW-4	12/9/2020	pH (field)	7.28		units	0.1	0.1
SW-4	12/9/2020	Specific Conductance (field)	-40		uS/cm		
SW-4	12/9/2020	Chloride		U	mg/L	0.5	2
SW-4	12/9/2020	Aluminum, dissolved		U	mg/L	0.005	0.015
SW-4	12/9/2020	Copper, dissolved		U	mg/L	0.0008	0.002
SW-4	12/9/2020	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-4	12/9/2020	Carbonate as CaCO3		U	mg/L	2	20
SW-4	12/9/2020	Hydroxide as CaCO3		U	mg/L	2	20
SW-4	12/9/2020	Residue, Non-Filterable (TSS) @105C		U	mg/L	5	20
SW-4	12/9/2020	Iron, dissolved		U	mg/L	0.007	0.02
SW-4	12/9/2020	Carbon, dissolved organic (DOC)		U	mg/L	1	5
SW-99	12/2/2020	Arsenic, total recoverable	0.00087	В	mg/L	0.0002	0.001
SW-99	12/2/2020	Nitrate/Nitrite as N	0.066	В	mg/L	0.02	0.1
SW-99	12/2/2020	Arsenic, dissolved	0.00075	В	mg/L	0.0002	0.001
SW-99	12/2/2020	Cadmium, dissolved	0.000071	В	mg/L	0.00005	0.0003
SW-99	12/2/2020	Copper, dissolved	0.001	В	mg/L	0.0008	0.002
SW-99	12/2/2020	Iron, total recoverable	0.0073	В	mg/L	0.007	0.02
SW-99	12/2/2020	Potassium, dissolved	0.34	В	mg/L	0.2	1
SW-99	12/2/2020	Zinc, dissolved	0.034	В	mg/L	0.02	0.05
SW-99	12/2/2020	Carbon, dissolved organic (DOC)	2.9	В	mg/L	1	5
SW-99	12/2/2020	Aluminum, total recoverable	0.0076	В	mg/L	0.005	0.015
SW-99	12/2/2020	Fluoride	0.21	В	mg/L	0.11	0.35
SW-99	12/2/2020	Calcium, dissolved	34.5		mg/L	0.1	0.5
SW-99	12/2/2020	Sulfate	67.8		mg/L	5	25
SW-99	12/2/2020	Residue, Filterable (TDS) @180C	152		mg/L	20	40
SW-99	12/2/2020	Hardness as CaCO3 (dissolved)	97		mg/L	0.2	5
SW-99	12/2/2020	Cation-Anion Balance	-2.3		%		

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-99	12/2/2020	Bicarbonate as CaCO3	36		mg/L	2	20
SW-99	12/2/2020	Sum of Cations	2.1		meq/L		
SW-99	12/2/2020	Magnesium, dissolved	2.67		mg/L	0.2	1
SW-99	12/2/2020	TDS (calculated)	130		mg/L		
SW-99	12/2/2020	Sodium, dissolved	2.77		mg/L	0.2	1
SW-99	12/2/2020	Sum of Anions	2.2		meq/L		
SW-99	12/2/2020	Total Alkalinity	36		mg/L	2	20
SW-99	12/2/2020	TDS (ratio - measured/calculated)	1.17				
SW-99	12/2/2020	Aluminum, dissolved		U	mg/L	0.005	0.015
SW-99	12/2/2020	Lead, dissolved		U	mg/L	0.0001	0.0005
SW-99	12/2/2020	Iron, dissolved		U	mg/L	0.007	0.02
SW-99	12/2/2020	Manganese, dissolved		U	mg/L	0.01	0.05
SW-99	12/2/2020	Mercury, total (low level)		U	ng/L	0.3	1
SW-99	12/2/2020	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-99	12/2/2020	Carbonate as CaCO3		U	mg/L	2	20
SW-99	12/2/2020	Chloride		U	mg/L	0.5	2
SW-99	12/2/2020	Hydroxide as CaCO3		U	mg/L	2	20
SW-99	12/2/2020	Residue, Non-Filterable (TSS) @105C		U	mg/L	5	20

Lab qualifiers:

U - material was analyzed for but was not detected above the sample detection limit

B - Analyte concentrations detected at a value between the MDL and PQL. The associated value is estimated

L - Target analyte response was below the laboratory defined negative threhold

H - Analysis exceeded method hold time. pH is a field test with an immediate hold time

Sample	Collection	Analyte	Result	Lab	Units	MDL	PQL
Location	Date	-		Qualifier	4		
SW-22		Oil and Grease		U	mg/L	2.1	10.4
SW-22	2/22/2021			Ν	CFS		
SW-22		ORP (field) (field)	243		mV		
SW-22		Dissolved Oxygen (field)		N	%		
SW-22		Water Temperature (field)	1.3		С		
SW-22	2/22/2021	Specific Conductance (field)		Ν	uS/cm		
SW-22	2/22/2021	pH (field)	7.61		units	0.1	0.1
SW-22	2/15/2021	Bromofluorobenzene	113.1		%	70	130
SW-22	2/15/2021	Benzene		U	ug/L	1	1
SW-22	2/15/2021	Bromofluorobenzene (TVH)	112.7		%	70	130
SW-22	2/15/2021	Ethylbenzene		U	ug/L	1	1
SW-22	2/15/2021	TVH C6 to C10		U	mg/L	0.05	0.05
SW-22	2/15/2021	Bromofluorobenzene	99.9		%	70	130
SW-22	2/15/2021	Methyl Tert Butyl Ether		U	ug/L	4	4
SW-22	2/15/2021	m p Xylene		U	ug/L	2	2
SW-22	2/15/2021	o Xylene		U	ug/L	1	1
SW-22	2/15/2021	Dibromofluoromethane	99.3		%	70	130
SW-22	2/15/2021	ОТР	80.51		%	70	130
SW-22	2/15/2021	Toluene		U	ug/L	1	1
SW-22	2/15/2021	Toluene-d8	98.2		%	70	130
SW-22	2/15/2021	TPH C10 to C28	0.3	J	mg/L	0.24	0.48
SW-22	2/15/2021	Water Temperature (field)	0.9		С		
SW-22	2/15/2021	Specific Conductance (field)		N	uS/cm		
SW-22	2/15/2021	pH (field)		N	units	0.1	0.1
SW-22	2/15/2021	ORP (field) (field)	232		mV		
SW-22	2/15/2021	Dissolved Oxygen (field)		N	%		
SW-22	2/15/2021			N	CFS		

Table U-11 Q1 2021 Surface Water Quality Sampling

Lab qualifiers:

U - material was analyzed for but was not detected above the sample detection limit

B - Analyte concentrations detected at a value between the MDL and PQL. The associated value is estimated

L - Target analyte response was below the laboratory defined negative threhold

H - Analysis exceeded method hold time. pH is a field test with an immediate hold time

Q12021 sampling was performed to check for organics in the stream, which is why only downstream sampling was performed

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-0		Cation-Anion Balance		Quanner	%		
SW-0		TDS (calculated)			∞ mg/L		
SW-0		TDS (ratio - measured/calculated)			iiig/∟		
SW-0		Mercury, total (low level)	0.36	D	ng/L	0.3	1
SW-0		Aluminum, dissolved	0.50	D U	mg/L	0.005	0.015
SW-0		Aluminum, total recoverable		U	mg/L	0.005	0.015
SW-0		Arsenic, dissolved		U		0.0002	0.013
SW-0		Arsenic, total recoverable		U	mg/L	0.0002	0.001
SW-0		Cadmium, dissolved		U	mg/L	0.00002	0.0001
SW-0		Calcium, dissolved		U	mg/L		0.00023
SW-0 SW-0				U	mg/L	0.1 0.0008	0.002
		Copper, dissolved		U	mg/L		
SW-0		Iron, dissolved			mg/L	0.007	0.02
SW-0		Iron, total recoverable		U	mg/L	0.007	0.02 0.0005
SW-0		Lead, dissolved		U	mg/L	0.0001	0.0005
SW-0		Magnesium, dissolved		U	mg/L	0.2	1
SW-0		Manganese, dissolved		U	mg/L	0.01	0.05
SW-0		Potassium, dissolved		U	mg/L	0.2	1
SW-0		Silver, dissolved		U	mg/L	0.0001	0.0005
SW-0		Sodium, dissolved		U	mg/L	0.2	1
SW-0		Zinc, dissolved		U	mg/L	0.02	0.05
SW-0		Bicarbonate as CaCO3		U	mg/L	2	20
SW-0		Carbon, dissolved organic (DOC)		U	mg/L	1	5
SW-0		Carbonate as CaCO3		U	mg/L	2	20
SW-0	5/26/2021			U	mg/L	0.5	2
SW-0	5/26/2021			U	mg/L	0.15	0.35
SW-0		Hardness as CaCO3 (dissolved)		U	mg/L	0.2	5
SW-0		Hydroxide as CaCO3		U	mg/L	2	20
SW-0		Nitrate/Nitrite as N			mg/L	0.02	0.1
SW-0	5/26/2021	Residue, Filterable (TDS) @180C		U	mg/L	20	40
SW-0	5/26/2021	Residue, Non-Filterable (TSS) @105C		U	mg/L	5	20
SW-0	5/26/2021	Sulfate		U	mg/L	1	5
SW-0	5/26/2021	Sum of Anions		U	meq/L		
SW-0	5/26/2021	Sum of Cations		U	meq/L		
SW-0	5/26/2021	Total Alkalinity		U	mg/L	2	20
SW-0	5/25/2021	Dissolved Oxygen (field)		N	%		
SW-0	5/25/2021	Flow		N	CFS		
SW-0		ORP (field) (field)		N	mV		
SW-0	5/25/2021		5.7		units	0.1	0.1
SW-0		Specific Conductance (field)		N	uS/cm		
SW-0		Water Temperature (field)		N	Ċ		
SW-1		Aluminum, dissolved	0.0308		mg/L	0.005	0.015

Table U-11 Q2a 2021 Surface Water Sampling Results - Event #1

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-1	5/26/2021	Aluminum, total recoverable	0.183		mg/L	0.005	0.015
SW-1	5/26/2021	Arsenic, total recoverable	0.0018		mg/L	0.0002	0.001
SW-1	5/26/2021	Cadmium, dissolved	0.0022		mg/L	0.00005	0.00025
SW-1	5/26/2021	Calcium, dissolved	19.5		mg/L	0.1	0.5
SW-1	5/26/2021	Iron, total recoverable	0.143		mg/L	0.007	0.02
SW-1	5/26/2021	Lead, dissolved	0.00214		mg/L	0.0001	0.0005
SW-1	5/26/2021	Magnesium, dissolved	1.15		mg/L	0.2	1
SW-1	5/26/2021	Manganese, dissolved	0.189		mg/L	0.01	0.05
SW-1	5/26/2021	Sodium, dissolved	1.04		mg/L	0.2	1
SW-1	5/26/2021	Zinc, dissolved	0.693		mg/L	0.02	0.05
SW-1	5/26/2021	Bicarbonate as CaCO3	21.4		mg/L	2	20
SW-1	5/26/2021	Cation-Anion Balance	-4		%		
SW-1	5/26/2021	Hardness as CaCO3 (dissolved)	53		mg/L	0.2	5
SW-1	5/26/2021	Nitrate/Nitrite as N	0.324		mg/L	0.02	0.1
SW-1	5/26/2021	Sulfate	37.7		mg/L	1	5
SW-1	5/26/2021	Sum of Anions	1.3		meq/L		
SW-1	5/26/2021	Sum of Cations	1.2		meq/L		
SW-1	5/26/2021	TDS (calculated)	74.3		mg/L		
SW-1	5/26/2021	TDS (ratio - measured/calculated)	1.05				
SW-1	5/26/2021	Total Alkalinity	21.4		mg/L	2	20
SW-1	5/26/2021	Mercury, total (low level)	1.69		ng/L	0.3	1
SW-1	5/26/2021	Arsenic, dissolved	0.00088	В	mg/L	0.0002	0.001
SW-1	5/26/2021	Copper, dissolved	0.00134	В	mg/L	0.0008	0.002
SW-1	5/26/2021	Iron, dissolved	0.0103	В	mg/L	0.007	0.02
SW-1	5/26/2021	Carbon, dissolved organic (DOC)	1.1	В	mg/L	1	5
SW-1	5/26/2021	Chloride	0.74	В	mg/L	0.5	2
SW-1	5/26/2021	Fluoride	0.18	В	mg/L	0.15	0.35
SW-1		Residue, Filterable (TDS) @180C	78	Н	mg/L	20	40
SW-1		Potassium, dissolved		U	mg/L	0.2	1
SW-1	5/26/2021	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-1	5/26/2021	Carbonate as CaCO3		U	mg/L	2	20
SW-1	5/26/2021	Hydroxide as CaCO3		U	mg/L	2	20
SW-1	5/26/2021	Residue, Non-Filterable (TSS) @105C		U	mg/L	5	20
SW-1	5/26/2021	Dissolved Oxygen (field)	10.47		%		
SW-1	5/26/2021		5.73		CFS		
SW-1		ORP (field) (field)	185		mV		
SW-1	5/26/2021		8.28		units	0.1	0.1
SW-1		Specific Conductance (field)	286		uS/cm		
SW-1		Water Temperature (field)	6.9		C		
SW-15		Aluminum, total recoverable	0.13		mg/L	0.005	0.015
SW-15		Arsenic, total recoverable	0.00177		mg/L	0.0002	0.001
SW-15		Calcium, dissolved	15.7		mg/L	0.1	0.5

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-15	5/27/2021	Iron, total recoverable	0.136		mg/L	0.007	0.02
SW-15	5/27/2021	Magnesium, dissolved	1.41		mg/L	0.2	1
SW-15	5/27/2021	Mercury, total (low level)	1.59		ng/L	0.3	1
SW-15	5/27/2021	Sodium, dissolved	1.31		mg/L	0.2	1
SW-15	5/27/2021	Bicarbonate as CaCO3	23.9		mg/L	2	20
SW-15	5/27/2021	Cation-Anion Balance	-0.2		%		
SW-15	5/27/2021	Hardness as CaCO3 (dissolved)	45		mg/L	0.2	5
SW-15	5/27/2021	Nitrate/Nitrite as N	0.166		mg/L	0.02	0.1
SW-15	5/27/2021	Residue, Filterable (TDS) @180C	72		mg/L	20	40
SW-15	5/27/2021	Sulfate	22.8		mg/L	1	5
SW-15	5/27/2021	Sum of Anions	0.975		meq/L		
SW-15	5/27/2021	Sum of Cations	0.972		meq/L		
SW-15	5/27/2021	TDS (calculated)	56.9		mg/L		
SW-15	5/27/2021	TDS (ratio - measured/calculated)	1.27				
SW-15	5/27/2021	Total Alkalinity	23.9		mg/L	2	20
SW-15	5/27/2021	Aluminum, dissolved	0.0139	В	mg/L	0.005	0.015
SW-15	5/27/2021	Arsenic, dissolved	0.00089	В	mg/L	0.0002	0.001
SW-15	5/27/2021	Cadmium, dissolved	0.000106	В	mg/L	0.00005	0.00025
SW-15	5/27/2021	Iron, dissolved	0.0088	В	mg/L	0.007	0.02
SW-15	5/27/2021	Lead, dissolved	0.00021	В	mg/L	0.0001	0.0005
SW-15	5/27/2021	Manganese, dissolved	0.011	В	mg/L	0.01	0.05
SW-15	5/27/2021	Potassium, dissolved	0.38	В	mg/L	0.2	1
SW-15	5/27/2021	Zinc, dissolved	0.042	В	mg/L	0.02	0.05
SW-15	5/27/2021	Chloride	0.65	В	mg/L	0.5	2
SW-15	5/27/2021	Copper, dissolved		U	mg/L	0.0008	0.002
SW-15	5/27/2021	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-15	5/27/2021	Carbon, dissolved organic (DOC)		U	mg/L	1	5
SW-15	5/27/2021	Carbonate as CaCO3		U	mg/L	2	20
SW-15	5/27/2021	Fluoride		U	mg/L	0.15	0.35
SW-15	5/27/2021	Hydroxide as CaCO3		U	mg/L	2	20
SW-15	5/27/2021	Residue, Non-Filterable (TSS) @105C		U	mg/L	5	20
SW-15	5/27/2021	Dissolved Oxygen (field)		N	%		
SW-15	5/27/2021	Flow	22.91		CFS		
SW-15	5/27/2021	ORP (field) (field)	157		mV		
SW-15	5/27/2021	pH (field)	8.25		units	0.1	0.1
SW-15	5/27/2021	Specific Conductance (field)	-777		uS/cm		
SW-15	5/27/2021	Water Temperature (field)	9.7		С		
SW-16	5/26/2021	Aluminum, dissolved	0.141		mg/L	0.005	0.015
SW-16	5/26/2021	Aluminum, total recoverable	0.24		mg/L	0.005	0.015
SW-16	5/26/2021	Arsenic, dissolved	0.00163		mg/L	0.0002	0.001
SW-16		Arsenic, total recoverable	0.00182		mg/L	0.0002	0.001
SW-16		Calcium, dissolved	15.6		mg/L	0.1	0.5

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-16		Copper, dissolved	0.00485		mg/L	0.0008	0.002
SW-16		Iron, dissolved	0.126		mg/L	0.007	0.02
SW-16		Iron, total recoverable	0.204		mg/L	0.007	0.02
SW-16		Lead, dissolved	0.00587		mg/L	0.0001	0.0005
SW-16		Magnesium, dissolved	1.43		mg/L	0.2	1
SW-16		Sodium, dissolved	1		mg/L	0.2	- 1
SW-16		Zinc, dissolved	0.296		mg/L	0.02	0.05
SW-16		Bicarbonate as CaCO3	22.1		mg/L	2	20
SW-16		Cation-Anion Balance	-0.8		%		
SW-16		Hardness as CaCO3 (dissolved)	45		mg/L	0.2	5
SW-16		Nitrate/Nitrite as N	0.204		mg/L	0.02	0.1
SW-16	5/26/2021		23.9		mg/L	1	5
SW-16		Sum of Anions	1		meq/L		
SW-16		Sum of Cations	0.984		meq/L		
SW-16		TDS (calculated)	56.9		mg/L		
SW-16	5/26/2021	TDS (ratio - measured/calculated)	0.98		0.		
SW-16		Total Alkalinity	22.1		mg/L	2	20
SW-16		Mercury, total (low level)	2.19		ng/L	0.3	1
SW-16		Cadmium, dissolved	0.000139	В	mg/L	0.00005	0.00025
SW-16		Manganese, dissolved	0.038		mg/L	0.01	0.05
SW-16		Potassium, dissolved	0.31	В	mg/L	0.2	1
SW-16	5/26/2021	Carbon, dissolved organic (DOC)	1.3	В	mg/L	1	5
SW-16	5/26/2021		0.57	В	mg/L	0.5	2
SW-16	5/26/2021	Residue, Non-Filterable (TSS) @105C	6	В	mg/L	5	20
SW-16	5/26/2021	Residue, Filterable (TDS) @180C	56	Н	mg/L	20	40
SW-16	5/26/2021	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-16		Carbonate as CaCO3		U	mg/L	2	20
SW-16	5/26/2021	Fluoride		U	mg/L	0.15	0.35
SW-16	5/26/2021	Hydroxide as CaCO3		U	mg/L	2	20
SW-16	5/26/2021	Dissolved Oxygen (field)		N	%		
SW-16	5/26/2021	Flow	24.4		CFS		
SW-16	5/26/2021	ORP (field) (field)	168		mV		
SW-16	5/26/2021	pH (field)	8.16		units	0.1	0.1
SW-16	5/26/2021	Specific Conductance (field)	-279		uS/cm		
SW-16	5/26/2021	Water Temperature (field)	7.5		С		
SW-17	5/26/2021	Aluminum, dissolved	0.0174		mg/L	0.005	0.015
SW-17	5/26/2021	Calcium, dissolved	12.4		mg/L	0.1	0.5
SW-17	5/26/2021	Magnesium, dissolved	1.02		mg/L	0.2	1
SW-17	5/26/2021	Bicarbonate as CaCO3	20.7		mg/L	2	20
SW-17	5/26/2021	Cation-Anion Balance	-6.3		%		
SW-17	5/26/2021	Hardness as CaCO3 (dissolved)	35		mg/L	0.2	5
SW-17	5/26/2021	Nitrate/Nitrite as N	0.223		mg/L	0.02	0.1

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-17	5/26/2021	Sulfate	18.7	_	mg/L	1	5
SW-17		Sum of Anions	0.822		meq/L		
SW-17		Sum of Cations	0.725		meq/L		
SW-17		TDS (calculated)	45.8		mg/L		
SW-17		TDS (ratio - measured/calculated)	1		0,		
SW-17		Total Alkalinity	20.7		mg/L	2	20
SW-17		, Aluminum, total recoverable	0.155		mg/L	0.005	0.015
SW-17		Iron, total recoverable	0.129		mg/L	0.007	0.02
SW-17		Mercury, total (low level)	1.29		ng/L	0.3	1
SW-17		Arsenic, dissolved	0.00037	В	mg/L	0.0002	0.001
SW-17		Arsenic, total recoverable	0.00075	В	mg/L	0.0002	0.001
SW-17		Iron, dissolved	0.0121	В	mg/L	0.007	0.02
SW-17	5/26/2021	Sodium, dissolved	0.43	В	mg/L	0.2	1
SW-17	5/26/2021	Carbon, dissolved organic (DOC)	1.3	В	mg/L	1	5
SW-17	5/26/2021	Chloride	0.56	В	mg/L	0.5	2
SW-17	5/26/2021	Residue, Non-Filterable (TSS) @105C	6	В	mg/L	5	20
SW-17	5/26/2021	Residue, Filterable (TDS) @180C	46	Н	mg/L	20	40
SW-17		Cadmium, dissolved		U	mg/L	0.00005	0.00025
SW-17	5/26/2021	Copper, dissolved		U	mg/L	0.0008	0.002
SW-17	5/26/2021	Lead, dissolved		U	mg/L	0.0001	0.0005
SW-17	5/26/2021	Manganese, dissolved		U	mg/L	0.01	0.05
SW-17	5/26/2021	Potassium, dissolved		U	mg/L	0.2	1
SW-17	5/26/2021	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-17	5/26/2021	Zinc, dissolved		U	mg/L	0.02	0.05
SW-17	5/26/2021	Carbonate as CaCO3		U	mg/L	2	20
SW-17	5/26/2021	Fluoride		U	mg/L	0.15	0.35
SW-17	5/26/2021	Hydroxide as CaCO3		U	mg/L	2	20
SW-17	5/26/2021	Dissolved Oxygen (field)	76.7		%		
SW-17	5/26/2021	Flow	23		CFS		
SW-17	5/26/2021	ORP (field) (field)	172		mV		
SW-17	5/26/2021	pH (field)	8.15		units	0.1	0.1
SW-17	5/26/2021	Specific Conductance (field)	-19		uS/cm		
SW-17	5/26/2021	Water Temperature (field)	4.21		С		
SW-2	5/27/2021	Aluminum, total recoverable	0.105		mg/L	0.005	0.015
SW-2	5/27/2021	Arsenic, total recoverable	0.00151		mg/L	0.0002	0.001
SW-2		Calcium, dissolved	17.1		mg/L	0.1	0.5
SW-2	5/27/2021	Iron, total recoverable	0.0938		mg/L	0.007	0.02
SW-2	5/27/2021	Magnesium, dissolved	1.56		mg/L	0.2	1
SW-2	5/27/2021	Mercury, total (low level)	1.52		ng/L	0.3	1
SW-2		Sodium, dissolved	1.3		mg/L	0.2	1
SW-2		Zinc, dissolved	0.051		mg/L	0.02	0.05
SW-2	5/27/2021	Bicarbonate as CaCO3	24.8		mg/L	2	20

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-2		Cation-Anion Balance	0	Quaimer	%		
SW-2		Hardness as CaCO3 (dissolved)	49		∽ mg/L	0.2	5
SW-2		Nitrate/Nitrite as N	0.194		-	0.2	0.1
SW-2 SW-2		Residue, Filterable (TDS) @180C	0.194		mg/L	20	40
SW-2	5/27/2021		29.1		mg/L	20	40
SW-2 SW-2		Sum of Anions			mg/L	1	5
SW-2 SW-2			1.1 1.1		meq/L		
SW-2 SW-2		Sum of Cations			meq/L		
		TDS (calculated)	65.5		mg/L		
SW-2		TDS (ratio - measured/calculated)	1.22			2	20
SW-2		Total Alkalinity	24.8	D	mg/L	2	20
SW-2		Aluminum, dissolved	0.0139		mg/L	0.005	0.015
SW-2		Arsenic, dissolved	0.00096		mg/L	0.0002	0.001
SW-2		Cadmium, dissolved	0.000137		mg/L	0.00005	0.00025
SW-2		Iron, dissolved	0.0079		mg/L	0.007	0.02
SW-2		Lead, dissolved	0.00036		mg/L	0.0001	0.0005
SW-2		Potassium, dissolved	0.34		mg/L	0.2	1
SW-2		Carbon, dissolved organic (DOC)	1.1		mg/L	1	5
SW-2	5/27/2021	Chloride	0.7		mg/L	0.5	2
SW-2	5/27/2021	Fluoride	0.22	В	mg/L	0.15	0.35
SW-2	5/27/2021	Copper, dissolved		U	mg/L	0.0008	0.002
SW-2	5/27/2021	Manganese, dissolved		U	mg/L	0.01	0.05
SW-2	5/27/2021	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-2	5/27/2021	Carbonate as CaCO3		U	mg/L	2	20
SW-2	5/27/2021	Hydroxide as CaCO3		U	mg/L	2	20
SW-2	5/27/2021	Residue, Non-Filterable (TSS) @105C		U	mg/L	5	20
SW-2	5/27/2021	Dissolved Oxygen (field)	88.1		%		
SW-2	5/27/2021		24.78		CFS		
SW-2		ORP (field) (field)	146		mV		
SW-2	5/27/2021		8.18		units	0.1	0.1
SW-2		Specific Conductance (field)	390		uS/cm	•	
SW-2		Water Temperature (field)	11.1		С		
SW-21		Aluminum, dissolved	0.0214		e mg/L	0.005	0.015
SW-21		Aluminum, total recoverable	0.298		mg/L	0.005	0.015
SW-21		Arsenic, total recoverable	0.0022		mg/L	0.0002	0.013
SW-21		Calcium, dissolved	19.4		mg/L	0.1	0.5
SW-21		Iron, total recoverable	0.259		mg/L	0.007	0.02
SW-21		Lead, dissolved	0.00066		mg/L	0.0001	0.0005
SW-21		Magnesium, dissolved	1.51		mg/L	0.0001	1
SW-21		Sodium, dissolved	1.31		mg/L	0.2	1
SW-21		Zinc, dissolved	0.094			0.2	0.05
SW-21 SW-21		Bicarbonate as CaCO3	26.4		mg/L mg/L	0.02	0.05
						2	20
SW-21	5/26/2021	Cation-Anion Balance	-4		%		
Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
--------------------	--------------------	-------------------------------------	----------	------------------	-------	---------	---------
SW-21	5/26/2021	Hardness as CaCO3 (dissolved)	55		mg/L	0.2	5
SW-21		Nitrate/Nitrite as N	0.324		mg/L	0.02	0.1
SW-21	5/26/2021	Sulfate	33		mg/L	1	5
SW-21	5/26/2021	Sum of Anions	1.3		meq/L		
SW-21	5/26/2021	Sum of Cations	1.2		meq/L		
SW-21	5/26/2021	TDS (calculated)	72.8		mg/L		
SW-21	5/26/2021	TDS (ratio - measured/calculated)	1.1				
SW-21	5/26/2021	Total Alkalinity	26.4		mg/L	2	20
SW-21	5/26/2021	Mercury, total (low level)	2.99		ng/L	0.3	1
SW-21	5/26/2021	Arsenic, dissolved	0.00088	В	mg/L	0.0002	0.001
SW-21	5/26/2021	Cadmium, dissolved	0.000238	В	mg/L	0.00005	0.00025
SW-21	5/26/2021	Copper, dissolved	0.00101	В	mg/L	0.0008	0.002
SW-21	5/26/2021	Iron, dissolved	0.0121	В	mg/L	0.007	0.02
SW-21	5/26/2021	Manganese, dissolved	0.016	В	mg/L	0.01	0.05
SW-21	5/26/2021	Potassium, dissolved	0.31	В	mg/L	0.2	1
SW-21	5/26/2021	Carbon, dissolved organic (DOC)	1.2	В	mg/L	1	5
SW-21	5/26/2021	Chloride	1.07	В	mg/L	0.5	2
SW-21	5/26/2021	Residue, Non-Filterable (TSS) @105C	8	В	mg/L	5	20
SW-21	5/26/2021	Residue, Filterable (TDS) @180C	80	Н	mg/L	20	40
SW-21	5/26/2021	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-21	5/26/2021	Carbonate as CaCO3		U	mg/L	2	20
SW-21	5/26/2021	Fluoride		U	mg/L	0.15	0.35
SW-21	5/26/2021	Hydroxide as CaCO3		U	mg/L	2	20
SW-21	5/26/2021	Dissolved Oxygen (field)	96.9		%		
SW-21	5/26/2021	Flow	44.01		CFS		
SW-21	5/26/2021	ORP (field) (field)	168		mV		
SW-21	5/26/2021	pH (field)	7.93		units	0.1	0.1
SW-21	5/26/2021	Specific Conductance (field)	-301		uS/cm		
SW-21	5/26/2021	Water Temperature (field)	8		С		
SW-3	5/26/2021	Aluminum, total recoverable	0.0285		mg/L	0.005	0.015
SW-3	5/26/2021	Arsenic, total recoverable	0.00104		mg/L	0.0002	0.001
SW-3	5/26/2021	Cadmium, dissolved	0.000282		mg/L	0.00005	0.00025
SW-3	5/26/2021	Calcium, dissolved	57.1		mg/L	0.1	0.5
SW-3	5/26/2021	Iron, total recoverable	0.0374		mg/L	0.007	0.02
SW-3	5/26/2021	Magnesium, dissolved	3.74		mg/L	0.2	1
SW-3	5/26/2021	Sodium, dissolved	5.47		mg/L	0.2	1
SW-3	5/26/2021	Zinc, dissolved	0.199		mg/L	0.02	0.05
SW-3	5/26/2021	Bicarbonate as CaCO3	35.3		mg/L	2	20
SW-3	5/26/2021	Cation-Anion Balance	-2.9		%		
SW-3	5/26/2021	Chloride	9.26		mg/L	0.5	2
SW-3	5/26/2021	Hardness as CaCO3 (dissolved)	158		mg/L	0.2	5
SW-3	5/26/2021	Nitrate/Nitrite as N	2.1		mg/L	0.02	0.1

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-3	5/26/2021	Sulfate	124		mg/L	5	25
SW-3	5/26/2021	Sum of Anions	3.6		meq/L		
SW-3	5/26/2021	Sum of Cations	3.4		meq/L		
SW-3	5/26/2021	TDS (calculated)	222		mg/L		
SW-3	5/26/2021	TDS (ratio - measured/calculated)	1.09				
SW-3	5/26/2021	Total Alkalinity	35.3		mg/L	2	20
SW-3	5/26/2021	Mercury, total (low level)	2.85		ng/L	0.3	1
SW-3	5/26/2021	Arsenic, dissolved	0.00066	В	mg/L	0.0002	0.001
SW-3	5/26/2021	Lead, dissolved	0.0002	В	mg/L	0.0001	0.0005
SW-3	5/26/2021	Potassium, dissolved	0.7	В	mg/L	0.2	1
SW-3	5/26/2021	Fluoride	0.19	В	mg/L	0.15	0.35
SW-3	5/26/2021	Residue, Filterable (TDS) @180C	242	Н	mg/L	20	40
SW-3	5/26/2021	Aluminum, dissolved		U	mg/L	0.005	0.015
SW-3	5/26/2021	Copper, dissolved		U	mg/L	0.0008	0.002
SW-3	5/26/2021	Iron, dissolved		U	mg/L	0.007	0.02
SW-3	5/26/2021	Manganese, dissolved		U	mg/L	0.01	0.05
SW-3	5/26/2021	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-3	5/26/2021	Carbon, dissolved organic (DOC)		U	mg/L	1	5
SW-3	5/26/2021	Carbonate as CaCO3		U	mg/L	2	20
SW-3	5/26/2021	Hydroxide as CaCO3		U	mg/L	2	20
SW-3	5/26/2021	Residue, Non-Filterable (TSS) @105C		υ	mg/L	5	20
SW-3	5/26/2021	Dissolved Oxygen (field)		N	%		
SW-3	5/26/2021	Flow	3.11		CFS		
SW-3	5/26/2021	ORP (field) (field)	182		mV		
SW-3	5/26/2021	pH (field)	8.21		units	0.1	0.1
SW-3	5/26/2021	Specific Conductance (field)	13		uS/cm		
SW-3	5/26/2021	Water Temperature (field)	6.5		С		
SW-4	5/26/2021	Aluminum, dissolved	0.0182		mg/L	0.005	0.015
SW-4	5/26/2021	Aluminum, total recoverable	0.235		mg/L	0.005	0.015
SW-4	5/26/2021	Arsenic, total recoverable	0.0024		mg/L	0.0002	0.001
SW-4	5/26/2021	Cadmium, dissolved	0.00032		mg/L	0.00005	0.00025
SW-4	5/26/2021	Calcium, dissolved	19.9		mg/L	0.1	0.5
SW-4	5/26/2021	Iron, total recoverable	0.235		mg/L	0.007	0.02
SW-4	5/26/2021	Lead, dissolved	0.0005		mg/L	0.0001	0.0005
SW-4	5/26/2021	Magnesium, dissolved	1.61		mg/L	0.2	1
SW-4	5/26/2021	Sodium, dissolved	1.37		mg/L	0.2	1
SW-4	5/26/2021	Zinc, dissolved	0.124		mg/L	0.02	0.05
SW-4	5/26/2021	Bicarbonate as CaCO3	25		mg/L	2	20
SW-4	5/26/2021	Cation-Anion Balance	-4		%		
SW-4	5/26/2021	Hardness as CaCO3 (dissolved)	56		mg/L	0.2	5
SW-4	5/26/2021	Nitrate/Nitrite as N	0.338		mg/L	0.02	0.1
SW-4	5/26/2021	Sulfate	34.9		mg/L	5	25

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-4	5/26/2021	Sum of Anions	1.3		meq/L		
SW-4	5/26/2021	Sum of Cations	1.2		meq/L		
SW-4	5/26/2021	TDS (calculated)	74.7		mg/L		
SW-4	5/26/2021	TDS (ratio - measured/calculated)	1.07				
SW-4	5/26/2021	Total Alkalinity	25		mg/L	2	20
SW-4	5/26/2021	Mercury, total (low level)	2.95		ng/L	0.3	1
SW-4	5/26/2021	Arsenic, dissolved	0.00072	В	mg/L	0.0002	0.001
SW-4	5/26/2021	Copper, dissolved	0.0009	В	mg/L	0.0008	0.002
SW-4	5/26/2021	Iron, dissolved	0.0089	В	mg/L	0.007	0.02
SW-4	5/26/2021	Manganese, dissolved	0.022	В	mg/L	0.01	0.05
SW-4	5/26/2021	Potassium, dissolved	0.33	В	mg/L	0.2	1
SW-4	5/26/2021	Carbon, dissolved organic (DOC)	1.1	В	mg/L	1	5
SW-4	5/26/2021	Chloride	1.13	В	mg/L	0.5	2
SW-4	5/26/2021	Residue, Non-Filterable (TSS) @105C	5	В	mg/L	5	20
SW-4	5/26/2021	Residue, Filterable (TDS) @180C	80	Н	mg/L	20	40
SW-4	5/26/2021	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-4	5/26/2021	Carbonate as CaCO3		U	mg/L	2	20
SW-4	5/26/2021	Fluoride		U	mg/L	0.15	0.35
SW-4	5/26/2021	Hydroxide as CaCO3		U	mg/L	2	20
SW-4	5/26/2021	Dissolved Oxygen (field)	87.9		%		
SW-4	5/26/2021	Flow	19.83		CFS		
SW-4	5/26/2021	ORP (field) (field)	130		mV		
SW-4	5/26/2021	pH (field)	8.18		units	0.1	0.1
SW-4	5/26/2021	Specific Conductance (field)	264		uS/cm		
SW-4	5/26/2021	Water Temperature (field)	5.3		С		
SW-99	5/26/2021	Aluminum, dissolved	0.019		mg/L	0.005	0.015
SW-99	5/26/2021	Aluminum, total recoverable	0.322		mg/L	0.005	0.015
SW-99	5/26/2021	Calcium, dissolved	12.4		mg/L	0.1	0.5
SW-99	5/26/2021	Iron, total recoverable	0.253		mg/L	0.007	0.02
SW-99	5/26/2021	Magnesium, dissolved	1.03		mg/L	0.2	1
SW-99	5/26/2021	Mercury, total (low level)	1.68		ng/L	0.3	1
SW-99	5/26/2021	Bicarbonate as CaCO3	20.3		mg/L	2	20
SW-99	5/26/2021	Cation-Anion Balance	-4.3		%		
SW-99	5/26/2021	Hardness as CaCO3 (dissolved)	35		mg/L	0.2	5
SW-99	5/26/2021	Nitrate/Nitrite as N	0.225		mg/L	0.02	0.1
SW-99	5/26/2021	Sulfate	18.4		mg/L	1	5
SW-99	5/26/2021	Sum of Anions	0.792		meq/L		
SW-99	5/26/2021	Sum of Cations	0.726		meq/L		
SW-99	5/26/2021	TDS (calculated)	44.7		mg/L		
SW-99	5/26/2021	TDS (ratio - measured/calculated)	1.16				
SW-99		Total Alkalinity	20.3		mg/L	2	20
SW-99		Arsenic, dissolved	0.0004	В	mg/L	0.0002	0.001

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-99	5/26/2021	Arsenic, total recoverable	0.00099	•	mg/L	0.0002	0.001
SW-99	5/26/2021	Iron, dissolved	0.0112	В	mg/L	0.007	0.02
SW-99	5/26/2021	Lead, dissolved	0.00011	В	mg/L	0.0001	0.0005
SW-99	5/26/2021	Sodium, dissolved	0.42	В	mg/L	0.2	1
SW-99	5/26/2021	Carbon, dissolved organic (DOC)	1.2	В	mg/L	1	5
SW-99	5/26/2021	Residue, Non-Filterable (TSS) @105C	9	В	mg/L	5	20
SW-99	5/26/2021	Residue, Filterable (TDS) @180C	52	Н	mg/L	20	40
SW-99	5/26/2021	Cadmium, dissolved		U	mg/L	0.00005	0.00025
SW-99	5/26/2021	Copper, dissolved		U	mg/L	0.0008	0.002
SW-99	5/26/2021	Manganese, dissolved		U	mg/L	0.01	0.05
SW-99	5/26/2021	Potassium, dissolved		U	mg/L	0.2	1
SW-99	5/26/2021	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-99	5/26/2021	Zinc, dissolved		U	mg/L	0.02	0.05
SW-99	5/26/2021	Carbonate as CaCO3		U	mg/L	2	20
SW-99	5/26/2021	Chloride		U	mg/L	0.5	2
SW-99	5/26/2021	Fluoride		U	mg/L	0.15	0.35
SW-99	5/26/2021	Hydroxide as CaCO3		U	mg/L	2	20
SW-99	5/26/2021	Dissolved Oxygen (field)	76.7		%		
SW-99	5/26/2021	Flow	23		CFS		
SW-99	5/26/2021	ORP (field) (field)	172		mV		
SW-99	5/26/2021	pH (field)	8.15		units	0.1	0.1
SW-99	5/26/2021	Specific Conductance (field)		Ν	uS/cm		
SW-99	5/26/2021	Water Temperature (field)	4.21		С		

Lab qualifiers:

U - material was analyzed for but was not detected above the sample detection limit

B - Analyte concentrations detected at a value between the MDL and PQL. The associated value is estimated

L - Target analyte response was below the laboratory defined negative threhold

H - Analysis exceeded method hold time. pH is a field test with an immediate hold time

Sample	Collection	Analyte	Result	Lab	Units	MDL	PQL
Location	Date			Qualifier			
SW-0		Aluminum, dissolved		U	mg/L	0.005	0.015
SW-0		Aluminum, total recoverable		U	mg/L	0.005	0.015
SW-0		Arsenic, dissolved		U	mg/L	0.0002	0.001
SW-0		Arsenic, total recoverable		U	mg/L	0.0002	0.001
SW-0		Cadmium, dissolved		U	mg/L	5E-05	0.00025
SW-0		Calcium, dissolved	0.13	В	mg/L	0.1	0.5
SW-0	6/28/2021	Copper, dissolved		U	mg/L	0.0008	0.002
SW-0		Iron, dissolved		U	mg/L	0.007	0.02
SW-0	6/28/2021	Iron, total recoverable		U	mg/L	0.007	0.02
SW-0	6/28/2021	Lead, dissolved		U	mg/L	0.0001	0.0005
SW-0	6/28/2021	Magnesium, dissolved		U	mg/L	0.2	1
SW-0	6/28/2021	Manganese, dissolved		U	mg/L	0.01	0.05
SW-0	6/28/2021	Mercury, total		U	ng/L	0.3	1
SW-0	6/28/2021	Potassium, dissolved		U	mg/L	0.2	1
SW-0	6/28/2021	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-0	6/28/2021	Sodium, dissolved		U	mg/L	0.2	1
SW-0	6/28/2021	Zinc, dissolved		U	mg/L	0.02	0.05
SW-0		Bicarbonate as CaCO3		U	mg/L	2	20
SW-0		Carbon, dissolved organic (DOC)	1.1	В	mg/L	1	5
SW-0		Carbonate as CaCO3		U	mg/L	2	20
SW-0		Cation-Anion Balance		-	%		
SW-0	6/28/2021			U	mg/L	0.5	2
SW-0	6/28/2021			U	mg/L	0.15	0.35
SW-0		Hardness as CaCO3 (dissolved)	0.325		mg/L	0.2	5
SW-0		Hydroxide as CaCO3	0.010	U	mg/L	2	20
SW-0		Nitrate/Nitrite as N		U	mg/L	0.02	0.1
SW-0		Residue, Filterable (TDS) @180C		U	mg/L	20	40
311 0		Residue, Non-Filterable (TSS)		0		20	10
SW-0	6/28/2021	@105C		U	mg/L	5	20
SW-0	6/28/2021			U	mg/L	1	5
SW-0		Sum of Anions		U	meq/L		
SW-0		Sum of Cations		U	meq/L		
SW-0		TDS (calculated)	0.13		mg/L		
SW-0		TDS (ratio - measured/calculated)	0.15		111 <u>8</u> / L		
SW-0		Total Alkalinity		U	mg/L	2	20
SW-0		Aluminum, dissolved		U	mg/L	0.005	0.015
SW-0		Aluminum, total recoverable		U	-	0.005	0.015
SW-0		Arsenic, dissolved		U	mg/L	0.005	0.015
					mg/L		
SW-0		Arsenic, total recoverable		U	mg/L	0.0002	0.001
SW-0		Cadmium, dissolved	0.40	U	mg/L	5E-05	0.00025
SW-0		Calcium, dissolved	0.13		mg/L	0.1	0.5
SW-0	6/28/2021	Copper, dissolved		U	mg/L	0.0008	0.002

Table U-11 Q2 2021 Surface Water Sampling Results - Event #2

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-0	6/28/2021	Iron, dissolved		U	mg/L	0.007	0.02
SW-0	6/28/2021	Iron, total recoverable		U	mg/L	0.007	0.02
SW-0	6/28/2021	Lead, dissolved		U	mg/L	0.0001	0.0005
SW-0	6/28/2021	Magnesium, dissolved		U	mg/L	0.2	1
SW-0	6/28/2021	Manganese, dissolved		U	mg/L	0.01	0.05
SW-0	6/28/2021	Mercury, total		U	ng/L	0.3	1
SW-0	6/28/2021	Potassium, dissolved		U	mg/L	0.2	1
SW-0	6/28/2021	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-0	6/28/2021	Sodium, dissolved		U	mg/L	0.2	1
SW-0	6/28/2021	Zinc, dissolved		U	mg/L	0.02	0.05
SW-0	6/28/2021	Bicarbonate as CaCO3		U	mg/L	2	20
SW-0	6/28/2021	Carbon, dissolved organic (DOC)	1.1	В	mg/L	1	5
SW-0	6/28/2021	Carbonate as CaCO3		U	mg/L	2	20
SW-0	6/28/2021	Cation-Anion Balance			%		
SW-0	6/28/2021	Chloride		U	mg/L	0.5	2
SW-0	6/28/2021	Fluoride		U	mg/L	0.15	0.35
SW-0	6/28/2021	Hardness as CaCO3 (dissolved)	0.325	В	mg/L	0.2	5
SW-0	6/28/2021	Hydroxide as CaCO3		U	mg/L	2	20
SW-0	6/28/2021	Nitrate/Nitrite as N		U	mg/L	0.02	0.1
SW-0	6/28/2021	Residue, Filterable (TDS) @180C		U	mg/L	20	40
SW-0	6/28/2021	Residue, Non-Filterable (TSS) @105C		U	mg/L	5	20
SW-0	6/28/2021	Sulfate		U	mg/L	1	5
SW-0	6/28/2021	Sum of Anions		U	meq/L		
SW-0	6/28/2021	Sum of Cations		U	meq/L		
SW-0	6/28/2021	TDS (calculated)	0.13		mg/L		
SW-0	6/28/2021	TDS (ratio - measured/calculated)					
SW-0		Total Alkalinity		U	mg/L	2	20
SW-0	6/28/2021	Dissolved Oxygen (field)	9		%		
SW-0	6/28/2021	Flow		N	CFS		
SW-0		ORP (field) (field)	227		mV		
SW-0	6/28/2021	pH (field)		N	units	0.1	0.1
SW-0	6/28/2021	Specific Conductance (field)	3		uS/cm		
SW-0	6/28/2021	Water Temperature (field)	16.3		C		
SW-1		Aluminum, dissolved	0.009	В	mg/L	0.005	0.015
SW-1		Aluminum, total recoverable	0.0358		mg/L	0.005	0.015
SW-1		Arsenic, dissolved	0.00089		mg/L	0.0002	0.001
SW-1		Arsenic, total recoverable	0.00176		mg/L	0.0002	0.001
SW-1		Cadmium, dissolved	0.00051		mg/L	5E-05	0.00025
SW-1		Calcium, dissolved	18.7		mg/L	0.1	0.5
SW-1		Copper, dissolved		U	mg/L	0.0008	0.002
SW-1		Iron, dissolved	0.0124		mg/L	0.007	0.02
SW-1		Iron, total recoverable	0.109		mg/L	0.007	0.02

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-1	6/28/2021	Lead, dissolved	0.00012	В	mg/L	0.0001	0.0005
SW-1	6/28/2021	Magnesium, dissolved	0.89	В	mg/L	0.2	1
SW-1	6/28/2021	Manganese, dissolved	0.225		mg/L	0.01	0.05
SW-1	6/28/2021	Mercury, total	0.69	В	ng/L	0.3	1
SW-1	6/28/2021	Potassium, dissolved	0.24	В	mg/L	0.2	1
SW-1	6/28/2021	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-1	6/28/2021	Sodium, dissolved	1.55		mg/L	0.2	1
SW-1	6/28/2021	Zinc, dissolved	0.175		mg/L	0.02	0.05
SW-1	6/28/2021	Bicarbonate as CaCO3	26.2		mg/L	2	20
SW-1	6/28/2021	Carbon, dissolved organic (DOC)	1.2	В	mg/L	1	5
SW-1	6/28/2021	Carbonate as CaCO3		U	mg/L	2	20
SW-1	6/28/2021	Cation-Anion Balance	-4.3		%		
SW-1	6/28/2021	Chloride		U	mg/L	0.5	2
SW-1	6/28/2021	Fluoride		U	mg/L	0.15	0.35
SW-1	6/28/2021	Hardness as CaCO3 (dissolved)	50		mg/L	0.2	5
SW-1	6/28/2021	Hydroxide as CaCO3		U	mg/L	2	20
SW-1	6/28/2021	Nitrate/Nitrite as N	0.189		mg/L	0.02	0.1
SW-1	6/28/2021	Residue, Filterable (TDS) @180C	84		mg/L	20	40
SW-1	6/28/2021	Residue, Non-Filterable (TSS) @105C		U	mg/L	5	20
SW-1	6/28/2021	Sulfate	32.2		mg/L	1	5
SW-1	6/28/2021	Sum of Anions	1.2		meq/L		
SW-1	6/28/2021	Sum of Cations	1.1		meq/L		
SW-1	6/28/2021	TDS (calculated)	70		mg/L		
SW-1	6/28/2021	TDS (ratio - measured/calculated)	1.2				
SW-1	6/28/2021	Total Alkalinity	26.2		mg/L	2	20
SW-1	6/28/2021	Aluminum, dissolved	0.009	В	mg/L	0.005	0.015
SW-1	6/28/2021	Aluminum, total recoverable	0.0358		mg/L	0.005	0.015
SW-1	6/28/2021	Arsenic, dissolved	0.00089	В	mg/L	0.0002	0.001
SW-1	6/28/2021	Arsenic, total recoverable	0.00176		mg/L	0.0002	0.001
SW-1	6/28/2021	Cadmium, dissolved	0.00051		mg/L	5E-05	0.00025
SW-1	6/28/2021	Calcium, dissolved	18.7		mg/L	0.1	0.5
SW-1	6/28/2021	Copper, dissolved		U	mg/L	0.0008	0.002
SW-1	6/28/2021	Iron, dissolved	0.0124	В	mg/L	0.007	0.02
SW-1	6/28/2021	Iron, total recoverable	0.109		mg/L	0.007	0.02
SW-1	6/28/2021	Lead, dissolved	0.00012	В	mg/L	0.0001	0.0005
SW-1	6/28/2021	Magnesium, dissolved	0.89	В	mg/L	0.2	1
SW-1		Manganese, dissolved	0.225		mg/L	0.01	0.05
SW-1		Mercury, total	0.69	В	ng/L	0.3	1
SW-1		Potassium, dissolved	0.24		mg/L	0.2	1
SW-1		Silver, dissolved		U	mg/L	0.0001	0.0005
SW-1		Sodium, dissolved	1.55		mg/L	0.2	1

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-1	6/28/2021	Zinc, dissolved	0.175		mg/L	0.02	0.05
SW-1	6/28/2021	Bicarbonate as CaCO3	26.2		mg/L	2	20
SW-1	6/28/2021	Carbon, dissolved organic (DOC)	1.2	В	mg/L	1	5
SW-1	6/28/2021	Carbonate as CaCO3		U	mg/L	2	20
SW-1	6/28/2021	Cation-Anion Balance	-4.3		%		
SW-1	6/28/2021	Chloride		U	mg/L	0.5	2
SW-1	6/28/2021	Fluoride		U	mg/L	0.15	0.35
SW-1	6/28/2021	Hardness as CaCO3 (dissolved)	50		mg/L	0.2	5
SW-1	6/28/2021	Hydroxide as CaCO3		U	mg/L	2	20
SW-1	6/28/2021	Nitrate/Nitrite as N	0.189		mg/L	0.02	0.1
SW-1	6/28/2021	Residue, Filterable (TDS) @180C	84		mg/L	20	40
SW-1	6/28/2021	Residue, Non-Filterable (TSS) @105C		U	mg/L	5	20
SW-1	6/28/2021	Sulfate	32.2		mg/L	1	5
SW-1	6/28/2021	Sum of Anions	1.2		meq/L		
SW-1	6/28/2021	Sum of Cations	1.1		meq/L		
SW-1	6/28/2021	TDS (calculated)	70		mg/L		
SW-1	6/28/2021	TDS (ratio - measured/calculated)	1.2				
SW-1	6/28/2021	Total Alkalinity	26.2		mg/L	2	20
SW-1	6/28/2021	Dissolved Oxygen (field)	59.6		%		
SW-1	6/28/2021	Flow	2.03		CFS		
SW-1	6/28/2021	ORP (field) (field)	230		mV		
SW-1	6/28/2021	pH (field)	8.69		units	0.1	0.1
SW-1	6/28/2021	Specific Conductance (field)		N	uS/cm		
SW-1	6/28/2021	Water Temperature (field)	7.8		С		
SW-15	6/28/2021	Aluminum, dissolved	0.0147	В	mg/L	0.005	0.015
SW-15		Aluminum, total recoverable	0.125		mg/L	0.005	0.015
SW-15		Arsenic, dissolved	0.00042	В	mg/L	0.0002	0.001
SW-15	6/28/2021	Arsenic, total recoverable	0.00386		mg/L	0.0002	0.001
SW-15	6/28/2021	Cadmium, dissolved	0.00074		mg/L	5E-05	0.00025
SW-15	6/28/2021	Calcium, dissolved	16.1		mg/L	0.1	0.5
SW-15	6/28/2021	Copper, dissolved	0.0017	В	mg/L	0.0008	0.002
SW-15	6/28/2021	Iron, dissolved	0.0096	В	mg/L	0.007	0.02
SW-15	6/28/2021	Iron, total recoverable	0.231		mg/L	0.007	0.02
SW-15	6/28/2021	Lead, dissolved	0.00032	В	mg/L	0.0001	0.0005
SW-15	6/28/2021	Magnesium, dissolved	1.5		mg/L	0.2	1
SW-15		Manganese, dissolved	0.405		mg/L	0.01	0.05
SW-15		Mercury, total	1.56		ng/L	0.3	1
SW-15		Potassium, dissolved	0.36		mg/L	0.2	1
SW-15		Silver, dissolved		U	mg/L	0.0001	0.0005
SW-15		Sodium, dissolved	1.09		mg/L	0.2	1
SW-15		Zinc, dissolved	0.157		mg/L	0.02	0.05

Sample	Collection	Analyte	Result	Lab	Units	MDL	PQL
Location	Date		24 5	Qualifier		2	20
SW-15		Bicarbonate as CaCO3	21.5		mg/L	2	20
SW-15		Carbon, dissolved organic (DOC)		U	mg/L	1	5
SW-15		Carbonate as CaCO3		U	mg/L	2	20
SW-15		Cation-Anion Balance	-4.8		%		
SW-15	6/28/2021			U	mg/L	0.5	2
SW-15	6/28/2021			U	mg/L	0.15	0.35
SW-15		Hardness as CaCO3 (dissolved)	46		mg/L	0.2	5
SW-15		Hydroxide as CaCO3		U	mg/L	2	20
SW-15		Nitrate/Nitrite as N	0.128		mg/L	0.02	0.1
SW-15	6/28/2021	Residue, Filterable (TDS) @180C	70		mg/L	20	40
SW-15	6/28/2021	Residue, Non-Filterable (TSS) @105C		U	mg/L	5	20
SW-15	6/28/2021	Sulfate	32.6		mg/L	1	5
SW-15	6/28/2021	Sum of Anions	1.1		meq/L		
SW-15	6/28/2021	Sum of Cations	1		meq/L		
SW-15	6/28/2021	TDS (calculated)	65.4		mg/L		
SW-15	6/28/2021	TDS (ratio - measured/calculated)	1.07				
SW-15	6/28/2021	Total Alkalinity	21.5		mg/L	2	20
SW-15	6/28/2021	Aluminum, dissolved	0.0147	В	mg/L	0.005	0.015
SW-15	6/28/2021	Aluminum, total recoverable	0.125		mg/L	0.005	0.015
SW-15	6/28/2021	Arsenic, dissolved	0.00042	В	mg/L	0.0002	0.001
SW-15	6/28/2021	Arsenic, total recoverable	0.00386		mg/L	0.0002	0.001
SW-15	6/28/2021	Cadmium, dissolved	0.00074		mg/L	5E-05	0.00025
SW-15	6/28/2021	Calcium, dissolved	16.1		mg/L	0.1	0.5
SW-15	6/28/2021	Copper, dissolved	0.0017	В	mg/L	0.0008	0.002
SW-15	6/28/2021	Iron, dissolved	0.0096	В	mg/L	0.007	0.02
SW-15		Iron, total recoverable	0.231		mg/L	0.007	0.02
SW-15	6/28/2021	Lead, dissolved	0.00032		mg/L	0.0001	0.0005
SW-15	6/28/2021	Magnesium, dissolved	1.5		mg/L	0.2	1
SW-15	6/28/2021	Manganese, dissolved	0.405		mg/L	0.01	0.05
SW-15	6/28/2021	Mercury, total	1.56		ng/L	0.3	1
SW-15	6/28/2021	Potassium, dissolved	0.36	В	mg/L	0.2	1
SW-15	6/28/2021	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-15	6/28/2021	Sodium, dissolved	1.09		mg/L	0.2	1
SW-15	6/28/2021	Zinc, dissolved	0.157		mg/L	0.02	0.05
SW-15		Bicarbonate as CaCO3	21.5		mg/L	2	20
SW-15		Carbon, dissolved organic (DOC)		U	mg/L	1	5
SW-15		Carbonate as CaCO3		U	mg/L	2	20
SW-15		Cation-Anion Balance	-4.8		%		
SW-15	6/28/2021		_	U	mg/L	0.5	2
SW-15	6/28/2021			U	mg/L	0.15	0.35
SW-15		Hardness as CaCO3 (dissolved)	46		mg/L	0.2	5

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-15	6/28/2021	Hydroxide as CaCO3		U	mg/L	2	20
SW-15	6/28/2021	Nitrate/Nitrite as N	0.128		mg/L	0.02	0.1
SW-15	6/28/2021	Residue, Filterable (TDS) @180C	70		mg/L	20	40
SW-15	6/28/2021	Residue, Non-Filterable (TSS) @105C		U	mg/L	5	20
SW-15	6/28/2021	Sulfate	32.6		mg/L	1	5
SW-15	6/28/2021	Sum of Anions	1.1		meq/L		
SW-15	6/28/2021	Sum of Cations	1		meq/L		
SW-15	6/28/2021	TDS (calculated)	65.4		mg/L		
SW-15	6/28/2021	TDS (ratio - measured/calculated)	1.07		_		
SW-15	6/28/2021	Total Alkalinity	21.5		mg/L	2	20
SW-15	6/28/2021	Dissolved Oxygen (field)	64.4		%		
SW-15	6/28/2021	Flow	0		CFS		
SW-15	6/28/2021	ORP (field) (field)	257		mV		
SW-15	6/28/2021	pH (field)	8.56		units	0.1	0.1
SW-15	6/28/2021	Specific Conductance (field)		N	uS/cm		
SW-15		Water Temperature (field)	6.2		С		
SW-16	6/28/2021	Aluminum, dissolved	0.0083	В	mg/L	0.005	0.015
SW-16		Aluminum, total recoverable	0.0747		mg/L	0.005	0.015
SW-16	6/28/2021	Arsenic, dissolved	0.00039	В	mg/L	0.0002	0.001
SW-16	6/28/2021	Arsenic, total recoverable	0.00283		mg/L	0.0002	0.001
SW-16	6/28/2021	Cadmium, dissolved	0.0005		mg/L	5E-05	0.00025
SW-16	6/28/2021	Calcium, dissolved	15.8		mg/L	0.1	0.5
SW-16	6/28/2021	Copper, dissolved	0.0009	В	mg/L	0.0008	0.002
SW-16	6/28/2021	Iron, dissolved		U	mg/L	0.007	0.02
SW-16		Iron, total recoverable	0.152		mg/L	0.007	0.02
SW-16		Lead, dissolved	0.0002	В	mg/L	0.0001	0.0005
SW-16	6/28/2021	Magnesium, dissolved	1.52		mg/L	0.2	1
SW-16		Manganese, dissolved	0.265		mg/L	0.01	0.05
SW-16		Mercury, total	0.65	В	ng/L	0.3	1
SW-16		Potassium, dissolved	0.24		mg/L	0.2	1
SW-16		Silver, dissolved		U	mg/L	0.0001	0.0005
SW-16		Sodium, dissolved	1.03		mg/L	0.2	1
SW-16		Zinc, dissolved	0.105		mg/L	0.02	0.05
SW-16		Bicarbonate as CaCO3	21.3		mg/L	2	20
SW-16		Carbon, dissolved organic (DOC)		U	mg/L	1	5
SW-16		Carbonate as CaCO3		U	mg/L	2	20
SW-16		Cation-Anion Balance	-4.8		%		
SW-16	6/28/2021			U	mg/L	0.5	2
SW-16	6/28/2021			U	mg/L	0.15	0.35
SW-16		Hardness as CaCO3 (dissolved)	46		mg/L	0.2	5.00
SW-16		Hydroxide as CaCO3		U	mg/L	2	20

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-16	6/28/2021	Nitrate/Nitrite as N	0.141		mg/L	0.02	0.1
SW-16	6/28/2021	Residue, Filterable (TDS) @180C	72		mg/L	20	40
SW-16	6/28/2021	Residue, Non-Filterable (TSS) @105C		U	mg/L	5	20
SW-16	6/28/2021	Sulfate	31.5		mg/L	1	5
SW-16	6/28/2021	Sum of Anions	1.1		meq/L		
SW-16	6/28/2021	Sum of Cations	1		meq/L		
SW-16	6/28/2021	TDS (calculated)	63.5		mg/L		
SW-16	6/28/2021	TDS (ratio - measured/calculated)	1.13				
SW-16	6/28/2021	Total Alkalinity	21.3		mg/L	2	20
SW-16	6/28/2021	Aluminum, dissolved	0.0083	В	mg/L	0.005	0.015
SW-16	6/28/2021	Aluminum, total recoverable	0.0747		mg/L	0.005	0.015
SW-16	6/28/2021	Arsenic, dissolved	0.00039	В	mg/L	0.0002	0.001
SW-16	6/28/2021	Arsenic, total recoverable	0.00283		mg/L	0.0002	0.001
SW-16	6/28/2021	Cadmium, dissolved	0.0005		mg/L	5E-05	0.00025
SW-16	6/28/2021	Calcium, dissolved	15.8		mg/L	0.1	0.5
SW-16	6/28/2021	Copper, dissolved	0.0009	В	mg/L	0.0008	0.002
SW-16	6/28/2021	Iron, dissolved		U	mg/L	0.007	0.02
SW-16	6/28/2021	Iron, total recoverable	0.152		mg/L	0.007	0.02
SW-16	6/28/2021	Lead, dissolved	0.0002	В	mg/L	0.0001	0.0005
SW-16	6/28/2021	Magnesium, dissolved	1.52		mg/L	0.2	1
SW-16	6/28/2021	Manganese, dissolved	0.265		mg/L	0.01	0.05
SW-16	6/28/2021	Mercury, total	0.65	В	ng/L	0.3	1
SW-16	6/28/2021	Potassium, dissolved	0.24	В	mg/L	0.2	1
SW-16	6/28/2021	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-16	6/28/2021	Sodium, dissolved	1.03		mg/L	0.2	1
SW-16	6/28/2021	Zinc, dissolved	0.105		mg/L	0.02	0.05
SW-16	6/28/2021	Bicarbonate as CaCO3	21.3		mg/L	2	20
SW-16	6/28/2021	Carbon, dissolved organic (DOC)		U	mg/L	1	5
SW-16	6/28/2021	Carbonate as CaCO3		U	mg/L	2	20
SW-16	6/28/2021	Cation-Anion Balance	-4.8		%		
SW-16	6/28/2021	Chloride		U	mg/L	0.5	2
SW-16	6/28/2021	Fluoride		U	mg/L	0.15	0.35
SW-16	6/28/2021	Hardness as CaCO3 (dissolved)	46		mg/L	0.2	5
SW-16	6/28/2021	Hydroxide as CaCO3		U	mg/L	2	20
SW-16	6/28/2021	Nitrate/Nitrite as N	0.141		mg/L	0.02	0.1
SW-16	6/28/2021	Residue, Filterable (TDS) @180C	72		mg/L	20	40
SW-16	6/28/2021	Residue, Non-Filterable (TSS) @105C		U	mg/L	5	20
SW-16	6/28/2021		31.5		mg/L	1	5
SW-16		Sum of Anions	1.1		meq/L		
SW-16	6/28/2021	Sum of Cations	1		meq/L		

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-16	6/28/2021	TDS (calculated)	63.5		mg/L		
SW-16	6/28/2021	TDS (ratio - measured/calculated)	1.13				
SW-16	6/28/2021	Total Alkalinity	21.3		mg/L	2	20
SW-16	6/28/2021	Dissolved Oxygen (field)	67.8		%		
SW-16	6/28/2021	Flow	22.068		CFS		
SW-16	6/28/2021	ORP (field) (field)	259		mV		
SW-16	6/28/2021	pH (field)	8.48		units	0.1	0.1
SW-16	6/28/2021	Specific Conductance (field)	42		uS/cm		
SW-16	6/28/2021	Water Temperature (field)	4.8		С		
SW-17	6/28/2021	Aluminum, dissolved		U	mg/L	0.005	0.015
SW-17	6/28/2021	Aluminum, total recoverable	0.0291		mg/L	0.005	0.015
SW-17	6/28/2021	Arsenic, dissolved	0.00035	В	mg/L	0.0002	0.001
SW-17	6/28/2021	Arsenic, total recoverable	0.00046	В	mg/L	0.0002	0.001
SW-17		Cadmium, dissolved		U	mg/L	5E-05	0.00025
SW-17		Calcium, dissolved	15.1		mg/L	0.1	0.5
SW-17		Copper, dissolved		U	mg/L	0.0008	0.002
SW-17		Iron, dissolved		U	mg/L	0.007	0.02
SW-17		Iron, total recoverable	0.0273	В	mg/L	0.014	0.04
SW-17		Lead, dissolved		U	mg/L	0.0001	0.0005
SW-17		Magnesium, dissolved	1.5		mg/L	0.2	1
SW-17		Manganese, dissolved		U	mg/L	0.01	0.05
SW-17		Mercury, total	4.52		ng/L	0.3	1
SW-17		Potassium, dissolved		U	mg/L	0.2	1
SW-17		Silver, dissolved		U	mg/L	0.0001	0.0005
SW-17		Sodium, dissolved	0.74	В	mg/L	0.2	1
SW-17		Zinc, dissolved		U	mg/L	0.02	0.05
SW-17	6/28/2021	Bicarbonate as CaCO3	20.3		mg/L	2	20
SW-17		Carbon, dissolved organic (DOC)	1.2		mg/L	1	5
SW-17		Carbonate as CaCO3		U	mg/L	2	20
SW-17		Cation-Anion Balance	-4.7	-	%		
SW-17	6/28/2021			U	mg/L	0.5	2
SW-17	6/28/2021			U	mg/L	0.15	0.35
SW-17		Hardness as CaCO3 (dissolved)	44		mg/L	0.2	5
SW-17		Hydroxide as CaCO3		U	mg/L	2	20
SW-17 SW-17		Nitrate/Nitrite as N	0.157	-	mg/L	0.02	0.1
SW-17		Residue, Filterable (TDS) @180C	64		mg/L	20	40
SW-17	6/28/2021	Residue, Non-Filterable (TSS) @105C		U	mg/L	5	20
SW-17	6/28/2021	-	28.3		mg/L	1	5
SW-17		Sum of Anions	1		meq/L		
SW-17		Sum of Cations	0.911		meq/L		
SW-17		TDS (calculated)	58		mg/L		

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-17	6/28/2021	TDS (ratio - measured/calculated)	1.1				
SW-17	6/28/2021	Total Alkalinity	20.3		mg/L	2	20
SW-17	6/28/2021	Aluminum, dissolved		U	mg/L	0.005	0.015
SW-17	6/28/2021	Aluminum, total recoverable	0.0291		mg/L	0.005	0.015
SW-17	6/28/2021	Arsenic, dissolved	0.00035	В	mg/L	0.0002	0.001
SW-17	6/28/2021	Arsenic, total recoverable	0.00046	В	mg/L	0.0002	0.001
SW-17	6/28/2021	Cadmium, dissolved		U	mg/L	5E-05	0.00025
SW-17	6/28/2021	Calcium, dissolved	15.1		mg/L	0.1	0.5
SW-17	6/28/2021	Copper, dissolved		U	mg/L	0.0008	0.002
SW-17	6/28/2021	Iron, dissolved		U	mg/L	0.007	0.02
SW-17	6/28/2021	Iron, total recoverable	0.0273	В	mg/L	0.014	0.04
SW-17	6/28/2021	Lead, dissolved		U	mg/L	0.0001	0.0005
SW-17	6/28/2021	Magnesium, dissolved	1.5		mg/L	0.2	1
SW-17		Manganese, dissolved		U	mg/L	0.01	0.05
SW-17		Mercury, total	4.52		ng/L	0.3	1
SW-17		Potassium, dissolved		U	mg/L	0.2	1
SW-17		Silver, dissolved		U	mg/L	0.0001	0.0005
SW-17		Sodium, dissolved	0.74	В	mg/L	0.2	1
SW-17		Zinc, dissolved		U	mg/L	0.02	0.05
SW-17		Bicarbonate as CaCO3	20.3		mg/L	2	20
SW-17		Carbon, dissolved organic (DOC)	1.2		mg/L	1	5
SW-17		Carbonate as CaCO3		U	mg/L	2	20
SW-17		Cation-Anion Balance	-4.7		%		
SW-17	6/28/2021			U	mg/L	0.5	2
SW-17	6/28/2021			U	mg/L	0.15	0.35
SW-17		Hardness as CaCO3 (dissolved)	44		mg/L	0.2	5
SW-17		Hydroxide as CaCO3		U	mg/L	2	20
SW-17		Nitrate/Nitrite as N	0.157	-	mg/L	0.02	0.1
SW-17		Residue, Filterable (TDS) @180C	64		mg/L	20	40
SW-17	6/28/2021	Residue, Non-Filterable (TSS) @105C		U	mg/L	5	20
SW-17	6/28/2021	Sulfate	28.3		mg/L	1	5
SW-17		Sum of Anions	1		meq/L		
SW-17	6/28/2021	Sum of Cations	0.911		meq/L		
SW-17		TDS (calculated)	58		mg/L		
SW-17		TDS (ratio - measured/calculated)	1.1		0,		
SW-17	6/28/2021	Total Alkalinity	20.3		mg/L	2	20
SW-17	6/28/2021	Dissolved Oxygen (field)	97.4		%		
SW-17	6/28/2021		11.28		CFS		
SW-17		ORP (field) (field)	221		mV		
SW-17	6/28/2021		8.47		units	0.1	0.1

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-17	6/28/2021	Specific Conductance (field)		N	uS/cm		
SW-17	6/28/2021	Water Temperature (field)	4.7		С		
SW-2	6/28/2021	Aluminum, dissolved	0.013	В	mg/L	0.005	0.015
SW-2	6/28/2021	Aluminum, total recoverable	0.12		mg/L	0.005	0.015
SW-2	6/28/2021	Arsenic, dissolved	0.00046	В	mg/L	0.0002	0.001
SW-2	6/28/2021	Arsenic, total recoverable	0.0034		mg/L	0.0002	0.001
SW-2	6/28/2021	Cadmium, dissolved	0.00073		mg/L	5E-05	0.00025
SW-2	6/28/2021	Calcium, dissolved	17.1		mg/L	0.1	0.5
SW-2	6/28/2021	Copper, dissolved	0.00185	В	mg/L	0.0008	0.002
SW-2	6/28/2021	Iron, dissolved	0.0094	В	mg/L	0.007	0.02
SW-2	6/28/2021	Iron, total recoverable	0.216		mg/L	0.007	0.02
SW-2	6/28/2021	Lead, dissolved	0.0003	В	mg/L	0.0001	0.0005
SW-2	6/28/2021	Magnesium, dissolved	1.52		mg/L	0.2	1
SW-2	6/28/2021	Manganese, dissolved	0.356		mg/L	0.01	0.05
SW-2	6/28/2021	Mercury, total	0.86	В	ng/L	0.3	1
SW-2	6/28/2021	Potassium, dissolved	0.27	В	mg/L	0.2	1
SW-2	6/28/2021	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-2	6/28/2021	Sodium, dissolved	1.2		mg/L	0.2	1
SW-2	6/28/2021	Zinc, dissolved	0.166		mg/L	0.02	0.05
SW-2	6/28/2021	Bicarbonate as CaCO3	22		mg/L	2	20
SW-2	6/28/2021	Carbon, dissolved organic (DOC)	1.1	В	mg/L	1	5
SW-2	6/28/2021	Carbonate as CaCO3		U	mg/L	2	20
SW-2	6/28/2021	Cation-Anion Balance	-4.3		%		
SW-2	6/28/2021	Chloride		U	mg/L	0.5	2
SW-2	6/28/2021	Fluoride		U	mg/L	0.15	0.35
SW-2	6/28/2021	Hardness as CaCO3 (dissolved)	49		mg/L	0.2	5
SW-2	6/28/2021	Hydroxide as CaCO3		U	mg/L	2	20
SW-2	6/28/2021	Nitrate/Nitrite as N	0.137		mg/L	0.02	0.1
SW-2	6/28/2021	Residue, Filterable (TDS) @180C	76		mg/L	20	40
SW-2	6/28/2021	Residue, Non-Filterable (TSS) @105C		U	mg/L	5	20
SW-2	6/28/2021	Sulfate	33.6		mg/L	1	5
SW-2	6/28/2021	Sum of Anions	1.2		meq/L		
SW-2	6/28/2021	Sum of Cations	1.1		meq/L		
SW-2	6/28/2021	TDS (calculated)	67.7		mg/L		
SW-2	6/28/2021	TDS (ratio - measured/calculated)	1.12				
SW-2	6/28/2021	Total Alkalinity	22		mg/L	2	20
SW-2		, Aluminum, dissolved	0.013	В	mg/L	0.005	0.015
SW-2		Aluminum, total recoverable	0.12		mg/L	0.005	0.015
SW-2		Arsenic, dissolved	0.00046	В	mg/L	0.0002	0.001
SW-2	6/28/2021	Arsenic, total recoverable	0.0034		mg/L	0.0002	0.001

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-2	6/28/2021	Cadmium, dissolved	0.00073		mg/L	5E-05	0.00025
SW-2	6/28/2021	Calcium, dissolved	17.1		mg/L	0.1	0.5
SW-2	6/28/2021	Copper, dissolved	0.00185	В	mg/L	0.0008	0.002
SW-2	6/28/2021	Iron, dissolved	0.0094	В	mg/L	0.007	0.02
SW-2	6/28/2021	Iron, total recoverable	0.216		mg/L	0.007	0.02
SW-2	6/28/2021	Lead, dissolved	0.0003	В	mg/L	0.0001	0.0005
SW-2	6/28/2021	Magnesium, dissolved	1.52		mg/L	0.2	1
SW-2	6/28/2021	Manganese, dissolved	0.356		mg/L	0.01	0.05
SW-2	6/28/2021	Mercury, total	0.86	В	ng/L	0.3	1
SW-2	6/28/2021	Potassium, dissolved	0.27	В	mg/L	0.2	1
SW-2	6/28/2021	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-2	6/28/2021	Sodium, dissolved	1.2		mg/L	0.2	1
SW-2	6/28/2021	Zinc, dissolved	0.166		mg/L	0.02	0.05
SW-2	6/28/2021	Bicarbonate as CaCO3	22		mg/L	2	20
SW-2	6/28/2021	Carbon, dissolved organic (DOC)	1.1	В	mg/L	1	5
SW-2	6/28/2021	Carbonate as CaCO3		U	mg/L	2	20
SW-2	6/28/2021	Cation-Anion Balance	-4.3		%		
SW-2	6/28/2021	Chloride		U	mg/L	0.5	2
SW-2	6/28/2021	Fluoride		U	mg/L	0.15	0.35
SW-2	6/28/2021	Hardness as CaCO3 (dissolved)	49		mg/L	0.2	5
SW-2	6/28/2021	Hydroxide as CaCO3		U	mg/L	2	20
SW-2	6/28/2021	Nitrate/Nitrite as N	0.137		mg/L	0.02	0.1
SW-2	6/28/2021	Residue, Filterable (TDS) @180C	76		mg/L	20	40
SW-2	6/28/2021	Residue, Non-Filterable (TSS) @105C		U	mg/L	5	20
SW-2	6/28/2021	Sulfate	33.6		mg/L	1	5
SW-2	6/28/2021	Sum of Anions	1.2		meq/L		
SW-2	6/28/2021	Sum of Cations	1.1		meq/L		
SW-2	6/28/2021	TDS (calculated)	67.7		mg/L		
SW-2	6/28/2021	TDS (ratio - measured/calculated)	1.12				
SW-2	6/28/2021	Total Alkalinity	22		mg/L	2	20
SW-2	6/28/2021	Dissolved Oxygen (field)	55.1		%		
SW-2	6/28/2021	Flow	4.871		CFS		
SW-2	6/28/2021	ORP (field) (field)	251		mV		
SW-2	6/28/2021	pH (field)	8.63		units	0.1	0.1
SW-2	6/28/2021	Specific Conductance (field)		Ν	uS/cm		
SW-2	6/28/2021	Water Temperature (field)	8.2		С		
SW-21	6/28/2021	Aluminum, dissolved	0.016		mg/L	0.005	0.015
SW-21	6/28/2021	Aluminum, total recoverable	0.103		mg/L	0.005	0.015
SW-21	6/28/2021	Arsenic, dissolved	0.00069	В	mg/L	0.0002	0.001
SW-21	6/28/2021	Arsenic, total recoverable	0.00252		mg/L	0.0002	0.001
SW-21	6/28/2021	Cadmium, dissolved	0.00051		mg/L	5E-05	0.00025

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-21	6/28/2021	Calcium, dissolved	18.7		mg/L	0.1	0.5
SW-21	6/28/2021	Copper, dissolved	0.00139	В	mg/L	0.0008	0.002
SW-21	6/28/2021	Iron, dissolved	0.0089	В	mg/L	0.007	0.02
SW-21	6/28/2021	Iron, total recoverable	0.136		mg/L	0.007	0.02
SW-21	6/28/2021	Lead, dissolved	0.00036	В	mg/L	0.0001	0.0005
SW-21	6/28/2021	Magnesium, dissolved	1.43		mg/L	0.2	1
SW-21	6/28/2021	Manganese, dissolved	0.209		mg/L	0.01	0.05
SW-21	6/28/2021	Mercury, total	1.13		ng/L	0.3	1
SW-21	6/28/2021	Potassium, dissolved	0.33	В	mg/L	0.2	1
SW-21	6/28/2021	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-21	6/28/2021	Sodium, dissolved	1.42		mg/L	0.2	1
SW-21	6/28/2021	Zinc, dissolved	0.11		mg/L	0.02	0.05
SW-21	6/28/2021	Bicarbonate as CaCO3	25.9		mg/L	2	20
SW-21	6/28/2021	Carbon, dissolved organic (DOC)	1.4	В	mg/L	1	5
SW-21	6/28/2021	Carbonate as CaCO3		U	mg/L	2	20
SW-21	6/28/2021	Cation-Anion Balance	-4.3		%		
SW-21	6/28/2021	Chloride	0.53	В	mg/L	0.5	2
SW-21	6/28/2021	Fluoride		U	mg/L	0.15	0.35
SW-21	6/28/2021	Hardness as CaCO3 (dissolved)	53		mg/L	0.2	5
SW-21	6/28/2021	Hydroxide as CaCO3		U	mg/L	2	20
SW-21	6/28/2021	Nitrate/Nitrite as N	0.161		mg/L	0.02	0.1
SW-21	6/28/2021	Residue, Filterable (TDS) @180C	82		mg/L	20	40
SW-21	6/28/2021	Residue, Non-Filterable (TSS) @105C		U	mg/L	5	20
SW-21	6/28/2021	Sulfate	33.3		mg/L	1	5
SW-21	6/28/2021	Sum of Anions	1.2		meq/L		
SW-21	6/28/2021	Sum of Cations	1.1		meq/L		
SW-21	6/28/2021	TDS (calculated)	71.9		mg/L		
SW-21	6/28/2021	TDS (ratio - measured/calculated)	1.14				
SW-21	6/28/2021	Total Alkalinity	25.9		mg/L	2	20
SW-21	6/28/2021	Aluminum, dissolved	0.016		mg/L	0.005	0.015
SW-21	6/28/2021	Aluminum, total recoverable	0.103		mg/L	0.005	0.015
SW-21	6/28/2021	Arsenic, dissolved	0.00069	В	mg/L	0.0002	0.001
SW-21	6/28/2021	Arsenic, total recoverable	0.00252		mg/L	0.0002	0.001
SW-21	6/28/2021	Cadmium, dissolved	0.00051		mg/L	5E-05	0.00025
SW-21	6/28/2021	Calcium, dissolved	18.7		mg/L	0.1	0.5
SW-21	6/28/2021	Copper, dissolved	0.00139	В	mg/L	0.0008	0.002
SW-21	6/28/2021	Iron, dissolved	0.0089	В	mg/L	0.007	0.02
SW-21	6/28/2021	Iron, total recoverable	0.136		mg/L	0.007	0.02
SW-21	6/28/2021	Lead, dissolved	0.00036	В	mg/L	0.0001	0.0005
SW-21	6/28/2021	Magnesium, dissolved	1.43		mg/L	0.2	1
SW-21	6/28/2021	Manganese, dissolved	0.209		mg/L	0.01	0.05

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-21	6/28/2021	Mercury, total	1.13		ng/L	0.3	1
SW-21	6/28/2021	Potassium, dissolved	0.33	В	mg/L	0.2	1
SW-21	6/28/2021	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-21	6/28/2021	Sodium, dissolved	1.42		mg/L	0.2	1
SW-21	6/28/2021	Zinc, dissolved	0.11		mg/L	0.02	0.05
SW-21	6/28/2021	Bicarbonate as CaCO3	25.9		mg/L	2	20
SW-21	6/28/2021	Carbon, dissolved organic (DOC)	1.4	В	mg/L	1	5
SW-21	6/28/2021	Carbonate as CaCO3		U	mg/L	2	20
SW-21	6/28/2021	Cation-Anion Balance	-4.3		%		
SW-21	6/28/2021	Chloride	0.53	В	mg/L	0.5	2
SW-21	6/28/2021	Fluoride		U	mg/L	0.15	0.35
SW-21	6/28/2021	Hardness as CaCO3 (dissolved)	53		mg/L	0.2	5
SW-21	6/28/2021	Hydroxide as CaCO3		U	mg/L	2	20
SW-21	6/28/2021	Nitrate/Nitrite as N	0.161		mg/L	0.02	0.1
SW-21	6/28/2021	Residue, Filterable (TDS) @180C	82		mg/L	20	40
SW-21	6/28/2021	Residue, Non-Filterable (TSS) @105C		U	mg/L	5	20
SW-21	6/28/2021	Sulfate	33.3		mg/L	1	5
SW-21	6/28/2021	Sum of Anions	1.2		meq/L		
SW-21	6/28/2021	Sum of Cations	1.1		meq/L		
SW-21	6/28/2021	TDS (calculated)	71.9		mg/L		
SW-21	6/28/2021	TDS (ratio - measured/calculated)	1.14				
SW-21	6/28/2021	Total Alkalinity	25.9		mg/L	2	20
SW-21	6/28/2021	Dissolved Oxygen (field)	73		%		
SW-21	6/28/2021	Flow	5.462		CFS		
SW-21	6/28/2021	ORP (field) (field)	240		mV		
SW-21	6/28/2021	pH (field)	8.72		units	0.1	0.1
SW-21	6/28/2021	Specific Conductance (field)		N	uS/cm		
SW-21	6/28/2021	Water Temperature (field)	8.9		С		
SW-3	6/28/2021	Aluminum, dissolved		U	mg/L	0.005	0.015
SW-3	6/28/2021	Aluminum, total recoverable	0.0374		mg/L	0.005	0.015
SW-3	6/28/2021	Arsenic, dissolved	0.00074	В	mg/L	0.0002	0.001
SW-3	6/28/2021	Arsenic, total recoverable	0.00079	В	mg/L	0.0002	0.001
SW-3	6/28/2021	Cadmium, dissolved	0.00023	В	mg/L	5E-05	0.00025
SW-3	6/28/2021	Calcium, dissolved	34		mg/L	0.1	0.5
SW-3	6/28/2021	Copper, dissolved		U	mg/L	0.0008	0.002
SW-3	6/28/2021	Iron, dissolved		U	mg/L	0.007	0.02
SW-3	6/28/2021	Iron, total recoverable	0.0267		mg/L	0.007	0.02
SW-3	6/28/2021	Lead, dissolved	0.00021	В	mg/L	0.0001	0.0005
SW-3	6/28/2021	Magnesium, dissolved	1.95		mg/L	0.2	1
SW-3	6/28/2021	Manganese, dissolved		U	mg/L	0.01	0.05
SW-3	6/28/2021	Mercury, total	1.12		ng/L	0.3	1

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-3	6/28/2021	Potassium, dissolved	0.58	В	mg/L	0.2	1
SW-3	6/28/2021	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-3	6/28/2021	Sodium, dissolved	3.42		mg/L	0.2	1
SW-3	6/28/2021	Zinc, dissolved	0.149		mg/L	0.02	0.05
SW-3	6/28/2021	Bicarbonate as CaCO3	35.9		mg/L	2	20
SW-3	6/28/2021	Carbon, dissolved organic (DOC)	1.1	В	mg/L	1	5
SW-3	6/28/2021	Carbonate as CaCO3		U	mg/L	2	20
SW-3	6/28/2021	Cation-Anion Balance	0		%		
SW-3	6/28/2021	Chloride	2.1		mg/L	0.5	2
SW-3	6/28/2021	Fluoride	0.18	В	mg/L	0.15	0.35
SW-3	6/28/2021	Hardness as CaCO3 (dissolved)	93		mg/L	0.2	5
SW-3	6/28/2021	Hydroxide as CaCO3		U	mg/L	2	20
SW-3	6/28/2021	Nitrate/Nitrite as N		U	mg/L	0.02	0.1
SW-3	6/28/2021	Residue, Filterable (TDS) @180C	148		mg/L	20	40
SW-3	6/28/2021	Residue, Non-Filterable (TSS) @105C		U	mg/L	5	20
SW-3	6/28/2021	Sulfate	56.9		mg/L	5	25
SW-3		Sum of Anions	2		meq/L		
SW-3	6/28/2021	Sum of Cations	2		meq/L		
SW-3	6/28/2021	TDS (calculated)	121		mg/L		
SW-3	6/28/2021	TDS (ratio - measured/calculated)	1.22				
SW-3	6/28/2021	Total Alkalinity	35.9		mg/L	2	20
SW-3	6/28/2021	Aluminum, dissolved		U	mg/L	0.005	0.015
SW-3	6/28/2021	Aluminum, total recoverable	0.0374		mg/L	0.005	0.015
SW-3		Arsenic, dissolved	0.00074	В	mg/L	0.0002	0.001
SW-3	6/28/2021	Arsenic, total recoverable	0.00079	В	mg/L	0.0002	0.001
SW-3		Cadmium, dissolved	0.00023	В	mg/L	5E-05	0.00025
SW-3	6/28/2021	Calcium, dissolved	34		mg/L	0.1	0.5
SW-3	6/28/2021	Copper, dissolved		U	mg/L	0.0008	0.002
SW-3	6/28/2021	Iron, dissolved		U	mg/L	0.007	0.02
SW-3	6/28/2021	Iron, total recoverable	0.0267		mg/L	0.007	0.02
SW-3	6/28/2021	Lead, dissolved	0.00021	В	mg/L	0.0001	0.0005
SW-3	6/28/2021	Magnesium, dissolved	1.95		mg/L	0.2	1
SW-3	6/28/2021	Manganese, dissolved		U	mg/L	0.01	0.05
SW-3	6/28/2021	Mercury, total	1.12		ng/L	0.3	1
SW-3	6/28/2021	Potassium, dissolved	0.58	В	mg/L	0.2	1
SW-3	6/28/2021	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-3	6/28/2021	Sodium, dissolved	3.42		mg/L	0.2	1
SW-3	6/28/2021	Zinc, dissolved	0.149		mg/L	0.02	0.05
SW-3		Bicarbonate as CaCO3	35.9		mg/L	2	20
SW-3		Carbon, dissolved organic (DOC)	1.1		mg/L	1	5
SW-3		Carbonate as CaCO3		U	mg/L	2	20

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-3		Cation-Anion Balance	0		%		
SW-3	6/28/2021		2.1		mg/L	0.5	2
SW-3	6/28/2021		0.18	В	mg/L	0.15	0.35
SW-3		Hardness as CaCO3 (dissolved)	93		mg/L	0.2	5.55
SW-3		Hydroxide as CaCO3		U	mg/L	2	20
SW-3		Nitrate/Nitrite as N		U	mg/L	0.02	0.1
SW-3		Residue, Filterable (TDS) @180C	148		mg/L	20	40
SW-3	6/28/2021	Residue Non-Filterable (TSS)		υ	mg/L	5	20
SW-3	6/28/2021	-	56.9		mg/L	5	25
SW-3		Sum of Anions	2		meq/L		
SW-3		Sum of Cations	2		meq/L		
SW-3	6/28/2021	TDS (calculated)	121		mg/L		
SW-3		TDS (ratio - measured/calculated)	1.22				
SW-3	6/28/2021	Total Alkalinity	35.9		mg/L	2	20
SW-3	6/28/2021	Dissolved Oxygen (field)	87.7		%		
SW-3	6/28/2021	Flow	0.2		CFS		
SW-3	6/28/2021	ORP (field) (field)	237		mV		
SW-3	6/28/2021	pH (field)	8.86		units	0.1	0.1
SW-3	6/28/2021	Specific Conductance (field)		N	uS/cm		
SW-3	6/28/2021	Water Temperature (field)	11.1		С		
SW-4	6/28/2021	Aluminum, dissolved	0.0129	В	mg/L	0.005	0.015
SW-4	6/28/2021	Aluminum, total recoverable	0.119		mg/L	0.005	0.015
SW-4	6/28/2021	Arsenic, dissolved	0.00053	В	mg/L	0.0002	0.001
SW-4	6/28/2021	Arsenic, total recoverable	0.00323		mg/L	0.0002	0.001
SW-4	6/28/2021	Cadmium, dissolved	0.00071		mg/L	5E-05	0.00025
SW-4	6/28/2021	Calcium, dissolved	19.5		mg/L	0.1	0.5
SW-4	6/28/2021	Copper, dissolved	0.00165	В	mg/L	0.0008	0.002
SW-4	6/28/2021	Iron, dissolved	0.0079	В	mg/L	0.007	0.02
SW-4	6/28/2021	Iron, total recoverable	0.188		mg/L	0.007	0.02
SW-4	6/28/2021	Lead, dissolved	0.00032	В	mg/L	0.0001	0.0005
SW-4	6/28/2021	Magnesium, dissolved	1.57		mg/L	0.2	1
SW-4	6/28/2021	Manganese, dissolved	0.331		mg/L	0.01	0.05
SW-4	6/28/2021	Mercury, total	1.15		ng/L	0.3	1
SW-4	6/28/2021	Potassium, dissolved	0.34	В	mg/L	0.2	1
SW-4	6/28/2021	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-4	6/28/2021	Sodium, dissolved	1.53		mg/L	0.2	1
SW-4	6/28/2021	Zinc, dissolved	0.162		mg/L	0.02	0.05
SW-4	6/28/2021	Bicarbonate as CaCO3	25.5		mg/L	2	20
SW-4		Carbon, dissolved organic (DOC)	1.2		mg/L	1	5
SW-4	6/28/2021	Carbonate as CaCO3		U	mg/L	2	20

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-4	6/28/2021	Cation-Anion Balance	-4		%		
SW-4	6/28/2021	Chloride		U	mg/L	0.5	2
SW-4	6/28/2021	Fluoride		U	mg/L	0.15	0.35
SW-4	6/28/2021	Hardness as CaCO3 (dissolved)	55		mg/L	0.2	5
SW-4	6/28/2021	Hydroxide as CaCO3		U	mg/L	2	20
SW-4	6/28/2021	Nitrate/Nitrite as N	0.19		mg/L	0.02	0.1
SW-4	6/28/2021	Residue, Filterable (TDS) @180C	90		mg/L	20	40
SW-4	6/28/2021	Residue, Non-Filterable (TSS) @105C	6	В	mg/L	5	20
SW-4	6/28/2021	Sulfate	36.7		mg/L	1	5
SW-4	6/28/2021	Sum of Anions	1.3		meq/L		
SW-4	6/28/2021	Sum of Cations	1.2		meq/L		
SW-4	6/28/2021	TDS (calculated)	75.7		mg/L		
SW-4	6/28/2021	TDS (ratio - measured/calculated)	1.19				
SW-4	6/28/2021	Total Alkalinity	25.5		mg/L	2	20
SW-4	6/28/2021	Aluminum, dissolved	0.0129	В	mg/L	0.005	0.015
SW-4	6/28/2021	Aluminum, total recoverable	0.119		mg/L	0.005	0.015
SW-4	6/28/2021	Arsenic, dissolved	0.00053	В	mg/L	0.0002	0.001
SW-4	6/28/2021	Arsenic, total recoverable	0.00323		mg/L	0.0002	0.001
SW-4	6/28/2021	Cadmium, dissolved	0.00071		mg/L	5E-05	0.00025
SW-4	6/28/2021	Calcium, dissolved	19.5		mg/L	0.1	0.5
SW-4	6/28/2021	Copper, dissolved	0.00165	В	mg/L	0.0008	0.002
SW-4	6/28/2021	Iron, dissolved	0.0079	В	mg/L	0.007	0.02
SW-4	6/28/2021	Iron, total recoverable	0.188		mg/L	0.007	0.02
SW-4	6/28/2021	Lead, dissolved	0.00032	В	mg/L	0.0001	0.0005
SW-4	6/28/2021	Magnesium, dissolved	1.57		mg/L	0.2	1
SW-4	6/28/2021	Manganese, dissolved	0.331		mg/L	0.01	0.05
SW-4	6/28/2021	Mercury, total	1.15		ng/L	0.3	1
SW-4	6/28/2021	Potassium, dissolved	0.34	В	mg/L	0.2	1
SW-4	6/28/2021	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-4	6/28/2021	Sodium, dissolved	1.53		mg/L	0.2	1
SW-4	6/28/2021	Zinc, dissolved	0.162		mg/L	0.02	0.05
SW-4	6/28/2021	Bicarbonate as CaCO3	25.5		mg/L	2	20
SW-4	6/28/2021	Carbon, dissolved organic (DOC)	1.2	В	mg/L	1	5
SW-4	6/28/2021	Carbonate as CaCO3		U	mg/L	2	20
SW-4	6/28/2021	Cation-Anion Balance	-4		%		
SW-4	6/28/2021	Chloride		U	mg/L	0.5	2
SW-4	6/28/2021	Fluoride		U	mg/L	0.15	0.35
SW-4	6/28/2021	Hardness as CaCO3 (dissolved)	55		mg/L	0.2	5
SW-4	6/28/2021	Hydroxide as CaCO3		U	mg/L	2	20
SW-4	6/28/2021	Nitrate/Nitrite as N	0.19		mg/L	0.02	0.1
SW-4	6/28/2021	Residue, Filterable (TDS) @180C	90		mg/L	20	40

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-4	6/28/2021	Residue, Non-Filterable (TSS) @105C	6	В	mg/L	5	20
SW-4	6/28/2021	Sulfate	36.7		mg/L	1	5
SW-4	6/28/2021	Sum of Anions	1.3		meq/L		
SW-4	6/28/2021	Sum of Cations	1.2		meq/L		
SW-4	6/28/2021	TDS (calculated)	75.7		mg/L		
SW-4	6/28/2021	TDS (ratio - measured/calculated)	1.19				
SW-4	6/28/2021	Total Alkalinity	25.5		mg/L	2	20
SW-4	6/28/2021	Dissolved Oxygen (field)	59.2		%		
SW-4	6/28/2021	Flow	3.135		CFS		
SW-4	6/28/2021	ORP (field) (field)	250		mV		
SW-4	6/28/2021	pH (field)	8.89		units	0.1	0.1
SW-4	6/28/2021	Specific Conductance (field)		Ν	uS/cm		
SW-4	6/28/2021	Water Temperature (field)	9		С		
SW-99	6/28/2021	Aluminum, dissolved	0.0131	В	mg/L	0.005	0.015
SW-99	6/28/2021	Aluminum, total recoverable	0.142		mg/L	0.005	0.015
SW-99	6/28/2021	Arsenic, dissolved	0.00041	В	mg/L	0.0002	0.001
SW-99	6/28/2021	Arsenic, total recoverable	0.0045		mg/L	0.0002	0.001
SW-99	6/28/2021	Cadmium, dissolved	0.00079		mg/L	5E-05	0.00025
SW-99	6/28/2021	Calcium, dissolved	16.1		mg/L	0.1	0.5
SW-99	6/28/2021	Copper, dissolved	0.00178	В	mg/L	0.0008	0.002
SW-99	6/28/2021	Iron, dissolved	0.0085	В	mg/L	0.007	0.02
SW-99	6/28/2021	Iron, total recoverable	0.263		mg/L	0.007	0.02
SW-99	6/28/2021	Lead, dissolved	0.00028	В	mg/L	0.0001	0.0005
SW-99	6/28/2021	Magnesium, dissolved	1.52		mg/L	0.2	1
SW-99	6/28/2021	Manganese, dissolved	0.472		mg/L	0.01	0.05
SW-99		Mercury, total	0.93	В	ng/L	0.3	1
SW-99	6/28/2021	Potassium, dissolved	0.53	В	mg/L	0.2	1
SW-99	6/28/2021	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-99	6/28/2021	Sodium, dissolved	1.09		mg/L	0.2	1
SW-99	6/28/2021	Zinc, dissolved	0.16		mg/L	0.02	0.05
SW-99	6/28/2021	Bicarbonate as CaCO3	20.7		mg/L	2	20
SW-99	6/28/2021	Carbon, dissolved organic (DOC)	1.1	В	mg/L	1	5
SW-99	6/28/2021	Carbonate as CaCO3		U	mg/L	2	20
SW-99	6/28/2021	Cation-Anion Balance	-4.8		%		
SW-99	6/28/2021	Chloride		U	mg/L	0.5	2
SW-99	6/28/2021	Fluoride		U	mg/L	0.15	0.35
SW-99	6/28/2021	Hardness as CaCO3 (dissolved)	47		mg/L	0.2	5
SW-99	6/28/2021	Hydroxide as CaCO3		U	mg/L	2	20
SW-99	6/28/2021	Nitrate/Nitrite as N	0.129		mg/L	0.02	0.1
SW-99	6/28/2021	Residue, Filterable (TDS) @180C	76		mg/L	20	40

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-99	6/28/2021	Residue, Non-Filterable (TSS) @105C		υ	mg/L	5	20
SW-99	6/28/2021	Sulfate	32.5		mg/L	1	5
SW-99	6/28/2021	Sum of Anions	1.1		meq/L		
SW-99	6/28/2021	Sum of Cations	1		meq/L		
SW-99	6/28/2021	TDS (calculated)	65		mg/L		
SW-99	6/28/2021	TDS (ratio - measured/calculated)	1.17				
SW-99	6/28/2021	Total Alkalinity	20.7		mg/L	2	20
SW-99	6/28/2021	Aluminum, dissolved	0.0131	В	mg/L	0.005	0.015
SW-99	6/28/2021	Aluminum, total recoverable	0.142		mg/L	0.005	0.015
SW-99	6/28/2021	Arsenic, dissolved	0.00041	В	mg/L	0.0002	0.001
SW-99	6/28/2021	Arsenic, total recoverable	0.0045		mg/L	0.0002	0.001
SW-99	6/28/2021	Cadmium, dissolved	0.00079		mg/L	5E-05	0.00025
SW-99	6/28/2021	Calcium, dissolved	16.1		mg/L	0.1	0.5
SW-99	6/28/2021	Copper, dissolved	0.00178	В	mg/L	0.0008	0.002
SW-99	6/28/2021	Iron, dissolved	0.0085	В	mg/L	0.007	0.02
SW-99	6/28/2021	Iron, total recoverable	0.263		mg/L	0.007	0.02
SW-99		Lead, dissolved	0.00028	В	mg/L	0.0001	0.0005
SW-99	6/28/2021	Magnesium, dissolved	1.52		mg/L	0.2	1
SW-99	6/28/2021	Manganese, dissolved	0.472		mg/L	0.01	0.05
SW-99	6/28/2021	Mercury, total	0.93	В	ng/L	0.3	1
SW-99	6/28/2021	Potassium, dissolved	0.53	В	mg/L	0.2	1
SW-99	6/28/2021	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-99	6/28/2021	Sodium, dissolved	1.09		mg/L	0.2	1
SW-99	6/28/2021	Zinc, dissolved	0.16		mg/L	0.02	0.05
SW-99	6/28/2021	Bicarbonate as CaCO3	20.7		mg/L	2	20
SW-99		Carbon, dissolved organic (DOC)	1.1	В	mg/L	1	5
SW-99		Carbonate as CaCO3		U	mg/L	2	20
SW-99	6/28/2021	Cation-Anion Balance	-4.8		%		
SW-99	6/28/2021	Chloride		U	mg/L	0.5	2
SW-99	6/28/2021	Fluoride		U	mg/L	0.15	0.35
SW-99	6/28/2021	Hardness as CaCO3 (dissolved)	47		mg/L	0.2	5
SW-99		Hydroxide as CaCO3		U	mg/L	2	20
SW-99	6/28/2021	Nitrate/Nitrite as N	0.129		mg/L	0.02	0.1
SW-99		Residue, Filterable (TDS) @180C	76		mg/L	20	40
SW-99	6/28/2021	Residue, Non-Filterable (TSS) @105C		U	mg/L	5	20
SW-99	6/28/2021		32.5		mg/L	1	5
SW-99		Sum of Anions	1.1		meq/L		
SW-99		Sum of Cations	1		meq/L		
SW-99		TDS (calculated)	65		mg/L		

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-99	6/28/2021	TDS (ratio - measured/calculated)	1.17				
SW-99	6/28/2021	Total Alkalinity	20.7		mg/L	2	20
SW-99	6/28/2021	Dissolved Oxygen (field)	64.4		%		
SW-99	6/28/2021	Flow	0		CFS		
SW-99	6/28/2021	ORP (field) (field)	257		mV		
SW-99	6/28/2021	pH (field)	8.56		units	0.1	0.1
SW-99	6/28/2021	Specific Conductance (field)		N	uS/cm		
SW-99	6/28/2021	Water Temperature (field)	6.2		С		

Lab qualifiers:

U - material was analyzed for but was not detected above the sample detection limit

B - Analyte concentrations detected at a value between the MDL and PQL. The associated value is estimated

L - Target analyte response was below the laboratory defined negative threhold

H - Analysis exceeded method hold time. pH is a field test with an immediate hold time

Sample	Collection	Analyte	Result	Lab	Units	MDL	PQL
Location SW-0	Date	Zinc, dissolved		Qualifier	mg/1	0.02	0.05
SW-0		Total Alkalinity		UU	mg/L	0.02	20
SW-0		TDS (ratio - measured/calculated)		0	mg/L	2	20
SW-0		TDS (calculated)			mg/L		
SW-0		Sum of Cations		U	meq/L		
SW-0		Sum of Anions		U	meq/L		
SW-0	9/14/2021			U	mg/L	1	5
SW-0		Sodium, dissolved		U	mg/L	0.2	1
SW-0		Silver, dissolved		U	mg/L	0.0001	0.0005
SW-0		Residue, Non-Filterable (TSS) @105C		U	mg/L	5	20
SW-0		Residue, Filterable (TDS) @180C		U	mg/L	20	40
SW-0		Potassium, dissolved		U	mg/L	0.2	1
SW-0		Nitrate/Nitrite as N		U	mg/L	0.02	0.1
SW-0		Mercury, total (low level)		U	ng/L	0.3	1
SW-0	9/14/2021	Manganese, dissolved		U	mg/L	0.01	0.05
SW-0	9/14/2021	Magnesium, dissolved		U	mg/L	0.2	1
SW-0	9/14/2021	Lead, dissolved		U	mg/L	0.0001	0.0005
SW-0	9/14/2021	Iron, total recoverable		U	mg/L	0.007	0.02
SW-0	9/14/2021	Iron, dissolved		U	mg/L	0.007	0.02
SW-0	9/14/2021	Hydroxide as CaCO3		U	mg/L	2	20
SW-0	9/14/2021	Hardness as CaCO3 (dissolved)		U	mg/L	0.2	5
SW-0	9/14/2021	Fluoride		U	mg/L	0.15	0.35
SW-0	9/14/2021	Copper, dissolved		U	mg/L	0.0008	0.002
SW-0	9/14/2021	Chloride		U	mg/L	0.5	2
SW-0	9/14/2021	Cation-Anion Balance			%		
SW-0	9/14/2021	Carbonate as CaCO3		U	mg/L	2	20
SW-0	9/14/2021	Carbon, dissolved organic (DOC)	1.1	В	mg/L	1	5
SW-0	9/14/2021	Calcium, dissolved		U	mg/L	0.1	0.5
SW-0	9/14/2021	Cadmium, dissolved		U	mg/L	0.00005	0.00025
SW-0	9/14/2021	Bicarbonate as CaCO3		U	mg/L	2	20
SW-0	9/14/2021	Arsenic, total recoverable		U	mg/L	0.0002	0.001
SW-0	9/14/2021	Arsenic, dissolved		U	mg/L	0.0002	0.001
SW-0	9/14/2021	Aluminum, total recoverable		U	mg/L	0.005	0.015
SW-0	9/14/2021	Aluminum, dissolved		U	mg/L	0.005	0.015
SW-0	9/14/2021	Dissolved Oxygen (field)	67.9		%		
SW-0	9/14/2021	Flow		N	CFS		

Table U-11 Q3 2021 Surface Water Sampling Results

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-0		ORP (field) (field)	489.2		mV		
SW-0	9/14/2021	pH (field)	7.16		units	0.1	0.1
SW-0	9/14/2021	Specific Conductance (field)	1.4		uS/cm		
SW-0	9/14/2021	Water Temperature (field)	19.4		С		
SW-0	9/8/2021	Aluminum, dissolved		U	mg/L	0.005	0.015
SW-0	9/8/2021	Aluminum, total recoverable		U	mg/L	0.005	0.015
SW-0	9/8/2021	Arsenic, dissolved		U	mg/L	0.0002	0.001
SW-0	9/8/2021	Arsenic, total recoverable		U	mg/L	0.0002	0.001
SW-0	9/8/2021	Bicarbonate as CaCO3		U	mg/L	2	20
SW-0	9/8/2021	Cadmium, dissolved		U	mg/L	0.00005	0.00025
SW-0	9/8/2021	Calcium, dissolved		U	mg/L	0.1	0.5
SW-0	9/8/2021	Carbonate as CaCO3		U	mg/L	2	20
SW-0	9/8/2021	Copper, dissolved		U	mg/L	0.0008	0.002
SW-0	9/8/2021	Fluoride		U	mg/L	0.15	0.35
SW-0	9/8/2021	Hardness as CaCO3 (dissolved)		U	mg/L	0.2	5
SW-0	9/8/2021	Hydroxide as CaCO3		U	mg/L	2	20
SW-0	9/8/2021	Iron, total recoverable		U	mg/L	0.007	0.02
SW-0	9/8/2021	Lead, dissolved		U	mg/L	0.0001	0.0005
SW-0	9/8/2021	Magnesium, dissolved		U	mg/L	0.2	1
SW-0	9/8/2021	Manganese, dissolved		U	mg/L	0.01	0.05
SW-0	9/8/2021	Mercury, total (low level)		U	ng/L	0.3	1
SW-0	9/8/2021	Nitrate/Nitrite as N		U	mg/L	0.02	0.1
SW-0	9/8/2021	Potassium, dissolved		U	mg/L	0.2	1
SW-0	9/8/2021	Residue, Filterable (TDS) @180C		U	mg/L	20	40
SW-0	9/8/2021	Residue, Non-Filterable (TSS) @105C		U	mg/L	5	20
SW-0	9/8/2021	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-0	9/8/2021	Sodium, dissolved		U	mg/L	0.2	1
SW-0	9/8/2021	Sulfate		U	mg/L	1	5
SW-0	9/8/2021	Sum of Anions		U	meq/L		
SW-0	9/8/2021	Sum of Cations		U	meq/L		
SW-0	9/8/2021	Total Alkalinity		U	mg/L	2	20
SW-0	9/8/2021	Zinc, dissolved		U	mg/L	0.02	0.05
SW-0	9/8/2021	Carbon, dissolved organic (DOC)	1.1	В	mg/L	1	5
SW-0	9/8/2021	Chloride	0.63	В	mg/L	0.5	2
SW-0	9/8/2021	Iron, dissolved	0.0071	В	mg/L	0.007	0.02
SW-0	9/8/2021	Cation-Anion Balance			%		
SW-0	9/8/2021	TDS (calculated)	0.637		mg/L		

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-0	9/8/2021	TDS (ratio - measured/calculated)					
SW-0	9/8/2021	Dissolved Oxygen (field)		N	%		
SW-0	9/8/2021	Flow		N	CFS		
SW-0	9/8/2021	ORP (field) (field)		Ν	mV		
SW-0	9/8/2021	pH (field)		N	units	0.1	0.1
SW-0	9/8/2021	Specific Conductance (field)		Ν	uS/cm		
SW-0	9/8/2021	Water Temperature (field)		N	С		
SW-1	9/8/2021	Carbon, dissolved organic (DOC)		U	mg/L	1	5
SW-1	9/8/2021	Carbonate as CaCO3		U	mg/L	2	20
SW-1	9/8/2021	Copper, dissolved		U	mg/L	0.0008	0.002
SW-1	9/8/2021	Fluoride		U	mg/L	0.15	0.35
SW-1	9/8/2021	Hydroxide as CaCO3		U	mg/L	2	20
SW-1	9/8/2021	Lead, dissolved		U	mg/L	0.0001	0.0005
SW-1	9/8/2021	Mercury, total (low level)		U	ng/L	0.3	1
SW-1	9/8/2021	Residue, Non-Filterable (TSS) @105C		U	mg/L	5	20
SW-1	9/8/2021	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-1	9/8/2021	Chloride	0.8	В	mg/L	0.5	2
SW-1	9/8/2021	Iron, dissolved	0.0083	В	mg/L	0.007	0.02
SW-1	9/8/2021	Arsenic, dissolved	0.00024	В	mg/L	0.0002	0.001
SW-1	9/8/2021	Arsenic, total recoverable	0.00093	В	mg/L	0.0002	0.001
SW-1	9/8/2021	Potassium, dissolved	0.54	В	mg/L	0.2	1
SW-1	9/8/2021	Aluminum, dissolved	0.0258		mg/L	0.005	0.015
SW-1	9/8/2021	Aluminum, total recoverable	0.0401		mg/L	0.005	0.015
SW-1	9/8/2021	Bicarbonate as CaCO3	27.4		mg/L	2	20
SW-1	9/8/2021	Cadmium, dissolved	0.00138		mg/L	0.00005	0.00025
SW-1	9/8/2021	Calcium, dissolved	34.2		mg/L	0.1	0.5
SW-1	9/8/2021	Cation-Anion Balance	0		%		
SW-1	9/8/2021	Hardness as CaCO3 (dissolved)	94		mg/L	0.2	5
SW-1	9/8/2021	Iron, total recoverable	0.168		mg/L	0.007	0.02
SW-1	9/8/2021	Magnesium, dissolved	2.01		mg/L	0.2	1
SW-1	9/8/2021	Manganese, dissolved	0.859		mg/L	0.01	0.05
SW-1	9/8/2021	Nitrate/Nitrite as N	0.255		mg/L	0.02	0.1
SW-1	9/8/2021	Residue, Filterable (TDS) @180C	136		mg/L	20	40
SW-1	9/8/2021	Sodium, dissolved	3.07		mg/L	0.2	1
SW-1	9/8/2021	Sulfate	73.9		mg/L	5	25
SW-1	9/8/2021	Sum of Anions	2.1		meq/L		
SW-1	9/8/2021	Sum of Cations	2.1		meq/L		

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-1	9/8/2021	TDS (calculated)	132		mg/L		
SW-1	9/8/2021	TDS (ratio - measured/calculated)	1.03				
SW-1	9/8/2021	Total Alkalinity	27.4		mg/L	2	20
SW-1	9/8/2021	Zinc, dissolved	0.352		mg/L	0.02	0.05
SW-1	9/8/2021	Dissolved Oxygen (field)	92		%		
SW-1	9/8/2021	Flow	0.176		CFS		
SW-1	9/8/2021	ORP (field) (field)	326.1		mV		
SW-1	9/8/2021	pH (field)	7.66		units	0.1	0.1
SW-1	9/8/2021	Specific Conductance (field)	222.5		uS/cm		
SW-1	9/8/2021	Water Temperature (field)	11.5		С		
SW-15	9/14/2021	Zinc, dissolved	0.025	В	mg/L	0.02	0.05
SW-15	9/14/2021	Total Alkalinity	36.2		mg/L	2	20
SW-15	9/14/2021	TDS (ratio - measured/calculated)	0.92				
SW-15	9/14/2021	TDS (calculated)	113		mg/L		
SW-15	9/14/2021	Sum of Cations	1.9		meq/L		
SW-15	9/14/2021	Sum of Anions	1.9		meq/L		
SW-15	9/14/2021	Sulfate	52.7		mg/L	5	25
SW-15	9/14/2021	Sodium, dissolved	2.46		mg/L	0.2	1
SW-15	9/14/2021	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-15	9/14/2021	Residue, Non-Filterable (TSS) @105C		U	mg/L	5	20
SW-15	9/14/2021	Residue, Filterable (TDS) @180C	104		mg/L	20	40
SW-15	9/14/2021	Potassium, dissolved	0.51	В	mg/L	0.2	1
SW-15	9/14/2021	Nitrate/Nitrite as N	0.052	В	mg/L	0.02	0.1
SW-15	9/14/2021	Mercury, total (low level)		U	ng/L	0.3	1
SW-15		Manganese, dissolved		U	mg/L	0.01	0.05
SW-15	9/14/2021	Magnesium, dissolved	2.79		mg/L	0.2	1
SW-15	9/14/2021	Lead, dissolved		U	mg/L	0.0001	0.0005
SW-15	9/14/2021	Iron, total recoverable	0.0302		mg/L	0.007	0.02
SW-15	9/14/2021	Iron, dissolved		U	mg/L	0.007	0.02
SW-15	9/14/2021	Hydroxide as CaCO3		U	mg/L	2	20
SW-15	9/14/2021	Hardness as CaCO3 (dissolved)	91		mg/L	0.2	5
SW-15	9/14/2021	Fluoride	0.21	В	mg/L	0.15	0.35
SW-15	9/14/2021	Copper, dissolved		U	mg/L	0.0008	0.002
SW-15	9/14/2021		0.56	В	mg/L	0.5	2
SW-15	9/14/2021	Cation-Anion Balance	0		%		
SW-15		Carbonate as CaCO3		U	mg/L	2	20
SW-15		Carbon, dissolved organic (DOC)		U	mg/L	1	5

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-15	9/14/2021	Calcium, dissolved	31.7		mg/L	0.1	0.5
SW-15	9/14/2021	Cadmium, dissolved	0.000063	В	mg/L	0.00005	0.00025
SW-15	9/14/2021	Bicarbonate as CaCO3	36.2		mg/L	2	20
SW-15	9/14/2021	Arsenic, total recoverable	0.001		mg/L	0.0002	0.001
SW-15	9/14/2021	Arsenic, dissolved	0.00087	В	mg/L	0.0002	0.001
SW-15	9/14/2021	Aluminum, total recoverable	0.0375		mg/L	0.005	0.015
SW-15	9/14/2021	Aluminum, dissolved		U	mg/L	0.005	0.015
SW-15	9/14/2021	Dissolved Oxygen (field)	97.3		%		
SW-15	9/14/2021	Flow	2.35		CFS		
SW-15	9/14/2021	ORP (field) (field)	366.6		mV		
SW-15	9/14/2021	pH (field)	7.81		units	0.1	0.1
SW-15	9/14/2021	Specific Conductance (field)	202		uS/cm		
SW-15	9/14/2021	Water Temperature (field)	8		С		
SW-16	9/8/2021	Iron, dissolved		U	mg/L	0.007	0.02
SW-16	9/8/2021	Carbonate as CaCO3		U	mg/L	2	20
SW-16	9/8/2021	Copper, dissolved		U	mg/L	0.0008	0.002
SW-16	9/8/2021	Hydroxide as CaCO3		U	mg/L	2	20
SW-16	9/8/2021	Lead, dissolved		U	mg/L	0.0001	0.0005
SW-16	9/8/2021	Residue, Non-Filterable (TSS) @105C		U	mg/L	5	20
SW-16	9/8/2021	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-16	9/8/2021	Carbon, dissolved organic (DOC)	1.1	В	mg/L	1	5
SW-16	9/8/2021	Chloride	0.78	В	mg/L	0.5	2
SW-16	9/8/2021	Aluminum, dissolved	0.0063	В	mg/L	0.005	0.015
SW-16	9/8/2021	Arsenic, dissolved	0.00098	В	mg/L	0.0002	0.001
SW-16	9/8/2021	Cadmium, dissolved	0.000121	В	mg/L	0.00005	0.00025
SW-16	9/8/2021	Fluoride	0.18	В	mg/L	0.15	0.35
SW-16	9/8/2021	Manganese, dissolved	0.016	В	mg/L	0.01	0.05
SW-16	9/8/2021	Nitrate/Nitrite as N	0.059	В	mg/L	0.02	0.1
SW-16	9/8/2021	Potassium, dissolved	0.55	В	mg/L	0.2	1
SW-16	9/8/2021	Zinc, dissolved	0.04	В	mg/L	0.02	0.05
SW-16	9/8/2021	Aluminum, total recoverable	0.0633		mg/L	0.005	0.015
SW-16	9/8/2021	Arsenic, total recoverable	0.00125		mg/L	0.0002	0.001
SW-16		Bicarbonate as CaCO3	34.3		mg/L	2	20
SW-16	9/8/2021	Calcium, dissolved	28.1		mg/L	0.1	0.5
SW-16		Cation-Anion Balance	-2.9		%		
SW-16	9/8/2021	Hardness as CaCO3 (dissolved)	80		mg/L	0.2	5
SW-16		Iron, total recoverable	0.0683		mg/L	0.007	0.02

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-16	9/8/2021	Magnesium, dissolved	2.46		mg/L	0.2	1
SW-16	9/8/2021	Mercury, total (low level)	1.99		ng/L	0.3	1
SW-16	9/8/2021	Residue, Filterable (TDS) @180C	100		mg/L	20	40
SW-16	9/8/2021	Sodium, dissolved	2.15		mg/L	0.2	1
SW-16	9/8/2021	Sulfate	49.8		mg/L	5	25
SW-16	9/8/2021	Sum of Anions	1.8		meq/L		
SW-16	9/8/2021	Sum of Cations	1.7		meq/L		
SW-16	9/8/2021	TDS (calculated)	105		mg/L		
SW-16	9/8/2021	TDS (ratio - measured/calculated)	0.95				
SW-16	9/8/2021	Total Alkalinity	34.3		mg/L	2	20
SW-16	9/8/2021	Dissolved Oxygen (field)	86.6		%		
SW-16	9/8/2021	Flow	3.81		CFS		
SW-16	9/8/2021	ORP (field) (field)	307.6		mV		
SW-16	9/8/2021	pH (field)	7.63		units	0.1	0.1
SW-16	9/8/2021	Specific Conductance (field)	182.3		uS/cm		
SW-16		Water Temperature (field)	13.4		C		
SW-17		Zinc, dissolved		U	mg/L	0.02	0.05
SW-17		Total Alkalinity	30.3		mg/L	2	20
SW-17		TDS (ratio - measured/calculated)	0.84		0.		
SW-17		TDS (calculated)	97.9		mg/L		
SW-17	9/14/2021	Sum of Cations	1.7		meq/L		
SW-17		Sum of Anions	1.6		meq/L		
SW-17	9/14/2021	Sulfate	47		mg/L	5	25
SW-17	9/14/2021	Sodium, dissolved	1.21		mg/L	0.2	1
SW-17	9/14/2021	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-17	9/14/2021	Residue, Non-Filterable (TSS) @105C	6	В	mg/L	5	20
SW-17	9/14/2021	Residue, Filterable (TDS) @180C	82		mg/L	20	40
SW-17	9/14/2021	Potassium, dissolved	0.38	В	mg/L	0.2	1
SW-17	9/14/2021	Nitrate/Nitrite as N	0.059	В	mg/L	0.02	0.1
SW-17	9/14/2021	Mercury, total (low level)	0.77	В	ng/L	0.3	1
SW-17		Manganese, dissolved		U	mg/L	0.01	0.05
SW-17	9/14/2021	Magnesium, dissolved	2.42		mg/L	0.2	1
SW-17		Lead, dissolved		U	mg/L	0.0001	0.0005
SW-17		Iron, total recoverable	0.205		mg/L	0.007	0.02
SW-17		Iron, dissolved		U	mg/L	0.007	0.02
SW-17		Hydroxide as CaCO3		U	mg/L	2	20
SW-17		, Hardness as CaCO3 (dissolved)	80		mg/L	0.2	5

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-17	9/14/2021	Fluoride		U	mg/L	0.15	0.35
SW-17	9/14/2021	Copper, dissolved		U	mg/L	0.0008	0.002
SW-17	9/14/2021	Chloride	0.52	В	mg/L	0.5	2
SW-17	9/14/2021	Cation-Anion Balance	3		%		
SW-17	9/14/2021	Carbonate as CaCO3		U	mg/L	2	20
SW-17	9/14/2021	Carbon, dissolved organic (DOC)		U	mg/L	1	5
SW-17	9/14/2021	Calcium, dissolved	27.9		mg/L	0.1	0.5
SW-17	9/14/2021	Cadmium, dissolved		U	mg/L	0.00005	0.00025
SW-17	9/14/2021	Bicarbonate as CaCO3	30.3		mg/L	2	20
SW-17	9/14/2021	Arsenic, total recoverable	0.00075	В	mg/L	0.0002	0.001
SW-17	9/14/2021	Arsenic, dissolved	0.00037	В	mg/L	0.0002	0.001
SW-17	9/14/2021	Aluminum, total recoverable	0.311		mg/L	0.005	0.015
SW-17	9/14/2021	Aluminum, dissolved	0.0079	В	mg/L	0.005	0.015
SW-17	9/14/2021	Dissolved Oxygen (field)	92.6		%		
SW-17	9/14/2021	Flow	1.8		CFS		
SW-17	9/14/2021	ORP (field) (field)	367.4		mV		
SW-17	9/14/2021	pH (field)	7.77		units	0.1	0.1
SW-17	9/14/2021	Specific Conductance (field)	174		uS/cm		
SW-17		Water Temperature (field)	9.8		С		
SW-2	9/14/2021	Zinc, dissolved		U	mg/L	0.02	0.05
SW-2	9/14/2021	Total Alkalinity	33.7		mg/L	2	20
SW-2	9/14/2021	TDS (ratio - measured/calculated)	0.93				
SW-2	9/14/2021	TDS (calculated)	110		mg/L		
SW-2	9/14/2021	Sum of Cations	1.9		meq/L		
SW-2	9/14/2021	Sum of Anions	1.8		meq/L		
SW-2	9/14/2021	Sulfate	52.1		mg/L	5	25
SW-2	9/14/2021	Sodium, dissolved	2.13		mg/L	0.2	1
SW-2	9/14/2021	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-2	9/14/2021	Residue, Non-Filterable (TSS) @105C		U	mg/L	5	20
SW-2	9/14/2021	Residue, Filterable (TDS) @180C	102		mg/L	20	40
SW-2	9/14/2021	Potassium, dissolved	0.38	В	mg/L	0.2	1
SW-2	9/14/2021	Nitrate/Nitrite as N	0.053	В	mg/L	0.02	0.1
SW-2	9/14/2021	Mercury, total (low level)	0.44	В	ng/L	0.3	1
SW-2		Manganese, dissolved		U	mg/L	0.01	0.05
SW-2		Magnesium, dissolved	2.44		mg/L	0.2	1
SW-2	9/14/2021	Lead, dissolved		U	mg/L	0.0001	0.0005
SW-2		Iron, total recoverable	0.0625		mg/L	0.007	0.02

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-2	9/14/2021	Iron, dissolved		U	mg/L	0.007	0.02
SW-2	9/14/2021	Hydroxide as CaCO3		U	mg/L	2	20
SW-2	9/14/2021	Hardness as CaCO3 (dissolved)	88		mg/L	0.2	5
SW-2	9/14/2021	Fluoride	0.21	В	mg/L	0.15	0.35
SW-2	9/14/2021	Copper, dissolved		U	mg/L	0.0008	0.002
SW-2	9/14/2021	Chloride	0.65	В	mg/L	0.5	2
SW-2	9/14/2021	Cation-Anion Balance	2.7		%		
SW-2	9/14/2021	Carbonate as CaCO3		U	mg/L	2	20
SW-2	9/14/2021	Carbon, dissolved organic (DOC)		U	mg/L	1	5
SW-2	9/14/2021	Calcium, dissolved	31.2		mg/L	0.1	0.5
SW-2	9/14/2021	Cadmium, dissolved		U	mg/L	0.00005	0.00025
SW-2	9/14/2021	Bicarbonate as CaCO3	33.7		mg/L	2	20
SW-2	9/14/2021	Arsenic, total recoverable	0.00105		mg/L	0.0002	0.001
SW-2	9/14/2021	Arsenic, dissolved	0.00076	В	mg/L	0.0002	0.001
SW-2	9/14/2021	Aluminum, total recoverable	0.0832		mg/L	0.005	0.015
SW-2	9/14/2021	Aluminum, dissolved		U	mg/L	0.005	0.015
SW-2	9/14/2021	Dissolved Oxygen (field)	94.1		%		
SW-2	9/14/2021	Flow	3.21		CFS		
SW-2	9/14/2021	ORP (field) (field)	366.1		mV		
SW-2	9/14/2021	pH (field)	7.77		units	0.1	0.1
SW-2	9/14/2021	Specific Conductance (field)	200		uS/cm		
SW-2	9/14/2021	Water Temperature (field)	9.4		С		
SW-21	9/8/2021	Iron, dissolved		U	mg/L	0.007	0.02
SW-21	9/8/2021	Aluminum, dissolved		U	mg/L	0.005	0.015
SW-21	9/8/2021	Carbonate as CaCO3		U	mg/L	2	20
SW-21	9/8/2021	Copper, dissolved		U	mg/L	0.0008	0.002
SW-21	9/8/2021	Hydroxide as CaCO3		U	mg/L	2	20
SW-21	9/8/2021	Residue, Non-Filterable (TSS) @105C		U	mg/L	5	20
SW-21	9/8/2021	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-21	9/8/2021		1.28	В	mg/L	0.5	2
SW-21	9/8/2021	Carbon, dissolved organic (DOC)	1.1	В	mg/L	1	5
SW-21	9/8/2021	Arsenic, dissolved	0.00094	В	mg/L	0.0002	0.001
SW-21		Cadmium, dissolved	0.000073		mg/L	0.00005	0.00025
SW-21	9/8/2021		0.19		mg/L	0.15	0.35
SW-21		Lead, dissolved	0.00011	В	mg/L	0.0001	0.0005
SW-21		Manganese, dissolved	0.023	В	mg/L	0.01	0.05
SW-21		Mercury, total (low level)	0.4	B	ng/L	0.3	1

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-21	9/8/2021	Potassium, dissolved	0.62	В	mg/L	0.2	1
SW-21	9/8/2021	Aluminum, total recoverable	0.065		mg/L	0.005	0.015
SW-21	9/8/2021	Arsenic, total recoverable	0.00117		mg/L	0.0002	0.001
SW-21	9/8/2021	Bicarbonate as CaCO3	40.7		mg/L	2	20
SW-21	9/8/2021	Calcium, dissolved	33		mg/L	0.1	0.5
SW-21	9/8/2021	Cation-Anion Balance	0		%		
SW-21	9/8/2021	Hardness as CaCO3 (dissolved)	92		mg/L	0.2	5
SW-21	9/8/2021	Iron, total recoverable	0.105		mg/L	0.007	0.02
SW-21	9/8/2021	Magnesium, dissolved	2.39		mg/L	0.2	1
SW-21	9/8/2021	Nitrate/Nitrite as N	0.414		mg/L	0.02	0.1
SW-21	9/8/2021	Residue, Filterable (TDS) @180C	136		mg/L	20	40
SW-21	9/8/2021	Sodium, dissolved	3.12		mg/L	0.2	1
SW-21	9/8/2021	Sulfate	55.6		mg/L	5	25
SW-21	9/8/2021	Sum of Anions	2		meq/L		
SW-21	9/8/2021	Sum of Cations	2		meq/L		
SW-21	9/8/2021	TDS (calculated)	121		mg/L		
SW-21	9/8/2021	TDS (ratio - measured/calculated)	1.12				
SW-21	9/8/2021	Total Alkalinity	40.7		mg/L	2	20
SW-21	9/8/2021	Zinc, dissolved	0.063		mg/L	0.02	0.05
SW-21	9/8/2021	Dissolved Oxygen (field)	91.7		%		
SW-21	9/8/2021	Flow	5.48		CFS		
SW-21	9/8/2021	ORP (field) (field)	347.5		mV		
SW-21	9/8/2021	pH (field)	7.92		units	0.1	0.1
SW-21	9/8/2021	Specific Conductance (field)	212.6		uS/cm		
SW-21	9/8/2021	Water Temperature (field)	7.6		С		
SW-3	9/8/2021	Carbon, dissolved organic (DOC)		U	mg/L	1	5
SW-3	9/8/2021	Iron, dissolved		U	mg/L	0.007	0.02
SW-3	9/8/2021	Aluminum, dissolved		U	mg/L	0.005	0.015
SW-3	9/8/2021	Carbonate as CaCO3		U	mg/L	2	20
SW-3	9/8/2021	Copper, dissolved		U	mg/L	0.0008	0.002
SW-3	9/8/2021	Hydroxide as CaCO3		U	mg/L	2	20
SW-3	9/8/2021	Manganese, dissolved		U	mg/L	0.01	0.05
SW-3	9/8/2021	Residue, Non-Filterable (TSS) @105C		U	mg/L	5	20
SW-3	9/8/2021	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-3	9/8/2021		1.46	В	mg/L	0.5	2
SW-3	9/8/2021	Arsenic, dissolved	0.00081	В	mg/L	0.0002	0.001
SW-3		Arsenic, total recoverable	0.00085	В	mg/L	0.0002	0.001

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-3	9/8/2021	Fluoride	0.22	В	mg/L	0.15	0.35
SW-3	9/8/2021	Iron, total recoverable	0.0174	В	mg/L	0.007	0.02
SW-3	9/8/2021	Lead, dissolved	0.00015	В	mg/L	0.0001	0.0005
SW-3	9/8/2021	Mercury, total (low level)	0.51	В	ng/L	0.3	1
SW-3	9/8/2021	Potassium, dissolved	0.82	В	mg/L	0.2	1
SW-3	9/8/2021	Aluminum, total recoverable	0.0195		mg/L	0.005	0.015
SW-3	9/8/2021	Bicarbonate as CaCO3	37.8		mg/L	2	20
SW-3	9/8/2021	Cadmium, dissolved	0.000317		mg/L	0.00005	0.00025
SW-3	9/8/2021	Calcium, dissolved	40		mg/L	0.1	0.5
SW-3	9/8/2021	Cation-Anion Balance	0		%		
SW-3	9/8/2021	Hardness as CaCO3 (dissolved)	110		mg/L	0.2	5
SW-3	9/8/2021	Magnesium, dissolved	2.52		mg/L	0.2	1
SW-3	9/8/2021	Nitrate/Nitrite as N	1.16		mg/L	0.02	0.1
SW-3	9/8/2021	Residue, Filterable (TDS) @180C	164		mg/L	20	40
SW-3	9/8/2021	Sodium, dissolved	3.97		mg/L	0.2	1
SW-3	9/8/2021	Sulfate	76.5		mg/L	5	25
SW-3	9/8/2021	Sum of Anions	2.4		meq/L		
SW-3	9/8/2021	Sum of Cations	2.4		meq/L		
SW-3	9/8/2021	TDS (calculated)	149		mg/L		
SW-3	9/8/2021	TDS (ratio - measured/calculated)	1.1				
SW-3	9/8/2021	Total Alkalinity	37.8		mg/L	2	20
SW-3	9/8/2021	Zinc, dissolved	0.226		mg/L	0.02	0.05
SW-3	9/8/2021	Dissolved Oxygen (field)	71.1		%		
SW-3	9/8/2021	Flow	0.51		CFS		
SW-3	9/8/2021	ORP (field) (field)	416.8		mV		
SW-3	9/8/2021	pH (field)	7.17		units	0.1	0.1
SW-3	9/8/2021	Specific Conductance (field)	261		uS/cm		
SW-3	9/8/2021	Water Temperature (field)	6.2		С		
SW-4	9/8/2021	Carbonate as CaCO3		U	mg/L	2	20
SW-4	9/8/2021	Copper, dissolved		U	mg/L	0.0008	0.002
SW-4	9/8/2021	Hydroxide as CaCO3		U	mg/L	2	20
SW-4	9/8/2021	Residue, Non-Filterable (TSS) @105C		U	mg/L	5	20
SW-4	9/8/2021	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-4	9/8/2021	Carbon, dissolved organic (DOC)	1.3	В	mg/L	1	5
SW-4	9/8/2021	Chloride	1.25	В	mg/L	0.5	2
SW-4	9/8/2021	Iron, dissolved	0.0132	В	mg/L	0.007	0.02
SW-4	9/8/2021	Aluminum, dissolved	0.0146	В	mg/L	0.005	0.015

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-4	9/8/2021	Arsenic, dissolved	0.00091	В	mg/L	0.0002	0.001
SW-4	9/8/2021	Cadmium, dissolved	0.000153	В	mg/L	0.00005	0.00025
SW-4	9/8/2021	Fluoride	0.2	В	mg/L	0.15	0.35
SW-4	9/8/2021	Mercury, total (low level)	0.74	В	ng/L	0.3	1
SW-4	9/8/2021	Potassium, dissolved	0.63	В	mg/L	0.2	1
SW-4	9/8/2021	Aluminum, total recoverable	0.0995		mg/L	0.005	0.015
SW-4	9/8/2021	Arsenic, total recoverable	0.00121		mg/L	0.0002	0.001
SW-4	9/8/2021	Bicarbonate as CaCO3	39.5		mg/L	2	20
SW-4	9/8/2021	Calcium, dissolved	33.9		mg/L	0.1	0.5
SW-4	9/8/2021	Cation-Anion Balance	0		%		
SW-4	9/8/2021	Hardness as CaCO3 (dissolved)	95		mg/L	0.2	5
SW-4	9/8/2021	Iron, total recoverable	0.117		mg/L	0.007	0.02
SW-4	9/8/2021	Lead, dissolved	0.00053		mg/L	0.0001	0.0005
SW-4	9/8/2021	Magnesium, dissolved	2.5		mg/L	0.2	1
SW-4	9/8/2021	Manganese, dissolved	0.076		mg/L	0.01	0.05
SW-4	9/8/2021	Nitrate/Nitrite as N	0.476		mg/L	0.02	0.1
SW-4	9/8/2021	Residue, Filterable (TDS) @180C	136		mg/L	20	40
SW-4	9/8/2021	Sodium, dissolved	3.31		mg/L	0.2	1
SW-4	9/8/2021	Sulfate	60.8		mg/L	5	25
SW-4	9/8/2021	Sum of Anions	2.1		meq/L		
SW-4	9/8/2021	Sum of Cations	2.1		meq/L		
SW-4	9/8/2021	TDS (calculated)	127		mg/L		
SW-4	9/8/2021	TDS (ratio - measured/calculated)	1.07				
SW-4	9/8/2021	Total Alkalinity	39.5		mg/L	2	20
SW-4	9/8/2021	Zinc, dissolved	0.093		mg/L	0.02	0.05
SW-4	9/8/2021	Dissolved Oxygen (field)	91.3		%		
SW-4	9/8/2021	Flow	4.74		CFS		
SW-4	9/8/2021	ORP (field) (field)	322.2		mV		
SW-4	9/8/2021	pH (field)	7.88		units	0.1	0.1
SW-4	9/8/2021	Specific Conductance (field)	220.1		uS/cm		
SW-4	9/8/2021	Water Temperature (field)	10		С		
SW-99	9/14/2021	Zinc, dissolved	0.022	В	mg/L	0.02	0.05
SW-99	9/14/2021	Total Alkalinity	35.6		mg/L	2	20
SW-99	9/14/2021	TDS (ratio - measured/calculated)	0.93				
SW-99	9/14/2021	TDS (calculated)	112		mg/L		
SW-99	9/14/2021	Sum of Cations	1.9		meq/L		
SW-99	9/14/2021	Sum of Anions	1.8		meq/L		

Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-99	9/14/2021	Sulfate	53.2		mg/L	5	25
SW-99	9/14/2021	Sodium, dissolved	2.33		mg/L	0.2	1
SW-99	9/14/2021	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-99	9/14/2021	Residue, Non-Filterable (TSS) @105C		U	mg/L	5	20
SW-99	9/14/2021	Residue, Filterable (TDS) @180C	104		mg/L	20	40
SW-99	9/14/2021	Potassium, dissolved	0.41	В	mg/L	0.2	1
SW-99	9/14/2021	Nitrate/Nitrite as N	0.046	В	mg/L	0.02	0.1
SW-99	9/14/2021	Mercury, total (low level)		U	ng/L	0.3	1
SW-99	9/14/2021	Manganese, dissolved		U	mg/L	0.01	0.05
SW-99	9/14/2021	Magnesium, dissolved	2.57		mg/L	0.2	1
SW-99	9/14/2021	Lead, dissolved		U	mg/L	0.0001	0.0005
SW-99	9/14/2021	Iron, total recoverable	0.0314		mg/L	0.007	0.02
SW-99	9/14/2021	Iron, dissolved		U	mg/L	0.007	0.02
SW-99	9/14/2021	Hydroxide as CaCO3		U	mg/L	2	20
SW-99	9/14/2021	Hardness as CaCO3 (dissolved)	88		mg/L	0.2	5
SW-99	9/14/2021	Fluoride	0.22	В	mg/L	0.15	0.35
SW-99	9/14/2021	Copper, dissolved		U	mg/L	0.0008	0.002
SW-99	9/14/2021	Chloride		U	mg/L	0.5	2
SW-99	9/14/2021	Cation-Anion Balance	2.7		%		
SW-99	9/14/2021	Carbonate as CaCO3		U	mg/L	2	20
SW-99	9/14/2021	Carbon, dissolved organic (DOC)		U	mg/L	1	5
SW-99	9/14/2021	Calcium, dissolved	31.1		mg/L	0.1	0.5
SW-99	9/14/2021	Cadmium, dissolved	0.000065	В	mg/L	0.00005	0.00025
SW-99	9/14/2021	Bicarbonate as CaCO3	35.6		mg/L	2	20
SW-99	9/14/2021	Arsenic, total recoverable	0.00109		mg/L	0.0002	0.001
SW-99	9/14/2021	Arsenic, dissolved	0.00084	В	mg/L	0.0002	0.001
SW-99	9/14/2021	Aluminum, total recoverable	0.0434		mg/L	0.005	0.015
SW-99	9/14/2021	Aluminum, dissolved		U	mg/L	0.005	0.015
SW-99	9/14/2021	Dissolved Oxygen (field)	94.4		%		
SW-99	9/14/2021	Flow	2.35		CFS		
SW-99	9/14/2021	ORP (field) (field)	365.1		mV		
SW-99	9/14/2021	pH (field)	7.85		units	0.1	0.1
SW-99	9/14/2021	Specific Conductance (field)	202		uS/cm		
SW-99	9/14/2021	Water Temperature (field)	8.2		С		
SW-99		Carbon, dissolved organic (DOC)		U	mg/L	1	5
SW-99		Iron, dissolved		U	mg/L	0.007	0.02
SW-99	9/8/2021	Carbonate as CaCO3		U	mg/L	2	20
SW-99	9/8/2021	Copper, dissolved		U	mg/L	0.0008	0.002

SW-99 9/8/2021 Hydroxide as CaCO3 U mg/L 2 200 SW-99 9/8/2021 Lead, dissolved U mg/L 0.0001 0.0005 SW-99 9/8/2021 Residue, Non-Filterable (TSS) @105C U mg/L 0.0001 0.0005 SW-99 9/8/2021 Silver, dissolved 0.071 B mg/L 0.5 2 SW-99 9/8/2021 Aluminum, dissolved 0.0064 B mg/L 0.005 0.0015 SW-99 9/8/2021 Arsenic, dissolved 0.0004 B mg/L 0.005 0.0012 SW-99 9/8/2021 Fluoride 0.18 B mg/L 0.015 0.35 SW-99 9/8/2021 Marganese, dissolved 0.014 B mg/L 0.02 0.01 SW-99 9/8/2021 Netraty, total (low level) 0.48 B mg/L 0.02 0.05 SW-99 9/8/2021 Aluminum, total recoverable 0.0641 mg/L 0.02 0	Sample Location	Collection Date	Analyte	Result	Lab Qualifier	Units	MDL	PQL
SW-99 9/8/2021 Lead, dissolved U mg/L 0.0001 0.0005 SW-99 9/8/2021 Residue, Non-Filterable (TSS) @105C U mg/L 5 20 SW-99 9/8/2021 Sliver, dissolved U mg/L 0.0001 0.0005 SW-99 9/8/2021 Aluminum, dissolved 0.0064 B mg/L 0.002 0.001 SW-99 9/8/2021 Arsenic, dissolved 0.00094 B mg/L 0.0002 0.001 SW-99 9/8/2021 Manganese, dissolved 0.00123 B mg/L 0.0000 0.00025 SW-99 9/8/2021 Manganese, dissolved 0.014 B mg/L 0.02 0.01 SW-99 9/8/2021 Manganese, dissolved 0.55 B mg/L 0.02 0.01 SW-99 9/8/2021 Arsenic, total recoverable 0.0641 mg/L 0.02 0.01 SW-99 9/8/2021 Arsenic, total recoverable 0.0614 mg/L 0.02			Hydroxide as CaCO3			mg/L	2	20
SW-99 9/8/2021 Residue, Non-Filterable (TSS) @105C U mg/L S 20 SW-99 9/8/2021 Silver, dissolved U mg/L 0.0001 0.0005 SW-99 9/8/2021 Chloride 0.71 B mg/L 0.05 0.2 SW-99 9/8/2021 Aluminum, dissolved 0.0064 B mg/L 0.005 0.015 SW-99 9/8/2021 Arsenic, dissolved 0.000123 B mg/L 0.00005 0.00025 SW-99 9/8/2021 Horide 0.18 B mg/L 0.010 0.05 SW-99 9/8/2021 Mercury, total (low level) 0.48 B mg/L 0.02 0.1 SW-99 9/8/2021 Mercury, total (low level) 0.48 B mg/L 0.02 0.01 SW-99 9/8/2021 Intrate/Nitrita as N 0.059 B mg/L 0.02 0.01 SW-99 9/8/2021 Intrate/Nitrita as N 0.059 B mg/L						-		0.0005
SW-99 9/8/2021 Chloride 0.71 B mg/L 0.55 SW-99 9/8/2021 Aluminum, dissolved 0.00044 B mg/L 0.0002 0.0015 SW-99 9/8/2021 Arsenic, dissolved 0.000123 B mg/L 0.00025 0.00025 SW-99 9/8/2021 Fluoride 0.18 B mg/L 0.0003 0.00025 SW-99 9/8/2021 Marganese, dissolved 0.014 B mg/L 0.010 0.05 SW-99 9/8/2021 Mercury, total (low level) 0.48 B ng/L 0.02 0.01 SW-99 9/8/2021 Nitrate/Nitrite as N 0.055 B mg/L 0.02 0.05 SW-99 9/8/2021 Arsenic, total recoverable 0.0641 mg/L 0.002 0.001 SW-99 9/8/2021 Arsenic, total recoverable 0.0641 mg/L 0.002 0.001 SW-99 9/8/2021 Bic morhino Balance -2.9 % 0	SW-99				U	_	5	20
SW-99 9/8/2021 Aluminum, dissolved 0.0064 B mg/L 0.005 0.015 SW-99 9/8/2021 Arsenic, dissolved 0.000123 B mg/L 0.00025 0.000125 SW-99 9/8/2021 Fluoride 0.18 B mg/L 0.015 0.00025 SW-99 9/8/2021 Manganese, dissolved 0.014 B mg/L 0.01 0.055 SW-99 9/8/2021 Marganese, dissolved 0.014 B mg/L 0.02 0.1 SW-99 9/8/2021 Mercury, total (low level) 0.48 B mg/L 0.02 0.1 SW-99 9/8/2021 Nitrate/Nitrite as N 0.055 B mg/L 0.02 0.01 SW-99 9/8/2021 Aluminum, total recoverable 0.0614 mg/L 0.00 0.0015 SW-99 9/8/2021 Arsenic, total recoverable 0.00124 mg/L 0.00 0.001 SW-99 9/8/2021 Bachonina Balance -2.9 % <td>SW-99</td> <td>9/8/2021</td> <td>Silver, dissolved</td> <td></td> <td>U</td> <td>mg/L</td> <td>0.0001</td> <td>0.0005</td>	SW-99	9/8/2021	Silver, dissolved		U	mg/L	0.0001	0.0005
SW-99 9/8/2021 Arsenic, dissolved 0.00094 B mg/L 0.0002 0.001 SW-99 9/8/2021 Cadmium, dissolved 0.00123 B mg/L 0.00005 0.00025 SW-99 9/8/2021 Fluoride 0.18 B mg/L 0.01 0.05 SW-99 9/8/2021 Marganese, dissolved 0.014 B mg/L 0.03 1 SW-99 9/8/2021 Mercury, total (low level) 0.48 B ng/L 0.02 0.1 SW-99 9/8/2021 Nitrate/Nitrite as N 0.055 B mg/L 0.02 0.1 SW-99 9/8/2021 Aluminum, total recoverable 0.0641 mg/L 0.002 0.001 SW-99 9/8/2021 Aluminum, total recoverable 0.00124 mg/L 0.0022 0.001 SW-99 9/8/2021 Resinc, total recoverable 0.00124 mg/L 0.0 0.002 SW-99 9/8/2021 Rasenic, total recoverable 0.0629 mg/L	SW-99	9/8/2021	Chloride	0.71	В	mg/L	0.5	2
SW-99 9/8/2021 Cadmium, dissolved 0.000123 B mg/L 0.00005 0.00025 SW-99 9/8/2021 Fluoride 0.18 B mg/L 0.15 0.35 SW-99 9/8/2021 Marganese, dissolved 0.014 B mg/L 0.01 0.05 SW-99 9/8/2021 Mercury, total (low level) 0.48 B ng/L 0.02 0.1 SW-99 9/8/2021 Nitrate/Nitrite as N 0.059 B mg/L 0.02 0.1 SW-99 9/8/2021 Potassium, dissolved 0.55 B mg/L 0.02 0.1 SW-99 9/8/2021 Airsenic, total recoverable 0.0641 mg/L 0.002 0.001 SW-99 9/8/2021 Gatom-Arion Balance -2.9 % 0.1 0.5 SW-99 9/8/2021 Iron, total recoverable 0.0629 mg/L 0.02 1 SW-99 9/8/2021 Iron, total recoverable 0.0629 mg/L 0.2 <t< td=""><td>SW-99</td><td>9/8/2021</td><td>Aluminum, dissolved</td><td>0.0064</td><td>В</td><td>mg/L</td><td>0.005</td><td>0.015</td></t<>	SW-99	9/8/2021	Aluminum, dissolved	0.0064	В	mg/L	0.005	0.015
SW-99 9/8/2021 Fluoride 0.18 B mg/L 0.15 0.35 SW-99 9/8/2021 Manganese, dissolved 0.014 B mg/L 0.01 0.05 SW-99 9/8/2021 Mercury, total (low level) 0.48 B ng/L 0.3 1 SW-99 9/8/2021 Nitrate/Nitrite as N 0.059 B mg/L 0.02 0.1 SW-99 9/8/2021 Potassium, dissolved 0.55 B mg/L 0.02 0.1 SW-99 9/8/2021 Ricissolved 0.039 B mg/L 0.02 0.05 SW-99 9/8/2021 Aluminum, total recoverable 0.0641 mg/L 0.002 0.001 SW-99 9/8/2021 Galcium, dissolved 27.8 mg/L 0.1 0.5 SW-99 9/8/2021 Karino Balance -2.9 % 0.01 0.02 SW-99 9/8/2021 Iron, total recoverable 0.0629 mg/L 0.02 11 <tr< td=""><td>SW-99</td><td>9/8/2021</td><td>Arsenic, dissolved</td><td>0.00094</td><td>В</td><td>mg/L</td><td>0.0002</td><td>0.001</td></tr<>	SW-99	9/8/2021	Arsenic, dissolved	0.00094	В	mg/L	0.0002	0.001
SW-99 9/8/2021 Manganese, dissolved 0.014 B mg/L 0.01 0.05 SW-99 9/8/2021 Mercury, total (low level) 0.48 B ng/L 0.3 1 SW-99 9/8/2021 Nitrate/Nitrite as N 0.059 B mg/L 0.02 0.1 SW-99 9/8/2021 Potassium, dissolved 0.055 B mg/L 0.02 0.1 SW-99 9/8/2021 Zinc, dissolved 0.039 B mg/L 0.02 0.05 SW-99 9/8/2021 Aluminum, total recoverable 0.00124 mg/L 0.0002 0.001 SW-99 9/8/2021 Bicarbonate as CaCO3 34.9 mg/L 0.1 0.5 SW-99 9/8/2021 Cation-Anion Balance -2.9 % - - SW-99 9/8/2021 Iron, total recoverable 0.0629 mg/L 0.02 5 SW-99 9/8/2021 Iron, total recoverable 0.0629 mg/L 0.02 1	SW-99	9/8/2021	Cadmium, dissolved	0.000123	В	mg/L	0.00005	0.00025
W-99 9/8/2021 Mercury, total (low level) 0.48 B ng/L 0.3 1 SW-99 9/8/2021 Nitrate/Nitrite as N 0.059 B mg/L 0.02 0.1 SW-99 9/8/2021 Potassium, dissolved 0.055 B mg/L 0.02 0.1 SW-99 9/8/2021 Zinc, dissolved 0.039 B mg/L 0.02 0.05 SW-99 9/8/2021 Aluminum, total recoverable 0.0641 mg/L 0.0002 0.001 SW-99 9/8/2021 Arsenic, total recoverable 0.00124 mg/L 0.0002 0.001 SW-99 9/8/2021 Cation-Anion Balance -2.9 % - - SW-99 9/8/2021 Iron, total recoverable 0.0629 mg/L 0.007 0.02 SW-99 9/8/2021 Iron, total recoverable 0.0629 mg/L 0.2 1 SW-99 9/8/2021 Iron, total recoverable 0.0629 mg/L 0.02 400 <	SW-99	9/8/2021	Fluoride	0.18	В	mg/L	0.15	0.35
SW-99 9/8/2021 Nitrate/Nitrite as N 0.059 B mg/L 0.02 0.1 SW-99 9/8/2021 Potassium, dissolved 0.55 B mg/L 0.02 1 SW-99 9/8/2021 Zinc, dissolved 0.039 B mg/L 0.02 0.05 SW-99 9/8/2021 Aluminum, total recoverable 0.0641 mg/L 0.0002 0.001 SW-99 9/8/2021 Arsenic, total recoverable 0.00124 mg/L 0.0002 0.001 SW-99 9/8/2021 Calcium, dissolved 27.8 mg/L 0.1 0.5 SW-99 9/8/2021 Cation-Anion Balance -2.9 % 0.007 0.02 SW-99 9/8/2021 Iron, total recoverable 0.0629 mg/L 0.007 0.02 SW-99 9/8/2021 Magnesium, dissolved 2.5 mg/L 0.2 1 SW-99 9/8/2021 Residue, Filterable (TDS) @180C 116 mg/L 0.2 1 SW-99 <td>SW-99</td> <td>9/8/2021</td> <td>Manganese, dissolved</td> <td>0.014</td> <td>В</td> <td>mg/L</td> <td>0.01</td> <td>0.05</td>	SW-99	9/8/2021	Manganese, dissolved	0.014	В	mg/L	0.01	0.05
SW-99 9/8/2021 Potassium, dissolved 0.55 B mg/L 0.2 1 SW-99 9/8/2021 Zinc, dissolved 0.039 B mg/L 0.02 0.05 SW-99 9/8/2021 Aluminum, total recoverable 0.0641 mg/L 0.0002 0.001 SW-99 9/8/2021 Arsenic, total recoverable 0.00124 mg/L 0.0002 0.001 SW-99 9/8/2021 Bicarbonate as CaCO3 34.9 mg/L 0.1 0.5 SW-99 9/8/2021 Calcium, dissolved 27.8 mg/L 0.1 0.5 SW-99 9/8/2021 Cation-Anion Balance -2.9 % 0.007 0.02 SW-99 9/8/2021 Iron, total recoverable 0.0629 mg/L 0.007 0.02 SW-99 9/8/2021 Magnesium, dissolved 2.5 mg/L 0.2 1 SW-99 9/8/2021 Residue, Filterable (TDS) @180C 116 mg/L 0.2 1 SW-99 9/8/202	SW-99	9/8/2021	Mercury, total (low level)	0.48	В	ng/L	0.3	1
SW-99 9/8/2021 Zinc, dissolved 0.039 B mg/L 0.02 0.055 SW-99 9/8/2021 Aluminum, total recoverable 0.0641 mg/L 0.0002 0.0015 SW-99 9/8/2021 Arsenic, total recoverable 0.00124 mg/L 0.0002 0.001 SW-99 9/8/2021 Bicarbonate as CaCO3 34.9 mg/L 0.1 0.5 SW-99 9/8/2021 Calcium, dissolved 27.8 mg/L 0.1 0.5 SW-99 9/8/2021 Cation-Anion Balance -2.9 % 0.007 0.02 SW-99 9/8/2021 Iron, total recoverable 0.0629 mg/L 0.007 0.02 SW-99 9/8/2021 Iron, total recoverable 0.0629 mg/L 0.02 1 SW-99 9/8/2021 Residue, Filterable (TDS) @180C 116 mg/L 0.2 1 SW-99 9/8/2021 Sodium, dissolved 2.14 mg/L 0.2 1 SW-99 9/8/2021	SW-99	9/8/2021	Nitrate/Nitrite as N	0.059	В	mg/L	0.02	0.1
SW-99 9/8/2021 Aluminum, total recoverable 0.0641 mg/L 0.005 0.015 SW-99 9/8/2021 Arsenic, total recoverable 0.00124 mg/L 0.0002 0.001 SW-99 9/8/2021 Bicarbonate as CaCO3 34.9 mg/L 2 20 SW-99 9/8/2021 Calcium, dissolved 27.8 mg/L 0.1 0.5 SW-99 9/8/2021 Cation-Anion Balance -2.9 % - - SW-99 9/8/2021 Hardness as CaCO3 (dissolved) 80 mg/L 0.2 5 SW-99 9/8/2021 Iron, total recoverable 0.0629 mg/L 0.007 0.02 SW-99 9/8/2021 Magnesium, dissolved 2.5 mg/L 0.2 1 SW-99 9/8/2021 Residue, Filterable (TDS) @180C 116 mg/L 0.2 40 SW-99 9/8/2021 Sodium, dissolved 2.14 mg/L 0.2 1 SW-99 9/8/2021 Sum of Anions 1.8 meq/L 25 5 SW-99 9/8/2021	SW-99	9/8/2021	Potassium, dissolved	0.55	В	mg/L	0.2	1
SW-99 9/8/2021 Arsenic, total recoverable 0.00124 mg/L 0.0002 0.001 SW-99 9/8/2021 Bicarbonate as CaCO3 34.9 mg/L 2 20 SW-99 9/8/2021 Calcium, dissolved 27.8 mg/L 0.1 0.5 SW-99 9/8/2021 Cation-Anion Balance -2.9 %	SW-99	9/8/2021	Zinc, dissolved	0.039	В	mg/L	0.02	0.05
SW-99 9/8/2021 Bicarbonate as CaCO3 34.9 mg/L 2 20 SW-99 9/8/2021 Calcium, dissolved 27.8 mg/L 0.1 0.5 SW-99 9/8/2021 Cation-Anion Balance -2.9 % SW-99 9/8/2021 Hardness as CaCO3 (dissolved) 80 mg/L 0.02 5 SW-99 9/8/2021 Iron, total recoverable 0.0629 mg/L 0.007 0.02 SW-99 9/8/2021 Magnesium, dissolved 2.5 mg/L 0.2 1 SW-99 9/8/2021 Residue, Filterable (TDS) @180C 116 mg/L 0.2 40 SW-99 9/8/2021 Sodium, dissolved 2.14 mg/L 0.2 1 SW-99 9/8/2021 Sulfate 49.7 mg/L 0.2 1 SW-99 9/8/2021 Sum of Anions 1.8 meq/L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SW-99	9/8/2021	Aluminum, total recoverable	0.0641		mg/L	0.005	0.015
SW-99 9/8/2021 Calcium, dissolved 27.8 mg/L 0.1 0.5 SW-99 9/8/2021 Cation-Anion Balance -2.9 % - SW-99 9/8/2021 Hardness as CaCO3 (dissolved) 80 mg/L 0.2 5 SW-99 9/8/2021 Iron, total recoverable 0.0629 mg/L 0.007 0.02 SW-99 9/8/2021 Magnesium, dissolved 2.5 mg/L 0.02 1 SW-99 9/8/2021 Residue, Filterable (TDS) @180C 116 mg/L 0.2 1 SW-99 9/8/2021 Sodium, dissolved 2.14 mg/L 0.2 1 SW-99 9/8/2021 Sulfate 49.7 mg/L 0.2 1 SW-99 9/8/2021 Sum of Anions 1.8 meq/L 2 20 SW-99 9/8/2021 TDS (calculated) 105 mg/L 2 20 SW-99 9/8/2021 TDS (ratio - measured/calculated) 1.1 2 20	SW-99	9/8/2021	Arsenic, total recoverable	0.00124		mg/L	0.0002	0.001
SW-99 9/8/2021 Cation-Anion Balance -2.9 % SW-99 9/8/2021 Hardness as CaCO3 (dissolved) 80 mg/L 0.2 5 SW-99 9/8/2021 Iron, total recoverable 0.0629 mg/L 0.007 0.02 SW-99 9/8/2021 Magnesium, dissolved 2.5 mg/L 0.2 1 SW-99 9/8/2021 Residue, Filterable (TDS) @180C 116 mg/L 20 40 SW-99 9/8/2021 Sodium, dissolved 2.14 mg/L 0.2 1 SW-99 9/8/2021 Sulfate 49.7 mg/L 5 25 SW-99 9/8/2021 Sum of Anions 1.8 meq/L 5 25 SW-99 9/8/2021 Sum of Cations 1.7 meq/L 5 SW-99 9/8/2021 TDS (calculated) 1.05 mg/L 2 20 SW-99 9/8/2021 TDS (ratio - measured/calculated) 1.1 1 5 25 SW-99 9/8/2021 Total Alkalinity 34.9 mg/L 2	SW-99	9/8/2021	Bicarbonate as CaCO3	34.9		mg/L	2	20
SW-99 9/8/2021 Hardness as CaCO3 (dissolved) 80 mg/L 0.0 5 SW-99 9/8/2021 Iron, total recoverable 0.0629 mg/L 0.007 0.02 SW-99 9/8/2021 Magnesium, dissolved 2.5 mg/L 0.2 1 SW-99 9/8/2021 Residue, Filterable (TDS) @180C 116 mg/L 0.2 40 SW-99 9/8/2021 Sodium, dissolved 2.14 mg/L 0.2 1 SW-99 9/8/2021 Sodium, dissolved 2.14 mg/L 0.2 1 SW-99 9/8/2021 Sulfate 49.7 mg/L 5 25 SW-99 9/8/2021 Sum of Anions 1.8 meq/L 1 <td< td=""><td>SW-99</td><td>9/8/2021</td><td>Calcium, dissolved</td><td>27.8</td><td></td><td>mg/L</td><td>0.1</td><td>0.5</td></td<>	SW-99	9/8/2021	Calcium, dissolved	27.8		mg/L	0.1	0.5
SW-99 9/8/2021 Iron, total recoverable 0.0629 mg/L 0.007 0.02 SW-99 9/8/2021 Magnesium, dissolved 2.5 mg/L 0.2 1 SW-99 9/8/2021 Residue, Filterable (TDS) @180C 116 mg/L 0.2 40 SW-99 9/8/2021 Sodium, dissolved 2.14 mg/L 0.2 1 SW-99 9/8/2021 Sulfate 49.7 mg/L 0.2 1 SW-99 9/8/2021 Sulfate 49.7 mg/L 5 25 SW-99 9/8/2021 Sum of Anions 1.8 meq/L 1	SW-99	9/8/2021	Cation-Anion Balance	-2.9		%		
SW-99 9/8/2021 Magnesium, dissolved 2.5 mg/L 0.2 1 SW-99 9/8/2021 Residue, Filterable (TDS) @180C 116 mg/L 20 40 SW-99 9/8/2021 Sodium, dissolved 2.14 mg/L 0.2 1 SW-99 9/8/2021 Solian, dissolved 2.14 mg/L 0.2 1 SW-99 9/8/2021 Sulfate 49.7 mg/L 5 25 SW-99 9/8/2021 Sum of Anions 1.8 meq/L SW-99 9/8/2021 Sum of Cations 1.7 meq/L SW-99 9/8/2021 TDS (calculated) 105 mg/L SW-99 9/8/2021 TDS (ratio - measured/calculated) 1.1 SW-99 9/8/2021 Total Alkalinity 34.9 mg/L 2 20 SW-99 9/8/2021 Dissolved Oxygen (field) 86.7 % SW-99 9/8/2021 Rey (field) (field) 306.4 mV	SW-99	9/8/2021	Hardness as CaCO3 (dissolved)	80		mg/L	0.2	5
SW-99 9/8/2021 Residue, Filterable (TDS) @180C 116 mg/L 20 40 SW-99 9/8/2021 Sodium, dissolved 2.14 mg/L 0.2 1 SW-99 9/8/2021 Sulfate 49.7 mg/L 5 25 SW-99 9/8/2021 Sum of Anions 1.8 meq/L SW-99 9/8/2021 Sum of Cations 1.7 meq/L SW-99 9/8/2021 TDS (calculated) 105 mg/L SW-99 9/8/2021 TDS (ratio - measured/calculated) 1.1 SW-99 9/8/2021 Tots (ratio - measured/calculated) 1.1 SW-99 9/8/2021 Total Alkalinity 34.9 mg/L 2 20 SW-99 9/8/2021 Dissolved Oxygen (field) 86.7 % SW-99 9/8/2021 Flow 3.62 CFS SW-99 9/8/2021 PH (field) (field) 306.4 mV </td <td>SW-99</td> <td>9/8/2021</td> <td>Iron, total recoverable</td> <td>0.0629</td> <td></td> <td>mg/L</td> <td>0.007</td> <td>0.02</td>	SW-99	9/8/2021	Iron, total recoverable	0.0629		mg/L	0.007	0.02
SW-99 9/8/2021 Sodium, dissolved 2.14 mg/L 0.2 1 SW-99 9/8/2021 Sulfate 49.7 mg/L 5 25 SW-99 9/8/2021 Sum of Anions 1.8 meq/L SW-99 9/8/2021 Sum of Cations 1.7 meq/L SW-99 9/8/2021 TDS (calculated) 105 mg/L SW-99 9/8/2021 TDS (ratio - measured/calculated) 1.1 mg/L 2 20 SW-99 9/8/2021 Total Alkalinity 34.9 mg/L 2 20 SW-99 9/8/2021 Dissolved Oxygen (field) 86.7 % SW-99 9/8/2021 Flow 3.62 CFS SW-99 9/8/2021 ORP (field) (field) 306.4 mV SW-99 9/8/2021 pH (field) 7.63 units 0.1 0.1 SW-99 9/8/2021 Specific Conductance (field) 182.6 uS/cm	SW-99	9/8/2021	Magnesium, dissolved	2.5		mg/L	0.2	1
SW-99 9/8/2021 Sulfate 49.7 mg/L 5 25 SW-99 9/8/2021 Sum of Anions 1.8 meq/L SW-99 9/8/2021 Sum of Cations 1.7 meq/L SW-99 9/8/2021 TDS (calculated) 105 mg/L SW-99 9/8/2021 TDS (ratio - measured/calculated) 1.1 SW-99 9/8/2021 Total Alkalinity 34.9 mg/L 2 20 SW-99 9/8/2021 Dissolved Oxygen (field) 86.7 % SW-99 9/8/2021 Dissolved Oxygen (field) 3.62 CFS SW-99 9/8/2021 Ried 306.4 mV SW-99 9/8/2021 pH (field) (field) 306.4 mV SW-99 9/8/2021 pH (field) field 182.6 units 0.1 0.1	SW-99	9/8/2021	Residue, Filterable (TDS) @180C	116		mg/L	20	40
SW-99 9/8/2021 Sum of Anions 1.8 meq/L meq/L SW-99 9/8/2021 Sum of Cations 1.7 meq/L meq/L SW-99 9/8/2021 TDS (calculated) 105 mg/L meq/L SW-99 9/8/2021 TDS (ratio - measured/calculated) 1.1 mg/L 2 SW-99 9/8/2021 Total Alkalinity 34.9 mg/L 2 20 SW-99 9/8/2021 Dissolved Oxygen (field) 86.7 % 1	SW-99	9/8/2021	Sodium, dissolved	2.14		mg/L	0.2	1
SW-99 9/8/2021 Sum of Cations 1.7 meq/L meq/L SW-99 9/8/2021 TDS (calculated) 105 mg/L mg/L SW-99 9/8/2021 TDS (ratio - measured/calculated) 1.1 mg/L 2 SW-99 9/8/2021 Total Alkalinity 34.9 mg/L 2 20 SW-99 9/8/2021 Dissolved Oxygen (field) 86.7 % 4 SW-99 9/8/2021 Dissolved Oxygen (field) 3.62 CFS 4 SW-99 9/8/2021 ORP (field) (field) 306.4 mV 4 SW-99 9/8/2021 pH (field) 7.63 units 0.1 0.1 SW-99 9/8/2021 specific Conductance (field) 182.6 uS/cm 0.1	SW-99	9/8/2021	Sulfate	49.7		mg/L	5	25
SW-99 9/8/2021 TDS (calculated) 105 mg/L mg/L SW-99 9/8/2021 TDS (ratio - measured/calculated) 1.1	SW-99	9/8/2021	Sum of Anions	1.8		meq/L		
SW-99 9/8/2021 TDS (ratio - measured/calculated) 1.1 mg/L 2 20 SW-99 9/8/2021 Total Alkalinity 34.9 mg/L 2 20 SW-99 9/8/2021 Dissolved Oxygen (field) 86.7 % 0 0 SW-99 9/8/2021 Dissolved Oxygen (field) 3.62 CFS 0 0 SW-99 9/8/2021 Flow 3.62 CFS 0 0 0 SW-99 9/8/2021 ORP (field) (field) 306.4 mV 0 0 SW-99 9/8/2021 pH (field) (field) 7.63 units 0.1 0.1 SW-99 9/8/2021 Specific Conductance (field) 182.6 uS/cm 0 0	SW-99	9/8/2021	Sum of Cations	1.7		meq/L		
SW-99 9/8/2021 Total Alkalinity 34.9 mg/L 2 20 SW-99 9/8/2021 Dissolved Oxygen (field) 86.7 % 6 6 SW-99 9/8/2021 Flow 3.62 CFS 6 6 6 SW-99 9/8/2021 RP (field) (field) 306.4 mV 6 6 6 6 SW-99 9/8/2021 PH (field) (field) 7.63 units 0.1 0.1 SW-99 9/8/2021 Specific Conductance (field) 182.6 uS/cm 6 6	SW-99	9/8/2021	TDS (calculated)	105		mg/L		
SW-99 9/8/2021 Dissolved Oxygen (field) 86.7 % SW-99 9/8/2021 Flow 3.62 CFS SW-99 9/8/2021 ORP (field) (field) 306.4 mV SW-99 9/8/2021 pH (field) (field) 7.63 units 0.1 0.1 SW-99 9/8/2021 pEcific Conductance (field) 182.6 uS/cm	SW-99	9/8/2021	TDS (ratio - measured/calculated)	1.1				
SW-99 9/8/2021 Flow 3.62 CFS SW-99 9/8/2021 ORP (field) (field) 306.4 mV SW-99 9/8/2021 DRP (field) (field) 7.63 units 0.1 0.1 SW-99 9/8/2021 Specific Conductance (field) 182.6 uS/cm	SW-99	9/8/2021	Total Alkalinity	34.9		mg/L	2	20
SW-99 9/8/2021 ORP (field) (field) 306.4 mV mV SW-99 9/8/2021 pH (field) 7.63 units 0.1 0.1 SW-99 9/8/2021 Specific Conductance (field) 182.6 uS/cm 0.1	SW-99	9/8/2021	Dissolved Oxygen (field)	86.7		%		
SW-99 9/8/2021 pH (field) 7.63 units 0.1 0.1 SW-99 9/8/2021 Specific Conductance (field) 182.6 uS/cm 0	SW-99	9/8/2021	Flow	3.62		CFS		
SW-99 9/8/2021 Specific Conductance (field) 182.6 uS/cm	SW-99	9/8/2021	ORP (field) (field)	306.4		mV		
	SW-99	9/8/2021	pH (field)	7.63		units	0.1	0.1
SW-99 9/8/2021 Water Temperature (field) 13.5 C	SW-99	9/8/2021	Specific Conductance (field)	182.6		uS/cm		
	SW-99	9/8/2021	Water Temperature (field)	13.5		С		

U - material was analyzed for but was not detected above the sample detection limit
•	Sample	Collection	Analyte	Result	Lab	Units	MDL	PQL
L	ocation	Date	Analyte	Result	Qualifier			
D Analyte concentrations detected at a value between the MDL and DOL. The associated value is estimated						-		

B - Analyte concentrations detected at a value between the MDL and PQL. The associated value is estimated

L - Target analyte response was below the laboratory defined negative threhold

H - Analysis exceeded method hold time. pH is a field test with an immediate hold time

Maps

Attachment 3

Updated Appendices

Updated Appendix 2

SWMP

REVENUE MINE

STORMWATER MANAGEMENT PLAN

Amended May 2022

In Conformance with the Guidelines set by:

Colorado Department of Public Health and Environment Water Quality Control Division

> CDPS General Permit COR-040000 Certificate COR-040289

STORMWATER MANAGEMENT PLAN (SWMP)

Facility Name:	Revenue Mine		
Facility Type:	Underground mine and mill		
Date Initial Operations Started:	Est. September 2021		
Facility Mailing Address:	Ouray Silver Mines Inc.		
	1900 Main St. Unit 1		
	PO Box 564		
	Ouray, CO 81427		
Facility Location Address:	Ouray Silver Mines Inc Revenue Mine		
	1416 County Rd. 26		
	Ouray, CO 81427		
	Monongahela / Hubb Reed Raise		
	Governor Basin, Ouray County		

Management Approval Statement:

This Stormwater Management Plan (SWMP) is fully supported by the management of Ouray Silver Mines Inc. (OSMI). OSMI will implement this plan and amend it as needed due to expansion, modifications and improvements at the facility. I certify under penalty of law that a completed SWMP, in compliance with Part I.B of the permit, has been prepared and implemented for my facility. Based upon my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the SWMP is, to the best of my knowledge and belief, true, accurate, and complete, and implemented as written. I am aware that there are significant penalties for falsely certifying the completion of said SWMP, including the possibility of fine and imprisonment for knowing violations.

Name:	Charles R. Andrews, CEO
	n. An. D.
Signature	Mera Jaten
Date:	5-23-2022

SWMP ADMINISTRATOR

The SWMP Administrator is responsible for the daily Stormwater Management Plan administration at this site.

This designated person is: Todd Jesse Environmental Specialist

Telephone 970-325-9830.

Table of Contents

1	IN	TROD	UCTION
2	DESCRIPTION OF MINING ACTIVIT		PTION OF MINING ACTIVITIES6
	2.1	UN	DERGROUND MINING
	2.2	UN	DERGROUND PROCESSING6
	2.3	SU	RFACE FACILITIES
3	AR	REA SU	JBJECT TO EFFLUENT LIMITATIONS GUIDLINES7
4	SIT	TE MA	Ρ8
5	ST	ORM	WATER MANAGEMENT CONTROLS9
	5.1	Ide	ntification of Potential Pollutant Sources9
	5.2	Che	emical and Fuel Storage Areas10
	5.3	Sto	rmwater Management Best Management Practices (BMPs)10
	5.3	3.1	Run-on Controls / Stormwater Diversions10
	5.3	3.2	Passive Mine Water Treatment10
	5.3	3.3	Sediment and Erosion Controls11
	5.3	3.4	Materials Handling and Spill Prevention12
	5.4	Pre	eventive Maintenance
	5.5	Go	od Housekeeping13
	5.6	Spi	Il prevention and response procedures14
	5.7	Em	ployee education14
	5.8	Ide	ntification of discharges other than stormwater14
6	CC	OMPRI	EHENSIVE INSPECTION14
7	CC	ONSIST	FENCY WITH OTHER PLANS14

- Appendix A Sediment Pond Calculations
- Appendix B Site Maps
 - Revenue Portal Site Map
 - Monongahela / Hubb Reed Shaft Area Site Map

1 INTRODUCTION

This Stormwater Management Plan (SWMP) is used to mitigate potential impacts to Waters of the U.S. (i.e., Sneffels Creek) resulting from mining and milling operations at the Revenue Mine by Ouray Silver Mines Inc. in Ouray County, Colorado. The Revenue Mine includes surface activities at the main Revenue Portal and surface activities associated with the Monongahela / Hubb Reed Raise located in Governor Basin. Two other permitted areas, the Yellow Rose and the 960 Raise have not been constructed and are not discussed in this SWMP. The plan will be updated prior to these facilities being constructed.

Key elements of the SWMP are as follows:

- *Stormwater* from rainfall or snowmelt will pass through the site on its way to Sneffels Creek. All disturbed areas have collection systems in place that will direct runoff to the passive water treatment system where sediment settles, preventing sediment discharge. See the SWMP Map.
- Sediment is classified by the State as a potential pollutant, therefore all disturbed area runoff is diverted to either the passive water treatment system or sediment control ponds to prevent sediment being contributed to Sneffels Creek.
- The best method of managing site runoff water quality is to *remove and properly dispose of any site contaminants* that could be transported by stormwater runoff. Activities that have the potential to produce non-sediment pollutants will be restricted to in-door facilities with sufficient internal sump capacity to prevent discharge.
- *On-site Stormwater* (stormwater contacting the surface activity area of the mine) shall be contained within the mine and routed to a sediment pond before being discharged into Sneffels Creek.
- Any discharge of On-Site Stormwater to surface waters or to groundwater will be regulated through the Water Quality Control Division for discharges of stormwater or process water associated with hardrock mining and/or milling. Revenue Mine has a stormwater permit certification, COR-040289, which is part of the general permit COR-040000. OSMI also has a discharge permit (CO-0000003) to allow discharge of treated mine water and some stormwater to Sneffels Creek.
- OSMI manages the site in a manner that does not require stormwater discharge. However, should a discharge occur, such discharge will be sampled in accordance with the stormwater certification.

2 DESCRIPTION OF MINING ACTIVITIES

The Revenue Mine is located along Ouray County Road 26 (approximately five miles southwest of Ouray, CO) at latitude 37.97400° N and longitude 107.75076° W. The site is bordered by Sneffels Creek to the north and mountains of the San Juan range to the south. The total permitted area is approximately 50 acres, of which approximately 38 acres are considered disturbed. The mine area has been extensively disturbed from historic mining activities since the late 1880's.

Metal mining operations are performed pursuant to a Division of Reclamation Mining and Safety (DRMS) Section 112d Designated Mining Operation Permit known as the "Revenue Mine" Permit M-2012-032. Ouray Silver Mines Inc. is permitted for the following activities at the Revenue Mine site:

- Underground mining
- Underground processing of ore
- Surface facilities to support underground mining and ore processing activities Fuel and Chemical Storage

The mine is considered a designated mining operation (DMO), which means the mine must adhere to more stringent environmental controls associated with designated chemicals and acid forming materials (i.e., mill reagents and acid mine drainage).

The following activities are permitted at the Monongahela/Hubb Reed Area located in Governor Basin.

- Secondary escapeway
- Refuge chamber
- Exhaust fan

2.1 UNDERGROUND MINING

Mine development and production mining occurs underground approximately 1 mile from the main portal. Underground mining activities include developing drifts, stopes, and other excavations for the purpose of producing ore. Underground mining activities also include drilling, blasting, excavating, and hauling of materials. None of these activities will be exposed to stormwater runoff. Water used in the mining process reports to the main Revenue Ditch, which exits the mine via the Revenue Portal and is treated in a passive mine water treatment system prior to discharge pursuant to a Colorado Discharge Permit System (CDPS) industrial wastewater permit (CO-0000003).

2.2 UNDERGROUND PROCESSING

Mined ore is hauled to the ore processing area, also located underground, where it is dumped into the ore handling system, crushed and conveyed to the flotation circuit. The crushing and milling circuit is located entirely underground. Tailings from the milling process are transferred to a filter press in the Mill Building, which is attached to the underground milling operations.

Ore processing and related activities are conducted either underground or inside a building and therefore are not exposed to stormwater runoff.

Tailings that have gone through a filter press are hauled to one of two tailings storage facilities (TSFs) (i.e., the Revenue TSF or the Atlas TSF) for permanent placement. The TSFs are located on the surface and are equipped with stormwater controls (See Site Map for details).

2.3 SURFACE FACILITIES

The surface facilities used to support underground mining and processing are shown on the site map and consist of the following:

Main Revenue Portal Area:

- administration building / dry (change house)
- two material storage warehouses
- mill building (attached to underground mill)
- Reagent room building
- Waste storage pad/shed
- Propane sheds
- Temporary lineout building
- Railyard building
- Crusher and waste rock stockpile area
- Security building (temporary building)
- Lay down areas
- Passive mine water treatment system
- Access roads
- Tailings Storage Facilities (described in Section 2.2)

Monongahela/Hubb Reed Governor Basin Area:

- Hoist house
- Shaft
- Buried refuge chambers
- Access roads

The facilities at the Revenue Mine are constructed within permitted disturbance areas per the DRMS Permit No. M-2012-032 and have run on and runoff control systems.

3 AREA SUBJECT TO EFFLUENT LIMITATIONS GUIDLINES

The Revenue Mine is subject to Federal Effluent Limitation Guidelines (ELGs) as described in 40 CFR Part 440 Ore Mining and Dressing Point Source Category, Subpart J, Copper, Lead, Zinc, Gold, Silver, and Molybdenum Subpart. Only a portion of the entire DRMS permitted area is disturbed. This SWMP provides stormwater controls for the areas where stormwater may come into contact with industrial activities as defined by Regulation 61 and Rule 6.4.21 of the

Hardrock Rules. The general area subject to effluent limitations totals approximately 43 acres and is shown on the Site Map provided in Appendix B.

This SWMP addresses stormwater associated with an industrial activity as defined by 5 CCR 1002-61, Colorado Discharge Permit System Regulations (Regulation 61), which states, "Stormwater discharge associated with industrial activity means the discharge from any conveyance, which is used for collecting and conveying stormwater and which is directly related to manufacturing, processing or raw materials storage areas at an industrial plant.

Regulation 61 further defines Facilities classified as Standard Industrial Classifications 10 through 14 (mineral industry) including active or inactive mining operations (metal mining is SIC Code 10) and oil and gas exploration, production, processing, or treatment operations, or transmission facilities that discharge stormwater contaminated by contact with or that has come into contact with, any overburden, raw material, intermediate products, finished products, byproducts or waste products located on the site of such operations."

Regulation 61 limits the area subjected to industrial activities for mining operations by the following section 61.3(2)(c), "The Division may not require a permit for discharges of stormwater runoff from mining operations or oil and gas exploration, production, processing or treatment operations or transmission facilities, composed entirely of flows which are from conveyances or systems of conveyances (including but not limited to pipes, conduits, ditches, and channels) used for collecting and conveying precipitation runoff and which are not contaminated by contact with or that have not come into contact with, any overburden, raw material, intermediate products, finished product, byproduct or waste products located on the site of such operations."

The Revenue Mine permit area has several run-on control features that convey stormwater from native hillsides around the disturbance areas and therefore, this runoff is not contaminated by contact with, nor has it come into contact with overburden, raw materials, etc.

Only the stormwater associated with an industrial activity is covered by this SWMP.

4 SITE MAP

There are two site maps in Appendix B of this SWMP. One map is for the main Revenue Mine Area and the other is for the Monongahela/Hubb Reed area in Governor Basin. Note the disturbance area at the Monongahela/Hubb Reed permit area is less than 0.5 acres and is therefore not included in OSMI's stormwater permit. However, OSMI's DRMS permit requires stormwater designs within the permit boundary. To simplify plans, OSMI has included the Monongahela / Hubb Reed area in this SWMP. The site maps depict the following features:

- Mine/mill site boundary, access and haul roads
- Equipment storage, fueling and maintenance areas
- Materials handling areas
- Areas used for storage of development rock, materials, soils or wastes

- Location of mine drainage and treatment system
- Tailings storage facilities
- Structural control measures used to reduce pollutants in stormwater runoff
- Springs, streams, wetlands and other surface waters
- Boundary of area that contributes runoff to outfalls that are subject to ELG; and
- All areas of soil disturbance.

The Site Map(s) also show the following information for those areas outside the area that contributes runoff to outfalls that are subject to ELGs

- An estimate of the direction of surface flow
- Stormwater outfalls and approximate area that drains to each outfall
- Location of impervious structures
- Locations of surface water bodies
- Location of potential pollutant sources.

5 STORMWATER MANAGEMENT CONTROLS

The following section describes the various controls used to manage stormwater at the Revenue Mine. Specifically,

- Identification of potential pollutant sources along with associated control measures and best management practices (BMPs).
- preventive maintenance used to maintain controls and BMPs,
- housekeeping measures
- spill prevention and response procedures
- employee education
- identification of discharges other than stormwater

5.1 Identification of Potential Pollutant Sources

The following potential pollutant sources have been identified at the site:

- Surface crushing facility
- equipment storage and laydown areas
- tailings storage facilities
- waste rock and topsoil storage areas
- access roads and haul roads
- reagent offloading areas
- fueling station(s), and
- other disturbed areas.

5.2 Chemical and Fuel Storage Areas

Various oil containing tanks and drums and several mill reagents are stored at the Revenue Mine. These tanks and containers have secondary containment either through structures directly surrounding the tanks or as a portable spill pallet.

The capacities of the oil containers present at the site are discussed in the mine's SPCC Plan. Locations of fueling area are shown on the Site Map. At various times, chemicals for the milling operation will be unloaded on the surface and transported into the mill building reagent room.

The Environmental Protection Plan discusses the management of mill chemicals and the controls in place to prevent a release. The regent room has an epoxy coated floor with vertical curbs to prevent release, as well as a concrete apron and sump pump. If for any reason, chemicals exit the filter building this system will capture the spill and pump it back to the reagent room.

5.3 Stormwater Management Best Management Practices (BMPs)

The following stormwater controls and BMPs are used to reduce the potential for the pollutant sources to contribute pollutants to stormwater discharges.

5.3.1 <u>Run-on Controls / Stormwater Diversions</u>

Stormwater not associated with an industrial activity (i.e., stormwater that has not come into contact with overburden, raw materials, etc.) is diverted around disturbed areas and directed to natural waterways. These stormwater diversions are shown as Stormwater Diversion Ditch #1 and Stormwater Diversion Ditch #2 on the Revenue Site Map and generally convey surface run-on from undistributed areas to the south of the main mine site around the process areas to natural wetlands located on the western portion of the site. This practice reduces the volume of stormwater that may come into contact with the pollutant sources identified in Section 5.1.

5.3.2 Passive Mine Water Treatment

Stormwater runoff associated with the Revenue TSF is directed towards the passive mine water treatment system where it is comingled with mine water and discharged pursuant to a CDPS individual permit (CO-0000003). The treatment system ponds have been over designed to accommodate the 10-year 24-hour storm event plus sediment storage.

The passive water treatment system and sediment pond are designed to contain the full stormwater runoff from a 10-year 24-hour event plus sediment storage volume. The drainage area to Mine Pond 1 is 3.319 acres, the drainage to Mine Pond 2 is 4.475 acres and the drainage area to the proposed Sediment Pond #2 is 6.955 acres. Mine Pond 2 is a sulfate reducing bioreactor that removes metals from the water. Mine Pond 2 discharges to Mine Pond 3, but also has an emergency spillway Stormwater Outfall 001. Mine Pond 3 discharges to Sneffels Creek via OF002A, as shown on the SWMP Map.

The Mine Water Ponds contain water that flows from historical tunnels from the Revenue Mine. Outfall 001A is no longer in use as mine water is directed through the passive water treatment system and discharges to Sneffels Creek at Outfall 002A.

Sneffels creek upstream of the mine is highly mountainous and drains an area of approximately 3,927 acres. No off-site areas drain to the sediment ponds since a diversion ditch is employed to ensure that runoff from the mountains to the south does not enter the site.

5.3.3 Sediment and Erosion Controls

Several sediment control ponds are used to managed runoff from the Atlas TSF and the general process area. Sediment Pond #1 was designed to control runoff from the Atlas TSF. Stormwater and snow melt that comes into contact with the tailings and waste rock placed in the Atlas TSF is directed towards Sediment Pond #1 where it is allowed to evaporate. At this point, this sediment pond is a non-discharging facility, however, when the Stormwater Certification is renewed, an emergency stormwater spillway will be added as a stormwater outfall subject to ELGs.

A second sediment capture area is located near the guard shack at the main entrance to the mine. Stormwater that comes into contact with the buildings and process area is conveyed via a ditch along the main access road to a small depression where it is allowed to infiltrate / evaporate. This area will be converted into a more defined sediment control pond in 2022.

Currently a coarse aggregate berm borders the mine site and Sneffels Creek. The berm is used to intercept and divert runoff from areas where the stormwater might cause erosion and/or interfere with the establishment of vegetation.

Sediment control measures located around the site will have a sediment barrier consisting of a row of entrenched and anchored erosion bales (or wattles). Erosion bales hold up to the extreme winter conditions at the mine site. Life of the bales is approximately one year by the industry standard. Bales may be replaced sooner if the control provides inefficient support or does not intercept, slow or detain the flow of stormwater to allow sediment to settle and be trapped.

Erosion bales will be either wire-bound or string-tied and will be installed so that bindings are oriented around the sides rather than along the tops and bottoms of the bales, to prevent deterioration of erosion bale bindings. To prevent water from escaping between the bales, the area will be filled with straw, therefore obtaining tight joints. Loose straw will be scattered over the area uphill from an erosion bale barrier to increase barrier efficiency.

Inspections of bales will be conducted during SWMP inspections. Repairs will be made promptly as needed. Erosion/Sediment accumulation against the erosion bale barrier will be removed when it reaches half the exposed bale height. Erosion bales as an industry standard have an expected life of one year therefore will be replaced at a minimum of once each year.

Controls are noted on the Site Map. Erosion logs, wattles and silt fencing will be installed to manufacturer's specifications and replaced as needed. Controls are inspected during routine SWMP inspections and deficiencies noted and corrected as soon as practically possible.

Sediment controls in place at the Monongahela/Hubb Reed area in Governor Basin include:

- Stormwater diversion ditches to convey stormwater around a portion of the permitted area.
- Stormwater channel to convey stormwater from the buildings (and area approximately ¼ of an acre) to a sediment control feature.

5.3.4 Materials Handling and Spill Prevention

Chemical reagents used in the milling process and petroleum products used for rolling stock are managed to reduce the risk to the environment from spills and other incidents. The company maintains a Spill Prevention Control and Countermeasure Plan (SPCC Plan) to manage petroleum products on site and an Environmental Protection Plan (EPP) and a Materials Containment Plan (MCP) to manage other chemicals and reagents. Spill kits are available at several locations including:

- A 35-gallon spill kit will be kept on site near the 10,000 gallon & 1,000 gallon fuel tanks (C1).
- A 55-gallon spill kit will be kept on site in the Materials Storage Warehouse (C-3)
- A 55-gallon spill kit will be kept on site in the Waste Storage Pad (C-4)
- A 35 gallons spill kit will be kept on site near the Underground Loci Barn (C-6)
- A 35-gallon spill kit will be kept on site in the Underground Shop (C-7)
- A 55-gallon spill kit will be kept on site in the Reagent Room (C-8)
- A 35-gallon spill kit will be kept on site near the 10,000 gallon fuel tank for generators (C-9)
- A 35-gallon spill kit will be kept on site near the rock drill oil on the 1800 level (C-10)
- A 55-gallon spill kit will be kept on site in the mill (C-11)

As shown on the Site Map, the mill is entirely underground. Several chemicals will be used in the milling process, primarily in flotation of the sulfide minerals. The two main mill tunnels will be graded to drain to a central sump, so that any chemical spill that could possibly occur would never enter the mine water discharge and consequently, the site discharge. This central sump will have a capacity of 3000 gallons, which is far more than any of the chemical tanks that will be stored in the mill area.

<u>Mill Chemicals</u>

Aero 242 Promoter- 0.01 lb/ton Aerophine 3418- 0.02 lb/ton Copper Sulfate (CuSO4)-0.22 lb/ton Hydrated Lime- 5.36 lb/ton Sodium Metabisulfite [MBS]- 0.53 lb/ton MIBC [Frother]- 0.23 lb/ton SIPX- 0.04 lb./ton Zinc Sulfate (ZnSO4)- 0.53 lb./ton Flocculant [all thickeners]- .1 lb./ton

The SDS sheets for these chemicals are available in a central location on site. These chemicals will be stored in factory containers of no greater than 1 ton each.

There are no materials or chemicals managed at the Monongahela / Hubb Reed area in Governor Basin.

5.4 Preventive Maintenance

Inspection and maintenance practices are:

- At a minimum, Spring and Fall comprehensive site inspections are performed at the Revenue Site to evaluate whether the sediment control structures are functioning correctly. This includes ditches, ponds and culverts.
- Inspections at the Monongahela / Hubb Reed area are limited to when access to the site is available.
- Access roads and haul roads are maintained to minimize erosion and sheet flow.
- A rock berm that surrounds the site is maintained to prevent stormwater from leaving the site in places other than permitted.
- Other SW controls such as straw bales, wattles, and silt fences are inspected during the regularly scheduled inspections as well as after each significant storm event.
- The emergency spillways at each pond will be checked for erosion or sediment buildup.

Additional routine inspections of work areas, waste storage areas, reagent unloading areas, the treatment ponds, etc. are performed on a more frequent basis. Issues noted during inspections are reported to the surface maintenance department for correction.

5.5 Good Housekeeping

The following good housekeeping practices will be employed at the site:

- Substances stored on-site are stored in a neat, orderly manner in their appropriate containers.
- Open containers of designated chemicals and other materials are stored under a roof or other enclosure to prevent mixing with stormwater.
- The General Manager is responsible for day-to-day site operations and directing spill prevention, cleanup, and reporting.
- Used oil is stored within 55-gallon drums on secondary containment and within an enclosed building to prevent mixing of stormwater and oil.
- If drip pans are used, they will be cleaned on a regular basis and not allowed to fill with stormwater.
- Equipment laydown areas are orderly and equipment that has the potential to impact stormwater runoff is stored inside or at the main warehouse in Ouray.
- Roads are maintained on a regular basis to prevent erosion.
- Dumpsters are hauled off site and trash is disposed of in a solid waste landfill.

5.6 Spill prevention and response procedures

Spills on the Revenue site are most likely to happen at the 10,000-gallon tank, during reagent unloading, or from a piece of equipment during maintenance. Containers greater than 55 gallons have secondary containment capable of containing at least 110% of the largest full tank capacity. Details on the spill prevention and spill cleanup procedures can be found in the SPCC plan. Spill kits are kept on site near each of the areas where hydrocarbons and reagents are stored to facilitate cleanup in case of a spill.

5.7 Employee education

Employees are provided training on stormwater matters during the new miner and annual refresher training required by MSHA. The training provides general awareness of on appropriate stormwater management, spill response, good housekeeping and materials storage practices Employees also are trained on what to do and who to contact in case of a spill, a failure of a BMP or identification of erosion features on site.

Records of new miner and annual refresher training are maintained on the MSHA 5000-23 form, which are maintained by safety department. The training materials used for this training are maintained by the environmental department.

5.8 Identification of discharges other than stormwater

There are two permitted mine water discharge points on site, Outfalls 001A and 002A, which are permitted as industrial discharges under CDPS Permit CO-0000003. Outfall 001A is located at the end of Mine Water Pond #1 and currently is not used for discharging but has been maintained as a permitted outfall in case there is a need to discharge at that location. Outfall 002A is located at the end of Mine Water Pond #3 and discharges directly to Sneffels Creek. This outfall is comingled mine water and some stormwater.

6 COMPREHENSIVE INSPECTION

The SWMP Administrator or his/her designee performs regular inspections of the site for stormwater management controls, spill control, maintenance, good housekeeping, and cleanup. Inspections during the Spring and Fall of each year are performed in accordance with the stormwater permit. Records of such inspections shall be maintained in files at the site together with the SWMP Plan. The inspections shall incorporate a complete review of Control Measures outlined in this plan and will report on any Control Measures that are not functioning and/or require maintenance. Any discharges that are out of compliance with the stormwater permit shall also be reported with corrective actions outlined.

7 CONSISTENCY WITH OTHER PLANS

OSMI maintains separate plans, including an SPCC Plan, an MCP, and an Environmental Protection Plan that cover spill prevention and controls for petroleum-based products and process-related chemicals, respectively. This SWMP is consistent with these other plans.

APPENDIX - A FLOW MEASUREMENTS AND CALCULATIONS

Stormwater associated with an industrial activity is routed to one of two sediment control ponds or to one of the Mine Water Ponds, which is part of the passive mine water treatment system. The following design calculations demonstrate that the capacity of the sediment control and treatment ponds are more than enough to contain the 10-year/24-hour storm event.

Ditches that collect runoff from the various portions of the disturbed area are designed to direct the stormwater into the sediment control ponds, which have trapezoidal emergency spillways built into the top of the embankment to allow the ponds to safely pass the 25-year peak

Discharge from these sediment control ponds is not expected during the life of the mine as they are overdesigned for the areas they are to control

The stormwater volume was determined using the calculations below as described in the "Procedures for Determining Peak Flows in Colorado", which includes and supplements Technical Release No. 55 "Urban Hydrology for Small Watersheds." If discharge or stormwater is required, sediment will be controlled by keeping the pump lower than the working area and by having gravel berms to prevent silty water from the bottom of the pond from entering the pump directly.

	Hydrologic Soil Group
Group A Soils:	High infiltration (low runoff). Sand, loamy sand, or sandy loam.
	Infiltration rate > 0.3 inch/hr. when wet.
Group B Soils:	Moderate infiltration (moderate runoff). Silt loam or loam. Infiltration
	rate 0.15 to 0.3 inch/hr. when wet.
Group C Soils:	Low infiltration (moderate to high runoff). Sandy clay loam. Infiltration
	rate 0.05 to 0.15 inch/hr. when wet.
Group D Soils:	Very low infiltration (high runoff). Clay loam, silty clay loam, sandy clay,
	silty clay, or clay. Infiltration rate 0 to 0.05 inch/hr. when wet.

Runoff Curve Numbers (CN) for Watershed Area Draining to Mine Pond 1 (3.319 acres)DescriptionHydrologic Soil Group Area (acres)CN

Disturbed Land	Group C Soils	3.319	87

An area of 3.319 acres will drain to the discharge point of Pond 1 for the worst-case disturbance of this area.

The storage volume to prevent discharge is calculated as the volume between the Peak Stage of Pond #1 and the spillway. The calculations assume that the ponds are at Peak Stage:

The following areas were calculated using a scaled map from 2022 in AutoCAD which was used to create the SWMP Map.

By: T Jesse Date: 05/20/22 Location: Revenue Mine					
1. Runoff Curve Number (CN) Cover description Mined Land, Disturbed (Poor)	CN 87	Soil Group C	Area (Acre) 3.319		
CN (weighted): 87.0 Total Area: 3.319 Acre					
S = (1000/CN) - 10 Q = [(P	– 0.2 S)2] / (P + 0.8 S)	(Bedient & Huber, 1989)		
Where: S – potential abstraction (term is related to soil type and moisture condition) CN – the curve number varies dependent on soil group and moisture condition. Q – Direct runoff (excess rainfall) in inches P – Rainfall depth, inches					

After calculating Q, multiply by watershed area to get volume

2. Runoff	
Return Period:	10-Year
Rainfall, P:	2.60 in
Runoff <i>,</i> Q:	1.2126 in
Runoff Volume:	0.335 Acre-Ft

The available storage volume of Pond 1 is 0.78 acre-feet therefore the pond is adequately sized.

Runoff Curve Numbers (CN) for Watershed Area Draining to Mine Pond 2 (4.475 acres)DescriptionHydrologic Soil Group Area (acres)CN

Disturbed Land	Group C Soils	4.475	87

An area of 4.475 acres will drain to the discharge point of Pond 2 for the worst-case disturbance of this area.

The storage volume to prevent discharge is calculated as the volume between the Peak Stage of Pond #2 and the spillway. The calculations assume that the ponds are at Peak Stage:

The following areas were calculated using a scaled map from 2022 in AutoCAD which was used to create the SWMP Map.

By: T Jesse Date: 05/20/22 Location: Revenue Mine 1. Runoff Curve Number (CN) Cover description Soil Group CN Area (Acre) Mined Land, Disturbed (Poor) 87 С 4.475 CN (weighted): 87.0 Total Area: 4.475 Acre S = (1000/CN) - 10Q = [(P - 0.2 S)2] / (P + 0.8 S)(Bedient & Huber, 1989) Where: S – potential abstraction (term is related to soil type and moisture condition) CN – the curve number varies dependent on soil group and moisture condition.

Q – Direct runoff (excess rainfall) in inches

P – Rainfall depth, inches

After calculating Q, multiply by watershed area to get volume

10-Year
2.60 in
1.2126 in
0.452 Acre-Ft

The available storage volume of Pond 2 is 1.054 acre-feet therefore the pond is adequately sized.

Runoff Curve Numbers (CN) for Watershed Area Draining to Proposed Sediment Pond #2 (6.995 acres)

Description	Hydrologic Soil Group Area (acres	s) CN
Disturbed Land	Group C Soils 6.95	5 87

An area of 6.955 acres will drain to the proposed Sediment Pond #2 for the worst-case disturbance of this site.

The storage volume to prevent discharge is calculated as the volume of the main pit above the water table. The water table lies greater than 5 feet below the surrounding surface. This scenario assumes that the pump is not working and the pond has filled to equilibrium level. The area of lower pond that will have the 5 feet of available height is calculated below:

The following areas were calculated using a scaled map image from 2011 in Survcad.

By: T Jesse Date: 05/20/2022 Location: Revenue Mine

1. Runoff Curve N Cover description Mined Land, Distu	CN 87	Soil Type C	Area 6.955	
CN (weighted): Total Area: 6	87.0 .955 Acre			
2. Runoff				
Return Period:	10-Year			
Rainfall, P:	2.60 in			
Runoff, Q: 1.2126 in				
Runoff Volume:	0.703 Acre	e-Ft		

The available storage volume of Proposed Sediment Pond #2 is a minimum of 0.88-acre feet therefore the pond is adequately sized.

Runoff Curve Numbers (CN) for Watershed Area Draining to Sediment Pond 1 (2.83 acres)DescriptionHydrologic Soil Group Area (acres)CN

	o oo ''		~-
Disturbed Land	Group C Soils	2.83	87

An area of 2.83 acres will drain to the discharge point for Sediment Pond 1 for the worst-case disturbance of this site.

The storage volume to prevent discharge is calculated as the volume of the sediment pond above the water table. The water table lies greater than 5 feet below the surrounding surface.:

By: T Jesse Location: Reven	iue Mine – Atlas T	SF	Date: 05/2	0/22
1. Runoff Curve				• • • •
Cover descriptio		CN	Soil Type	Area
Mined Land, Dis	turbed (Poor)	87	С	2.83
CN (weighted):	87.0			
Total Area:	2.83 Acre			
2. Runoff				
Return Period:	10-Year			
Rainfall, P:	2.60 in			
Runoff, Q:	1.2126 in			
Runoff Volume:	0.2859 Ac	re-Ft		

The available storage volume of Sediment Pond 1 is a minimum of 1.51-acre feet therefore the pond is adequately sized.

Runoff Curve Numbers (CN) for Watershed Area Draining to Governor Basin Collection Ditch (0.15 acres)

Description	Hydrologic Soil Group Area (acres)	CN
Disturbed Land	Group C Soils 0.15	87

An area of 0.15 acres will drain to the discharge point for Governor Basin Collection Ditch for the worst-case disturbance of this site.

The runoff rate for the half acre of land inside of the permit boundary in Governor Basin that does not have natural drainage is calculated below:

By: T Jesse Location: Governor Basin		Date: 03/2	7/12 16:16:30
1. Runoff Curve Number (CN) Cover description Mined Land, Disturbed (Poor)	CN 87	Soil Type C	Area 0.15
CN (weighted): 87.0 Total Area: 0.15 Acre			
2. RunoffReturn Period:10-Year 24-houRainfall, P:2.60 in	rs		
Q = runoff rate (cubic feet per second)	= CIA		
C = Rational Method runoff coefficient I = rainfall intensity (inches per hour) = A = drainage area (acres) = 0.15 acres D = storm duration (hours) = 24 hours			

Q = (0.18) (0.108)(0.15) = 0.002916 CFS = 1.31 GPM

The Governor Basin Collection Ditch will be constructed in the Spring of 2022 when weather conditions allow access to the area. A ditch will be created that will redirect stormwater from the raise bore area and divert it to a natural drainage to the side of the historic waste piles.

APPENDIX - B MAPS

Trapezoidal Channel Equal Side Slopes 2 ft. channel depth Channel Lining: riprap $(D_{50} = 0.5 \text{ ft})$ 12 inches thick

Note: Specific channel dimensions, such as embankment height and top of embankment width can vary.

Date:

		1900 Main St. Unit #1 Ouray, CO 81427		
Date:	Revision:			
05/03/22	Original	Gov Basin		
		Stormwater Channel		
		Stornwater channer		
		Date: May 3, 2022	Drawn By: THJ	
		Approved By:		
		File: sw_channel.dwg		

COLORADO

Department of Public Health & Environment

CERTIFICATION TO DISCHARGE UNDER CDPS GENERAL PERMIT COR040000 STORMWATER ASSOCIATED WITH METAL MINING OPERATIONS AND MINE-WASTE REMEDIATION

Certification Number: COR040289 formerly COR040273 This Certification to Discharge specifically authorizes:

Ouray Silver Mines Inc to discharge stormwater from the facility identified as

Ouray Silver Mine to: Sneffels Creek - Uncompaghre River

Facility Located at:6208 CR 26 Ouray Ouray County, CO81427
Center Point Latitude 37.966667 Longitude -107.733333

OUTFALL 001 Latitude 37.966667 Longitude -107.733333

All discharges must comply with the lawful requirements of federal agencies municipalities, counties, drainage districts and other local agencies regarding any discharges to storm drain systems, conveyances, or other water courses under their jurisdiction.

Monitoring Requirements

1. Site-specific benchmark monitoring

Parameter	Units	Site-specific Benchmark Values		Rationale	Monitoring Frequency	Sample Type
		Acute	Chronic			
Cadmium, (potentially dissolved) 01313	ug/L	3.2	0.74	Regulations 35 and 93	Quarterly	Grab
Zinc, (potentially dissolved) 01303	ug/L	270	234	Regulations 35 and 93	Quarterly	Grab

2. Benchmark monitoring for Discharges from Waste Rock and Overburden Piles

Parameter	Units	Benchmark Values	Rationale	Monitoring Frequency	Sample Type
Total Suspended Solids (TSS) 00530	mg/L	100	EPA Benchmarks	Quarterly	Grab
Turbidity 00070	NTU	50	EPA Benchmarks	Quarterly	Grab
рН 00400	s.u.	6.0-9.0	EPA Benchmarks	Quarterly	Grab
Total Antimony 01097	mg/L	0.64	EPA Benchmarks	Quarterly	Grab
Total Arsenic 01002	mg/L	0.15	EPA Benchmarks	Quarterly	Grab
Total Beryllium 01012	mg/L	0.13	EPA Benchmarks	Quarterly	Grab
Total Cadmium 01027	mg/L	0.0045	EPA Benchmarks	Quarterly	Grab
Total Copper 01042	mg/L	0.0285	EPA Benchmarks	Quarterly	Grab
Total Iron 01045	mg/L	1.0	EPA Benchmarks	Quarterly	Grab
Dissolved Iron 01046	mg/L	Report	EPA Benchmarks	Quarterly	Grab

Page 1 of 3

4300 Cherry Creek Drive S., Denver, CO 80246-1530 P 303-692-2000 www.colorado.gov/cdphe John W. Hickenlooper, Governor | Larry Wolk, MD, MSPH, Executive Director and Chief Medical Officer

Total Lead 01051	mg/L	0.213	EPA Benchmarks	Quarterly	Grab
Total Mercury 71900	mg/L	0.0014	EPA Benchmarks	Quarterly	Grab
Total Nickel 01067	mg/L	0.89	EPA Benchmarks	Quarterly	Grab
Total Selenium 01147	mg/L	0.005	EPA Benchmarks	Quarterly	Grab
Total Silver 01077	mg/L	0.0138	EPA Benchmarks	Quarterly	Grab
Total Zinc 01092	mg/L	0.23	EPA Benchmarks	Quarterly	Grab

Additional Monitoring Requirements

On the effective date of this certification, the Ouray Silver Mine facility is subject to the monitoring requirements discussed below at each discharge point of stormwater from the facility.

<u>Monitoring frequency</u>: The permittee must collect samples of stormwater discharge from the facility **once per quarter** unless otherwise directed by the Division.

<u>Measurable Storm Event</u>: For this certification, monitoring is only required once per quarter, regardless of the number of measureable storm events. However, if additional samples are collected during the quarter, these additional samples must also be included in the DMR summary as described below.

- Rain event. Permittees must conduct monitoring, as specified in the <u>Monitoring Requirements</u> table above, on a storm event that results in an actual discharge from the facility (measurable storm event), and that follows the preceding measurable storm event by at least 72 hours (3 days).
- Snowmelt event. The permittee must conduct snowmelt monitoring at a time when a measurable discharge occurs from the facility.

Storm Event Information

- Rain event. The permittee must document the information below for each monitored event.
 - i. The date, time of the start of the discharge, time of sampling, duration (in hours) of the rainfall event, and magnitude (in inches) of the storm event sampled;
 - ii. The duration between the storm event sampled and the end of the most recent storm event that produced a discharge.
- Snowmelt monitoring. The permittee must document the date of the sampling event for each monitored snowmelt event.

Sample Type and Requirements

- Grab samples shall be used for all monitoring and shall not be combined.
- Permittees must take a minimum of one grab sample from a discharge resulting from a measurable storm event. If the permittee, using an approved analytical method, monitors any parameter more frequently than specified in the <u>Monitoring Requirements</u> table above, then the results of such monitoring shall be included in the calculation and reporting of the values required in the Discharge Monitoring Report Form (DMRs).
- Grab samples must be collected within the first 30 minutes of a measurable storm event. If it is not possible to collect the sample within the first 30 minutes of a measurable storm event, the sample must be collected as soon as practicable after the first 30 minutes, and documentation must be kept with the SWMP explaining why it was not possible to take samples within the first 30 minutes.
- In the case of snowmelt, samples must be taken during a period with a measurable discharge.
- All discharge samples at a facility must be taken during the same storm event, if feasible.

Page 2 of 3

Holding ponds:

- Sampling from facility holding ponds or other impoundments must be performed at the outlet from the pond. If the pond does not discharge, no sampling is necessary.
- If any process water mixes with stormwater, the resulting mixture is all considered process water, and must be covered under a CDPS industrial wastewater discharge permit.

<u>Parameter Benchmark values</u>: The permittee must analyze stormwater samples for the parameters identified in this certification. Benchmark values for these parameters are also provided in the certification, and are intended to be used to assess the effectiveness of control measures implemented at the facility. A benchmark exceedance is not a permit violation and, unless directed by the Division, the permittee is not required to take specific corrective action if a sample result exceeds its respective benchmark value.

Certification Issued 7/20/2016 Effective: 8/1/2016

Expiration date 9/30/2021 or upon renewal of the COR040000 General Permit whichever comes first This cert is a division initiated modification of COR040273, to prepare for data entry into ICIS

This certification under the permit requires that specific actions be performed at designated times. The certification holder is legally obligated to comply with all terms and conditions of the permit.

Certification Approved By: Kathleen M Rosow Work Group Leader Permits Section Water Quality Control Division

Updated Appendix 4 NRCS Soils Survey

United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Custom Soil Resource Report for Ouray Area, Colorado, Parts of Gunnison, Hinsdale, Ouray, San Juan, and San Miguel Counties

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	. 2
How Soil Surveys Are Made	
Soil Map	
Soil Map	
Legend1	10
Map Unit Legend	11
Map Unit Descriptions	11
Ouray Area, Colorado, Parts of Gunnison, Hinsdale, Ouray, San Juan,	
and San Miguel Counties1	13
104—Borolls-Rock outcrop complex, 40 to 90 percent slopes1	13
112—Cryorthents-Rock outcrop complex, 50 to 120 percent slopes,	
extremely stony1	14
114—Dumps, mine1	16
129—Moran very gravelly loam, 30 to 65 percent slopes, extremely	
stony1	16
130—Moran, extremely stony-Telluride, extremely stony-Rock outcrop	
complex, 5 to 40 percent slopes1	18
145—Rock outcrop2	20
150—Rubble land2	21
171—Whitecross-Rock outcrop complex, 45 to 75 percent slopes,	
extremely stony2	22
References	24

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND)	MAP INFORMATION	
Area of Int	terest (AOI) Area of Interest (AOI)	8	Spoil Area Stony Spot	The soil surveys that comprise your AOI were mapped at 1:24,000.	
Soils	Soil Map Unit Polygons Soil Map Unit Lines	03 V	Very Stony Spot Wet Spot	Please rely on the bar scale on each map sheet for map measurements.	
Special	Soil Map Unit Points Point Features		Other Special Line Features	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)	
o M X	Blowout Borrow Pit Clay Spot	Water Fea	Streams and Canals	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more	
◇ ¥	Closed Depression Gravel Pit Gravelly Spot	* *	Interstate Highways US Routes Major Roads	accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.	
© ۸. ب	Landfill Lava Flow Marsh or swamp	Backgrou	Local Roads nd Aerial Photography	Soil Survey Area: Ouray Area, Colorado, Parts of Gunnison, Hinsdale, Ouray, San Juan, and San Miguel Counties Survey Area Data: Version 13, Sep 2, 2021	
☆ ©	Mine or Quarry Miscellaneous Water			Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.	
0 ~	Perennial Water Rock Outcrop Saline Spot			Date(s) aerial images were photographed: Sep 6, 2021—Sep 17, 2021	
+	Sandy Spot Severely Eroded Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.	
) 	Sinkhole Slide or Slip				
ø	Sodic Spot				

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
104	Borolls-Rock outcrop complex, 40 to 90 percent slopes	0.5	0.1%
2 Cryorthents-Rock outcrop complex, 50 to 120 percent slopes, extremely stony		172.4	20.3%
114	Dumps, mine	16.3	1.9%
129 Moran very gravelly loam, 30 to 65 percent slopes, extremely stony		473.3	55.7%
130 Moran, extremely stony- Telluride, extremely stony- Rock outcrop complex, 5 to 40 percent slopes		16.0	1.9%
145	Rock outcrop	34.2	4.0%
50 Rubble land		135.7	16.0%
171	Whitecross-Rock outcrop complex, 45 to 75 percent slopes, extremely stony	1.0	0.1%
Totals for Area of Interest		849.5	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the

scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Ouray Area, Colorado, Parts of Gunnison, Hinsdale, Ouray, San Juan, and San Miguel Counties

104—Borolls-Rock outcrop complex, 40 to 90 percent slopes

Map Unit Setting

National map unit symbol: jyn7 Elevation: 8,800 to 11,200 feet Mean annual precipitation: 25 to 34 inches Mean annual air temperature: 32 to 41 degrees F Frost-free period: 45 to 70 days Farmland classification: Not prime farmland

Map Unit Composition

Borolls and similar soils: 60 percent Rock outcrop: 20 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Borolls

Setting

Landform: Mountain slopes Landform position (two-dimensional): Backslope Landform position (three-dimensional): Mountainflank Down-slope shape: Convex Across-slope shape: Linear Parent material: Colluvium derived from mixed and/or slope alluvium derived from mixed

Typical profile

A1 - 0 to 8 inches: very gravelly sandy loam A2 - 8 to 19 inches: very gravelly loam Cr - 19 to 23 inches: weathered bedrock

Properties and qualities

Slope: 40 to 90 percent
Depth to restrictive feature: 10 to 91 inches to paralithic bedrock
Drainage class: Well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Very low (about 1.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8e Hydrologic Soil Group: D Hydric soil rating: No

Description of Rock Outcrop

Setting

Landform: Mountain slopes Down-slope shape: Linear Across-slope shape: Linear

Typical profile

R - 0 to 60 inches: unweathered bedrock

Properties and qualities

Slope: 40 to 90 percent Depth to restrictive feature: 0 inches to lithic bedrock Runoff class: Very high Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8s Hydric soil rating: No

Minor Components

Cryalfs

Percent of map unit: 10 percent Hydric soil rating: No

Rubble land

Percent of map unit: 10 percent *Hydric soil rating:* No

112—Cryorthents-Rock outcrop complex, 50 to 120 percent slopes, extremely stony

Map Unit Setting

National map unit symbol: jynj Elevation: 8,600 to 12,000 feet Mean annual precipitation: 24 to 37 inches Mean annual air temperature: 30 to 41 degrees F Frost-free period: 40 to 70 days Farmland classification: Not prime farmland

Map Unit Composition

Cryorthents and similar soils: 50 percent *Rock outcrop:* 40 percent *Minor components:* 10 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Cryorthents

Setting

Landform: Ridges, mountain slopes Landform position (two-dimensional): Summit Landform position (three-dimensional): Mountaintop, interfluve Down-slope shape: Convex Across-slope shape: Convex Parent material: Slope alluvium derived from tuff and/or colluvium derived from tuff

Typical profile

- A 0 to 4 inches: extremely stony silt loam
- C 4 to 12 inches: extremely cobbly loam
- R 12 to 22 inches: unweathered bedrock

Properties and qualities

Slope: 50 to 120 percent
Depth to restrictive feature: 10 to 39 inches to lithic bedrock
Drainage class: Well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Very low (about 0.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8e Hydrologic Soil Group: D Hydric soil rating: No

Description of Rock Outcrop

Setting

Landform: Ridges, mountain slopes Landform position (two-dimensional): Summit Landform position (three-dimensional): Free face, interfluve Down-slope shape: Convex Across-slope shape: Convex

Typical profile

R - 0 to 60 inches: unweathered bedrock

Properties and qualities

Slope: 50 to 120 percent Depth to restrictive feature: 0 inches to lithic bedrock Runoff class: Very high Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8s Hydric soil rating: No

Minor Components

Rubble land

Percent of map unit: 5 percent Hydric soil rating: No

Scout

Percent of map unit: 5 percent Hydric soil rating: No

114—Dumps, mine

Map Unit Composition

Dumps, mine: 100 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Dumps, Mine

Typical profile

- 0 to 60 inches: variable

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8s Hydric soil rating: Unranked

129—Moran very gravelly loam, 30 to 65 percent slopes, extremely stony

Map Unit Setting

National map unit symbol: jyp5 Elevation: 10,400 to 12,900 feet Mean annual precipitation: 31 to 42 inches Mean annual air temperature: 28 to 35 degrees F Frost-free period: 30 to 55 days Farmland classification: Not prime farmland

Map Unit Composition

Moran and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Moran

Setting

Landform: Mountain slopes, mesas, basin floors Landform position (two-dimensional): Backslope, summit, toeslope Landform position (three-dimensional): Mountainflank, interfluve, base slope Down-slope shape: Convex, linear Across-slope shape: Linear, convex, concave

Parent material: Slope alluvium derived from andesite and/or colluvium derived from andesite over till derived from mixed

Typical profile

A1 - 0 to 10 inches: very gravelly loam A2 - 10 to 25 inches: very gravelly loam Bw - 25 to 45 inches: very gravelly loam C - 45 to 60 inches: extremely cobbly loam

Properties and qualities

Slope: 30 to 65 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 3.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: B Ecological site: R048AY304CO - Alpine Slopes Other vegetative classification: ALPINE SLOPES (048AY304CO) Hydric soil rating: No

Minor Components

Telluride

Percent of map unit: 5 percent Hydric soil rating: No

Needleton

Percent of map unit: 5 percent Hydric soil rating: No

Rubble land

Percent of map unit: 3 percent Hydric soil rating: No

Rock outcrop

Percent of map unit: 2 percent Hydric soil rating: No

130—Moran, extremely stony-Telluride, extremely stony-Rock outcrop complex, 5 to 40 percent slopes

Map Unit Setting

National map unit symbol: 2w4zg Elevation: 11,500 to 13,300 feet Mean annual precipitation: 36 to 46 inches Mean annual air temperature: 27 to 30 degrees F Frost-free period: 25 to 40 days Farmland classification: Not prime farmland

Map Unit Composition

Moran, extremely stony, and similar soils: 35 percent Telluride, extremely stony, and similar soils: 25 percent Rock outcrop: 20 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Moran, Extremely Stony

Setting

Landform: Mountain slopes Down-slope shape: Concave Across-slope shape: Linear Parent material: Slope alluvium and/or colluvium derived from volcanic rock

Typical profile

A - 0 to 10 inches: very stony loam Bw1 - 10 to 25 inches: very stony loam Bw2 - 25 to 45 inches: very stony loam C - 45 to 60 inches: extremely cobbly loam

Properties and qualities

Slope: 5 to 40 percent
Surface area covered with cobbles, stones or boulders: 10.0 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.71 to 2.13 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.0 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 5.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: B Ecological site: R048AY304CO - Alpine Slopes *Other vegetative classification:* ALPINE SLOPES (048AY304CO) *Hydric soil rating:* No

Description of Telluride, Extremely Stony

Setting

Landform: Mountain slopes Down-slope shape: Convex Across-slope shape: Linear Parent material: Slope alluvium and/or colluvium derived from volcanic rock over residuum weathered from andesite

Typical profile

A - 0 to 10 inches: very stony loam Bw1 - 10 to 14 inches: very stony loam Bw2 - 14 to 18 inches: extremely channery loam R - 18 to 59 inches: bedrock

Properties and qualities

Slope: 5 to 40 percent
Surface area covered with cobbles, stones or boulders: 10.0 percent
Depth to restrictive feature: 10 to 20 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high (0.01 to 0.57 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.0 mmhos/cm)
Available water supply, 0 to 60 inches: Very low (about 1.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Ecological site: R048AY308CO - Shallow Alpine Hydric soil rating: No

Description of Rock Outcrop

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8 Hydric soil rating: Unranked

Minor Components

Whitecross

Percent of map unit: 5 percent Landform: Mountain slopes Down-slope shape: Convex Across-slope shape: Linear Ecological site: R048AY308CO - Shallow Alpine Hydric soil rating: No

Rubble land

Percent of map unit: 5 percent Hydric soil rating: Unranked

Sawpit

Percent of map unit: 5 percent Landform: Drainageways Down-slope shape: Linear Across-slope shape: Linear Ecological site: R048AY253CO - Wet Subalpine Hydric soil rating: No

Henson

Percent of map unit: 5 percent Landform: Mountain slopes Down-slope shape: Linear Across-slope shape: Linear Ecological site: R048AY304CO - Alpine Slopes Hydric soil rating: No

145—Rock outcrop

Map Unit Setting

National map unit symbol: jyps Elevation: 8,300 to 14,300 feet Mean annual precipitation: 23 to 50 inches Mean annual air temperature: 25 to 42 degrees F Frost-free period: 15 to 75 days Farmland classification: Not prime farmland

Map Unit Composition

Rock outcrop: 90 percent *Minor components:* 10 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Rock Outcrop

Setting

Landform: Ridges, mountain slopes, escarpments, cliffs Landform position (three-dimensional): Free face, nose slope Down-slope shape: Convex Across-slope shape: Convex

Typical profile

R - 0 to 60 inches: unweathered bedrock

Properties and qualities

Slope: 0 to 120 percent Depth to restrictive feature: 0 inches to lithic bedrock Runoff class: Very high Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8s Hydrologic Soil Group: D Hydric soil rating: No

Minor Components

Cryorthents

Percent of map unit: 5 percent *Hydric soil rating:* No

Rubble land

Percent of map unit: 5 percent Hydric soil rating: No

150—Rubble land

Map Unit Setting

National map unit symbol: jypz Elevation: 8,300 to 14,300 feet Mean annual precipitation: 22 to 50 inches Mean annual air temperature: 25 to 42 degrees F Frost-free period: 15 to 75 days Farmland classification: Not prime farmland

Map Unit Composition

Rubble land: 90 percent *Minor components:* 10 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Rubble Land

Setting

Landform: Mountain slopes, ridges Landform position (three-dimensional): Free face, nose slope Down-slope shape: Convex Across-slope shape: Convex

Typical profile

H1 - 0 to 60 inches: fragmental material

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8s Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Rock outcrop

Percent of map unit: 5 percent Hydric soil rating: No

Cryorthents

Percent of map unit: 5 percent Hydric soil rating: No

171—Whitecross-Rock outcrop complex, 45 to 75 percent slopes, extremely stony

Map Unit Setting

National map unit symbol: jyqs Elevation: 10,800 to 13,700 feet Mean annual precipitation: 33 to 48 inches Mean annual air temperature: 26 to 33 degrees F Frost-free period: 10 to 50 days Farmland classification: Not prime farmland

Map Unit Composition

Whitecross and similar soils: 50 percent Rock outcrop: 35 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Whitecross

Setting

Landform: Ridges, mountain slopes Landform position (two-dimensional): Summit Landform position (three-dimensional): Mountaintop, interfluve Down-slope shape: Convex Across-slope shape: Convex Parent material: Slope alluvium derived from rhyolite and/or colluvium derived from rhyolite

Typical profile

A - 0 to 4 inches: very cobbly loam Bw - 4 to 14 inches: very cobbly sandy loam R - 14 to 18 inches: unweathered bedrock

Properties and qualities

Slope: 45 to 75 percent Depth to restrictive feature: 10 to 20 inches to lithic bedrock Drainage class: Well drained Runoff class: Very high Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Available water supply, 0 to 60 inches: Very low (about 1.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: D Ecological site: R048AY308CO - Shallow Alpine Hydric soil rating: No

Description of Rock Outcrop

Setting

Landform: Mountain slopes Landform position (two-dimensional): Summit Landform position (three-dimensional): Free face Down-slope shape: Convex Across-slope shape: Convex

Typical profile

R - 0 to 60 inches: unweathered bedrock

Properties and qualities

Depth to restrictive feature: 0 inches to lithic bedrock Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8s Hydric soil rating: No

Minor Components

Rubble land

Percent of map unit: 10 percent Hydric soil rating: No

Moran

Percent of map unit: 5 percent Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Updated Appendix 5

2013 Wetlands Delineation

<u>Wetland Delineation for the Revenue Mine</u> <u>Ouray County, Colorado</u> Revised August 16, 2013

For: Silver Star Resources By: WestWater Engineering

INTRODUCTION

WestWater Engineering (WestWater) was requested to conduct a wetland delineation at the Revenue Mine, located in Ouray County, CO. The survey area is approximately 43 acres of the 320 acre mining site and is made up of a conglomeration of mining claims. The patent dates on most of the claims are in the late 1800's. Most of the mines have gone through periods of activity for over one hundred years. The site has been thoroughly disturbed during this time period. The delineation was performed by WestWater in May and October, 2012 and May, 2013. On site with U.S. Army Corps of Engineers and preliminary jurisdictional revision was done on June 18, 2013.

WestWater identified 5.55 acres of Waters of U.S. (WoUS) including wetland, open water, and dry channels. A preliminary jurisdictional determination is being requested for SPK-2012-00953.

General project information is presented in Table	ion is presented in Table 1.
---	------------------------------

	Silver Star Resources			
Project	Rory Williams Ph: 303-534-6500			
Proponent:	1675 Larimer Street, Suite 820			
-	Denver, CO 80202			
Land	Lands surrounding the project area are held in private and public (USFS)			
Owner:	ownership. The project area is composed of a group of mining claims owned under the title of Revenue Virginius Claims, Appendix A.			
Owner.				
	WestWater Engineering			
Wetland	Melani Jensen			
Consultant:	2516 Foresight Circle #1 Ph: (970) 241-7076			
	Grand Junction, CO 81505 Fax: (970) 241-7079			
	The Revenue Mine is located approximately 7 miles southwest of Ouray, CO.			
	on County Road 26 in Sec. 21, T43N, R8W (Figure 1 A and 1). County Road			
Project	26 is accessed off Hwy 550 just south of Ouray near the ice climbing center			
Location:	and Box Canyon Falls. The road is in good condition; however, four wheel			
	drive is recommended in the case of inclement weather. Elevation of the			
	Revenue Mine is approximately 10,600 ft.			

Table 1. Project Information

	Silver Star Resources is proposing to reopen the Revenue Mine in the near future. This will require a new State of Colorado Division of Reclamation, Mining and Safety (DRMS) permit and a permit from the U.S. Army Corps of Engineers (COE).
Project Description:	The proposed activity includes opening the mine from the existing portal, where water has historically discharged into the Revenue Pond. As part of the new plan, rerouting the existing mine water discharge away from the Revenue Pond is needed since the placement of waste rock and tailings in the current location of the Revenue Pond is essential. There is no other practical place to store the waste rock and tailings in any large quantity. The mine water will be permanently routed into a built collection pond.
	DRMS regulations require that all flows from the disturbance area be channeled into sediment ponds which have very specific designs. Ore will be taken to a newly constructed underground mill where the concentrate will be produced. This concentrate will be taken offsite in trucks to an approved refining facility.

BACKGROUND INFORMATION

Table 2 depicts the Natural Resources Conservation Service (NRCS) soil map units within the survey area and their hydric rating (NRCS 2013) (Appendix F).

	Tuble 2. Hells son map and and nyarie rading for the Revenue in			
Map Unit Symbol	Map Unit Name	Hydric Rating		
112	Cryothents-Rock outcrop complex, 50 to 120 percent slopes, extremely stony	Not Hydric		
114	Dumps, mine	Unknown Hydric		
129	Moran very gravelly loam, 30 to 65 percent slopes, extremely stony	Not Hydric		
130	Moran-Telluride-Rock outcrop complex, 5 to 40 percent slopes, extremely stony	Not Hydric		

Table 2. NCRS soil map units and hydric rating for the Revenue Mine survey area.
--

The survey area is mapped as Palustrine/Emergent Wetland/Saturated (PEMB) and Palustrine/Scrub-Shrub Wetland/Saturated (PSSB) by the U.S. Fish and Wildlife Service (USFWS) National Wetland Inventory (NWI) (USFWS 2013) (Appendix G).

The survey area is located in the Uncompany sub-basin of the Gunnison basin in the Upper Colorado Region watershed, HUC 14020006, and within the Telluride, Colorado and Ironton, Colorado U.S. Geological Survey (USGS) 7.5 minute quadrangle.

A plant species list for the survey area was gathered and is provided in Table 3.

	Indicator		Indicator
Species	Status	Species	Status
Achillea lanulosa	Status		Status
(= A. millefoliia)	FACU	Helenium autumnale	FACW
		Juncus arcticus ssp. Ater	
Agrostis exarata	FACW	$(= J. \ balticus)$	FACW
Bistorta bistortoides	FACW	Lonicera involucrata	FAC
Bromus ciliatus	FAC	Phleum pratense	FAC
Bromus inermis	FACU	Picea engelmannii	FAC
Calamagrostis canadensis	FACW	Poa pratensis	FAC
Caltha leptosepala	OBL	Polemonium pulcherrimum	NL
Cardamine cordifolia	FACW	Potentilla pulcherrima	NL
Carex aquatilis	OBL	Ribes lucustre	FAC
Carex lanuginosa	OBL	Rumex densiflorus	FACW
Carex microptera	FACU	Salix geyeriana	OBL
Carex utriculata	OBL	Salix monticola	OBL
Cirsium tracyi	FACU	Salix planifolia	OBL
Dactylis glomerata	FACU	Salix brachycarpa	FACW
Deschampsia cespitosa	FACW	Senecio atratus	NL
Elytrigia repens	NL	Senecio ermophilus	FACU
Epilobium ciliatum	FACW	Senecio trangularis	FACW
Erodium cicutarium	FACU	Taraxacum officinale	FACU
Fragaria virginiana	FACU	Thalictrum fendleri	FAC
Geranium richardsonii	FAC	Urtica gracilis	FAC
Geum macrophyllum	FAC		

Table 3. Plant Species List for Revenue Mine

WATERS OF THE U.S.

Observations - The valley's soils are composed primarily of mining waste rock and stockpiled tailings. Sneffels Creek runs from west to east through the project area. Ground water flow surfaces in various locations on the property and is the source of several wetland areas. Ground water discharging from the mine creates Revenue Pond near the mine portal. In May 2013 the ground water discharged from the mine had been rerouted and the Revenue Pond had been dramatically drained. An additional water source for the Revenue Pond was discovered as a ground water seep. A second visit in June 2013 was made and the Revenue Pond water level had again dropped even with some overflow input from the mine portal that could not be contained in the 8" pipe used to reroute the water flow. Photos of the Pond taken October 2012, May 2013, and June 2013 can be found in Appendix H. Mine management is photo documenting the level of Revenue Pond since the June 18, 2013 visit. Levels of flow from the Revenue Seep did not appear to have been altered by the change in water level at Revenue Pond. Historically, flow from the waste rock into the Revenue Seep corresponds with the flow input into the Revenue Pond (Lewicki 2012) (Appendix E).

Observations made during the site visit in May 2013 found three areas where waste rock disposal had encroached upon the fall 2012 delineated wetlands A, D, E and F10. Photo points 63, 64, 67, 68, and 90 in Appendix D document this observation. A conservative estimate of fill was calculated to cover approximately 830 ft² or 0.02 acres of wetland. Mine management was informed of the observation. Photo documentation can be found in Appendix I.

Delineation Methods

The delineation was performed by WestWater in accordance with COE standards included in the "Corps of Engineers Wetland Delineation Manual, January 1987" (COE 1987) and the Regional Supplement to the COE Wetland Delineation Manual: Western Mountains, Valleys and Coast Region (Version 2.0, June 2010) (COE 2010). On site visits were made by WestWater in May and October 2012 and May 2013. Wetland boundaries were identified on the basis of the vegetation, soils, and hydrology present at the site. Soil was observed for the presence of redoximorphic characteristics. Soil was obtained from pits excavated in the very rocky substrate with a pick and shovel. Soil samples were not acquired from greater than 20 inches because of the difficult excavation. Observation of drainage patterns and other hydrologic indicators was completed and recorded on the attached data sheets. Only jurisdictional wetlands located adjacent to or above the ordinary high water mark (OHWM) were identified as part of this delineation. Wetland boundaries based on this evaluation were surveyed with an Ashtech Pro Mark 100 sub-meter hand-held global positioning system (GPS) unit (Figures 2 through 9). The survey area is an active mine site and heavily trafficked tourist area adjacent to National Forest and Wilderness area. Vertices locations are documented in Appendix B. GPS data were downloaded and mapped utilizing ARC GIS version 10.0. Shapefiles can be downloaded and are available upon request. Data point sets were documented on COE data sheets. Data point locations are recorded in Appendix B, depicted in Figure 2-9, and corresponding data sheets are attached to this report in Appendix C. Photo points and photos of the general area are attached in Appendix D.

Delineation Findings

Wetlands

WestWater identified two wetland types adjacent to jurisdictional non-wetland waters within the project area: fringe wetlands associated with Sneffels Creek and Atlas Creek and ground water wetlands created from water surfacing near the toe slope of the hillside and from water flowing through the waste rock (Figure 2 and 10). A total of 3.5 acres of wetland was delineated. Table 4 depicts a summary of all wetland acres.

Because this area has been very highly disturbed, *difficult wetland situations* criteria from the Western Mountains, Valleys, and Coast Region Supplement were used (Version 2.0, June 2010) (COE 2010).

Fringe wetlands were identified along Sneffels Creek and labeled as F10 (Figure 3 - 6 and Figure 10). Sneffels Creek is fairly incised and has predominantly steep banks along both sides. Along the south side of the creek, waste rock has been piled up to the creeks edge. As the creek has moved through its natural morphology, it has cut into the waste rock and left nearly vertical

banks above OHW of the creek. The north side of the creek is contained by bedrock. Narrow fringe wetlands in the waste rock are composed mostly of willows with little to no understory. Willow species include *Salix geyeriana*, *Salix monticola* and *Salix planifolia*. Delineated fringe wetlands for Sneffels Creek total 0.89 acres. Data Points on the attached corresponding COE data sheets are DP 1, 2, 14, 15, 31, and 32.

The unnamed tributary of Sneffels Creek, called "Atlas Creek" by mine management, was also carefully inspected for wetland characteristics. This tributary flows perennially off a steep hill side comprised mostly of boulders. A fringe wetland was flagged along the east bank of the tributary. Several test holes were dug to access soil characteristics around the creek. Hydric soil characteristics were only found in the test pits near the creek. A fringe wetland was flagged at the top of the bank slope extending above the creek.

Wetland L, located west of Atlas Creek was flagged in May, 2013 and the boundary was continuous with the fringe of Atlas Creek (Figure 7 and 10). Wetland L is supported by ground water and consists of several surfaced ponds and channels which flow into Atlas Creek and then into Sneffels Creek. Wetland L and the fringe of Atlas Creek total 1.29 acres. Corresponding COE data sheets are DP 10, 11, 33, and 34.

Wetlands A, B, D, and E have a sustaining source of hydrology from surfaced ground water flow. The Revenue Seep surfaces at the toe of a waste rock pile approximately 200 feet northeast of the Revenue Pond (Figure 8 and 10).

This area where Wetland A, B, D and E are located has been highly disturbed and is extremely rocky. The area appears to have been used to stock pile waste rock and tailings and then roughly graded flat, where some wetland characteristics have developed. Soil test pits were dug with a pick and soil observed in the pore spaces of the waste rock for the presence of redoximorphic characteristics. Indicators of hydrophytic vegetation were recorded, hydrology sources documented and the landscape setting observed.

Wetland A (Figure 8 and 10) is 0.02 acres with standing water a few inches deep and is separated from Sneffels Creek and wetland E by waste rock. The hydrology source for this wetland appears to be the surfaced ground water to the south from the Revenue Seep. Dominant vegetation consists of *Salix geyeriana, Salix planifolia, and Juncus arcticus*.

Wetland B (Figure 8 and 10) is 0.10 acres and found adjacent to a ponded area of the Revenue Seep. Several soil test pits were dug around the site. Some gleying and redox features were observed and the water table was also present within 5 inches of the surface in one test pit. Standing water was observed. Data Points on the attached corresponding COE data sheets are DP 26 and 27.

Wetland D (Figure 8 and 10) is 0.003 acres and is a wetland depression with an approximate 2 meter radius from flagged center point. Standing water was present at this location with dominant vegetation including *Viola adunca, Juncus arcticus, Carex utriculata, and Helenium autumnale*. This area contains debris from the mine.

Wetland E (Figure 8 and 10) is 1.14 acres and is the largest wetland in this area. Several ponded areas are located within this wetland from the Revenue Seep flow. Beaver activity in the

immediate area has created several areas of standing water. Several soil test pits were dug and vegetation indicators were established to determine the boundary. Vegetation found in this area included *Salix geyeriana*, *Salix monticola*, *Salix planifolia*, *Juncus arcticus*, *Carex aquatilis*, *Carex utriculata*, *Calamagrostis candadensis*, *Helenium autumnale*. Corresponding COE data sheets are DP 28 and 29.

Wetland J (Figure 6 and 10) is 0.07 acres and is located on the far east of the survey area. Wetland J is a small wetland. Its supporting hydrology is ground water that surfaces just west of the bridge across Sneffels Creek. The ground water source does not appear to be from the Revenue Pond because of the distance and location of these two areas relative to each other. It is more likely the hydrology source is from seepage from the adjacent hillside. Corresponding COE data sheets are DP 23.

Non-Wetland Waters

A total of 1.84 acres of non-wetland waters were determined to be jurisdictional. Table 4 summarizes individual aquatic resources.

Sneffels Creek flows through the survey area from west to east; it is a perennial stream averaging 12 feet wide and approximately 1.5 feet deep and is 1.11 acres. The creek is contained by steep banks of waste rock on the south and bedrock on the north. Atlas Creek flows into the survey area from the south (Figures 2 and Figure 7). This tributary averages 6 feet wide and 6 to 8 inches deep and is 0.10 acres. The main portion of the channel follows along the edge of the waste rock pile to Sneffels Creek.

The Revenue Seep appears to originate from the Revenue Pond and surfaced ground water, and flows from the toe of a waste rock pile approximately 200 feet northeast of the pond (Figure 2 and Figure 8). The water flows around a previously disturbed flat area that contains two historic buildings. Water from the Revenue Seep flows over the landscape and is collected in depression areas and a beaver pond structure and flows into Sneffels Creek. The Revenue Seep is a total of 0.31 acres and the beaver ponds are 0.05 acres.

Two ground water ponds, totaling 0.25 acres, are found within Wetland L. They are seasonally wet in the spring during high run off and are dry in the fall.

Other channels consist of a small channel that flows intermittently in the spring, approximately 1 foot wide by 1 inch deep, located on the western portion of the survey area, near DP 12 and 3, and drains into Sneffels Creek. A culvert feeds a channel from the Revenue Seep and is the additional waters in the "other channels" category. These two channels total 0.01 acres.

There are two areas of dry channels adjacent to Atlas Creek that have evidence of OHWM (Figure 7). These channels total 0.05 acres of WoUS.

REVENUE POND

The Revenue Pond, approximately 2.5 surface acres, was constructed in 1894 and supported mine operations. Waste rock from the mine was used to construct the Revenue Pond which has

steep banks. This waste rock is permeable and permits seepage of water into the Revenue Seep to the northeast. Discharge into the pond is from water collected from within the mine.

Observations made by mine management over time indicate that waters from the Atlas drainage does not enter into the Revenue Pond (Lewicki 2012). WestWater biologists present on site in both May and October, 2012 and May and June, 2013 did not observe any discharge into the Revenue Pond from Atlas Creek. The large dry channel adjacent to Atlas Creek, south of DP 17 (Figure 7), does not exhibit evidence of an OHWM and does not have flow during high flow periods. This channel is the result of extreme weather events. There are two smaller dry channels adjacent to Atlas Creek which do exhibit evidence of OHWM (Figure 7). Observations in May 2012, October 2012, May 2013, and June 2013 did not reveal any flow in these dry channels, or any flow into the pond from Atlas Creek of any kind. These two channels join approximately 50 feet upslope and continue for approximately 10 feet. The channel abruptly ends and there is no physical connection to Atlas Creek. There is an elevated area between the dry channels and Atlas Creek that separates the features. The elevated area is rocky and does not display evidence of an OHWM. The dry channels end at the southern end of the berm of Revenue Pond. There is no defined channel at this point. Photos taken in May 2012 and June 2013 of the berm and dry channels can be found in Appendix J.

The drainage feature observed on the aerial photos, located south of the central portion of the pond near DP 16 (Figure 7), was investigated in October, 2012 and May, 2013 for evidence of flow. No OHWM is present and no surface water flow was observed.

NWI mapping reports this pond as an impounded/diked feature, indicating this is a manmade structure (Appendix G). It was believed a reroute of the discharge into the pond from the mine would remove water input and the permeable waste rock would allow it to drain. In November, 2012, mine management piped the water collected from within the mine and rerouted the discharge to expel into Atlas Creek just above the confluence with Sneffels Creek. Most of the water drained from the pond within a few weeks, but did not completely dry before winter set in. Investigation of the pond in May, 2013 revealed the presence of a significant amount of water on the eastern end of the pond, believed to be 6 to 8 feet deep. Although most of the pond had drained this area was still ponded, and there was no evidence of the water level dropping during that visit. Further inspection located a ground water source to the west seeping into the bottom of the pond with definite flow into the ponded water to the east. The source of spring is surfacing ground water flow from the hillside to the south.

On June 18, 2013 an additional visit was made to the Revenue Mine. During this visit the water level was considerably lower than the May 22 and 23, 2013 site visit. The ground water source was still present and there was some overflow from the mine that could not be contained by the 8" pipe. The 8" pipe was not designed to handle peak water flows. The current 8" pipe (Figure 2) used for rerouting the water collected from within the mine was only designed to be temporary to demonstrate mine management's ability to control the water source. Water will eventually be directed into new designed collection ponds to be located elsewhere on the property.

The edge of surface water of the pond and ground water source was mapped using the Ashtech Pro Mark 100 sub-meter hand-held global positioning system (GPS) unit in June 2013. The total surface area was 0.21 acres. The depth appeared to be 3 or 4 feet deep in the center, but was not measured. Mine management will be photo documenting the pond levels for the next few weeks. As the high water flows reside the overflow from the mine will be contained fully to the 8" pipe and will not contribute the current pond levels.

Site Name	Class of Aquatic Resource	Delineated WoUS (acres)	Cowardin Class
Wetland A	Ground Water Wetlands	0.02	Palustrine/Emergent Wetland/Seasonally Flooded
Wetland B	Ground Water Wetlands	0.10	Palustrine/Emergent Wetland/Seasonally Flooded
Wetland D	Ground Water Wetlands	0.003	Palustrine/Emergent Wetland/Seasonally Flooded
Wetland E	Ground Water Wetlands	1.14	Palustrine/Emergent Wetland/Seasonally Flooded
Wetland J	Ground Water Wetlands	0.07	Palustrine/Emergent Wetland/Seasonally Flooded
Wetland L	Ground Water and Fringe Wetlands	1.29	Palustrine/Scrub-Shrub Wetland/Seasonally Flooded/Saturated
Wetland F10	Fringe Wetlands	0.89	Riverine/Scrub-Shrub Wetland/Seasonally Flooded
	Total Wetland	3.513	
Sneffels Creek	Relatively Permanent Water/Perennial Stream	1.11	N/A
Atlas Creek	Relatively Permanent Water/Perennial Stream	0.10	N/A
Revenue Pond	Relatively Permanent Water/Lake	0.21	N/A
Revenue Seep	Relatively Permanent Water/Perennial Spring	0.31	N/A
Other Channels	Relatively Permanent Water/Intermittent Stream	0.01	N/A
Ground Water Ponds	Relatively Permanent Water/Intermittent Spring	0.25	N/A
Dry Channels	Relatively Permanent Water/Ephemeral Stream Channel	0.05	N/A
	Total Non-Wetland Waters	2.04	
Total WoUS		5.553	

Table 4. Delineated Waters of U.S. for Revenue Mine Ouray, CO.

NON-WETLAND AREAS

During the site visit in October 2012 several areas were identified as having potentially hydrophytic vegetation and these sites were further investigated for indicators of soils and hydrology. These areas are discussed in detail below.

Wetland characteristics in the fringe of the Revenue Pond were thoroughly examined in October 2012. Vegetation was examined for hydrophytic characteristics. Hydrophytic vegetation present along the fringe included *Calamogrostis canadnsis, Rumex densiflorus, Polemonium pulcherimum, Feranium rishardsonii, Helenium autumnale, Salix geyeriana, Salix montiocla, Picea engelmanni*. Several test soil borings were taken within a meter of the OHWM of the pond. No hydric characteristics were found. There were no indications of hydrology. The area is comprised mainly of waste rock and water moves downward through the porous rock. Because no hydric soils or hydrology indicators were observed WestWater concluded that there was no fringe wetland around the settling pond. Corresponding COE data sheets are DP 21 and DP 22.

Non-wetland area F (Figure 9) is 0.01 acres and is a depression area with an approximate 4 meter radius from the center point. A test soil pit did not result in hydric soil indicators within the top 12 inches. There was very little herbaceous ground cover below the willows. Hydrology was not present at the time of the visit. The landscape setting is a depression area and was carefully examined but does not appear to have a hydrology source consistent with wetland criteria. Lack of hydrology was confirmed in May 2013.

Non-wetland areas G and H are located south of Sneffels Creek and east of wetland E (Figure 9). This area is in flat terrain elevated above Sneffels Creek and not susceptible to the ground water seepage from the Revenue Pond. Hydrology was not present at the time of the visit in October 2012 and landscape features did not suggest hydrology was present in the past or that pooling of water may occur. Lack of hydrology was confirmed in May 2013. Several marmot burrows were observed at this location. The area is very rocky and a soil sample was obtained to 12 inches deep. Hydric soil indicators were not found and no signs of hydrology were present. Vegetation in these two areas was comprised mostly of *Carex pellita* (an obligate species) and *Juncus arcticus* (a facultative wet species) with approximately 30% bare ground. WestWater did not determine these two areas to be wetlands. The corresponding COE data sheet is DP 30.

Non wetland K, located south of Revenue Pond and east of Atlas Creek, is a colluvium with very rocky soil characteristics (Figure 9). *Salix geyeriana* and *Salix brachycarpa* are the dominant vegetation species in this location. Test soil borings were taken in several locations upslope to observe potential hydric soil characteristics and determine hydrology presence is not present. Pocket gopher diggings were found throughout the area suggesting hydrology consistent with wetland features. No gleying or redox soil characteristics were present. Earthworms were found in many of the soil samples. WestWater determined the presence of obligate, facultative wet and facultative vegetation is mostly likely due to the spring snow melt. Data points found no hydric soils or indicators of hydrology. The waste rock deposits and colluvium feature is very rocky, porous and well drained and does not support hydrology. Corresponding COE data sheets are DP 16, 17, 18, 19, 20, 21, 22, 24, 25, 35, and 36.

RELOCATION OF THE HISTORIC BUILDINGS

A wetland evaluation was performed north of County Road 26 directly across from the current mining operation at the relocation site (Figure 9). Historic buildings to the south will be relocated to a relatively flat bench on this slope. The slope above the site location is steep approximately 40°. Vegetation found in this area included *Picea engelmannii*, *Achillea milleflium, Salix geyeriana, Fragaria virginiana, Phleum pretense, Festuca thurberi, Potentilla pulcherrimi* and *Taraxacum officinale*. A site inspection of this area found no wetland characteristics and determined any activity around the relocation site would not affect any potential wetland areas within 100 feet.

SUMMARY

A total of 5.55 acres of WoUS was delineated including 3.51 acres of wetland and 2.04 acres of non-wetland waters (Table 4). Several areas with hydrophytic vegetation were thoroughly investigated both in spring and fall and were determined to not meet the criteria of hydrology or soils and therefore were determined to be non-wetland areas.

REFERENCES

- COE 1987. Environmental Laboratory. 1987. "The Corps of Engineers Wetlands Delineation Manual," Technical Report Y-87-1, U.S. Army Engineers Waterways Experiment Station, Vicksburg, Mississippi.
- COE. 2010. U.S. Army Corps of Engineers. 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (Version 2.0), ed. J. S. Wakeley, R. W. Lichvar, and C. V. Noble. ERDC/EL TR-10-3. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
- Lewicki, Greg. 2012. A Brief History of the Mine and the Pond Construction.
- NRCS 2013. Natural Resources Conservation Service. June 2013. Available online at http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx. U.S. Department of Agriculture.
- USFWS. 2013. National Wetlands Inventory. June 2013. Available online at: http://www.fws.gov/wetlands/Wetlands-Mapper.html. U.S. Fish and Wildlife Service.

Map Source: Z:\Miscellaneous Environmental\Silver Star Resources\Revenue Mine\Field Data May 2013\Maps\Figure 1.mxd June 2013 maj

us Environmental\Silver Star Resources\Revenue Mine\Field Data May 2013\Maps\Figure 3 Revised July 2013.mxd June 2013 maj

Z:\Miscellaneous Environmental\Silver Star Resources\Revenue Mine\Field Data May 2013\Maps\Figure 4.mxd June 2013 maj

: Z:Wiscellaneous Environmental/Silver Star Resources\Revenue Mine\Field Data May 2013\Maps\Figure 5.mxd June 2013 ma

e: Z:\Miscellaneous Environmental\Silver Star Resources\Revenue Mine\Field Data May 2013\Maps\Figure 6.mxd June 2013 ma

ce: Z:\Miscellaneous Environmental\Silver Star Resources\Revenue Mine\Field Data May 2013\Maps\Figure 8.mxd June 2013 maj

scellaneous Environmental\Silver Star Resources\Revenue Mine\Field Data May 2013\Maps\Figure9 revised.mxd June 2013 ma

neous Environmental\Silver Star Resources\Revenue Mine\Field Data May 2013\Maps\Figure 10.mxd June 2013 maj

APPENDIX A

Mining Claim and Property Ownership

Account #	Mine	Mine Name	Acres	patent	Owner	Parcel #
	Number			date		
N004551	MS 13281	CANADIAN BOY	4.34		US	4777-101-00-013
N004551	MS 17238A	CHATTAHOOCHIE	?		US	4777-101-00-013
N004551	MS 17941A	DEKALB	2.09		US	4777-101-00-013
N004551	MS 17580A	GOLD CRESCENT	10.33		US	4777-101-00-013
N004551	MS 17580A	MABLE M	9.32		US	4777-101-00-013
N004551	MS 17580A	MAGIC	10.21		US	4777-101-00-013
N004551	MS 17580A	ZIG ZAG	10.22		US	4777-101-00-013
N004484	MS 5019	BLACK STONE	10.29	4/20/1891	REVENUE	4567-203-00-007
N004484	MS 5772A	BLAINE	9.41	6/18/1894	REVENUE	4567-203-00-007
N004484	MS 16494	BLAZER	5.77		REVENUE	4567-203-00-007
N004484	MS 16053	EGYPT PLACER	17.84	7/21/1904	REVENUE	4567-203-00-007
N004484	MS 7284A	GRANT	7.41	12/4/1893	REVENUE	4567-203-00-007
N004484	MS 5394A	HARD CASH	7.69	7/3/1896	REVENUE	4567-203-00-007
N004484	MS 7284A	LINCOLN	7.36	12/4/1893	REVENUE	4567-203-00-007
N004484	MS 7284B	LINCOLN MS	4.22	12/4/1893	REVENUE	4567-203-00-007
N004484	MS 16494	PROTECTOR	5.04		REVENUE	4567-203-00-007
N004484	MS 16714	REVENUE MS	0.05	5/16/1905	REVENUE	4567-203-00-007
N004484	MS 16965	SIWASH MS	0.4	4/3/1905	REVENUE	4567-203-00-007
N004484	MS 5772A	STONEWALL JACKSON	10.16	6/18/1894	REVENUE	4567-203-00-007
N004484	MS 5772B	STONEWALL JACKSON MS	5	6/18/1894	REVENUE	4567-203-00-007
N004484	MS 1823	VALLEY VIEW	10.33		REVENUE	4567-203-00-007
N004738	MS 1755	TORPEDO	6.92		REVENUE	4567-163-00-004
N004738	MS 13207	SUMMIT	6.77		REVENUE	4567-163-00-004
N004738	MS 7816B	ECLIPSE MS	2.26		REVENUE	4567-163-00-004
N004738	MS 2411	MOLTKE	10.33		REVENUE	4567-163-00-004
N004738	MS 5772A	OTTAWA	7.29	6/18/1894	REVENUE	4567-163-00-004
N004738	MS 2410	BISMARK	10.33		REVENUE	4567-163-00-004
N004533	MS 5723	REVENUE	8.6		REVENUE	4567-212-00-006
N004533	MS 345	SILVER QUEEN LODE	8.22		REVENUE	4567-212-00-006
N004533	MS 17500	TWO STEP	5.05		REVENUE	4567-212-00-006
	MS 840	LITTLE CHIEF	8.35	6/15/1883	REVENUE	
	MS 2655	LIZARD	10.19	4/8/1890	REVENUE	

Table 1. Mining Claim and Property Ownership in or Adjacent to Survey Area.

Mining Claim Boundaries in and adjacent to the survey area (Ouray County Assessor).

Mining Claim Parcel Plat and Survey Area (Ouray County Assessor).

APPENDIX B

Latitude and Longitude Locations for Wetland Boundary Flags and Data Points

Label	Latitude	Longitude	lags and Data Poi Label	Latitude	Longitude
F 10-1	37.9755896	-107.7512206	E 23	37.9753116	-107.7503695
F 10-2	37.97561297	-107.7510721	E 24	37.9753913	-107.7503831
F 10-3	37.97563823	-107.7508763	E 25	37.9753998	-107.7503128
F 10-4	37.9756341	-107.7507335	E 26	37.9754016	-107.7502063
F 10-5	37.9756234	-107.750575	E 27	37.9754009	-107.750085
F 10-6	37.97563975	-107.7504495	E 28	37.9754624	-107.7499527
F 10-7	37.97565822	-107.7502703	E 29	37.9754516	-107.7489326
F 10-8	37.97566503	-107.7501367	E 30	37.9754306	-107.7490784
F 10-9	37.97566815	-107.7500055	E 31	37.9754511	-107.7492055
F 10-10	37.97564877	-107.7498582	E 32	37.9754174	-107.7493406
F 10-11	37.97564042	-107.7497359	E 33	37.9753073	-107.7494801
F 10-12	37.97562725	-107.7496435	E 34	37.9752093	-107.7494229
F 10-13	37.97563963	-107.7494791	E 35	37.9751266	-107.7493435
F 10-14	37.97564542	-107.7493211	E 36	37.9750352	-107.7492999
F 10-15	37.97563298	-107.7491844	E 37	37.974967	-107.749411
F 10-16	37.9756201	-107.7490913	E 38	37.9748992	-107.7495084
F 10-17	37.97561869	-107.7489161	E 39	37.9748377	-107.7495863
F 10-18	37.97564644	-107.7488124	E 40	37.9748448	-107.7496447
F 10-19	37.97568694	-107.7486988	E 41	37.9747829	-107.7496958
F 10-20	37.97569147	-107.7485378	E 42	37.9747642	-107.7498988
F 10-21	37.97559869	-107.7483592	E 43	37.9747438	-107.7499711
F 10-22	37.97554472	-107.74828	E 44	37.9747172	-107.7501226
F 10-23	37.97552454	-107.7481581	E 45	37.9747158	-107.75023
F 10-24	37.97548095	-107.7482059	E 46	37.9747224	-107.750326
F 10-25	37.97550252	-107.7483191	E 47	37.9747183	-107.7504361
F 10-26	37.97554484	-107.7484279	D 1	37.9747781	-107.7506617
F 10-27	37.97561749	-107.7485851	B 1	37.9752869	-107.750504
F 10-28	37.97560314	-107.7487554	B 2	37.975275	-107.7504551
F 10-29	37.97554787	-107.7489094	В З	37.9752192	-107.7504979
F 10-30	37.97555893	-107.7498041	B 4	37.9751343	-107.7505535
F 10-31	37.97554582	-107.7499661	B 4 G	37.9749383	-107.7506554
F 10-32	37.97551842	-107.7501648	B 4 E	37.9748465	-107.7506226
F 10-33	37.97555887	-107.7502243	B 4 F	37.9748882	-107.7506358
F 10-34	37.97556312	-107.7504093	B 4 D	37.9748743	-107.7505674
F 10-35	37.97555882	-107.7505816	B 4 A	37.9750716	-107.7505748
F 10-36	37.9755663	-107.7507535	B 4 B	37.9750027	-107.7506018
F 10-37	37.97556408	-107.7509027	B 4 C	37.9749505	-107.7505979
F 10-38	37.97555792	-107.7510194	B 4 H	37.9750137	-107.7506241
F 10-39	37.9756035	-107.7514593	B 8	37.9749397	-107.7507192

Table 4. Wetland Boundary Flags and Data Point Locations

Label	Latitude	tland Boundary F Longitude	Label	Latitude	Longitude
F 10-40	37.97564078	-107.7516552	В 9	37.9749939	-107.7507976
F 10-41	37.97560977	-107.751815	B 10	37.9750473	-107.750761
F 10-42	37.97553945	-107.7519875	B 11	37.9750799	-107.7507284
F 10-43	37.97544628	-107.7521059	A 1	37.9755111	-107.7502112
F 10-44	37.97537428	-107.7522436	A 2	37.9755137	-107.7503042
F 10-45	37.97532752	-107.752394	A 3	37.9755093	-107.7503883
F 10-46	37.97529725	-107.7525792	A 4	37.9754235	-107.7503979
F 10-47	37.97526645	-107.752761	A 5	37.9754638	-107.7502901
F 10-48	37.97524122	-107.7529322	L1	37.9746193	-107.7547903
F 10-49	37.97518567	-107.7531744	L 2	37.9745795	-107.7546349
F 10-50	37.9751416	-107.7533035	L3	37.9745738	-107.7545639
F 10-51	37.9751162	-107.753224	L 4	37.9746156	-107.7544784
F 10-52	37.97514153	-107.7534057	L 5	37.9746038	-107.7543659
F 10-53	37.97505355	-107.7533528	L6	37.9746176	-107.7542494
F 10-54	37.97520522	-107.7535843	L7	37.974683	-107.7543046
F 10-57	37.97518678	-107.7535906	L8	37.9746785	-107.7542181
F 10-58	37.97523065	-107.7536797	L9	37.9746501	-107.7541078
F 10-59	37.97513282	-107.7534633	L 10	37.9747394	-107.7540319
F 10-60	37.9751222	-107.7535531	L 11	37.9747583	-107.7539074
F 10-61	37.9751008	-107.7534296	L 12	37.9747241	-107.7537961
F 10-62	37.97506312	-107.7535905	L 13	37.9747717	-107.7536724
F 10-55	37.9750151	-107.7535123	L 14	37.9747512	-107.753564
F 10-63	37.97504313	-107.7537062	L 15	37.9748499	-107.753529
F 10-64	37.97506862	-107.7538616	L 16	37.9749221	-107.7535213
F 10-65	37.97511602	-107.7539423	L 17	37.9749211	-107.7534357
F 10-66	37.9751878	-107.7539356	L 18	37.9749871	-107.7535095
F 10-67	37.97530737	-107.7539346	L 19	37.9749912	-107.753367
F 10-68	37.97541575	-107.7540739	L 20	37.9750144	-107.75331
F 10-69	37.9755099	-107.7542134	L 21	37.9750948	-107.7531651
F 10-70	37.97558575	-107.7543807	L 22	37.9751361	-107.753044
F 10-71	37.97563652	-107.7544955	L 22	37.9749993	-107.7531983
F 10-72	37.9757052	-107.7546532	L 23	37.9749287	-107.7532279
F 10-73	37.97570845	-107.75475	L 24	37.9748068	-107.7531739
F 10-74	37.97577077	-107.7548957	L 25	37.9747259	-107.7531927
F 10-75	37.97585757	-107.7550145	L 26	37.9746482	-107.7531571
F 10-76	37.97588933	-107.7550955	L 27	37.9745596	-107.7532284
F 10-77	37.97594193	-107.7552527	L 28	37.9744845	-107.7533062
F 10-79	37.97601245	-107.7553746	L 29	37.9743772	-107.7533958
F 10-80	37.97607708	-107.7554497	L 30	37.9742977	-107.7534264

Table 4. Wetland Boundary Flags and Data Point Locations

Label	Latitude	Longitude	lags and Data Poi	Latitude	Longitude
F 10-81	37.97613575	-107.7555419	L 31	37.9742201	-107.7533991
F 10-82	37.97623188	-107.7556588	L 32	37.9741185	-107.7533986
F 10-83	37.97621415	-107.7556473	L 33	37.9740282	-107.7533718
F 10-84	37.97616032	-107.7556135	L 34	37.9739485	-107.7534647
F 10-85	37.97618693	-107.7557588	L 35	37.9738383	-107.7534464
F 10-86	37.97624707	-107.7558266	L 36	37.9737668	-107.7534379
F 10-87	37.9762387	-107.7559451	L 37	37.973667	-107.7533984
F 10-89	37.9762356	-107.7560592	L 38	37.9735925	-107.7533455
F 10-90	37.97626832	-107.756154	L 39	37.973478	-107.7533716
F 10-91	37.9763197	-107.7562063	L 40	37.9734316	-107.7534485
F 10-92	37.97642677	-107.7563063	L 41	37.9735183	-107.7535451
F 10-93	37.97654182	-107.7563994	L 42	37.973638	-107.7535425
F 10-94	37.97651867	-107.7564226	L 43	37.9737109	-107.7535017
F 10-95	37.97640582	-107.7563668	L 44	37.9738198	-107.7535181
F 10-96	37.97630688	-107.756302	L 45	37.9739302	-107.7535118
F 10-97	37.97622592	-107.7562312	L 46	37.9740096	-107.7534335
F 10-98	37.97617272	-107.7561115	L 47	37.9741502	-107.7534636
F 10-99	37.97614432	-107.755987	L 48	37.9742096	-107.7535145
F 10-100	37.97615435	-107.7558787	L 50	37.974256	-107.7535692
F 10-101	37.97611097	-107.7557259	L 51	37.9743311	-107.7534694
F 10-102	37.97605882	-107.7555567	L 59	37.9744659	-107.7534106
F 10-103	37.97601688	-107.7554686	L 60	37.974513	-107.7536048
F 10-104	37.97592053	-107.7553483	L 61	37.974448	-107.7536618
F 10-105	37.975852	-107.755201	L 62	37.9744387	-107.7538152
F 10-106	37.97578463	-107.7550797	L 63	37.9744496	-107.7539664
F 10-107	37.97574113	-107.7549608	L 64	37.9743657	-107.7540337
F 10-108	37.97569117	-107.7548332	L 65	37.9742581	-107.7540258
F 10-109	37.975648	-107.7547262	L 66	37.9742263	-107.7540764
F 10-110	37.97559413	-107.7545751	L 67	37.974294	-107.7542005
F 10-111	37.97554593	-107.7544605	L 68	37.9743823	-107.7543022
F 10-112	37.97550455	-107.7543298	L 69	37.9743834	-107.754414
F 10-113	37.97540688	-107.7541592	L 70	37.9743249	-107.7544729
F 10-114	37.97531798	-107.754063	L 71	37.9743219	-107.7546012
F 10-115	37.9751808	-107.7540499	L 72	37.9743134	-107.7547102
F 10-116	37.9752889	-107.7542222	L 73	37.9743895	-107.7547751
F 10-117	37.97514118	-107.7541729	L 74	37.9744708	-107.754798
F 10-118	37.97514725	-107.7540809	L 75	37.9745863	-107.7549339
F 10-119	37.9750888	-107.7540479	J	37.9750167	-107.7474194
F 10-121	37.97499675	-107.754034	J	37.9750012	-107.747456

Table 4. Wetland Boundary Flags and Data Point Locations

Table 4. Wetland Boundary Flags and Data Point Locations								
Label	Latitude	Longitude	Label	Latitude	Longitude			
F 10-122	37.97496687	-107.7541232	J	37.9750833	-107.7472724			
F 10-123	37.97504882	-107.7541578	J	37.9750438	-107.7472211			
F 10-124	37.97497302	-107.754144	J	37.97501	-107.7472294			
F 10-125	37.9749656	-107.7540389	J	37.9750421	-107.7473063			
F 10-126	37.97494098	-107.7538631	J	37.9750369	-107.7471739			
F 10-127	37.97493015	-107.7537709	J	37.9749446	-107.7473865			
F 10128	37.97498692	-107.7536222	J	37.9749417	-107.7475143			
E 1	37.97475605	-107.7505591	J	37.9750005	-107.7475187			
E 2	37.9747928	-107.7504529	J	37.9750359	-107.7475208			
E 3	37.97486448	-107.7503418	J	37.9750682	-107.7474112			
E 4	37.97484393	-107.7501915	J	37.9750649	-107.7473584			
E 5	37.97488202	-107.750085	10	37.974384329	-107.75432583			
E 6	37.9748748	-107.7499944	11	37.974364486	-107.75432789			
E 7	37.97494007	-107.7500453	14	37.975309021	-107.75391566			
E 8	37.97499942	-107.7500296	15	37.975331053	-107.75392161			
E 9	37.97497057	-107.7499305	16	37.973868933	-107.75209065			
E 10	37.97489847	-107.7498527	17	37.9742993	-107.75318306			
E 11	37.97488138	-107.7497051	18	37.973852285	-107.75164010			
E 12	37.97496972	-107.7497404	23	37.975029521	-107.74748656			
E 13	37.97501452	-107.7497907	24	37.973966334	-107.75280600			
E 14	37.97502627	-107.7498662	25	37.973700734	-107.75202835			
E 15	37.97506377	-107.7498182	21	37.973887084	-107.75160580			
E 16	37.97507955	-107.7499354	22	37.973907134	-107.75159755			
E 17	37.97507707	-107.7500078	20	37.974299300	-107.75323130			
E 18	37.97520345	-107.7499996	19	37.974283967	-107.75326300			
E 19	37.97533982	-107.7500318	27	37.975046217	-107.75059865			
E 20	37.97533848	-107.7501084	26	37.975032800	-107.75050865			
E 21	37.97532645	-107.7501852	29	37.974725600	-107.75034423			
E 22	37.97527758	-107.7502758	28	37.974719567	-107.75033791			
1	37.976400081	-107.75634647	32	37.975647050	-107.75086751			
2	37.976387821	-107.75637423	31	37.975656900	-107.75085050			
3	37.976076112	-107.75568432	30	37.975515167	-107.74867816			
4	37.975718813	-107.75592023	12	37.976097867	-107.75603663			
5	37.975159435	-107.75598514	33	37.974591167	-107.7547877			
6	37.975829771	-107.75516575	34	37.974610117	-107.75482466			
7	37.974957303	-107.75519650	13	37.975083417	-107.75445795			
8	37.974707053	-107.75544392	35	37.973704628	-107.75129416			
9	37.975390253	-107.75482487	36	37.973582927	-107.75105471			

Table 4. Wetland Boundary Flags and Data Point Locations

APPENDIX C

Army Corps of Engineers (COE) Data Sheets

Project/Site: Revenue Mine	City/County: Ca	amp Bird, Ouray	Sampling Date: 06-02-2012	
Applicant/Owner: Silver Star Resources		State:CO	_ Sampling Point: DP1	
Investigator(s):WWE: BFF	Section, Towns	hip, Range: Sec. 21 T43N R8	3W	
Landform (hillslope, terrace, etc.): Valley	Local relief (concave, convex, none):none Slop			
Subregion (LRR): $E - RM$ Forests & Rangeland Lat: $^{\circ}37$.976400 N	Long:°107.756350 V	V Datum:NAD 83	
Soil Map Unit Name: Moran-Telluride-Rock outcrop complex		NWI classif	ication: PSSB	
Are climatic / hydrologic conditions on the site typical for this time of ye	ear?Yes 🔿	No 💿 (If no, explain in	Remarks.)	
Are Vegetation $\widecheck{ extsf{X}}$ Soil $\overleftarrow{ extsf{X}}$ or Hydrology $\overleftarrow{ extsf{X}}$ significantly	/disturbed?	Are "Normal Circumstances"	present? Yes 🔿 🛛 No 🖲	
Are Vegetation Soil or Hydrology naturally pro	oblematic?	(If needed, explain any answ	ers in Remarks.)	
SUMMARY OF FINDINGS - Attach site map showing	sampling p	oint locations, transects	s, important features, etc.	

Hydrophytic Vegetation Present?	Yes 🔘	No 🔘						
Hydric Soil Present?	Yes 🔘	No 🔘	Is the Sampled Area					
Wetland Hydrology Present?	Yes 🔘	No 🔘	within a Wetland?	Yes 💽	No 🔿			
Remarks: 2012 was an unusually dry year with a snow pack below average. The site is at a 10,600 feet above sea level. The project								
area is located at a mine that has been periodically active for over 100 years. Vegetation, soils, and hydrology have been								

significantly disturbed from permitted mining activities.

	Absolute		Indicator	Dominance Test worksheet:		
Tree Stratum Plot Size	<u>% Cover</u>	Species?	Status	Number of Dominant Species		
1	-0			That Are OBL, FACW, or FAC	: 1	(A)
2				Total Number of Dominant		
3.				Species Across All Strata:	2	(B)
4.	8			Demonst of Deminent Creation		
		= Total Co	ver	 Percent of Dominant Species That Are OBL, FACW, or FAC 	50.0 %	(A/B)
Sapling/Shrub Stratum Plot Size 1m				,		(, D)
1.Salix gereriana	100	Yes	OBL	Prevalence Index worksheet		
2.Picea englemannii	15	12.	FAC	Total % Cover of:	Multiply by:	
3.				OBL species	x 1 =	
4.				FACW species	x 2 =	
5.				FAC species	x 3 =	
	115	= Total Cov	/er	FACU species	x 4 =	
Herb Stratum Plot Size 1m				UPL species	x 5 =	
1.Draba breweri	20	Yes	UPL	Column Totals:	(A)	(B)
2.	8	1995. 			(, ,	(-)
3.			÷	Prevalence Index = B/A	=	
4.				Hydrophytic Vegetation Indi	cators:	
5.				Dominance Test is >50%		
6.			2	Prevalence Index is ≤3.0 ¹		
7.				Morphological Adaptation	s ¹ (Provide suppo	rting
8.				data in Remarks or on	a separate sheet)	ļ
			3	- 🔀 Problematic Hydrophytic \	Jegetation ¹ (Expla	ւin)
Woody Vine Stratum Plot Size		= Total Co	ver			
1				¹ Indicators of hydric soil and v	wetland hydrology	y must
2.				be present.		
		= Total Co	/er			
	a na di d i			Vegetation	~	
% Bare Ground in Herb Stratum 60 %				Present? Yes 🖲	No 🔿	
Remarks: Bryophytes present, significant change in	vegetatio	n within 2	feet of Sn	effels creek. Soils comprised	l of mining wast	te rock
no top soil present, some fine tailings.	Constanting of the second s			_	200 million	

SOIL

(inches) Color (moist) % Type ¹ Loc ² Texture ³ Remarks Image: Second Secon	Depth Matrix Redox Features						_		
*Soil Textures: Clay, Silty Clay, Sandy Clay, Loam, Sandy Clay Loam, Sandy Loam, Clay Loam, Silty Clay Loam, Silt Loam, Silt, Loamy Sand, Sar Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Indicators for Problematic Hydric Soils. Histosol (A1) Sandy Redox (S5) 2 cm Muck (A10) Histic Epipedon (A2) Stripped Matrix (S6) Red Parent Material (TF2) Black Histic (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Other (Explain in Remarks) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Depleted Below Dark Surface (A11) Depleted Matrix (F3) *Indicators of hydrophytic vegetation and wetland hydrology must be present, unless distrubed or problematic. Sandy Gleyed Matrix (S4) Redox Depressions (F8) Restrictive Layer (if present): Type: mining waste rock Depth (inches):Surface Hydric Soil Present? Yes No (*) Remarks: Mining waste rock and tailings, well drained.	(inches)	Color (moist)	<u>%</u> (Color (moist)	<u>%</u>	Type ¹		Texture ³	Remarks
*Soil Textures: Clay, Silty Clay, Sandy Clay, Loam, Sandy Clay Loam, Sandy Loam, Clay Loam, Silty Clay Loam, Silt Loam, Silt, Loamy Sand, Sar Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Indicators for Problematic Hydric Soils. Histosol (A1) Sandy Redox (S5) 2 cm Muck (A10) Histic Epipedon (A2) Stripped Matrix (S6) Red Parent Material (TF2) Black Histic (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Other (Explain in Remarks) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Depleted Below Dark Surface (A11) Depleted Matrix (F3) *Indicators of hydrophytic vegetation and wetland hydrology must be present, unless distrubed or problematic. Sandy Gleyed Matrix (S4) Redox Depressions (F8) Restrictive Layer (if present): Type: mining waste rock Depth (inches):Surface Hydric Soil Present? Yes No (*) Remarks: Mining waste rock and tailings, well drained.									
Histosol (A1) Sandy Redox (S5) 2 cm Muck (A10) Histic Epipedon (A2) Stripped Matrix (S6) Red Parent Material (TF2) Black Histic (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Other (Explain in Remarks) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Depleted Below Dark Surface (A11) Depleted Matrix (F3) Thick Dark Surface (A12) Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Restrictive Layer (if present): Type: mining waste rock Hydric Soil Present? Yes No (• Depth (inches):Surface Hydric Soil Present? Yes No (•	³ Soil Texture	es: Clay, Silty Clay, S	andy Clay, Lo	am, Sandy Clay	Loam, Sar			n, Silty Clay Loam, Silt Loam, S	
Histic Epipedon (A2) Stripped Matrix (S6) Red Parent Material (TF2) Black Histic (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Other (Explain in Remarks) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Other (Explain in Remarks) Depleted Below Dark Surface (A11) Depleted Matrix (F3) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless distrubed or problematic. Sandy Mucky Mineral (S1) Depleted Dark Surface (F6) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless distrubed or problematic. Restrictive Layer (if present): Type: mining waste rock Redox Depressions (F8) Remarks: Mining waste rock and tailings, well drained. No (•)			5 to all ERINS,		206-200 REVEAU (CON-4.7				and Sons.
Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Depleted Below Dark Surface (A11) Depleted Matrix (F3) Thick Dark Surface (A12) Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Restrictive Layer (if present): Type: mining waste rock Depth (inches):Surface Depth (inches):Surface Hydric Soil Present? Yes No (•	Histic E	pipedon (A2)		and any as the pro-	sory Signation			Red Parent Material (TF:	2)
Loarny Greyed Matrix (F2) Depleted Below Dark Surface (A11) Depleted Matrix (F3) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Restrictive Layer (if present): Type: mining waste rock Depth (inches):Surface Hydric Soil Present? Yes No No	12240 200	the second of second press		Loamy Muc	ky Mineral	(F1) (exc	ept MLRA	1) Other (Explain in Remark	(S)
 Thick Dark Surface (A12) Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Depressions (F8) and Gleyed Matrix (S4) Redox Depressions (F8) Hydric Soil Present? Yes No • Remarks: Mining waste rock and tailings, well drained. 				Loamy Gley	ed Matrix	(F2)			
Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Restrictive Layer (if present): Type: mining waste rock Depth (inches): surface Remarks: Mining waste rock and tailings, well drained.			e (A11)		10000000000000000000000000000000000000	E6)		³ Indicators of hydrophytic veg	etation and
Sandy Gleyed Matrix (S4) Redox Depressions (F8) Restrictive Layer (if present): Type: mining waste rock Depth (inches): surface Hydric Soil Present? Yes No • Remarks: Mining waste rock and tailings, well drained.		10 SI				5 (State 97)			
Type: mining waste rock Depth (inches): surface Hydric Soil Present? Yes No () Remarks: Mining waste rock and tailings, well drained.	∟ .	P				THOMAS IN THE		unless distrubed or problema	atic.
	Type: mi	ning waste rock						Hydric Soil Present? Yes	∩ No
	Remarks: N	fining waste rock a	nd tailings, v	well drained.				- 6	
	IYDROLO	GY							

Primary Indicators (any one indicator is sufficient)	Secondary Indicators (2 or more required)
Image: Production (and the commutation to commutation to commutation (and the commutation) Water-Stained Leaves (B9) (no ML Image: Staturation (A3) Salt Crust (B11) Image: Staturation (A3) Aquatic Invertebrates (B13) Image: Water Marks (B1) Hydrogen Sulfide Odor (C1) Image: Staturation Deposits (B2) Oxidized Rhizospheres along Livin Image: Drift Deposits (B3) Presence of Reduced Iron (C4) Image: Algal Mat or Crust (B6) Recent Iron Reduction in Tilled Sc Iron Deposits (B6) Stunted or Stressed Plants (D1) (L Image: Surface Soil Cracks (B6) Other (Explain in Remarks) Image: Surface Soil Vegetated Concave Surface (B8) Sturface (B8)	LRA 1,2,4 A&B Water Stained Leaves (B9) (MLRA 1,2, 4 A&B Drainage Patterns (B10) Dry-Season Water Table (C2) ng Roots (C3) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) bils (C6) Shallow Aquitard (D3)
Field Observations: Surface Water Present? Yes No Depth (inches): 1 ft Water Table Present? Yes No Depth (inches): +4 inches Saturation Present? Yes No Depth (inches): surface (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect Remarks: Capillary rise extends approximately 4 inches above creek surface well	

Project/Site: Revenue Mine	City/Cou	ty/County: Camp Bird, Ouray Sampling Date: 06		Sampling Date: 06-02-2012
Applicant/Owner: Silver Star Resources		Stat	e:CO s	Sampling Point: $\mathrm{DP2}$
Investigator(s):WWE: BFF	Section	Township, Range: Sec. 2	21 T43N R8W	7
Landform (hillslope, terrace, etc.): Valley	Local re	elief (concave, convex, nor	ne):none	Slope (%):<2%
Subregion (LRR): E - RM Forests & Rangeland	Lat:°37.976383	N Long: ^{°10}	7.756350 W	Datum:NAD 83
Soil Map Unit Name: Moran-Telluride-Rock outcrop co	omplex		NWI classifica	tion: PSSB
Are climatic / hydrologic conditions on the site typical for thi	is time of year? Yes	No 🖲 (If n	o, explain in Re	marks.)
Are Vegetation $\overleftarrow{\times}$ Soil $\overleftarrow{\times}$ or Hydrology $\overleftarrow{\times}$ s	significantly disturbe	d? Are "Normal Cir	cumstances" pr	esent? Yes 🔿 🛛 No 🖲
Are Vegetation Soil or Hydrology	naturally problematio	? (If needed, expl	ain any answers	in Remarks.)
SUMMARY OF FINDINGS - Attach site map	showing samp	ling point locations,	, transects, i	important features, etc.
Hydrophytic Vegetation Present? Yes 🕥 N	10 🔘			
Hydric Soil Present? Yes 🦱 N		s the Sampled Area		
Wetland Hydrology Present? Yes N	10 🔘 v	vithin a Wetland?	Yes C	No 🛈

Remarks: 2012 was an unusually dry year with a snow pack below average. The site is at a 10,600 feet above sea level. The project area is located at a mine that has been periodically active for over 100 years. Vegetation, soils, and hydrology have been significantly disturbed from permitted mining activities.

	Absolute		Indicator	Dominance Test worksheet	:	
Tree Stratum Plot Size 5m	<u>% Cover</u>	Species?	10.0 million (10.0 million (10	Number of Dominant Species		
1.Picea englmannii	30	Yes	FAC	That Are OBL, FACW, or FAC	2: 2	(A)
2				- Total Number of Dominant		
3				Species Across All Strata:	4	(B)
4.				Percent of Dominant Species		
	30	= Total Co	over	That Are OBL, FACW, or FAC		(A/B)
Sapling/Shrub Stratum Plot Size 5m						, ,
1.Picea englmannii	25	Yes	FAC	Prevalence Index workshee	ARCA - 199 ARCA - 199	
2.				Total % Cover of:	Multiply by:	_
3.				OBL species	x 1 =	
4.		. <u>.</u>		FACW species	x 2 =	
5.	-			FAC species	x 3 =	
	25	= Total Co	ver	FACU species	x 4 =	
Herb Stratum Plot Size 5m				UPL species	x 5 =	
1.Draba breweri	40	Yes	UPL	Column Totals:	(A)	(B)
2. Festuca brachyphylla	20	Yes	UPL		<u> </u>	8 K
3.				Prevalence Index = B/A	4 =	
4.	-0			Hydrophytic Vegetation Ind	icators:	
5.			<u></u>	Dominance Test is >50%	le .	
6.	-0		-8	Prevalence Index is ≤3.0	1	
7.			-0	Morphological Adaptation	1s ¹ (Provide suppor	rting
8.						5. 1971 - 1971
· · · · · · · · · · · · · · · · · · ·	60	= Total Co	ver	- X Problematic Hydrophytic	vegetation (Expla	un)
Woody Vine Stratum Plot Size						
1		<i></i>	2	¹ Indicators of hydric soil and be present.	wetland hydrology	/ must
2						
		= Total Co	ver	Hydrophytic		
% Bare Ground in Herb Stratum $_60~\%$				Vegetation Present? Yes ()	No 💽	
Remarks: Significant change in vegetation within 2	2 feet of Sr	neffels cre	ek. Soils d	comprised of mining waste ro	ock no top soil p	resent.
some fine tailings. Some soil crusts				1 0	1 F.	,

			aeptn ne				or comm	the absence of indica	uors.)
Depth (inches)	Matri Color (moist)	x%		olor (moist)	ox Feature %	s Type ¹	Loc ²	Texture ³	Remarks
(mones)									
8									
27		595	500						
×									
×		~~~							
8						9			
6.		2627	20				19 55 - 1 9		
¹ Type: C=C	Concentration, D=[Depletion	RM=Rec	uced Matrix			Lining R(C=Root Channel, M=Ma	triv
									Loam, Silt, Loamy Sand, Sand.
	Indicators: (Appli		7/	021	0		, ,	Indicators for Proble	
Histosc	COLORY DEBUGGER DATES OF THE STREET STREET		r Errito, c	Sandy Re	10011W-CH10700011020.0001199			2 cm Muck (A10	
	pipedon (A2)			Stripped N	- tor encoder			Red Parent Mate	
	listic (A3)				10 10 10	al (E1) (ev	ept MLRA		
Hydrog	en Sulfide (A4)				eyed Matrix				(Remarks)
Deplete	ed Below Dark Su	rface (A11)	- Internet Service Const	Matrix (F3)				
Thick D	ark Surface (A12)		*		rk Surface			³ Indicators of hydrop	hytic vegetation and
	Mucky Mineral (S				Dark Surfa			wetland hydrology n	
	Gleyed Matrix (S4			1016 (MARK de 17 10 % 118	pressions	Production and		unless distrubed or	problematic.
	AL CARGE &					N (N			
	Layer (if present								
	ining waste rock	¢						Undela Call Descenti	Yes 🔿 No 🖲
	ches):surface							Hydric Soil Present?	? Yes () No (•)
Remarks: N	lining waste roo	ck and tai	ilings, w	ell drained.					
YDROLO									
-	drology Indicato			av.					
	cators (any one ir	ndicator is	sufficient)				Secondary Indi	cators (2 or more required)
	Water (A1)			Water-St	ained Leav	res (B9) (n	o MLRA 1,:		ned Leaves (B9) (MLRA 1,2, 4
High W	ater Table (A2)			Salt Crus	st (B11)			A&B	
Saturat	ion (A3)			Aquatic I	nvertebrate	es (B13)		Drainage F	Patterns (B10)
Water M	Marks (B1)			Hydroge	n Sulfide C	dor (C1)		Dry-Seaso	n Water Table (C2)
Sedime	nt Deposits (B2)			Oxidized	Rhizosphe	eres along	Living Roo	ts (C3) 🗌 Saturation	Visible on Aerial Imagery (C9)
Drift De	posits (B3)			Presence	e of Reduc	ed Iron (C4	4)	Geomorphi	ic Position (D2)
Algal M	at or Crust (B6)			Recent li	ron Reduct	ion in Tille	d Soils (C6) 📃 Shallow Ac	uitard (D3)
lron De	posits (B6)			Stunted	or Stressed	d Plants (D	1) (LRR A)	FAC-Neutr	al Test (D5)
Surface	e Soil Cracks (B6)			Other (E	xplain in R	emarks)		Raised Ant	Mounds (D6) (LRR A)
Inundat	ion Visible on Aer	ial Imager	y (B7)					Frost- Hea	ve Hummucks (D7)
Sparse	ly Vegetated Cond	cave Surfa	ice (B8)						
Field Obser	vations:								
				-					
	ter Present?		O No	Depth (i	1980				
Water Table				Depth (i	19209		Wetla	and Hydrology Present	t? Yes 🔿 No 🖲
Saturation F		Yes		Depth (i	nches):				
(includes ca	pillary fringe)								

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks: Capillary rise extends approximately 4 inches above creek surface water area. Small berm adjacent to creek

Project/Site: Revenue Mine	City/County: Camp Bird	, Ouray	Sampling Date: 06-02-2012
Applicant/Owner: Silver Star Resources		State:CO	Sampling Point: DP3
Investigator(s):WWE: BFF	Section, Township, Rang	e: Sec. 21 T43N R8	3W
Landform (hillslope, terrace, etc.): Valley	Local relief (concave, co	ivex, none):none	Slope (%):<2%
Subregion (LRR): E - RM Forests & Rangeland Lat: °37	7.976067 N L	.ong:°107.755683 V	V Datum:NAD 83
Soil Map Unit Name: Moran-Telluride-Rock outcrop complex		NWI classifi	ication: PSSB
	y disturbed? Are "No roblematic? (If need	(If no, explain in I rmal Circumstances" ed, explain any answ ations, transects	present? Yes No No
Hydrophytic Vegetation Present? Yes No Hydric Soil Present? Yes No Wetland Hydrology Present? Yes No Remarks: 2012 was an unusually dry year with a snow pack 1 area is located at a mine that has been periodically a significantly disturbed from permitted mining activ	active for over 100 years	Yes C is at a 10,600 feet	above sea level. The project

	Absolute		t Indicator	Dominance Test worksheet:	
Tree Stratum Plot Size 1m	10	Species?	10.8 23	Number of Dominant Species	-
1.Picea englmannii	15	Yes	FAC	That Are OBL, FACW, or FAC:	2 (A)
2		×		Total Number of Dominant	
3				Species Across All Strata:	5 (B)
4				Percent of Dominant Species	
Capita a/Chauta Chattana	15	= Total Co	over		0.0 % (A/B)
Sapling/Shrub Stratum Plot Size 5m	10	Var	0.001	Prevalence Index worksheet:	
1.Salix gereriana	10	Yes	OBL		la han
2		k	-3	Total % Cover of: Multip	DIY DY:
3				OBL species x 1 =	
4		69.5	14	FACW species x 2 =	
5			8	FAC species x 3 =	
		= Total Co	ver	FACU species x 4 =	
Herb Stratum Plot Size 5m	• •	\$7		UPL species x 5 =	
1.Draba breweri		Yes	UPL	Column Totals: (A)	(B)
2 Festuca brachyphylla	20	Yes	UPL	Prevalence Index = B/A =	
3. Trisetum spicatum	10	Yes	FACU		
4				Hydrophytic Vegetation Indicators:	
5				Dominance Test is >50%	
6				Prevalence Index is ≤3.0 ¹	
7.				 Morphological Adaptations¹ (Provided data in Remarks or on a separat 	
8.					
· · · · · · · · · · · · · · · · · · ·	50	= Total Co	over	- X Problematic Hydrophytic Vegetation	i (Explain)
Woody Vine Stratum Plot Size				1	
1.				¹ Indicators of hydric soil and wetland h be present.	ydrology must
2					
	. 	= Total Co	ver	Hydrophytic	
% Bare Ground in Herb Stratum $_60~\%$				Vegetation Present? Yes O No (•
Remarks: Near small tributary stream fine tailings	for soil. 5	m area wa	as used to g	get vegetation coverage.	

000

OIL			Sampling Point: DF3	
Profile Des	cription: (Describe to the de	pth needed to document the indicator or confi	m the absence of indicators.)	
Depth	Matrix	Redox Features		
(inches)	Color (moist) %	<u>Color (moist)</u> <u>%</u> <u>Type¹</u> Loc ²	Texture ³ Remarks	
		· · · · · · · · · · · · · · · · · · · _ = ~ _ · _ = ~ _ · _ = ~ _		
			· · ·	
			· · <u></u>	
		······································	1 6	
	oncentration, D=Depletion, RN es: Clay, Silty Clay, Sandy Cla	/I=Reduced Matrix. ² Location: PL=Pore Lining, y, Loam, Sandy Clay Loam, Sandy Loam, Clay Lo	RC=Root Channel, M=Matrix. am, Silty Clay Loam, Silt Loam, Silt, Loamy Sand	d, Sand
	ndicators: (Applicable to all Li	RRs, unless otherwise noted.)	Indicators for Problematic Hydric Soils:	
Histoso	outer contra	Sandy Redox (S5)	2 cm Muck (A10)	
DE VERSION DE LOGIE DE	pipedon (A2) istic (A3)	Stripped Matrix (S6)	Red Parent Material (TF2)	
10220 200	en Sulfide (A4)	Loamy Mucky Mineral (F1) (except MLR	A 1) Other (Explain in Remarks)	
	d Below Dark Surface (A11)	Loamy Gleyed Matrix (F2)		
farmer film and	ark Surface (A12)	Depleted Matrix (F3)	³ Indicators of hydrophytic vegetation and	
_		Redox Dark Surface (F6)	wetland hydrology must be present,	
1.2.2	Mucky Mineral (S1)	Depleted Dark Surface (F7) Redox Depressions (F8)	unless distrubed or problematic.	
	Gleyed Matrix (S4)			
	Layer (if present):			
300 0	ning waste rock		Hydric Soil Present? Yes O No (
	ches):surface		Hydric Soil Present? Yes () No (9
Remarks: $^{ m N}$	fining waste rock and tailin	igs, well drained.		
	drology Indicators:			
25 	cators (any one indicator is suf	fficient)	Secondary Indicators (2 or more require	red)
	Water (A1)	Water-Stained Leaves (B9) (no MLRA		
	ater Table (A2)	Salt Crust (B11)	A&B	7 1,2, 4
Saturati		Aquatic Invertebrates (B13)	Drainage Patterns (B10)	
International and and	/arks (B1)	Hydrogen Sulfide Odor (C1)	Dry-Season Water Table (C2)	
	nt Deposits (B2)	Oxidized Rhizospheres along Living R		erv (C9)
	posits (B3)	Presence of Reduced Iron (C4)	Geomorphic Position (D2)	
201000 10 2000	at or Crust (B6)	Recent Iron Reduction in Tilled Soils (
1077	posits (B6)	Stunted or Stressed Plants (D1) (LRR		
	Soil Cracks (B6)	Other (Explain in Remarks)	Raised Ant Mounds (D6) (LRR A)	
A REPORT OF A REPO	ion Visible on Aerial Imagery (I		Frost- Heave Hummucks (D7)	
	y Vegetated Concave Surface			
_ spuise	, segurado conouvo canaco			

0.5 inch

Remarks: Small tributary flowed through tailings pile. Did not appear to provide enough hydrology to support vegetation growth in

Field Observations:

Surface Water Present?

(includes capillary fringe)

Water Table Present?

Saturation Present?

Yes

Yes

Yes

 \bigcirc

00

No 🔿

No 🔘

that substrate. Waters would still be considered WoUS as a tributary.

Depth (inches):

Depth (inches):

No (Depth (inches):

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

No 🔿

Wetland Hydrology Present? Yes 🔘

Project/Site: Revenue Mine			City/County: C	amp Bird, Our	ay	_ Sampling	g Date: 06-	-02-2012
Applicant/Owner: Silver Star Resources	\$			S	itate: <u>CO</u>	Sampling	g Point: DF	P4
Investigator(s):WWE: BFF			Section, Towns	ship, Range: Sec	21 T43N R	8W	2	
Landform (hillslope, terrace, etc.): Valley	τ.		Local relief (co	ncave, convex, r	none):none		Slope	(%):<2%
Subregion (LRR) \pm - RM Forests & Ra	ngeland	Lat: <u>°</u> 37.	.975717 N	Long: ^o	107.755917	N	Datum:	NAD 83
Soil Map Unit Name: Moran very grave	lly loam, ext	tremely stony	1		NWI classi	fication: NA		
	drology 🔀 drology 🗌	significantly naturally pro	v disturbed? oblematic?	Are "Normal ((If needed, e)	f no, explain in Circumstances kplain any ansv ns, transect	' present? /ers in Rem	arks.)	No ● ures, etc.
Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present? Remarks: 2012 was an unusually dr		-	within a selow average.			above sea	level. Th	
area is located at a mine th	at has been j	periodically a	ctive for over	100 years. Ve	getation, soil	s, and hyd	rology ha	ve been

significantly disturbed from permitted mining activities.

1	Absolute		Indicator	Dominance Test worksheet:		
Tree Stratum Plot Size 1m	% Cover	Species?	Status	Number of Dominant Species		
1.				That Are OBL, FACW, or FAC		(A)
2.						
3.		H. 9	·	 Total Number of Dominant Species Across All Strata: 	2	(B)
4.		19.	8		2	(0)
*	_			Percent of Dominant Species		
Sapling/Shrub Stratum Plot Size 5m	· · · · ·	= Total Co	ver	That Are OBL, FACW, or FAC	S: 50.0 %	(A/B)
1.Salix geyeriana	10	Yes	OBL	Prevalence Index worksheet	t:	
2.	8		8	Total % Cover of:	Multiply by:	
3.				OBL species	x 1 =	
4.		K)2	·	FACW species	x 2 =	
5.			19 <u></u>	FAC species	x 3 =	
	10	= Total Cov	/er	FACU species	x 4 =	
Herb Stratum Plot Size 5m				UPL species	x 5 =	
1.Festuca brachyphylla	15	Yes	UPL	Column Totals:	(A)	(B)
2.		1724 			3.6	12 B
3.				Prevalence Index = B/A	ς=	
4.	-0			Hydrophytic Vegetation Indi	icators:	
5.	`C`			Dominance Test is >50%	2 10	
6.	-0		<u>0</u>	Prevalence Index is ≤3.0 ¹	the second s	
7.				Morphological Adaptation	is ¹ (Provide suppor	ting
8.		R, 9		data in Remarks or on		
· · · · · · · · · · · · · · · · · · ·	15	= Total Co	ver	- 🔀 Problematic Hydrophytic	Vegetation' (Explai	n)
Woody Vine Stratum Plot Size				1		
1	<u></u>		18	¹ Indicators of hydric soil and be present.	wetland hydrology	must
2						
		= Total Co	/er	Hydrophytic		
% Bare Ground in Herb Stratum $80~\%$				Vegetation Present? Yes 〇	No 💿	
Remarks: Fine tailings for soil, 5m area was used	to get year	atotion con	Jaroga			
File tailings for son, oil area was used	to get vege	Jation CO	rerage.			

	-
COL	
301	_

Profile Dese Depth	cription: (Describe Matrix	to the depth ne	eded to document the indicator Redox Features	or confirm the absence of	indicators.)
(inches)	Color (moist)	% Co	plor (moist) % Type ¹	Loc ² Texture ³	Remarks
0-30	7.5 YR 7/0	100		Fines	Grey tailings, almost powder
30-34	7.5 YR 3/0	80		loam	mixed with gravel
	oncentration, D=Dep			e Lining, RC=Root Channel, n. Clay Loam. Silty Clay Loar	 M=Matrix. n, Silt Loam, Silt, Loamy Sand, Sand.
Hydric Soil I Histosol Histic E Black H Hydrogo Deplete Thick D Sandy I	ndicators: (Applicab	le to all LRRs, u [[[[hless otherwise noted.) Sandy Redox (S5) Stripped Matrix (S6) Loamy Mucky Mineral (F1) (ex Loamy Gleyed Matrix (F2) Depleted Matrix (F3) Redox Dark Surface (F6) Depleted Dark Surface (F7) Redox Depressions (F8)	Indicators for 2 cm Muc Red Pare cept MLRA 1) Other (Ex ³ Indicators of I wetland hydro	Problematic Hydric Soils:
Type: Depth (in Remarks: A cl	ugered tailings to hanges in color, or	moisture through	nches before getting to buried ughout the layer. It appears th oles in the area revealed simile	topsoil. Grey tailings sho at top soil was stored at th	
HYDROLO	GY				,
Wetland Hy	drology Indicators:				
Primary Indi	cators (any one indic	ator is sufficient		Seconda	ry Indicators (2 or more required)
High Wa Saturati Water M Sedime Drift De Algal M Iron De Surface Inundat	Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B6) posits (B6) Soil Cracks (B6) ion Visible on Aerial y Vegetated Concave		Water-Stained Leaves (B9) (r Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Presence of Reduced Iron (C Recent Iron Reduction in Tille Stunted or Stressed Plants (I Other (Explain in Remarks)	A&B Drai Dry- Living Roots (C3) Satu 4) Geo ed Soils (C6) Shal D1) (LRR A) FAC Rais	er Stained Leaves (B9) (MLRA 1,2, 4 nage Patterns (B10) Season Water Table (C2) ration Visible on Aerial Imagery (C9) morphic Position (D2) Iow Aquitard (D3) -Neutral Test (D5) ed Ant Mounds (D6) (LRR A) t- Heave Hummucks (D7)
Field Obser	vations:			ł:	
	Present? Ye resent? Y pillary fringe)	es O No es O No es O No gauge, monitor	 Depth (inches): Depth (inches): Depth (inches): Ing well, aerial photos, previous incompared to the second second	Wetland Hydrology P	resent? Yes 🔿 No 💿
Remarks:					

Project/Site: Revenue Mine	City/County: Camp Bi	ird, Ouray	Sampling Date: 06-02-2012
Applicant/Owner: Silver Star Resources		State:CO	Sampling Point: DP5
Investigator(s):WWE: BFF	Section, Township, Ra	nge: Sec. 21 T43N F	28W
Landform (hillslope, terrace, etc.): Valley	Local relief (concave,	convex, none):none	Slope (%):<2%
Subregion (LRR): $E - RM$ Forests & Rangeland Lat	:° 37 .975167 N	Long: <u>°107.755983</u>	W Datum:NAD 83
Soil Map Unit Name: Moran very gravelly loam, extremely s	tony	NWI class	ification: NA
	antly disturbed? Are line ly problematic? (If ne	"Normal Circumstances eeded, explain any ans	s" present? Yes ○ No ● wers in Remarks.)
Hydrophytic Vegetation Present?YesNoHydric Soil Present?YesNoWetland Hydrology Present?YesNoRemarks: 2012 was an unusually dry year with a snow patient	Is the Sampled within a Wetlan ick below average. The s	nd? Yes (

area is located at a mine that has been periodically active for over 100 years. Vegetation, soils, and hydrology have been significantly disturbed from permitted mining activities.

	Absolute	Dominan	t Indicator	Dominance Test worksheet:		
Tree Stratum Plot Size 1m	% Cover	Species?	Status	Number of Dominant Species		
1				That Are OBL, FACW, or FAC:	2 (A)	i
2.				Total Number of Dominant		
3.				Species Across All Strata:	5 (B))
4.		895. 	8			2
		= Total Co	over	 Percent of Dominant Species That Are OBL, FACW, or FAC: 	40.0 % (A/	R)
Sapling/Shrub Stratum Plot Size 5m		9 International and			10.0 /0 (/*	σ,
1.Salix geyeriana	20	Yes	OBL	Prevalence Index worksheet:		
2.				Total % Cover of:	Multiply by:	
3.				OBL species x	1 =	
4.		80.0		FACW species x	2 =	
5				FAC species x	3 =	
		= Total Co	ver	FACU species x	4 =	
Herb Stratum Plot Size 5m				UPL species x	5 =	
1.Festuca brachyphylla	15	Yes	UPL	_ Column Totals: (A)	(B)
2.Draba breweri	15	Yes	UPL			A 85
3. Trisetum spicatum	10	Yes	FACU	Prevalence Index = B/A =		
4. Deschampsia cespitosa	10	Yes	FACW	Hydrophytic Vegetation Indica	tors:	
5.				Dominance Test is >50%		
6.				Prevalence Index is ≤3.0 ¹		
7.			-:	Morphological Adaptations ¹		
8.				data in Remarks or on a s	AND AND DEPENDENCE AND AN AN AN	
	50	= Total Co	over	Problematic Hydrophytic Veg	getation' (Explain)	
Woody Vine Stratum Plot Size		1.		1		
1				Indicators of hydric soil and we be present.	tland hydrology mu	st
2						
		= Total Co	ver	Hydrophytic		
% Bare Ground in Herb Stratum25 %				Vegetation Present? Yes 〇	No 🖲	
Remarks: Fine tailings for soil, 5m area was used	to get veg	etation co	verage.			
			-			

SOIL

		to the depth ne	eded to document the inc	licator or confirm	the absence of	indicators.)
Depth (inches)	Matrix Color (moist)	<u>%</u> Cc	Redox Features	Type ¹ Loc ²	Texture ³	Remarks
0-8	7.5 YR 7/0	100			Fines	Grey tailings, almost powder
8-20	7.5 YR 3/0	80			loam	mixed with gravel
24-30	7.5 YR 7/0	90			Fines w/gravel	Grey tailings
³ Soil Textur Hydric Soil Histoso Histic E Black H Hydrog Deplet Thick D Sandy Sandy Restrictive	Indicators: (Applicab	Sandy Clay, Loar le to all LRRs, un 		F1) (except MLRA 2) 6) (F7)	m, Silty Clay Loar Indicators for 2 cm Muc Red Paren 1) Other (Ex ³ Indicators of H wetland hydro unless distrut	n, Silt Loam, Silt, Loamy Sand, Sand. Problematic Hydric Soils k (A10) nt Material (TF2) plain in Remarks) hydrophytic vegetation and blogy must be present, bed or problematic.
360 0	nches):30 inches		aa		Hydric Soil Pr	esent? Yes 🔿 No 💿
C C	hanges in color, or	moisture throu	ghout the layer. It appe	ears that top soil	was stored at th	d no redoximorphic features, his location and tailings were pths to the buried top soil.
HYDROLO	DGY					
Wetland Hy	vdrology Indicators:					
Surface High W Saturat Voter I Sedime Drift De Algal M Iron De Surface Inunda	icators (any one indic e Water (A1) /ater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) eposits (B3) Mat or Crust (B6) eposits (B6) e Soil Cracks (B6) tion Visible on Aerial	Imagery (B7)	Water-Stained Leaves Salt Crust (B11) Aquatic Invertebrates (Hydrogen Sulfide Odo Oxidized Rhizosphere Presence of Reduced Recent Iron Reduction Stunted or Stressed P Other (Explain in Rem	B13) r (C1) s along Living Roo Iron (C4) in Tilled Solls (C6 ants (D1) (LRR A)		ry Indicators (2 or more required) er Stained Leaves (B9) (MLRA 1,2, 4 hage Patterns (B10) Season Water Table (C2) ration Visible on Aerial Imagery (C9) morphic Position (D2) Iow Aquitard (D3) -Neutral Test (D5) ed Ant Mounds (D6) (LRR A) t- Heave Hummucks (D7)
Field Obse	rvations:					
Water Table Saturation F	e Present? Y	es (No es (No es (No	 Depth (inches): Depth (inches): Depth (inches): Depth (inches): 	2" 0 +1" Wetla	and Hydrology P	resent? Yes 🔿 No 💿
Describe R	ecorded Data (stream	gauge, monitorii	ng well, aerial photos, prev	ious inspections), i	if available:	
Remarks: S	Small pools of surfa	acing ground w	ater in tailings, no flow	or traceable cha	innel connectio	n to other WoUS or wetlands.

Project/Site: Revenue Mine		City/County: Camp Bird, Ouray			Sampling Date: 06-02-2012		
Applicant/Owner: Silver Star Resources				State:	co	Sampling Po	pint: DP6
Investigator(s):WWE: BFF		5	Section, Townsh	ip, Range: Sec. 21	T43N R8'	W	2.
Landform (hillslope, terrace, etc.): Valle	у	54	Local relief (con	cave, convex, none)	none	0	Slope (%):<2%
Subregion (LRR): E - RM Forests & R	angeland	Lat:°37.9	975833 N	Long:°107.1	755167 W	1	Datum:NAD 83
Soil Map Unit Name: Moran Telluride	-Rock outerc	p, extremely st	ony	Ν	WI classific	ation: PSSB	
Are climatic / hydrologic conditions on th	e site typical f	or this time of yea	ar?Yes 🔿	No 💽 (If no, e	explain in R	emarks.)	
Are Vegetation 🔀 🛛 Soil 🔀 or Hy	/drology 🗙	significantly o	disturbed?	Are "Normal Circur	nstances" p	oresent? Yes	s 🔿 🛛 No 🖲
Are Vegetation Soil or Hy	/drology	naturally prot	blematic?	(If needed, explain	any answe	rs in Remarks	5.)
SUMMARY OF FINDINGS - At	tach site m	ap showing	sampling po	int locations, tr	ansects	, importan	t features, etc.
Hydrophytic Vegetation Present?	Yes 🜘	No 🔘					
Hydric Soil Present?	Yes 🔘	No 🔘	Is the Sar	npled Area			
Wetland Hydrology Present?	Yes 🕡	No 🔘	within a V	Wetland?	Yes 🔎	No O	

 Wetland Hydrology Present?
 Yes (
 No
 within a Wetland?
 Yes (
 No
 No

 Remarks: 2012 was an unusually dry year with a snow pack below average.
 The site is at a 10,600 feet above sea level.
 The project area is located at a mine that has been periodically active for over 100 years.
 Vegetation, soils, and hydrology have been significantly disturbed from permitted mining activities.

	Absolute		Indicator	Dominance Test worksheet:		
Tree Stratum Plot Size 1m 1.	<u>% Cover</u>	Species?	<u>Status</u>	Number of Dominant Species That Are OBL, FACW, or FAC:	2	(A)
2.	-0					
3.	-0			 Total Number of Dominant Species Across All Strata: 	3	(B)
4.		10.	3		2	(-)
		= Total Co	ver	 Percent of Dominant Species That Are OBL, FACW, or FAC: 	667	
Sapling/Shrub Stratum Plot Size 1m		- Total Oc		Inat Are OBE, FACVV, OF FAC.	66.7 %	(A/B)
1.Salix geyeriana	40	Yes	OBL	Prevalence Index worksheet:		
2.Salix monticula	20	Yes	OBL	Total % Cover of:	Multiply by:	_
3.				OBL species x 1	=	
4.			·	FACW species x 2	! =	
5.				FAC species x 3	i =	
	60	= Total Cov	/er	FACU species x 4	, =	
Herb Stratum Plot Size 1m				UPL species x 5	i =	
1.Draba breweri	15	Yes	UPL	Column Totals: (A)		(B)
2.						81 16
3.				Prevalence Index = B/A =		
4.		ж.»		Hydrophytic Vegetation Indicat	ors:	
5.			÷	X Dominance Test is >50%		
6.			2	Prevalence Index is ≤3.0 ¹		
7		109. 		Morphological Adaptations ¹ (data in Remarks or on a s		
8				Problematic Hydrophytic Veg		en en
	15	= Total Co	ver			
Woody Vine Stratum Plot Size				¹ Indicators of hydric soil and wet	land hydrology	v must
1		<u></u>		be present.	land nyarology	Finasc
2				-		
% Bare Ground in Herb Stratum 40 %		= Total Co	ver	Hydrophytic Vegetation Present? Yes 💿	No 🔿	
Remarks: Small waste rock berm along Sneffels Cr	eek vegeta	ition conc	entrated or	the berm sloping into the creek		
U	U U					

Depth Matrix	Redox Features	-
inches) Color (moist) %	Color (moist)%Type ¹ Loc ²	Texture ³ Remarks
Type: C=Concentration, D=Depletion, Soil Textures: Clay, Silty Clay, Sandy C ydric Soil Indicators: (Applicable to all	Clay, Loam, Sandy Clay Loam, Sandy Loam, Clay L	, RC=Root Channel, M=Matrix. .oam, Silty Clay Loam, Silt Loam, Silt, Loamy Sand, Sa Indicators for Problematic Hydric Soils:
Histosol (A1)	Sandy Redox (S5)	2 cm Muck (A10)
Histic Epipedon (A2)	Stripped Matrix (S6)	Red Parent Material (TF2)
Black Histic (A3)	Loamy Mucky Mineral (F1) (except MLF	RA 1) Other (Explain in Remarks)
Hydrogen Sulfide (A4)	Loamy Gleyed Matrix (F2)	
Depleted Below Dark Surface (A11 Thick Dark Surface (A12)	Depleted Matrix (F3) Redox Dark Surface (F6)	³ Indicators of hydrophytic vegetation and
Sandy Mucky Mineral (S1)	Depleted Dark Surface (F6)	wetland hydrology must be present,
Sandy Gleyed Matrix (S4)	Redox Depressions (F8)	unless distrubed or problematic.
Restrictive Layer (if present): Type:Waste rock Depth (inches):surface		Hydric Soil Present? Yes 🔿 No 🔎
Remarks: Waste rock with no fine pa	urticles very rocky	
emarks: P	······································	

Primary Indicators (any one indicator is sufficient)		Secondary Indicators (2 or more required)			
	Water-Stained Leaves (B9) (no MLF				
High Water Table (A2)	Salt Crust (B11)	A&B			
Saturation (A3)	Aquatic Invertebrates (B13)	Drainage Patterns (B10)			
Water Marks (B1)	Hydrogen Sulfide Odor (C1)	Dry-Season Water Table (C2)			
Sediment Deposits (B2)	Oxidized Rhizospheres along Living	g Roots (C3) Saturation Visible on Aerial Imagery (C9)			
Drift Deposits (B3)	Presence of Reduced Iron (C4)	Geomorphic Position (D2)			
Algal Mat or Crust (B6)	Recent Iron Reduction in Tilled Soil	s (C6) Shallow Aquitard (D3)			
Iron Deposits (B6)	Stunted or Stressed Plants (D1) (LF	RR A) FAC-Neutral Test (D5)			
Surface Soil Cracks (B6)	Other (Explain in Remarks)	Raised Ant Mounds (D6) (LRR A)			
Inundation Visible on Aerial Imagery (B7)		Frost- Heave Hummucks (D7)			
Sparsely Vegetated Concave Surface (B8)					
Field Observations:					
Surface Water Present? Yes 🔿 No 💿	Depth (inches):				
Water Table Present? Yes 💿 No 🔿	Depth (inches): -2 inches	Wetland Hydrology Present? Yes 💿 No 🔿			
Saturation Present? Yes 💿 No 🔿	Depth (inches):				
(includes capillary fringe)					
Describe Recorded Data (stream gauge, monitoring we					
Remarks: Adjacent to Sneffels Creek. Stream app	pears to pick up ground water s	eepage in various locations.			

Project/Site: Revenue Mine	City/County: Ca	mp Bird, Ouray	Sampling Date: 06-02-2012				
Applicant/Owner: Silver Star Resources		Sta	te:CO	Sampling Point: $DP7$			
Investigator(s):WWE: BFF			Section, Townsh	iip, Range: Sec.	21 T43N R8	W	
Landform (hillslope, terrace, etc.): Valley	7		Local relief (cor	cave, convex, no	ne):none		Slope (%):<2%
Subregion (LRR) \pm - RM Forests & Ra	ingeland	Lat: ^o 37.	.974950 N	Long: [°] 10	07.755200 W	1	Datum:NAD 83
Soil Map Unit Name: Moran-Telluride-	Rock outerc	р			NWI classific	cation: PSS	В
Are climatic / hydrologic conditions on the	e site typical fo	or this time of ye	ar?Yes 🔿	No 🖲 (lf r	no, explain in R	(emarks.)	
Are Vegetation $\overleftarrow{\times}$ Soil $\overleftarrow{\times}$ or Hyd	drology 🗙	significantly	disturbed?	Are "Normal Ci	rcumstances"	present? Y	'es 🔿 🛛 No 🖲
Are Vegetation Soil or Hyd	drology	naturally pro	oblematic?	(If needed, exp	lain any answe	ers in Remar	ˈks.)
SUMMARY OF FINDINGS - Att	ach site m	ap showing	sampling po	oint locations	, transects	, importa	nt features, etc.
Hydrophytic Vegetation Present?	Yes 🔘	No 🖲					
Hydric Soil Present?	Yes 🔘	No 🖲	Is the Sa	mpled Area			
Wetland Hydrology Present?	Yes 🔘	No 🔘	within a	Wetland?	Yes 〇	No 🤇	ð

Remarks: 2012 was an unusually dry year with a snow pack below average. The site is at a 10,600 feet above sea level. The project area is located at a mine that has been periodically active for over 100 years. Vegetation, soils, and hydrology have been significantly disturbed from permitted mining activities.

	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:	
<u>Tree Stratum</u> Plot Size 5m 1. <i>Picea engelmannii</i>	<u>% Cover</u> 10	Yes	FAC	Number of Dominant Species That Are OBL, FACW, or FAC:	3 (A)
2.					3 (^)
2 3.		ку	0	Total Number of Dominant	(D)
		115: 	8	Species Across All Strata:	б (В)
4				Percent of Dominant Species	
Sapling/Shrub Stratum Plot Size 5m	10	= Total Co	ver	That Are OBL, FACW, or FAC:	50.0 % (A/B)
1.Picea engelmannii	20	Yes	FAC	Prevalence Index worksheet:	
2.Salix monticola	10	Yes	OBL		ultiply by:
3.				OBL species x 1 =	
4.				FACW species x 2 =	
5.			×	FAC species x 3 =	
	30	= Total Cov	/er	FACU species x 4 =	
Herb Stratum Plot Size 5m				UPL species x 5 =	
1.Festuca brachyphylla	15	Yes	UPL	Column Totals: (A)	(B)
2. Trisetum spicatum	15	Yes	UPL		67 53
3. Vaccinium myrtillus	10	Yes	UPL	Prevalence Index = B/A =	
4.		49 -	-2	Hydrophytic Vegetation Indicators	:
5.				Dominance Test is >50%	
6.	-0-		53 	Prevalence Index is ≤3.0 ¹	
7.				 Morphological Adaptations¹ (Pro data in Remarks or on a sepa 	
8.		.,.			
		= Total Co	ver	Problematic Hydrophytic Vegeta	tion (Explain)
Woody Vine Stratum Plot Size				¹ Indicators of hydric soil and wetlan	d bydrology must
1				be present.	u nyu ology musi
2	- W-			-	
% Bare Ground in Herb Stratum 60%		= Total Cov	/er	Hydrophytic Vegetation Present? Yes N	o 🖲
Remarks: Disturbed area mining waste piles and an	d uneven t	opograph	y appears t	to be results from bulldozing and ov	verburden
storage from mining activities.				6	

Depth	Matrix		Redo	x Features				
(inches)	Color (moist)	%	Color (moist)	<u>%</u>	Type ¹	Loc ²	Texture ³	Remarks
0-2	10YR 2/2	70					organic	Mixed with tailings
	Concentration, D=Dep res: Clay, Silty Clay, S						C=Root Channel, m, Silty Clay Loa	, M=Matrix. m, Silt Loam, Silt, Loamy Sand, Sand.
Histos Histic Black Hydro Deple Thick Sandy	I Indicators: (Applicabl ol (A1) Epipedon (A2) Histic (A3) gen Sulfide (A4) ted Below Dark Surfac Dark Surface (A12) / Mucky Mineral (S1) / Gleyed Matrix (S4)		Sandy Rec Stripped M Loamy Mu Loamy Gle Depleted N Redox Dar Depleted D	lox (S5) atrix (S6) cky Mineral (yed Matrix (F2) 6) (F7)	ept MLR#	2 cm Muc Red Pare A 1) Other (Ex ³ Indicators of wetland hydr	Problematic Hydric Soils ⁴ ck (A10) ent Material (TF2) kplain in Remarks) hydrophytic vegetation and ology must be present, bed or problematic.
Type: <u>W</u>	e Layer (if present): /aste rock inches):near surface		1				Hydric Soil Pr	resent? Yes 🔿 No 🖲
	Waste rock with son	ne organic	layer, very rock	у			1	
	OGY lydrology Indicators:							
	dicators (any one indic	ator is suffic	ent)				Seconda	ary Indicators (2 or more required)
	e Water (A1)	ator is suffic			(DO) (
				ined Leaves	o (ca) (no	WILKAT		er Stained Leaves (B9) (MLRA 1,2, 4

Primary Indicators (any one i	ndicator	IS SUT	icient)			Secondary Indicators (2 or more required)		
Surface Water (A1) Water-Stained Leaves (B9) (no MLRA 1,2,					RA 1,2,4 A&B	Water Stained Leaves (B9) (MLRA 1,2, 4			
High Water Table (A2)					Salt Crust (B11)		A&B		
Saturation (A3)					Aquatic Invertebrates (B13)		Drainage Patterns (B10)		
Water Marks (B1)					Hydrogen Sulfide Odor (C1)	[Dry-Season Water Table (C2)		
Sediment Deposits (B2)					Oxidized Rhizospheres along Livin	ng Roots (C3)	Saturation Visible on Aerial Imagery (C9)		
Drift Deposits (B3)				\Box	Presence of Reduced Iron (C4)		Geomorphic Position (D2)		
Algal Mat or Crust (B6)					Recent Iron Reduction in Tilled So	ils (C6)	Shallow Aquitard (D3)		
Iron Deposits (B6)					Stunted or Stressed Plants (D1) (L	.RRA)	FAC-Neutral Test (D5)		
Surface Soil Cracks (B6) Other (Explain in Remarks)					Raised Ant Mounds (D6) (LRR A)				
Inundation Visible on Ae	rial Imag	jery (B	57)			1	Frost- Heave Hummucks (D7)		
Sparsely Vegetated Con	cave Su	rface ((B8)						
Field Observations:						8			
Surface Water Present?	Yes	\bigcirc	No	۲	Depth (inches):				
Water Table Present?	Yes	O	No		Depth (inches):	- Wetland Hydrology Present? Yes 🔿 No 💿			
Saturation Present?	Yes	\circ	No	igodot	Depth (inches):				
(includes capillary fringe)									
Describe Recorded Data (str	eam gau	.ge, m	onitor	ing ۱	well, aerial photos, previous inspect	ions), if availab	e:		
Remarks:									

Project/Site: Revenue Mine	City/County: Ca	mp Bird, Ouray	Sampling Date: 06-02-2012				
Applicant/Owner: Silver Star Resources		State:CO Sampling Point:]			Point: DP8		
Investigator(s):WWE: BFF			Section, Towns	hip, Range: Sec. 2	21 T43N R8	W	2
Landform (hillslope, terrace, etc.): Valley	7		Local relief (co	ncave, convex, no	ne):none		Slope (%):<2%
Subregion (LRR) E - RM Forests & Ra	ingeland	Lat:°37.9	974700 N	Long:°10)7.755450 W	I	Datum:NAD 83
Soil Map Unit Name: Moran-Telluride-	Rock outerc	pp			NWI classific	ation:	
Are climatic / hydrologic conditions on the	e site typical f	or this time of yea	ar?Yes 🔿	No 🖲 (lf n	o, explain in R	emarks.)	
Are Vegetation 🔀 Soil 🔀 or Hyd	drology 🗙	significantly	disturbed?	Are "Normal Cir	cumstances"	present? Y	'es 🔿 🛛 No 🖲
Are Vegetation Soil or Hyd	drology	naturally pro	blematic?	(If needed, expl	ain any answe	ers in Remai	ʻks.)
SUMMARY OF FINDINGS - Att	ach site m	ap showing	sampling p	oint locations	, transects	, importa	nt features, etc.
Hydrophytic Vegetation Present?	Yes 🔘	No 🔘					
Hydric Soil Present?	Yes 🔘	No 🔘	Is the S	ampled Area			
Wetland Hydrology Present?	Yes 🔘	No 🔘	within a	Wetland?	Yes 〇	No (0

 Wetland Hydrology Present?
 Yes
 No
 within a Wetland?
 Yes
 No
 No

 Remarks: 2012 was an unusually dry year with a snow pack below average.
 The site is at a 10,600 feet above sea level.
 The project area is located at a mine that has been periodically active for over 100 years.
 Vegetation, soils, and hydrology have been significantly disturbed from permitted mining activities.

	Absolute	Dominan	Indicator	Dominance Test worksheet:	
Tree Stratum Plot Size 5m 1.	<u>% Cover</u>	<u>Species?</u>	<u>Status</u>	Number of Dominant Species That Are OBL, FACW, or FAC:	4 (A)
2.				Total Number of Dominant	
3.				Species Across All Strata:	6 (B)
4.	8	290-	8		
		= Total Co	ver	 Percent of Dominant Species That Are OBL, FACW, or FAC: 	66.7 % (A/B)
Sapling/Shrub Stratum Plot Size 5m				mat Are OBE, I Activ, of I Ac.	00.7 % (A/B)
1.Salix geyeriana	20	Yes	OBL	Prevalence Index worksheet:	
2.Salix monticola	15	Yes	OBL	Total % Cover of:	Multiply by:
3. Picea engelmannii	10	Yes	FAC	OBL species x 1	=
4.	0		-0	FACW species x 2	=
5.				FAC species x 3	=
	45	= Total Co	ver	FACU species x 4	=
Herb Stratum Plot Size 5m				UPL species x 5	=
1.Veratrum tenuipetalum	30	Yes	FAC	Column Totals: (A)	(B)
2.Festuca brachyphylla	15	Yes	UPL		
3. Trisetum spicatum	15	Yes	UPL	Prevalence Index = B/A =	
4.Polemonium pulcherrimum	10	-	UPL	Hydrophytic Vegetation Indicate	ors:
5.				X Dominance Test is >50%	
6.			2	Prevalence Index is ≤3.0 ¹	
7.			č.	Morphological Adaptations ¹ (F	Provide supporting
8.				data in Remarks or on a se	NO 19752 2029/2011 22: 20 MI
	70	= Total Co	Ver	Problematic Hydrophytic Vege	etation' (Explain)
Woody Vine Stratum Plot Size		- 10tal 00			
1.	141		14	¹ Indicators of hydric soil and wetl	and hydrology must
2.				be present.	
		= Total Co	ver	Hydrophytic Vegetation	
% Bare Ground in Herb Stratum35 %				Present? Yes 🖲	No 🔿
Remarks: Disturbed area mining waste piles and an	nd uneven	topograph	y appears t	to be results from bulldozing and	overburden
storage from mining activities.		. U I	~ 11		
5 5					
Profile Description: (Description)	ibe to the depth nee	ded to document the	indicator or confiri	rm the absence of indicators.)	
--	-------------------------	-----------------------------------	------------------------------------	--	
Depth Matr	ix	Redox Feature	5		
(inches) Color (moist)	% Col	or (moist) %	Type ¹ Loc ²		
¹ Type: C=Concentration, D= ³ Soil Textures: Clay, Silty Cl	Depletion, RM=Reduc	ced Matrix. ² Location		RC=Root Channel, M=Matrix. pam, Silty Clay Loam, Silt Loam, Silt, Loamy Sand, San	
Hydric Soil Indicators: (Appl	cable to all LRRs, uni			Indicators for Problematic Hydric Soils:	
Histosol (A1)		Sandy Redox (S5)		2 cm Muck (A10)	
Histic Epipedon (A2) Black Histic (A3)		Stripped Matrix (S6)		Red Parent Material (TF2)	
Hydrogen Sulfide (A4)	_	Loamy Mucky Minera	65 (MORE) (S)	RA 1) Other (Explain in Remarks)	
Depleted Below Dark Su	ufoog (011)	Loamy Gleyed Matrix	: (F2)		
		Depleted Matrix (F3)	-	³ Indicators of hydrophytic vegetation and	
Thick Dark Surface (A12		Redox Dark Surface		wetland hydrology must be present,	
Sandy Gleyed Matrix (S		Redox Depressions (STATISTICS STATISTICS	unless distrubed or problematic.	
	+)	Redox Depressions (10)	í	
Restrictive Layer (if presen	t):				
Type:Waste rock				Hydric Soil Present? Yes 🔿 No 🖲	
Depth (inches):at surface					
Remarks: Waste rock with	some organic laye	г, very госку			
HYDROLOGY					
Wetland Hydrology Indicate	ors:				
Primary Indicators (any one i	ndicator is sufficient)			Secondary Indicators (2 or more required)	
Surface Water (A1)			es (B9) (no MLRA 1	1,2,4 A&B Water Stained Leaves (B9) (MLRA 1,2,	

I mail indicators (any one indicator is sufficient		Secondary maleutors (2 or more required)
Surface Water (A1) High Water Table (A2)	Water-Stained Leaves (B9) (no MLRA 1,2,4 A&B Salt Crust (B11)	Water Stained Leaves (B9) (MLRA 1,2, 4 A&B
Saturation (A3)	Aquatic Invertebrates (B13)	Drainage Patterns (B10)
Water Marks (B1)	Hydrogen Sulfide Odor (C1)	Dry-Season Water Table (C2)
Sediment Deposits (B2)	Oxidized Rhizospheres along Living Roots (C3)	Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3)	Presence of Reduced Iron (C4)	Geomorphic Position (D2)
Algal Mat or Crust (B6)	Recent Iron Reduction in Tilled Soils (C6)	Shallow Aquitard (D3)
Iron Deposits (B6)	Stunted or Stressed Plants (D1) (LRR A)	FAC-Neutral Test (D5)
Surface Soil Cracks (B6)	Other (Explain in Remarks)	Raised Ant Mounds (D6) (LRR A)
Inundation Visible on Aerial Imagery (B7)		Frost- Heave Hummucks (D7)
Sparsely Vegetated Concave Surface (B8)		
Field Observations:		
Surface Water Present? Yes 🔿 No	Depth (inches):	
Water Table Present? Yes 🔿 No	Depth (inches): Wetland Hyd	Irology Present? Yes 🔿 No 💿
Saturation Present? Yes 🔿 No	Depth (inches):	
(includes capillary fringe)		
Describe Recorded Data (stream gauge, monito	ring well, aerial photos, previous inspections), if availat	ble:
Remarks: Appears to have some wetland ve	egetation resultant from a shallow groundwater ta	able, some small polls of water were
visible; however, they were not as	ssociated with any channels or surface water flow	w pattern that would demonstrate
connectivity.		

Project/Site: Revenue Mine	(City/County: C	amp Bird, Ouray		Sampling Date: 06-02-2012			
Applicant/Owner: Silver Star Resource			Sta	te:CO	Sampling I	Point: DP	9	
Investigator(s):WWE: BFF			Section, Towns	hip, Range: Sec.	21 T43N R8	W	12	
Landform (hillslope, terrace, etc.): Val	ley		Local relief (co	ncave, convex, no	ne):none		Slope	(%):<2%
Subregion (LRR) E - RM Forests &	Rangeland	Lat:°37.9	974383 N	Long: [°] 1	0 7.754817 W	7	Datum:	NAD 83
Soil Map Unit Name: Moran-Tellurid	e- Rock outer	op, extremly st	oney		NWI classific	cation: PSS	В	
Are climatic / hydrologic conditions on	the site typical f	or this time of yea	ar? Yes 🔿	No 🖲 🤅 (lf r	no, explain in R	emarks.)		
Are Vegetation 🔀 🛛 Soil 🔀 or I	-lydrology 🗙	significantly o	disturbed?	Are "Normal Ci	rcumstances"	present? Y	′es ()	No 🖲
Are Vegetation Soil or I	Hydrology	naturally prol	blematic?	(If needed, expl	lain any answe	ers in Remar	rks.)	
SUMMARY OF FINDINGS - A	ttach site m	ap showing	sampling p	oint locations	, transects	, importa	int feati	ures, etc.
Hydrophytic Vegetation Present?	Yes 🍥	No 🔘						
Hydric Soil Present?	Yes 🔘	No 🜘	Is the S	ampled Area				
Wetland Hydrology Present?	Yes	No 🔎	within a	Wetland2	Voc C	No. (

 Wetland Hydrology Present?
 Yes
 No
 within a Wetland?
 Yes
 No
 No

 Remarks: 2012 was an unusually dry year with a snow pack below average.
 The site is at a 10,600 feet above sea level.
 The project area is located at a mine that has been periodically active for over 100 years.
 Vegetation, soils, and hydrology have been significantly disturbed from permitted mining activities.

Tree Charture all all	Absolute	Dominant		Dominance Test worksheet:
<u>Tree Stratum</u> Plot Size 5m 1. <i>Picea engelmannii</i>	<u>% Cover</u> 60	<u>Species?</u> Yes	Status FAC	Number of Dominant Species
		165	FAC	_ That Are OBL, FACW, or FAC: 2 (A)
2			·	 Total Number of Dominant
3.		19.		_ Species Across All Strata: 6 (B)
4			s	Percent of Dominant Species
Sapling/Shrub Stratum Plot Size 5m	60	= Total Co	ver	That Are OBL, FACW, or FAC: 33.3 % (A/B)
Sapling/Shrub Stratum Plot Size 5m 1.Picea engelmannii	30	Yes	FAC	Prevalence Index worksheet:
			and a second sec	Total % Cover of: Multiply by:
2.Pseudotsuga menziesii	20	Yes	UPL	
3			·	
4		<u></u>		FACW species x 2 =
5		<u></u>		FAC species x 3 =
Hark Stratum at a 7	<u>50</u>	= Total Cov	er	FACU species x 4 =
Herb Stratum Plot Size 5m	1.5	37		UPL species x 5 =
1.Trisetum spicatum	15	Yes	UPL	_ Column Totals: (A) (B)
2. Vaccinium myrtillus	15	Yes	UPL	Prevalence Index = B/A =
3.Polemonium pulcherrimum	10	Yes	UPL	
4			4	Hydrophytic Vegetation Indicators:
5				Dominance Test is >50%
6				Prevalence Index is ≤3.0 ¹
7.				 Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet)
8.		-,		
·	40	= Total Cov	ver	Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum Plot Size				1
ı <u>1.</u>			4	¹ Indicators of hydric soil and wetland hydrology must be present.
2			·	
% Bare Ground in Herb Stratum50 %		= Total Cov	/er	Hydrophytic Vegetation Present? Yes No •
Remarks: Disturbed area mining waste piles and an storage from mining activities. Organic l	d uneven t layer devel	opography loping; ho	y appears t wever, it w	to be results from bulldozing and overburden yas not a significant thickness, <1".

Depth Mat	rix	Redox Features		
(inches) Color (moist	1949 H	Color (moist) % Type ¹ Loc	² Texture ³	Remarks
		Loam, Sandy Clay Loam, Sandy Loam, Clay	Loam, Silty Clay Loar	m, Silt Loam, Silt, Loamy Sand, Sand
Hydric Soil Indicators: (App Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Depleted Below Dark S Thick Dark Surface (A12) Sandy Mucky Mineral (S) Sandy Gleyed Matrix (S)	urface (A11) 2) S1)	ts, unless otherwise noted.) Sandy Redox (S5) Stripped Matrix (S6) Loamy Mucky Mineral (F1) (except M Loamy Gleyed Matrix (F2) Depleted Matrix (F3) Redox Dark Surface (F6) Depleted Dark Surface (F7) Redox Depressions (F8)	2 cm Muc Red Pare LRA 1) Other (Ex ³ Indicators of I wetland hydro	Problematic Hydric Soils: ck (A10) nt Material (TF2) plain in Remarks) hydrophytic vegetation and ology must be present, bed or problematic.
Restrictive Layer (if presen Type:Waste rock	2			
Depth (inches):near surf			Hydric Soil Pr	esent? Yes 🔿 No 🖲
Remarks: Waste rock with		ауы, чыу юку		
Netland Hydrology Indical				
Primary Indicators (any one	indicator is suffic			ry Indicators (2 or more required)
Surface Water (A1)		Water-Stained Leaves (B9) (no MLR		er Stained Leaves (B9) (MLRA 1,2, 4 2
High Water Table (A2)		Salt Crust (B11)	A&B	nage Patterns (B10)
Water Marks (B1)		Hydrogen Sulfide Odor (C1)		Season Water Table (C2)
Sediment Deposits (B2)		Oxidized Rhizospheres along Living		ration Visible on Aerial Imagery (C9
Drift Deposits (B3)		Presence of Reduced Iron (C4)		morphic Position (D2)
Algal Mat or Crust (B6)		Recent Iron Reduction in Tilled Soils	evenesis in the second	llow Aquitard (D3)
Iron Deposits (B6)		Stunted or Stressed Plants (D1) (LR		-Neutral Test (D5)
Surface Soil Cracks (B6	3)	Other (Explain in Remarks)		ed Ant Mounds (D6) (LRR A)
Inundation Visible on A	25			t- Heave Hummucks (D7)

Inundation Visible on Ad Sparsely Vegetated Co				Frost- Heave Hummucks (D7)				
Field Observations:								
Surface Water Present?	Yes	\bigcirc	No	\odot	Depth (inches):			
Water Table Present?	Yes	O	No	\odot	Depth (inches):	Wetland Hydrology Present? Yes 🔿 No 💿		
Saturation Present?	Yes	0	No	\mathbf{O}	Depth (inches):			
(includes capillary fringe)					5 12 1930 <u>5</u>			
Describe Recorded Data (st	ream gau	ige, m	onitor	ing v	vell, aerial photos, previous insp	pections), if available:		
Remarks:								

Project/Site: Revenue Mine	City/County: Camp Bird, Ouray			Sampling Date: 06-02-2012				
Applicant/Owner: Silver Star Resource			State:CO Sampling Point:]			Point: DP1	0	
Investigator(s):WWE: BFF			Section, Townsh	ip, Range: Sec. 2	21 T43N R8	W	à.	
Landform (hillslope, terrace, etc.): Valle	y		Local relief (con	cave, convex, nor	ne):none		Slope (%):<2%
Subregion (LRR): E - RM Forests & R	angeland	Lat:°37.	974383 N	Long: <u>°</u> 10	7.754333 W	V	Datum:N	AD 83
Soil Map Unit Name: Moran-Telluride	- Rock outer	op, extremly st	coney		NWI classifi	cation:		
Are climatic / hydrologic conditions on th Are Vegetation $\overline{ X }$ Soil $\overline{ X }$ or H	ne site typical fo	or this time of year significantly		No 💿 (If n Are "Normal Cir	o, explain in F cumstances"		Yes 🔿	No 🔎
	ydrology	naturally pro		(If needed, expla				
SUMMARY OF FINDINGS - At	tach site m	ap showing	sampling po	int locations,	transects	, importa	ant featu	res, etc.
Hydrophytic Vegetation Present?	Yes 🖲	No 🔘						
Hydric Soil Present?	Yes 🔘	No 🖲	Is the Sa	mpled Area				
Wetland Hydrology Present?	Yes 🔘	No 🔘	within a '	Wetland?	Yes 🔎	No (0	

 Wetland Hydrology Present?
 Yes (
 No (
 within a Wetland?
 Yes (
 No (

 Remarks: 2012 was an unusually dry year with a snow pack below average.
 The site is at a 10,600 feet above sea level.
 The project area is located at a mine that has been periodically active for over 100 years.
 Vegetation, soils, and hydrology have been significantly disturbed from permitted mining activities.

	Absolute		Indicator	Dominance Test worksheet:		
Tree Stratum Plot Size 5m	29	Species?	Status	Number of Dominant Species		
1.Picea engelmannii	10	Yes	FAC	That Are OBL, FACW, or FAC:	7 ((A)
2.				 Total Number of Dominant 		
3.			~	Species Across All Strata:	7 ((B)
4.	8	54. 	8			
	10	= Total Co	ver	 Percent of Dominant Species That Are OBL, FACW, or FAC: 	100.0% (/	A/B)
Sapling/Shrub Stratum Plot Size 5m		. 10101 00	vor	mat Are OBE, FACIN, OF FAC.	100.0% (/	мь)
1.Salix geyeriana	25	Yes	OBL	Prevalence Index worksheet:		
2.Salix monticula	20	Yes	OBL	Total % Cover of:	Multiply by:	
3.Picea engelmannii	10	Yes	FAC	OBL species x 1	=	
4. Picea pungens	10	Yes	FAC	FACW species x 2	=	
5.		A)		FAC species x 3	=	
	65	= Total Cov	/er	FACU species x 4	a. 	
Herb Stratum Plot Size 5m				UPL species x 5	=	
1.Carex aquatilis	60	Yes	OBL	Column Totals: (A)		(B)
2. Juncus balticus	20	Yes	OBL			84 88
3. Veratrum tenuipetalum	10		FAC	Prevalence Index = B/A =		
4.	0	***		Hydrophytic Vegetation Indicate	ors:	
5.			2	X Dominance Test is >50%		
6.			12	Prevalence Index is ≤3.0 ¹		
7.		<u>.</u>		Morphological Adaptations ¹ (F		ıg
8.		×.>		data in Remarks or on a se	Rest • Constrained and the second se second second sec	
5	00	= Total Co	Vor	Problematic Hydrophytic Veg	etation' (Explain)	1
Woody Vine Stratum Plot Size		- Total CO	VCI			
1.				¹ Indicators of hydric soil and wetl	and hydrology m	nust
2.				be present.		
	1000	= Total Cov	ver	Hydrophytic		
% Bare Ground in Herb Stratum5 %				Vegetation Present? Yes 🖲	No 🔿	
Remarks: Tributary to Sneffels Creek was diverted	and create	d small po	ond and as	sociated wetland. thick bryophyt	e cover.	
		1		5 1 5		

	-	-	
c	~		
-			
-	-		

Profile Des	cription: (Describe	to the depth	needed to docu	ment the indica	tor or confirm	m the absence of i	ndicators.)
Depth	Matrix	-	Redo	x Features			
(inches)	Color (moist)	%	Color (moist)	%Тур	e ¹ _Loc ²	Texture ³	Remarks
0-2	10 YR 3/0	85				organic	
-							
2 <u>2</u>		<u> </u>		<u></u>			<u></u>
a.						<u></u>	
¥6		o				: 1 	
8		56 7. (853			1085	: . <u></u>	
8		50 7 (507			1005 00		a
17.000			alexand Relation	21			A
	Concentration, D=Dep					RC=Root Channel, N am, Silty Clay Loam	, Silt Loam, Silt, Loamy Sand, Sand.
	Indicators: (Applicab						roblematic Hydric Soils
Histoso		ie to an Enns,	Sandy Red	na constructional		2 cm Muck	Contraction of the second
	Epipedon (A2)		Stripped Ma	son Something			t Material (TF2)
10000000000000000000000000000000000000	Histic (A3)			cky Mineral (F1)	evcent ML R		lain in Remarks)
Hydrog	ien Sulfide (A4)			yed Matrix (F2)			an in Kentarksy
Deplet	ed Below Dark Surfac	e (A11)	Depleted N				
=	Dark Surface (A12)			k Surface (F6)		³ Indicators of hy	drophytic vegetation and
	Mucky Mineral (S1)			ark Surface (F7)			ogy must be present,
	Gleyed Matrix (S4)			ressions (F8)		unless distrube	ed or problematic.
_	5 2007 DS			14 U.			
	Layer (if present): aste rock						
	nches):near surface					Hydric Soil Pre	sent? Yes 🔿 No 🖲
	Verte real suite				· · · · · · · · · · · ·		
Remarks: V	Waste rock with sor	ne organic i	iyer, very rock	y. thin layer of	muck on p	ond bottom	
HYDROLO	DGY						10
Wetland Hy	vdrology Indicators:						
Primary Ind	licators (any one indic	ator is sufficie	nt)			Secondary	v Indicators (2 or more required)
X Surface	e Water (A1)		Water-Sta	ined Leaves (B9) (no MLRA 1	,2,4 A&B Water	Stained Leaves (B9) (MLRA 1,2, 4
	/ater Table (A2)		Salt Crust	: (B11)		A&B	
🗙 Saturat	tion (A3)		🔀 Aquatic In	vertebrates (B13	5)	Draina	age Patterns (B10)
and the second s	Marks (B1)		Hydrogen	Sulfide Odor (C	1)	Dry-S	eason Water Table (C2)
Sedime	ent Deposits (B2)		X Oxidized I	Rhizospheres alo	ng Living Ro	ots (C3) 🗍 Satura	ation Visible on Aerial Imagery (C9)
Drift De	eposits (B3)		Presence	of Reduced Iron	(C4)	Geom	norphic Position (D2)
100 M 10 20				1000 C 010 000 000		. =	

Wetland Hydrology Indica	tors:							
Primary Indicators (any one	Secondary Indicators (2 or more required)							
Surface Water (A1)				Water-Stained Leaves (B9) (n Salt Crust (B11)	o MLRA 1,2,4 A&B Water Stained Leaves (B9) (MLRA 1,2, 4 A&B			
Saturation (A3) Water Marks (B1)			Drainage Patterns (B10) Dry-Season Water Table (C2)					
Sediment Deposits (B2)	1		X	Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along	Living Roots (C3) Saturation Visible on Aerial Imagery (C9)			
	Drift Deposits (B3) Presence of Reduced Iron (C4) Geomorphic Position (D2) Algal Mat or Crust (B6) Recent Iron Reduction in Tilled Soils (C6) Shallow Aquitard (D3)							
Iron Deposits (B6)								
Inundation Visible on A	Inundation Visible on Aerial Imagery (B7) Frost- Heave Hummucks (D7) Sparsely Vegetated Concave Surface (B8)							
Field Observations:								
Surface Water Present? Water Table Present? Saturation Present? (includes capillary fringe)		 No No No No 	O	Depth (inches):1'Depth (inches):-3"Depth (inches):surface	Wetland Hydrology Present? Yes 💿 No 🔿			
Describe Recorded Data (st			•	vell, aerial photos, previous ins				
Remarks: ground surface	spongy fro	om damj	o org	anics, thick bryophyte cov	er. lots of caddis flies and diptera larvae.			

Project/Site: Revenue Mine	City/County: Ca	ımp Bird, Ouray	Sampling D	ate: 06-02-2012			
Applicant/Owner: Silver Star Resources		State:CO	Sampling Po	pint: DP11			
Investigator(s):WWE: BFF	Section, Towns	Section, Township, Range: Sec. 21 T43N R8W					
Landform (hillslope, terrace, etc.): Valley	Local relief (col	ncave, convex, none): <u>none</u>	2	Slope (%):<2%			
Subregion (LRR) \pm - RM Forests & Rangeland	Lat:°37.974367 N	Long: [°] 107.754333	W	Datum:NAD 83			
Soil Map Unit Name: Moran-Telluride- Rock outcrop, et	xtremly stoney	NWI class	sification: PSSB				
Are climatic / hydrologic conditions on the site typical for this	time of year? Yes 🔿	No 🖲 🦳 (If no, explain ii	n Remarks.)				
Are Vegetation $\overleftarrow{\times}$ Soil $\overleftarrow{\times}$ or Hydrology $\overleftarrow{\times}$ s	ignificantly disturbed?	Are "Normal Circumstance:	s" present? Ye	s 🔿 🛛 No 🖲			
Are Vegetation Soil or Hydrology n	aturally problematic?	(If needed, explain any ans	wers in Remark	5.)			
SUMMARY OF FINDINGS - Attach site map s	howing sampling p	oint locations, transec	ts, importan	t features, etc.			
Hydrophytic Vegetation Present? Yes 💿 No	o ()						
ALARY AND ADDRESS OFFICE OF THE PROPERTY CONTRACTOR OFFICE	o 🖲 🛛 Is the Sa	ampled Area					
Wetland Hydrology Present? Yes 🦳 No	ະ 🖲 🛛 within a	Wetland? Yes (🗋 🛛 No 🛈				

Remarks: 2012 was an unusually dry year with a snow pack below average. The site is at a 10,600 feet above sea level. The project area is located at a mine that has been periodically active for over 100 years. Vegetation, soils, and hydrology have been significantly disturbed from permitted mining activities.

Tree Stratum Plot Size 5m	Absolute % Cover		t Indicator Status	Dominance Test worksheet:		
1.Picea engelmannii	10	Yes	FAC	Number of Dominant Species That Are OBL, FACW, or FAC:	3	(A)
2.	10	105			3	(A)
				Total Number of Dominant	-	
3	8	75-1	8	Species Across All Strata:	5	(B)
4	_			Percent of Dominant Species		
Sapling/Shrub Stratum Plot Size 5m	10	= Total Co	over	That Are OBL, FACW, or FAC:	60.0 %	(A/B)
1.Picea engelmannii	20	Yes	FAC	Prevalence Index worksheet:		
2.Picea pungens	15	Yes	FAC	Total % Cover of:	Multiply by:	_
3.				OBL species >	x 1 =	
4.				FACW species	x 2 =	
5.	6091	2		FAC species	x 3 =	
	35	= Total Co	ver	FACU species	x 4 =	
Herb Stratum Plot Size 5m				UPL species	x 5 =	
1.Trisetum spicatum	35	Yes	UPL	Column Totals: (/	A)	(B)
² .Festuca brachyphylla	25	Yes	UPL		58	
³ .Deschampsia cespitosa	15		FACW	Prevalence Index = B/A =		
4. Veratrum tenuipetalum	10	96. J	FAC	Hydrophytic Vegetation Indic	ators:	
5.				X Dominance Test is >50%		
6.			-	Prevalence Index is ≤3.0 ¹		
7				 Morphological Adaptations data in Remarks or on a 		
8.				Problematic Hydrophytic V		
Woody Vine Stratum Plot Size	85	= Total Co	over		egetation (Expla	
1.				¹ Indicators of hydric soil and w	etland hydrology	/ must
2.			14	be present.		
% Bare Ground in Herb Stratum 5 %		= Total Co	ver	Hydrophytic Vegetation Present? Yes •	No O	
Remarks: Tributary to Sneffels Creek was diverted	and create	ed small p	ond and as:	sociated wetland. thick bryoph	yte cover.	

S	0	I	Ľ

Profile Des	cription: (Describe f	to the depth n	eeded to docur	ment the in	dicator o	or confirm	n the absence of indicators.)
Depth	Matrix			x Features	21		
(inches)	Color (moist)	<u>%</u> C	olor (moist)	%	Type ¹	Loc ²	Remarks
0-2	10 YR 3/0	85					organic
				·			
22 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	Concentration, D=Depl es: Clay, Silty Clay, S	방법 지방 소방 것 같은 것 같아요. 이번 것 같아요.					C=Root Channel, M=Matrix. am, Silty Clay Loam, Silt Loam, Silt, Loamy Sand, Sand.
Histosc Histic E Black H Hydrog Deplete Thick E Sandy Sandy	Epipedon (A2) Histic (A3) Hen Sulfide (A4) ed Below Dark Surface Dark Surface (A12) Mucky Mineral (S1) Gleyed Matrix (S4)		Sandy Red Stripped Ma Loamy Muc Loamy Gley Depleted M Redox Dark Depleted D	ox (S5) atrix (S6) ky Mineral (yed Matrix ()	F2) 6) (F7)	ept MLRA	Indicators for Problematic Hydric Soils ⁴ : 2 cm Muck (A10) Red Parent Material (TF2) A 1) Other (Explain in Remarks) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless distrubed or problematic.
Type:W	Layer (if present): aste rock						Hydric Soil Present? Yes 🔿 No 💿
	nches): <u>near surface</u> Waste rock with son	ne organic lay	ver, very rocky	Į.,			
HYDROLO	DGY						
-	drology Indicators:	4	ix.				

Primary Indicators (any one indicator is sufficier	nt)	Secondary Indicators (2 or more required)
Surface Water (A1) High Water Table (A2)	Water-Stained Leaves (B9) (no MLRA 1,2,4 A&	B Water Stained Leaves (B9) (MLRA 1,2, 4 A&B
Saturation (A3)	Salt Crust (B11) Aquatic Invertebrates (B13)	Drainage Patterns (B10)
Water Marks (B1)	Hydrogen Sulfide Odor (C1)	Dry-Season Water Table (C2)
Sediment Deposits (B2)	Oxidized Rhizospheres along Living Roots (C3)	Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3)	Presence of Reduced Iron (C4)	Geomorphic Position (D2)
Algal Mat or Crust (B6)	Recent Iron Reduction in Tilled Soils (C6)	Shallow Aquitard (D3)
Iron Deposits (B6)	Stunted or Stressed Plants (D1) (LRR A)	FAC-Neutral Test (D5)
Surface Soil Cracks (B6)	Other (Explain in Remarks)	Raised Ant Mounds (D6) (LRR A)
Inundation Visible on Aerial Imagery (B7)		Frost- Heave Hummucks (D7)
Sparsely Vegetated Concave Surface (B8))	
Field Observations:		
Surface Water Present? Yes 🔿 No	o 💿 Depth (inches):	
Water Table Present? Yes 🔿 No	• • Depth (inches): Wetland Hy	drology Present? Yes 🔿 No 💿
Saturation Present? Yes 🔿 No	• • Depth (inches):	
(includes capillary fringe)		
Describe Recorded Data (stream gauge, monito	oring well, aerial photos, previous inspections), if availa	able:
Remarks: ground surface spongy from orga	anics, some bryophyte cover.	

Project/Site: Revenue Mine		City/County: C	amp Bird, Ouray		Sampling Date: 5/22/13
Applicant/Owner:Silver Star Resources			State	:CO :	Sampling Point:DP 12
Investigator(s):WWE: LRR, MAJ		Section, Town	ship, Range: Sec. 21	T43N R8W	7
Landform (hillslope, terrace, etc.): Valley		Local relief (co	oncave, convex, none	e): None	Slope (%):0-5 %
Subregion (LRR) E - RM Forests & Range	land Lat:	37.976098 N	Long:-107	.756037 W	Datum:NAD 83
Soil Map Unit Name: Moran-Telluride-Roc	k outcrop complex	x	Las Di Gara	NWI classifica	tion: PSSB
Are climatic / hydrologic conditions on the site	typical for this time	of year? Yes 🖲	No 🔿 (If no,	explain in Re	marks.)
Are Vegetation 🔀 🛛 Soil 🔀 or Hydrolog	gy 🔀 significa	antly disturbed?	Are "Normal Circu	umstances" pr	esent? Yes 🖲 🛛 No 🔿
Are Vegetation Soil or Hydrolog	gy 🗌 naturall	ly problematic?	(If needed, explai	n any answers	in Remarks.)
SUMMARY OF FINDINGS - Attach	site map show	ing sampling p	oint locations, t	transects,	important features, etc.
Hydrophytic Vegetation Present? Ye	s 💿 No 🕥				
Hydric Soil Present? Ye	es 🍥 🛛 No 🖲	Is the S	ampled Area		
Wetland Hydrology Present? Ye	s 🕥 🛛 No 🕡	within	a Wetland?	Yes 🔿	No 🖲
Remarks: 2012 was an unusually dry ye area would not be assessable u have been disturbed and a pon	ntil July. The pro	ject area is locate	d at a previously a	ctive mine s	

VEGETATION

	Absolute		Indicator	Dominance Test worksheet:
Tree Stratum Plot Size	% Cover	(1023 IB	Number of Dominant Species
1.Picea engelmanni	20	Yes	FAC	That Are OBL, FACW, or FAC: 4 (A)
2				 Total Number of Dominant
3				Species Across All Strata: 4 (B)
4.	27 	2022 	13 12	Percent of Dominant Species
	20	= Total Co	over	That Are OBL, FACW, or FAC: 100.0 % (A/B)
Sapling/Shrub Stratum Plot Size				
1.Salix monticola	40	Yes	OBL	Prevalence Index worksheet:
2.Salix geyeriana	40	Yes	OBL	Total % Cover of:Multiply by:
3.				OBL species x 1 =
4.				FACW species x 2 =
5.	2		-0	FAC species x 3 =
	80	= Total Co	ver	FACU species x 4 =
Herb Stratum Plot Size				UPL species x 5 =
1.Deschampsia caespitosa	30	Yes	FACW	Column Totals: (A) (B)
2.				
3.				Prevalence Index = B/A =
4.				Hydrophytic Vegetation Indicators:
5.		<u></u>	<u></u>	Dominance Test is >50%
6.			52	Prevalence Index is ≤3.0 ¹
7.		ic fi	-0	 Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet)
8.		20,F		
	30	= Total Co	ver	 Problematic Hydrophytic Vegetation¹ (Explain)
Woody Vine Stratum Plot Size				7
1			3	¹ Indicators of hydric soil and wetland hydrology must be present.
2				
		= Total Co	ver	Hydrophytic
% Bare Ground in Herb Stratum%				Vegetation Present? Yes
Remarks:				

Profile Des	cription: (Describe f	o the depth	needed to docun	nent the indica	ator or confir	m the absence of indicators.)	
Depth	Matrix			Features	Pt		
(inches)	Color (moist)		Color (moist)	<u>%</u> Typ	be ¹ Loc ²	Texture ³ F	Remarks
0-12	10 YR 3/3	100				SL	
¹ Type: C=0 ³ Soil Textur Hydric Soil Histic E Black H Hydrog Deplet	Concentration, D=Depl res: Clay, Silty Clay, S Indicators: (Applicabl	etion, RM=F andy Clay, I e to all LRR:	oam, Sandy Clay , unless otherwise Sandy Redo Stripped Ma Loamy Mucl Loamy Gley Depleted Ma	Loam, Sandy L noted.) px (S5) ttrix (S6) ky Mineral (F1) red Matrix (F2)	oam, Clay Lo	RC=Root Channel, M=Matrix. am, Silty Clay Loam, Silt Loam, Silt, Indicators for Problematic Hydr 2 cm Muck (A10) Red Parent Material (TF2)	ic Soils:
Sandy	Mucky Mineral (S1) Gleyed Matrix (S4)		Depleted Da	ark Surface (F7 ressions (F8))	wetland hydrology must be pre unless distrubed or problemation	Contraction of the second s
Restrictive Type: Depth (in	Layer (if present):					Hydric Soil Present? Yes 〇	No 🖲
Remarks:							
HYDROLO							
	drology Indicators:						
Primary Ind	icators (any one indica	ator is suffici	ent)			Secondary Indicators (2 or	r more required)

Primary Indicators (any one indicator is sufficient)		Secondary Indicators (2 or more required)
Surface Water (A1) High Water Table (A2)	Water-Stained Leaves (B9) (no MLRA 1 Salt Crust (B11)	,2,4 A&B Water Stained Leaves (B9) (MLRA 1,2, 4 A&B
Saturation (A3)	Aquatic Invertebrates (B13)	Drainage Patterns (B10)
Water Marks (B1)	Hydrogen Sulfide Odor (C1)	Dry-Season Water Table (C2)
Sediment Deposits (B2)	Oxidized Rhizospheres along Living Ro	ots (C3) Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3)	Presence of Reduced Iron (C4)	Geomorphic Position (D2)
Algal Mat or Crust (B6)	Recent Iron Reduction in Tilled Soils (C	6) Shallow Aquitard (D3)
Iron Deposits (B6)	Stunted or Stressed Plants (D1) (LRR A	A) FAC-Neutral Test (D5)
Surface Soil Cracks (B6)	Other (Explain in Remarks)	Raised Ant Mounds (D6) (LRR A)
Inundation Visible on Aerial Imagery (B7)		Frost- Heave Hummucks (D7)
Sparsely Vegetated Concave Surface (B8)		
Field Observations:		
Surface Water Present? Yes 🔿 No (Depth (inches):	
Water Table Present? Yes 🔿 No 🤅	Depth (inches): Wet	land Hydrology Present? Yes 🦳 No 🔎
	Depth (inches):	
(includes capillary fringe)		
Describe Recorded Data (stream gauge, monitorin	ng well, aerial photos, previous inspections),	if available:
Remarks:		

Project/Site: Revenue Mine			City/County: C	amp Bırd, Ou	ray	Samplin	g Date: 5/2	22/13
Applicant/Owner: Silver Star Resource	ces				State:CO	Samplin	g Point:DP	13
Investigator(s):WWE: LRR, MAJ			Section, Town	ship, Range: Se	ec. 21 T43N H	R8W		
Landform (hillslope, terrace, etc.): Vall	ley		Local relief (co	oncave, convex	, none): None		Slope	(%):0-5 %
Subregion (LRR): E - RM Forests &	Rangeland	Lat: 37.	975083 N	Long	-107.754458	W	Datum:	NAD 83
Soil Map Unit Name: Moran very gra	avelly loam			1.2 21.03	NWI class	sification: PS	SB	
Are climatic / hydrologic conditions on	the site typical fo	or this time of ye	ar?Yes 🖲	No	(If no, explain ii	n Remarks.)		
Are Vegetation 🔀 🛛 Soil 🔀 or H	-lydrology 🔀	significantly	disturbed?	Are "Norma	l Circumstance	s" present?	Yes 🖲	No 🔿
Are Vegetation Soil or H	-lydrology	naturally pro	blematic?	(If needed, e	explain any ans	wers in Rem	narks.)	
SUMMARY OF FINDINGS - A	ttach site m	ap showing	sampling p	oint locatio	ns, transec	ts, impor	tant feat	ures, etc.
Hydrophytic Vegetation Present?	Yes 🖲	No 🌀						
Hydric Soil Present?	Yes 🔘	No 🖲	Is the S	Sampled Area				
Wetland Hydrology Present?	Yes 🔘	No 🔘	within	a Wetland?	Yes () No	\bigcirc	
Remarks: 2012 was an unusually								
area would not be assess	5	÷ •		÷	1.000	ne site, soil	ls and vege	etation
have been disturbed and	a pond has be	en created. 20	13 was below	v average snov	wpack.			

	Absolute		t Indicator	Dominance Test worksheet:		
Tree Stratum Plot Size	% Cover	Species'		Number of Dominant Species That Are OBL, FACW, or FAC:	3	(A)
2.				_ Total Number of Dominant		
3.		1.1		Species Across All Strata:	3	(B)
4.		166 		 Percent of Dominant Species 		
Sapling/Shrub Stratum Plot Size	2 	= Total C	over	That Are OBL, FACW, or FAC:	100.0%	(A/B)
1.Salix monticola	40	Yes	OBL	Prevalence Index worksheet:		
2.Salix geyeriana	40	Yes	OBL	Total % Cover of:	Multiply by:	
3.				OBL species	x 1 =	
4.		**		FACW species	x 2 =	
5.	100			FAC species	x 3 =	
	80	= Total Co	ver	FACU species	x 4 =	
Herb Stratum Plot Size				UPL species	x 5 =	
1.Calamagrostis canadensis	15		FACW	Column Totals: ((A)	(B)
2.Draba albertina	5		FAC		1 59	
³ .Deschampsia caespitosa	60	Yes	FACW	Prevalence Index = B/A	9 - 177	
4.				Hydrophytic Vegetation Indic	ators:	
5.				Dominance Test is >50%		
6.			- <u>1</u>	Prevalence Index is ≤3.0 ¹		
7				 Morphological Adaptations data in Remarks or on a 		
8			-	- Problematic Hydrophytic V		
Woody Vine Stratum Plot Size	80	= Total Co	over		-3 (,
1.				¹ Indicators of hydric soil and w	vetland hydrology	y must
2.				be present.		
% Bare Ground in Herb Stratum%		= Total Co	ver	Hydrophytic Vegetation Present? Yes •	No 🔿	
Remarks:						

Profile De: Depth	scription: (Describe Matrix	to the de	oth need		ment the indicat x Features	tor or confir	m the absence of ir	idicators.)
(inches)	Color (moist)	%	Color	(moist)		e ¹ Loc ²		Remarks
0-2	2.5 Y 6/3	100	. <u>.</u>				С	
2-4	7.5 YR 5/6	100	73		<u> </u>		SL	
4-12	7.5 YR 3/2	100	54 <u></u>			109		·
4-12	<u>7.3 TK 5/2</u>		53 -				<u> </u>	
×					4 14			
<u>8</u>					-02 <u></u>			
	_							
¹ Type: C=	Concentration, D=De	pletion, RM	1=Reduce	d Matrix.	² Location: PL=F	Pore Lining, F	RC=Root Channel, N	I=Matrix.
³ Soil Textu	res: Clay, Silty Clay,	Sandy Cla	y, Loam,	Sandy Clay	Loam, Sandy Lo	oam, Clay Lo	am, Silty Clay Loam,	Silt Loam, Silt, Loamy Sand, Sand.
	Indicators: (Applical	ble to all LF	Rs, unles	ss otherwise	e noted.)			roblematic Hydric Soils
Histos	and a second			Sandy Red	lox (S5)		2 cm Muck	
12556650047234/9234	Epipedon (A2)			Stripped M	2 2			Material (TF2)
102210 210	Histic (A3) gen Sulfide (A4)			10.00	ky Mineral (F1) ((except MLR)	A 1) 🔄 Other (Expl	ain in Remarks)
		00 (011)		TO A RESIGNATION OF A DESCRIPTION OF A D	yed Matrix (F2)			
\equiv	ted Below Dark Surfa Dark Surface (A12)	ce (ATT)		Depleted M	- Contraction of the Contraction of the		³ Indicators of hy	drophytic vegetation and
	Mucky Mineral (S1)				<pre> Surface (F6) ark Surface (F7) </pre>			bgy must be present,
	Gleyed Matrix (S4)				ressions (F8)		unless distrube	d or problematic.
	e Layer (if present):							
Type:							Hydric Soil Pres	sent? Yes 🔿 No 🖲
Depth (i	nches):						Hyunc Soli Pres	
HYDROL								
	ydrology Indicators		·· · · ·				<u> </u>	
	dicators (any one indi	cator is sut		1.000 0 0000				Indicators (2 or more required)
⊨	e Water (A1)			1	ined Leaves (B9)) (no MLRA 1	I,2,4 A&B∐ Water A&B	Stained Leaves (B9) (MLRA 1,2, 4
	Vater Table (A2)			Salt Crust		N.		an Detterne (R10)
	tion (A3) Marks (B1)			20240 0240	vertebrates (B13 Sulfide Odor (C	(in the second sec		age Patterns (B10) eason Water Table (C2)
7 10	ent Deposits (B2)			12.16 11.22	011	5.	·	ation Visible on Aerial Imagery (C9)
	eposits (B3)				Rhizospheres alc of Reduced Iron			orphic Position (D2)
	Mat or Crust (B6)				on Reduction in T		-	w Aquitard (D3)
	eposits (B6)			10000 Car 10	r Stressed Plants	CAUTE IN IN LONG		Veutral Test (D5)
	e Soil Cracks (B6)			1	plain in Remarks	12 120121		d Ant Mounds (D6) (LRR A)
	ation Visible on Aerial	Imagery (I	37)			2		Heave Hummucks (D7)
	ely Vegetated Concav		Sector Decision					
Field Obse	20-1- 2021- 110-10-10-10-10-10-10-10-10-10-10-10-10-		(=-)					
		_						
		′es 📿	No (2522			
Water Tabl		′es ()	No (100 m	Wet	land Hydrology Pre	esent? Yes 🔿 No 🖲
Saturation	apillary fringe)	res ()	No 🧿	Depth (in	ches):			
	ecorded Data (strear	n dalide m	onitoring	well aerial	nhotos previous	inspections)	if available:	
Describerty	session but (strout	. guugo, n	sintoning	a on, aonar	pilotos, providus		,	

Remarks:

Project/Site: Revenue Mine	City/County: Can	np Bird, Ouray	Sampling Date: 06-02	2-2012
Applicant/Owner: Silver Star Resources		State:CO	Sampling Point: DP14	1
Investigator(s):WWE: BFF	Section, Townshi	p, Range: Sec. 21 T43N F	.8W	
Landform (hillslope, terrace, etc.): Valley	Local relief (cond	ave, convex, none):none	Slope (%	ó):<2%
Subregion (LRR) \pm - RM Forests & Rangeland	Lat:°37.975317 N	Long:°107.753917	W Datum: NA	AD 83
Soil Map Unit Name: Moran-Telluride- Rock outcrop, o	extremly stoney	NWI class	sification: PSSB	
Are climatic / hydrologic conditions on the site typical for thi	s time of year? Yes 🔿	No 💿 (If no, explain in	n Remarks.)	
Are Vegetation 🗙 Soil 🔀 or Hydrology 🔀 🥵	significantly disturbed?	Are "Normal Circumstance:	s" present? Yes 🔿	No 🖲
Are Vegetation Soil or Hydrology	naturally problematic?	(If needed, explain any ans	wers in Remarks.)	
SUMMARY OF FINDINGS - Attach site map	showing sampling po	int locations, transec	ts, important featur	es, etc.
Hydrophytic Vegetation Present? Yes 💿 N	lo 🔘			
Hydric Soil Present? Yes 🥚 N	lo 🖲 🛛 Is the Sar	npled Area		
Wetland Hydrology Present? Yes 💿 N	lo 🌀 👘 within a V	Vetland? Yes 🤅	No ()	

Remarks: 2012 was an unusually dry year with a snow pack below average. The site is at a 10,600 feet above sea level. The project area is located at a mine that has been periodically active for over 100 years. Vegetation, soils, and hydrology have been significantly disturbed from permitted mining activities.

·	Absolute		t Indicator	Dominance Test worksheet:		
Tree Stratum Plot Size 5m	% Cover	Species	<u>Status</u>	Number of Dominant Species		
1.				That Are OBL, FACW, or FAC:	3 (A)	
2.				- Total Number of Dominant		
3.		9. je		Species Across All Strata:	4 (B)	
4.	8	19.				
	-	= Total Co		Percent of Dominant Species	75.0	
Sapling/Shrub Stratum Plot Size 5m	i - li li			That Are OBL, FACW, or FAC:	75.0 % (A/B)	,)
1.Salix geyeriana	40	Yes	OBL	Prevalence Index worksheet:		
2.Salix monticola	25	Yes	OBL		Multiply by:	
3.Picea engelmannii	10		FAC	OBL species x	1 =	
4.	0			FACW species x	2 =	
5.				FAC species x	3 =	
	75	= Total Co	ver	FACU species x	4 =	
Herb Stratum Plot Size 5m				UPL species x	5 =	
1.Draba breweri	25	Yes	OBL	Column Totals: (A	A) (E	B)
2. Vaccinium myrtillus	15	Yes	UPL		7	
3.				Prevalence Index = B/A =	ŝ.	
4.			0	Hydrophytic Vegetation Indica	ators:	
5.				X Dominance Test is >50%		
6.		7.5	-2	Prevalence Index is ≤3.0 ¹		
7.				Morphological Adaptations ¹		
8.			-	data in Remarks or on a	NO NEL PROVIDE DE M	
	40	= Total Co	ver	Problematic Hydrophytic Ve	getation' (Explain)	
Woody Vine Stratum Plot Size		rotar oc				
1			14	¹ Indicators of hydric soil and we	etland hydrology must	t
2				be present.		
		= Total Co	ver	Hydrophytic		
% Bare Ground in Herb Stratum40 %				Vegetation Present? Yes 🖲	No 🔿	
Remarks: Sneffels Creek and fringe wetland.						
-						

Profile Des	cription: (Describe	to the depth nee	ded to docur	nent the i	ndicator	or confirm	the absence of i	ndicators.)
Depth	Matrix		Redox	Features				
(inches)	Color (moist)	Col	or (moist)		Type ¹	Loc ²	Texture ³	Remarks
						· · · · · ·		
						a <u>.</u>		<u>v</u> v
20								3e
<u></u>								
83		5 7 7 57		·	;			7. 7.
				<u> </u>				
				<u></u>		·		
	oncentration, D=Dep	an an an air an					C=Root Channel, M	
³ Soil Texture	es: Clay, Silty Clay, S	andy Clay, Loam	, Sandy Clay	Loam, Sar	ndy Loam	, Clay Loan	n, Silty Clay Loam	, Silt Loam, Silt, Loamy Sand, Sand.
Hydric Soil I	ndicators: (Applicabl	e to all LRRs, uni	ess otherwise	noted.)			Indicators for F	Problematic Hydric Soils:
Histosol	(A1)		Sandy Red	ox (S5)			2 cm Muck	(A10)
Histic E	pipedon (A2)	Ē	Stripped Ma	and a second second			Red Paren	t Material (TF2)
Black H	istic (A3)		Loamy Muc	18 0.225	(E1) (exc	ent MI RA		lain in Remarks)
Hydroge	en Sulfide (A4)	-	Loamy Gley			optiment		and in reemance,
Deplete	d Below Dark Surfac	e (A11)	Depleted M		(1 2)			
	ark Surface (A12)		Redox Dark		EC)		³ Indicators of h	ydrophytic vegetation and
	Mucky Mineral (S1)		Depleted Da		·		wetland hydrol	ogy must be present,
	Gleyed Matrix (S4)		Redox Depi		10-010/2011 BIS		unless distrube	ed or problematic.
	sieyeu Matinx (64)			C3310113 (i	0)		·	
Restrictive	Layer (if present):							
Type:Wa	ste rock							
Depth (in	ches):surface						Hydric Soil Pre	sent? Yes 🔿 No 🖲
u v	Jaste rock along Sr	effels Creek v	erv rocky	trea has l	heen sub	iect to irre	oular oradino a	nd stock piling, banks are steep
Remarks:	nd Berms and shall	ow channels or	ery rooky: 1	n cu nus i	Seen Suo	jeet to me	-Galai Graanig a	na stook plinig, buiks are stoop
di	in Dennis and shan	Ow charmers at	e common.					
	cv							
HYDROLO								
Wetland Hy	drology Indicators:							
Primary Indi	cators (any one indica	ator is sufficient)					Secondar	y Indicators (2 or more required)
X Surface	Water (A1)	[Water-Stai	ned Leave	es (B9) (no	MLRA12	4 A&B Wate	r Stained Leaves (B9) (MLRA 1.2, 4
	ater Table (A2)	Γ	Salt Crust		- () (A&B	
X Saturati		Ē	Aquatic In		s (B13)		Drain	age Patterns (B10)
and the second s	Marks (B1)	L	Hydrogen		852 enn Sen			Season Water Table (C2)
	nt Deposits (B2)		15.4 14.5		0.50			050 50
	TO 00 40	L	CONTRACTOR INVOLUE	27003-1430-07-09 - 0-2004-020-		Living Root		ation Visible on Aerial Imagery (C9)
Annana Ma Sana	posits (B3)	L	Presence		South Sectors	water the second		norphic Position (D2)
	at or Crust (B6)	Ļ	11007 IV 172			d Soils (C6)		ow Aquitard (D3)
	posits (B6)	Ĺ			12	1) (LRR A)		Neutral Test (D5)
	Soil Cracks (B6)		Other (Exp	olain in Re	marks)		Raise	ed Ant Mounds (D6) (LRR A)
Inundati	ion Visible on Aerial I	magery (B7)					Frost	- Heave Hummucks (D7)
Sparsel	y Vegetated Concave	Surface (B8)						
	tlana.							
Field Obser	varions:					ſ		
Surface Wat	er Present? Ye	s (No	Depth (in	ches):	1ft			
Water Table		s 💽 No 🖉	Depth (in		+1") (() ()	and Usedan Leave De	And the Contract of the Contra
Saturation P					surface	vvetla	nd Hydrology Pr	esent? Yes 💿 No 🔿
	pillary fringe)	Part research 19	S Pobul (III					
	corded Data (stream	gauge, monitorin	g well, aerial ı	photos, pre	evious ins	pections), i	f available:	
	a menue non nontro companyation — i o mina ny sistematika 🗙 Antoso antosos (1997 – 2016 – 20	- and a second	- annones thereads				n generalen o seu distri dela posta posta esta della dell	
D	haltin la anna 11 at	a a langi d - CC C			• a11 a	aint le		
Remarks: M	ultiple small stream	ns draid oil fro	m main chai	mer on sl	nanow p	oint bar.		

Project/Site: Revenue Mine	City/County: Ca	mp Bird, Ouray	Sampling Date: 06-02-2012					
Applicant/Owner: Silver Star Resources		State:CO	Sampling Point: DP15					
Investigator(s):WWE: BFF	Section, Towns	Section, Township, Range: Sec. 21 T43N R8W						
Landform (hillslope, terrace, etc.): Valley	Local relief (col	ncave, convex, none):none	Slope (%):<2%					
Subregion (LRR): $E - RM$ Forests & Rangeland	Lat:°37.975333 N	Long: [°] 107.753917	W Datum:NAD 83					
Soil Map Unit Name: Moran-Telluride- Rock outcrop, o	extremly stoney	NWI class	ification:					
Are climatic / hydrologic conditions on the site typical for thi	is time of year? Yes 🔿	No 🖲 🛛 (If no, explain ii	n Remarks.)					
Are Vegetation $\overleftarrow{\times}$ Soil $\overleftarrow{\times}$ or Hydrology $\overleftarrow{\times}$	significantly disturbed?	Are "Normal Circumstance	s" present? Yes 🔿 🛛 No 🖲					
Are Vegetation Soil or Hydrology	naturally problematic?	(If needed, explain any ans	wers in Remarks.)					
SUMMARY OF FINDINGS - Attach site map	showing sampling p	oint locations, transec	ts, important features, etc					
Undranky tip Variation Dracant2			10					

Hydrophytic Vegetation Present?	Yes (No 🔘								
Hydric Soil Present?	Yes 🔘	No 🜘	Is the Sampled Area							
Wetland Hydrology Present?	Yes 🔘	No 🜘	within a Wetland?	Yes 🔿	No 🖲					
Remarks: 2012 was an unusually	dry year with a	a snow pack bel	ow average. The site is at a 10,	600 feet abo	ove sea level. The project					
area is located at a mine that has been periodically active for over 100 years. Vegetation, soils, and hydrology have been										
significantly disturbed from permitted mining activities.										

ř	Absolute		nt Indicator	Dominance Test worksheet:	
Tree Stratum Plot Size 5m	<u>% Cover</u>	Species	? <u>Status</u>	Number of Dominant Species That Are OBL, FACW, or FAC: 0	(A)
2.		÷			
3	÷			Total Number of Dominant Species Across All Strata: 2	(B)
	8	2943			(6)
4	-	- 	-C	Percent of Dominant Species	
Sapling/Shrub Stratum Plot Size 5m	2 4 - 11 - 10 - 10 - 10 - 10 - 10 - 10 - 1	= Total C	over	That Are OBL, FACW, or FAC: 0.0	% (A/B)
1.				Prevalence Index worksheet:	
2.				Total % Cover of: Multiply by	y:
3.				OBL species x 1 =	
4.		•		FACW species x 2 =	
5.	ini		<u>14</u>	FAC species x 3 =	
		= Total C	over	FACU species x 4 =	
Herb Stratum Plot Size 5m				UPL species x 5 =	
1.Trisetum spicatum	40	Yes	UPL	Column Totals: (A)	(B)
2.Festuca brachyphylla	30	Yes	UPL		
3. Vaccinium myrtillus	15		UPL	Prevalence Index = B/A =	
4. Taraxacum officinale	10	***	UPL	Hydrophytic Vegetation Indicators:	
5.				Dominance Test is >50%	
6.			2	Prevalence Index is ≤3.0 ¹	
7.				 Morphological Adaptations¹ (Provide sup data in Remarks or on a separate sh 	
8.					2200292
· · · · · · · · · · · · · · · · · · ·	95	= Total C	over	Problematic Hydrophytic Vegetation ¹ (E:	xpiain)
Woody Vine Stratum Plot Size	A.A			1	
1.	101			¹ Indicators of hydric soil and wetland hydro be present.	logy must
2					
% Bare Ground in Herb Stratum 5%		= Total C	over	Hydrophytic Vegetation Present? Yes No •	
		1			
Remarks: Steep rocky banks separate wetlands from	m uplands,	very abi	upt change :	trom toe of slope.	

Profile Desc	ription: (Descr	ibe to th	ne dep	th ne	eded to	docur	nent the	indicator	or confir	m the absence of indi	cators.)	
Depth (inches)	Matr Color (moist)		%	C	olor (mois		x Feature %	es Type ¹	Loc ²	Texture ³	Remarks	
(110103)			<u></u>								nomanto	
<u>12</u>		202						in	-02	19 <u></u>		<u> </u>
								S-				
									-04	·		
50-							-0 	8	-03			
									-03			
1				_		or a star	2	53				.
	oncentration, D=	There is a start of the start o								RC=Root Channel, M=N	Matrix. ilt Loam, Silt, Loamy Sand	d Sand
	D. 377	- 2	-74					anuy Luai	n, Clay LU		olematic Hydric Soils	u, Sanu.
Hydric Soll Ir Histosol	ndicators: (Appli	icable to		Rs,ur ⊺			- CHARD HORE AND CON-			2 cm Muck (A	A CONTRACT OF CONTRACTOR OF THE DESCRIPTION OF CONTRACT OF CONTRACT.	
	pipedon (A2)			F	0 anns as	10 at 10 at	ox (S5)			Red Parent M		
Black Hi	na an an an an an			F			atrix (S6) kv Miner		cept MLR.			
Hydroge	n Sulfide (A4)			E		150	/ed Matri	2. S.	Cept MEIX.		r in ivernarks)	
Deplete	d Below Dark Su	Irface (A	.11)		n neitan meno		atrix (F3)	1.5 General Stories				
	rk Surface (A12			F			Surface				ophytic vegetation and	
Sandy N	lucky Mineral (S	51)		Ē			ark Surfa			wetland hydrology unless distrubed of	y must be present,	
Sandy G	leyed Matrix (S4	4)			Redo	x Depi	ressions	(F8)		uniess distrubed (problematic.	
Restrictive	.ayer (if presen	£)•										P)
Type:Wa												
205 3	ches):surface				- 1					Hydric Soil Preser	nt? Yes 🔿 No 🤅	•
Remarks: W						_2						
Remarks: '												
HYDROLO	GY											
Wetland Hy	drology Indicate	ors:										
Primary India	ators (any one i	ndicator	is suffi	cient)						Secondary In	ndicators (2 or more requir	red)
Surface	Water (A1)				Wate	er-Stai	ned Leav	/es (B9) (r	o MLRA 1	,2,4 A&B Water St	ained Leaves (B9) (MLRA	A 1,2, 4
🔄 High Wa	ter Table (A2)				Salt	Crust	(B11)			A&B		
Saturatio	on (A3)				Aqu:	atic In	vertebrat	es (B13)		Drainage	e Patterns (B10)	
	arks (B1)				XXXX			Odor (C1)			son Water Table (C2)	
	t Deposits (B2)								Living Ro	ots (C3) 📃 Saturatio	on Visible on Aerial Image	ery (C9)
Drift Dep	oosits (B3)				8			ed Iron (C	desired there doesn't		phic Position (D2)	
	t or Crust (B6)								ed Soils (C		Aquitard (D3)	
	oosits (B6)							12	01) (LRR /		utral Test (D5)	
	Soil Cracks (B6)				Othe	er (Exp	plain in R	emarks)			Ant Mounds (D6) (LRR A)	
	on Visible on Ae									Frost- He	eave Hummucks (D7)	
Sparsely	/Vegetated Con	cave Su	rface (B8)								
Field Observ	vations:								13			
Surface Wate	er Present?	Yes	\bigcirc	No	Dep	pth (in	ches):					
Water Table		Yes	õ	No			ches):		W/of	land Hydrology Prese	ent? Yes 🔿 No	$\overline{\bullet}$
Saturation P		Yes	O	No	1000		ches):			and nyarology Frest		9
(includes cap		0845255702					S / ASH CHILD BRITE HILL					
Describe Re	corded Data (stre	eam gau	ge, ma	onitori	ng well, a	aerial p	photos, p	revious in	spections)	, if available:		

Project/Site: Revenue Mine	Ci	ity/County: Ca	mp Bird, Ouray	Sampling Date: 06-02-2012				
Applicant/Owner: Silver Star Resources			Stat	e:CO	Sampling Point: DP16			
Investigator(s):WWE: BFF	S	Section, Township, Range: Sec. 21 T43N R8W						
Landform (hillslope, terrace, etc.): Valley	L	ocal relief (cor	Slope (%):<2%					
Subregion (LRR) $ \pm$ - RM Forests & Rangeland	Lat:°37.92	73867 N	Long: [°] 10	07.752100 W	Datum:NAD 83			
Soil Map Unit Name: Cryothents-Rock outcrop co	mplex			NWI classific	cation:NA			
Are climatic / hydrologic conditions on the site typical Are Vegetation Soil or Hydrology Are Vegetation Soil or Hydrology SUMMARY OF FINDINGS - Attach site r	significantly di naturally probl	sturbed? lematic?	Are "Normal Cir (If needed, expl	ain any answe	present? Yes No 💿 ers in Remarks.)			
Hydrophytic Vegetation Present?Yes Hydric Soil Present?Yes Wetland Hydrology Present?Yes Remarks: 2012 was an unusually dry year with	No () No () No () a snow pack belo	within a	mpled Area Wetland? The site is at a	Yes () 10.600 feet a	No (• above sea level. The project			

area is located at a mine that has been periodically active for over 100 years. Vegetation, soils, and hydrology have been significantly disturbed from permitted mining activities.

·	Absolute		nt Indicator	Dominance Test worksheet:		
Tree Stratum Plot Size 5m 1.	% Cover	Species	? <u>Status</u>	Number of Dominant Species That Are OBL, FACW, or FAC:	3	(A)
2.				Total Number of Dominant		
3.				Species Across All Strata:	4	(B)
4.	8		18	Demont of Deminent Creation		and the sub-time
		= Total C	over	 Percent of Dominant Species That Are OBL, FACW, or FAC: 	75.0 %	(A/B)
Sapling/Shrub Stratum Plot Size 5m						ç
1.Salix monticola	40	Yes	OBL	Prevalence Index worksheet:		
2.Picea engelmannii	20	Yes	FAC		Multiply by:	_
3.Ribes aureum	10		FAC	OBL species x 1	=	
4.Symphoricarpos albus	10		FACU	FACW species x 2		
5				FAC species x 3		
	80	= Total Co	over	FACU species x 4	5. 	
Herb Stratum Plot Size 5m				UPL species x 5	š.	
1.Veratrum tenuipetalum	40	Yes	FAC	Column Totals: (A)		(B)
2. Trisetum spicatum	20	Yes	UPL			87. 88
3. Vaccinium myrtillus	15	-	UPL	Prevalence Index = B/A =		
4. Festuca brachyphylla	10		UPL	Hydrophytic Vegetation Indicate	ors:	
5.Taraxacum officinale	10		FACU	X Dominance Test is >50%		
6.	0		2	Prevalence Index is ≤3.0 ¹		
7.				 Morphological Adaptations¹ (F data in Remarks or on a set 	Provide suppor	rting
8.	~			- Problematic Hydrophytic Veg	And Annual Proceedings and an and an and an	
Woody Vine Stratum Plot Size	95	= Total C	over	¹ Indicators of hydric soil and wet	6 B	°
	C			be present.		
2				Hydrophytic		
% Bare Ground in Herb Stratum5 %		= Total Co	over	Vegetation Present? Yes •	No ()	
Remarks: Typically mountain slope entering the v along this slope.	alley from 1	the south	. no springs	s seeps or surface water sources	were identifi	ed

Profile Des	cription: (Describe	to the dept	n needed to docu	ment the indicator	or confirm	the absence of inc	dicators.)	
Depth	Matrix		Redo	x Features				
(inches)	Color (moist)	%	Color (moist)	<u>%</u> Type ¹	Loc ²	Texture ³	Rema	rks
								5
<u>~</u>				<u>191 - 191 -</u>	9 <u>9</u> 1			
~								
		- 12			· ·			
*								
¹ Type: C=C	oncentration, D=De	oletion, RM=I	Reduced Matrix.	² Location: PL=Pore	Lining, RC	C=Root Channel, M=	=Matrix.	
				Loam, Sandy Loam				ny Sand, Sand.
Hydric Soil I	ndicators: (Applical	ble to all LRR	s, unless otherwis	e noted.)		Indicators for Pro	oblematic Hydric So	1s:
Histoso			Sandy Red			2 cm Muck (A10)	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
Histic E	pipedon (A2)		Stripped M			Red Parent I	Material (TF2)	
Black H	listic (A3)			cky Mineral (F1) (exc	ept MLRA		in in Remarks)	
Hydrog	en Sulfide (A4)			yed Matrix (F2)		.,		
Deplete	ed Below Dark Surfa	ce (A11)	Depleted N					
Contraction of the second	ark Surface (A12)			k Surface (F6)			prophytic vegetation	and
Sandy	Mucky Mineral (S1)			ark Surface (F7)			gy must be present,	
	Gleyed Matrix (S4)			pressions (F8)		unless distrubed	f or problematic.	
				10 SC				(i).
	Layer (if present):							
Type:bec								
	ches):surface					Hydric Soil Pres		No 🖲
Remarks: S	mall concentration	ns of glacial	till were availa	ble for top soil, <2	" inches.	Vegetation appear	red to be growing	out of the
rc	ock.							
HYDROLC	OGY							
Wetland Hy	drology Indicators							
Primary Indi	cators (any one indi	cator is suffic	ient)			Secondary	Indicators (2 or mor	e required)
Surface	Water (A1)		Water-Sta	ined Leaves (B9) (n	MIRA 12	24 A&B Water S	Stained Leaves (B9)	(MIRA124
	ater Table (A2)		Salt Crus		2 III EI (2 (1,2	A&B		(11210, 1,2, 1
	ion (A3)			vertebrates (B13)		Draina	ge Patterns (B10)	
	Marks (B1)		222-00-0-0	Sulfide Odor (C1)			ason Water Table (0	22)
	nt Deposits (B2)			Rhizospheres along	Living Roof		ion Visible on Aerial	84
	posits (B3)			of Reduced Iron (C4		· ·	orphic Position (D2)	inagery (CS)
100000 100 Deck	at or Crust (B6)			on Reduction in Tille	energia interestatione		v Aquitard (D3)	
	0.0		10.000 DV 102	or Stressed Plants (D	and the second second		6 N N	
	posits (B6)			3			eutral Test (D5)	
	Soil Cracks (B6)	Inc		plain in Remarks)			Ant Mounds (D6) (L	and a second
	ion Visible on Aerial					Frost- F	Heave Hummucks (I	J7)
	y Vegetated Conca	e Surface (B	8)		10			
Field Obser	vations:							
Quefo an Mint	or Drocont?			aboo):				
Surface Wat Water Table			No 💿 Depth (ii No 💿 Depth (ii	1950			528.	=
Saturation P	2440	1700	No 💽 Depth (ii No 💽 Depth (ii	2327	Wetla	and Hydrology Pres	sent? Yes 🔿	No 🔘
	pillary fringe)	V		iciica)				
	English and English English and English and	n gauge, mor	itoring well, aerial	photos, previous ins	pections). i	if available:		
					• 2000 100 100 100 100 100 100 100 100 10			

Remarks: No spring, seeps, or surface water runoff channels were identified across this slope.

Project/Site: Revenue Mine		Ci	ty/County: Ca	mp Bird, Our	Sampling Date: 06-02-2012				
Applicant/Owner:Silver Star Resources				S	tate:CO	Sampling Point: $DP17$			
Investigator(s):WWE: BFF		Se	ection, Township, Range: Sec. 21 T43N R8W						
Landform (hillslope, terrace, etc.): Valley		Ŀ	ocal relief (coi	cal relief (concave, convex, none):none Slo					
Subregion (LRR) E - RM Forests & Rang	geland	Lat: [°] 37.97	74300 N	Long:	107.753183 W	V	Datum:	NAD 83	
Soil Map Unit Name: Cryothents-Rock ou	uterop com	olex			NWI classifi	cation:NA			
Are climatic / hydrologic conditions on the s Are Vegetation Soil or Hydro Are Vegetation Soil or Hydro	ology 🔀	this time of year significantly di naturally probl	sturbed?	Are "Normal	f no, explain in F Circumstances'' xplain any answe	present? Y		No 🖲	
SUMMARY OF FINDINGS - Attac	ch site ma	p showing s	ampling p	oint location	ns, transects	, importa	ant featu	ures, etc.	
Hydrophytic Vegetation Present?	Yes 🖲	No 🕥							
And a set of the second s	Yes 🔘	No 🖲	Is the Sa	ampled Area					
	Yes 🔘	No 🖲	10,00,00,00,00,00	Wetland?	Yes 🔿				
Remarks: 2012 was an unusually dry area is located at a mine that					TOTA PODOLOGIA DODOLOGIA				

significantly disturbed from permitted mining activities.

	Absolute		t Indicator	Dominance Test worksheet:
Tree Stratum Plot Size 5m	<u>% Cover</u>		023	Number of Dominant Species
1.Picea engelmannii	$-\frac{40}{15}$	Yes	FAC	That Are OBL, FACW, or FAC: 6 (A)
2.Picea pungens	15	Yes	FAC	Total Number of Dominant
3		10		_ Species Across All Strata: 8 (B)
4				 Percent of Dominant Species
Sapling/Shrub Stratum Plot Size 5m	55	= Total Co	over	That Are OBL, FACW, or FAC: 75.0 % (A/B)
1.Salix monticola	25	Yes	OBL	Prevalence Index worksheet:
2.Picea engelmannii	20	Yes	FAC	Total % Cover of: Multiply by:
3.Ribes aureum	10	Yes	FAC	OBL species x 1 =
4. Symphoricarpos albus	10	Yes	FACU	FACW species x 2 =
5.				FAC species x 3 =
	65	= Total Co	ver	FACU species x 4 =
Herb Stratum Plot Size 5m				UPL species x 5 =
1.Veratrum tenuipetalum	40	Yes	FAC	Column Totals: (A) (B)
2. Trisetum spicatum	20	Yes	UPL	
3.Vaccinium myrtillus	15		UPL	Prevalence Index = B/A =
4.Festuca brachyphylla	10		UPL	Hydrophytic Vegetation Indicators:
5.Taraxacum officinale	10		FACU	X Dominance Test is >50%
6.		23		Prevalence Index is ≤3.0 ¹
7.				 Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet)
8.		n.)-		 Problematic Hydrophytic Vegetation¹ (Explain)
Woody Vine Stratum Plot Size	95	= Total Co	over	
1	inji		14	¹ Indicators of hydric soil and wetland hydrology must be present.
2				
% Bare Ground in Herb Stratum 5 %		= Total Co	ver	Hydrophytic Vegetation Present? Yes • No ()
Remarks: Typically mountain slope entering the va along this slope.	lley from t	he south.	no springs	seeps or surface water sources were identified

Profile Des	cription: (Descr	ibe to th	e dep	th ne	eded to doc	ument the	indicator	or confirm	the absence of indic	ators.)
Depth	Matri					dox Feature				52.02.5940955699 3
(inches)	Color (moist)		%	Co	olor (moist)	%	Type ¹	Loc ²	Texture ³	Remarks
<u></u>								·		
							8	······································		
<i>8</i> 5							9		108	
85.							8		107	
							-			
	oncentration, D=								C=Root Channel, M=M	
³ Soil Texture	es: Clay, Silty Cla	ay, Sandy	y Clay	, Loai	m, Sandy Cla	ay Loam, Sa	andy Loam	, Clay Loar		t Loam, Silt, Loamy Sand, Sand.
	ndicators: (Appli	icable to a	all LR	Rs, ur	nless otherwi	se noted.)			Indicators for Probl	ematic Hydric Soils:
Histosol	CONTRACTOR OF CONTRACTOR				Sandy R	edox (S5)			2 cm Muck (A1	0)
25764577572577575757	pipedon (A2)				Stripped	Matrix (S6)			Red Parent Ma	terial (TF2)
10220 200	istic (A3)				Loamy M	ucky Miner	al (F1) (exc	ept MLRA	1) Other (Explain i	in Remarks)
	en Sulfide (A4)				Loamy G	leyed Matrix	x (F2)			
	d Below Dark Su	eo 20	11)	E	Depleted	Matrix (F3)			3	
	ark Surface (A12				Redox Da	ark Surface	(F6)		"Indicators of hydrop wetland hydrology	phytic vegetation and
Sandy I	Mucky Mineral (S	;1)			There is not the second second second	Dark Surfa	N 33 P N G 200 C 10 C 20		unless distrubed or	
Sandy (Gleyed Matrix (S4	4)			Redox De	epressions	(F8)			problemane.
Restrictive	Layer (if presen	d):								
Type:bec		.ų.								
	ches):surface								Hydric Soil Present	t?Yes 🔿 No 🖲
C.	a se construir a los de los	tions of	alaci	al till	were avail	able for to	n soil <	" inches	Vegetation appeared	d to be growing out of the
inciliains.	ock.	lions or	Siden	11 (111	were avan		p 3011, ~2	incres.	vegetation appearee	r to be growing out of the
	CK.									
HYDROLO	GY									
Wetland Hy	drology Indicate	ors:								
Primary Indi	cators (any one i	ndicator i	is suffi	cient)					Secondary Ind	licators (2 or more required)
Surface	Water (A1)				Water-S	tained Leav	(es (B9) (n	MIRA 12	24 A&B Water Sta	ined Leaves (B9) (MLRA 1,2, 4
	ater Table (A2)					st (B11)	00 (00) (11	0 101210 (1,2	A&B	
Saturati	a and an a construction of the second s				—	Invertebrat	es (B13)		Drainage	Patterns (B10)
	Aarks (B1)					en Sulfide C	an and some theo		100 CTC	on Water Table (C2)
	nt Deposits (B2)				=	d Rhizosphe	050 50	Living Roof	·	Nisible on Aerial Imagery (C9)
	posits (B3)					e of Reduc				hic Position (D2)
	at or Crust (B6)					Iron Reduct	and the second	stranos com ourrestante		Aquitard (D3)
	posits (B6)				-	or Stressed		an an prophy serve		tral Test (D5)
	Soil Cracks (B6)	N N				Explain in R				nt Mounds (D6) (LRR A)
	Determine memory was remediate		ony (D'	7)			entarks)			NEW CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR
	ion Visible on Ae y Vegetated Con									ave Hummucks (D7)
	y vegetated Con			50)						
Field Obser	vations:									
Surface Wat	er Present?	Yes	\bigcirc	No	Depth	(inches):				
Water Table		Yes	õ		~	inches):		Moto	and Hydrology Preser	nt? Yes 🔿 No 🔎
Saturation P	resent?	Yes	O	No	0	(inches):		vvella	and nyurology Freser	nt? Yes () No (•)
	pillary fringe)									
Describe Re	corded Data (stre	eam gauç	ge, mo	onitori	ng well, aeria	al photos, p	revious ins	pections), i	f available:	

Remarks: No spring, seeps, or surface water runoff channels were identified across this slope.

Project/Site: Revenue Mine	City/County: (Camp Bird, Ouray	Sampling Date: 06	Sampling Date: 06-02-2012	
Applicant/Owner: Silver Star Resources		State:CO	Sampling Point: D	P18	
Investigator(s):WWE: BFF	Section, Town	ship, Range: Sec. 21 T43N F	.8W		
Landform (hillslope, terrace, etc.): Valley	Local relief (c	oncave, convex, none): <u>none</u>	Slope	(%):<2%	
Subregion (LRR): $E - RM$ Forests & Rangeland	Lat:°37.973850 N	Long:°107.751633	W Datum:	NAD 83	
Soil Map Unit Name: Cryothents-Rock outcrop complex		NWI class	ification: NA		
Are climatic / hydrologic conditions on the site typical for this	time of year? Yes 🔿	No 🖲 (If no, explain ir	n Remarks.)		
Are Vegetation $\overleftarrow{\times}$ Soil $\overleftarrow{\times}$ or Hydrology $\overleftarrow{\times}$ sig	gnificantly disturbed?	Are "Normal Circumstances	s" present? Yes 🔿	No 🖲	
Are Vegetation Soil or Hydrology na	turally problematic?	(If needed, explain any ans	wers in Remarks.)		
SUMMARY OF FINDINGS - Attach site map sl	howing sampling p	point locations, transec	ts, important feat	ures, etc.	
Hydrophytic Vegetation Present? Yes 💿 No	0				
		Sampled Area			
Wetland Hydrology Present? Yes 🦳 No	within	a Wetland? Yes (🗋 🛛 No 🔘		

Remarks: 2012 was an unusually dry year with a snow pack below average. The site is at a 10,600 feet above sea level. The project area is located at a mine that has been periodically active for over 100 years. Vegetation, soils, and hydrology have been significantly disturbed from permitted mining activities.

	Absolute		Indicator	Dominance Test worksheet:	
Tree Stratum Plot Size 5m	<u>% Cover</u>	Species?		Number of Dominant Species	c
1.Picea engelmannii	35	Yes	FAC	That Are OBL, FACW, or FAC:	5 (A)
2.Picea pungens	20	Yes	FAC	Total Number of Dominant	
3			-	Species Across All Strata:	8 (B)
4		ac //		Percent of Dominant Species	
Occubing a following Objectures	55	= Total Co	over	The second se	5.0 % (A/B)
Sapling/Shrub Stratum Plot Size 5m	05	37		Describer of the description of the set	
1.Salix monticola	25	Yes	OBL	Prevalence Index worksheet:	in the second
2.Picea engelmannii	20	Yes	FAC	Total % Cover of: Multip	IY DY:
3.Ribes aureum	15	Yes	FAC	OBL species x 1 =	
4.Symphoricarpos albus	15	Yes	FACU	FACW species x 2 =	
5	1021		1	FAC species x 3 =	
	75	= Total Cov	/er	FACU species x 4 =	
Herb Stratum Plot Size 5m				UPL species x 5 =	
1.Veratrum tenuipetalum	40	Yes	FAC	Column Totals: (A)	(B)
2. Trisetum spicatum	20	Yes	UPL		
³ .Vaccinium myrtillus	15		UPL	Prevalence Index = B/A =	
4.Festuca brachyphylla	10		UPL	Hydrophytic Vegetation Indicators:	
5.Taraxacum officinale	10		FACU	X Dominance Test is >50%	
6.			54 	Prevalence Index is ≤3.0 ¹	
7.				Morphological Adaptations ¹ (Provide	supporting
8.	10	×	-0	data in Remarks or on a separate	
	95	= Total Co	ver	Problematic Hydrophytic Vegetation	(Explain)
Woody Vine Stratum Plot Size				1	
1			14	Indicators of hydric soil and wetland hy be present.	/drology must
2		n			
	. <u> </u>	= Total Co	ver	Hydrophytic	
% Bare Ground in Herb Stratum 5 %				Vegetation Present? Yes • No (2
Remarks: Typically mountain slope entering the v	alley from t	he south.	no springs	s seeps or surface water sources were i	dentified
along this slope.	2				

Ē

Depth	Matrix			x Features				
(inches)	Color (moist)		Color (moist)		Type ¹	Loc ²	<u>Texture³</u>	Remarks
ř.								
2								
						<u> </u>	a	
×				197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197			. 	
1 .				2				ann ∎r # 102 ann suann
	oncentration, D=Dep						C=Root Channel, M	
	20 CT	1.60 (1	1914 - 191		iuy Loam	, Clay Loa	1.620 Ekc	Silt Loam, Silt, Loamy Sand, Sand.
	ndicators: (Applicab	e to all LR					A Design of the second s	oblematic Hydric Soils:
Histosol	and a state of the		Sandy Red	ox (S5)			2 cm Muck	(A10)
De Stelen and a more from	pipedon (A2)		Stripped Ma	atrix (S6)			Red Parent	Material (TF2)
12240 243	istic (A3)		Loamy Muc	ky Mineral	(F1) (exc	ept MLRA	1) 🗌 Other (Expla	ain in Remarks)
Hydroge	en Sulfide (A4)		Loamy Gle	ed Matrix	(F2)	~		
Deplete	d Below Dark Surfac	e (A11)	Depleted N		x			
Thick Da	ark Surface (A12)	14 H	Redox Dark		E6)		³ Indicators of hy	drophytic vegetation and
	Mucky Mineral (S1)		Depleted D		1. 1990 10			gy must be present,
	Gleyed Matrix (S4)		Redox Dep				unless distrube	d or problematic.
					0,		-	
Restrictive	Layer (if present):							
Type:bed	l rock							
Depth (in	ches):surface						Hydric Soil Pres	ent? Yes 🔿 🛛 No 🖲
		a of alaoi	al till wara ovoilek	la for ton	noil /	" inchas	Vagatation appag	red to be growing out of the
REIIIdINS.		s or graci		ne tor top	5011, ~2	menes.	vegetation appea	ired to be growing out of the
го	ock.							
	21							
IYDROLO	GY							
Wetland Hy	drology Indicators:							
Primary India	cators (any one indic	ator is suff	cient)				Secondary	Indicators (2 or more required)
Surface	Water (A1)		Water Ste	ned Leave	c (P0) (p			Stained Leaves (B9) (MLRA 1,2, 4
	ater Table (A2)				S (D9) (III	JWILKA I,	A&B	Stalled Leaves (D9) (MLRA 1,2, 4
	Base Agenta and Barran and Barran Andrea - 10 An		Salt Crust		(5.40)			
Saturati				vertebrates	and some street			ge Patterns (B10)
	1arks (B1)		Hydrogen	Sulfide Od	lor (C1)		Dry-Se	ason Water Table (C2)
Sedimer	nt Deposits (B2)		Oxidized I	Rhizospher	es along	Living Roc	ots (C3) 📃 Satura	tion Visible on Aerial Imagery (C9)
Drift Dep	posits (B3)		Presence	of Reduced	d Iron (C4)	Geom	orphic Position (D2)
Algal Ma	at or Crust (B6)		Recent Irc	n Reductio	on in Tille	d Soils (C6	5) Shallo	w Aquitard (D3)
	posits (B6)		0.000 02 02	Stressed		an a strend and	· _	leutral Test (D5)
	Soil Cracks (B6)			olain in Rer	18			I Ant Mounds (D6) (LRR A)
		magany/D	(i) (i)		mantoy			
	on Visible on Aerial I						Frost-	Heave Hummucks (D7)
Sparser	y Vegetated Concave	e Surface (88)					
Field Observ	vations:							
	2029	~	N- C -					
Surface Wat			No 💿 Depth (in	12850				
Water Table			No 💿 Depth (in			Wetla	and Hydrology Pre	sent? Yes 🔿 No 🖲
Saturation P		es ()	No 💿 Depth (in	ches):		-1		nananan ing kanang k
(includes cap		The control of the second						
Describe Re	corded Data (stream	gauge, mo	phitoring well, aerial	photos, pre	evious ins	pections),	if available:	
Remarks: No	o spring, seeps, or	surface w	ater runoff chann	els were i	dentified	l across t	his slope.	
	1 U/ T/						1	

Project/Site: Revenue Mine	City/County: Camp	o Bird, Ouray	Sampling Date: 10/5/12	
Applicant/Owner: Silver Star Resources		State:CO	Sampling Point: DF	9 19
Investigator(s): WWE: MAJ, LR	Section, Township,	Range: Sec. 21 T43N R8	SW	
Landform (hillslope, terrace, etc.): Valley	Local relief (conca	ve, convex, none): None	Slope	(%): < 2%
Subregion (LRR): E - RM Forests & Rangeland Lat: 37	.97428397 N	Long: <u>-107.753263</u> V	N Datum:	NAD 83
Soil Map Unit Name: Cryothents-Rock outcrop complex		NWI classifi	cation:	
Are climatic / hydrologic conditions on the site typical for this time of y	ear?Yes 🔿 🛛 N	lo 💿 🛛 (If no, explain in F	Remarks.)	
Are Vegetation $\overleftarrow{\times}$ Soil $\overleftarrow{\times}$ or Hydrology $\overleftarrow{\times}$ significantly	y disturbed? A	Are "Normal Circumstances"	present? Yes 🔿	No 🖲
Are Vegetation Soil or Hydrology naturally pr	oblematic? (I	If needed, explain any answe	ers in Remarks.)	
SUMMARY OF FINDINGS - Attach site map showing	ı sampling poin	t locations, transects	s, important feat	ures, etc.

Hydrophytic Vegetation Present?	Yes 🔘	No 🌀						
Hydric Soil Present?	Yes 🔘	No 🖲	Is the Sampled Area					
Wetland Hydrology Present?	Yes 🔘	No 💿	within a Wetland?	Yes C	No 🖲			
Remarks:2012 was an unusually d	Remarks: 2012 was an unusually dry year with a snow pack below average. The site is at a 10,600 feet above sea level. The project							
area is located at a mine that has been periodically active for over 100 years. Vegetation, soils, and hydrology have been								
significantly disturbed fr	om permitted	mining activitie	s.		101 0000			

Tree Stratum Plot Size % Cover Species? Status Number of Dominant Species 1.
3. Total Number of Dominant 3. Species Across All Strata: 3 4. Percent of Dominant Species Sapling/Shrub Stratum Plot Size 100.0 % 1.Salix geyeriana 40 Yes OBL Prevalence Index worksheet: Total % Cover of: Multiply by:
3. Species Across All Strata: 3 (B) 4. Percent of Dominant Species That Are OBL, FACW, or FAC: 100.0% (A/B) 1.Salix geyeriana 40 Yes OBL Prevalence Index worksheet: 2. Total % Cover of: Multiply by:
Sapling/Shrub Stratum Plot Size = Total Cover That Are OBL, FACW, or FAC: 100.0% (A/B) 1.Salix geyeriana 40 Yes oBL Prevalence Index worksheet: 2.
Sapling/Shrub Stratum Plot Size
Sapling/Shrub Stratum Plot Size 1.Salix geyeriana 40 Yes OBL 2. Total % Cover of: Multiply by:
2. Total % Cover of: Multiply by:
3. OBL species x 1 =
4. FACW species x 2 =
5 FAC species x 3 =
= Total Cover FACU species x 4 =
Herb Stratum Plot Size UPL species x 5 =
1. Calamagrostis candensis 15 FACW Column Totals: (A) (B)
2.Bromus ciliatus 25 Yes FAC
3. Polemonium pulcherrimum 15 UPL Prevalence Index = B/A =
4. Violoa adunca 10 FAC Hydrophytic Vegetation Indicators:
5. Thalictrum fendleri 25 Yes FAC X Dominance Test is >50%
6. <i>Elytrigia repens</i> 10 UPL Prevalence Index is $\leq 3.0^{1}$
7. Morphological Adaptations ¹ (Provide supporting
data in Remarks or on a separate sheet) 8.
Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum Plot Size
1. Indicators of hydric soil and wetland hydrology must be present.
2
= Total Cover Hydrophytic
% Bare Ground in Herb Stratum 20 % Yegetation Present? Yes •
Remarks:

	Color (moist)	%	Color (moist)	<u>x Features</u> %	Type ¹	Loc ²	Texture ³	Remarks
(inches) 0-12	7.5 YR 2.5/1	<u></u> 95			ype	LOC		Remarks
0-12	<u>7.5 11 2.5/1</u>							
				<u> </u>				
		1						
	Concentration, D=Depl es: Clay, Silty Clay, S						C=Root Channel, M m, Silty Clay Loam,	=Matrix. Silt Loam, Silt, Loamy Sand, Sar
	Indicators: (Applicabl					-		roblematic Hydric Soils:
Histoso	and the second		Sandy Red	lox (S5)			2 cm Muck	(A10)
The second state of the second	Epipedon (A2) Histic (A3)		Stripped M	18 S.S.S.				Material (TF2)
NO 10220 20	jen Sulfide (A4)		Loamy Muc	1.00	 NEO-1050 	ept MLRA	1) Other (Expl	ain in Remarks)
	ed Below Dark Surfac	e (A11)	Loamy Gley		(F2)			
Name in the second	Dark Surface (A12)		Redox Darl		F6)		³ Indicators of hy	drophytic vegetation and
	Mucky Mineral (S1)		Depleted D					ogy must be present,
Sandy	Gleyed Matrix (S4)		Redox Dep	ressions (F	8)		uniess distrube	d or problematic.
estrictive	Layer (if present):							
Туре:								
Depth (i							Hydric Soil Pres	
emarks: ²	A lot of organic mat	eriai. was	not able to get a	i sampie i	below 12	due to s	severe rocky con	nuons.
YDROL(DGY							
	DGY ydrology Indicators:							
Vetland H		ator is suffici	ent)				Secondary	Indicators (2 or more required)
/etland Hy rimary Ind	ydrology Indicators: licators (any one indica e Water (A1)	ator is suffici		ined Leave	s (B9) (no) MLRA 1,	2,4 A&B Water	<u>Indicators (2 or more required)</u> Stained Leaves (B9) (MLRA 1,2,
/etland Hy rimary Ind Surface High W	ydrology Indicators: licators (any one indica e Water (A1) /ater Table (A2)	ator is suffici			s (B9) (no	MLRA 1,	2,4 A&B Water A&B	Stained Leaves (B9) (MLRA 1,2,
/etland H rimary Ind Surface High W Satura	ydrology Indicators: licators (any one indica e Water (A1) /ater Table (A2) tion (A3)	ator is suffici	Water-Sta	(B11) vertebrate:	s (B13)	MLRA 1,	2,4 A&B Water A&B Draina	Stained Leaves (B9) (MLRA 1,2,
Vetland H rimary Ind Surface High W Satura Water	ydrology Indicators: licators (any one indica e Water (A1) /ater Table (A2) tion (A3) Marks (B1)	ator is suffici	Water-Sta Salt Crust Aquatic In Hydrogen	(B11) vertebrate: Sulfide Oc	s (B13) lor (C1)		2,4 A&B Water A&B Draina	Stained Leaves (B9) (MLRA 1,2, nge Patterns (B10) eason Water Table (C2)
/etland H rimary Ind Surface High W Satura Water Sedime	ydrology Indicators: licators (any one indica e Water (A1) /ater Table (A2) tion (A3) Marks (B1) ent Deposits (B2)	ator is suffici	Water-Sta Salt Crust Aquatic In Hydrogen Oxidized	(B11) vertebrates Sulfide Oc Rhizospher	s (B13) lor (C1) res along	_iving Roc	2,4 A&B Water A&B Draina Dry-So ts (C3) Satura	Stained Leaves (B9) (MLRA 1,2, nge Patterns (B10) eason Water Table (C2) ttion Visible on Aerial Imagery (C3
Vetland Hy rimary Ind Surface High W Satura Water Sedime Drift De	ydrology Indicators: licators (any one indica e Water (A1) /ater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) eposits (B3)	ator is suffici	Water-Sta Salt Crust Aquatic In Hydrogen Oxidized I	(B11) vertebrates Sulfide Oc Rhizospher of Reduce	s (B13) lor (C1) res along d Iron (C4	_iving Roc)	2,4 A&B Water A&B Draina Dry-Sr ts (C3) Satura Geom	Stained Leaves (B9) (MLRA 1,2, ge Patterns (B10) eason Water Table (C2) tion Visible on Aerial Imagery (C9 orphic Position (D2)
Vetland Hy rimary Ind Surface High W Satura Water Sedime Drift De Algal N	ydrology Indicators: licators (any one indica e Water (A1) /ater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) eposits (B3) /at or Crust (B6)	ator is suffici	Water-Sta Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Irc	(B11) vertebrates Sulfide Oc Rhizospher of Reduce on Reduction	s (B13) lor (C1) res along d Iron (C4 on in Tilled	_iving Roc) I Soils (C6	2,4 A&B Water A&B Draina Dry-Si ts (C3) Satura Geom	Stained Leaves (B9) (MLRA 1,2, Ige Patterns (B10) eason Water Table (C2) Ition Visible on Aerial Imagery (C3 orphic Position (D2) w Aquitard (D3)
Vetland Hy rimary Ind Surface High W Satura Water Sedime Drift De Algal M Iron De	ydrology Indicators: licators (any one indica e Water (A1) /ater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) eposits (B3)	ator is suffici	Water-Sta Salt Crust Aquatic In Hydrogen Oxidized Presence Recent Irc	(B11) vertebrates Sulfide Oc Rhizospher of Reduce	s (B13) lor (C1) res along d Iron (C4 on in Tilleo Plants (D	_iving Roc) I Soils (C6	2,4 A&B Water A&B Draina Dry-Si ts (C3) Satura Geom	Stained Leaves (B9) (MLRA 1,2, nge Patterns (B10) eason Water Table (C2) tion Visible on Aerial Imagery (C3 orphic Position (D2)
Vetland H rimary Ind Surface High W Satura Water Sedime Drift De Algal N Iron De Surface	ydrology Indicators: licators (any one indica e Water (A1) /ater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) eposits (B3) Mat or Crust (B6) eposits (B6)		Water-Sta Salt Crust Aquatic In Hydrogen Oxidized Presence Recent Irc Stunted o Other (Ex	(B11) vertebrates Sulfide Oc Rhizospher of Reduce on Reduction r Stressed	s (B13) lor (C1) res along d Iron (C4 on in Tilleo Plants (D	_iving Roc) I Soils (C6	2,4 A&B Water A&B Draina Dry-So ts (C3) Satura Geom) Shallo FAC-N Raised	Stained Leaves (B9) (MLRA 1,2, age Patterns (B10) eason Water Table (C2) ation Visible on Aerial Imagery (C3 orphic Position (D2) w Aquitard (D3) Jeutral Test (D5)
Vetland H rimary Ind Surface High W Satura Water Sedime Drift De Algal M Iron De Surface Inunda	ydrology Indicators: licators (any one indica e Water (A1) /ater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) eposits (B3) Mat or Crust (B6) eposits (B6) e Soil Cracks (B6)	magery (B7)	Water-Sta Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Irc Stunted o Other (Ex	(B11) vertebrates Sulfide Oc Rhizospher of Reduce on Reduction r Stressed	s (B13) lor (C1) res along d Iron (C4 on in Tilleo Plants (D	_iving Roc) I Soils (C6	2,4 A&B Water A&B Draina Dry-So ts (C3) Satura Geom) Shallo FAC-N Raised	Stained Leaves (B9) (MLRA 1,2, age Patterns (B10) eason Water Table (C2) tition Visible on Aerial Imagery (CS orphic Position (D2) w Aquitard (D3) Jeutral Test (D5) d Ant Mounds (D6) (LRR A)
Primary Ind Surface High W Satura Water Sedime Drift De Algal M Iron De Surface Inunda	ydrology Indicators: licators (any one indica e Water (A1) /ater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) eposits (B3) Mat or Crust (B6) eposits (B6) e Soil Cracks (B6) tion Visible on Aerial I	magery (B7)	Water-Sta Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Irc Stunted o Other (Ex	(B11) vertebrates Sulfide Oc Rhizospher of Reduce on Reduction r Stressed	s (B13) lor (C1) res along d Iron (C4 on in Tilleo Plants (D	_iving Roc) I Soils (C6	2,4 A&B Water A&B Draina Dry-So ts (C3) Satura Geom) Shallo FAC-N Raised	Stained Leaves (B9) (MLRA 1,2, age Patterns (B10) eason Water Table (C2) tition Visible on Aerial Imagery (CS orphic Position (D2) w Aquitard (D3) Jeutral Test (D5) d Ant Mounds (D6) (LRR A)
Vetland H Primary Ind Surface High W Saturat Water Drift De Algal M Iron De Surface Sparse Surface Wa	ydrology Indicators: licators (any one indica e Water (A1) /ater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) eposits (B3) Mat or Crust (B6) eposits (B6) e Soil Cracks (B6) tion Visible on Aerial I	magery (B7) Surface (B s1	Water-Sta Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Irc Stunted o Other (Ex	(B11) vertebrate: Sulfide Oc Rhizospher of Reduce on Reduction r Stressed plain in Re	s (B13) lor (C1) res along d Iron (C4 on in Tilleo Plants (D	_iving Roc) I Soils (C6	2,4 A&B Water A&B Draina Dry-So ts (C3) Satura Geom) Shallo FAC-N Raised	Stained Leaves (B9) (MLRA 1,2, age Patterns (B10) eason Water Table (C2) ation Visible on Aerial Imagery (C2) orphic Position (D2) w Aquitard (D3) Jeutral Test (D5) d Ant Mounds (D6) (LRR A)

(includes capillary fringe)
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

No 💿 Depth (inches):

O

Yes

Remarks:

Saturation Present?

Project/Site: Revenue Mine			City/County: C	amp Bird, Oura	у	Samplir	ng Date: 10/:	5/12
Applicant/Owner: Silver Star Resources				St	ate:CO	Samplin	ng Point: DP	20
Investigator(s): WWE: MAJ, LR			Section, Towns	hip, Range: Sec.	21 T43N R	28W	la di	
Landform (hillslope, terrace, etc.): Vall	ey		Local relief (co	ncave, convex, n	one): None		Slope (%): < 2%
Subregion (LRR): $E - RM$ Forests & R	langeland	Lat:37.9	9742993 N	Long:-1	07.7532313	8 W	Datum:	
Soil Map Unit Name: Cryothents-Rock	c outcrop com	plex			NWI class	ification:		
Are climatic / hydrologic conditions on th	ne site typical fo	r this time of ye	ear?Yes 🔿	No 🖲 (If	no, explain in	Remarks.)	1	
Are Vegetation $\overline{\times}$ Soil $\overline{\times}$ or H	ydrology 🔀	significantly	/ disturbed?	Are "Normal C	ircumstances	" present?	Yes (No 💽
Are Vegetation Soil or H	ydrology	naturally pr	oblematic?	(If needed, exp	olain any ansv	wers in Rer	marks.)	
SUMMARY OF FINDINGS - At	tach site m	ap showing	ı sampling p	oint location	s, transect	s, impor	tant featu	res, etc.
Hydrophytic Vegetation Present?	Yes 🖲	No 🕥						
Hydric Soil Present?	Yes 🖲	No 🔘	Is the S	ampled Area				
Wetland Hydrology Present?	Yes 🜘	No 🔘	10 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -	Wetland?	Yes 🤇	20 (C.C.)	0	50 × 10
Remarks:2012 was an unusually dr area is located at a mine t significantly disturbed fro	hat has been j	periodically a	ctive for over					
significantly disturbed in	Jin permitteu	mining activi	ulos.					

1. That Are OBL, FACW, or FAC: 5 (A) 2. Total Number of Dominant Species Across All Strata: 5 (B) 4.	Tree Stratum Plot Size	Absolute _% Cover		nt Indicator ? _ Status_	Dominance Test worksheet: Number of Dominant Species	
3. Initial Number of Dominant Species 4.	1.	18				(A)
3.	2.				Total Number of Dominant	
Sapling/Shrub Stratum Plot Size = Total Cover Percent of Dominant Species Sapling/Shrub Stratum Plot Size Total Cover That Are OBL, FACW, or FAC: 100.0% (A/B) 1.Salix geyeriana 30 Yes OBL Prevalence Index worksheet: Multiply by: 2. OBL species x 1 = 4. FACW species x 2 = 5. FAC species x 3 = Herb Stratum Plot Size FACU species x 4 = 1.Deschampsia cepitosa 20 Yes FACW Column Totals: (A) (B) 2.Calamagrostis canadensis 20 Yes FACW Prevalence Index = B/A = 4. Geum macrophyllum 10 FAC Yes FACW Prevalence Index is \$3.0^1 5. Viola adunca 10 FAC Yes FACW Prevalence Index is \$3.0^1 7. Yes FACW Prevalence Index is \$3.0^1 8. </td <td>3.</td> <td></td> <td>K.9</td> <td>-0</td> <td></td> <td>(B)</td>	3.		K.9	-0		(B)
Sapling/Shrub Stratum Plot Size = Total Cover That Are OBL, FACW, or FAC: 100.0% (A/B) 1. Salix geyeriana 30 Yes OBL Prevalence Index worksheet: 2.	4.	8	17.	3		Seconds.
Sapling/Shrub Stratum Plot Size 1.Salix geyeriana 30 Yes OBL 2. Total % Cover of: Multiply by: 3. OBL species x 1 = 4. FACW species x 2 = 5. FAC Species x 3 = Herb Stratum Plot Size FAC Species x 3 = 1.Deschampsia cepitosa 20 Yes FACW 2. Calamagrostis canadensis 20 Yes FACW 3. Rumex densiflorus 20 Yes FACW 4. Geum macrophyllum 10 FAC Prevalence Index = B/A = 4. Geum macrophyllum 10 FAC Yes 5. Viola adunca 10 FAC Yes 6. Senecic triangularis 20 Yes FACW 7. Morphological Adaptations' (Provide supporting data in Remarks or on a separate sheet) 8. Woody Vine Stratum Plot Size Yes 100 Total Cover			= Total C	over		(A/B)
Instruction Instruction Instruction Instruction Instruction 2. Image: Second Se						с <i>-</i> у
3. OBL species x 1 = 4. FACW species x 2 = 5. FAC species x 3 = Herb Stratum Plot Size 30 = Total Cover FAC species x 4 = 1. Deschampsia cepitosa 20 Yes FACW Column Totals: (A) (B) 2. Calamagrostis canadensis 20 Yes FACW Prevalence Index = B/A = Column Totals: (A) (B) 3. Rumex densiflorus 20 Yes FACW Prevalence Index = B/A = Mydrophytic Vegetation Indicators: X Dominance Test is >50% Prevalence Index is $\leq 3.0^1$ Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation ¹ (Explain) Woody Vine Stratum Plot Size 100 = Total Cover Problematic Hydrophytic Vegetation ¹ (Explain)	1.Salix geyeriana	30	Yes	OBL	Prevalence Index worksheet:	
4. FACW species x 2 = 5. FAC species x 3 = Herb Stratum Plot Size 30 = Total Cover FAC species x 4 = 1.Deschampsia cepitosa 20 Yes FACW Column Totals: (A) (B) 2.Calamagrostis canadensis 20 Yes FACW Prevalence Index = B/A = (B) 3.Rumex densiflorus 20 Yes FACW Prevalence Index = B/A = (B) 4.Geum macrophyllum 10 FAC Hydrophytic Vegetation Indicators: X Dominance Test is >50% 5.Viola adunca 10 FAC X Dominance Test is >50% Prevalence Index is ≤3.0 ¹ 8.	2.				Total % Cover of:Multiply by:	
5. 30 = Total Cover FAC species x 3 = Herb Stratum Plot Size 1. Deschampsia cepitosa 20 Yes FACW 2. Calamagrostis canadensis 20 Yes FACW 2. Calamagrostis canadensis 20 Yes FACW 3. Rumex densiflorus 20 Yes FACW 4. Geum macrophyllum 10 FAC 5. Viola adunca 10 FAC 6. Senecio triangularis 20 Yes 7. 20 Yes 8. 100 FAC Woody Vine Stratum Plot Size 100 = Total Cover	3.				OBL species x 1 =	
30 = Total Cover FACU species x 4 = Herb Stratum Plot Size IDeschampsia cepitosa 20 Yes FACW 2. Calamagrostis canadensis 20 Yes FACW Column Totals: (A) (B) 2. Calamagrostis canadensis 20 Yes FACW Prevalence Index = B/A = Hydrophytic Vegetation Indicators: 3. Rumex densiflorus 10 FAC Hydrophytic Vegetation Indicators: X Dominance Test is >50% 5. Viola adunca 10 FAC X Dominance Test is >50% Prevalence Index is ≤3.01 6. Senecio triangularis 20 Yes FACW Morphological Adaptations1 (Provide supporting data in Remarks or on a separate sheet) 8.	4.				FACW species x 2 =	
Herb Stratum Plot Size UPL species x 5 = 1. Deschampsia cepitosa 20 Yes FACW Column Totals: (A) (B) 2. Calamagrostis canadensis 20 Yes FACW Prevalence Index = B/A = Hydrophytic Vegetation Indicators: 3. Rumex densiflorus 20 Yes FACW Prevalence Index = B/A = Hydrophytic Vegetation Indicators: 4. Geum macrophyllum 10 FAC Hydrophytic Vegetation Indicators: X Dominance Test is >50% 5. Viola adunca 10 FAC Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet) 7. 100 = Total Cover Problematic Hydrophytic Vegetation ¹ (Explain)	5.				FAC species x 3 =	
1. Deschampsia cepitosa 20 Yes FACW Column Totals: (A) (B) 2. Calamagrostis canadensis 20 Yes FACW Prevalence Index = B/A = Hydrophytic Vegetation Indicators: 3. Rumex densiflorus 20 Yes FACW Hydrophytic Vegetation Indicators: Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet) 5. Viola adunca 10 FAC Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet) 7. 100 = Total Cover Problematic Hydrophytic Vegetation ¹ (Explain)		30	= Total Co	over	FACU species x 4 =	
2.Calamagrostis canadensis 20 Yes FACW Prevalence Index = B/A = 2.Calamagrostis canadensis 20 Yes FACW Prevalence Index = B/A = 4.Geum macrophyllum 10 FAC Hydrophytic Vegetation Indicators: 5.Viola adunca 10 FAC Norphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet) 7. 100 = Total Cover Problematic Hydrophytic Vegetation ¹ (Explain)	Herb Stratum Plot Size				UPL species x 5 =	
3. Rumex densiflorus 20 Yes FAC Prevalence Index = B/A = 4. Geum macrophyllum 10 FAC Hydrophytic Vegetation Indicators: 5. Viola adunca 10 FAC Norphytic Vegetation Indicators: 6. Senecio triangularis 20 Yes FACW Prevalence Index is >50% 7. 20 Yes FACW Prevalence Index is ≤3.01 8.	1.Deschampsia cepitosa	20	Yes	FACW	Column Totals: (A)	(B)
A.Geum macrophyllum 10 FAC Hydrophytic Vegetation Indicators: 5.Viola adunca 10 FAC X Dominance Test is >50% 6.Senecio triangularis 20 Yes FACW Prevalence Index is ≤3.0 ¹ 7.	2. Calamagrostis canadensis	20	Yes	FACW		EN 85
10 FAC 5.Viola adunca 10 6.Senecio triangularis 20 7. 20 8. 100 100 FAC	3. Rumex densiflorus	20	Yes	FACW	ACTIVATION AND A CONTRACT OF A DESCRIPTION OF A DESCRIPTI	
Indext Indext 6.Senecio triangularis 20 7. 20 8. 20 9. 100 9. 100 100 FAGW 9. Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet) 100 = Total Cover	4.Geum macrophyllum	10		FAC	Hydrophytic Vegetation Indicators:	
Answer 20 1cs 1kow 7.	5.Viola adunca	10		FAC	Dominance Test is >50%	
8.	6.Senecio triangularis	20	Yes	FACW	Prevalence Index is ≤3.0 ¹	
8 Problematic Hydrophytic Vegetation ¹ (Explain)	7.		et e	-8	Morphological Adaptations ¹ (Provide support	rting
Woody Vine Stratum Plot Size Total Cover	8.		K.9	-0		PA
1. ¹ Indicators of hydric soil and wetland hydrology must	Woody Vine Stratum Plot Size	100	= Total C	over		ain)
	1.					y must
2 be present	2.				be present.	
% Bare Ground in Herb Stratum % Hydrophytic Vegetation Present? Yes • No •	% Bare Ground in Herb Stratum%		= Total Co	over	Vegetation	
Remarks:	Remarks:					

Profile Des	cription: (Describe	to the depth i	needed to docu	ment the	indicator	or confirn	n the absence of indicators.)
Depth	Matrix		Redo	x Features			
(inches)	Color (moist)		Color (moist)	%	Type ¹	Loc ²	Texture ³ Remarks
0-6	7.5 YR 3/1	95					sandy loam
6-12	5YR 2.5/1	95					histic epipedon
<u></u>					·		· · · · · · · · · · · · · · · · · · ·
							1
×							
<u>10</u>		·					·
55		101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101		-0	,,	S S. 13	c tek N
*							2
							·
	concentration, D=Dep es: Clay, Silty Clay, S						IC=Root Channel, M=Matrix. Im, Silty Clay Loam, Silt Loam, Silt, Loamy Sand, Sand.
Hydric Soil I	ndicators: (Applicabl	e to all LRRs,	unless otherwis	e noted.)			Indicators for Problematic Hydric Soils
Histoso	l (A1)		Sandy Rec	lox (S5)			2 cm Muck (A10)
🗙 Histic E	pipedon (A2)		Stripped M	atrix (S6)			Red Parent Material (TF2)
Black H	istic (A3)		Loamy Mu	ky Minera	al (F1) (exc	ept MLRA	A 1) 🗌 Other (Explain in Remarks)
Hydrog	en Sulfide (A4)		Loamy Gle	yed Matrix	(F2)		
Deplete	d Below Dark Surfac	e (A11)	Depleted M	- latrix (F3)	i disekondiz		
Thick D	ark Surface (A12)		Redox Dar	0-001/2010/00/00 Hz •00/2012-00/20	(F6)		³ Indicators of hydrophytic vegetation and
Sandy	Mucky Mineral (S1)		Depleted D	ark Surfac	ce (F7)		wetland hydrology must be present,
Sandy (Gleyed Matrix (S4)		Redox Dep	ressions (F8)		unless distrubed or problematic.
Туре:	Layer (if present):						Hydric Soil Present? Yes 💿 No 🔿
Depth (in	In the searchest the second the		2				Hydric Soil Present? Yes 💿 No 🔿
Remarks: ^O	rganic layer in soil						
HYDROLC	GY						
Wetland Hy	drology Indicators:						
Primary Indi	cators (any one indic	ator is sufficier	nt)				Secondary Indicators (2 or more required)
Surface	Water (A1)		Water-Sta	ined Leav	es (B9) (no	MLRA 1.	,2,4 A&B Water Stained Leaves (B9) (MLRA 1,2, 4
High W	ater Table (A2)		Salt Crust				A&B
🗙 Saturati	ion (A3)		25 25 76	vertebrate	es (B13)		Drainage Patterns (B10)
The second secon	/larks (B1)		Hydrogen		and the second second		Dry-Season Water Table (C2)
Sedime	nt Deposits (B2)			Rhizosphe	res along	Livina Roo	
	posits (B3)				ed Iron (C4		Geomorphic Position (D2)
	at or Crust (B6)				ion in Tille	and the second sec	
	posits (B6)		100 BEERS 100 BEERS		l Plants (D	an a proved an	
	Soil Cracks (B6)			plain in Re	12	., (Raised Ant Mounds (D6) (LRR A)
	ion Visible on Aerial I	magery (B7)			,		Frost- Heave Hummucks (D7)
	v Vegetated Concave	Constant and Second Processing					
Field Obser	VID:		2			k	
1.514 90361			~				
Surface Wat				2000 <u>-</u>			
Water Table			Depth (ir		10	Wetl	and Hydrology Present? Yes 💿 No 🔿
Saturation F		es 💽 No	Depth (ir	iches):	12		
	pillary fringe)			nhates		n a atica a`	if a milable
Describe Re	corded Data (stream	gauge, monito	ang well, aerial	photos, pr	evious ins	pections),	II available:
Remarks:							

$\label{eq:constraint} \textbf{WETLAND DETERMINATION DATA FORM - Western Mountains, Valleys and Coast Region$

Project/Site: Revenue Mine	City/County: Camp Bird,	Ouray	Sampling Date: 10/5/12
Applicant/Owner: Silver Star Resources	<u> </u>	State:CO	Sampling Point: DP 21
Investigator(s): WWE: MAJ, LR	Section, Township, Range	e: Sec. 21 T43N R8	W
Landform (hillslope, terrace, etc.): Valley	Local relief (concave, con	vex, none): None	Slope (%): < 2%
Subregion (LRR):E - RM Forests & Rangeland Lat:	37.97388708 N L	ong:-107.7516058 V	W Datum:
Soil Map Unit Name: Cryothents-Rock outcrop complex		NWI classifie	cation:
Are climatic / hydrologic conditions on the site typical for this time	of year? Yes 🔿 🛛 No 🖲	(If no, explain in F	Remarks.)
Are Vegetation X Soil X or Hydrology X signification	antly disturbed? Are "No	rmal Circumstances"	present? Yes 🔿 🛛 No 💿
Are Vegetation Soil or Hydrology natural	y problematic? (If need	ed, explain any answe	ers in Remarks.)
SUMMARY OF FINDINGS - Attach site map show	ing sampling point loca	ations, transects	, important features, etc.
Hydrophytic Vegetation Present?Yes (Yes (No (Wetland Hydrology Present?No (Yes (Yes (No (No (Tester the sector))	Is the Sampled Ar within a Wetland?	rea Yes ()	No 🖲
Remarks:2012 was an unusually dry year with a snow pac area is located at a mine that has been periodical significantly disturbed from permitted mining ac	ly active for over 100 years		

	Absolute		Indicator	Dominance Test worksheet:		
Tree Stratum Plot Size	<u>% Cover</u>			Number of Dominant Species	-	1010101
1.Picea engelmanni	10	Yes	FAC	_ That Are OBL, FACW, or FAC:	3	(A)
2				- Total Number of Dominant		
3				Species Across All Strata:	5	(B)
4.				- Percent of Dominant Species		
	10	= Total Co	ver	That Are OBL, FACW, or FAC:	60.0 %	(A/B)
Sapling/Shrub Stratum Plot Size				90 BZ		с. — у
1.Salix geyeriana	15	Yes	OBL	Prevalence Index worksheet:		
2.				Total % Cover of:	Multiply by:	-
3.			-0	OBL species	x 1 =	
4.	-0		0	FACW species	x 2 =	
5.	\ \		<u></u>	FAC species	x 3 =	
	15	= Total Cov	/er	FACU species	x 4 =	
Herb Stratum Plot Size				UPL species	x 5 =	
1.Bromus ciliatus	10	Yes	FAC	Column Totals: (.	A)	(B)
² .Polemonium pulcherimum	10	Yes	UPL		18	67 33
3.Carex microptera	10	Yes	FACU	Prevalence Index = B/A =		53
4. Thalictrum fendleri	5		FAC	Hydrophytic Vegetation Indic	ators:	
5.				Dominance Test is >50%		
6.	-0		2	Prevalence Index is ≤3.0 ¹		
7.	-0		-8	Morphological Adaptations		ing
8.		0	·)	data in Remarks or on a		
	35	= Total Co	ver	Problematic Hydrophytic V	egetation (Explain	1)
Woody Vine Stratum Plot Size				1		
1.				¹ Indicators of hydric soil and w be present.	etiand hydrology i	must
2				-		
	. <u> </u>	= Total Co	ver	Hydrophytic Vegetation		
% Bare Ground in Herb Stratum 40%				Present? Yes	No 🔿	
Remarks:						

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)								
Depth Matrix Redox Features								
(inches) Color (moist) % Color (moist) % Type ¹	Loc ² Texture ³ Remarks							
0-18 7.5 YR 3/2	silty loam							
	<u> </u>							
	· · · · · · · · · · · · · · · · · · ·							
· · · · · · · · · · · · · · · · · · ·								
	in the second							
107 760 107 107 107 107	hh (ch) (c							
는	Lining, RC=Root Channel, M=Matrix.							
³ Soil Textures: Clay, Silty Clay, Sandy Clay, Loam, Sandy Clay Loam, Sandy Loam,								
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)	Indicators for Problematic Hydric Soils:							
Histosol (A1) Sandy Redox (S5)	2 cm Muck (A10)							
Histic Epipedon (A2) Stripped Matrix (S6)	Red Parent Material (TF2)							
Black Histic (A3)	ept MLRA 1) Other (Explain in Remarks)							
Hydrogen Sulfide (A4)								
Depleted Below Dark Surface (A11) Depleted Matrix (F3)								
Thick Dark Surface (A12) Redox Dark Surface (F6)	³ Indicators of hydrophytic vegetation and							
Sandy Mucky Mineral (S1) Depleted Dark Surface (F7)	wetland hydrology must be present, unless distrubed or problematic.							
Sandy Gleyed Matrix (S4) Redox Depressions (F8)	umess distrubed of problematic.							
Pastriativa Lovar (if procent):								
Restrictive Layer (if present):								
Type:	Hydric Soil Present? Yes 🔿 No 💿							
Depth (inches):								
Remarks: Coarse gravel with silty loam soil. Unable to obtain sample deepe	r than 18" because of rocks. Found no hydric soll							
indicators, gleying, or redox.								
HYDROLOGY								
Wetland Hydrology Indicators:								
Primary Indicators (any one indicator is sufficient)	Secondary Indicators (2 or more required)							
Surface Water (A1) Water-Stained Leaves (B9) (no	MLRA 1,2,4 A&B Water Stained Leaves (B9) (MLRA 1,2, 4							
High Water Table (A2) Salt Crust (B11)	A&B							
Saturation (A3) Aquatic Invertebrates (B13)	Drainage Patterns (B10)							
Water Marks (B1) Hydrogen Sulfide Odor (C1)	Dry-Season Water Table (C2)							
Sediment Deposits (B2) Oxidized Rhizospheres along L	iving Roots (C3) Saturation Visible on Aerial Imagery (C9)							
Drift Deposits (B3) Presence of Reduced Iron (C4)	Geomorphic Position (D2)							
Algal Mat or Crust (B6)	Soils (C6) Shallow Aquitard (D3)							
Iron Deposits (B6) Stunted or Stressed Plants (D1								
Surface Soil Cracks (B6) Other (Explain in Remarks)	Raised Ant Mounds (D6) (LRR A)							
Inundation Visible on Aerial Imagery (B7)	Frost- Heave Hummucks (D7)							
Sparsely Vegetated Concave Surface (B8)								
	1							
Field Observations:								
Surface Water Present? Yes 🔿 No 💿 Depth (inches):								
Water Table Present? Yes O No O Depth (inches):	Watland Hydrology Present? Ves O No O							
Saturation Present? Yes O No O Depth (inches):	Wetland Hydrology Present? Yes 🔿 No 💿							
(includes capillary fringe)								
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous insp	ections), if available:							
Remarks: Waste rock and alluvial fan feature, very porous								

Project/Site: Revenue Mine	mp Bird, Ouray	Sampling Date: 10/5/12				
Applicant/Owner: Silver Star Resources		State:CO	Sampling Point: DP 22			
Investigator(s): WWE: MAJ, LR	Section, Towns	Section, Township, Range: Sec. 21 T43N R8W				
Landform (hillslope, terrace, etc.): Valley	Local relief (co	Local relief (concave, convex, none): None S				
Subregion (LRR): $E - RM$ Forests & Rangeland	Lat:37.97390713 N	7390713 N Long:-107.7515976 W Datum:N				
Soil Map Unit Name: Cryothents-Rocks outcrop compl	lex	NWI class	ification:			
Are climatic / hydrologic conditions on the site typical for th	is time of year? Yes 🔿	No 🖲 🛛 (If no, explain in	ı Remarks.)			
Are Vegetation 🔀 Soil 🔀 or Hydrology 🔀	significantly disturbed?	Are "Normal Circumstances	s" present? Yes 🔿 🛛 No 🖲			
Are Vegetation Soil or Hydrology	naturally problematic?	(If needed, explain any ans	wers in Remarks.)			

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes	No () No () No ()	Is the Sampled Area within a Wetland?	Yes 〇	No 🔎			
Remarks:2012 was an unusually dry year with a snow pack below average. The site is at a 10,600 feet above sea level. The project area is located at a mine that has been periodically active for over 100 years. Vegetation, soils, and hydrology have been								

significantly disturbed from permitted mining activities.

Tree Stratum Plot Size	Absolute % Cover		t Indicator Status	Dominance Test worksheet:	
1.Picea engelmanni	10	Yes	FAC	Number of Dominant Species That Are OBL, FACW, or FAC:	3 (A)
2.	10	105	TAC		3 (A)
		×'*		Total Number of Dominant	4
3		86.		Species Across All Strata:	4 (B)
4				Percent of Dominant Species	
Sapling/Shrub Stratum Plot Size	10	= Total C	over	That Are OBL, FACW, or FAC:	75.0 % (A/B)
1.Salix geyeriana	15	Yes	OBL	Prevalence Index worksheet:	
2.				Total % Cover of:	Multiply by:
3.				OBL species x 1 :	=
4.		×.,-		FACW species x 2 :	=
5.	``````````````````````````````			FAC species x 3 :	
	15	= Total Co	ver	FACU species x 4 :	=
Herb Stratum Plot Size				UPL species x 5 :	E
1.Rumex densiflorus	30	Yes	FACW	Column Totals: (A)	(B)
2. Viola adunca	5	192 1	FAC		
3. Geranium richardsonii	10	kë h	FAC	Prevalence Index = B/A =	
4. Saxifraga odontoloma	10	×.,-	FACW	Hydrophytic Vegetation Indicato	rs:
5.Veratrum tenuipetalum	30	Yes	UPL	X Dominance Test is >50%	
6.		205	2	Prevalence Index is ≤3.0 ¹	
7.				Morphological Adaptations ¹ (P data in Remarks or on a se	
8.		n,r		Problematic Hydrophytic Vege	
Woody Vine Stratum Plot Size	85	= Total Co	over		tation (Explain)
1.				¹ Indicators of hydric soil and wetla	and hydrology must
2.				be present.	
% Bare Ground in Herb Stratum50 %		= Total Co	over	Hydrophytic Vegetation Present? Yes •	No ()
Remarks:					

Profile Des	scription: (Describe t	o the depth	needed to docur	nent the ir	ndicator o	or confirm	m the absence of indicators.)			
Depth	Matrix		Redox	Features	64					
(inches)	Color (moist)		Color (moist)	%	Type ¹	_Loc ²	Texture ³ Remarks			
0-18	7.5 YR 3/2	95					silty loam			
i.										
30										
						<u> </u>	- 1			
		a								
o1										
¹ Type: C=0	Concentration, D=Depl	etion, RM=Re	duced Matrix.	² Location:	PL=Pore	Lining, R	RC=Root Channel, M=Matrix.			
³ Soil Textur	es: Clay, Silty Clay, S	andy Clay, Lo	oam, Sandy Clay				am, Silty Clay Loam, Silt Loam, Silt, Loamy Sand, Sand	d.		
Hydric Soil	Indicators: (Applicabl	e to all LRRs,	unless otherwise	noted.)			Indicators for Problematic Hydric Soils:			
Histoso	Charles and the second		Sandy Red	ox (S5)			2 cm Muck (A10)			
and the second sec	Epipedon (A2)		Stripped Ma	atrix (S6)			Red Parent Material (TF2)			
10220 202	Histic (A3) jen Sulfide (A4)		Loamy Muc	1.00	2	ept MLRA	A 1) Other (Explain in Remarks)			
		. / 6 4 4 \	Loamy Gley		(F2)					
	ed Below Dark Surface Dark Surface (A12)	; (ATI)	Depleted M	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)			³ Indicators of hydrophytic vegetation and			
	Mucky Mineral (S1)		Redox Dark	occessor and the second second of	There is a second secon		wetland hydrology must be present,			
	Gleyed Matrix (S4)		Redox Depi		- C.		unless distrubed or problematic.			
					5 /					
2014	Layer (if present):									
Туре:							Hvdric Soil Present? Yes O No 🔍			
Depth (i			28							
RCHIGINS.	3.77.0						dric indicators within 1 foot of waters edge.			
l I	Another test sample	was taken w	11th 3" of water	surface w	hich als	o had no	o hydric indicators.			
HYDROLO) GY									
	ydrology Indicators:	1	- 12							
	licators (any one indica	tor is sufficie		- and W	description of the		Secondary Indicators (2 or more required)			
	e Water (A1)		Water-Stai	ned Leave	s (B9) (no	MLRA 1	I,2,4 A&B Water Stained Leaves (B9) (MLRA 1,2, 4	4		

Surface Water (A1) High Water Table (A2)	Water-Stained Leaves (B9) (no ML Salt Crust (B11)	RA 1,2,4 A&B Water Stained Leaves (B9) (MLRA 1,2, 4 A&B		
Saturation (A3)	Aquatic Invertebrates (B13)	Drainage Patterns (B10)		
Water Marks (B1)	Hydrogen Sulfide Odor (C1)	Dry-Season Water Table (C2)		
Sediment Deposits (B2)	Oxidized Rhizospheres along Livin	g Roots (C3) Saturation Visible on Aerial Imagery (C9)		
Drift Deposits (B3)	Presence of Reduced Iron (C4)	Geomorphic Position (D2)		
Algal Mat or Crust (B6)	Recent Iron Reduction in Tilled So	ils (C6) Shallow Aquitard (D3)		
Iron Deposits (B6)	Stunted or Stressed Plants (D1) (L	RR A) FAC-Neutral Test (D5)		
Surface Soil Cracks (B6)	Other (Explain in Remarks)	Raised Ant Mounds (D6) (LRR A)		
Inundation Visible on Aerial Imagery (B7)		Frost- Heave Hummucks (D7)		
Sparsely Vegetated Concave Surface (B8)				
Field Observations:	ſ			
Surface Water Present? Yes 🔿 No	Depth (inches):			
Water Table Present? Yes 🔿 No	Depth (inches):	Wetland Hydrology Present? Yes 🔿 No 💿		
Saturation Present? Yes 🔿 No	Depth (inches):			
(includes capillary fringe)				
Describe Recorded Data (stream gauge, monito	ing well, aerial photos, previous inspect	ions), if available:		
Remarks: Soil dry at 18" in the soil sample	which was below the water level of	the pond. Very porous area with waste rock.		

Project/Site: <u>Revenue Mine</u>	City/County: Camp Bird, Ouray			Sampling Date: 06-02-2012			
Applicant/Owner: Silver Star Resour	ces		55	State:CO Sampling Point: DP2			oint: DP23
Investigator(s):WWE: BFF			Section, Towns	hip, Range: Sec.	21 T43N R8	W	
Landform (hillslope, terrace, etc.): Val	ley		Local relief (co	ncave, convex, no	ne):none		Slope (%):<2%
Subregion (LRR) \pm - RM Forests &	Rangeland	Lat:°37	.975033 N	Long:°10	07.747483 W	1	Datum:NAD 83
Soil Map Unit Name: Cryothents-Rock outcrop complex				13 8500	NWI classifi	cation:	
Are climatic / hydrologic conditions on the site typical for this time of year? Yes No (If no, explain in Remarks.) Are Vegetation Soil or Hydrology significantly disturbed? Are "Normal Circumstances" present? Yes No Are Vegetation Soil or Hydrology or Hydrology naturally problematic? (If needed, explain any answers in Remarks.) SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc. (If needed, explain any answers, important features, etc.)							(S.)
Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present? Remarks: 2012 was an unusually	Yes () Yes () Yes ()		within a	ampled Area Wetland?	Yes ()	No C	
Kennarka. 2012 was all ullusually		1000					

area is located at a mine that has been periodically active for over 100 years. Vegetation, soils, and hydrology have been significantly disturbed from permitted mining activities.

÷	Absolute		nt Indicator	Dominance Test worksheet:		
Tree Stratum Plot Size 5m 1.	<u>% Cover</u>	Species	? <u>Status</u>	Number of Dominant Species That Are OBL, FACW, or FAC:	3	(A)
2.				_ Total Number of Dominant		
3.	-0	***		Species Across All Strata:	3	(B)
4.	8	20 A	3			
**************************************		= Total C	over	 Percent of Dominant Species That Are OBL, FACW, or FAC: 	100.0%	(A/B)
Sapling/Shrub Stratum Plot Size 10m			0.001	mar Are OBE, I ACW, OF AC.	100.0%	(А/Б)
1.				Prevalence Index worksheet:		
2.	8	517s	3	Total % Cover of:	Multiply by:	_
3.	-0	**		OBL species >	c 1 =	
4.	-0		~	FACW species	(2=	
5.				FAC species	3 =	
		= Total Co	over	FACU species	(4 =	
Herb Stratum Plot Size 5m				UPL species	(5 =	
1.Carex aquatilis	25	Yes	OBL	Column Totals: (/	۹)	(B)
2. Juncus balticus	20	Yes	OBL		8	13 - N
3. Deschampsia coespitosa	15	Yes	FACW	Prevalence Index = B/A =		
4.				Hydrophytic Vegetation Indic	ators:	
5.	°			X Dominance Test is >50%		
6.			2	Prevalence Index is ≤3.0 ¹		
7.	-0			Morphological Adaptations	¹ (Provide suppor	rting
8.	-0	90.9	÷.	data in Remarks or on a		
	60	= Total C	over	Problematic Hydrophytic Vo	egetation' (Expla	in)
Woody Vine Stratum Plot Size		. Totar o	0101			
1				¹ Indicators of hydric soil and w be present.	etland hydrology	/ must
2						
	5 -38 - 81 - 1	= Total C	over	Hydrophytic		
% Bare Ground in Herb Stratum5 %_				Vegetation Present? Yes •	No 🔿	
Remarks: Ground water induced wetland.						

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)								
Depth Matrix Redox Features								
(inches)	Color (moist)	%	Color (moist)	%	_Type ¹	_Loc ²	Texture ³	Remarks
<u></u>								
97			<u>.</u>	<u></u>		<u>87</u>		
20						·		
				-11 <u></u> 22				
8 <u>5</u>						a		
17. may 0-0		Devletion DM		21		lining D(
and the second	Service and Charles and Charles and Charles and the	servers and a result of the server of the	=Reduced Matrix.				C=Root Channel, M	Silt Loam, Silt, Loamy Sand, Sand.
					inuy Loann	, Ciay Luai		
Source and the second s	CONTRACTOR CONTRACTOR CONTRACTOR	cable to all LF	Rs, unless otherwise	1				roblematic Hydric Soils:
Histosol			Sandy Red	sorr Same			2 cm Muck	A constant.
Des Califica (Strein Strein)	pipedon (A2)		Stripped Ma	18 1922				Material (TF2)
	stic (A3)		Loamy Muc	ky Minera	ıl (F1) (exc	ept MLRA	1) Other (Expla	ain in Remarks)
	en Sulfide (A4)		Loamy Gle	yed Matrix	: (F2)			
Deplete	d Below Dark Sur	face (A11)	Depleted N	latrix (F3)			0	
	ark Surface (A12)		Redox Darl	Surface	(F6)			drophytic vegetation and
Sandy N	/lucky Mineral (S1	1)	Depleted D	ark Surfa	ce (F7)			ogy must be present, d or problematic.
Sandy C	Bleyed Matrix (S4)	Redox Dep	ressions (F8)			d of problematic.
B. 1.1.17		St						
	Layer (if present):						
Type: <u>Wa</u>	1.100						Undela Call Deca	sent? Yes 🔿 No 🖲
Depth (in	ches):surface						Hydric Soil Pres	
Remarks ^{, W}	aste rock, very	rocky. Thi	n layer of muck in	water. V	Vaste roc	k substrat	te subject to prev	ious disturbance.
rtomanto.								
HYDROLO	GY							
Wetland Hy	drology Indicato	rs:						
Primary India	cators (any one in	idicator is suf	īcient)				Secondary	Indicators (2 or more required)
X Surface	Water (A1)		Water-Sta	ined Leav	es (B9) (no	MIRA 1	24 A&B Water	Stained Leaves (B9) (MLRA 1,2, 4
	ater Table (A2)		Salt Crust		00 (00) (11	/ WIEI (0 (1,2	A&B	
X Saturati			Aquatic In	N 8 8	e (B13)		Draina	ge Patterns (B10)
100 HE 100 HE 100 HE	larks (B1)				1000 mm			eason Water Table (C2)
	30 af		_ · ·		8 K		=	
	nt Deposits (B2)							tion Visible on Aerial Imagery (C9)
	posits (B3)				ed Iron (C4		-	orphic Position (D2)
Algal Ma	at or Crust (B6)				ion in Tilleo	an an constant and		w Aquitard (D3)
Iron De	posits (B6)		Stunted o	Stressec	l Plants (D	1) (LRR A)	FAC-N	leutral Test (D5)
Surface	Soil Cracks (B6)		Other (Ex	plain in Re	emarks)		Raised	d Ant Mounds (D6) (LRR A)
📃 Inundati	on Visible on Aer	ial Imagery (E	37)				Frost-	Heave Hummucks (D7)
Sparsel	y Vegetated Conc	ave Surface	(B8)					
Field Obser	vations:							
		10.15						
Surface Wat	er Present?	Yes 🔘	No 🔘 Depth (in	ches):	0.5'			
Water Table		Yes 💽	No 🔿 Depth (in	ches):	0	Wetla	and Hydrology Pre	esent? Yes 💿 No 🔿
Saturation P		Yes 💽	No 🔿 Depth (in	ches):	surface		,	
(includes cap								
Describe Re	corded Data (stre	am gauge, m	onitoring well, aerial	photos, pr	evious ins	pections), i	if available:	

Remarks:

Project/Site: <u>Revenue Mine</u>	City/County: Ca	amp Bird, Ouray	Sampling Date: 10/5/12			
Applicant/Owner: Silver Star Resources	15	State:CO	Sampling Point:DP 24			
Investigator(s): WWE: MAJ, LR	Section, Towns	Township, Range: Sec. 21 T43N R8W				
Landform (hillslope, terrace, etc.): hillslope	Local relief (co	ncave, convex, none): None	Slope (%):10%			
Subregion (LRR): E - RM Forests & Rangeland Lat	t:37.97396633 N	Long:-107.752806 W	Datum:			
Soil Map Unit Name: Cryothents-Rock outcrop complex		NWI classific	ation:			
Are climatic / hydrologic conditions on the site typical for this time	of year? Yes 🔿	No 🖲 🦳 (If no, explain in R	emarks.)			
Are Vegetation $\widecheck{ imes}$ Soil $\overleftarrow{ imes}$ or Hydrology $\overleftarrow{ imes}$ signific	cantly disturbed?	Are "Normal Circumstances" p	present? Yes 🔿 🛛 No 🖲			
Are Vegetation Soil or Hydrology natural	lly problematic?	(If needed, explain any answe	rs in Remarks.)			
SUMMARY OF FINDINGS - Attach site map show	ving sampling p	oint locations, transects	, important features, etc.			

Hydrophytic Vegetation Present?	Yes 💽	No 🍥						
Hydric Soil Present?	Yes 🔘	No 🔘	Is the Sampled Area					
Wetland Hydrology Present?	Yes 🔘	No 🔘	within a Wetland?	Yes 🔿	No 🔘			
Remarks:2012 was an unusually dry year with a snow pack below average. The site is at a 10,600 feet above sea level. The project								
area is located at a mine that has been periodically active for over 100 years. Vegetation, soils, and hydrology have been								
significantly disturbed from permitted mining activities.								

	Absolute		Indicator	Dominance Test worksheet:
Tree Stratum Plot Size	<u>% Cover</u>	Species?		Number of Dominant Species
1.Picea engelmanni	5	Yes	FAC	That Are OBL, FACW, or FAC: 2 (A)
2				 Total Number of Dominant
3				Species Across All Strata: 3 (B)
4.			3 	Percent of Dominant Species
	5	= Total Co	ver	That Are OBL, FACW, or FAC: 66.7 % (A/B)
Sapling/Shrub Stratum Plot Size				
1.Salix geyeriana	70	Yes	OBL	Prevalence Index worksheet:
2				Total % Cover of:Multiply by:
3.				OBL species x 1 =
4.				FACW species x 2 =
5			4	FAC species x 3 =
	70	= Total Cov	/er	FACU species x 4 =
Herb Stratum Plot Size				UPL species x 5 =
1.Carex microptera	50	Yes	FACU	Column Totals: (A) (B)
² .Bromus ciliatus	15	192 249	FAC	
3.Fragaria virginiana	5		FACU	Prevalence Index = B/A =
4.Polemonium pulcherrimum	5		UPL	Hydrophytic Vegetation Indicators:
5. Calamogrostis canadensis	5		FACW	➤ Dominance Test is >50%
6.Geranium richardsonii	5		FAC	Prevalence Index is ≤3.0 ¹
7.				 Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet)
8.				
	85	= Total Co	ver	 Problematic Hydrophytic Vegetation¹ (Explain)
Woody Vine Stratum Plot Size				¹ Indicators of hydric soil and wetland hydrology must
1		25		be present.
2	-		-	
% Bare Ground in Herb Stratum%		= Total Cov	/er	Hydrophytic Vegetation Present? Yes • No ()
Remarks:				

Profile Des	scription: (Describe (o the depth n	eeded to docur	nent the indic	cator or conf	irm the absence of	findicators.)			
Depth	Matrix			Features						
(inches)	Color (moist)	% (Color (moist)		ype ¹ Loc ²	Texture ³	Remarks			
0-18	7.5 YR 3/2	95				silty loam				
18-20	5 YR 3/2	95		- 12	-034	silty loam				
						29 Secure				
X.		1.0			100					
*					0.36					
		1								
				<u></u>						
					_					
¹ Type: C=C	Concentration, D=Depl	etion, RM=Re	duced Matrix.	² Location: PL	=Pore Lining	RC=Root Channel,	, M=Matrix.			
							m, Silt Loam, Silt, Loamy Sand, Sand.			
Hydric Soil	Indicators: (Applicabl	e to all LRRs,	unless otherwise	noted.)		Indicators for	Problematic Hydric Soils:			
Histosc	and the second		Sandy Red	ox (S5)		2 cm Mu	ck (A10)			
	Epipedon (A2)		Stripped Ma	atrix (S6)		Red Pare	ent Material (TF2)			
50250 20	Histic (A3) Jen Sulfide (A4)			ky Mineral (F1	545-142 G	RA 1) 🔄 Other (E>	(plain in Remarks)			
		~ / A 4 4 \		ed Matrix (F2)					
	ed Below Dark Surface Dark Surface (A12)	= (ATT)	Depleted M			³ Indicators of	hydrophytic vegetation and			
	Mucky Mineral (S1)			: Surface (F6) ark Surface (F	7)		ology must be present,			
	Gleyed Matrix (S4)		Description of the second s	ressions (F8)	()	unless distru	bed or problematic.			
Restrictive	Layer (if present):									
Туре:										
Depth (ir						CHEVE CHEVEN CONTRACTOR	resent? Yes 🔿 No 🖲			
Remarks: ^N	No gleying, no redoz	k features, fo	und earthworn	is in sample.	. Could not	go below 20" due	e to rocks			
HYDROLO										
	vdrology Indicators:	1				21-000H0055H49				
	licators (any one indica	ator is sufficien	<u> </u>				ary Indicators (2 or more required)			
	e Water (A1)			ned Leaves (E	39) (no MLRA		ter Stained Leaves (B9) (MLRA 1,2, 4			
1000 00 00	/ater Table (A2)		Salt Crust	2		A&E				
	tion (A3)		(and	vertebrates (B	and the second		inage Patterns (B10)			
Water Marks (B1)			154 N.S.	Sulfide Odor (50. 50.		Dry-Season Water Table (C2)			
Sediment Deposits (B2) Oxidized Rhizospheres along Living					=	uration Visible on Aerial Imagery (C9)				
Drift Deposits (B3) Presence of Reduced Iron (C4)					activation to the second	pmorphic Position (D2)				
Algal Mat or Crust (B6) Recent Iron Reduction in Tilled Soils Iron Deposits (B6) Stunted or Stressed Plants (D1) (LF						Illow Aquitard (D3) C-Neutral Test (D5)				
	e Soil Cracks (B6)			blain in Remar	14 (15)(C.24)		sed Ant Mounds (D6) (LRR A)			
	tion Visible on Aerial I	magery (B7)			,		st- Heave Hummucks (D7)			

Field Observations: Surface Water Present?

Water Table Present?

Saturation Present? (includes capillary fringe)

Sparsely Vegetated Concave Surface (B8)

Yes

Yes

Yes

 \bigcirc

Õ

No (
Depth (inches):

No (Depth (inches):

No
 Depth (inches):

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks: This area is a colluvium with alot of channelling. Area is very rocky and porous.

No 🔘

Wetland Hydrology Present? Yes 🔿

Project/Site: Revenue Mine	City/County: Camp Bird, Ouray			Sampling Date: 10/5/12					
Applicant/Owner: Silver Star Resour			State:CO	Sampling Point: DP 25					
Investigator(s): WWE: MAJ, LR	Section, Township, Range: Sec. 21 T43N R8W								
Landform (hillslope, terrace, etc.): Hillslope			Local relief (concave, convex, none): None				Slope (%):10 %		
Subregion (LRR): E - RM Forests & Rangeland Lat: 37.9			9 737 00 73 N	Long:-107.7520284 W Datum:NA			NAD 83		
Soil Map Unit Name: Cryothents-Roc	NWI classification:								
Are climatic / hydrologic conditions on	the site typical fo	or this time of ye	ear?Yes 🔿	No 💿	(If no, explain in	Remarks.)			
Are Vegetation 🔀 🛛 Soil 🔀 or H	disturbed? Are "Normal Circumstances" present? Yes 🔿 No 🖲				No 🖲				
Are Vegetation Soil or Hydrology naturally pro			blematic? (If needed, explain any answers in Remarks.)						
SUMMARY OF FINDINGS - A	ttach site m	ap showing	sampling p	oint locatio	ns, transect	s, import	ant feati	ures, etc.	
Hydrophytic Vegetation Present?	Yes 🖲	No 🕥							
Hydric Soil Present?	Yes 🔘	No 🔘	Is the Sampled Area						
Wetland Hydrology Present? Yes 🥥		No 🔘	within a Wetland? Yes C		No	$\overline{\bullet}$			
Remarks:2012 was an unusually c			· · · · · · · · · · · · · · · · · · ·						
area is located at a mine		-		100 years. V	egetation, soil:	s, and hyd	rology ha	ve been	
significantly disturbed fi	rom permitted	mining activit	ties.						

	Absolute		Indicator	Dominance Test worksheet:				
Tree Stratum Plot Size	10	Species?	Status	Number of Dominant Species				
1.Picea engelmannii	50	Yes	FAC	That Are OBL, FACW, or FAC: 6 (A)				
2				Total Number of Dominant				
3.				Species Across All Strata: 7 (B)				
4.				Percent of Dominant Species				
	= Total Cover			That Are OBL, FACW, or FAC: 85.7 % (A/B)				
Sapling/Shrub Stratum Plot Size								
1.Picea engelmannii	10	Yes	FAC	Prevalence Index worksheet:				
2.Salix geyeriana	20	Yes	OBL	Total % Cover of:Multiply by:				
3.Salix brachycharpa	20	Yes	FACW	OBL species x 1 =				
4.				FACW species x 2 =				
5.	``			FAC species x 3 =				
	50	= Total Cov	ver	FACU species x 4 =				
Herb Stratum Plot Size				UPL species x 5 =				
1.Deschampsia cespitosa	20	Yes	FACW	Column Totals: (A) (B)			
2.Bromus ciliatus	20	Yes	FAC					
3. Fragaria virginiana	15	Yes	FACU	Prevalence Index = B/A =				
4.Polemonium pulcherrimum	3		UPL	Hydrophytic Vegetation Indicators:				
5.Veratrum tenuipetalum	5		UPL	X Dominance Test is >50%				
6.Geranium richardsonii	3		FAC	Prevalence Index is ≤3.0 ¹				
7.Potentilla pulcherrimia	5		UPL	Morphological Adaptations ¹ (Provide supporting				
8.				data in Remarks or on a separate sheet)				
	= Total Cover			Problematic Hydrophytic Vegetation ¹ (Explain)				
Woody Vine Stratum Plot Size				The distance of the detail and the distance burdent and an effective				
1			<u></u>	¹ Indicators of hydric soil and wetland hydrology must be present.				
2		p.a.	14		_			
% Bare Ground in Herb Stratum 30 %			Hydrophytic Vegetation Present? Yes No					
Remarks:				<u>_</u>				