Battle Mountain Resources, Inc. San Luis Project P.O. Box 310 San Luis, Colorado 81152-0310 (719) 379-0798

March 22, 2022

Mr. Lucas West State of Colorado Division of Reclamation, Mining and Safety Room 215 1001 E 62nd Avenue, Denver, CO 80216

Re: Battle Mountain Resources, Inc. San Luis Project - San Luis, Colorado Annual Report and Fee 2021 CMLRB Permit No. M-1988-112

Dear Mr. West:

Please find included the Battle Mountain Resources, Inc. (BMRI) "San Luis Project" (Permit No. M-1988-112) Annual Report and a site map as requested in the February 21, 2022 email from the Colorado Division of Reclamation, Mining, and Safety (CDRMS) to Julio Madrid of BMRI/Newmont. The following summarizes the operation, reclamation, permitted area, dam inspections, and site monitoring activities performed, as well as any technical revisions and permit amendments made for the San Luis Project during 2021.

General Reclamation Activities

Reclamation activities and technical revisions during 2021 included:

- Continued stormwater management on and adjacent to reclaimed and unreclaimed mine land. Stormwater inspections were performed on May 13, 2021 and September 21 2021, and any issues noted were corrected;
- Treatment of water from the West Pit and Rito Seco alluvial groundwater systems;
- Tailing facility storage pond, underdrain, and leak detection system management;
- Surface and ground water management.

Reclamation Areas

BMRI did not perform any additional reclamation in 2021. There are 78.7 acres of reclamation remaining, as summarized in Table 1.

Area	Actual	Reclamation	Reclamation	Remaining	
	Disturbance	Completed	Completed In	Reclamation	
	(Acres)	Through	2021	(Acres)	
		2020 (Acres)	(Acres)		
East Pit	20	20	0	0	
West Pit	100	71.3	0	28.7	
Waste Rock A	0	0	0	0	
Waste Rock B	18	18	0	0	
Waste Rock C	28	28	0	0	
Waste Rock D	42	42	0	0	
South Waste Rock	35	35	0	0	
Mill Area	25.6	25.6	0	0	
ESI Leach Pad	10	10	0	0	
Borrow Area	5.5	0	0	5.5	
Road Around Tailing					
Facility and Collection	4	0	0	4	
Pond					
Tailing Facility Perimeter	12.9	0	0	12.9	
Road	12.9	0	0	12.9	
Waste Rock C Access	3.7	3.7	0	0	
Road	5.7	5.7	0	0	
Pink Gneiss Pit Haul	3.8	3.8	0	0	
Road			0		
Tailing Facility	192	169.4	0	22.6	
Tailing Collection Pond	5	0	0	5	
Admin. Office Complex					
– Deeded lands to					
Costilla County Soil	3	3	0	0	
Conservation District					
(CCSCD)					
Total Area	508.5	429.8	0	78.7	

Table 1 - Summary of San Luis Project Reclamation

Permitted Areas

The current unreleased Permit Areas consist of both reclaimed and unreclaimed land and disturbed and undisturbed land. BMRI requested and received a land release of 308.7 acres in 2021, therefore the 2021 Permit Area remaining is 428.22 acres. The 2021 disturbed Permit Areas remaining are 300.8 acres. Table 2 summarizes the disturbed areas in the permit.

Area	Permitted Disturbance (Acres)	Actual Disturbance Areas (Acres)	Disturbance Areas Released from Permit Area (Acres)	Disturbance Areas Remaining in Permit Area (Acres)
East Pit	20	20	20	0
West Pit	110	100	8.9	91.1
Waste Rock A	0	0	0	0
Waste Rock B	18	18	18	0
Waste Rock C	30	28	25.8	2.2
Waste Rock D	42	42	42	0
South Waste Rock	50	35	33.6	1.4
Mill Area	25.6	25.6	15.6	10.0
ESI Leach Pad	10	10	10	0
Borrow Area	11	5.5	0	5.5
Roads	30	24.4	13.2	11.2
Tailing Facility	192	192	17.6	174.4
Tailing Collection Pond	5	5	0	5
Admin. Office Complex –				
Deeded lands to Costilla	3	3	3	0
County Soil Conservation	5	5		v
District (CCSCD)				
Total Area	546.6	508.5	207.7	300.8

Table 2 - Summary of Permitted Areas

Dam Inspections

During 2021, quarterly dam inspections were performed as required in Technical Revision 33 (TR-33). The first, third, and fourth quarter dam inspections were performed by BMRI. The annual dam inspection was performed by Engineering Analytics, Inc. (EA) and BMRI. The quarterly and annual dam inspections were submitted previously to CDRMS and are also included in Appendix A.

Site Monitoring

Water level data, laboratory analytical results, and flows were submitted to CDRMS as part of the Monthly Reports throughout 2021, and are also included in Appendix B. During 2021, groundwater sampling and water level measurements were performed as required in Technical Revision 32 (TR-32). Sampling and laboratory analyses for groundwater monitoring well M-14 continued during 2021 under the CDRMS approved Response Plan. M-14 will continue to be sampled and results reported as required in TR-32 in 2022.

The Lined Tailing Facility (LTF) collection pond leak detection system (underdrain) was monitored monthly and evacuated and pumped to the LTF. The monthly leak-detection flows for 2021 ranged from a low of 25.6 gallons per day (gpd) to a high of 33.6 gpd. The average monthly

leak-detection flow, for 2021, was 29.2 gpd. The collection pond water was sampled and analyzed quarterly and the laboratory analytical results are located in Appendix B under the Monthly and Quarterly Sampling Data. Also, the flows were submitted to CDRMS in the Monthly Sampling Data and are also included in Appendix B.

The LTF underdrain flows were monitored monthly at the base of the embankment and the flows for 2021 ranged from a low of 28 gallons per minute (gpm) to a high of 36.5 gpm. In 2021, the monthly average underdrain flow was 31.9 gpm. The monthly underdrain flows were submitted previously to CDRMS as part of the Monthly Reports and are included in Appendix B.

The LTF system lysimeters were monitored monthly. The lysimeters were dry and no groundwater was present for sampling or analysis in 2021.

There was 405 cubic yards of sludge transferred from the water treatment plant drying pads to the LTF in 2021. The monthly sludge management information was submitted previously to the CDRMS in the Monthly Reports which are also included in Appendix B.

During 2021, BMRI managed the Rito Seco and West Pit alluvial hydrologic systems, in compliance with Technical Revision 26 (TR-26). BMRI measured the West Pit backfill monitoring wells weekly and the monthly average groundwater elevations were maintained below the TR-26 required level of 8,582 feet above mean sea level (amsl). The groundwater table elevations and potentiometric surface maps, developed by EA, confirm the groundwater flow gradient was from the Rito Seco alluvium to the West Pit backfill during 2021. The groundwater elevations and potentiometric surface maps were previously submitted to the Colorado Department of Public Health and Environment (CDPHE) with the Discharge Monitoring Reports (DMR's), Best Management Practices (BMP's), and Whole Effluent Toxicity (WET) Testing Reports under permit number CO0045675 and are also included in Appendix C. BMRI also performed monthly visual inspections for seepage in the historic seepage area along the Rito Seco Creek and no seeps were observed during 2021.

Additionally, the two groundwater capture wells, M-32 and M-33, were operated in conjunction with other groundwater table elevation control wells in the West Pit during 2021. Groundwater elevations were maintained equal to or lower than 8,540 feet amsl in wells M-32 and M-33, as required under TR-26. These elevations were also previously submitted to CDPHE with the DMR's, BMP's, and WET Testing Reports under permit number CO0045675 and are also included in Appendix C. Groundwater pumped from these wells was either treated at the West Pit Water Treatment Plant and discharged to the Rito Seco under the BMRI discharge permit, or pumped to the LTF for water management. In 2021, the West Pit water treatment plant treated at total of 86,547,600 gallons of water to the Rito Seco Creek. Additionally, a total of 4,879,500 gallons of water was transferred from the West Pit to the LTF.

Should additional information be required or if any clarifications are necessary, please contact me at (719) 379-0538.

Wiotur

Julio Madrid

Sr. Supervisor Legacy Sites Closure and Reclamation

Cc: Devon Horntvedt (electronic) Lawrence Fiske, BMRI (electronic) Melissa Chalona, Engineering Analytics BMRI File

Enclosures:

Appendix A – Dam Inspection Reports Appendix B – Monthly Reports and Quarterly and Monthly Sampling Data Appendix C – DMR's, BMP's, and WET Testing Reports Report Request 2021 Site Map

APPENDIX A

BATTLE MOUNTAIN RESOURCES, INC.

April 14, 2021

RECEIVED

Mr. Lucas West Colorado Division of Reclamation, Mining and Safety 1313 Sherman Street, Room 215 APR 192021

DIVISION OF RECLAMATION MINING AND SAFETY

Re: San Luis Project Tailing Dam Q1 2021 Inspection Report, Technical Revision No. 33, Permit No. M-1988-112

Dear Mr. West:

Denver, CO 80203

Battle Mountain Resources Inc. (BMRI) is pleased to provide the Q1 2021 San Luis Tailing Dam Inspection Report in accordance with Technical Revision No. 33 to BMRI's Reclamation Permit.

The Inspection was conducted by BMRI Site Manager David Carino.

Enclosed with the inspection report are photos of the Tailing Impoundment facilities to include the drop structure and the under-drain discharge area. Also included are the Q1 2021 Piezometer Inspection results.

Respectfully, ulio F. Madrid

SI. Supervisor Colorado Legacy Sites

(719) 379-0538

cc: Devon Horntvedt

David Carino

	1							
DAM	SANI	LUIS PROJECT TAILING DAM					CK AC	
AREA INSPECTED	ITEM NO.	CONDITION	YES NO		OBSERVATIONS		INVESTI- GATE	REPAIR
1.1.1	1	ANY SURFACE CRACKING?	1	V		1		
	2	ANY UNUSUAL LOW AREAS?	-	V			1	
CREST	3	ANY RUTS OR PUDDLES?	1.000	V			-	
	4	ANY HORIZONTAL OFFSET?		V		1		
	5	NEED VEGETATION CONTROL?	1	V				
	6	ANY SLIDES, SLOUGHS, SCARPS?		V				
water and a state	7	ANY SINKHOLES OR UNUSUAL DEPRESSIONS?	1	V		1.00		
UPSTREAM	8	ANY EROSION ?	1	V			1	
SLOPE &	9	CHANGES AT ABUTMENT CONTACTS?	1.	V				
BEACH AREA	10	NEED VEGETATION CONTROL?	1	V				
	11		1	1.		1		
	12	ANY WET AREAS?	1	V		1.1		1
	13	ANY SLIDES, SLOUGHS, SCARPS?	1	V		1		
	14	CHANGES AT DAM-ABUTMENT CONTACT?		V				
DOWNSTREAM	15	ANY EROSION?	V		minor erosion on North grain	V	1	
SLOPE	16	ANY UNUSUAL BULGING OR SLOPE MOVEMENT?		V	area.			
	17	NEED VEGETATION CONTROL?		V				
	18							
	19	IS DRAIN OUTLET CLOGGED OR OBSTRUCTED?		V			1	
SEEPAGE	-20	ARE DRAIN FLOWS MUDDY OR TURBID?	-	V	and the second			
AND	21	IS EMBANKMENT WET AROUND DRAIN OUTLET?	1		minor lakege around piping	11		
PUMPBACK	22	ANY PROBLEMS WITH COLLECTION POND?	1.14	V				
SYSTEM	23	IS PUMPBACK SYSTEM WORKING PROPERLY?	V				1	
oronam	24			1		1.00	1	
1	25	ANY EROSION?	1.121	V			·	
DIVERSION	26	NEED VEGETATION CONTROL?		V				
CHANNEL AND	27	ANY DEBRIS IN CHANNELS OR DROP STRUCTURE?	1	V				
DROP	28	ANY CRACKS OR DETERIORATION OF CONCRETE?		V				
STRUCTURE	29	ANY CORROSION OF PIPE?		V				-
	30		-				1	
DDITIONAL COM	AMEN	TS (REFER TO ITEM NO. IF APPLICABLE):				-		

+

.

	<u>Q</u>	UARTERLY INSPECTION SUMMARY	1000
NAME OF DAM:	San Luis Project Tailing Dam	CO DRMS Permit #: M-1988-112	
REPORTING PERIOD	#/1/21 thru 3/3//2/	REPORT #:	- C1
INSPECTION ITEMS			РНОТО
Piszometer Levels	Included in rep	port.	NO
Drain Collection and Pumpback System Observations	system working	property	Yes
Sepage/Erosion Objervations	minor erosion of	n North grain area (down stream)	Yes
Vesetation/Rodent/ Other Maintenance Observations	NONE		NO
Div€rsion System Dbs∋rvations	Channel in good	Condition, No issues	Yes
	R	ECOMMENDATIONS/COMMENTS	
NAME	<u>INSPE</u> REPRESE	CTION AND REPORTING PERSONNEL ENTING TITLE/ROLE	
David S. Cari			
Tulio Madri	/ / / / / / / / / / / / / / / / / / / /		
Julio Madri	a BMRI/ Newm	art Site Supervisor	

. .

Q1 2021 Piezometer Elevations

Monitoring Well	Observation Date	Piezometer Depth	Depth to Water	Depth of Water
Identification		(ft)	(ft)	(ft)
P6	01/28/2021	72.46	DRY	N/A
P7	01/28/2021	92.50	92.30	0.20
P8	01/28/2021	97.51	96.65	0.86
P9	01/28/2021	72,30	71,90	0.40
P10	01/28/2021	58.30	57.62	0.68
P11	01/28/2021	41.80	41.41	0.39
P12	01/28/2021	41.71	41.66	0.05
P13	01/28/2021	41.34	40.99	0.35
P14	01/28/2021	41,24	DRY	N/A
P15	01/28/2021	41.10	40.86	0.24

Monitoring Well	Observation Date	Piezometer Depth	Depth to Water	Depth of Wate
Identification		(ft)	(ft)	(ft)
P6	02/25/2021	72.46	DRY	N/A
P7	02/25/2021	92.50	92.29	0.21
P8	02/25/2021	97.51	96.62	0.89
P9	02/25/2021	72.30	71.90	0.40
P10	02/25/2021	58.30	57.63	0.67
P11	02/25/2021	41.80	41.40	0.40
P12	02/25/2021	41.71	41.67	0.04
P13	02/25/2021	41.34	41.00	0.34
P14	02/25/2021	41.24	DRY	N/A
P15	02/25/2021	41.10	40.86	0.24

Monitoring Well Identification	Observation Date	Piezometer Depth (ft)	Depth to Water (ft)	Depth of Water (ft)
P6	03/31/2021	72.46	DRY	N/A
P7	03/31/2021	92.50	92.28	0.22
P8	03/31/2021	97.51	96.61	0.90
P9	03/31/2021	72.30	71.91	0.39
P10	03/31/2021	58.30	57.61	0.69
PII	03/31/2021	41.80	41.40	0.40
P12	03/31/2021	41.71	41.67	0.04
P13	03/31/2021	41.34	41.02	0.32
P14	03/31/2021	41.24	DRY	N/A
P15	03/31/2021	41.10	40.86	0.24

BATTLE MOUNTAIN RESOURCES, INC.

Firman ...

Mr. Lucas J. West CDRMS 1313 Sherman Street, Room 215 Denver, CO 80203

P.O. Box 310 • San Luis, Colorado 81152-0310 • (719) 379-0798 • Fax (719) 379-0713 Return Postage Guaranteed RECEIVED APR 192021 DIVISION OF RECLAMATION MINING AND SAFETY

RECEIVED

September 1, 2021

SEP 022021

Mr. Lucas West Colorado Division of Reclamation, Mining and Safety 1313 Sherman Street, Room 215 Denver, CO 80203

DIVISION OF RECLAMATION MINING & SAFETY

RE: San Luis Project Tailings Dam 2021 Annual Inspection Report Technical Revision No. 33 Permit No. M-1988-112

Dear Mr. West:

Battle Mountain Resources Inc. (BMRI) is pleased to provide the 2021 Annual San Luis Tailings Dam Inspection Report in accordance with Technical Revision No. 33 to BMRI's Reclamation Permit. The inspection was conducted by Mark S. Abshire, PE of Engineering Analytics, Inc., and BMRI Site Manager David Carino. Enclosed with the inspection report are photos of the tailings impoundment facilities to include the drop structure and the underdrain discharge area.

Please let me know if you have any questions.

Respectfully,

Julio F. Madrid Senior Supervisor Colorado Legacy Sites

Cc:	Devon Horntvedt
	David Carino

Enclosures: 2021 Annual Dam Safety Inspection Report: San Luis Tailings Dam, CDRMS Permit No. M-1988-112 File Name: San Luis TSF_2021 Annual Dam Safety Inspection Report 24Aug2021.pdf August 24, 2021

Project No. 2101.05.15

Mr. David Carino Battle Mountain Resources, Inc. P.O. Box 310 San Luis, CO 81152-0310

RE: 2021 Annual Dam Safety Inspection Report San Luis Tailings Dam CDRMS Permit No. M-1988-112

Dear Mr. Carino,

At your request, Engineering Analytics, Inc. (EA) conducted the 2021 annual dam safety inspection for the San Luis Tailings Dam. The inspection was conducted on June 8 by Mark S. Abshire, P.E., in conformance with the Tailing Dam Safety Inspection and Reporting Program prepared by Miller Geotechnical Consultants, Inc. (MGC), dated March 12, 2013. Also present were Deb Miller, PE (MGC), yourself and Julio Madrid (BMRI).

EA's inspection included review of the following historical project documents:

- San Luis Project Tailing Dam Detailed Inspection Report (MGC, February 2014)
- 2015 Annual Inspection Report (MGC, June 10, 2015)
- 2016 Annual Inspection Report (MGC, July 6, 2016)
- 2017 Annual Inspection Report (EA, August 18, 2017)
- 2018 Annual Inspection Report (MGC, August 7, 2018)
- 2019 Annual Inspection Report (MGC, July 3, 2019)
- 2020 Annual Inspection Report (MGC, September 25, 2020).

An overall site plan of the San Luis TSF is presented on Figure 1. Specific inspection results are detailed on the Tailing Dam Inspection Form (Attachment 1), and findings are presented on Figure 2. Figures 3 and 4 present piezometer levels and underdrain flow measurements, respectively. Photographs taken during the inspection are included as Attachment 2.

PREVIOUS FINDINGS

The primary issues identified in the 2020 annual inspection included minor surface erosion on the downstream dam slope, the potential for surface erosion in disturbed areas around the South Diversion Ditch Drop Structure (construction completed in 2019), and the ongoing need for maintenance around the underdrain outfall to reduce ponding of surface water in that area. Additionally, it was recommended that BMRI consider installing a concrete structure for collecting underdrain flows from the toe drains to facilitate maintenance in the toe drain area, improve

conditions for monitoring and inspecting the drain system, and to prevent the attraction of animals to the area by pooling of leakage from the drain pipes.

INSTRUMENTATION

Piezometers: Piezometer readings from June 2020 to June 2021 are shown in Table 1, and readings from July 2019 through June 2021 are presented graphically on Figure 3. The piezometers all indicate dry conditions or minor amounts of water present at the bottom of the casings due to moisture condensation. This behavior is consistent with historic observations and indicates that the sub-drains are functioning. Low phreatic conditions are maintained within the dam embankment. No abnormalities are indicated in the measurements.

PIEZOMETER ID TOTAL DEPTH (ft)*	P6 72.46	P7 92.50	P8 97.51	P9 72.30	P10 58.30	P11 41.80	P12 41.71	P13 41.34	P14 41.24	P15 41.10
6/30/2020	72.46	92.29	96.68	71.89	57.56	41.38	41.68	41.04	41.24	40.86
7/30/2020	72.46	92.29	96.69	71.88	57.55	41.39	41.68	41.03	41.24	40.86
8/31/2020	72.46	92.29	96.69	71.89	57.57	41.39	41.68	41.04	41.24	40.87
9/30/2020	72.46	92.29	96.67	71.89	57.58	41.39	41.68	41.04	41.24	40.86
10/29/2020	72.46	92.29	96.68	71.89	57.59	41.39	41.68	41.04	41.24	40.85
11/30/2020	72.46	92.30	96.65	71.90	57.60	41.39	41.68	41.02	41.24	40.86
12/31/2020	72.46	92.29	96.65	71.90	57.61	41.40	41.68	41.00	41.24	40.87
1/28/2021	72.46	92.30	96.65	71.90	57.62	41.41	41.66	40.99	41.24	40.86
2/25/2021	72.46	92.29	96.62	71.90	57.63	41.41	41.67	41.00	41.24	40.86
3/31/2021	72.46	92.28	96.61	71.91	57.61	41.40	41.67	41.02	41.24	40.86
4/29/2021	72.46	92.28	96.63	71.91	57.62	41.40	41.66	41.02	41.24	40.85
5/27/2021	72.46	92.28	96.60	71.91	57.61	41.40	41.66	41.02	41.24	40.86
6/30/2021	72.46	92.27	96.59	71.91	57.61	41.40	41.67	41.03	41.24	40.86

 Table 1
 San Luis TSF Piezometer Levels: June 2020 - June 2021

* Piezometer total depths measured from top of casing

Underdrain: Underdrain flow rates discharging to the seepage collection pond from June 2020 through June 2021 are shown in Table 2, and flow rates from 2016 to 2021 are presented graphically on Figure 4. Average underdrain flow measurements from 2019-21 (32.5 gpm) are slightly lower than from 2016-2021 (34.8 gpm).

The underdrain pipes were jet-cleaned in 2014 in conjunction with the first camera inspection of the accessible downstream ends of the pipes. A second video inspection of the pipe ends was done without jet cleaning in 2018. The 2018 videos showed some accumulation of sediment and precipitates in the pipes compared to the 2014 videos, but the pipes were all still flowing (not clogged). Thus, the observed slight reduction in underdrain flow in recent years is likely due to ongoing severe regional drought. The pipes were jet-cleaned again on October 5, 2020, with no video inspection. It is recommended that jetting of the pipes and video inspections be conducted at least every 3 years unless a change in measured drainage flow rates warrants more frequent cleaning and inspection.

Date	Flow (gpm)
6/30/2020	36.5
7/30/2020	32.5
8/31/2020	30.0
9/30/2020	29.5
10/29/2020	29.5
11/30/2020	30.0
12/30/2020	29.5
1/28/2021	29.5
2/25/2021	29.5
3/31/2021	30.5
4/29/2021	31.0
5/27/2021	31.0
6/30/2021	32.0

Table 2 San Luis TSF Underdrain Flow Measurements: June 2020 - June 2021

2021 INSPECTION FINDINGS

The overall surficial conditions of the tailings dam at the time of the inspection were generally satisfactory, except for minor issues discussed in more detail below.

Right Downstream Groin: Revegetation in this area following repairs continues to improve. This area and also the cross-berms and rock-lined down-drains should be monitored closely to make sure erosion does not progress to detrimental levels.

South Diversion Ditch Drop Structure: Disturbed areas adjacent to the drop structure that are not protected by riprap were seeded in 2019. However, vegetation establishment is poor to date due to extended drought conditions, and erosional rilling is beginning to develop in these areas. The condition is presently judged to be minor; however, erosion will progress in the absence of vegetation, and mitigation will likely be required in the coming years. Mitigation may entail erosion repair, erosion control blankets, revegetation, and/or cutting in shallow swales along the slope to reduce runoff flow path lengths.

Seepage Underdrain Collection System: Continue the jetting and video inspection program to ensure the drain pipes do not become clogged. Consider installing a concrete structure for collecting underdrain flows from the toe drains to facilitate maintenance in the toe drain area, improve conditions for monitoring and inspecting the drain system, and to prevent the attraction of animals to the area by pooling of leakage from the drain pipes.

CONCLUSIONS

Based on the observations described above, the overall surficial condition of the dam is judged to be 'Satisfactory' at this time. Please don't hesitate to call should you have questions or concerns regarding this inspection report.

Respectfully Submitted,

Mark S. Abshire, P.E. Senior Geotechnical Engineer

FIGURES

- Figure 1 Overall Site Plan
- Figure 2 2021 Annual Dam Safety Inspection
- Figure 3 Piezometer Levels
- Figure 4 Underdrain Flow

0: \.05 Son Luis\.13 Spillway\Site General Photos.dwg SAVED: 8/24/21 PRINTED: 8/24/21

FIGURE 3 PIEZOMETER LEVELS 2021 ANNUAL DAM SAFETY INSPECTION SAN LUIS TAILINGS STORAGE FACILITY

Engineering Analytics, Inc.

FIGURE 4 UNDERDRAIN FLOW 2021 ANNUAL DAM SAFETY INSPECTION SAN LUIS TAILINGS STORAGE FACILITY

Engineering Analytics, Inc.

ATTACHMENT 1 SAN LUIS TAILINGS DAM 2021 ANNUAL DAM SAFETY INSPECTION FORM JUNE 8, 2021
DAM NAME: San Luis Tailings Dam

TAILINGS DAM INSPECTION FORM

Name of Professional Cor Mark S. Abshire, PE						Colorado P.E 33319	E. License No.:	
Company Name and Address: Engineering Analytics, Inc. 1600 Specht Point Road, Suite 209				Phone Nos.: 970-488-3111 (Office) 970-692-4265 (Cell)				
Fort Collins, Colorado 8					email: mabs			
INSPECTION PREPARAT		iewed all per	tinent tech	nical documentat	ion related to f	his dam and s	site in the Owner's files:	
⊠ Yes □ No	Comment:							
STATEMENT OF EXPERI the technical disciplines to engineering may include g	properly inspec	ct this dam a	ind appurte	enant works. Tecl	hnical disciplir			
⊠Yes □ No Comment: YR COMPL	Тт	R	Sec	COUNTY	DATE OF INS	DECTION		
1993 Ph II, Raise 1			360	Costilla	June 8, 2021			
1995 Ph II, Raise 2	Sangre de (oplicable- Cristo Lanc	d Grant	Costina				
DAM HEIGHT (FT) ~ 155	DAM LENGTH (~ 1,900		CREST W ~25	IDTH (FT)	PREVIOUS IN August 25, 20			
FREEBOARD (FT) ~ 12	DRAINAGE AR 741 total	ea (ac)	CREST EL ~ 8620	EV (FT)	NORMAL STO 1,105 at dam of		POOL SURFACE AREA 136.7 at dam crest	
BEACH LENGTH ABOVE PO	537 diverted		I	DIVERSION CH		TTY (CES) ~1	500	
OWNER:	OL (F1). ~000			DIVERSION CIT	OWNER REP			
Battle Mountain Resourc	es, Inc.				David Carino	RESERVATIVE		
OWNER ADDRESS: P.O. Box 310 San Luis, Colorado 81152					OWNER CONTACT PHONE NOS.: 719-379-0827 (water treatment plant)			
FIELD CONDITIONS	WATER LEVEL	BELOWDAN	CREST: 1	2+ FT				
OBSERVED	GROUNDMOI	STURE CON	DITION:	⊠ DRY				
	Directions: Ma	ark and X f	or condition	ons found and u	Inderline woi	ds that appl	ly	
		UPSTR	EAM SLO	OPE AND BEA	CH AREA			
PROBLEMS NOTED:						•		
⊠ (0) NONE		□(1)ERO	SION PROT	ECTION - Missing/	Sparse 🗆 (2) E	BEACH AREA	WAVE EROSION	
(3) CRACKS WITH DISP	LACEMENT	🗆 (4)SIN	IKHOLE		🗆 (5) A	PPEARS TOO	DSTEEP	
(6) DEPRESSIONS OR B	ULGES	🗆 (7) SLI	DES		(8)	ANIMALBUR	ROWS	
CONDITIONS	OBSERVED:		GOOD		EPTABLE		POOR	
			I	CREST				
PROBLEMS NOTED:								
⊠ (10) NONE		🗆 (11) RU	TSOR PUL	DDLES	🗆 (12)	EROSION		
(13)CRACKS WITH DISF	PLACEMENT	🗆 (14) SIN	KHOLES		🗆 (15)	NOT WIDE E	INOUGH	
🗆 (16) LOW AREA		🗆 (17)Mk	SALIGNMI	ENT	🗆 (18)	IMPROPER S	SURFACE DRAINAGE	
🗆 (19) OTHER								
	/ED: 0	good			E			
	/ED: D	⊠ GOOD	DOWNS	CACCEPTABLE				
CONDITIONS OBSER	/ED: D	good	DOWNS					
CONDITIONS OBSER	/ED: D		DOWNS	TREAM SLOPE			R GULLIES (R DS Groin)	
CONDITIONS OBSERV PROBLEMS NOTED: I (20) NONE	/ED: D		ESTOCK I	TREAM SLOPE	⊠ (22) EROSION OF	R GULLIES (R DS Groin) TOO STEEP	
CONDITIONS OBSER PROBLEMS NOTED: ⊠ (20) NONE □ (23) CRACKSWITH		□ (21)LI\ □ (24)SI	/ESTOCK I INKHOLE	TREAM SLOPE	E ⊠ (22 □ (25) EROSION OF	TOO STEEP	
CONDITIONS OBSERV PROBLEMS NOTED: I (20) NONE	BULGES	□ (21) LI\ □ (24) SI □ (27) SL	/ESTOCK I INKHOLE IDES	TREAM SLOPE Damage	⊠ (22 □ (25 □ (28)) EROSION OF) APPEARS SOFT AREAS	TOO STEEP S	

TAILINGS DAM INSPECTION FORM

Directions: Mark and	1 X for conditio	ns found and underline wo	ords that apply
	SEEPAGE AN	D DRAIN OUTFALL	
PROBLEMS NOTED:			
□ (30) NONE	🗆 (31) SAT	URATEDEMBANKMENT ARE	A 🛛 (32)SEEPAGEEXITSONDAM
□ (33) SEEPAGE EXITS ATPOINT SOURCE	⊠ (34) MIN ATTOE	OR PONDING OF PIPE LEAKAO	3E
DRAIN OUTFALLSEEN: 🛛 YES 🛛 NO			
(35) FLOW ADJACENT TO DRAIN PIPE	🗆 (36) DRA	IN OUTFLOW TURBID	□ (37) DRAIN DRY/OBSTRUCTED
□ (38) OTHER			
SHOW LOCATION OF DRAIN ON SKETCH AND INDICATE AMOUNT AND QUALITY OF SEEPAGE	See Figure 1 Minor leakage fro	om toe drain creates puddle, attract	ing animals, but no pipe damage.
CONDITIONS OBSERVED:		ACCEPTABLE	
STO	RM WATER M	ANAGEMENT SYSTEM	
PROBLEMS NOTED:			
□ (40) NONE	🗆 (41) NO E	EMERGENCY SPILLWAY	🖾 (42) EROSION AT DROP STRUCTURE
(43) CONCRETE DETERIORATED/UNDERMINE	D 🗆 (45) STR	UCTUREMAYBETOOSMALL	
(46) DIVERSION CHANNEL EROSION	🗆 (47)INADE	QUATE CHANNEL FLOW CAPACIT	TY □ (48) CHANNEL FLOW OBSTRUCTED
☑ (49) OTHER Rilling beginning right side of drop	structure- continu	ue monitoring.	
South diversion channel and downstream toe rur revegetation at right of the drop structure, but mitig			Continue monitoring erosion and
CONDITIONS OBSERVED:	🛛 GOOD		
	MON	IITORING	
EXISTING INSTRUMENTATION FOUND:			
(50) NONE	GAGE	ROD IN POOL AREA	☑ (52) PIEZOMETERS
(53) SEEPAGE WEIRS/FLUMES	🗆 (54) SURVE	Y MONUMENTS	🛛 (55) OTHER Underdrain flow
MONITORING OF INSTRUMENTATION:			
(56) NO WEIRS/FLUMES	🖾 (57) YES		
PERIODIC INSPECTIONS BY:			
⊠ (58)OWNER	🗆 (59)ENGIN	EER	
Piezometers remain dry. Average underdrain flow me (34.8 gpm). Reduction is likely due to ongoing severe	easurements from regional drought,	2019-21 (32.5 gpm) are slightly l but continue jetting and video in	lower than from 2016-2021 Ispection program.
CONDITIONS OBSERVED:	🛛 GOOD		
	MAINTENAN	CE AND REPAIRS	
PROBLEMSNOTED:			
🗆 (60) NONE	🗆 (61) ACCES	S ROAD NEEDS MAINTENANC	E 📋 (62) CATTLE DAMAGE
🗆 (63) BRUSH ON: UPSTREAM SLOPE/BEACH, CI	REST, DOWNSTR	EAM SLOPE, TOE	
(64) RODENT ACTIVITY ON: UPSTREAM SLOPE	BEACH, CREST,	DOWNSTREAM SLOPE, TOE	
☑ (65) OTHER Disturbed areas adjacent to the So but due to drought conditions vegetation establish be required in the coming years. Repair minor lear	ment is poor to da	ate and rilling is developing at the	he lower slope; erosion mitigation will likely
CONDITIONS OBSERVED:			D POOR
······································	OVERAL	L CONDITIONS	
Based on this inspection and recent file review,	the overall surfi	cial condition is determined t	to be:

- SATISFACTORY
- □ CONDITIONALLY SATISFACTORY

DAM NAME: San Luis Tailing Dam

TAILING	DAM	INSPE	CTI	ON	FORM
---------	-----	-------	-----	----	------

MAINTENANCE MINOR REPAIR MONITORING MINOR REPORT MINOR PROGRAM AND PROPERLY BACKFILL EXISTING HOLES: G (S) MONITOR: Continue underdrain gifting and gulying at right downstream groin. S (S) MONITOR: Continue underdrain gifting and gulying at right downstream groin. S (S) MONITOR: Continue underdrain gifting action along the side slopes of the drop structure. Erosion will likely progress in th absence of vegetation. Mitigation may require ension repair, ension control blankets, revegetation, and/or cutting shallow swales along the slope to reduce runoff flow path lengths. S (S) OTHER: Protect toe drain area from disturbance by catile. Fix leak in outfall pipe to prevent water ponding in this area. S (IO) OTHER: Per 2020 inspection, consider installing a concrete structure for collection of drain discharges to facilitate access for cleanoul and monitoring of the drains. ENGINEERING C BMPLOY AMENDERE EXPERIENCED IN DESIGN AND CONSTRUCTION OF DAMS TO: Plans and specifications to be improved by CDRMS prior to construction.) I (1) PREPARE FLANS AND SPECIFICATIONS FOR REHABILITATION OF THE DAM: I (2) PREPARE AS BUIL DRAWINGS OF: I (3) PREPARE AS BUIL DRAWINGS OF: I (4) PREPORM A GEOTECHNICAL INVESTIGATION TO EVALUATE THE STABILITY OF THE DAM: I (4) PREPORM A MURCHICKER EXPERIENCED IN DESIGN AND CONSTRUCTION OF DAMS TO: Plans and specifications to be improved by CDRMS prior to construction.) I (1) PREPARE FLANS AND SPECIFICATIONS FOR REHABILITATION OF THE DAM: I (2) PREPARE AS BUIL DRAWINGS OF: I (3) PREPARE AS BUIL DRAWINGS OF: I (4) PREPORM A MURCHICKER EXPERIENCED IN DESIGN AND CONSTRUCTION OF DAMS TO: Plans and specifications to be improved by CDRMS prior to construction.) I (1) PREPARE FLANS AND SPECIFICATIONS FOR REHABILITATION OF THE DAM: I (1) PREPARE AS BUIL DRAWINGS OF: I (5) PREPARE AS BUIL DRAWINGS OF: I (6) SET UP OR IMPROVE MONITORING SYSTEM: I (6) SET UP OR IMPROVE	TAILING DAM	
	MAINTENANCE	ITEMS REQUIRING ACTION BY OWNER TO IMPROVE THE SAFETY OF THE DAM
Q (LEAR BRUSH FROM: Q () NITATE RODENT CONTROL PROGRAM AND PROPERLY BACKFILL EXISTING HOLES: Q () GRADE CREST TO A UNIFORM ELEVATION WITH DRAINAGE TO THE UPSTREAM SLOPE: Q () GRADE CREST TO A UNIFORM ELEVATION WITH DRAINAGE TO THE UPSTREAM SLOPE: Q () MONITOR: Per Item 42, continue monitoring reasion along the side slopes of the drop structure. Erosion will key progress in th absence of vegation. Mitigation may require ensoin repair, erosion control bankets, revegetation, and/or cuting shallow swales along the slope to reduce runoff flow path lengths. S((i) OTHER: Protect toe drain area from disturbance by cattle. Fix leak in outfall pipe to prevent water ponding in this area. S((i) OTHER: Per 1200 ingaction, consider intelling a concrete structure for collection of drain discharges to facilitate access for cleanout and monitoring of the drains. S((i) OTHER: Per 2020 ingaction, consider intelling a concrete structure for collection of drain discharges to facilitate access for cleanout and monitoring of the drains. ID (i) OTHER: Per 2020 ingaction, consider intelling a concrete structure for collection of drain discharges to facilitate access for cleanout and monitoring of the drains. ID (i) OTHER: Per 2020 ingaction, consider intel/ABUITATION OF THE DAM: ID (1) OTHER: Per 2020 ingaction, consider intel/ABUITATION OF THE DAM: ID (1) PEPARE PLANS AND SPECIFICATIONS FOR ENABLITATION OF THE DAM: ID (1) PEPARE ID (1) PER PER PLANS AND SPECIFICAT		
I (I) INITIATE RODENT CONTROL PROGRAM AND PROPERLY BACKFILL EXISTING HOLES: I (I) GRADE CREST TO A UNIFORM ELEVATION WITH DRAINAGE TO THE UPSTREAM SLOPE: I (I) GRADE CREST TO A UNIFORM ELEVATION WITH DRAINAGE TO THE UPSTREAM SLOPE: I (I) MONITOR: Per Item 22, continue monitoring rilling and gullying at right downstream groin. SI (I) MONITOR: Continue underdrain jetting cleanout and camera inspection of accassible lengths of underdrain pipes. SI (I) MONITOR: Per Item 49, continue monitoring creation action repair, erosion control blankots, revegetation, and/or cutting shallow swales along the slope to reduce runoff flow path lengths. SI (I) OTHER: Protect toe drain area from disturbance by cattle. Fix leak in outfall pipe to prevent water ponding in this area. SI (II) OTHER: Protect toe drain area from disturbance by cattle. Fix leak in outfall pipe to prevent water ponding in this area. SI (II) OTHER: Per 2020 inspection, consider installing a concrete structure for collection of drain discharges to facilitate access for cleanout and monitoring of the drains. SI (II) OTHER: Per 2020 inspection, consider installing a concrete structure for collection of drain discharges to facilitate access for cleanout and monitoring of the drains. Ci (II) PREPARE PLANS AND SPECIFICATIONS FOR REHABILITION OF THE DAM: III (II) PREPARE PLANS AND SPECIFICATIONS FOR REHABILITION OF THE DAM: I (II) PREPARE PLANS AND SPECIFICATIONS FOR ALPERINEREQUIRED SIZE OF FLOOD BYPASS/SPILLWAY: IIII (II) PREPARE PLANS AND SPECIFICATIONS FOR ALPERINEREQUIRED S	I (I) I NOVIDE AL	
Q (4) GRADE CREST TO A UNIFORM ELEVATION WITH DRAINAGE TO THE UPSTREAM SLOPE:	(2) CLEAR BRU	SH FROM:
□ (6) PROVIDE SURFACE DRAINAGE FOR: □ (6) MONITOR: Per Item 22, continue monitoring rilling and gullying at right downstream groin. □ (7) MONITOR: Continue underdrain jetting cleanout and camera inspection of accessible lengths of underdrain pipes. □ (8) MONITOR: Per Item 49, continue monitoring erosion along the side slopes of the drop structure. Erosion will likely progress in th absence of vegatation, and/or cutting shallow swales along the side to reduce runoff flow path lengths. □ (9) OTHER: Per Item 49, continue monitoring erosion along the side slopes of the drop structure. Erosion will likely progress in th absence of vegatation, consider installing a concrete structure for collection of drain discharges to facilitate access for cleanout and monitoring of the drains. □ (10) OTHER: Per 2020 inspection, consider installing a concrete structure for collection of DAMS TO: Plans and specifications to be improved by CDRMS prior to construction.) □ □ (11) PREPARE PLANS AND SPECIFICATIONS FOR REHABILITATION OF THE DAM: □ □ (12) PREPARE AS-BULT DRAWINGS OF: □ □ (13) PREPARE PLANS AND SPECIFICATIONS FOR RAN ADEQUARE SPILLWAY: □ □ (14) PERFORM A GEOTECHNICAL INVESTIGATION TO EVALUATE THE STABILITY OF THE DAM: □ □ (14) PERFORM A MODOLOGIC STUDY TO DETERMINE REQUIRED SIZE OF FLOOD BYPASS/SPILLWAY: □ □ (16) SET UP OR IMPROVE MONITORING SYSTEM: □ □ (16) OTHER: □	(3) INITIATE RO	DENT CONTROL PROGRAM AND PROPERLY BACKFILL EXISTING HOLES:
Sig (6) MONITOR: Per Item 22, continue monitoring rilling and gullying at right downstream groin. Sig (7) MONITOR: Continue underdrain jetting cleanout and camera inspection of accessible lengths of underdrain pipes. Sig (8) MONITOR: Per Item 49, continue monitoring erosion along the side slopes of the drop structure. Erosion will likely progress in the absence of vegetation. Mitigation may require erosion repair, crosion control blankets, revegetation, and/or cutting shallow swales along the side along the side slopes of the drop structure. Erosion will likely progress in the absence of vegetation, consider installing a concrete structure for collection of drain discharges to facilitate access for cleanout and monitoring of the drains. Sig (9) OTHER: Per 2020 inspection, consider installing a concrete structure for collection of drain discharges to facilitate access for cleanout and monitoring of the drains. Sig (10) OTHER: Per 2020 inspection, consider installing a concrete structure for collection of DAMS TO: Plans and specifications to be improved by CDRNS prior to construction.) Improved by CDRNS prior to construction.) Cl(1) PREPARE PLANS AND SPECIFICATIONS FOR REHABILITATION OF THE DAM: Improved by CDRNS prior to construction.) Cl(2) PREPARE PLANS AND SPECIFICATIONS FOR AN ADEQUARE SPILLWAY: Improved by CDRNS prior to detertion of drain stalling a concrete structure for collection of and inspective modification for the structure and how to monitor and inspect the dam and prove monitor and steps inspection figure 3 direction Fibrows Cl(16) OTHER: Improved by CDRNS FOR AN ADE	(4) GRADE CRE	ST TO A UNIFORM ELEVATION WITH DRAINAGE TO THE UPSTREAM SLOPE:
EX (7) MONITOR: Continue underdrain jetting cleanout and camera inspection of accessible lengths of underdrain pipes. EX (8) MONITOR: Per Item 49, continue monitoring erosion along the side slopes of the drop structure. Erosion will likely progress in the absence of vegetation. Mitigation may require erosion repair, erosion control blankets, revegetation, and/or cutting shallow swales along the slope to reduce runoff flow path lengths. EX (9) OTHER: Protect toe drain area from disturbance by cattle. Fix leak in outfall pipe to prevent water ponding in this area. EX (10) OTHER: Protect toe drain area from disturbance by cattle. Fix leak in outfall pipe to prevent water ponding in this area. EX (10) OTHER: Protect toe drain area from disturbance by cattle. Fix leak in outfall pipe to prevent water ponding in this area. EX (10) OTHER: Protect toe drain area from disturbance by cattle. Fix leak in outfall pipe to prevent water ponding in this area. EX (10) OTHER: Protect toe drain monitoring of the drains. ENGINEERING © EMPLOY AN ENGINEER EXPERIENCED IN DESIGN AND CONSTRUCTION OF DAMS TO: Plans and specifications to be improved by CDRMS prior to construction.) Improved by CDRMS prior to construction.) Improved PLANS AND SPECIFICATIONS FOR REHABILITATION OF THE DAM: Improved by CDRMS prior to EVALUATE THE STABILITY OF THE DAM: Improved PLANS AND SPECIFICATIONS FOR AN ADEQUATE SPILLWAY: Improved by CDRMS prior to EVALUATE SPILLWAY: Improved PLANS AND SPECIFI	(5) PROVIDE SU	JRFACE DRAINAGE FOR:
SX (8) MONITOR: Per Item 49, continue monitoring erosion along the side slopes of the drop structure. Erosion will likely progress in th SX (8) MONITOR: Per Item 49, continue monitoring erosion along the side slopes of the drop structure. Erosion will likely progress in th SX (8) OTHER: Protect toe drain area from disturbance by cattle. Fix leak in outfall pipe to prevent water ponding in this area. SX (10) OTHER: Per 2020 inspection, consider installing a concrete structure for collection of drain discharges to facilitate access for cleanout and monitoring of the drains. ENGINEERING ● EMPLOY AN ENGINEER EXPERIENCED IN DESIGN AND CONSTRUCTION OF DAMS TO: Plans and specifications to be improved by CDRMS prior to construction.) [] [] (1) PREPARE PLANS AND SPECIFICATIONS FOR REHABILITATION OF THE DAM: [] [] (2) PREPARE AS-BUIL DRAWINGS OF: [] [] (3) PERFORM A GEOTECHNICAL INVESTIGATION TO EVALUATE THE STABILITY OF THE DAM: [] [] (4) PERFORM A HYDROLOGIC STUDY TO DETERMINE REQUIRED SIZE OF FLOOD BYPASSISPILLWAY: [] [] (16) SPET UP OR IMPROVE MONITORING SYSTEM: [] [] [] (17) OTHER: [] [] [] [] (18) OTHER: [] [] [] [] [] (19) OTHER: [] [] [] [] [] [] [] []	(6) MONITOR:	Per Item 22, continue monitoring rilling and gullying at right downstream groin.
absence of vegetation. Mitigation may require erosion repair, ension control blankets, revegetation, and/or cutting shallow swales along the slope to reduce runoff flow path lengths. SE (9) OTHER: Protect toe drain area from disturbance by cattle. Fix leak in outfall pipe to prevent water ponding in this area. SE (10) OTHER: Per 2020 inspection, consider installing a concrete structure for collection of drain discharges to facilitate access for cleanout and monitoring of the drains. ENGINEERING • EMPLOY AN ENGINEER EXPERIENCED IN DESIGN AND CONSTRUCTION OF DAMS TO: [Plans and specifications to be improved by CDRMS prior to construction.) [(1) PREPARE PLANS AND SPECIFICATIONS FOR REHABILITATION OF THE DAM: [(12) PREPARE PLANS AND SPECIFICATIONS FOR REHABILITATION OF THE DAM: [(14) PERFORM A GEOTECHNICAL INVESTIGATION TO EVALUATE THE STABILITY OF THE DAM: [(14) PERFORM A HYDROLOGIC STUDY TO DETERMINE REQUIRED SIZE OF FLOOD BYPASS/SPILLWAY: [(15) PREPARE PLANS AND SPECIFICATIONS FOR AN ADEOUATE SPILLWAY: [(16] IG) SET UP OR IMPROVE MONITORING SYSTEM: [(17) OTHER: [17] OTHER: [[18] OTHER: [Figure 1 Overall Site Plan and Photo Log [[19] PREpare PLANS (Photos 1-21) [18] Attachments (Plezometer and underdrain data) [[19] ENGINEER'S INSTRUCTION: Instructed owner on the safety concerns with the structure and how to monitor and inspect the dam and appurtenant works in the Interim period between the regulatory annual Inspection. [[19] Yes _ No Professional Engine	(7) MONITOR:	Continue underdrain jetting cleanout and camera inspection of accessible lengths of underdrain pipes.
EX (10) OTHER: Per 2020 inspection, consider installing a concrete structure for collection of drain discharges to facilitate access for cleanout and monitoring of the drains. ENGINEERING • EMPLOY AN ENGINEER EXPERIENCED IN DESIGN AND CONSTRUCTION OF DAMS TO: [Plans and specifications to be improved by CDRMS prior to construction.) [(1)) PREPARE PLANS AND SPECIFICATIONS FOR REHABILITATION OF THE DAM: [(12) PREPARE AS-BUILT DRAWINGS OF: [(13) PREFORM A GEOTECHNICAL INVESTIGATION TO EVALUATE THE STABILITY OF THE DAM: [(14) PERFORM A HYDROLOGIC STUDY TO DETERMINE REQUIRED SIZE OF FLOOD BYPASS/SPILLWAY: [(15) PREPARE PLANS AND SPECIFICATIONS FOR AN ADEQUATE SPILLWAY: [(16] ISET UP OR IMPROVE MONITORING SYSTEM: [(17) OTHER: [[16] 10] OTHER: [[16] OTHER: [[17] 0THER: [[16] 22 2021 Annual Dam Safety Inspection [Figure 3 1 Overall Site Plan and Photo Log [[17] Figure 1 Overall Site Plan and Photo Log Figure 4 Underdrain Flow Attachments (Plezometer and underdrain data) ENGINEER'S INSTRUCTION: Instructed owner on the safety concerns with the structure and how to monitor and inspect the dam and appurtenant works in the interim period between the regulatory annual inspections. [X] Yes No Professional Engineer's Signature:	⊠ (8) MONITOR:	absence of vegetation. Mitigation may require erosion repair, erosion control blankets, revegetation, and/or cutting i
Cleanout and monitoring of the drains. ENGINEERING © EMPLOY AN ENGINEER EXPERIENCED IN DESIGN AND CONSTRUCTION OF DAMS TO: [Plans and specifications to be improved by CDRMS prior to construction.) [(11) PREPARE PLANS AND SPECIFICATIONS FOR REHABILITATION OF THE DAM: [(12) PREPARE AS-BUILT DRAWINGS OF: [(13) PREFORM A GEOTECHNICAL INVESTIGATION TO EVALUATE THE STABILITY OF THE DAM: [(14) PREFORM A HYDROLOGIC STUDY TO DETERMINE REQUIRED SIZE OF FLOOD BYPASS/SPILLWAY: [(15) PREPARE PLANS AND SPECIFICATIONS FOR AN ADEQUATE SPILLWAY: [(16] SET UP OR IMPROVE MONITORING SYSTEM: [(17) OTHER: [[18] OTHER: [[19] OTHER: [19] OTHER: [10] OTHER: [10] OTHER: [11] OTHER: [11] OTHER: [12] OTHER: [10] OTHER: [11] OTHER: [12] OTHER: [21] OTHER: [21] OTHER: [222] Annual Dam Safety Inspection Figure 3 Discometer Levels Figure 4 Underdrain Flow Attachments (Plezometer and underdrain data) ENGINEER'S INSTRUCTION: Instructed owner on the safety concerns with the structure and how to monitor and inspect the dam and appurtenant works in the interim period between the regulatory annual inspections. If Yes	(9) OTHER:	Protect toe drain area from disturbance by cattle. Fix leak in outfall pipe to prevent water ponding in this area.
[Plans and specifications to be improved by CDRMS prior to construction.] [11] PREPARE PLANS AND SPECIFICATIONS FOR REHABILITATION OF THE DAM: [12] PREPARE AS-BUILT DRAWINGS OF: [13] PERFORM A GEOTECHNICAL INVESTIGATION TO EVALUATE THE STABILITY OF THE DAM: [14] PREFORM A HYDROLOGIC STUDY TO DETERMINE REQUIRED SIZE OF FLOOD BYPASS/SPILLWAY: [16] PREPARE PLANS AND SPECIFICATIONS FOR AN ADEQUATE SPILLWAY: [16] NET UP OR IMPROVE MONITORING SYSTEM: [17] OTHER: [17] OTHER: [18] OTHER: Figure 1 Overall Site Plan and Photo Log Figure 2 2021 Annual Dam Safety Inspection Figure 2 2021 Annual Dam Safety Inspection Figure 3 Diezometer Levels Figure 2 2021 Inspection Photos ENGINEER'S INSTRUCTION: Instructed owner on the safety concerns with the structure and how to monitor and inspect the dam and appurtenant works in the Interim period between the regulatory annual inspections. Image: No Comment: Professional Engineer's Signature: MaxAMMA Date: $\frac{9/25/2021}{2021}$ Conter/Owner's Representative Wathamature and MaxAMMA Date: $\frac{9/25/2021}{2021}$	🛛 (10) OTHER:	
□ (1) PREPARE PLANS AND SPECIFICATIONS FOR REHABILITATION OF THE DAM: □ (12) PREPARE AS-BUILT DRAWINGS OF: □ (13) PERFORM A GEOTECHNICAL INVESTIGATION TO EVALUATE THE STABILITY OF THE DAM: □ (14) PERFORM A HYDROLOGIC STUDY TO DETERMINE REQUIRED SIZE OF FLOOD BYPASS/SPILLWAY: □ (15) PREPARE PLANS AND SPECIFICATIONS FOR AN ADEQUATE SPILLWAY: □ (16) SET UP OR IMPROVE MONITORING SYSTEM: □ (17) OTHER: □ (18) OTHER: Figure 1 Overall Site Plan and Photo Log Figure 2 2021 Annual Dam Safety Inspection Figure 3 Piezometer Levels Figure 4 Underdrain Flow Attachment 2 2021 Inspection Photos ENGINEER'S INSTRUCTION: Instructed owner on the safety concerns with the structure and how to monitor and inspect the dam and appurtenant works in the Interim period between the regulatory annual Inspections. ☑ Yes □ No Comment: Professional Engineer's Signature: With Way Date: $\frac{9/23/2021}{723/1201}$		EMPLOY AN ENGINEER EXPERIENCED IN DESIGN AND CONSTRUCTION OF DAMS TO:
[12] PREPARE AS-BUILT DRAWINGS OF: [13] PERFORM A GEOTECHNICAL INVESTIGATION TO EVALUATE THE STABILITY OF THE DAM: [14] PERFORM A HYDROLOGIC STUDY TO DETERMINE REQUIRED SIZE OF FLOOD BYPASS/SPILLWAY: [15] PREPARE PLANS AND SPECIFICATIONS FOR AN ADEQUATE SPILLWAY: [16] SET UP OR IMPROVE MONITORING SYSTEM: [17] OTHER: [18] OTHER: [19] PREPARE I Overall Site Plan and Photo Log Figure 1 Overall Site Plan and Photo Log Figure 2 2021 Annual Dam Safety Inspection Figure 3 Piezometer Levels Figure 4 Underdrain Flow Attachment 2 2021 Inspection Photos ENGINEER'S INSTRUCTION: Instructed owner on the safety concerns with the structure and how to monitor and inspect the dam and appurtenant works in the Interim period between the regulatory annual inspections. S Yes □ No Comment: Professional Engineer's Signature: Reviewed by: Owner/Owner's Representative	Plans and specif	ications to be improved by CDRMS prior to construction.)
[13] PERFORM A GEOTECHNICAL INVESTIGATION TO EVALUATE THE STABILITY OF THE DAM: [14] PERFORM A HYDROLOGIC STUDY TO DETERMINE REQUIRED SIZE OF FLOOD BYPASSISPILLWAY: [15] PREPARE PLANS AND SPECIFICATIONS FOR AN ADEQUATE SPILLWAY: [16] SET UP OR IMPROVE MONITORING SYSTEM: [17] OTHER: [18] OTHER: [19] PREform a nd Photo Log Figure 1 Overall Site Plan and Photo Log Figure 2 2021 Annual Dam Safety Inspection Figure 3 Piezometer Levels Figure 4 Underdrain Flow Attachment 2 2021 Inspection Photos Protographs (Photos 1-21) ☑ Attachments (Piezometer and underdrain data) ENGINEER'S INSTRUCTION: Instructed owner on the safety concerns with the structure and how to monitor and inspect the dam and appurtenant works in the Interim period between the regulatory annual inspections. ☑ Yes □ No Comment: Ordessional Engineer's Signature: Mature Date: 8/23/2021 Professional Engineer's Representative Mature Date: 8/31 [Locid	(11) PREPARE F	LANS AND SPECIFICATIONS FOR REHABILITATION OF THE DAM:
I (14) PERFORM A HYDROLOGIC STUDY TO DETERMINE REQUIRED SIZE OF FLOOD BYPASS/SPILLWAY: I (15) PREPARE PLANS AND SPECIFICATIONS FOR AN ADEQUATE SPILLWAY: I (16) SET UP OR IMPROVE MONITORING SYSTEM: I (17) OTHER: I (18) OTHER: I (19) Perform and Photo Log Figure 2 2021 Annual Dam Safety Inspection Figure 3 Discometer Levels Figure 4 Underdrain Flow Attachment 2 2021 Inspection Photos Image: Signature: Image: Signature: Professional Engineer's Signature: Professional Engineer's Signature: Reviewed by: Owner/Owner's Representative	(12) PREPARE	AS-BUILT DRAWINGS OF:
[15] PREPARE PLANS AND SPECIFICATIONS FOR AN ADEQUATE SPILLWAY: [16] SET UP OR IMPROVE MONITORING SYSTEM: [17] OTHER: [17] OTHER: [18] OTHER: [18] OTHER: [19] OTHER: [10] OTHER: [10	(13) PERFORM	A GEOTECHNICAL INVESTIGATION TO EVALUATE THE STABILITY OF THE DAM:
(16) SET UP OR IMPROVE MONITORING SYSTEM: (17) OTHER: (18) OTHER: Figure 1 Overall Site Plan and Photo Log Figure 2 2021 Annual Dam Safety Inspection Figure 3 Piezometer Levels Figure 4 Underdrain Flow Attachment 2 2021 Inspection Photos Image: Photographs (Photos 1-21) Image: Attachments (Piezometer and underdrain data) ENGINEER'S INSTRUCTION: Instructed owner on the safety concerns with the structure and how to monitor and inspect the dam and popurtenant works in the Interim period between the regulatory annual inspections. Professional Engineer's Signature: Reviewed by: Owner/Owner's Representative	(14) PERFORM	A HYDROLOGIC STUDY TO DETERMINE REQUIRED SIZE OF FLOOD BYPASS/SPILLWAY:
□ (17) OTHER: □ (18) OTHER: Figure 1 Overall Site Plan and Photo Log Figure 2 2021 Annual Dam Safety Inspection Figure 3 Piezometer Levels Figure 4 Underdrain Flow Attachment 2 2021 Inspection Photos Image: Signature 1 Photographs (Photos 1-21) Image: Attachments (Piezometer and underdrain data) ENGINEER'S INSTRUCTION: Instructed owner on the safety concerns with the structure and how to monitor and inspect the dam and appurtenant works in the interim period between the regulatory annual inspections. Professional Engineer's Signature: Reviewed by: Owner/Owner's Representative	(15) PREPARE F	PLANS AND SPECIFICATIONS FOR AN ADEQUATE SPILLWAY:
[18] OTHER: Figure 1 Overall Site Plan and Photo Log Figure 2 2021 Annual Dam Safety Inspection Figure 3 Piezometer Levels Figure 4 Underdrain Flow Attachment 2 2021 Inspection Photos Image: Signature 1 Image: Signature 2 Professional Engineer's Signature: Mathematics Professional Engineer's Representative Mathematics Image: Signature: Mathematics Professional Engineer's Representative Mathematics Image: Signature: Image: Signature Image: Signature:	(16) SET UP OF	RIMPROVE MONITORING SYSTEM:
Figure 1 Overall Site Plan and Photo Log Figure 2 2021 Annual Dam Safety Inspection Figure 3 Piezometer Levels Figure 4 Underdrain Flow Attachment 2 2021 Inspection Photos Image: Signaphic Photos 1-21 Image: Signature: Professional Engineer's Signature: Professional Engineer's Signature: Owner/Owner's Representative	(17) OTHER:	
Figure 2 2021 Annual Dam Safety Inspection Figure 3 Piezometer Levels Figure 4 Underdrain Flow Attachment 2 2021 Inspection Photos Photographs (Photos 1-21) Attachments (Piezometer and underdrain data) ENGINEER'S INSTRUCTION: Instructed owner on the safety concerns with the structure and how to monitor and inspect the dam and appurtenant works in the Interim period between the regulatory annual inspections. Yes Professional Engineer's Signature: Mathematical Mat	(18) OTHER:	
ENGINEER'S INSTRUCTION: Instructed owner on the safety concerns with the structure and how to monitor and inspect the dam and appurtenant works in the interim period between the regulatory annual inspections. If Yes I No Comment: Professional Engineer's Signature: Reviewed by: Owner/Owner's Representative Date: 8/31/2021 Date: 8/31/2021 Date: 8/31/2021	Figure 2 2021 Ani Figure 3 Piezome Figure 4 Underdra	nual Dam Safety Inspection ter Levels ain Flow
appurtenant works in the Interim period between the regulatory annual inspections. Image: Yes No Comment: Professional Engineer's Signature: Image: March Musching Date: 8/23/2021 Reviewed by: Owner/Owner's Representative Image: March Musching Date: 8/31/2021	Photograp	ohs (Photos 1-21)
Comment: Professional Engineer's Signature: Reviewed by: Owner/Owner's Representative Date: 8/31/2021 Date: 8/31/2021	ENGINEER'S INS	TRUCTION: Instructed owner on the safety concerns with the structure and how to monitor and inspect the dam and
Owner/Owner's Representative	appurtenant work Comment:	a in the interim period between the regulatory annual inspections. 🛛 Yes 🗆 No
Owner/Owner's Representative	Professional Engin	eer's Signature: Mark & Misking Date: 8/23/2021
	Reviewed by: Own	er/Owner's Representative
		1

G	UIDELINES FOR DETERMINING	CONDITIONS
CONDITIONS OB	SERVED - APPLIES TO UPSTREAM SLOP	E, CREST, DOWNSTREAM SLOPE
GOOD In general, this part of the structure has a good appearance, and conditions observed in this area do not appear to threaten the safety of the dam.	ACCEPTABLE Although general cross-section is maintained, surfaces may be irregular, eroded, rutted, spalled, or otherwise not in new condition. Conditions in this area do not currently appear to threaten the safety of the dam.	<u>POOR</u> Conditions observed in this area appear to threaten the safety of the dam.
	CONDITIONS OBSERVED - APPLIES T	O SEEPAGE
GOOD No evidence of uncontrolled seepage. No unexplained increase in flows from designed drains. All seepage is clear. Seepage conditions did not appear to threaten the safety of the dam.	ACCEPTABLE Some seepage exists at areas other than the drain outfalls, or other designed drams. No unexplained increase in seepage. All seepage is clear. Seepage conditions observed do not currently appear to threaten the safety of the dam.	POOR Seepage conditions observed appear to threaten the safety of the dam. Examples: 1) Designed drain or seepage flows have increased without increases in pool level. 2) Drain or seepage flows contain sediment, i.e., muddy water or particles in Jar samples. 3) Widespread seepage, concentrated seepage, or ponding appears to threaten the safety of the dam.
	CONDITIONS OBSERVED - APPLIES TO	MONITORING
GOOD Monitoring includes movement surveys, leakage measurements, and piezometer readings. Instrumentation is in reliable, working condition. A plan for monitoring the instrumentation and analyzing results by the owner's engineer is in effect. Periodic inspections by Owner's engineer.	ACCEPTABLE Monitoring includes movement surveys and leakage measurements. Instrumentation is in serviceable condition. A plan for monitoring instrumentation is in effect by owner. Periodic inspections by Owner or representative.	POOR Instrumentation and monitoring described under "ACCEPTABLE" here are not provided, or required periodic readings are not being made, or unexplained changes in readings are not reacted to by Owner.
	ITIONS OBSERVED - APPLIES TO MAINTE	NANCE AND REPAIR
GOOD Dam appears to receive effective on-going maintenance and repair, and only a few minor items may need to be addressed.	ACCEPTABLE Dam appears to receive maintenance, but some maintenance items need to be addressed. No major repairs are required.	<u>POOR</u> Dam does not appear to receive adequate maintenance. One or more items needing maintenance or repair has begun to threaten the safety of the dam.
	OVERALL CONDITIONS	
SATISFACTORY The safety inspection indicates no conditions that appear to threaten the safety of the dam, and the dam is expected to perform satisfactorily under all design loading conditions. Most of the required monitoring is being performed.	CONDITIONALLY SATISFACTORY The safety inspection indicates symptoms of structural distress (seepage, evidence of minor displacements, etc.) which, if conditions worsen, could lead to the failure of the dam. Essential monitoring, inspection, and maintenance must be performed as a requirement for continued full storage in the impoundment area.	to full capacity. The dam is judged unsafe for full storage of water.

ATTACHMENT 2 SAN LUIS TAILINGS STORAGE FACILITY 2021 ANNUAL DAM SAFETY INSPECTION JUNE 8, 2021 INSPECTION PHOTOS

Photo 1 Looking east along the access road and run-on diversion channel from the north (right) end of the dam, showing good conditions.

Photo 2 Looking north over the dam crest road, beach, and impoundment from the south (left) end of the dam, showing good conditions. The pool is seen in the background, and is within normal limits.

Photo 3 Looking northeast over the beach and impoundment from the south (left) end of the dam, showing good conditions.

Photo 4 Looking east over the beach and impoundment from the south (left) end of the dam, showing good conditions. Note the South Diversion Channel along the right side of the photo.

Photo 5 Looking west over the downstream face and the right downstream abutment, showing good conditions overall, and improving revegetation conditions following 2013/2014 erosion repairs. Note the seepage collection pond in the background.

Photo 6 Looking north over the downstream face from the left abutment, showing good conditions.

Photo 7 Looking northeast across the downstream face from just south of the toe drain outlet, showing good conditions. Note the lined runoff collection swale in the foreground.

Photo 8 Looking east across the downstream face from just south of the toe drain outlet, showing good conditions. Note the lined runoff collection swale in the foreground.

Photo 9 Looking southeast across the downstream face, toe, and access road from just south of the toe drain outlet, showing good conditions. Note the lined runoff collection swale running across the center of the photo.

Photo 10 Looking north across the right downstream face and toe from the toe drain outlet, showing generally good conditions. Note the improved vegetation condition of the repaired groin area, and cattle footprints in the soft accumulated sediments surrounding the drain outlet (seen exposed at lower right). The PVC pipe is the pump-back line that returns seepage from the collection pond to the TSF impoundment.

Photo 11 Looking south over the toe drain outlet area, showing generally good conditions. Note shallow standing water around the pipes, but no seepage from the embankment face above the pipes.

Photo 12 Looking northeast over the toe drain discharge pipes and pump-back line. Note 3 pipes draining to a single manifold, then to a single outfall pipe.

Photo 13 Looking east over the toe drain pipe (black) and pump-back line toward the outlet, showing generally good conditions. Note the low seepage flow conditions along the pipe in the lined channel.

Photo 14 Looking west toward the seepage collection pond over the toe drain outfall pipe and pump-back line, showing generally good conditions. Note the low seepage flow conditions along the pipe in the lined channel.

Photo 15 Looking east (upstream) at the South Diversion Channel from the east end of the drop structure, showing good conditions.

Photo 16 Looking west (downstream) at the South Diversion Channel toward the drop structure, showing good conditions.

Photo 17 Looking west (downstream) into the drop structure from near the top, showing good conditions.

Photo 18 Looking west at the slope on the north side of the drop structure, showing generally good conditions at present. Erosional rilling is beginning to develop at the lower portions of the slopes due to long drainage runs and the lack of vegetation.

Photo 19 Looking northwest over the runoff collection swale along the left downstream dam toe, showing good conditions.

Photo 20 Looking southeast over the runoff collection swale along the left downstream dam toe, showing good conditions.

Photo 21 Looking northwest over the lower runoff collection swale along the left downstream dam toe, showing good conditions.

BATTLE MOUNTAIN RESOURCES, INC.

October 04, 2021

Mr. Lucas West

Colorado Division of Reclamation, Mining and Safety

1313 Sherman Street, Room 215

Denver, CO 80203

OCT 112021

DIVISION OF RECLAMATION MINING & SAFETY

Re: San Luis Project Tailing Dam Q3 2021 Inspection Report, Technical Revision No. 33, Permit No. M-1988-112

Dear Mr. West:

Battle Mountain Resources Inc. (BMRI) is pleased to provide the Q3 2021 San Luis Tailing Dam Inspection Report in accordance with Technical Revision No. 33 to BMRI's Reclamation Permit.

The Inspection was conducted by BMRI Site Manager David Carino.

Enclosed with the inspection report are photos of the Tailing Impoundment facilities to include the drop structure and the under-drain discharge area. Also included are the Q3 2021 Piezometer Inspection results.

Respectfully,

Julio F. Madrid

SP. Supervisor Colorado Legacy Sites

(719) 379-0538

cc: Devon Horntvedt

David Carino

- DAM	SAN L	UIS PROJECT TAILING DAM	INSPE	CTOR	David S. Cariño		
AREA INSPECTED	ITEM NO.	CONDITION	YES	NO	OBSERVATIONS	MONITOR	INVESTI- GATE
-	1	ANY SURFACE CRACKING?	+	12			
	2	ANY UNUSUAL LOW AREAS?	1	TV			
CREST	3	ANY RUTS OR PUDDLES?	1	V			
	4	ANY HORIZONTAL OFFSET?	1	V			
}	5`	NEED VEGETATION CONTROL?	1	V			
[6	ANY SLIDES, SLOUGHS, SCARPS?	1	V			
	7	ANY SINKHOLES OR UNUSUAL DEPRESSIONS?	1	V			1
UPSTREAM	8	ANY EROSION ?	1	V			·]
SLOPE & BEACH AREA	9	CHANGES AT ABUTMENT CONTACTS?	1				
BEACH AREA	10	NEED VEGETATION CONTROL?		V			1
	11						<u> </u>
	12	ANY WET AREAS?		~			
	13	ANY SLIDES, SLOUGHS, SCARPS?		V	·		
DOWNSTREAM	14	CHANGES AT DAM-ABUTMENT CONTACT?		V			ļ
SLOPE	15	ANY EROSION?			minor evosion on Morth grain		<u> </u>
	16	ANY UNUSUAL BULGING OR SLOPE MOVEMENT?	L	1	area	ļ	_
	17	NEED VEGETATION CONTROL?	L	V			<u> </u>
	18	}	<u> </u>	<u> </u>			<u> </u>
SEEPAGE	19	IS DRAIN OUTLET CLOGGED OR OBSTRUCTED?	ļ	V			<u> </u>
COLLECTION	-20	ARE DRAIN FLOWS MUDDY OR TURBID?					+
AND	21	IS EMBANKMENT WET AROUND DRAIN OUTLET? ANY PROBLEMS WITH COLLECTION POND?	14	12	Minor lakage oround piping		
PUMPBACK	<u>22</u> 23	IS PUMPBACK SYSTEM WORKING PROPERLY?	+			+	┼───
SYSTEM	23	IN FORFBACK SISTEN WORKING FROFERLIT				+	┼───
	25	ANY EROSION?		1		+	
DIVERSION CHANNEL AND DROP	26	NEED VEGETATION CONTROL?		V		+	
	27	ANY DEBRIS IN CHANNELS OR DROP STRUCTURE?		V		+	1
			 	+	· · · · · · · · · · · · · · · · · · ·	+	+
STRUCTURE	28	ANY CRACKS OR DETERIORATION OF CONCRETE?					
		ANY CORROSION OF PIPE?		5		<u> </u>	<u> </u>
		I TS (REFER TO ITEM NO. IF APPLICABLE):	L	L	<u>{</u>	<u> </u>	J

.

ME OF DAM:	San Luis Project Tailing Dam	CO DRMS Permit #: M-1988-112	
REPORTING PERIOD:		REPORT #:	
INSPECTION ITEMS			PHOTOS
Piazometer Levels	Included in	report	NO
Dain Collection and Pumpback System Observations	system worki.	ng properly	yes
Sepage/Erosion Objervations	Minor erosion	on North grain area (downstree	am) Yes
Vetetation/Rodent/ Other Maintenance Observations	plone		NO
Div€rsion System Dbservations	Channel in go	od Condition, No issues	yes
		RECOMMENDATIONS/COMMENTS	
		INSPECTION AND REPORTING PERSONNEL	
NAME	The second se		E/ROLE
David S. Cari		mont Site Manager	
Julio Madrie	BMRI/NEW	iment site supervisor	
	the second se		

.

•

Q3 2021 Piezometer Levels

Identification (ft) (ft) (ft) (ft) (ft) P6 07/29/2021 72.46 DRY N/A P7 07/29/2021 92.50 92.27 0.23 P8 07/29/2021 97.51 96.58 0.93 P9 07/29/2021 58.30 57.61 0.69 P10 07/29/2021 41.80 41.40 0.40 P12 07/29/2021 41.34 41.03 0.31 P14 07/29/2021 41.34 41.03 0.31 P15 07/29/2021 41.10 40.87 0.23 Wonitoring Well Observation Date Piezometer Depth Depth of Water (ft) Identification (ft) (ft) (ft) (ft) (ft) P6 08/31/2021 72.46 DRY N/A P7 08/31/2021 72.30 71.91 0.39 P10 08/31/2021 72.30 71.91 0.39 P11 08/31/2021	Monitoring Well	Observation Date	Piezometer Depth	Depth to Water	Depth of Water
P7 07/29/2021 92.50 92.27 0.23 P8 07/29/2021 97.51 96.58 0.93 P9 07/29/2021 72.30 77.91 0.39 P10 07/29/2021 72.30 77.91 0.39 P11 07/29/2021 41.80 41.40 0.40 P12 07/29/2021 41.71 41.67 0.04 P13 07/29/2021 41.34 41.03 0.31 P14 07/29/2021 41.34 41.03 0.31 P14 07/29/2021 41.24 DRY N/A P15 07/29/2021 41.10 40.87 0.23 Wonitoring Well Observation Date Piezometer Depth Depth to Water Method Water Identification 08/31/2021 72.46 DRY N/A P7 08/31/2021 92.50 92.28 0.22 P8 08/31/2021 75.10 96.57 0.94 P9 08/31/2021 41.80 41.40 0.40 P11 08/31/2021 41.34 41.02	Identification		(ft)		
P8 07/29/2021 97.51 96.58 0.93 P9 07/29/2021 72.30 71.91 0.39 P10 07/29/2021 58.30 57.61 0.69 P11 07/29/2021 41.80 41.40 0.40 P12 07/29/2021 41.34 41.67 0.04 P13 07/29/2021 41.34 41.03 0.31 P14 07/29/2021 41.24 DRY N/A P15 07/29/2021 41.24 DRY N/A P15 07/29/2021 41.24 DRY N/A P15 07/29/2021 41.24 DRY N/A P16 08/31/2021 72.46 DRY N/A P7 08/31/2021 97.51 96.57 0.94 P9 08/31/2021 72.30 71.91 0.39 P10 08/31/2021 41.80 41.40 0.40 P12 08/31/2021 41.34 41.02 0.32 P1	P6				
P9 07/29/2021 72.30 71.91 0.39 P10 07/29/2021 58.30 57.61 0.69 P11 07/29/2021 41.80 41.40 0.40 P12 07/29/2021 41.80 41.40 0.40 P13 07/29/2021 41.34 41.67 0.04 P14 07/29/2021 41.24 DRY N/A P15 07/29/2021 41.24 DRY N/A P15 07/29/2021 41.10 40.87 0.23 Monitoring Well Observation Date Piezometer Depth (ft) Depth to Water Depth of Water Identification 08/31/2021 72.46 DRY N/A P7 08/31/2021 97.51 96.57 0.94 P8 08/31/2021 72.30 71.91 0.39 P10 08/31/2021 41.80 41.40 0.40 P12 08/31/2021 41.34 41.02 0.32 P14 08/31/2021 41.24					
P10 07/29/2021 58.30 57.61 0.69 P11 07/29/2021 41.80 41.40 0.40 P12 07/29/2021 41.71 41.67 0.04 P13 07/29/2021 41.71 41.67 0.04 P14 07/29/2021 41.24 DRY N/A P15 07/29/2021 41.10 40.87 0.23 Monitoring Well Observation Date Piezometer Depth (ft) Depth to Water Depth of Water P6 08/31/2021 72.46 DRY N/A P7 08/31/2021 92.50 92.28 0.22 P8 08/31/2021 72.30 71.91 0.39 P10 08/31/2021 72.30 71.91 0.39 P11 08/31/2021 41.80 41.40 0.40 P12 08/31/2021 41.34 41.02 0.32 P14 08/31/2021 41.34 DRY N/A P15 08/31/2021 41.34 DRY <th></th> <th></th> <th></th> <th></th> <th></th>					
P11 07/29/2021 41.80 41.40 0.40 P12 07/29/2021 41.71 41.67 0.04 P13 07/29/2021 41.34 41.03 0.31 P14 07/29/2021 41.34 41.03 0.31 P15 07/29/2021 41.24 DRY N/A P15 07/29/2021 41.10 40.87 0.23 Monitoring Well Observation Date (ft) Piezometer Depth (ft) Depth to Water (ft) Depth of Water P6 08/31/2021 72.46 DRY N/A P7 08/31/2021 92.50 92.28 0.22 P8 08/31/2021 75.1 96.57 0.94 P9 08/31/2021 75.30 71.91 0.39 P10 08/31/2021 41.80 41.40 0.40 P12 08/31/2021 41.34 41.02 0.32 P14 08/31/2021 41.34 41.02 0.32 P14 08/31/2021 41.34					
P12 07/29/2021 41.71 41.67 0.04 P13 07/29/2021 41.34 41.03 0.31 P14 07/29/2021 41.24 DRY N/A P15 07/29/2021 41.10 40.87 0.23 Monitoring Well Observation Date Piezometer Depth Depth to Water Depth of Water Identification (ft) (ft) (ft) (ft) (ft) P6 08/31/2021 72.46 DRY N/A P7 08/31/2021 97.51 96.57 0.94 P9 08/31/2021 72.30 71.91 0.39 P10 08/31/2021 41.34 41.02 0.32 P11 08/31/2021 41.34 41.02 0.32 P13 08/31/2021 41.34 41.02 0.32 P14 08/31/2021 41.34 41.02 0.32 P13 08/31/2021 41.34 DRY N/A P15 08/31/2021 41.24 <th>P10</th> <th></th> <th></th> <th></th> <th></th>	P10				
P13 07/29/2021 41.34 41.03 0.31 P14 07/29/2021 41.24 DRY N/A P15 07/29/2021 41.10 40.87 0.23 Monitoring Well Observation Date Piezometer Depth (ft) Depth to Water Depth of Water Identification 08/31/2021 72.46 DRY N/A P7 08/31/2021 92.50 92.28 0.22 P8 08/31/2021 97.51 96.57 0.94 P9 08/31/2021 58.30 57.60 0.70 P11 08/31/2021 41.34 41.02 0.32 P13 08/31/2021 41.34 41.02 0.32 P14 08/31/2021 41.34 41.02 0.32 P14 08/31/2021 41.34 P1.0 0.40 P12 08/31/2021 41.34 P1.0 0.40 P14 08/31/2021 41.34 P1.0 0.37 P15 08/31/2021 41.34	P11				
P14 07/29/2021 41.24 DRY N/A P15 07/29/2021 41.10 40.87 0.23 Monitoring Well Observation Date Piezometer Depth (ft) Depth to Water (ft) Depth of Water (ft) Depth of Water P6 08/31/2021 72.46 DRY N/A P7 08/31/2021 92.50 92.28 0.22 P8 08/31/2021 72.30 71.91 0.39 P10 08/31/2021 73.30 71.91 0.39 P11 08/31/2021 41.34 41.02 0.32 P12 08/31/2021 41.34 41.02 0.32 P13 08/31/2021 41.34 41.02 0.32 P14 08/31/2021 41.24 DRY N/A P15 08/31/2021 41.24 DRY N/A P15 08/31/2021 41.24 DRY N/A P15 08/31/2021 41.24 DRY N/A P16 09/30/2021					
P15 07/29/2021 41.10 40.87 0.23 Monitoring Well Identification Observation Date (ft) Piezometer Depth (ft) Depth to Water (ft) Depth of Water (ft) Depth of Water (ft) P7 08/31/2021 72.46 DRY N/A P7 08/31/2021 92.50 92.28 0.22 P8 08/31/2021 97.51 96.57 0.94 P9 08/31/2021 72.30 71.91 0.39 P10 08/31/2021 41.80 41.40 0.40 P12 08/31/2021 41.34 41.02 0.32 P14 08/31/2021 41.34 41.02 0.32 P15 08/31/2021 41.34 DRY N/A P15 08/31/2021 41.24 DRY N/A P15 08/31/2021 72.46 DRY N/A P15 09/30/2021 72.46 DRY N/A P7 09/30/2021 97.51 96.57 0.94 P9 <td< th=""><th></th><th></th><th></th><th></th><th></th></td<>					
Monitoring Well Identification Observation Date (ft) Piezometer Depth (ft) Depth to Water (ft) Depth of Water (ft) P6 08/31/2021 72.46 DRY N/A P7 08/31/2021 92.50 92.28 0.22 P8 08/31/2021 97.51 96.57 0.94 P9 08/31/2021 58.30 57.60 0.70 P11 08/31/2021 41.80 41.40 0.40 P12 08/31/2021 41.34 41.02 0.32 P13 08/31/2021 41.34 41.02 0.32 P14 08/31/2021 41.34 41.02 0.32 P15 08/31/2021 41.34 40.87 0.23 P14 08/31/2021 41.10 40.87 0.23 P15 08/31/2021 72.46 DRY N/A P7 09/30/2021 92.50 92.27 0.22 P8 09/30/2021 97.51 96.57 0.94 P9 09/30/2021	P14	07/29/2021	41.24		
Identification (ft) (ft) (ft) (ft) P6 08/31/2021 72.46 DRY N/A P7 08/31/2021 92.50 92.28 0.22 P8 08/31/2021 97.51 96.57 0.94 P9 08/31/2021 72.30 71.91 0.39 P10 08/31/2021 58.30 57.60 0.70 P11 08/31/2021 41.80 41.40 0.40 P12 08/31/2021 41.34 41.02 0.32 P14 08/31/2021 41.34 41.02 0.32 P14 08/31/2021 41.34 0.87 0.23 P15 08/31/2021 41.10 40.87 0.23 P16 09/30/2021 72.46 DRY N/A P7 09/30/2021 92.50 92.27 0.22 P8 09/30/2021 97.51 96.57 0.94 P9 09/30/2021 72.30 71.91 0.39	P15	07/29/2021	41.10	40.87	0.23
Identification (ft) (ft) (ft) (ft) P6 08/31/2021 72.46 DRY N/A P7 08/31/2021 92.50 92.28 0.22 P8 08/31/2021 97.51 96.57 0.94 P9 08/31/2021 72.30 71.91 0.39 P10 08/31/2021 58.30 57.60 0.70 P11 08/31/2021 41.80 41.40 0.40 P12 08/31/2021 41.34 41.02 0.32 P14 08/31/2021 41.34 41.02 0.32 P14 08/31/2021 41.24 DRY N/A P15 08/31/2021 41.10 40.87 0.23 Wonitoring Well Observation Date Piezometer Depth Depth to Water Depth of Water Identification (ft) (ft) (ft) (ft) P6 09/30/2021 92.50 92.27 0.22 P8 09/30/2021 97.51 96.57					
Identification (ft) (ft) (ft) (ft) P6 08/31/2021 72.46 DRY N/A P7 08/31/2021 92.50 92.28 0.22 P8 08/31/2021 97.51 96.57 0.94 P9 08/31/2021 72.30 71.91 0.39 P10 08/31/2021 58.30 57.60 0.70 P11 08/31/2021 41.80 41.40 0.40 P12 08/31/2021 41.34 41.02 0.32 P14 08/31/2021 41.34 41.02 0.32 P14 08/31/2021 41.34 0.87 0.23 P15 08/31/2021 41.10 40.87 0.23 P16 09/30/2021 72.46 DRY N/A P7 09/30/2021 92.50 92.27 0.22 P8 09/30/2021 97.51 96.57 0.94 P9 09/30/2021 72.30 71.91 0.39	Monitoring Well	Observation Date	Piezometer Depth	Depth to Water	Depth of Water
P6 08/31/2021 72.46 DXY N/A P7 08/31/2021 92.50 92.28 0.22 P8 08/31/2021 97.51 96.57 0.94 P9 08/31/2021 72.30 71.91 0.39 P10 08/31/2021 58.30 57.60 0.70 P11 08/31/2021 41.80 41.40 0.40 P12 08/31/2021 41.80 41.40 0.40 P13 08/31/2021 41.34 41.02 0.32 P14 08/31/2021 41.24 DRY N/A P15 08/31/2021 41.10 40.87 0.23 Monitoring Well Observation Date Piezometer Depth Depth to Water Depth of Water Identification (ft) (ft) (ft) (ft) P7 09/30/2021 72.30 71.91 0.39 P8 09/30/2021 72.30 71.91 0.39 P9 09/30/2021 58.30 57.61 <th></th> <th></th> <th>(ft)</th> <th>(ft)</th> <th></th>			(ft)	(ft)	
P8 08/31/2021 97.51 96.57 0.94 P9 08/31/2021 72.30 71.91 0.39 P10 08/31/2021 58.30 57.60 0.70 P11 08/31/2021 41.80 41.40 0.40 P12 08/31/2021 41.71 41.67 0.04 P13 08/31/2021 41.34 41.02 0.32 P14 08/31/2021 41.24 DRY N/A P15 08/31/2021 41.10 40.87 0.23 Monitoring Well Observation Date Piezometer Depth (ft) Depth to Water Depth of Water Identification O/30/2021 72.46 DRY N/A P7 09/30/2021 92.50 92.27 0.22 P8 09/30/2021 72.30 71.91 0.39 P10 09/30/2021 72.30 71.91 0.39 P11 09/30/2021 58.30 57.61 0.69 P11 09/30/2021 41.80		08/31/2021			N/A
P9 08/31/2021 72.30 71.91 0.39 P10 08/31/2021 58.30 57.60 0.70 P11 08/31/2021 41.80 41.40 0.40 P12 08/31/2021 41.71 41.67 0.04 P13 08/31/2021 41.34 41.02 0.32 P14 08/31/2021 41.24 DRY N/A P15 08/31/2021 41.10 40.87 0.23 Monitoring Well Identification (ft) (ft) (ft) (ft) P6 09/30/2021 72.46 DRY N/A P7 09/30/2021 92.50 92.27 0.22 P8 09/30/2021 97.51 96.57 0.94 P9 09/30/2021 72.30 71.91 0.39 P10 09/30/2021 58.30 57.61 0.69 P11 09/30/2021 41.80 41.41 0.39 P12 09/30/2021 41.80 41.41 0.39 P10 09/30/2021 41.80 41.41	P 7	08/31/2021	92.50	92.28	0.22
P10 08/31/2021 58.30 57.60 0.70 P11 08/31/2021 41.80 41.40 0.40 P12 08/31/2021 41.71 41.67 0.04 P13 08/31/2021 41.34 41.02 0.32 P14 08/31/2021 41.24 DRY N/A P15 08/31/2021 41.10 40.87 0.23 Monitoring Well Identification Observation Date Piezometer Depth (ft) Depth to Water Depth of Water Identification Observation Date Piezometer Depth (ft) Depth to Water Depth of Water P6 09/30/2021 72.46 DRY N/A P7 09/30/2021 92.50 92.27 0.22 P8 09/30/2021 97.51 96.57 0.94 P9 09/30/2021 72.30 71.91 0.39 P10 09/30/2021 58.30 57.61 0.69 P11 09/30/2021 41.80 41.41 0.39 P12 09/30/2021 41.34 41.02 0.32 P14	P8	08/31/2021	97.51	96.57	0.94
P11 08/31/2021 41.80 41.40 0.40 P12 08/31/2021 41.71 41.67 0.04 P13 08/31/2021 41.34 41.02 0.32 P14 08/31/2021 41.24 DRY N/A P15 08/31/2021 41.10 40.87 0.23 Monitoring Well Observation Date Piezometer Depth (ft) Depth to Water Depth of Water (ft) Identification (ft) (ft) (ft) (ft) (ft) P6 09/30/2021 72.46 DRY N/A P7 09/30/2021 92.50 92.27 0.22 P8 09/30/2021 97.51 96.57 0.94 P9 09/30/2021 72.30 71.91 0.39 P10 09/30/2021 58.30 57.61 0.69 P11 09/30/2021 41.80 41.41 0.39 P12 09/30/2021 41.34 41.02 0.32 P14 09/30/2021 41.34 DRY N/A	P9	08/31/2021	72.30	71.91	0.39
P12 08/31/2021 41.71 41.67 0.04 P13 08/31/2021 41.34 41.02 0.32 P14 08/31/2021 41.24 DRY N/A P15 08/31/2021 41.10 40.87 0.23 Monitoring Well Observation Date Piezometer Depth (ft) Depth to Water Depth of Water Identification 09/30/2021 72.46 DRY N/A P7 09/30/2021 92.50 92.27 0.22 P8 09/30/2021 97.51 96.57 0.94 P9 09/30/2021 72.30 71.91 0.39 P10 09/30/2021 58.30 57.61 0.69 P11 09/30/2021 41.71 41.67 0.04 P13 09/30/2021 41.34 41.02 0.32 P14 09/30/2021 41.24 DRY N/A	P10	08/31/2021	58.30	57.60	0.70
P13 08/31/2021 41.34 41.02 0.32 P14 08/31/2021 41.24 DRY N/A P15 08/31/2021 41.10 40.87 0.23 Monitoring Well Identification Observation Date (ft) Piezometer Depth (ft) Depth to Water Depth of Water P6 09/30/2021 72.46 DRY N/A P7 09/30/2021 92.50 92.27 0.22 P8 09/30/2021 97.51 96.57 0.94 P9 09/30/2021 72.30 71.91 0.39 P10 09/30/2021 58.30 57.61 0.69 P11 09/30/2021 41.71 41.67 0.04 P13 09/30/2021 41.34 41.02 0.32 P14 09/30/2021 41.24 DRY N/A	P11	08/31/2021	41.80	41.40	
P14 08/31/2021 41.24 DRY N/A P15 08/31/2021 41.10 40.87 0.23 Monitoring Well Identification Observation Date (ft) Piezometer Depth (ft) Depth to Water (ft) Depth of Water (ft) P6 09/30/2021 72.46 DRY N/A P7 09/30/2021 92.50 92.27 0.22 P8 09/30/2021 97.51 96.57 0.94 P9 09/30/2021 72.30 71.91 0.39 P10 09/30/2021 58.30 57.61 0.69 P11 09/30/2021 41.71 41.67 0.04 P13 09/30/2021 41.34 41.02 0.32	P12	08/31/2021	41.71	41.67	0.04
P15 08/31/2021 41.10 40.87 0.23 Monitoring Well Identification Observation Date (ft) Piezometer Depth (ft) Depth to Water (ft) Depth of Water (ft) P6 09/30/2021 72.46 DRY N/A P7 09/30/2021 92.50 92.27 0.22 P8 09/30/2021 97.51 96.57 0.94 P9 09/30/2021 72.30 71.91 0.39 P10 09/30/2021 58.30 57.61 0.69 P11 09/30/2021 41.80 41.41 0.39 P12 09/30/2021 41.34 41.02 0.32 P13 09/30/2021 41.24 DRY N/A	P13	08/31/2021	41.34	41.02	0.32
Monitoring Well Identification Observation Date (ft) Piezometer Depth (ft) Depth to Water (ft) Depth of Water (ft) P6 09/30/2021 72.46 DRY N/A P7 09/30/2021 92.50 92.27 0.22 P8 09/30/2021 97.51 96.57 0.94 P9 09/30/2021 72.30 71.91 0.39 P10 09/30/2021 58.30 57.61 0.69 P11 09/30/2021 41.80 41.41 0.39 P12 09/30/2021 41.34 41.02 0.32 P14 09/30/2021 41.24 DRY N/A	P14	08/31/2021	41.24	DRY	N/A
Identification(ft)(ft)(ft)P609/30/202172.46DRYN/AP709/30/202192.5092.270.22P809/30/202197.5196.570.94P909/30/202172.3071.910.39P1009/30/202158.3057.610.69P1109/30/202141.8041.410.39P1209/30/202141.7141.670.04P1309/30/202141.3441.020.32P1409/30/202141.24DRYN/A	P15	08/31/2021	41.10	40.87	0.23
Identification(ft)(ft)(ft)P609/30/202172.46DRYN/AP709/30/202192.5092.270.22P809/30/202197.5196.570.94P909/30/202172.3071.910.39P1009/30/202158.3057.610.69P1109/30/202141.8041.410.39P1209/30/202141.7141.670.04P1309/30/202141.3441.020.32P1409/30/202141.24DRYN/A					
P6 09/30/2021 72.46 DRY N/A P7 09/30/2021 92.50 92.27 0.22 P8 09/30/2021 97.51 96.57 0.94 P9 09/30/2021 72.30 71.91 0.39 P10 09/30/2021 58.30 57.61 0.69 P11 09/30/2021 41.80 41.41 0.39 P12 09/30/2021 41.71 41.67 0.04 P13 09/30/2021 41.24 DRY N/A	Monitoring Well	Observation Date			
P709/30/202192.5092.270.22P809/30/202197.5196.570.94P909/30/202172.3071.910.39P1009/30/202158.3057.610.69P1109/30/202141.8041.410.39P1209/30/202141.7141.670.04P1309/30/202141.3441.020.32P1409/30/202141.24DRYN/A	Identification				
P8 09/30/2021 97.51 96.57 0.94 P9 09/30/2021 72.30 71.91 0.39 P10 09/30/2021 58.30 57.61 0.69 P11 09/30/2021 41.80 41.41 0.39 P12 09/30/2021 41.71 41.67 0.04 P13 09/30/2021 41.34 41.02 0.32 P14 09/30/2021 41.24 DRY N/A	P6	09/30/2021	72.46		
P9 09/30/2021 72.30 71.91 0.39 P10 09/30/2021 58.30 57.61 0.69 P11 09/30/2021 41.80 41.41 0.39 P12 09/30/2021 41.71 41.67 0.04 P13 09/30/2021 41.34 41.02 0.32 P14 09/30/2021 41.24 DRY N/A	P7	09/30/2021			
P1009/30/202158.3057.610.69P1109/30/202141.8041.410.39P1209/30/202141.7141.670.04P1309/30/202141.3441.020.32P1409/30/202141.24DRYN/A	P8				
P1109/30/202141.8041.410.39P1209/30/202141.7141.670.04P1309/30/202141.3441.020.32P1409/30/202141.24DRYN/A	P9	09/30/2021		71.91	
P1209/30/202141.7141.670.04P1309/30/202141.3441.020.32P1409/30/202141.24DRYN/A	P10	09/30/2021	58.30		
P1309/30/202141.3441.020.32P1409/30/202141.24DRYN/A	P11	09/30/2021	41.80		
P14 09/30/2021 41.24 DRY N/A	P12	09/30/2021	41.71		
P15 09/30/2021 41.10 40.87 0.23	P15	09/30/2021	41.10	40.87	0.23

۰.

BATTLE MOUNTAIN RESOURCES, INC.

Mr. Lucas J. West CDRMS 1313 Sherman Street, Room 215 Denver, CO 80203

OCT 112021

DIVISION OF RECLAMATION MINING AND SAFETY

.3.1

P.O. Box 310 • San Luis, Colorado 81152-0310 • (719) 379-0798 • Fax (719) 379-0713 Return Postage Guaranteed

January 15, 2022

Mr. Lucas West

Colorado Division of Reclamation, Mining and Safety

1313 Sherman Street, Room 215

Denver, CO 80203

RECEIVED

JAN 2 5 2022

DIVISION OF RECLAMATION, MINING & SAFETY-MINERALS

Re: San Luis Project Tailing Dam Q4 2021 Inspection Report, Technical Revision No. 33, Permit No. M-1988-112

Dear Mr. West:

Battle Mountain Resources Inc. (BMRI) is pleased to provide the Q4 2021 San Luis Tailing Dam Inspection Report in accordance with Technical Revision No. 33 to BMRI's Reclamation Permit.

The Inspection was conducted by BMRI Site Manager Mr. David Carino and Mr. Aaron Taylor.

Enclosed with the inspection report are photos of the Tailing Impoundment facilities to include the drop structure and the under-drain discharge area. Also included are the Q4 2021 Piezometer Inspection results.

Respectfully, Julio F. Madrid

Sr. Supervisor Colorado Legacy Sites (719) 379-0538

cc: Devon Horntvedt

David Carino

DAM: S	SAN LUI	DAM: SAN LUIS PROJECT TAILING DAM			Aaron Taylor Ct	CHECK ACTION
_				-		
AREA	NO.				OR	
INSPECTED	ITEM	CONDITION	YES	Z O	OBSERVATIONS	NVES
, . , .	-1	ANY SURFACE CRACKING?		4	N	
	2	ANY UNUSUAL LOW AREAS?		1		
CREST		ANY RUTS OR PUDDLES?		<u>` </u> `		+
1-		ANY HORIZONTAL OFFSET?		Ĭ		+
	σ, Z	NEED VEGETATION CONTROL?		4		+
1	6 A	ANY SLIDES, SLOUGHS, SCARPS?		4		-
UPSTREAM	Z A	ANY SINKHOLES OR UNUSUAL DEPRESSIONS?		4		+
SLOPE &	8	ANY EROSION ?		1		
BEACH AREA		CHANGES AT ABUTMENT CONTACTS?		1		╉
T		NEED VEGETATION CONTROL?		5		-
				1		-
T		ANY WET AREAS?		2		
1-		ANY SLIDES, SLOUGHS, SCARPS?		2		
DOWNSTREAM		CHANGES AT DAM-ABUTMENT CONTACT?		7		╉
SLOPE		ANY EROSION?	5		minny erosion about side	Ì
		ANY UNUSUAL BULGING OR SLOPE MOVEMENT?		5	arein are	
			-	4		
SEEPAGE	19 SI	IS DRAIN OUTLET CLOGGED OR OBSTRUCTED?		4		
z		ARE DRAIN FLOWS MUDDY OR TURBID?	-	7		
Т		IS EMBANKMENT WET AROUND DRAIN OUTLET?	2	3	- and -	¥-
× T	22 AV	ANY PROBLEMS WITH COLLECTION POND?)	1 Evidid amon char in	╉
SYSTEM		N FUNFBACK SYSTEM WORKING PROPERLY?	7			
2	25 AN	ANY EROSION?	+	+		
Γ		NEED VEGETATION CONTROL?		Ύ,		
R R	27 AN	ANY DEBRIS IN CHANNELS OR DROP STRUCTURE?		<u>\</u>		
		ANY CRACKS OR DETERIORATION OF CONCRETE?	-	\downarrow		
1		ANY CORROSION OF PIPE?	5	Y		
DITIONAL COMM						
	ENIS (H	CONTRACTORIMENTS (REFER TO ITEM NO. IF APPLICABLE):				

QUARTERLY INSPECTION SUMMARY CO DRMS Permit # M-1988-112 REPORT # M-1988-112 Report on North grain area (do on North grain area (do nood Condition, No issue RECOMMENDATIONS/COMMENTS RECOMMENDATIONS/COMMENTS RESENTING ELSANGIST SHE WANAGE	NAME BMRI	Diversion System Observations Observations	Vetetation/Rodent/ Other Maintenance Observations	Sepage/Erosion Miner eros.	Drain Collection and Punpback System Observations	Piszometer Levels Included	INSPECTION ITEMS	NME OF DAM: San Luis Project Tailing Dam PEPORTING PERIOD: 10/21 thru 12(21
eruiser	RE	'n good Conditi		ion on North gr	system working properly	Included in Report		
	nager Taban	on, No issues		6				70N SUMMARY # M-1988-112 #

10

Piezometer Levels Q4 2021

Monitoring Well	Observation Date	Piezometer Depth	Depth to Water	Depth of Water
Identification		(ft)	(ft)	(ft)
P6	10/27/2021	72.46	DRY	N/A
P7	10/27/2021	92.50	92.27	0.23
P8	10/27/2021	97.51	96.56	0.95
P9	10/27/2021	72.30	71.91	0.39
P10	10/27/2021	58.30	57.61	0.69
P11	10/27/2021	41.80	41.40	0.40
P12	10/27/2021	41.71	41.67	0.04
P13	10/27/2021	41.34	41.02	0.32
P14	10/27/2021	41.24	DRY	N/A
P15	10/27/2021	41.10	40.87	0.23
Monitoring Well	Observation Date	Piezometer Depth	Depth to Water	Depth of Water
Identification		(ft)	(ft)	(ft)
P6	11/30/2021	72.46	DRY	N/A
P7	11/30/2021	92.50	92.27	0.23
P8	11/30/2021	97.51	96.57	0.94
P9	11/30/2021	72.30	71.91	0.39
P10	11/30/2021	58.30	57.61	0.69
P11	11/30/2021	41.80	41,40	0.40
P12	11/30/2021	41.71	41.67	0.04
P13	11/30/2021	41.34	41.02	0.32
P14	11/30/2021	41.24	DRY	N/A
P15	11/30/2021	41.10	40.87	0.23
Monitoring Well	Observation Date	Piezometer Depth	Depth to Water	Depth of Water
Identification		(ft)	(ft)	(ft)
P6	12/30/2021	72.46	DRY	N/A
P7	12/30/2021	92.50	92.29	0.21
P8	12/30/2021	97.51	96.58	0.93
P9	12/30/2021	72.30	71.92	0.38
P10	12/30/2021	58.30	57.58	0.72
P11	12/30/2021	41.80	41.40	0.40
P12	12/30/2021	41.71	41.66	0.05
D11	10/00/0001	41 24	41.00	0.20

41.34

41.24

41.10

41.02

DRY

40.87

0.32

N/A

0.23

P13

P14

P15

12/30/2021

12/30/2021 12/30/2021

APPENDIX B

Battle Mountain Resources, Inc. San Luis Project P.O. Box 310 San Luis, Colorado 81152-0310 (719) 379-0798

RECEIVED

FEB 17 2021

DIVISION OF RECLAMATION MINING AND SAFETY

February 8, 2021

Mr. Lucas J. West State of Colorado Colorado Department of Reclamation, Mining, & Safety 1313 Sherman Street, Room 215 Denver, CO 80203

Re: Battle Mountain Resources, Inc. San Luis Project - M-88-112 January 2021 Monthly Report

Dear Mr. West:

The following summarizes monitoring and site activities at the Battle Mountain Resources Inc. (BMRI) "San Luis Project" (M-88-112) for the month of January 2021. Surface and groundwater monitoring and analysis were completed for all the required sites during the month as specified in the TR-32 Quality Assurance and Quality Control (QA/QC) Plan.

Tailing Facility / Leak Detection System

The six lysimeters which are a part of the Lined Tailing Facility (LTF) leak detection system were inspected and verified for proper vacuum and operation. As shown in Table 1, there was no pore space water found to be present in any of the six lysimeter collection pans, therefore, no sampling or laboratory analysis was required.

Lysimeter Identification	Observation Date	Depth to Water (feet)
LS1R2	01/28/2021	DRY
LS2R2	01/28/2021	DRY
LS3R	01/28/2021	DRY
LD1R2	01/28/2021	DRY
LD2R2	01/28/2021	DRY
LD3R	01/28/2021	DRY

Table 1	1 - Monthly	Lysimeter	Monitoring
---------	-------------	-----------	------------

The ten piezometers located on the tailing impoundment main embankment were inspected and measured for depth to water. The depths to water found for each piezometer are shown in Table 2. All piezometers were either dry or contained less than twelve inches of water.

Monitoring Well Identification	Observation Date	Piezometer Depth (ft)	Depth to Water (ft)	Depth of Water (ft)
P6	01/28/2021	72.46	DRY	N/A
P7	01/28/2021	92.50	92.30	0.20
P8	01/28/2021	97.51	96.65	0.86
P9	01/28/2021	72.30	71.90	0.40
P10	01/28/2021	58.30	57.62	0.68
P11	01/28/2021	41.80	41.41	0.39
P12	01/28/2021	41.71	41.66	0.05
P13	01/28/2021	41.34	40.99	0.35
P14	01/28/2021	41.24	DRY	N/A
P15	01/28/2021	41.10	40.86	0.24

Table 2 - Monthly	Piezometer	Elevations
-------------------	------------	------------

The leak detection system at the LTF Collection Pond was inspected January 28, 2021 and 880 gallons were evacuated from the leak detection system and pumped to the LTF. The LTF underdrain system was visually inspected January 28, 2021 and the flow rate was measured to be approximately 29.5 gallons per minute (gpm).

West Pit Waste Water Treatment Plant

During the month of January 2021, the West Pit Waste Water Treatment Plant (WWTP) was operated intermittently (3 to 4 days per week) under Colorado Department of Public Health and Environment (CDPHE) CDPS Permit No. CO0045675 for discharge into the Rito Seco alluvial aquifer. During the month, 6,028,700 gallons (18.5 acre-feet) of treated water was discharged to the Rito Seco and 349,600 gallons (1.07 acre-feet) of water was transferred from the West Pit to the Lined Tailing Facility (LTF). Additionally, no water was reinfiltrated into the West Pit and there was no sludge transferred from the WWTP drying pad to the LTF.

BMRI performed the monthly visual seepage expression inspections on January 28, 2021 in the historic seepage area identified in Figure 2 of the permit. No seepage expressions were observed in the historic seepage area.

BMRI measured the monthly West Pit backfill, alluvial and monitoring wells as required under in the QA/QC Plan. Measurements obtained for the monthly wells are shown in Table 3.

Monitoring Well Identification	Observation Date	Depth to Water (ft)
BF-4	01/28/2021	24.97
BF-5R	01/28/2021	30.83
BF-6	01/28/2021	30,98
M-6	01/28/2021	DRY
M-7	01/28/2021	DRY
M-8	01/28/2021	DRY
M-9	01/28/2021	141.63
M-10	01/28/2021	24.25
M-11R	01/28/2021	38.14
M-12	01/28/2021	174.90
M-13R	01/28/2021	126.10
M-14	01/28/2021	131.17
M-16	01/28/2021	24.19
M-17	01/28/2021	30.33

Table 3 – Monthly and Quarterly Groundwater Depth to Wate	Table 3-1	Monthly and	Quarterly	Groundwater	Depth to Water
---	-----------	-------------	-----------	-------------	----------------

Monitoring Well Identification	Observation Date	Depth to Water (ft)
M-18	01/28/2021	27.02
M-19	01/28/2021	24.72
M-21	01/28/2021	18.59
M-22	01/28/2021	16.90
M-23	01/28/2021	42.31
M-24	01/28/2021	24.80
M-26	01/28/2021	14.13
M-31	01/28/2021	37.51
M-32	01/28/2021	42.30
M-33	01/28/2021	48.48
M-34	01/28/2021	22.02

Table 3 Continued - Monthly and Quarterly Groundwater Depth to Water

Should you have any questions or comments, please do not hesitate to call me at (719) 379-0538.

Sincerely,

Julio Madrid Authorized Agent Battle Mountain Resources, Inc.

Cc: BMRI File

Devon Horntvedt, Newmont USA Limited Lawrence Fiske, Newmont USA Limited Alan Fosdick, Engineering Analytics, Inc.

Engineering Analytics, Inc.

1600 Specht Point Rd. = Ste. 209 = Fort Collins, CO = 80525

TO:

Mr. Lucas J. West CDRMS 1313 Sherman, Room 215 Denver, CO 80203

հեկներիովիստիկիրությելիկելին

RECEIVED

MAR 162021

DIVISION OF RECLAMATION MINING AND SAFETY

Battle Mountain Resources, Inc. San Luis Project P.O. Box 310 San Luis, Colorado 81152-0310 (719) 379-0798

March 8, 2021

Mr. Lucas J. West State of Colorado Colorado Department of Reclamation, Mining, & Safety 1313 Sherman Street, Room 215 Denver, CO 80203

Re: Battle Mountain Resources, Inc. San Luis Project - M-88-112 February 2021 Monthly Report

Dear Mr. West:

The following summarizes monitoring and site activities at the Battle Mountain Resources Inc. (BMRI) "San Luis Project" (M-88-112) for the month of February 2021. Surface and groundwater monitoring and analysis were completed for all the required sites during the month as specified in the TR-32 Quality Assurance and Quality Control (QA/QC) Plan.

Tailing Facility / Leak Detection System

The six lysimeters which are a part of the Lined Tailing Facility (LTF) leak detection system were inspected and verified for proper vacuum and operation. As shown in Table 1, there was no pore space water found to be present in any of the six lysimeter collection pans, therefore, no sampling or laboratory analysis was required.

Lysimeter Identification	Observation Date	Depth to Water (feet)
LS1R2	02/25/2021	DRY
LS2R2	02/25/2021	DRY
LS3R	02/25/2021	DRY
LD1R2	02/25/2021	DRY
LD2R2	02/25/2021	DRY
LD3R	02/25/2021	DRY

Table 1 - Monthly Lysimeter Monitoring

The ten piezometers located on the tailing impoundment main embankment were inspected and measured for depth to water. The depths to water found for each piezometer are shown in Table 2. All piezometers were either dry or contained less than twelve inches of water.

Monitoring Well Identification	Observation Date	Piezometer Depth (ft)	Depth to Water (ft)	Depth of Water (ft)
P6	02/25/2021	72.46	DRY	N/A
P7	02/25/2021	92.50	92.29	0.21
P8	02/25/2021	97.51	96.62	0.89
P9	02/25/2021	72.30	71.90	0.40
P10	02/25/2021	58.30	57.63	0.67
P11	02/25/2021	41,80	41.40	0.40
P12	02/25/2021	41.71	41.67	0.04
P13	02/25/2021	41.34	41.00	0.34
P14	02/25/2021	41.24	DRY	N/A
P15	02/25/2021	41.10	40.86	0.24

Table 2 - Monthly Piezometer Elevations

The leak detection system at the LTF Collection Pond was inspected February 25, 2021 and 940 gallons were evacuated from the leak detection system and pumped to the LTF. The LTF underdrain system was visually inspected February 25, 2021 and the flow rate was measured to be approximately 29.5 gallons per minute (gpm).

West Pit Waste Water Treatment Plant

During the month of February 2021, the West Pit Waste Water Treatment Plant (WWTP) was operated intermittently (3 to 4 days per week) under Colorado Department of Public Health and Environment (CDPHE) CDPS Permit No. CO0045675 for discharge into the Rito Seco alluvial aquifer. During the month, 5,916,300 gallons (18.2 acre-feet) of treated water was discharged to the Rito Seco and 554,000 gallons (1.70 acre-feet) of water was transferred from the West Pit to the Lined Tailing Facility (LTF). Additionally, no water was reinfiltrated into the West Pit and there was no sludge transferred from the WWTP drying pad to the LTF.

BMRI performed the monthly visual seepage expression inspections on February 25, 2021 in the historic seepage area identified in Figure 2 of the permit. No seepage expressions were observed in the historic seepage area.

BMRI measured the monthly West Pit backfill, alluvial and monitoring wells as required under in the QA/QC Plan. Measurements obtained for the monthly wells are shown in Table 3.

Monitoring Well Identification	Observation Date	Depth to Water (ft)
BF-4	02/25/2021	28.95
BF-5R	02/25/2021	30.82
BF-6	02/25/2021	30.97
M-6	02/25/2021	DRY
M-7	02/25/2021	DRY
M-8	02/25/2021	DRY
M-9	02/25/2021	141.50
M-10	02/25/2021	24.32
M-11R	02/25/2021	38.21
M-12	02/25/2021	174.63
M-13R	02/25/2021	125.95
M-14	02/25/2021	130.88
M-16	02/25/2021	24.14
M-17	02/25/2021	30.39

Table 3 - Monthly and Quarterly Groundwater Depth to Water

Monitoring Well Identification	Observation Date	Depth to Water (ft)
M-18	02/25/2021	26.98
M-19	02/25/2021	24.66
M-21	02/25/2021	18.46
M-22	02/25/2021	16.93
M-23	02/25/2021	42.43
M-24	02/25/2021	24.91
M-26	02/25/2021	14.25
M-31	02/25/2021	37.59
M-32	02/25/2021	42.90
M-33	02/25/2021	48.23
M-34	02/25/2021	21.91

Table 3 Continued - Monthly and Quarterly Groundwater Depth to Water

Should you have any questions or comments, please do not hesitate to call me at (719) 379-0538.

Sincerely,

Julio Madrid Authorized Agent Battle Mountain Resources, Inc.

Cc: BMRI File

Devon Horntvedt, Newmont USA Limited Lawrence Fiske, Newmont USA Limited Alan Fosdick, Engineering Analytics, Inc.

RECEIVED MAR 1.6 2021 DIVISION OF RECLAMATION MINING AND SAFETY

A Engineering Analytics, Inc.

1600 Specht Point Rd. = Ste. 209 = Fort Collins, CO = 80525

TO:

Mr. Lucas J. West CDRMS 1313 Sherman, Room 215 Denver, CO 80203 Battle Mountain Resources, Inc. San Luis Project P.O. Box 310 San Luis, Colorado 81152-0310 (719) 379-0798

April 8, 2021

-1

RECEIVED

APR 132021

DIVISION OF RECLAMATION MINING AND SAFETY

Mr. Lucas J. West State of Colorado Colorado Department of Reclamation, Mining, & Safety 1313 Sherman Street, Room 215 Denver, CO 80203

Re: Battle Mountain Resources, Inc. San Luis Project - M-88-112 March 2021 Monthly Report

Dear Mr. West:

The following summarizes monitoring and site activities at the Battle Mountain Resources Inc. (BMRI) "San Luis Project" (M-88-112) for the month of March 2021. Surface and groundwater monitoring and analysis were completed for all the required sites during the month as specified in the TR-32 Quality Assurance and Quality Control (QA/QC) Plan.

Tailing Facility / Leak Detection System

The six lysimeters which are a part of the Lined Tailing Facility (LTF) leak detection system were inspected and verified for proper vacuum and operation. As shown in Table 1, there was no pore space water found to be present in any of the six lysimeter collection pans, therefore, no sampling or laboratory analysis was required.

Lysimeter Identification	Observation Date	Depth to Water (feet)
LS1R2	03/31/2021	DRY
LS2R2	03/31/2021	DRY
LS3R	03/31/2021	DRY
LD1R2	03/31/2021	DRY
LD2R2	03/31/2021	DRY
LD3R	03/31/2021	DRY

The ten piezometers located on the tailing impoundment main embankment were inspected and measured for depth to water. The depths to water found for each piezometer are shown in Table 2. All piezometers were either dry or contained less than twelve inches of water.

Monitoring Well Identification	Observation Date	Piezometer Depth (ft)	Depth to Water (ft)	Depth of Water (ft)
P6	03/31/2021	72.46	DRY	N/A
P7	03/31/2021	92.50	92.28	0.22
P8	03/31/2021	97.51	96.61	0.90
P9	03/31/2021	72.30	71.91	0.39
P10	03/31/2021	58.30	57.61	0.69
P11	03/31/2021	41.80	41.40	0.40
P12	03/31/2021	41.71	41.67	0.04
P13	03/31/2021	41.34	41.02	0.32
P14	03/31/2021	41.24	DRY	N/A
P15	03/31/2021	41.10	40.86	0.24

Table 2 – Monthly Piezometer Elevations

The leak detection system at the LTF Collection Pond was inspected March 31, 2021 and 940 gallons were evacuated from the leak detection system and pumped to the LTF. The LTF underdrain system was visually inspected March 31, 2021 and the flow rate was measured to be approximately 30.5 gallons per minute (gpm).

West Pit Waste Water Treatment Plant

During the month of March 2021, the West Pit Waste Water Treatment Plant (WWTP) was operated intermittently (3 to 4 days per week) under Colorado Department of Public Health and Environment (CDPHE) CDPS Permit No. CO0045675 for discharge into the Rito Seco alluvial aquifer. During the month, 7,313,100 gallons (22.4 acre-feet) of treated water was discharged to the Rito Seco and 116,800 gallons (0.36 acre-feet) of water was transferred from the West Pit to the Lined Tailing Facility (LTF). Additionally, no water was reinfiltrated into the West Pit and there was no sludge transferred from the WWTP drying pad to the LTF.

BMRI performed the monthly visual seepage expression inspections on March 31, 2021 in the historic seepage area identified in Figure 2 of the permit. No seepage expressions were observed in the historic seepage area.

BMRI measured the monthly West Pit backfill, alluvial and monitoring wells as required under in the QA/QC Plan. Measurements obtained for the monthly wells are shown in Table 3.

Monitoring Well Identification	Observation Date	Depth to Water (ft)
BF-4	03/31/2021	24.85
BF-5R	03/31/2021	30.78
BF-6	03/31/2021	30.88
M-6	03/31/2021	DRY
M-7	03/31/2021	DRY
M-8	03/31/2021	DRY
M-9	03/31/2021	141.31
M-10	03/31/2021	24.18
M-11R	03/31/2021	38.06
M-12	03/31/2021	174.31
M-13R	03/31/2021	125.38
M-14	03/31/2021	130.65
M-16	03/31/2021	23.85
M-17	03/31/2021	29.91

Table 3 -- Monthly and Quarterly Groundwater Depth to Water
Monitoring Well Identification	Observation Date	Depth to Water (ft)
M-18	03/31/2021	26.64
M-19	03/31/2021	23.72
M-21	03/31/2021	17.93
M-22	03/31/2021	16.70
M-23	03/31/2021	42.41
M-24	03/31/2021	24.89
M-26	03/31/2021	14.03
M-31	03/31/2021	37.43
M-32	03/31/2021	41.82
M-33	03/31/2021	46.95
M-34	03/31/2021	21.79

Table 3 Continued – Monthly and Quarterly Groundwater Depth to Water

Should you have any questions or comments, please do not hesitate to call me at (719) 379-0538.

Sincerely,

.

.

ulis 7

Julio Madrid Authorized Agent Battle Mountain Resources, Inc.

Cc: BMRI File

Devon Horntvedt, Newmont USA Limited Lawrence Fiske, Newmont USA Limited Alan Fosdick, Engineering Analytics, Inc.

*

USA

UŞ/

882401123132

OREVER

OREVER

NINING WIN SVIELLS

GERRADE

A.

A Engineering Analytics, Inc.

1600 Specht Point Rd. Ste. 209 Fort Collins, CO 80525

TO:

Mr. Lucas J. West CDRMS 1313 Sherman, Room 215 Denver, CO 80203

RECEIVED MAY 1 3 2021 DIVISION OF RECLAMATION MINING AND SAFET

May 8, 2021

Mr. Lucas J. West State of Colorado Colorado Department of Reclamation, Mining, & Safety 1313 Sherman Street, Room 215 Denver, CO 80203

Re: Battle Mountain Resources, Inc. San Luis Project - M-88-112 April 2021 Monthly Report

Dear Mr. West:

The following summarizes monitoring and site activities at the Battle Mountain Resources Inc. (BMRI) "San Luis Project" (M-88-112) for the month of April 2021. Surface and groundwater monitoring and analysis were completed for all the required sites during the month as specified in the TR-32 Quality Assurance and Quality Control (QA/QC) Plan.

Tailing Facility / Leak Detection System

The six lysimeters which are a part of the Lined Tailing Facility (LTF) leak detection system were inspected and verified for proper vacuum and operation. As shown in Table 1, there was no pore space water found to be present in any of the six lysimeter collection pans, therefore, no sampling or laboratory analysis was required.

Lysimeter Identification	Observation Date	Depth to Water (feet)
LS1R2	04/29/2021	DRY
LS2R2	04/29/2021	DRY
LS3R	04/29/2021	DRY
LD1R2	04/29/2021	DRY
LD2R2	04/29/2021	DRY
LD3R	04/29/2021	DRY

Table 1 - Monthly Lysimeter Monitoring

Monitoring Well Identification	Observation Date	Piezometer Depth (ft)	Depth to Water (ft)	Depth of Water (ft)
P6	.04/29/2021	72.46	DRY	N/A
P7	04/29/2021	92.50	92.28	0.22
P8	04/29/2021	97.51	96.63	0.88
P9	04/29/2021	72.30	71.91	0.39
P10	04/29/2021	58.30	57.62	0.68
P11	04/29/2021	41.80	41.40	0.40
P12	04/29/2021	41.71	41.66	0.05
P13	04/29/2021	41.34	41.02	0.32
P14	04/29/2021	41.24	DRY	N/A
P15	04/29/2021	41.10	40.85	0.25

Table 2 - Monthly Piezometer Elevations

The leak detection system at the LTF Collection Pond was inspected April 29, 2021 and 850 gallons were evacuated from the leak detection system and pumped to the LTF. The LTF underdrain system was visually inspected April 29, 2021 and the flow rate was measured to be approximately 31.0 gallons per minute (gpm).

West Pit Waste Water Treatment Plant

During the month of April 2021, the West Pit Waste Water Treatment Plant (WWTP) was operated intermittently (3 to 4 days per week) under Colorado Department of Public Health and Environment (CDPHE) CDPS Permit No. CO0045675 for discharge into the Rito Seco alluvial aquifer. During the month, 6,746,300 gallons (20.7 acre-feet) of treated water was discharged to the Rito Seco and 371,900 gallons (1.14 acre-feet) of water was transferred from the West Pit to the Lined Tailing Facility (LTF). Additionally, no water was reinfiltrated into the West Pit and there was no sludge transferred from the WWTP drying pad to the LTF.

BMRI performed the monthly visual seepage expression inspections on April, 29, 2021 in the historic seepage area identified in Figure 2 of the permit. No seepage expressions were observed in the historic seepage area.

Monitoring Well Identification	Observation Date	Depth to Water (ft)
BF-4	04/29/2021	24.94
BF-5R	04/29/2021	30.84
BF-6	04/29/2021	30.98
M-6	04/29/2021	DRY
M-7	04/29/2021	DRY
M-8	04/29/2021	DRY
M-9	04/29/2021	141.33
M-10	04/29/2021	24.00
M-11R	04/29/2021	37.86
M-12	04/29/2021	174.44
M-13R	04/29/2021	125.32
M-14	04/29/2021	130.75
M-16	04/29/2021	23.43
M-17	04/29/2021	28.65

Table 3 - Monthly and Quarterly Groundwater Depth to Water

Monitoring Well Identification	Observation Date	Depth to Water (ft)
M-18	04/29/2021	26.50
M-19	04/29/2021	23.49
M-21	04/29/2021	17.65
M-22	04/29/2021	16.32
M-23	04/29/2021	42.17
M-24	04/29/2021	24.65
M-26	04/29/2021	13.79
M-31	04/29/2021	37.24
M-32	04/29/2021	43.11
M-33	04/29/2021	46.23
M-34	04/29/2021	21.46

Table 3 Continued - Monthly and Quarterly Groundwater Depth to Water

Should you have any questions or comments, please do not hesitate to call me at (719) 379-0538.

Sincerely,

Julio Madrid Authorized Agent Battle Mountain Resources, Inc.

Cc: BMRI File

Devon Horntvedt, Newmont USA Limited Lawrence Fiske, Newmont USA Limited Alan Fosdick, Engineering Analytics, Inc.

U.S. POSTAGE \$1.20 FCMF 0023 Orig: 80525 Dest: 80203 05/10/21 2000052374

A Engineering Analytics, Inc.

1600 Specht Point Rd. = Ste. 209 = Fort Collins, CO = 80525

TO:

19

RECEIVED

MAY 1 3 2021

DIVISION OF REGLAMATION MINING AND SAFETY

> Mr. Lucas J. West CDRMS 1313 Sherman, Room 215 Denver, CO 80203

RECEIVED

JUN 142021

DIVISION OF RECLAMATION MINING & SAFETY

June 7, 2021

Mr. Lucas J. West State of Colorado Colorado Department of Reclamation, Mining, & Safety 1313 Sherman Street, Room 215 Denver, CO 80203

Re: Battle Mountain Resources, Inc. San Luis Project - M-88-112 May 2021 Monthly Report

Dear Mr. West:

The following summarizes monitoring and site activities at the Battle Mountain Resources Inc. (BMRI) "San Luis Project" (M-88-112) for the month of May 2021. Surface and groundwater monitoring and analysis were completed for all the required sites during the month as specified in the TR-32 Quality Assurance and Quality Control (QA/QC) Plan.

Tailing Facility / Leak Detection System

The six lysimeters which are a part of the Lined Tailing Facility (LTF) leak detection system were inspected and verified for proper vacuum and operation. As shown in Table 1, there was no pore space water found to be present in any of the six lysimeter collection pans, therefore, no sampling or laboratory analysis was required.

Lysimeter Identification	Observation Date	Depth to Water (feet)
LS1R2	05/27/2021	DRY
LS2R2	05/27/2021	DRY
LS3R	05/27/2021	DRY
LD1R2	05/27/2021	DRY
LD2R2	05/27/2021	DRY
LD3R	05/27/2021	DRY

Table 1 - Monthly Lysimeter Monitoring

Monitoring Well Identification	Observation Date	Piezometer Depth (ft)	Depth to Water (ft)	Depth of Water (ft)
P6	05/27/2021	72.46	DRY	N/A
P7	05/27/2021	92.50	92.28	0.22
P8	05/27/2021	97.51	96.60	0.91
P9	05/27/2021	72.30	71.91	0.39
P10	05/27/2021	58.30	57.61	0.69
P11	05/27/2021	41.80	41.40	0.40
P12	05/27/2021	41.71	41.66	0.05
P13	05/27/2021	41.34	41.02	0.32
P14	05/27/2021	41.24	DRY	N/A
P15	05/27/2021	41.10	40.86	0.24

Table 2 – Monthly Piezometer Elevations

The leak detection system at the LTF Collection Pond was inspected May 27, 2021 and 860 gallons were evacuated from the leak detection system and pumped to the LTF. The LTF underdrain system was visually inspected May 27, 2021 and the flow rate was measured to be approximately 31.0 gallons per minute (gpm).

West Pit Waste Water Treatment Plant

During the month of May 2021, the West Pit Waste Water Treatment Plant (WWTP) was operated intermittently (3 to 4 days per week) under Colorado Department of Public Health and Environment (CDPHE) CDPS Permit No. CO0045675 for discharge into the Rito Seco alluvial aquifer. During the month, 7,352,100 gallons (22.6 acre-feet) of treated water was discharged to the Rito Seco and 449,500 gallons (1.38 acre-feet) of water was transferred from the West Pit to the Lined Tailing Facility (LTF). Additionally, no water was reinfiltrated into the West Pit and there was no sludge transferred from the WWTP drying pad to the LTF.

BMRI performed the monthly visual seepage expression inspections on May 27, 2021 in the historic seepage area identified in Figure 2 of the permit. No seepage expressions were observed in the historic seepage area.

Monitoring Well Identification	Observation Date	Depth to Water (ft)
BF-4	05/27/2021	25.01
BF-5R	05/27/2021	30.90
BF-6	05/27/2021	31.04
M-6	05/27/2021	DRY
M-7	05/27/2021	DRY
M-8	05/27/2021	DRY
M-9	05/27/2021	141.52
M-10	05/27/2021	23.93
M-11R	05/27/2021	37.59
M-12	05/27/2021	174.64
M-13R	05/27/2021	125.85
M-14	05/27/2021	130.69
M-16	05/27/2021	22.40
M-17	05/27/2021	28.32

Table 3 - Monthly and Quarterly Groundwater Depth to Water

Monitoring Well Identification	Observation Date	Depth to Water (ft)
M-18	05/27/2021	25.42
M-19	05/27/2021	23.09
M-21	05/27/2021	17.09
M-22	05/27/2021	15.95
M-23	05/27/2021	41.92
M-24	05/27/2021	24.43
M-26	05/27/2021	13.49
M-31	05/27/2021	36.96
M-32	05/27/2021	42.76
M-33	05/27/2021	45.88
M-34	05/27/2021	21.10

Table 3 Continued - Monthly and Quarterly Groundwater Depth to Water

Should you have any questions or comments, please do not hesitate to call me at (719) 379-0538.

Sincerely,

D

Julio Madrid Authorized Agent Battle Mountain Resources, Inc.

Cc: BMRI File Devon Horntvedt, Newmont USA Limited Lawrence Fiske, Newmont USA Limited Alan Fosdick, Engineering Analytics, Inc.

Engineering Analytics, Inc.

1600 Specht Point Rd. - Ste. 209 - Fort Collins, CO - 80525

TO:

Mr. Lucas J. West CDRMS 1313 Sherman, Room 215 Denver, CO 80203

RECEIVED

JUN 1 4 2021

DIVISION OF RECLAMATION MINING & SAFETY

July 7, 2021

Mr. Lucas J. West State of Colorado Colorado Department of Reclamation, Mining, & Safety 1313 Sherman Street, Room 215 Denver, CO 80203

RECEIVED

JUL 142021 DIVISION OF RECLAMATION MINING & SAFETY

Re: Battle Mountain Resources, Inc. San Luis Project - M-88-112 June 2021 Monthly Report

Dear Mr. West:

The following summarizes monitoring and site activities at the Battle Mountain Resources Inc. (BMRI) "San Luis Project" (M-88-112) for the month of June 2021. Surface and groundwater monitoring and analysis were completed for all the required sites during the month as specified in the TR-32 Quality Assurance and Quality Control (QA/QC) Plan.

Tailing Facility / Leak Detection System

The six lysimeters which are a part of the Lined Tailing Facility (LTF) leak detection system were inspected and verified for proper vacuum and operation. As shown in Table 1, there was no pore space water found to be present in any of the six lysimeter collection pans, therefore, no sampling or laboratory analysis was required.

Lysimeter Identification	Observation Date	Depth to Water (feet)
LS1R2	06/30/2021	DRY
LS2R2	06/30/2021	DRY
LS3R	06/30/2021	DRY
LD1R2	06/30/2021	DRY
LD2R2	06/30/2021	DRY
LD3R	06/30/2021	DRY

Table 1 - Monthly Lysimeter Monitoring

Monitoring Well Identification	Observation Date	Piezometer Depth (ft)	Depth to Water (ft)	Depth of Water (ft)
P6	06/30/2021	72.46	DRY	N/A
P7	06/30/2021	92.50	92.27	0.23
P8	06/30/2021	97.51	96.59	0.92
P9	06/30/2021	72.30	71.91	0.39
P10	06/30/2021	58.30	57.61	0.69
P11	06/30/2021	41.80	41.40	0.40
P12	06/30/2021	41.71	41.67	0.04
P13	06/30/2021	41.34	41.03	0.31
P14	06/30/2021	41.24	DRY	N/A
P15	06/30/2021	41.10	40.86	0.24

Table 2 - Month	ly Piezometer	Elevations
-----------------	---------------	------------

The leak detection system at the LTF Collection Pond was inspected June 30, 2021 and 880 gallons were evacuated from the leak detection system and pumped to the LTF. The LTF underdrain system was visually inspected June 30, 2021 and the flow rate was measured to be approximately 32.0 gallons per minute (gpm).

West Pit Waste Water Treatment Plant

During the month of June 2021, the West Pit Waste Water Treatment Plant (WWTP) was operated intermittently (3 to 4 days per week) under Colorado Department of Public Health and Environment (CDPHE) CDPS Permit No. CO0045675 for discharge into the Rito Seco alluvial aquifer. During the month, 9,163,800 gallons (28.1 acre-feet) of treated water was discharged to the Rito Seco and 453,300 gallons (1.39 acre-feet) of water was transferred from the West Pit to the Lined Tailing Facility (LTF). Additionally, no water was reinfiltrated into the West Pit and there was no sludge transferred from the WWTP drying pad to the LTF.

BMRI performed the monthly visual seepage expression inspections on June 30, 2021 in the historic seepage area identified in Figure 2 of the permit. No seepage expressions were observed in the historic seepage area.

Monitoring Well Identification	Observation Date	Depth to Water (ft)
BF-4	06/30/2021	24.93
BF-5R	06/30/2021	30.83
BF-6	06/30/2021	30.95
M-6	06/30/2021	DRY
M-7	06/30/2021	DRY
M-8	06/30/2021	DRY
M-9	06/30/2021	141.49
M-10	06/30/2021	24.24
M-11R	06/30/2021	37.60
M-12	06/30/2021	174.63
M-13R	06/30/2021	125.82
M-14	06/30/2021	130.67
M-16	06/30/2021	21.54
M-17	06/30/2021	29.21

Table 3 - Monthly and Quarterly Groundwater Depth to Water

Monitoring Well Identification	Observation Date	Depth to Water (ft)
M-18	06/30/2021	26.65
M-19	06/30/2021	24.08
M-21	06/30/2021	17.75
M-22	06/30/2021	16.30
M-23	06/30/2021	41.82
M-24	06/30/2021	24.46
M-26	06/30/2021	13.93
M-31	06/30/2021	36.98
M-32	06/30/2021	43.92
M-33	06/30/2021	45.96
M-34	06/30/2021	20.95

Table 3 Continued - Monthly and Quarterly Groundwater Depth to Water

Should you have any questions or comments, please do not hesitate to call me at (719) 379-0538.

Sincerely,

12

Julio Madrid Authorized Agent Battle Mountain Resources, Inc.

Cc: BMRI File

Devon Horntvedt, Newmont USA Limited Lawrence Fiske, Newmont USA Limited Alan Fosdick, Engineering Analytics, Inc.

Engineering Analytics, Inc.

1600 Specht Point Rd. - Ste. 209 - Fort Collins, CO - 80525

TO:

Mr. Lucas J. West CDRMS 1313 Sherman, Room 215 Denver, CO 80203

RECEIVED

JUL 1 4 2021

DIVISION OF RECLAMATION MINING & SAFETY

n marina da la calactería de la calacter

١

Battle Mountain Resources, Inc. San Luis Project P.O. Box 310 San Luis, Colorado 81152-0310 (719) 379-0798

AUG 132021

DIVISION OF RECLAMATION

August 7, 2021

Mr. Lucas J. West State of Colorado Colorado Department of Reclamation, Mining, & Safety 1313 Sherman Street, Room 215 Denver, CO 80203

Re: Battle Mountain Resources, Inc. San Luis Project - M-88-112 July 2021 Monthly Report

Dear Mr. West:

The following summarizes monitoring and site activities at the Battle Mountain Resources Inc. (BMRI) "San Luis Project" (M-88-112) for the month of July 2021. Surface and groundwater monitoring and analysis were completed for all the required sites during the month as specified in the TR-32 Quality Assurance and Quality Control (QA/QC) Plan.

Tailing Facility / Leak Detection System

The six lysimeters which are a part of the Lined Tailing Facility (LTF) leak detection system were inspected and verified for proper vacuum and operation. As shown in Table 1, there was no pore space water found to be present in any of the six lysimeter collection pans, therefore, no sampling or laboratory analysis was required.

Lysimeter Identification	Observation Date	Depth to Water (feet)
LS1R2	07/29/2021	DRY
LS2R2	07/29/2021	DRY
LS3R	07/29/2021	DRY
LD1R2	07/29/2021	DRY
LD2R2	07/29/2021	DRY
LD3R	07/29/2021	DRY

Table 1 - Monthly Lysimeter Monitoring

Monitoring Well Identification	Observation Date	Piezometer Depth (ft)	Depth to Water (ft)	Depth of Water (ft)
P6	07/29/2021	72.46	DRY	N/A
P7	07/29/2021	92.50	92.27	0.23
P8	07/29/2021	97.51	96.58	0.93
Р9	07/29/2021	72.30	71.91	0.39
P10	07/29/2021	58.30	57.61	0.69
P11	07/29/2021	41.80	41.40	0.40
P12	07/29/2021	41.71	41.67	0.04
P13	07/29/2021	41.34	41.03	0.31
P14	07/29/2021	41.24	DRY	N/A
P15	07/29/2021	41.10	40.87	0.23

Table 2 – Monthly Piezometer Elevations

.

The leak detection system at the LTF Collection Pond was inspected July 29, 2021 and 870 gallons were evacuated from the leak detection system and pumped to the LTF. The LTF underdrain system was visually inspected July 29, 2021 and the flow rate was measured to be approximately 32.0 gallons per minute (gpm).

West Pit Waste Water Treatment Plant

During the month of July 2021, the West Pit Waste Water Treatment Plant (WWTP) was operated intermittently (3 to 4 days per week) under Colorado Department of Public Health and Environment (CDPHE) CDPS Permit No. CO0045675 for discharge into the Rito Seco alluvial aquifer. During the month, 7,604,900 gallons (23.3 acre-feet) of treated water was discharged to the Rito Seco and 430,300 gallons (1.32 acre-feet) of water was transferred from the West Pit to the Lined Tailing Facility (LTF). Additionally, no water was reinfiltrated into the West Pit and there was no sludge transferred from the WWTP drying pad to the LTF.

BMRI performed the monthly visual seepage expression inspections on July 29, 2021 in the historic seepage area identified in Figure 2 of the permit. No seepage expressions were observed in the historic seepage area.

Monitoring Well Identification	Observation Date	Depth to Water (ft)
BF-4	07/29/2021	24.89
BF-5R	07/29/2021	30.83
BF-6	07/29/2021	30.95
M-6	07/29/2021	DRY
M-7	07/29/2021	DRY
M-8	07/29/2021	DRY
M-9	07/29/2021	141.49
M-10	07/29/2021	24.44
M-11R	07/29/2021	37.92
M-12	07/29/2021	174.63
M-13R	07/29/2021	125.81
M-14	07/29/2021	130.63
M-16	07/29/2021	22.38
M-17	07/29/2021	29.90

Table 3 – Monthly and Quarterly Groundwater Depth to Water

Monitoring Well Identification	Observation Date	Depth to Water (ft)
M-18	07/29/2021	26.86
M-19	07/29/2021	24.49
M-21	07/29/2021	18.22
M-22	07/29/2021	16.73
M-23	07/29/2021	42.13
M-24	07/29/2021	24.75
M-26	07/29/2021	14.02
M-31	07/29/2021	37.26
M-32	07/29/2021	45.12
M-33	07/29/2021	53.93
M-34	07/29/2021	21.06

Table 3 Continued – Monthly and Quarterly Groundwater Depth to Water

Should you have any questions or comments, please do not hesitate to call me at (719) 379-0538.

Sincerely,

.

٠

ulis t

Julio Madrid Authorized Agent Battle Mountain Resources, Inc.

Cc: BMRI File Devon Horntvedt, Newmont USA Limited Lawrence Fiske, Newmont USA Limited Alan Fosdick, Engineering Analytics, Inc.

► Engineering Analytics, Inc.

1600 Specht Point Rd. Ste. 209 Fort Collins, CO 80525

TO:

Mr. Lucas J. West CDRMS 1313 Sherman, Room 215 Denver, CO 80203

RECEIVED SEP 14 2021 DIVISION MININ

September 8, 2021

Mr. Lucas J. West State of Colorado Colorado Department of Reclamation, Mining, & Safety 1313 Sherman Street, Room 215 Denver, CO 80203

Re: Battle Mountain Resources, Inc. San Luis Project - M-88-112 August 2021 Monthly Report

Dear Mr. West:

The following summarizes monitoring and site activities at the Battle Mountain Resources Inc. (BMRI) "San Luis Project" (M-88-112) for the month of August 2021. Surface and groundwater monitoring and analysis were completed for all the required sites during the month as specified in the TR-32 Quality Assurance and Quality Control (QA/QC) Plan.

Tailing Facility / Leak Detection System

The six lysimeters which are a part of the Lined Tailing Facility (LTF) leak detection system were inspected and verified for proper vacuum and operation. As shown in Table 1, there was no pore space water found to be present in any of the six lysimeter collection pans, therefore, no sampling or laboratory analysis was required.

Lysimeter Identification	Observation Date	Depth to Water (feet)
LS1R2	08/31/2021	DRY
LS2R2	08/31/2021	DRY
LS3R	08/31/2021	DRY
LD1R2	08/31/2021	DRY
LD2R2	08/31/2021	DRY
LD3R	08/31/2021	DRY

Table 1 – Monthly Lys	imeter Monitoring
-----------------------	-------------------

Monitoring Well Identification	Observation Date	Piezometer Depth (ft)	Depth to Water (ft)	Depth of Water (ft)
P6	08/31/2021	72.46	DRY	N/A
P7	08/31/2021	92.50	92.28	0.22
P8	08/31/2021	97.51	96.57	0.94
P9	08/31/2021	72.30	71.91	0.39
P10	08/31/2021	58.30	57.60	0.70
P11	08/31/2021	41.80	41.40	0.40
P12	08/31/2021	41.71	41.67	0.04
P13	08/31/2021	41.34	41.02	0.32
P14	08/31/2021	41.24	DRY	N/A
P15	08/31/2021	41.10	40.87	0.23

Table 2 – Monthly Piezometer Elevations

The leak detection system at the LTF Collection Pond was inspected August 31, 2021 and 870 gallons were evacuated from the leak detection system and pumped to the LTF. The LTF underdrain system was visually inspected August 31, 2021 and the flow rate was measured to be approximately 31.0 gallons per minute (gpm).

West Pit Waste Water Treatment Plant

During the month of August 2021, the West Pit Waste Water Treatment Plant (WWTP) was operated intermittently (3 to 4 days per week) under Colorado Department of Public Health and Environment (CDPHE) CDPS Permit No. CO0045675 for discharge into the Rito Seco alluvial aquifer. During the month, 7,932,900 gallons (24.3 acre-feet) of treated water was discharged to the Rito Seco and 582,900 gallons (1.79 acre-feet) of water was transferred from the West Pit to the Lined Tailing Facility (LTF). Additionally, no water was reinfiltrated into the West Pit and there was 405 cubic yards of sludge transferred from the WWTP drying pad to the LTF.

BMRI performed the monthly visual seepage expression inspections on August 31, 2021 in the historic seepage area identified in Figure 2 of the permit. No seepage expressions were observed in the historic seepage area.

Monitoring Well Identification	Observation Date	Depth to Water (ft)
BF-4	08/31/2021	24.92
BF-5R	08/31/2021	30.84
BF-6	08/31/2021	30.97
M-6	08/31/2021	DRY
M-7	08/31/2021	DRY
M-8	08/31/2021	DRY
M-9	08/31/2021	141.36
M-10	08/31/2021	24.60
M-11R	08/31/2021	38.08
M-12	08/31/2021	174.51
M-13R	08/31/2021	125.70
M-14	08/31/2021	130.53
M-16	08/31/2021	23.21
M-17	08/31/2021	30.22

Table 3 - Monthly and Quarterly Groundwater Depth to Water

Monitoring Well Identification	Observation Date	Depth to Water (ft)
M-18	08/31/2021	26.75
M-19	08/31/2021	24.38
M-21	08/31/2021	18.31
M-22	08/31/2021	16.97
M-23	08/31/2021	42.45
M-24	08/31/2021	24.99
M-26	08/31/2021	14.15
M-31	08/31/2021	37.44
M-32	08/31/2021	44.89
M-33	08/31/2021	49.99
M-34	08/31/2021	20.99

Table 3 Continued - Monthly and Quarterly Groundwater Depth to Water

Should you have any questions or comments, please do not hesitate to call me at (719) 379-0538.

Sincerely,

lia

Julio Madrid Authorized Agent Battle Mountain Resources, Inc.

Cc: BMRI File Devon Horntvedt, Newmont USA Limited Lawrence Fiske, Newmont USA Limited Alan Fosdick, Engineering Analytics, Inc.

CPU

U.S. POSTA(\$1.36 FCMF OC

Engineering Analytics, Inc.

all A

1600 Specht Point Rd. - Ste. 209 - Fort Collins, CO - 80525

Per-

TO: Mr. Lucas J. West CDRMS 1313 Sherman, Room 215 Denver, CO 80203

> RECEIVED SEP 14 2021 DIVISION AMATION · hundres our UNFETY

October 8, 2021

RECEIVED

OCT 192021

Mr. Lucas J. West State of Colorado Colorado Department of Reclamation, Mining, & Safety 1313 Sherman Street, Room 215 Denver, CO 80203

DIVISION OF RECLAMATION MINING & SAFETY

Re: Battle Mountain Resources, Inc. San Luis Project - M-88-112 September 2021 Monthly Report

Dear Mr. West:

The following summarizes monitoring and site activities at the Battle Mountain Resources Inc. (BMRI) "San Luis Project" (M-88-112) for the month of September 2021. Surface and groundwater monitoring and analysis were completed for all the required sites during the month as specified in the TR-32 Quality Assurance and Quality Control (QA/QC) Plan.

Tailing Facility / Leak Detection System

The six lysimeters which are a part of the Lined Tailing Facility (LTF) leak detection system were inspected and verified for proper vacuum and operation. As shown in Table 1, there was no pore space water found to be present in any of the six lysimeter collection pans, therefore, no sampling or laboratory analysis was required.

Lysimeter Identification	Observation Date	Depth to Water (feet)
LS1R2	09/30/2021	DRY
LS2R2	09/30/2021	DRY
LS3R	09/30/2021	DRY
LD1R2	09/30/2021	DRY
LD2R2	09/30/2021	DRY
LD3R	09/30/2021	DRY

Table 1 - Monthly Lysimeter Monitoring

Monitoring Well Identification	Observation Date	Piezometer Depth (ft)	Depth to Water (ft)	Depth of Water (ft)
P6	09/30/2021	72.46	DRY	N/A
P7	09/30/2021	92.50	92.27	0.23
P8	09/30/2021	97.51	96.57	0.94
P9	09/30/2021	72.30	71.91	0.39
P10	09/30/2021	58.30	57.61	0.69
P11	09/30/2021	41.80	41.41	0.39
P12	09/30/2021	41.71	41.67	0.04
P13	09/30/2021	41.34	41.02	0.32
P14	09/30/2021	41.24	DRY	N/A
P15	09/30/2021	41.10	40.87	0.23

Table 2 – Monthly Piezometer Elevations

The leak detection system at the LTF Collection Pond was inspected September 30, 2021 and 840 gallons were evacuated from the leak detection system and pumped to the LTF. The LTF underdrain system was visually inspected September 30, 2021 and the flow rate was measured to be approximately 31.0 gallons per minute (gpm).

West Pit Waste Water Treatment Plant

During the month of September 2021, the West Pit Waste Water Treatment Plant (WWTP) was operated intermittently (3 to 4 days per week) under Colorado Department of Public Health and Environment (CDPHE) CDPS Permit No. CO0045675 for discharge into the Rito Seco alluvial aquifer. During the month, 6,664,700 gallons (20.5 acre-feet) of treated water was discharged to the Rito Seco and 364,200 gallons (1.12 acre-feet) of water was transferred from the West Pit to the Lined Tailing Facility (LTF). Additionally, no water was reinfiltrated into the West Pit in September.

BMRI performed the monthly visual seepage expression inspections on September 30, 2021 in the historic seepage area identified in Figure 2 of the permit. No seepage expressions were observed in the historic seepage area.

Monitoring Well Identification	Observation Date	Depth to Water (ft)
BF-4	09/30/2021	24.91
BF-5R	09/30/2021	30.81
BF-6	09/30/2021	30.94
M-6	09/30/2021	DRY
M- 7	09/30/2021	DRY
M-8	09/30/2021	DRY
M-9	09/30/2021	141.33
M-10	09/30/2021	24.50
M-11R	09/30/2021	38.14
M-12	09/30/2021	174.53
M-13R	09/30/2021	125.72
M-14	09/30/2021	130.58
M-16	09/30/2021	23.51
M-17	09/30/2021	30.14

Table 3 – Monthly and Quarterly Groundwater Depth to Water

Monitoring Well Identification	Observation Date	Depth to Water (ft)
M-18	09/30/2021	26.18
M-19	09/30/2021	23.97
M-21	09/30/2021	18.13
M-22	09/30/2021	16.94
M-23	09/30/2021	42.64
M-24	09/30/2021	25.13
M-26	09/30/2021	14.11
M-31	09/30/2021	37.50
M-32	09/30/2021	45.11
M-33	09/30/2021	48.72
M-34	09/30/2021	20.63

Table 3 Continued - Monthly and Quarterly Groundwater Depth to Water

Should you have any questions or comments, please do not hesitate to call me at (719) 379-0538.

Sincerely, ulis H

Julio Madrid Authorized Agent Battle Mountain Resources, Inc.

Cc: BMRI File Devon Horntvedt, Newmont USA Limited Lawrence Fiske, Newmont USA Limited Alan Fosdick, Engineering Analytics, Inc.

▲ Engineering Analytics, Inc.

1600 Specht Point Rd. Ste. 209 Fort Collins, CO 80525

TO:

Mr. Lucas J. West CDRMS 1313 Sherman, Room 215 Denver, CO 80203

RECEIVED

OCT. 1 9 2021 DIVISION OF REGLAMATION MINING & SAFETY

RECEIVED

NOV 152021

DIVISION OF RECLAMATION MINING & SAFETY

November 9, 2021

Mr. Lucas J. West State of Colorado Colorado Department of Reclamation, Mining, & Safety 1313 Sherman Street, Room 215 Denver, CO 80203

Re: Battle Mountain Resources, Inc. San Luis Project - M-88-112 October 2021 Monthly Report

Dear Mr. West:

The following summarizes monitoring and site activities at the Battle Mountain Resources Inc. (BMRI) "San Luis Project" (M-88-112) for the month of October 2021. Surface and groundwater monitoring and analysis were completed for all the required sites during the month as specified in the TR-32 Quality Assurance and Quality Control (QA/QC) Plan.

Tailing Facility / Leak Detection System

The six lysimeters which are a part of the Lined Tailing Facility (LTF) leak detection system were inspected and verified for proper vacuum and operation. As shown in Table 1, there was no pore space water found to be present in any of the six lysimeter collection pans, therefore, no sampling or laboratory analysis was required.

Lysimeter Identification	Observation Date	Depth to Water (feet)
LS1R2	10/27/2021	DRY
LS2R2	10/27/2021	DRY
LS3R	10/27/2021	DRY
LD1R2	10/27/2021	DRY
LD2R2	10/27/2021	DRY
LD3R	10/27/2021	DRY

Table 1 - Monthly Lysimeter Monitoring

Monitoring Well Identification	Observation Date	Piezometer Depth (ft)	Depth to Water (ft)	Depth of Water (ft)
P6	10/27/2021	72.46	DRY	N/A
P7	10/27/2021	92.50	92.27	0.23
P8	10/27/2021	97.51	96.56	0.95
P9	10/27/2021	72.30	71.91	0.39
P10	10/27/2021	58.30	57.61	0.69
P11	10/27/2021	41.80	41.40	0.40
P12	10/27/2021	41.71	41.67	0.04
P13	10/27/2021	41.34	41.02	0.32
P14	10/27/2021	41.24	DRY	N/A
P15	10/27/2021	41.10	40.87	0.23

Table 2 – Monthly Piezometer Elevations

The leak detection system at the LTF Collection Pond was inspected October 27, 2021 and 860 gallons were evacuated from the leak detection system and pumped to the LTF. The LTF underdrain system was visually inspected October 27, 2021 and the flow rate was measured to be approximately 31.9 gallons per minute (gpm).

West Pit Waste Water Treatment Plant

During the month of October 2021, the West Pit Waste Water Treatment Plant (WWTP) was operated intermittently (3 to 4 days per week) under Colorado Department of Public Health and Environment (CDPHE) CDPS Permit No. CO0045675 for discharge into the Rito Seco alluvial aquifer. During the month, 7,179,200 gallons (22.0 acre-feet) of treated water was discharged to the Rito Seco and 453,200 gallons (1.39 acre-feet) of water was transferred from the West Pit to the Lined Tailing Facility (LTF). Additionally, no water was reinfiltrated into the West Pit in October.

BMRI performed the monthly visual seepage expression inspections on October 27, 2021 in the historic seepage area identified in Figure 2 of the permit. No seepage expressions were observed in the historic seepage area.

Monitoring Well Identification	Observation Date	Depth to Water (ft)
BF-4	10/29/2021	24.85
BF-5R	10/29/2021	30.78
BF-6	10/29/2021	30.93
M-6	10/29/2021	DRY
M-7	10/29/2021	DRY
M-8	10/29/2021	DRY
M-9	10/29/2021	141.47
M-10	10/29/2021	24.29
M-11R	10/29/2021	38.02
M-12	10/29/2021	174.64
M-13R	10/29/2021	125.83
M-14	10/29/2021	130.66
M-16	10/29/2021	23.33
M-17	10/29/2021	29.81

Table 3 - Monthly and Quarterly Groundwater Depth to Water

Monitoring Well Identification	Observation Date	Depth to Water (ft)
M-18	10/29/2021	25.98
M-19	10/29/2021	23.81
M-21	10/29/2021	18.01
M-22	10/29/2021	16.57
M-23	10/29/2021	42.55
M-24	10/29/2021	25.02
M-26	10/29/2021	13.72
M-31	10/29/2021	37.39
M-32	10/29/2021	44.57
M-33	10/29/2021	48.11
M-34	10/29/2021	20.20

Table 3 Continued - Monthly and Quarterly Groundwater Depth to Water

Should you have any questions or comments, please do not hesitate to call me at (719) 379-0538.

Sincerely,

ulis F

Julio Madrid Authorized Agent Battle Mountain Resources, Inc.

Cc: BMRI File

Devon Horntvedt, Newmont USA Limited Lawrence Fiske, Newmont USA Limited Alan Fosdick, Engineering Analytics, Inc.

December 9, 2021

DEC 1 4 2021

Colorado Division of Reclamation, Mining and Safety

Mr. Lucas J. West State of Colorado Colorado Department of Reclamation, Mining, & Safety 1313 Sherman Street, Room 215 Denver, CO 80203

Re: Battle Mountain Resources, Inc. San Luis Project - M-88-112 November 2021 Monthly Report

Dear Mr. West:

The following summarizes monitoring and site activities at the Battle Mountain Resources Inc. (BMRI) "San Luis Project" (M-88-112) for the month of November 2021. Surface and groundwater monitoring and analysis were completed for all the required sites during the month as specified in the TR-32 Quality Assurance and Quality Control (QA/QC) Plan.

Tailing Facility / Leak Detection System

The six lysimeters which are a part of the Lined Tailing Facility (LTF) leak detection system were inspected and verified for proper vacuum and operation. As shown in Table 1, there was no pore space water found to be present in any of the six lysimeter collection pans, therefore, no sampling or laboratory analysis was required.

Lysimeter Identification	Observation Date	Depth to Water (feet)
LS1R2	11/30/2021	DRY
LS2R2	11/30/2021	DRY
LS3R	11/30/2021	DRY
LD1R2	11/30/2021	DRY
LD2R2	11/30/2021	DRY
LD3R	11/30/2021	DRY

Table 1 - Monthly Lysimeter Monitoring

Monitoring Well Identification	Observation Date	Piezometer Depth (ft)	Depth to Water (ft)	Depth of Water (ft)
P6	11/30/2021	72.46	DRY	N/A
P7	11/30/2021	92.50	92.27	0.23
P8	11/30/2021	97.51	96.57	0.94
Р9	11/30/2021	72.30	71.91	0.39
P10	11/30/2021	58.30	57.61	0.69
P11	11/30/2021	41.80	41.40	0.40
P12	11/30/2021	41.71	41.67	0.04
P13	11/30/2021	41.34	41.02	0.32
P14	11/30/2021	41.24	DRY	N/A
P15	11/30/2021	41.10	40.87	0.23

Table 2 – Monthly Piezometer Elevations

The leak detection system at the LTF Collection Pond was inspected November 30, 2021 and 870 gallons were evacuated from the leak detection system and pumped to the LTF. The LTF underdrain system was visually inspected November 30, 2021 and the flow rate was measured to be approximately 25.6 gallons per minute (gpm).

West Pit Waste Water Treatment Plant

During the month of November 2021, the West Pit Waste Water Treatment Plant (WWTP) was operated intermittently (3 to 4 days per week) under Colorado Department of Public Health and Environment (CDPHE) CDPS Permit No. CO0045675 for discharge into the Rito Seco alluvial aquifer. During the month, 7,407,500 gallons (22.7 acre-feet) of treated water was discharged to the Rito Seco and no water was transferred from the West Pit to the Lined Tailing Facility (LTF). Additionally, no water was reinfiltrated into the West Pit in November.

BMRI performed the monthly visual seepage expression inspections on November 30, 2021 in the historic seepage area identified in Figure 2 of the permit. No seepage expressions were observed in the historic seepage area.

Monitoring Well Identification	Observation Date	Depth to Water (ft)
BF-4	11/30/2021	24.93
BF-5R	11/30/2021	30.82
BF-6	11/30/2021	30.95
M-6	11/30/2021	DRY
M-7	11/30/2021	DRY
M-8	11/30/2021	DRY
M-9	11/30/2021	141.37
M-10	11/30/2021	24.28
M-11R	11/30/2021	38.15
M-12	11/30/2021	174.47
M-13R	11/30/2021	125.67
M-14	11/30/2021	130.51
M-16	11/30/2021	23.20
M-17	11/30/2021	29.52

Table 3 - Monthly and Quarterly Groundwater Depth to Water

Monitoring Well Identification	Observation Date	Depth to Water (ft)
M-18	11/30/2021	26.25
M-19	11/30/2021	24.06
M-21	11/30/2021	18.31
M-22	11/30/2021	16.73
M-23	11/30/2021	42.60
M-24	11/30/2021	25.10
M-26	11/30/2021	14.04
M-31	11/30/2021	37.51
M-32	11/30/2021	46.90
M-33	11/30/2021	46.80
M-34	11/30/2021	19.85

Table 3 Continued – Monthly and Quarterly Groundwater Depth to Water

Should you have any questions or comments, please do not hesitate to call me at (719) 379-0538.

Sincerely,

list

Julio Madrid Authorized Agent Battle Mountain Resources, Inc.

Cc: BMRI File

Devon Horntvedt, Newmont USA Limited Lawrence Fiske, Newmont USA Limited Alan Fosdick, Engineering Analytics, Inc.

January 9, 2022

Mr. Lucas J. West State of Colorado Colorado Department of Reclamation, Mining, & Safety 1313 Sherman Street, Room 215 Denver, CO 80203

RECEIVED JAN 13 2022 DIVISION OF RECLAMATION. MINING & SAFETY-MINERAL

Re: Battle Mountain Resources, Inc. San Luis Project - M-88-112 December 2021 Monthly Report

Dear Mr. West:

The following summarizes monitoring and site activities at the Battle Mountain Resources Inc. (BMRI) "San Luis Project" (M-88-112) for the month of December 2021. Surface and groundwater monitoring and analysis were completed for all the required sites during the month as specified in the TR-32 Quality Assurance and Quality Control (QA/QC) Plan.

Tailing Facility / Leak Detection System

The six lysimeters which are a part of the Lined Tailing Facility (LTF) leak detection system were inspected and verified for proper vacuum and operation. As shown in Table 1, there was no pore space water found to be present in any of the six lysimeter collection pans, therefore, no sampling or laboratory analysis was required.

Lysimeter Identification	Observation Date	Depth to Water (feet)
LS1R2	12/30/2021	DRY
LS2R2	12/30/2021	DRY
LS3R	12/30/2021	DRY
LD1R2	12/30/2021	DRY
LD2R2	12/30/2021	DRY
LD3R	12/30/2021	DRY

Monitoring Well Identification	Observation Date	Piezometer Depth (ft)	Depth to Water (ft)	Depth of Water (ft)
P 6	12/30/2021	72.46	DRY	N/A
P 7	12/30/2021	92.50	92.29	0.21
P8	12/30/2021	97.51	96.58	0.93
P9	12/30/2021	72.30	71.92	0.38
P10	12/30/2021	58.30	57.58	0.72
P11	12/30/2021	41.80	41.40	0.40
P12	12/30/2021	41.71	41.66	0.05
P13	12/30/2021	41.34	41.02	0.32
P14	12/30/2021	41.24	DRY	N/A
P15	12/30/2021	41.10	40.87	0.23

Table 2 – Monthly Piezometer Elevations

The leak detection system at the LTF Collection Pond was inspected December 30, 2021 and 900 gallons were evacuated from the leak detection system and pumped to the LTF. The LTF underdrain system was visually inspected December 30, 2021 and the flow rate was measured to be approximately 32.0 gallons per minute (gpm).

West Pit Waste Water Treatment Plant

During the month of December 2021, the West Pit Waste Water Treatment Plant (WWTP) was operated intermittently (3 to 4 days per week) under Colorado Department of Public Health and Environment (CDPHE) CDPS Permit No. CO0045675 for discharge into the Rito Seco alluvial aquifer. During the month, 7,238,100 gallons (22.2 acre-feet) of treated water was discharged to the Rito Seco and 753,800 gallons (2.31 acre-feet) of water was transferred from the West Pit to the Lined Tailing Facility (LTF). Additionally, no water was reinfiltrated into the West Pit in December.

BMRI performed the monthly visual seepage expression inspections on December 30, 2021 in the historic seepage area identified in Figure 2 of the permit. No seepage expressions were observed in the historic seepage area.

Monitoring Well Identification	Observation Date	Depth to Water (ft)
BF-4	12/30/2021	24.80
BF-5R	12/30/2021	30.73
BF-6	12/30/2021	30.86
M-6	12/30/2021	DRY
M- 7	12/30/2021	DRY
M-8	12/30/2021	DRY
M-9	12/30/2021	141.22
M-10	12/30/2021	24.37
M-11R	12/30/2021	38.59
M-12	12/30/2021	174.55
M-13R	12/30/2021	125.67
M-14	12/30/2021	130.77
M-16	12/30/2021	23.51
M-1 7	12/30/2021	30.09

Table 3 - Monthly and Quarterly Groundwater Depth to Water

Monitoring Well Identification	Observation Date	Depth to Water (ft)
M-18	12/30/2021	26.36
M-19	12/30/2021	24.38
M-21	12/30/2021	18.68
M-22	12/30/2021	17.07
M-23	12/30/2021	42.87
M-24	12/30/2021	25.33
M-26	12/30/2021	14.29
M-31	12/30/2021	37.88
M-32	12/30/2021	45.25
M-33	12/30/2021	56.90
M-34	12/30/2021	19.81

Table 3 Continued – Monthly and Quarterly Groundwater Depth to Water

Should you have any questions or comments, please do not hesitate to call me at (719) 379-0538.

Sincerely,

liat

Julio Madrid Authorized Agent Battle Mountain Resources, Inc.

Cc: BMRI File Devon Horntvedt, Newmont USA Limited Lawrence Fiske, Newmont USA Limited Alan Fosdick, Engineering Analytics, Inc.

				C	OL			L	D	
	:	Sample Date:	2021-01-28	2021-04-29	2021-07-29	2021-10-27	2021-01-28	2021-04-29	2021-07-29	2021-10-27
Analyte	Analysis Method	Units	2021-01-28	2021-04-29	2021-07-29	2021-10-27	2021-01-28	2021-04-29	2021-07-29	2021-10-27
Arsenic, total	M200.8 ICP-MS	mg/L								
Calcium, total	M200.7 ICP	mg/L	545	484	510	527	532	492	492	512
Copper, total	M200.7 ICP	mg/L								
Copper, total	M200.8 ICP-MS	mg/L	LT 0.002	LT 0.002	LT 0.002	LT 0.002	0.0495	0.0549	0.0613	0.0583
Cyanide, WAD	SM4500-CN I,E-Colori	mg/L	0.164	LT 0.01	0.0122	0.0568	LT 0.01	LT 0.01	LT 0.01	LT 0.01
Iron, total	M200.7 ICP	mg/L	31.5	29.3	31.6	31.3	LT 0.15	LT 0.15	LT 0.15	LT 0.15
Sodium, total	M200.7 ICP	mg/L	998	864	936	994	1020	932	944	948
Zinc, total	M200.7 ICP	mg/L	LT 0.05							
Definitions:										
LT = Less Than Rep	orting Limit									
Notes:	es:									
None.	one.									

								TA	ILS	
		Sample Date:	2021-01-28	2021-02-25	2021-03-31	2021-04-29	2021-05-27	2021-06-30	2021-07-29	2021-08-31
Analyte	Analysis Method	Units	2021 01 20	2021 02 25	2021 05 51	2021 04 25	2021 05 27	2021 00 50	2021 07 25	2021 00 51
Arsenic, total	M200.8 ICP-MS	mg/L	LT 0.001	0.00140	LT 0.001	LT 0.001	LT 0.001	0.00175	0.00145	LT 0.001
Calcium, total	M200.7 ICP	mg/L	572			506			521	
Copper, total	M200.7 ICP	mg/L	LT 0.05			0.111			0.082	
Copper, total	M200.8 ICP-MS	mg/L								
Cyanide, WAD	SM4500-CN I,E-Colori	mg/L								
Iron, total	M200.7 ICP	mg/L	6.25			0.754			1.92	
Sodium, total	M200.7 ICP	mg/L	1090			766			1590	
Zinc, total	M200.7 ICP	mg/L	LT 0.05			LT 0.05			LT 0.05	
Definitions:										
LT = Less Than Repo	orting Limit									
Notes:										
None.	None.									

				TAI	LS	
		Sample Date:	2021-09-30	2021-10-27	2021-11-30	2021-12-29
Analyte	Analysis Method	Units	2021-09-30	2021-10-27	2021-11-30	2021-12-29
Arsenic, total	M200.8 ICP-MS	mg/L	LT 0.001	0.00104	LT 0.001	0.00138
Calcium, total	M200.7 ICP	mg/L		488		
Copper, total	M200.7 ICP	mg/L		0.134		
Copper, total	M200.8 ICP-MS	mg/L				
Cyanide, WAD	SM4500-CN I,E-Colori	mg/L				
Iron, total	M200.7 ICP	mg/L		2.72		
Sodium, total	M200.7 ICP	mg/L		1100		
Zinc, total	M200.7 ICP	mg/L		LT 0.05		
Definitions:						
LT = Less Than Rep	porting Limit					
Notes:						
None.						

			M·	-12			M-	13R	
	Sample Date:	2021-02-02	2021-04-13	2021-07-26	2021-10-13	2021-02-02	2021-04-13	2021-07-26	2021-10-13
Analysis Method	Units								
red M200.7 ICP	mg/L	LT 0.25	LT 0.25	LT 0.25	LT 0.25				
M200.8 ICP-MS	mg/L	LT 0.001	LT 0.001	LT 0.001	LT 0.001				
M200.7 ICP	mg/L	0.155	0.152	0.157	0.156	0.127	0.127	0.130	0.131
CO3 SM2320B - Titration	mg/L	137	149	157	139	333	341	325	326
ed M200.8 ICP-MS	mg/L	0.000291	0.000296	0.000301	0.000278	LT 0.00025	LT 0.00025	LT 0.00025	LT 0.00025
M200.7 ICP	mg/L	50.5	52.9	52.3	54.5	90.4	93.4	91.7	97.9
D3 SM2320B - Titration	mg/L	LT 20	LT 20	LT 20	LT 20				
M300.0 - Ion Chromat	mg/L	21.2	21.3	19.9	20.0	3.81	3.77	3.63	3.73
ved M200.8 ICP-MS	mg/L	LT 0.002	LT 0.002	LT 0.002	LT 0.002				
M200.8 ICP-MS	mg/L	LT 0.002	LT 0.002	LT 0.002	0.0331				
SM4500-CN I,E-Colori	mg/L	LT 0.01	LT 0.01	LT 0.01	LT 0.01				
M300.0 - Ion Chromat	mg/L	0.312	0.322	LT 0.25	0.279	0.398	0.393	0.322	0.322
M900.0	pCi/L	5.9	9.4	7.5	8.7	35	30	33	39
M900.0	pCi/L	6	2.8	5.3	2.3	19	14	14	19
3 (total) SM2340B - Calculatio	mg/L	161	169	166	172	287	298	290	307
D3 SM2320B - Titration	mg/L	LT 20	LT 20	LT 20	LT 20				
M200.7 ICP	mg/L	LT 0.15	LT 0.15	LT 0.15	LT 0.15				
M200.8 ICP-MS	mg/L	0.00097	0.00105	0.00104	0.00093	0.00079	0.00075	0.00074	0.00185
M200.7 ICP	mg/L	8.51	8.99	8.52	8.78	14.8	15.7	14.7	15.3
lved M200.7 ICP	mg/L	LT 0.05	LT 0.05	LT 0.05	LT 0.05				
d M245.1 CVAA	mg/L	LT 0.001	LT 0.001	LT 0.001	LT 0.001				
M200.8 ICP-MS	mg/L	LT 0.001	LT 0.001	LT 0.001	LT 0.001				
M200.7 ICP	mg/L	2.05	2.03	1.95	2.11	1.53	1.44	1.40	1.54
e (TDS) SM2540C	mg/L	230	224	238	236 H	380	378	392	392 H
ed M200.8 ICP-MS	mg/L	0.00148	0.00144	0.00146	0.00160	0.00627	0.00585	0.00647	0.00633
M200.7 ICP	mg/L	18.7	18.9	19.7	22.5	23.9	24.9	24.7	26.4
M200.8 ICP-MS	mg/L	LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005				
M200.7 ICP	mg/L	13.4	13.5	14.0	14.4	31.6	32.1	32.9	34.3
M300.0 - Ion Chromat	mg/L	10.5	11.4	10.7	7.92	15.5	16.8	15.7	20.6
SM2320B - Titration	mg/L	137	149	159	142	333	341	326	326
M200.8 ICP-MS	mg/L	0.366	0.449	0.403	0.359	0.534	0.566	0.524	0.554
Reporting Limit									
Reporting Limit						Image: state	Image: state in the state	Image: state in the state	Image: state in the state

								M	-14		
	9	Sample Date:	2021-01-18	2021-02-16	2021-03-22	2021-05-10	2021-06-22	2021-07-24	2021-08-24	2021-09-15	2021-04-26
Analyte	Analysis Method	Units	2021 01 10	2021 02 10	2021 05 22	2021 05 10	2021 00 22	2021 07 24	2021 00 24	2021 05 15	2021 04 20
Aluminum, dissolved	M200.7 ICP	mg/L	LT 0.25								
Arsenic, dissolved	M200.8 ICP-MS	mg/L	LT 0.001								
Barium, dissolved	M200.7 ICP	mg/L	LT 0.035	0.374	0.372	0.391	0.397	0.388	0.382	0.394	0.389
Bicarbonate as CaCO3	SM2320B - Titration	mg/L	614	556	605	633	608	636	633	637	599
Cadmium, dissolved	M200.8 ICP-MS	mg/L	LT 0.00025								
Calcium, total	M200.7 ICP	mg/L	203	188	199	199	193	196	198	196	196
Carbonate as CaCO3	SM2320B - Titration	mg/L	LT 20								
Chloride	M300.0 - Ion Chromat	mg/L	8.92	9.05	9.01	LT 10	9.50	8.55	8.81	8.83	9.02
Chromium, dissolved	M200.8 ICP-MS	mg/L	LT 0.002								
Copper, dissolved	M200.8 ICP-MS	mg/L	LT 0.002								
Cyanide, WAD	SM4500-CN I,E-Colori	mg/L	LT 0.01	0.0127 H	LT 0.01						
Fluoride	M300.0 - Ion Chromat	mg/L	0.418	0.473	0.427	LT 1.25	0.455	0.428	0.479	0.481	0.491
Gross Alpha	M900.0	pCi/L	93	93	44	70	96	61	100	83	130
Gross Beta	M900.0	pCi/L	39	34	20	33	57	53	96	43	60
Hardness as CaCO3 (total)	SM2340B - Calculatio	mg/L	641	591	626	625	605	615	619	612	619
Hydroxide as CaCO3	SM2320B - Titration	mg/L	LT 20								
Iron, dissolved	M200.7 ICP	mg/L	LT 0.15								
Lead, dissolved	M200.8 ICP-MS	mg/L	LT 0.0005								
Magnesium, total	M200.7 ICP	mg/L	32.6	29.6	31.3	31.1	29.9	30.5	30.3	29.7	31.5
Manganese, dissolved	M200.7 ICP	mg/L	0.502	LT 0.05							
Mercury, dissolved	M245.1 CVAA	mg/L	LT 0.001								
Nickel, dissolved	M200.8 ICP-MS	mg/L	0.00165	0.00152	0.00123	0.00117	0.00145	0.00366	0.00289	0.00315	0.00158
Potassium, total	M200.7 ICP	mg/L	2.07	1.98	2.06	2.10	1.98	2.04	2.04	1.97	2.08
Residue, Filterable (TDS)	SM2540C	mg/L	724	708	700	714	712	712	700	712	696
Selenium, dissolved	M200.8 ICP-MS	mg/L	0.00278	0.00273	0.00303	0.00248	0.00239	0.00250	0.00282	0.00254	0.00311
Silica, total	M200.7 ICP	mg/L	29.5	29.9	29.4	26.5	25.4	27.8	31.2	26.5	28.7
Silver, dissolved	M200.8 ICP-MS	mg/L	LT 0.0005								
Sodium, total	M200.7 ICP	mg/L	34.5	29.6	31.9	31.8	30.4	31.8	32.0	31.4	31.5
Sulfate	M300.0 - Ion Chromat	mg/L	30.5	30.7	27.4	28.5	30.6 H	25.3	27.3	26.4	27.8
Total Alkalinity	SM2320B - Titration	mg/L	614	556	605	633	608	636	633	637	599
Zinc, dissolved	M200.8 ICP-MS	mg/L	LT 0.015								
Definitions: LT = Less Than Reporting Notes: None.	ş Limit										

			M-14			Μ	-9	
		2021-10-14	2021-11-08	2021-12-08	2021-02-02	2021-04-13	2021-07-26	2021-10-13
M200.7 ICP		LT 0.25	LT 0.25	LT 0.25	LT 0.25	LT 0.25	LT 0.25	LT 0.25
M200.8 ICP-MS	-	LT 0.001	LT 0.001	LT 0.001	0.00110			0.00121
								0.122
		617	649	577	279	314	285	286
		LT 0.00025	LT 0.00025	LT 0.00025	LT 0.00025	0.000252	0.000265	0.000257
M200.7 ICP	-	197	200	197	85.0	89.3	86.5	90.2
SM2320B - Titration	-	LT 20	LT 20	LT 20	LT 20	LT 20	LT 20	LT 20
	_							3.60
	-							LT 0.002
	-			0.00299	0.00408	0.00468	0.00437	0.00441
	-			LT 0.01	LT 0.01	LT 0.01	LT 0.01	LT 0.01
	-		LT 1.25	0.498				LT 0.25
	-		122.7	180				8.9
M900.0	•						8.4	4.4
		615	625	617		280	270	280
	-	LT 20	LT 20	LT 20		LT 20	LT 20	LT 20
M200.7 ICP	-							LT 0.15
M200.8 ICP-MS		LT 0.0005			0.00065	0.00072	0.00055	0.00063
M200.7 ICP		30.0	30.6	30.3	13.0	13.9	13.0	13.2
M200.7 ICP	-	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05
M245.1 CVAA	-	LT 0.001	LT 0.001	LT 0.001		LT 0.001	LT 0.001	LT 0.001
M200.8 ICP-MS	<u> </u>	0.00257	0.00281	0.00359	LT 0.001	LT 0.001	LT 0.001	LT 0.001
M200.7 ICP	-	2.14	2.22	2.02	1.81	1.77	1.74	1.81
SM2540C	-	724	720	692	352	354	360	358 H
M200.8 ICP-MS		0.00274	0.00239	0.00250	0.00389	0.00346	0.00380	0.00393
M200.7 ICP		27.3	25.8	30.9	23.9	26.4	26.5	26.4
M200.8 ICP-MS	-	LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005
M200.7 ICP		31.8	31.8	31.7	25.1	25.9	26.3	26.7
M300.0 - Ion Chromat	-	28.8	23.7	28.8	17.5	18.5	17.9	25.6
SM2320B - Titration	-	617	649	577	279	314	285	286
M200.8 ICP-MS	mg/L	LT 0.015	LT 0.015	0.0152	0.336	0.369	0.368	0.342
Limit								
	Analysis Method M200.7 ICP M200.8 ICP-MS M200.7 ICP SM2320B - Titration M200.8 ICP-MS M200.7 ICP SM2320B - Titration M200.7 ICP SM2320B - Titration M300.0 - Ion Chromat M200.8 ICP-MS M200.8 ICP-MS M200.8 ICP-MS SM4500-CN I,E-Colori M300.0 - Ion Chromat M900.0 SM2340B - Calculatio SM2320B - Titration M200.7 ICP M200.8 ICP-MS M200.7 ICP M200.7 ICP M200.7 ICP M200.7 ICP M200.7 ICP M200.8 ICP-MS M200.7 ICP M200.8 ICP-MS M200.7 ICP SM2540C M200.7 ICP M200.8 ICP-MS M200.7 ICP M200.8 ICP-MS M200.7 ICP M200.7 ICP M200.7 ICP M200.8 ICP-MS M200.7 ICP M200.7 ICP	M200.7 ICP mg/L M200.8 ICP-MS mg/L M200.7 ICP mg/L SM2320B - Titration mg/L M200.8 ICP-MS mg/L M200.8 ICP-MS mg/L M200.7 ICP mg/L SM2320B - Titration mg/L M200.7 ICP mg/L SM2320B - Titration mg/L M300.0 - Ion Chromat mg/L M200.8 ICP-MS mg/L M200.8 ICP-MS mg/L M300.0 - Ion Chromat mg/L M900.0 pCi/L SM2320B - Titration mg/L M200.7 ICP mg/L M200.7 ICP mg/L M200.7 ICP mg/L M200.8 ICP-MS mg/L M200.7 ICP mg/L M200.8 ICP-MS mg/L M200.8 ICP-MS mg/L M200.8 ICP-MS mg/L M200.8 ICP-MS mg/L	Analysis Method Units 2021-10-14 M200.7 ICP mg/L LT 0.25 M200.8 ICP-MS mg/L 0.391 SM2320B - Titration mg/L 617 M200.7 ICP mg/L 10.00025 SM2320B - Titration mg/L 197 SM2320B - Titration mg/L LT 0.00025 M200.7 ICP mg/L 197 SM2320B - Titration mg/L LT 0.00025 M200.7 ICP mg/L LT 0.00225 M200.8 ICP-MS mg/L LT 0.002 M200.8 ICP-MS mg/L LT 0.002 SM4500-CN I,E-Colori mg/L LT 0.01 M300.0 - Ion Chromat mg/L 0.435 M900.0 pCi/L 87 M900.0 pCi/L 72 SM2340B - Calculatio mg/L LT 0.01 M300.7 ICP mg/L LT 0.15 M200.8 ICP-MS mg/L LT 0.05 M200.7 ICP mg/L LT 0.05 M200.7 ICP mg/L LT 0.001	Sample Date: 2021-10-14 2021-11-08 Maloy.7 ICP mg/L LT 0.25 LT 0.25 M200.7 ICP mg/L LT 0.001 LT 0.001 M200.7 ICP mg/L 0.391 0.386 SM2320B - Titration mg/L G17 649 M200.7 ICP mg/L IT 0.0025 LT 0.0025 M200.8 ICP-MS mg/L LT 0.0025 LT 0.0025 M200.7 ICP mg/L 197 200 SM2320B - Titration mg/L LT 0.002 LT 20 M300.0 - Ion Chromat mg/L UT 0.002 LT 0.002 M300.0 - Ion Chromat mg/L LT 0.01 LT 0.02 M300.0 - Ion Chromat mg/L UT 0.01 LT 0.02 M300.0 - Ion Chromat mg/L UT 0.01 LT 0.02 M300.0 - Ion Chromat mg/L UT 0.01 LT 0.01 M300.0 - Ion Chromat mg/L UT 0.01 LT 0.02 M900.0 pCi/L 87 122.7 M900.0 pCi/L 87 122	Sample Date: 2021-10-14 2021-11-08 2021-12-08 M200.7 ICP mg/L LT 0.25 LT 0.25 LT 0.25 M200.8 ICP-MS mg/L LT 0.001 LT 0.001 LT 0.001 M200.7 ICP mg/L 0.391 0.386 0.394 SM2320B - Titration mg/L 617 649 577 M200.8 ICP-MS mg/L LT 0.0025 LT 0.00025 LT 0.00025 M200.8 ICP-MS mg/L LT 20 LT 20 LT 20 M300.0 - Ion Chromat mg/L LT 0.002 LT 20 LT 20 M300.0 - Ion Chromat mg/L LT 0.002 LO0331 0.00226 M200.8 ICP-MS mg/L LT 0.002 LT 0.01 LT 0.01 M300.0 - Ion Chromat mg/L LT 0.002 L00331 0.00226 M200.8 ICP-MS mg/L LT 0.01 LT 0.01 LT 0.01 M300.0 - Ion Chromat mg/L LT 0.01 LT 0.01 LT 0.01 M300.0 - Ion Chromat mg/L O.435 LT 1.25 0.498	Sample Date: 2021-10-14 2021-11-08 2021-12-08 2021-02-02 M200.7 ICP mg/L LT 0.25 LT 0.001 LOUD1 0.00110 0.00110 0.00110 0.00110 0.00110 0.00110 0.00110 0.00110 0.00110 0.00110 0.00110 0.00110 0.00110 0.00110 0.00110 0.00125 LT 0.00025 LT 0.0012 LT 0.0020 LT 0.002 LT 0.002 LT 0.002 0.00226 LT 0.002 LT 0.002 LT 0.002 0.00259 0.00408 SM4500-CK1 I,E-Colori mg/L LT 0.01 LT 0.01 LT 0.0	Sample Date: 2021-10-14 2021-11-08 2021-12-08 2021-02-02 2021-04-13 Malysis Method Units TO .25 LT 0.25 LT 0.0011 LT 0.0011 LT 0.0012 LT 0.0025 LT 20 LT 20 MT 20 LT 20 LT 20 LT 20 LT 20 LT 20 LT 20 MT 3.66 M300.9 LT 0.002 LT 0.001 LT 0.001 LT 0.001	Sample Date: 2021-10-14 2021-11-08 2021-12-08 2021-02-02 2021-04-13 2021-07-26 M200.7 ICP mg/L LT 0.25 LT 0.201 D.222 0.0103 M20.310 M20.310<

			San Luis T	own Well	Ranch	n Well		W	D-1	
Analyte	Analysis Method	ample Date: Units	2021-02-23	2021-09-07	2021-02-25	2021-09-16	2021-02-23	2021-05-18	2021-09-07	2021-10-26
Aluminum, total	M200.7 ICP	mg/L	LT 0.25	LT 0.25	LT 0.25	LT 0.25				
Arsenic, total	M200.8 ICP-MS	mg/L	LT 0.001							
Barium, total	M200.7 ICP	mg/L	0.0452	0.0431	0.0662	0.0701				
Boron, total	M200.7 ICP	mg/L	LT 0.1	LT 0.1	LT 0.1	LT 0.1				
Cadmium, total	M200.8 ICP-MS	mg/L	LT 0.00025	LT 0.00025	LT 0.00025	LT 0.00025				
Chromium, total	M200.7 ICP	mg/L	LT 0.05	LT 0.05	LT 0.05	LT 0.05				
Copper, total	M200.7 ICP	mg/L	LT 0.05	LT 0.05	LT 0.05	LT 0.05				
Copper, total	M200.8 ICP-MS	mg/L					LT 0.002	LT 0.002	LT 0.002	LT 0.002
Cyanide, WAD	SM4500-CN I,E-Colori	mg/L	LT 0.01	LT 0.01	LT 0.01	UH	LT 0.01	LT 0.01	LT 0.01	LT 0.01
Fluoride	M300.0 - Ion Chromat	mg/L	0.406	0.425	0.472	0.461				
Fluoride	SM4500F-C	mg/L					LT 0.35	0.45	0.75	0.82
Iron, total	M200.7 ICP	mg/L	LT 0.15	LT 0.15	LT 0.15	0.198	0.687	1.03	0.790	0.672
Lead, total	M200.7 ICP	mg/L	LT 0.15	LT 0.15	LT 0.15	LT 0.15				
Manganese, dissolved	M200.7 ICP	mg/L					0.067	LT 0.05	LT 0.05	LT 0.05
Manganese, total	M200.7 ICP	mg/L	LT 0.05	LT 0.05	LT 0.05	LT 0.05				
Mercury, total	M245.1 CVAA	mg/L	LT 0.001	LT 0.001	LT 0.001	LT 0.001				
Molybdenum, total	M200.7 ICP	mg/L	LT 0.1	LT 0.1	LT 0.1	LT 0.1				
Nickel, total	M200.7 ICP	mg/L	LT 0.04	LT 0.04	LT 0.04	LT 0.04				
Selenium, total	M200.8 ICP-MS	mg/L	LT 0.00025	LT 0.00025	LT 0.00025	0.00033				
Silver, total	M200.8 ICP-MS	mg/L	LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005				
Sulfate	D516-02/-07/-11 - Tu	mg/L					31.5	10.0	6.4	17.0
Zinc, total	M200.7 ICP	mg/L	LT 0.05							
Definitions: LT = Less Than Reporting Notes: None.	g Limit									

				R	S-1							R	S-2					
	Si	ample Date:	2021-01-04	2021-04-05	2021-07-06	2021-10-04	2021-01-04	2021-02-01	2021-03-01	2021 04 05	2021-05-03			2021-08-02	2021 00 01	2021-10-04	2021-11-01	2021-12-06
Analyte	Analysis Method	Units	2021-01-04	2021-04-03	2021-07-00	2021-10-04												
Aluminum, dissolved	M200.7 ICP	mg/L					LT 0.25	LT 0.25	LT 0.25	LT 0.25	LT 0.25	LT 0.25	LT 0.25	LT 0.25	LT 0.25	LT 0.25	LT 0.25	LT 0.25
Aluminum, potentially	M200.8 ICP-MS	mg/L	LT 0.015	0.0942	0.0479	0.0377	0.0247			0.0731	1.05	0.700	0.0703	0.10		0.0694		
Aluminum, total	M200.7 ICP M200.8 ICP-MS	mg/L					LT 0.25 LT 0.001	0.326 LT 0.001	LT 0.25	0.696 LT 0.001	1.25 LT 0.001	0.786 LT 0.001	0.377 LT 0.001	2.12 LT 0.001	0.892 LT 0.001	0.299 LT 0.001	LT 0.25 LT 0.001	LT 0.25 LT 0.001
Arsenic, dissolved Arsenic, total	M200.8 ICP-MS	mg/L mg/L	LT 0.001	LT 0.001	LT 0.001	LT 0.005	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001
Barium, dissolved	M200.7 ICP	mg/L	LT 0.001	LT 0.001	LT 0.001	LT 0.005	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	0.0357	LT 0.001	LT 0.001	LT 0.001
Barium, total	M200.7 ICP	mg/L					LT 0.035	LT 0.035	LT 0.035	LT 0.035	0.0397	LT 0.035	LT 0.035	0.0470	0.0368	LT 0.035	LT 0.035	LT 0.035
Bicarbonate as CaCO3	SM2320B - Titration	mg/L	57.8	60.7	43.9	57.6	63.2	62.1	62.0	64.9	45.3	33.9	44.2	55.1	52.7	49.1	61.0 H	53.1
Boron, dissolved	M200.7 ICP	mg/L					LT 0.1	LT 0.1	LT 0.1	LT 0.1	LT 0.1	LT 0.1	LT 0.1	LT 0.1	LT 0.1	LT 0.1	LT 0.1	LT 0.1
Boron, total	M200.7 ICP	mg/L					LT 0.1	LT 0.1	LT 0.1	LT 0.1	LT 0.1	LT 0.1	LT 0.1	LT 0.1	LT 0.1	LT 0.1	LT 0.1	LT 0.1
Cadmium, dissolved	M200.8 ICP-MS	mg/L					LT 0.00025	LT 0.00025	LT 0.00025	LT 0.00025	LT 0.00025	LT 0.00025	LT 0.00025	LT 0.00025	LT 0.00025	LT 0.00025	LT 0.00025	LT 0.00025
Cadmium, potentially	M200.8 ICP-MS	mg/L	LT 0.00025	LT 0.00025	LT 0.00025	LT 0.00025	LT 0.00025			LT 0.00025			LT 0.00025			LT 0.00025		
Cadmium, total	M200.8 ICP-MS	mg/L					LT 0.00025	LT 0.00025	LT 0.00025	LT 0.00025	LT 0.00025	LT 0.00025	LT 0.00025	LT 0.00025	LT 0.00025	LT 0.00025	LT 0.00025	LT 0.00025
Calcium, dissolved	M200.7 ICP	mg/L	15.9	14.3	12.1	15.6	17.2	17.0	18.0	15.2	12.9	9.45	12.4	14.6	17.0	16.9	17.4	18.5
Calcium, total	M200.7 ICP	mg/L					18.5	18.0	18.5	16.2	14.0	10.8	12.4	16.4	17.2	18.5	17.3	19.0
Carbon, total organic (TOC)		mg/L					LT 5	LT 5	LT 5	LT 5	LT 5	LT 5	LT 5	LT 5	LT 5	LT 5	LT 5	LT 5
Carbonate as CaCO3	SM2320B - Titration	mg/L	LT 20	LT 20	LT 20	LT 20	LT 20	LT 20	LT 20	LT 20	LT 20	LT 20	LT 20	LT 20	LT 20	LT 20	UH	LT 20
Chloride	M300.0 - Ion Chromat	mg/L					LT 2	LT 2	LT 2	LT 2	LT 2	LT 2	LT 2	LT 2	3.05	2.79	LT 2	LT 2
Chloride	SM4500CI-E	mg/L	LT 2	LT 2	LT 2	LT 2	LT 2			LT 2			LT 2			2.26	L	L
Chromium, dissolved	M200.8 ICP-MS	mg/L	LT 0.002	LT 0.002	LT 0.002	LT 0.002	LT 0.002	LT 0.002	LT 0.002	LT 0.002	LT 0.002	LT 0.002	LT 0.002	LT 0.002	LT 0.002	LT 0.002	LT 0.002	LT 0.002
Chromium, total	M200.8 ICP-MS	mg/L					LT 0.002	LT 0.002	LT 0.002	LT 0.002	LT 0.002	LT 0.002	LT 0.002	LT 0.002	LT 0.002	LT 0.002	LT 0.002	LT 0.002
Copper, dissolved	M200.8 ICP-MS	mg/L	170.000	170.007	170.000	17.0.007	LT 0.002	LT 0.002	LT 0.002	LT 0.002	LT 0.002	LT 0.002	LT 0.002	LT 0.002	LT 0.002	LT 0.002	LT 0.002	LT 0.002
Copper, potentially	M200.8 ICP-MS	mg/L	LT 0.002	LT 0.002	LT 0.002	LT 0.002	LT 0.002	0.000770	17.0 000	LT 0.002	0.000005	17.0 000	LT 0.002	0.00500	17.0.000	LT 0.002	170.000	17.0 000
Copper, total	M200.8 ICP-MS	mg/L					LT 0.002	0.00278	LT 0.002	LT 0.002	0.00235	LT 0.002	LT 0.002	0.00538	LT 0.002	LT 0.002	LT 0.002	LT 0.002
Cyanide, total Cyanide, WAD	M335.4 - Colorimetri SM4500-CN I,E-Colori	mg/L					LT 0.01 LT 0.01	LT 0.01 LT 0.01	LT 0.01 LT 0.01	LT 0.01 LT 0.01	LT 0.01 LT 0.01	LT 0.01 LT 0.01	LT 0.01 LT 0.01	UH LT 0.01	UH LT 0.01	LT 0.01 LT 0.01	LT 0.01 LT 0.01	LT 0.01 LT 0.01
Cyanide, WAD Fluoride	SM4500F-C	mg/L mg/L	0.56	0.48	0.45	0.67	0.59	0.62	0.64	0.55	0.48	0.43	0.51	0.50	0.86	0.89	0.54	0.54
Gross Alpha	M900.0	pCi/L	4.4	5	4.6	3.8	6.2	0.62	0.04	4.6	0.46	0.45	1.3	0.50	0.80	4.6	0.54	0.54
Gross Beta	M900.0	pCi/L pCi/L	5.2	2.8	3.1	1.6	3.9			2.8			0.95			4.0	├ ───┦	┢─────┘
Hardness as CaCO3	SM2340B - Calculatio	mg/L	57	51	43	56	62	61	64	54	45	34	43	51	60	60	62	65
Hydroxide as CaCO3	SM2320B - Titration	mg/L	IT 20	IT 20	LT 20	IT 20	1T 20	IT 20	IT 20	IT 20	IT 20	IT 20	IT 20	1T 20	LT 20	LT 20	UH	LT 20
Iron, dissolved	M200.7 ICP	mg/L	LT 0.15	0.162	LT 0.15	LT 0.15	LT 0.15	0.162	0.163	LT 0.15	0.266	LT 0.15	0.191	0.172	0.310	0.154	0.234	0.212
Iron, total	M200.7 ICP	mg/L	21 0.15	0.102	21 0.25	21 0.25	0.395	0.642	0.888	0.982	1.74	0.952	0.677	2.46	1.28	0.620	0.357	0.421
Iron, total recoverable	M200.7 ICP	mg/L	0.162	1.27	LT 0.75	0.386	0.450			1.11			0.668			0.582		
Lead, dissolved	M200.8 ICP-MS	mg/L					LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005
Lead, potentially dissolved	M200.8 ICP-MS	mg/L	LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005			LT 0.0005			LT 0.0005			LT 0.0005		
Lead, total	M200.8 ICP-MS	mg/L					LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005	0.00096	0.00058	LT 0.0005	0.00196	0.00068	LT 0.0005	LT 0.0005	LT 0.0005
Magnesium, dissolved	M200.7 ICP	mg/L	4.11	3.59	3.02	4.09	4.57	4.45	4.68	3.81	3.14	2.55	3.00	3.64	4.15	4.30	4.41	4.53
Magnesium, total	M200.7 ICP	mg/L					4.58	4.62	4.75	4.25	3.70	2.88	3.07	4.21	4.34	4.44	4.60	4.77
Manganese, dissolved	M200.7 ICP	mg/L	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05
Manganese, total	M200.7 ICP	mg/L					LT 0.05	0.062	LT 0.05	0.077	0.120	0.053	LT 0.05	0.104	0.100	LT 0.05	LT 0.05	LT 0.05
Manganese, total	M200.7 ICP	mg/L	LT 0.05	0.201	LT 0.25	LT 0.05	LT 0.05			0.093			0.051			LT 0.05		
Mercury, dissolved	M245.1 CVAA	mg/L					LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001
Mercury, total	M245.1 CVAA	mg/L	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001
Nickel, dissolved	M200.7 ICP	mg/L					LT 0.04	LT 0.04	LT 0.04	LT 0.04	LT 0.04	LT 0.04	LT 0.04	LT 0.04	LT 0.04	LT 0.04	LT 0.04	LT 0.04
Nickel, dissolved	M200.8 ICP-MS	mg/L	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001			LT 0.001			LT 0.001			LT 0.001	ļ!	'
Nickel, total	M200.7 ICP	mg/L					LT 0.04	LT 0.04	LT 0.04	LT 0.04	LT 0.04	LT 0.04	LT 0.04	LT 0.04	LT 0.04	LT 0.04	LT 0.04	LT 0.04
Nitrate/Nitrite as N	M353.2 - H2SO4 prese	mg/L					LT 0.1	LT 0.1	LT 0.1	LT 0.1	0.221	0.124	LT 0.1	LT 0.1	LT 0.1	LT 0.1	LT 0.1	LT 0.1
Nitrogen, ammonia	M350.1 Auto Salicyla	mg/L	LT 0.2	LT 0.2	LT 0.2	LT 0.2	LT 0.2	LT 0.2	LT 0.2	LT 0.2	LT 0.2	LT 0.2	LT 0.2	LT 0.2	LT 0.2	LT 0.2	LT 0.2	LT 0.2
Oil and Grease	1664A/B - Gravimetri	mg/L	LT 10.1	LT 10.1	LT 9.4	LT 9.3	LT 10.1			LT 10.1			LT 9.4		1.00	LT 9.3		
Potassium, total Residue, Filterable (TDS)	M200.7 ICP SM2540C	mg/L	LT 1	LT 1	LT 1	LT 1	LT 1 90	1.01 92	LT 1 92	LT 1 88	1.15 88	LT 1 82	1.18	1.27 96	1.33 106	1.28 98	LT 1 98	1.00 88
Residue, Filterable (TDS) Residue, Non-Filterable	SM2540C SM2540D	mg/L	LT 20	LT 20	LT 20	LT 20	90 LT 20	92 LT 20	92 LT 20	88 LT 20	27.0	82 LT 20	80 LT 20	40.0	106 LT 20	98 LT 20	98 LT 20	88 LT 20
Selenium, dissolved	M200.8 ICP-MS	mg/L mg/L	LT 20	LT 0.00025	LT 20 LT 0.00025	LT 0.00025	LT 20 LT 0.00025	LT 20	LT 0.00025	LT 0.00025	LT 0.00025	LT 0.00025	LT 0.00025	40.0 LT 0.00025	LT 0.00025	LT 0.00025	LT 20 LT 0.00025	LT 0.00025
Selenium, dissolved	M200.8 ICP-MS	mg/L mg/L	21 0.00025	210.00025	210.00025	10.00025	LT 0.00025 LT 0.00025	LT 0.00025	LT 0.00025 LT 0.00025	LT 0.00025	LT 0.00025	LT 0.00025	LT 0.00025	LT 0.00025	LT 0.00025	LT 0.00025	LT 0.00025 LT 0.00025	LT 0.00025
Silica, total	M200.7 ICP	mg/L	12.2	13.4	11.6	12.5	13.1	12.8	12.1	12.5	13.9	12.4	10.7	17.7	13.1	11.8	9.8	14.2
Silver, dissolved	M200.8 ICP-MS	mg/L	14.4	13.4	11.0	12.5	LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005
Silver, potentially dissolved		mg/L	LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005	21 0.0000	210.0000	LT 0.0005	21 0.0005	210.0005	LT 0.0005		210.0005	LT 0.0005	21 0.0005	21 0.0005
Silver, total	M200.8 ICP-MS	mg/L		0.0000			LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005
Sodium, total	M200.7 ICP	mg/L	3.44	3.35	2.90	3.59	4.95	4.74	5.34	4.07	3.35	3.64	3.96	3.64	6.60	7.65	4.15	5.14
Sulfate	M300.0 - Ion Chromat	mg/L	5.21	5.19	3.21	2.95	7.43	6.75	8.61	6.20	5.55	6.66	5.86	2.77	14.4	20.6	5.49	7.65
Total Alkalinity	SM2320B - Titration	mg/L	57.8	60.7	43.9	57.6	63.2	62.1	62.0	64.9	45.3	33.9	44.2	55.1	52.7	49.1	61.0 H	53.1
Zinc, dissolved	M200.7 ICP	mg/L					LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05
Zinc, potentially dissolved	M200.8 ICP-MS	mg/L	LT 0.015	LT 0.015	LT 0.015	LT 0.015	LT 0.015			LT 0.015			LT 0.015			LT 0.015		
Zinc, total	M200.7 ICP	mg/L					LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05
Definitions:																		
Definitions: LT = Less Than Reporting	g Limit																	
	g Limit																	
	g Limit																	
LT = Less Than Reporting	g Limit																	

Analyte	1	Sample Date:							1					
				2021-02-01	2021-03-01	2021-04-05	2021-05-03	2021-06-01	2021-07-06	2021-08-02	2021-09-01	2021-10-04	2021-11-01	2021-12-06
Alizzation of the test	Analysis Method	Units	2021-01-04	2021-02-01	2021-03-01	2021-04-05	2021-05-03	2021-06-01	2021-07-06	2021-08-02	2021-09-01	2021-10-04	2021-11-01	2021-12-06
Aluminum, dissolved	M200.7 ICP	mg/L												
Aluminum, potentially	M200.8 ICP-MS	mg/L	0.0419			0.0559			0.212			0.0242		
Aluminum, total	M200.7 ICP	mg/L												
Arsenic, dissolved	M200.8 ICP-MS	mg/L												
Arsenic, total	M200.8 ICP-MS	mg/L	LT 0.001			LT 0.001			LT 0.001			LT 0.001		
Barium, dissolved	M200.7 ICP	mg/L												
Barium, total	M200.7 ICP	mg/L												
Bicarbonate as CaCO3	SM2320B - Titration	mg/L	80.4			75.2			54.4			80.3		
Boron, dissolved	M200.7 ICP	mg/L												
Boron, total	M200.7 ICP	mg/L												
Cadmium, dissolved	M200.8 ICP-MS	mg/L												
Cadmium, potentially	M200.8 ICP-MS	mg/L	LT 0.00025			LT 0.00025			LT 0.00025			LT 0.00025		
Cadmium, total	M200.8 ICP-MS	mg/L												
Calcium, dissolved	M200.7 ICP	mg/L	24.1			18.5			15.0			23.8		
Calcium, total	M200.7 ICP	mg/L												
Carbon, total organic (TOC) SM5310B	mg/L												
Carbonate as CaCO3	SM2320B - Titration	mg/L	LT 20			LT 20			LT 20			LT 20		
Chloride	M300.0 - Ion Chromat	mg/L												
Chloride	SM4500CI-E	mg/L	3.29			2.08			LT 2			LT 2		
Chromium, dissolved	M200.8 ICP-MS	mg/L	LT 0.002			LT 0.002			LT 0.002			LT 0.002		
Chromium, total	M200.8 ICP-MS	mg/L												
Copper, dissolved	M200.8 ICP-MS	mg/L												
Copper, potentially	M200.8 ICP-MS	mg/L	LT 0.002			LT 0.002	-		0.00333	-		LT 0.002		
	M200.8 ICP-MS		LT 0.002			L10.002			0.00333			L1 0.002		
Copper, total	M335.4 - Colorimetri	mg/L												
Cyanide, total	SM4500-CN I,E-Colori	mg/L	LT 0.01	LT 0.01	LT 0.01	LT 0.01	LT 0.01	7.46	LT 0.01	LT 0.01	LT 0.01	LT 0.01	LT 0.01	LT 0.01
Cyanide, WAD Fluoride	SM4500F-C	mg/L	0.72	LT 0.01	LT 0.01	0.64	LT 0.01	7.40	LT 0.01 LT 0.7	LT 0.01	LT 0.01	0.68	LT 0.01	LT 0.01
Gross Alpha	M900.0	mg/L pCi/L	7.8			0.84						2.4		
									1					
Gross Beta	M900.0	pCi/L	5.9			2			4.3			2.6		
Hardness as CaCO3	SM2340B - Calculatio	mg/L	82			63			52			81		
Hydroxide as CaCO3	SM2320B - Titration	mg/L	LT 20			LT 20			LT 20			LT 20		
Iron, dissolved	M200.7 ICP	mg/L	0.292	0.345	0.381	0.198	0.241	0.212	0.259	0.364	0.328	0.375	0.380	0.240
Iron, total	M200.7 ICP	mg/L												
Iron, total recoverable	M200.7 ICP	mg/L	0.889	0.632	0.660	0.949	1.61	1.98	2.25	2.60	0.680	0.754	0.767	0.774
Lead, dissolved	M200.8 ICP-MS	mg/L												
Lead, potentially dissolved		mg/L	LT 0.0005			LT 0.0005			0.00081			LT 0.0005		
Lead, total	M200.8 ICP-MS	mg/L												
Magnesium, dissolved	M200.7 ICP	mg/L	5.37			4.06			3.43			5.12		
Magnesium, total	M200.7 ICP	mg/L												
Manganese, dissolved	M200.7 ICP	mg/L	0.147	0.156	0.177	0.084	0.080	0.080	LT 0.05	0.050	LT 0.05	LT 0.05	0.066	0.119
Manganese, total	M200.7 ICP	mg/L												
Manganese, total	M200.7 ICP	mg/L	0.179	0.165	0.171	0.117	0.118	0.129	0.128	0.090	0.055	LT 0.05	0.078	0.124
Mercury, dissolved	M245.1 CVAA	mg/L												
Mercury, total	M245.1 CVAA	mg/L	LT 0.001			LT 0.001			LT 0.001			LT 0.001		
Nickel, dissolved	M200.7 ICP	mg/L												
Nickel, dissolved	M200.8 ICP-MS	mg/L	LT 0.001			LT 0.001			LT 0.001			LT 0.001		
Nickel, total	M200.7 ICP	mg/L												
Nitrate/Nitrite as N	M353.2 - H2SO4 prese	mg/L												
Nitrogen, ammonia	M350.1 Auto Salicyla	mg/L	LT 0.2			LT 0.2			LT 0.2			LT 0.2		
Oil and Grease	1664A/B - Gravimetri	mg/L	LT 10.1			LT 10.1			LT 0.2			LT 9.3		
Potassium, total	M200.7 ICP	mg/L	1.12			1.07			1.28			1.27		
Residue, Filterable (TDS)	SM2540C	mg/L	1.12			1.07			1.20			1.27		
Residue, Non-Filterable	SM2540C SM2540D	mg/L	LT 20			23.0			122			LT 20		
	M200.8 ICP-MS		LT 20 LT 0.00025			LT 0.00025			LT 0.00025			LT 0.00025		
Selenium, dissolved		mg/L	LI 0.00025			LI 0.00025			LI 0.00025			LI 0.00025		
Selenium, total	M200.8 ICP-MS	mg/L	15.2			12.7			10.0			12.0		
Silica, total	M200.7 ICP	mg/L	15.3			12.7			16.6			13.6		
Silver, dissolved	M200.8 ICP-MS	mg/L	17.0.0007			1700000			1700000			17.0 0007		
Silver, potentially dissolved		mg/L	LT 0.0005			LT 0.0005			LT 0.0005			LT 0.0005		
Silver, total	M200.8 ICP-MS	mg/L							-			-		
Sodium, total	M200.7 ICP	mg/L	8.28			6.04			3.49			5.86		
Sulfate	M300.0 - Ion Chromat	mg/L	14.7	12.5	15.7	10.00	6.75	4.12	4.48	4.31	9.36	6.74	14.4	18.5
Total Alkalinity	SM2320B - Titration	mg/L	80.4			75.2			54.4			82.0		
Zinc, dissolved	M200.7 ICP	mg/L												
Zinc, potentially dissolved	M200.8 ICP-MS	mg/L	LT 0.015			LT 0.015			LT 0.015			LT 0.015		
Zinc, total	M200.7 ICP	mg/L												
Definitions:														
LT = Less Than Reporting	g Limit													
Notes:														
None.														

				M	-10				M-11R		
		Sample Date:	2021-01-06	2021-04-12	2021-07-08	2021-10-12	2021-01-05	2021-02-01	2021-03-01	2021-04-06	2021-05-03
Analyte	Analysis Method	Units	2021-01-00	2021-04-12	2021-07-08	2021-10-12	2021-01-05	2021-02-01	2021-03-01	2021-04-00	2021-03-03
Aluminum, dissolved	M200.7 ICP	mg/L	LT 0.25			LT 0.25					
Arsenic, dissolved	M200.8 ICP-MS	mg/L	LT 0.001			LT 0.001					
Barium, dissolved	M200.7 ICP	mg/L	0.122	0.125	0.130	0.116	0.0528			0.0375	
Bicarbonate as CaCO3	SM2320B - Titration	mg/L	213	237	226	203	171			184	
Cadmium, dissolved	M200.7 ICP	mg/L	LT 0.025			LT 0.025					
Calcium, total	M200.7 ICP	mg/L	69.3	72.7	77.9	72.5	87.5	72.8	71.8	66.5	71.1
Carbonate as CaCO3	SM2320B - Titration	mg/L	LT 20			LT 20					
Chloride	M300.0 - Ion Chromat	mg/L	2.90	3.13	LT 4	3.20	4.25			LT 10	
Chromium, dissolved	M200.7 ICP	mg/L	LT 0.05			LT 0.05					
Copper, dissolved	M200.7 ICP	mg/L	LT 0.05			LT 0.05					
Copper, dissolved	M200.8 ICP-MS	mg/L					LT 0.002				
Cyanide, WAD	SM4500-CN I,E-Colori	mg/L	LT 0.01			LT 0.01					
Fluoride	M300.0 - Ion Chromat	mg/L	0.965	1.03	1.07	1.07	0.846	1.01	1.02	0.900	0.998
Gross Alpha	M900.0	pCi/L	0.82	1.2	5.8	3.2	3.6			3.5	
Gross Beta	M900.0	pCi/L	6	3.8	7.6	1.4	3.6			4.7	
Hardness as CaCO3 (total)	SM2340B - Calculatio	mg/L	211	222	237	219	286			215	
Hydroxide as CaCO3	SM2320B - Titration	mg/L	LT 20			LT 20					
Iron, dissolved	M200.7 ICP	mg/L	1.14	1.03	0.929	1.05	LT 0.15				
Lead, dissolved	M200.7 ICP	mg/L	LT 0.15			LT 0.15					
Magnesium, total	M200.7 ICP	mg/L	9.18	9.73	10.2	9.27	16.3			12.0	
Manganese, dissolved	M200.7 ICP	mg/L	0.842	0.849	0.733	0.815	0.272	0.203	0.212	0.160	0.142
Mercury, dissolved	M245.1 CVAA	mg/L	LT 0.001			LT 0.001					
Nickel, dissolved	M200.8 ICP-MS	mg/L	LT 0.001			LT 0.001					
Potassium, total	M200.7 ICP	mg/L	1.56	1.55	1.65	1.71	2.18			2.07	
@180C	SM2540C	mg/L	292	296	322	298	396	316	314	306	310
Selenium, dissolved	M200.8 ICP-MS	mg/L	0.00062	0.00035	LT 0.00025	LT 0.00025	LT 0.00025			LT 0.00025	
Silica, total	M200.7 ICP	mg/L	24.5	28.4	26.5	27.6	16.5			14.9	
Silver, dissolved	M200.8 ICP-MS	mg/L	LT 0.0005			LT 0.0005					
Sodium, total	M200.7 ICP	mg/L	20.6	21.1	21.3	21.0	17.9			14.3	
Sulfate	M300.0 - Ion Chromat	mg/L	35.4	36.2	38.5	31.3 H	145	94.3	95.3	88.6	88.6
Total Alkalinity	SM2320B - Titration	mg/L	213	237	226	221	171			184	
Zinc, dissolved	M200.7 ICP	mg/L	LT 0.05			LT 0.05					
Definitions:	•										
LT = Less Than Reporting	Limit										
Notes:											
None.											

			M-	11R					
Analyte	Analysis Method	Sample Date: Units	2021-06-01	2021-07-07	2021-08-02	2021-09-01	2021-10-05	2021-11-01	2021-12-06
Aluminum, dissolved	M200.7 ICP	mg/L		LT 0.25			LT 0.25		
Arsenic, dissolved	M200.8 ICP-MS	mg/L		LT 0.001			LT 0.001		
Barium, dissolved	M200.7 ICP	mg/L		0.0427			0.0445		
Bicarbonate as CaCO3	SM2320B - Titration	mg/L		156			184 H		
Cadmium, dissolved	M200.7 ICP	mg/L		LT 0.025			LT 0.025		
Calcium, total	M200.7 ICP	mg/L	70.1	66.9	75.7	77.5	68.8	66.1	87.4
Carbonate as CaCO3	SM2320B - Titration	mg/L		LT 20			UH		
Chloride	M300.0 - Ion Chromat	mg/L		2.76			2.90 H		
Chromium, dissolved	M200.7 ICP	mg/L		LT 0.05			LT 0.05		
Copper, dissolved	M200.7 ICP	mg/L		LT 0.05			LT 0.05		
Copper, dissolved	M200.8 ICP-MS	mg/L	LT 0.002						
Cyanide, WAD	SM4500-CN I,E-Colori	mg/L		LT 0.01			LT 0.01		
Fluoride	M300.0 - Ion Chromat	mg/L	0.991	0.847	0.803	0.923	0.907 H	1.03	0.956
Gross Alpha	M900.0	pCi/L		1.4			3.7		
Gross Beta	M900.0	pCi/L		5.2			4.3		
Hardness as CaCO3 (total)	SM2340B - Calculatio	mg/L		214			226		
Hydroxide as CaCO3	SM2320B - Titration	mg/L		LT 20			UH		
iron, dissolved	M200.7 ICP	mg/L	LT 0.15						
Lead, dissolved	M200.7 ICP	mg/L		LT 0.15			LT 0.15		
Magnesium, total	M200.7 ICP	mg/L		11.4			12.2		
Manganese, dissolved	M200.7 ICP	mg/L	0.140	0.133	0.148	0.196	0.186	0.146	0.226
Mercury, dissolved	M245.1 CVAA	mg/L		LT 0.001			LT 0.001		
Nickel, dissolved	M200.8 ICP-MS	mg/L		LT 0.001			LT 0.001		
Potassium, total	M200.7 ICP	mg/L		2.12			2.28		
@180C	SM2540C	mg/L	310	308	326	344	288	298	360
Selenium, dissolved	M200.8 ICP-MS	mg/L		LT 0.00025			LT 0.00025		
Silica, total	M200.7 ICP	mg/L		14.7			14.9		
Silver, dissolved	M200.8 ICP-MS	mg/L		LT 0.0005			LT 0.0005		
Sodium, total	M200.7 ICP	mg/L		12.9			13.9		
Sulfate	M300.0 - Ion Chromat	mg/L	92.1	82.5	94.2	105	83.7 H	83.5	130
Total Alkalinity	SM2320B - Titration	mg/L		156			184 H		
Zinc, dissolved	M200.7 ICP	mg/L		LT 0.05			LT 0.05		
Definitions:									
LT = Less Than Reporting	Limit								
Notes:									
None.									

				M	-16				M-19		
		Sample Date:	2021-01-06	2021-04-12	2021-07-08	2021 10 12	2021-01-05	2021-02-01	2021-03-01	2021-04-06	2021-05-03
Analyte	Analysis Method	Units	2021-01-00	2021-04-12	2021-07-08	2021-10-12	2021-01-05	2021-02-01	2021-03-01	2021-04-06	2021-05-05
Aluminum, dissolved	M200.7 ICP	mg/L									
Arsenic, dissolved	M200.8 ICP-MS	mg/L									
Barium, dissolved	M200.7 ICP	mg/L									
Bicarbonate as CaCO3	SM2320B - Titration	mg/L									
Cadmium, dissolved	M200.7 ICP	mg/L									
Calcium, total	M200.7 ICP	mg/L	17.8	18.4	18.6	17.8	24.2	26.5	25.4	22.8	22.5
Carbonate as CaCO3	SM2320B - Titration	mg/L									
Chloride	M300.0 - Ion Chromat	mg/L									
Chromium, dissolved	M200.7 ICP	mg/L									
Copper, dissolved	M200.7 ICP	mg/L									
Copper, dissolved	M200.8 ICP-MS	mg/L	LT 0.002								
Cyanide, WAD	SM4500-CN I,E-Colori	mg/L									
Fluoride	M300.0 - Ion Chromat	mg/L	0.588	0.609	0.658	0.604	0.942	1.000	1.01	0.913	0.965
Gross Alpha	M900.0	pCi/L									
Gross Beta	M900.0	pCi/L									
Hardness as CaCO3 (total)	SM2340B - Calculatio	mg/L									
Hydroxide as CaCO3	SM2320B - Titration	mg/L									
, Iron, dissolved	M200.7 ICP	mg/L	LT 0.15	LT 0.15	LT 0.15	LT 0.15	0.187	0.177	0.165	0.162	0.202
Lead, dissolved	M200.7 ICP	mg/L						-			
Magnesium, total	M200.7 ICP	mg/L									
Manganese, dissolved	M200.7 ICP	mg/L	LT 0.05	LT 0.05	LT 0.05	LT 0.05	0.331	0.301	0.335	0.314	0.274
Mercury, dissolved	M245.1 CVAA	mg/L									
Nickel, dissolved	M200.8 ICP-MS	mg/L									
Potassium, total	M200.7 ICP	mg/L									
@180C	SM2540C	mg/L	84	86	90	86	110	118	110	110	104
Selenium, dissolved	M200.8 ICP-MS	mg/L	_								-
Silica, total	M200.7 ICP	mg/L									
Silver, dissolved	M200.8 ICP-MS	mg/L									
Sodium, total	M200.7 ICP	mg/L									
Sulfate	M300.0 - Ion Chromat	mg/L	9.25	8.72	9.47	12.2 H	4.97	4.69	6.31	8.42	8.32
Total Alkalinity	SM2320B - Titration	mg/L									
Zinc, dissolved	M200.7 ICP	mg/L									
Definitions:											
LT = Less Than Reporting	Limit										
Notes:											
None.											

			M	-19						M	-21
		Sample Date:	2021-06-01	2021-07-07	2021-08-02	2021-09-01	2021-10-05	2021-11-01	2021-12-06	2021-01-05	2021-02-01
Analyte	Analysis Method	Units	2021-00-01	2021-07-07	2021-08-02	2021-05-01	2021-10-05	2021-11-01	2021-12-00	2021-01-05	2021-02-01
Aluminum, dissolved	M200.7 ICP	mg/L									
Arsenic, dissolved	M200.8 ICP-MS	mg/L									
Barium, dissolved	M200.7 ICP	mg/L									
Bicarbonate as CaCO3	SM2320B - Titration	mg/L									
Cadmium, dissolved	M200.7 ICP	mg/L									
Calcium, total	M200.7 ICP	mg/L	18.8	19.2	20.5	20.7	22.1	21.5	24.1	29.5	33.1
Carbonate as CaCO3	SM2320B - Titration	mg/L									
Chloride	M300.0 - Ion Chromat	mg/L									
Chromium, dissolved	M200.7 ICP	mg/L									
Copper, dissolved	M200.7 ICP	mg/L									
Copper, dissolved	M200.8 ICP-MS	mg/L	LT 0.002								
Cyanide, WAD	SM4500-CN I,E-Colori	mg/L									
Fluoride	M300.0 - Ion Chromat	mg/L	0.957	0.819	0.783	0.804	0.864 H	0.973	0.969	1.34	1.52
Gross Alpha	M900.0	pCi/L									
Gross Beta	M900.0	pCi/L									
Hardness as CaCO3 (total)	SM2340B - Calculatio	mg/L									
Hydroxide as CaCO3	SM2320B - Titration	mg/L									
Iron, dissolved	M200.7 ICP	mg/L	0.240	LT 0.15							
Lead, dissolved	M200.7 ICP	mg/L									
Magnesium, total	M200.7 ICP	mg/L									
Manganese, dissolved	M200.7 ICP	mg/L	0.185	0.234	0.231	0.245	0.161	0.208	0.141	0.367	0.358
Mercury, dissolved	M245.1 CVAA	mg/L									
Nickel, dissolved	M200.8 ICP-MS	mg/L									
Potassium, total	M200.7 ICP	mg/L									
@180C	SM2540C	mg/L	98	92	96	96	104	106	102	138	144
Selenium, dissolved	M200.8 ICP-MS	mg/L									
Silica, total	M200.7 ICP	mg/L									
Silver, dissolved	M200.8 ICP-MS	mg/L									
Sodium, total	M200.7 ICP	mg/L									
Sulfate	M300.0 - Ion Chromat	mg/L	8.39	6.30	5.66	4.49	4.81 H	6.19	10.4	13.0	12.8
Total Alkalinity	SM2320B - Titration	mg/L									
Zinc, dissolved	M200.7 ICP	mg/L									
Definitions:											
LT = Less Than Reporting	Limit										
Notes:											
None.											

						M·	-21				
		Sample Date:	2021-03-01	2021-04-06	2021-05-03	2021-06-01	2021-07-07	2021-08-02	2021-09-01	2021-10-05	2021-11-01
Analyte	Analysis Method	Units									
Aluminum, dissolved	M200.7 ICP	mg/L									
Arsenic, dissolved	M200.8 ICP-MS	mg/L									
Barium, dissolved	M200.7 ICP	mg/L									
Bicarbonate as CaCO3	SM2320B - Titration	mg/L									
Cadmium, dissolved	M200.7 ICP	mg/L									
Calcium, total	M200.7 ICP	mg/L	32.7	30.4	31.9	29.6	29.2	31.8	32.0	31.7	31.3
Carbonate as CaCO3	SM2320B - Titration	mg/L									
Chloride	M300.0 - Ion Chromat	mg/L									
Chromium, dissolved	M200.7 ICP	mg/L									
Copper, dissolved	M200.7 ICP	mg/L									
Copper, dissolved	M200.8 ICP-MS	mg/L	LT 0.002								
Cyanide, WAD	SM4500-CN I,E-Colori	mg/L									
Fluoride	M300.0 - Ion Chromat	mg/L	1.55	1.40	1.44	1.32	1.31	1.24	1.49	1.37 H	1.49
Gross Alpha	M900.0	pCi/L									
Gross Beta	M900.0	pCi/L									
Hardness as CaCO3 (total)	SM2340B - Calculatio	mg/L									
Hydroxide as CaCO3	SM2320B - Titration	mg/L									
Iron, dissolved	M200.7 ICP	mg/L	LT 0.15								
Lead, dissolved	M200.7 ICP	mg/L									
Magnesium, total	M200.7 ICP	mg/L									
Manganese, dissolved	M200.7 ICP	mg/L	0.383	0.366	0.331	0.272	0.313	0.339	0.359	0.383	0.365
Mercury, dissolved	M245.1 CVAA	mg/L									
Nickel, dissolved	M200.8 ICP-MS	mg/L									
Potassium, total	M200.7 ICP	mg/L									
@180C	SM2540C	mg/L	144	144	140	146	136	144	150	132	138
Selenium, dissolved	M200.8 ICP-MS	mg/L									
Silica, total	M200.7 ICP	mg/L									
Silver, dissolved	M200.8 ICP-MS	mg/L									
Sodium, total	M200.7 ICP	mg/L									
Sulfate	M300.0 - Ion Chromat	mg/L	14.2	12.9	12.2	13.4	10.3	10.4	9.82	10.4 H	11.0
Total Alkalinity	SM2320B - Titration	mg/L									
Zinc, dissolved	M200.7 ICP	mg/L									
Definitions:				1	I	I	I	l	1	1	

Definitions:

LT = Less Than Reporting Limit

Notes:

					M	-22			M-	24	
		Sample Date:	2021-12-06	2021-01-06	2021-04-12	2021-07-08	2021-10-12	2021-01-05	2021-02-01	2021-03-01	2021-04-06
Analyte	Analysis Method	Units	2021-12-00	2021-01-00	2021-04-12	2021-07-08	2021-10-12	2021-01-05	2021-02-01	2021-03-01	2021-04-00
Aluminum, dissolved	M200.7 ICP	mg/L									
Arsenic, dissolved	M200.8 ICP-MS	mg/L									
Barium, dissolved	M200.7 ICP	mg/L									
Bicarbonate as CaCO3	SM2320B - Titration	mg/L									
Cadmium, dissolved	M200.7 ICP	mg/L									
Calcium, total	M200.7 ICP	mg/L	33.7	43.1	41.8	43.8	43.4	87.5	94.5	94.4	88.1
Carbonate as CaCO3	SM2320B - Titration	mg/L									
Chloride	M300.0 - Ion Chromat	mg/L									
Chromium, dissolved	M200.7 ICP	mg/L									
Copper, dissolved	M200.7 ICP	mg/L									
Copper, dissolved	M200.8 ICP-MS	mg/L	LT 0.002								
Cyanide, WAD	SM4500-CN I,E-Colori	mg/L									
Fluoride	M300.0 - Ion Chromat	mg/L	1.51	1.40	1.52	1.60	1.51	0.789	0.846	0.901	0.805
Gross Alpha	M900.0	pCi/L									
Gross Beta	M900.0	pCi/L									
Hardness as CaCO3 (total)	SM2340B - Calculatio	mg/L									
Hydroxide as CaCO3	SM2320B - Titration	mg/L									
Iron, dissolved	M200.7 ICP	mg/L	LT 0.15	0.283	0.289	0.369	0.369	4.45	4.42	4.83	4.83
Lead, dissolved	M200.7 ICP	mg/L									
Magnesium, total	M200.7 ICP	mg/L									
Manganese, dissolved	M200.7 ICP	mg/L	0.365	0.168	0.178	0.159	0.168	0.918	0.923	1.01	0.994
Mercury, dissolved	M245.1 CVAA	mg/L									
Nickel, dissolved	M200.8 ICP-MS	mg/L									
Potassium, total	M200.7 ICP	mg/L									
@180C	SM2540C	mg/L	136	188	186	186	186	458	468	464	466
Selenium, dissolved	M200.8 ICP-MS	mg/L									
Silica, total	M200.7 ICP	mg/L									
Silver, dissolved	M200.8 ICP-MS	mg/L									
Sodium, total	M200.7 ICP	mg/L									
Sulfate	M300.0 - Ion Chromat	mg/L	11.1	37.5	35.9	33.9	33.0 H	177	181	182	185
Total Alkalinity	SM2320B - Titration	mg/L									
Zinc, dissolved	M200.7 ICP	mg/L									
Definitions:	1				•		•				

Definitions:

LT = Less Than Reporting Limit

Notes:

				M	-24						M-26
		Sample Date:	2021-05-03	2021-06-01	2021-07-07	2021-08-02	2021-09-01	2021-10-05	2021-11-01	2021-12-06	2021-01-06
Analyte	Analysis Method	Units	2022 05 05		2021 07 07		2022 05 01				
Aluminum, dissolved	M200.7 ICP	mg/L									
Arsenic, dissolved	M200.8 ICP-MS	mg/L									
Barium, dissolved	M200.7 ICP	mg/L									
Bicarbonate as CaCO3	SM2320B - Titration	mg/L									
Cadmium, dissolved	M200.7 ICP	mg/L									
Calcium, total	M200.7 ICP	mg/L	95.7	90.7	86.0	93.3	92.0	89.1	89.5	91.8	33.6
Carbonate as CaCO3	SM2320B - Titration	mg/L									
Chloride	M300.0 - Ion Chromat	mg/L									
Chromium, dissolved	M200.7 ICP	mg/L									
Copper, dissolved	M200.7 ICP	mg/L									
Copper, dissolved	M200.8 ICP-MS	mg/L	LT 0.002								
Cyanide, WAD	SM4500-CN I,E-Colori	mg/L									
Fluoride	M300.0 - Ion Chromat	mg/L	0.800	LT 1.25	0.657	0.619	LT 1.25	0.738 H	LT 1.25	0.830	0.770
Gross Alpha	M900.0	pCi/L									
Gross Beta	M900.0	pCi/L									
Hardness as CaCO3 (total)	SM2340B - Calculatio	mg/L									
Hydroxide as CaCO3	SM2320B - Titration	mg/L									
Iron, dissolved	M200.7 ICP	mg/L	4.50	4.61	4.49	4.78	4.77	5.00	4.77	4.53	0.500
Lead, dissolved	M200.7 ICP	mg/L									
Magnesium, total	M200.7 ICP	mg/L									
Manganese, dissolved	M200.7 ICP	mg/L	0.948	0.942	0.929	0.959	0.956	1.03	0.965	0.943	0.316
Mercury, dissolved	M245.1 CVAA	mg/L									
Nickel, dissolved	M200.8 ICP-MS	mg/L									
Potassium, total	M200.7 ICP	mg/L									
@180C	SM2540C	mg/L	470	468	450	472	468	448	460	440	140
Selenium, dissolved	M200.8 ICP-MS	mg/L									
Silica, total	M200.7 ICP	mg/L									
Silver, dissolved	M200.8 ICP-MS	mg/L									
Sodium, total	M200.7 ICP	mg/L									
Sulfate	M300.0 - Ion Chromat	mg/L	187	182	159	172	162	166 H	179	177	10.2
Total Alkalinity	SM2320B - Titration	mg/L									
Zinc, dissolved	M200.7 ICP	mg/L									
Definitions:										1	

LT = Less Than Reporting Limit

Notes:

			М	-26			M	-34	
Analyte	Analysis Method	Sample Date: Units	2021-04-12	2021-07-08	2021-10-12	2021-01-06	2021-04-12	2021-07-08	2021-10-12
Aluminum, dissolved	M200.7 ICP	mg/L				LT 0.25	LT 0.25	LT 0.25	LT 0.25
Arsenic, dissolved	M200.8 ICP-MS	mg/L				LT 0.001	LT 0.001	LT 0.001	LT 0.001
Barium, dissolved	M200.7 ICP	mg/L				0.0424	0.0412	0.0442	0.0361
Bicarbonate as CaCO3	SM2320B - Titration	mg/L				69.0	73.7	68.3	77.6
Cadmium, dissolved	M200.7 ICP	mg/L				LT 0.025	LT 0.025	LT 0.025	LT 0.025
Calcium, total	M200.7 ICP	mg/L	34.2	34.0	33.0	20.6	21.1	22.3	21.2
Carbonate as CaCO3	SM2320B - Titration	mg/L				LT 20	LT 20	LT 20	LT 20
Chloride	M300.0 - Ion Chromat	mg/L				2.09	2.26	2.55	2.55
Chromium, dissolved	M200.7 ICP	mg/L				LT 0.05	LT 0.05	LT 0.05	LT 0.05
Copper, dissolved	M200.7 ICP	mg/L				LT 0.05	LT 0.05	LT 0.05	LT 0.05
Copper, dissolved	M200.8 ICP-MS	mg/L	LT 0.002	LT 0.002	LT 0.002				
Cyanide, WAD	SM4500-CN I,E-Colori	mg/L				LT 0.01	LT 0.01	LT 0.01	LT 0.01
Fluoride	M300.0 - Ion Chromat	mg/L	0.849	0.884	0.873	0.443	0.522	0.560	0.530
Gross Alpha	M900.0	pCi/L				0.9	3.8	0.44	2.5
Gross Beta	M900.0	pCi/L				3.4	1.4	2	-0.76
Hardness as CaCO3 (total)	SM2340B - Calculatio	mg/L				72	74	77	73
Hydroxide as CaCO3	SM2320B - Titration	mg/L				LT 20	LT 20	LT 20	LT 20
Iron, dissolved	M200.7 ICP	mg/L	0.473	0.479	0.417	LT 0.15	LT 0.15	LT 0.15	LT 0.15
Lead, dissolved	M200.7 ICP	mg/L				LT 0.15	LT 0.15	LT 0.15	LT 0.15
Magnesium, total	M200.7 ICP	mg/L				4.88	5.07	5.20	4.98
Manganese, dissolved	M200.7 ICP	mg/L	0.319	0.308	0.313	0.207	0.210	0.208	0.209
Mercury, dissolved	M245.1 CVAA	mg/L				LT 0.001	LT 0.001	LT 0.001	LT 0.001
Nickel, dissolved	M200.8 ICP-MS	mg/L				LT 0.001	LT 0.001	LT 0.001	LT 0.001
Potassium, total	M200.7 ICP	mg/L				LT 1	LT 1	LT 1	LT 1
@180C	SM2540C	mg/L	140	148	140	104	106	118	106
Selenium, dissolved	M200.8 ICP-MS	mg/L				0.00234	0.00078	LT 0.00025	LT 0.00025
Silica, total	M200.7 ICP	mg/L				14.5	15.2	14.1	13.4
Silver, dissolved	M200.8 ICP-MS	mg/L				LT 0.0005	LT 0.0005	LT 0.0005	LT 0.0005
Sodium, total	M200.7 ICP	mg/L				7.25	7.59	7.63	7.50
Sulfate	M300.0 - Ion Chromat	mg/L	10.6	10.3	7.87 H	18.3	17.9	18.4	16.2 H
Total Alkalinity	SM2320B - Titration	mg/L				69.0	73.7	68.3	77.6
Zinc, dissolved	M200.7 ICP	mg/L				LT 0.05	LT 0.05	LT 0.05	LT 0.05
Definitions: LT = Less Than Reporting	Limit								

LT = Less Than Reporting Limit

Notes:

APPENDIX C

Battle Mountain Resources, Inc.

San Luis Project P.O. Box 310 San Luis, Colorado 81152-0310 (719) 379-0798 - - pived

New 0 4 2021

April 27, 2021

Colorado Department of Public Health and Environment Water Quality Control Division Attn: WQDC-B2 – DMR Receipt 4300 Cherry Creek Drive Denver, CO 80246-1530

Re: Battle Mountain Resources, Inc. San Luis Project - San Luis, Colorado First Quarter 2021 – DMR's, BMP, and WET Testing Reports CDPHE CDPS Permit No. CO0045675

Dear Sir or Madame:

Please find the enclosed Battle Mountain Resources, Inc. "San Luis Project" (Permit No. CO0045675) Colorado Department of Public Health and Environment-Colorado Discharge Permit System (CDPS) Best Management Practices (BMP) report for permitted outfall 002 for the first quarter 2021. The quarterly BMP report provides the required data associated with groundwater well elevations, the quarterly potentiometric surface map and groundwater well chemistry.

In addition, the first quarter 2021 Discharge Monitoring Reports (DMRs) were submitted for each of the permitted water treatment plant discharges in the NetDMR System and the WET Testing Reports were attached to the appropriate DMR submittal in NetDMR. These permitted discharges consist of water treatment plant Discharge Numbers 001-A and 001-B. During the quarter, the maximum 30-day average flow was 0.24 million gallons of water discharged per day, therefore the applicable permit criteria for the reporting period is associated with discharge number 001-B.

Should any questions arise or if I can be of any assistance providing clarification, please call me at (719) 379-0538.

Sincerely,

Julio Madrid Authorized Agent Battle Mountain Resources, Inc.

Cc: BMRI File

Devon Horntvedt, Newmont USA Limited Lawrence Fiske, Newmont USA Limited Tim Runnells, Engineering Analytics Alan Fosdick, Engineering Analytics

Battle Mountain Resources, Inc.

San Luis Project P.O. Box 310 San Luis, Colorado 81152-0310 (719) 379-0798

April 27, 2021

Colorado Department of Public Health and Environment Water Quality Control Division Attn: WQDC-B2 – DMR Receipt 4300 Cherry Creek Drive Denver, CO 80246-1530

Re: Battle Mountain Resources, Inc. San Luis Project First Quarter 2021 BMP Report CDPHE CDPS Permit No. CO0045675

Dear Sir or Madame:

In accordance with and compliance of the permit limitations and permit terms and conditions contained in Part I, Section 5 <u>Discharge Point 002</u>: (Permit Limitations, Best Management Practices, and Schedule of Compliance of the *State of Colorado Authorization to Discharge Under the Colorado Discharge Permit System*, Battle Mountain Resources, Inc. submits the following *Quarterly Best Management Practices Report*.

In accordance with the Water Quality Control Commission Regulations for Effluent Limitations, Section 62.4, and the Colorado Discharge Permit System Regulations, Sections 61.8(2), 61.8(3)(n), and 61.8(3)(r), 5 C.C.R. 1002-61, the permittee shall continue to implement the following limitations, compliance schedules, and Best Management Practices (BMPs).

The attainment of applicable water quality standards will be implemented and evaluated through the application of the following limitations, compliance schedules, and BMPs that are designed to monitor and control the groundwater quality and quantity discharging from the West Pit to the Rito Seco alluvial aquifer.

Specifically, the limitations, compliance schedules, and BMPs are those activities that address contaminated groundwater that may flow into the Rito Seco. This includes: (1) the potential flow of the affected groundwater from the West Pit that, in the past, manifested itself in the formation of the surface seeps along the arroyo sidewall of the Rito Seco, and (2) the plume of affected groundwater within the Rito Seco alluvial aquifer downgradient of the West Pit that flows along the naturally occurring hydraulic gradient and that may flow into the Rito Seco. The activities will include the following specific requirements:

 The elevation of the groundwater table in the vicinity of the West Pit shall be measured on a weekly basis at the following locations: (i) the West Pit backfill wells BF-4 and BF-5 and (ii) the Rito Seco alluvial wells M-16 and M-20, as shown in Figure 3 of the permit, for purposes of determining the performance of the "pump and treat" system that regulates the flow and quality of the groundwater in the seepage front. The permittee shall also determine on a quarterly basis the elevations of the groundwater table at BF-3, BF-4, BF-5, BF-6, M-11R, M-16, M-17, M-18, M-19, M-20, M-21, M-22, M-23, M-24, M-25, M-26, M-27, M-28, M-29, M-30, M-31, M-32, and M-33 for the purpose of developing a groundwater potentiometric map as monitoring confirmation of the groundwater flow direction. The quarterly data regarding depth to groundwater and groundwater potentiometric surface map will be submitted to the WQCD with the BMP report as described.

Compliance Action Taken: Battle Mountain Resources, Inc. measured the weekly West Pit backfill and alluvial wells as required under Paragraph 1 of the specific requirements. Measurements obtained for the weekly West Pit backfill wells (BF-4 and BF-5R) and alluvial wells (M-16 and M-20) are shown in Table 1. The quarterly groundwater elevations required under Paragraph 1 were also measured and are shown in Table 2. A potentiometric surface map, developed by Engineering Analytics, is shown in Figure 1. The groundwater table elevations and potentiometric map confirm that the groundwater flow gradient during the first quarter of 2021 was from the Rito Seco to the West Pit. No corrective action is required under Paragraph 1 specific requirement and scheduled compliance monitoring will continue unchanged next quarter.

Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)
	01/06/2021	8579.24
	01/13/2021	8579.21
	01/20/2021	8579.20
	01/27/2021	8579.21
	02/03/2021	8579.24
	02/10/2021	8579.22
BF-4	02/17/2021	8579.24
	02/24/2021	8579.23
	03/03/2021	8579.22
	03/10/2021	8579.26
	03/17/2021	8579.27
	03/24/2021	8579.33
	03/31/2021	8579.33
	01/06/2021	8579.05
	01/13/2021	8579.04
	01/20/2021	8579.05
	01/27/2021	8579.05
	02/03/2021	8579.05
	02/10/2021	8579.05
BF-5R	02/17/2021	8579.06
	02/24/2021	8579.06
	03/03/2021	8579.05
	03/10/2021	8579.08
	03/17/2021	8579.09
	03/24/2021	8579.12
	03/31/2021	8579.10

Table 1 – Weekly Groundwater Elevations

Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)
	01/06/2021	8600.35
	01/13/2021	8600.26
	01/20/2021	8600.24
	01/27/2021	8600.18
	02/03/2021	8600.19
	02/10/2021	8600.15
M-16	02/17/2021	8600.21
	02/24/2021	8600.23
	03/03/2021	8600.27
	03/10/2021	8599.82
	03/17/2021	8600.36
	03/24/2021	8600.51
	03/31/2021	8600.52
	01/06/2021	8580.10
	01/13/2021	8580.07
	01/20/2021	8580.06
	01/27/2021	8579.99
	02/03/2021	8579.97
	02/10/2021	8580.00
M-20	02/17/2021	8580.06
	02/24/2021	8580.07
	03/03/2021	8580.09
	03/10/2021	8580.07
	03/17/2021	8579.74
	03/24/2021	8580.59
	03/31/2021	8580.59

Table 1 – Weekly Groundwater Elevations (continued)

Table 2 – Quarterly Groundwater Elevations

Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)
BF-3	01/28/2021	8578.06
BF-4	01/28/2021	8579.21
BF-5R	01/28/2021	8579.05
BF-6	01/28/2021	8578.96
M-11R	01/28/2021	8551.30
M-16	01/28/2021	8600.18
M-17	01/28/2021	8586.56
M-18	01/28/2021	8579.24
M-19	01/28/2021	8580.32
M-20	01/28/2021	8579.99
M-21	01/28/2021	8576.99
M-22	01/28/2021	8572.77
M-23	01/28/2021	8556.87
M-24	01/28/2021	8560.04
M-25	01/28/2021	DRY
M-26	01/28/2021	8544.38
M-27	01/28/2021	DRY
M-28	01/28/2021	8579.65
M-29	01/28/2021	8580.23
M-30	01/28/2021	8609.95
M-31	01/28/2021	8550.89
M-32	01/28/2021	8532.97
M-33	01/28/2021	8534.84

2) The weekly groundwater table elevation data shall be tabulated and reported on the quarterly BMP reports, and the data will be used to evaluate compliance with the following permit limitations.

The groundwater table elevation, based on the average of all measured values for each calendar month in the West Pit backfill groundwater monitoring wells BF-4 and BF-5, must be equal to or lower than an elevation of 8582 feet above sea level (ft. amsl).

Compliance Action Taken: Battle Mountain Resources, Inc. measured the West Pit backfill monitoring wells (BF-4 and BF-5R) weekly and the measurements are shown in Table 1. The groundwater measurements for wells BF-4 and BF-5R were averaged by calendar month and the results are shown in Table 3. The January, February, March 2021 averages were below the 8582 ft. amsl required in Paragraph 2. No corrective action is required under the Paragraph 2 requirement and schedule compliance monitoring will continue unchanged next quarter.

Monitoring Well Identification	Month (2021)	Number of Observations	Average Monthly Groundwater Elevation (ft amsl)
	January	4	8579.22
BF-4	February	4	8579.23
	March	5	8579.28
	January	4	8579.05
BF-5R	February	4	8579.06
	March	5	8579.09

Table 3 - Quarterly West Pit Backfill Monthly Average Groundwater Table Elevations

3) If the average monthly groundwater table elevation in the West Pit backfill for any calendar month, measured as described in the above paragraph, is greater than 8582 ft. amsl or the quarterly determination of the groundwater potentiometric surface map indicates that the flow of the groundwater is from the West Pit to the Rito Seco alluvium, the permittee shall verbally communicate such condition to WQCD within 24 hours of the determination of the condition (elevated West Pit backfill table or groundwater flow from the West Pit as indicated by the quarterly groundwater potentiometric surface map) and initiate the following compliance schedule.

Compliance Action Taken: Battle Mountain Resources, Inc. measured the West Pit backfill monitoring wells (BF-4 and BF-5R) weekly and the calendar month average groundwater measurement elevations (Table 3) were below the 8582 ft. amsl required in Paragraph 2. The January 28, 2021, potentiometric surface map (Figure 1) shows the groundwater flow gradient was from the Rito Seco alluvium to the West Pit backfill. Therefore, site operations demonstrated the West Pit backfill groundwater level was maintained at or below an elevation of 8582 ft. amsl through the quarter. Therefore, no requirement(s) to initiate actions contained within the schedule of compliance for Section 5.3 is required.

4) The quality of groundwater in the vicinity of the West Pit shall be monitored on a monthly basis in the Rito Seco alluvial groundwater monitoring wells M-19, M-21, M-24 and M-11R for the purposes of monitoring the changes in the quality of the plume or affected groundwater in the Rito Seco alluvial aquifer. Groundwater quality in these monitoring wells will be analyzed for pH, temperature, total dissolved solids, calcium, sulfate, manganese, fluoride, copper, and iron for the purpose of evaluating the status of the groundwater quality in the downgradient groundwater plume. The groundwater quality data will be summarized and transmitted to the WQCD in the quarterly BMP report required under Part I, Section E.1 of this permit.

Compliance Action Taken: Battle Mountain Resources, Inc. collected monthly groundwater samples in the vicinity of the West Pit backfill area from Rito Seco alluvial monitoring wells M-19, M-21, M-24 and M-11R. No corrective action is required under the Paragraph 4 specific requirement and scheduled compliance monitoring will continue unchanged next quarter.

Amaluta	Reporting	Sample		Monitoring Well Identifier						
Analyte	Units	Date	M-11R	M-19	M-21	M-24				
		01/05/2021	7.11	6.53	6.63	7.04				
pН	SU	02/01/2021	7.33	6.59	7.05	7.11				
-		03/01/2021	7.24	6.56	6.83	6.98				
······································		01/05/2021	9.4	9.6	8.1	8.4				
Temperature	°C	02/01/2021	9.4	9.6	7.9	8.3				
-		03/01/2021	9.4	8.4	8.1	8.2				
		01/05/2021	68.6	23.4	31.4	93.3				
Calcium, Total	mg/L	02/01/2021	69.8	25.1	31.9	92.7				
		03/01/2021	69.8	24.6	31.3	91.6				
		01/05/2021	87.5	24.2	29.5	87.5				
Copper, Dissolved	mg/L	02/01/2021	72.8	26.5	33.1	94.5				
		03/01/2021	71.8	25.4	32.7	94.4				
		01/05/2021	LT 0.002	LT 0.002	LT 0.002	LT 0.002				
Fluoride	mg/L	02/01/2021	LT 0.002	LT 0.002	LT 0.002	LT 0.002				
		03/01/2021	LT 0.002	LT 0.002	LT 0.002	LT 0.002				
		01/05/2021	0.846	0.942	1.34	0.789				
Iron, Dissolved	mg/L	02/01/2021	1.01	1.000	1.52	0.846				
		03/01/2021	1.02	1.01	1.55	0.901				
		01/05/2021	LT 0.15	0.187	LT 0.15	4.45				
Manganese, Dissolved	mg/L	02/01/2021	LT 0.15	0.177	LT 0.15	4.42				
		03/01/2021	LT 0.15	0.165	LT 0.15	4.83				
		01/05/2021	145	4.97	13.0	177				
Sulfate	mg/L	02/01/2021	94.3	4.69	12.8	181				
		03/01/2021	95.3	6.31	14.2	182				
		01/05/2021	396	110	138	458				
Total Dissolved Solids	mg/L	02/01/2021	316	118	144	468				
		03/01/2021	314	110	144	464				

Table 4 - Rito Seco Alluvial Groundwater Quality Summary

5) The historical seeps were caused by the plume of affected groundwater and may, in the future, also be caused by natural variation in the flow of groundwater in the vicinity of the area where the past seeps occurred. The permittee shall conduct a monthly visual inspection of the area of historical seeps and the permittee shall report any seepage flow that is associated with the area historic seepage expression, as is identified in Figure 2 of the permit. Results of the seep monitoring shall be tabulated and summarized in the quarterly BMP report.

If these inspections identified the occurrence of seeps, the permittee will be required to communicate verbally to the WQCD within 24 hours of the seepage observation, followed by written notification within 7 calendar days of the seepage observation. Verbal updates will then be provided to the WQCD every second day thereafter until the WQCD has made a determination regarding the status of the West Pit groundwater control system through the implementation of the following compliance schedule.

Compliance Action Taken: Battle Mountain Resources, Inc. performed monthly visual seepage expression inspections in the historic seepage area identified in Figure 2 of the permit. Visual observations during these inspections are shown in Table 5. No seepage expressions were observed in the historic seepage area during the first quarter of 2021. Therefore, no verbal or written notifications were required and the implementation of the compliance schedule was not required. No corrective action is required under the Paragraph 5 specific requirement and scheduled compliance monitoring will continue unchanged next quarter.

Visual Inspection Date	Was Visual Observation of Seepage Determined in the Area of the Historic Seepage Expression	Comments
01/28/2021	No	All Dry
02/25/2021	No	All Dry
03/31/2021	No	All Dry

Table 5 – Monthly Seepage Expression Inspection Tabulation

6) The BMP for the groundwater flow downgradient from the groundwater divide (see section VI.A.2 for the Rationale) that has been developed in the Rito Seco alluvial aquifer consists of a groundwater capture system in conjunction with groundwater table elevation control in the West Pit. The water management plan for the Rito Seco alluvial aquifer consists of pumping two groundwater capture wells (M-32 and M-33) located downgradient of the plume of affected groundwater. This action will allow flushing of constituents in the groundwater from the Rito Seco alluvial aquifer in that portion (plume) of the aquifer affected by previous flow of groundwater from the West Pit. Measurements of the groundwater table elevations will be taken on a weekly basis from M-32 and M-33. This data shall be tabulated and reported for outfall 002 on the quarterly BMP report, and the data will be used to evaluate compliance with the following permit limitation.

The groundwater table elevation, based on the average of all measured values for each calendar month at M-32 and M-33 in the Rito Seco alluvial aquifer, must be equal to or lower than an elevation of 8540 ft. amsl.

If the average monthly groundwater table elevations measured in the Rito Seco alluvial aquifer at M-32 and M-33 is greater than 8540 ft. amsl, the permitee shall initiate the following compliance schedule within 24 hours of the determination of groundwater table elevation exceedance.

Compliance Action Taken: Battle Mountain Resources, Inc. measured the alluvial aquifer monitoring wells (M-32 and M-33) weekly and the resulting elevations are presented in Table 6. The groundwater elevations for wells M-32 and M-33 were averaged by calendar month and the results are shown in Table 6. The January, February, March 2021 averages were below the 8540 ft. amsl required under Paragraph 6. Therefore, site operations were in full compliance of Part I, Section 5.5 and there were no requirements(s) to initiate actions contained within the schedule of compliance for Section 5.5. No corrective action is required under Paragraph 6 specific requirement and scheduled compliance monitoring will continue unchanged next quarter.

Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)	Month (2021)	Average Monthly Groundwater Elevation (ft amsl)			
	01/06/2021	8532.75					
	01/13/2021	8533.32					
	01/20/2021	8533.26	January	8533.06			
	01/27/2021	8532.99]				
N# 22	01/28/2021	8532.97					
M-32	02/03/2021	8533.45					
	02/10/2021	8533.26					
	02/17/2021	8532.34	February	8532.70			
	02/24/2021	8532.07					
	02/25/2021	8532.37					

Table 6 - Weekly/Monthly Rito Seco Alluvial Aquifer Average Groundwater Table Elevation

Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)	Month (2021)	Average Monthly Groundwater Elevation (ft amsl)	
	03/03/2021	8532.52			
	03/10/2021	8532.29			
M-32	03/17/2021	8532.76	8532.76 March		
	03/24/2021	8532.84]		
	03/31/2021	8533.45			
	01/06/2021	8532.50			
	01/13/2021	8534.35]	8534.24	
	01/20/2021	8534.68	January		
	01/27/2021	8534.81			
	01/28/2021	8534.84			
	02/03/2021	8534.99			
	02/10/2021	8535.01		8535.06	
M-33	02/17/2021	8535.09	February		
	02/24/2021	8535.12			
	02/25/2021	8535.09			
	03/03/2021	8535.17			
	03/10/2021	8535.30]		
	03/17/2021	8535.98	March	8535.81	
	03/24/2021	8536.25			
	03/31/2021	8536.37			

Table 6 (Cont) - Weekly/Monthly Rito Seco Alluvial Aquifer Average Groundwater Table Elevations

7) The water quality of the Rito Seco will be assessed using surface water quality collected at RS-2, as shown in Figure 3. Surface water monitoring in the Rito Seco shall be conducted at RS-2 on a monthly basis and the laboratory analytical results shall be submitted to the WQCD in the quarterly BMP report. Water quality samples collected at RS-2 shall be analyzed for the following constituents: calcium, magnesium, sodium, potassium, ammonia, total dissolved solids, total hardness, pH, total suspended solids, cyanide (WAD and total), bicarbonate, alkalinity, chloride, sulfate, nitrate-nitrite, fluoride and the total and dissolved concentrations of aluminum, arsenic, barium, boron, cadmium, copper, chromium, iron, lead, manganese, mercury, nickel, selenium, silica, silver and zinc. The following compliance schedule shall be implemented in the event that any constituent exceeds the applicable water quality standards for the Rito Seco.

Compliance Action Taken: Battle Mountain Resources, Inc. collected monthly surface water samples in January, February, March 2021 at location RS-2, as shown in Figure 3 of the permit. Results of analyses performed on these samples are shown in Table 7. The results of the laboratory analytical testing show that the applicable water quality standards were met for the Rito Seco during the months of January, February, March 2021. Site operations were in full compliance of Part I, Section 5.7 and there was no requirement(s) to initiate actions contained within the schedule of compliance for Section 5.7. Scheduled compliance monitoring will continue unchanged next quarter.

Analyte	Reporting Units	01/04/2021	02/01/2021	03/01/2021
Alkalinity	mg/L as CaCO3	63.2	62.1	62.0
Aluminum, Dissolved	mg/L	LT 0.25	LT 0.25	LT 0.25
Aluminum, Total	mg/L	LT 0.25	0.326	LT 0.25
Ammonia as N	mg/L	LT 0.2	LT 0.2	LT 0.2
Arsenic, Dissolved	mg/L	LT 0.001	LT 0.001	LT 0.001
Arsenic, Total	mg/L	LT 0.001	LT 0.001	LT 0.001
Barium, Dissolved	mg/L	LT 0.035	LT 0.035	LT 0.035
Barium, Total	mg/L	LT 0.035	LT 0.035	LT 0.035
Bicarbonate as CaCO3	mg/L	63.2	62.1	62.0
Boron, Dissolved	mg/L	LT 0.1	LT 0.1	LT 0.1
Boron, Total	mg/L	LT 0.1	LT 0.1	LT 0.1
Cadmium, Dissolved	mg/L	LT 0.00025	LT 0.00025	LT 0.00025
Cadmium, Total	mg/L	LT 0.00025	LT 0.00025	LT 0.00025
Calcium, Total	mg/L	18.5	18.0	18.5
Carbonate as CaCO3	mg/L mg/L	LT 20	LT 20	LT 20
Chloride	mg/L	LT 20	LT 20	LT 2
Chromium, Dissolved	mg/L mg/L	LT 0.002	LT 0.002	LT 0.002
Chromium, Total	mg/L mg/L	LT 0.002	LT 0.002	LT 0.002
Copper, Dissolved			LT 0.002	LT 0.002
	mg/L	LT 0.002		
Copper, Total	mg/L	LT 0.002	0.00278	LT 0.002
Cyanide, Total	mg/L	LT 0.01	LT 0.01	LT 0.01
Cyanide, WAD	mg/L	LT 0.01	LT 0.01	LT 0.01
Fluoride	mg/L	0.59	0.62	0.64
Hardness as CaCO3	mg/L	62	61	64
Iron, Dissolved	mg/L	LT 0.15	0.162	0.163
Iron, Total	mg/L	0.395	0.642	0.888
Lead, Dissolved	mg/L	LT 0.0005	LT 0.0005	LT 0.0005
Lead, Total	mg/L	LT 0.0005	LT 0.0005	LT 0.0005
Magnesium, Total	mg/L	4.58	4.62	4.75
Manganese, Dissolved	mg/L	LT 0.05	LT 0.05	LT 0.05
Manganese, Total	mg/L	LT 0.05	0.062	LT 0.05
Mercury, Dissolved	mg/L	LT 0.001	LT 0.001	LT 0.001
Mercury, Total	mg/L	LT 0.001	LT 0.001	LT 0.001
Nickel, Dissolved	mg/L	LT 0.001	LT 0.04	LT 0.04
Nickel, Total	mg/L	LT 0.04	LT 0.04	LT 0.04
Nitrate+Nitrite as N	mg/L	LT 0.1	LT 0.1	LT 0.1
pH	SU	7.05	7.02	6.93
Potassium, Total	mg/L	LT 1	1.01	LT I
Selenium, Dissolved	mg/L	LT 0.00025	LT 0.00025	LT 0.00025
Selenium, Total	mg/L	LT 0.00025	LT 0.00025	LT 0.00025
Silica, Total	mg/L	13.1	12.8	12.1
Silver, Dissolved	mg/L	LT 0.0005	LT 0.0005	LT 0.0005
Silver, Total	mg/L	LT 0.0005	LT 0.0005	LT 0.0005
Sodium, Total	mg/L	4.95	4.74	5.34
Sulfate	mg/L	7.43	6.75	8.61
Total Dissolved Solids	mg/L	90	92	92
Total Suspended Solids	mg/L	LT 20	LT 20	LT 20
Zinc, Dissolved	mg/L	LT 0.05	LT 0.05	LT 0.05
Zinc, Total	mg/L	LT 0.05	LT 0.05	LT 0.05

8) If any component of the groundwater control system is not performing within the limits set forth in this permit, the permittee will be required to initiate appropriate compliance schedule activities, including the preparation of a response plan, for any and all components of the groundwater control system that do not meet the applicable

requirements. The permittee shall also conduct weekly sampling at RS-2 until such time as the other compliance schedule activity(ies) have been completed.

Compliance Action Taken: As demonstrated by the information and data presented in this report, all components of the groundwater control system performed within the limits set forth in the permit. Therefore, site operations were in full compliance of Part I, Section 8 and there was no requirement(s) to initiate actions contained within the schedule of compliance for Section 8.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is to the best of my knowledge and belief, is true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Name:	Julio Madrid	Signature:	Pulis 7 m
		e <u> </u>	

Date: <u>April 27, 2021</u>

0: \.05 Son Luis/POTENTIOMETRIC MAPS\GW Mop 2021 1st qtr\Groundwater 2021 1st Qtr.dwg SAVED: 4/28/21 PRINTED: 4/28/21

Scanned 85/85/2821

Battle Mountain Resources, Inc. San Luis Project P.O. Box 310 San Luis, Colorado 81152-0310 (719) 379-0798

July 27, 2021

Colorado Department of Public Health and Environment Water Quality Control Division Attn: WQDC-B2 – DMR Receipt 4300 Cherry Creek Drive Denver, CO 80246-1530

Re: Battle Mountain Resources, Inc. San Luis Project - San Luis, Colorado Second Quarter 2021 – DMR's, BMP, and WET Testing Reports CDPHE CDPS Permit No. CO0045675

Dear Sir or Madame:

Please find the enclosed Battle Mountain Resources, Inc. "San Luis Project" (Permit No. CO0045675) Colorado Department of Public Health and Environment-Colorado Discharge Permit System (CDPS) Best Management Practices (BMP) report for permitted outfall 002 for the second quarter 2021. The quarterly BMP report provides the required data associated with groundwater well elevations, the quarterly potentiometric surface map and groundwater well chemistry.

In addition, the second quarter 2021 Discharge Monitoring Reports (DMRs) were submitted for each of the permitted water treatment plant discharges in the NetDMR System and the WET Testing Reports were attached to the appropriate DMR submittal in NetDMR. These permitted discharges consist of water treatment plant Discharge Numbers 001-A and 001-B. During the quarter, the maximum 30-day average flow was 0.31 million gallons of water discharged per day, therefore the applicable permit criteria for the reporting period is associated with discharge number 001-B.

Should any questions arise or if I can be of any assistance providing clarification, please call me at (719) 379-0538.

Sincerely,

Julio Madrid Authorized Agent Battle Mountain Resources, Inc.

Cc: BMRJ File Devon Horntvedt, Newmont USA Limited Lawrence Fiske, Newmont USA Limited Tim Runnells, Engineering Analytics Alan Fosdick, Engineering Analytics Battle Mountain Resources, Inc. San Luis Project P.O. Box 310 San Luis, Colorado 81152-0310 (719) 379-0798

July 27, 2021

Colorado Department of Public Health and Environment Water Quality Control Division Attn: WQDC-B2 – DMR Receipt 4300 Cherry Creek Drive Denver, CO 80246-1530

Re: Battle Mountain Resources, Inc. San Luis Project Second Quarter 2021 BMP Report CDPHE CDPS Permit No. CO0045675

Dear Sir or Madame:

In accordance with and compliance of the permit limitations and permit terms and conditions contained in Part I, Section 5 Discharge Point 002: (Permit Limitations, Best Management Practices, and Schedule of Compliance of the State of Colorado Authorization to Discharge Under the Colorado Discharge Permit System, Battle Mountain Resources, Inc. submits the following Quarterly Best Management Practices Report.

In accordance with the Water Quality Control Commission Regulations for Effluent Limitations, Section 62.4, and the Colorado Discharge Permit System Regulations, Sections 61.8(2), 61.8(3)(n), and 61.8(3)(r), 5 C.C.R. 1002-61, the permittee shall continue to implement the following limitations, compliance schedules, and Best Management Practices (BMPs).

The attainment of applicable water quality standards will be implemented and evaluated through the application of the following limitations, compliance schedules, and BMPs that are designed to monitor and control the groundwater quality and quantity discharging from the West Pit to the Rito Seco alluvial aquifer.

Specifically, the limitations, compliance schedules, and BMPs are those activities that address contaminated groundwater that may flow into the Rito Seco. This includes: (1) the potential flow of the affected groundwater from the West Pit that, in the past, manifested itself in the formation of the surface seeps along the arroyo sidewall of the Rito Seco, and (2) the plume of affected groundwater within the Rito Seco alluvial aquifer downgradient of the West Pit that flows along the naturally occurring hydraulic gradient and that may flow into the Rito Seco. The activities will include the following specific requirements:

 The elevation of the groundwater table in the vicinity of the West Pit shall be measured on a weekly basis at the following locations: (i) the West Pit backfill wells BF-4 and BF-5 and (ii) the Rito Seco alluvial wells M-16 and M-20, as shown in Figure 3 of the permit, for purposes of determining the performance of the "pump and treat" system that regulates the flow and quality of the groundwater in the seepage front. The permittee shall also determine on a quarterly basis the elevations of the groundwater table at BF-3, BF-4, BF-5, BF-6, M-11R, M-16, M-17, M-18, M-19, M-20, M-21, M-22, M-23, M-24, M-25, M-26, M-27, M-28, M-29, M-30, M-31, M-32, and M-33 for the purpose of developing a groundwater potentiometric map as monitoring confirmation of the groundwater flow direction. The quarterly data regarding depth to groundwater and groundwater potentiometric surface map will be submitted to the WQCD with the BMP report as described.

Compliance Action Taken: Battle Mountain Resources, Inc. measured the weekly West Pit backfill and alluvial wells as required under Paragraph 1 of the specific requirements. Measurements obtained for the weekly West Pit backfill wells (BF-4 and BF-5R) and alluvial wells (M-16 and M-20) are shown in Table 1. The quarterly groundwater elevations required under Paragraph 1 were also measured and are shown in Table 2. A potentiometric surface map, developed by Engineering Analytics, is shown in Figure 1. The groundwater table elevations and potentiometric map confirm that the groundwater flow gradient during the second quarter of 2021 was from the Rito Seco to the West Pit. No corrective action is required under Paragraph 1 specific requirement and scheduled compliance monitoring will continue unchanged next quarter.

Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)	
	04/07/2021	8579.26	
	04/14/2021	8579.28	
	04/21/2021	8579.29	
	04/28/2021	8579.24	
	05/05/2021	8579.31	
	05/12/2021	8579.32	
BF-4	05/19/2021	8579.39	
	05/26/2021	8579.17	
	06/02/2021	8579.26	
	06/09/2021	8579.29	
	06/16/2021	8579.28	
	06/23/2021	8579.31	
	06/30/2021	8579.25	
-	04/07/2021	8579.10	
	04/14/2021	8579.04	
	04/21/2021	8579.04	
	04/28/2021	8579.04	
	05/05/2021	8579.07	
	05/12/2021	8579.12	
BF-5R	05/19/2021	8579.13	
	05/26/2021	8578.98	
	06/02/2021	8579.03	
	06/09/2021	8579.10	
	06/16/2021	8579.08	
	06/23/2021	8579.10	
	06/30/2021	8579.05	

Table 1 - Weekly Groundwater Elevations

Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)
	04/07/2021	8600.62
	04/14/2021	8600.62
	04/21/2021	8600.81
	04/28/2021	8600.94
	05/05/2021	8601.10
	05/12/2021	8601.53
M-16	05/19/2021	8601.68
	05/26/2021	8601.97
	06/02/2021	8602.36
	06/09/2021	8602.64
	06/16/2021	8602.85
	06/23/2021	8602.89
	06/30/2021	8602.83
	04/07/2021	8580.78
	04/14/2021	8580.81
	04/21/2021	8580.87
	04/28/2021	8580.86
	05/05/2021	8580.93
	05/12/2021	8580.01
M-20	05/19/2021	8581.07
	05/26/2021	8581.14
	06/02/2021	8581.09
	06/09/2021	8581.01
	06/16/2021	8580.88
-	06/23/2021	8580.65
	06/30/2021	8580.48

Table 1 - Weekly Groundwater Elevations (continued)

Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)
BF-3	04/29/2021	8578.07
BF-4	04/29/2021	8579.24
BF-5R	04/29/2021	8579.04
BF-6	04/29/2021	8578.96
M-11R	04/29/2021	8551.58
M-16	04/29/2021	8600.94
M-17	04/29/2021	8588.24
M-18	04/29/2021	8579.76
M-19	04/29/2021	8581.55
M-20	04/29/2021	8580.86
M-21	04/29/2021	8577.93
M-22	04/29/2021	8573.35
M-23	04/29/2021	8557.01
M-24	04/29/2021	8560.19
M-25	04/29/2021	8541.57
M-26	04/29/2021	8544.72
M-27	04/29/2021	DRY
M-28	04/29/2021	8580.30
M-29	04/29/2021	8580.67
M-30	04/29/2021	8610.77
M-31	04/29/2021	8551.16
M-32	04/29/2021	8532.16
M-33	04/29/2021	8537.09

 The weekly groundwater table elevation data shall be tabulated and reported on the quarterly BMP reports, and the data will be used to evaluate compliance with the following permit limitations.

The groundwater table elevation, based on the average of all measured values for each calendar month in the West Pit backfill groundwater monitoring wells BF-4 and BF-5, must be equal to or lower than an elevation of 8582 feet above sea level (ft. amsl).

Compliance Action Taken: Battle Mountain Resources, Inc. measured the West Pit backfill monitoring wells (BF-4 and BF-5R) weekly and the measurements are shown in Table 1. The groundwater measurements for wells BF-4 and BF-5R were averaged by calendar month and the results are shown in Table 3. The April, May, June 2021 averages were below the 8582 ft. amsl required in Paragraph 2. No corrective action is required under the Paragraph 2 requirement and schedule compliance monitoring will continue unchanged next quarter.

Monitoring Well Identification	Month (2021)	Number of Observations	Average Monthly Groundwater Elevation (ft amsl)	
	April	4	8579.27	
BF-4	May	4	8579.30	
	June	5	8579.28	
	April	4	8579.06	
BF-5R	May	4	8579.08	
	June	5	8579.07	

Table 3 - Quarterly West Pit Backfill Monthly	Average Groundwater Table Elevations
---	--------------------------------------

3) If the average monthly groundwater table elevation in the West Pit backfill for any calendar month, measured as described in the above paragraph, is greater than 8582 ft. amsl or the quarterly determination of the groundwater potentiometric surface map indicates that the flow of the groundwater is from the West Pit to the Rito Seco alluvium, the permittee shall verbally communicate such condition to WQCD within 24 hours of the determination of the condition (elevated West Pit backfill table or groundwater flow from the West Pit as indicated by the quarterly groundwater potentiometric surface map) and initiate the following compliance schedule.

Compliance Action Taken: Battle Mountain Resources, Inc. measured the West Pit backfill monitoring wells (BF-4 and BF-5R) weekly and the calendar month average groundwater measurement elevations (Table 3) were below the 8582 ft. amsl required in Paragraph 2. The April 29, 2021, potentiometric surface map (Figure 1) shows the groundwater flow gradient was from the Rito Seco alluvium to the West Pit backfill. Therefore, site operations demonstrated the West Pit backfill groundwater level was maintained at or below an elevation of 8582 ft. amsl through the quarter. Therefore, no requirement(s) to initiate actions contained within the schedule of compliance for Section 5.3 is required.

4) The quality of groundwater in the vicinity of the West Pit shall be monitored on a monthly basis in the Rito Seco alluvial groundwater monitoring wells M-19, M-21, M-24 and M-11R for the purposes of monitoring the changes in the quality of the plume or affected groundwater in the Rito Seco alluvial aquifer. Groundwater quality in these monitoring wells will be analyzed for pH, temperature, total dissolved solids, calcium, sulfate, manganese, fluoride, copper, and iron for the purpose of evaluating the status of the groundwater quality in the downgradient groundwater plume. The groundwater quality data will be summarized and transmitted to the WQCD in the quarterly BMP report required under Part I, Section E.1 of this permit.

Compliance Action Taken: Battle Mountain Resources, Inc. collected monthly groundwater samples in the vicinity of the West Pit backfill area from Rito Seco alluvial monitoring wells M-19, M-21, M-24 and M-11R. No corrective action is required under the Paragraph 4 specific requirement and scheduled compliance monitoring will continue unchanged next quarter.

Amaluta	Reporting	Sample	Monitoring Well Identifier			
Analyte	Units	Date	M-11R	M-19	M-21	M-24
		04/06/2021	7.14	6,45	6.74	6.95
pH	SU	05/03/2021	7.15	6,47	6.73	7.02
		06/01/2021	7.27	6.52	6.78	6.98
		04/06/2021	9.6	8.6	8.3	8.7
Temperature	°C	05/03/2021	9.4	7.4	8.7	8.8
		06/01/2021	9.7	6.5	8.3	9.3
		04/06/2021	66.5	22.8	30.4	88.1
Calcium, Total	mg/L	05/03/2021	71.1	22.5	31.9	95.7
		06/01/2021	70.1	18.8	29.6	90.7
	1	04/06/2021	LT 0.002	LT 0.002	LT 0.002	LT 0.002
Copper, Dissolved	mg/L	05/03/2021	LT 0.002	LT 0.002	LT 0.002	LT 0.002
A MARKET MARKET		06/01/2021	LT 0.002	LT 0.002	LT 0.002	LT 0.002
	mg/L	04/06/2021	0.900	0.913	1.40	0.805
Fluoride		05/03/2021	0.998	0.965	1.44	0.800
		06/01/2021	0.991	0.957	1.32	LT 1.25
		04/06/2021	LT 0.15	0.162	LT 0.15	4.83
Iron, Dissolved	mg/L	05/03/2021	LT 0.15	0.202	LT 0.15	4.50
	-9.	06/01/2021	LT 0.15	0.240	LT 0.15	4.61
		04/06/2021	0.160	0.314	0.366	0.994
Manganese, Dissolved	mg/L	05/03/2021	0.142	0.274	0.331	0.948
		06/01/2021	0.140	0.185	0.272	0.942
		04/06/2021	88.6	8.42	12.9	185
Sulfate	mg/L	05/03/2021	88.6	8.32	12.2	187
		06/01/2021	92.1	8.39	13.4	182
and an and a second second		04/06/2021	306	110	144	466
Total Dissolved Solids	mg/L	05/03/2021	310	104	140	470
		06/01/2021	310	98	146	468

Table 4 - Rito Seco Alluvial Groundwater Quality Summary

5) The historical seeps were caused by the plume of affected groundwater and may, in the future, also be caused by natural variation in the flow of groundwater in the vicinity of the area where the past seeps occurred. The permittee shall conduct a monthly visual inspection of the area of historical seeps and the permittee shall report any seepage flow that is associated with the area historic seepage expression, as is identified in Figure 2 of the permit. Results of the seep monitoring shall be tabulated and summarized in the quarterly BMP report.

If these inspections identified the occurrence of seeps, the permittee will be required to communicate verbally to the WQCD within 24 hours of the seepage observation, followed by written notification within 7 calendar days of the seepage observation. Verbal updates will then be provided to the WQCD every second day thereafter until the WQCD has made a determination regarding the status of the West Pit groundwater control system through the implementation of the following compliance schedule.

Compliance Action Taken: Battle Mountain Resources, Inc. performed monthly visual seepage expression inspections in the historic seepage area identified in Figure 2 of the permit. Visual observations during these inspections are shown in Table 5. No seepage expressions were observed in the historic seepage area during the second quarter of 2021. Therefore, no verbal or written notifications were required and the implementation of the compliance schedule was not required. No corrective action is required under the Paragraph 5 specific requirement and scheduled compliance monitoring will continue unchanged next quarter.

Visual nspection Date	Was Visual Observation of Seepage Determined in the Area of the Historic Seepage Expression	Comments All Dry	
04/29/2021	No		
05/27/2021	No	All Dry	
06/30/2021	No	All Dry	

Table 5 - Monthly Seepage Expression Inspection Tabulation

6) The BMP for the groundwater flow downgradient from the groundwater divide (see section VI.A.2 for the Rationale) that has been developed in the Rito Seco alluvial aquifer consists of a groundwater capture system in conjunction with groundwater table elevation control in the West Pit. The water management plan for the Rito Seco alluvial aquifer consists of pumping two groundwater capture wells (M-32 and M-33) located downgradient of the plume of affected groundwater. This action will allow flushing of constituents in the groundwater from the Rito Seco alluvial aquifer in that portion (plume) of the aquifer affected by previous flow of groundwater from the West Pit. Measurements of the groundwater table elevations will be taken on a weekly basis from M-32 and M-33. This data shall be tabulated and reported for outfall 002 on the quarterly BMP report, and the data will be used to evaluate compliance with the following permit limitation.

The groundwater table elevation, based on the average of all measured values for each calendar month at M-32 and M-33 in the Rito Seco alluvial aquifer, must be equal to or lower than an elevation of 8540 ft. amsl.

If the average monthly groundwater table elevations measured in the Rito Seco alluvial aquifer at M-32 and M-33 is greater than 8540 ft. amsl, the permitee shall initiate the following compliance schedule within 24 hours of the determination of groundwater table elevation exceedance.

Compliance Action Taken: Battle Mountain Resources, Inc. measured the alluvial aquifer monitoring wells (M-32 and M-33) weekly and the resulting elevations are presented in Table 6. The groundwater elevations for wells M-32 and M-33 were averaged by calendar month and the results are shown in Table 6. The April, May, June 2021 averages were below the 8540 ft. amsl required under Paragraph 6. Therefore, site operations were in full compliance of Part I, Section 5.5 and there were no requirements(s) to initiate actions contained within the schedule of compliance for Section 5.5. No corrective action is required under Paragraph 6 specific requirement and scheduled compliance monitoring will continue unchanged next quarter.

Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)	Month (2021)	Average Monthly Groundwater Elevation (ft amsl)	
M-32	04/07/2021	8533.81	April		
	04/14/2021	8534.03		8533.11	
	04/21/2021	8533.38			
	04/28/2021	8532.16			
	04/29/2021	8532.16			
	05/05/2021	8532.39	May		
	05/12/2021	8532.38		8532.40	
	05/19/2021	8532.21			
	05/26/2021	8532.52		and the second	
	05/27/2021	8532.51			

Table 6 - Weekly/Monthly Rito Seco Alluvial Aquifer Average Groundwater Table Elevations
Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)	Month (2021)	Average Monthly Groundwater Elevation (ft amsl)
	06/02/2021	8531.97		
	06/09/2021	8532.36		
M-32	06/16/2021	8530.97	June	8531.54
	06/23/2021	8531.25		
	06/30/2021	8531.35		
	04/07/2021	8536.81		
	04/14/2021	8537.03		8537.00
	04/21/2021	8536.99	April	
	04/28/2021	8537.09		
	04/29/2021	8537.09		
	05/05/2021	8537.20		
G	05/12/2021	8537.27		
M-33	05/19/2021	8537.37	May	8537.34
	05/26/2021	8537.40		
	05/27/2021	8537.44		
	06/02/2021	8537.48		
	06/09/2021	8537.52		
	06/16/2021	8537.43	June	8537.43
	06/23/2021	8537.40		
	06/30/2021	8537.36		

Table 6 (Cont) - Weekly/Monthly Rito Seco Alluvial Aquifer Average Groundwater Table Elevations

7) The water quality of the Rito Seco will be assessed using surface water quality collected at RS-2, as shown in Figure 3. Surface water monitoring in the Rito Seco shall be conducted at RS-2 on a monthly basis and the laboratory analytical results shall be submitted to the WQCD in the quarterly BMP report. Water quality samples collected at RS-2 shall be analyzed for the following constituents: calcium, magnesium, sodium, potassium, ammonia, total dissolved solids, total hardness, pH, total suspended solids, cyanide (WAD and total), bicarbonate, alkalinity, chloride, sulfate, nitrate-nitrite, fluoride and the total and dissolved concentrations of aluminum, arsenic, barium, boron, cadmium, copper, chromium, iron, lead, manganese, mercury, nickel, selenium, silica, silver and zinc. The following compliance schedule shall be implemented in the event that any constituent exceeds the applicable water quality standards for the Rito Seco.

Compliance Action Taken: Battle Mountain Resources, Inc. collected monthly surface water samples in April, May, June 2021 at location RS-2, as shown in Figure 3 of the permit. Results of analyses performed on these samples are shown in Table 7. The results of the laboratory analytical testing show that the applicable water quality standards were met for the Rito Seco during the months of April, May, June 2021. Site operations were in full compliance of Part I, Section 5.7 and there was no requirement(s) to initiate actions contained within the schedule of compliance for Section 5.7. Scheduled compliance monitoring will continue unchanged next quarter.

Analyte	Reporting Units	04/05/2021	05/03/2021	06/01/2021
Alkalinity	mg/L as CaCO3	64.9	45.3	33.9
Aluminum, Dissolved	mg/L	LT 0.25	LT 0.25	LT 0.25
Aluminum, Total	mg/L	0.696	1,25	0.786
Ammonia as N	mg/l.	LT 0.2	LT 0.2	LT 0.2
Arsenic, Dissolved	mg/L	LT 0.001	LT 0.001	LT 0.001
Arsenic, Total	mg/L	LT 0.001	LT 0.001	LT 0.001
Barium, Dissolved	mg/L	LT 0.035	LT 0.035	LT 0.035
Barium, Total	mg/L	LT 0.035	0.0397	LT 0.035
Bicarbonate as CaCO3	mg/L	64.9	45.3	33.9
Boron, Dissolved	mg/L	LT 0,1	LT 0.1	LT 0.1
Boron, Total	mg/L	LT 0.1	LT 0.1	LT 0.1
Cadmium, Dissolved	mg/L	LT 0.00025	LT 0.00025	LT 0.00025
Cadmium, Total	mg/L	LT 0.00025	LT 0.00025	LT 0.00025
Calcium, Total	mg/L	16.2	14.0	10.8
Carbonate as CaCO3	mg/L	LT 20	LT 20	LT 20
Chloride	mg/L	LT 2.0	LT 2.0	LT 2.0
Chromium, Dissolved	mg/L	LT 0.002	LT 0.002	LT 0.002
Chromium, Total	mg/L	LT 0.002	LT 0.002	LT 0.002
Copper, Dissolved	mg/L	LT 0.002	LT 0.002	LT 0.002
Copper, Total	mg/L	LT 0.002	0.00235	LT 0.002
Cyanide, Total	mg/L	LT 0.01	LT 0.01	LT 0.01
Cyanide, WAD	mg/L	LT 0.01	LT 0.01	LT 0.01
Fluoride	mg/L	0.55	0.48	0.43
Hardness as CaCO3	mg/L	54	45	34
Iron, Dissolved	mg/L	LT 0.15	0.266	LT 0.15
Iron, Total	mg/L	0.982	1.74	0.952
Lead, Dissolved	mg/L	LT 0.0005	LT 0.0005	LT 0.0005
Lead, Total	mg/L	LT 0.0005	0.00096	0.00058
Magnesium, Total	mg/L	4.25	3.70	2.88
Manganese, Dissolved	mg/L	LT 0.05	LT 0.05	LT 0.05
Manganese, Total	mg/L	0.077	0.120	0.053
Mercury, Dissolved	mg/L	LT 0.001	LT 0.001	LT 0.001
Mercury, Total	mg/L	LT 0.001	LT 0.001	LT 0.001
Nickel, Dissolved	mg/L	LT 0.001	LT 0.04	LT 0.04
Nickel, Total	mg/L	LT 0.04	LT 0.04	LT 0.04
Nitrate+Nitrite as N	mg/L	LT 0.1	0.221	0.124
рН	SU	7.44	7.08	7.23
Potassium, Total	mg/L	LT 1	1.15	LT 1
Selenium, Dissolved	mg/L	LT 0.00025	LT 0.00025	LT 0.00025
Selenium, Total	mg/L	LT 0.00025	LT 0.00025	LT 0.00025
Silica, Total	mg/L	12.5	13,9	12.4
Silver, Dissolved	mg/L	LT 0.0005	LT 0.0005	LT 0.0005
Silver, Total	mg/L	LT 0.0005	LT 0.0005	LT 0.0005
Sodium, Total	mg/L	4.07	3.35	3.64
Sulfate	mg/L	6.20	5.58	6.66
Total Dissolved Solids	mg/L	88	88	82
Total Suspended Solids	mg/L	LT 20	27.0	LT 20
Zinc, Dissolved	mg/L	LT 0.05	LT 0.05	LT 0.05
Zinc, Total	mg/L	LT 0.05	LT 0.05	LT 0.05

Table 7 - RS-2 Surface Water Quality Results

8) If any component of the groundwater control system is not performing within the limits set forth in this permit, the permittee will be required to initiate appropriate compliance schedule activities, including the preparation of a response plan, for any and all components of the groundwater control system that do not meet the applicable

requirements. The permittee shall also conduct weekly sampling at RS-2 until such time as the other compliance schedule activity(ies) have been completed.

Compliance Action Taken: As demonstrated by the information and data presented in this report, all components of the groundwater control system performed within the limits set forth in the permit. Therefore, site operations were in full compliance of Part I, Section 8 and there was no requirement(s) to initiate actions contained within the schedule of compliance for Section 8.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is to the best of my knowledge and belief, is true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Name:	Julio Madrid	Signature:	fulio 7 hr O	
Date:	July 27, 2021			

Battle Mountain Resources, Inc. San Luis Project P.O. Box 310 San Luis, Colorado 81152-0310 (719) 379-0798

October 27, 2021

Received NOV 0 2 2021 Water Quality Control

Colorado Department of Public Health and Environment Water Quality Control Division Attn: WQDC-B2 – DMR Receipt 4300 Cherry Creek Drive Denver, CO 80246-1530

Re: Battle Mountain Resources, Inc. San Luis Project - San Luis, Colorado Third Quarter 2021 – DMR's, BMP, Influent Summary and WET Testing Reports CDPHE CDPS Permit No. CO0045675

Dear Sir or Madame:

Please find the enclosed Battle Mountain Resources, Inc. "San Luis Project" (Permit No. CO0045675) Colorado Department of Public Health and Environment-Colorado Discharge Permit System (CDPS) Best Management Practices (BMP) report for permitted outfall 002 for the third quarter 2021. The quarterly BMP report provides the required data associated with groundwater well elevations, the quarterly potentiometric surface map and groundwater well chemistry.

In addition, the third quarter 2021 Discharge Monitoring Reports (DMRs) were submitted for each of the permitted water treatment plant discharges in the NetDMR System and the WET Testing Reports were attached to the appropriate DMR submittal in NetDMR. These permitted discharges consist of water treatment plant Discharge Numbers 001-A and 001-B. During the quarter, the maximum 30-day average flow was 0.26 million gallons of water discharged per day, therefore the applicable permit criteria for the reporting period is associated with discharge number 001-B.

Should any questions arise or if I can be of any assistance providing clarification, please call me at (719) 379-0538.

Sincerely,

Julio Madrid Authorized Agent Battle Mountain Resources, Inc.

Cc: BMRI File Devon Horntvedt, Newmont USA Limited Lawrence Fiske, Newmont USA Limited Tim Runnells, Engineering Analytics Alan Fosdick, Engineering Analytics

Battle Mountain Resources, Inc.

San Luis Project P.O. Box 310 San Luis, Colorado 81152-0310 (719) 379-0798

October 27, 2021

Colorado Department of Public Health and Environment Water Quality Control Division Attn: WQDC-B2 – DMR Receipt 4300 Cherry Creek Drive Denver, CO 80246-1530

Re: Battle Mountain Resources, Inc. San Luis Project Third Quarter 2021 BMP Report CDPHE CDPS Permit No. CO0045675

Dear Sir or Madame:

In accordance with and compliance of the permit limitations and permit terms and conditions contained in Part I, Section 5 <u>Discharge Point 002</u>: (Permit Limitations, Best Management Practices, and Schedule of Compliance of the *State of Colorado Authorization to Discharge Under the Colorado Discharge Permit System*, Battle Mountain Resources, Inc. submits the following *Quarterly Best Management Practices Report*.

In accordance with the Water Quality Control Commission Regulations for Effluent Limitations, Section 62.4, and the Colorado Discharge Permit System Regulations, Sections 61.8(2), 61.8(3)(n), and 61.8(3)(r), 5 C.C.R. 1002-61, the permittee shall continue to implement the following limitations, compliance schedules, and Best Management Practices (BMPs).

The attainment of applicable water quality standards will be implemented and evaluated through the application of the following limitations, compliance schedules, and BMPs that are designed to monitor and control the groundwater quality and quantity discharging from the West Pit to the Rito Seco alluvial aquifer.

Specifically, the limitations, compliance schedules, and BMPs are those activities that address contaminated groundwater that may flow into the Rito Seco. This includes: (1) the potential flow of the affected groundwater from the West Pit that, in the past, manifested itself in the formation of the surface seeps along the arroyo sidewall of the Rito Seco, and (2) the plume of affected groundwater within the Rito Seco alluvial aquifer downgradient of the West Pit that flows along the naturally occurring hydraulic gradient and that may flow into the Rito Seco. The activities will include the following specific requirements:

 The elevation of the groundwater table in the vicinity of the West Pit shall be measured on a weekly basis at the following locations: (i) the West Pit backfill wells BF-4 and BF-5 and (ii) the Rito Seco alluvial wells M-16 and M-20, as shown in Figure 3 of the permit, for purposes of determining the performance of the "pump and treat" system that regulates the flow and quality of the groundwater in the seepage front. The permittee shall also determine on a quarterly basis the elevations of the groundwater table at BF-3, BF-4, BF-5, BF-6, M-11R, M-16, M-17, M-18, M-19, M-20, M-21, M-22, M-23, M-24, M-25, M-26, M-27, M-28, M-29, M-30, M-31, M-32, and M-33 for the purpose of developing a groundwater potentiometric map as monitoring confirmation of the groundwater flow direction. The quarterly data regarding depth to groundwater and groundwater potentiometric surface map will be submitted to the WQCD with the BMP report as described.

Compliance Action Taken: Battle Mountain Resources, Inc. measured the weekly West Pit backfill and alluvial wells as required under Paragraph 1 of the specific requirements. Measurements obtained for the weekly West Pit backfill wells (BF-4 and BF-5R) and alluvial wells (M-16 and M-20) are shown in Table 1. The quarterly groundwater elevations required under Paragraph 1 were also measured and are shown in Table 2. A potentiometric surface map, developed by Engineering Analytics, is shown in Figure 1. The groundwater table elevations and potentiometric map confirm that the groundwater flow gradient during the third quarter of 2021 was from the Rito Seco to the West Pit. No corrective action is required under Paragraph 1 specific requirement and scheduled compliance monitoring will continue unchanged next quarter.

Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)
	07/07/2021	8579.35
	07/14/2021	8579.22
	07/21/2021	8579.23
	07/28/2021	8579.29
	08/04/2021	8579.31
	08/11/2021	8579.32
BF-4	08/18/2021	8579.28
	08/25/2021	8579.23
	09/01/2021	8579.26
	09/08/2021	8579.26
	09/15/2021	8579.26
	09/22/2021	8579.27
	09/29/2021	8579.27
	07/07/2021	8579.11
	07/14/2021	8579.02
	07/21/2021	8579.02
	07/28/2021	8579.05
	08/04/2021	8579.09
	08/11/2021	8579.10
BF-5R	08/18/2021	8579.04
	08/25/2021	8579.04
	09/01/2021	8579.04
	09/08/2021	8579.05
	09/15/2021	8579.07
	09/22/2021	8579.08
	09/29/2021	8579.08

Table 1 - Weekly Groundwater Elevations

Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)
	07/07/2021	8602.68
	07/14/2021	8602.35
	07/21/2021	8602.17
	07/28/2021	8602.01
	08/04/2021	8601.89
- Alts	08/11/2021	8601.47
M-16	08/18/2021	8601.46
	08/25/2021	8601.27
	09/01/2021	8601.16
	09/08/2021	8601.04
	09/15/2021	8600.95
	09/22/2021	8600.89
1	09/29/2021	8600.86
	07/07/2021	8580.35
	07/14/2021	8580.19
	07/21/2021	8580.14
	07/28/2021	8580.10
	08/04/2021	8580.14
	08/11/2021	8580.09
M-20	08/18/2021	8580.03
	08/25/2021	8580.21
	09/01/2021	8580.17
	09/08/2021	8580.19
	09/15/2021	8580,19
	09/22/2021	8580.28
	09/29/2021	8580.36

Table 1 - Weekly Groundwater Elevations (continued)

Table 2 - Quarterly Groundwater Elevations

Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)
BF-3	07/29/2021	8578.09
BF-4	07/29/2021	8579.29
BF-5R	07/29/2021	8579.05
BF-6	07/29/2021	8578.99
M-11R	07/29/2021	8551.52
M-16	07/29/2021	8601.99
M-17	07/29/2021	8586.99
M-18	07/29/2021	8579.40
M-19	07/29/2021	8580.55
M-20	07/29/2021	8580.11
M-21	07/29/2021	8577.36
M-22	07/29/2021	8572.94
M-23	07/29/2021	8557.05
M-24	07/29/2021	8560.09
M-25	07/29/2021	8541.59
M-26	07/29/2021	8544.49
M-27	07/29/2021	DRY
M-28	07/29/2021	8579.76
M-29	07/29/2021	8580.27
M-30	07/29/2021	8610.65
M-31	07/29/2021	8551.14
M-32	07/29/2021	8530.15
M-33	07/29/2021	8529.39

2) The weekly groundwater table elevation data shall be tabulated and reported on the quarterly BMP reports, and the data will be used to evaluate compliance with the following permit limitations.

The groundwater table elevation, based on the average of all measured values for each calendar month in the West Pit backfill groundwater monitoring wells BF-4 and BF-5, must be equal to or lower than an elevation of 8582 feet above sea level (ft. amsl).

Compliance Action Taken: Battle Mountain Resources, Inc. measured the West Pit backfill monitoring wells (BF-4 and BF-5R) weekly and the measurements are shown in Table 1. The groundwater measurements for wells BF-4 and BF-5R were averaged by calendar month and the results are shown in Table 3. The July, August, September 2021 averages were below the 8582 fl. amsl required in Paragraph 2. No corrective action is required under the Paragraph 2 requirement and schedule compliance monitoring will continue unchanged next quarter.

Monitoring Well Identification	Month (2021)	Number of Observations	Average Monthly Groundwater Elevation (ft amsl)
and a strain of	July	4	8579.27
BF-4	August	4	8579.29
	September	5	8579.26
	July	- 4	8579.05
BF-5R	August	4	8579.07
	September	5	8579.06

3) If the average monthly groundwater table elevation in the West Pit backfill for any calendar month, measured as described in the above paragraph, is greater than 8582 ft. amsl or the quarterly determination of the groundwater potentiometric surface map indicates that the flow of the groundwater is from the West Pit to the Rito Seco alluvium, the permittee shall verbally communicate such condition to WQCD within 24 hours of the determination of the condition (elevated West Pit backfill table or groundwater flow from the West Pit as indicated by the quarterly groundwater potentiometric surface map) and initiate the following compliance schedule.

Compliance Action Taken: Battle Mountain Resources, Inc. measured the West Pit backfill monitoring wells (BF-4 and BF-5R) weekly and the calendar month average groundwater measurement elevations (Table 3) were below the 8582 ft. amsl required in Paragraph 2. The July 29, 2021, potentiometric surface map (Figure 1) shows the groundwater flow gradient was from the Rito Seco alluvium to the West Pit backfill. Therefore, site operations demonstrated the West Pit backfill groundwater level was maintained at or below an elevation of 8582 ft. amsl through the quarter. Therefore, no requirement(s) to initiate actions contained within the schedule of compliance for Section 5.3 is required.

4) The quality of groundwater in the vicinity of the West Pit shall be monitored on a monthly basis in the Rito Seco alluvial groundwater monitoring wells M-19, M-21, M-24 and M-11R for the purposes of monitoring the changes in the quality of the plume or affected groundwater in the Rito Seco alluvial aquifer. Groundwater quality in these monitoring wells will be analyzed for pH, temperature, total dissolved solids, calcium, sulfate, manganese, fluoride, copper, and iron for the purpose of evaluating the status of the groundwater quality in the downgradient groundwater plume. The groundwater quality data will be summarized and transmitted to the WQCD in the quarterly BMP report required under Part I, Section E.1 of this permit.

Compliance Action Taken: Battle Mountain Resources, Inc. collected monthly groundwater samples in the vicinity of the West Pit backfill area from Rito Seco alluvial monitoring wells M-19, M-21, M-24 and M-11R. No corrective action is required under the Paragraph 4 specific requirement and scheduled compliance monitoring will continue unchanged next quarter.

4

Kandata	Reporting Units	Sample	Monitoring Well Identifier			1
Analyte		Date	M-11R	M-19	M-21	M-24
		07/07/2021	7.13	6.52	6.68	6.95
pH	SU	08/02/2021	7.13	6.52	6.81	6.96
		09/01/2021	7.21	6.57	6.83	6.98
the second s		07/07/2021	9.7	9.6	8.3	9.0
Temperature	°C	08/02/2021	9.6	7.5	9.8	8.6
The Contract Chine		09/01/2021	10.6	7.7	10.6	9.5
		07/07/2021	66.9	19.2	29.2	86.0
Calcium, Total	mg/L	08/02/2021	75.7	20.5	31.8	93.3
		09/01/2021	77.5	20.7	32.0	92.0
		07/07/2021	LT 0.002	LT 0.002	LT 0.002	LT 0.002
Copper, Dissolved	mg/L	08/02/2021	LT 0.002	LT 0.002	LT 0.002	LT 0.003
		09/01/2021	LT 0.002	LT 0.002	LT 0.002	LT 0.002
		07/07/2021	0.847	0.819	1.31	0.657
Fluoride	mg/L	08/02/2021	0.803	0.783	1.24	0.619
		09/01/2021	0.923	0.804	1,49	LT 1.25
		07/07/2021	LT 0.15	LT 0.15	LT 0.15	4.49
Iron, Dissolved	mg/L	08/02/2021	LT 0.15	LT 0.15	LT 0.15	4.78
	1.000	09/01/2021	LT 0.15	LT 0.15	LT 0.15	4,77
		07/07/2021	0.133	0.234	0.313	0.929
Manganese, Dissolved	mg/L	08/02/2021	0.148	0.231	0.339	0.959
		09/01/2021	0.196	0.245	0.359	0.956
1.4		07/07/2021	82.5	6.30	10.3	159
Sulfate	mg/L	08/02/2021	94.2	5.66	10.4	172
		09/01/2021	105	4.49	9.82	162
		07/07/2021	308	92	136	450
Total Dissolved Solids	mg/L	08/02/2021	326	96	144	472
and the second second		09/01/2021	344	96	150	468

Table 4 - Rito Seco Alluvial Groundwater Quality Summary

5) The historical seeps were caused by the plume of affected groundwater and may, in the future, also be caused by natural variation in the flow of groundwater in the vicinity of the area where the past seeps occurred. The permittee shall conduct a monthly visual inspection of the area of historical seeps and the permittee shall report any seepage flow that is associated with the area historic seepage expression, as is identified in Figure 2 of the permit. Results of the seep monitoring shall be tabulated and summarized in the quarterly BMP report.

If these inspections identified the occurrence of seeps, the permittee will be required to communicate verbally to the WQCD within 24 hours of the seepage observation, followed by written notification within 7 calendar days of the seepage observation. Verbal updates will then be provided to the WQCD every second day thereafter until the WQCD has made a determination regarding the status of the West Pit groundwater control system through the implementation of the following compliance schedule.

Compliance Action Taken: Battle Mountain Resources, Inc. performed monthly visual seepage expression inspections in the historic seepage area identified in Figure 2 of the permit. Visual observations during these inspections are shown in Table 5. No seepage expressions were observed in the historic seepage area during the third quarter of 2021. Therefore, no verbal or written notifications were required and the implementation of the compliance schedule was not required. No corrective action is required under the Paragraph 5 specific requirement and scheduled compliance monitoring will continue unchanged next quarter.

Visual nspection Date	Was Visual Observation of Seepage Determined in the Area of the Historic Seepage Expression	Comments
07/29/2021	No	All Dry
08/31/2021	No	All Dry
09/30/2021	No	All Dry

Table 5 - Monthly Seepage Expression Inspection Tabulation

6) The BMP for the groundwater flow downgradient from the groundwater divide (see section VI.A.2 for the Rationale) that has been developed in the Rito Seco alluvial aquifer consists of a groundwater capture system in conjunction with groundwater table elevation control in the West Pit. The water management plan for the Rito Seco alluvial aquifer consists of pumping two groundwater capture wells (M-32 and M-33) located downgradient of the plume of affected groundwater. This action will allow flushing of constituents in the groundwater of the Rito Seco alluvial aquifer in that portion (plume) of the aquifer affected by previous flow of groundwater from the West Pit. Measurements of the groundwater table elevations will be taken on a weekly basis from M-32 and M-33. This data shall be tabulated and reported for outfall 002 on the quarterly BMP report, and the data will be used to evaluate compliance with the following permit limitation.

The groundwater table elevation, based on the average of all measured values for each calendar month at M-32 and M-33 in the Rito Seco alluvial aquifer, must be equal to or lower than an elevation of 8540 ft. amsl.

If the average monthly groundwater table elevations measured in the Rito Seco alluvial aquifer at M-32 and M-33 is greater than 8540 ft. amsl, the permitee shall initiate the following compliance schedule within 24 hours of the determination of groundwater table elevation exceedance.

Compliance Action Taken: Battle Mountain Resources. Inc. measured the alluvial aquifer monitoring wells (M-32 and M-33) weekly and the resulting elevations are presented in Table 6. The groundwater elevations for wells M-32 and M-33 were averaged by calendar month and the results are shown in Table 6. The July, August, September 2021 averages were below the 8540 ft. amsl required under Paragraph 6. Therefore, site operations were in full compliance of Part I, Section 5.5 and there were no requirements(s) to initiate actions contained within the schedule of compliance for Section 5.5. No corrective action is required under Paragraph 6 specific requirement and scheduled compliance monitoring will continue unchanged next quarter.

Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)	Month (2021)	Average Monthly Groundwater Elevation (ft amsl)
	07/07/21	8531.11		
	07/14/21	8531.21	July	
	07/21/21	8531.19		8530.92
	07/28/21	8530.96		a second second second second
	07/29/21	8530.15		
M-32	08/04/21	8530.78		
	08/11/21	8530.55		
	08/18/21	8530.72	August	8530.56
	08/25/21	8530.36		100 - 210
	08/31/21	8530.38		1

Table 6 - Weekly/Monthly Rito Seco Alluvial Aquifer Average Groundwater Table Elevation	Table 6	- Weekly/Me	onthly Rito Seco	Alluvial Aquifer	Average Ground	lwater Table Elevations
---	---------	-------------	------------------	------------------	----------------	-------------------------

Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)	Month (2021)	Average Monthly Groundwater Elevation (ft amsl)
	09/01/21	8530.32		1
	09/08/21	8530.68		
M-32	09/15/21	8530.84		9520 42
WI-52	09/22/21	8530.25	September	8530.42
	09/29/21	8530.29		
	09/30/21	8530.16		
	07/07/21	8537.33		
	07/14/21	8537.24		8535,88
	07/21/21	8538.67	July	
	07/28/21	8536.76		
	07/29/21	8529.39		
	08/04/21	8531.42		
	08/11/21	8532.40		
44.75	08/18/21	8532.68	August	8532.51
M-33	08/25/21	8532.74		in the second second
	08/31/21	8533.33	1	
	09/01/21	8533.29		
	09/08/21	8533.72		
	09/15/21	8533.73	Calendar	9574.00
	09/22/21	8534.53	September	8534.08
	09/29/21	8534.62		
	09/30/21	8534.60	1	

Table 6 (Cont) - Weekly/Monthly Rito Seco Alluvial Aquifer Average Groundwater Table Elevations

7) The water quality of the Rito Seco will be assessed using surface water quality collected at RS-2, as shown in Figure 3. Surface water monitoring in the Rito Seco shall be conducted at RS-2 on a monthly basis and the laboratory analytical results shall be submitted to the WQCD in the quarterly BMP report. Water quality samples collected at RS-2 shall be analyzed for the following constituents: calcium, magnesium, sodium, potassium, ammonia, total dissolved solids, total hardness, pH, total suspended solids, cyanide (WAD and total), bicarbonate, alkalinity, chloride, sulfate, nitrate-nitrite, fluoride and the total and dissolved concentrations of aluminum, arsenic, barium, boron, cadmium, copper, chromium, iron, lead, manganese, mercury, nickel, selenium, silica, silver and zinc. The following compliance schedule shall be implemented in the event that any constituent exceeds the applicable water quality standards for the Rito Seco.

Compliance Action Taken: Battle Mountain Resources, Inc. collected monthly surface water samples in July, August, September 2021 at location RS-2, as shown in Figure 3 of the permit. Results of analyses performed on these samples are shown in Table 7. The results of the laboratory analytical testing show that the applicable water quality standards were met for the Rito Seco during the months of July, August, September 2021. Site operations were in full compliance of Part I, Section 5.7 and there was no requirement(s) to initiate actions contained within the schedule of compliance for Section 5.7. Scheduled compliance monitoring will continue unchanged next quarter.

Analyte	Reporting Units	07/06/2021	08/02/2021	09/01/2021
Alkalinity	mg/L as CaCO3	.44.2	55.1	52.7
Aluminum, Dissolved	mg/L	LT 0.25	LT 0.25	LT 0.25
Aluminum, Total	mg/L	0.377	2.12	0.892
Ammonia as N	mg/L	LT 0.2	LT 0.2	LT 0.2
Arsenic, Dissolved	mg/L	LT 0.001	LT 0.001	LT 0.001
Arsenic, Total	mg/L	LT 0.001	LT 0.001	LT 0.001
Barium, Dissolved	mg/L	LT 0.035	LT 0.035	0.0357
Barium, Total	mg/L	LT 0.035	0.0470	0.0368
Bicarbonate as CaCO3	mg/L	44.2	55.1	52.7
Boron, Dissolved	mg/L	LT 0.1	LT 0.1	LT 0.1
Boron, Total	mg/L	LT 0.1	LT 0.1	LT 0.1
Cadmium, Dissolved	mg/L	LT 0.00025	LT 0.00025	LT 0.00025
Cadmium, Total	mg/L	LT 0.00025	LT 0.00025	LT 0.00025
Calcium, Total	mg/L	12.4	16.4	17.2
Carbonate as CaCO3	mg/L	LT 20	LT 20	LT 20
Chloride	mg/L	LT 2.0	LT 2.0	3.05
Chromium, Dissolved	mg/L	LT 0.002	LT 0.002	LT 0.002
Chromium, Total	mg/L	LT 0.002	LT 0.002	LT 0.002
Copper, Dissolved	mg/L	LT 0.002	LT 0.002	LT 0.002
Copper, Total	mg/L	LT 0.002	0.00538	LT 0.002
Cyanide, Total	mg/L	LT 0.01	LT 0.05 H	LT 0.01 H
Cyanide, WAD	mg/L	LT 0.01	LT 0.01	LT 0.01
Fluoride	mg/L	0.51	0.50	0.86
Hardness as CaCO3	mg/L	43	51	60
Iron, Dissolved	mg/L	0.191	0.172	0.310
Iron, Total	mg/L	0.677	2.46	1.28
Lead, Dissolved	mg/L	LT 0.0005	LT 0.0005	LT 0.0005
Lead, Total	mg/L	LT 0.0005	0.00196	0.00068
Magnesium, Total	mg/L	3.07	4.21	4.34
Manganese, Dissolved	mg/L	LT 0.05	LT 0.05	LT 0.05
Manganese, Total	mg/L	LT 0.05	0.104	0.100
Mercury, Dissolved	mg/L	LT 0,001	LT 0.001	LT 0.001
Mercury, Total	mg/L	LT 0.001	LT 0.001	LT 0.001
Nickel, Dissolved	mg/L	LT 0,001	LT 0.04	LT 0.04
Nickel, Total	mg/L	LT 0.04	LT 0.04	LT 0.04
Nitrate+Nitrite as N	mg/L	LT 0.1	LT 0.1	LT 0.1
pH	SU	7.28	7.08	7.11
Potassium, Total	mg/L	1.18	1.27	1.33
Selenium, Dissolved	mg/L	LT 0.00025	LT 0.00025	LT 0.00025
Selenium, Total	mg/L	LT 0.00025	LT 0.00025	LT 0.00025
Silica, Total	mg/L	10.7	17.7	13.1
Silver, Dissolved	mg/L	LT 0.0005	LT 0.0005	LT 0.0005
Silver, Total	mg/L	LT 0.0005	LT 0.0005	LT 0.0005
Sodium, Total	mg/L	3.96	3.64	6.60
Sulfate	mg/L	5.86	2.77	14.4
Total Dissolved Solids	mg/L	80	96	106
Total Suspended Solids	mg/L	LT 20	40.0	LT 20
Zinc, Dissolved	mg/L	LT 0.05	LT 0.05	LT 0.05
Zinc, Total	mg/L	LT 0.05	LT 0.05	LT 0.05

Table 7 - RS-2 Surface Water Quality Results

8) If any component of the groundwater control system is not performing within the limits set forth in this permit, the permittee will be required to initiate appropriate compliance schedule activities, including the preparation of a response plan, for any and all components of the groundwater control system that do not meet the applicable

requirements. The permittee shall also conduct weekly sampling at RS-2 until such time as the other compliance schedule activity(ies) have been completed.

Compliance Action Taken: As demonstrated by the information and data presented in this report, all components of the groundwater control system performed within the limits set forth in the permit. Therefore, site operations were in full compliance of Part I, Section 8 and there was no requirement(s) to initiate actions contained within the schedule of compliance for Section 8.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is to the best of my knowledge and belief, is true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Name:	Julio Madrid	Signature:	Pulis Find	
1 1 1 1 1 1 -	- Constraints		A.	

Date: _____October 27, 2021

0: \05 San Luis\POTENTIOMETRIC MAPS\GW Map 2021 3rd qtr\Groundwater 2021 3rd Qtr.dwg SAVED:6/30/21 PRINTED:10/18/21

Battle Mountain Resources, Inc. San Luis Gold Project - Discharge Permit CO-0045675 Wastewater Treatment Plant - 2021 Influent Analytical Results Summary

	Reporting	POND1 08/03/2021	
Analyte	Units		
Aluminum. Total Recoverable	mg/L	LT 0.015	
Arsenic, Total	mg/L	LT 0.001	
Arsenic, Total Recoverable	mg/L	LT 0.001	
Cadmium, Potentially Dissolved	mg/L	LT 0.00025	
Chloride	mg/L	4.19	
Chromium, Total Recoverable	mg/L	LT 0.002	
Copper, Potentially Dissolved	mg/L	LT 0.002	
Cyanide, WAD	mg/L	LT 0.01	
Fluoride	mg/L	2.74	
Iron, Dissolved	mg/L	LT 0.15	
Iron, Total Recoverable	mg/L	LT 0.15	
Lead, Potentially Dissolved	mg/L	LT 0.0005	
Manganese, Dissolved	mg/L	0.870	
Mercury, Total	mg/L	LT 0.001	
Mercury, Total (Low Level)	ng/L	LT 1.0	
Molybdenum, Total Recoverable	mg/L	0.0270	
Nickel, Potentially Dissolved	mg/L	LT 0.001	
Nitrogen, ammonia	mg/L	LT 0.2	
Radium 226/228	pCi/L	LT 4.78	
Selenium, Potentially Dissolved	mg/L	LT 0.00025	
Silver, Potentially Dissolved	mg/L	LT 0.0005	
Sulfate	mg/L	102	
Sulfide	mg/L	LT 0.1	
Total Dissolved Solids	mg/L	340	
Total Suspended Solids	mg/L	LT 20	
Uranium, Potentially Dissolved	mg/L	0.0159	
Zine, Potentially Dissolved	mg/L	LT 0.015	

Battle Mountain Resources, Inc. San Luis Project P.O. Box 310 San Luis, Colorado 81152-0310 (719) 379-0798

January 26, 2022

Received FEB 0 9 2022 Water Quality Control

Colorado Department of Public Health and Environment Water Quality Control Division Attn: WQDC-B2 – DMR Receipt 4300 Cherry Creek Drive Denver, CO 80246-1530

Re: Battle Mountain Resources, Inc. San Luis Project - San Luis, Colorado Fourth Quarter 2021 – DMR's, BMP and WET Testing Reports CDPHE CDPS Permit No. CO0045675

Dear Sir or Madame:

Please find the enclosed Battle Mountain Resources, Inc. "San Luis Project" (Permit No. CO0045675) Colorado Department of Public Health and Environment-Colorado Discharge Permit System (CDPS) Best Management Practices (BMP) report for permitted outfall 002 for the fourth quarter 2021. The quarterly BMP report provides the required data associated with groundwater well elevations, the quarterly potentiometric surface map and groundwater well chemistry.

In addition, the fourth quarter 2021 Discharge Monitoring Reports (DMRs) were submitted for each of the permitted water treatment plant discharges in the NetDMR System and the WET Testing Reports were attached to the appropriate DMR submittal in NetDMR. These permitted discharges consist of water treatment plant Discharge Numbers 001-A and 001-B. During the quarter, the maximum 30-day average flow was 0.25 million gallons of water discharged per day, therefore the applicable permit criteria for the reporting period is associated with discharge number 001-B.

Should any questions arise or if I can be of any assistance providing clarification, please call me at (719) 379-0538.

Sincerely,

Julio Madrid Authorized Agent Battle Mountain Resources, Inc.

Cc: BMRI File Devon Horntvedt, Newmont USA Limited Lawrence Fiske, Newmont USA Limited Tim Runnells, Engineering Analytics Alan Fosdick, Engineering Analytics Battle Mountain Resources, Inc. San Luis Project P.O. Box 310 San Luis, Colorado 81152-0310 (719) 379-0798

Received FEB 0 9 2022 Water Quality Control

January 26, 2022

Colorado Department of Public Health and Environment Water Quality Control Division Attn: WQDC-B2 – DMR Receipt 4300 Cherry Creek Drive Denver, CO 80246-1530

Re: Battle Mountain Resources, Inc. San Luis Project Fourth Quarter 2021 BMP Report CDPHE CDPS Permit No. CO0045675

Dear Sir or Madame:

In accordance with and compliance of the permit limitations and permit terms and conditions contained in Part I, Section 5 Discharge Point 002: (Permit Limitations, Best Management Practices, and Schedule of Compliance of the State of Colorado Authorization to Discharge Under the Colorado Discharge Permit System, Battle Mountain Resources, Inc. submits the following Quarterly Best Management Practices Report.

In accordance with the Water Quality Control Commission Regulations for Effluent Limitations, Section 62.4, and the Colorado Discharge Permit System Regulations, Sections 61.8(2), 61.8(3)(n), and 61.8(3)(r), 5 C.C.R. 1002-61, the permittee shall continue to implement the following limitations, compliance schedules, and Best Management Practices (BMPs).

The attainment of applicable water quality standards will be implemented and evaluated through the application of the following limitations, compliance schedules, and BMPs that are designed to monitor and control the groundwater quality and quantity discharging from the West Pit to the Rito Seco alluvial aquifer.

Specifically, the limitations, compliance schedules, and BMPs are those activities that address contaminated groundwater that may flow into the Rito Seco. This includes: (1) the potential flow of the affected groundwater from the West Pit that, in the past, manifested itself in the formation of the surface seeps along the arroyo sidewall of the Rito Seco, and (2) the plume of affected groundwater within the Rito Seco alluvial aquifer downgradient of the West Pit that flows along the naturally occurring hydraulic gradient and that may flow into the Rito Seco. The activities will include the following specific requirements:

 The elevation of the groundwater table in the vicinity of the West Pit shall be measured on a weekly basis at the following locations: (i) the West Pit backfill wells BF-4 and BF-5 and (ii) the Rito Seco alluvial wells M-16 and M-20, as shown in Figure 3 of the permit, for purposes of determining the performance of the "pump and treat" system that regulates the flow and quality of the groundwater in the seepage front. The permittee shall

E4. Inc January 26, 2022 also determine on a quarterly basis the elevations of the groundwater table at BF-3, BF-4, BF-5, BF-6, M-11R, M-16, M-17, M-18, M-19, M-20, M-21, M-22, M-23, M-24, M-25, M-26, M-27, M-28, M-29, M-30, M-31, M-32, and M-33 for the purpose of developing a groundwater potentiometric map as monitoring confirmation of the groundwater flow direction. The quarterly data regarding depth to groundwater and groundwater potentiometric surface map will be submitted to the WQCD with the BMP report as described.

Compliance Action Taken: Battle Mountain Resources, Inc. measured the weekly West Pit backfill and alluvial wells as required under Paragraph 1 of the specific requirements. Measurements obtained for the weekly West Pit backfill wells (BF-4 and BF-5R) and alluvial wells (M-16 and M-20) are shown in Table 1. The quarterly groundwater elevations required under Paragraph 1 were also measured and are shown in Table 2. A potentiometric surface map, developed by Engineering Analytics, is shown in Figure 1. The groundwater table elevations and potentiometric map confirm that the groundwater flow gradient during the fourth quarter of 2021 was from the Rito Seco to the West Pit. No corrective action is required under Paragraph 1 specific requirement and scheduled compliance monitoring will continue unchanged next quarter.

Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)
	10/06/2021	8579.29
	10/13/2021	8579.26
	10/20/2021	8579.26
	10/27/2021	8579.31
	11/03/2021	8579.34
	11/10/2021	8579.32
BF-4	11/17/2021	8579.34
	11/24/2021	8579.28
	12/01/2021	8579.23
	12/08/2021	8579.25
	12/15/2021	8579.34
	12/22/2021	8579.26
	12/29/2021	8579.40
	10/06/2021	8579.06
	10/13/2021	8579.08
	10/20/2021	8579.04
	10/27/2021	8579.11
	11/03/2021	8579.11
	11/10/2021	8579.12
BF-5R	11/17/2021	8579.10
	11/24/2021	8579.09
11-	12/01/2021	8579.03
	12/08/2021	8579.05
	12/15/2021	8579.15
	12/22/2021	8579.06
	12/29/2021	8579.17

Table 1 - Weekly Groundwater Elevations

Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)
	10/06/2021	8600.86
	10/13/2021	8600.76
	10/20/2021	8600.86
	10/27/2021	8601.03
	11/03/2021	8601.11
	11/10/2021	8601.17
M-16	11/17/2021	8601.18
	11/24/2021	8601.18
	12/01/2021	8601.18
	12/08/2021	8601.12
	12/15/2021	8601.03
the second se	12/22/2021	8600.95
	12/29/2021	8600.88
	10/06/2021	8580.43
	10/13/2021	8580.43
	10/20/2021	8580.44
	10/27/2021	8580.49
	11/03/2021	8580.50
	11/10/2021	8580.54
M-20	11/17/2021	8580.53
	11/24/2021	8580.42
	12/01/2021	8580.32
	12/08/2021	8580.25
	12/15/2021	8580.16
	12/22/2021	8580.09
	12/29/2021	8580.05

Table 1 - Weekly Groundwater Elevations (continued)

Table 2 - Quarterly Groundwater Elevations

Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)
BF-3	10/29/2021	8578.11
BF-4	10/29/2021	8579.33
BF-5R	10/29/2021	8579.10
BF-6	10/29/2021	8579.01
M-11R	10/29/2021	8551.42
M-16	10/29/2021	8601.04
M-17	10/29/2021	8587.08
M-18	10/29/2021	8580.28
M-19	10/29/2021	8581.23
M-20	10/29/2021	8580.50
M-21	10/29/2021	8577.57
M-22	10/29/2021	8573.10
M-23	10/29/2021	8556.63
M-24	10/29/2021	8559.82
M-25	10/29/2021	8541.50
M-26	10/29/2021	8544.79
M-27	10/29/2021	DRY
M-28	10/29/2021	8580.33
M-29	10/29/2021	8580.86
M-30	10/29/2021	8608.99
M-31	10/29/2021	8551.01
M-32	10/29/2021	8530.70
M-33	10/29/2021	8535.21

 The weekly groundwater table elevation data shall be tabulated and reported on the quarterly BMP reports, and the data will be used to evaluate compliance with the following permit limitations.

The groundwater table elevation, based on the average of all measured values for each calendar month in the West Pit backfill groundwater monitoring wells BF-4 and BF-5, must be equal to or lower than an elevation of 8582 feet above sea level (ft. amsl).

Compliance Action Taken: Battle Mountain Resources, Inc. measured the West Pit backfill monitoring wells (BF-4 and BF-5R) weekly and the measurements are shown in Table 1. The groundwater measurements for wells BF-4 and BF-5R were averaged by calendar month and the results are shown in Table 3. The October, November, December 2021 averages were below the 8582 ft. amsl required in Paragraph 2. No corrective action is required under the Paragraph 2 requirement and schedule compliance monitoring will continue unchanged next quarter.

Monitoring Well Identification	Month (2021)	Number of Observations	Average Monthly Groundwater Elevation (ft amsl)
	October	4	8579.28
BF-4	November	4	8579.32
	December	5	8579.30
	October	4	8579.07
BF-5R	November	4	8579.11
	December	5	8579.09

Table 3 - Quarterly West Pit Backfill Monthly Average Groundwater Table Elevations

3) If the average monthly groundwater table elevation in the West Pit backfill for any calendar month, measured as described in the above paragraph, is greater than 8582 ft. amsl or the quarterly determination of the groundwater potentiometric surface map indicates that the flow of the groundwater is from the West Pit to the Rito Seco alluvium, the permittee shall verbally communicate such condition to WQCD within 24 hours of the determination of the condition (elevated West Pit backfill table or groundwater flow from the West Pit as indicated by the quarterly groundwater potentiometric surface map) and initiate the following compliance schedule.

Compliance Action Taken: Battle Mountain Resources, Inc. measured the West Pit backfill monitoring wells (BF-4 and BF-5R) weekly and the calendar month average groundwater measurement elevations (Table 3) were below the 8582 ft. amsl required in Paragraph 2. The October 29, 2021, potentiometric surface map (Figure 1) shows the groundwater flow gradient was from the Rito Seco alluvium to the West Pit backfill. Therefore, site operations demonstrated the West Pit backfill groundwater level was maintained at or below an elevation of 8582 ft. amsl through the quarter. Therefore, no requirement(s) to initiate actions contained within the schedule of compliance for Section 5.3 is required.

4) The quality of groundwater in the vicinity of the West Pit shall be monitored on a monthly basis in the Rito Seco alluvial groundwater monitoring wells M-19, M-21, M-24 and M-11R for the purposes of monitoring the changes in the quality of the plume or affected groundwater in the Rito Seco alluvial aquifer. Groundwater quality in these monitoring wells will be analyzed for pH, temperature, total dissolved solids, calcium, sulfate, manganese, fluoride, copper, and iron for the purpose of evaluating the status of the groundwater quality in the downgradient groundwater plume. The groundwater quality data will be summarized and transmitted to the WQCD in the quarterly BMP report required under Part I, Section E.1 of this permit.

Compliance Action Taken: Battle Mountain Resources, Inc. collected monthly groundwater samples in the vicinity of the West Pit backfill area from Rito Seco alluvial monitoring wells M-19, M-21, M-24 and M-11R. No corrective action is required under the Paragraph 4 specific requirement and scheduled compliance monitoring will continue unchanged next quarter.

Analyta	Reporting	Sample	Sample Monitoring We			
Analyte	Units	Date	M-11R	M-19	M-21	M-24
	1	10/05/2021	7.20	6.47	6.71	6.93
pH	SU	11/01/2021	7.17	6.65	6.80	6.92
		12/06/2021	7.14	6.70	6.84	6.95
		10/05/2021	10.0	8.5	8.8	9.5
Temperature	°C	11/01/2021	9.6	9.0	8.4	9.0
	1	12/06/2021	9.5	9.5	8.0	8.6
and the second second		10/05/2021	68.8	22.1	31.7	89.1
Calcium, Total	mg/L	11/01/2021	66.1	21.5	31.3	89.5
and the second second	-	12/06/2021	87.4	24.1	33.7	91.8
		10/05/2021	LT 0.002	LT 0.002	LT 0.002	LT 0.002
Copper. Dissolved	mg/L	11/01/2021	LT 0.002	LT 0.002	LT 0.002	LT 0.003
	0.50	12/06/2021	LT 0.002	LT 0.002	LT 0.002	LT 0.002
		10/05/2021	0.90711	0.864 H	1.37 11	0.73811
Fluoride	mg/L	11/01/2021	1.03	0.973	1.49	LT 1.25
		12/06/2021	0.956	0.969	1.51	0.830
the second s		10/05/2021	LT 0.15	LT 0.15	LT 0.15	5.00
Iron. Dissolved	mg/L	11/01/2021	LT 0.15	LT 0.15	LT 0.15	4.77
A. Lake I. C. Sandaraha	and the second	12/06/2021	LT 0.15	LT 0.15	LT 0.15	4.53
		10/05/2021	0.186	0.161	0.383	1.03
Manganese, Dissolved	mg/L	11/01/2021	0.146	0.208	0.365	0.965
		12/06/2021	0.226	0.141	0.365	0.943
		10/05/2021	83.7 H	4.81 H	10.4 H	16611
Sulfate	mg/L	11/01/2021	83.5	6.19	11.0	179
		12/06/2021	130	10.4	11.1	177
		10/05/2021	288	104	132	448
Total Dissolved Solids	mg/L	11/01/2021	298	106	138	460
	-	12/06/2021	360	102	136	440

Table 4 - Rito Seco Alluvial Groundwater Quality Summary

H = Sample analysis was performed outside of analytical method holding times. The subsequent month sample was already collected prior to the laboratory missing the holding time, so the sample was not recollected. Results from the samples analyzed outside of holding times were consistent with previous results and subsequent sampling results.

5) The historical seeps were caused by the plume of affected groundwater and may, in the future, also be caused by natural variation in the flow of groundwater in the vicinity of the area where the past seeps occurred. The permittee shall conduct a monthly visual inspection of the area of historical seeps and the permittee shall report any seepage flow that is associated with the area historic seepage expression, as is identified in Figure 2 of the permit. Results of the seep monitoring shall be tabulated and summarized in the quarterly BMP report.

If these inspections identified the occurrence of seeps, the permittee will be required to communicate verbally to the WQCD within 24 hours of the seepage observation, followed by written notification within 7 calendar days of the seepage observation. Verbal updates will then be provided to the WQCD every second day thereafter until the WQCD has made a determination regarding the status of the West Pit groundwater control system through the implementation of the following compliance schedule.

Compliance Action Taken: Battle Mountain Resources, Inc. performed monthly visual seepage expression inspections in the historic seepage area identified in Figure 2 of the permit. Visual observations during these inspections are shown in Table 5. No seepage expressions were observed in the historic seepage area during the fourth quarter of 2021. Therefore, no verbal or written notifications were required and the implementation of the compliance schedule was not required. No corrective action is required under the Paragraph 5 specific requirement and scheduled compliance monitoring will continue unchanged next quarter.

Visual Inspection Date	Was Visual Observation of Seepage Determined in the Area of the Historic Seepage Expression	Comments
10/27/2021	No	All Dry
11/30/2021	No	All Dry
12/30/2021	No	All Dry

Table 5 - Monthly Seepage Expression Inspection Tabulation

6) The BMP for the groundwater flow downgradient from the groundwater divide (see section VI.A.2 for the Rationale) that has been developed in the Rito Seco alluvial aquifer consists of a groundwater capture system in conjunction with groundwater table elevation control in the West Pit. The water management plan for the Rito Seco alluvial aquifer consists of pumping two groundwater capture wells (M-32 and M-33) located downgradient of the plume of affected groundwater. This action will allow flushing of constituents in the groundwater of the Rito Seco alluvial aquifer in that portion (plume) of the aquifer affected by previous flow of groundwater from the West Pit. Measurements of the groundwater table elevations will be taken on a weekly basis from M-32 and M-33. This data shall be tabulated and reported for outfall 002 on the quarterly BMP report, and the data will be used to evaluate compliance with the following permit limitation.

The groundwater table elevation, based on the average of all measured values for each calendar month at M-32 and M-33 in the Rito Seco alluvial aquifer, must be equal to or lower than an elevation of 8540 ft. amsl,

If the average monthly groundwater table elevations measured in the Rito Seco alluvial aquifer at M-32 and M-33 is greater than 8540 ft. amsl, the permitee shall initiate the following compliance schedule within 24 hours of the determination of groundwater table elevation exceedance.

Compliance Action Taken: Battle Mountain Resources, Inc. measured the alluvial aquifer monitoring wells (M-32 and M-33) weekly and the resulting elevations are presented in Table 6. The groundwater elevations for wells M-32 and M-33 were averaged by calendar month and the results are shown in Table 6. The October, November, December 2021 averages were below the 8540 ft. amsl required under Paragraph 6. Therefore, site operations were in full compliance of Part I, Section 5.5 and there were no requirements(s) to initiate actions contained within the schedule of compliance for Section 5.5. No corrective action is required under Paragraph 6 specific requirement and scheduled compliance monitoring will continue unchanged next quarter.

Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)	Month (2021)	Average Monthly Groundwater Elevatior (ft amsl)
	10/06/2021	8530.30		
	10/13/2021	8530.51		
	10/20/2021	8530.29	October	8530,42
	10/27/2021	8530.32		
M-32	10/29/2021	8530.70		
NI-32	11/03/2021	8530.58		
	11/10/2021	8528.98		
	11/17/2021	8528.71	November	8529.11
	11/24/2021	8528.89		
	11/30/2021	8528.37		

Table 6 – Weekly/Monthly Rito Seco Alluvial Aquifer Average Groundwater Table Elevations	Table 6 -	- Weekly/	Monthly Ri	to Seco Alluvia	al Aquifer Av	erage Groundwater	Table Elevations
--	-----------	-----------	------------	-----------------	---------------	-------------------	------------------

Monitoring Well Identification	Observation Date	Groundwater Elevation (ft amsl)	Month (2021)	Average Monthly Groundwater Elevation (ft amsl)	
M-32	12/01/2021	8528.36			
	12/08/2021	8528.56	1	8529.78	
	12/15/2021	8530.61	Develop		
	12/22/2021	8530.96	December		
	12/29/2021	8530.14	· · · · · · · · ·		
	12/30/2021	8530.02			
a state of the second se	10/06/2021	8534.76		8535.03	
	10/13/2021	8534.94	Óctober		
	10/20/2021	8535.06			
	10/27/2021	8535.20			
	10/29/2021	8535.21			
	11/03/2021	8535.37		8536.64	
	11/10/2021	8538.04	1		
N 22	11/17/2021	8536.67	November		
M-33	11/24/2021	8536.59			
	11/30/2021	8536.52			
	12/01/2021	8536.50		8520.02	
	12/08/2021	8527.14	1		
	12/15/2021	8534.61	Durahun		
	12/22/2021	8529.08	December	8530.03	
	12/29/2021	8526,43			
	12/30/2021	8526.42			

Table 6 (Cont) - Weekly/Monthly Rito Seco Alluvial Aquifer Average Groundwater Table Elevations

7) The water quality of the Rito Seco will be assessed using surface water quality collected at RS-2, as shown in Figure 3. Surface water monitoring in the Rito Seco shall be conducted at RS-2 on a monthly basis and the laboratory analytical results shall be submitted to the WQCD in the quarterly BMP report. Water quality samples collected at RS-2 shall be analyzed for the following constituents: calcium, magnesium, sodium, potassium, ammonia, total dissolved solids, total hardness, pH, total suspended solids, cyanide (WAD and total), bicarbonate, alkalinity, chloride, sulfate, nitrate-nitrite, fluoride and the total and dissolved concentrations of aluminum, arsenic, barium, boron, cadmium, copper, chromium, iron, lead, manganese, mercury, nickel, selenium, silica, silver and zinc. The following compliance schedule shall be implemented in the event that any constituent exceeds the applicable water quality standards for the Rito Seco.

Compliance Action Taken: Battle Mountain Resources, Inc. collected monthly surface water samples in October, November, December 2021 at location RS-2, as shown in Figure 3 of the permit. Results of analyses performed on these samples are shown in Table 7. The results of the laboratory analytical testing show that the applicable water quality standards were met for the Rito Seco during the months of October, November, December 2021. Site operations were in full compliance of Part I, Section 5.7 and there was no requirement(s) to initiate actions contained within the schedule of compliance for Section 5.7. Scheduled compliance monitoring will continue unchanged next quarter.

esults
1

Analyte	Reporting Units	10/04/2021	11/01/2021	12/06/2021	
Alkalinity	mg/L as CaCO3	49.1	61.0 H	53.1	
Aluminum, Dissolved	mg/L	LT 0.25	LT 0.25	1.1 0.25	
Aluminum, Total	mg/L	0.299	LT 0.25	LT 0.25	
Ammonia as N	mg/L	LT 0.2	LT 0.2	LT 0.2	
Arsenic, Dissolved	mg/L	LT 0.001	LT 0.001	1.T 0.001	
Arsenic, Total	mg/1.	LT 0.001	LT 0.001	LT 0.001	
Barium, Dissolved	mg/L	LT 0.035	LT 0.035	LT 0.035	
Barium, Total	mg/L	LT 0.035	LT 0.035	LT 0.035	
Bicarbonate as CaCO3	mg/L	49.1	61.0 H	53.1	
Boron, Dissolved	mg/L	LT 0.1	LT 0.1	LT 0.1	
Boron, Total	mg/l.	LT 0.1	LT 0.1	LT 0.1	
Cadmium, Dissolved	mg/l.	LT 0.00025	LT 0.00025	LT 0.00025	
Cadmium, Total	mg/L	LT 0.00025	LT 0.00025	LT 0.00025	
Calcium, Total	mg/L	18.5	17.3	19.0	
Carbonate as CaCO3	mg/L	LT 20	LT 20H	LT 20	
Chloride	mg/L	2.26	LT 2	LT 2	
Chromium, Dissolved	mg/L	LT 0.002	LT 0.002	L1 0.002	
Chromium, Total	mg/L	LT 0.002	LT 0.002	L.T 0.002	
Copper, Dissolved	mg/L	LT 0.002	LT 0.002	LT 0.002	
Copper, Total	mg/L	LT 0.002	LT 0.002	LT 0.002	
Cyanide, Total	mg/L	LT 0.01	LT 0.01	LT 0.01	
Cyanide, WAD	mg/L	LT 0.01	LT 0.01	LT 0.01	
Fluoride	mg/L	0.89	0.54	0.54	
Hardness as CaCO3	mg/L	60	62	65	
Iron, Dissolved	mg/L	0.154	0.234	0.212	
Iron, Total	mg/L	0.620	0.357	0.421	
Lead, Dissolved	mg/L	LT 0.0005	LT 0.0005	LT 0.0005	
Lead, Total	mg/L	LT 0.0005	LT 0.0005	LT 0.0005	
Magnesium, Total	mg/L	4.44	4.60	4.77	
Manganese, Dissolved	mg/L	LT 0.05	LT 0.05	LT 0.05	
Manganese, Total	mg/L	LT 0.05	LT 0.05	LT 0.05	
Mercury, Dissolved	mg/L	LT 0.001	LT 0.001	LT 0.001	
Mercury, Total	mg/L	LT 0.001	LT 0.001	LT 0.001	
Nickel, Dissolved	mg/L	LT 0.001	LT 0.04	LT 0.04	
Nickel, Total	mg/L	LT 0.04	1.T 0.04	LT 0.04	
Nitrate+Nitrite as N	mg/L	LT 0.1	LT 0.1	LT 0.1	
pН	SU	7.37	7.29	7.71	
Potassium, Total	mg/L	1.28	LT I	1.00	
Selenium, Dissolved	mg/L	LT 0.00025	LT 0.00025	LT 0.00025	
Selenium, Total	mg/L	LT 0.00025	LT 0.00025	LT 0.00025	
Silica, Total	mg/L	11.8	9.8	14.2	
Silver, Dissolved	mg/L	LT 0.0005	LT 0.0005	LT 0.0005	
Silver, Total	mg/L	LT 0.0005	LT 0.0005	LT 0.0005	
Sodium, Total	mg/L	7.65	4.15	5.14	
Sulfate	mg/L	20.6	5.49	7.65	
Total Dissolved Solids	mg/L	98	98	88	
Total Suspended Solids	mg/L	LT 20	I.T 20	LT 20	
Zinc, Dissolved	mg/1.	LT 0.05	LT 0.05	LT 0.05	
Zinc, Total	mg/L	LT 0.05	LT 0.05	LT 0.05	

8) If any component of the groundwater control system is not performing within the limits set forth in this permit, the permittee will be required to initiate appropriate compliance schedule activities, including the preparation of a response plan, for any and all components of the groundwater control system that do not meet the applicable

requirements. The permittee shall also conduct weekly sampling at RS-2 until such time as the other compliance schedule activity(ies) have been completed.

Compliance Action Taken: As demonstrated by the information and data presented in this report, all components of the groundwater control system performed within the limits set forth in the permit. Therefore, site operations were in full compliance of Part I, Section 8 and there was no requirement(s) to initiate actions contained within the schedule of compliance for Section 8.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is to the best of my knowledge and belief, is true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Name:	Julio Madrid	Signature:	Julis Fun	
			1	

Date: January 26, 2022

٠

Scanned 82/89/2822

REPORT REQUEST

From: Division of Reclamation, Mining and Safety <<u>dnr_drms_permitadmin@state.co.us</u>
Sent: Monday, February 21, 2022 12:05:58 AM
To: Julio Madrid <<u>Julio.Madrid@newmont.com</u>
Subject: [EXTERNAL] Annual Fee, Report, and Map Due

02/21/22

Annual Fee, Report, and Map Due

Under the terms of your NOI or Permit and Colorado Statutes, you must submit an Annual Fee and Annual Report (including a map). You must pay the Annual Fee and submit an Annual Report each year until reclamation responsibility release is granted. The Annual Fee is not a renewal fee. The Fee and Report are for last year's exploration or mining and reclamation season, and must be paid even if your operation was inactive.

If you have requested reclamation responsibility release from the Division of Reclamation, Mining and Safety ("Division") but release has not been granted by the anniversary date listed below, the Annual Fee, Report and Map must be submitted. If the permit is released before the anniversary date, then by Statute, it is not necessary to pay an Annual Fee or submit an Annual Report for that year. The annual fee, report, and map are due on or before the Anniversary Date for the following operation:

Permit:	M2008076			
ePermit Number:	127925			
Operation Name:	San Luis Project			
Anniversary Date: 03/23/22				
Total Fee Due:	\$1,150.00			

As of January 1, 2018, all annual reports, maps and fees must be filed electronically. If you have not yet set up your ePermitting account, click on the link below to get started:

https://drms.colorado.gov/information/epermitting

If you have already established your ePermitting account, click on the link below to file your report, upload your map, and pay your fee online now.

https://dnrlaserfiche.state.co.us/Forms/DRMSeForms_LandingPage

If you need additional information or have any questions, please contact Lucas West at the Division of Reclamation, Mining and Safety, 1313 Sherman Street, Room 215, Denver, CO 80203, by telephone at (303) 866-3567 x8187, or by email at <u>lucas.west@state.co.us</u>.

2021 SITE MAP

