

May 4, 2022

Office of Surface Mining Reclamation and Enforcement Western Region Attn: Jeremy Spangler, P.E. P. O. Box 25065 Denver, CO 80225-0065

Re: GCC King II Mine OSMRE Permit CO-0106C

2021 Reclamation Status and Monitoring Report

Dear Mr. Spangler:

Enclosed please find one electronic copy of the 2021 Reclamation Status and Monitoring Report for the King II Mine. This document represents a complete report and fulfills the requirements specified in the Office of Surface Mining, Reclamation and Enforcement's (OSMRE) Annual Report Document, dated November 5, 1998, by providing the first of two complete accounts of information required twice during the permit term. Included in the document are reports and supporting information for reclamation status and history as of December 31, 2021, Table 2, various required maps, and the 2021 hydrology monitoring report and precipitation data.

As per our conversation of April 7, 2022, paper copies of the report will be forwarded once you have had an opportunity to review this document.

Please contact me at 505.238.8272 or svance@gcc.com if you have any questions or require any additional information.

Sincerely,

Sarah Vance

Director of Environmental

GCC Energy, LLC

Reclamation Status and Monitoring Report Report Year 2021 King II Mine April 2022

GCC Energy, LLC 6473 County Road 120 Hesperus, Colorado 81326

Table of Contents

•	Tab 1	2021 Reclamation Status Report
•	Tab 2	2021 Report Cumulative Reclamation Activity Maps
•	Tab 3	Ft. Lewis Colorado Precipitation Data
		2021 Annual Hydrology Report

TAB 1

2021 Reclamation Status and Monitoring Report King II Mine April 2022

Table of Contents

	<u>Page</u>
Introduction:	1
Discussion:	1
Guideline and Report Information Locations:	2
Basic Mine Information – King II Mine:	3
<u>List of Tables</u>	
Table 2 - Reclamation Status of Areas Disturbed Under the	
Permanent Regulatory Program:	4

2021 Reclamation Status Report

Introduction

The Report Year 2021 Reclamation Status Report includes the current year detailed mine information and reclamation history maps for the GCC Energy, LLC (GCCE) King II Mine as specified in the OSM–WRCC reporting requirements dated November 5, 1998.

The information included in the 2021 Reclamation Status and Monitoring Report is provided to fulfill the reporting requirements identified in the OSM – WRCC Reclamation Status Report Requirements document, dated November 5, 1998. The RY 2021 document constitutes the initial complete report of information for the King II Mine that meets the submission requirements of twice during the permit term. Tab 1 includes the Reclamation Status Report while Tabs 2 and 3 contains the reclamation and environmental monitoring and data reports.

Discussion

The reclamation status tables for the King II Mine reflects information derived from GCCE surveying and mapping activities which verify mining and reclamation activity at the King II Mine, specifically in the area of the "Low Cover Crossing" located near the bottom of East Alkali Gulch. This low cover crossing was approved by OSMRE on December 8, 2020 as part of a permit revision entitled "Revision to the Permit Boundary and Low Cover Crossing Completion, OSMRE Project Tracking Code: UM.CO.0106.2946, King II Mine Federal Permit CO-0106C. Construction of the Low Cover Crossing was initiated June, 2021. Current disturbed acreage and reclamation totals are listed in Table 2.

2021 Reclamation Status Report Guideline and Report Information Location

In order to aid the reviewer in locating appropriate information and reporting items, the following summary of the report elements and their location is provided. The summary is structured on the OSM-WRCC outline of report requirements. Each tab may contain additional clarification or guidance information specific to the reporting information contained within that tab. Electronic submittal information is similarly structured and may contain additional readme files. Some information such as field data or lab data sheets may only be available in the submitted hard copy and will not be included in the electronic submittal information.

- Item 1.a. Basic information Included in Tab 1
- Item 1.b. Tables Showing Reclamation Status Included in Tab 1
- Item 1.c. Reclamation Status/History Maps Included in Tab 2
- Item 1.d.(1) Precipitation Data Included in Tab 3
- Item 1.d.(2) Overburden Analysis None required during 2021
- Item 1.d.(3) No Regraded Spoil Sampling Data/Maps for the report period
- Item 1.d.(4) Backfill and Graded Areas Included in Tab 2
- Item 1.d.(5) Topsoil/Topsoil Substitute Maps Included in Tab 2
- Item 1.d.(6) Vegetation Monitoring No Vegetation Monitoring/Maps required for the report period
- Item 1.d.(7) Surface and Ground Water Monitoring Included in Tab 3 2021 Hydrology Report
- Item 1.d.(8) Fish and Wildlife Monitoring No Fish and Wildlife Monitoring/Maps required for the report period.
- Item 1.d.(9) Air Quality Monitoring No Air Quality Monitoring/Maps required for the report period

1.a. - 2021 Basic Information - King II Mine

(1) Calendar Year Covered by Report: 2021

(2) Permittee's Name: GCC Energy, LLC

(3) Permittee's Address: 6473 County Road 120,

Hesperus, Colorado 81326

(4) Operator's Name: Same as Permittee

(5) Operator's Address: Same as Permittee

(6) Mine Name: King II Mine

(7) Current Mining Permit Number: CO-0106C

(8) Effective Date of Current Mining Permit: 04/17/17 to 04/17/22

(9) Total Acreage Mined and Reclaimed Under

Prelaw obligations: Not Applicable

Total Acreage Permitted Under the

Initial Regulatory Program: Not Applicable

Total Acreage Permitted Under the

Permanent Regulatory Program: 4,427 Acres (Permit CO-0106C)

(10) 2021 Annual Coal Production: 466,410 Raw Tons Produced

1.b. - Table 2. Reclamation status of areas disturbed under the permanent regulatory program. All numbers in the table are in acres.

Permittee Name: GCC Energy, LLCMine Name: King II Mine

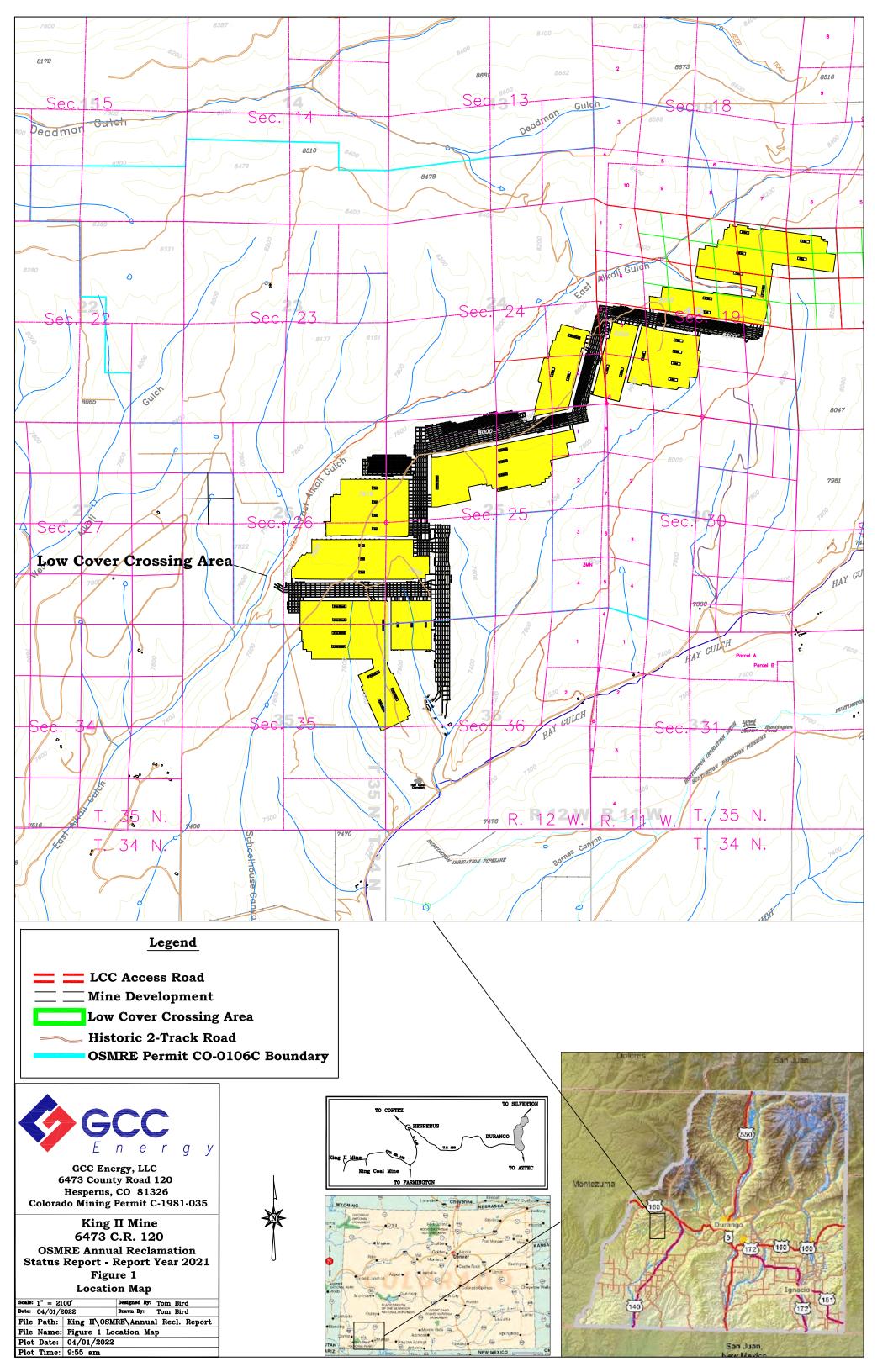
Current Permit Number: CO-0106CMine Type: Underground

• Reporting Year: 2021 (January 1, 2021 – December 31, 2021

	Disturbed area		3	Active mining areas (pits	backfi	reas lled and aded	the reg author has re	s where gulatory ity (RA) eleased I bond	a	s soiled nd /planted	RA release	s where has ed phase bond	seeded for 5	s final /planted or 10 ears	RA release	where has d phase bond
Mine area	2021	Total (all years)	Long- term mining or reclamati on facilities	and areas in advance of the pits stripped of topsoil) and areas not yet backfilled and graded	5 2021	Total (all years)	2021	7 Total (all years)	2021	Total (all years)	2021	Total (all years)	2021	Total (all years)	2021	Total (all years)
Low Cover Crossing	6.85	6.85	6.85	6.85	0	0	0	0	0	0	0	0	0	0	0	0
Total																

¹ Long-term mining or reclamation facilities include haul and access roads; temporary dams and impoundments; permanent dams and impoundments; diversion and collector ditches; water and air monitoring sites; topsoil stockpiles; overburden stockpiles; offices; repair, storage, and construction areas; coal stockpile, loading, and processing areas; railroads; coal conveyors; refuse piles and coal mine waste impoundments; head-of-hollow fills; valley fills; ventilation shafts and entryways; and noncoal waste disposal areas (garbage dumps and coal combustion by-products disposal area.

TAB 2


1.c. - 2021 Report Cumulative Reclamation Activity Maps King II Mine April 2022

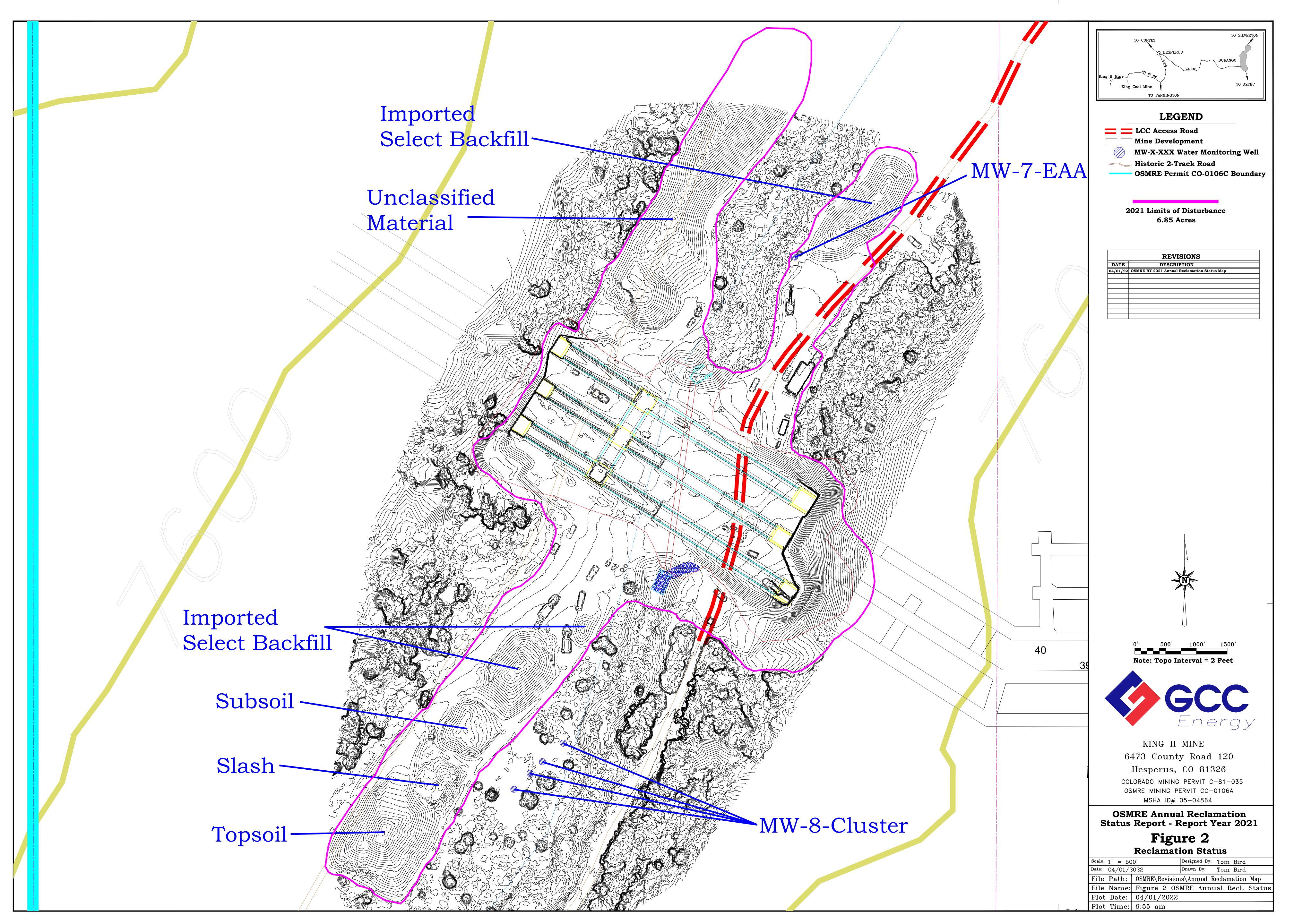

List of Maps

Figure 1 - King II Mine Location Map

Figure 2 - OSMRE Annual Reclamation Status Map Report Year 2021

GCC Energy, LLC 6473 County Road 120 Hesperus, Colorado 81326

TAB 3

Item 1.d.(1) Precipitation Data

1.d.(7) - 2021 Annual Hydrology Report

King II Mine

April 2022

GCC Energy, LLC 6473 County Road 120 Hesperus, Colorado 81326

Fort Lewis Colorado Precipitation Data 2021

FT LEWIS	Max Temp	Min Temp	Precipitation	Snow
2021-01	36.2	11.2	1.70	26.5
2021-02	37.3	12.6	1.50	22.0
2021-03	46.0	23.6	1.66	12.5
2021-04	59.3	28.8	0.44	0.0
2021-05	66.5	35.8	1.51	0.0
2021-06	80.2	45.9	0.59	0.0
2021-07	84.5	52.9	0.71	0.0
2021-08	79.8	47.8	1.32	0.0
2021-09	75.2	45.1	2.09	0.0
2021-10	59.0	32.2	1.11	0.0
2021-11	54.1	25.1	0.26	0.0
2021-12	38.8	17.7	4.47	66.0

2021 KING I & II MINES ANNUAL HYDROLOGY REPORT

Submitted to:

GCC ENERGY, LLC

Date:

December 24, 2021

Resource Hydrogeologic Services, Inc.

232 Ute Pass West Durango, CO 81301 Tel: (970) 459-4865

Email info@resourcehydrogeologic.com

TABLE OF CONTENTS

INTRODUCTION	3
HYDROLOGIC MONITORING	3
HYDROLOGIC MONITORING LOCATIONS	
HYDROLOGIC MONITORING DATA COLLECTION	3
HYDROLOGIC MONITORING DATA ANALYSIS	
Surface Water	5
ALLUVIAL GROUNDWATER	
Alluvial Groundwater Quality	6
Alluvial Groundwater Level	
BEDROCK GROUNDWATER	8
Bedrock Groundwater Quality – Major Ions	
Bedrock Groundwater Quality – Trace Elements	11
Bedrock Groundwater Level	13
TABLES	14
FIGURES	19
ATTACHMENT - GCC HYDROLOGIC MONITORING DATA SUMMARY TABLES	43

INTRODUCTION

The Annual Hydrology Report is completed at the conclusion of each year to compile and interpret hydrologic data related to GCC Energy's King I and II Mine operations. This satisfies a requirement of the Colorado Department of Reclamation, Mining and Safety (CDRMS) Mining Permit C-1981-035. To best support these efforts, GCC Energy (GCC) maintains a quality assurance/quality control (QA/QC) program to:

- Conduct GCC compliance staff training on water quality sampling for all GCC monitoring locations, equipment and methodologies, with detailed written procedures for each monitoring location provided.
- Collect all water quality field data with an industry-standard multi-parameter device with electronic data deliverable (EDD) output for all field and calibration data.
- Enter and document all water quality field monitoring data by mobile (digital/paperless) field sampling logs specific to surface water, groundwater and spring/seep sampling locations which are automatically distributed to a third party, Resource Hydrogeologic Services (RHS) for same-day review following sampling.
- Implement industry-standard, 10% random QA/QC lab sample submittals for duplicate and field blank water quality samples.
- Utilize EDDs produced by the contract environmental analytical laboratory for all data analyses.
- Compile and manage all water quality and level data in a geo-referenced Microsoft Access database.

HYDROLOGIC MONITORING

HYDROLOGIC MONITORING LOCATIONS

GCC monitored twenty-seven (27) hydrologic compliance locations in 2021. Additionally, three wells are monitored under an agreement between GCC and the Ute Mountain Ute Tribe (UMUT) and so are discussed here bringing the total number of monitored locations to thirty (30). Three (3) seeps are also monitored voluntarily twice annually, which is during spring runoff and again during late fall baseflow. These locations are represented by three types of water sources: surface water, seeps and groundwater. Groundwater is monitored through sample collection from dedicated monitoring wells and surface water and seeps are monitored by grab samples at designated locations.

Table 1 lists and **Figure 1** shows the total of thirty (30) 2021 routine quarterly hydrologic monitoring locations and their spatial relation to the King I and II Mines.

HYDROLOGIC MONITORING DATA COLLECTION

Hydrologic monitoring data collection was expanded in December 2018 in number of locations and continued through 2021. Protocols for establishment of new hydrologic monitoring locations, as initiated in 2016, were also applied to these locations. The frequency of field parameter monitoring for new

locations is monthly for a one-year period, following the CDRMS "Guidelines for the Collection of Baseline Water Quality and Overburden Geochemistry Data" (1984). The initial monthly field parameter monitoring schedule is intended to more fully characterize any potential seasonal variation in the hydrologic system. Field parameters are collected with an In-Situ AquaTroll multi-parameter sonde at all location types, utilizing an industry-standard low-flow cell system for the monitoring wells. The specific field parameters monitored during each event are listed in Tables 2, 3 and 4. The purpose of the expanded analytical suite was to collect water quality data in line with the CDRMS "Guidelines for the Collection of Baseline Water Quality and Overburden Geochemistry Data" (1984), which were adopted in the Mining Permit Technical Revision-26. Water samples are collected quarterly at compliance monitoring locations for laboratory analysis. Depth to water measurements are also documented for wells, whereas flow rates are measured as applicable for surface water monitoring locations. This baseline data collection period is intended to characterize the pre-mining environmental conditions in order to shape the long-term monitoring plan appropriately to evaluate potential mining effects on the hydrologic system. This was intended as a one-year, four-quarter period to evaluate seasonal changes that may occur over a typical year; however, the baseline laboratory analytical suite analyses have continued through 2021 for all compliance monitoring locations per the mine permit. These laboratory analytical suites are approved by CDRMS in TR-26 and are presented in **Tables 2**, **3 and 4**, by water source type. The red-highlighted parameters identify those that were added to the pre-2016 compliance to become the current compliance suite. In 2021, under the advisement of CDRMS, the surface water total mercury laboratory analytical method was updated. Previous to 2021 quarter three, the two compliance surface water sites were analyzed for total mercury by method EPA 245.1, which has a reporting limit by the contract laboratory of 0.0002 mg/L. As this method does not allow measurement to the CDPHE mercury surface water standard for the subject drainage of 0.00001 mg/L (0.01 micrograms per liter [µg/L]), a low-level mercury method is necessary to determine if the mercury standard is being met. In 2021 quarter three, as a permanent transition to the new low-level method EPA 200.8, both methods were utilized and reported by the contract analytical laboratory. While beyond the scope of this report, as of 2021 quarter four and going forward, GCC is now reporting total mercury results at the surface water compliance sites analyzed by the low-level method EPA 200.8, which has a reporting limit by the contract laboratory of 0.00001 mg/L (0.01 $\mu g/L$).

Most wet bedrock cluster monitoring wells are instrumented with dedicated industry-standard low-flow bladder pump groundwater sampling systems. The pumps are set to the approximate depth of the well screen mid-points for the A, MI, LM and PL wells, and set to near bottom of the C wells to allow for micropurge sampling methodology. See page 8 for an explanation of these abbreviations. The exception is for wells MW-8-MI and MW-8-LM, which have relatively high static and pumping water levels, allowing use of dedicated stainless steel 12-volt electric submersible pumps with the pump or extended pump intake set to the approximate depth of well screen mid-points. The dry bedrock cluster wells (MW-2-C, MW-2-A, MW-2-MI, MW-6-C) are not instrumented with any groundwater sampling pumps and are monitored for water level only. MW-1-MI was instrumented with a bladder pump, however after the initial several sample events this well dried up and remained dry (or effectively dry for purposes of obtaining a

water sample) for the last four years. Prior to the 2019 quarter four monitoring event the pump system was removed to make the well easier to access as a water level-only monitoring location. Similarly, MW-6-MI is also currently instrumented with a bladder pump, however the well dried up after several initial monitoring events following installation. This well will continue to be monitored quarterly for water level and if water is detected, the pump will be operated to attempt to collect a sample for field parameters and laboratory analysis if adequate volume can be collected.

HYDROLOGIC MONITORING DATA ANALYSIS

Analytical and field parameter data from all 2016-2021 sampling is presented in summary tables in the **Attachment**. Full laboratory reports are not included here as they have been submitted to CDRMS quarterly following each sampling event. The quarterly-updated analytical summary tables found in the **Attachment** are also available in PDF format at:

https://www.gcc.com/file-type/water-monitoring/

A graphical analysis of water quality results from surface water, alluvial aquifer, and bedrock groundwater monitoring stations, is provided below in Stiff diagrams for major ions and in time series plots for selected trace constituents. The natural variability of water quality in bedrock and surface water units is demonstrated in these plots. Although the King Mines have operated for many years, the monitoring data presented within this report are interpreted to represent natural "baseline" water quality. This interpretation is based on comparison of data from monitoring locations upgradient from the mine against data from monitoring locations cross and downgradient from the mine.

Figures 2 through 3 and 8 through 12 show major ion concentrations at each monitoring site for the last four quarters of monitoring data. Concentrations are given in milli-equivalents (milligrams of solute mass divided by ionic weight and multiplied by ionic charge) per liter so the ionic balance between positive and negative ions can be seen in each analysis. Concentrations of trace elements in alluvial and bedrock groundwater over time are shown in **Figure 4** and **Figures 13 through 18**, respectively.

SURFACE WATER

The Hay Gulch Ditch is a year-round diversion from the La Plata River to the north of approximately 0.5 to 1.5 cubic feet per second (cfs) into the gulch, which is otherwise an intermittent drainage that would flow only during storms or major thaw events. Water infiltrates from spreader dikes and infiltrates the alluvium, and return flows in the ditch are collected in Mormon Reservoir approximately nine miles downstream of the King II Mine, near the confluence with the lower La Plata River. The Huntington Ditch and Pipeline also divert water from the upper La Plata River to a collection point above Hay Gulch for use by the King II Mine, from which water is consumed by the mine principally for underground dust control with no waste or return flow. This water has been accounted for entirely as moisture in ventilation air. (CDS Environmental Services LLC, 2014, Water Balance Study for the King II Mine)

Figure 2 shows major ion compositions in Stiff diagrams for the Hay Gulch Ditch Upgradient and Downgradient locations. The location of each sample site is shown on **Figure 1**. The units of concentration are milli-equivalents per liter, at the same scale in the plots. In general, the water type in the ditch is calcium-magnesium-bicarbonate type. The ditch picks up some salinity from the Hay Gulch valley floor in this reach, but as documented in previous Annual Hydrology Reports, the receiving Mormon reservoir has significantly greater concentrations of most constituents except bicarbonate (alkalinity).

Measured pH of surface water in Hay Gulch Ditch is neutral to alkaline (pH 7.7 to 8.3), with concentrations of nitrate, total organic carbon (TOC), and trace metals all below the applicable drinking water standards.

ALLUVIAL GROUNDWATER

Alluvial groundwater monitoring, previously limited to Hay Gulch, was expanded to include East Alkali Gulch beginning in quarter four of 2018. The purpose of this expansion is for baseline data collection upgradient (MW-7-EAA) and downgradient (MW-8-EAA) of the low-cover crossing (LCC) which will allow access from the existing King II Mine underground workings to the coal reserves within the Dunn Ranch lease extension on the west side of East Alkali Gulch. Construction of the LCC commenced in 2021.

Four alluvial wells in Hay Gulch monitor the level and quality of groundwater in the alluvial aquifer. The Wiltse well, near the King I portal and waste rock site, has been monitored for thirty-nine years, and was once used for water supply in the King I Mine; Well #1 Upgradient was a former water well for a Ute Mountain Ute Tribe homestead of unknown installation date. The other two wells were installed by GCC for King II operational monitoring. Wells #1 Upgradient and #2 Downgradient are above and below the intermittent drainage where the King II portal is located, and MW-HGA-4 is adjacent to the upstream ditch surface water monitoring point, as shown in **Figure 1**.

Alluvial Groundwater Quality

Alluvial groundwater quality in the Hay Gulch and East Alkali Gulch is spatially and temporally variable. The unconsolidated alluvial sediments in each of these areas are a heterogeneous composition of fine sand, silt, clay, and coal fragments with lenses of channel gravel, resulting in the variable water quality observed. **Figure 3** shows the major ion concentrations at four Hay Gulch and two East Alkali Gulch alluvial wells in Stiff diagrams, in which the spatial variation is evident.

MW-HGA-4 is at the confluence of Roberts Gulch and has similar water chemistry as the Hay Gulch ditch water (**Figure 2**). Well #1 Upgradient and Well #2 Downgradient are also in Hay Gulch below the King I portal and King II portal, respectively. Alluvial groundwater chemistry in these locations is similar to the chemistry observed in MW-HGA-4, with some minor differences resulting from localized variation in lithology. The low observed calcium concentrations at Well #1 Upgradient are likely from cation exchange occurring from bentonite hydrolysis from the well collar. The alluvial groundwater in the Wiltse well likely results from similar processes, such as the dissolution of gypsum, contributing to

the overall dissolved constituent load. Factors influencing the alluvial groundwater chemistry likely include variable alluvium matrix materials (sand-silt-coal fines with coarser channel fill stringers), proximity of coal, and uneven application of irrigation. Because of the potential for greater sulfate concentrations in the Hay Gulch alluvium, as evidenced in the Wiltse well, alluvial groundwater is not widely used for consumption.

Alluvial groundwater chemistry in East Alkali Gulch is monitored at MW-7-EAA and MW-8-EAA. In this area, the sulfate and dissolved solids component in groundwater is greater than in the Hay Gulch alluvium and similar to the observed water quality in the Wiltse well. These observed differences in groundwater quality reflect the heterogeneity of the alluvial sediments and the contributions of localized evaporative salts (e.g., gypsum) to groundwater quality.

Measured pH of alluvial groundwater in Hay Gulch and East Alkali Gulch is neutral (pH 7.1-7.6), with concentrations of nitrate, total organic carbon (TOC), and trace constituents below the applicable drinking water standards. Exceptions include iron and manganese exceedances of secondary water quality standards, 0.3 mg/L and 0.05 mg/L, respectively. Time series plots of iron and manganese concentrations for the alluvial groundwater monitoring locations are shown in **Figure 4**. In Hay Gulch, upgradient locations MW-HGA-4 and MW #1 Upgradient contain the greatest concentrations of iron, and all locations have elevated manganese. Elevated iron and manganese concentrations are also observed in East Alkali Gulch alluvium, and generally reflect the interaction of groundwater with the marine shales and sandstone deposits.

Seep-2 and Seep-3 were identified and established as monitoring locations in East Alkali Gulch in 2017 and 2020, respectively. Details of the spring and seep monitoring program are documented in the 2020 Spring & Seep Survey report (RHS 2020). Water chemistry results from Seep-2 and Seep-3 trend with the water quality observed at alluvial groundwater monitoring locations MW-7-EAA and MW-8-EAA (**Figure 3**). However, the overall concentrations of major ions reported at Seep-3 in 2020 have increased substantially, likely due to less overall flow and longer contact time with the alluvial sediments. Concentrations of iron and manganese observed in the seeps is similar to other downgradient locations (**Figure 4**), in which some exceedances of secondary standards occur, but concentrations are less than observed in the upgradient alluvial groundwater locations, indicating decreasing concentrations of trace constituents along flow paths.

Alluvial Groundwater Level

Static groundwater levels at all alluvial monitoring wells were measured and documented per CDRMS compliance requirements at the time of each sampling event just prior to initiating well purging. The groundwater hydrograph for the Hay Gulch wells over the entire period of historical record in **Figure 5** shows fairly substantial seasonal variability at all four wells over time which is not only related to variability in precipitation but also subject to the variability in flood irrigation cycles of Hay Gulch irrigated pasture. Water levels show distinct increase with the extreme precipitation of the winter of

2018-2019 with peak levels near ground surface in the spring of 2019. The groundwater hydrograph for East Alkali Gulch in **Figure 6** represents the first three years of monitoring; the fluctuation of the water table measured in both MW-7-EAA and MW-8-EAA was within one foot. The exception was the August 2020 measured level at MW-8-EAA, which showed an increase of approximately six feet. This suggests measurement error by misreading the water level tape during the 2020Q3 monitoring event, and has been flagged in **Figure 6** as anomalous. Aside from the anomalous measured water level at the last water year 2020 MW-8-EAA monitoring event, based on the monitoring period, this indicates that East Alkali Gulch does not appear to be subject to the same magnitude of seasonal water table fluctuation as the irrigated Hay Gulch alluvium. It does appear that MW-7-EAA is slightly more receptive to seasonal groundwater level fluctuation than MW-8-EAA based on the wet and dry season plot peaks.

A water table elevation contour map for the alluvium in the vicinity of the King Mines is presented as Figure 7. This figure compiles groundwater levels reported on CDWR Well Construction and Test Reports, converted to elevation for the associated water wells. Some of these measurements are several decades in the past, with a subset of the wells utilized in a 1983 USGS Level Survey. A significant portion of these data points are in a separate but adjacent La Plata River watershed, however several alluvial wells in the more relevant Hay Gulch and Alkali Gulch watersheds provide general water table elevation infill data to compliment the GCC compliance wells in these watersheds. The GCC monitoring well groundwater level data utilized in this figure is from August 2021. As Figure 5 demonstrates with the long record of the Wiltse well, the Hay Gulch alluvial aguifer does not show long-term sustained decrease or increase in groundwater level, only seasonal fluctuation. As previously discussed, Hay Gulch is subject to fairly consistent irrigation water infiltration, which may buffer longer-term drought effects. These values also suggest that the decades-old water level measurements are still useful for the purpose of estimating alluvial groundwater flow gradient. Continued observations in East Alkali Gulch alluvial GCC monitoring wells will build the water table elevation data set to determine if this non-irrigated alluvial aquifer water table level trends differently than the irrigated Hay Gulch alluvium over time.

BEDROCK GROUNDWATER

Several monitoring sites with wells completed in the mined "A" coal seam, the overlying Cliff House Sandstone, and the immediately underlying strata of the Menefee Formation to which the "A" coal seam belongs, have been maintained by GCC to provide baseline and compliance water quality information for the operation and extension of the King II mine since 2017. In quarter four of 2018 bedrock monitoring was extended in hydrostratigraphic depth to include the next two deeper water-bearing intervals, the lower Menefee Formation and the underlying Point Lookout Formation. The locations of these wells are shown in **Figure 1**. These wells were named with suffixes as follows:

- "C" for Cliff House
- "A" for mined "A" seam coal

- "MI" for Menefee Interburden denoting the floor rock to the "A" coal seam and interburden between the sometimes present "B" coal seam approximately 90 feet below the "A" seam)
- "LM" for the Lower Menefee which includes water-bearing lesser coal seams including the "B" coal seam where present
- "PL" for the Point Lookout Formation, specifically the uppermost approximate 25 feet.

Several of these wells are dry, because groundwater flow in these formations is driven by low infiltration rates on ridges between gulches, and the formations have long been eroded from those gulches. The formations are also intrinsically of low permeability. Thus, the mine workings have been largely dry, except where large joints have allowed minor draining of perched lenses of water in the roof. It is precisely this lack of groundwater in the higher coal and overlying strata that led domestic water well drillers to over-drill wells into deeper strata in the surrounding area. And it is the carbonate cement supporting the sandstone cliffs that host the Anasazi cliff houses in Mesa Verde that reduce the permeability and cause pockets of low quality "old" water in shallower wells.

The Lower Menefee and Point Lookout hydrostratigraphic intervals were targeted for baseline monitoring in the 2018 monitoring well installation program as these are intervals included in domestic water wells in and around the Vista de Oro subdivision downgradient from the King II Mine Dunn Ranch lease area. Of specific interest is the characterization of the East Alkali Gulch alluvial groundwater recharge to the underlying Menefee bedrock, as this is likely the most significant recharge area for the neighboring water wells. The MW-8 location, which has a cluster of four individual monitoring wells, is approximately 400 feet directly downgradient from the LCC in the bottom of East Alkali Gulch to monitor groundwater level and quality in all significant water-bearing intervals from surface (alluvium) to 310 feet depth (upper Point Lookout) for potential effects of King II Mine operations.

Bedrock Groundwater Quality – Major Ions

Water quality from four Cliff House Formation wells and one seep that emanates from the Cliff House Formation (Seep-1) is represented in Stiff diagrams presented in **Figure 8.** When comparing plots between the Cliff House Formation and alluvial wells, it is important to note the difference in the scale of concentrations (in milli-equivalents per liter) presented, as constituent concentrations are much greater in the Cliff House Formation wells.

Seep-1 was first identified near during the initial spring and seep survey conducted in December 2015 and water quality samples collected during monitoring events when apparent flow was observed. Although flow is periodically observed at this location, measured flows are minimal (approximately 1 gallon per hour) and contributions from this seep are not considered a significant component of surface water flow.

Water quality results in the Cliff House Formation are variable, with cation exchange occurring along flow paths. Sulfate concentrations are also variable, with Seep-1 containing greater concentrations

than observed in the monitoring wells. These variations in water chemistry suggest the groundwater in the Cliff House Formation is laterally discontinuous. pH in Cliff House Formation wells and Seep-1 is generally near-neutral to alkaline (6.7 – 8.1). Wells completed in the Cliff House Formation show the greatest concentrations and most variation in major ion makeup. MW-1-C and Seep-1 are dominated by calcium-magnesium and sulfate, MW-2-C is dry, and MW-3-C, MW-4-C, and MW-5-C are dominated by sodium and bicarbonate. This variability and the elevated concentrations in the Cliff House wells indicate slow-moving (long residence time) water, and some water with variable dissolved oxygen content, leading to the non-uniform oxidation of pyrite in some rock types. In the MW-3-C and MW-4-C wells the sodium, sulfate and chloride may be residual solutes from the marine barrier sand bars in a tightly cemented, low permeability formation. While there may be differences in the Cliff House rock geochemistry that contribute to these observed water type differences, it is also likely to be related to recharge of a different source or at least a significant difference in distance from the source. It may be that saturated alluvium in the upper reach of East Alkali Gulch is directly overlying and recharging the Cliff House formation in the vicinity of the MW-1 location.

The Menefee Formation is monitored in three distinct intervals in the proposed mine extension area, namely the upper "A" coal seam, interburden between "A" and "B" coal seams, and the sandstone, coal, and siltstone underburden (lower Menefee). Major ion chemistry for groundwater wells completed in each of these intervals are shown in Stiff diagrams presented as **Figures 9 through 11**, respectively. Menefee Formation groundwater is characterized by neutral to alkaline pH (7.0-9.1) and generally of sodium-bicarbonate type. Water quality in the "A" coal seam and Menefee Formation interburden are similar in composition, with the exception of MW-6-A, discussed below.

Monitoring wells completed in the mined "A" coal seam show dominant sodium or magnesium, and sulfate with lesser bicarbonate (**Figure 9**). Calcium is replaced by sodium and magnesium through cation exchange on clay minerals in shales. Total dissolved concentrations in "A" wells are less than half those in overlying Cliff House wells. The MW-1 location at the upgradient north end of the ridge overlying the King II workings has a Cliff House and a coal well with some limited water, and a dry sub-coal Menefee Interburden well. The "C" and "A" wells have similar chemical makeup with calcium, sulfate-bicarbonate type, but the "A" well concentrations vary widely, indicating recharge by local infiltration.

Groundwater quality at MW-6-A has much greater sulfate concentrations than observed in the other "A" seam or interburden locations. Similarly, sulfate concentrations in the interburden (December 2018) and lower Menefee Formation at the MW-6 cluster are greater than in other well locations. This observed difference in sulfate concentrations at the MW-6 cluster likely reflects a source of recharge to the Menefee Formation that is unique to that location possibly along West Alkali Gulch and has a composition most similar to the alluvial groundwater noted in East Alkali Gulch. Additionally, these observed outlier sulfate conditions may be related to what are only partially saturated screen intervals at MW-6-A, MW-6-MI, and MW-6-LM. MW-6-MI has been dry since May 2019.

Menefee Formation interburden wells completed in the mined "A" seam floor strata have total dissolved solids concentrations that are less than in the "A" coal seam, and are dominated by sodium and bicarbonate. This suggests that either the lower Menefee is recharged in different areas, or that sulfate is reduced and calcium and magnesium are exchanged for sodium along the flow path. The most likely mechanism for the reduction of sulfate is microbial metabolism of sulfate and coal methane, which can yield hydrogen sulfide and also precipitate calcium carbonate. Hydrogen sulfide is commonly observed in regional domestic water wells. Major ion concentrations of the Menefee Interburden wells are shown as Stiff plots in **Figure 10**. Of the newest "MI" wells, MW-6-MI drilled dry through the Menefee Interburden section and water only came in over the following couple days, the majority of which was likely produced from the exposed "A" coal seam before the well was completed. MW-8-MI is completed in East Alkali Gulch just downgradient from significant alluvial recharge; the well is screened across the first bedrock water encountered.

Groundwater monitoring of the lower Menefee Formation is limited to MW-6-LM, located on a ridge top above and cross-gradient of East Alkali Gulch, and MW-8-LM, which is completed in East Alkali Gulch. These wells yield little water and cation ratios (sodium and calcium) are variable, illustrating the chemical discontinuity in these low permeability groundwater lenses located in minor coal seams and minor fractured intervals. The major ion concentration comparison plots are presented as **Figure 11**.

The Point Lookout Formation water quality in the vicinity of the King II Mine is represented by the monitoring well MW-8-PL. **Figure 12** shows the major ion chemistry from the last 4 quarters of monitoring on a Stiff diagram. Point lookout groundwater in this location is neutral (pH of 7.5) and bicarbonate dominant.

Bedrock Groundwater Quality – Trace Elements

Concentrations of selected trace constituents are discussed in this section and shown as time-series plots in **Figures 13 through 18**. Detections for the following constituents were observed in bedrock groundwater monitoring wells: arsenic, copper, iron, manganese, molybdenum, selenium, uranium, and zinc. These constituents occur in natural waters, and can be elevated in groundwater associated with marine sandstones and shales.

Arsenic is present as minor constituent in bedrock and is sometimes associated with pyrite. During pyrite oxidation, arsenic is typically absorbed, at least in part, and immobilized with iron oxide/hydroxide precipitation. Arsenic concentrations in Cliff House wells MW-3-C and MW-4-C have been variable over time, with concentrations exceeding the MCL. The presence and elevated concentrations of arsenic at these locations is consistent with unconfined, fractured sandstone aquifers, where residence times are typically long. As shown in in **Figure 13**, arsenic in "A" seam coal wells is at very low concentrations. In contrast, the majority of the Menefee Interburden wells contain

arsenic at levels exceeding the MCL of 0.01 mg/L; the reported concentrations in each well show wide variability over time. The widespread occurrence of arsenic in these wells may suggest it is disseminated throughout in the Menefee Formation and may be associated with mineral phases in addition to pyrite.

The standard for arsenic in water for cattle and poultry is 0.2 mg/L, or 20 times the human MCL. No sample concentrations exceeded 0.025 mg/L.

Copper is likely to be present as a trace constituent and is sometimes associated with pyrite in bedrock. Concentrations of copper in all bedrock groundwater units was low, and no exceedances of the MCL were observed over the period of record.

Iron and manganese are common trace metals observed in the regional rock types near the mine. Iron is commonly sourced from pyrite in the Mesaverde strata which oxidizes in the weathering zone. Generally, the oxidized iron will precipitate in the oxidation zone and dissolved concentrations of trace constituents under neutral pH conditions are low. Concentrations of iron in bedrock groundwater through time are plotted in **Figure 14**. In general, the greatest concentrations of iron are observed in MW-6-A and MW-1-C. Increased iron in these locations may be associated with increased sulfate, as these locations contained greater sulfate content than other "A" seam and Cliff House Formation wells, respectively. These observations are consistent with the weathering of pyrite in localized areas. Iron concentrations generally appear to be decreasing through time, at MW-6-A, which may suggest favorable conditions for precipitation of iron oxides/hydroxides.

Manganese is typically derived from similar processes of pyrite oxidation as a minor constituent in groundwater. Greater concentrations of manganese are often associated with greater iron concentrations, as observed in MW-6-A (**Figure 15**). In addition, elevated concentrations of manganese were also observed in the lower Menefee Formation well MW-6-LM and the Point Lookout Formation well MW-8-PL.

There is no drinking water standard for molybdenum, although the EPA has set a health-based advisory limit of 0.04 mg/L. No exceedances of the health-based advisory have occurred in any well since December of 2018 at MW-6-LM (**Figure 16**). Similarly, exceedances of selenium were generally not observed in any monitoring in recent years, with an exception of an exceedance noted from the February 2021 sample at MW-3-A of 0.129 mg/L (**Figure 17**). A field duplicate sample was collected from MW-3-A during the February 2021 sampling and reported a selenium concentration of 0.0742 mg/L. While the duplicate sample concentration also exceeds the MCL of 0.05 mg/L, the substantial difference in selenium concentrations suggest possible field or lab contamination. Subsequent samples collected at this location contained low selenium, with no exceedances of the MCL.

Concentrations of uranium are presented in **Figure 18** and compared to the MCL of 0.03 mg/L. Uranium is a trace constituent commonly present in groundwater of the Four Corners regional area, an area known for elevated levels of naturally-present uranium and thus where historical uranium mining has occurred since the 1950s. Uranium is typically mobilized under oxic groundwater conditions and is immobilized as conditions become more reducing. Concentrations of uranium have exceeded the MCL in Cliff House Formation wells MW-4-C, and to a lesser extent, MW-1-C. In both locations, concentrations have continued to decrease through time and no exceedances are currently observed.

Zinc is present as a trace constituent and is sometimes associated with pyrite in marine deposits. Zinc concentrations measured in GCC groundwater monitoring wells was low, with no exceedances of the MCL at any well.

Bedrock Groundwater Level

Groundwater potentiometric surface contour maps utilizing August 2021 measured levels have been prepared for each monitored hydrostratigraphic interval and are presented as Figures 19-23. No significant change to the groundwater potentiometric elevations occurred in 2021. Contouring is only possible for intervals that include three or more monitoring locations, so the "LM" and "PL" figures do not include contours to indicate groundwater flow direction or gradient. Regardless, it is expected that regional flow direction in these intervals is south-southwest in the direction of strata dip, as documented in the overlying three hydrostratigraphic intervals. Groundwater flow gradient appears to be approximately 100 feet per mile (1.9% or 1.1°) for all intervals, which is about 1/3 to 1/2 of the strata dip. The King II Mine permit area is an excellent demonstration of the natural hydraulics in play to create and sustain a multiple bedrock aquifer system in an arid basin. Dry unsaturated (vadose) rock is present at the upland outcrop basin margin areas; water infiltration must pass through initially unconfined fractured networks filling fractures and pore space while displacing gases, and then finally into fully confined conditions with increased depth towards the central part of the basin. When the head pressure observed at any given point in the aquifer is greater than the equivalent distance from ground surface to the top of that aguifer then the aguifer is defined as confined. Significant recharge areas, inferred by buried bedrock exposure to overlying saturated alluvium, are also displayed in these figures.

Groundwater levels, as measured from wellheads during routine compliance monitoring, are converted to measured depth below ground surface and given in the GCC Hydrologic Monitoring Summary Tables, provided in this report as the **Attachment**.

TABLES

Table 1. GCC Quarterly Hydrologic Monitoring Locations

Monitoring Location ID	Water Resource Monitored	UTM NAD 83 Zone 13N Easting (meters)	UTM NAD 83 Zone 13N Northing (meters)	Surface Elevation (ft amsl)
Wiltse Well	Groundwater - Alluvial Hay Gulch	757024.673	4126948.393	7372.0
Well #1 Upgradient	Groundwater - Alluvial Hay Gulch	755543.611	4126352.130	7254.0
Well # 2 Downgradient	Groundwater - Alluvial Hay Gulch	754164.863	4125282.984	7174.8
MW-HGA-4	Groundwater - Alluvial Hay Gulch	757641.447	4127453.016	7410.5
MW-1-C	Groundwater - Bedrock Cliff House overburden	757690.096	4131037.627	8519.8
MW-1-A	Groundwater - Bedrock "A" coal seam	757693.395	4131042.883	8520.4
MW-1-MI	Groundwater - Bedrock Menefee interburden	757696.625	4131048.193	8520.8
MW-2-C	Groundwater - Bedrock Cliff House overburden	755125.962	4126776.758	7711.7
MW-2-A	Groundwater - Bedrock "A" coal seam	755128.957	4126781.777	7713.0
MW-2-MI	Groundwater - Bedrock Menefee interburden	755132.894	4126786.834	7713.5
MW-3-C	Groundwater - Bedrock Cliff House overburden	752333.836	4124416.003	7416.6
MW-3-A	Groundwater - Bedrock "A" coal seam	752337.515	4124420.823	7416.6
MW-3-MI	Groundwater - Bedrock Menefee interburden	752341.458	4124425.586	7416.3
MW-4-C	Groundwater - Bedrock Cliff House overburden	752098.476	4125629.241	7568.8
MW-4-A	Groundwater - Bedrock "A" coal seam	752101.678	4125634.068	7569.5
MW-4-MI	Groundwater - Bedrock Menefee interburden	752105.037	4125639.328	7569.7
MW-5-A	Groundwater - Bedrock "A" coal seam	757132.319	4130205.100	8407.4
MW-5-C	Groundwater - Bedrock Cliff House overburden	757128.949	4130200.072	8407.1
MW-5-MI	Groundwater - Bedrock Menefee interburden	757135.778	4130210.290	8407.7
MW-6-C	Groundwater - Bedrock Cliff House overburden	752322.705	4127770.537	7879.0
MW-6-A	Groundwater - Bedrock "A" coal seam	752319.364	4127765.472	7879.0
MW-6-MI	Groundwater - Bedrock Menefee interburden	752315.858	4127760.196	7878.0
MW-6-LM	Groundwater - Bedrock Lower Menefee	752312.834	4127755.333	7878.0
MW-7-EAA	Groundwater - Alluvial East Alkali Gulch	753001.888	4127319.951	7460.0
MW-8-EAA	Groundwater - Alluvial East Alkali Gulch	752916.895	4127107.544	7440.0
MW-8-MI	Groundwater - Bedrock Menefee interburden	752912.969	4127110.290	7447.0
MW-8-LM	Groundwater - Bedrock Lower Menefee	752908.636	4127106.081	7446.0
MW-8-PL	Groundwater - Bedrock Point Lookout	752904.413	4127101.783	7445.0
Hay Gulch Ditch Downgradient	Surface Water - Irrigation ditch	754376.015	4125623.299	7210.0
Hay Gulch Ditch Upgradient	Surface Water - Irrigation ditch	757636.698	4127606.813	7430.0

Table 2.

GCC Surface Water Baseline Water Quality Parameter Suite (GCC SW Baseline)

Parameter	Analytical Method		Justification for Addition	Comments
Potassium (K) - dissolved	EPA200.7	mg/L	Rounding out major ion constituents with K, Cl will allow	Comments
	EPA300.0	mg/L	for better interpretation with trilinear plotting	
Chloride (Cl ⁻)	EPA300.0	-	jor better interpretation with trilinear plotting	
Calcium (Ca ⁺²) - dissolved Magnesium (Mg ⁺²) - dissolved	EPA200.7	mg/L mg/L		
	EPA200.7	_		
Sodium (Na ⁺) - dissolved		mg/L		
Sulfate (SO ₄)	EPA300.0	mg/L		
Alkalinity, as CaCO ₃	2320 B	mg/L		
Silica (SiO ₂) - dissolved	Calculation	mg/L	Allows comparison of TDS vs. sum of major ions	
Manganese (Mn) - dissolved	EPA200.8	mg/L		
Fluoride (F)	EPA300.0	mg/L	Secondary ion that has been identified with minor potential nuisance value	
Iron (Fe) - dissolved	EPA200.7	mg/L		
Aluminum (Al) - dissolved	EPA200.7	mg/L		
Arsenic (As) - dissolved	EPA200.8	mg/L		
Cadmium (Cd) - dissolved	EPA200.8	mg/L		
Copper (Cu) - dissolved	EPA200.8	mg/L		
Lead (Pb) - dissolved	EPA200.8	mg/L	Trace metals commonly associated with coal mining	
Mercury (Hg) - total, low-level	EPA200.8	μg/L	impacts	Method updated from EPA245.1 in 2021Q3
Molybdenum (Mo) - dissolved	EPA200.8	mg/L		
Selenium (Se) - dissolved	EPA200.8	mg/L		
Zinc (Zn) - dissolved	EPA200.8	mg/L		
Uranium (U) - dissolved	EPA200.8	mg/L	DRMS request via HGCAP	
Hardness, as CaCO ₃	2340 B	mg/L	·	
Bicarbonate, as CaCO ₃	2320 B	mg/L		
Carbonate, as CaCO ₃	2320 B	mg/L		
Hydroxide, as CaCO ₃	2320 B	mg/L		
Total Nitrogen as Nitrate-Nitrite	EPA353.2	mg/L	Distinguish fertilizer and/or stock impacts	
Ammonia (NH ₃ as N)	EPA350.1	mg/L	Distinguish fertilizer and/or stock impacts	1-time only to establish presence/absence, SW and Alluvial GW sites only
Phosphate (PO 4 as P)	EPA300.0	mg/L	Distinguish fertilizer and/or stock impacts	1-time only to establish presences/absence, SW and Alluvial GW sites only
Sodium Adsorption Ratio (SAR)	Calculation	mg/L	Measure of suitability for agricultural irrigation	
Oil & Grease	EPA1664 A	mg/L	Indication of background/upstream impacts	
pH (lab)	EPA150.1	SU		
Total Dissolved Solids (TDS)	EPA160.1	mg/L		
Total Suspended Solids (TSS)	2540 D	mg/L	Provides mass of particulates causing turbidity	
Total Organic Carbon (TOC)	5310C	mg/L	Surrogate parameter for coal mining impacts	
Temperature (field)	NA	°C		
рН (field)	NA	su	Allows comparison of field vs. lab measurements, key for proper bicarbonate, carbonate, hydroxide calculations	
Specific Conductivity (field)	NA	mS/cm		
Oxygen Reduction Potential (ORP) (field)	NA	mV	To predict states of chemical speciation of water, i.e. dissolved metals	
Dissolved Oxygen (DO) (field)	NA	mg/L	General water quality parameter to document available oxygen	

Notes

New (2016) analytes in bold, italicized red text

mg/L = milligrams per liter

SU = standard units

mS/cm millisiemens per centimeter

cfs = cubic feet per second

mV = millivolt

NA = not applicable

Table 3.

GCC Groundwater Baseline Water Quality Parameter Suite (GCC GW Baseline)

Parameter	Analytical Method	Units	ater Quality Parameter Suite (GCC GW Baseline) Justification for Addition	Comments
Potassium (K) - dissolved	EPA200.7	mg/L	Rounding out major ion constituents with K, Cl will allow	
Chloride (Cl ⁻)	EPA300.0	mg/L	for better interpretation with trilinear plotting	
Calcium (Ca ⁺²) - dissolved	EPA200.7	mg/L	,	
Magnesium (Mg ⁺²) - dissolved	EPA200.7	mg/L		
Sodium (Na ⁺) - dissolved	EPA200.7	mg/L		
Sulfate (SO ₄)	EPA300.0	mg/L		
Alkalinity, as CaCO ₃	2320 B	mg/L		
Silica (SiO 2) - dissolved	Calculation	mg/L	Allows comparison of TDS vs. sum of major ions	
Manganese (Mn) - dissolved	EPA200.8	mg/L	/cas comparison of 120 to common major tons	
Fluoride (F)	EPA300.0	mg/L	Secondary ion that has been identified with minor potential nuisance value	
Iron (Fe) - dissolved	EPA200.7	mg/L		
Aluminum (Al) - dissolved	EPA200.7	mg/L		
Arsenic (As) - dissolved	EPA200.8	mg/L		
Cadmium (Cd) - dissolved	EPA200.8	mg/L		
Copper (Cu) - dissolved	EPA200.8	mg/L		
Lead (Pb) - dissolved	EPA200.8	mg/L	Trace metals commonly associated with coal mining impacts	
Mercury (Hg) - dissolved	EPA245.1	mg/L	impucts	
Molybdenum (Mo) - dissolved	EPA200.8	mg/L		
Selenium (Se) - dissolved	EPA200.8	mg/L		
Zinc (Zn) - dissolved	EPA200.8	mg/L		
Uranium (U) - dissolved	EPA200.8	mg/L	DRMS request via HGCAP	
Hardness, as CaCO ₃	2340 B	mg/L		
Bicarbonate, as CaCO ₃	2320 B	mg/L		
Carbonate, as CaCO ₃	2320 B	mg/L		
Hydroxide, as CaCO ₃	2320 B	mg/L		
Total Nitrogen as Nitrate-Nitrite	EPA353.2	mg/L	Distinguish fertilizer and/or stock impacts	
Ammonia (NH 3)	EPA350.1	mg/L	Distinguish fertilizer and/or stock impacts	1-time only to establish presence/absence, SW and Alluvial GW sites only
Phosphate (PO 4 as P)	EPA300.0	mg/L	Distinguish fertilizer and/or stock impacts	1-time only to establish presences/absence, SW and Alluvial GW sites only
pH (lab)	EPA150.1	SU		
Total Dissolved Solids (TDS)	EPA160.1	mg/L		
Total Organic Carbon (TOC)	5310C	mg/L	Surrogate parameter for coal mining impacts	
Temperature (field)	NA	°C		
рН (field)	NA	SU	Allows comparison of field vs. lab measurements, key for proper bicarbonate, carbonate, hydroxide calculations	
Specific Conductivity (field)	NA	mS/cm		
Oxygen Reduction Potential (ORP) (field)	NA	mV	To predict states of chemical speciation of water, i.e. dissolved metals	
Depth to Water (field, wells only)	NA	feet		

Notes

New (2016) analytes in bold, italicized red text

mg/L = milligrams per liter

 $SU = standard\ units$

mS/cm millisiemens per centimeter

gpm = gallons per minute

mV = millivolt

NA = not applicable

Table 4.

GCC Spring & Seep Baseline Water Quality Parameter Suite (GCC S&S Baseline)

Parameter	Analytical Method	Units	Justification for Addition	Comments
Potassium (K) - dissolved	EPA200.7	mg/L	Rounding out major ion constituents with K, Cl will allow	
Chloride (Cl ⁻)	EPA300.0	mg/L	for better interpretation with trilinear plotting	
Calcium (Ca ⁺²) - dissolved	EPA200.7	mg/L		
Magnesium (Mg ⁺²) - dissolved	EPA200.7	mg/L		
Sodium (Na ⁺) - dissolved	EPA200.7	mg/L		
Sulfate (SO ₄)	EPA300.0	mg/L		
Alkalinity, as CaCO ₃	2320 B	mg/L		
Silica (SiO 2) - dissolved	Calculation	mg/L	Allows comparison of TDS vs. sum of major ions	
Manganese (Mn) - dissolved	EPA200.8	mg/L		
Fluoride (F)	EPA300.0	mg/L	Secondary ion that has been identified with minor potential nuisance value	
ron (Fe) - dissolved	EPA200.7	mg/L		
Aluminum (Al) - dissolved	EPA200.7	mg/L		
Arsenic (As) - dissolved	EPA200.8	mg/L	1	
Cadmium (Cd) - dissolved	EPA200.8	mg/L	Ţ	
Copper (Cu) - dissolved	EPA200.8	mg/L		
Lead (Pb) - dissolved	EPA200.8	mg/L	Trace metals commonly associated with coal mining	
Mercury (Hg) - dissolved	EPA245.1	mg/L	impacts	
Molybdenum (Mo) - dissolved	EPA200.8	mg/L		
Gelenium (Se) - dissolved	EPA200.8	mg/L		
Zinc (Zn) - dissolved	EPA200.8	mg/L		
Uranium (U) - dissolved	EPA200.8	mg/L	DRMS request via HGCAP	
Hardness, as CaCO ₃	2340 B	mg/L		
Bicarbonate, as CaCO ₃	2320 B	mg/L		
Carbonate, as CaCO ₃	2320 B	mg/L		
Hydroxide, as CaCO ₃	2320 B	mg/L		
Total Nitrogen as Nitrate-Nitrite	EPA353.2	mg/L	Distinguish fertilizer and/or stock impacts	
Ammonia (NH ₃)	EPA350.1	mg/L	Distinguish fertilizer and/or stock impacts	1-time only to establish presence/absence, SW and Alluvial GW sites only
Phosphate (PO 4 as P)	EPA300.0	mg/L	Distinguish fertilizer and/or stock impacts	1-time only to establish presences/absence, SW and Alluvial GW sites only
Sodium Adsorption Ratio (SAR)	Calculation	mg/L	Measure of suitability for agricultural irrigation	
рН (lab)	EPA150.1	SU		
Total Dissolved Solids (TDS)	EPA160.1	mg/L		
Total Organic Carbon (TOC)	5310C	mg/L	Surrogate parameter for coal mining impacts	
Геmperature (field)	NA	°C		
оН (field)	NA	SU	Allows comparison of field vs. lab measurements, key for proper bicarbonate, carbonate, hydroxide calculations	
Specific Conductivity (field)	NA	mS/cm		
Oxygen Reduction Potential (ORP) (field)	NA	mV	To predict states of chemical speciation of water, i.e. dissolved metals	
Flow Rate (field, spring/seep only)	NA	gpm		

Notes.

New (2016) analytes in bold, italicized red text

 $mg/L = milligrams\ per\ liter$

 $SU = standard\ units$

mS/cm millisiemens per centimeter

gpm = gallons per minute

mV = millivolt

NA = not applicable

FIGURES

Figure 1. GCC 2021 hydrologic monitoring locations.

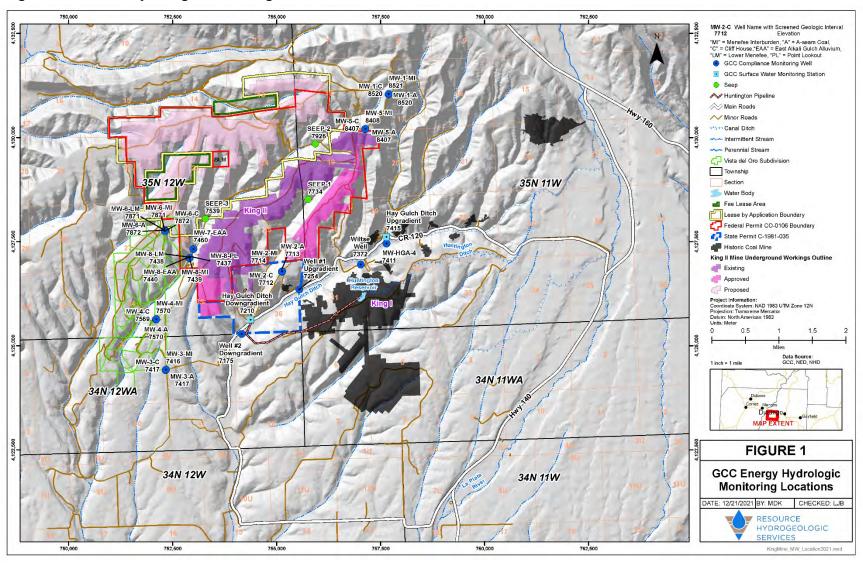


Figure 2. Major ions in Hay Gulch Ditch Upgradient and Downgradient samples from water year 2021.

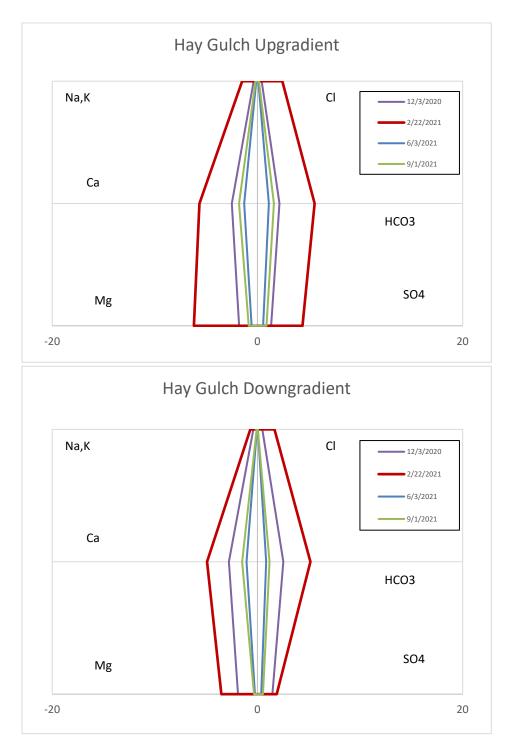


Figure 3. Major ions in Hay Gulch alluvial groundwater up and downgradient of the King I portal (left), up and downgradient of the King II portal (center left), in East Alkali Gulch alluvial groundwater up and downgradient of the King II low-cover crossing (center right), and from two seeps upgradient of the proposed low-cover crossing in East Alkali Gulch (right). Note that Seep-2 has been dry the last two years so its plot presented here for comparison is from 2019.

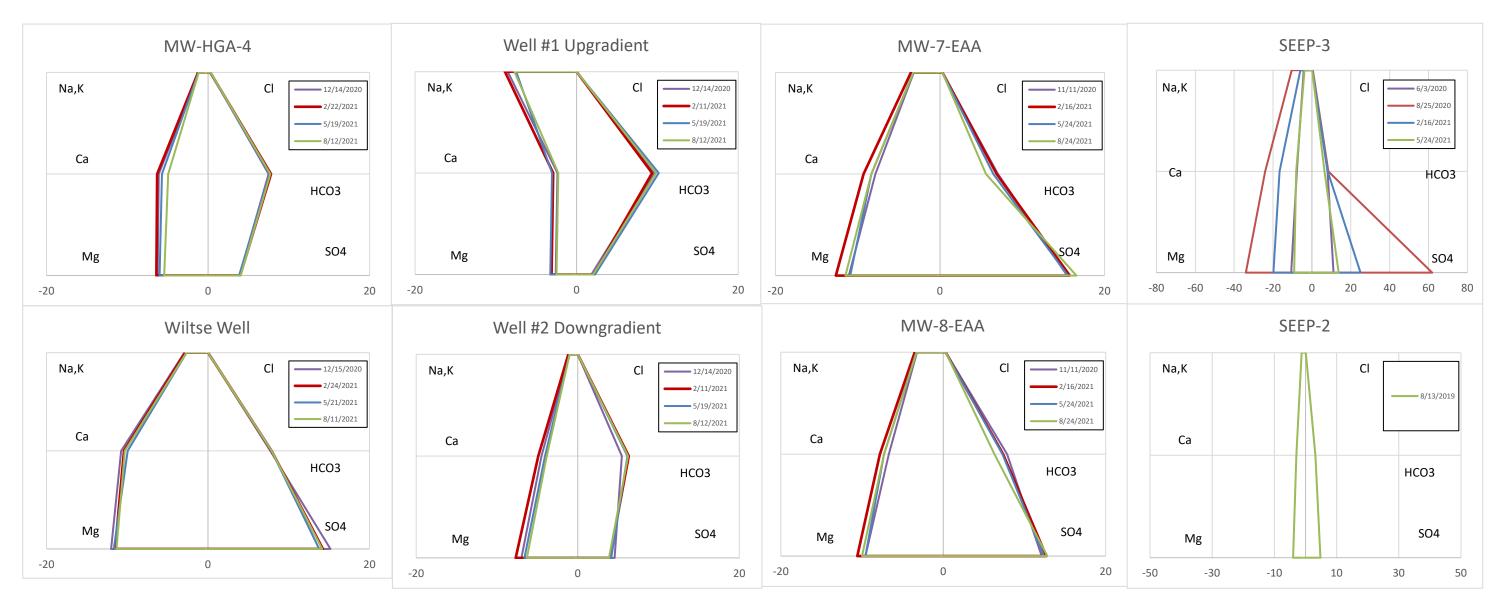


Figure 4. Concentrations of iron and manganese in alluvial groundwater (2016-2021).

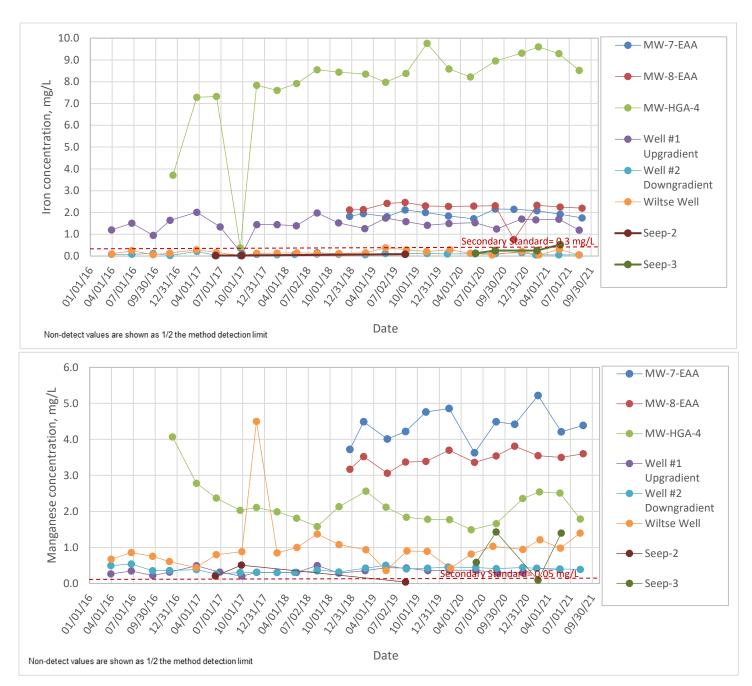


Figure 5. Hay Gulch alluvial groundwater hydrograph.

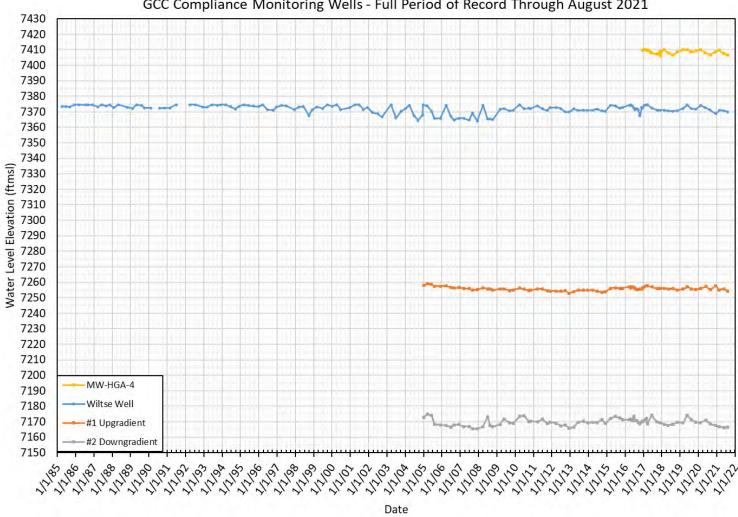


Figure 6. East Alkali Gulch alluvial groundwater hydrograph.

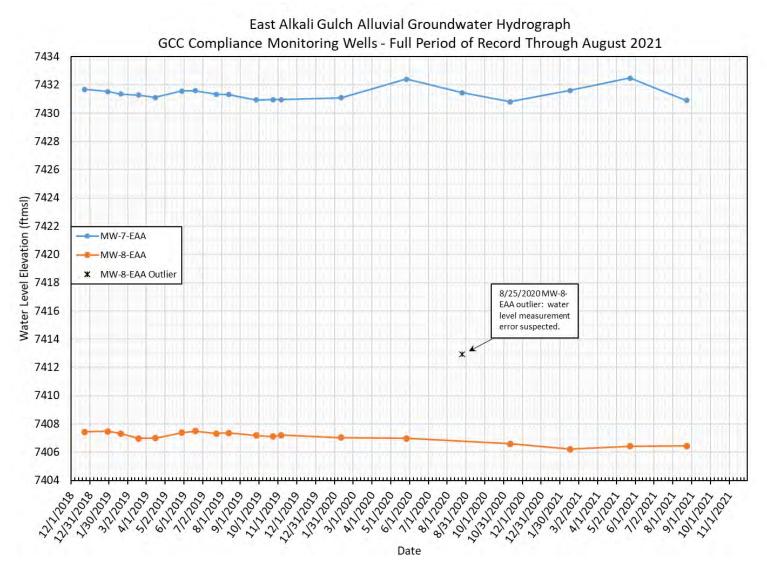


Figure 7. Alluvial groundwater table contour map.

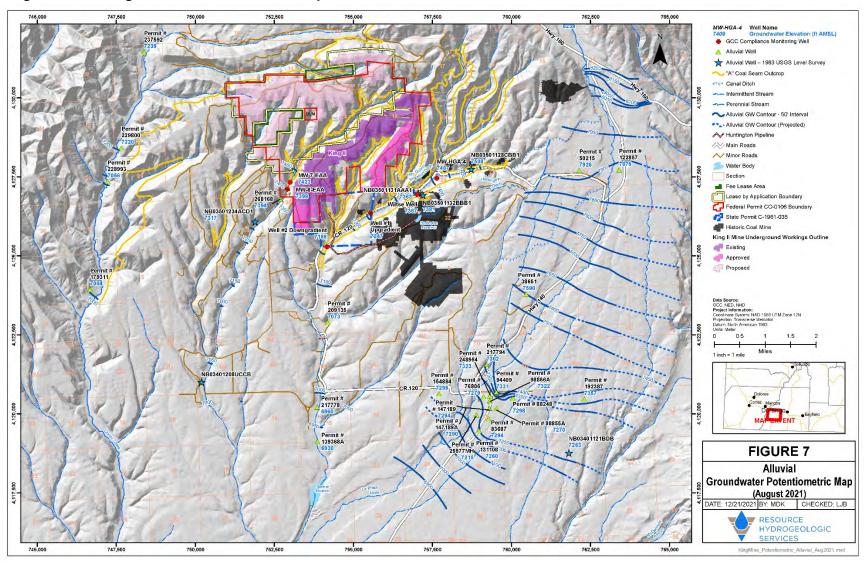


Figure 8. Comparison of major ion concentrations in Cliff House ("A" seam overburden) bedrock monitoring wells, and a seep (Seep-1). Note that Seep-1 has been dry the last two years so its plot presented here for comparison is from 2019.

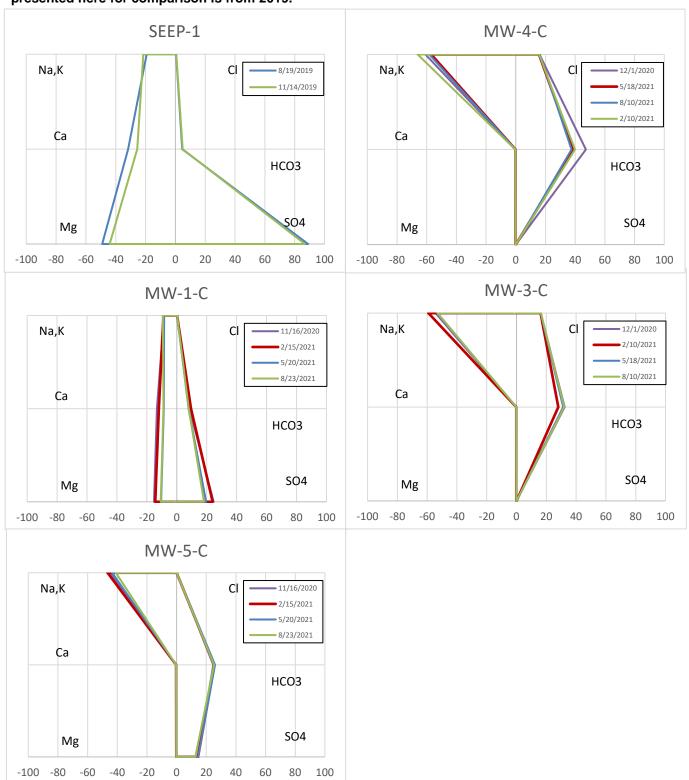


Figure 9. Stiff diagrams of the four wet GCC monitoring wells completed in the "A" coal seam of the Menefee Formation

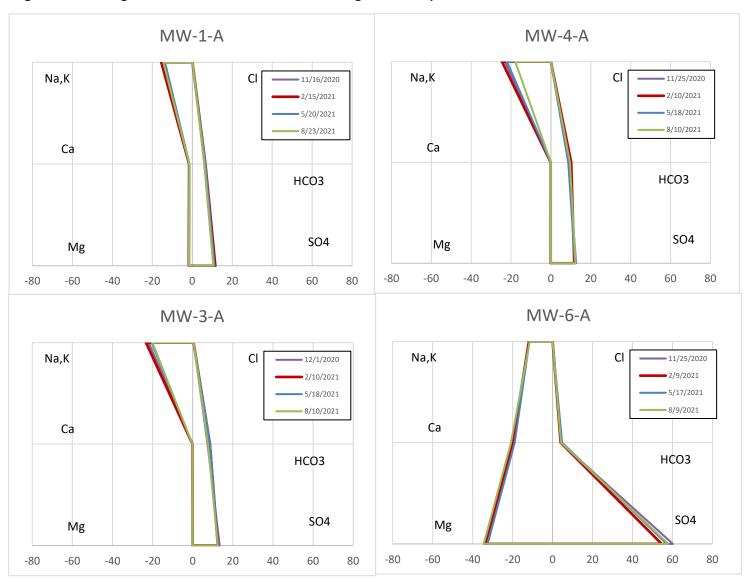


Figure 10. Stiff diagrams of the four wet GCC monitoring wells completed in the Menefee Interburden immediately below the "A" seam.

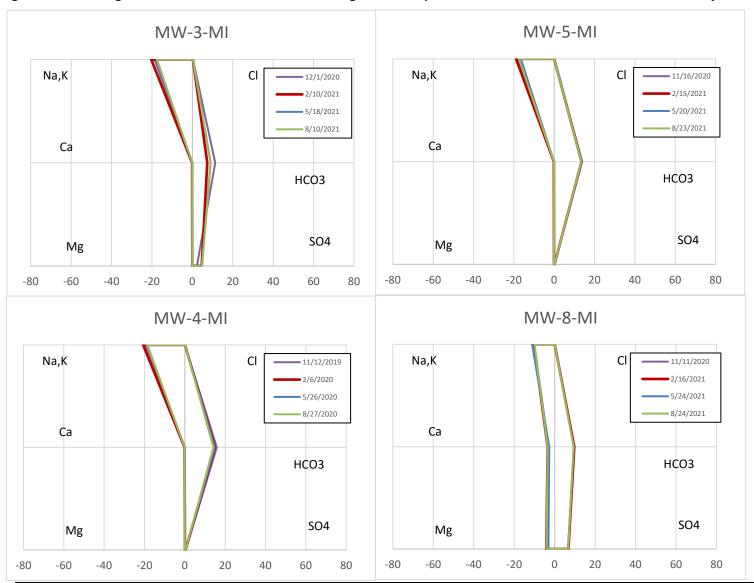


Figure 11. Stiff diagrams of GCC monitoring wells completed in the Lower Menefee.

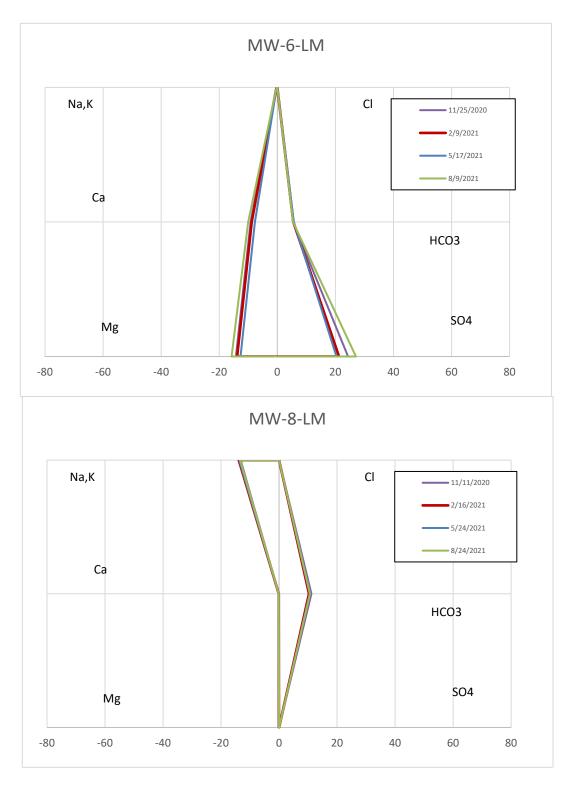


Figure 12. Stiff diagram of the single GCC monitoring well completed in the Point Lookout.

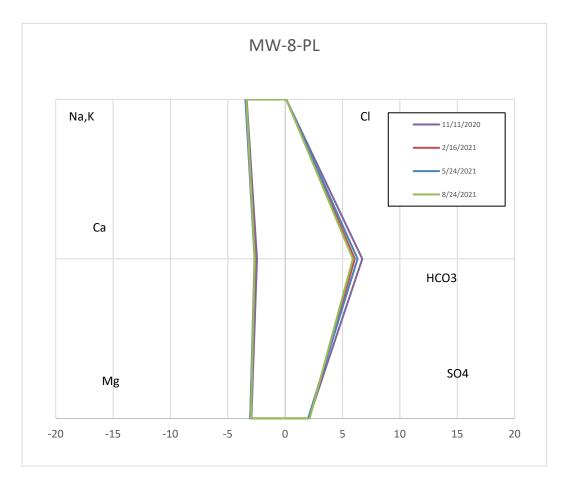


Figure 13. Concentrations of arsenic in bedrock groundwater (2016-2021).

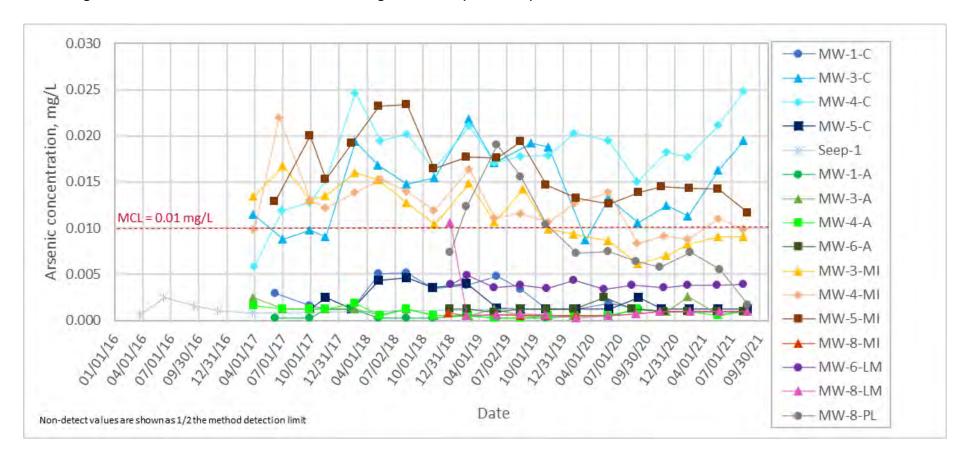


Figure 14. Concentrations of iron in bedrock groundwater (2016-2021).

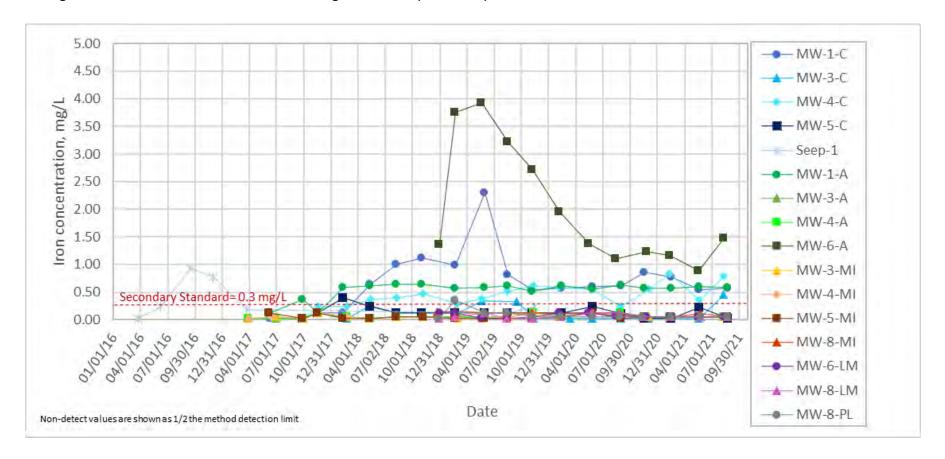


Figure 15. Concentrations of manganese in bedrock groundwater (2016-2021).

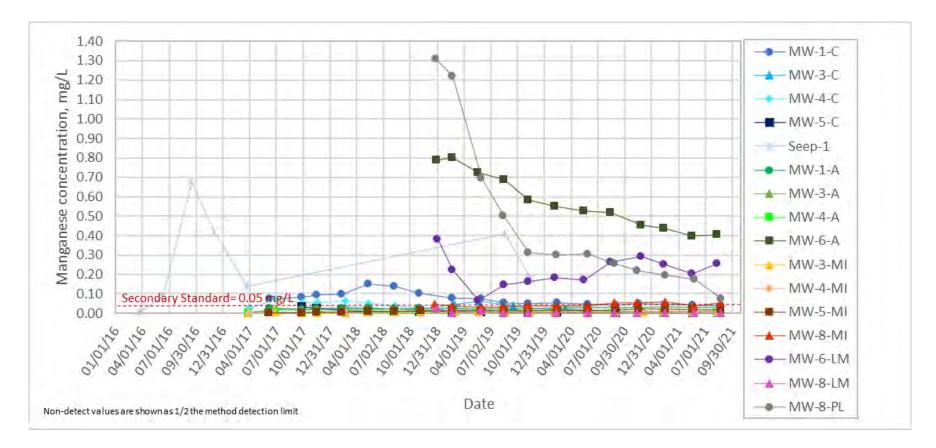
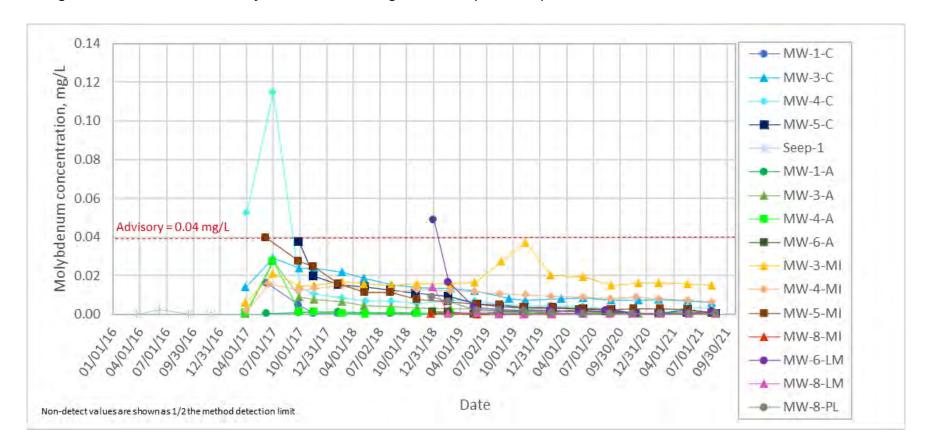


Figure 16. Concentrations of molybdenum in bedrock groundwater (2016-2021).



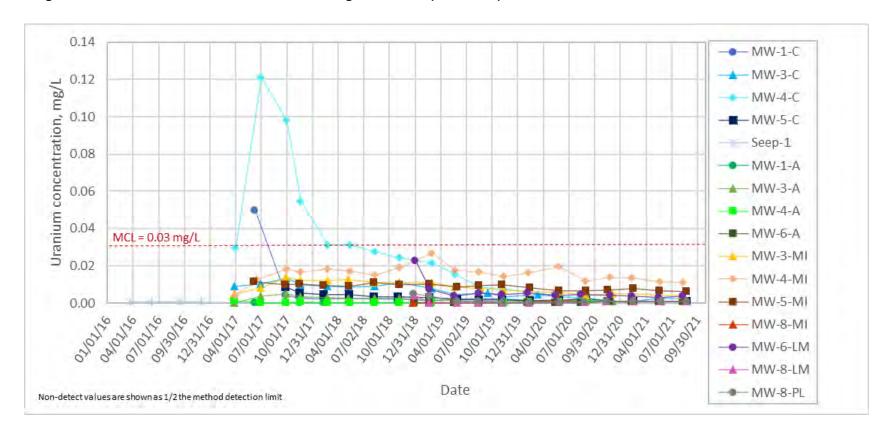


Figure 17. Concentrations of selenium in bedrock groundwater (2016-2021).

Figure 18. Concentrations of uranium in bedrock groundwater (2016-2021).

Well Name Groundwater Elevation (ft AMSL) ● GCC Compliance Monitoring Well Seep-1 (Cliff House Groundwater Discharge) Inferred Cliff House Recharge //, Cliff House Dry - Potentiometric Contour - Potentiometric Contour (Projected) ~ "A" Coal Seam Outcrop Canal Ditch ---- Intermittent Stream --- Perennial Stream Muntington Pipeline Main Roads Minor Roads Water Body Section Fee Lease Area Lease by Application Boundary
Federal Permit CO-0106 Boundary State Permit C-1981-035 Historic Coal Mine King II Mine Underground Workings Outline Existing Approved Proposed Data Source: CCC, NED, NHD Project Information: Coordinate System: NAD 1983 UTM Zone 12N Projection: Transverse Mercator Datur: Morth American 1983 Units: Metel 0.5 FIGURE 19 Cliff House **Groundwater Potentiometric Map** (August 2021)

DATE: 12/21/2021 BY: MDK CHECKED: LJB ₩ RESOURCE HYDROGEOLOGIC SERVICES

Figure 19. Cliff House groundwater potentiometric map, August 2021.

Figure 20. "A" seam coal groundwater potentiometric map, August 2021.

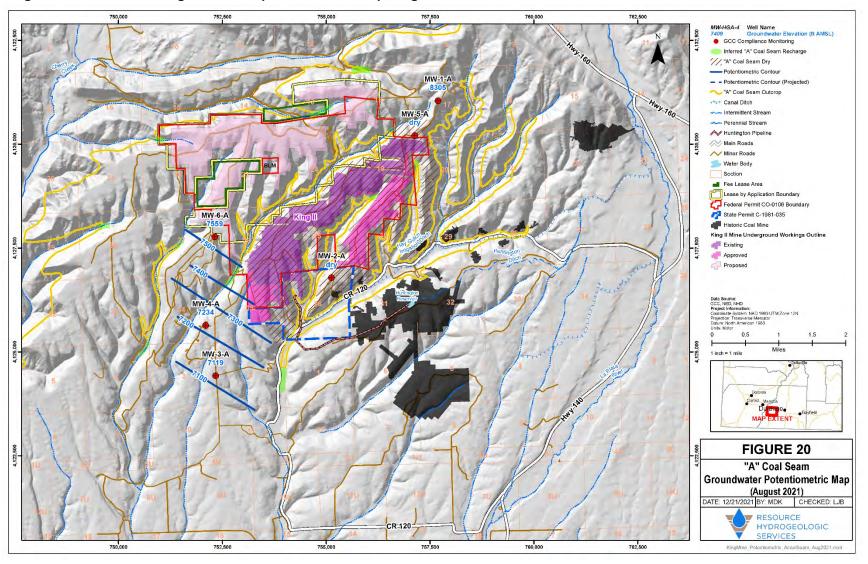


Figure 21. Menefee Interburden groundwater potentiometric map, August 2021.

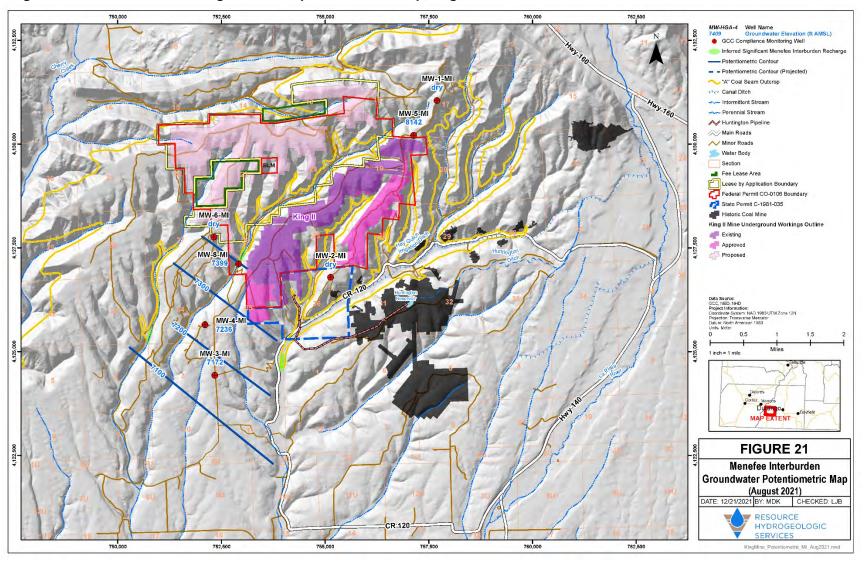


Figure 22. Lower Menefee groundwater potentiometric map, August 2021.

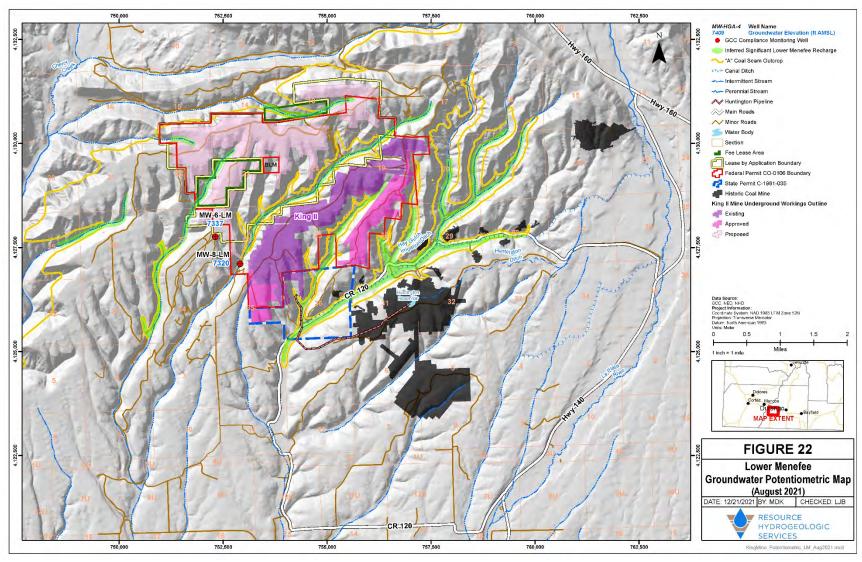
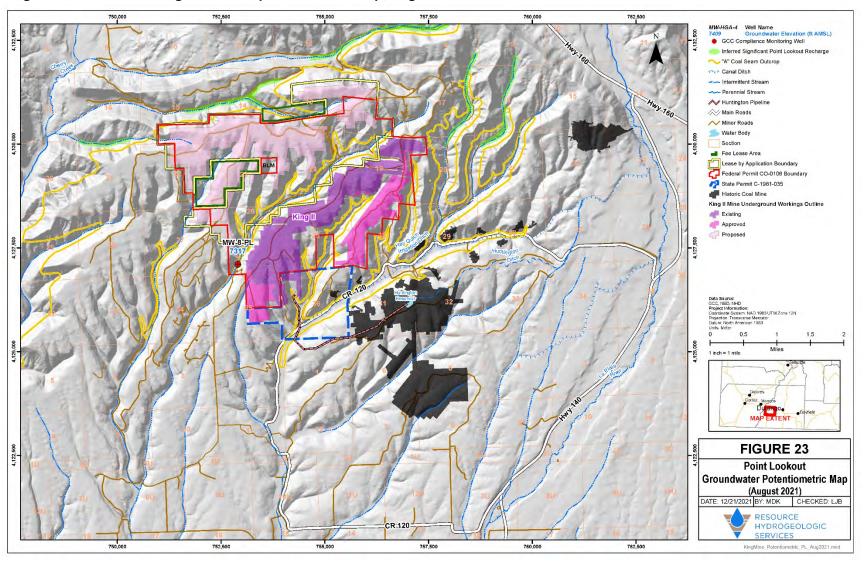



Figure 23. Point Lookout groundwater potentiometric map, August 2021.

ATTACHMENT - GCC Hydrologic	Monitoring Data Summary	Tables
-----------------------------	-------------------------	---------------

													Ha	y Gulch	Ditch Up	ogradien	t															
	Year					20	016					-		20				T	20	18		T	20)19		г –	20	020		T	2021	
	Quarter	01		Q2			Q3		Τ	Q4			Q1		Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	04	Q1	Q2	Q3	Q4	Q1	Q2	Q3
	Month	3	4	5	6	7	8	9	10	11	12	1	2	3	6	9	11	2	5	8	11	2	5	8	11	2	5	8	12	2	6	9
Sa	mple Date	3/31	4/22	5/26	6/23	7/20	8/25	9/21	10/19	11/29	12/13	1/26	2/27	3/22	6/28	9/21	11/28	2/22	5/14	8/9	11/8	2/28	5/23	8/16	11/13	2/13	5/13	8/13	12/3	2/22	6/3	9/1
Lab Ana	lysis (Y/N)	Υ	N	N	Υ	N	N	Υ	Y	Υ	N	N	N	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Y	Υ	Υ	Υ	Υ	Υ	Y	Υ
						•								Field	Paramete	rs:												·				
Flow Rate	cfs	0.70	1.0	1.20	1.60	1.0	1.0	1.10	1.0	NM	1.0	NM	0.82	0.28	2.70	NM	NM	NM	0.60	0.70	0.70	0.25	3.63	1.17	NM	NM	0.92	0.13	1.02	0.06	0.16	NM
Temperature	deg C	9.8	20.9	11.3	21.1	20.8	16.8	14.9	16.4	5.9	7.0	1.5	4.7	10.7	20.2	19.7	8.8	4.7	11.3	22.1	1.1	5.9	5.9	16.9	5.7	1.5	16.5	18.1	2.0	5.8	11.3	15.5
pH	SU	7.75	8.27	7.95	8.15	8.24	8.26	8.47	8.19	8.79	8.58	8.2	8.69	8.77	8.88	8.39	7.60	7.9	7.58	9.07	7.16	6.4	7.53	8.03	7.33	7.75	8.39	8.65	8.08	7.83	7.75	8.07
Specific Conductance	μS/cm	247	323	197	141	189	207	233	210	258	234	687	455	454	106	549	868	1041	304	307	307	752	306	275	682	902	314	528	434	1024	189	280
Oxygen Reduction Potential	mV	76.4	114.7	97.2	51.6	53.6	82.8	72.5	105.9	92.4	116.3	66.3	-12	-10.6	23.8	86.1	95.10	-164.1	111.4	-181.3	13.9	103.7	-24.0	24.4	-22.4	-4.5	81.7	118.9	120.3	51.6	86.6	58.3
Dissolved Oxygen	mg/L	8.1	6.4	8.0	6.0	6.5	6.9	7.2	4.7	6.7	6.1	10.6	9.0	6.9	4.8	6.7	9.3	9.4	8.5	6.4	10.2	8.0	8.9	7.8	7.9	7.0	7.5	8.4	10.4	8.7	8.5	7.1
														Lab And	alytical Res	sults:																
Hardness as CaCO3	mg/L	128			80.9			119		152				257	69.2	316	456	489	101	153	149	393	136	125	372	405	150	287	213	588	92.6	131
pH (Lab)	SU	8.17			8.04			8.16		8.19				8.06	8.06	8.22	8.31	8.39	7.99	9.07	7.86	7.45	7.69	7.83	7.40	7.22	7.60	8.01	7.92	7.57	7.72	7.44
Total Dissolved Solids (Lab)	mg/L	170			75			165		180				285	65.0	390	650	700	140	215	175	535	205	225	635	587	255	340	160	685	210	185
Total Suspended Solids	mg/L	30.0			117			17.0		4.8				2.50	63.5	2.00	5.75	6.01	106	6.25	14.8	22.0	113	20.0	5.38	<4.0	140	19.5	13.2	55	133	51
Calcium	mg/L	33.5			24			33.0		38.4				53.6	20.8	64.9	86.6	87.3	26.3	39.1	40.3	79.8	34.6	32.4	79.3	81.5	36.1	63.2	49.9	113	25.8	35.8
Magnesium	mg/L	10.9			5.08			9.01		13.7				29.8	4.21	37.5	58.3	65.9	8.61	13.5	11.9	47.0	12.1	10.8	42.2	49	14.5	31.3	21.5	74.3	6.87	10.1
Sodium	mg/L	4.46			2.19			3.90		6				10.9	1.97	13.8	27.1	34.6	3.31	5.33	5.00	19.1	7.24	5.81	25.4	30.9	7.67	10.9	8.39	34.3	2.71	3.97
Potassium	mg/L	<1			<1			1.35		<1.00				<1.00	1.75	2.15	3.05	3.52	1.18	1.24	<1.00	3.89	1.57	1.07	3.25	3.65	1.86	1.85	1.53	4.74	<1.00	3.28
Alkalinity, Total	mg/L	160			65			98.0		118				185	55.0	177	305	244	67	111	120	260	390	103	233	315	102	220	137	340	68	98
Alkalinity, Bicarbonate	mg/L	160			65			94.0		118				185	55.0	161	285	244	67	107	120	260	390	103	233	295	102	220	131	340	68	98
Alkalinity, Carbonate	mg/L	<10.0			<10.0			<10.0		<10.0				<10.0	<10.0	16.0	20.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Alkalinity, Hydroxide	mg/L	<10.0			<10.0			<10.0	_	<10.0				<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Chloride	mg/L	5.77			2.07			4.32	_	7.92				22.7	1.76	30.8	48.2	46.7	3.12	6.70	5.58	48.1	7.75	6.04	22.8	31.6	9.64	24.5	14.8	85.9	3.17	5.23
Fluoride	mg/L	0.213			0.208			0.223	_	0.208		-		0.215	0.195	0.265	0.283	0.285	0.224	0.272	0.224	0.252	0.208	0.214	<0.500	0.239	<0.500	0.226	0.226	0.235	0.188	0.227
Sulfate as SO4	mg/L	42.1			17.7			29.0	_	45.3		-		87.7	15.0	99.0	179	229	34	49.7	45.0	128	47.2	35.6	107	151	44.0	86.3	64.4	211	26.4	42.2
Total Organic Carbon (TOC) Oil & Grease	mg/L mg/L	1.41 <5.00			1.6 <5.00	-		2.21 <5.00	_	1.14 <5.00				2.49 <5.00	1.15 <5.00	1.90 <5.00	1.99 <5.00	1.81 <5.00	2.31 <5.00	1.61 <5.00	1.09 <5.00	4.94 <5.00	3.08 <5.00	1.84 <5.00	4.54 <5.00	5.45 <5.00	2.93 <5.00	1.65 <5.00	1.22 <5.00	2.69 <5.00	1.39 <5.00	2.8 <5.00
Nitrate/Nitrite as N	mg/L	<0.02			0.028	-		<0.020	_	<0.020				0.053	<0.020	0.045	0.088	0.105	0.026	<0.020	<0.020	0.263	0.050	0.072	0.104	0.044	0.302	0.042	0.026	0.282	0.049	0.026
Sodium Adsorption Ratio (SAR)		0.02			0.028	-		0.16		0.21				0.30	0.10	0.34	0.55	0.103	0.020	0.18	0.16	0.42	0.26	0.072	0.104	0.65	0.302	0.042	0.020	0.282	0.043	0.020
Ammonia as N ^	mg/L	NA			NA	_		NA	_	NA		-		NA	<0.100	NA	NA	NA	NA	NA	NA	NA										
Ortho-Phosphate as P ^	mg/L	NA NA			NA NA			NA NA		NA NA				NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA.	NA NA	NA NA	NA.	NA NA	<0.100	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Aluminum	mg/L	<0.05			<0.05	-		<0.05		<0.050				<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Arsenic	mg/L	<0.0005			<0.0005			<0.0005		<0.0005				0.0005	<0.0005	0.0009	0.0007	<0.0025	<0.0005	0.0009	<0.0005	0.0007	0.0006	0.0007	0.0005	0.0006	<0.0005	0.0007	<0.0005	0.0012	<0.0005	0.001
Cadmium	mg/L	<0.0003			<0.0003			<0.0001		<0.0003		-		<0.0003	<0.0003	<0.0003	<0.0001	<0.0025	<0.0001	<0.0003	<0.0001	<0.0001	<0.0001	<0.0001	<0.0003	<0.0001	<0.0003	<0.0001	<0.0003	< 0.0012	<0.0005	<0.001
Copper	mg/L	0.0006			0.0001			0.0011		0.0005				0.0008	0.0001	0.0006	0.0005	0.0007	0.0011	0.0011	0.0013	0.0026	0.0013	0.0012	0.0005	0.0005	0.0010	0.0001	0.0005	0.0007	0.0009	0.0012
Iron	mg/L	<0.05			<0.05			<0.05		<0.050				<0.050	< 0.050	<0.050	<0.050	<0.050	<0.05	<0.05	<0.05	0.255	0.055	<0.050	0.316	0.551	<0.050	<0.050	<0.05	0.103	<0.0500	<0.0500
Lead	mg/L	<0.0005			<0.0005			<0.0005		<0.0005				<0.0005	<0.0005	<0.0005	<0.0005	<0.0025	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005	<0.0005
Manganese	mg/L	0.0059			0.0035			0.0043		0.0047				0.0070	0.0024	0.0098	0.0049	0.0049	0.0093	0.0016	0.0043	0.127	0.0349	0.0096	0.113	0.368	0.0297	0.0087	0.0047	0.149	0.0042	0.0156
Mercury	ma/L	<0.0002			<0.0002			<0.0002		<0.0002				<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0005	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.00001
Molybdenum	mg/L	<0.0005			0.0009			0.0007		0.0008				0.0006	0.0009	0.0012	0.0008	<0.0025	0.001	0.0012	0.0009	0.0011	0.0009	0.0011	0.0007	0.0005	0.0009	0.0009	0.0009	0.0007	0.0009	0.0011
Selenium	mg/L	<0.0010			<0.0010			<0.0010		<0.0010				0.0023	<0.0010	<0.0010	0.0010	<0.0050	<0.0010	<0.0010	<0.0010	0.0017	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	0.0018	<0.0010	<0.0010
Silica (Si02)	mg/L	7.78			8.23			10.5		9.71				9.04	7.71	9.45	10.1	11.0	8.4	8.64	8.31	11.3	8.55	9.17	13.4	13	7.57	7.36	9.86	13.4	7.18	9.33
Silicon	mg/L	3.64			3.85			4.89		4.54		i		4.23	3.60	4.42	4.71	5.14	3.93	4.04	3.88	5.29	3.99	4.29	6.25	6.06	3.54	3.44	4.61	6.26	3.36	4.36
Uranium	mg/L	0.0002			0.0001			0.0002		0.0003		i		0.0003	0.0001	0.0006	0.0009	0.0013	0.0001	0.0002	0.0003	0.0009	0.0003	0.0004	0.0007	<0.0005	<0.0005		<0.0005	0.0013	<0.0005	<0.0005
Zinc	mg/L	<0.001			<0.001			<0.001		<0.0010				0.0022	<0.0020	<0.0040	<0.0020	<0.0100	<0.002	0.0033	<0.002	0.0044	<0.0020	<0.0020	0.0033	0.0087	<0.0020	<0.0020	<0.002	<0.0020	<0.0020	<0.0020
Radium 226 ^	pCi/L	<0.4			NA			NA		NA				NA	NA																	
Radium 228 ^	pCi/L	<0.8			NA			NA		NA		Ī		NA	NA																	
		0.0																														

Notes & Definitions:

^ one-time analysis

Y/N yes or no gpm gallons per minute deg C degrees Celsius SU standard pH units µS/cm microsiemens per centimeter mV millivolts

mg/L milligram per liter pCi/L picocuries per liter NM not measured (field) NA not analyzed (lab)

- "<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.
- Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent
 amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the
 initial pH of the sample solution, each components reported as equivalent CaCO3.
- Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program
 by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown
 in this table.

													Hay G	Gulch Dit	ch Dow	ngradiei	nt															
	Year					20)16							20:	17				20	018			20	19		1	20:	20			2021	
	Quarter	Q1		Q2			Q3			Q4			Q1		Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
	Month	3	4	5	6	7	8	9	10	11	12	1	2	3	6	9	11	2	5	8	11	2	5	8	11	2	6	8	12	2	6	9
So	imple Date	3/31	4/22	5/26	6/23	7/20	8/25	9/21	10/19	11/29	12/13	1/26	2/27	3/22	6/28	9/21	11/28	2/22	5/7	8/9	11/7	2/28	5/23	8/16	11/13	2/6	6/1	8/13	12/3	2/22	6/3	9/1
Lab And	alysis (Y/N)	Y	N	N	Y	N	N	Y	N	Y	N	N	N	Y	Y	Y	N	Y	Y	Y	Ý	Y	Υ	Y	Y	Y	Y	Y	Υ	Y	Y	Υ
				•						-				Field P	arameters	5:		•								•	'	<u> </u>				
Flow Rate	cfs	1.10	1.20	1.10	NM	1.10	1.10	NM	0.80	NM	NM	NM	0.80	0.30	0.30	NM		NM	NM	NM	0.50	0.25	0.30	1.05	NM	NM	1.50	0.13	NM	0.001	0.40	NM
Temperature	deg C	11.8	17.6	10.9	21.9	21.3	18.8	16.1	11.8	7.0	6.6	7.2	5.0	12.7	17.6	18.7	İ	6.3	11.3	20.6	4.7	6.88	8.23	15.15	3.51	3.73	14.21	20.4	6.83	10.37	13.35	10.47
ρH	SU	8.57	8.55	8.14	8.14	8.55	8.37	8.3	8.36	8.64	8.06	7.28	8.06	9.00	8.53	8.66	1 .	8.33	7.58	7.43	7.48	6.42	7.77	7.61	8.38	7.94	8.24	8.00	7.7	7.76	8.12	8.26
Specific Conductance	μS/cm	429	530	297	116	308	257	1183	420	421	728	678	987	17	114	164	dry	742	304	356	309	577	202	295	554	882	137	237	478	815	131	184
Oxygen Reduction Potential	mV	57.5	105.9	33.2	32.5	68.6	38.4	18.7	88.6	117.5	155.2	147.6	-15.5	137.8	185.3	48	1	51.6	111.4	-10.0	-88.9	125.6	50.6	111.6	-108.1	124.2	104.8	103.0	127.8	-26.5	85.1	119.5
Dissolved Oxygen	mg/L	7.9	7.7	8.7	6.0	6.7	5.6	6.8	7.1	6.5	7.2	7.6	9.8	5.6	6.4	7.1	1	9.8	8.5	6.3	9.1	7.6	8.8	7.2	9.6	9.5	8.0	6.4	9.6	6.8	7.8	6.7
72				•		•				,				Lab Anal	ytical Resu	ılts:		•		,						•		,				
Hardness as CaCO3	mg/L	226		Τ	67.8			480		267				503	59.1	91.4		329	140	182	167	281	91.9	137	295	416	63.6	120	232	419	64.8	90.7
pH (Lab)	SU	8.42			8.13			8.25		8.24				8.15	7.98	7.98		8.17	8.05	8.09	7.95	7.84	7.68	7.73	7.73	7.80	7.49	7.59	7.85	7.83	7.74	7.58
Total Dissolved Solids (Lab)	mg/L	270			55			630		320				615	65.0	80.0		420	220	260	185	390	185	195	355	573	120	135	370	435	175	90
Total Suspended Solids	mg/L	27.3			18			4.20		12.4				12.7	3.00	<0.500		49.5	<2	5.67	4.40	18.4	153.0	22.5	<4.00	4.20	17.5	28.6	10.5	28.0	8.4	4.8
Calcium	mg/L	55.5			21.9			94.7		65.5				112	19.0	29.5		75.4	37.5	49.0	44.7	61.6	26.0	34.5	67.2	85.6	20.3	34.2	55.6	98.2	21.2	29.8
Magnesium	mg/L	21.1			3.15			59.1		25.2				54.6	2.86	4.31		34.2	11.2	14.4	13.4	31	6.54	12.3	30.8	49.0	3.15	8.38	22.7	42.2	2.86	3.94
Sodium	mg/L	8.69			1.57			16.8		10.7				22.5	1.49	2.37		18.1	5.42	6.49	5.15	16.5	5.03	6.62	17.0	28.5	1.90	3.68	9.03	15.8	1.14	1.75
Potassium	mg/L	1.49			<1			4.48		1.46				2.33	<1.00	<1.00		2.84	1.14	1.58	1.34	3.13	1.31	1.27	2.60	3.81	<1.00	1.36	1.89	3.75	<1.00	1.02
Alkalinity, Total	mg/L	220			59			220		225				320	47.0	85.0		265	112	170	140	150	340	140	194	297	48	110	158	315	52	72
Alkalinity, Bicarbonate	mg/L	220			59			140		155				320	47.0	85.0		259	104	170	140	150	340	140	188	283	48	110	154	315	52	72
Alkalinity, Carbonate	mg/L	<10			<10			80.0		70				<10.0	<10.0	<10.0		<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	14.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Alkalinity, Hydroxide	mg/L	<10			<10			<10		<10.0				<10.0	<10.0	<10.0		<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Chloride	mg/L	9.40			1.26			97.9		12				31.9	<1.00	1.54		23.1	7.54	7.47	5.69	40.2	16.9	7.65	14.8	30.7	1.87	4.42	17.1	59	1.16	1.21
Fluoride	mg/L	0.244			0.195			0.244		0.227				0.224	0.290	0.227		0.308	0.228	0.295	0.228	0.232	0.205	0.218	0.252	0.272	0.185	0.224	0.244	0.246	0.195	0.216
Sulfate as SO4	mg/L	68.1			13.5			144		89.5				204	11.3	17.9		86.5	40.2	46.8	45.0	91.4	18.5	42.7	83.3	143	14.2	32.4	70.2	90.1	17.3	25.7
Total Organic Carbon (TOC)	mg/L	1.53			1.4			3.48		1.65				2.31	2.16	0.932		1.56	1.28	1.33	1.76	2.90	2.37	2.10	3.26	4.53	1.39	1.47	1.55	2.31	1.18	1.48
Oil & Grease	mg/L	<5			<5			<5		<5.00				<5.00	<5.00	<5.00		<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
Nitrate/Nitrite as N	mg/L	<0.02			0.026			0.027		<0.020				<0.020	<0.020	<0.020		<0.020	<0.020	<0.020	<0.020	0.17	0.146	0.090	<0.020	0.056	0.031	0.053	<0.02	0.148	0.021	<0.020
Sodium Adsorption Ratio (SAR)	no unit	0.25			0.03			0.33		0.28				0.44	0.08	0.11		0.43	0.2	0.20	0.17	0.43	0.22	0.24	0.41	0.61	0.10	0.14	0.26	0.34	0.06	0.08
Ammonia as N ^	mg/L	NA			NA			NA		NA				NA	NA	NA		NA	<0.100	NA	NA	NA	NA	NA	NA	NA						
Ortho-Phosphate as P ^	mg/L	NA			NA			NA		NA				NA	NA	NA		NA	<0.0500	NA	NA	NA	NA	NA	NA	NA						
Aluminum	mg/L	<0.05			<0.05			<0.05		<0.050				<0.050	<0.050	< 0.050		<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050	<0.050
Arsenic	mg/L	0.0005			<0.0005			0.0015		0.0006				0.0006	0.0005	0.0006		0.0005	0.0005	0.0008	<0.0005	0.0006	0.0006	0.0006	0.0005	0.0006	<0.0005	0.0007	< 0.0005	0.0013	<0.0005	0.0007
Cadmium	mg/L	<0.0001		1	<0.0001			<0.0001		<0.0001				<0.0001	<0.0001	<0.0001		<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0005	<0.0005
Copper	mg/L	0.0004			0.0016			0.0012		0.0005				0.0004	0.0020	0.0013		0.0005	0.0008	0.0008	0.0008	<0.0010	0.0021	0.0009	0.0007	0.0006	0.0014	0.0009	0.0005	0.0006	0.0011	0.001
Iron	mg/L	<0.05			<0.05			<0.05		<0.050				<0.050	<0.050	<0.050		<0.050	<0.050	<0.050	<0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Lead	mg/L	<0.0005			<0.0005			<0.0005		<0.0005				<0.0005	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Manganese	mg/L	0.0039			0.0044			0.0059		0.0063				0.0112	0.0009	0.0010		0.0962	0.0038	0.0445	0.0102	0.048	0.0125	0.0033	0.0102	0.0286	0.0012	0.0046	0.0116	0.133	0.0011	0.0021
Mercury	mg/L	<0.0002			<0.0002			<0.0002		<0.0002				<0.0002	<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002			<0.0002	<0.0002	<0.0002	< 0.0002	< 0.0002	<0.0002	<0.00001
Molybdenum	mg/L	<0.0005			0.0008			0.0013		0.0007				<0.0005	0.0009	0.0011		0.0010	0.0011	0.0012	0.0010	0.001	0.0011	0.0012	0.0007	0.0006	0.0008	0.0012	0.0009	0.0009	0.0009	0.001
Selenium	mg/L	<0.001			<0.001			0.0026		<0.0010				0.0022	<0.0010	<0.0010		0.0011	<0.0010	<0.0010	<0.001	0.0012	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0015	<0.0010	<0.0010
Silica (SiO2)	mg/L	8.96			7.48			11.8		10.9				12.2	6.80	8.53		10.7	8.41	8.77	8.66	8.46	5.70	8.86	11.8	12.3	6.38	7.14	10.6	12.9	6.68	8.84
Silicon	mg/L	4.19			3.5			5.51		5.11				5.70	3.18	3.99		5.01	3.93	4.10	4.05	3.95	2.67	4.14	5.50	5.75	2.98	3.34	4.94	6.01	3.12	4.13
Uranium	mg/L	0.0004			0.0001			0.0006		0.0006				0.0009	0.0001	0.0002		0.0012	0.0004	0.0005	0.0003	0.0009	0.0002	0.0004	0.0007	0.0006	<0.0005	<0.0005	0.0005	0.0009	<0.0005	<0.0005
Zinc	mg/L	<0.001			0.0021			0.0013		0.0012				<0.0020	<0.0020	< 0.0040		<0.0020	0.0074	0.0048	0.0035	0.0022	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	< 0.002	<0.0020	<0.0020	<0.0020
Radium 226 ^	pCi/L	<0.4		<u> </u>	NA			NA		NA				NA	NA	NA		NA	NA	NA	NA	NA										
Radium 228 ^	pCi/L	<0.8		†	NA			NA		NA				NA	NA	NA		NA	NA	NA	NA	NA										
	/-																															

Notes & Definitions:

^ one-time analysis

Y/N yes or no gpm gallons per minute deg C degrees Celsius SU standard pH units μS/cm microsiemens per centimeter mV millivolts mg/L milligram per liter pCi/L picocuries per liter

NM not measured (field)

- "<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.
- Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent
 amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the
 initial pH of the sample solution, each components reported as equivalent CaCO3.
- Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program
 by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown
 in this table.

														Well #1	Upgrad	lient																
	Year					20	16							20	17				20	18			2	019			20	20			2021	
	Quarter	Q1		Q2			Q3			Q4			Q1		Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
	Month	3	4	5	6	7	8	9	10	11	12	1	2	3	6	9	11	2	5	8	11	2	5	8	11	2	6	8	12	2	5	8
S	Sample Date	3/30	4/27	5/26	6/23	7/19	8/24	9/21	10/24	11/30	12/14	1/18	2/27	3/22	6/28	9/28	11/29	2/22	5/14	8/9	11/7	2/25	5/23	8/16	11/14	2/13	6/1	8/31	12/14	2/11	5/19	8/12
Lab Ar	nalysis (Y/N)	Y	N	N	Υ	N	N	Υ	N	Υ	N	N	N	Υ	Υ	Y	Υ	Υ	Υ	Υ	Υ	Y	Υ	Υ	Y	Υ	Υ	Υ	Υ	Υ	Υ	Y
														Field I	Parameter	s:																
Purge Flow Rate	gpm	1.5	7.9	7.1	5.8	7.1	7.4	6.8	7.5	9.3	7.5	7.7	7.5	8.2	7.0	7.1	7.5	7.2	7.2	10	7.2	10.0	8.3	11.0	6.5	8.0	10.0	8.0	8.0	8.0	8.0	8.0
Total Purged	gal	306	522	870	297	280	284	288	300	280	295	298	297	291	286	259	287	268	280	267	305	300	321	327	293	314	300	291	280	302	324	300
Depth to Water	ft bgs	4.40	5.07	4.60	4.95	5.55	6.30	6.03	5.73	5.69	5.08	4.30	3.80	3.82	4.50	5.51	5.50	5.40	5.77	5.65	6.50	5.98	4.50	5.68	6.08	5.55	4.17	6.25	3.72	6.48	5.82	7.25
Temperature	deg C	8.8	13.1	11.9	14.2	14.1	12.7	12.5	12.6	10.6	11.3	10.9	10.4	11.2	11.9	11.8	11.6	11.5	11.7	12.0	12.5	11.7	11.5	11.8	12.9	11.6	12.1	12.3	11.5	11.6	12.2	12.3
рH	SU	7.77	7.57	7.46	7.6	7.69	7.59	7.67	7.77	7.72	7.68	7.6	7.67	7.67	7.59	7.6	7.58	7.56	7.49	7.35	7.34	7.44	7.39	7.37	7.32	7.37	7.38	7.57	7.6	7.54	7.56	7.59
Specific Conductance	μS/cm	1224	1199	1284	1246	1226	1143	1176	1223	1280	1305	1392	1415	1351	1159	1162	1241	1278	1218	1289	1204	1235	1308	1253	1232	1277	1268	1067	1190	1142	1235	1212
Oxygen Reduction Potential	mV	-123.1	-162.2	-142.5	-185.4	-156.6	-196.8	-140.6	-148.9	-152.9	-141.0	-143.6	-125.6	-132.2	-201	-176.9	-213.20	-185.3	-219.3	-251.6	-273.0	-232.0	-194.0	-192.0	-159.9	-193.0	-221.7	-187.2	-138.1	-153.4	-208.9	-202.5
															lytical Res																	
Hardness as CaCO3	mg/L	230			306			216	\vdash	271				391	277	215	280	274	275	369	287	252	350	303	263	290	319	255	247	298	313	236
pH (Lab)	SU	7.73			7.57			7.58	\vdash	7.59				7.46	7.74	7.66	7.56	7.75	7.95	7.48	7.50	7.77	7.56	7.23	7.35	7.12	7.26	7.53	7.72	7.39	7.33	7.47
Total Dissolved Solids (Lab)	mg/L	760			745			735	\vdash	725				775	725	705	790	745	770	835	730	735	860	780	705	700	775	710	690	755	785	750
Calcium	mg/L	44.0			59.7	_		42.4	\vdash	51.7				75.7	54.0	41.6	55.6	53.4	53.8	71.5	56.7	49.1	67.8	58.2	51.5	56.5	61.6	49.6	47.4	58.1	60.9	45.4
Magnesium	mg/L	29.1			38.2	_		26.7	\vdash	34.5				49.1	34.6	27.1	34.4	34.2	34.1	46.4	35.4	31.4	43.8	38.3	32.7	36.1	40.0	31.7	31.1	37.2	39.1	29.8
Sodium	mg/L	199			196			210	$\overline{}$	189				167	189	203	195	183	191	154	212	196	172	167	198	183	178	193	196	204	172	177
Potassium Alleri'e Tearl	mg/L	3.00			3.15			3.01 620	\vdash	3.01 615				3.30 640	3.00 585	3.09 670	2.99	3.09 620	3.03 595	3.16	3.15 640	3.01	3.32	3.01	3.01 590	<5	3.05 576	3.05	3.02	<5.00	3.00 620	<5.00
Alkalinity, Total Alkalinity, Bicarbonate	mg/L	610			660			620	-					640	585		625			630	640	610	615	615	590	600		520 520	605 587	570	620	600 600
Alkalinity, Carbonate	mg/L	570 40.0			660 <10.0			<10.0	\vdash	615 <10.0				<10.0	<10.0	670 <10.0	625 <10.0	620 <10.0	595 <10.0	630 <10.0	<10.0	610 <10.0	615 <10.0	615 <10.0	<10.0	600 <10.0	576 <10.0	<10.0	18	570 <10.0	<10.0	<10.0
Alkalinity, Carbonate Alkalinity, Hydroxide	mg/L	<10.0			<10.0			<10.0	$\overline{}$	<10.0				<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Chloride	mg/L mg/L	4.33			6.12			4.30		4.44				4.53	4.32	6.21	4.39	4.30	4.35	4.34	4.23	4.35	4.59	4.36	6.19	4.76	4.76	4.62	4.34	4.27	4.91	4.89
Fluoride	mg/L	0.347			<0.5			0.353		0.337				0.337	0.362	<0.500	0.358	0.354	0.335	0.390	0.359	0.355	0.349	0.335	<0.500	0.348	0.366	0.356	0.342	0.311	0.338	0.35
Sulfate as SO4	mg/L	90.1			108			83.8		117				156	97.4	74.0	101	106	97.2	147	89.9	91.4	131	112	92.1	104	110	79.6	87.9	102	110	98.5
Total Organic Carbon (TOC)	mg/L	2.54			3.3			2.80		3.18				3.84	5.82	2.84	3.33	3.37	3.5	3.94	3.35	3.31	3.70	3.53	3.14	3.29	3.37	3.32	3.17	3.26	3.27	3.23
Nitrate/Nitrite as N	mg/L	<0.020			<0.020			<0.020		<0.200				<0.020	<0.400	<0.400	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Ammonia as N ^	mg/L	NA			NA			NA		NA				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.931	NA	NA	NA	NA	NA	NA	NA
Ortho-Phosphate as P ^	mg/L	NA			NA			NA		NA				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0590	NA	NA	NA	NA	NA	NA	NA
Aluminum	mg/L	<0.050			<0.050			<0.050		<0.050				<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.100	<0.250	<0.050	<0.150	<0.050	<0.250	<0.050	<0.250
Arsenic	mg/L	<0.0005			< 0.0005			<0.0005		<0.0005				0.0009	<0.0005	<0.0005	<0.0005	0.0005	0.0005	0.0005	<0.0005	0.0005	0.0005	<0.0005	<0.0010	<0.0005	<0.0005	<0.0010	0.0008	< 0.0025	0.0005	<0.0005
Cadmium	mg/L	<0.0001			<0.0001			<0.0001		<0.0001				<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0002	<0.0001	<0.0001	<0.0002	<0.0001	< 0.0005	<0.0005	<0.0005
Copper	mg/L	0.0035			0.003			0.0021		0.0041				0.0020	0.0020	0.0030	0.0027	0.0035	0.003	0.0022	0.0025	0.0042	0.0015	0.0019	0.0012	0.0017	0.0017	0.0021	0.0007	<0.0025	0.0039	0.0038
Iron	mg/L	1.20			1.51			0.946		1.64				2.01	1.34	0.101	1.44	1.44	1.39	1.98	1.52	1.26	1.74	1.58	1.41	1.49	1.53	1.24	1.7	1.66	1.69	1.19
Lead	mg/L	<0.0005			<0.0005			<0.0005		<0.0005				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	< 0.0005	<0.0005	<0.0010	<0.0005	<0.0005	<0.0010	<0.0005	<0.0025	<0.0005	<0.0005
Manganese	mg/L	0.267			0.344			0.221		0.312				0.491	0.315	0.202	0.311	0.307	0.306	0.498	0.286	0.355	0.439	0.428	0.354	0.366	0.369	0.297	0.297	0.414	0.388	0.308
Mercury	mg/L	<0.0002			<0.0002			<0.0002		<0.0002				<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0050	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	<0.0005			<0.0005			<0.0005		0.0005				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.0006	<0.0005	0.0005		<0.0005	<0.0010	<0.0005	<0.0005	<0.0010	0.0005	<0.0025	<0.0005	<0.0005
Selenium	mg/L	<0.001			<0.001			<0.001		<0.0010				0.0245	<0.0010	<0.0010	<0.0010	<0.0010	0.0171	0.0120	0.0022	0.0032	0.0024	<0.0010	<0.0020	<0.001	<0.0010	0.0095	0.0171	0.0902	0.0324	0.0331
Silica (SiO2)	mg/L	13.8			15.2			14.8	\sqcup	12.9				14.2	14.9	14.3	14.7	13.4	14.6	13.8	13.7	13.5	13.1	13.1	14.3	13.1	13.1	13.6	14.3	13	13.9	12.5
Silicon	mg/L	6.45			7.12			6.94	\sqcup	6.05				6.64	6.94	6.68	6.86	6.27	6.81	6.45	6.41	6.30	6.13	6.11	6.68	6.13	6.14	6.37	6.67	6.10	6.5	5.84
Uranium	mg/L	<0.0001			0.0021			<0.0001	\vdash	0.0002				0.0002	0.0001	0.0001	0.0001	0.0002	0.0001	0.0002	0.0002	0.0002	0.0002	0.0002	<0.0002	<0.0005	<0.0005	<0.0010	<0.0005	<0.0025	<0.0005	<0.0005
Zinc	mg/L	<0.001		\vdash	<0.001			0.0023	\vdash	0.0301				<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020		<0.0020	<0.0040	<0.0020	<0.0020	<0.0040	<0.0020	<0.0100	<0.0020	<0.0020
Radium 226 ^	pCi/L	<0.4			NA			NA		NA				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Radium 228 ^	pCi/L	<0.8			NA			NA		NA				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes & Definitions:

one-time analysis

Y/N yes or no

gpm gallons per minute deg C degrees Celsius

SU standard pH units µS/cm microsiemens per centimeter

mV millivolts

mg/L milligram per liter

pCi/L picocuries per liter

- "<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.
- Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent
 amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the
 initial pH of the sample solution, each components reported as equivalent CaCO3.
- Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program
 by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown
 in this table.

														Well	#2 Dow	ngradie	nt																
	Year					20	16							20	17					2018				20	19			20	20			2021	
	Quarter	Q1		Q2			Q3			Q4			Q1		Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
	Month	3	4	5	6	7	8	9	10	11	12	1	2	3	6	9	11	2	5	8	8	11	2	5	8	11	2	6	8	12	2	5	8
	Sample Date	3/30	4/21	5/25	6/23	7/19	8/24	9/20	10/19	11/30	12/14	1/26	2/27	3/22	6/13	9/21	11/28	2/22	5/7	8/8	8/9	11/7	2/27	5/22	8/16	11/13	2/6	6/1	8/26	12/14	2/11	5/19	8/12
Lab A	nalysis (Y/N)	Υ	N	N	Υ	N	N	Υ	N	Υ	N	N	N	Υ	Υ	Υ	Υ	Υ	Υ	Y	Y	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
														F	ield Paran	neters:																	
Purge Flow Rate	gpm	0.50	0.50	0.50	0.50	0.50	0.50	0.50	NM	7.20	2.00	NM	NM	NM	NM	NM	NM	0.1	1.00	0.10	1.00	0.50	0.25	0.50	0.25	0.50	0.25	0.25	0.25	0.13	0.50	0.25	0.25
Total Purged	gal	7	6	7	7	6	6	6	6	6	6	8	8	6	8	8	6	6	11	2	6.5	7.5	13	10	9	8	12	8	7	7	12	9	7
Depth to Water	ft bgs	3.69	3.17	4.25	1.42	4.17	4.17	5.50	6.4	4.7	5	3.95	2.74	6.35	0.95	4.85	5.68	6.68	7.4	6.65	6.59	5.17	5.85	0.92	3.60	5.20	5.60	4.00	6.29	7.48	8.10	8.70	8.32
Temperature	deg C	6.3	10.1	13.5	18.4	19.8	14.0	14.1	13.3	10.4	12.4	7.0	4.4	8.4	17.1	12.1	11.7	9.8	8.9	14.0	11.1	11.9	9.1	8.1	10.5	11.5	10.4	9.1	11.5	11.0	9.8	9.4	11.2
рH	SU	7.58	7.6	7.6	7.64	7.68	7.73	7.53	7.66	7.66	7.71	7.57	7.68	7.78	7.56	7.66	7.52	7.59	7.48	7.84	7.20	7.15	7.41	7.34	7.23	7.19	7.32	7.41	7.44	7.56	7.50	7.54	7.57
Specific Conductance	μS/cm	899	867	804	600	369	815	877	881	904	872	908	1193	921	633	852	879	887	847	828	895	955	960	1091	1051	1083	1083	1134	1017	1099	964	939	1038
Oxygen Reduction Potential	mV	-9.4	-13.7	-35.7	-66.9	-112.1	-76.3	-88.3	-82	-72.7	-81.1	-66.8	-55.7	-67	-54.3	-53.7	-63.70	-44.9	-34	-75.6	-127	-91.9	48.4	-57.8	-30.1	-5.5	25.3	-51.3	19.9	3.2	-4.8	-48.3	-26.0
															Analytica																		
Hardness as CaCO3	mg/L	444			314			452		432				485	352	378	449	412	415	422	415	465	488	537	513	603	540	575	560	569	624	529	503
pH (Lab)	SU	7.63			7.66			7.48		7.55				7.72	7.6	7.51	7.51	7.62	7.6	7.61	7.45	7.50	7.5	7.4	7.04	7.12	7.20	7.09	7.3	7.2	7.17	7.15	7.32
Total Dissolved Solids (Lab)	mg/L	685			470			525		495				635	415	525	540	515	545	545	575	550	575	695	655	690	695	730	665	685	660	655	685
Calcium	mg/L	72.2			54.9			75.9		72.7				81.0	60.9	64.8	78.0	70.1	70.2	72.7	70.4	78.7	81.3	87.1	83.3	99.4	87.2	92.2	90.1	90	97.9	81.2	76.8
Magnesium	mg/L	63.9			43.1			63.8		60.8				68.7	48.5	52.6	61.8	57.4	58.2	58.4	58.2	65.2	69.2	77.6	74.0	86.3	78.2	83.7	81.3	83.7	92.2	79.2	75.6
Sodium	mg/L	22.2			16.5			19.8		20.7				21.8	16.1	17.0	20.1	19.4	19.2	19.6	19.1	21.3	22.1	23.4	21.4	25.5	23.3	24.5	23.8	24.5	26.9	23.4	23.1
Potassium	mg/L	2.04			2.1			2.16	_	2.05				1.94	2.22	1.64	2.19	1.76	1.68	2.00	1.82	2.08	1.97	1.94	2.06	2.40	2.04	2.00	2.06	2.22	<5.00	1.94	<5.00
Alkalinity, Total	mg/L	342			280			380	_	380				375	285	395	375	333	350	380	328	340	395	460	365	348	324	324	345	341	385	375	380
Alkalinity, Bicarbonate	mg/L	338			280			380	_	380				375	285	395	375	333	350	380	328	340	395	460	365	348	324	324	345	333	385	375	380
Alkalinity, Carbonate	mg/L	<10.0			<10.0			<10.0		<10.0				<10.0	<10.0	<10.0 <10.0	<10.0 <10.0	<10.0	<10.0	<10.0	<10.0 <10.0	<10.0 <10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0 <10.0	<10.0 <10.0	<10.0 <10.0	<10.0	<10.0	<10.0
Alkalinity, Hydroxide Chloride	mg/L mg/L	<10.0 35.8			<10.0 6.8			<10.0 27.4		<10.0 26.2				<10.0 23.3	<10.0	19.0	23.4	<10.0 24.7	<10.0 27.2	34.5	34.1	39.3	<10.0 40.1	<10.0 42.9	<10.0 45.2	47.2	<10.0 48.9	50.3	44.8	44.6	<10.0 46	<10.0 45.9	<10.0 37
Fluoride	mg/L	0.230	_		0.298			0.272		0.256				0.228	7.11 0.313	0.263	0.246	0.244	0.224	0.259	0.281	0.263	0.244	0.246	0.221	<0.500	<0.500	<0.500	0.254	0.248	0.216	0.236	<0.500
Sulfate as SO4	mg/L	129			70			114		117				153	75.2	98.4	94.7	104	102	112	111	137	138	196	189	182	199	230	204	219	190	199	186
Total Organic Carbon (TOC)	mg/L	3.34			14			2.64		3.4				3.52	3.56	2.61	2.25	2.10	2.02	2.06	1.93	2.08	1.87	2.69	2.28	1.99	1.80	1.84	1.87	1.74	2.18	1.74	1.77
Nitrate/Nitrite as N	mg/L	0.042			<0.02			<0.02		0.089				<0.020	<0.02	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Ammonia as N ^	mg/L	NA			NA			NA		NA				NA	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	<0.100	NA	NA	NA	NA	NA NA	NA	NA NA
Ortho-Phosphate as P ^	mg/L	NA			NA			NA.		NA				NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	<0.0500	NA	NA	NA	NA	NA	NA	NA.
Aluminum	mg/L	0.156			<0.05			<0.05		<0.050				<0.050	<0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.100	<0.050	<0.250	<0.050	<0.250
Arsenic	mq/L	0.0008			0.0015			0.0010		0.0013				0.0009	0.0017	0.0006	0.0011	0.0010	0.0009	0.0012	0.0012	0.0010	0.0012	0.0011	0.0012	0.0012	0.0011	0.0009	<0.001	0.0013	< 0.0025	0.0009	0.0012
Cadmium	mg/L	<0.0001			<0.0001			< 0.0001		<0.0001				<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0002	<0.0001	<0.0005	<0.0005	<0.0005
Copper	mg/L	0.0004			0.0005			0.0003		0.0051				0.0007	0.0002	0.0004	0.0001	0.0056	0.0002	0.0006	0.0004	0.0003	0.001	0.0016	0.0003	0.0002	< 0.0005	<0.0005	<0.0010	< 0.0005	<0.0025	0.0006	0.0005
Iron	mg/L	0.081			0.085			0.118		<0.050				0.213	<0.050	< 0.050	0.074	0.060	0.073	0.089	0.163	0.082	0.062	0.116	0.105	0.119	0.094	0.107	0.109	0.159	< 0.250	<0.050	< 0.250
Lead	mg/L	<0.0005			<0.0005			<0.0005		0.0078				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0010	<0.0005	<0.0025	<0.0005	
Manganese	mg/L	0.497			0.54			0.354		0.359				0.384	0.259	0.307	0.309	0.304	0.306	0.349	0.375	0.320	0.423	0.504	0.404	0.427	0.454	0.444	0.412	0.441	0.422	0.401	0.389
Mercury	mg/L	<0.0002			<0.0002			<0.0002		<0.0002				<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0050	< 0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	0.0014			0.0022			0.0024		0.0025				0.0021	0.0025	0.0021	0.0020	0.0024	0.0022	0.0024	0.0029	0.0024	0.0029	0.0026	0.0019	0.0024	0.0021	0.0023	0.0024	0.0027	0.0026	0.0026	0.0028
Selenium	mg/L	<0.001			<0.001			<0.001		0.0011				0.0045	<0.001	<0.0010	<0.0010	0.0012	<0.001	0.0012	0.0015	0.0013	0.0021	0.001	0.0011	0.0011	<0.0010	0.0012	<0.002	0.0012	0.0069	0.0012	0.0012
Silica (Si02)	mg/L	11.6			14.7			12.8		11.9				10.9	15.5	13.0	13.3	11.1	11.5	11.4	11.5	11.0	11.2	10.5	11.6	12.8	11.2	10.6	11.5	12.7	11.2	10.9	11.3
Silicon	mg/L	5.42			6.89			5.97		5.55				5.12	7.23	6.08	6.20	5.19	5.39	5.34	5.38	5.15	5.26	4.93	5.44	5.99	5.22	4.98	5.39	5.94	5.24	5.09	5.3
Uranium	mg/L	0.0013			0.0007			0.0015		0.0016				0.0014	8000.0	0.0013	0.0013	0.0013	0.0013	0.0013	0.0015	0.0014	0.0019	0.0016	0.0012	0.0015	0.0016	0.0016	0.0013	0.0017	<0.0025	0.0015	0.0015
Zinc	mg/L	0.0034			<0.001			0.0010		0.0311				<0.0020	<0.002	<0.0040	<0.0020	0.0053	0.0022	0.0028	<0.0020	<0.0020	0.0025	<0.002	<0.0020	<0.0020	<0.0020	<0.0020	<0.0040	<0.0020	<0.0100	<0.0020	<0.0020
Radium 226 ^	pCi/L	<0.4			NA			NA		NA				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Radium 228 ^	pCi/L	<0.8			NA			NA		NA				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes & Definitions:

- ^ one-time analysis
- Y/N yes or no
- gpm gallons per minute
- deg C degrees Celsius
- SU standard pH units
- μS/cm microsiemens per centimeter
- mV millivolts
- mg/L milligram per liter
- pCi/L picocuries per liter
- NM not measured (field) NA not analyzed (lab)

- "<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.
- Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent
 amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the
 initial pH of the sample solution, each components reported as equivalent CaCO3.
- Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program
 by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown
 in this table.

														Wi	ltse Well																	
	Year					20:	16							20	017			1	20	18		 	20	019			20	20			2021	
	Quarter	Q1		Q2			Q3			Q4			Q1		Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
	Month	3	4	5	6	7	8	9	10	11	12	1	2	3	6	9	11	2	5	8	11	2	5	8	11	2	5	8	12	2	5	8
5	ample Date	3/31	4/27	5/25	6/23	7/19	8/24	9/20	10/24	11/29	12/13	1/18	2/27	3/21	6/13	9/28	11/28	2/22	5/16	8/9	11/8	2/28	5/23	8/19	11/11	2/17	5/13	8/12	12/15	2/24	5/21	8/11
Lab An	alysis (Y/N)	Υ	N	N	Υ	N	N	Υ	N	Υ	N	N	N	Y	Y	Y	Y	Υ	Υ	Y	Y	Υ	Υ	Y	Y	Y	Y	Υ	Y	Y	Y	Υ
														Field	Parameter:	s:														•		
Purge Flow Rate	gpm	150.0	38.5	23.4	18.6	19.9	17.3	15.8	17.0	10.6	18.1	39.5	39.6	39.6	NM	18.3	23.5	11.9	12.0	18.5	12.3	28.0	38.0	18.0	17.0	35.0	24.4	16.0	18.0	15.0	12.5	8.5
Total Purged	gal	5850	4228	4229	3686	2844	2979	2637	2724	2992	2916	3595	3580	3560	2980	2712	2423	2700	2890	2783	2747	3017	3200	3010	3058	3825	3495	3200	3030	2920	3000	1800
Depth to Water	ft bgs	0.35	0.00	0.85	2.15	2.99	2.60	3.32	6.85	1.90	1.95	0.30	0.00	0.00	2.05	3.40	3.40	3.35	3.93	4.13	3.78	2.40	0.05	2.47	2.68	0.43	1.60	3.18	5.65	3.64	3.70	4.55
Temperature	deg C	6.7	8.8	10.4	10.7	11.5	12.1	11.5	11.0	9.1	8.8	7.6	7.2	7.5	10.3	11.3	9.7	8.0	10.2	11.7	10.4	8.0	9.3	10.7	9.9	6.7	9.8	11.7	8.7	8.9	9.9	11.3
рH	SU	7.22	7.32	7.34	7.26	7.26	7.24	7.22	7.22	7.32	7.29	7.2	7.17	7.12	7.41	7.27	7.3	7.26	7.13	7.04	7.07	7.17	7.08	7.09	7.09	7.01	7.12	7.22	7.26	7.25	7.23	7.33
Specific Conductance	μS/cm	2043	1633	1805	1768	1478	1602	1941	1937	2014	2036	2262	2276	2085	1869	2074	2190	2232	2144	2072	2167	2170	2151	1964	1970	2171	2017	1450	1984	1739	1789	2012
Oxygen Reduction Potential	mV	105.6	17.9	20.1	38.5	26.9	20.0	28.6	21.6	13.7	20.9	3.2	18.3	6.0	13.3	19.5	19.2	14.3	29.9	-52.7	-18.8	22.7	-10.6	-23.7	51.9	49.33	71.9	72.2	73.7	6.9	31.2	41.5
														Lab Ana	ılytical Resi	ılts:		_				_				_				_		
Hardness as CaCO3	mg/L	990			1050			1030		963				1040	1060	1140	1150	1090	1160	1130	1180	1150	1080	1080	1060	982	1060	1070	1130	1090	1070	1080
pH (Lab)	SU	7.22			7.34			7.29		7.36				7.22	7.46	7.30	7.33	7.70	8.35	7.22	7.42	7.38	7.35	7.11	7.09	7.12	7.09	7.29	6.86	7.27	6.98	7.25
Total Dissolved Solids (Lab)	mg/L	1580			1480			1520		1520				1480	1510	1680	1740	1740	1740	1750	1720	1710	1670	1520	1480	1600	1560	1580	1540	1550	1500	1580
Calcium	mg/L	197			208			206		186				205	211	219	226	211	216	221	230	226	214	214	208	191	206	206	215	208	199	206
Magnesium	mg/L	121			128			126		121				128	129	143	142	136	150	139	147	143	132	132	132	123	132	136	144	138	140	136
Sodium	mg/L	95.9			75.2			80.7		82.4				110	87.5	80.7	83.4	80.4	82.3	79.1	81.2	83.2	89.4	72.4	67.3	68.1	69.1	64	67.5	65.1	61.1	61.6
Potassium	mg/L	4.64			4.56			4.90		4.42				4.61	4.79	4.62	<5.00	4.73	4.98	5.01	5.00	5.01	4.77	4.92	4.85	4.33	<5.00	4.48	4.54	<5.00	4.35	<5.00
Alkalinity, Total	mg/L	460			500			470		450				410	445	510	475	445	435	463	505	515	469	474	460	460	431	475	470	480	480	480
Alkalinity, Bicarbonate	mg/L	440			500			470		450				410	445	510	475	445	435	463	505	515	469	474	460	460	431	475	470	480	480	480
Alkalinity, Carbonate	mg/L	20.0			<10.0			<10.0		<10.0				<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Alkalinity, Hydroxide	mg/L	<10.0			<10.0			<10.0	_	<10.0				<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Chloride	mg/L	81.0			76.3			62.3		70.1				72.5	72.5	68.7	68.9	66.7	60	57.2	57.5	67.2	67.8	49.9	48.2	57.7	51.8	58.1	57.9	54.8	52.3	49
Fluoride	mg/L	0.285			<0.5			<0.5		0.3				<0.500	0.332	<0.500	<0.500	<0.500	<0.500	<0.500	0.298	0.324	0.306	<0.500	<0.500	<0.500	<0.500	0.304	0.292	0.276	0.28	<0.500
Sulfate as SO4	mg/L	671			595			656	_	676				731	702	779	772	832	714	733	741	801	709	627	627	711	633	704	728	683	661	679
Total Organic Carbon (TOC)	mg/L	3.54			4.1			3.15	_	3.02				3.40	3.54	3.34	3.26	3.37	3.5	3.51	3.63	3.82	4.87	4.27	3.30	4.22	3.80	3.69	3.43	3.29	3.33	3.48
Nitrate/Nitrite as N	mg/L	0.456			0.891			1.08	_	0.965				0.492	1.07	1.80	1.94	2.26	2.48	2.26	1.99	1.95	0.651	0.896	1.31	1.05	0.865	1.25	1.48	1.82	1.49	2.06
Ammonia as N ^	mg/L	NA NA			NA			NA	_	NA				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.100	NA	NA	NA	NA	NA	NA	NA
Ortho-Phosphate as P ^	mg/L	NA <0.05			NA 10.05	_		NA 10.05	_	NA <0.050		-		NA 10.050	NA 10.1	NA co.oso	NA 10.050	NA 10.100	NA 40.050	NA 10.050	NA 100	NA 10.100	NA 10.100	NA 10.100	<0.0500	NA 10.100	NA 10.050	NA co.100	NA 10.050	NA 40.050	NA <0.050	NA <0.050
Aluminum	mg/L	<0.05			<0.05			<0.05	-	<0.050				<0.050	<0.1	<0.050	<0.250	<0.100	<0.050	<0.050	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.250	<0.100	<0.050	<0.250	<0.050	<0.250
Arsenic	mg/L	<0.0025			<0.0025			0.0005	_	0.0008		-		0.0009	0.0006	0.0005	0.0029	0.0009	0.0006	<0.0025	<0.001	<0.0010	0.0006	<0.0010	<0.0010	<0.0010	<0.0025	<0.0010	0.0005	<0.0025	<0.0025	<0.0025
Cadmium	mg/L	<0.0005			<0.0005			<0.0005	-	<0.0001		-		<0.0001	<0.0001	<0.0001	<0.0005	<0.0001	<0.0001	<0.0001	<0.0002	<0.0002	<0.0001	<0.0002	<0.0002	<0.0002	<0.0005	<0.0002	<0.0001	<0.0005	<0.0025	<0.0025
Copper	mg/L mg/L	0.0018			< 0.0024			0.0020	-	0.0038		-		0.0023	0.0019	0.0025 <0.050	0.0097	0.0020	0.0019 0.151	0.0018	0.0030	0.002	0.0021	0.0021	0.0012	0.0020	<0.0025	<0.100	0.0006	<0.250	<0.0025 0.304	<0.0025
Iron Lead	mg/L mg/L	<0.0025	 		<0.05		-	< 0.0025	_	< 0.0005		 		<0.0005	<0.0005	<0.0005	<0.250	<0.0005	<0.0005	0.125 <0.0005	<0.001	0.151 <0.0010	< 0.0005		0.209 <0.0010	< 0.0010	<0.250	<0.100	0.216 <0.0005	<0.250	<0.0025	<0.250
	mg/L mg/L	0.673	-		0.857		-	0.756		0.608				0.440	0.797	0.881	4.50	0.845	0.997	1.37	1.08	0.937	0.357	0.902	0.892	0.419	0.816	1.03	0.943	1.21	0.0025	1.4
Manganese Mercupi	mg/L mg/L	<0.0002	 		<0.0002		-	<0.0002	_	<0.0002		-		<0.0002	<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002		<0.0002	<0.0002	<0.0002		<0.0002
Mercury Molybdenum	mg/L mg/L	<0.0002			<0.0002			0.0002		0.0002				0.0016	0.0002	0.0002	0.0002	0.0020	0.002	0.0002	0.0019	0.0002	0.0002	0.0020	0.0002	0.0002	<0.0002	0.0002	0.0002	<0.0002		<0.0002
Selenium	mg/L	<0.0023			<0.0023			0.0017		0.0018		-		0.0016	0.0021	0.0021	0.0093	0.0020	0.0025	0.0025	<0.0019	0.0017	0.0014	<0.0020	<0.0017	<0.0013	<0.0023	<0.0018	0.0017	<0.0023	<0.0023	<0.0023
Silica (SiO2)	mg/L	13.9	 		16.1			16.4		14.3		-		14.7	15.5	16.1	13.4	14.1	15.9	16.2	15.9	14.1	13.2	15.4	14.9	12.2	12.9	13.8	15.7	14.6	14.8	15.4
Silicon	mg/L	6.51			7.53			7.67		6.69				6.85	7.22	7.54	6.29	6.58	7.42	7.58	7.44	6.6	6.19	7.20	6.96	5.72	6.05	6.43	7.33	6.82	6.91	7.19
Uranium	mg/L	0.0029			0.0021			0.0023		0.0026		-		0.0024	0.0021	0.0021	0.0110	0.0025	0.0024	0.0024	0.0032	0.0036	0.0044	0.0029	0.0023	0.0039	0.0032	0.0024	0.0032	<0.0025		<0.0025
Zinc	mg/L	0.0156			0.0364			0.0301		0.0269				0.0194	0.0021	0.0208	0.0855	0.0023	0.0024	0.0024	0.0032	0.0175	0.0128	0.0023	0.0108	0.0122	0.0032	0.0024	0.0098	0.0130	0.0116	0.0311
Radium 226 ^	pCi/L	0.7 +/- 0.1			NA			NA		NA				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA
Radium 228 ^	pCi/L	<0.8			NA NA			NA NA		NA NA		-		NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
nuurulli 220 ··	PCI/L	₹0.0			IVA			IVA		IVA				IVA	IVA	IVA	IVA	IVA	IVA	INM	IVA	INM	IVA	IVA	IVA	IVA	IVM	IVA	IVA	IVA	IVA	IVM

Notes & Definitions:

^ one-time analysis

Y/N yes or no

gpm gallons per minute

deg C degrees Celsius

SU standard pH units

μS/cm microsiemens per centimeter

mV millivolts

mg/L milligram per liter

pCi/L picocuries per liter

NM not measured (field)

- "<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.
- Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent
 amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the
 initial pH of the sample solution, each components reported as equivalent CaCO3.
- Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program
 by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown
 in this table.

													MV	V-HGA-4	1															
	Year	2016						20)17								2018				20	019	1		20	20			2021	
	Quarter	Q4		Q1			Q2			Q3			Q4		0	1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
	Month	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	5	8	11	2	5	8	11	2	5	8	12	2	5	8
So	mple Date	12/12	1/26	2/28	3/22	4/27	5/31	6/13	7/27	8/16	9/21	10/27	11/28	12/12	1/3	2/22	5/15	8/9	11/8	2/28	5/23	8/16	11/13	2/13	5/13	8/26	12/14	2/22	5/19	8/12
	ılysis (Y/N)	Y	N	N	Y	N	N	Y	N	N	Υ	N	Υ	N	N	Y	Υ	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
									-				Field	Parametei	s:															
Purge Flow Rate	gpm	0.5	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	9.40	NM	0.1	1.5	2.00	1.00	1.12	1.00	1.00	0.25	1.00	0.25	0.25	0.13	0.25	0.13	0.25
Total Purged	gal	21	21	21	21	21	21	19.5	20	20	21	21	21	24	19	21	21	19	21	24	22	21	21	22	21	20	21	21	21	20
Depth to Water	ft bgs	0.73	0.57	0.60	0.83	0.94	2.06	2.53	3.25	2.65	3.31	3.31	1.76	4.31	1.37	0.55	2.60	3.98	1.90	0.49	0.42	1.95	1.15	0.38	2.36	3.80	1.75	0.90	2.91	3.95
Temperature	deg C	7.3	4.8	6.4	8.1	7.2	9.9	8.4	8.6	8.8	9.0	9.2	9.0	9.3	8.8	7.8	8.1	8.7	8.8	7.6	7.7	8.5	8.8	7.9	7.4	9.2	8.6	7.8	8.2	8.9
pН	SU	7.29	7.36	7.40	7.41	7.33	7.36	7.40	7.36	7.35	7.33	7.31	7.27	7.27	7.33	7.30	7.18	7.27	7.05	7.15	7.18	7.16	7.09	7.12	7.23	7.28	7.31	7.29	7.34	7.37
Specific Conductance	μS/cm	1284	1257	1201	1155	1153	1113	1055	1099	1050	1124	1072	1171	1160	1141	1154	1098	1057	1167	1183	1102	1083	1127	1122	1093	1022	1158	975	1093	1108
Oxygen Reduction Potential	mV	-72.1	-86.6	-105.1	-104.4	-74.5	-91.3	-134.7	-137.6	-131.0	-139.5	-77.3	-157.9	-70.1	-96.6	-157.3	-130.9	-230.8	-190.9	-128.3	-140.7	-130.9	-104.9	-107.8	-86.7	-61.1	-64.7	-67.9	-116.8	-104.9
													Lab Ana	lytical Res	ults:															
Hardness as CaCO3	mg/L	724			611			616			522		595			561	555	524	625	613	563	544	624	563	528	571	612	630	582	515
pH (Lab)	SU	7.30			7.17			7.31			7.25		7.21			7.58	8.15	7.33	7.12	7.2	8.17	6.95	6.88	6.78	6.89	7.07	6.95	7.38	6.89	7.05
Total Dissolved Solids (Lab)	mg/L	855			710			715			750		775			740	730	695	770	795	695	695	715	705	685	700	665	685	680	735
Calcium	mg/L	147			118			121			102		118			110	108	102	124	122	110	106	123	112	101	111	122	126	114	98.7
Magnesium	mg/L	86.7			76.7			76.6			64.9		72.8			69.3	69	65.4	76.5	74.7	70.3	67.9	76.8	68.9	67.0	71.7	74.9	76.8	72	65.2
Sodium	mg/L	19.5			27.4			28.6			24.9		27.2			26.5	30.4	29.9	27.6	27	28.6	28.3	31.9	27.9	30.3	30.5	26.8	28.4	27.4	26.4
Potassium	mg/L	2.02			2.13			2.11			1.75		2.21			2.17	2.22	2.33	2.13	2.16	2.00	2.10	2.38	2.05	2.06	2.08	2.11	2.24	2.03	<5.00
Alkalinity, Total	mg/L	545			465			415			465		475			460	425	410	460	455	445	455	432	435	416	485	457	475	465	470
Alkalinity, Bicarbonate	mg/L	545			465			415			465		475			460	425	410	460	455	445	455	432	435	416	485	457	475	465	470
Alkalinity, Carbonate	mg/L	ND			<10.0			<10.0			<10.0		<10.0			<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Alkalinity, Hydroxide	mg/L	ND			<10.0			<10.0			<10.0		<10.0			<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Chloride	mg/L	10.9 0.577			8.75 0.485			7.95 0.506			8.96 0.517		8.74 0.495			8.43	7.57	6.47 0.482	9.40	10.5 0.484	8.06 0.456	8.44 0.443	9.46 0.520	8.39 0.447	7.64 0.449	8.78	10.1	9.65	9.41 0.434	11.1
Fluoride	mg/L															0.496	0.459		0.487							0.431	0.473	0.424		<0.500
Sulfate as SO4 Total Organic Carbon (TOC)	mg/L mg/L	240 NA			229 4.54			192 4.35			205 4.69		204 4.79			222 4.56	190 4.57	169 4.30	201 4.72	221 4.82	186 4.45	212 4.58	190 4.35	193 4.8	181 4.30	179 4.56	187 4.67	191 4.31	184 4.36	194 4.55
Nitrate/Nitrite as N	mg/L	<0.020			<0.020			<0.020			<0.020		<0.100			<0.020	<0.020	<0.020	<0.020	0.173	<0.020	<0.020	<0.020	<0.020	<0.100	<0.020	<0.020	<0.020	<0.020	<0.020
Ammonia as N ^	mg/L	NA			NA			NA			NA		NA			NA	NA	NA	NA	NA	NA	NA	0.528	NA	NA	NA	NA	NA	NA	NA
Ortho-Phosphate as P ^	mg/L	NA NA			NA NA			NA NA			NA NA		NA NA			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.0500	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Aluminum	mg/L	0.423			<0.050			<0.050			<0.050		<0.050			<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.100	<0.100	<0.100	<0.050	<0.050	<0.050	<0.250
Arsenic	mg/L	0.0030			0.0029			0.0028			<0.0005		0.0035			0.0037	0.0034	0.0036	0.0032	0.0031	0.0029	0.0028	0.0033	0.0022	0.0025	0.0026	0.0038	0.0036	0.0033	0.0034
Cadmium	mg/L	<0.0001			<0.0001			<0.0001			<0.0001		<0.0001			<0.0001	<0.0001	<0.0001	_	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0002	<0.0002	<0.0001	<0.0001	<0.0005	<0.0005
Copper	mg/L	0.0006			0.0008			0.0002			0.0004		0.0002			0.0006	0.0008	0.0004	0.0008	<0.0010	0.0003	0.0004	0.0002	0.0005	<0.0010	<0.0010	<0.0005	0.0006	0.0007	0.0009
Iron	mg/L	3.71			7.29			7.32			0.378		7.84			7.60	7.92	8.55	8.44	8.35	7.98	8.38	9.76	8.59	8.22	8.95	9.31	9.6	9.29	8.52
Lead	mg/L	<0.0005			<0.0005			<0.0005			<0.0005		<0.0005			<0.0005	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0010	<0.0010	<0.0005	<0.0005	<0.0005	<0.0005
Manganese	mg/L	4.07			2.78			2.37			2.03		2.11			1.99	1.81	1.58	2.13	2.56	2.12	1.84	1.78	1.77	1.49	1.66	2.36	2.54	2.51	1.79
Mercury	mg/L	ND			<0.0002			<0.0002			<0.0002		<0.0002			<0.0002	<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<0.0050	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	0.0013			0.0024			0.0027			0.0028		0.0027			0.0030	0.0031	0.0038	0.0029	0.0026	0.0027	0.0029	0.0031	0.0025	0.0030	0.0032	0.0029	0.0027	0.003	0.0033
Selenium	mg/L	<0.001			0.0030			<0.001			<0.0010		<0.0010			<0.0010	0.002	0.0016	<0.001	0.001	<0.0010	<0.0010	<0.0010	<0.001	<0.0020	<0.0020	<0.001	<0.0010	0.001	0.0057
Silica (SiO2)	mg/L	22.3			16.8			18			16.5		17.9			15.8	16.4	15.7	17.3	15.9	14.9	14.9	16.5	15.2	13.9	15.4	18.3	16.9	16.3	14.3
Silicon	mg/L	10.4			7.86			8.41			7.72		8.35			7.37	7.67	7.34	8.10	7.46	6.96	6.96	7.69	7.09	6.48	7.21	8.56	7.88	7.61	6.68
Uranium	mg/L	0.0010			0.0004			0.0004			0.0004		0.0004			0.0004	0.0004	0.0003	0.0005	0.0005	0.0004	0.0004	0.0003	<0.0005	<0.0010	<0.0010	0.0005	<0.0005	<0.0005	<0.0005
Zinc	mg/L	0.0039			0.0046			<0.002			<0.0040		<0.0020			<0.002	<0.002	<0.002	<0.002	<0.0020	<0.0020	<0.0020	<0.0020	<0.002	<0.0040	<0.0040	<0.002	<0.0020	<0.0020	<0.0020
		3.000			3.00.0								5.5526				-5.552			5.5520	0.0020	5.5520	5.5520	-5.552	5.55 76	5.55.76		5.5520	3.5520	2.2220

Notes & Definitions:

one-time analysis

Y/N yes or no

gpm gallons per minute

deg C degrees Celsius

SU standard pH units μS/cm microsiemens per centimeter

mV millivolts

mg/L milligram per liter

pCi/L picocuries per liter NM not measured (field)

- 1. "<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.
- 2. Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the initial pH of the sample solution, each components reported as equivalent CaCO3.
- 3. Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown in this table.

													MW-	1-A															
	Year				20	017								2018					Г	20	19			20	20			2021	
	Quarter	Q2		C	23			Q4			Q1		C)2		Q3		Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
	Month	6	7	8	9	9	10	11	12	1	2	3	4	5	6	7	8	11	2	5	8	11	2	5	9	11	2	5	8
Sa	imple Date	6/7	7/18	8/23	9/7	9/26	10/26	11/16	12/5	1/2	2/9	3/22	4/11	5/10		7/23	8/7	11/1	2/20	5/30	8/14	11/5	2/12	5/28	9/1	11/16	2/15	5/20	8/23
Lab And	alysis (Y/N)	Y	N	N	N	Υ	N	Y	N	N	Y	N	N	Υ	N	N	Y	Υ	Υ	Υ	Υ	Υ	Y	Υ	Υ	Υ	Υ	Υ	Υ
													Field Para	meters:															
Purge Flow Rate	gpm	NM	NM*	NM*	NM	NM	NM	NM	NM	NM	0.1	NM	0.1	0.1	***	0.12	0.10	0.09	0.12	0.12	0.06	0.25	0.25	0.25	0.13	0.13	0.13	0.13	0.25
Total Purged	gal	12.8	NM*	NM*	NM	NM	2.0	2.0	1.0	1.5	2	1.5	1	1.3		1.5	1.5	1.6	1.0	1.5	1.1	1.5	1.0	1.0	1.0	1.3	1.0	2.0	1.0
Depth to Water	ft bgs	215.42	NM*	215.92	215.54	216.33	216.31	216.47	216.58	216.21	216.47	216.47	216.54	216.54		216.63	216.63	216.65	216.55	216.43	216.33	216.13	216.05	215.85	215.56	215.80	215.60	215.53	215.71
Temperature	deg C	17.7	NM*	NM*	10.7	9.7	9.1	9.1	8.7	9.5	9.0	8.7	9.6	9.2		9.9	10.0	8.9	7.5	10.3	9.6	9.7	8.1	9.1	9.6	9.4	8.4	9.6	10.1
pН	SU	7.78	NM*	NM*	7.35	7.38	7.29	7.28	7.25	7.19	7.37	7.28	6.8	6.97		6.99	7.05	7.01	7.13	6.96	7.05	7.00	7.13	7.18	7.22	7.24	7.19	7.30	7.35
Specific Conductance	μS/cm	1362	NM*	NM*	1555	1563	1616	1650	1693	1700	1723	1735	1647	1761		1734	1815	1781	1776	1681	1757	1737	1797	1855	1664	1670	1550	1647	1691
Oxygen Reduction Potential	mV	-34.6	NM*	NM*	-54.7	-46.5	-50.0	-48.3	-49.6	-44.6	-52.8	-37.5	142.4	0.4		-26.4	-33.2	101.4	-11.8	25.4	-18.7	3.6	12.7	4.2	-20.1	111.4	23.8	-13.4	-6.5
												La	b Analytic	al Results:															
Hardness as CaCO3	mg/L	124				133		130			159			156			160	174	159	153	148	150	159	165	161	168	168	150	158
pH (Lab)	SU	7.74				7.35		7.33			7.22			7.45			7.17	7.27	7.13	7.03	7.14	6.92	7.19	6.91	7.23	7.17	7.22	7.13	7.1
Total Dissolved Solids (Lab)	mg/L	975				1080		1120			1100			1150			1040	1130	1160	1150	1150	1140	1190	1150	1150	1170	1250	1150	1190
Calcium	mg/L	24.7				25.8		24.9			30.5			29.7			30.9	34.0	31.2	29.8	27.9	29.0	30.9	31.6	30.6	32.8	32.1	28.3	29.9
Magnesium	mg/L	15.1				16.7		16.6			20.1			19.9			20.1	21.5	19.7	19.1	18.9	18.8	19.9	20.8	20.6	20.9	21.4	19.2	20.3
Sodium	mg/L	324				329		325			348			327			333	358	357	319	348	333	337	349	348	353	357	314	333
Potassium	mg/L	1.98				2.02		<5.00			<5.00			2.12			2.23	2.47	2.34	2.18	2.29	2.12	2.13	<5.00	2.29	<3.00	<5.00	2.18	<5.00
Alkalinity, Total	mg/L	375				450		380			415			353			385	395	375	355	368	420	360	340	325	366	400	400	370
Alkalinity, Bicarbonate	mg/L	375				450		380			415			353			385	395	375	355	368	420	360	340	325	366	400	400	370
Alkalinity, Carbonate	mg/L	<10.0				<10.0		<10.0			<10.0			<10.0			<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Alkalinity, Hydroxide	mg/L	<10.0				<10.0		<10.0			<10.0			<10.0			<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Chloride Fluoride	mg/L mg/L	2.75 0.268				2.16 0.245		<5.00 <0.500	_		2.19 0.240			<5 <0.5			2.12 0.260	2.20 0.240	2.74 0.266	2.33 0.242	2.72 0.252	2.66 0.246	0.234	2.71 0.228	2.74 0.24	2.88 0.264	2.73 0.212	2.34 0.223	2.78 0.24
Sulfate as SO4	mg/L mg/L	427				432		511			518			522			515	511	508	494	537	495	506	532	510	508	553	531	507
Total Organic Carbon (TOC)	mg/L	5.03				1.36		1.58			1.51			1.54			1.60	1.75	1.61	1.67	1.59	1.50	1.55	1.55	1.49	1.57	1.58	1.49	1.57
Nitrate/Nitrite as N	mg/L	<0.200				<0.400		<0.100			<0.020			<0.020			<0.020	0.028	<0.020	<0.020	<0.020	0.020	<0.020	0.046	<0.020	<0.020	<0.020	<0.020	0.036
Ammonia as N ^	mg/L	NA				NA NA		NA NA			NA			NA NA			NA	NA	NA	NA	NA	0.387	NA	NA	NA	NA NA	NA	NA	NA
Ortho-Phosphate as P ^	mg/L	NA				NA		NA			NA			NA.			NA	NA	NA	NA	NA	<0.0500	NA	NA	NA	NA	NA	NA	NA
Aluminum	mg/L	<0.050				<0.050		<0.250			<0.250			<0.050			<0.050	<0.100	<0.100	<0.050	<0.050	<0.050	<0.100	<0.250	<0.050	<0.050	<0.250	<0.050	<0.250
Arsenic	mg/L	<0.0005				<0.0005		<0.0025			<0.0025			<0.0005			<0.0005	<0.0005	<0.0010	<0.0005	<0.0005	<0.0005	<0.0010	<0.0010	<0.0025	<0.0005	<0.0015	<0.0015	<0.0025
Cadmium	mg/L	<0.0001				<0.0001		<0.0005			<0.0005			<0.0001			<0.0001	<0.0001	<0.0002	<0.0001	<0.0001	<0.0001	<0.0002	<0.0002	<0.0005	<0.0001	<0.0003	<0.0015	<0.0025
Copper	mg/L	0.0043				0.0057		0.0045			0.0066			0.0041			0.0048	0.0048	0.0075	0.0064	0.0040	0.0147	0.0034	0.0012	0.004	0.0024	0.0026	0.0059	0.0068
Iron	mg/L	0.128				0.367		<0.250			0.590			0.614			0.644	0.647	0.581	0.589	0.613	0.510	0.614	0.559	0.637	0.579	0.572	0.61	0.592
Lead	mg/L	<0.0005				<0.0005		<0.0025			<0.0025			<0.0005			<0.0005	<0.0005	<0.0010	<0.0005	<0.0005	<0.0005	<0.0010	<0.0010	<0.0025	<0.0015	<0.0015	<0.0015	<0.0025
Manganese	mg/L	0.0260				0.0218		0.0259			0.0279			0.026			0.0242	0.0282	0.0281	0.0235	0.0270	0.0248	0.0303	0.0329	0.032	0.0313	0.0367	0.0316	0.0328
Mercury	mg/L	<0.0002				<0.0002		<0.0002			<0.0002			<0.0002			<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	0.0007				0.0010		<0.0025			<0.0025			0.0009			0.0008	0.0007	<0.0010	<0.0005	<0.0005	<0.0005	<0.0010	<0.0010	<0.0025	<0.0015	<0.0015	<0.0015	<0.0025
Selenium	mg/L	<0.0010				<0.0010		<0.0050			<0.0050			<0.0010			<0.0010	<0.0010	<0.0020	<0.0010	<0.0010	<0.0010	<0.0020	<0.0020	<0.0050	<0.0030	<0.0030	<0.0030	<0.0050
Silica (SiO2)	mg/L	12.3				11.9		8.27			11.2			11.2			11.4	12.0	11.1	11.2	11.6	11.0	11.1	10.4	11.1	11.5	11.3	10.7	10.7
Silicon	mg/L	5.74				5.56		3.87			5.24			5.25			5.31	5.62	5.2	5.23	5.43	5.13	5.19	4.85	5.17	5.37	5.27	5.00	5.01
Uranium	mg/L	0.0004				0.0002		<0.0005			<0.0005			0.0003			0.0002	0.0003	0.0002	0.0001	0.0001	0.0001	<0.0010	<0.0010	<0.0025	<0.0025	<0.0015	<0.0015	<0.0025
Zinc	mg/L	0.0270				0.0088		<0.0100			<0.0100			0.0051			<0.0100	<0.002	<0.0040	0.0022	<0.0040	0.0020	<0.0040	<0.0040	<0.0100	<0.0060	<0.0060	<0.0060	<0.0100
·																													

Notes & Definitions:

*** La Plata County stage 3 fire restrictions prevented sampling activity

one-time analysis

Y/N yes or no gpm gallons per minute

deg C degrees Celsius SU standard pH units

μS/cm microsiemens per centimeter

mV millivolts

mg/L milligram per liter

pCi/L picocuries per liter

NM not measured (field)

- ${\bf 1.} \quad \hbox{``<''} \ \ values \ denote that \ the \ quantification \ of \ that \ analyte \ is \ below \ the \ reporting \ level for \ the \ analytical \ laboratory,$ acceptable by environmental water quality laboratory industry standards.
- 2. Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the initial pH of the sample solution, each components reported as equivalent CaCO3.
- 3. Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown in this table.

					77.7							N	1W-1-M	l .					-								-87	
	Year				2017								2018						20	019			20	20			2021	
	Quarter	Q2		Q3			Q4			Q1			0,2		Q3		Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
	Month	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	11	2	- 5	8	11	2	5	9	11.	2	5	8
S	iample Date	6/7	7/18	8/23	9/26	10/26	11/16	12/5	1/2	2/9	3/22	4/11	5/10	-	7/23	8/7	11/1	2/20	5/30	8/14	11/5	2/12	5/28	9/1	11/16	2/15	5/20	8/23
Lab An	nalysis (Y/N)	Υ	N .	N	N	- N	N	N	N	N	N	N	N	N	N	Υ.	N	N	N	N	N	N	N.	N	N -	N	N	N.
The state of the s												Field	Paramete	rs:														
Purge Flow Rate	gpm	NM	NM*	NM	NM																							
Total Purged	gal	19.5	NM*	<0.5	NM																							
Depth to Water	ft bgs	259.99	NM*	258.29			333				500							200		100					350			
Temperature	deg C	15.8	NM*	11.8	21.7	dry	dry	dry	dry	dry	dry	dry	dry	***	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry
pH	SU	. 8	NM*	7.94	7.86										10.00							10.54						
Specific Conductance	μ5/cm	2032	NM*	2137	2119																							
Oxygen Reduction Potential	mV	160.5	NM*	65.7	61.4																							
	1 1							_		_		Lab An	alytical Re	sults:			-				_							
Hardness as CaCO3	mg/L	231								k 3					3		1								-			
pH (Lab)	SU	8.14												1					¥			4						
Total Dissolved Solids (Lab)	mg/L	1520											-	4	-		-								-			
Calcium	mg/L	46.7					-		-				-	4	-		-								-			
Magnesium	mg/L	27.9							-			_		-			-											
Sodium	mg/L	470					-					-	-		-		-	-	+						-			
Potassium	mg/L	2.55							-			-		+														
Alkalinity, Total	mg/L	600							-				1	+			-	-				-			-			
Alkalinity, Bicarbonate Alkalinity, Carbonate	mg/L	600 <10.0							-					-					*			1						
Alkalinity, Carbonate Alkalinity, Hydroxide	mg/L mg/L	<10.0							-	()		-	-						+			*			-		()	
Chloride	mg/L mg/L	7.69	-									+	-	+					*			+						
Fluoride	mg/L	1.14					-						-	+														
Sulfate as SO4		739							1				-	+	_							+			-			
Total Organic Carbon (TOC)	mg/L mg/L	5.14					(1			-		+														
Nitrate/Nitrite as N	mg/L	0.103							*			-	1	+			+ =		*			-				1		
Aluminum	mg/L	<0.050					1		-			-		1					1			1						
Arsenic	mg/L	0.0029					-		1				1	1								*			-	-		
Cadmium	mg/L	<0.0023							1																			
Copper	mg/L	0.0067					*																					
Iron	mg/L	<0.050										1							*			+						
Lead	mg/L	0.0010																										
Manganese	mg/L	0.0445	1																									
Mercury	mg/L	<0.0002					1																					
Molybdenum	mg/L	0.0796																										
Selenium	mg/L	0.0028																										
Silica (SiO2)	mg/L	11.6			40.0																							
Silicon	mg/L	5.44																										
Uranium	mg/L	0.0505																										
Zinc	mg/L	1.52					1																				1	

Notes & Definitions:

*** La Plata County stage 3 fire restrictions prevented sampling activity

Y/N yes or no

gpm gallons per minute

deg C degrees Celsius SU standard pH units

μS/cm microsiemens per centimeter

mV millivolts mg/L milligram per liter

pCi/L picocuries per liter NM not measured (field) NA not analyzed (lab)

1. "<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.

2. Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the initial pH of the sample solution, each components reported as equivalent CaCO3.

3, Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown in this table.

													MW-	1-C															
	Year				20	17								2018						20	19			20	20			2021	
	Quarter	Q2		0	3			Q4			Q1		0	2		Q3		Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
	Month	6	7	8	9	9	10	11	12	1	2	3	4	5	6	7	8	11	2	5	8	11	2	5	9	11	2	5	8
Sa	ample Date	6/7	7/18	8/23	9/7	9/26	10/26	11/16	12/5	1/2	2/9	3/22	4/11	5/10		7/23	8/7	11/18	2/20	5/30	8/14	11/5	2/12	5/28	9/1	11/16	2/15	5/20	8/23
Lab Ana	alysis (Y/N)	Υ	N	N	N	Υ	N	Y	N	N	Υ	N	N	Υ	N	N	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
													Field Para	meters:															
Purge Flow Rate	gpm	NM	NM*	NM*	NM	NM	NM	NM	NM	MM	0.1	NM	0.1	0.1	***	0.05	0.1	0.10	0.06	0.02	0.03	0.01	0.01	0.10	0.05	0.05	0.05	0.05	0.01
Total Purged	gal	5	NM*	NM*	NM	NM	1.00	1.00	1.00	1	1	1	1	1.25		1	1	1.10	1.00	1.10	1.00	1.00	1.00	0.75	0.80	1.00	1.00	2.00	1.00
Depth to Water	ft bgs	216.5	NM*	216.91	216.95	216.59	216.52	216.48	216.52	216.38	216.38	216.37	216.35	216.41		216.41	216.05	216.04	216.41	216.20	216.02	216.04	216.12	216.10	216.41	216.66	216.66	216.66	216.66
Temperature	deg C	16.0	NM*	NM*	NM	12.9	11.7	10.6	7.0	9.7	9.6	6.7	9.2	10.5		20.0	14.1	9.7	5.4	9.8	10.4	11.1	6.4	9.5	11.2	9.7	7.0	10.7	12.1
рН	SU	7.52	NM*	NM*	NM	7.17	7.16	7.15	7.17	7.11	7.19	7.32	7.03	7.05		6.91	6.97	6.93	7.09	6.80	6.65	6.70	6.79	6.85	6.93	6.99	7.40	7.18	7.16
Specific Conductance	μS/cm	2446	NM*	NM*	NM	2725	2738	2739	2778	2778	2738	2751	2700	2749		2693	2675	2751	2621	3139	3172	3080	3005	3002	2653	2709	2410	2249	2290
Oxygen Reduction Potential	mV	74.3	NM*	NM*	NM	77.4	31.7	23.9	13.0	6.2	-4.3	-29.6	-15.3	-42.3		-41.8	-32.5	-110.0	-23.4	27.6	10.5	51.0	50.7	-57.7	21.8	49.6	57.5	-16.8	0.0
												Lai	b Analytic	ıl Results:															
Hardness as CaCO3	mg/L	498				1290		1180			1190			1130			1120	1180	1010	1820	1840	1700	1600	1590	1400	1420	1320	953	975
pH (Lab)	SU	8.35				7.36		7.34			7.22			7.2			7.20	7.02	7.24	6.93	6.67	6.63	6.80	6.62	6.83	7.12	7.08	6.86	7.04
Total Dissolved Solids (Lab)	mg/L	2020				2440		2360			2360			2340			2170	2200	1960	2880	2890	2750	2610	2460	2420	2450	2330	1910	1850
Calcium	mg/L	96.0				234		216			219			203			203	219	188	340	342	318	301	294	248	265	241	175	178
Magnesium	mg/L	62.8				172		155			156			150			148	154	131	237	240	219	207	207	189	183	173	126	129
Sodium	mg/L	506				242		253			260			239			239	255	265	146	119	119	143	155	168	194	206	196	214
Potassium	mg/L	11.4				3.81		<5.00			<5.00			3.07			3.04	2.65	3.13	<5.00	<5.00	<5.00	3.05	<5.00	2.82	<5.00	<5.00	2.68	<5.00
Alkalinity, Total	mg/L	530				700		540			570			580			560	410	525	530	518	505	515	490	445	520	580	480	485
Alkalinity, Bicarbonate	mg/L	530				700		540			570			580			560	410	525	530	518	505	515	490	445	520	580	480	485
Alkalinity, Carbonate	mg/L	<10.0				<10.0		<10.0			<10.0			<10.0			<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Alkalinity, Hydroxide	mg/L	<10.0				<10.0		<10.0			<10.0			<10.0			<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Chloride	mg/L	24.2				6.97		8.03			7.78			7.75			5.97	6.22	6.36	10.2	9.31	8.78	8.54	8.20	8.15	7.14	7.13	5.3	5.04
Fluoride	mg/L	1.59				0.864		0.955			1.03			0.96			0.888	0.924	0.975	0.67	0.525	0.565	0.615	0.695	0.705	0.750	0.804	0.654	0.716
Sulfate as SO4	mg/L	1090				1350		1230			1160			1210			1090	1080	1070	1630	1730	1520	1400	1370	1280	1180	1150	940	872
Total Organic Carbon (TOC)	mg/L	4.56 <2.00				2.84 <0.400		<0.100			2.21			<0.020			2.35 0.036	<0.020	2.32	2.62	2.52	2.30 <0.020	2.30	2.32	2.2	2.13	2.26	1.92	1.93 <0.020
Nitrate/Nitrite as N Ammonia as N ^	mg/L	NA				NA		NA			<0.020 NA			NA			NA	NA	<0.020 NA	<0.020 NA	<0.020 NA	0.140	<0.020 NA	<0.020 NA	<0.020 NA	<0.020 NA	<0.020 NA	<0.020 NA	NA
Ortho-Phosphate as P ^	mg/L mg/L	NA NA				NA NA		NA NA			NA NA			NA NA			NA NA	NA NA	NA NA	NA NA	NA NA	<0.140	NA NA						
Aluminum	mg/L	<0.050				<0.050		<0.250			<0.250			<0.05			<0.05	<0.100	<0.100	<0.250	<0.250	<0.250	<0.150	<0.250	<0.050	<0.050	<0.250	<0.100	<0.250
Arsenic	mg/L	0.0029				0.0016		<0.0025			<0.0025			0.0051			0.0052	0.0035	0.0038	0.0048	0.0034	<0.0025	<0.130	0.0019	<0.0025	<0.0005	<0.0025	<0.100	<0.230
Cadmium	mg/L	<0.0023				<0.0010		<0.0025			<0.0025			<0.0001			<0.0001	<0.0001	<0.0002	<0.0001	<0.0004	<0.0025	<0.0025	<0.0013	<0.0025	<0.0001	<0.0025	<0.0025	<0.0025
Copper	mg/L	0.0088				0.0085		0.0036			0.0052			0.003			0.0049	0.0033	0.0054	0.0057	0.0014	0.0096	<0.0025	<0.0015	<0.0025	<0.0005	<0.0025	0.0042	0.0043
Iron	mg/L	<0.050				<0.050		<0.250			<0.250			0.643			1.01	1.12	0.988	2.3	0.819	0.543	0.570	0.606	0.619	0.855	0.769	0.552	0.573
Lead	mg/L	<0.0005				<0.0005		<0.0025			<0.0025			<0.0005			<0.0005	<0.0005	<0.0010	<0.0005	<0.0010	<0.0025	<0.0025	<0.0015	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025
Manganese	mg/L	0.0744				0.0853		0.0959			0.0989			0.153			0.140	0.106	0.0807	0.075	0.0562	0.0512	0.0537	0.0473	0.0445	0.0496	0.0482	0.0419	0.0383
Mercury	mg/L	<0.0002				<0.0002		<0.0002			<0.0002			<0.0002			<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	0.0164				0.0049		<0.0025			<0.0025			0.0006			<0.0025	<0.0005	<0.0010	<0.0005	<0.0010	<0.0025	<0.0025	<0.0015	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025
Selenium	mg/L	0.0136				0.0012		<0.0050			<0.0050			<0.001			<0.0050	0.0011	<0.0020	0.0016	0.0023	<0.0050	<0.0050	<0.0030	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Silica (SiO2)	mg/L	10.6				16.6		13.2			14.8			15.2			14.7	14.5	14	16.6	17.3	16.4	15.7	13.8	14.1	14.8	14.4	15.0	14.5
Silicon	mg/L	4.94				7.77		6.16			6.94			7.09			6.87	6.78	6.55	7.75	8.07	7.65	7.35	6.47	6.6	6.93	6.75	7.00	6.79
Uranium	mg/L	0.0500				0.0044		0.0028			0.0024			0.0025			0.0022	0.0021	0.0016	0.002	0.0025	0.0023	<0.0025	0.0020	<0.0025	<0.0015	<0.0025	<0.0025	<0.0025
Zinc	mg/L	0.0293				0.0294		<0.0100			<0.0100			0.0062			<0.0100	0.0055	<0.0040	0.0085	0.0077	<0.0100	<0.0100	<0.0060	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100
	-31 -																												

Notes & Definitions:

*** La Plata County stage 3 fire restrictions prevented sampling activity

one-time analysis

Y/N yes or no

gpm gallons per minute

deg C degrees Celsius

SU standard pH units µS/cm microsiemens per centimeter

mV millivolts

mg/L milligram per liter

pCi/L picocuries per liter

- "<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.
- Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent
 amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the
 initial pH of the sample solution, each components reported as equivalent CaCO3.
- Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program
 by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown
 in this table.

											r	WW-2-A	-				-					-			-	
	Year				2017							2018					20	19		-	20	020			2021	
	Quarter	Q1	Q2	0	13		Q4			Q1		(22	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
	Month	3	6	7	8	10	11	12	1	2	3	4	5	8	11	2	5	8	11	2	5	9	11	2	5	8
	imple Date	3/30	6/7	7/18	8/23	10/30	11/16	12/5	1/2	2/9	3/22	4/11	5/10	8/7	11/1	2/20	5/29	8/14	11/6	2/11	5/27	9/1	11/24	2/15	5/20	8/24
Lab And	alysis (Y/N)	N	N	N	N	N	N	N	N	N	N	_ N	N	N	N	N	N	N	N N	N	N	N	N.	N N	N	N
											Field	Paramete	ers:				_					-				
Purge Flow Rate	gpm																									
Total Purged	gal																									
Depth to Water	ft bgs		- 227		2.00	-	to the same of			200	- 20	1000	0.00		0.00	300				200		1000	1000	1.00	25	
Temperature	deg C	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry
pH	SU																									
Specific Conductance	μS/cm																									
Oxygen Reduction Potential	mV																									
											Lab An	alytical Re	sults:	I e	_											-
Hardness as CaCO3	mg/L						(4															
pH (Lab)	SU				1																					
Total Dissolved Solids (Lab)	mg/L																							2		
Calcium	mg/L																									
Magnesium	mg/L														-											
Sodium	mg/L																									
Potassium	mg/L																									
Alkalinity, Total	mg/L																									
Alkalinity, Bicarbonate	mg/L										-				-											
Alkalinity, Carbonate	mg/L																									
Alkalinity, Hydroxide	mg/L						-																			
Chloride	mg/L															0										
Fluoride	mg/L					-	-												-				-	-		
Sulfate as SO4	mg/L					-	-								-	*									-	-
Total Organic Carbon (TOC)	mg/L																									
Nitrate/Nitrite as N	mg/L			-			-					-				10							-	-		
Aluminum	mg/L											1				1			-							
Arsenic Cadmium	mg/L mg/L					1			-			1				4										-
	mg/L					1			-							+										
Copper Iron	mg/L mg/L						(1										
Lead	mg/L					1				4		*			1				1							
Manganese	mg/L						(1			+				1			
Mercury	mg/L					1																1				
Molybdenum	mg/L						(1				1			1							
Selenium	mg/L				1							1				**				8		1				
Silica (SiO2)	mg/L		1				1					+				*				6						
Silicon	mg/L																									
Uranium	mg/L															1										
Zinc	mg/L																									

Notes & Definitions:

Y/N yes or no

gpm gallons per minute

deg C degrees Celsius

SU standard pH units

μS/cm microsiemens per centimeter

mV millivolts

mg/L milligram per liter

pCi/L picocuries per liter

NM not measured (field)

NA not analyzed (lab)

- "<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.
- Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent
 amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the
 initial pH of the sample solution, each components reported as equivalent CaCO3.

Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown in this table.

					-						N	IW-2-MI						-				-				
	Year				2017				-			2018					20	019	-		20	20			2021	
	Quarter	Q1	Q2		13		Q4			Q1		0	12	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
	Month	3	6	7	8	10	11	12	1	2	3	4	5	8	11	2	5	8	11	2	5	9	11	2	5	8
S	ample Date	3/30	6/7	7/13	8/23	10/30	11/16	12/5	1/2	2/9	3/22	4/11	5/10	8/7	11/1	2/20	5/29	8/14	11/6	2/11	5/27	9/1	11/24	2/15	5/20	8/24
Lab An	alysis (Y/N)	N	N	N	N.	N	N	N'	N	N.	N	N	N	N	N	N	N	N	N	- N	N .	N.	N	N	N	N-
									-		Field	Paramete	rs:													
Purge Flow Rate	gpm																									
Total Purged	gal																									
Depth to Water	ft bgs								1.00	-							0.00		4,000							
Temperature	deg C	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry
pH	SU													130									1300			
Specific Conductance	μS/cm																									1
Oxygen Reduction Potential	mV																									
											Lab And	alytical Re	sults:													
Hardness as CaCO3	mg/L																									
pH (Lab)	SU																									
Total Dissolved Solids (Lab)	mg/L																									
Calcium	mg/L																									
Magnesium	mg/L																									
Sodium	mg/L																									
Potassium	mg/L																									
Alkalinity, Total	mg/L																									
Alkalinity, Bicarbonate	mg/L																									
Alkalinity, Carbonate	mg/L																									
Alkalinity, Hydroxide	mg/L																									
Chloride	mg/L																									
Fluoride	mg/L																									
Sulfate as SO4	mg/L																		1	1						
Total Organic Carbon (TOC)	mg/L																									
Nitrate/Nitrite as N	mg/L																									
Aluminum	mg/L																									
Arsenic	mg/L																									
Cadmium	mg/L																									
Copper	mg/L																									
Iron	mg/L																			1						
Lead	mg/L			4.																						
Manganese	mg/L																									
Mercury	mg/L																									
Molybdenum	mg/L																									
Selenium	mg/L																									
Silica (SiO2)	mg/L																									
Silicon	mg/L																									
Uranium	mg/L																									
Zinc	mg/L																									

Notes & Definitions:

Y/N yes or no

gpm gallons per minute

deg C degrees Celsius

SU standard pH units

μS/cm microsiemens per centimeter mV millivolts

mg/L milligram per liter

pCi/L picocuries per liter

NM not measured (field)

- "<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.
- Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent
 amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the
 initial pH of the sample solution, each components reported as equivalent CaCO3.
- Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program
 by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown
 in this table.

					1000						١	/W-2-C						-		, ,		4				
	Year				2017							2018					20	019			20	20			2021	
	Quarter	Q1	Q2		23		Q4			Q1			22	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
	Month	3	б	7	8	10	11	12	1	2	3	4	.5	8	11	2	.5	8	11	2	.5	9	11	2	5	8
S	ample Date	3/30	6/7	7/18	8/23	10/30	11/16	12/5	1/2	2/9	3/22	4/11	5/10	8/7	11/1	2/20	5/29	8/14	11/6	2/11	5/27	9/1	11/24	2/15	5/20	8/24
Lab An	alysis (Y/N)	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
											Field	Paramete	rs:							-						
Purge Flow Rate	gpm				Ť							-														
Total Purged	gal																									
Depth to Water	ft bgs											- Aug														
Temperature	deg C	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	gry	dry	dry	dry	dry
pH	SU		100																	10.00						
Specific Conductance	μS/cm																									
Oxygen Reduction Potential	mV																									
				·							Lab And	alytical Re	sults:													
Hardness as CaCO3	mg/L																									
pH (Lab)	SU																									
Total Dissolved Solids (Lab)	mg/L																									
Calcium	mg/L				4												4-									
Magnesium	mg/L																									
Sodium	mg/L)								-		
Potassium	mg/L																4									
Alkalinity, Total	mg/L																									
Alkalinity, Bicarbonate	mg/L			4.																						
Alkalinity, Carbonate	mg/L																									
Alkalinity, Hydroxide	mg/L																									
Chloride	mg/L				*											1										
Fluoride	mg/L																					,				
Sulfate as SO4	mg/L																									
Total Organic Carbon (TOC)	mg/L																									
Nitrate/Nitrite as N	mg/L																									
Aluminum	mg/L			8	+						,					4:							4			
Arsenic	mg/L																									
Cadmium	mg/L			8-																						
Copper	mg/L																		5							
Iron	mg/L																									
Lead	mg/L				*																					
Manganese	mg/L																									
Mercury	mg/L				*						,															
Molybdenum	mg/L																									
Selenium	mg/L																									
Silica (Si02)	mg/L			*							,									6						
Silicon	mg/L																									
Uranium	mg/L																									
Zinc	mg/L																									

Notes & Definitions:

Y/N yes or no

gpm gallons per minute

deg C degrees Celsius

SU standard pH units

μS/cm microsiemens per centimeter

mV millivolts

mg/L milligram per liter

pCi/L picocuries per liter

- 1. "<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.
- 2. Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the initial pH of the sample solution, each components reported as equivalent CaCO3.
- 3. Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown in this table.

												MW-	3-A														
	Year		2017 Q1 Q2 Q3 Q4										2018				Г	20	019			20	20			2021	
	Quarter	01	02					04			Q1			12	Q3	Q4	Q1	02	Q3	Q4	01	Q2	Q3	Q4	Q1	Q2	Q3
	Month	3	6	7	8	9	10	11	12	1	2	3	4	- 5	8	11	2	5	8	11	2	5	8	12	2	5	8
Sai	mple Date	3/27	6/30	7/18	8/24	9/28	10/27	11/17	12/7	1/3	2/21	3/23	4/12	5/7	8/8	11/6	2/27	5/21	8/14	11/12	2/4	5/26	8/31	12/1	2/10	5/18	8/10
Lab Ana	lysis (Y/N)	Υ	Υ	N	N	Υ	N	Y	N	N	Υ	N	N	Y	Υ	Υ	Υ	Υ	Υ	Y	Υ	Υ	Υ	Υ	Υ	Υ	Υ
												Field Para	meters:														
Purge Flow Rate	gpm	0.50	NM	NM	NM	NM	NM	NM	NM	NM	0.10	NM	0.10	0.10	0.10	0.10	0.12	0.15	0.06	0.25	0.12	0.13	0.13	0.13	0.05	0.13	0.15
Total Purged	gal	30.0	2.0	NM	NM	NM	1.0	1.0	1.0	1.3	1.5	1.5	1.0	1.3	1.0	1.1	1.5	1.3	1.3	1.5	1.1	1.2	1.5	1.3	1.3	1.5	1.5
Depth to Water	ft bgs	297.35	298.24	297.45	298.24	298.11	298.12	298.01	298.05	298.37	298.04	297.86	297.76	298.17	298.55	298.27	297.85	296.79	297.27	297.33	296.47	296.87	297.21	297.02	296.97	296.72	297.47
Temperature	deg C	11.7	13.2	19.5	12.6	12.3	12.5	11.7	12.0	11.8	11.7	12.2	11.9	13.5	13.5	11.9	11.8	12.1	NM	13.1	11.5	13.2	13.1	11.9	12.1	12.4	13.6
pH	SU	8.82	8.75	8.56	8.67	8.72	8.64	8.61	8.57	8.54	8.52	8.61	8.21	8.38	8.30	8.31	8.28	8.31	8.13	8.51	8.11	8.26	8.23	8.39	8.53	8.46	8.42
Specific Conductance	μS/cm	2535	2446	2115	2524	2470	2430	2483	2494	2528	2506	2458	2415	2253	2336	2391	2355	2309	NM	2204	2211	2249	2112	2192	1930	1525	2091
Oxygen Reduction Potential	mV	-269.0	-101.5	-55.3	-87.4	-142.3	-124.5	-125.6	-146.8	-120.3	-125.2	-181.6	-135.8	-138.2	-155.8	-164.6	-145.9	-132.3	-138.6	-120.1	-65.7	-156.8	-98.8	-89.3	-101.3	-157.1	-149.0
Handrage no CaCO3	/I	7.50	12.6			12.6		10.4			_	b Analytic	ai Results:	11.2	12.6	14.1	11.0	10.7	10.4	11.1	10.0	10.2	11.1	0.41	10.5	0.14	0.00
Hardness as CaCO3 pH (Lab)	mg/L SU	7.53 8.63	12.6 8.69			12.6 8.53		10.4 8.29		-	11.5 8.45			11.2 8.36	12.6 8.37	14.1 8.24	11.9 8.28	10.7 8.29	10.4 8.27	11.1 8.39	10.8 8.09	10.3 7.68	11.1 8.16	9.41 8.13	10.5 8.13	8.14 8.22	8.89 8.21
рн (Lab) Total Dissolved Solids (Lab)	mg/L	1630	1670			1630		1690		l -	1680			1670	1600	1540	1500	1530	1520	1510	1500	1460	1380	1460	1410	1350	1420
Calcium	mg/L	2.00	3.67			3.63		3.27			3.33			3.2	3.71	4.15	3.55	3.16	3.08	3.34	3.14	3.07	3.02	2.83	3.07	2.48	2.59
Magnesium	mg/L	0.616	0.823			0.859		0.550			0.776			0.774	0.811	0.913	0.739	0.692	0.655	0.680	0.723	0.645	0.866	0.568	0.698	0.475	0.586
Sodium	mg/L	566	585			589		551			562			542	562	605	543	525	553	528	520	507	510	505	536	471	462
Potassium	mg/L	1.72	2.02			2.04		<5.00			<2.00			1.8	<2.00	2.17	<2.00	1.92	<2.00	<5.00	<3.00	<5.00	<5.00	<5.00	<5.00	<3.00	<5.00
Alkalinity, Total	mg/L	530	470			500		490			430			480	480	475	540	450	459	420	460	430	440	470	520	530	465
Alkalinity, Bicarbonate	mg/L	380	470			440		460			360			480	420	385	330	430	423	420	460	400	440	450	520	530	465
Alkalinity, Carbonate	mg/L	150	<10.0			60.0		30.0			70.0			<10.0	60.0	90.0	210	20	36.0	<10.0	<10.0	30.0	<10.0	20	<10.0	<10.0	<10.0
Alkalinity, Hydroxide	mg/L	<10.0	<10.0			<10.0		<10.0			<10.0			<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Chloride	mg/L	16.1	17.4			18.5		16.9			16.4			16.1	15.1	16.0	15.2	15	15.0	14.7	13.9	13.9	13.5	14	13.5	14	14.1
Fluoride	mg/L	0.464	0.488			0.535		<0.500			<0.500			<0.5	NA	0.383	0.406	0.404	0.396	<0.500	0.370	0.374	0.366	0.372	0.336	0.352	0.366
Sulfate as SO4	mg/L	729	802			840		730			812			756	706	682	716	699	724	633	637	656	624	644	600	601	599
Total Organic Carbon (TOC)	mg/L	3.52	10.0			7.26		6.07			5.32			4.7	4.62	4.52	4.15	4.10	3.84	3.81	3.42	3.48	3.39	3.15	3.16	3.18	3.01
Nitrate/Nitrite as N	mg/L	<0.100	<0.100			<0.020		<0.020			<0.020			<0.020	<0.020	<0.020	0.266	<0.020	<0.020	<0.020	0.024	0.026	0.039	0.032	<0.020	0.024	<0.020
Ammonia as N ^	mg/L	NA NA	NA NA			NA NA		NA NA			NA NA			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.354	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
Ortho-Phosphate as P ^ Aluminum	mg/L mg/L	<0.050	NA <0.050			<0.050		<0.250			<0.100			<0.050	<0.050	<0.100	<0.100	<0.050	NA <0.100	0.0730 <0.250	<0.150	<0.250	<0.250	NA <0.250	NA <0.250	<0.150	<0.250
Arsenic	mg/L	0.0025	<0.0025			<0.0025		<0.0025			<0.0025			0.0006	<0.0025	<0.0010	<0.0010	<0.0025	<0.0010	<0.0010	<0.0010	<0.0010	<0.0025	<0.0025	0.0026	0.0006	0.001
Cadmium	mg/L	<0.0001	<0.0005			<0.0005		<0.0005			<0.0005			<0.0001	<0.0001	<0.0002	<0.0002	<0.0005	<0.0002	<0.0002	<0.0002	<0.0002	<0.0005	<0.0005	<0.0005	<0.0005	<0.0010
Copper	mg/L	0.0061	0.0081			0.0080		0.0079			0.0236			0.0063	0.0117	0.0086	0.0137	0.0078	0.0067	0.0039	0.0037	0.0021	0.0051	0.0055	0.0037	0.0157	0.0156
Iron	mg/L	<0.050	<0.050			<0.050		<0.250			<0.100			<0.05	<0.05	<0.100	<0.100	<0.05	<0.100	<0.250	<0.150	<0.250	<0.250	<0.250	<0.250	<0.150	<0.250
Lead	mg/L	<0.0005	<0.0025			<0.0025		<0.0025			<0.0025			<0.0005	<0.0005	<0.0010	<0.0010	<0.0025	<0.0010	<0.0010	<0.0010	<0.0025	<0.0025	<0.0025	<0.0025	<0.001	<0.0010
Manganese	mg/L	0.0042	0.0251			0.0194		0.0269			0.0232			0.018	0.0222	0.0187	0.0172	0.0185	0.0166	0.0140	0.0162	0.0136	0.0120	0.0125	0.0128	0.0121	0.0096
Mercury	mg/L	<0.0002	<0.0002			<0.0002		<0.0002			<0.0002			<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0050	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	0.0005	0.0274			0.0091		0.0078			0.0065			0.0046	0.0043	0.0033	0.003	0.003	0.0018	0.0027	0.0022	0.0015	<0.0025	<0.0025	<0.0025	0.0015	0.0013
Selenium	mg/L	0.0577	<0.0050			<0.0050		<0.0050			<0.0050			0.0109	<0.0050	0.0028	0.0039	<0.005	0.0020	<0.0020	<0.0020	0.0033	0.0086	<0.0050	0.129	0.0276	0.0167
Silica (Si02)	mg/L	10.1	10.9			11.6		7.66			11.1			11	12.0	12.8	11.7	11	12.7	11.8	11.6	10.5	11.0	11.2	11.3	10.1	10.7
Silicon	mg/L	4.70	5.10			5.41		3.58			5.18			5.17	5.62	5.97	5.46	5.16	5.95	5.53	5.43	4.92	5.14	5.22	5.28	4.73	4.98
Uranium	mg/L	0.0002	0.0040			0.0051		0.0036			0.0030			0.0026	0.0026	0.0027	0.0018	0.0014	0.0012	0.0011	0.0010	<0.0025	<0.0025	<0.0025	<0.0025	<0.0010	<0.0010
Zinc	mg/L	0.0031	<0.0100			<0.0100		<0.0100			<0.0100			<0.002	<0.002	<0.0040	<0.0040	<0.01	<0.0080	<0.0040	<0.0040	<0.0040	<0.0100	<0.0100	<0.0100	<0.0020	<0.0040

Notes & Definitions:

one-time analysis

Y/N yes or no

gpm gallons per minute

deg C degrees Celsius

SU standard pH units

μS/cm microsiemens per centimeter mV millivolts

mg/L milligram per liter

pCi/L picocuries per liter NM not measured (field)

- 1. "<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.
- 2. Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the $initial\ pH\ of\ the\ sample\ solution,\ each\ components\ reported\ as\ equivalent\ CaCO3.$
- 3. Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown

Columb C			MW-3-MI Year 2017 2018 2019 2020																								
Month Sample Deta 377 63 71 8 9 10 11 12 1 2 3 4 5 8 11 2 5 8 11 2 5 8 12 2 7 14 14 14 14 14 14 14	2021			020	20			019	20					2018							17	20				Year	
Sample Date 1/2 6/30 7/18 8/16 9/28 10/27 11/12 12/7 13/3 2/11 3/23 4/12 5/76 8/18 11/12 2/4 5/26 8/12 11/12 2/4 5/26 8/18 12/1	Q1 Q2 Q3	Q1	Q4	Q3	Q2	Q1	Q4	Q3	Q2	Q1	Q4	Q3	02	(Q1			Q4			Q3		Q2	Q1	Quarter	
Lab Analysis (V/W) V V V V V V V V V	2 5 8	2	12	8	5	2	11	8	5	2	11	8	5	4	3	2	1	12	11	10	9	8	7	6	3	Month	
Frage Flow Rote ggm	/10 5/18 8/10	2/10	12/1	8/31	5/26	2/4	11/12	8/21	5/21	2/27	11/6	8/8	5/7	4/12	3/23	2/21	1/3	12/7	11/17	10/27	9/28	8/16	7/18	6/30	3/27	Sample Date	
Frieder Function Rate	Y Y Y	Y	Υ	Υ	Υ	Υ	Υ	Y	Υ	Υ	Y	Υ	Υ	N	N	Υ	N	N	Υ	N	Υ	N	N	Υ	Υ	nalysis (Y/N)	Lab A
Total Purget pol 190 20 NM NM NM NM 10 10 10 10 11 15 15 10 13 10 11 15 13 20 10 15 13 18 13 13 13 14 15 15 10 15 10 13 10 11 15 13 20 10 15 13 18 13 13 13 14 15 15 10 15 10 13 10 11 15 11 15 11 15 10 15														neters:	Field Para												
Pegh Nowher Flags Sub-49 241,15 240,45 240,53 240,65 240,55 240,65 240,55 240,65																											Purge Flow Rate
Femperature									_																		
Bet SV 934 8.94 8.66 8.00 8.74 8.90 8.86 8.80 8.34 8.81																											Depth to Water
Experience 15/mm 1907 1599 1402 1598 1477 1729 1476 1790 1810 1771 1772 1773 1799 1746 1733 1739 1739 1739 1739 1737 1730 1555 1519 1746 1746 1746 1746 1747 1747 1747 1747 1748																				_			_				Temperature
Column C																	-			_							pH
Land Analytical Results: Lab Analytical																				_							
Parameters of CACC3 mg/L 4.85 8.73 9.02 7.75 9.92 8.85 8.63 8.88 7.63 6.84 7.98 6.64 6.50 7.25 6.39 5.94 6.63 7.00	4.6 -120.4 -142.9	-94.6	-132.4	-111.0	-1/4.5	-104.3	-130.8	43.9	-84.5	-113.0	-1/6.5	-127.8	-103.9				-136.0	-163.1	-124.2	-113.8	-107.3	-108.2	-26.4	-54.5	-87.0	mV	Oxygen Reduction Potential
HI (Lab) St. 8.5 8.75 8.72 8.72 8.66 8.56 8.58 8.34 8.5 8.5 8.62 8.61 8.99 8.87 8.77 8.72 8.72 8.72 8.66 8.56 8.58 8.34 8.5 8.58 8.62 8.61 8.99 8.87 8.77 8.72 8.72 8.72 8.72 8.72 8.72	.63 5.06 5.39	6.63	5.04	630	7.25	6.50	6.64	7.08	6.84	7.63	8 88	8.63	8.65	ii Resuits.	b Anaiytica	_	1		7.75		9.02	I	Ι	2 73	4.85	ma/l	Hardness as CaCO3
Total Dissolved Solids (Lab) mg/L 1550 11100 11140 1080 11170 1170 1110 1110 1110 1110 1110 1110 1110 1130 1																		_									
Colcium mg/L 0.32 2.32 2.34 2.06 2.22 1.91 1.95 2.03 1.87 1.7 2.04 1.73 1.63 1.76 1.62 1.42 1.65																		_									
Magnesium mg/L 0.374 0.714 0.775 0.632 1.07 0.945 0.911 0.926 0.715 0.629 0.703 0.561 0.591 0.694 0.570 0.579 0.606 0 Codium mg/L 420 430 440 411 459 417 446 476 434 419 454 437 427 427 431 481 481 481 481 481 481 481 481 481 481 483 481 481 481 481 481 481 481 481 481 481 483 481 481 483 481 482 481 482 481																											
Sodium mg/L 420 430 440 411 459 417 446 476 434 419 454 437 437 427 431 431 468																											
Potassium mg/L 2.15 2.21													417														
Alkalinity, Total mg/L 740 675 700 660 700 660 700 680 730 720 685 755 720 690 705 680 625 770 690 Alkalinity, Bicarbonate mg/L 510 555 600 570 600 500 630 610 485 605 590 610 645 550 465 690 450 484alinity, Carbonate mg/L 230 120 100 100 100 1100 110 200 150 130 80.0 60.0 130 160 80 240 Alkalinity, Hydroxide mg/L <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <1																											
Alkalinity, Carbonate mg/L 230 120 100 90.0 100 100 180 100 110 200 150 130 80.0 60.0 130 160 80 240 Alkalinity, Hydroxide mg/L 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.		690	-	625			690						680			700			660		700						Alkalinity, Total
Alkalinity, Hydroxide mg/L	50 550 555	450	690	465	550	645	610	590	605	485	610	630	500			600			570		600			555	510	mg/L	Alkalinity, Bicarbonate
Chloride mg/L 8.66 10.1 10.7 10.6 10.7 10.7 10.6 10.7 10.7 8.54 8.83 9.21 9.25 10.2 9.13 9.21 9.61 9.45 10 9.84 10.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	40 140 150	240	80	160	130	60.0	80.0	130	150	200	110	100	180			100			90.0		100			120	230	mg/L	Alkalinity, Carbonate
Fluoride mg/L 0.952 1.34 1.26 1.26 1.30 1.2 1.16 1.19 1.21 1.22 1.19 1.19 1.13 1.13 1.09 1.12 1.03	.0.0 <10.0 <10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0			<10.0			<10.0		<10.0			<10.0	<10.0	mg/L	Alkalinity, Hydroxide
Sulfate as \$04	.84 10.5 10.4	9.84	10	9.45	9.61	9.21	9.13	10.2	9.25	9.21	8.83	8.54	10.7			10.7			10.6		10.7			10.1	8.66	mg/L	Chloride
Total Organic Carbon (TOC) mg/L 8.34 14.8 10.9 10.3 9.24 8.67 7.83 7.28 6.73 6.56 6.17 5.78 5.58 6.07 5.79 5.46 5.34	.03 1.09 1.07	1.03	1.12	1.09	1.13	1.13	1.19	1.19	1.22	1.21	1.19	1.16	1.2			1.30			1.26		1.26			1.34	0.952	mg/L	Fluoride
Nitrate/Nitrite as N	23 227 228	223	110	222	231	227	224	236	229	232	230	226	250			245			254		247			241	165	mg/L	Sulfate as SO4
Ammonia as N ^ mg/L NA	.34 5.33 5.4	5.34	5.46	5.79	6.07	5.58	5.78	6.17	6.56	6.73	7.28	7.83	8.67			9.24			10.3		10.9			14.8	8.34	mg/L	Total Organic Carbon (TOC)
Ortho-Phosphate as P^A mg/L NA N		<0.020			<0.020	0.034			<0.020			<0.02	<0.02					4						<0.020	<0.020	mg/L	Nitrate/Nitrite as N
Aluminum mg/L <0.050 0.102 <0.050 <0.250 <0.100 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 </td <td></td> <td>4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																		4									
Arsenic mg/L 0.0134 0.0167 0.0131 0.0135 0.0160 0.0152 0.0127 0.0149 0.017 0.0142 0.0099 0.0093 0.0086 0.0061 0.007 0.0083 0.0083 0.0084 0.0014 0.0149 0.017 0.0142 0.0099 0.0093 0.0086 0.0061 0.007 0.0083 0.0084 0.0014 0.0149 0.017 0.0142 0.0099 0.0093 0.0086 0.0061 0.007 0.0083 0.0084 0.0014 0.0014 0.0149 0.0142 0.0099 0.0093 0.0086 0.0061 0.0073 0.0084 0.0014																				<u> </u>							
Cadmium mg/L <0.0001 <0.0005 <0.0005 <0.0005 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0005 <0.0001 <0.0005 <0.0001 <0.0005 <0.0001 <0.0005 <0.0001 <0.0005 <0.0001 <0.0005 <0.0001 <0.0005 <0.0001 <0.0005 <0.0001 <0.0005 <0.0001 <0.0005 <0.0001 <0.0005 <0.0001 <0.0005 <0.0001 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <																											
Copper mg/L 0.0055 0.0058 0.0065 0.0059 0.0122 0.0048 0.0071 0.0073 0.0068 0.0063 0.0049 0.0037 0.0024 <0.0025 0.0048 0.0012 Iron mg/L <0.050 <0.100 <0.250 <0.100 <0.050 <0.050 <0.050 <0.050 <0.050 <0.025 <0.025 <0.025 <0.005 <0.005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005																											
Iron mg/L <0.050 <0.100 <0.050 <0.050 <0.250 <0.100 <0.250 <0.100 <0.250 <0.100 <0.250 <0.100 <0.250 <0.100 <0.250 <0.100 <0.250 <0.100 <0.250 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.00																	-			⊢—							
Lead mg/L 0.0024 <0.0025 <0.0025 <0.0005 <0.0005 <0.0005 <0.0010 <0.0005 <0.0005 <0.0005 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.00			-		-													_	_	\vdash							
																				\vdash							
																	1										
																	†	_									,
																	 	_									
																	†	_									
																	 	_									-

Notes & Definitions:

^ one-time analysis

Y/N yes or no

gpm gallons per minute

deg C degrees Celsius

SU standard pH units

μS/cm microsiemens per centimeter

mV millivolts

mg/L milligram per liter

pCi/L picocuries per liter

- "<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.
- Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent
 amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the
 initial pH of the sample solution, each components reported as equivalent CaCO3.
- Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program
 by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown
 in this table.

												MW-	3-C														
	Year			2017 Q2 Q3 Q4									2018					20	19			20)20			2021	
	Quarter	Q1	Q2		Q3			Q4			Q1		C	2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
	Month	3	6	7	8	9	10	11	12	1	2	3	4	5	8	11	2	5	9	11	3	5	8	12	2	5	8
So	imple Date	3/27	6/30	7/27	8/24	9/28	10/27	11/17	12/7	1/3	2/21	3/23	4/12	5/7	8/8	11/6	2/27	5/21	9/17	11/12	3/13	5/26	8/31	12/1	2/10	5/18	8/10
Lab And	alysis (Y/N)	Υ	Υ	N	N	Υ	N	Υ	N	N	Y	N	N	Υ	Υ	Y	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
												Field Parai	meters:														
Purge Flow Rate	gpm	0.50	NM	NM	NM	NM	NM	NM	NM	NM	0.10	NM	0.10	0.10	0.10	0.10	0.06	0.06	0.13	0.13	0.10	0.03	0.08	0.13	0.13	0.13	0.13
Total Purged	gal	20.0	2.0	NM	NM	NM	1.0	1.0	1.0	1.5	1.5	1.5	1.0	1.3	1.3	1.1	1.3	1.5	10.0	1.5	11.0	1.1	1.3	1.5	1.3	1.5	1.3
Depth to Water	ft bgs	304.21	296.3	296.93	296.87	297.43	297.46	297.43	297.35	297.01	296.66	296.57	296.62	296.78	297.12	296.80	296.39	295.56	295.70	295.50	299.35	294.99	294.60	295.26	295.97	295.25	295.70
Temperature	deg C	10.5	12.9	13.1	12.5	11.8	12.7	11.5	11.7	11.7	11.4	11.6	12.2	13.0	13.3	11.5	11.0	11.4	13.5	12.5	11.3	13.4	15.0	14.0	9.9	12.3	15.6
pН	SU	8.61	8.57	8.51	8.46	8.44	8.48	8.41	8.48	8.43	8.43	8.45	8.25	8.28	8.26	8.17	8.28	8.29	8.31	8.20	7.98	8.44	8.45	8.73	8.71	8.50	8.71
Specific Conductance	μS/cm	3549	3588	3815	4112	4351	4412	4659	4596	4923	4864	5063	5019	4916	4953	5127	5155	5184	5144	5144	4921	3143	5039	4251	4426	3755	4571
Oxygen Reduction Potential	mV	-129.0	-87.2	-137.5	-128.8	-149.9	-198.3	-200.7	-222.2	-187.9	-183.5	-155.4	-154.7	-161.4	-180.5	-217.6	-185.4	-188.5	-151.8	-184.4	-155.0	-240.5	-174.4	-150.0	-202.7	-149.6	-255.3
											Lai	b Analytica	al Results:														
Hardness as CaCO3	mg/L	14.4	11.8			15.1		14.9			16.1			40.3	17.9	21.7	17.3	16.8	18.6	18.6	18.3	16.0	18.1	16.9	18.5	14.8	16.9
pH (Lab)	SU	8.5	8.48			8.35		8.28			8.35			8.34	8.31	8.24	8.2	8.23	8.31	8.12	7.98	8.41	8.36	8.36	8.43	8.38	8.47
Total Dissolved Solids (Lab)	mg/L	2130	2360			3070		3310			3540			3610	3520	3360	3300	3440	3500	3390	3220	3180	3170	3280	3200	3230	3300
Calcium	mg/L	3.60	2.87			3.50		3.58			3.81			7.28	4.01	4.70	4.05	3.74	4.30	4.23	4.26	3.81	3.97	3.72	4.25	3.59	3.84
Magnesium	mg/L	1.31	1.12			1.55		1.44			1.59			5.38	1.92	2.41	1.75	1.8	1.91	1.94	1.86	1.58	1.98	1.84	1.92	1.42	1.77
Sodium	mg/L	796	890			1100		1130			1200			1350	1220	1460	1270	1100	1360	1300	1280	1240	1250	1250	1360	1220	1220
Potassium	mg/L	3.47	3.24			4.01		<5.00			<10.0			<5.00	<5.00	<5.00	<5.00	5.24	<5.00	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<6.00	<5.00
Alkalinity, Total	mg/L	1490	1570			1690		1880			1910			1760	1730	2050	2000	2110	2190	2130	2160	2050	1820	2090	2170	2130	2140
Alkalinity, Bicarbonate	mg/L	1360	1480			1650		1830			1810			1600	1670	1900	1830	2000	2020	2070	2000	1800	1690	1970	1710	1910	1950
Alkalinity, Carbonate	mg/L	130	90.0			40.0		50.0			100			160	60.0	150	170	110	170	60.0	160	250	130	120	460	220	190
Alkalinity, Hydroxide	mg/L	<10.0	<10.0			<10.0		<10.0			<10.0			<10.0	NA	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Chloride	mg/L	182	330			477		506			549			544	524	561	577	575	620	542	549	555	552	578	574	577	582
Fluoride	mg/L	4.89	4.94			4.52		4.34			4.15			3.52	3.84	4.04	4.04	3.91	3.78	3.66	3.61	3.51	3.47	3.53	3.37	3.34	3.36
Sulfate as SO4	mg/L	73.4	73.5			46.4		24.5			<10.0			<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
Total Organic Carbon (TOC)	mg/L	10.6	58.5			219		251			337			343	306	141	122	129	132	107	81.9	23.4	17.1	15.7	15.7	16.3	15.7
Nitrate/Nitrite as N	mg/L	<0.020	<0.400			<0.400		<0.020			<0.020			<0.02	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.02	<0.020	<0.020	<0.020
Ammonia as N ^	mg/L mg/L	NA NA	NA NA			NA NA		NA NA			NA NA			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.500 0.212	NA NA						
Ortho-Phosphate as P ^ Aluminum		<0.050	<0.100			<0.050		<0.250			<0.500			1.47	<0.500	<0.250	<0.250	<0.500	<0.250	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.300	<0.250
Arsenic	mg/L mg/L	0.0115	0.0088			0.0098		0.0091			0.0194			0.0168	0.0148	0.0155	0.0218	0.0171	0.0192	0.0188	0.0087	0.0133	0.0106	0.0125	0.0113	0.0163	0.0195
Cadmium	mg/L mg/L	<0.0011	<0.0010			<0.0098		<0.0091			< 0.0005			<0.0005	<0.0005	<0.0005	<0.0005	<0.001	<0.0005	<0.0005	<0.0005	<0.0005	<0.0010	<0.001	<0.0010	<0.0025	<0.0025
_	mg/L	0.0109	0.0147			0.0174		0.0160			0.0409			0.0183	0.0257	0.0227	0.0223	0.0168	0.0102	0.0109	0.0069	0.0064	0.0136	0.0156	0.0102	0.0499	0.0434
Copper Iron	mg/L	<0.0109	<0.050			<0.0174		<0.250			< 0.500			0.252	<0.500	<0.250	<0.250	0.0168	0.0102	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.300	0.464
Lead	mg/L	0.0085	<0.0050			<0.0050		<0.0025			<0.0025			<0.0025	<0.0025	<0.0025	<0.0025	<0.005	<0.0025	<0.0025	<0.0025	<0.0025	<0.0050	<0.0050	<0.0050	<0.0025	<0.0025
Manganese	mg/L	0.0083	0.0188			0.0178		0.0202			0.0307			0.0023	0.0023	0.0025	0.0483	0.063	0.0023	0.0023	0.0025	0.0175	0.0102	0.0079	0.0052	0.0023	0.0023
Mercury	mg/L	<0.0002	<0.0002			<0.0002		<0.0002			<0.0002			<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0050	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	0.0143	0.0291			0.0241		0.0241			0.0221			0.0189	0.0155	0.0140	0.0134	0.0121	0.0081	0.0075	0.0082	0.0085	0.0076	0.0002	0.008	0.0069	0.0061
Selenium	mg/L	0.0233	0.0121			0.0149		0.0241			0.0383			0.0268	0.0232	0.0261	0.0154	0.0203	0.0203	0.0073	0.0125	0.0003	0.0076	0.0191	0.027	0.0411	0.0372
Silica (SiO2)	mg/L	7.82	8.86			9.16		6.01			<10.7			9.69	8.68	10.7	8.24	8.35	9.06	<10.7	<10.7	<10.7	<10.7	<10.7	<10.7	7.48	8.40
Silicon	mg/L	3.66	4.14			4.28		2.81			<5.00			4.53	4.06	5.01	3.85	3.9	4.24	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	3.5	3.93
Uranium	mg/L	0.0091	0.0102			0.0137		0.0100			0.0091			0.0087	0.0089	0.0113	0.0077	0.0046	0.0053	0.0034	0.0045	0.0033	<0.0050	<0.0050	<0.0050	0.0025	0.0025
Zinc	mg/L	0.375	<0.0200			<0.0200		<0.0100			<0.0100			<0.0100	0.0664	0.0113	0.123	0.128	0.0567	0.0034	<0.0100	<0.0100	<0.0200	0.0030	0.0294	0.0023	0.0023
Line	mg/L	0.373	VU.U200			-0.0200		-0.0100			-0.0100			-0.0100	0.0004	0.0014	0.123	0.120	0.0307	0.0000	-0.0100	40.0100	-0.0200	0.0002	0.0254	0.0000	0.0347

Notes & Definitions:

one-time analysis

Y/N yes or no

gpm gallons per minute

deg C degrees Celsius

SU standard pH units

μS/cm microsiemens per centimeter

mV millivolts

mg/L milligram per liter

pCi/L picocuries per liter

NM not measured (field)

- "<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.
- Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent
 amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the
 initial pH of the sample solution, each components reported as equivalent CaCO3.
- Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program
 by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown
 in this table.

Year 2017													4-A														
	Year				20	17							2018					20	19			20	20			2021	
	Quarter	Q1	Q2		Q3			Q4			01			2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
	Month	3	6	7	8	9	10	11	12	1	2	3	4	5	8	11	2	5	8	11	2	5	8	11	2	5	8
Se	ample Date	3/29	6/30	7/19	8/23	9/28	10/27	11/17	12/7	1/3	2/21	3/23	4/12	5/14	8/8	11/5	2/27	5/22	8/15	11/12	2/6	5/26	8/27	11/25	2/10	5/18	8/10
Lab And	alysis (Y/N)	Υ	Υ	N	N	Υ	N	Υ	N	N	Υ	N	N	Υ	Υ	Y	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
												Field Parai	meters:				_										
Purge Flow Rate	gpm	NM	NM	NM	NM	NM	NM	NM	NM	NM	0.10	NM	0.10	0.10	0.10	0.10	0.06	0.06	0.06	0.13	0.03	0.03	0.13	0.13	0.05	0.13	0.25
Total Purged	gal	19.0	2.0	1.5	0.5	1.0	1.0	1.0	1.0	1.3	1.5	1.5	1.0	1.5	1.5	1.1	1.5	1.3	1.1	1.0	1.5	1.2	1.3	1.3	1.3	1.3	1.5
Depth to Water	ft bgs	338.6	334.96	335.59	334.79	334.81	334.86	332.29	334.09	334.31	334.73	334.81	335.07	335.58	336.06	336.73	335.6	335.07	335.21	335.16	336.35	337.16	336.88	336.13	335.46	335.72	335.93
Temperature	deg C	15.6	16.8	25.5	17.6	11.9	11.6	10.8	10.1	10.9	9.8	11.4	10.9	17.8	12.9	11.6	11.1	10.4	13.6	11.6	10.3	12.5	14.0	12.3	10.3	11.2	12.1
pН	SU	8.61	8.29	8.55	7.98	8.41	8.32	8.38	8.32	8.33	8.37	8.41	8.19	8.20	8.10	8.12	8.15	8.08	8.02	8.11	8.07	8.19	8.27	8.30	8.25	8.30	8.38
Specific Conductance	μS/cm	2163	2053	1876	2096	2180	2165	2186	2261	2259	2267	2207	2214	2183	2192	2246	2205	2237	2201	2211	2271	2273	2165	2249	2052	1618	2205
Oxygen Reduction Potential	mV	28.6	54.0	60.2	61.7	-8.6	-27.0	-12.3	-51.8	-35.2	-75.9	-117.3	-77.9	-81.8	-137.5	-157.6	-92.3	-89.3	-54.3	-19.8	15.3	-71.3	-11.5	-10.6	29.0	-63.4	-48.7
	·										La	b Analytica	ıl Results:														
Hardness as CaCO3	mg/L	9.16	9.85			7.77		7.11			7.73			7.84	7.69	8.81	7.76	7.31	8.62	8.00	8.19	7.46	7.87	7.77	8.87	7.02	5.81
pH (Lab)	SU	8.2	8.40			8.36		8.40			8.28			8.31	8.21	8.24	8.05	8.08	8.15	8.02	8.11	7.90	8.19	8.16	8.04	8.15	8.09
Total Dissolved Solids (Lab)	mg/L	1470	1470			1450		1500			1490			1470	1430	1350	1450	1410	1540	1490	1500	1480	1460	1560	1370	1430	1510
Calcium	mg/L	2.23	2.43			1.76		1.87			1.81			1.75	1.71	1.92	1.77	1.68	1.94	1.82	1.88	1.67	1.79	1.73	2.04	1.65	1.41
Magnesium	mg/L	0.871	0.916			0.823		0.591			0.778			0.846	0.832	0.973	0.809	0.756	0.914	0.837	0.850	0.798	0.826	0.836	0.917	0.704	0.555
Sodium	mg/L	515	537			513		511			507			528	531	568	535	515	548	529	551	498	533	531	565	507	411
Potassium	mg/L	1.57	1.75			1.63		<5.00			<2.00			1.5	<2.00	<2.00	<2.00	<2.00	4.75	<5.00	<3.00	<5.00	<5.00	<5.00	<5.00	<3.00	<5.00
Alkalinity, Total	mg/L	635	560			630		590			530			560	575	575	545	565	575	544	560	585	605	538	620	590	580
Alkalinity, Bicarbonate	mg/L	635	560			590		560			490			560	555	575	505	544	535	528	560	545	565	530	620	530	580
Alkalinity, Carbonate	mg/L	<10.0	<10.0			40.0		30.0			40.0			<10.0	20.0	<10.0	40	32	40.0	16.0	<10.0	40.0	40	<10.0	<10.0	60	<10.0
Alkalinity, Hydroxide	mg/L	<10.0	<10.0			<10.0		<10.0			<10.0			<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Chloride	mg/L	9.56	9.66			10.3		10.3			10.0			9.94	9.55	8.60	8.93	8.99	8.91	8.76	8.83	8.89	10.1	9.15	8.79	9.15	9.17
Fluoride	mg/L	<0.400	<0.400			<0.500		<0.500			<0.500			<0.500	<0.500	0.143	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.500	<0.200	<0.200	<0.200	<0.200
Sulfate as SO4	mg/L	594	588			783		594			579			561	522	450	567	584	615	559	557	580	542	607	561	577	593
Total Organic Carbon (TOC)	mg/L	6.63	11.7			3.52		3.27			3.46			3.59	3.60	3.59	3.47	3.40	3.33	3.25	3.10	3.49	3.48	3.27	3.42	3.42	3.23
Nitrate/Nitrite as N	mg/L	0.035	<0.020		-	<0.020		<0.020			<0.020			<0.02	<0.02	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Ammonia as N ^	mg/L	NA	NA			NA		NA			NA			NA	NA	NA	NA	NA	NA	0.312	NA						
Ortho-Phosphate as P ^	mg/L	NA <0.050	NA <0.050			NA <0.050		NA <0.250			NA <0.100			NA <0.05	NA <0.05	NA <0.100	NA <0.100	NA <0.100	NA <0.100	<0.0500	NA <0.150	NA <0.250	NA <0.250	NA <0.250	NA <0.250	NA <0.150	NA <0.250
Aluminum Arsenic	mg/L mg/L	0.0016	<0.0025			<0.0025		<0.0025			0.0019			0.0005	<0.0025	<0.100	<0.100	<0.0005	<0.0005	<0.0010	<0.0010	<0.0010	<0.0025	<0.0025	<0.0025	0.0005	<0.0010
Cadmium		<0.0016	<0.0025			<0.0025		<0.0025			<0.0019			<0.0003	<0.0023	<0.0010	<0.0010	<0.0003	<0.0003	<0.0010	<0.0010	<0.0010	<0.0025	<0.0025	<0.0025	<0.0005	<0.0010
_	mg/L mg/L	0.0053	0.0003			0.0076		0.0003			0.0124			0.0001	0.0105	0.0002	0.0002	0.0061	0.0002	0.0002	0.0002	0.0020	0.0056	0.0053	0.0036	0.0135	0.0161
Copper Iron	mg/L	<0.050	<0.050			<0.050		<0.250			<0.100			<0.050	<0.050	<0.100	<0.100	<0.100	<0.100	<0.250	<0.150	<0.250	<0.250	<0.250	<0.250	<0.150	<0.250
Lead	mg/L	0.0014	<0.0025			<0.0025		<0.0025			<0.0005			<0.0005	<0.0005	<0.100	<0.100	<0.0005	<0.0010	<0.0010	<0.0010	<0.0010	<0.0025	<0.0025	<0.0025	<0.0005	<0.0010
Manganese	mg/L	0.0014	0.0063			0.0023		0.0023			0.0003			0.0033	<0.0075		0.0032	0.0003	0.0016	0.0016	0.0033	0.0010	0.0023	0.0025	0.0023	0.0029	0.003
Mercury	mg/L	<0.0004	<0.0003			<0.0002		<0.0002			<0.0002			<0.0003	<0.0073	<0.0002	<0.0002	<0.0002	<0.0020	<0.0050	<0.0002	<0.0002	<0.0029	<0.0002	<0.0029	<0.0023	<0.0002
Molybdenum	mg/L	0.0002	0.0002		 	<0.0002		<0.0002			0.0005			<0.0002	<0.0002	<0.0002	<0.0010	<0.0002	<0.0002	<0.0030	<0.0002	<0.0002	<0.0002	<0.0002	<0.0025	<0.0002	<0.0002
Selenium	mg/L	0.0003	<0.0050		 	<0.0023		<0.0023			0.0014			0.0025	<0.0050	<0.0010	0.0036	<0.0003	<0.0003	<0.0020	<0.0020	<0.0020	<0.0023	<0.0023	<0.0023	<0.0010	<0.0020
Silica (SiO2)	mg/L	10.2	10.6		 	9.99		6.85			9.47			10	10.2	11.2	9.65	9.81	11.0	10.5	10.3	8.55	9.44	9.96	10.4	8.98	8.57
Silicon	mg/L	4.75	4.97		 	4.67		3.20			4.43			4.7	4.77	5.22	4.51	4.59	5.14	4.89	4.79	4.00	4.42	4.65	4.87	4.2	4.01
Uranium	mg/L	0.0016	<0.0005		 	<0.0005		0.0005			0.0003			<0.0001	<0.0005	<0.0002	<0.0002	<0.0001	<0.0002	<0.0002	<0.0010	<0.0010	<0.0025	<0.0025	<0.0025	<0.0005	<0.0010
Zinc	mg/L	0.269	0.0319			<0.0100		<0.0100			0.0003			0.0024	<0.0100	<0.0040	<0.0040	0.0033	<0.0002	<0.0040	<0.0010	<0.0010	<0.0100	<0.0100	<0.0100	0.0003	<0.0010
Line	mg/L	0.203	0.0019			-0.0100		-0.0100			0.0022			0.0024	-0.0100	-0.0040	10.0040	0.0000	-0.0020	-0.0040	-0.0040	-0.0040	-0.0100	-0.0100	-0.0100	0.0021	-U.UU-TU

Notes & Definitions:

- ^ one-time analysis
- Y/N yes or no
- gpm gallons per minute
- deg C degrees Celsius
- SU standard pH units
- μS/cm microsiemens per centimeter
- mV millivolts
- mg/L milligram per liter
- pCi/L picocuries per liter
- NM not measured (field)
- NA not analyzed (lab)

- "<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.
- Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent
 amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the
 initial pH of the sample solution, each components reported as equivalent CaCO3.
- Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program
 by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown
 in this table.

												MW-4	-MI														
	Year				20	17							2018					20	19			20	20			2021	
	Quarter	Q1	Q2		Q3			Q4			Q1		C	12	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
	Month	3	6	7	8	9	10	11	12	1	2	3	4	5	8	11	2	5	8	11	2	5	8	11	2	5	8
Sa	mple Date	3/30	6/16	7/27	8/23	9/28	10/27	11/17	12/7	1/3	2/21	3/23	4/12	5/14	8/8	11/5	2/27	5/22	8/15	11/12	2/6	5/26	8/27	11/25	2/10	5/18	8/10
Lab Ana	ılysis (Y/N)	Υ	Υ	N	N	Υ	N	Υ	N	N	Υ	N	N	Υ	Υ	Y	Υ	Υ	Υ	Υ	Υ	Y	Υ	Υ	Υ	Υ	Υ
												Field Paran	neters:														
Purge Flow Rate	gpm	NM	NM	NM	NM	NM	NM	NM	NM	NM	0.10	NM	0.10	0.10	0.10	0.10	0.06	0.06	0.13	0.25	0.13	0.13	0.13	0.13	0.13	0.13	0.25
Total Purged	gal	0.5	6.5	NM	NM	1.0	1.0	1.0	1.0	1.3	1.5	1.5	1.0	1.3	1.8	1.6	2.0	1.3	1.1	1.0	1.3	1.2	1.3	1.3	1.5	1.3	1.5
Depth to Water	ft bgs	378.2	330.15	330.94	330.85	330.81	330.8	330.74	330.67	330.52	330.42	330.53	330.5	329.62	331.1	336.57	331.1	331.06	331.92	332.1	332.5	332.87	332.45	333.29	333.22	329.27	333.57
Temperature	deg C	15.0	14.6	12.9	12.5	11.4	10.7	11.3	11.4	11.2	11.0	10.5	10.9	10.1	11.8	11.3	11.1	10.8	13.3	11.6	11.8	12.2	12.9	11.8	10.8	11.6	12.1
pH	SU	9.08	8.91	8.78	8.79	8.76	8.76	8.73	8.67	8.62	8.48	8.53	8.01	8.50	8.14	8.25	8.38	8.23	8.14	8.26	8.18	8.42	8.45	8.57	8.57	8.60	8.59
Specific Conductance	μS/cm	1581	1668	1731	1708	1784	1794	1804	1833	1848	1856	1841	1816	1739	1756	1808	1716	1800	1830	1776	1795	1794	1730	1777	1605	1258	1711
Oxygen Reduction Potential	mV	155.2	64.7	9.8	35.2	-29.6	-37.3	-111.5	-89.2	-112.5	-151.3	-145.7	-117.7	-130.0	-178.2	-202.3	-140.4	-154.7	-127.3	-76.8	-50.6	-131.2	-92.0	-87.7	-53.9	-105.9	-97.8
											La	b Analytica	ıl Results:														
Hardness as CaCO3	mg/L	5.43	8.71			7.07		4.20			6.01			5.88	6.06	6.39	5.35	4.93	5.65	3.31	4.70	<3.31	5.19	2.84	4.91	3.79	4.59
pH (Lab)	SU	8.83	8.59			8.63		8.51			8.47			8.48	8.31	8.47	8.35	8.3	8.44	8.08	8.33	8.02	8.28	8.38	8.21	8.38	8.28
Total Dissolved Solids (Lab)	mg/L	1160	1170			1180		1180			1220			1140	1120	1100	1130	1130	1140	1120	1110	1110	1070	1170	1130	1100	1130
Calcium	mg/L	1.53	2.32			1.88		1.68			1.64			1.55	1.56	1.60	1.44	1.3	1.51	1.32	1.21	1.22	1.32	1.14	1.97	1.05	1.23
Magnesium	mg/L	0.392	0.707			0.579		<0.500			0.465			0.49	0.524	0.580	0.428	0.408	0.458	<0.500	0.406	<0.500	0.459	<0.400	<0.500	0.285	0.37
Sodium	mg/L	408	458			449		452			447			471	470	500	462	458	496	477	441	460	459	458	476	431	427
Potassium	mg/L	1.46	<2.00			1.73		<5.00			<2.00			1.39	<2.00	<2.00	1.43	1.77	2.03	<5.00	<2.00	<5.00	<3.00	<4.00	<5.00	<2.00	<2.00
Alkalinity, Total	mg/L	965	915			1100		985			965			955	968	995	510	890	970	978	985	1030	1020	1010	990	1020	985
Alkalinity, Bicarbonate	mg/L	775	825			880		885			875			865	896	885	420	650	880	886	895	935	940	965	910	900	865
Alkalinity, Carbonate	mg/L	190	90.0			220		100			90.0			90	72.0	110	90	240	90.0	92.0	90.0	90.0	80	40	80	120	120
Alkalinity, Hydroxide	mg/L	<10.0	<10.0			<10.0		<10.0			<10.0			<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Chloride	mg/L	2.18	7.50			8.78		9.11			8.74			7.99	5.68	5.38	5.98	5.98	5.83	5.47	5.37	5.11	5.02	4.97	4.89	4.85	4.91
Fluoride	mg/L	4.72	5.02			5.09		5.10			5.02			4.82	4.84	4.94	5.49	5.44	5.38	5.31	5.11	5.16	5	5.27	4.92	5.03	5.2
Sulfate as SO4	mg/L	17.4	64.7			76.6		77.5			68.6			54.4	48.3	47.6	38.7	34.4	31.9	28.2	24.6	21.9	20	18.7	17.1	16.1	16.4
Total Organic Carbon (TOC)	mg/L	2.64	6.49			8.58		9.53			9.54			9.25	8.94	8.48	8.37	8.25	7.81	6.42	6.63	6.55	5.93	5.77	5.78	5.36	5.29
Nitrate/Nitrite as N	mg/L	<0.020	<0.020			<0.020		<0.020			<0.020			<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.040	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Ammonia as N ^	mg/L	NA	NA			NA		NA			NA			NA	NA	NA	NA	NA	NA	0.240	NA						
Ortho-Phosphate as P ^	mg/L	NA	NA			NA		NA			NA			NA	NA	NA	NA	NA	NA	0.280	NA						
Aluminum	mg/L	<0.050	<0.100			<0.050		<0.250			<0.100			<0.050	<0.100	<0.100	<0.050	<0.050	<0.100	<0.250	<0.100	<0.250	<0.150	<0.200	<0.250	<0.100	<0.100
Arsenic	mg/L	0.0099	0.0220			0.0131		0.0122			0.0139			0.0153	0.014	0.0119	0.0164	0.0111	0.0116	0.0107	0.0127	0.0139	0.0084	0.0092	0.0088	0.011	0.0099
Cadmium	mg/L	<0.0001	<0.0001			<0.0005		<0.0005			<0.0001			<0.0001	<0.0001	<0.0002	<0.0001	<0.0001	<0.0001	<0.0002	<0.0002	<0.0001	<0.0005	<0.0004	<0.0005	<0.0005	<0.0010
Copper	mg/L	0.0059	0.0058			0.0071		0.0070			0.0079			0.0063	0.0071	0.0078	0.0087	0.0153	0.0051	0.0027	0.0028	0.0020	0.0052	0.0045	0.004	0.0103	0.0134
Iron	mg/L	<0.050	<0.100			<0.050		<0.250			<0.100			<0.050	<0.100	<0.100	<0.050	<0.050	<0.100	<0.250	<0.100	<0.250	<0.150	<0.200	<0.250	<0.100	<0.100
Lead	mg/L	0.0010	<0.0005			<0.0025		<0.0025			<0.0005			<0.0005	<0.0005	<0.0010	<0.0005	<0.0005	<0.0005	<0.0010	<0.0010	<0.0005	<0.0025	<0.0020	<0.0025	<0.0005	<0.0010
Manganese	mg/L	0.0020	0.0066			0.0081		0.0124			0.0080			0.007	0.0068	0.0084	0.0091	0.0084	0.0084	0.0073	0.0085	0.0086	0.0086	0.0092	0.0094	0.0073	0.0075
Mercury	mg/L	<0.0002	<0.0002			<0.0002		<0.0002			<0.0002			<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0050	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	0.0020	0.0160			0.0127		0.0134			0.0151			0.0119	0.0115	0.0129	0.0121	0.0119	0.0108	0.0101	0.0096	0.0091	0.0081	0.0089	0.0082	0.0076	0.0068
Selenium	mg/L	<0.0010	0.0012			<0.0050		<0.0050			<0.0010			0.0022	0.0113	<0.0020	0.002	<0.0010	<0.0010	<0.0020	<0.0020	<0.0010	<0.005	<0.004	0.0143	<0.0010	<0.0020
Silica (Si02)	mg/L	7.27	8.01			8.80		<5.35			8.30			8.9	9.29	10.3	8.86	9.06	10.2	9.51	8.21	7.81	8.39	8.88	9.26	7.82	8.69
Silicon	mg/L	3.40	3.75			4.11		2.50			3.88			4.16	4.34	4.81	4.14	4.24	4.76	4.45	3.84	3.65	3.92	4.15	4.33	3.66	4.06
Uranium	mg/L	0.0043	0.0126			0.0184		0.0169			0.0183			0.0173	0.0151	0.0191	0.0269	0.0176	0.0168	0.0145	0.0163	0.0195	0.0121	0.0139	0.0137	0.0115	0.0112
Zinc	mg/L	0.113	0.0697			<0.0100		<0.0100			<0.0020			<0.0020	<0.0020	<0.0040	<0.0020	<0.0020	<0.0100	<0.0040	<0.0040	<0.0040	<0.0100	<0.0080	<0.0100	<0.0020	<0.0040

Notes & Definitions:

one-time analysis

Y/N yes or no

gpm gallons per minute

deg C degrees Celsius

SU standard pH units

μS/cm microsiemens per centimeter mV millivolts

mg/L milligram per liter

NA not analyzed (lab)

pCi/L picocuries per liter NM not measured (field)

- 1. "<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.
- 2. Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the $initial\ pH\ of\ the\ sample\ solution,\ each\ components\ reported\ as\ equivalent\ CaCO3.$
- 3. Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown in this table.

												MW-4	4-C														
	Year				20)17							2018					20	19			20	20		20	21	
	Quarter	Q1	Q2		Q3			Q4			Q1		C	2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
	Month	3	6	7	8	9	10	11	12	1	2	3	4	5	8	11	2	5	8	11	2	5	8	12	2	5	8
San	nple Date	3/30	6/16	7/27	8/23	9/28	10/27	11/17	12/7	1/3	2/21	3/23	4/12	5/14	8/8	11/5	2/27	5/22	8/15	11/12	2/4	5/26	8/27	12/1	2/10	5/18	8/10
Lab Anal	ysis (Y/N)	Υ	Υ	N	N	Υ	N	Υ	N	N	Υ	N	N	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
												Field Paran	neters:														
Purge Flow Rate	gpm	NM	NM	NM	NM	NM	NM	NM	NM	NM	0.1	NM	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Total Purged	gal	7.0	1.5	NM	NM	1.0	1.0	1.0	1.0	1.5	1.5	1.5	1.0	1.5	1.0	1.3	1.5	1.3	1.1	1.0	1.5	1.2	1.5	1.3	1.5	1.5	1.5
Depth to Water	ft bgs	328.33	314.05	309.87	306.86	303.96	303.80	302.47	304.80	282.35	281.30	303.30	304.05	MM	302.55	302.17	302.45	303.93	304.93	305.73	306.44	304.90	307.80	308.05	308.65	308.58	309.32
Temperature	deg C	13.3	17.4	12.7	12.0	13.9	11.8	11.2	11.0	11.7	10.8	12.5	11.4	12.4	12.9	11.5	11.3	11.2	12.5	11.7	11.2	12.7	13.0	11.4	10.0	11.4	12.3
pH	SU	8.33	7.62	7.68	7.70	7.69	7.75	7.72	7.79	7.80	7.88	7.94	7.75	7.79	7.76	7.79	7.87	7.86	7.81	7.85	7.87	7.97	8.00	8.05	8.02	8.05	8.12
Specific Conductance	μS/cm	3792	5944	5997	5885	5813	5721	5782	5604	5834	5903	5628	5792	5592	5583	5775	5710	5712	5930	5636	5729	5636	5429	5665	5106	4047	5454
Oxygen Reduction Potential	mV	57.3	20.3	-101.5	-111.2	-103.7	-117.4	-109.0	-120.1	-123.8	-154.3	-131.3	-134.9	-129.3	-157.6	-209.0	-160.1	-180.1	-156.8	-148.7	-135.9	-147.7	-132.1	-128.7	-106.2	-100.6	-142.3
											La	b Analytica	ıl Results:														
Hardness as CaCO3	mg/L	46.3	55.9			38.9		30.0			26.5			26.2	25.9	28.6	23.6	22.5	25.2	24.4	24.0	22.7	23	21.8	25.6	19.6	21.9
pH (Lab)	SU	7.61	7.77			7.79		7.98			7.84			7.97	7.96	8.27	7.9	7.92	7.95	7.85	7.95	7.76	7.92	7.94	7.96	7.97	7.96
Total Dissolved Solids (Lab)	mg/L	3230	4050			3750		3780			3730			3660	3650	3590	3580	3590	3610	3610	3580	3570	3510	3610	3720	3540	3600
Calcium	mg/L	13.6	13.7			9.15		7.45			6.32			6.15	5.90	6.60	5.5	5.21	5.83	5.61	5.57	5.31	5.3	5.15	5.98	4.64	5.07
Magnesium	mg/L	2.99	5.26			3.90		2.76			2.61			2.62	2.72	2.94	2.39	2.3	2.57	2.53	2.44	2.30	2.36	2.18	2.58	1.95	2.25
Sodium	mg/L	908	1510			1490		1400			1410			1400	1410	1590	1410	1370	1440	1430	1440	1390	1400	1400	1520	1310	1340
Potassium	mg/L	4.38	5.71			6.07		<10.0			<10.0			<5.00	<5.00	5.36	<5.00	<5.00	5.42	<10.0	<5.00	<10.0	<10.0	<10.0	<10.0	<6.00	<5.00
Alkalinity, Total	mg/L	1250	2360			2780		2680			2600			2410	2480	2450	2470	2550	2500	2470	2480	2460	2500	2950	2470	2500	2410
Alkalinity, Bicarbonate	mg/L	1250	2360			2780		2640			2600			2330	2480	2450	2470	2350	2390	2410	2420	2340	2390	2880	2430	2360	2290
Alkalinity, Carbonate	mg/L	<10.0	<10.0			<10.0		40.0			<10.0			80	<10.0	<10.0	<10.0	200	110	60.0	60.0	120	110	70	40	140	120
Alkalinity, Hydroxide	mg/L	<10.0	<10.0			<10.0		<10.0			<10.0			<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Chloride	mg/L	181	550			587		608			592			573	533	590	575	554	580	525	528	555	543	565	557	553	572
Fluoride	mg/L	1.29	2.04			2.17		2.43			2.53			2.52	2.48	2.54	2.64	2.62	2.59	2.51	2.41	2.36	2.34	2.37	2.21	2.16	2.28
Sulfate as SO4	mg/L	534	487			70.2		26.0			34.5			27	18.7	11.2	5.07	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
Total Organic Carbon (TOC)	mg/L	30	6.42			5.08		3.64			3.23			3.23	2.80	3.46	3.24	2.62	2.63	4.18	2.23	2.50	2.31	3.72	4.57	4.92	4.81
Nitrate/Nitrite as N	mg/L	<2.00	<0.500			<0.400		<0.100			<0.020			<0.020	<0.020	<0.020	0.061	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Ammonia as N ^	mg/L	NA	NA			NA		NA			NA			NA	NA	NA	NA	NA	NA	0.424	NA						
Ortho-Phosphate as P ^	mg/L	NA	NA			NA		NA			NA			NA	NA	NA	NA	NA	NA	0.182	NA						
Aluminum	mg/L	<0.050	<0.050			<0.050		<0.500			<0.500			<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	<0.500	<0.250	<0.500	<0.500	<0.500	<0.500	<0.300	<0.250
Arsenic	mg/L	0.0059	0.0119			0.0128		0.0152			0.0246			0.0195	0.0202	0.0164	0.0211	0.0171	0.0178	0.0179	0.0203	0.0195	0.015	0.0182	0.0177	0.0212	0.0248
Cadmium	mg/L	<0.0001	<0.0010			<0.0010		<0.0010			<0.0005			<0.0005	<0.0005	<0.0005	<0.0005	<0.0001	<0.0005	<0.0005	<0.0005	<0.0005	<0.001	<0.001	<0.0010	<0.0025	<0.0025
Copper	mg/L	0.0125	0.0243			0.0221		0.0208			0.0482			0.0389	0.0280	0.0230	0.0249	0.0382	0.0198	0.0107	0.0111	0.0069	0.0151	0.0148	0.0111	0.0464	0.0499
	mg/L	<0.050	<0.050			<0.050		<0.500			<0.500			0.373	0.397	0.474	0.279	0.391	0.522	0.619	0.591	0.551	<0.500	0.553	0.837	0.355	0.793
	mg/L	<0.0005	<0.0050			<0.0050		<0.0050			<0.0025			<0.0025	<0.0025	<0.0025	<0.0025	<0.0005	<0.0025	<0.0025	<0.0025	<0.0025	<0.005	<0.005	<0.0050	<0.0025	<0.0025
Manganese	mg/L	0.0269	0.0772			0.0554		0.0571			0.0647			0.0529	0.0381	0.0283	0.0268	0.0174	0.0162	0.0096	0.0209	0.0103	0.008	0.0076	0.0059	0.0063	0.005
•	mg/L	<0.0002	<0.0002			<0.0002		<0.0002			<0.0002			<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0050	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	0.0526	0.115			0.0138		0.0106			0.0086			0.0072	0.0071	0.0057	0.0074	0.007	0.0056	0.0047	0.0045	0.0044	<0.005	<0.005	<0.0050	0.0037	0.0031
Selenium Sition (Sign)	mg/L	0.0248	0.0231			0.0214		0.0269			0.0378			0.0317	0.0260	0.0211	0.0339	0.0195	0.0195	0.0156	0.0140	0.0129	0.0112	0.0182	<0.0100	0.0186	0.028
	mg/L	9.85	12.6			12.9		<10.7			<10.7			11	11.2	12.8	10.1	10.5	11.3	11.0	9.88	<10.7	<10.7	<10.7	10.8	8.35	9.54
	mg/L	4.61	5.88		-	6.02		<5.00			<5.00			5.16	5.24	6.00	4.7	4.89	5.29	5.14	4.62	<5.00	<5.00	<5.00	5.06	3.91	4.46
	mg/L	0.0297	0.121		-	0.0984		0.0545			0.0311			0.0311	0.0277	0.0246	0.0215	0.0154	0.0086	0.0073	0.0063	0.0039	<0.005	<0.0050	<0.0050	<0.0025	<0.0025
Zinc	mg/L	0.0156	0.0265			<0.0200		<0.0200			<0.0100			<0.0100	<0.0100	<0.0100	<0.0100	0.0038	<0.0100	<0.0100	<0.0100	<0.0100	<0.0200	<0.0200	<0.0200	<0.0100	<0.0100

Notes & Definitions:

one-time analysis

Y/N yes or no

gpm gallons per minute

deg C degrees Celsius

SU standard pH units µS/cm microsiemens per centimeter

mV millivolts

mg/L milligram per liter

pCi/L picocuries per liter

NM not measured (field) NA not analyzed (lab)

- "<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.
- Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent
 amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the
 initial pH of the sample solution, each components reported as equivalent CaCO3.
- Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring
 program by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are
 not shown in this table.

					100							I	/W-5-A															7
	Year				2017								2018						20	19			2	020			2021	
	Quarter	Q2		Q3			Q4			Q1			22		Q3		Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
	Month	. 6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	- 11	2	5	8	11	2	5	9	11	2	5	8
San	pple Date	6/7	7/18	8/23	9/26	10/26	11/16	12/5	1/2	2/9	3/22	4/11	5/10	-	7/23	8/7	11/26	2/20	5/30	8/14	11/5	2/12	5/28	9/1	11/16	2/15	5/20	8/23
Lab Analy		N	N	N	N	N.	N	N	N	N	N	N	N	Ň	N	N	N	N	N	N	N	N	N	N	N	N	N	N
												Field	Paramete	15:			*							*				
Purge Flow Rate	gpm																											
	gal																											
Depth to Water	ft bgs															- 00						1000				-		
Temperature	deg C	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	***	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry
	SU	200	113-11		11000			1100	100	1 2 7 2	11.00		1000		200	1000		250	1000	150	200	11.0		1.00		1.32		
Specific Conductance	μS/cm																											
Oxygen Reduction Potential	mV																											
												Lab An	alytical Res	ults:														
	mg/L																											
	SU																											
	mg/L																											
	mg/L																											
	mg/L																											
	mg/L																					11						
	mg/L																											
	mg/L																											
	mg/L																											
	mg/L																											
	mg/L																											0
	mg/L																											
	mg/L								-								*											
	mg/L								-																			4-
	mg/L																*											*
	mg/L																											
	mg/L																									t-		*
	mg/L																1											
	mg/L																1										$\overline{}$	
	mg/L																											
The state of the s	mg/L					+		-	-		-						+	+								-		+
The state of the s	mg/L				*	+	*								k	4	+	-								÷		*
	mg/L mg/L																											
	mg/L mg/L																1											
	mg/L																											
	mg/L mg/L				1				1		-							1					-					*
	mg/L				*	+										1	+					1				+		+
	mg/L								1									1										+
	mg/L				*												1	k										1
	mg/L				1												1											1
	mg/L																1											*
ZIIIC	my/L				4	4	0	1		1	4		l .			2	4							1				4

Notes & Definitions:

*** La Plata County stage 3 fire restrictions prevented sampling activity

- one-time analysis
- Y/N yes or no
- gpm gallons per minute
- deg C degrees Celsius
- SU standard pH units $\mu S/cm \quad microsiemens \ per \ centimeter$
- mV millivolts
- mg/L milligram per liter
- pCi/L picocuries per liter
- NM not measured (field)
- NA not analyzed (lab)

- "<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.
- Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent
 amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the
 initial pH of the sample solution, each components reported as equivalent CaCO3.
- Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring
 program by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are
 not shown in this table.

Year Quarter Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q4 Q4 Q4 Q4 Q4 Q4	Q3 8 8 10 7/23 8/7 8 110 7/23 8/7 7 N N Y 9 10 10 0.10 3 1.3 1.0 1.74 263.90 263.92 1.1 12.5 11.7	Q4 11 11/5-6 γ 0.10 1.1 264.68	Q1 2 2/20 Y	Q2 5 5/30 Y 0.12	9 Q3 8 8/14 Y	Q4 11 11/5 Y	Q1 2 2/12 Y	Q2 5 5/28 Y	Q3 9 9/1	Q4 11 11/16	Q1 2 2/15	2021 Q2 5 5/20	Q3 8
Month 6 7 8 9 10 11 12 1 2 3 4 5	6 6 7 8 10 7/23 8/7 N N Y neters: 10 *** 0.10 0.10 3 1.3 1.0 1.74 263.90 263.92 1.1 12.5 11.7	11 11/5-6 Y	2 2/20 Y	5 5/30 Y	8 8/14 Y	11 11/5 Y	2 2/12	5 5/28	9 9/1	11 11/16	2	5	
Sample Date 6/7 7/18 8/23 9/26 10/26 11/16 12/5 1/2 2/9 3/22 4/11 5/10	110 7/23 8/7 (N N Y neters: 10 *** 0.10 0.10 3 1.3 1.0 1.74 263.90 263.92 1.1 12.5 11.7	11/5-6 Y 0.10 1.1	2/20 Y	5/30 Y	8/14 Y	11/5 Y	2/12	5/28	9/1	11/16			8
Lab Analysis (Y/N)	N N Y neters: 10 *** 0.10 0.10 3 1.3 1.0 1.74 263.90 263.92 1.1 12.5 11.7	0.10 1.1	Y 0.12	Y 0.12	Υ	Υ	-				2/15	E/20	
Purge Flow Rate gpm NM NM NM NM NM NM NM NM NM 0.10 NM 0.10 0.10 Total Purged gal 7.5 NM NM 1.3 1.0 1.0 1.0 1.5 1.5 1.0 1.3	neters: 10 *** 0.10 0.10 .3 1.3 1.0 .74 263.90 263.92 .1 12.5 11.7	0.10 1.1	0.12	0.12			Υ	Υ	v			3/20	8/23
Purge Flow Rate gpm NM NM NM NM NM NM NM NM 0.10 NM 0.10 0.10 Total Purged gal 7.5 NM NM NM 1.3 1.0 1.0 1.5 1.5 1.5 1.0 1.3	10 *** 0.10 0.10 3 1.3 1.0 1.74 263.90 263.92 1.1 12.5 11.7	1.1			0.06				1	Y	Υ	Υ	Υ
Total Purged gal 7.5 NM NM NM 1.3 1.0 1.0 1.0 1.5 1.5 1.0 1.3	3 1.3 1.0 1.74 263.90 263.92 1.1 12.5 11.7	1.1			0.06								
	263.90 263.92 1.1 12.5 11.7		1.3			0.12	0.13	0.13	0.13	0.13	0.13	0.13	0.20
Depth to Water ft bgs 276.48 264.03 236.52 268.98 263.77 262.82 263.78 263.77 263.67 263.65 263.69 263.77	12.5 11.7	264.68		1.3	1.1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
			263.45	263.70	263.92	263.93	263.82	262.72	264.31	264.39	265.57	265.87	265.22
Temperature deg C 22.5 NM NM 11.1 10.4 9.9 8.8 9.3 9.9 9.5 9.5 10.1		9.6	6.7	10.2	11.1	10.6	9.2	10.6	11.8	10.5	8.3	12.3	11.7
pH SU 8.38 NM NM 8.81 8.86 8.84 8.84 8.83 8.87 8.59 8.55	55 8.56 8.61	8.54	8.62	8.36	8.45	8.42	8.30	8.55	8.62	8.65	8.58	8.51	8.61
Specific Conductance μS/cm 1355 NM NM 1621 1647 1637 1670 1664 1622 1610 1592 1596	96 1553 1558	1570	1607	1527	1572	1572	1546	1592	1518	1561	1425	~	1527.3
Oxygen Reduction Potential mV 77.1 NM NM 47.8 50.6 53.3 41.5 12.6 12.0 -33.8 5.7 -21.3	1.3 -44.7 14.5	-38.2	-39.7	-12.1	-16.0	10.5	39.0	-90.5	-25.4	21.0	-27.1	-0.8	-26.7
Lab Analytical R	l Results:												
Hardness as CaCO3 mg/L 13.6 14.0 10.2 10.5 9.11	11 9.34	9.48	8.79	8.47	8.74	7.97	8.89	8.72	9.18	9.1	9.45	8.96	7.88
pH (Lab) SU 8.80 8.66 8.58 8.62 8.67	67 8.60	8.50	8.54	8.14	8.37	8.35	8.28	8.17	8.34	8.38	8.37	8.28	8.31
Total Dissolved Solids (Lab) mg/L 1160 1120 1070 1030 1010	10 990	975	1050	975	1010	945	980	950	980	900	955	945	1010
Calcium mg/L 3.89 3.69 2.87 2.74 2.36	36 2.37	2.39	2.25	2.16	2.20	2.00	2.17	2.24	2.3	2.36	2.42	2.28	2.13
Magnesium mg/L 0.943 1.16 0.750 0.880 0.78	78 0.829	0.854	0.769	0.748	0.787	0.724	0.842	0.758	0.837	0.779	0.826	0.791	0.623
Sodium mg/L 428 433 411 416 398	98 404	417	416	384	392	392	405	407	405	413	435	380	402
Potassium mg/L <5.00 1.70 <5.00 1.68 1.25	25 <2.00	<2.00	1.9	1.29	1.35	1.05	<2.00	<5.00	1.21	<3.00	<3.00	1.16	<5.00
Alkalinity, Total mg/L 940 985 945 1000 900	940	900	860	945	905	935	885	865	760	935	935	935	930
Alkalinity, Bicarbonate mg/L 730 815 855 820 780	30 760	810	720	805	775	825	805	775	680	845	825	825	820
Alkalinity, Carbonate mg/L 210 170 140 180 120	20 180	90.0	140	140	130	110	80	90.0	80	90	110	110	110
Alkalinity, Hydroxide mg/L <10.0 <10.0 <10.0 <10.0 <10.0	10 <10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Chloride mg/L 11.4 6.32 8.60 5.93 7.48	48 5.23	4.98	5.17	5.3	5.11	5.43	5.47	5.30	5.4	5.23	5.27	4.93	4.78
Fluoride mg/L 0.954 0.606 0.815 0.535 0.565	0.536	0.340	0.367	0.404	0.327	0.440	0.34	0.308	0.278	0.274	0.25	0.272	0.304
Sulfate as SO4 mg/L 32.6 38.1 32.3 21.6 17.3	'.3 13.3	9.01	7.39	7.62	6.48	6.36	6.47	5.99	5.86	5.71	6.8	6.37	6.31
Total Organic Carbon (TOC) mg/L 6.32 3.42 3.69 3.65 3.82	82 3.78	3.68	3.46	3.46	3.24	2.78	2.73	2.72	2.78	2.57	2.64	2.50	2.66
Nitrate/Nitrite as N mg/L 0.599 <0.400 <0.020 <0.020 <0.020	.02 <0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.042	0.039
Ammonia as N ^ mg/L NA NA NA NA NA	A NA	NA	NA	NA	NA	<0.100	NA	NA	NA	NA	NA	NA	NA
Ortho-Phosphate as P ^ mg/L NA NA NA NA	A NA	NA	NA	NA	NA ·	<0.0500	NA	NA	NA	NA	NA	NA	NA
Aluminum mg/L <0.250 <0.050 <0.250 <0.050 <0.050 <0.050	050 <0.100	<0.100	<0.050	<0.050	<0.050	<0.050	<0.100	<0.250	<0.050	<0.150	<0.150	<0.050	<0.250
Arsenic mg/L 0.0129 0.0200 0.0151 0.0192 0.023	232 0.0234	0.0165	0.0177	0.0176	0.0194	0.0147	0.0133	0.0126	0.0139	0.0145	0.0143	0.0142	0.0117
Cadmium mg/L <0.0005 <0.0001 <0.0005 <0.0001 <0.0001	0001 <0.0001	<0.0002	<0.0002	<0.0001	<0.0001	<0.0001	<0.0002	<0.0005	<0.0005	<0.0003	<0.0003	<0.0005	<0.0025
Copper mg/L 0.0229 0.0074 0.0060 0.0076 0.0076	0.0072	0.0074	0.0103	0.0148	0.0054	0.0056	0.0041	<0.0025	0.0048	0.0028	0.003	0.0088	0.0083
Iron mg/L <0.250 <0.050 <0.250 <0.050 <0.050	050 <0.100	<0.100	<0.050	<0.050	<0.050	<0.050	<0.100	<0.250	<0.050	<0.150	<0.150	<0.050	<0.250
Lead mg/L <0.0025 <0.0005 <0.0005 <0.0005 <0.0005	0.0005	<0.001	<0.0010	<0.0005	<0.0005	<0.0010	<0.001	<0.0025	<0.0025	<0.0015	<0.0015	<0.0005	<0.0025
Manganese mg/L <0.0025 0.0036 0.0066 0.0082 0.010	104 0.0121	0.0155	0.017	0.0146	0.0158	0.0156	0.019	0.0169	0.0203	0.0225	0.0215	0.0188	0.0187
Mercury mg/L <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	0002 <0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum mg/L 0.0395 0.0274 0.0247 0.0158 0.011	113 0.0114	0.0078	0.0066	0.0053	0.0051	0.0038	0.0038	0.0031	0.0027	0.0028	0.0028	0.0026	<0.0025
Selenium mg/L <0.0050 0.0014 <0.0050 <0.0010 <0.0010	0.0010	<0.002	<0.0020	<0.001	<0.0010	<0.0010	<0.0020	<0.0050	<0.0050	<0.0030	0.0039	0.001	<0.0050
Silica (Si02) mg/L <5.35 9.07 <5.35 8.66 8.17	17 8.28	9.20	8.37	8.4	9.18	7.76	8.07	7.36	8.54	8.45	8.91	8.2	7.7
Silicon mg/L <2.50 4.24 <2.50 4.05 3.82	82 3.87	4.30	3.91	3.93	4.29	3.63	3.77	3.44	3.99	3.95	4.17	3.83	3.6
Uranium mg/L 0.0117 0.0098 0.0104 0.0095 0.008	0.0112	0.0099	0.0103	0.0085	0.0093	0.0098	0.0082	0.0068	0.0068	0.0071	0.0079	0.0066	0.0063
Zinc mg/L 0.204 0.138 0.109 0.0933 0.081	816 0.0801	0.0919	0.115	0.0576	0.0567	0.0561	0.0698	0.0641	0.0746	0.0854	0.0831	0.0607	0.0693

Notes & Definitions:

- *** La Plata County stage 3 fire restrictions prevented sampling activity
- one-time analysis
- ~ instrument error
- Y/N yes or no
- gpm gallons per minute
- deg C degrees Celsius
- SU standard pH units
- μS/cm microsiemens per centimeter mV millivolts
- mv millivoits
- mg/L milligram per liter
- pCi/L picocuries per liter NM not measured (field) NA not analyzed (lab)
- "<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.
- Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value
 as an equivalent amount of calcium carbonate. This value is then partitioned into bicarbonate,
 carbonate and hydroxide depending on the initial pH of the sample solution, each components
- Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown in this table.

													N	1W-5-C																
	Year					2017									2018						20	19			20	20			2021	
	Quarter	Q2		(Q3			C	(4			Q1		C)2		Q3		Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
	Month	6	7	8	9	9	10	11	11	12	1	2	3	4	5	6	7	8	11	2	5	8	11	2	5	9	11	2	5	8
Sa	imple Date	6/7	7/18	8/23	9/7	9/26	10/26	11/2	11/16	12/5	1/2	2/9	3/22	4/11	5/10		7/23	8/7	11/1	2/20	5/30	8/14	11/5	2/12	5/28	9/1	11/16	2/15	5/20	8/23
Lab And	alysis (Y/N)	N	N	N	N	Υ	N	N	Υ	N	N	Υ	N	N	Υ	N	N	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Y	Υ
													Field	Parametei	rs:															
Purge Flow Rate	gpm	NM	NM	NM	NM	NM	NM	0.10	NM	NM	NM	0.10	NM	0.10	0.10	***	0.10	0.10	0.10	0.12	0.12	0.06	0.25	0.13	0.25	0.13	0.13	0.25	0.15	0.25
Total Purged	gal	NM	NM	NM	NM	NM	NM	3.0	1.0	1.0	1.5	2.0	1.5	1.0	1.3		1.3	1.5	1.6	1.3	1.5	1.3	1.1	1.0	1.0	1.0	1.0	1.5	1.5	1.0
Depth to Water	ft bgs	248.15	240.80	235.02	233.20	230.75	229.44	228.45	227.43	227.64	225.40	222.46	219.31	218.22	216.04		210.87	210.50	205.10	198.44	193.20	191.11	189.20	187.50	187.70	189.72	192.15	195.08	197.82	200.27
Temperature	deg C	NM	NM	NM	35.3	11.3	NM	9.5	9.7	9.0	9.3	9.4	9.6	9.7	10.1		10.7	10.7	9.4	8.6	10.1	10.9	10.3	8.8	10.9	10.9	10.0	9.1	10.5	10.8
pH	SU	NM	NM	NM	8.75	7.58	NM	7.59	7.63	7.64	7.65	7.68	7.77	7.56	7.60		7.52	7.61	7.55	7.72	7.72	7.74	7.77	7.87	7.83	7.93	7.91	7.93	8.01	8.05
Specific Conductance	μS/cm	NM	NM	NM	0	4903	NM	4905	4827	4977	4974	4958	4285	4787	4772		4674	4687	4768	4623	4418	4355	4359	4230	4152	3677	4013	3625	3206	3685
Oxygen Reduction Potential	mV	NM	NM	NM	48.2	-24.8	NM	7.6	-74.2	-110.5	-99.8	-90.5	-84.6	-49.6	-51.3		-59.5	-66.4	-138.0	-56.2	-29.9	-88.2	-58.7	-45.5	-128.2	-88.6	-52.8	-49.8	-116.6	-104.5
	1 6 1		ı	_	Т		I	Т					Lab And	ılytical Res				54.0			***					20.0				
Hardness as CaCO3	mg/L					80.3			67.7			61.3			50.3		_	51.2	51.4	43	41.1	38.8	34.9	34.8	33.2	30.8	31.7	29.4	28.0	23.9
pH (Lab)	SU					7.57			8.11			7.74 3480			7.79		_	7.64	7.69	7.72	7.46	7.75	7.66	7.74	7.73	7.8	7.92	8.03	7.82	7.87
Total Dissolved Solids (Lab)	mg/L					3470			3540						3430		_	3290	3260	3160	3090	3130	3010	2970	2800	2750	2640	2710	2590	2670
Calcium	mg/L					18.3 8.40			15.4 7.11			13.7 6.57			11.1 5.46		_	11.4 5.52	11.5 5.50	9.78 4.51	9.34 4.32	8.69 4.14	7.70 3.81	7.73 3.78	7.50 3.51	6.78 3.37	7.02 3.43	6.7 3.08	6.28	5.54 2.43
Magnesium Sodium	mg/L					1280			1220			1250			1200			1230	1250	1220	1070	1120	1050	1050	1060	1010	1030	1070	2.98 999	942
Potassium	mg/L					4.57			<5.00			<5.00			3.6			<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<10.0	2.75	<10.0	<10.0	2.63	<10.0
Alkalinity, Total	mg/L mg/L					1480			1540			1590			1490			1520	1540	1560	1630	1620	1580	1550	1520	1590	1570	1610	1580	1540
Alkalinity, Bicarbonate	mg/L					1480			1540			1590			1490			1520	1540	1560	1630	1620	1520	1550	1470	1480	1510	1550	1580	1540
Alkalinity, Carbonate	mg/L					<10.0			<10.0			<10.0			<10.0			<10.0	<10.0	<10.0	<10.0	<10.0	60.0	<10.0	50.0	110	60	60	<10.0	<10.0
Alkalinity, Hydroxide	mg/L					<10.0			<10.0			<10.0			<10.0			<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Chloride	mg/L					8.66			10.6			10.1			<10.0			7.15	7.08	7.1	7.02	6.62	6.32	6.58	6.12	6.02	6.04	5.84	4.05	5.95
Fluoride	mg/L					1.90			1.93			1.89			1.79			1.74	1.80	1.95	2.01	1.95	1.98	1.96	2.01	2.01	2.03	1.99	2.09	2.09
Sulfate as SO4	mg/L					1470			1600			1190			1220			1130	1070	1040	975	948	836	799	721	679	686	693	700	607
Total Organic Carbon (TOC)	mg/L					2.86			2.94			3.24			3.06			3.28	3.64	3.05	3.00	3.03	2.62	2.7	2.73	2.87	2.69	2.7	2.46	2.8
Nitrate/Nitrite as N	mg/L					<0.100			<0.020			<0.020			<0.02			0.026	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Ammonia as N ^	mg/L					NA			NA			NA			NA			NA	NA	NA	NA	NA	0.369	NA	NA	NA	NA	NA	NA	NA
Ortho-Phosphate as P ^	mg/L					NA			NA			NA			NA			NA	NA	NA	NA	NA	<0.250	NA	NA	NA	NA	NA	NA	NA
Aluminum	mg/L					<0.050			<0.250			<0.250			<0.050			<0.250	<0.250	<0.250	<0.25	<0.250	<0.250	<0.250	<0.500	<0.050	<0.050	<0.500	<0.500	<0.500
Arsenic	mg/L					<0.0025			<0.0050			<0.0025			0.0044			0.0046	0.0036	0.004	0.0013	<0.0025	<0.0025	<0.0025	<0.0025	<0.0050	<0.005	<0.0050	<0.0005	<0.0050
Cadmium	mg/L					<0.0005			<0.0010			<0.0005			<0.0005			<0.0005	<0.0005	<0.0005	<0.0001	<0.0005	<0.0005	<0.0005	<0.0005	<0.0010	<0.0010	<0.0010	<0.0005	<0.0050
Copper	mg/L					0.0272			0.0161			0.0342			0.0171			0.0226	0.0178	0.0294	0.01	0.0138	0.0303	0.0165	0.0040	0.0101	0.0078	0.0066	0.0296	0.0202
Iron	mg/L					<0.050			<0.250			0.399			0.237			<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	<0.500	0.113	<0.500	<0.500	0.223	<0.500
Lead	mg/L					<0.0025			<0.0050			<0.0025			<0.0025			<0.0025	<0.0025	<0.0025	<0.0005	<0.0025	<0.0025	<0.0025	<0.0025	<0.005	<0.005	<0.0050	<0.0005	<0.0050
Manganese	mg/L					0.0367			0.0283			0.0138			0.0128			0.0131	0.0117	0.0115	0.0079	0.0078	0.0076	0.0081	0.0059	<0.0050	0.0053	<0.0050	0.0035	<0.0050
Mercury	mg/L					<0.0002			<0.0002			<0.0002			<0.0002			<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L					0.0376			0.0201			0.0154			0.0142			0.0127	0.0109	0.0096	0.0054	0.0041	0.0035	0.0033	0.0031	<0.0050	<0.0050	<0.0050	0.0026	<0.0050
Selenium	mg/L					<0.0050			<0.0100			<0.0050			<0.0050			<0.0050	<0.0050	<0.0050	0.0015	<0.0050	_	<0.0050	<0.0050	<0.0100	<0.0100	0.0142	<0.0010	<0.0100
Silica (SiO2)	mg/L					6.57			<5.35			7.64			7.65			8.18	8.94	7.84	8.00	8.00	7.33	7.01	<10.7	7.44	<10.7	<10.7	7.15	<10.7
Silicon	mg/L					3.07			<2.50			3.57			3.58			3.83	4.18	3.67	3.74	3.74	3.43	3.28	<5.00	3.48	<5.00	<5.00	3.34	<5.00
Uranium	mg/L					0.0088			0.0054			0.0048			0.0047			0.0036	0.0035	0.0029	0.0021	0.0018	0.0017	<0.0025	<0.0025	<0.0050	<0.0050	<0.0050	0.0012	<0.0050
Zinc	mg/L					<0.0100			<0.0200			<0.0100			<0.0100			<0.0100	<0.0100	<0.0100	<0.002	<0.0100	<0.0100	<0.0100	<0.0100	<0.0200	<0.0200	<0.0200	<0.0020	<0.0200

Notes & Definitions:

*** La Plata County stage 3 fire restrictions prevented sampling activity

one-time analysis

Y/N yes or no

gpm gallons per minute

deg C degrees Celsius

SU standard pH units $\mu S/cm \quad microsiemens \ per \ centimeter$

23/CIII IIIICIOSIEIIIEIIS PEI CEII

mV millivolts

mg/L milligram per liter

pCi/L picocuries per liter

NM not measured (field)

- "<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.
- Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an
 equivalent amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and
 hydroxide depending on the initial pH of the sample solution, each components reported as equivalent CaCO3.
- Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown in this table.

Yea Quarte Monti Sample Dat Lab Analysis (Y/N Purge Flow Rate gpm	Q4 12 12/28	1 1/31 N	Q1 2 2/21 Y	3 3/21	4	20 Q2	19							20			2021	
Quarte Monti Sample Dat Lab Analysis (Y/N	Q4 12 12/28 Y	1/31 N	2 2/21		4													
Monti Sample Dat Lab Analysis (Y/N	12 12/28 12/28 Y	1/31 N	2/21		4				Q3		Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
Lab Analysis (Y/N) Y NM	N		3/21		5	6	7	8	9	11	2	5	8	11	2	5	8
	NM		Y		4/23	5/20	6/19	7/23	8/15	9/24	11/7	2/5	5/14	8/11	11/25	2/9	5/17	8/9
Purge Flow Rate gpm	_			N	N	Υ	N	N	Υ	N	Υ	Υ	Υ	Υ	Υ	Y	Υ	Υ
Purge Flow Rate gpm	_						Field Para	meters:										
	36.3	NM	0.10	2.00	0.03	0.03	0.03	0.06	0.03	0.02	0.01	0.05	0.13	0.05	0.05	0.05	0.02	0.13
Total Purged gal		0.5	0.5	2.0	2.0	1.3	1.0	1.3	1.1	1.3	1.5	1.1	1.0	1.3	1.0	1.0	1.0	1.0
Depth to Water ft bgs	304.33	306.41	307.40	309.60	311.05	312.50	314.20	315.75	316.43	NM	318.70	315.46	319.63	319.64	319.65	319.66	319.66	319.64
Temperature deg C	7.4	10.7	8.1	7.5	9.6	7.3	12.5	12.3	11.9	10.4	10.4	7.8	9.8	19.5	8.0	9.7	12.6	19.4
pH SU	7.32	6.64	6.66	6.74	6.65	6.73	6.76	6.75	6.76	6.80	6.79	6.89	6.95	6.97	7.10	7.03	7.10	7.11
Specific Conductance µS/cm	6573	6053	6072	6107	6012	6057	5725	5598	5562	5451	5108	5043	4779	4339	4656	4051	3198	4238
Oxygen Reduction Potential mV	-22.8	19.4	24.6	12.6	11.8	34.8	86.6	25.8	6.5	29.2	20.5	36.7	51.7	62.3	55.2	73.5	83.5	5.2
						Lai	b Analytic	ıl Results:										
Hardness as CaCO3 mg/L	4360		4190			3920			3540		3070	3200	2780	2690	2710	2660	2550	2740
pH (Lab) SU	7.10		6.85			6.77			6.85		6.87	6.9	6.93	6.66	7.04	7.20	6.93	7.1
Total Dissolved Solids (Lab) mg/L	6520		6520			120*			6080		5210	4980	4670	4490	4570	4480	4390	4440
Calcium mg/L	615		559			553			492		431	467	400	398	406	398	378	415
Magnesium mg/L	687		678			617			560		484	495	431	411	413	404	390	413
Sodium mg/L	294		283			296			304		276	296	274	261	273	272	266	263
Potassium mg/L	15.0		14.4			12.4			12.8		11.1	<20.0	10.6	10.3	10.5	11.1	10.7	11
Alkalinity, Total mg/L	160		160			143			183		220	215	233	236	246	245	290	255
Alkalinity, Bicarbonate mg/L	160		160			143			183		220	215	233	236	246	245	290	255
Alkalinity, Carbonate mg/L	<10.0		<10.0			<10.0			<10.0		<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Alkalinity, Hydroxide mg/L	<10.0		<10.0			<10.0			<10.0		<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Chloride mg/L	97.4		28.6			27.3			29.9		29.6	28.4	29.0	26.0	26.6	24.9	25.8	26
Fluoride mg/L	2.83		<0.500			<0.500			<0.500		<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
Sulfate as SO4 mg/L	205		4300			4280			4260		3460	3080	3020	3160	2890	2620	2740	2780
Total Organic Carbon (TOC) mg/L	3.45		3.08			2.91			3.57		3.10	3.16	3.39	3.31	3.26	1.71	3.82	3.33
Nitrate/Nitrite as N mg/L	<0.020		<0.020			<0.020			<0.020		<0.020	0.049	0.154	0.117	0.093	0.039	0.156	0.118
Ammonia as N ^ mg/L	NA		NA			NA			NA		2.72	NA						
Ortho-Phosphate as P ^ mg/L	NA		NA			NA			NA		<0.0500	NA						
Aluminum mg/L	<0.500		<0.250			<0.250			<0.250		<0.250	<1.00	<0.500	<0.250	<0.500	<0.250	<0.250	<0.250
Arsenic mg/L	<0.0025		<0.0025			0.0009			<0.0025		<0.0025	<0.0025	<0.0050	<0.0025	<0.0050	<0.0025	<0.0025	<0.0025
Cadmium mg/L	<0.0005		<0.0005			0.0001			<0.0005		<0.0005	<0.0005	<0.0010	<0.0005	<0.0010	<0.0005	<0.0025	<0.0025
Copper mg/L	0.0116		0.0081			0.0035			0.0039		0.0017	0.0028	<0.0050	<0.0025	<0.0050	<0.0025	0.0068	0.0082
Iron mg/L	1.37		3.75			3.93			3.22		2.72	1.95	1.38	1.10	1.24	1.17	0.890	1.48
Lead mg/L	<0.0025		<0.0025			<0.0005			<0.0025		<0.0025	<0.0025	<0.0050	<0.0025	<0.0050	<0.0025	<0.0025	<0.0025
Manganese mg/L	0.788		0.802			0.724			0.690		0.585	0.551	0.526	0.520	0.454	0.437	0.397	0.407
Mercury mg/L	<0.0002		<0.0002			<0.0002			<0.0002		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum mg/L	<0.0025		<0.0025			<0.0005			<0.0025		<0.0025	<0.0025	<0.0050	<0.0025	<0.005	<0.0025	<0.0025	<0.0025
Selenium mg/L	<0.0050		<0.0050			0.0028			<0.0050		<0.0050	<0.005	<0.0100	<0.0050	<0.0100	<0.0050	<0.0050	<0.0050
Silica (Si02) mg/L	12.3		11.9			14.3			13.4		12.5	<21.4	11.0	11.4	12.3	11.9	13.2	14.3
Silicon mg/L	5.77		5.57			6.69			6.28		5.83	<10.00	5.17	5.35	5.76	5.58	6.17	6.67
Uranium mg/L	<0.0005		<0.0005			<0.0001			<0.0005		<0.0005	<0.0025	<0.0050	<0.0025	<0.0050	<0.0025	<0.0025	<0.0025
Zinc mg/L	0.0689		<0.0100			0.0082			0.0108		0.0117	0.0107	<0.0200	0.0159	<0.0200	<0.0100	<0.0100	<0.0100

Notes & Definitions:

- Anomalous value under review
- one-time analysis
- Y/N yes or no
- gpm gallons per minute
- deg C degrees Celsius
- SU standard pH units
- μS/cm microsiemens per centimeter mV millivolts
- mg/L milligram per liter pCi/L picocuries per liter
- NM not measured (field) NA not analyzed (lab)

- 1. "<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.
- 2. Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the initial pH of the sample solution, each components reported as equivalent CaCO3.
- 3. Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown in this table.

								IV	IW-6-MI											
	Year	2018						2019							20	20			2021	
	Quarter	Q4		Q1),2			Q3		Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
	Month	12	1	2	3	4	5	5	6	7	8	9	11	2	5	8	11	2	5	8
S	ample Date	12/29	1/31	2/25	3/21	4/19	5/20	5/30	6/19	7/23	8/15	9/24	11/7	2/5	5/14	8/11	11/24	2/9	5/17	8/9
Lab An	alysis (Y/N)	Y	N	γ	N	N	N*	N	N	N	N	N	N	N	- N	N	N	. N	N	N
								Field	Paramete	rs:										
Purge Flow Rate	gpm	NM	NM	NM	0.5	0.1	0.015													
Total Purged	gal	11.3	0.5	1.5	0.5	1.0	0.9													
Depth to Water	ft bgs	374.49	368.09	367.92	370.49	369.50	371.00													
Temperature	deg C	14.3	13.6	10.8	9.7	16.7	3.9	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry
pH	SU	8.26	7.43	7.21	7.55	7.97	7.84							0.00						
Specific Conductance	μS/cm	3390	3620	3132	2619	2202	2527													
Oxygen Reduction Potential	mV	103.0	-80.2	77.6	59.8	38.3	64.9													
								Lab An	alytical Re	sults:		-								
Hardness as CaCO3	mg/L	679		147																
pH (Lab)	SU	8.18		8.35																
Total Dissolved Solids (Lab)	mg/L	2480		1880																
Calcium	mg/L	104		23.4																
Magnesium	mg/L	102		21.6																
Sodium	mg/L	646		565																
Potassium	mg/L	12.0		5.30																
Alkalinity, Total	mg/L	395		615																
Alkalinity, Bicarbonate	mg/L	345		615																
Alkalinity, Carbonate	mg/L	50.0		<10.0																
Alkalinity, Hydroxide	mg/L	<10.0		<10.0																
Chloride	mg/L	175		178																
Fluoride	mg/L	2.06		2.46																
Sulfate as SO4	mg/L	1210		585																
Total Organic Carbon (TOC)	mg/L	3.63		4.55																
Nitrate/Nitrite as N	mg/L	0.023		<0.020										1						
Aluminum	mg/L	<0.100		<0.100																
Arsenic	mg/L	0.0084		0.0144																
Cadmium	mg/L	< 0.0001		<0.0002																
Copper	mg/L	0.0113		0.0112																
Iron	mg/L	< 0.100		<0.100																
Lead	mg/L	< 0.0005		<0.0010																
Manganese	mg/L	0.0500		0.0224																
Mercury	mg/L	< 0.0002		<0.0002																
Molybdenum	mg/L	0.0558		0.0690																
Selenium	mg/L	0.0098		0.0127																
Silica (SiO2)	mg/L	9.93		9.05																
Silicon	mg/L	4.64		4.23																
Uranium	mg/L	0.0200		0.0118																
Zinc	mg/L	0.0092		0.0143							1									1

Notes & Definitions:

No sample collected, due to low yield, insufficient volume for lab sample after field parameters were measured

Y/N yes or no

gpm gallons per minute deg C degrees Celsius

SU standard pH units μS/cm microsiemens per centimeter

mV millivolts
mg/L milligram per liter
pCi/L picocuries per liter
NM not measured (field)

- "<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.
- Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent
 amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the
 initial pH of the sample solution, each components reported as equivalent CaCO3.
- Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program
 by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown
 in this table.

	-	-	704				_	MW-	6-C			-		-					
	Year	2018					2	019				-		20	020			2021	
	Quarter	Q4		Q1			Q2			Q3		Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
	Month	12	1	2	3	4	5	6	7	8	9	11	2	5	8	11	2.	5	8
So	imple Date	12/24	1/30	2/21	3/21	4/23	5/20	6/19	7/23	8/15	9/24	11/7	2/5	5/12	8/11	11/24	2/9	5/17	8/9
Lab And	alysis (Y/N)	N	N	N	N	N	N.	N	N .	N	N	N.	N.	N	N	N	N	N	N
								Field Para	meters:										
Purge Flow Rate	gpm																		
Total Purged	gal																		
Depth to Water	ft bgs				Sec. 1				A.110	and the second					1,4111			400.60	A. mari
Temperature	deg C	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry
pH	SU																		
Specific Conductance	μS/cm																		
Oxygen Reduction Potential	mV																		
	1			7		Y	Lo	ab Analytic	al Results:	T						1			
Hardness as CaCO3	mg/L	7	-	1		-	+									1			1
pH (Lab)	SU			+		-	+									1			1
Total Dissolved Solids (Lab)	mg/L																		
Calcium	mg/L						-												
Magnesium	mg/L			-															
Sodium	mg/L			+															
Potassium	mg/L		-	+													-		
Alkalinity, Total	mg/L		-	+													-		
Alkalinity, Bicarbonate	mg/L		-	+			1	+									-		
Alkalinity, Carbonate Alkalinity, Hydroxide	mg/L mg/L		-	+			+									1	-		
Chloride			-	+		1	+									1	-		
Fluoride	mg/L mg/L		-	+		1	+										-		
Sulfate as SO4	mg/L mg/L			+		-											-		
Total Organic Carbon (TOC)	mg/L																		
Nitrate/Nitrite as N	mg/L			+	1		1									1		1	
Aluminum	mg/L			1	1	1	+											1	
Arsenic	mg/L																	1	
Cadmium	mg/L												1					1	
Copper	mg/L																		
Iron	mg/L												7						
Lead	mg/L																		
Manganese	mg/L																		
Mercury	mg/L																		
Molybdenum	mg/L																		
Selenium	mg/L																		
Silica (SiO2)	mg/L																		
Silicon	mg/L																		
Uranium	mg/L																		
Zinc	mg/L																		

Notes & Definitions:

Y/N yes or no
gpm gallons per minute
deg C degrees Celsius
SU standard pH units

µS/cm microsiemens per centimeter
mV millivolts
mg/L milligram per liter

pCi/L picocuries per liter

NM not measured (field) NA not analyzed (lab)

- "<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.
- Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the initial pH of the sample solution, each components reported as equivalent CaCO3.
- Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program
 by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown
 in this table.

								M	IW-6-LM											
	Year	2018	Г					2019	IVV-O-LIVI					Π	20)20			2021	
	Quarter	Q4		01			Q2	2013	Ι	Q3)4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
	Month	12	1	2	3	4	5	6	7	8	9	10	11	2	5	8	11	2	5	8
So	mple Date	12/30	1/31	2/25	3/21	4/23	5/20	6/19	7/23	8/15	9/24	10/28	11/7	2/5	5/14	8/11	11/25	2/9	5/17	8/9
	llysis (Y/N)	Υ Υ	N	Υ Υ	N	N N	γ	N	N N	γ	N N	N	Υ Υ	Υ Υ	γ	γ	Υ Υ	Υ Υ	γ	Y
	,,,,,,			<u> </u>	.,		· ·		Paramete						<u> </u>					
Purge Flow Rate	gpm	NM	NM	0.06	2.00	0.03	0.03	0.10	0.06	0.03	0.02	0.01	0.03	0.01	0.13	0.01	0.13	0.13	0.13	0.13
Total Purged	aal	0.5	0.5	1.5	2.0	2.0	2.3	1.3	1.3	1.8	2.0	1.5	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Depth to Water	ft bgs	535.72	538.73	539.34	540.64	539.98	537.58	540.00	540.35	540.24	540.17	539.80	540.18	539.70	539.45	539.98	540.30	539.78	540.20	541.25
Temperature	deg C	7.9	14.3	7.8	8.1	9.1	9.3	11.7	14.0	13.4	11.6	10.1	12.4	10.5	11.3	14.8	11.4	10.2	11.6	14.4
pH	SU	7.64	7.38	7.51	7.54	7.49	7.54	7.67	7.80	7.65	7.43	7.45	7.37	7.39	7.54	7.44	7.47	7.44	7.54	7.52
Specific Conductance	μS/cm	6011	3784	3503	1461	1164	1296	1400	1272	1532	2104	2267	2113	2283	2287	2442	2495	2136	1629	2531
Oxygen Reduction Potential	mV	185.3	10.7	40.9	-32.8	-35.8	-111.0	-194.5	-163.6	-67.2	6.4	-48.0	19.9	-128.9	-222.9	32.1	21.8	3.5	-188.8	-2.6
									alytical Res											
Hardness as CaCO3	mg/L	2260		1270			431			621		I	843	1060	965	1130	1160	1120	1010	1280
pH (Lab)	SU	7.60		7.52			7.47			7.59			7.32	7.43	7.18	6.95	7.45	7.49	7.45	7.37
Total Dissolved Solids (Lab)	mg/L	5100		2840			875			1150			1630	1840	1840	2040	2020	1990	1830	2290
Calcium	mg/L	367		216			75.9			103			136	173	150	179	184	176	154	201
Magnesium	mg/L	325		177			58.7			88.3			122	153	143	165	171	166	152	189
Sodium	mg/L	459		248			129			153			172	203	188	194	194	188	169	177
Potassium	mg/L	173		64.5			14.0			13.7			11.3	11	7.82	7.20	6.04	5.96	5.22	5.69
Alkalinity, Total	mg/L	205		315			371			381			355	320	353	335	329	336	346	330
Alkalinity, Bicarbonate	mg/L	205		315			371			381			355	320	353	335	329	336	346	330
Alkalinity, Carbonate	mg/L	<10.0		<10.0			<10.0			<10.0			<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Alkalinity, Hydroxide	mg/L	<10.0		<10.0			<10.0			<10.0			<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Chloride	mg/L	256		43.7			5.73			8.70			11.4	11	11.7	12.2	12.4	11	10.5	12.6
Fluoride	mg/L	0.530		<0.500			0.324			<0.500			<0.500	0.352	< 0.500	0.346	0.356	0.318	0.340	0.418
Sulfate as SO4	mg/L	3050		1790			338			492			830	951	904	1260	1170	1020	978	1300
Total Organic Carbon (TOC)	mg/L	3.46		2.61			1.57			1.78			1.85	1.76	1.84	1.87	1.93	3.17	1.81	1.91
Nitrate/Nitrite as N	mg/L	<0.020		<0.020			<0.020			<0.020			<0.020	<0.020	<0.020	<0.020	<0.020	< 0.020	<0.020	<0.020
Ammonia as N ^	mg/L	NA		NA			NA			NA			1.99	NA						
Ortho-Phosphate as P ^	mg/L	NA		NA			NA			NA			<0.0500	NA						
Aluminum	mg/L	< 0.250		<0.250			< 0.050			<0.050			<0.100	< 0.250	< 0.250	<0.150	< 0.250	< 0.250	<0.150	<0.100
Arsenic	mg/L	0.0039		0.0049			0.0036			0.0038			0.0035	0.0044	0.0034	0.0038	0.0036	0.0038	0.0038	0.0039
Cadmium	mg/L	<0.0005		<0.0005			<0.0001			<0.0001			< 0.0002	< 0.0002	<0.0005	<0.0003	<0.0005	<0.0005	<0.0015	<0.0010
Copper	mg/L	0.0135		0.0064			0.0017			0.0018			0.0069	0.0014	<0.0025	<0.0015	<0.0025	< 0.0025	0.0042	0.0046
Iron	mg/L	<0.250		<0.250			<0.050			<0.050			<0.100	< 0.250	< 0.250	<0.150	<0.250	< 0.250	<0.150	<0.100
Lead	mg/L	< 0.0025		<0.0025			<0.0005			<0.0005			<0.0010	<0.001	<0.0025	<0.0015	<0.0025	< 0.0025	<0.0015	<0.0010
Manganese	mg/L	0.383		0.223			0.0692			0.148			0.166	0.184	0.171	0.267	0.292	0.253	0.203	0.257
Mercury	mg/L	<0.0002		<0.0002			<0.0002			<0.0002			<0.0002	< 0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	0.0490		0.0169			0.0037			0.0025			0.0022	0.002	<0.0025	0.0023	<0.0025	<0.0025	<0.0015	0.0016
Selenium	mg/L	0.0080		<0.0050			<0.0010			<0.0010			<0.0020	<0.002	<0.0050	<0.0030	<0.0050	0.0151	<0.0030	<0.0020
Silica (Si02)	mg/L	10.5		13.5			17.0			17.4			15.9	17.1	15.1	14.7	16.0	15.6	16.4	16.8
Silicon	mg/L	4.91		6.29			7.96			8.12			7.43	7.97	7.07	6.88	7.47	7.3	7.68	7.85
Uranium	mg/L	0.0230		0.0075			0.0039			0.0054			0.0047	0.0055	0.0043	0.0046	0.0042	0.0039	0.0030	0.0037
Zinc	mg/L	0.0323		<0.0100			<0.0020			<0.0040			<0.0040	< 0.004	<0.0100	0.0069	<0.0100	<0.0100	<0.0060	<0.0040

Notes & Definitions:

^ one-time analysis

Y/N yes or no

gpm gallons per minute

deg C degrees Celsius

SU standard pH units

μS/cm microsiemens per centimeter mV millivolts

mg/L milligram per liter

pCi/L picocuries per liter NM not measured (field) NA not analyzed (lab)

- 1. "<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.
- 2. Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the initial pH of the sample solution, each components reported as equivalent CaCO3.
- 3. Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown in this table.

								M	W-7-EAA											
	Year	2018						2019	,						20	20			2021	
	Quarter	Q4		01			Q2	2015		Q3		0)4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
	Month	12	1	2	3	4	5	6	7	8	9	10	11	2	5	8	11	2	5	8
Se	ample Date	12/23	1/29	2/19	3/20	4/16	5/29	6/20	7/24	8/13	9/27	10/24	11/6	2/11	5/27	8/25	11/11	2/16	5/24	8/24
	alvsis (Y/N)	Υ Υ	N	Υ Υ	N	N N	Y	N	N N	γ	N N	N	Y	Υ Υ	γ	Y	γ	Υ Υ	γ	γ
2007111	,2.2 (1,11,								Paramete	rs:										
Purge Flow Rate	gpm	1.10	1.10	1.00	3.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.25	0.13	0.25	0.25	0.13	0.25
Total Purged	gal	15.0	18.0	15.0	3.0	15.0	16.0	15.3	15.3	17.0	15.0	15.0	15.0	36.5	15.0	16.0	17.0	15.0	17.0	17.0
Depth to Water	ft bgs	36.13	36.27	36.45	36.52	36.70	36.25	36.22	36.48	36.49	36.88	36.85	36.85	36.72	35.40	36.35	37.10	36.20	35.33	36.91
Temperature	deg C	10.0	10.0	10.0	9.9	10.1	10.4	10.4	10.6	10.5	10.3	10.4	10.6	10.4	12.1	10.3	10.3	10.1	10.5	10.9
pH	SU	6.99	7.01	7.04	6.93	7.00	7.06	7.07	6.28	6.95	7.06	7.03	7.06	6.91	7.17	7.09	7.12	7.14	7.19	7.24
Specific Conductance	μS/cm	2001	1910	1910	1926	1912	1767	1836	1885	1890	1913	1936	1922	1993	1890	1772	1628	1672	1805	1814
Oxygen Reduction Potential	mV	-68.0	-36.7	-41.4	-38.1	-48.8	14.1	-13.8	-33.9	-37.8	-29.5	-25.6	-21.3	0.9	-49.2	17.6	-8.6	2.2	-55.8	-41.9
								Lab And	alytical Res	ults:										
Hardness as CaCO3	mg/L	936		1030			982			997			1020	963	1020	1080	939	1090	958	986
pH (Lab)	SU	7.2		7.37			7.17			7.09			6.99	6.92	6.89	7.23	7.06	6.99	6.92	7.03
Total Dissolved Solids (Lab)	mg/L	1460		1480			1490			1480			1530	1520	1430	1480	1450	1590	1460	1510
Calcium	mg/L	170		179			171			173			162	165	175	183	157	186	167	167
Magnesium	mg/L	124		142			135			137			144	134	142	150	133	152	131	138
Sodium	mg/L	75.3		81.3			75.0			75.2			74.9	73.7	76.0	80.9	73.4	81.4	75	74.6
Potassium	mg/L	3.87		3.9			<5.00			3.74			3.74	3.82	<5.00	<5.00	<5.00	4.25	<5.00	<5.00
Alkalinity, Total	mg/L	380		367			405			392			350	357	355	268	430	420	395	340
Alkalinity, Bicarbonate	mg/L	380		367			405			392			425	357	355	268	430	420	395	340
Alkalinity, Carbonate	mg/L	<10.0		<10.0			<10.0			<10.0			<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Alkalinity, Hydroxide	mg/L	<10.0		<10.0			<10.0			<10.0			<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Chloride	mg/L	11.9		10.7			10.8			10.9			11.6	10.3	10.7	10.2	10.1	10.4	10.1	10.5
Fluoride	mg/L	<0.500		0.332			0.322			0.322			<0.500	0.354	0.330	0.322	0.322	0.300	0.304	0.312
Sulfate as SO4	mg/L	732		736			733			844			746	774	803	767	742	757	746	796
Total Organic Carbon (TOC)	mg/L	3.72		3.57			3.73			3.70			3.45	3.42	3.63	4.01	3.39	3.00	3.42	3.63
Nitrate/Nitrite as N	mg/L	<0.020		<0.020			<0.020			<0.020			<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Ammonia as N ^	mg/L	NA		NA			NA			NA			0.178	NA	NA	NA	NA	NA	NA	NA
Ortho-Phosphate as P ^	mg/L	NA <0.050		NA <0.100			NA <0.250			NA <0.100			<0.0500	NA <0.100	NA <0.250	NA <0.250	NA <0.250	NA <0.150	NA <0.250	NA <0.250
Aluminum Arsenic	mg/L	0.0014		0.0015			0.0013			0.0016			<0.050 0.0013	<0.100 0.0013	0.0011	<0.250	<0.250	0.0016	<0.250	<0.250
Arsenic Cadmium	mg/L mg/L	<0.0014		<0.0015			<0.0013			<0.0016			<0.0013	<0.0013	<0.0011	<0.0013	<0.0025	<0.0016	<0.0025	<0.0025
Copper	mg/L mg/L	0.0003		0.0002			0.0001			0.0008			0.0002	<0.0002	<0.0002	<0.0003	<0.0005	0.0007	<0.0025	<0.0025
Iron	mg/L mg/L	1.82		1.95			1.81			2.12			2.00	1.84	1.71	2.16	2.15	2.08	1.92	1.75
Lead	mg/L	<0.0005		<0.0010			<0.0005			<0.0005			<0.0010	<0.001	<0.0010	<0.0015	<0.0025	<0.0005	<0.0025	<0.0025
Manganese	mg/L	3.72		4.49			4.01			4.22			4.76	4.86	3.63	4.49	4.42	5.22	4.21	4.39
Mercury	mg/L	<0.0002		<0.0002			<0.0002			<0.0002			<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	0.0008		0.0011			0.0007			0.0009			<0.0010	0.001	<0.0010	<0.0015	<0.0025	0.0006	<0.0025	<0.0025
Selenium	mg/L	<0.0020		<0.0020			<0.0010			0.0011			<0.0020	<0.002	<0.0020	<0.0030	<0.0050	<0.0010	<0.0050	<0.0050
Silica (Si02)	mg/L	16.6		16.1			16.1			16.9			16.8	16.4	15.8	16.9	14.9	17.7	17.1	16.7
Silicon	mg/L	7.75		7.52			7.55			7.90			7.83	7.67	7.37	7.91	6.96	8.28	7.97	7.81
Uranium	mg/L	0.0021		0.0018			0.0017			0.0018			0.0020	0.0019	0.0016	0.0018	<0.0025	0.0018	<0.0025	<0.0025
Zinc		<0.0050		<0.0040			0.0021			0.0020			<0.0040	<0.004	<0.0040	<0.0060.	<0.0100	0.0022	<0.0100	<0.0100
	mg/L																			

Notes & Definitions:

one-time analysis

Y/N yes or no

gpm gallons per minute

deg C degrees Celsius

SU standard pH units

μS/cm microsiemens per centimeter mV millivolts

mg/L milligram per liter

pCi/L picocuries per liter

NM not measured (field)

- "<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.
- Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent
 amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the
 initial pH of the sample solution, each components reported as equivalent CaCO3.
- Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program
 by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown
 in this table.

								D/I	W-8-EAA											
	Year	2018						2019	VV-O-LAP	•					20	120		2021		
	Quarter	Q4	-	Q1			Q2	2019	Г	Q3)4	01	Q2	Q3	04	01	Q2	Q3
	Month	12	1	2	3	4	5	6	7	8	9	10	11	2	5	ري 8	11	2	5	- QS - 8
S.a.	mple Date	12/23	1/29	2/19	3/20	4/16	5/29	6/20	7/24	8/13	9/27	10/24	11/6	2/11	5/27	8/25	11/11	2/16	5/24	8/24
	lysis (Y/N)	γ	N N	2/19 Y	N N	4/16 N	7 Y	N	7/24 N	6/13 Y	9/2/ N	N N	γ	γ	У У	0/25 Y	γ	γ	3/24 Y	6/24 Y
LUD AIIU	19313 (1/14)		IN	-	IN	IN	-		Paramete		14	IN	-			ı	-		1	-
Purge Flow Rate	apm	0.85	1.10	0.50	3.00	0.50	0.75	1.00	1.00	0.75	0.50	1.00	0.25	1.00	0.25	0.13	0.13	0.13	0.13	0.25
Total Purged	gal	18.0	14.0	15.0	3.00	15.0	17.0	15.3	15.3	18.0	15.3	15.5	15.0	15.2	15.0	16.0	15.0	15.0	16.0	15.0
Depth to Water	ft bgs	40.00	39.95	40.10	43.45	40.44	40.05	39.94	40.10	40.08	40.25	40.31	40.22	40.40	40.45	*34.50	40.83	41.22	41.00	40.98
Temperature	deg C	10.3	10.2	10.0	9.9	10.3	10.5	10.6	10.5	10.6	10.3	10.2	11.2	10.5	11.0	11.1	11.0	10.9	11.0	11.2
pH	SU	7.12	7.09	7.13	7.17	7.09	7.02	7.17	7.09	7.05	7.03	6.99	6.99	6.99	7.14	7.19	7.19	7.20	7.27	7.31
Specific Conductance	μS/cm	1781	1696	1720	1725	1729	1628	1676	1699	172	1739	1774	1739	1758	1760	1675	1716	1570	1642	1671
Oxygen Reduction Potential	mV	-65.0	-52.8	-51.8	-53.0	-59.7	11.0	-29.5	-46.6	-44.8	-33.5	-38.8	-39.2	-18.2	-72.4	1.4	-14.7	-20.2	-63.3	-57.4
									alytical Res											
Hardness as CaCO3	mg/L	870		861			864			883			867	861	907	937	810	914	838	859
pH (Lab)	SU	7.28		7.36			7.13			7.05			7.01	7.11	6.96	7.18	7.1	7.03	6.97	7.06
Total Dissolved Solids (Lab)	mg/L	1220		1290			1240			1280			1380	1290	1260	1280	1310	1400	1320	1320
Calcium	mg/L	152		151			148			154			143	149	153	160	134	156	146	146
Magnesium	mg/L	119		118			120			121			124	119	127	130	115	127	115	120
Sodium	mg/L	81.7		82.6			77.2			78.6			77.1	77.2	77.7	82.9	74.3	80.9	76.1	75.8
Potassium	mg/L	3.80		3.27			3.55			3.18			3.52	3.8	<5.00	<5.00	<5.00	3.63	3.49	<5.00
Alkalinity, Total	mg/L	400		435			450			431			445	404	385	288	480	450	445	385
Alkalinity, Bicarbonate	mg/L	400		435			450			431			445	404	385	288	480	450	445	385
Alkalinity, Carbonate	mg/L	<10.0		<10.0			<10.0			<10.0			<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Alkalinity, Hydroxide	mg/L	<10.0		<10.0			<10.0			<10.0			<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Chloride	mg/L	9.83		10.5			10.3			11.1			11.0	10.2	10.3	10.1	11.3	10.4	10.2	10.3
Fluoride	mg/L	0.380		0.370			0.338			0.342			<0.500	0.33	0.346	0.336	0.334	0.292	0.306	0.35
Sulfate as SO4	mg/L	533		559			606			643			577	602	625	605	582	609	595	615
Total Organic Carbon (TOC)	mg/L	3.77		3.59			3.77			3.68			3.52	3.49	3.56	3.82	3.54	3.04	3.65	3.71
Nitrate/Nitrite as N	mg/L	<0.020		<0.020			<0.020			<0.020			<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Ammonia as N ^	mg/L	NA		NA			NA			NA			NA	NA	NA	NA	NA	NA	NA	NA
Ortho-Phosphate as P ^	mg/L	NA		NA			NA			NA			NA	NA	NA	NA	NA	NA	NA	NA
Aluminum	mg/L	<0.100		<0.100			<0.050			<0.100			<0.050	<0.100	<0.250	<0.250	<0.250	<0.150	<0.050	<0.250
Arsenic	mg/L	0.0020		0.0018			0.0018			0.0021			0.0018	0.0017	0.0017	0.0018	<0.0025	0.0018	0.0018	<0.0025
Cadmium	mg/L	<0.0001		<0.0002			<0.0001			<0.0001			<0.0001	<0.0002	<0.0002	<0.0003	<0.0005	<0.0003	<0.0015	<0.0025
Copper	mg/L	0.0004		0.0024			0.0023			0.0008			0.0010	0.001	<0.0010	<0.0015	<0.0025	<0.0015	<0.0015	<0.0025
Iron	mg/L	2.12		2.13			2.42			2.46			2.30	2.28	2.29	2.31	0.762	2.33	2.25	2.2
Lead	mg/L	<0.0005		<0.0010			<0.0005			<0.0005			<0.0005	<0.001	<0.0010	<0.0015	<0.0025	<0.0015	<0.0015	<0.0025
Manganese	mg/L	3.17		3.52			3.06			3.37			3.39	3.7	3.36	3.54	3.81	3.55	3.5	3.6
Mercury	mg/L	<0.0002		<0.0002			<0.0002			<0.0002			<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	0.0009		0.0011			0.0008			0.0011			0.0008	<0.0010	<0.0010	<0.0015	<0.0025	<0.0015	<0.0015	<0.0025
Selenium	mg/L	<0.0020		<0.0020			0.0010			0.0013			<0.0010	<0.0020	<0.0020	<0.0030	<0.0050	0.0046	<0.003	<0.0050
Silica (Si02)	mg/L	16.3		15.3			15.7			16.1			15.9	15.7	15.0	16.1	14.2	16.0	16.5	15.5
Silicon	mg/L	7.63		7.15			7.32			7.52			7.42	7.32	7.02	7.53	6.63	7.48	7.72	7.24
Uranium	mg/L	0.0021		0.0017			0.0016			0.0018			0.0019	0.0019	0.0017	0.0017	<0.0025	0.0016	0.0016	<0.0025
Zinc	mg/L	<0.0050		<0.0040			<0.0020			<0.0020			<0.0020	<0.0040	<0.0040	<0.0060	<0.0100	<0.0060	<0.0060	<0.0100

Notes & Definition

- * Anomalous value under review
- one-time analysis
- Y/N yes or no
- gpm gallons per minute
- deg C degrees Celsius
- SU standard pH units µS/cm microsiemens per centimeter
- mV millivolts
- mg/L milligram per liter
- pCi/L picocuries per liter
- NM not measured (field)
- NA not analyzed (lab)

- "<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.
- Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent
 amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the
 initial pH of the sample solution, each components reported as equivalent CaCO3.
- Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program
 by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown
 in this table.

								M	IW-8-MI											
	Year	2018						2019							20	20			2021	
	Quarter	04		01			Q2	2013		Q3			14	01	Q2	Q3	Q4	Q1	Q2	Q3
	Month	12	1	2	3	4	5	6	7	8	9	10	11	2	5	8	11	2	5	8
Sai	mple Date	12/23	1/29	2/19	3/20	4/16	5/29	6/20	7/24	8/13	9/27	10/24	11/6	2/11	5/27	8/25	11/11	2/16	5/24	8/24
	lysis (Y/N)	Y	N	Y	N	N	Y	N	N N	Y	N	N N	Y	Υ Υ	Y	Y	Y	Υ Υ	Y	γ
	,								Parameter	rs:										
Purge Flow Rate	gpm	1.10	1.00	0.50	3.00	0.50	0.50	0.25	0.50	0.75	0.50	1.00	0.25	0.25	0.13	0.10	0.25	0.25	0.13	0.25
Total Purged	gal	27.5	18.0	1.0	3.0	1.5	2.5	2.5	2.3	3.0	2.0	2.5	1.0	1.0	1.0	2.0	1.0	2.0	3.0	1.0
Depth to Water	ft bgs	45.75	43.48	43.50	44.30	44.47	44.10	44.24	44.45	44.59	44.90	45.12	45.10	45.20	45.42	45.84	46.24	46.38	46.54	47.27
Temperature	deg C	10.8	10.8	10.6	11.2	10.4	11.1	11.4	11.0	11.4	10.9	10.3	11.4	10.2	11.3	13.1	11.3	10.0	11.6	11.9
pH	SU	7.57	7.50	7.48	7.47	7.34	7.31	7.48	7.42	7.38	7.30	7.23	7.15	7.08	7.44	7.44	7.43	7.47	7.59	7.55
Specific Conductance	μS/cm	1786	1667	1651	1658	1643	1595	1639	1645	1658	1637	1689	1642	1651	1659	1598	1628	1468	1616	1554
Oxygen Reduction Potential	mV	-84.4	-177.1	-122.1	-113.3	-87.2	-54.4	-97.1	-116.4	-119.4	-88.4	-82.0	-59.3	-136.6	-184.9	-107.0	-112.2	-72.0	-131.9	-123.1
	"					·		Lab And	alytical Res	ults:		'								
Hardness as CaCO3	mg/L	167		249			273			253			267	254	309	355	339	376	288	377
pH (Lab)	SU	7.73		7.54			7.24			7.46			7.44	7.53	7.25	7.34	7.27	7.33	7.36	7.31
Total Dissolved Solids (Lab)	mg/L	1050		1030			1100			1110			1050	1060	1040	1010	1040	1060	1040	1000
Calcium	mg/L	34.0		48.5			52.4			49.7			51.3	48.7	58.5	65.9	62.6	69.7	54	70.3
Magnesium	mg/L	19.9		31.0			34.5			31.4			33.8	32.1	39.6	46.2	44.4	49.1	37.2	48.9
Sodium	mg/L	344		312			289			289			275	269	272	260	232	237	256	229
Potassium	mg/L	4.47		5.25			<5.00			4.55			5.07	4.71	5.00	5.56	5.22	5.88	5.05	5.69
Alkalinity, Total	mg/L	500		565			560			573			585	543	545	448	590	590	575	570
Alkalinity, Bicarbonate	mg/L	500		565			560			573			585	543	545	448	590	590	575	570
Alkalinity, Carbonate	mg/L	<10.0		<10.0			<10.0			<10.0			<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Alkalinity, Hydroxide	mg/L	<10.0		<10.0			<10.0			<10.0			<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Chloride	mg/L	12.7		10.0			9.33			9.06			9.66	8.19	8.23	8.12	7.91	7.96	8.07	7.85
Fluoride	mg/L	<0.500		<0.200			<0.200			<0.200			<0.500	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200
Sulfate as SO4	mg/L	347		353			343			366			317	314	316	335	319	326	314	324
Total Organic Carbon (TOC)	mg/L	2.73		2.83			2.81			2.74			2.65	2.6	2.94	2.87	2.76	2.6	2.74	2.97
Nitrate/Nitrite as N	mg/L	<0.020		<0.020			<0.020			<0.020			<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Ammonia as N ^	mg/L	NA		NA			NA			NA			1.31	NA						
Ortho-Phosphate as P ^	mg/L	NA		NA			NA			NA			<0.0500	NA						
Aluminum	mg/L	<0.050		<0.100			<0.250			<0.100			<0.050	<0.100	<0.250	<0.250	<0.250	<0.150	<0.050	<0.250
Arsenic	mg/L	0.0008		<0.0010			0.0006			0.0005			0.0005	<0.0010	<0.0010	<0.0015	<0.0025	<0.0015	<0.0015	<0.0025
Cadmium	mg/L	<0.0001		<0.0002			<0.0001			<0.0001			<0.0001	<0.0002	<0.0002	<0.0003	<0.0005	<0.0003	<0.0015	<0.0025
Copper	mg/L	0.0031		0.0066			0.0036			0.0035			0.0037	0.0027	<0.0010	<0.0015	<0.0025	0.0015	0.0046	0.0047
Iron	mg/L	0.137		0.162			<0.250			0.129			0.130	0.108	<0.250	<0.250	<0.250	<0.150	0.113	<0.250
Lead	mg/L	<0.0005		<0.0010			<0.0005			<0.0005			<0.0005	<0.001	<0.0025	<0.0015	<0.0025	<0.0015	<0.0015	<0.0025
Manganese	mg/L	0.0495		0.0383			0.0327			0.0351			0.0377	0.0391	0.0393	0.0551	0.0546	0.0579	0.0412	0.0544
Mercury	mg/L	<0.0002		<0.0002			<0.0002			<0.0002			<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	0.0005		<0.0010			<0.0005			<0.0005			<0.0005	<0.001	<0.0010	<0.0015	<0.0025	<0.0015	<0.0015	<0.0025
Selenium	mg/L	<0.0020		<0.0020			0.0010			0.0010			<0.0010	<0.0020	0.0020	<0.0030	<0.0050	0.0425	0.0037	0.0072
Silica (SiO2)	mg/L	12.1		12.4			12.8			12.5			12.6	12.2	11.9	12.9	12.1	13.5	13.2	13.6
Silicon	mg/L	5.65		5.78			5.99			5.83			5.88	5.71	5.55	6.05	5.67	6.32	6.17	6.35
Uranium	mg/L	0.0002		0.0002			0.0002			0.0001			0.0001	<0.0010	<0.0025	<0.0015	<0.0025	<0.0015	<0.0015	<0.0025
Zinc	mg/L	<0.0050		<0.0040			<0.0020	_		<0.0020	_		<0.0020	<0.0040	<0.0040	<0.0060	<0.0100	<0.0060	<0.0060	<0.0100

Notes & Definitions:

one-time analysis

Y/N yes or no

gpm gallons per minute deg C degrees Celsius

SU standard pH units

μS/cm microsiemens per centimeter

mV millivolts

mg/L milligram per liter

pCi/L picocuries per liter

NM not measured (field)

- "<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.
- Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent
 amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the
 initial pH of the sample solution, each components reported as equivalent CaCO3.
- Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program
 by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown
 in this table.

MW-8-LM																				
Year 2018 2019 2020 2021																				
Quarter		04	01			Q2			Q3			C)4	Q1 Q2		Q3 Q4		Q1 Q2		Q3
	Month	12	1	2	3	4	5	6	7	8	9	10	11	2	5	8	11	2	5	8
Sample Date		12/28	1/29	2/19	3/21	4/16	5/29	6/18	7/24	8/13	9/27	10/24	11/6	2/11	5/27	8/25	11/11	2/16	5/24	8/24
Lab Anal		Y	N	Y	N	N	Y	N	N	Y	N	N	Y	Y	Y	Y	Y	Y	Y	Y
	, , , , ,							Field	Paramete	rs:										
Purge Flow Rate	gpm	NM	1.00	0.25	1.00	0.50	0.10	0.25	0.25	0.50	0.25	0.12	0.25	0.25	0.25	0.13	0.13	0.13	0.13	0.25
Total Purged	gal	30	4.0	1.5	1.0	2.0	1.3	6.8	2.0	2.0	1.0	1.0	1.5	1.0	1.0	2.0	1.0	2.0	1.5	1.0
Depth to Water	ft bgs	136.39	130.52	134.30	144.03	140.03	137.48	142.23	144.15	138.06	137.50	137.60	137.34	139.15	129.70	127.90	125.75	126.72	126.13	125.25
Temperature	deg C	4.1	13.9	13.2	8.7	13.6	13.9	12.8	13.7	13.4	13.0	11.7	13.3	11.4	13.4	13.6	8.8	12.1	12.8	13.5
pН	SU	8.37	8.70	8.71	8.41	8.70	8.50	8.66	8.64	8.58	8.44	8.44	8.47	7.98	8.76	8.83	8.81	8.82	8.90	8.90
Specific Conductance	μS/cm	2306	1274	1265	1310	1262	1234	1264	1226	1269	1252	1299	1255	1294	1282	1055	1117	1132	1121	1196
Oxygen Reduction Potential	mV	37.5	-114.3	112.8	77.0	-36.2	33.2	-63.9	-93.5	-103.0	-115.9	-94.4	-47.4	-106.6	-204.5	-106.9	-93.6	-87.8	-164.1	-106.1
Lab Analytical Results:																				
Hardness as CaCO3	mg/L	45.0		7.29			16.9			6.67			6.38	6.79	7.76	7.53	6.35	6.93	7.23	4.65
pH (Lab)	SU	8.57		8.63			8.02			8.56			8.52	8.55	8.41	8.45	8.48	8.54	8.57	8.48
Total Dissolved Solids (Lab)	mg/L	1420		770			780			785			780	840	730	740	700	795	720	740
Calcium	mg/L	10.8		1.93			3.84			1.78			1.68	1.77	2.09	2.05	1.71	1.87	1.92	1.86
Magnesium	mg/L	4.39		0.600			1.77			0.541			0.528	0.574	0.620	0.587	0.502	0.550	0.592	<0.500
Sodium	mg/L	382		341			317			306			305	309	315	337	304	319	315	308
Potassium	mg/L	45.7		3.49			<5.00			2.27			2.18	2.06	<5.00	<5.00	<5.00	<3.00	2.24	<5.00
Alkalinity, Total	mg/L	615		720			745			731			745	685	630	675	780	730	755	750
Alkalinity, Bicarbonate	mg/L	535		610			645			645			685	595	530	585	680	630	645	650
Alkalinity, Carbonate	mg/L	80.0		110			100			86.0			60.0	90	100	90	100	100	110	100
Alkalinity, Hydroxide	mg/L	<10.0		<10.0			<10.0			<10.0			<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Chloride	mg/L	175		5.11			6.80			2.63			2.48	3.04	3.01	2.98	2.47	2.5	2.48	2.55
Fluoride	mg/L	2.06		3.91			3.95			3.97			3.88	3.61	3.63	3.53	3.66	3.58	3.48	3.67
Sulfate as SO4	mg/L	190		3.79			9.58			1.02			<1.00	<2.00	<2.00	<2.00	<1.00	<1.00	<1.00	<1.00
Total Organic Carbon (TOC)	mg/L	2.80		1.80			3.33			1.94			1.69	1.69	1.92	1.82	1.66	1.2	1.71	1.79
Nitrate/Nitrite as N	mg/L	<0.020		<0.020			<0.020			<0.020			<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Ammonia as N ^	mg/L	NA		NA			NA			NA			0.282	NA	NA	NA	NA	NA	NA	NA
Ortho-Phosphate as P ^	mg/L	NA		NA			NA			NA			<0.0500	NA 10.100	NA	NA	NA 10.050	NA 10.450	NA 10.050	NA 10.050
Aluminum	mg/L	<0.050		<0.100			<0.250			<0.050			<0.050	<0.100	<0.250	<0.250	<0.250	<0.150	<0.050	<0.250
Arsenic	mg/L	0.0106		<0.0010			0.0006			0.0007			0.0006 <0.0001	<0.0005	<0.0010	<0.0015	<0.0025	<0.0015	<0.0015	<0.0025 <0.0025
Cadmium	mg/L	<0.0001		<0.0002			<0.0001			<0.0001			0.0051	0.0033	0.0002	0.0003	<0.0005	0.0005	0.0015	0.0068
Copper	mg/L	0.0337		0.0077			0.0047			0.0041			<0.051	<0.100	<0.250	<0.250	<0.0025	<0.150	<0.050	<0.250
Iron	mg/L	<0.050		<0.100			<0.250			<0.050			<0.0010	<0.100	<0.0010	<0.250	<0.0025	<0.150	<0.0015	<0.250
Lead	mg/L	0.0258		0.0038			0.0150			0.0020			0.0026	0.0025	0.0029	0.0026	0.0028	0.0024	0.0021	0.0025
Manganese	mg/L	<0.0002		<0.0002			<0.0002			<0.0020			<0.0026	<0.0023	<0.0029	<0.0026	<0.0028	<0.0024	<0.0021	<0.0023
Mercury Molybdenum	mg/L mg/L	0.0002		<0.0002			0.0009			<0.0002			<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Selenium Selenium	mg/L mg/L	0.0142		<0.0010			<0.0009			<0.0005			<0.0003	<0.0003	<0.0010	<0.0015	<0.0025	0.0015	<0.0015	<0.0025
Silica (SiO2)	mg/L mg/L	9.09		8.45			8.68			8.28			7.77	7.62	7.40	7.84	7.4	8.17	8.21	7.82
Silicon	mg/L	4.25		3.95			4.06			3.87			3.63	3.56	3.46	3.67	3.46	3.82	3.84	3.66
Uranium	mg/L	0.0044		<0.0002			0.0001			0.0001			<0.0002	<0.0005	<0.0010	<0.0015	<0.0025	< 0.0015	<0.0015	<0.0025
Zinc	mg/L	0.0080		<0.0002			0.0001			<0.0001			<0.0020	<0.0003	<0.0010	<0.0013	<0.0023	<0.0013	<0.0013	<0.0023
LIIIC	mg/L	0.0000		\0.00 4 0	l		0.0023	l		~0.0020			.0.0020	.0.002	.0.0070	.0.0000	.0.0100	.0.0000	.0.0000	-5.0100

Notes & Definitions:

one-time analysis

Y/N yes or no

gpm gallons per minute deg C degrees Celsius

SU standard pH units

μS/cm microsiemens per centimeter

mV millivolts

mg/L milligram per liter

pCi/L picocuries per liter

NM not measured (field) NA not analyzed (lab) "<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.

- Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent
 amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the
 initial pH of the sample solution, each components reported as equivalent CaCO3.
- Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program
 by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown
 in this table.

MW-8-PL																				
	Year 2018 2019 2020 2021																			
		Q4	Q1 Q2				Q2	Q3 Q4						Q1 Q2 Q3 Q4						Q3
	Month	12	1	2	3	4	5	6	7	8	9	10	11	2	5	8	11	2	5	8
So	mple Date	12/27	1/29	2/19	3/20	4/16	5/29	6/20	7/24	8/13	9/27	10/24	11/6	2/11	5/27	8/25	11/11	2/16	5/24	8/24
	ilysis (Y/N)	Y	N	Υ Υ	N	N	Y	N	N N	Y	N N	N	Y	Υ Υ	Y	Y	Y	Υ Υ	γ	Y
Euro Fillo	.,,,,,,			·					Paramete	rs:									·	
Purge Flow Rate	0.25	1.00	0.50	3.00	0.50	0.25	0.50	1.00	0.50	0.50	0.75	0.25	0.25	0.25	0.25	0.25	0.75	0.25	0.25	
Total Purged	gpm gal	20.0	5.0	2.0	3.0	2.0	3.0	2.5	2.3	2.5	2.0	2.5	1.3	2.0	2.0	2.3	2.0	2.0	2.0	2.0
Depth to Water	ft bas	125.97	126.29	126.40	127.10	126.98	126.70	126.82	127.25	127.38	127.42	127.48	127.59	127.32	127.34	128.00	127.31	127.50	127.83	127.89
Temperature	deg C	10.3	14.2	13.4	12.9	13.2	14.2	14.8	14.7	14.9	14.0	13.2	14.9	13.8	14.8	14.9	14.1	12.9	14.6	14.8
рH	SU	7.50	7.30	7.49	7.30	7.29	7.31	7.57	7.56	7.52	7.45	7.47	7.52	7.55	7.47	7.52	7.52	7.53	7.58	7.55
Specific Conductance	μS/cm	1690	1531	1571	1558	1554	1411	1326	1165	1083	947	940	900	862	844	792	827	760	813	816
Oxygen Reduction Potential	mV	30.2	-116.5	97.9	-108.7	-110.6	34.2	-57.6	-74.0	-79.5	-51.3	-52.5	-30.8	-59.9	-101.9	-38.0	-37.3	-11.5	-76.6	-64.4
								Lab And	alytical Res	ults:										
Hardness as CaCO3	617		644			596			411			294	278	298	292	268	281	283	280	
pH (Lab)	SU	7.28		7.40			7.26			7.22			7.39	7.47	7.19	7.16	7.41	7.36	7.41	7.29
Total Dissolved Solids (Lab)	mg/L	1150		1090			995			705			620	500	490	525	465	525	505	475
Calcium	mg/L	112		120			105			73.1			52.1	49.3	53.8	53.3	49.1	52.2	53.3	53.0
Magnesium	mg/L	82.1		83.8			81.4			55.4			39.7	37.6	39.7	38.5	35.4	36.6	36.5	35.9
Sodium	mg/L	106		124			102			91.7			83.3	78.5	80.4	81.6	77.2	78.6	79.7	77.8
Potassium	mg/L	5.14		5.62			<5.00			2.80			2.35	2.32	2.11	<2.00	<2.00	1.78	1.73	<2.00
Alkalinity, Total	mg/L	370		415			435			393			390	339	340	315	410	370	385	360
Alkalinity, Bicarbonate	mg/L	370		415			435			393			390	339	340	315	410	370	385	360
Alkalinity, Carbonate	mg/L	<10.0		<10.0			<10.0			<10.0			<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Alkalinity, Hydroxide	mg/L	<10.0		<10.0			<10.0			<10.0			<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Chloride	mg/L	18.8		18.5			9.03			5.61			5.66	3.51	3.38	3.33	3.32	3.39	3.30	3.33
Fluoride	mg/L	0.505		0.474			0.290			0.291			<0.500	0.258	0.240	0.233	0.224	0.219	0.200	0.222
Sulfate as SO4	mg/L	478		471			390			232			127	109	103	99.2	99	101	96.3	102
Total Organic Carbon (TOC)	mg/L	4.17		4.02			2.92			2.21			1.75	1.63	1.63	1.61	1.44	0.928	1.42	1.54
Nitrate/Nitrite as N	mg/L	<0.020		<0.020			<0.020			<0.020			<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Ammonia as N ^	mg/L	NA		NA			NA			NA			0.199	NA	NA	NA	NA	NA	NA	NA
Ortho-Phosphate as P ^	mg/L	NA		NA			NA			NA			<0.0500	NA	NA	NA	NA	NA	NA	NA
Aluminum	mg/L	<0.050		<0.100			<0.250			<0.050			<0.050	<0.050	<0.100	<0.100	<0.100	<0.050	<0.050	<0.100
Arsenic	mg/L	0.0074		0.0124			0.0190			0.0156			0.0104	0.0073	0.0075	0.0064	0.0058	0.0074	0.0055	0.0017
Cadmium	mg/L	<0.0001		<0.0002			<0.0001			<0.0001			<0.0001	<0.0002	<0.0001	<0.0002	<0.0002	<0.0001	<0.0010	<0.0010
Copper	mg/L	0.0016		0.0025			0.0017			0.0011			0.0004	0.001	<0.0025	<0.001	0.0014	0.0005	0.0013	<0.0010
Iron	mg/L	<0.050		0.352			<0.250			0.129			0.075	0.054	<0.100	<0.100	<0.100	<0.050	<0.050	<0.100
Lead	mg/L	<0.0005		<0.0010			<0.0005			<0.0005			<0.0005	<0.0005	<0.0005	<0.0010	<0.0010	<0.0005	<0.0010	<0.0010
Manganese	mg/L	1.31		1.22			0.697			0.505			0.313	0.303	0.307	0.259	0.219	0.196	0.175	0.0772
Mercury	mg/L	<0.0002		<0.0002			<0.0002			<0.0002			<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	0.0090		0.0068			0.0020			0.0021			0.0017	0.0008	<0.0005	<0.0010	<0.0010	<0.0005	<0.0010	<0.0010
Selenium	mg/L	0.0012		<0.0020			<0.0010			<0.0010			<0.0010	<0.001	<0.0010	<0.0020	<0.0020	0.0038	<0.002	<0.0020
Silica (Si02)	mg/L	14.1		16.3			17.7			18.5			18.0	18.9	18.7	19.9	18.5	20.1	21.5	20.0
Silicon	mg/L	6.58		7.64			8.28			8.67			8.42	8.82	8.75	9.28	8.66	9.40	10.00	9.37
Uranium	mg/L	0.0052		0.0040			0.0010			0.0009			0.0004	<0.0005	<0.0005	<0.0010	<0.0010	<0.0005	<0.001	<0.0010
Zinc	mg/L	0.0344		<0.0040			<0.0020			<0.0080			<0.0020	<0.0020	<0.0100	<0.0040	<0.0040	<0.0020	<0.004	<0.0040

Notes & Definitions:

- ^ one-time analysis
- Y/N yes or no
- gpm gallons per minute
- deg C degrees Celsius
- SU standard pH units
- μS/cm microsiemens per centimeter
- mV millivolts
- mg/L milligram per liter
- pCi/L picocuries per liter NM not measured (field)
- NA not analyzed (lab)

- "<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.
- Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent
 amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the
 initial pH of the sample solution, each components reported as equivalent CaCO3.
- Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program
 by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown
 in this table.