

February 11, 2022

File #: 2022-013-012-1

Ms. Amy Veek GCC Rio Grande, Inc. 3372 Lime Road Pueblo, CO 81004

Attn: Amy Veek Environmental Engineer

Dear Ms. Veek,

Re: Review Response 2021 Annual Groundwater Report, M2002-004

This letter addresses comments from the Division of Reclamation, Mining and Safety (Division) from Mr. Patrick Lennberg, Environmental Protection Specialist, dated February 10, 2022. For ease of review, each Division comment has been restated in italics immediately followed by the corresponding response.

1. Please clarify, on page 4 the 1st paragraph it does not specifically mention whether or not MW-5 was monitoring in 2021Q1. Was this well monitored in 2021Q1 and if not please provide and explanation.

MW-5 was monitored in 2021Q2 (May 12, 2021) and 2021Q4 (November 18, 2021). It was documented as dry at both monitoring events. It was not monitored in 2021Q1 or 2021Q3; the statement of monitoring at MW-5 in 2021Q3 was a mistake. MW-5, as a water level-only monitoring location unless it wets, is thus only monitored twice-annually. The language in the referenced section has been updated in the corrected report submitted with this letter to specifically state these MW-5 monitoring events are conducted semi-annually per the current SAP (TR-07).

2. On page 10, Groundwater Level section, the discussion references water level within the wells, MW-6 and MW-7, and refers the reader to Figure 2. However, Figure 2 is Stiff Diagrams not water levels. Please clarify if Figure 4 should be referenced instead of Figure 2.

On page 10 in the Groundwater Level section the discussion reference to Figure 2 is incorrect and in fact it should reference Figure 4, the GCC Rio Grande Pueblo Plant Bedrock Groundwater

Hydrograph. The figure number as referenced above has been changed to Figure 4 in the corrected report submitted by email with this letter.

3. Figure 3 graphs, why is there a gap during the 2021 sampling year, it appears the first quarter 2021 data is missing in some of the graphs? Please provide updated graphs as needed.

The 2021Q1 lab data was somehow not uploaded to the Facility environmental database by RHS and thus not included in the database output table which led to it missing from the Figure 3 graphs and Table 1. The Figure 3 graphs and Table 1 have been updated in the corrected report submitted by email with this letter.

4. Attachment 1 Field Sampling Records, most of the completed field sheets are missing the signature of field sampling technician and all of the field sheets are missing the sampling bottle suite collection details. During future sampling please ensure the field forms are completed in their entirety for completeness and consistency.

GCC acknowledges most of the field forms were missing the signature of the contract field sampling technician and that bottle suite collection details were omitted. GCC commits to ensuring the future field forms are completed in their entirety for completeness and accuracy.

Yours sincerely,

Resource Hydrogeologic Services, Inc.

1 1 5 K

Landon Beck Principal Hydrogeologist

Enclosures/Attachments: Corrected 2021 GCC Rio Grande Pueblo Plant Annual Groundwater Report CC: None

2021 GCC RIO GRANDE PUEBLO PLANT ANNUAL GROUNDWATER REPORT

Submitted to: GCC RIO GRANDE, INC.

Date: February 11, 2022

Resource Hydrogeologic Services, Inc.

232 Ute Pass West Durango, CO 81301 Tel: (970) 459-4865 Email info@resourcehydrogeologic.com

TABLE OF CONTENTS

INTRODUCTION	3
GROUNDWATER MONITORING	3
GROUNDWATER MONITORING LOCATIONS	
GROUNDWATER MONITORING DATA COLLECTION	4
GROUNDWATER MONITORING DATA ANALYSIS	5
GROUNDWATER QUALITY	5
QUALITY ASSURANCE/QUALITY CONTROL	7
GROUNDWATER LEVEL	8
RECOMMENDATIONS	9
REFERENCES	. 10
TABLES	. 11
FIGURES	. 14

ATTACHMENT 1 - GCC GROUNDWATER SAMPLING FIELD RECORDS ATTACHMENT 2 - GCC GROUNDWATER SAMPLING ANALYTICAL LAB REPORTS ATTACHMENT 3 - GCC GROUNDWATER SAMPLING LAB DATA VALIDATION REPORT

INTRODUCTION

This Annual Groundwater Report provides a compilation and interpretation of groundwater monitoring data to the Colorado Division of Reclamation, Mining and Safety (CDRMS) for the GCC Rio Grande, Inc. (GCC) Pueblo Cement Plant and Quarry (the facility) and documents groundwater monitoring activities, results and interpretations for 2021. This satisfies a requirement of the CDRMS Mining Permit M-2002-004, specifically under the approved Technical Revision 7 (TR-07). To best support these efforts, GCC maintains a quality assurance/quality control (QA/QC) program to:

- Conduct GCC compliance staff and contractor training on water quality sampling for all GCC monitoring locations, equipment and methodologies, with detailed written procedure for groundwater monitoring provided in the facility Sampling and Analysis Plan approved under TR-07.
- Collect all water quality field data with an industry-standard multi-parameter device with electronic data deliverable (EDD) output for all field data.
- Conduct industry-standard, 10% random QA/QC lab sample submittals for duplicate and field blank water quality samples.
- Utilize EDDs produced by the contract environmental analytical laboratory for all data analyses.
- Conduct Level IV data validation of all compliance groundwater analytical laboratory reporting.
- Compile and manage all water quality and level data in a geo-referenced Microsoft Access database.

GROUNDWATER MONITORING

GROUNDWATER MONITORING LOCATIONS

In 2021 GCC monitored four groundwater monitoring wells at the facility, which are shown on the location map included as **Figure 1**:

- MW-5 completed in unconsolidated surficial/overburden sediments above bedrock at a location presumed to be downgradient of the entire facility, including both the quarry and plant.
- MW-6 completed in the Fort Hayes Limestone just down-dip, and presumed to be downgradient of mine panel 2 and upgradient of the plant.
- MW-7 completed in the Fort Hayes Limestone just down-dip, and presumed to be downgradient of mine panel 2 and upgradient of the plant. This well is completed across a fault in the Fort Hayes Limestone that was documented when exposed during the mining of Panel 2. MW-7 is located approximately 25 feet northwest of MW-6 and is screened over the same interval.
- MW-8 was in installed in February of 2020 and is completed in the Codell Sandstone, just down-dip, and presumed to be downgradient of mine panel 2 and upgradient of the plant. MW-8 is located approximately 25 feet northeast of MW-7.

GROUNDWATER MONITORING DATA COLLECTION

Groundwater monitoring was conducted quarterly in 2021 at MW-6, MW-7, and MW-8. MW-5, which has been observed as dry since installation in 2008, was monitored in 2021Q2 and 2021Q4 and as with all previous years, was found to be dry in each event. Per the current SAP (TR-07), MW-5 is only monitored semi-annually which is typically in May/June and November/December.

For the wet monitoring wells MW-6, MW-7, and MW-8, depth to water measurements, and field water quality parameters temperature, pH and specific conductance were documented for each monitoring event. These monitoring events also included water sample collection for submittal and analysis by an accredited environmental analytical laboratory.

Industry-standard protocol for groundwater sample collection was utilized, specifically applying the Colorado Department of Public Health and Environment (CDPHE) Suggested Sampling Protocol for Ground Water Monitoring Wells. This protocol is the foundation for the Sampling and Analysis Plan (SAP) approved by CDRMS in 2020 as TR-07 and adopted by GCC as the site-specific, stand-alone document guiding groundwater monitoring at the facility.

Groundwater was purged and sampled by means of disposable plastic bailer for all monitoring events in 2021. Three-casing volumes were purged prior to sample collection, or otherwise until the well was purged dry and revisited to collect a sample at a later time when adequate volume was present to fill all required sample bottles. MW-6 and MW-8 demonstrate low-head, low-yield conditions typically resulting in a purge that evacuates the well bore. At MW-6, a period of several hours was required to allow recovery in order to obtain a representative water quality sample for all monitoring events except in Q2 when the yield was adequate for sampling immediately following the three-volume purge. However, MW-7, the adjacent well completed across a known local Fort Hayes fault, is a relatively high-head, high-yield monitoring well in which production to obtain a representative water quality sample has been adequate to collect immediately following the three well bore purge. MW-8 exhibits even lower-yield conditions than MW-6; typically needing a one-to-two-week timeframe for water levels to recover to yield adequate volume for sample collection. In 2021 MW-8 was purged dry one week before sampling for laboratory submittal, which then coincided with both purging and sampling at MW-6 and MW-7. **Table 1** includes field parameters for each sample event and **Attachment 1** is a compilation of all MW-5, MW-6, MW-7, and MW-8 "Groundwater Sampling Record" field forms completed by the sampler for 2021 monitoring.

The CDRMS-required groundwater compliance constituents for the facility are given in **Table 1**. These constituents are required by TR-06 and represent the CDPHE Water Quality Control Commission Regulation 41, the basic standards for groundwater (herein after, reference standards). GCC is specifically subject to Table 3 of that document, Agricultural Standards, CDPHE 2016.

FUTURE GROUNDWATER MONITORING EXPANSION

In 2021, Technical Revision 8 (TR-08) was submitted by GCC and approved by DRMS in a letter dated June 4, 2021. TR-08 was a work plan to install six permanent bedrock monitoring wells and potentially one permanent unconsolidated colluvium monitoring well at the facility to increase the spatial distribution of site water quality monitoring and allow determination of groundwater gradient and flow direction. While the required post-installation documentation on these monitoring wells is forthcoming in a separate report to be prepared by RHS, in short, the well installations were completed in December 2021. Six bedrock monitoring wells were installed and developed at the planned locations, however the site of the potential colluvium monitoring wells for latitude, longitude, northing, and easting of casing location, ground elevation and elevation of the top of PVC casing is scheduled for the end of January 2022, which will complete the TR-08 well installation project.

Another Technical Revision to the mine permit shall be submitted to DRMS in early 2022 proposing modifications to the existing approved SAP (TR-07) to include quarterly monitoring of the relevant new monitoring wells, specifying monitoring and documentation methodologies. GCC intends to begin monitoring of the new wells in 2022Q1.

GROUNDWATER MONITORING DATA ANALYSIS

GROUNDWATER QUALITY

Beginning in 2021Q2, groundwater samples were analyzed for major cation and anion constituents per TR-08 to supplement the existing analytical suite and support interpretations of major ion chemistry in groundwater. Analytical results from water quality samples collected from MW-6, MW-7, and MW-8 are presented in **Table 1**. and compared to CDPHE Colorado Water Quality Control Commission agricultural use reference standards (CDPHE, 2016). Complete analytical laboratory reports for 2021 are provided as **Attachment 2**.

A graphical analysis of water quality results from the two Fort Hayes Limestone (MW-6 and MW-7) and Codell Sandstone (MW-8) groundwater samples are shown in Stiff diagrams for major ions and in time series plots for pH, manganese, and selenium.

Figure 2 shows the major ion concentrations at each monitoring location, beginning in 2021Q2. Concentrations are given in milli-equivalents (milligrams of solute mass divided by ionic weight and multiplied by ionic charge) per liter so the ionic balance between positive and negative ions can be seen in each analysis. As shown in **Figure 2**, the Fort Hayes Limestone (MW-6 and MW-7) is generally magnesium-sulfate to sodium-potassium-sulfate type. The underlying Codell Sandstone has a stronger sodium-potassium signature when compared with the Fort Hayes Limestone groundwater. The Codell Sandstone is also a sulfate dominant water (**Figure 2**).

Figure 3 plots water quality constituents (pH, manganese, and selenium) over time. Observed water quality in the Fort Hayes Limestone at locations MW-6 and MW-7 is characterized by neutral pH, and total dissolved solids (TDS) ranging from 4,720 to 7,477 µS/cm. Generally, concentrations of analyzed constituents were less than the applicable reference standards, with a few exceptions. Concentrations of manganese at MW-6 consistently exceeded the reference standard of 0.2 mg/L for samples collected at MW-6 between 2018 and 2021. Although manganese exceeds the reference standard, the Colorado Water Quality Control Commission issued a decision that the reference standard is only applicable where pH values are less than 6.0. Because all water quality samples have a measured pH value of greater than 6.0, less emphasis is placed on the exceedance of manganese of the reference standard. No exceedances of manganese were observed in MW-7. Selenium exceeds the reference standard for four of nine (44%) and seven of nine (approximately 80%) samples collected from MW-6 and MW-7, respectively. The occurrence and abundance of selenium in groundwater of the Fort Hayes Limestone is likely attributed to naturally-occurring seleniferous minerals deposited in a marine environment (Bern and Stogner, 2017).

Although both MW-6 and MW-7 were completed in Fort Hayes Limestone in relatively close proximity to one another, differences observed in groundwater chemistry identify the mechanism for groundwater flow through faults and fracture zones, instead of continuous horizontal flow paths. Additionally, the drilling and well completion across the observed fault system possibly created new flow paths which can be expected to create dynamic water quality conditions for some time until a new equilibrium is reached. Groundwater under hydrostatic confining pressure derived from fractures will flow from discrete fractures into the wellbore and travel within the filter pack to contact fresh rock surfaces that had not previously been exposed to groundwater, also contributing to an evolution of groundwater chemistry.

An additional monitoring well, MW-8, was installed in the underlying Codell Sandstone to support the definition of site-wide and regional groundwater flow paths and provide additional basis to evaluate potential impacts from site activities. Major ion chemistry of Codell Sandstone groundwater is presented in **Figure 2** and is described above. Groundwater chemistry at MW-8 exhibits neutral pH and TDS ranging from 3,852 to 9,179 μ S/cm. Exceedances of the groundwater quality reference standards were documented for both boron and manganese in 2021. Similar to the Fort Hayes groundwater, the pH does not fall below 6.0 in any measurement. Therefore, less emphasis is placed on the exceedance of manganese of the reference standard. The water quality standard for boron was also updated from 0.75 mg/L to 5.0 mg/L in TR-08 because the groundwater in the Codell Sandstone is not a source of water for agricultural use. With the updated reference standard in place, no exceedances of boron were observed. Further monitoring of groundwater quality in the Codell Sandstone will provide additional support to the overall evaluation of groundwater quality conceptual understanding of site groundwater.

QUALITY ASSURANCE/QUALITY CONTROL

In 2021 GCC collected and submitted one blind duplicate sample in all quarterly sampling events, which is given sample ID MW-2B. These duplicates were reported to have constituent concentrations within acceptable ranges of the named sample, which was MW-7 in quarters one, two, and three, and MW-8 in quarter four.

Future compliance groundwater sampling will continue to include standard submittal of 10% QA/QC blind duplicate or field blank samples per quarter (one sample for up to ten sites).

Beginning in 2020 and now continued in 2021, per the approved SAP, the compliance groundwater data were validated at EPA Level III (EPA Stage 2B) with a minimum of 10% validated as EPA raw data review. All laboratory standard delivery groups (SDGs) are Level IV. The groundwater data validation for 2021 found that the laboratory has complied with the requested methods and the data is considered fully useable for project purposes with the consideration of the following qualifications regarding holding times. The nitrate and nitrate/nitrite data for all samples submitted in 2021Q2 and 2021Q3 exceeded holding times by approximately 12 hours. This nitrite data was qualified as rejected as it exceeded the 48-hour method 353.2 hold time. The samples were received at approximately the 48-hour hold time maximum due to UPS overnight air delivery delays (without explanation given by UPS). However, the total nitrogen data are qualified as estimated and are considered useable for project purposes. The data quality review report, prepared by Diane Short & Associates, Inc., is included here as **Attachment 3**. Section II of this attached report discusses the holding time issues in detail and specifically states on page 2:

"In this set of data, nitrate and nitrite results have been flagged by the laboratory as out of hold in SDG L65969 and in SDG L68204. The analysis has exceeded the 48-hr hold time for individual determination of nitrate or nitrite. The results could be biased due to microbial degradation or formation of nitrate and nitrite. The bias is typically thought to be low, but a positive bias is also possible. In this case, the outliers are only about 12 hours beyond the hold time. Any degradation is likely to be insignificant during this brief time since the samples were kept cold, which suppresses microbial activity."

Additionally, the attached data quality review report identified one TDS analysis (MW-6 in 2021Q2) as exceeding the method holding time. As discussed in that report in Section II on page 3:

"In addition, one TDS analysis in SDG L65969 was analyzed at a dilution 7 days after the expiration of the 7-day hold time, and that result is qualified accordingly. The original result contained more than 200 mg of final residue, and the method specifies that there must be less than 200 mg. Therefore, the laboratory reanalyzed the sample. The reason for the 200-mg method limit is to avoid a crust over the solid material that prevents proper drying. This phenomenon is dependent on the area over which the residue is distributed, so different laboratory evaporation dishes used in this

method may produce different results. From the raw data review, the original result was essentially the same as the second analysis so there is not likely to be a bias due to the hold time outlier for TDS."

While the TDS holding time issue was seemingly due to the contract laboratory waiting too long to start the particular analysis of concern despite receiving the sample with adequate time, the nitrate/nitrate holding time issues are recognized to have continued from 2020 due to shipment delays. As such, prior to the 2021Q4 sampling event, the contract laboratory (ACZ Laboratories in Steamboat Springs, CO) was consulted regarding options to ensure delivery was within one-day to meet the 48-hour holding time for nitrate/nitrite. ACZ advised that shipments originating in the Front Range outbound to Steamboat Springs by UPS ground service will arrive in one day, while they have observed both UPS and FedEx "overnight" deliveries from other clients in the Front Range typically taking 2-3 days to arrive during the Covid-19 pandemic era. Therefore, starting with shipment of the 2021Q4 samples, UPS ground service has been utilized, shipping the chilled and properly preserved samples on the same day as collection for a more reliable one-day delivery method.

GROUNDWATER LEVEL

Bedrock groundwater level monitoring data for the facility in 2021 included two Fort Hayes Limestone monitoring wells, and one Codell Sandstone monitoring well. Shallow groundwater at the facility was not observed to be present in 2021; the single unconsolidated surficial/overburden well MW-5 has been documented dry since installation in 2008. Of the two Fort Hayes monitoring wells MW-6 and MW-7, evaluation to date of water level monitoring appears to indicate that MW-6 demonstrates that the nonfaulted Fort Hayes Limestone hosts a groundwater pressure regime that is derived from limited fracture networks with relatively low hydraulic conductivity and storage. However, as displayed in Figure 4, over the course of monitoring in 2020, the static water level at MW-6 tracked with MW-7. This appeared to complete the pressure regime equilibration that was evolving since these wells were installed and water level monitoring began in January 2018, although in 2021 the measured water levels in these two wells deviated substantially in 2021Q1 through 2021Q2 with MW-6 returning to a lower (deeper) water level trend similar to what was observed in 2019. It appears that the lower yield MW-6 water levels deviate to lower levels during the spring and summer monitoring events when compared to MW-7. This suggests that MW-6 exhibits a delayed seasonal groundwater recharge effect when compared to MW-7. This is consistent with an interpretation that MW-7 is completed across a local fault and has been documented by all monitoring events to be a higher yield well than MW-6 despite the same completion depths and a horizontal distance apart of approximately 25 feet. By the 2021Q3 monitoring event on August 31st, the two levels were within 0.25 feet of each other and then at the 2021Q4 monitoring event on November 18th within 0.11 feet of each other. An elevation survey of all water level measurement reference points (top of 2-inch PVC casing) at all facility compliance monitoring wells is planned for January 2022 and will yield high-accuracy spatial data to normalize measured groundwater levels to potentiometric groundwater elevations beginning in 2022Q1.

MW-8, the Codell Sandstone monitoring well at this location, which was a completely dry borehole at the time it was drilled in February 2020, only wetted after approximately a week. It appears that by the September 16, 2020 monitoring event all three monitoring wells at this location had roughly equivalent depth to water measurements, all measured to be within 0.13 feet of each other. In the time since, the MW-8 pressure regime has continued to evolve and in the last two guarters of 2021 the measured water levels in this underlying Codell Sandstone well are higher (less deep) by approximately seven feet than the measured water levels in the adjacent MW-6 and MW-7 Fort Hayes Limestone wells. This indicates that at this location the underlying Codell Sandstone has a higher potentiometric groundwater elevation than the overlying Fort Haves Limestone, which means that there is currently a documented upward groundwater gradient from the Codell to the Fort Hayes. If this is found to be the case at other locations at the facility once monitoring begins at the new well locations, it has significant implications to the site hydrogeologic conceptual model with respect to the potential groundwater recharge source(s) to the mined Fort Haves Limestone. Specifically, this could indicate that the Fort Haves groundwater recharge source is not only from surficial precipitation recharge in the southwest upland and up-dip areas of the facility, but also from the underlying Codell Sandstone. Furthermore, the fault that has been identified running through quarry panel 2 and the MW-6/MW-7/MW-8 location can be reasonably expected to extend not only through the Fort Haves Limestone, but also the underlying Codell Sandstone by rule of geologic superposition. In areas where this fault, as well as other faults documented by exposure in previously guarried areas, are permeable, conditions exist to allow transmission of groundwater. These geologic structures may allow the over-pressured Codell Sandstone groundwater the preferential pathways to flow upwards into the Fort Hayes Limestone.

Additionally, a facility bedrock groundwater pressure regime in which the water-bearing strata underlying the mined interval (the floor rock) exhibits an upward gradient would substantially decrease the probability for potential groundwater impacts within the Fort Hayes Limestone to migrate downwards into the Codell Sandstone.

Note that while the hydrograph presented as **Figure 4** is based on measured depths to water without conversion to potentiometric groundwater elevation, these locations are on a flat-graded wellsite pad. High-accuracy surveying of all facility monitoring wells is planned for January 2022 and will assist with further defining the extent of Fort Hayes limestone and Codell sandstone hydraulic communication and delineation of the bedrock vertical pressure gradient at this location as well as the newly installed twinned Fort Hayes/Codell monitoring locations.

RECOMMENDATIONS

To further support the characterization of groundwater at the facility, a Technical Revision to the mining permit to revise the current SAP is planned for submittal to DRMS in early 2022 following completion of the 2021 well installation program documentation and review, as required by TR-08. Recommendations to modify that SAP are to:

- Add the appropriate new monitoring wells to the compliance groundwater monitoring program.
- Install dedicated 12-volt electric submersible stainless steel low-flow environmental sampling pumps at all wet compliance wells (including previously existing wet monitoring wells MW-6, MW-7, MW-8) to replace the current bailer-purging methodology for collection of all compliance field parameters and laboratory samples.
- Implement use of mobile field tablet forms at all compliance groundwater monitoring wells to replace traditional paper field forms for more robust documentation system allowing for immediate cloudbased file back-up, integration of site photos, EDD data export to the facility groundwater monitoring database, while decreasing potential for field documentation typos and errors through use of dropdown menus, pre-populated static data fields, internally calculated fields, and location-specific data range boundaries that act as guardrails during field data entry.

REFERENCES

Bern, C.R., and Stogner, R.W. Sr., 2017. The Niobrara Formation as a Challenge to Water Quality in the Arkansas River, Colorado, USA. Journal of Hydrology: Regional Studies, Volume 12, pp. 181-195. August.

Colorado Department of Public Health and Environment (CDPHE), Water Quality Control Commission, 2016. Regulation No. 41, The Basic Standards for Ground Water (5 CCR 1002-41), December 30.

Colorado Department of Public Health and Environment (CDPHE), Water Quality Control Commission, Undated. Suggested Sampling Protocol for Ground Water Monitoring Wells.

GCC Rio Grande Inc., by Resource Hydrogeologic Services, Inc., 2021. Technical Revision 8 to Mining Permit No. M-2002-004 – Work Plan for 2021 Monitoring Well Installation Program, GCC Rio Grande, Inc. Pueblo Plant Pueblo Colorado, May 25.

GCC Rio Grande Inc., 2020. Technical Revision 7 to Mining Permit No. M-2002-004 – Sampling and Analysis Plan for Environmental Groundwater Monitoring, March 13.

TABLES

Table 1 (Page 1 of 2). GCC Quarterly Compliance Groundwater Monitoring Data 2018-2021.

Location ID	Sample Date	Depth to Water (ft TOC)	Field pH (SU)	Field Specific Conductance (µS/cm)	Field Temperature (Degrees C)	Total Dissolved Solids (mg/L)	Total Alkalinity (mg/L)	Bicarbonate as CaCO3 (mg/L)	Carbonate as CaCO3 (mg/L)	Hydroxide as CaCO3 (mg/L)	Chloride (mg/L)	Sulfate (mg/L)	Fluoride (mg/L)	Nitrate (mg/L)	Nitrate/Nitrite (mg/L)	Nitrite (mg/L)	Aluminum (mg/L)	,
MW-5	12/9/2019	DRY																
ИW-5 ИW-5	9/17/2020 11/23/2020	DRY DRY																
/w-5 /W-5	5/12/2021	DRY																
MW-5	11/18/2021	DRY																
MW-6	1/3/2018	48.24	6.95	4720	14										<0.020		0.636	
MW-6	4/27/2018	41.31	7.2	6200	16.3	5030							<1.0	<0.10	<0.020	<0.040	<0.2	
MW-6	9/26/2018	DRY																
MW-6	12/12/2018	42.91	7.39	6500	14.9								<1.0		<0.020	<0.040	<0.2	
MW-6	3/7/2019				ive field parameters or lab													
MW-6	6/12/2019	43.92	7.14	5975	17.8	5620							0.6	12	12.1	0.03	0.5	
MW-6 MW-6	9/19/2019 12/9/2019	28.15 30.44				5860 5460							0.6 0.8	11 8.1	11.1 8.12	0.08 0.02	<0.3 <0.3	
MW-6	3/9/2019	30.44	7.22	5591	16.5	5460							0.8	2.02	2.58	0.02	<0.3	
MW-6	9/16/2020	29.78	7.2	5405	16.7	5480							0.5	0.05	0.05	<0.01	0.19	
MW-6	11/23/2020	30.92	7.25	5405	14.3	5300							0.57	1.62	1.63	0.012	<0.25	
MW-6	2/22/2021	36.61	7.55	5684	15.8	5780							0.62	0.07	0.067	< 0.01	<0.25	
MW-6	5/19/2021	46.32	7.43	5945	14.9		524	524	<2	<2	109	3200	0.57	0.03	0.032	<0.01	< 0.05	0
MW-6	8/31/2021	26.18	7.32	6170	16.1		459	459	<2	<2	74.3	3390	0.58	4.2	4.24	0.038	< 0.05	
MW-6	11/18/2021	29.70	7.18	7477	14.2		450	450	<2	<2	76.1	3750	0.62	0.846	0.846	<0.01	<0.05	
MW-7	1/3/2018	42.91	6.86	4765	15	5510							0.415		<0.020	<1.00	1.35	0
MW-7	4/27/2018	39.09	6.85	5820	15	5270							<0.50	<0.050	<0.100	<0.020	<0.2	
MW-7	9/26/2018	DRY																
MW-7	12/12/2018	37.84	6.9	6093	14								<1.0		<0.020	<0.040	<0.2	
MW-7	3/7/2019	40.79	6.95	6020	13.7	5640									0.0144		<0.2	
MW-7	6/12/2019	31.25	6.95	5997	18	5700							0.5	1.73	1.74	0.01	<0.3	,
MW-7 MW-7	9/18/2019 12/9/2019	27.89 29.51				6740 5320							0.5 0.5	10 14	10.1 14.3	0.02 0.08	0.4 <0.3	, i
MW-7	3/9/2020	32.46	7.01	6459	15.8	6540							0.4	14	14.5	0.08	<0.3	2
MW-7	9/16/2020	29.65	7.17	4772	15.2	4950							0.4	11	11	0.03	0.16	<
MW-7	11/23/2020	30.40	7.16	4999	14.3	5070							0.47	11	11.2	0.039	<0.25	
MW-7	2/22/2021	32.87	7.55	6077	14.4	6500							0.49	9.9	9.98	0.068	<0.25	
MW-7	5/19/2021	30.83	7.51	5464	15.2		309	309	<2	<2	51	3430	0.4	7.51	7.54	0.027	< 0.05	<
MW-7	8/31/2021	25.79	7.15	6061	15.4		467	467	<2	<2	95.5	3360	0.52	0.91	0.907	<0.01	< 0.05	
MW-7	11/18/2021	29.45	6.94	6589	13.9		299	299	<2	<2	52.9	3700	0.53	3.84	3.84	<0.01	< 0.05	
MW-8	3/9/2020	43.78	Inadequate v	olume for representat	ive field parameters or lab	o sample submi	ttal at time of water	level measuremen	t and then COVID-1	9 restrictions enac	ted before well cou	uld be revisited foll	owing purge					
MW-8	9/16/2020			•	ive field parameters or lab		ttal after purge - san	nple collected 9/28	20 because well to	ook 2 weeks to reco	over							
MW-8	9/28/2020	57.43		9179	14.7	7900							0.9	<0.02	<0.02	<0.01	<0.25	C
MW-8	11/9/2020				ive field parameters or lab	-												
MW-8	11/23/2020	39.73	7.11	5327	13.9	4060							1.14	< 0.050	< 0.02	< 0.01	<0.25	0
MW-8 MW-8	2/22/2021 5/19/2021	34.21 34.56	7.65 7.60	5476 5571	14.8 16.1	4180	1200	1200	<2	<2	316	1520	1.10 0.89	<0.02 0.99	<0.02 1.01	<0.01 0.016	<0.05 <0.05	0
MW-8	8/31/2021	25.75	7.32	6077	17.8		1080	1080	<2	<2	272	1820	1	<0.02	0.022	0.010	<0.05	0
MW-8	11/18/2021	24.46	7.14	3852	14.7		1140	1140	<2	<2	283	1920	0.9	0.068	0.096	0.014	<0.05	
Field QA/QC Samples	11/10/2021	2440	7124	5052	1-117		1140	1140	12		200	1520	0.5	0.000	0.050	0.020	40100	
MW-6 (duplicate)	9/19/2019					6020							0.7	11	10.8	0.08	<0.3	(
MW-7 (duplicate)	6/12/2019					5600							0.9	1.28	1.28	<0.01	<0.3	
MW-7 (duplicate)	11/9/2019					5510							0.5	15	14.7	0.08	<0.3	
MW-7 (duplicate)	3/9/2020					6530							0.4	15	14.5	0.05	<0.3	<
MW-7 (duplicate)	9/16/2020					5040							0.4	11	10.9	0.03	0.11	<
MW-7 (duplicate)	2/22/2021					6460							0.49	10	10.3	0.068	<0.05	
MW-7 (duplicate)	5/19/2021						291	291	<2	<2	50.7	3280	0.43	7.45	7.48	0.028	<0.05	<
MW-7 (duplicate)	8/31/2021						464	464	<2	<2	109	3480	0.53	0.91	0.907	< 0.01	< 0.05	
MW-8 (duplicate)	11/23/2020					4040							1.15	< 0.050	< 0.02	< 0.01	<0.25	0
MW-8 (duplicate)	11/18/2021						1130	1130	<2	<2	288	1920	0.89	0.078	0.107	0.029	<0.05	0
CDPHE Regulation Groundwater Qual Standards (Agrici	lity Reference		6.5 -8.5										2		100	10	5.0	

Notes:

Concentrations in bold indicate exceedance of CDPHE Groundwater Quality Reference Standard for Agricultural Use. MW-5 has been dry since installation and initial monitoring on 4/13/2013. 2020Q2 monitoring not conducted due to COVID-19 restrictions.

ı	Arsenic (mg/L)	Beryllium (mg/L)	Boron (mg/L)
	<0.03	<0.005	0.633
	<0.03	<0.005	0.654
	<0.03	<0.005	0.624 DRY
	<0.2	<0.05	0.5
	0.0004	<0.05	0.3
	< 0.001	<0.05	0.3
	0.0005	<0.05	0.3
	0.0009	<0.01	0.31
	<0.001	<0.05	0.325
	<0.001	<0.05	0.330
	0.00237	<0.01	0.378
	<0.001	<0.01	0.24
	<0.001	<0.01	0.245
	0.00949	<0.005	0.461
	<0.03	<0.005	0.441
	<0.02	-0.005	0.446
	< 0.03	<0.005	0.446
	<0.03 <0.2	<0.005 <0.05	0.427 0.4
	0.0003	<0.05	0.4
	<0.001	<0.05	0.5
	<0.001	<0.05	0.2
	<0.0002	<0.01	0.14
	< 0.001	<0.05	0.153
	< 0.001	<0.05	0.196
	<0.0002	<0.01	0.139
	< 0.001	< 0.01	0.313
	<0.001	<0.01	0.187
	0.0138	<0.05	1.2
	0.00219	<0.05	0.817
	0.00350	<0.01	0.848
	0.00155	< 0.01	0.886
	0.00124	< 0.01	0.784
	<0.001	<0.01	0.798
	0.0004	<0.05	0.3
	<0.2	<0.05	0.4
	<0.001	<0.05	0.2
	<0.0002	<0.05	0.1
	<0.0002	<0.01	0.13
	<0.001	<0.01	0.167
	<0.0002	<0.01	0.139
	<0.001	<0.01	0.309
	0.00234	<0.05	0.834
	0.00084	<0.01	0.809
	0.10	0.10	5.0

Table 1 (Page 2 of 2). GCC Quarterly Compliance Groundwater Monitoring Data 2018-2021.

	· ·			•														
Location ID	Sample Date	Cadmium (mg/L)	Chromium (mg/L)	Cobalt (mg/L)	Copper (mg/L)	Calcium (mg/L)	Iron (mg/L)	Lead (mg/L)	Lithium (mg/L)	Magnesium (mg/L)	Manganese (mg/L)	Mercury (mg/L)	Nickel (mg/L)	Potassium (mg/L)	Selenium (mg/L)	Sodium (mg/L)	Vanadium (mg/L)	Zinc (mg/L)
MW-5	12/9/2019																	
MW-5	9/17/2020																	
MW-5	11/23/2020																	
MW-5	5/12/2021																	
MW-5	11/18/2021	<0.00F	<0.00F	0.00422	0.0061		0.474	<0.01	0.664		0.501	<0.0002	0.0280		<0.02		<0.005	0.0248
MW-6 MW-6	1/3/2018 4/27/2018	<0.005 <0.005	<0.005 <0.005	0.00423 0.0188	0.0061 <0.01		0.474 0.0556	<0.01 <0.01	0.664 0.689		0.591 1.14	<0.0002 <0.0002	0.0289 0.0688		<0.03 <0.03		<0.005 <0.005	0.0248 <0.01
MW-6	9/26/2018	<0.005	×0.000	0.0188	<0.01		0.0550	<0.01	0.085		1.14	<0.0002	0.0088		<0.03		<0.005	<0.01
MW-6	12/12/2018	<0.005	<0.005	0.00601	<0.01		<0.1	0.00399	0.476		0.663	<0.0002	0.0171		0.00619		0.00116	0.00899
MW-6	3/7/2019																	DRY
MW-6	6/12/2019	0.0003	<0.05	<0.05	<0.05		0.8	0.0022	0.52		0.97	<0.0002	0.15		0.0966		<0.03	<0.05
MW-6	9/19/2019	0.00026	<0.05	0.05	<0.05		0.3	0.0004	0.49		0.58	<0.0002	0.13		0.14		<0.03	<0.05
MW-6	12/9/2019	<0.0003	<0.05	<0.05	<0.05		<0.2	<0.0005	0.49		0.49	<0.0002	0.11		0.088		<0.03	<0.05
MW-6	3/9/2020	0.00016	< 0.05	<0.05	0.06		<0.2	<0.0001	0.48		0.4	<0.0002	0.11		0.0401		< 0.03	< 0.05
MW-6 MW-6	9/16/2020	0.00011 <0.00025	0.01 <0.05	0.03 <0.05	<0.01 <0.05		0.19 <0.3	0.0006 <0.0005	0.486 0.448		0.39 0.334	<0.0002	0.088		0.0064 0.0155		<0.01 <0.05	0.02
MW-6	11/23/2020 2/22/2021	<0.00025	<0.05	<0.05	<0.05		<0.3	<0.0005	0.448		0.315	<0.0002 <0.0002	0.114 0.0810		0.00135		<0.05	0.11 <0.1
MW-6	5/19/2021	0.000025	<0.02	<0.03	<0.05	315	0.127	<0.0001	0.470	344	0.357	<0.0002	0.0579	9.94	0.00233	810	<0.05	<0.02
MW-6	8/31/2021	<0.00025	<0.02	<0.02	<0.01	410	<0.06	<0.0005	0.491	498	0.279	<0.0002	0.0845	11.2	0.0148	575	<0.01	<0.02
MW-6	11/18/2021	<0.00025	<0.1	<0.02	<0.01	383	< 0.06	<0.0005	0.469	473	0.241	<0.0002	0.0763	10.3	0.0153	589	<0.01	<0.02
MW-7	1/3/2018	<0.005	<0.005	0.00135	0.00555		1.39	<0.01	0.779		0.20	<0.0002	0.0163		<0.03		0.0023	0.0267
MW-7	4/27/2018	<0.005	<0.005	<0.005	<0.01		0.249	<0.01	0.665		0.166	<0.0002	0.00607		<0.03		< 0.005	<0.01
MW-7	9/26/2018																	
MW-7	12/12/2018	<0.005	<0.005	<0.005	<0.01		0.242	<0.01	0.571		0.101	<0.0002	0.00359		<0.03		<0.005	0.0102
MW-7	3/7/2019	<0.005	<0.005	0.00197	<0.01		0.297	<0.01	0.557		0.152	<0.0002	0.008		<0.03		<0.005	0.00956
MW-7	6/12/2019	< 0.04	<0.05	<0.05	< 0.05		<0.2	< 0.2	0.62		0.14	<0.0002	< 0.04		0.0087		< 0.03	< 0.05
MW-7	9/18/2019	0.00015	< 0.05	<0.05	<0.05		0.8	0.001	0.48 0.44		0.1	<0.0002	<0.04		0.0762		< 0.03	<0.05
MW-7 MW-7	12/9/2019 3/9/2020	<0.0003 0.00011	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05		<0.2 <0.2	<0.0005 <0.0001	0.44		<0.05 <0.05	<0.0002 <0.0002	<0.04 <0.04		0.0903 0.0701		<0.03 <0.03	<0.05 <0.05
MW-7	9/16/2020	0.00007	0.01	<0.01	<0.05		0.15	0.0002	0.428		0.01	<0.0002	0.013		0.0655		<0.03	<0.02
MW-7	11/23/2020	<0.00025	<0.05	<0.01	<0.05		<0.3	<0.0005	0.376		<0.05	<0.0002	<0.04		0.0452		<0.05	<0.1
MW-7	2/22/2021	<0.00025	<0.05	<0.05	<0.05		<0.3	<0.0005	0.634		<0.05	<0.002	< 0.04		0.0348		<0.05	<0.1
MW-7	5/19/2021	0.000057	<0.02	<0.02	<0.01	460	<0.06	<0.0001	0.473	530	<0.01	<0.0002	0.0229	13.7	0.0401	393	<0.01	<0.02
MW-7	8/31/2021	<0.00025	<0.02	<0.02	<0.01	391	<0.06	<0.0005	0.521	397	0.067	<0.0002	0.0155	10.8	0.0115	666	<0.01	<0.02
MW-7	11/18/2021	<0.00025	<0.1	<0.02	<0.01	429	<0.06	<0.0005	0.375	386	0.06	<0.0002	0.0157	10.6	0.0284	402	<0.01	<0.02
MW-8	3/9/2020																	
MW-8	9/16/2020		-0.05	.0.05	-0.05						0.000				0.00075		-0.05	
MW-8 MW-8	9/28/2020 11/9/2020	<0.00025	<0.05	<0.05	<0.05		2.62	<0.0005	0.51		0.299	<0.0002	<0.04		0.00075		<0.05	<0.1
MW-8	11/23/2020	<0.00025	<0.05	<0.05	<0.05		<0.3	<0.0005	0.333		0.249	<0.0002	<0.04		<0.0005		<0.05	<0.1
MW-8	2/22/2021	<0.00025	<0.01	<0.01	<0.01		<0.06	<0.0005	0.360		0.307	<0.0002	<0.004		<0.0005		<0.01	<0.02
MW-8	5/19/2021	0.000065	< 0.04	<0.02	<0.01	93.1	< 0.06	0.00016	0.365	31.2	0.275	<0.0002	<0.008	6.18	0.00024	1250	<0.01	<0.02
MW-8	8/31/2021	<0.00025	<0.02	<0.02	<0.01	111	<0.06	<0.0005	0.383	38.5	0.319	<0.0002	<0.008	5.93	<0.0005	1300	<0.01	<0.02
MW-8	11/18/2021	<0.00025	<0.1	<0.02	<0.01	107	<0.06	<0.0005	0.378	46.5	0.265	<0.0002	<0.008	6.44	<0.0005	1150	<0.02	<0.02
Field QA/QC Samples																		
MW-6 (duplicate)	9/19/2019	0.00031	<0.05	0.05	<0.05		0.3	0.0005	0.48		0.57	<0.0002	0.15		0.141		<0.03	<0.05
MW-7 (duplicate)	6/12/2019	<0.04	<0.05	< 0.05	< 0.05		0.2	<0.2	0.61		0.14	<0.0002	< 0.04		0.0084		< 0.03	< 0.05
MW-7 (duplicate)	11/9/2019	< 0.0003	<0.05	<0.05	<0.05		<0.2	<0.0005	0.44		<0.05	<0.0002	<0.04		0.0903		<0.03	<0.05
MW-7 (duplicate) MW-7 (duplicate)	3/9/2020 9/16/2020	0.0001 0.00007	<0.05 0.01	<0.05 <0.01	<0.05 <0.01		<0.2 0.12	<0.0001 0.0002	0.6 0.425		<0.05 0.01	<0.0002 <0.0002	<0.04 0.01		0.0704		<0.03 <0.01	<0.05 <0.02
MW-7 (duplicate)	2/22/2021	<0.00025	<0.01	<0.01	<0.01		<0.06	<0.0002	0.425		0.020	<0.0002	0.01		0.0654 0.0329		<0.01	<0.02
MW-7 (duplicate)	5/19/2021	0.000023	<0.01	<0.01	<0.01	457	<0.06	<0.0003	0.469	528	<0.01	<0.0002	0.0137	13.9	0.0329	390	<0.01	<0.02
MW-7 (duplicate)	8/31/2021	<0.00025	<0.02	<0.02	<0.01	390	<0.06	<0.0005	0.52	396	0.066	<0.0002	0.017	10.9	0.0109	661	<0.01	<0.02
MW-8 (duplicate)	11/23/2020	<0.00025	<0.05	< 0.05	<0.05		<0.3	<0.0005	0.337		0.253	<0.0002	< 0.04		<0.0005		< 0.05	<0.1
MW-8 (duplicate)	11/18/2021	<0.0001	<0.04	<0.02	<0.01	104	<0.06	<0.0002	0.38	43.2	0.27	<0.0002	<0.008	6.31	<0.0002	1150	<0.02	<0.02
CDPHE Regulation Groundwater Qual Standards (Agrice	ity Reference	0.01	0.10	0.05	0.2		5.0	0.10	2.5		0.20	0.01	0.20		0.02		0.10	2.0

Notes:

Concentrations in bold indicate exceedance of CDPHE Groundwater Quality Reference Standard for Agricultural Use. MW-5 has been dry since installation and initial monitoring on 4/13/2013.

2020Q2 monitoring not conducted due to COVID-19 restrictions.

Barium (mg/L)
 0.032
0.0142
0.0142

FIGURES

Figure 1. GCC site map with 2021 compliance groundwater monitoring locations.

Figure 2. GCC Rio Grande Pueblo Plant 2021 Stiff Diagrams. Note major ions have only been analyzed since 2021Q2.

Figure 4. GCC Rio Grande Pueblo Plant Bedrock Groundwater Hydrograph – Full Period of Record 2018-2021.

GCC RIO GRANDE PUEBLO PLANT 2021 ANNUAL GROUNDWATER REPORT

ATTACHMENT 1 - GCC Groundwater Sampling Field Records

SAMPLE N	No. Mw-6	
Grandle	Page	(of)
Personnel:	S. Legg	
		Personnel:

Casing Diameter (inche Depth to Water (fl below Purging Method: Comments: Mon Date/ V Time	45 micron in- thes): <u>2</u> ² ow MP): <u>3</u>	Gented PSI P I Ine high capace	urer/Model (a)/AM (b)/AM (c) Pluss city disposable Borehole Diamet Total Depth (ft): he PVC well casing pH 7.31 7.70 7.53 4.53	825 154/0 filter. WELL er (inches): 59.56	al No. $(\mathcal{O}) \mathbb{Z}$ $\mathcal{U} \subseteq S \mathbb{Z}$ $\mathcal{U} \subseteq S \mathbb{Z}$ PURGING INFO Casing Volume (g Casing Volume (g $(\deg C)$ $ \mathcal{U} \mathcal{L}$ $ \mathcal{U} = \mathcal{L}$ $ \mathcal{U} = \mathcal{L}$ $ \mathcal{U} = \mathcal{L}$ $ \mathcal{U} = \mathcal{L}$	Std: 4 7 1	@ <u>/0.03</u> c R <u>@</u> /0.03 c R _uS @ 25 °C R _uS @ 25 °C R	eading (gal/ft: 1.5" = 0.092; 2" =	Slope: = 0.163; 4" = 0.653)
pH Meter pH Meter Conductivity Meter Temperature Other: Filtration 0.4: Casing Diameter (inche Depth to Water (fl below Purging Method: Comments: Mon Date/ V Time 0.9:5.3 (10.1.5.5 (10.2.3 10.3.5 (Cumulative Volume Purging Participant)	thes): 2 ¹ ow MP): 3 onitoring point (Vol. Purged (gal) (u,-1,1,0,1 3 (6 9	$\frac{1}{10000000000000000000000000000000000$	pH 7.31 7.70 7.53	ISA (0 ISA (0 filter. WELL) er (inches): S9.56 g. Conductivity (uS g. 25 deg C) S3.79 S4.74 S54.5	PURGING INFO Casing Volume (g (deg C) (All 2 (All 2 (All 2) (All 2) (All 2)	Std: 4 7 10 Std: 4 7 10 Std: 4 7 10 Std: 141 5 Std:	@C C R. @QC R. US @ 25 °C R. US @ 25 °C R. 1(ft. BGL): 1(ft. BGL):	eading <u>1 2 1 9</u> eading <u>1 3 7</u> eading <u>1 4 20</u> eading <u>(4 20)</u> (gal/ft: 1.5" = 0.092; 2" -	= 0.163; 4" = 0.653)
pH Meter Conductivity Meter Conductivity Meter Temperature Other: Filtration 0.4! Casing Diameter (inche) Depth to Water (fl below) Purging Method: Comments: Mon Date/ V Time (10) 10) 3) 10) 3) 10) 3) 10) 3) 10) 3) 10) 3) 10) 3) 10) 3) 10) 3) 10) 3) 10) 3) 10) 3) 10) 3) 10) 3) 10) 3) 10) 3) 10) 3) 10) 3) 10) 3) 10) 10)	thes): 2 ¹ ow MP): 3 onitoring point (Vol. Purged (gal) (u,-1,1,0,1 3 (6 9	-line high capace $69 \cdot 11$ MP) is the top of th Depth to Water (test below MP) $39 \cdot 11$ 410 - 07 $57 \cdot 73$ $57 \cdot 73$ $57 \cdot 57$	pH 7.31 7.70 7.53	filter. WELL 1 er (inches): S9.56 g. Conductivity (159.545	PURGING INFO Casing Volume (g Temp (deg C) (All 2 (All 2 (All 2) (All 2)	Std: 4 7 (1) Std: 141 5 Std:	@ <u>/0 . 0</u> 25 °C R uS @ 25 °C R uS @ 25 °C R	eading <u>13.7</u> eading <u>1420</u> eading <u>(420</u> (gal/ft: 1.5" = 0.092; 2" -	= 0.163; 4" = 0.653)
Conductivity Meter Conductivity Meter Temperature Other: Filtration Casing Diameter (inche) Depth to Water (fl below Purging Method: Comments: Mon Date/ V Time Q 9:53 (0 3 3 10 3 5 10	thes): 2 ¹ ow MP): 3 onitoring point (Vol. Purged (gal) (u,-1,1,0,1 3 (6 9	MP) is the top of th Depth to Water (Get below MP) 39, [] $4(_0 - 07)$ 57, 73 57, 73	pH 7.31 7.70 7.53 7.53	WELL : er (inches): 59.56 g. Conductivity (1523420 5379 5474 5545	Casing Volume (g Temp (deg C) ('All 2 ('All 2 ('All 2	Std:	uS @ 25 °C R uS @ 25 °C R 1 (ft. BGL): earance diment, etc.)	eading <u>1426</u> eading <u>(gal/ft: 1.5" = 0.092; 2" -</u>	
Conductivity Meter Conductivity Meter Temperature Other: Filtration Casing Diameter (inche) Depth to Water (fl below Purging Method: Comments: Mon Date/ V Time Q 9:53 (0 3 3 10 3 5 10	thes): 2 ¹ ow MP): 3 onitoring point (Vol. Purged (gal) (u,-1,1,0,1 3 (6 9	MP) is the top of th Depth to Water (Get below MP) 39, [] $4(_0 - 07)$ 57, 73 57, 73	pH 7.31 7.70 7.53 7.53	WELL : er (inches): 59.56 g. Conductivity (1523420 5379 5474 5545	Casing Volume (g Temp (deg C) ('All 2 ('All 2 ('All 2	Std: RMATION Screened Interval al): 3 · 3 3 Appe (color, sec Clccr, 1/	uS @ 25 °C R	eading (gal/ft: 1.5" = 0.092; 2" =	
Temperature Other: Filtration 0.4! Casing Diameter (inched) Casing Diameter (filtedout) Depth to Water (filtedout) Purging Method: Comments: Mon Date/ V Time V 0 9:5 3 (10 3 3 (thes): 2 ¹ ow MP): 3 onitoring point (Vol. Purged (gal) (u,-1,1,0,1 3 (6 9	MP) is the top of th Depth to Water (Get below MP) 39, [] $4(_0 - 07)$ 57, 73 57, 73	pH 7.31 7.70 7.53 7.53	WELL : er (inches): 59.56 g. Conductivity (1523420 5379 5474 5545	Casing Volume (g Temp (deg C) ('All 2 ('All 2 ('All 2	Appe (color, see)//	1 (ft. BGL): earance diment, etc.)	(gal/ft: 1.5" = 0.092; 2" -	
Temperature Other: Filtration 0.4! Casing Diameter (inched) Casing Diameter (filtedout) Depth to Water (filtedout) Purging Method: Comments: Mon Date/ V Time V 0 9:5 3 (10 3 3 (thes): 2 ¹ ow MP): 3 onitoring point (Vol. Purged (gal) (u,-1,1,0,1 3 (6 9	MP) is the top of th Depth to Water (Get below MP) 39, [] $4(_0 - 07)$ 57, 73 57, 73	pH 7.31 7.70 7.53 7.53	WELL : er (inches): 59.56 g. Conductivity (1523420 5379 5474 5545	Casing Volume (g Temp (deg C) ('All 2 ('All 2 ('All 2	Screened Interval [al]: 3 33 Appendix (color, see Class, 1/	tarance diment, etc.)	с	
Other: Filtration 0.4' Filtration 0.4' Casing Diameter (includent of the low purging Method: Includent of the low purging Method: Comments: Mon Date/ V Date/ V Time (10) 0 9:5 3 (10) 10 3 3 (10) 10 3 3 (10) Cumulative Volume Purgue (10)	thes): 2 ¹ ow MP): 3 onitoring point (Vol. Purged (gal) (u,-1,1,0,1 3 (6 9	MP) is the top of th Depth to Water (Get below MP) 39, [] $4(_0 - 07)$ 57, 73 57, 73	pH 7.31 7.70 7.53 7.53	WELL : er (inches): 59.56 g. Conductivity (1523420 5379 5474 5545	Casing Volume (g Temp (deg C) ('All 2 ('All 2 ('All 2	Screened Interval [al]: 3 33 Appendix (color, see Class, 1/	tarance diment, etc.)	с	
Filtration 0.4 Casing Diameter (incher Depth to Water (fl below Purging Method: Comments: Mon Date/ V Time 0.9:53 (10.53 10.53 10.3	thes): 2 ¹ ow MP): 3 onitoring point (Vol. Purged (gal) (u,-1,1,0,1 3 (6 9	MP) is the top of th Depth to Water (Get below MP) 39, [] $4(_0 - 07)$ 57, 73 57, 73	pH 7.31 7.70 7.53 7.53	WELL : er (inches): 59.56 g. Conductivity (1523420 5379 5474 5545	Casing Volume (g Temp (deg C) ('All 2 ('All 2 ('All 2	Screened Interval [al]: 3 33 Appendix (color, see Class, 1/	tarance diment, etc.)	с	
Casing Diameter (incher Depth to Water (fl belov Purging Method: Comments: Mon Date/ V Time 0 9:53 (10 3 3 10 3 10	thes): 2 ¹ ow MP): 3 onitoring point (Vol. Purged (gal) (u,-1,1,0,1 3 (6 9	MP) is the top of th Depth to Water (Get below MP) 39, [] $4(_0 - 07)$ 57, 73 57, 73	pH 7.31 7.70 7.53 7.53	WELL : er (inches): 59.56 g. Conductivity (1523420 5379 5474 5545	Casing Volume (g Temp (deg C) ('All 2 ('All 2 ('All 2	Screened Interval [al]: 3 33 Appendix (color, see Class, 1/	tarance diment, etc.)	с	
Depth to Water (ft below Purging Method: Comments: Mon Date/ V Time 0 9:53 (10 10 10 23 10 33 10 33 Cumulative Volume Purgential Cumulative Volume Purgential	Note that the second s	MP) is the top of th Depth to Water (for below MP) 39. [] $4(_0 - 07)$ 57. 7357 . 73	Total Depth (ft): ne PVC well casin, pH 7.31 7.70 7.53	er (inches): 59.56 g. Conductivity (u5.23 deg.C) 53.79 54.74 554.5	Casing Volume (g Temp (deg C) ('All 2 ('All 2 ('All 2	Screened Interval [al]: 3 33 Appendix (color, see Class, 1/	tarance diment, etc.)	с	
Depth to Water (ft below Purging Method: Comments: Mon Date/ V Time 0 9:53 (10 10 10 23 10 33 10 33 Cumulative Volume Purgential Cumulative Volume Purgential	ow MP): 3 onitoring point () Vol. Purged (gal) (u, j, c, l 3 6 9	MP) is the top of th Depth to Water (feet below MP) 39. [] 4(0-07) 57.73 57.73	Total Depth (ft): ne PVC well casin, pH 7.31 7.70 7.53	59.56 g. Conductivity (u5.825 deg.C) 5379 5474 5545	Temp (deg C) ('All 2 ('4) - Le ('2) - 7	Appe (color, see Clcar, 1/	tarance diment, etc.)	с	
Purging Method: Comments: Mon Date/ V Time 09:53 (100 100 100 100 100 100 100 10	Vol. Purged (gal) (u.l.).c.l 3 (6 9	MP) is the top of th Depth to Water (feet below MP) 39. [] 4(0-07) 57.73 57.73	pH 7.31 7.70 7.53	g. Conductivity (u5 g.25 deg.C) 5379 5474 5545	Temp (deg C) ('All 2 ('4) - Le ('2) - 7	Appe (color, see Olcar, 1/	earance diment, etc.)	с	
Date/ V Date/ V Time 0 0 9:53 (10 100 10 10 33 10 10 33 10 Cumulative Volume Put 10	Vol. Purged (gal) (a1.0.1 3 (6 9	Depth to Water (feet below MP) 39.11 46-07 57.73 57.73	рн 7.31 7.70 7.53	Conductivity (us g 35 deg C) 5379 5474 5545	(deg C) (14/2 14- Le 14-7	Color, see	diment, etc.)		omments
Date/ V Time 09:53 (10 (0) 10 23 10 33 10 33	Vol. Purged (gal) (a1.0.1 3 (6 9	Depth to Water (feet below MP) 39.11 46-07 57.73 57.73	рн 7.31 7.70 7.53	Conductivity (us g 35 deg C) 5379 5474 5545	(deg C) (14/2 14- Le 14-7	Color, see	diment, etc.)		omments
Time 09:53 (1010 1023 1033 1033 1033 1033 Cumulative Volume Pu	(gal) (ui-fird 3 6 9	Water (feet below MP) 39. [] 4(0-07 57. 73 57. 73 57. 73	7.31 772 7.70 7.53	(6533480) 5379 5474 5545	(deg C) (14/2 14- Le 14-7	Color, see	diment, etc.)		omments
Time 09:53 (1010 1023 1033 1033 1033 1033 Cumulative Volume Pu	(gal) (ui-fird 3 6 9	Water (feet below MP) 39. [] 4(0-07 57. 73 57. 73 57. 73	7.31 772 7.70 7.53	(6533480) 5379 5474 5545	(deg C) (14/2 14- Le 14-7	Color, see	diment, etc.)		omments
Time 09:53 (1010 1023 1033 1033 1033 1033 Cumulative Volume Pu	(gal) (ui-fird 3 6 9	(feer below MP) 39.11 410-07 57.73 57.73	7.31 772 7.70 7.53	5379 5474 5545	(deg C) (14/2 14- Le 14-7	Color, see	diment, etc.)		comments
09:53 (1010 1023 1033 1033 1033 1033 1033 Cumulative Volume Pu	3 6 9	39.11 46.07 57.73 59.52	7.31 772 7.70 7.53	5474	14/2 14.6e 14/27	Clear,			omments
1010 1023 1033 1033 1033	3 6 9	46-07 51.73 5882	772 7.70 7.53	5474	14.6	11	10 000		
1023 1033 1033 1033	69	57.73	7.70	5545	14.7				
10 3 3 10 33 Cumulative Volume Pu	9	5382	7.53			4			
Cumulative Volume Pu		~	A 1	5013	1154				
Cumulative Volume Pu	10	Purce							
			al dre	10, -	19 gal				
		U		D	0				
Sampling Equipment:	Purged:			(gallons)			(casing vol)		
Sampling Equipment:				WELL S.	AMPLING INFO	DRMATION			
	Baller								
Comments:									
SAMPLING MEAS	SUREMENT	S:							
,	Depth to	Depth		Conductivity		Other	Other		
Date/	Water	Sampled		(uS @ 25 deg C)	Temp				
	(feet below MP)	(feet below MP)	pH	_	(deg C)				omments
1325 5	7.01	5701	7.85	5684	15.2	Clen	+170, NO	ada	-
SAMPLE HANDLE	ING:								
Date/		Aliq	uots		Filtered	Preserved			
Time Vo	Volume (ml)	Bottle Cor	mposition	Quantity	(Y/N)	(type)		Comments	
ield QA/QC Sampl	nles Collecto	d (tune Canal	No):						
quipment Deconta		a type, sample	c 110.j.						A

Signature of Field Personnel:

GCC RIO GRANDE, INC. Pueblo. CO

Groundwater Monitoring Page 25 of 3	Title: Sampling and Analysis Plan for Environmental Groundwater Monitoring	Control Number: PUE.EN.D.026.04	Revision Date: 3/13/2020	Page 25 of 33
-------------------------------------	---	------------------------------------	--------------------------	---------------

	GROUN	DWATE	RSAM	PIINGI	RECORI)	SAMPLES	No 101 1-7	
Project No:	. 82			-				No. MIL) - 7 Pagé	, of)
Date: 2/		Weather Con	Sample ditions:			s Cire	Personnel: <	Page 3. Legg	
Comments:	22/21		50°	- / 3	Sanny			, ray	1. 0.
	Duplic	ade Tor	ken			TAFE			
Instr	ument	Manufact	urer Model		STRUMENTS al No.	USED		Calibration	
Water Level Prot	e	Geotela	wim	\$2500		Ø	16.70	3.97	
pH Meter			Pro Plus	15A124	1951	Sid: 4 10 10	@ 739°CR	eading 7.01	Slope:
pH Meter				1				eading 10.03	
Conductivity Me								eading <u>/4/20</u>	
Conductivity Me Temperature	er	- V				510.	UC [2. C]		
Other.									-
Filtration	0.45 micron in	line high capac	city disposable	filter.					
	ne of Assessed Sector			WELLI	PURGING INFO	RMATION			
Casing Diameter		~ ~ .	Borehole Diamet			Screened Interva			
Depth to Water (fi	the second se		Total Depth (ff):	59.30	Casing Volume (g	an: 3.87		(gal/ft: 1.5" = 0.092: 2" = 0.1	63: 4" == 0.653)
Purging Method: Comments:	Bailen Menitering point (PVC well entit						
comments.	memoring bount (in , is me top of th	a roman cashi						
		Depth to		Conductivity					
Date	Vol. Purged	Water		tus@25degC)	Temp	App	arance		
Time	(gal)	(feet below LAF)	pH		(deg C)	1	diment, etc.)	1	ments
1130	Initial	35.51	7.53	6109	15.4	It Bro.		aolon	
1120	3	37.45	7.50	locile2	14.7		- No 1		
1209	9	27.71.	7.53	6089	14.5		roun-	N/o Orlon	
17.27	17	37.91	7.55	6077	14.4	1	1	nue ones	
Cumulative Volu	ne Purged:			(gallons)	L	L	(casing vol)		
				WELL SA	AMPLING INFO	DRMATION			
	ent:			1					
Comments:		r.							
Comments:	EASUREMENT			Conductivity		Other	Other		
Comments: SAMPLING M	Depth to	Depth		Conductivity	Ťemp	Other	Other		
Comments:			рН	Conductivity (n5 & 25 deg C)	Temp (deg C)				nents
Comments: SAMPLING M Date	Depith to Water	Depih Sampled	рн 7.55					la Colon	nents
Comments: SAMPLING M Date: Time 227	Depth to Water (feet below MP) 37.91	Depth Sampled (fast below MP)		€£ 4,25 degΩ	(deg.C)				nents
Comments: SAMPLING M Date. Time [227] SAMPLE HAN	Depth to Water (feet below MP) 37.91	Depth Sampled (fart below MP) 79.91	7.55	€£ 4,25 degΩ	(deg C) 14 - 4	<i>7</i> 4 B			nents
Comments: CAMPLING M Date. Time /2277 CAMPLE HAN Date'	Depith to Water /feet below MP) 37.91 DLING:	Depth Sampled (fast below MP) J. 9. 9 / Aliq	7.55 nots	(45.4, 25 deg G)	(deg C) (4, 4) Filtered	ZA 3 Preserved		la Colon	nents
AMPLING M Date Time 1227 AMPLE HAN	Depth to Water (feet below MP) 37.91	Depth Sampled (fart below MP) 79.91	7.55 nots	€£ 4,25 degΩ	(deg C) 14 - 4	<i>7</i> 4 B			nentr
Comments: CAMPLING M Date. Time /2277 CAMPLE HAN Date'	Depith to Water /feet below MP) 37.91 DLING:	Depth Sampled (fast below MP) J. 9. 9 / Aliq	7.55 nots	(45.4, 25 deg G)	(deg C) (4, 4) Filtered	ZA 3 Preserved		la Colon	nents
Comments: CAMPLING M Date. Time /2271 CAMPLE HAN Date'	Depith to Water /feet below MP) 37.91 DLING:	Depth Sampled (fast below MP) J. 9. 9 / Aliq	7.55 nots	(45.4, 25 deg G)	(deg C) (4, 4) Filtered	ZA 3 Preserved		la Colon	nents
Comments: CAMPLING M Date. Time /2271 CAMPLE HAN Date'	Depith to Water /feet below MP) 37.91 DLING:	Depth Sampled (fast below MP) J. 9. 9 / Aliq	7.55 nots	(45.4, 25 deg G)	(deg C) (4, 4) Filtered	ZA 3 Preserved		la Colon	nents
Comments: CAMPLING M Date. Time /2277 CAMPLE HAN Date'	Depith to Water /feet below MP) 37.91 DLING:	Depth Sampled (fast below MP) J. 9. 9 / Aliq	7.55 nots	(45.4, 25 deg G)	(deg C) (4, 4) Filtered	Z-{ B Preserved (type)		la Colon	nentr
Comments: SAMPLING M Date. Time /2277 SAMPLE HAN Date'	Depith to Water /feet below MP) 37.91 DLING:	Depth Sampled (fast below MP) J. 9. 9 / Aliq	7.55 nots	(45.4, 25 deg G)	(deg C) (4, 4) Filtered	Z-{ B Preserved (type)		la Colon	nentr
Comments: SAMPLING M Date: Time /2271 SAMPLE HAN Date' Time	Depith to Water (feet below MP) 37.9/ DLING: Volume (ml)	Depth Sampled (fet below MP) 79.7/ Aliq Bottle Cor	1.55 nots mpresition	(45 6, 25 dag Q (207-7 Quantity	(deg C) / 4 - 4 Filtered (Y/N)	Preserved (type)	rown · M	la Colon	nents
Comments: SAMPLING M Date: Time /2271 SAMPLE HAN Date' Time	Depith to Water /feet below MP) 37.91 DLING:	Depth Sampled (fet below MP) J.C. ? / Aliq Bottle Con	1.55 nots mpresition	(45 6, 25 dag Q (207-7 Quantity	(deg C) (4, 4) Filtered	Preserved (type)	rown · M	la Colon	nents
Comments: SAMPLING M Date: Time /2271 SAMPLE HAN Date' Time ield QA'QC S Equipment De	Depth to Water (feet below MP) 37.9/ DLING: Volume (ml) amples Collecter contamination:	Depth Sampled (fat below MP) 29.7/ Aliq Bottle Con	1.55 nots mpresition	(45 6, 25 dag Q (207-7 Quantity	(deg C) / 4 - 4 Filtered (Y/N)	Preserved (type)	rown · M	la Colon	nents
Date. Time /2271 SAMPLE HAN Date' Time	Depith to Water (feet below MP) 37.9/ DLING: Volume (ml) amples Collecter contamination: 1:	Depth Sampled (fet below MP) J.C. ? / Aliq Bottle Con	1.55 nots mpresition	(45 6, 25 dag Q (207-7 Quantity	(deg C) / 4 - 4 Filtered (Y/N)	Preserved (type)	rown · M	la Colon	

	ampling an Monitoring		Plan for E	nvironmenta		Control Num PUE.EN.D.02		Revision Date: 3/6/2020	Page 25 o
	CROID	TUVATI	CD CAM	DI DIC I	TCOP	D		MALLA S	
The state of the state	GROOP	DWAI	ER SAIVI	IPLING R	LECOK	D	SAMPLE N	o. MW-8	
Project No:	Q 2021	Gw.	Sunolum	Location: GC	CR	io Gra	incle.	Page (of	1
Date: Z/I	0/21+	Weather Con	ditions: \)			Personnel:	1	
	22/21		12°F /	Sunny			TT	Sarman / S. L	rega
Comments:	Ð	1 7/		0	1				00
	Furge	d 41	0/21,	' Sample					
Tuet		1.1	24.4.1	1	STRUMENT	S USED		C 11	
Unstr Water Level Prot	ument	-	h MLM	8250	l No.	2/	16.7	Calibration 3.97	
oH Meter	De		Pro Plus	15A104			@ 13.1 °C Res		Slope:
oH Meter		A	10 1140	1 SAIOT	701		a 13.7 °C Rea		Supr.
Specific Conduct	ance Meter			1 1			uS @ 25 °C Re:	and the second se	
Specific Conduct	ance Meter					Std:	_uS @ 25 °C Res	ading	
Temperature		-							
Other:				1					
Filtration	0.45 micron in	-line high capac	city disposable				*		
	01	-line high capac	1	WELL P	URGING INF	1	*		
Casing Diameter	(inches): 2"		Borehole Diamet	WELL PI ter (inches):		Screened Interval			0.60
Casing Diameter Depth to Water (fi	(inches): 2"		1	WELL PI ter (inches):		1		gal:ft: 1.5" = 0.09; 2" = 0.16; 4" =	0.65)
Casing Diameter	(inches): 2" t below MP): 34		Borehole Diamet Total Depth (fi):	WELL PU ter (inches):		Screened Interval		galft: 1.5" = 0.09: 2" = 0.16: 4" =	0.65)
Casing Diameter Depth to Water (ft Purging Method: Comments:	(inches): 2" t below MP): 34	4.21	Borehole Diamet Total Depth (fi):	WELL PU ter (inches):		Screened Interval		gal fi: 1.5" = 0.09; 2" = 0.16; 4" =	0.65)
Casing Diameter Depth to Water (fi Purging Method:	(inches): 2" t below MP): 34	4.21	Borehole Diamet Total Depth (fi):	WELL PU ter (inches):		Screened Interval		gal fi: 1.5" = 0.09; 2" = 0.16; 4" =	0.65)
Casing Diameter Depth to Water (ft Purging Method: Comments:	(inches): 2" t below MP): 34	<u>7.2.1</u> [−] (MP) is the top of th	Borehole Diamet Total Depth (fi):	WELL P(ter (inches):		Screened Interval ((gal): 5.01	Jance (gal:ft: 1.5" = 0.09: 2" = 0.16; 4" =	0.65)
Casing Diameter Depth to Water (fr Purging Method. Comments: 2/10/2 t Date/ Time	(inches): 2" t below MP): 3 ^t Monitoring point (Vol. Purged (gal)	H 2 1 MP) is the top of th Depth to Water (for below MP)	Borehole Diamet Total Depth (fi): ne PVC well casin pH	WELL PI ter (inches): 66.00 Specific Conductance (45.2.5 deg C)	Casing Volume Temp (deg C)	Screened Interval (gal): 5.01 Appea (color, sedi	(rance iment, etc.)	Comments	0.65)
Casing Diameter Depth to Water (ff Purging Method. Comments: 2/10/2 1 Date/ Time 1 2	(inches): 2" telow MP): 3 ⁴ Monitoring point (Vol. Purged (gal) Luitial	H 2 1 MP) is the top of th Depth to Water (for below MP) 34. 2.1	Borehole Diamet Total Depth (fi): as PVC well casim pH 7.13	WELL PI ter (inches): 66.00 Sec. Specific Conductance (a5.2.5 deg C) 52.90	Temp (deg C) 12.0	Screened Interval (gal): 5.01 Appea (color, sedi	Jance (Comments	0.65)
Casing Diameter Depth to Water (ft Purging Method. Comments: 2/10/2.1 Date: Time 1 2.1 1 2.6	(inches): 2" telow MP): 3" Monitoring point (Vol. Purged (gal) Inifial 1	H 2 1 MP) is the top of th Depth to Water (feet below MP) 34.21 35.51	Borehole Diamet Total Depth (fi): be PVC well casin pH 7,13 7.18	WELL PI ter (inches): 66.00 Specific Conductance (as # 25 deg C) 5290 5308	Temp (deg C) 12.0 12.4	Screened Interval ((gal): 5.01 Appea (color. sedi	(srance ment, etc.) , Sulfur o	Comments	0.65)
Casing Diameter Depth to Water (ff Durging Method. Comments: 2/10/2 1 Date/ Time 1 2 1 2 b 1 3 3	(inches): 2" telow MP): 3 th Monitoring point (Vol. Purged (gal) Initial 1 2	1. 2. 1 MP) is the top of th Depth to Water (feet below MP) 34. 2.1 35. 51 45. 62	Borehole Diamet Total Depth (fi): be PVC well casim pH 7.13 7.18 7.18	WELL PI ter (inches): 66.00 WE Specific Conductance (a5.2.54cr C) 5290 5308 5300	Temp (deg C) 12.0 12.4 13.3	Screened Interval ((gal): 5.01 Appea (color, sedi (color, sedi (clear, sedi	(rance iment, etc.)	Comments	0.65)
Casing Diameter Depth to Water (ft Purging Method. Comments: 2/10/2 (Date: Time 11/21 11/26 11/33 11/40	(inches): 2" telow MP): 3 th Monitoring point (Vol. Purged (gal) Luitial 1 2 3	7. 2. 1 MP) is the top of th Depth to Water (feet below MP) 34. 2.1 35. 5.1 45. 62 49. 8.9	Borehole Diamer Total Depth (fi): be PVC well casin pH 7.13 7.18 7.18 7.22	WELL PI ter (inches): 66.00 WE Specific Conductance (a5.2.54cr C) 5290 5308 5300	Temp (deg C) 12.0 12.4 13.3 13.6	Appea (color, sedi	(srance ment, etc.) , Sulfur o	Comments	0.65)
Casing Diameter Depth to Water (ff Purging Method. Comments: 2/10/2 1 Date/ Time 1 2 1 2 b 1 33 1 4 0	(inches): 2" telow MP): 3" Monitoring point (Vol. Purged (gal) Initial 1 2	4. 2. 1 MP) is the top of th Depth to Water (fort below MP) 34. 2.1 35. 5.1 45. 62 49. 89 55. 95	Borehole Diamer Total Depth (ft): be PVC well casin PH 7.13 7.18 7.18 7.22 7.28	WELL PI ter (inches): 66.00 Specific Conductance (as a 25 der C) 5290 5308 5301 S299 S390	Temp (deg C) 12.0 12.4 13.3 13.6 13.6	Appea (color, sedi <i>Clear</i> , s <i>1</i> , <i>1</i> , <i>1</i> , <i>1</i> , <i>1</i> , <i>1</i> , <i>1</i> ,	(srance ment, etc.) , Sulfur o	Comments	0.65)
Casing Diameter Depth to Water (ft Purging Method. Comments: 2/10/2 (Date: Time 1 21 1 26 1 33 1 40 1 50	(inchet): 2" toelow MP): 34 Monitoring point (Vol. Purged (gal) Initial 2 3 4 5	7. 2. 1 MP) is the top of th Depth to Water (feet below MP) 34. 2.1 35. 5.1 45. 62 49. 8.9	Borehole Diamer Total Depth (fi): be PVC well casin pH 7.13 7.18 7.18 7.22	WELL PI ter (inches): 66.00 WE Specific Conductance (a5.2.54cr C) 5290 5308 5300	Temp (deg C) 12.0 12.4 13.3 13.6	Appea (color, sedi	(srance ment, etc.) , Sulfur o	Comments	0.65)
Casing Diameter Depth to Water (ft Purging Method. Comments: 2/10/2 (Date: Time 1 21 1 26 1 33 1 40 1 50	(incher): 2" to below MP): 34 Monitoring point (Vol. Purged (gal) Initial I 3 4 5 Total	7. 2. 1 MP) is the top of th Depth to Water (rest below MP) 34. 2.1 35. 5.1 45. 52 47. 0.9 55. 95 61.51	Borehole Diamer Total Depth (ft): be PVC well casin PH 7.13 7.18 7.18 7.22 7.28	WELL PI ter (inches): 66.00 Specific Conductance (as a 25 der C) 5290 5308 5301 S299 S390	Temp (deg C) 12.0 12.4 13.3 13.6 13.6	Screened Interval ((gal): 5.01 Appea (color, sedi (color, sedi	(srance ment, etc.) , Sulfur o	Comments	0.65)
Casing Diameter Depth to Water (ft Purging Method. Comments: 2/10/2 (Date: Time (1 2 1 11 2 b 11 2 b 11 3 3 11 4 0 11 5 0 4 1 5 7	(incher): 2" to below MP): 34 Monitoring point (Vol. Purged (gal) Initial I 3 4 5 Total	7. 2. 1 MP) is the top of th Depth to Water (rest below MP) 34. 2.1 35. 5.1 45. 52 47. 0.9 55. 95 61.51	Borehole Diamer Total Depth (ft): be PVC well casin PH 7.13 7.18 7.18 7.22 7.28	WELL P ter (inches): 66.00 46.00	Temp (deg C) 12.0 12.4 13.3 13.6 13.6 13.4 13.4	Screened Interval ((gal): 5.01 Appea (color, sedi (color, sedi	rance ment. etc.) Sulfur or Sulfur or	Comments	0.65)
Casing Diameter Depth to Water (ft Purging Method. Comments: 2/10/2 (Date: Time (1 2 1 11 2 b 11 2 b 11 3 3 11 4 0 11 5 0 4 1 5 7	(incher): 2" to below MP): 34 Monitoring point (Vol. Purged (gal) Initial I 2 3 4 5 Total ne Purged:	$\frac{1}{12} \frac{1}{12} \frac{1}{12}$ MP) is the top of th Depth to Water (free below MP) $\frac{34.21}{35.51}$ $\frac{45.52}{45.52}$ $\frac{49.09}{55.95}$ $\frac{61.51}{51}$ = 66.00	Borehole Diamer Total Depth (ft): be PVC well casin PH 7.13 7.18 7.18 7.22 7.28	WELL P ter (inches): 66.00 46.00	Temp (deg C) 12.0 12.4 13.3 13.6 13.6 13.4 13.4	Screened Interval ((gal): 5.01 Appea (color, sedi (color, sedi	rance ment. etc.) Sulfur or Sulfur or	Comments	0.65)
Casing Diameter Depth to Water (ft Purging Method: Comments: 2/10/2 (Date: Time (12) (12) (12) (12) (12) (12) (12) (12)	(inches): 2" to below MP): 34 Monitoring point (Vol. Purged (gal) Inifial I 3 4 5 1 Total ne Purged: tent: $Data$	$\frac{1}{2} \frac{1}{2}$ MP) is the top of th Depth to Water (free below MP) 34.21 35.51 45.52 47.09 55.95 61.51 = 66.00	Borehole Diamer Total Depth (ft): be PVC well casin PH 7.13 7.18 7.18 7.22 7.28	WELL P ter (inches): 66.00 46.00	Temp (deg C) 12.0 12.4 13.3 13.6 13.6 13.4 13.4	Screened Interval ((gal): 5.01 Appea (color, sedi (color, sedi	rance ment. etc.) Sulfur or Sulfur or	Comments	0.65)
Casing Diameter Depth to Water (ft Purging Method: Comments: 2/10/2 (Date: Time (12) (12) (12) (12) (12) (12) (12) (12)	(inches): 2" to below MP): 34 Monitoring point (Vol. Purged (gal) LNTT21 2 3 4 5 70+2(me Purged: tent: Day	$\frac{1}{2} \frac{1}{2} \frac{1}{2}$ (MP) is the top of th Depth to Water (feet below MP) 34.21 35.51 45.52 49.09 55.95 61.51 = 66.00 e_{2} S:	Borehole Diamer Total Depth (ft): be PVC well casin PH 7.13 7.18 7.18 7.22 7.28	WELL P ter (inches): 66.00 4. Specific Conductance (a5.254rcC) 5290 5308 5290 5301 5290 5390 5403 (gallons) WELL SA	Temp (deg C) 12.0 12.4 13.3 13.6 13.6 13.4 13.4	Screened Interval ((gal): 5.01 Appea (color. sedi (color. sedi (color	(rance iment, etc.) SUIFUE O SUIFUE O (casing vol)	Comments	0.65)
Casing Diameter Depth to Water (ft Purging Method: Comments: 2/10/2 (Date: Time (1 21 (1 26 (1 21 (1 26 (1 21 (1 26 (1 21) (1 26 (1 21) (1 26 (1 21) (1 26) (1 21) (1 26) (1 21) (1 26) (1 21) (1 26) (1 21) (1 26) (1 21) (1 26) (1 20) (1 20)	(inches): 2" (inches): 3" Monitoring point (Vol. Purged (gal) Initial 2 3 4 5 70+2(me Purged: ent: Day EASUREMENT Depth to	$\frac{1}{2}$ 2 1 MP) is the top of th Depth to Water (for below MP) 34.21 35.51 45.52 49.09 55.95 61.51 = 66.00 P S: Depth	Borehole Diamer Total Depth (ft): be PVC well casin PH 7.13 7.18 7.18 7.22 7.28	WELL P ter (inches): 66.00 46.00 47. Specific Conductance (a5.224ecC) 5290 5308 5301 5290 5390 5299 5390 5299 5390 5299 5390 5299 5390 5299 5390 5299 5390 5299 5390 5299 5390 5299 5390 5299 5390 5299 5390 5299 5390 5299 5390 5299 5390 5299 5390 5299 5390 5290 5390 5299 5390 5290 5390 5299 5390 5299 5390 5299 5390 5299 5390 5390 5290 5390 5290 5390 5290 5390 5290 5390 5390 5290 5390 5390 5290 5390 5390 5390 5390 5390 5390 5390 5390 5390 5290 5300 5300 5300 5300 500 500 500	Temp (deg C) 12.0 12.4 13.3 13.6 13.6 13.4 13.4 13.4	Screened Interval ((gal): 5.01 Appea (color, sedi (color, sedi	rance ment. etc.) Sulfur or Sulfur or	Comments	0.65)
Casing Diameter Depth to Water (ft Purging Method: Comments: 2/10/2 (Date: Time (1 2) 1126 1126 1133 1140 1157 Cumulative Volum Comments: AMPLING M Date:	(inches): 2" (inches): 3" Monitoring point (Vol. Purged (gal) LNTT21 2 3 4 5 70+2 me Purged: ent: Day EASUREMENT Depth to Water	$\frac{1}{2}$ 2 1 MP) is the top of th Depth to Warer (for below MP) 34.21 35.51 45.52 49.09 55.95 61.51 = 66.00 e_{2} S: Depth Sampled	Borehole Diamer Total Depth (ft): ae PVC well casin PH 7.13 7.18 7.22 7.28 7.28 7.38	WELL P ter (inches): 66.00 WEL Specific Conductance (a5.224ecC) 5290 5308 5301 S290 5390 5403 (gallons) WELL SA Specific Conductance	Temp (deg C) 12.0 12.4 13.3 13.6 13.6 13.4 13.4 13.4 13.4 13.4 13.4	Screened Interval ((gal): 5.01 Appea (color. sedi (color. sedi (color	(rance iment, etc.) SUIFUE O SUIFUE O (casing vol)	Comments dor dor	0.65)
Casing Diameter Depth to Water (ft Purging Method: Comments: 2/10/2 (Date: Time (1 21 (1 26 (1 21 (1 26 (1 21 (1 26 (1 21) (1 26 (1 21) (1 26 (1 21) (1 26) (1 21) (1 26) (1 21) (1 26) (1 21) (1 26) (1 21) (1 26) (1 21) (1 26) (1 20) (1 20)	(inches): 2" (inches): 3" Monitoring point (Vol. Purged (gal) Initial 2 3 4 5 70+2(me Purged: ent: Day EASUREMENT Depth to	$\begin{array}{c} & & & \\$	Borehole Diamer Total Depth (ft): be PVC well casin PH 7.13 7.18 7.18 7.22 7.28	WELL P ter (inches): 66.00 46.00 47. Specific Conductance (a5.224ecC) 5290 5308 5301 5290 5390 5299 5390 5299 5390 5299 5390 5299 5390 5299 5390 5299 5390 5299 5390 5299 5390 5299 5390 5299 5390 5299 5390 5299 5390 5299 5390 5299 5390 5299 5390 5299 5390 5290 5390 5299 5390 5290 5390 5299 5390 5299 5390 5299 5390 5299 5390 5390 5290 5390 5290 5390 5290 5390 5290 5390 5390 5290 5390 5390 5290 5390 5390 5390 5390 5390 5390 5390 5390 5390 5290 5300 5300 5300 5300 500 500 500	Temp (deg C) 12.0 12.4 13.3 13.6 13.6 13.4 13.4 13.4	Screened Interval ((gal): 5.01 Appea (color. sedi (color. sedi (color	(rance iment, etc.) SUIFUE O SUIFUE O (casing vol)	Comments	0.65)

Date		Aliquots		Filtered	Preserved	
Time	Volume (ml)	Bottle Composition	Quantity	(YN)	(type)	Comments
	1	=				
eld QA/QC	Samples Collected	d (type, Sample No.):				
quipment D	econtamination:	N/A				
Vaste Dispos	al:					
Signature of Fie						GCC RIO GRANDE, INC.
						Pueblo, CO

Title: Sampling and Analysis Plan for Environmental	Control Number:	Revision Date:	Dara 05 +600
Groundwater Monitoring	PUE.EN.D.026.04	3/6/2020	Page 25 of 33

	GROUN	DWAT	ER SAN	APLING F	ECOR	D	SAMPLE	No. MW-S
Project No:	2021		-			1010 - Ric	Grand	Page of)
Date: 5/12	2/21	Weather Con	ditions:				Deserve	Scott Legg
Comments:								de la
	_	1.00		1.1	STRUMENTS	TSED		
Inst	ument	Manufact	urer Model	Seria		I I		Calibration
Vater Level Pro						STOPIL	0 13.7°C	
H Meter						Std: 4 10	a 13.9 °CI	Reading 7.05 Slope
H Meter						Std. 4 7 🕥	a 13.7 ~ 5	Reading 10-64
pecific Conduc								Reading 1412
pecific Conduc	tance Meter					Std.	_us @ 25 °C #	Kezdung
ther: OR P	100					7199	1. 11	Ad 225.0 ml
ilgation		-line high capa	city disposable	e filter.			- YM IZ	ALC CL. C MAN
				and the second second second second	URGING INF	ORMATION		
asing Diameter			Borehole Diam			Screened Interval	(ft. BGL).	
	t below MP). W	HA	Total Depth (ft)	26.48	Casing Volume	(gal).		(min. 15"=0.09. 2"=0.15.4"=0.65)
urging Method.		The second se	-	1				
onment:	Monitoring point (MP) is the top of the	De PVC well cas	ung.				
		Depth to		Specific				
Date	Vol. Purged	Water		Conductance	Temp	Appe	arance	
Time	(چا)	(feet Indum MCP)	pH	(aS a 25 deg C)	(deg C)	(color, sed	iment, etc.)	Comments
1.1	11	-	12					
$-\mathcal{N}$	VA-	DK	0	1176	1			
	1			100				
umulative Volu	me Purged:			(gallons)			(canng vol)	
				WELL SA	MPLING INF	ORMATION		
ampling Equips	nent.							
AMPLING M	EASUREMENT	S:						
	Depth to	Depth		Specific		Other	Other	
Dare	Water	Sampled		Conductance	Temp			
Time	(for below MP)	(fees below MP)	pH	(aS 3 25 deg C)	(deg C)			Comment
	DI DIC							
AMPLE HAN	DLING:	412	uots		Filtered	Preserved		
Time	Volume (ml)		mpositica	Quantity	(YN)	(type)		Comments
	(and (and)	Done Co	- anard		1			
	Sampler Callert	ad (trans Carro	nle No V					
ald ON OCC	samples Collect		pre ivo.j:					
ield QA/QC S quipment De	contamination:							
	contamination: al:					1	000	RIO GRANDE. INC.

Title:Sampling and Analysis Plan for Environmental
Groundwater MonitoringControl Number:
PUE.EN.D.026.04Revision Date:
3/6/2020Page 25 of 33

	GROUN	DWATI	ER SAM	IPLING I	RECORI	D	SAMPLE	No. W	2w 6	,	
Project No:		GW		Lantian		2	grand	0	Page) of	
Date:		Weather Cond			7000		Personnel				
5/19/ Comments:	21		Sunny	1	()		0	, hea	55		
			~								
				1	ISTRUMENTS	USED		-			
	rument		urer Model		ial No.	(h)	19.4	Calibrat 3.4			
Water Level Prob H Meter	Je	Geoteck YSI Pri		82500 15400		(4) Std. 4 (7) 10	17.8 1. 20.0 CF	And in case of the local division of the loc	102	51	ope.
H Meter		A	D KINS	10AW	4751		271. A.C.F.		5.03	-	spe.
pecific Conduct	tance Meter			1		Std: 1413			413		
pecific Condice	Pance Meter					Std: 220	Ma 25 °C 3	Aeading 71	8.7		
emperature							20.70	, 97	5-110	er	
other. D(3	7		9			20,70	91	8.972	-	
litation	0.45 micron in	-line high capac	nity disposable								
					PURGING INFO						
asing Diameter Depth to Water (fr		8.82	Borehole Diamete Total Depth (ft):		In sine Malama (Screened Interval		-14-15%	0.00 X=0	10.47= 0.65	172
wrging Method.		8.82	Tetal Depin (it).	51,50	Casing Volume ((m) 5:46	5 1.72	(fara: 1.5 -	=0.09: 2*=0	10; + = 0.05)	LAC
onginents:		(MP) is the top of th	e PVC well casin	£.							
		Depth to		Specific							
Date	Vol. Purged	Water		Conductance	Temp	Appe	arance				
Time	(لح)	(feet below MP)	pH	(nS 2 25 deg C)	(deg C)	-	diment, erc.)	ORP		mments	
015	, Initial	49.82	8.18	5736	15.0	clean		126.4	0.53	clear	, no no
023	5107	51.82	7.49	5741	15.2	den		101.6	0.83	1)	
028	2	53.68	7.40	5758	14.3	11		87.3	0.92		
027	4	55.04	7.39	5777	14.8	hunor 3	ed threw	- Hallan	1.06		
10-19	2	58.48		5917	15.0	nunal 3	(2) 180-	134.4	1. M		
		00000		un.	14.			-27.7	112		
umulative Volur	me Purged:			(gallons)			(casing vol)				
				WELL S.	AMPLING INFO	ORMATION					
ampling Equipm	nent: Baules	~									
omments:											
AMPLING M	EASUREMENT			1	1	1	010	1			
Dent	Depth to	Depth		Specific Conductance	Tomp	Other	Other				
Date	(feet below MP)	Sampled	pH	(uS a 25 deg C)	(deg C)			OFR	DO Con	mant	
1057	5.8.9%		7.43	5945	14.9	No ala	- Hhere		1.55	and the second	
	0.01.0	2011		et la	1	in was	Sed	42.0		-	
AMPLE HAN	DLING:										
Date		Aliq	uots	1	Filtered	Preserved					
Time	Volume (mi)	Bottle Con	mponnen	Quantity	(Y/N)	(type)			Comments		
				└──── ′			 				
eld QA/QC S	Samples Collect	ted (type, Sam	ple No.):								
	contamination:			1	1						
		- fresh	n equi	pmeres	used						
franks Diamond	41:	U	0	*							
aste Disposa	and the second se					1	CCC	RIO GRAI	STATE TAG	-	

<u>Title</u> : Groundw	Sampling and Analysis Plan for Environmental ater Monitoring	Control Number: PUE.EN.D.026.04	Revision Date: 3/6/2020	Page 25 of 33

	GROUN	DWATI	ER SAM	PLING	RECOR	D	SAMPLE	No. M	w-7	
Project No:	2 202	1 G(1)	Sandies	Location:	GCC	Rio G			Page /	of 1
Date: 5/19	in.	Weather Cone	ditions:	5 570	F		1.	Scott	1	
Comments:	14		Sunny	570	T			ach	ny	
Comments.	Duol	cate C	ollecte	1					0-	
			<u>action actions</u>		STRUMENTS	USED				
Instr	iment	Manufact	urer Model	Ser	ial No.			Calibra	tion	
ater Level Prob	e	Geote	ch wem	8250	01.3	ED	19.8	-	5.98	
H Meter			Pro Plus	15A10.			a 20.0 °C F			Slope:
H Meter			Pro Plus	1			a 21.0 °C B			
pecific Conducta			Pro Plus				uS @ 25 °C F			
vecific Conducts	ace Meter	TZY I	Pro Plus			Std 220	MAR a 25 °C F	leading _ C	18.1	
emperature							140	0.2	100	
ther:		D0		4		20.1	1°C	98.9	170	
Itration	0.45 micron in	-line high capac	aty disposable							
	~	-11			PURGING INF					_
asing Diameter (Borehole Diamete			Screened Interva				
epth to Water (fr		3.47	Total Depth (ft):	58.46	Casing Volume	(m). 4.0	1	(gal f: 1.5* =	= 0.09; 2" = 0.16; 4"	= 0.65) 12.2
urging Method.	Bai									
onments.	Monitoring point (MP) is the top of th	e PVC well casing	5/1	19/21					
		Danch an				1				
Date	Vol. Purged	Depth to Water		Specific Conductance	Temp		arance			
Time	(gal)	(fort holess MP)	-17		(deg C)		diment, etc.)	ORP	, PO Commen	
1130	Indial	(fart heleve MP) 33.4/7	pH 7.54	105 2 25 deg C) 5671		1		46.6	1.26	61.3
12/7	Zuction	34.80	7.53	5417	15.0		no oda	46.6	1.12	
154	6	34.70	7.50	53.50	14.7	brwns	ec.	54.4	1.43	
1208	9	35 121	7.50	0000	14.10	11		64.7	2.56	
223	12	34.28	7.51	5337	14.0	11		741	2.51	
442	-'3	01.00	1.01		14.	1		1-1-1	2.01	
		Dung	Calle	del				,		
umulative Volum	e Purged:	sulling		(gallons)	•	· ·	(casing vol)		l	
					AMPLING INF	ORMATION				
umpling Equipme	ent: Baile	C								
omments:										
AMPLING ME	ASUREMENT	S:								
	Depth to	Depth		Specific		Other	Other			
Date	Water	Sampled		Conductance	Temp					
Tume	effect bullions MP)	(fast below MP)	pH	ras 2 25 deg C)	(deg C)			ORP	PO Commen	5
1230	13.0	34,81	7.51	5464	15.2	Brown	sad	71.8	2.36	
MPLE HANI	DLING:				-					
Date		Aliq	uots		Filtered	Preserved				
Time	Volume (mi)	Bottle Con	прозніся	Quantity	(Y/N)	(type)			Comments	
									14	
eld QA/QC Sa	amples Collect	ed (type, Sann	ole No.):	MW-Z	Be	1245				
uipment Dec	ontamination:									
		NA-	Jash	equipr	net u	sed				
			17	11 1						
aste Disposal				V .		1				
aste Disposal gnature of Field						<u> </u>	GCC I	RIO GRA	NDE, INC.	

Title: Sampling and Analysis Plan for Environmental Groundwater Monitoring	Control Number: PUE.EN.D.026.04	Revision Date: 3/6/2020	Page 25 of 33
--	------------------------------------	-------------------------	---------------

Project No:				Location:			SAMPLE		AW-B Page 1	of ;	-
10	2 2021	GID 50		(SCC-R	io Gru	inde		1 35 C	-1	
	2021 12/21, 19/21	Weather Con	ditions:	Ouncast,	45°F	io Gro	Personnel:	S. he	93		
Comments:		l on	5/12/2	1, sar	neb c	olledeo	lan	5/19/	21		
					ISTRUMENTS	USED					
Inst	nument		urer/Model		ial No.		119	Calibra		5/1	1-2-
Water Level Pro	be	Geotec		8250		(4)	19 800		98	3.50	
pH Meter		SI P	ro Plus	ISAID	4951	Stal 4 () 10	a 70.0°CH	leading (102	Slope: 7-0	
pH Meter Specific Conduc	And Mana	1		1			uS a 25 °C I			1412	1
Specific Conduct	-	P					Hot a 25 °C I			219.9	
Temperature	table Meter (/									-1117	
Other:	DO	+		1							
Filtration	0.45 micron in	-line high capa	city disposable	filter.							
				WELL	PURGING INF	ORMATION					
Casing Diameter		2"	Borehole Diame			Screened Interva					_
Depth to Water ()		4.56	Total Depth (ft):	65.75	Casing Volume (al). 5.08		(pal fr. 1.5" =	= 0.09; 2" = 0.16; 4"	= 0.65)	-
Purging Method			-								-
Comments.	Monitoring point	(MP) is the top of t	he PVC well casin	<u>1</u> .							
	1	Depth to		Specific	1	1		1			-
Date	Vol. Purged	Water		Conductance	Temp	App	arance				1
Tune	([m])	(for below MP)	pH	ias a 25 deg C)	(deg C)		diment, etc.)		Commen	115	0I
1015	Turtial	34,54	7.39	5084	14.5	clear,	strong	sulfar	odor, n	unor ban	vin
107.0	1	41.71	7.45	4966	14.2	light/1	be white	- section	est shall		
1025	2	47.67	7.48	4941	14.2	1.5 4			40		ľ
1031	3	52.13	7.49	4949	14.3	U			1)		-12
1039	4.75	58.03	7.52	1990	14.3	68			0		-13
		65.5Z	7.62	5482	14.3 ded' T	her they	ent 120	ten			-150
Cumulative Volu		.75		(gallons)	AMPLING INF	ORMATION	(casing vol)	ter			
Cumulative Volu Sampling Equipt	me Purged: 4	N		(gallons)	ded; I	ORMATION		ter			
Sampling Equips Comments:	me Purged: 4	.75		(gallons)	ded; I	ormation		ter			
Sampling Equips Comments:	mee Purged: 4	.75 .75		(gallon:) WELL S.	ded; I		(cating vol)	ter			
Sampling Equips Comments: SAMPLING M	me Purged: 4 nent: (EASUREMENT Depth to	.75 .75 Depth		(gallon:) WELL S. Specific	AMPLING INF	ORMATION Other		ter			
Sampling Equips Comments: SAMPLING M Date	me Purged: 4 nent: (EASUREMENT Depth to Water	S: Depth Sampled	o samo	(gallon:) WELL S. Specific Conductance	AMPLING INF		(cating vol)		Decommen		
Sampling Equips Comments: SAMPLING M Date Time	me Purged: 4 nent: (EASUREMENT Depth to Water (fart beliew MP)	.75 Depth Sampled (feet below MP)	p sarma pH	(gallon:) WELL S. Specific Conductance (a5 à 25 drg C)	AMPLING INF	Other	(canng vol) Other	ORP	Decommen		
Sampling Equips Comments: SAMPLING M Date	me Purged: 4 nent: (EASUREMENT Depth to Water	S: Depth Sampled	o samo	(gallon:) WELL S. Specific Conductance	AMPLING INF	Other Closes mi	(canng vol) Other	ORP	Dexommen 4.32		
Sampling Equips Comments: SAMPLING M Date Time	me Purged: 4 nent: EASUREMENT Depth to Water (fort below MP) 51.97	.75 Depth Sampled (feet below MP)	p sarma pH	(gallon:) WELL S. Specific Conductance (a5 à 25 drg C)	AMPLING INF	Other	(canng vol) Other	ORP			
Sampling Equipm Comments: SAMPLING M Date Time 12.53	me Purged: 4 nent: EASUREMENT Depth to Water (fort below MP) 51.97	S: Depth Sampled (feet below MP) S1, 97	p sarma pH	(gallon:) WELL S. Specific Conductance (a5 à 25 drg C)	AMPLING INF	Other Closes mi	(canng vol) Other	ORP			
Sampling Equipm Comments: SAMPLING M Dane Time 12.53	me Purged: 4 nent: EASUREMENT Depth to Water (fort below MP) 51.97	S: Depth Sampled (feet below MP) S1, 97	р <u>золир</u> рн 7, (50)	(gallon:) WELL S. Specific Conductance (a5 à 25 drg C)	AMPLING INF Temp (deg C)	Other Closs mi No ord	(canng vol) Other	OR P -38-1			
Sampling Equipm Comments: SAMPLING M Dane Time 12_5 3 SAMPLE HAN Dane	me Purged: 4	S: Depth Sampled (feet below MP) S1,97 Alter	р <u>золир</u> рн 7, (50)	(gallon:) WELL S. Specific Conductance (uS & 25 drg C) SS 7 (AMPLING INF Temp (deg C) /6 /	Other Closer, mi Wo ord	(canng vol) Other	OR P -38-1	4.32		
Sampling Equipm Comments: SAMPLING M Dane Time 12_5 3 SAMPLE HAN Dane	me Purged: 4	S: Depth Sampled (feet below MP) S1,97 Alter	р <u>золир</u> рн 7, (50)	(gallon:) WELL S. Specific Conductance (uS & 25 drg C) SS 7 (AMPLING INF Temp (deg C) /6 /	Other Closer, mi Wo ord	(canng vol) Other	OR P -38-1	4.32		
Sampling Equipm Comments: SAMPLING M Dane Time 12_5 3 SAMPLE HAN Dane	me Purged: 4	S: Depth Sampled (feet below MP) S1,97 Alter	р <u>золир</u> рн 7, (50)	(gallon:) WELL S. Specific Conductance (uS & 25 drg C) SS 7 (AMPLING INF Temp (deg C) /6 /	Other Closer, mi Wo ord	(canng vol) Other	OR P -38-1	4.32		
Sampling Equipm Comments: SAMPLING M Dane Time 12_5 3 SAMPLE HAN Dane	me Purged: 4	S: Depth Sampled (feet below MP) S1,97 Alter	р <u>золир</u> рн 7, (50)	(gallon:) WELL S. Specific Conductance (uS & 25 drg C) SS 7 (AMPLING INF Temp (deg C) /6 /	Other Closer, mi Wo ord	(canng vol) Other	OR P -38-1	4.32		
Sampling Equipm Comments: SAMPLING M Dane Time 12_5 3 SAMPLE HAN Dane	me Purged: 4	S: Depth Sampled (feet below MP) S1,97 Alter	р <u>золир</u> рн 7, (50)	(gallon:) WELL S. Specific Conductance (uS & 25 drg C) SS 7 (AMPLING INF Temp (deg C) /6 /	Other Closer, mi Wo ord	(canng vol) Other	OR P -38-1	4.32		
Sampling Equipm Comments: SAMPLING M Dane Time 12_5 3 SAMPLE HAN Dane	me Purged: 4	S: Depth Sampled (feet below MP) S1,97 Alter	р <u>золир</u> рн 7, (50)	(gallon:) WELL S. Specific Conductance (uS & 25 drg C) SS 7 (AMPLING INF Temp (deg C) /6 /	Other Closer, mi Wo ord	(canng vol) Other	OR P -38-1	4.32		
Sampling Equipm Comments: SAMPLING M Date Time 12_53 SAMPLE HAN Date Time	me Purged: 4	S: Depth Sampled (feet below MP) S1.97 Alia Bortle Co	рн рн 7, (сО проянов	(gallon:) WELL S. Specific Conductance (uS & 25 drg C) SS 7 (AMPLING INF Temp (deg C) /6 /	Other Closer, mi Wo ord	(canng vol) Other	OR P -38-1	4.32		
Sampling Equipm Comments: SAMPLING M Date Time (2_53) SAMPLE HAN Date Time	me Purged: 4 ment: EASUREMENT Depth to Water (fort below MP) 51,97 IDLING:	S: Depth Sampled (feet below MP) S1, 97 Altic Bottle Co	pH 7, (sO mposition	(gallon:) WELL S. Specific Conductance (uS 3 25 drg C) SS 7 1 Quanty	AMPLING INF Temp (deg C) /6 · / Filtered (YN)	Other Closer, mi Wo ord Preserved (type)	(canng vol) Other	OR P -38-1	4.32		
Sampling Equipm Comments: SAMPLING M Date Time (2_53) SAMPLE HAN Date Time	me Purged: 4	S: Depth Sampled (feet below MP) S1, 97 Altic Bottle Co	pH 7, (sO mposition	(gallon:) WELL S. Specific Conductance (uS 3 25 drg C) SS 7 1 Quanty	AMPLING INF Temp (deg C) /6 · / Filtered (YN)	Other Closer, mi Wo ord Preserved (type)	(canng vol) Other	OR P -38-1	4.32		
Sampling Equipm Comments: SAMPLING M Date Time (2_53) SAMPLE HAN Date Time	me Purged: 4	S: Depth Sampled (feet below MP) S1, 97 Altic Bottle Co	pH 7, (sO mposition	(gallon:) WELL S. Specific Conductance (uS & 25 drg C) SS 7 (AMPLING INF Temp (deg C) /6 · / Filtered (YN)	Other Closer, mi Wo ord Preserved (type)	(casing vol) Other	<u>ORP</u> -38-1	Comments		
Sampling Equipm Comments: SAMPLING M Date Time 12_53 SAMPLE HAN Date Time	me Purged: 4 ment: EASUREMENT Depth to Water (for below MP) S 1.9.7 DLING: Volume (ml) Samples Collect contamination: al:	S: Depth Sampled (feet below MP) S1, 97 Altic Bottle Co	pH 7, (sO mposition	(gallon:) WELL S. Specific Conductance (uS 3 25 drg C) SS 7 1 Quanty	AMPLING INF Temp (deg C) /6 · / Filtered (YN)	Other Closer, mi Wo ord Preserved (type)	(casing vol) Other	CR P -38-1	Comments NDE. INC.		
Sampling Equipm Comments: SAMPLING M Date Time 12.53 SAMPLE HAN Date Time Field QA QC S Equipment De Vaste Dispos: Signature of Fiel	me Purged: 4 ment: EASUREMENT Depth to Water (fort below MP) 51,97 DLING: Volume (ml) Samples Collect contamination: al: d Personnel:	IS: Depth Sampled (feet below MP) S1, 97 Alta Bottle Co	pH 7. (sO mposition ple No.):	(gallon:) WELL S. Specific Conductance (as a 25 drg C) SS 7 (Quantry	AMPLING INF Temp (deg C) /6 · / Filtered (YN)	Other Closer, mi Wo ord Preserved (type)	(casing vol) Other	<u>ORP</u> -38-1	Comments NDE. INC.		
Sampling Equipm Comments: SAMPLING M Date Time (2_53) SAMPLE HAN Date Time Time	me Purged: 4 ment: EASUREMENT Depth to Water (fort below MP) 51,97 DLING: Volume (ml) Samples Collect contamination: al: d Personnel:	S: Depth Sampled (feet below MP) S1, 97 Altic Bottle Co	pH 7. (sO mposition ple No.):	(gallon:) WELL S. Specific Conductance (as a 25 drg C) SS 7 (Quantry	AMPLING INF Temp (deg C) /6 · / Filtered (YN)	Other Closer, mi Wo ord Preserved (type)	(casing vol) Other	CR P -38-1	Comments NDE. INC.		

	ampling an Monitoring	d Analysis I I	Plan for Env	vironmenta		ntrol Numb JE.EN.D.026		Revision Date: 3/13/2020	Page 25 of 33	
	GROUN	VDWAT.	ER SAM	PLING	RECOR	D	SAMPLE	No. MW-le		
Project No:	30 2	OZI GO) Samo	Location:	GCC-	Rio G.	and Page of			
Date:		Weather Con	ditions. 1				Personnel:	5 /		
8	31/21		5	Junny				J. Lega		
Comments				0				00		
		1 10 6	D.C. 1.1		STRUMENT	S USED		Calibration		
	rument		urer Model		ial No.	4	32.4	3.99		
Water Level Pro	bbe	Geotec UST P		52500				Reading 7.01	Slope:	
pH Meter		1401 P	ca plug	15 4/0	1951	Std: 4 7 10	a 23.5°C	Reading 10-01	orope.	
Conductivity M	eter	1				Std: 141	3 US 7.25 °C	Reading 1415		
Conductivity M							us @ 25 °C			
Lemperature	ORP					220	mV	220.2		
Other:	DO		r				8.9%			
Filtration	0.45 micron i	n-line high capa	city disposable	filter.			• • • •			
				WELL	PURGING INI	ORMATION				
Casing Diamete	(inches):	7."	Borchole Diamet			Screened Intervi	al (ft. BGL):			
Depth to Water (ft below MP):	28.68	Total Depth (fi):	59.52	Casing Volume	(gal): 5.0	3	(galift: 1.5" = 0.092: 2" = 0.10	53: 4" = 0.653)	
Purging Method	: Baile	~					~	15 gel		
Comments:	Menitering point	(MP) is the top of the	he PVC well casin	g.				,		
								1		
		Depth to		Conductivity		OR-PAPP	00		/	
Date:	Vol. Purged	Water		145@25derO	Temp		carance DD	Appe	tents	
Time	(gal)	(feet be'ow LIF)	·pH	11011	(deg C)	_	timent, etc.)	Clar Comm	ients	
09.40	Initial	59.52	7.31	6184	16.0	253.9	0.64		, no adac	
0947	3	36.76	7.15	6230	15.1	20466	0.77	Clear H20, no	octor, lightse	
09.57 1026	10	49.90	7-15	6105	15.2	194.4	0.70			
1041	12	55.08	7.18	6180	15.3	138.2	1.26	at Brown sed.	as also	
1051	13.5	59.17	7.20	6707	15.5	171.8	1.58	La proven and.	10 0.707	
1001	1	121011	(and	10.0	1	1000			
umulative Volu	me Purged:			(gallons)			(casing vol)			
				WELL S.	AMPLING INT	ORMATION				
ampling Equips	cent: Baile	2								
omments:										
AMPLING N	EASUREMENT	rs:						1		
	Depth to	Depth		Conductivity		Other	Other			
Date	Water	Sampled		(ws 6, 25 & g C)	Temp	ORP	DO			
Time	(feet below MP)	(feet below MP)	pH		(deg C)		1	Comm	1	
330	57.65	57-65	7.32	6170	16.1	147.3	5.19	clor 470 V	to adar	
1	Drave					1	l	L		
AMPLEHAN	DLING:					1				
Date'		Aliq			Filtered	Preserved		Granat		
Time	Volume (ml)	Bottle Cor	nposition	Quantity	(Y/N)	(type)		Comments		
									the the transformer	
								· · · · · · · · · · · · · · · · · · ·		
eld QA OC S	amples Collect	ed (type, Sample	No.):							
the second se	contamination:							and the second se		
		NA								
aste Disposa	1: NHA									
ignature of Field		5.11	1	,			GCCI	RIO GRANDE, INC.		
	6	0 1/1/1	1	/						

Title:Sampling and Analysis Plan for Environmental
Groundwater MonitoringControl Number:
PUE.EN.D.026.04Revision Date:
3/6/2020Page 25 of 33

Project No:		IDWATH		Location:					Page,	f Mu
D	Q 2021	GW &	angeing	gu	-10 G	rarde	Personnel:		1	/
Date: 8/31	121	Weather Con	Sun		88°F			5. Lery		
0/04	14		0000	N. C.	DIF		1	er eg		
Comments:								- (
				IN	STRUMENTS	USED				
Instr	ument	Manufact	urer Model	Seria	l No.			Calibration		
Water Level Prob	De		~ win	82.500	13	4	23.4	3.99		
pH Meter		YSI PI	o Plus	15A104	1951			leading 7.01		Slope:
pH Meter		h h		A				leading 10.0		
Specific Conduct	ance Meter							leading 1415		
Specific Conduct						-	_uS @ 25 °C R		_	
Temperantre				1		2	zoml	220	001	
	0	Neg bi - Lor	in the second	Elter.				78.	710	
Filtration	0.4) micron in	a-line high capa	ary disposable	and the second se	URGING INFO	PMATION				
Casing Diameter	(inchar)		Borehole Diamet		ONOTAG TAL	Screened Interva	I (ft BGL)			
	(inches): below MP): 75	8.43	Total Depth (ft):		Casing Volume (Contraction of the second s	(gal ft: 1.5" = 0.09	2" = 0.16:	4" = 0.65)
Purging Method.	-		a site a span (ar).	010711			~	15 gal		
Comments.		(MP) is the top of th	we PVC well casing	2.				Jar		
						_				
		Depth to		Specific			- 0			
Date	Vol. Purged	Water		Conductance	Temp	OK App	earance DO			
Time	(ड्रा)	(feet below MP)	pH	(uS & 25 deg C)	(deg C)	-	diment, etc.)		Comm	
1135	Indial	28.43	7.13	6246	15.6	146.3	1.19	clan	Hz	O, NO O
1145	To	30.37	7.14	6150	15.1	143.4	1.26		11	/
1155	1 Al	30.40	7.13	6164	15.1	138.7	0.76		4	
1202	312	30.99	7.15	6133	15.1	121.7	0.89		11	
1210	36.25	31.14	7.16	6105	15.3	108.1	1.09		()	
Cumulania Victor	Durad	15.25		(gallons)			(casing vol)			
Cumulative Volu	me Pulged.	10.65			MPLING INF	ORMATION	((0))			
Sampling Equipm	ient: Ba	les		11 LL J.		- wanted in				
		e calle	stand							
	EASUREMENT			uld sam	e daix					
	Depth to	Depth		Specific	0	Other	Other			
Date	Water	Sampled		Conductance	Temp	ORP	DO			
Time	(feet below MP)	(feet below MP)	pH	(uS & 25 deg C)	(deg C)	ORPA			Comm	and the second se
1220	19.68	32.58	7.15	6061	15.4	1006	0.76	clear H	70. 1	10, ada
						106.1				
SAMPLE HAN	DLING:									
Date			linots		Filtered	Preserved				
Time	Volume (mi)	Bottle Co	mposition	Quantity	(Y/N)	(type)		Com	ments	
Field OA/OC S	Samples Collec	ted (type, Sam	ple No.): D	unlinte	MINT-	2B take	'n			
	contamination			philate	10100	June 1				
-quapment De		NA								
	al: A	1/2				14				
Waste Disposa		1	-				GCC	RIO GRAND	E. INC.	
Waste Disposa Signature of Fiel		- 11	/ -	-				Duble CO		
	-	Catt	Les	/				Pueblo, CO		
		Catt	Ten	\leq				Pueblo, CO		

Title:Sampling and Analysis Plan for EnvironmentalGroundwater Monitoring	Control Number: PUE.EN.D.026.04	Revision Date: 3/6/2020	Page 25 of 33
--	------------------------------------	-------------------------	---------------

Project No:	2021 G	w Sa	male	Location:	CC-R	o Gro	vole	1	Page / of	1	
Date:	,	Weather Con	ditions:	-			Personnel:	- ,			
8/19	121	<u> </u>	Sunny	1 850	+		C	. Lerg	•		
Comments:	Well o	line and	day	on 8/1	9/71 A	timpel	to sa	molio	0.0		
1	INF.II (AN Q CO	200	the second s	STRUMENTS		000	in the second			
Instr	ument	Manufact	urer Model		al No.			Calibration			
Water Level Prot	e	Greater		82500		4	23.4	.3.97			
H Meter		USI P	to Plus	15 410	4951			eading 7.02	-	Slope:	
H Meter	ance Meter	1		1				eading 1415			
Decific Conduct						Std. 7.20	MI a 25 C R	eading 7.70	2		
Temperature											
Other: DC)	*		V		99.	1%				
ltration	0.45 micron in	line high capa	city disposable	and the second	URGING INFO	PAGTION					
Casing Diameter	(inches). 7		Borehole Diamet		CRGING LIFE	Screened Interval	(ft. BGL)				
	below MP). 2.5		Total Depth (ft):		Casing Volume (g			(gal ft. 1.5* = 0.09;	2" = 0.16; 4" = 0.	65) 19.65	
Purging Method.	O 11									-	
onments:		(MP) is the top of the	be PVC well casin	9							
		Danahaa	1	Enerific		1					
Date	Vol. Pursed	Depth to Water		Specific Conductance	Temp	Appe	arance		T		
Time	(gal)	(feet below MP)	pH	(45 @ 25 deg C)	(deg C)		liment, etc.)	ORP	Conten		
11:47	Intel	25.75	7.23	5294	16-1	turbid	white past	-2/6.9	0.61	5ulfur	a
2:02	4	51.13	7.31	5109	165	Rical,	e 11 '	-2/0.3	1.70	roge	~,
17:22	8	69.88	7.51	6028	16.1	dark. br	was, turles	-4/2-3	10.01	sulfor	ook
Puro	ed o	lon	01	238	m 8/	19/21					
17.38	~8.5	65.29	7.59	6113	15.5	dade hig	Why thereford	-46.9	210	suget su	Afre
							2			1 '	0
umulanve Volu	ne Purged: 🎗	.5		(gallons)	AMPLING INFO	DRIGTION	(casing vol)				
ampling Equipm	ent. Baile					JAMATION					
omments:	Well p	med dry	on 8/1	9, sam	de collec	ted on	8/31/21	. See mu	J-6 + MW-	-7 for equip	omer
AMPLING M	EASUREMENT	S: C) · · · · ·	., ,			-11	Caliby	rations	/ 01	
	Depth to	Depth		Specific		Other	Other				
Date	Water (feet below MP)	Sampled	pH	(uS a 25 deg C)	(deg C)	ORP	DO		Comments		
13:00	79.19	42.19	7.32	10077	17.8	117.6	1.95	clear f		ant culture	do
10.00	01-11	1-11		1000 1-1-		11			1 1 21.9	no par	1
AMPLE HAN	DLING:									0	
Date			quoes		Filtered (Y/N)	Preserved		Comm			
Time	Volume (ml)	Bottle Co	mposition	Quantity	(1/N)	(type)		Coun	16015		
ield QA/QC S	amples Collec	ted (type, Sam	ple No.):								
quipment De	contamination	12/1									
		N/A									
Vaste Disposi Signature of Fiel		*					GCCF	UO GRANDE	INC.		
Signature of Piel	10	6N	_					Pueblo, CO			
		as		and a second							

	ampling an Monitoring		Plan for El	nvironmenta		ontrol Num UE.EN.D.02		3/6/20	ion Date: 20	Page 25 d
	GROUN	DWATE	R SAM	PLING R	ECORI)	SAMPLE No	. MU	0-5	
Project No:	40 700	21 GW		Location:	CRIO	Grand	,		Page (of	1
Date: 1(/	18/21	Weather Cond	itions: Cle	Location: GC	5°F		Personnel:	Ben k	fellond	
Comments:										
Ture	rument	Manufactu	3 (a dal	INS Seria	TRUMENTS	USED		Calibration		
Water Level Pro		Geofled						Canorador		
pH Meter		Geolog		Deru	4.5	Std. 4 7 10	2 *C Read	ling		Slope:
pH Meter		111	1	A 1 /	M	Std: 4 7 10	a^C Read	ting		
Specific Conduc	tance Meter	A 17.	A				uS @ 25 °C Read			
Specific Conduc	tance Meter	N	1		0	Std.	us @ 25 °C Read	ding		
Temperature		1 1		107						
Other:										
Filtration	0.45 micron in	-line high capac	ity disposable	filter.						
				WELL P	JRGING INFO					
Casing Diameter			Borehole Diamet			Screened Interval	(ft. BGL):			
Depth to Water (1	ft below MP): 1	14	Total Depth (ft):	26.50	Casing Volume (g	al):	(g	al ft. 1.5" = 0.0	9: 2" = 0.16: 4" = 0	.65)
Purging Method					-					
Comments.	Monitoring point (MP) is the top of the	PVC well casin	ę.						
		Depth to		Specific						
Date	Vol. Purged	Water		Conductance	onductance Temp Appe					
Time	(हुन्न)	(feet below MP)	pH	ruS (2 25 deg C)	(deg C)	(color, sed	iment, etc.)		Comments	
	1									
	h I	$/\Lambda$				2		/		
			($\left(\right) \right)$	1/1) /	77	1	7	
							1 HA	- /		
		AT	>	1-1	(1	1	
		4							P	
Cumulative Volu	ime Purged:			(gallons)			(casing vol)			
			102-	WELL SA	MPLING INFO	RMATION				
ampling Equipr	nent:									
omments:										
AMPLING M	EASUREMENT	S:								
	Depth to	Depth		Specific		Other	Other			
Date	Water	Sampled		Conductance	Temp					
Time	(feet below MP)	(feet helow MP)	pH	(aS = 25 deg C)	(deg C)				Comments	
SAMPLE HAN	IDLING:									
Date		Aliqu	iots		Filtered	Preserved				
Time	Volume (ml)	Bottle Com	position	Quantity	(Y/N)	(type)		Co	mments	
	1									
ield QA/QC	Samples Collect	ed (type, Samp	le No.):							
	contamination:									
	1	1/14								
Vaste Dienar										
Vaste Dispos Signance of Field	and the second se	NI					GCC RI	O GRANI	DE INC	

.

<u>itle</u> : Sa Groundwater	mpling and Monitoring	Analysis P	Plan for Env	vironmental		E.EN.D.026.0	_	Revision Date: 3/13/2020	Page 25 of
								,	
		DWATI	ER SAM	PLING H	RECOR	D	SAMPLE		
	7,826	- 1112	7 402	Location:	(rcc i	lueblo F	Lio Gran	ndc Page 1	of
Date: [1]	16/21	Weather Cond	ditions:	~290			Personnel:	Ben Kellow	4
Comments:									
		Martin	urer/Model	1	STRUMENTS al No.	USED		Calibration	
Water Level Prot	ument	Geotech		82500/					
pH Meter		455 Pr	ot	15A104	49.51	Std: 4 7 10	@ 11 -0 °C R	eading 402, 6.99, 10.07	Slope:
pH Meter		1		1			@ 11.0 °C R		57.4
Conductivity Me Conductivity Me							us @ 25 °C R		
	ORP					220		719.7 MU	
Other:	DO	*		8		NA		99.670	
Filtration	0.45 micron in	-line high capac	city disposable					-	
Casing Diameter	(inches): 7		Borehole Diamet		URGING INF	Screened Interva	I (ft BGL):		
Depth to Water (fi		2.2	Total Depth (ft):		Casing Volume			(gal/ft: 1.5" = 0.092; 2" = 0.16	3: 4" = 0.653)
Purging Method:		p						13.38	
Comments:	Monitoring point ((MP) is the top of th	ne PVC well casing	g.					
		Depth to		Conductivity		00	ORP		
Date!	Vol. Purged	Water		(uS @. 25 deg C)	Temp	App	eurance		
Time 9:38	(gal) T.nttal	(feet below MP) 32.23	pH 7.12	6675	(deg C)	(color, se	Rent. etc.)	clear no no	dor
9:51	H	41.81	6.87	7227	13.9	0.93	196.4	ilear no o	dat
10:21	8	50.10	6.87	1381	14.2	0.97	177.1	21	
10:51	12	57:3	6.89	9412	14.3	0.95	169.3	Cleur, no od	w For
-							1 .		
Cumulative Volu	me Purged: 12	2		(gallons)		4.46	(casing vol)		
				WELL S.	AMPLING INF	ORMATION			
Sampling Equipm Comments:	ient: Baule	4							
	EASUREMENT	S:							
	Depth to	Depth		Conductivity:		Other	Other		
Date/	Water	Sampled	Contraction of the second	(u5 🖓 25 deg C)	Temp (deg C)	Do	OPP	Comm	antr
14:28	(feet below MP) 56.01	(freet below MP) 55.09	7.16	7477	14.2	1.37	136.8	clear, no a	
SAMPLE HAN	DLING:								
Date/			uots		Filtered	Preserved		Comments	
Time	Volume (ml)	Bottle Cor	mposition	Quantity	(Y'N)	(type)		Comments	
-									
Field OA OC S	Samples Collect	ed (type, Sampl	e No.):						
	contamination:								
Waste Disposa	al:	NAA							
Signature of Fiel							GCC I	IO GRANDE. INC. Pueblo. CO	

	ampling and Monitoring		Plan for En	vironmental		ntrol Numbe E.EN.D.026.		Revision Da 3/13/2020	ate:	Page 25 c
	GROUN	JDWAT	ER SAM	IPLING I	RECOR	D	SAMPLE	No. MW-	7	
Project No:	3826-				the second se		Rio Gu		Page 1	of]
Date:][[Weather Con	11.1	L~33			Personnel:	Ber Kel	lbra	
Comments:									(
Inct		Manufact	huran Madal		STRUMENTS al No.	USED		Calibration		
Instrument Water Level Probe		Manufacturer/Model Geofech WLM		8250213		<u>4</u> 11.0°(4.07				
pH Meter		YST Pro +		15A108951		Std: 4 3 10 @ //.0 °C Reading /0.98 Stope:				
pH Meter				A LO		Std: 4 7 10 @ (1.0 °C Reading /0.01				
Conductivity Meter						Std: _/4/3_us@25°C Reading /375				
Conductivity Meter ORP						Std: _ZZO mak @ 25 °C Reading _Z19.7				
Temperature	DO	*		*		77	.6%	·		
Other:	0.15	line bish seen	aime diamanalata	Eleve						
Filtration	0.45 micron in	i-line high capa	city disposable	and the second se	URGING INF	OBMATION				
Casing Diameter	(inches): 7		Borehole Diame		URGINGING	Screened Interv:	1(A BGI)			
Depth to Water (1		2.09	Total Depth (ft):		Casing Volume			(gal/ft: 1.5" = 0.092;	2" = 0 163	· 4" = 0.653)
Purging Method	100	ler	- com a cpui (ii).	- 1	I work to that the			13.38		
Comments:			he PVC well casir	ıg.				1270		
	1	Depth to	1	Conductivity	1		1 4212	Г		
Date/	Vol. Purged	Water		(uS in 25 deg C)	Temp	PO App	ORP			
Time	(gal)	(feet below MP)	pH		(deg C)		ediment, etc.)		Comme	nts
11:10	Initial		6.93	6805	14.2	1.42	156.9			
11:25	4.5	33.00	6.13	6711	14.1	2.34	151.5			
11:38	1.0	33.12	6.17	6424	14.0	1.34	116.7			
11.27	110 0	1014	1	1 111. 1	88.8 a					
11:53	13.5	33.10	6.17	6407	14.1	1.3]	110.5	4.		
1177	15.5	75.10	6.11	6401	1-1.1	1.3]	110.3	4		
<u> </u>	15. 7	75.10	6.11	6401	1-1.1	1.3]	110.3			
		7'5.10	6.11		1-1.1	1,31		•	•	
Cumulative Volu		75.10	6.11	(gallons)			(casing vol)			
Cumulative Volu	ume Purged:		6.11	(gallons)	AMPLING INF				•	
Cumulative Volu Sampling Equipt	ime Purged:			(gallons)				•	•	
Cumulative Volu Sampling Equips Comments:	nent: Boy]	~		(gallons)				-	•	
Cumulative Volu Sampling Equipt Comments:	nent: Boy]; (EASUREMENT	s:		(gallons) WELL S.		ORMATION	(casing vol)			
Cumulative Volu Sampling Equipr Comments: SAMPLING N	nent: Boy]) IEASUREMENT Depth to	S: Depth		(gallons) WELL S: Conductivity	AMPLING INF	ORMATION	(casing vol)		•	
Cumulative Volu Sampling Equipt Comments:	nent: Boy]; (EASUREMENT	S: Depth Sampled		(gallons) WELL S.		ORMATION	(casing vol)	· · · · · · · · · · · · · · · · · · ·	Comme	ats
Cumulative Volu Sampling Equipr Comments: SAMPLING N Date/	inent: Boy); IEASUREMENT Depth to Water	S: Depth	рн G.94	(gallons) WELL S: Conductivity	AMPLING INF	ORMATION	(casing vol)	Slight 1	Commer	
Cumulative Volu Sampling Equipr Comments: SAMPLING N Date/ Tume	IEASUREMENT Depth to Water (feet below M7)	S: Depth Sampled (fest below MP)	pH	(gallons) WELL S. Conductivity (u5 iz 25 deg C)	AMPLING INF Temp (deg C)	ORMATION Other	(casing vol) (casing vol)	51:'ght .	5.4	
Cumulative Volu Sampling Equipr Comments: SAMPLING N Date/ Time [2'.0]	IEASUREMENT Depth to Water (feet below MP) 32.81	S: Depth Sampled (fest below MP)	pH	(gallons) WELL S. Conductivity (u5 iz 25 deg C)	AMPLING INF Temp (deg C)	ORMATION Other	(casing vol) (casing vol)	51,°gh+ -	5.4	
Cumulative Volu Sampling Equipr Comments: SAMPLING N Date/ Time [2'.0]	IEASUREMENT Depth to Water (feet below MP) 32.81	S: Depth Sampled (feet below MP) 32.#1	pH	(gallons) WELL S. Conductivity (u5 iz 25 deg C)	AMPLING INF Temp (deg C)	ORMATION Other	(casing vol) (casing vol)	Slight .	5.4	
Cumulative Volu Sampling Equipt Comments: SAMPLING N Date/ Time (2'.0) SAMPLE HAN	IEASUREMENT Depth to Water (feet below MP) 32.81	S: Depth Sampled (feet below MP) 32.#1 Alice	_{рн} G.94	(gallons) WELL S. Conductivity (u5 iz 25 deg C)	Temp (deg C)	ORMATION Other Do 1.21	(casing vol) (casing vol)	Slight Comm	yellow	
Cumulative Volu Sampling Equipr Comments: SAMPLING N Date/ Time (2'.0) SAMPLE HAN Date/	IEASUREMENT Depth to Water (feet below M?) 52.81 VDLING:	S: Depth Sampled (feet below MP) 32.#1 Alice	pH G.94 quots	(gallons) WELL S: Conductivity (uS @ 23 deg C) 6584	Temp (deg C)	ORMATION Other Do 1.21 Preserved	(casing vol) (casing vol)	5	yellow	
Cumulative Volu Sampling Equipr Comments: SAMPLING N Date/ Time (2'.0) SAMPLE HAN Date/	IEASUREMENT Depth to Water (feet below M?) 52.81 VDLING:	S: Depth Sampled (feet below MP) 32.#1 Alice	pH G.94	(gallons) WELL S: Conductivity (uS @ 23 deg C) 6584	Temp (deg C)	ORMATION Other Do 1.21 Preserved	(casing vol) Other ORP 109.7	5	yellow	
Cumulative Volu Sampling Equipr Comments: SAMPLING N Date/ Time (2'.0) SAMPLE HAN Date/	IEASUREMENT Depth to Water (feet below M?) 52.81 VDLING:	S: Depth Sampled (feet below MP) 32.#1 Alice	pH G.94 quots	(gallons) WELL S: Conductivity (uS @ 23 deg C) 6584	Temp (deg C)	ORMATION Other Do 1.21 Preserved	(casing vol) Other ORP 109.2	5	yellow	
Cumulative Volu Sampling Equipr Comments: SAMPLING N Date/ Time (2'.0) SAMPLE HAN Date/	IEASUREMENT Depth to Water (feet below M?) 52.81 VDLING:	S: Depth Sampled (feet below MP) 32.#1 Alice	pH G.94 quots	(gallons) WELL S: Conductivity (uS @ 23 deg C) 6584	Temp (deg C)	ORMATION Other Do 1.21 Preserved	(casing vol) Other ORP 109.2	5	yellow	
Cumulative Volu Sampling Equipr Comments: SAMPLING N Date/ Time (2'.0) SAMPLE HAN Date/	IEASUREMENT Depth to Water (feet below M?) 52.81 VDLING:	S: Depth Sampled (feet below MP) 32.#1 Alice	pH G.94 quots	(gallons) WELL S: Conductivity (uS @ 23 deg C) 6584	Temp (deg C)	ORMATION Other Do 1.21 Preserved	(casing vol) Other ORP 109.2	5	yellow	
Cumulative Volu Sampling Equipr Comments: SAMPLING N Date/ Time (2'.0) SAMPLE HAN Date/	IEASUREMENT Depth to Water (feet below M?) 52.81 VDLING:	S: Depth Sampled (feet below MP) 32.#1 Alice	pH G.94 quots	(gallons) WELL S: Conductivity (uS @ 23 deg C) 6584	Temp (deg C)	ORMATION Other Do 1.21 Preserved	(casing vol) Other ORP 109.2	5	yellow	
Cumulative Volu Sampling Equipr Comments: SAMPLING N Date/ Time (2'.0) SAMPLE HAN Date/ Time	IEASUREMENT Depth to Water (for below MP) 32.81 VDLING: Volume (ml)	S: Depth Sampled (feet below MP) 32.4 1 Alice Bottle Co	pH G.94 quots mposition	(gallons) WELL S: Conductivity (uS @ 23 deg C) 6584	Temp (deg C)	ORMATION Other Do 1.21 Preserved	(casing vol) Other ORP 109.2	5	yellow	
Cumulative Volu Sampling Equipr Comments: SAMPLING N Date/ Time (2'.0) SAMPLE HAN Date/ Tune	IEASUREMENT Depth to Water (See below MP) 52.81 VDLING: Volume (ml)	S: Depth Sampled (fer below MP) 32.4 Alia Bottle Co	pH G.94 quots mposition	(gallons) WELL S: Conductivity (uS @ 23 deg C) 6584	Temp (deg C)	ORMATION Other Do 1.21 Preserved	(casing vol) Other ORP 109.2	5	yellow	
Cumulative Volu Sampling Equipr Comments: SAMPLING N Date/ Time (2'.0) SAMPLE HAN Date/ Tune	IEASUREMENT Depth to Water (for below MP) 32.81 VDLING: Volume (ml)	S: Depth Sampled (fer below MP) 32.4 Alia Bottle Co	pH G.94 quots mposition	(gallons) WELL S: Conductivity (uS @ 23 deg C) 6584	Temp (deg C)	ORMATION Other Do 1.21 Preserved	(casing vol) Other ORP 109.2	5	yellow	
Cumulative Volu Sampling Equipm Comments: SAMPLING N Date/ Time (2'.0) SAMPLE HAN Date/ Time Field QA/QC	IEASUREMENT Depth to Water (See below MP) 32.81 VDLING: Volume (ml) Samples Collector	S: Depth Sampled (fer below MP) 32.4 Alia Bottle Co	pH G.94 quots mposition	(gallons) WELL S: Conductivity (uS @ 23 deg C) 6584	Temp (deg C)	ORMATION Other Do 1.21 Preserved	(casing vol) Other ORP 109.2	5	yellow	
Cumulative Volu Sampling Equipr Comments: SAMPLING M Date/ Time (2'.0) SAMPLE HAN Date/ Tune Comment Date/ Tune Comment Date/ Comment Date/ Co	Internet Purged: Internet Bound II Depth to Water (See below MP) 52.81 Volume (ml) Volume (ml) Samples Collected econtamination: al:	S: Depth Sampled (feet below MP) 32.#1 Alia Bottle Co	pH G.94 quots mposition	(gallons) WELL S: Conductivity (uS @ 23 deg C) 6584	Temp (deg C)	ORMATION Other Do 1.21 Preserved	(casing vol) Other ORP 109.72	5	rents	
Cumulative Volu Sampling Equipm Comments: SAMPLING N Date/ Time (2'.0) SAMPLE HAN Date/ Time Field QA/QC	Internet Purged: Internet Bound II Depth to Water (See below MP) 52.81 Volume (ml) Volume (ml) Samples Collected econtamination: al:	S: Depth Sampled (feet below MP) 32.#1 Alia Bottle Co	pH G.94 quots mposition	(gallons) WELL S: Conductivity (uS @ 23 deg C) 6584	Temp (deg C)	ORMATION Other Do 1.21 Preserved	(casing vol) Other ORP 109.72	Comm	rents	

e: Sampling and Analysis Plan for Environmental bundwater Monitoring						Control Number:Revision Date:PUE.EN.D.026.043/13/2020						
		DWATI		PLING I	RECORI)	SAMPLE	No. NW-8	& MW-			
Project No:	3826	Q 2021	GW 21	Location:	Pueblo	- RO (Grandh	Page	/ of			
Date: 11	12/21	Weather Cond	ditions:	iens m			Parconnal	Ben Helland				
Comments:	Dupl	icate i	collectro	ł								
				IN	STRUMENTS	USED	les a					
	ument		urer/Model		al No.	4	11.0°C	Calibration C 4.02				
Water Level Pro	be	YSI PV	- Greatech	825 ce				Reading 16.98	Slope:			
pH Meter		TOL IV	0 1	A	101			Reading 10.01	orepe.			
Conductivity Me	ter OR P					Std: 220	Mas @ 25 °C	Reading 219.7 M				
Conductivity Me	ter					Std: 14/3 us @ 25		Reading 1375 w/c	a			
Temperature						1						
Other: DC		Ŷ		4			19.67+	10-10-				
Filtration	0.45 micron in	-line high capac	rity disposable									
Caular Dia	(inchast) 7		Paralesta D'anna		URGING INFO	RMATION Screened Interva	1/8 BCD					
Casing Diameter	(inches): Z	116	Borehole Diamet		Casing Valuma (al): 5.16	I (II. BGL):	(gal/ft: 1.5" = 0.092: 2" = 0.1	63: 4" = 0.653)			
Depth to Water (I	Bailer	1,90	Total Depth (II):	02.14	Casing volume (g		1	7.88	(03.4 = 0.033)			
Comments:		MP) is the top of th	e PVC well casin	7			(1,00				
conuneurs.	Monitoring point ((ALL) IS the top of th	erve wen cam	B-								
		Depth to		Conductivity								
Date/	Vol. Purged	Water		(uS @ 25 deg C)	Temp	App	earance					
Time	(gal)	(feet below MP)	pH	10	(deg C)	(color, se	diment, etc.)	Com	ments			
12:14	Initial	20.46	7.01	5408	16.0	clei	15	clear Hol no	orler			
13:25	4	47.25	7.45	6985	15.6		1	4 '				
13:40	B	62.08	7.57	5993	15.4	tur	bid	light brown to	Alds			
	PUTO	+26 by	DY	B:49				-				
	- J											
-	-											
Cumulative Volu	Durged:			(gallons)		I	(casing vol)					
cumulative votu	me rugeu.				MPLING INFO	ORMATION	(cusing tor)					
Sampling Equips	nent: Basla											
	Berled 1	1/12/21	sampled	1 pt de	w on	11/18/21						
SAMPLING M	EASUREMENT	S:	1									
	Depth to	Depth		Conductivity		Other	Other					
Date/	Water	Sampled		(u5 a: 25 deg C)	Temp	Do	OZP					
13:51	(feet below MP)	(feet below MP) 59,85	2 1/1	3852	(deg C)	4.21	64.3	Com				
12:21	59.85	2.6.02	7.14	2002	111	4.61	005	clear, no sole	м			
SAMPLE HAN	DLING							1				
Date/		Alio	uots		Filtered	Preserved						
Time	Volume (ml)	Bottle Con		Quantity	(Y/N)	(type)	Comments					
								1				
		14 5 3			la ch. l	10.4	P					
	Samples Collect		e No.):	Jupe li	olle cted	MW-Z	.6					
quipment De	contamination:	NTA										
Varta Diana	1.	1/21										
Waste Disposi Signature of Field		N/M					GCC	RIO GRANDE. INC				
orkinging of Lie	a reisonner:						Sec	Pueblo. CO				
	and the second s											

ATTACHMENT 2 - GCC Groundwater Sampling Analytical Lab Reports

March 04, 2021

Report to: Diana Furman GCC Rio Grande 3372 Lime Road Pueblo, CO 81004 Bill to: Diana Furman GCC Rio Grande 3372 Lime Road Pueblo, CO 81004

Project ID: ACZ Project ID: L64379

Diana Furman:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on February 23, 2021. This project has been assigned to ACZ's project number, L64379. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan. The enclosed results relate only to the samples received under L64379. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after April 03, 2021. If the samples are determined to be hazardous, additional charges apply for disposal (typically \$11/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical raw data reports for ten years.

If you have any questions or other needs, please contact your Project Manager.

Bill Lane has reviewed and approved this report

Cadmium Reduction

2

5780

mg/L

40

80

02/23/21 20:56

jck

SM2540C

GCC Rio Grande

Project ID: Sample ID: MW-6

Inorganic Analytical Results

ACZ Sample ID: L64379-01 Date Sampled: 02/22/21 13:25 Date Received: 02/23/21 Sample Matrix: Groundwater

Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	M200.7 ICP	5	<0.25	U		mg/L	0.25	1.25	02/27/21 2:03	jlw
Arsenic, dissolved	M200.8 ICP-MS	5	<0.001	U		mg/L	0.001	0.005	03/01/21 14:09	mfm
Beryllium, dissolved	M200.7 ICP	5	<0.05	U		mg/L	0.05	0.25	02/27/21 2:03	jlw
Boron, dissolved	M200.7 ICP	5	0.330	В		mg/L	0.1	0.5	02/27/21 2:03	jlw
Cadmium, dissolved	M200.8 ICP-MS	5	<0.00025	U		mg/L	0.00025	0.00125	03/01/21 14:09	mfm
Chromium, dissolved	M200.7 ICP	5	<0.05	U		mg/L	0.05	0.25	02/27/21 2:03	jlw
Cobalt, dissolved	M200.7 ICP	5	<0.05	U		mg/L	0.05	0.25	02/27/21 2:03	jlw
Copper, dissolved	M200.7 ICP	5	<0.05	U		mg/L	0.05	0.25	02/27/21 2:03	jlw
Iron, dissolved	M200.7 ICP	5	<0.3	U		mg/L	0.3	0.75	02/27/21 2:03	jlw
Lead, dissolved	M200.8 ICP-MS	5	<0.0005	U		mg/L	0.0005	0.0025	03/01/21 14:09	mfm
Lithium, dissolved	M200.7 ICP	5	0.476			mg/L	0.04	0.2	02/27/21 2:03	jlw
Manganese, dissolved	M200.7 ICP	5	0.315			mg/L	0.05	0.25	02/27/21 2:03	jlw
Mercury, dissolved	M245.1 CVAA	1	<0.0002	U		mg/L	0.0002	0.001	03/03/21 14:38	llr
Nickel, dissolved	M200.7 ICP	5	0.0810	В		mg/L	0.04	0.2	02/27/21 2:03	jlw
Selenium, dissolved	M200.8 ICP-MS	5	0.00487			mg/L	0.0005	0.00125	03/01/21 14:09	mfm
Vanadium, dissolved	M200.7 ICP	5	<0.05	U		mg/L	0.05	0.125	02/27/21 2:03	jlw
Zinc, dissolved	M200.7 ICP	5	<0.1	U		mg/L	0.1	0.25	02/27/21 2:03	jlw
Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Fluoride	SM4500F-C	1	0.62			mg/L	0.11	0.35	02/26/21 15:25	eep
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2		0.07	В		mg/L	0.02	0.1	03/04/21 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	0.067	В		mg/L	0.02	0.1	02/23/21 22:18	pjb
Nitrite as N, dissolved	M353.2 - Automated	1	<0.01	U	*	mg/L	0.01	0.05	02/23/21 22:18	pjb

Residue, Filterable

(TDS) @180C

Cadmium Reduction

2

6500

mg/L

40

80

02/23/21 20:58

jck

SM2540C

GCC Rio Grande

Project ID: Sample ID: MW-7

Inorganic Analytical Results

ACZ Sample ID: *L64379-02* Date Sampled: 02/22/21 12:27 Date Received: 02/23/21 Sample Matrix: *Groundwater*

Metals Analysis									
Parameter	EPA Method	Dilution	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	M200.7 ICP	5	<0.25	U	mg/L	0.25	1.25	02/27/21 2:06	jlw
Arsenic, dissolved	M200.8 ICP-MS	5	<0.001	U	mg/L	0.001	0.005	03/01/21 14:11	mfm
Beryllium, dissolved	M200.7 ICP	5	<0.05	U	mg/L	0.05	0.25	02/27/21 2:06	jlw
Boron, dissolved	M200.7 ICP	5	0.196	В	mg/L	0.1	0.5	02/27/21 2:06	jlw
Cadmium, dissolved	M200.8 ICP-MS	5	<0.00025	U	mg/L	0.00025	0.00125	03/01/21 14:11	mfm
Chromium, dissolved	M200.7 ICP	5	<0.05	U	mg/L	0.05	0.25	02/27/21 2:06	jlw
Cobalt, dissolved	M200.7 ICP	5	<0.05	U	mg/L	0.05	0.25	02/27/21 2:06	jlw
Copper, dissolved	M200.7 ICP	5	<0.05	U	mg/L	0.05	0.25	02/27/21 2:06	jlw
Iron, dissolved	M200.7 ICP	5	<0.3	U	mg/L	0.3	0.75	02/27/21 2:06	jlw
Lead, dissolved	M200.8 ICP-MS	5	<0.0005	U	mg/L	0.0005	0.0025	03/01/21 14:11	mfm
Lithium, dissolved	M200.7 ICP	5	0.634		mg/L	0.04	0.2	02/27/21 2:06	jlw
Manganese, dissolved	M200.7 ICP	5	<0.05	U	mg/L	0.05	0.25	02/27/21 2:06	jlw
Mercury, dissolved	M245.1 CVAA	1	< 0.0002	U	mg/L	0.0002	0.001	03/03/21 14:39	llr
Nickel, dissolved	M200.7 ICP	5	<0.04	U	mg/L	0.04	0.2	02/27/21 2:06	jlw
Selenium, dissolved	M200.8 ICP-MS	5	0.0348		mg/L	0.0005	0.00125	03/01/21 14:11	mfm
Vanadium, dissolved	M200.7 ICP	5	<0.05	U	mg/L	0.05	0.125	02/27/21 2:06	jlw
Zinc, dissolved	M200.7 ICP	5	<0.1	U	mg/L	0.1	0.25	02/27/21 2:06	jlw
Wet Chemistry									
Parameter	EPA Method	Dilution	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Fluoride	SM4500F-C	1	0.49		mg/L	0.11	0.35	02/26/21 15:29	eep
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2		9.9		mg/L	0.1	0.5	03/04/21 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	5	9.98		mg/L	0.1	0.5	02/23/21 22:46	pjb
Nitrite as N, dissolved	M353.2 - Automated	1	0.068	*	mg/L	0.01	0.05	02/23/21 22:19	pjb

Residue, Filterable

(TDS) @180C

Project ID: Sample ID: MW-2B

Inorganic Analytical Results

ACZ Sample ID: L64379-03 Date Sampled: 02/22/21 12:42 Date Received: 02/23/21 Sample Matrix: Groundwater

Metals Analysis									
Parameter	EPA Method	Dilution	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	M200.7 ICP	1	<0.05	U	mg/L	0.05	0.25	02/27/21 2:16	jlw
Arsenic, dissolved	M200.8 ICP-MS	5	<0.001	U	mg/L	0.001	0.005	03/01/21 14:13	mfm
Beryllium, dissolved	M200.7 ICP	1	<0.01	U	mg/L	0.01	0.05	02/27/21 2:16	jlw
Boron, dissolved	M200.7 ICP	1	0.167		mg/L	0.02	0.1	02/27/21 2:16	jlw
Cadmium, dissolved	M200.8 ICP-MS	5	<0.00025	U	mg/L	0.00025	0.00125	03/01/21 14:13	mfm
Chromium, dissolved	M200.7 ICP	1	<0.01	U	mg/L	0.01	0.05	02/27/21 2:16	jlw
Cobalt, dissolved	M200.7 ICP	1	<0.01	U	mg/L	0.01	0.05	02/27/21 2:16	jlw
Copper, dissolved	M200.7 ICP	1	<0.01	U	mg/L	0.01	0.05	02/27/21 2:16	jlw
Iron, dissolved	M200.7 ICP	1	<0.06	U	mg/L	0.06	0.15	02/27/21 2:16	jlw
Lead, dissolved	M200.8 ICP-MS	5	<0.0005	U	mg/L	0.0005	0.0025	03/01/21 14:13	mfm
Lithium, dissolved	M200.7 ICP	1	0.619		mg/L	0.008	0.04	02/27/21 2:16	jlw
Manganese, dissolved	M200.7 ICP	1	0.020	В	mg/L	0.01	0.05	02/27/21 2:16	jlw
Mercury, dissolved	M245.1 CVAA	1	<0.0002	U	mg/L	0.0002	0.001	03/03/21 14:42	llr
Nickel, dissolved	M200.7 ICP	1	0.0197	В	mg/L	0.008	0.04	02/27/21 2:16	jlw
Selenium, dissolved	M200.8 ICP-MS	5	0.0329		mg/L	0.0005	0.00125	03/01/21 14:13	mfm
Vanadium, dissolved	M200.7 ICP	1	<0.01	U	mg/L	0.01	0.025	02/27/21 2:16	jlw
Zinc, dissolved	M200.7 ICP	1	<0.02	U	mg/L	0.02	0.05	02/27/21 2:16	jlw
Wet Chemistry									
Parameter	EPA Method	Dilution	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Fluoride	SM4500F-C	1	0.49		mg/L	0.11	0.35	02/26/21 15:34	eep
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2		10		mg/L	0.1	0.5	03/04/21 0:00	calc
Nitrato/Nitrito ao N	M353.2 Automated	5	10.3		ma/l	0.1	0.5	02/22/21 22.47	nih

Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2		10		mg/L	0.1	0.5	03/04/21 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	5	10.3		mg/L	0.1	0.5	02/23/21 22:47	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	0.068	*	mg/L	0.01	0.05	02/23/21 22:20	pjb
Residue, Filterable (TDS) @180C	SM2540C	2	6460		mg/L	40	80	02/24/21 10:56	scd

Project ID: Sample ID: MW-8

Inorganic Analytical Results

ACZ Sample ID: L64379-04 Date Sampled: 02/22/21 13:00 Date Received: 02/23/21 Sample Matrix: Groundwater

Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	M200.7 ICP	1	<0.05	U		mg/L	0.05	0.25	02/27/21 2:20	jlw
Arsenic, dissolved	M200.8 ICP-MS	5	0.00350	В		mg/L	0.001	0.005	03/01/21 14:15	mfm
Beryllium, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	02/27/21 2:20	jlw
Boron, dissolved	M200.7 ICP	1	0.848			mg/L	0.02	0.1	02/27/21 2:20	jlw
Cadmium, dissolved	M200.8 ICP-MS	5	<0.00025	U		mg/L	0.00025	0.00125	03/01/21 14:15	mfm
Chromium, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	02/27/21 2:20	jlw
Cobalt, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	02/27/21 2:20	jlw
Copper, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	02/27/21 2:20	jlw
Iron, dissolved	M200.7 ICP	1	<0.06	U		mg/L	0.06	0.15	02/27/21 2:20	jlw
Lead, dissolved	M200.8 ICP-MS	5	<0.0005	U		mg/L	0.0005	0.0025	03/01/21 14:15	mfm
Lithium, dissolved	M200.7 ICP	1	0.360			mg/L	0.008	0.04	02/27/21 2:20	jlw
Manganese, dissolved	M200.7 ICP	1	0.307			mg/L	0.01	0.05	02/27/21 2:20	jlw
Mercury, dissolved	M245.1 CVAA	1	<0.0002	U		mg/L	0.0002	0.001	03/03/21 14:45	llr
Nickel, dissolved	M200.7 ICP	1	<0.008	U		mg/L	0.008	0.04	02/27/21 2:20	jlw
Selenium, dissolved	M200.8 ICP-MS	5	<0.0005	U		mg/L	0.0005	0.00125	03/01/21 14:15	mfm
Vanadium, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.025	02/27/21 2:20	jlw
Zinc, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	02/27/21 2:20	jlw
Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Fluoride	SM4500F-C	1	1.10			mg/L	0.11	0.35	02/26/21 15:39	еер
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2		<0.02	U		mg/L	0.02	0.1	03/04/21 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	<0.02	U		mg/L	0.02	0.1	02/23/21 22:53	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	<0.01	U	*	mg/L	0.01	0.05	02/23/21 22:22	pjb

10

4180

mg/L

200

400

02/24/21 10:59

scd

Residue, Filterable

(TDS) @180C

SM2540C

Inorganic Reference

eport Headeı	r Explanations		
Batch	A distinct set of samples analyzed at a specific time		
Found	Value of the QC Type of interest		
Limit	Upper limit for RPD, in %.		
Lower	Lower Recovery Limit, in % (except for LCSS, mg/Kg)		
MDL	Method Detection Limit. Same as Minimum Reporting Limit ur	nless omitted or e	qual to the PQL (see comment #5).
	Allows for instrument and annual fluctuations.		
PCN/SCN	A number assigned to reagents/standards to trace to the man	ufacturer's certific	ate of analysis
PQL	Practical Quantitation Limit. Synonymous with the EPA term "	minimum level".	
QC	True Value of the Control Sample or the amount added to the	Spike	
Rec	Recovered amount of the true value or spike added, in % (exc	ept for LCSS, mg	/Kg)
RPD	Relative Percent Difference, calculation used for Duplicate QC	Types	
Upper	Upper Recovery Limit, in % (except for LCSS, mg/Kg)		
Sample	Value of the Sample of interest		
C Semale Tu			
C Sample Ty AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	-	LFM LFMD	
	Continuing Calibration Verification standard		Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
		PQV SDL	Practical Quantitation Verification standard Serial Dilution
LCSSD LCSW	Laboratory Control Sample - Soil Duplicate		
LCSSD LCSW	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water vpe Explanations	SDL	
LCSSD LCSW C Sample Ty	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water vpe Explanations Verifies that there is no or minimal co	SDL	Serial Dilution
LCSSD LCSW C Sample Ty Blanks	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water vpe Explanations Verifies that there is no or minimal control of the method, where the accuracy of the method,	SDL ontamination in the including the prep	Serial Dilution e prep method or calibration procedure. procedure.
LCSSD LCSW C Sample Ty Blanks Control Sat Duplicates	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water vpe Explanations Verifies that there is no or minimal control of the method, where the accuracy of the method,	SDL ontamination in the including the prep nt and/or method.	Serial Dilution e prep method or calibration procedure. procedure.
LCSSD LCSW C Sample Ty Blanks Control Sat Duplicates	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water Pe Explanations Werifies that there is no or minimal control of the method, Verifies the accuracy of the method, Verifies the precision of the instrume	SDL ontamination in the including the prep nt and/or method.	Serial Dilution e prep method or calibration procedure. procedure.
LCSSD LCSW C Sample Ty Blanks Control Sat Duplicates Spikes/For	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water vpe Explanations Werifies that there is no or minimal controls mples Verifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferen Verifies the validity of the calibration.	SDL ontamination in the including the prep nt and/or method.	Serial Dilution e prep method or calibration procedure. procedure.
LCSSD LCSW C Sample Ty Blanks Control Sa Duplicates Spikes/For Standard	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water vpe Explanations Werifies that there is no or minimal controls mples Verifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferen Verifies the validity of the calibration.	SDL ontamination in the including the prep nt and/or method. ces, if any.	Serial Dilution
LCSSD LCSW C Sample Ty Blanks Control Sa Duplicates Spikes/For Standard	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water vpe Explanations mples Verifies that there is no or minimal construction werifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferen Verifies the validity of the calibration. s (Qual)	SDL ontamination in the including the prep nt and/or method. ces, if any. PQL. The associat	Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity.
LCSSD LCSW C Sample Ty Blanks Control Sat Duplicates Spikes/For Standard CZ Qualifiers B	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water rpe Explanations mples Verifies that there is no or minimal comples verifies the accuracy of the method, verifies the precision of the instrume tified Matrix Determines sample matrix interferen verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F	SDL ontamination in the including the prep nt and/or method. ces, if any. PQL. The associat n immediate hold t	Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity.
LCSSD LCSW C Sample Ty Blanks Control Sat Duplicates Spikes/For Standard CZ Qualifiers B H	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water Ppe Explanations Type Explanations Type Expla	SDL ontamination in the including the prep nt and/or method. ces, if any. PQL. The associat n immediate hold t gative threshold.	Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time.
LCSSD LCSW C Sample Ty Blanks Control Sau Duplicates Spikes/For Standard CZ Qualifiers B H L	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water /pe Explanations mples Verifies that there is no or minimal comples verifies the accuracy of the method, verifies the precision of the instrume tified Matrix Determines sample matrix interferen verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with ar Target analyte response was below the laboratory defined negotiation	SDL ontamination in the including the prep nt and/or method. ces, if any. PQL. The associat nimmediate hold t gative threshold. e level of the associated	Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. pciated value.
LCSSD LCSW C Sample Ty Blanks Control Sau Duplicates Spikes/For Standard CZ Qualifiers B H L U	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water /pe Explanations mples Verifies that there is no or minimal co mples Verifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferen Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with ar Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or	SDL ontamination in the including the prep nt and/or method. ces, if any. PQL. The associat nimmediate hold t gative threshold. e level of the associated	Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. pciated value.
LCSSD LCSW C Sample Ty Blanks Control Sau Duplicates Spikes/For Standard CZ Qualifiers B H L	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water /pe Explanations mples Verifies that there is no or minimal co mples Verifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferen Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with ar Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or	SDL ontamination in the including the prep nt and/or method. ces, if any. PQL. The associat n immediate hold to gative threshold. e level of the associate the sample detect	Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity. time. pociated value. tion limit.
LCSSD LCSW C Sample Ty Blanks Control Sat Duplicates Spikes/For Standard CZ Qualifiers B H L U	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water rpe Explanations mples Verifies that there is no or minimal comples Verifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferen Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the associated value is either the sample quantitation limit or text	SDL ontamination in the including the prep nt and/or method. ces, if any. PQL. The associat n immediate hold t gative threshold. e level of the associat the sample detect	Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. bciated value. tion limit. th 1983.
LCSSD LCSW C Sample Ty Blanks Control Sat Duplicates Spikes/For Standard CZ Qualifiers B H L U u ethod Refere (1)	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water rpe Explanations mples Verifies that there is no or minimal comples verifies the accuracy of the method, verifies the precision of the instrume tified Matrix Determines sample matrix interferent Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the ences EPA 600/4-83-020. Methods for Chemical Analysis of Water and	SDL ontamination in the including the prep nt and/or method. ces, if any. PQL. The associat nimmediate hold t gative threshold. e level of the associate the sample detect and Wastes, Marc ic Substances in l	Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. bciated value. tion limit. th 1983. Environmental Samples, August 1993.
LCSSD LCSW C Sample Ty Blanks Control Sau Duplicates Spikes/For Standard CZ Qualifiers B H L U u ethod Reference (1) (2)	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water /pe Explanations mples Verifies that there is no or minimal comples Verifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferent Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analytic concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the associated value is either the sample quantitation limit or the EPA 600/4-83-020. Methods for Chemical Analysis of Water as EPA 600/R-93-100. Methods for the Determination of Inorgan	SDL ontamination in the including the prep nt and/or method. ces, if any. PQL. The associat nimmediate hold t gative threshold. e level of the associate the sample detect and Wastes, Marc ic Substances in l	Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. bciated value. tion limit. th 1983. Environmental Samples, August 1993.
LCSSD LCSW C Sample Ty Blanks Control San Duplicates Spikes/For Standard CZ Qualifiers B H L U ethod Referent (1) (2) (3)	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water /pe Explanations Werifies that there is no or minimal comples Verifies the accuracy of the method, Verifies the precision of the instrume Uterifies the precision of the instrume Determines sample matrix interferent Verifies the validity of the calibration. 5 (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or ences EPA 600/R-93-100. Methods for Chemical Analysis of Water and EPA 600/R-94-111. Methods for the Determination of Inorgan EPA 600/R-94-111. Methods for the Determination of Metals in EPA 600/R-94-111.	SDL ontamination in the including the prep nt and/or method. ces, if any. PQL. The associate in mmediate hold to gative threshold. e level of the associate the sample detect and Wastes, Marca ic Substances in line	Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. bciated value. tion limit. th 1983. Environmental Samples, August 1993.
LCSSD LCSW C Sample Ty Blanks Control Sat Duplicates Spikes/For Standard CZ Qualifiers B H L U ethod Refere (1) (2) (3) (4) (5)	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water /pe Explanations Werifies that there is no or minimal comples Verifies the accuracy of the method, Verifies the precision of the instrume Uterifies the precision of the instrume Determines sample matrix interferent Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or ences EPA 600/R-93-100. Methods for Chemical Analysis of Water and EPA 600/R-94-111. Methods for the Determination of Inorgant EPA SW-846. Test Methods for Evaluating Solid Waste.	SDL ontamination in the including the prep nt and/or method. ces, if any. PQL. The associate in mmediate hold to gative threshold. e level of the associate the sample detect and Wastes, Marca ic Substances in line	Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. ciated value. tion limit. th 1983. Environmental Samples, August 1993.
LCSSD LCSW C Sample Ty Blanks Control Sat Duplicates Spikes/For Standard CZ Qualifiers B H L U ethod Refere (1) (2) (3) (4)	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water /pe Explanations Werifies that there is no or minimal comples Verifies the accuracy of the method, Verifies the precision of the instrume Uterifies the precision of the instrume Determines sample matrix interferent Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or ences EPA 600/R-93-100. Methods for Chemical Analysis of Water and EPA 600/R-94-111. Methods for the Determination of Inorgant EPA SW-846. Test Methods for Evaluating Solid Waste.	SDL ontamination in the including the prep nt and/or method. ces, if any. PQL. The associat n immediate hold t gative threshold. e level of the associat the sample detect and Wastes, Marc ic Substances in I in Environmental s	Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. bciated value. tion limit. th 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.
LCSSD LCSW C Sample Ty Blanks Control Sau Duplicates Spikes/For Standard CZ Qualifiers B H L U ethod Reference (1) (2) (3) (4) (5) omments (1)	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations Werifies that there is no or minimal comples Verifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferent Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the ences EPA 600/R-93-100. Methods for Chemical Analysis of Water and EPA 600/R-94-111. Methods for the Determination of Inorgand EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wasteward QC results calculated from raw data. Results may vary slightly	SDL ontamination in the including the prep nt and/or method. ces, if any. PQL. The associat n immediate hold t gative threshold. e level of the associat the sample detect and Wastes, Marc ic Substances in l in Environmental s iter.	Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. beiated value. tion limit. th 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations.
LCSSD LCSW C Sample Ty Blanks Control Sat Duplicates Spikes/For Standard CZ Qualifiers B H L U ethod Reference (1) (2) (3) (4) (5) comments (1) (2)	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations Werifies that there is no or minimal of mples Verifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferen Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or ences EPA 600/R-93-100. Methods for Chemical Analysis of Water and EPA 600/R-94-111. Methods for the Determination of Inorgan EPA 600/R-94-111. Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wastewar QC results calculated from raw data. Results may vary slightly Soil, Sludge, and Plant matrices for Inorganic analyses are rep	SDL ontamination in the including the prep nt and/or method. ces, if any. PQL. The associate in immediate hold to gative threshold. e level of the associate the sample detect and Wastes, Marco ic Substances in la in Environmental so ther.	Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. beiated value. tion limit. th 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations.
LCSSD LCSW C Sample Ty Blanks Control Sat Duplicates Spikes/For Standard CZ Qualifiers B H L U ethod Refere (1) (2) (3) (4) (5) comments (1) (2) (3)	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations Werifies that there is no or minimal comples Verifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferent Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the ences EPA 600/R-93-100. Methods for Chemical Analysis of Water and EPA 600/R-94-111. Methods for the Determination of Inorgant EPA 800/R-94-111. Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wasteward QC results calculated from raw data. Results may vary slightly Soil, Sludge, and Plant matrices for Inorganic analyses are reported on an "as	SDL ontamination in the including the prep nt and/or method. ces, if any. PQL. The associat n immediate hold t gative threshold. e level of the associat the sample detect and Wastes, Marc ic Substances in l in Environmental S iter.	Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations. eight basis.
LCSSD LCSW C Sample Ty Blanks Control Sat Duplicates Spikes/For Standard CZ Qualifiers B H L U ethod Reference (1) (2) (3) (4) (5) comments (1) (2)	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water vpe Explanations Imples Verifies that there is no or minimal converted by the method, verifies the accuracy of the method, verifies the precision of the instrume to the method method by the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and P Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the associated value is either the sample quantitation limit or the PA 600/R-93-100. Methods for Chemical Analysis of Water and PA 600/R-94-111. Methods for the Determination of Inorgani EPA 600/R-94-111. Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wasteward Methods for the Examination of Water and Wasteward Soli, Sludge, and Plant matrices for Inorganic analyses are reported on an "as An asterisk in the "XQ" column indicates there is an extended	SDL ontamination in the including the prep nt and/or method. ces, if any. PQL. The associat n immediate hold t gative threshold. e level of the associat the sample detect and Wastes, Marc ic Substances in l in Environmental S iter.	Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations. eight basis.
LCSSD LCSW C Sample Ty Blanks Control Sat Duplicates Spikes/For Standard CZ Qualifiers B H L U ethod Refere (1) (2) (3) (4) (5) comments (1) (2) (3)	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations Werifies that there is no or minimal comples Verifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferent Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the ences EPA 600/R-93-100. Methods for Chemical Analysis of Water and EPA 600/R-94-111. Methods for the Determination of Inorgant EPA 800/R-94-111. Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wasteward QC results calculated from raw data. Results may vary slightly Soil, Sludge, and Plant matrices for Inorganic analyses are reported on an "as	SDL ontamination in the including the prep nt and/or method. ces, if any. PQL. The associat inmediate hold t gative threshold. e level of the associate the sample detect and Wastes, Marc ic Substances in I in Environmental S iter.	Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. ciated value. tion limit. th 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations. eight basis. entification qualifier

https://acz.com/wp-content/uploads/2019/04/Ext-Qual-List.pdf

REP001.03.15.02

GCC Rio Grande

ACZ Project ID: L64379

Aluminum, disse	olved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG515012													
WG515012ICV	ICV	02/27/21 1:18	ll210219-1	2		1.997	mg/L	100	95	105			
WG515012ICB	ICB	02/27/21 1:24				U	mg/L		-0.15	0.15			
WG515012PQV	PQV	02/27/21 1:27	II210204-2	.250325		.25	mg/L	100	70	130			
WG515012SIC	SIC	02/27/21 1:30	II210118-1	200.510325		205.1	mg/L	102	1	200			
WG515012LFB	LFB	02/27/21 1:37	II210208-3	1.0013		1.034	mg/L	103	85	115			
L64373-02AS	AS	02/27/21 1:47	II210208-3	1.0013	U	1.018	mg/L	102	85	115			
L64373-02ASD	ASD	02/27/21 1:50	II210208-3	1.0013	U	1.021	mg/L	102	85	115	0	20	
WG515012CCV1	CCV	02/27/21 2:09	II210219-2	1		.987	mg/L	99	90	110			
WG515012CCB1	CCB	02/27/21 2:13				U	mg/L		-0.15	0.15			
WG515012CCV2	CCV	02/27/21 2:49	II210219-2	1		.981	mg/L	98	90	110			
WG515012CCB2	CCB	02/27/21 2:53				U	mg/L		-0.15	0.15			
WG515012CCV3	CCV	02/27/21 3:13	II210219-2	1		.991	mg/L	99	90	110			
WG515012CCB3	CCB	02/27/21 3:16				U	mg/L		-0.15	0.15			
Arsenic, dissolv	ed		M200.8 I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG515108													
WG515108ICV	ICV	03/01/21 13:33	MS210115-2	.05		.04936	mg/L	99	90	110			
WG515108ICB	ICB	03/01/21 13:35				U	mg/L		-0.00044	0.00044			
WG515108LFB	LFB	03/01/21 13:37	MS201228-2	.05005		.04477	mg/L	89	85	115			
WG515108CCV1	CCV	03/01/21 13:55	MS210212-2	.1001		.09754	mg/L	97	90	110			
WG515108CCB1	CCB	03/01/21 13:57				U	mg/L		-0.0006	0.0006			
WG515108CCV2	CCV	03/01/21 14:16	MS210212-2	.1001		.0995	mg/L	99	90	110			
WG515108CCB2	CCB	03/01/21 14:18				U	mg/L		-0.0006	0.0006			
L64418-01AS	AS	03/01/21 14:25	MS201228-2	.05005	.00065	.052	mg/L	103	70	130			
L64418-01ASD	ASD	03/01/21 14:27	MS201228-2	.05005	.00065	.04968	mg/L	98	70	130	5	20	
WG515108CCV3	CCV	03/01/21 14:29	MS210212-2	.1001		.09931	mg/L	99	90	110			
WG515108CCB3	CCB	03/01/21 14:31				U	mg/L		-0.0006	0.0006			
Beryllium, disso	lved		M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG515012													
WG515012ICV	ICV	02/27/21 1:18	ll210219-1	2		1.967	mg/L	98	95	105			
WG515012ICB	ICB	02/27/21 1:24				U	mg/L		-0.03	0.03			
WG515012PQV	PQV	02/27/21 1:27	ll210204-2	.05		.052	mg/L	104	70	130			
WG515012SIC	SIC	02/27/21 1:30	ll210118-1	.1		.097	mg/L	97	80	120			
WG515012LFB	LFB	02/27/21 1:37	II210208-3	.5		.507	mg/L	101	85	115			
L64373-02AS	AS	02/27/21 1:47	II210208-3	.5	U	.498	mg/L	100	85	115			
L64373-02ASD	ASD	02/27/21 1:50	II210208-3	.5	U	.495	mg/L	99	85	115	1	20	
WG515012CCV1	CCV	02/27/21 2:09	ll210219-2	1		.983	mg/L	98	90	110			
WG515012CCB1	CCB	02/27/21 2:13				U	mg/L		-0.03	0.03			
WG515012CCV2	CCV	02/27/21 2:49	ll210219-2	1		.97	mg/L	97	90	110			
WG515012CCB2	CCB	02/27/21 2:53				U	mg/L		-0.03	0.03			
WG515012CCV3	CCV	02/27/21 3:13	ll210219-2	1		.929	mg/L	93	90	110			
WG515012CCB3	CCB	02/27/21 3:16				U	mg/L		-0.03	0.03			

GCC Rio Grande

ACZ Project ID: L64379

Boron dissolve			M200 7 IC	סי									
Boron, dissolve			M200.7 IC			_							_
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG515012													
WG515012ICV	ICV	02/27/21 1:18	ll210219-1	2		1.967	mg/L	98	95	105			
WG515012ICB	ICB	02/27/21 1:24				U	mg/L		-0.06	0.06			
WG515012PQV	PQV	02/27/21 1:27	ll210204-2	.1001		.11	mg/L	110	70	130			
WG515012SIC	SIC	02/27/21 1:30	ll210118-1	.1001		.098	mg/L	98	80	120			
WG515012LFB	LFB	02/27/21 1:37	II210208-3	.5005		.513	mg/L	102	85	115			
L64373-02AS	AS	02/27/21 1:47	II210208-3	.5005	U	.514	mg/L	103	85	115			
L64373-02ASD	ASD	02/27/21 1:50	II210208-3	.5005	U	.512	mg/L	102	85	115	0	20	
WG515012CCV1	CCV	02/27/21 2:09	ll210219-2	1		.979	mg/L	98	90	110			
WG515012CCB1	CCB	02/27/21 2:13				U	mg/L		-0.06	0.06			
WG515012CCV2	CCV	02/27/21 2:49	ll210219-2	1		.97	mg/L	97	90	110			
WG515012CCB2	CCB	02/27/21 2:53				U	mg/L		-0.06	0.06			
WG515012CCV3	CCV	02/27/21 3:13	ll210219-2	1		.925	mg/L	93	90	110			
WG515012CCB3	ССВ	02/27/21 3:16				U	mg/L		-0.06	0.06			
Cadmium, disso	olved		M200.8 IC	P-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG515108													
WG515108ICV	ICV	03/01/21 13:33	MS210115-2	.05		.054229	mg/L	108	90	110			
WG515108ICB	ICB	03/01/21 13:35				U	mg/L		-0.00011	0.00011			
WG515108LFB	LFB	03/01/21 13:37	MS201228-2	.05005		.048649	mg/L	97	85	115			
WG515108CCV1	CCV	03/01/21 13:55	MS210212-2	.1001		.104948	mg/L	105	90	110			
WG515108CCB1	ССВ	03/01/21 13:57				U	mg/L		-0.00015	0.00015			
WG515108CCV2	CCV	03/01/21 14:16	MS210212-2	.1001		.103959	mg/L	104	90	110			
WG515108CCB2	ССВ	03/01/21 14:18				U	mg/L		-0.00015	0.00015			
L64418-01AS	AS	03/01/21 14:25	MS201228-2	.05005	U	.051924	mg/L	104	70	130			
L64418-01ASD	ASD	03/01/21 14:27	MS201228-2	.05005	U	.050898	mg/L	102	70	130	2	20	
WG515108CCV3	CCV	03/01/21 14:29	MS210212-2	.1001		.105446	mg/L	105	90	110			
WG515108CCB3	CCB	03/01/21 14:31				U	mg/L		-0.00015	0.00015			
Chromium, diss	olved		M200.7 IC	;P									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG515012													
WG515012ICV	ICV	02/27/21 1:18	II210219-1	2		1.961	mg/L	98	95	105			
WG515012ICB	ICB	02/27/21 1:24		-		U	mg/L		-0.03	0.03			
WG515012PQV	PQV	02/27/21 1:27	II210204-2	.05015		.051	mg/L	102	70	130			
WG515012SIC	SIC	02/27/21 1:30	ll210118-1	.1003		.09	mg/L	90	80	120			
WG515012LFB	LFB	02/27/21 1:37	ll210208-3	.502		.508	mg/L	101	85	115			
L64373-02AS	AS	02/27/21 1:47	II210208-3	.502	U	.497	mg/L	99	85	115			
L64373-02ASD	ASD	02/27/21 1:50	II210208-3	.502	U	.502	mg/L	100	85	115	1	20	
WG515012CCV1	CCV	02/27/21 2:09	II210209-0	1	-	.989	mg/L	99	90	110	•	_,	
WG515012CCB1	CCB	02/27/21 2:13				.505 U	mg/L	50	-0.03	0.03			
WG515012CCV2	CCV	02/27/21 2:49	II210219-2	1		.986	mg/L	99	90	110			
WG515012CCB2	CCB	02/27/21 2:53				.000 U	mg/L	50	-0.03	0.03			
WG515012CCV3	CCV	02/27/21 3:13	II210219-2	1		.938	mg/L	94	90	110			
WG515012CCB3	CCB	02/27/21 3:16				.000 U	mg/L	51	-0.03	0.03			
	000	52,21,210.10				5			0.00	0.00			

GCC Rio Grande

ACZ Project ID: L64379

Cobalt, dissolve	ed		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG515012													
WG515012ICV	ICV	02/27/21 1:18	ll210219-1	2.004		1.913	mg/L	95	95	105			
WG515012ICB	ICB	02/27/21 1:24				U	mg/L		-0.03	0.03			
WG515012PQV	PQV	02/27/21 1:27	II210204-2	.05		.048	mg/L	96	70	130			
WG515012SIC	SIC	02/27/21 1:30	II210118-1	.1		.089	mg/L	89	80	120			
WG515012LFB	LFB	02/27/21 1:37	II210208-3	.5005		.492	mg/L	98	85	115			
L64373-02AS	AS	02/27/21 1:47	II210208-3	.5005	U	.483	mg/L	97	85	115			
L64373-02ASD	ASD	02/27/21 1:50	II210208-3	.5005	U	.482	mg/L	96	85	115	0	20	
WG515012CCV1	CCV	02/27/21 2:09	II210219-2	1.002		.965	mg/L	96	90	110			
WG515012CCB1	CCB	02/27/21 2:13				U	mg/L		-0.03	0.03			
WG515012CCV2	CCV	02/27/21 2:49	II210219-2	1.002		.958	mg/L	96	90	110			
WG515012CCB2	CCB	02/27/21 2:53				U	mg/L		-0.03	0.03			
WG515012CCV3	CCV	02/27/21 3:13	II210219-2	1.002		.913	mg/L	91	90	110			
WG515012CCB3	CCB	02/27/21 3:16				U	mg/L		-0.03	0.03			
Copper, dissolv	ed		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG515012													
WG515012ICV	ICV	02/27/21 1:18	ll210219-1	2		1.947	mg/L	97	95	105			
	ICV ICB	02/27/21 1:18 02/27/21 1:24	ll210219-1	2		1.947 U	mg/L mg/L	97	95 -0.03	105 0.03			
			II210219-1 II210204-2	2 .0501				97 102					
WG515012ICB	ICB	02/27/21 1:24				U	mg/L		-0.03	0.03			
WG515012ICB WG515012PQV	ICB PQV	02/27/21 1:24 02/27/21 1:27	II210204-2	.0501		U .051	mg/L mg/L	102	-0.03 70	0.03 130			
WG515012ICB WG515012PQV WG515012SIC WG515012LFB	ICB PQV SIC	02/27/21 1:24 02/27/21 1:27 02/27/21 1:30	II210204-2 II210118-1	.0501 .1002	.019	U .051 .103	mg/L mg/L mg/L	102 103	-0.03 70 80	0.03 130 120			
WG515012SIC	ICB PQV SIC LFB	02/27/21 1:24 02/27/21 1:27 02/27/21 1:30 02/27/21 1:37	II210204-2 II210118-1 II210208-3	.0501 .1002 .5015	.019 .019	U .051 .103 .51	mg/L mg/L mg/L mg/L	102 103 102	-0.03 70 80 85	0.03 130 120 115	0	20	
WG515012ICB WG515012PQV WG515012SIC WG515012LFB L64373-02AS	ICB PQV SIC LFB AS	02/27/21 1:24 02/27/21 1:27 02/27/21 1:30 02/27/21 1:37 02/27/21 1:47	210204-2 210118-1 210208-3 210208-3	.0501 .1002 .5015 .5015		U .051 .103 .51 .501	mg/L mg/L mg/L mg/L mg/L	102 103 102 96	-0.03 70 80 85 85	0.03 130 120 115 115	0	20	
WG515012ICB WG515012PQV WG515012SIC WG515012LFB L64373-02AS L64373-02ASD	ICB PQV SIC LFB AS ASD	02/27/21 1:24 02/27/21 1:27 02/27/21 1:30 02/27/21 1:37 02/27/21 1:47 02/27/21 1:50	II210204-2 II210118-1 II210208-3 II210208-3 II210208-3	.0501 .1002 .5015 .5015 .5015		U .051 .103 .51 .501 .502	mg/L mg/L mg/L mg/L mg/L	102 103 102 96 96	-0.03 70 80 85 85 85	0.03 130 120 115 115 115	0	20	
WG515012ICB WG515012PQV WG515012SIC WG515012LFB L64373-02AS L64373-02ASD WG515012CCV1	ICB PQV SIC LFB AS ASD CCV	02/27/21 1:24 02/27/21 1:27 02/27/21 1:30 02/27/21 1:37 02/27/21 1:47 02/27/21 1:50 02/27/21 2:09	II210204-2 II210118-1 II210208-3 II210208-3 II210208-3	.0501 .1002 .5015 .5015 .5015		U .051 .103 .51 .501 .502 .971	mg/L mg/L mg/L mg/L mg/L mg/L	102 103 102 96 96	-0.03 70 80 85 85 85 85 90	0.03 130 120 115 115 115 115 110	0	20	
WG515012ICB WG515012PQV WG515012SIC WG515012LFB L64373-02AS L64373-02ASD WG515012CCV1 WG515012CCB1	ICB PQV SIC LFB AS ASD CCV CCB	02/27/21 1:24 02/27/21 1:27 02/27/21 1:30 02/27/21 1:37 02/27/21 1:47 02/27/21 1:50 02/27/21 2:09 02/27/21 2:13	II210204-2 II210118-1 II210208-3 II210208-3 II210208-3 II210219-2	.0501 .1002 .5015 .5015 .5015 1		U .051 .103 .51 .501 .502 .971 U	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	102 103 102 96 96 97	-0.03 70 80 85 85 85 90 -0.03	0.03 130 120 115 115 115 110 0.03	0	20	
WG515012ICB WG515012PQV WG515012SIC WG515012LFB L64373-02AS L64373-02ASD WG515012CCV1 WG515012CCB1 WG515012CCV2	ICB PQV SIC LFB AS ASD CCV CCB CCV	02/27/21 1:24 02/27/21 1:27 02/27/21 1:30 02/27/21 1:37 02/27/21 1:47 02/27/21 1:50 02/27/21 2:09 02/27/21 2:13 02/27/21 2:49	II210204-2 II210118-1 II210208-3 II210208-3 II210208-3 II210219-2	.0501 .1002 .5015 .5015 .5015 1		U .051 .103 .51 .501 .502 .971 U .967	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	102 103 102 96 96 97	-0.03 70 80 85 85 85 90 -0.03 90	0.03 130 120 115 115 115 110 0.03 110	0	20	

GCC Rio Grande

ACZ Project ID: L64379

Fluoride			SM4500F	-C									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG515015													
WG515015ICV	ICV	02/26/21 13:08	WC210213-2	2.002		2.01	mg/L	100	90	110			
WG515015ICB	ICB	02/26/21 13:16				U	mg/L		-0.33	0.33			
WG515015PQV	PQV	02/26/21 13:20	WC210130-1	.35105		.36	mg/L	103	70	130			
WG515015LFB1	LFB	02/26/21 13:25	WC201221-2	5.015		5.12	mg/L	102	90	110			
WG515015CCV1	CCV	02/26/21 14:39	WC210213-2	2.002		2.02	mg/L	101	90	110			
WG515015CCB1	CCB	02/26/21 14:47				U	mg/L		-0.33	0.33			
WG515015CCV2	CCV	02/26/21 15:43	WC210226-7	2.002		2.06	mg/L	103	90	110			
WG515015CCB2	CCB	02/26/21 15:52				U	mg/L		-0.33	0.33			
L64403-02AS	AS	02/26/21 16:17	WC201221-2	5.015	.14	5.5	mg/L	107	90	110			
L64403-02ASD	ASD	02/26/21 16:21	WC201221-2	5.015	.14	5.45	mg/L	106	90	110	1	20	
WG515015LFB2	LFB	02/26/21 16:25	WC201221-2	5.015		5.12	mg/L	102	90	110			
WG515015CCV3	CCV	02/26/21 16:50	WC210226-7	2.002		2.05	mg/L	102	90	110			
WG515015CCB3	CCB	02/26/21 16:58				U	mg/L		-0.33	0.33			
WG515015CCV4	CCV	02/26/21 17:50	WC210226-7	2.002		2.08	mg/L	104	90	110			
WG515015CCB4	CCB	02/26/21 17:58				U	mg/L		-0.33	0.33			
WG515015CCV5	CCV	02/26/21 18:40	WC210226-7	2.002		2.09	mg/L	104	90	110			
WG515015CCB5	CCB	02/26/21 18:47				U	mg/L		-0.33	0.33			
Iron. dissolved			M200.7 IC	P									

iron, dissolved			WI200.7	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG515012													
WG515012ICV	ICV	02/27/21 1:18	II210219-1	2		1.94	mg/L	97	95	105			
WG515012ICB	ICB	02/27/21 1:24				U	mg/L		-0.18	0.18			
WG515012PQV	PQV	02/27/21 1:27	II210204-2	.15027		.147	mg/L	98	70	130			
WG515012SIC	SIC	02/27/21 1:30	ll210118-1	200.51027		190.5	mg/L	95	1	200			
WG515012LFB	LFB	02/27/21 1:37	II210208-3	1.0018		1.037	mg/L	104	85	115			
L64373-02AS	AS	02/27/21 1:47	II210208-3	1.0018	.627	1.592	mg/L	96	85	115			
L64373-02ASD	ASD	02/27/21 1:50	II210208-3	1.0018	.627	1.586	mg/L	96	85	115	0	20	
WG515012CCV1	CCV	02/27/21 2:09	II210219-2	1		.968	mg/L	97	90	110			
WG515012CCB1	CCB	02/27/21 2:13				U	mg/L		-0.18	0.18			
WG515012CCV2	CCV	02/27/21 2:49	II210219-2	1		.972	mg/L	97	90	110			
WG515012CCB2	CCB	02/27/21 2:53				U	mg/L		-0.18	0.18			
WG515012CCV3	CCV	02/27/21 3:13	II210219-2	1		1.08	mg/L	108	90	110			
WG515012CCB3	CCB	02/27/21 3:16				.075	mg/L		-0.18	0.18			
WG515012CCB3	CCB	02/27/21 3:16				.075	mg/L		-0.18	0.18			

GCC Rio Grande

ACZ Project ID: L64379

Lead, dissolved			M200.8 I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG515108													
WG515108ICV	ICV	03/01/21 13:33	MS210115-2	.05		.0532	mg/L	106	90	110			
WG515108ICB	ICB	03/01/21 13:35				U	mg/L		-0.00022	0.00022			
WG515108LFB	LFB	03/01/21 13:37	MS201228-2	.05005		.0492	mg/L	98	85	115			
WG515108CCV1	CCV	03/01/21 13:55	MS210212-2	.25025		.24774	mg/L	99	90	110			
WG515108CCB1	CCB	03/01/21 13:57				U	mg/L		-0.0003	0.0003			
WG515108CCV2	CCV	03/01/21 14:16	MS210212-2	.25025		.25505	mg/L	102	90	110			
WG515108CCB2	CCB	03/01/21 14:18				U	mg/L		-0.0003	0.0003			
L64418-01AS	AS	03/01/21 14:25	MS201228-2	.05005	.00012	.04876	mg/L	97	70	130			
L64418-01ASD	ASD	03/01/21 14:27	MS201228-2	.05005	.00012	.04801	mg/L	96	70	130	2	20	
WG515108CCV3	CCV	03/01/21 14:29	MS210212-2	.25025		.2389	mg/L	95	90	110			
WG515108CCB3	CCB	03/01/21 14:31				U	mg/L		-0.0003	0.0003			
Lithium, dissolv	ed		M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG515012													
WG515012ICV	ICV	02/27/21 1:18	II210219-1	2		1.9675	mg/L	98	95	105			
WG515012ICB	ICB	02/27/21 1:24		-		U	mg/L		-0.024	0.024			
WG515012PQV	PQV	02/27/21 1:27	II210204-2	.03988		.0418	mg/L	105	70	130			
WG515012SIC	SIC	02/27/21 1:30	II210118-1	.0997		.1003	mg/L	101	80	120			
WG515012LFB	LFB	02/27/21 1:37	II210208-3	.997		1.02	mg/L	102	85	115			
L64373-02AS	AS	02/27/21 1:47	II210208-3	.997	.0111	1.02	mg/L	101	85	115			
L64373-02ASD	ASD	02/27/21 1:50	II210208-3	.997	.0111	1.011	mg/L	100	85	115	1	20	
WG515012CCV1	CCV	02/27/21 2:09	II210219-2	1		.9774	mg/L	98	90	110			
WG515012CCB1	CCB	02/27/21 2:13				U	mg/L		-0.024	0.024			
WG515012CCV2	CCV	02/27/21 2:49	II210219-2	1		.9693	mg/L	97	90	110			
WG515012CCB2	CCB	02/27/21 2:53				U	mg/L		-0.024	0.024			
WG515012CCV3	CCV	02/27/21 3:13	II210219-2	1		.9288	mg/L	93	90	110			
WG515012CCB3	CCB	02/27/21 3:16				U	mg/L		-0.024	0.024			
Manganese, dis	solved		M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG515012	51												
WG515012ICV	ICV	02/27/21 1:18	II210219-1	2		1.94	mg/L	97	95	105			
WG515012ICB	ICB	02/27/21 1:24		2		U	mg/L	57	-0.03	0.03			
WG515012PQV	PQV	02/27/21 1:27	II210204-2	.0501		.048	mg/L	96	70	130			
WG515012SIC	SIC	02/27/21 1:30	II210118-1	50.1001		47.11	mg/L	94	1	200			
WG515012LFB	LFB	02/27/21 1:37	II210208-3	.5005		.483	mg/L	97	85	115			
L64373-02AS	AS	02/27/21 1:47	II210208-3	.5005	.065	.54	mg/L	95	85	115			
L64373-02ASD	ASD	02/27/21 1:50	II210208-3	.5005	.065	.536	mg/L	94	85	115	1	20	
WG515012CCV1	CCV	02/27/21 2:09	II210219-2	1		.974	mg/L	97	90	110			
WG515012CCB1	CCB	02/27/21 2:13				U	mg/L	0.	-0.03	0.03			
WG515012CCV2	CCV	02/27/21 2:49	II210219-2	1		.966	mg/L	97	90	110			
WG515012CCB2	CCB	02/27/21 2:53				U	mg/L		-0.03	0.03			
WG515012CCV3	CCV	02/27/21 3:13	II210219-2	1		.95	mg/L	95	90	110			
WG515012CCB3	ССВ	02/27/21 3:16				.011	mg/L		-0.03	0.03			
							5			2.00			

GCC Rio Grande

ACZ Project ID: L64379

Mercury, dissol	ved		M245.1 C	CVAA									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG515174													
WG515174ICV	ICV	03/03/21 14:31	HG210118-2	.005		.00505	mg/L	101	95	105			
WG515174ICB	ICB	03/03/21 14:32				U	mg/L		-0.0002	0.0002			
WG515174LRB	LRB	03/03/21 14:34				U	mg/L		-0.00044	0.00044			
WG515174LFB	LFB	03/03/21 14:35	HG210301-3	.002002		.00188	mg/L	94	85	115			
L64379-02LFM	LFM	03/03/21 14:40	HG210301-3	.002002	U	.00188	mg/L	94	85	115			
L64379-02LFMD	LFMD	03/03/21 14:41	HG210301-3	.002002	U	.00187	mg/L	93	85	115	1	20	
WG515174CCV1	CCV	03/03/21 14:43	HG210118-2	.005		.00511	mg/L	102	90	110			
WG515174CCB1	CCB	03/03/21 14:44				U	mg/L		-0.0002	0.0002			
WG515174CCV2	CCV	03/03/21 14:54	HG210118-2	.005		.00476	mg/L	95	90	110			
WG515174CCB2	ССВ	03/03/21 14:55				U	mg/L		-0.0002	0.0002			
WG515174CCV3	CCV	03/03/21 15:02	HG210118-2	.005		.00484	mg/L	97	90	110			
WG515174CCB3	ССВ	03/03/21 15:03				U	mg/L		-0.0002	0.0002			
Nickel, dissolve	d		M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG515012													
WG515012ICV	ICV	02/27/21 1:18	II210219-1	2		1.9442	mg/L	97	95	105			
WG515012ICB	ICB	02/27/21 1:24				U	mg/L		-0.024	0.024			
WG515012PQV	PQV	02/27/21 1:27	II210204-2	.04016		.0424	mg/L	106	70	130			
WG515012SIC	SIC	02/27/21 1:30	II210118-1	.1004		.0941	mg/L	94	80	120			
WG515012LFB	LFB	02/27/21 1:37	II210208-3	.502		.5061	mg/L	101	85	115			
L64373-02AS	AS	02/27/21 1:47	II210208-3	.502	U	.4988	mg/L	99	85	115			
L64373-02ASD	ASD	02/27/21 1:50	II210208-3	.502	U	.4986	mg/L	99	85	115	0	20	
WG515012CCV1	CCV	02/27/21 2:09	II210219-2	1	U	.9784	mg/L	98	90	110	Ũ	20	
WG515012CCB1	CCB	02/27/21 2:13				U	mg/L	00	-0.024	0.024			
WG515012CCV2	CCV	02/27/21 2:49	II210219-2	1		.9786	mg/L	98	90	110			
WG515012CCB2	CCB	02/27/21 2:53				.0700 U	mg/L	00	-0.024	0.024			
WG515012CCV3	CCV	02/27/21 3:13	II210219-2	1		.9316	mg/L	93	90	110			
WG515012CCB3	ССВ	02/27/21 3:16		·		U	mg/L	00	-0.024	0.024			
Nitrate/Nitrite as	N diss	olved	M353.2 -	Automated	d Cadmiur	n Reduc	tion						
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample			Rec%	Lower	Upper	RPD	Limit	Qual
WG514840													
WG514840ICV	ICV	02/23/21 21:59	WI210218-5	2.416		2.383	mg/L	99	90	110			
WG514840ICB	ICB	02/23/21 22:00				2.000 U	mg/L	50	-0.02	0.02			
WG514840LFB	LFB	02/23/21 22:00	WI201001-11	2		2.005	mg/L	100	-0.02 90	110			
WG514840CCV1	CCV	02/23/21 22:04	WI210217-1	2		2.003	mg/L	100	90	110			
WG514840CCB1	CCB	02/23/21 22:17		-		2.04 U	mg/L		-0.02	0.02			
WG514840CCV2	CCV	02/23/21 22:30	WI210217-1	2		2.044	mg/L	102	90	110			
WG514840CCB2	CCB	02/23/21 22:33		-		U	mg/L		-0.02	0.02			
L64372-01AS	AS	02/23/21 22:39	WI201001-11	40	22.5	63.894	mg/L	103	90	110			
L64373-01DUP	DUP	02/23/21 22:41			14.4	14.291	mg/L				1	20	
WG514840CCV3	CCV	02/23/21 22:49	WI210217-1	2		2.058	mg/L	103	90	110	•	_,	
WG514840CCB3	CCB	02/23/21 22:51		-		U	mg/L		-0.02	0.02			
WG514840CCV4	CCV	02/23/21 23:04	WI210217-1	2		2.062	mg/L	103	90	110			
WG514840CCB4	CCB	02/23/21 23:07		-		U.002	mg/L		-0.02	0.02			
						-	-						

GCC Rio Grande

ACZ Project ID: L64379

Nitrite as N, dise	solved	M353.2 - Automated Cadmium Reduction											
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG514840													
WG514840ICV	ICV	02/23/21 21:59	WI210218-5	.609		.602	mg/L	99	90	110			
WG514840ICB	ICB	02/23/21 22:00				U	mg/L		-0.01	0.01			
WG514840LFB	LFB	02/23/21 22:04	WI201001-11	1		.996	mg/L	100	90	110			
L64372-01AS	AS	02/23/21 22:06	WI201001-11	1	.886	1.807	mg/L	92	90	110			
L64373-01DUP	DUP	02/23/21 22:09			U	U	mg/L				0	20	RA
WG514840CCV1	CCV	02/23/21 22:14	WI210217-1	1		1.009	mg/L	101	90	110			
WG514840CCB1	CCB	02/23/21 22:17				U	mg/L		-0.01	0.01			
WG514840CCV2	CCV	02/23/21 22:30	WI210217-1	1		1.006	mg/L	101	90	110			
WG514840CCB2	CCB	02/23/21 22:33				U	mg/L		-0.01	0.01			
WG514840CCV3	CCV	02/23/21 22:49	WI210217-1	1		1	mg/L	100	90	110			
WG514840CCB3	CCB	02/23/21 22:51				U	mg/L		-0.01	0.01			
WG514840CCV4	CCV	02/23/21 23:04	WI210217-1	1		1.011	mg/L	101	90	110			
WG514840CCB4	CCB	02/23/21 23:07				U	mg/L		-0.01	0.01			
Residue, Filtera	ble (TDS	S) @180C	SM2540C										
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual

ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG514839													
WG514839PBW	PBW	02/23/21 20:30				U	mg/L		-20	20			
WG514839LCSW	LCSW	02/23/21 20:32	PCN62449	1000		998	mg/L	100	80	120			
L64355-01DUP	DUP	02/23/21 20:37			U	U	mg/L				0	10	RA
WG514864													
WG514864PBW	PBW	02/24/21 10:30				U	mg/L		-20	20			
WG514864LCSW	LCSW	02/24/21 10:31	PCN62449	1000		984	mg/L	98	80	120			
L64379-03DUP	DUP	02/24/21 10:57			6460	6396	mg/L				1	10	
L64393-01DUP	DUP	02/24/21 11:02			1790	1784	mg/L				0	10	

Selenium, dissolved	M200.8 ICP-MS

ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG515108													
WG515108ICV	ICV	03/01/21 13:33	MS210115-2	.05		.05004	mg/L	100	90	110			
WG515108ICB	ICB	03/01/21 13:35				U	mg/L		-0.00022	0.00022			
WG515108LFB	LFB	03/01/21 13:37	MS201228-2	.05		.04395	mg/L	88	85	115			
WG515108CCV1	CCV	03/01/21 13:55	MS210212-2	.25		.24525	mg/L	98	90	110			
WG515108CCB1	CCB	03/01/21 13:57				.00012	mg/L		-0.0003	0.0003			
WG515108CCV2	CCV	03/01/21 14:16	MS210212-2	.25		.25054	mg/L	100	90	110			
WG515108CCB2	CCB	03/01/21 14:18				.00013	mg/L		-0.0003	0.0003			
L64418-01AS	AS	03/01/21 14:25	MS201228-2	.05	.00062	.05321	mg/L	105	70	130			
L64418-01ASD	ASD	03/01/21 14:27	MS201228-2	.05	.00062	.05097	mg/L	101	70	130	4	20	
WG515108CCV3	CCV	03/01/21 14:29	MS210212-2	.25		.24983	mg/L	100	90	110			
WG515108CCB3	CCB	03/01/21 14:31				.0002	mg/L		-0.0003	0.0003			

GCC Rio Grande

ACZ Project ID: L64379

Vanadium, diss	olved		M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG515012													
WG515012ICV	ICV	02/27/21 1:18	II210219-1	2		1.969	mg/L	98	95	105			
WG515012ICB	ICB	02/27/21 1:24				U	mg/L		-0.015	0.015			
WG515012PQV	PQV	02/27/21 1:27	II210204-2	.024975		.026	mg/L	104	70	130			
WG515012SIC	SIC	02/27/21 1:30	ll210118-1	.0999		.082	mg/L	82	80	120			
WG515012LFB	LFB	02/27/21 1:37	II210208-3	.5005		.5128	mg/L	102	85	115			
L64373-02AS	AS	02/27/21 1:47	II210208-3	.5005	U	.5088	mg/L	102	85	115			
L64373-02ASD	ASD	02/27/21 1:50	II210208-3	.5005	U	.504	mg/L	101	85	115	1	20	
WG515012CCV1	CCV	02/27/21 2:09	II210219-2	1		.984	mg/L	98	90	110			
WG515012CCB1	CCB	02/27/21 2:13				U	mg/L		-0.03	0.03			
WG515012CCV2	CCV	02/27/21 2:49	II210219-2	1		.982	mg/L	98	90	110			
WG515012CCB2	CCB	02/27/21 2:53				U	mg/L		-0.03	0.03			
WG515012CCV3	CCV	02/27/21 3:13	II210219-2	1		.938	mg/L	94	90	110			
WG515012CCB3	CCB	02/27/21 3:16				U	mg/L		-0.03	0.03			
Zinc, dissolved			M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG515012													
WG515012ICV	ICV	02/27/21 1:18	II210219-1	2		1.957	mg/L	98	95	105			
WG515012ICB	ICB	02/27/21 1:24				U	mg/L		-0.06	0.06			
WG515012PQV	PQV	02/27/21 1:27	II210204-2	.0502		.052	mg/L	104	70	130			
WG515012SIC							mg/L	104					
	SIC	02/27/21 1:30	II210118-1	.1004		.096	mg/L	96	80	120			
WG515012LFB	SIC LFB	02/27/21 1:30 02/27/21 1:37	II210118-1 II210208-3	.1004 .50075			-		80 85				
					U	.096	mg/L	96		120			
WG515012LFB	LFB	02/27/21 1:37	II210208-3	.50075	U U	.096 .503	mg/L mg/L	96 100	85	120 115	2	20	
WG515012LFB L64373-02AS	LFB AS	02/27/21 1:37 02/27/21 1:47	II210208-3 II210208-3	.50075 .50075		.096 .503 .497	mg/L mg/L mg/L	96 100 99	85 85	120 115 115	2	20	
WG515012LFB L64373-02AS L64373-02ASD	LFB AS ASD	02/27/21 1:37 02/27/21 1:47 02/27/21 1:50	II210208-3 II210208-3 II210208-3	.50075 .50075 .50075		.096 .503 .497 .505	mg/L mg/L mg/L mg/L	96 100 99 101	85 85 85	120 115 115 115	2	20	
WG515012LFB L64373-02AS L64373-02ASD WG515012CCV1	LFB AS ASD CCV	02/27/21 1:37 02/27/21 1:47 02/27/21 1:50 02/27/21 2:09	II210208-3 II210208-3 II210208-3	.50075 .50075 .50075		.096 .503 .497 .505 .974	mg/L mg/L mg/L mg/L mg/L	96 100 99 101	85 85 85 90	120 115 115 115 115 110	2	20	
WG515012LFB L64373-02AS L64373-02ASD WG515012CCV1 WG515012CCB1	LFB AS ASD CCV CCB	02/27/21 1:37 02/27/21 1:47 02/27/21 1:50 02/27/21 2:09 02/27/21 2:13	II210208-3 II210208-3 II210208-3 II210219-2	.50075 .50075 .50075 1		.096 .503 .497 .505 .974 U	mg/L mg/L mg/L mg/L mg/L	96 100 99 101 97	85 85 85 90 -0.06	120 115 115 115 110 0.06	2	20	
WG515012LFB L64373-02AS L64373-02ASD WG515012CCV1 WG515012CCB1 WG515012CCV2	LFB AS ASD CCV CCB CCV	02/27/21 1:37 02/27/21 1:47 02/27/21 1:50 02/27/21 2:09 02/27/21 2:13 02/27/21 2:49	II210208-3 II210208-3 II210208-3 II210219-2	.50075 .50075 .50075 1		.096 .503 .497 .505 .974 U .973	mg/L mg/L mg/L mg/L mg/L mg/L	96 100 99 101 97	85 85 90 -0.06 90	120 115 115 115 110 0.06 110	2	20	VC

4C **AGZ** Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487

(800) 334-5493

Inorganic Extended Qualifier Report

GCC Rio Grande

ACZ Project ID: L64379

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L64379-01	NG514840	Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG514839	Residue, Filterable (TDS) @180C	SM2540C	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
L64379-02	NG514840	Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG514839	Residue, Filterable (TDS) @180C	SM2540C	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
L64379-03	NG514840	Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
L64379-04	NG514840	Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).

ACZ Project ID: L64379

No certification qualifiers associated with this analysis

AGZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493	Sample Receipt				
GCC Rio Grande ACZ Pro	oject ID:		L64379		
	eceived: 02	2/23/202	21 10:31		
	ived By:	- /			
	Printed:	2/2	24/2021		
Receipt Verification	YES	NO	NA		
1) Is a foreign soil permit included for applicable samples?			X		
2) Is the Chain of Custody form or other directive shipping papers present?	Х				
3) Does this project require special handling procedures such as CLP protocol?		Х			
4) Are any samples NRC licensable material?			Х		
5) If samples are received past hold time, proceed with requested short hold time analyses?	Х				
6) Is the Chain of Custody form complete and accurate?	Х				
7) Were any changes made to the Chain of Custody form prior to ACZ receiving the samples?		Х			
Samples/Containers					
	YES	NO	NA		
8) Are all containers intact and with no leaks?	X				
9) Are all labels on containers and are they intact and legible?	Х				
10) Do the sample labels and Chain of Custody form match for Sample ID, Date, and Time?	Х				
11) For preserved bottle types, was the pH checked and within limits? ¹	Х				
12) Is there sufficient sample volume to perform all requested work?	Х				
13) Is the custody seal intact on all containers?			Х		
14) Are samples that require zero headspace acceptable?			Х		
15) Are all sample containers appropriate for analytical requirements?	Х				
16) Is there an Hg-1631 trip blank present?			Х		
17) Is there a VOA trip blank present?			Х		
18) Were all samples received within hold time?	Х				

Chain of Custody Related Remarks

Client Contact Remarks

Shipping Containers

Cooler Id	Temp(°C)	Temp Criteria(°C)	Rad(µR/Hr)	Custody Seal Intact?
NA34616	-0.4	<=6.0	15	N/A

Was ice present in the shipment container(s)?

Yes - Wet ice was present in the shipment container(s).

Client must contact an ACZ Project Manager if analysis should not proceed for samples received outside of their thermal preservation acceptance criteria.

Comula

NA indicates Not Applicable

Sample Receipt

GCC Rio Grande

ACZ Project ID: L64379 Date Received: 02/23/2021 10:31 Received By: Date Printed: 2/24/2021

¹ The preservation of the following bottle types is not checked at sample receipt: Orange (oil and grease), Purple (total cyanide), Pink (dissolved cyanide), Brown (arsenic speciation), Sterile (fecal coliform), EDTA (sulfite), HCI preserved vial (organics), Na2S2O3 preserved vial (organics), and HG-1631 (total/dissolved mercury by method 1631).

Report to:	boat Springs, CO	ies, Inc	34-5402	5-1	5/	4		HA	IN O	fCU	510	D
	bout opiniga, oo	00407 (000) 5.	54-5493									
_{Name:} Diana Furma	n			Add		3370	Limo	Dood	Duck	olo, Co	0.04	00/
Company: GCC Rio (Grande Inc.		-	Addi	ess.	5512	Lime	Roau	, Puer		J 810	004
E-mail: dfurman@gc			-	Tele	phone:	(719)647-	6861				
Copy of Report to:							<u>)</u>					
Name:				E-ma	ail.							
Company:			1		phone:							
Invoice to:												
Name: Diana Furmar)			Addr	occ: 3	3721	imo E	Poad	Duch	lo, CC	010	04
Company: GCC Rio G	Frande Inc.		-	Addi	<u>ess.</u> 0	572 L		uau,	Fueb	0, CC	810	04
E-mail: dfurman@gcc	com		-	Teler	ohone:	(719)647-(5861				
f sample(s) received past	holding time (HT),	or if insufficie	nt HT re	mains	to com	plete	<u>,,,,,</u>			YES		Т
analysis before expiration,	shall ACZ procee	d with request	ed short	HT an	alvees	>	***			NO		<u>_</u>
"NO" then ACZ will contact client for furt Are samples for SDWA Cor	mpliance Monitorii	ng?		Yes		ested analy	vses, even i No	HT is expi	red, and dat	a will be qu	alified	
f yes, please include state	forms. Results wi	Il be reported	to PQL f	or Col	orado.				1			
Sampler's Name:		r's Site Inform	ation	State	CO		_ Zip co	de_81	004	_ Time 2	zone N	٨D
Sampler's Signature:		*i attest to tampering	the authenti with the sam	city and va ple in anyv	lidity of this ray, is consid	sample. I un Sered fraud	 ndorrtand sk	at interation	-11	ling the time	e/date/locat	tion o
ROJECT INFORMATIO										e quote nu	mber)	
Quote #: GW-COMPLI	ANCE 03/27/2	019		S	t -							
<u>PO#: N/A</u>				inei	ote bt	1		ĺ				
Reporting state for compliance	e testing: Colora	ado		nta	onb p			ĺ				
heck box if samples include	×			of Containers	attached quote bu			ł		1		
SAMPLE IDENTIFICATI		E:TIME	Matrix		Peratt nopH				1			
MW-6	02/11/	21:1325	GW	3						-		Ē
MW-7	07/ 20/1	1 : 17.27	GW	3	X		╞╴	(interest				
MW-2B	A1/97/	71:17/19	GW	3								
MW-8	02/22	121:1300	GW	3	X							
					П							
						k						
												1

FRMAD050.06.14.14

White - Return with sample. Yellow - Retain for your records.

64379 Chain of Custod

Analytical Report

June 10, 2021

Report to: Greg Gannon GCC Rio Grande 3372 Lime Road Pueblo, CO 81004

cc: Landon Beck

Bill to: Greg Gannon GCC Rio Grande 3372 Lime Road Pueblo, CO 81004

Project ID: ACZ Project ID: L65969

Greg Gannon:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on May 21, 2021. This project has been assigned to ACZ's project number, L65969. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan. The enclosed results relate only to the samples received under L65969. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after June 10, 2022. If the samples are determined to be hazardous, additional charges apply for disposal (typically \$11/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical raw data reports for ten years.

If you have any questions or other needs, please contact your Project Manager.

Bill Lane has reviewed and approved this report

Project ID: Sample ID: MW-6

Inorganic Analytical Results

ACZ Sample ID: L65969-01 Date Sampled: 05/19/21 10:57 Date Received: 05/21/21 Sample Matrix: Groundwater

Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	M200.7 ICP	1	<0.05	U		mg/L	0.05	0.25	05/25/21 21:57	jlw
Arsenic, dissolved	M200.8 ICP-MS	1	0.00237			mg/L	0.0002	0.001	05/27/21 17:18	bsu
Beryllium, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	05/25/21 21:57	jlw
Boron, dissolved	M200.7 ICP	1	0.378			mg/L	0.03	0.1	05/25/21 21:57	jlw
Cadmium, dissolved	M200.8 ICP-MS	1	0.000058	В		mg/L	0.00005	0.00025	05/27/21 17:18	bsu
Calcium, dissolved	M200.7 ICP	1	315		*	mg/L	0.1	0.5	05/25/21 21:57	jlw
Chromium, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	05/26/21 16:26	jlw
Cobalt, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	05/25/21 21:57	jlw
Copper, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	05/25/21 21:57	jlw
Iron, dissolved	M200.7 ICP	1	0.127	В	*	mg/L	0.06	0.15	05/25/21 21:57	jlw
Lead, dissolved	M200.8 ICP-MS	1	<0.0001	U		mg/L	0.0001	0.0005	05/27/21 17:18	bsu
Lithium, dissolved	M200.7 ICP	1	0.472			mg/L	0.008	0.04	05/25/21 21:57	jlw
Magnesium, dissolved	M200.7 ICP	1	344			mg/L	0.2	1	05/25/21 21:57	jlw
Manganese, dissolved	M200.7 ICP	1	0.357		*	mg/L	0.01	0.05	05/25/21 21:57	jlw
Mercury, dissolved	M245.1 CVAA	1	<0.0002	U		mg/L	0.0002	0.001	05/24/21 13:47	mlh
Nickel, dissolved	M200.7 ICP	1	0.0579			mg/L	0.008	0.04	05/25/21 21:57	jlw
Potassium, dissolved	M200.7 ICP	1	9.94			mg/L	0.2	1	05/25/21 21:57	jlw
Selenium, dissolved	M200.8 ICP-MS	1	0.00233			mg/L	0.0001	0.00025	05/27/21 17:18	bsu
Sodium, dissolved	M200.7 ICP	1	810		*	mg/L	0.2	1	05/25/21 21:57	jlw
Vanadium, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.025	05/25/21 21:57	jlw
Zinc, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	05/25/21 21:57	jlw
Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as CaCO3		1	524			mg/L	2	20	05/26/21 0:00	еер
Carbonate as CaCO3		1	<2	U		mg/L	2	20	05/26/21 0:00	eep
Hydroxide as CaCO3		1	<2	U		mg/L	2	20	05/26/21 0:00	eep
Total Alkalinity		1	524			mg/L	2	20	05/26/21 0:00	eep
Chloride	SM4500CI-E	10	109		*	mg/L	5	20	06/09/21 11:36	wtc
Fluoride	SM4500F-C	1	0.57		*	mg/L	0.15	0.35	05/28/21 20:15	eep
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2		0.03	BH		mg/L	0.02	0.1	06/10/21 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	0.032	BH	*	mg/L	0.02	0.1	05/22/21 0:48	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	<0.01	UH	*	mg/L	0.01	0.05	05/22/21 0:48	pjb
Residue, Filterable (TDS) @180C	SM2540C	5	5430	Н	*	mg/L	100	200	06/02/21 12:17	jck
Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	2 100	3200			mg/L	100	500	06/04/21 9:44	syw

* Please refer to Qualifier Reports for details.

Project ID: Sample ID: MW-7

Inorganic Analytical Results

ACZ Sample ID: L65969-02 Date Sampled: 05/19/21 12:30 Date Received: 05/21/21 Sample Matrix: Groundwater

Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	M200.7 ICP	1	<0.05	U		mg/L	0.05	0.25	05/25/21 22:07	jlw
Arsenic, dissolved	M200.8 ICP-MS	1	<0.0002	U		mg/L	0.0002	0.001	05/27/21 17:20	bsu
Beryllium, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	05/25/21 22:07	jlw
Boron, dissolved	M200.7 ICP	1	0.139			mg/L	0.03	0.1	05/25/21 22:07	jlw
Cadmium, dissolved	M200.8 ICP-MS	1	0.000057	В		mg/L	0.00005	0.00025	05/27/21 17:20	bsu
Calcium, dissolved	M200.7 ICP	1	460		*	mg/L	0.1	0.5	05/25/21 22:07	jlw
Chromium, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	05/26/21 16:29	jlw
Cobalt, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	05/25/21 22:07	jlw
Copper, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	05/25/21 22:07	jlw
Iron, dissolved	M200.7 ICP	1	<0.06	U	*	mg/L	0.06	0.15	05/25/21 22:07	jlw
Lead, dissolved	M200.8 ICP-MS	1	<0.0001	U		mg/L	0.0001	0.0005	05/27/21 17:20	bsu
Lithium, dissolved	M200.7 ICP	1	0.473			mg/L	0.008	0.04	05/25/21 22:07	jlw
Magnesium, dissolved	M200.7 ICP	1	530			mg/L	0.2	1	05/25/21 22:07	jlw
Manganese, dissolved	M200.7 ICP	1	<0.01	U	*	mg/L	0.01	0.05	05/25/21 22:07	jlw
Mercury, dissolved	M245.1 CVAA	1	<0.0002	U		mg/L	0.0002	0.001	05/24/21 13:48	mlh
Nickel, dissolved	M200.7 ICP	1	0.0229	В		mg/L	0.008	0.04	05/25/21 22:07	jlw
Potassium, dissolved	M200.7 ICP	1	13.7			mg/L	0.2	1	05/25/21 22:07	jlw
Selenium, dissolved	M200.8 ICP-MS	1	0.0401			mg/L	0.0001	0.00025	05/27/21 17:20	bsu
Sodium, dissolved	M200.7 ICP	1	393		*	mg/L	0.2	1	05/25/21 22:07	jlw
Vanadium, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.025	05/25/21 22:07	jlw
Zinc, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	05/25/21 22:07	jlw
Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as CaCO3		1	309			mg/L	2	20	05/26/21 0:00	еер
Carbonate as CaCO3		1	<2	U		mg/L	2	20	05/26/21 0:00	eep
Hydroxide as CaCO3		1	<2	U		mg/L	2	20	05/26/21 0:00	eep
Total Alkalinity		1	309			mg/L	2	20	05/26/21 0:00	eep
Chloride	SM4500CI-E	1	51.0		*	mg/L	0.5	2	06/09/21 10:57	wtc
Fluoride	SM4500F-C	1	0.40		*	mg/L	0.15	0.35	05/28/21 20:33	eep
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2		7.51	н		mg/L	0.08	0.4	06/10/21 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	4	7.54	Н	*	mg/L	0.08	0.4	05/22/21 1:16	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	0.027	BH	*	mg/L	0.01	0.05	05/22/21 0:50	pjb
Residue, Filterable (TDS) @180C	SM2540C	2	5550			mg/L	40	80	05/25/21 14:17	emk
Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	2 100	3430			mg/L	100	500	06/04/21 9:44	syw

Project ID: Sample ID: MW-8

Inorganic Analytical Results

ACZ Sample ID: L65969-03 Date Sampled: 05/19/21 12:53 Date Received: 05/21/21 Sample Matrix: Groundwater

Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	M200.7 ICP	1	<0.05	U		mg/L	0.05	0.25	05/25/21 22:11	jlw
Arsenic, dissolved	M200.8 ICP-MS	1	0.00155			mg/L	0.0002	0.001	05/27/21 17:22	bsu
Beryllium, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	05/25/21 22:11	jlw
Boron, dissolved	M200.7 ICP	1	0.886			mg/L	0.03	0.1	05/25/21 22:11	jlw
Cadmium, dissolved	M200.8 ICP-MS	1	0.000065	В		mg/L	0.00005	0.00025	05/27/21 17:22	bsu
Calcium, dissolved	M200.7 ICP	1	93.1		*	mg/L	0.1	0.5	05/25/21 22:11	jlw
Chromium, dissolved	M200.7 ICP	2	<0.04	U		mg/L	0.04	0.1	05/26/21 16:39	jlw
Cobalt, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	05/25/21 22:11	jlw
Copper, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	05/25/21 22:11	jlw
Iron, dissolved	M200.7 ICP	1	<0.06	U	*	mg/L	0.06	0.15	05/25/21 22:11	jlw
Lead, dissolved	M200.8 ICP-MS	1	0.00016	В		mg/L	0.0001	0.0005	05/27/21 17:22	bsu
Lithium, dissolved	M200.7 ICP	1	0.365			mg/L	0.008	0.04	05/25/21 22:11	jlw
Magnesium, dissolved	M200.7 ICP	1	31.2			mg/L	0.2	1	05/25/21 22:11	jlw
Manganese, dissolved	M200.7 ICP	1	0.275		*	mg/L	0.01	0.05	05/25/21 22:11	jlw
Mercury, dissolved	M245.1 CVAA	1	<0.0002	U		mg/L	0.0002	0.001	05/25/21 14:52	mlh
Nickel, dissolved	M200.7 ICP	1	<0.008	U		mg/L	0.008	0.04	05/25/21 22:11	jlw
Potassium, dissolved	M200.7 ICP	1	6.18			mg/L	0.2	1	05/25/21 22:11	jlw
Selenium, dissolved	M200.8 ICP-MS	1	0.00024	В		mg/L	0.0001	0.00025	05/27/21 17:22	bsu
Sodium, dissolved	M200.7 ICP	2	1250		*	mg/L	0.4	2	05/26/21 16:39	jlw
Vanadium, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.025	05/25/21 22:11	jlw
Zinc, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	05/25/21 22:11	jlw
Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as CaCO3		1	1200			mg/L	2	20	05/26/21 0:00	eep
Carbonate as CaCO3		1	<2	U		mg/L	2	20	05/26/21 0:00	eep
Hydroxide as CaCO3		1	<2	U		mg/L	2	20	05/26/21 0:00	eep
Total Alkalinity		1	1200			mg/L	2	20	05/26/21 0:00	eep
Chloride	SM4500CI-E	10	316		*	mg/L	5	20	06/09/21 11:36	wtc
Fluoride	SM4500F-C	1	0.89			mg/L	0.15	0.35	05/28/21 20:47	eep
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2		0.99	н		mg/L	0.02	0.1	06/10/21 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	1.01	Н	*	mg/L	0.02	0.1	05/22/21 1:17	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	0.016	BH	*	mg/L	0.01	0.05	05/22/21 0:52	pjb
Residue, Filterable (TDS) @180C	SM2540C	5	3890			mg/L	100	200	05/25/21 14:19	emk
Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	50	1520			mg/L	50	250	06/04/21 9:32	syw

* Please refer to Qualifier Reports for details.

Project ID: Sample ID: MW-2B

Inorganic Analytical Results

ACZ Sample ID: L65969-04 Date Sampled: 05/19/21 12:45 Date Received: 05/21/21 Sample Matrix: Groundwater

Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	M200.7 ICP	1	<0.05	U		mg/L	0.05	0.25	05/25/21 22:14	jlw
Arsenic, dissolved	M200.8 ICP-MS	1	< 0.0002	U		mg/L	0.0002	0.001	05/27/21 17:23	bsu
Beryllium, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	05/25/21 22:14	jlw
Boron, dissolved	M200.7 ICP	1	0.139			mg/L	0.03	0.1	05/25/21 22:14	jlw
Cadmium, dissolved	M200.8 ICP-MS	1	0.000068	В		mg/L	0.00005	0.00025	05/27/21 17:23	bsu
Calcium, dissolved	M200.7 ICP	1	457		*	mg/L	0.1	0.5	05/25/21 22:14	jlw
Chromium, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	05/26/21 16:43	jlw
Cobalt, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	05/25/21 22:14	jlw
Copper, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	05/25/21 22:14	jlw
Iron, dissolved	M200.7 ICP	1	<0.06	U	*	mg/L	0.06	0.15	05/25/21 22:14	jlw
Lead, dissolved	M200.8 ICP-MS	1	<0.0001	U		mg/L	0.0001	0.0005	05/27/21 17:23	bsu
Lithium, dissolved	M200.7 ICP	1	0.469			mg/L	0.008	0.04	05/25/21 22:14	jlw
Magnesium, dissolved	M200.7 ICP	1	528			mg/L	0.2	1	05/25/21 22:14	jlw
Manganese, dissolved	M200.7 ICP	1	<0.01	U	*	mg/L	0.01	0.05	05/25/21 22:14	jlw
Mercury, dissolved	M245.1 CVAA	1	<0.0002	U		mg/L	0.0002	0.001	05/25/21 14:53	mlh
Nickel, dissolved	M200.7 ICP	1	0.0119	В		mg/L	0.008	0.04	05/25/21 22:14	jlw
Potassium, dissolved	M200.7 ICP	1	13.9			mg/L	0.2	1	05/25/21 22:14	jlw
Selenium, dissolved	M200.8 ICP-MS	1	0.0398			mg/L	0.0001	0.00025	05/27/21 17:23	bsu
Sodium, dissolved	M200.7 ICP	1	390		*	mg/L	0.2	1	05/25/21 22:14	jlw
Vanadium, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.025	05/25/21 22:14	jlw
Zinc, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	05/25/21 22:14	jlw
Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as CaCO3		1	291			mg/L	2	20	05/26/21 0:00	еер
Carbonate as CaCO3		1	<2	U		mg/L	2	20	05/26/21 0:00	eep
Hydroxide as CaCO3		1	<2	U		mg/L	2	20	05/26/21 0:00	eep
Total Alkalinity		1	291			mg/L	2	20	05/26/21 0:00	eep
Chloride	SM4500CI-E	1	50.7		*	mg/L	0.5	2	06/09/21 10:57	wtc
Fluoride	SM4500F-C	1	0.43			mg/L	0.15	0.35	05/28/21 20:55	eep
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2		7.45	н		mg/L	0.08	0.4	06/10/21 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	4	7.48	Н	*	mg/L	0.08	0.4	05/22/21 1:19	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	0.028	BH	*	mg/L	0.01	0.05	05/22/21 0:53	pjb
Residue, Filterable (TDS) @180C	SM2540C	5	5590			mg/L	100	200	05/25/21 14:21	emk
Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	2 100	3280			mg/L	100	500	06/04/21 9:44	syw

* Please refer to Qualifier Reports for details.

Inorganic Reference

eport Headeı	r Explanations		
Batch	A distinct set of samples analyzed at a specific time		
Found	Value of the QC Type of interest		
Limit	Upper limit for RPD, in %.		
Lower	Lower Recovery Limit, in % (except for LCSS, mg/Kg)		
MDL	Method Detection Limit. Same as Minimum Reporting Limit ur	nless omitted or e	qual to the PQL (see comment #5).
	Allows for instrument and annual fluctuations.		
PCN/SCN	A number assigned to reagents/standards to trace to the man	ufacturer's certific	ate of analysis
PQL	Practical Quantitation Limit. Synonymous with the EPA term "	minimum level".	
QC	True Value of the Control Sample or the amount added to the	Spike	
Rec	Recovered amount of the true value or spike added, in % (exc	ept for LCSS, mg	/Kg)
RPD	Relative Percent Difference, calculation used for Duplicate QC	Types	
Upper	Upper Recovery Limit, in % (except for LCSS, mg/Kg)		
Sample	Value of the Sample of interest		
C Semale Tu			
C Sample Ty AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	-	LFM LFMD	
	Continuing Calibration Verification standard		Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
		PQV SDL	Practical Quantitation Verification standard Serial Dilution
LCSSD LCSW	Laboratory Control Sample - Soil Duplicate		
LCSSD LCSW	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water vpe Explanations	SDL	
LCSSD LCSW C Sample Ty	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water vpe Explanations Verifies that there is no or minimal co	SDL	Serial Dilution
LCSSD LCSW C Sample Ty Blanks	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water vpe Explanations Verifies that there is no or minimal control of the method, where the accuracy of the method,	SDL ontamination in the including the prep	Serial Dilution e prep method or calibration procedure. procedure.
LCSSD LCSW C Sample Ty Blanks Control Sat Duplicates	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water vpe Explanations Verifies that there is no or minimal control of the method, where the accuracy of the method,	SDL ontamination in the including the prep nt and/or method.	Serial Dilution e prep method or calibration procedure. procedure.
LCSSD LCSW C Sample Ty Blanks Control Sat Duplicates	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water Pe Explanations Werifies that there is no or minimal control of the method, Verifies the accuracy of the method, Verifies the precision of the instrume	SDL ontamination in the including the prep nt and/or method.	Serial Dilution e prep method or calibration procedure. procedure.
LCSSD LCSW C Sample Ty Blanks Control Sat Duplicates Spikes/For	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water vpe Explanations Werifies that there is no or minimal controls mples Verifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferen Verifies the validity of the calibration.	SDL ontamination in the including the prep nt and/or method.	Serial Dilution e prep method or calibration procedure. procedure.
LCSSD LCSW C Sample Ty Blanks Control Sa Duplicates Spikes/For Standard	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water vpe Explanations Werifies that there is no or minimal controls mples Verifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferen Verifies the validity of the calibration.	SDL ontamination in the including the prep nt and/or method. ces, if any.	Serial Dilution
LCSSD LCSW C Sample Ty Blanks Control Sa Duplicates Spikes/For Standard	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water vpe Explanations mples Verifies that there is no or minimal construction werifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferen Verifies the validity of the calibration. s (Qual)	SDL ontamination in the including the prep nt and/or method. ces, if any. PQL. The associat	Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity.
LCSSD LCSW C Sample Ty Blanks Control Sat Duplicates Spikes/For Standard CZ Qualifiers B	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water rpe Explanations mples Verifies that there is no or minimal comples verifies the accuracy of the method, verifies the precision of the instrume tified Matrix Determines sample matrix interferen verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F	SDL ontamination in the including the prep nt and/or method. ces, if any. PQL. The associat n immediate hold t	Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity.
LCSSD LCSW C Sample Ty Blanks Control Sat Duplicates Spikes/For Standard CZ Qualifiers B H	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water Ppe Explanations Type Explanations Type Expla	SDL ontamination in the including the prep nt and/or method. ces, if any. PQL. The associat n immediate hold t gative threshold.	Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time.
LCSSD LCSW C Sample Ty Blanks Control Sau Duplicates Spikes/For Standard CZ Qualifiers B H L	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water /pe Explanations mples Verifies that there is no or minimal comples verifies the accuracy of the method, verifies the precision of the instrume tified Matrix Determines sample matrix interferen verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with ar Target analyte response was below the laboratory defined negotiation	SDL ontamination in the including the prep nt and/or method. ces, if any. PQL. The associat nimmediate hold t gative threshold. e level of the associated	Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. pciated value.
LCSSD LCSW C Sample Ty Blanks Control Sau Duplicates Spikes/For Standard CZ Qualifiers B H L U	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water /pe Explanations mples Verifies that there is no or minimal co mples Verifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferen Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with ar Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or	SDL ontamination in the including the prep nt and/or method. ces, if any. PQL. The associat nimmediate hold t gative threshold. e level of the associated	Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. pciated value.
LCSSD LCSW C Sample Ty Blanks Control Sau Duplicates Spikes/For Standard CZ Qualifiers B H L	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water /pe Explanations mples Verifies that there is no or minimal co mples Verifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferen Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with ar Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or	SDL ontamination in the including the prep nt and/or method. ces, if any. PQL. The associate inmmediate hold to gative threshold. e level of the associate the sample detect	Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. pciated value. tion limit.
LCSSD LCSW C Sample Ty Blanks Control Sat Duplicates Spikes/For Standard CZ Qualifiers B H L U	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water rpe Explanations mples Verifies that there is no or minimal comples Verifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferen Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the associated value is either the sample quantitation limit or text	SDL ontamination in the including the prep nt and/or method. ces, if any. PQL. The associat n immediate hold t gative threshold. e level of the associat the sample detect	Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. bciated value. tion limit. th 1983.
LCSSD LCSW C Sample Ty Blanks Control Sat Duplicates Spikes/For Standard CZ Qualifiers B H L U u ethod Refere (1)	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water rpe Explanations mples Verifies that there is no or minimal comples verifies the accuracy of the method, verifies the precision of the instrume tified Matrix Determines sample matrix interferent Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the ences EPA 600/4-83-020. Methods for Chemical Analysis of Water and	SDL ontamination in the including the prep nt and/or method. ces, if any. PQL. The associat nimmediate hold t gative threshold. e level of the associate the sample detect and Wastes, Marc ic Substances in l	Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. ciated value. tion limit. th 1983. Environmental Samples, August 1993.
LCSSD LCSW C Sample Ty Blanks Control Sau Duplicates Spikes/For Standard CZ Qualifiers B H L U u ethod Reference (1) (2)	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water /pe Explanations mples Verifies that there is no or minimal comples Verifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferent Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analytic concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the associated value is either the sample quantitation limit or the EPA 600/4-83-020. Methods for Chemical Analysis of Water as EPA 600/R-93-100. Methods for the Determination of Inorgan	SDL ontamination in the including the prep nt and/or method. ces, if any. PQL. The associat nimmediate hold t gative threshold. e level of the associate the sample detect and Wastes, Marc ic Substances in l	Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. ciated value. tion limit. th 1983. Environmental Samples, August 1993.
LCSSD LCSW C Sample Ty Blanks Control San Duplicates Spikes/For Standard CZ Qualifiers B H L U ethod Referent (1) (2) (3)	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water /pe Explanations Werifies that there is no or minimal comples Verifies the accuracy of the method, Verifies the precision of the instrume Uterifies the precision of the instrume Determines sample matrix interferent Verifies the validity of the calibration. 5 (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or ences EPA 600/R-93-100. Methods for Chemical Analysis of Water and EPA 600/R-94-111. Methods for the Determination of Inorgan EPA 600/R-94-111. Methods for the Determination of Metals in EPA 600/R-94-111.	SDL ontamination in the including the prep nt and/or method. ces, if any. PQL. The associate in mmediate hold to gative threshold. e level of the associate the sample detect and Wastes, Marca ic Substances in line	Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. bciated value. tion limit. th 1983. Environmental Samples, August 1993.
LCSSD LCSW C Sample Ty Blanks Control Sat Duplicates Spikes/For Standard CZ Qualifiers B H L U ethod Refere (1) (2) (3) (4) (5)	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water /pe Explanations Werifies that there is no or minimal comples Verifies the accuracy of the method, Verifies the precision of the instrume Uterifies the precision of the instrume Determines sample matrix interferent Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or ences EPA 600/R-93-100. Methods for Chemical Analysis of Water and EPA 600/R-94-111. Methods for the Determination of Inorgant EPA SW-846. Test Methods for Evaluating Solid Waste.	SDL ontamination in the including the prep nt and/or method. ces, if any. PQL. The associate in mmediate hold to gative threshold. e level of the associate the sample detect and Wastes, Marca ic Substances in line	Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. ciated value. tion limit. th 1983. Environmental Samples, August 1993.
LCSSD LCSW C Sample Ty Blanks Control Sat Duplicates Spikes/For Standard CZ Qualifiers B H L U ethod Refere (1) (2) (3) (4)	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water /pe Explanations Werifies that there is no or minimal comples Verifies the accuracy of the method, Verifies the precision of the instrume Uterifies the precision of the instrume Determines sample matrix interferent Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or ences EPA 600/R-93-100. Methods for Chemical Analysis of Water and EPA 600/R-94-111. Methods for the Determination of Inorgant EPA SW-846. Test Methods for Evaluating Solid Waste.	SDL ontamination in the including the prep nt and/or method. ces, if any. PQL. The associat n immediate hold t gative threshold. e level of the associat the sample detect and Wastes, Marc ic Substances in l in Environmental s iter.	Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. bciated value. tion limit. th 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.
LCSSD LCSW C Sample Ty Blanks Control Sau Duplicates Spikes/For Standard CZ Qualifiers B H L U ethod Reference (1) (2) (3) (4) (5) omments (1)	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations Werifies that there is no or minimal comples Verifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferent Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the ences EPA 600/R-93-100. Methods for Chemical Analysis of Water and EPA 600/R-94-111. Methods for the Determination of Inorgand EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wasteward QC results calculated from raw data. Results may vary slightly	SDL ontamination in the including the prep nt and/or method. ces, if any. PQL. The associat n immediate hold t gative threshold. e level of the associat the sample detect and Wastes, Marc ic Substances in l in Environmental s iter.	Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. beiated value. tion limit. th 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations.
LCSSD LCSW C Sample Ty Blanks Control Sat Duplicates Spikes/For Standard CZ Qualifiers B H L U ethod Reference (1) (2) (3) (4) (5) comments (1) (2)	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations Werifies that there is no or minimal of mples Verifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferen Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or ences EPA 600/R-93-100. Methods for Chemical Analysis of Water and EPA 600/R-94-111. Methods for the Determination of Inorgan EPA 600/R-94-111. Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wastewar QC results calculated from raw data. Results may vary slightly Soil, Sludge, and Plant matrices for Inorganic analyses are rep	SDL ontamination in the including the prep nt and/or method. ces, if any. PQL. The associate in immediate hold to gative threshold. e level of the associate the sample detect and Wastes, Marco ic Substances in la in Environmental so ther.	Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. beiated value. tion limit. th 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations.
LCSSD LCSW C Sample Ty Blanks Control Sat Duplicates Spikes/For Standard CZ Qualifiers B H L U ethod Refere (1) (2) (3) (4) (5) comments (1) (2) (3)	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations Werifies that there is no or minimal comples Verifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferent Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the ences EPA 600/R-93-100. Methods for Chemical Analysis of Water and EPA 600/R-94-111. Methods for the Determination of Inorgant EPA 800/R-94-111. Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wasteward QC results calculated from raw data. Results may vary slightly Soil, Sludge, and Plant matrices for Inorganic analyses are reported on an "as	SDL ontamination in the including the prep nt and/or method. ces, if any. PQL. The associat n immediate hold t gative threshold. e level of the associat the sample detect and Wastes, Marc ic Substances in l in Environmental S iter.	Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations. eight basis.
LCSSD LCSW C Sample Ty Blanks Control Sat Duplicates Spikes/For Standard CZ Qualifiers B H L U ethod Reference (1) (2) (3) (4) (5) comments (1) (2)	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water vpe Explanations Imples Verifies that there is no or minimal converted by the method, verifies the accuracy of the method, verifies the precision of the instrume to the method method by the precision of the instrume to the method method hold time. Determines sample matrix interferent verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and P Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the associated value is either the sample quantitation limit or the EPA 600/R-93-100. Methods for Chemical Analysis of Water and EPA 600/R-94-111. Methods for the Determination of Inorganic EPA 600/R-94-111. Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wasteward Methods for the Examination of Water and Wasteward Soli, Sludge, and Plant matrices for Inorganic analyses are reported on an "as An asterisk in the "XQ" column indicates there is an extended	SDL ontamination in the including the prep nt and/or method. ces, if any. PQL. The associat n immediate hold t gative threshold. e level of the associat the sample detect and Wastes, Marc ic Substances in l in Environmental S iter.	Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations. eight basis.
LCSSD LCSW C Sample Ty Blanks Control Sat Duplicates Spikes/For Standard CZ Qualifiers B H L U ethod Refere (1) (2) (3) (4) (5) comments (1) (2) (3)	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations Werifies that there is no or minimal comples Verifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferent Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the ences EPA 600/R-93-100. Methods for Chemical Analysis of Water and EPA 600/R-94-111. Methods for the Determination of Inorgant EPA 800/R-94-111. Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wasteward QC results calculated from raw data. Results may vary slightly Soil, Sludge, and Plant matrices for Inorganic analyses are reported on an "as	SDL ontamination in the including the prep nt and/or method. ces, if any. PQL. The associat inmediate hold t gative threshold. e level of the associate the sample detect and Wastes, Marc ic Substances in I in Environmental S iter.	Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. ciated value. tion limit. th 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations. eight basis. entification qualifier

https://acz.com/wp-content/uploads/2019/04/Ext-Qual-List.pdf

REP001.03.15.02

GCC Rio Grande

ACZ Project ID: L65969

Alkalinity as CaC	O3		SM2320	B - Titration									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG519880													
WG519880PBW1	PBW	05/25/21 18:28				4.5	mg/L		-20	20			
WG519880LCSW3	LCSW	05/25/21 18:46	WC210517-8	820.0001		773.8	mg/L	94	90	110			
WG519880PQV2	PQV	05/25/21 18:57	WC200729-2	20		20.9	mg/L	105	50	150			
WG519880LCSW6	LCSW	05/25/21 22:01	WC210517-8	820.0001		778.4	mg/L	95	90	110			
WG519880PBW2	PBW	05/25/21 22:08				U	mg/L		-20	20			
WG519880LCSW9	LCSW	05/26/21 1:26	WC210517-8	820.0001		796.3	mg/L	97	90	110			
WG519880PBW3	PBW	05/26/21 1:33				U	mg/L		-20	20			
L65971-06DUP	DUP	05/26/21 5:03			30.3	30.1	mg/L				1	20	
WG519880LCSW12	LCSW	05/26/21 5:23	WC210517-8	820.0001		798.1	mg/L	97	90	110			
WG519880PBW4	PBW	05/26/21 5:30				U	mg/L		-20	20			
WG519880LCSW15	LCSW	05/26/21 8:16	WC210517-8	820.0001		788.6	mg/L	96	90	110			
Aluminum, disso	lved		M200.7	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG519844													
WG519844ICV	ICV	05/25/21 21:08	II210514-2	2		2.027	mg/L	101	95	105			
WG519844ICB	ICB	05/25/21 21:14		_		U	mg/L		-0.15	0.15			
WG519844PQV	PQV	05/25/21 21:18	II210503-4	.250325		.225	mg/L	90	70	130			
WG519844SIC	SIC	05/25/21 21:21	II210506-2	200.510325		205.2	mg/L	102	1	200			
WG519844LFB	LFB	05/25/21 21:28	II210507-4	1.0013		1.006	mg/L	100	85	115			
L65954-05AS	AS	05/25/21 21:51	II210507-4	2.0026	.789	2.826	mg/L	102	85	115			
L65954-05ASD	ASD	05/25/21 21:54	II210507-4	2.0026	.789	2.858	mg/L	103	85	115	1	20	
WG519844CCV1	CCV	05/25/21 22:01	II210517-1	1		.961	mg/L	96	90	110			
WG519844CCB1	ССВ	05/25/21 22:04				U	mg/L		-0.15	0.15			
WG519844CCV2	CCV	05/25/21 22:17	II210517-1	1		.967	mg/L	97	90	110			
WG519844CCB2	ССВ	05/25/21 22:21				U	mg/L		-0.15	0.15			
Arsenic, dissolve	ed		M200.8	ICP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG520028													
WG520028ICV	ICV	05/27/21 16:53	MS210503-1	.05		.05067	mg/L	101	90	110			
WG520028ICB	ICB	05/27/21 16:54		.00		.00007 U	mg/L		-0.00044	0.00044			
WG520028LFB	LFB	05/27/21 16:56	MS210420-3	.05005		.04909	mg/L	98	85	115			
L65863-02AS	AS	05/27/21 17:02	MS210420-3	.05005	.00203	.05425	mg/L	104	70	130			
L65863-02ASD	ASD	05/27/21 17:04	MS210420-3	.05005	.00203	.05321	mg/L	102	70	130	2	20	
WG520028CCV1	CCV	05/27/21 17:11	MS210521-8	.1001		.09912	mg/L	99	90	110		-	
WG520028CCB1	CCB	05/27/21 17:13				U	mg/L		-0.0006	0.0006			
L65982-01AS	AS	05/27/21 17:27	MS210420-3	.05005	.00132	.05046	mg/L	98	70	130			
L65982-01ASD	ASD	05/27/21 17:29	MS210420-3	.05005	.00132	.04952	mg/L	96	70	130	2	20	
WG520028CCV2	CCV	05/27/21 17:33	MS210521-8	.1001		.10026	mg/L	100	90	110			
WG520028CCB2	ССВ	05/27/21 17:34				U	mg/L		-0.0006	0.0006			
WG520028CCV3	CCV	05/27/21 17:49	MS210521-8	.1001		.0994	mg/L	99	90	110			
	ССВ	05/27/21 17:51				U	mg/L		-0.0006	0.0006			

GCC Rio Grande

ACZ Project ID: L65969

Beryllium, disso	lved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG519844													
WG519844ICV	ICV	05/25/21 21:08	II210514-2	2		1.954	mg/L	98	95	105			
WG519844ICB	ICB	05/25/21 21:14				U	mg/L		-0.03	0.03			
WG519844PQV	PQV	05/25/21 21:18	II210503-4	.05		.049	mg/L	98	70	130			
WG519844SIC	SIC	05/25/21 21:21	II210506-2	.1		.098	mg/L	98	80	120			
WG519844LFB	LFB	05/25/21 21:28	II210507-4	.5		.498	mg/L	100	85	115			
L65954-05AS	AS	05/25/21 21:51	II210507-4	1	U	.979	mg/L	98	85	115			
L65954-05ASD	ASD	05/25/21 21:54	II210507-4	1	U	.984	mg/L	98	85	115	1	20	
WG519844CCV1	CCV	05/25/21 22:01	ll210517-1	1		.989	mg/L	99	90	110			
WG519844CCB1	CCB	05/25/21 22:04				U	mg/L		-0.03	0.03			
WG519844CCV2	CCV	05/25/21 22:17	II210517-1	1		.992	mg/L	99	90	110			
WG519844CCB2	CCB	05/25/21 22:21				U	mg/L		-0.03	0.03			
Boron, dissolve	d		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG519844													
WG519844ICV	ICV	05/25/21 21:08	II210514-2	2		1.997	mg/L	100	95	105			
WG519844ICB	ICB	05/25/21 21:14				U	mg/L		-0.09	0.09			
WG519844PQV	PQV	05/25/21 21:18	II210503-4	.1001		.095	mg/L	95	70	130			
WG519844SIC	SIC	05/25/21 21:21	II210506-2	.1001		.09	mg/L	90	80	120			
WG519844LFB	LFB	05/25/21 21:28	II210507-4	.5005		.508	mg/L	101	85	115			
L65954-05AS	AS	05/25/21 21:51	II210507-4	1.001	.225	1.244	mg/L	102	85	115			
L65954-05ASD	ASD	05/25/21 21:54	II210507-4	1.001	.225	1.282	mg/L	106	85	115	3	20	
WG519844CCV1	CCV	05/25/21 22:01	II210517-1	1		.995	mg/L	100	90	110			
WG519844CCB1	CCB	05/25/21 22:04				U	mg/L		-0.09	0.09			
WG519844CCV2	CCV	05/25/21 22:17	ll210517-1	1		.993	mg/L	99	90	110			
WG519844CCB2	CCB	05/25/21 22:21				U	mg/L		-0.09	0.09			
Cadmium, disso	lved		M200.8 I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG520028													
WG520028ICV	ICV	05/27/21 16:53	MS210503-1	.05		.051202	mg/L	102	90	110			
WG520028ICB	ICB	05/27/21 16:54		.00		.001202 U	mg/L	102	-0.00011	0.00011			
WG520028LFB	LFB	05/27/21 16:56	MS210420-3	.05005		.048927	mg/L	98	85	115			
L65863-02AS	AS	05/27/21 17:02	MS210420-3	.05005	.000119	.048165	mg/L	96	70	130			
L65863-02ASD	ASD	05/27/21 17:04	MS210420-3	.05005	.000119	.047888	mg/L	95	70	130	1	20	
WG520028CCV1	CCV	05/27/21 17:11	MS210521-8	.1001		.099665	mg/L	100	90	110	•		
WG520028CCB1	CCB	05/27/21 17:13				.000000 U	mg/L		-0.00015	0.00015			
L65982-01AS	AS	05/27/21 17:27	MS210420-3	.05005	.00204	.051845	mg/L	100	70	130			
L65982-01ASD	ASD	05/27/21 17:29	MS210420-3	.05005	.00204	.050997	mg/L	98	70	130	2	20	
WG520028CCV2	CCV	05/27/21 17:33	MS210521-8	.1001		.100134	mg/L	100	90	110	-	-	
WG520028CCB2	CCB	05/27/21 17:34				U	mg/L		-0.00015	0.00015			
WG520028CCV3	CCV	05/27/21 17:49	MS210521-8	.1001		.099756	mg/L	100	90	110			
							0						

GCC Rio Grande

ACZ Project ID: L65969

Calcium, dissolv	/ed		M200.7	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG519844													
WG519844ICV	ICV	05/25/21 21:08	II210514-2	100		97.86	mg/L	98	95	105			
WG519844ICB	ICB	05/25/21 21:14				U	mg/L		-0.3	0.3			
WG519844PQV	PQV	05/25/21 21:18	II210503-4	.5006		.53	mg/L	106	70	130			
WG519844SIC	SIC	05/25/21 21:21	II210506-2	200.5606		198.8	mg/L	99	1	200			
WG519844LFB	LFB	05/25/21 21:28	II210507-4	67.98753		69.44	mg/L	102	85	115			
L65954-05AS	AS	05/25/21 21:51	II210507-4	135.97506	704	812.8	mg/L	80	85	115			M3
L65954-05ASD	ASD	05/25/21 21:54	II210507-4	135.97506	704	817.4	mg/L	83	85	115	1	20	M3
WG519844CCV1	CCV	05/25/21 22:01	II210517-1	50		49.82	mg/L	100	90	110			
WG519844CCB1	CCB	05/25/21 22:04				U	mg/L		-0.3	0.3			
WG519844CCV2	CCV	05/25/21 22:17	II210517-1	50		49.81	mg/L	100	90	110			
WG519844CCB2	CCB	05/25/21 22:21				U	mg/L		-0.3	0.3			
Chloride			SM4500	CI-E									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG520642													
WG520642ICB	ICB	06/09/21 8:51				U	mg/L		-1.5	1.5			
WG520642ICV	ICV	06/09/21 8:51	WI210503-1	54.89		55.03	mg/L	100	90	110			
WG520642CCV1	CCV	06/09/21 10:55	WI210203-7	50.05		49.46	mg/L	99	90	110			
WG520642CCB1	ССВ	06/09/21 10:55				U	mg/L		-1.5	1.5			
WG520642LFB1	LFB	06/09/21 10:55	WI200327-3	30.03		30.86	mg/L	103	90	110			
WG520642CCV2	CCV	06/09/21 10:57	WI210203-7	50.05		49.64	mg/L	99	90	110			
WG520642CCB2	CCB	06/09/21 10:57				U	mg/L		-1.5	1.5			
L65969-02DUP	DUP	06/09/21 10:57			51	51.05	mg/L				0	20	
WG520642CCV3	CCV	06/09/21 10:59	WI210203-7	50.05		49.28	mg/L	98	90	110			
WG520642CCB3	ССВ	06/09/21 10:59				U	mg/L		-1.5	1.5			
WG520642LFB2	LFB	06/09/21 10:59	WI200327-3	30.03		30.21	mg/L	101	90	110			
WG520642CCV4	CCV	06/09/21 11:04	WI210203-7	50.05		49.36	mg/L	99	90	110			
WG520642CCB4	ССВ	06/09/21 11:04				U	mg/L		-1.5	1.5			
WG520642CCV5	CCV	06/09/21 11:05	WI210203-7	50.05		49.1	mg/L	98	90	110			
WG520642CCB5	ССВ	06/09/21 11:05				U	mg/L		-1.5	1.5			
WG520642CCV6	CCV	06/09/21 11:36	WI210203-7	50.05		49.03	mg/L	98	90	110			
WG520642CCB6	ССВ	06/09/21 11:36				U	mg/L		-1.5	1.5			
L65969-03AS	AS	06/09/21 11:36	10XCL	30	316	328.97	mg/L	43	90	110			M3
WG520642CCV7	CCV	06/09/21 11:38	WI210203-7	50.05		49.71	mg/L	99	90	110			
WG520642CCB7	ССВ	06/09/21 11:38				U	mg/L		-1.5	1.5			
WG520642CCV8	CCV	06/09/21 12:02	WI210203-7	50.05		48.96	mg/L	98	90	110			
WG520642CCB8	ССВ	06/09/21 12:02				U	mg/L		-1.5	1.5			
WG520642CCV9	CCV	06/09/21 12:04	WI210203-7	50.05		49.14	mg/L	98	90	110			
WG520642CCB9	CCB	06/09/21 12:04				U	mg/L		-1.5	1.5			

GCC Rio Grande

ACZ Project ID: L65969

Chromium, diss	olved		M200.7	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG519909													
WG519909ICV	ICV	05/26/21 15:41	II210514-2	2		1.961	mg/L	98	95	105			
WG519909ICB	ICB	05/26/21 15:47				U	mg/L		-0.06	0.06			
WG519909PQV	PQV	05/26/21 15:50	II210503-4	.0502		.054	mg/L	108	70	130			
WG519909SIC	SIC	05/26/21 15:53	II210506-2	.1004		.097	mg/L	97	80	120			
WG519909LFB	LFB	05/26/21 16:00	II210507-4	.502		.498	mg/L	99	85	115			
L65954-05AS	AS	05/26/21 16:20	II210507-4	1.004	U	.978	mg/L	97	85	115			
L65954-05ASD	ASD	05/26/21 16:23	II210507-4	1.004	U	.975	mg/L	97	85	115	0	20	
WG519909CCV1	CCV	05/26/21 16:33	II210517-1	1		.985	mg/L	99	90	110			
WG519909CCB1	CCB	05/26/21 16:36				U	mg/L		-0.06	0.06			
WG519909CCV2	CCV	05/26/21 16:46	II210517-1	1		.988	mg/L	99	90	110			
WG519909CCB2	CCB	05/26/21 16:49				U	mg/L		-0.06	0.06			
Cobalt, dissolve	d		M200.7	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG519844													
WG519844ICV	ICV	05/25/21 21:08	II210514-2	2.004		1.944	mg/L	97	95	105			
WG519844ICB	ICB	05/25/21 21:14				U	mg/L		-0.06	0.06			
WG519844PQV	PQV	05/25/21 21:18	II210503-4	.05005		.048	mg/L	96	70	130			
WG519844SIC	SIC	05/25/21 21:21	II210506-2	.1001		.091	mg/L	91	80	120			
WG519844LFB	LFB	05/25/21 21:28	II210507-4	.5005		.482	mg/L	96	85	115			
L65954-05AS	AS	05/25/21 21:51	II210507-4	1.001	.176	1.137	mg/L	96	85	115			
L65954-05ASD	ASD	05/25/21 21:54	II210507-4	1.001	.176	1.154	mg/L	98	85	115	1	20	
WG519844CCV1	CCV	05/25/21 22:01	II210517-1	1.002		.988	mg/L	99	90	110			
WG519844CCB1	ССВ	05/25/21 22:04				U	mg/L		-0.06	0.06			
WG519844CCV2	CCV	05/25/21 22:17	II210517-1	1.002		.986	mg/L	98	90	110			
WG519844CCB2	CCB	05/25/21 22:21				U	mg/L		-0.06	0.06			
Copper, dissolve	ed		M200.7	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG519844													
WG519844ICV	ICV	05/25/21 21:08	II210514-2	2		1.908	mg/L	95	95	105			
WG519844ICB	ICB	05/25/21 21:14				U	mg/L		-0.03	0.03			
WG519844PQV	PQV	05/25/21 21:18	II210503-4	.0502		.049	mg/L	98	70	130			
WG519844SIC	SIC	05/25/21 21:21	II210506-2	.10035		.1	mg/L	100	80	120			
WG519844LFB	LFB	05/25/21 21:28	II210507-4	.502		.491	mg/L	98	85	115			
L65954-05AS	AS	05/25/21 21:51	II210507-4	1.004	.18	1.172	mg/L	99	85	115			
L65954-05ASD	ASD	05/25/21 21:54	II210507-4	1.004	.18	1.17	mg/L	99	85	115	0	20	
WG519844CCV1	CCV	05/25/21 22:01	II210517-1	1		.962	mg/L	96	90	110			
WG519844CCB1	CCB	05/25/21 22:04				U	mg/L		-0.03	0.03			
WG519844CCV2	CCV	05/25/21 22:17	II210517-1	1		.962	mg/L	96	90	110			
WG519844CCB2	ССВ	05/25/21 22:21				U	mg/L		-0.03	0.03			

GCC Rio Grande

ACZ Project ID: L65969

Fluoride			SM4500	F-C									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG520126													
WG520126ICV	ICV	05/28/21 18:32	WC210526-1	2.002		2.06	mg/L	103	90	110			
WG520126ICB	ICB	05/28/21 18:39				U	mg/L		-0.3	0.3			
WG520126PQV	PQV	05/28/21 18:43	WC210330-2	.35105		.35	mg/L	100	70	130			
WG520126LFB	LFB	05/28/21 18:46	WC201221-2	5.015		5.15	mg/L	103	90	110			
WG520126CCV1	CCV	05/28/21 20:18	WC210526-1	2.002		1.93	mg/L	96	90	110			
WG520126CCB1	ССВ	05/28/21 20:25				U	mg/L		-0.3	0.3			
L65969-02AS	AS	05/28/21 20:36	WC201221-2	5.015	.4	4.57	mg/L	83	90	110			M2
L65969-02ASD	ASD	05/28/21 20:39	WC201221-2	5.015	.4	4.55	mg/L	83	90	110	0	20	M2
WG520126CCV2	CCV	05/28/21 21:37	WC210526-1	2.002		2	mg/L	100	90	110			
WG520126CCB2	ССВ	05/28/21 21:45				U	mg/L		-0.3	0.3			
L66008-01AS	AS	05/28/21 22:01	WC201221-2	5.015	U	4.88	mg/L	97	90	110			
L66008-01ASD	ASD	05/28/21 22:05	WC201221-2	5.015	U	4.88	mg/L	97	90	110	0	20	
WG520126CCV3	CCV	05/28/21 22:24	WC210526-1	2.002		2	mg/L	100	90	110			
WG520126CCB3	CCB	05/28/21 22:31				U	mg/L		-0.3	0.3			
Iron, dissolved			M200.7	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG519844	31 **												
		05/05/04 04:00	11210514.2	0		4.07	ma/l	00	05	405			
WG519844ICV	ICV	05/25/21 21:08	II210514-2	2		1.97	mg/L	99	95	105			
WG519844ICB	ICB	05/25/21 21:14	1040500.4	45007		U	mg/L		-0.18	0.18			
WG519844PQV	PQV	05/25/21 21:18	II210503-4	.15027		.138	mg/L	92	70	130			
WG519844SIC	SIC	05/25/21 21:21	II210506-2	200.17027		190.1	mg/L	95	1	200			
WG519844LFB	LFB	05/25/21 21:28	II210507-4	1.0018	0.07	.995	mg/L	99	85	115			140
L65954-05AS	AS	05/25/21 21:51	II210507-4	2.0036	8.27	9.908	mg/L	82	85	115	4	20	M3
L65954-05ASD	ASD	05/25/21 21:54	II210507-4	2.0036	8.27	9.974	mg/L	85	85	115	1	20	
WG519844CCV1	CCV	05/25/21 22:01	II210517-1	1		.958	mg/L	96	90	110			
WG519844CCB1	CCB	05/25/21 22:04	1040547.4			U	mg/L		-0.18	0.18			
WG519844CCV2	CCV	05/25/21 22:17	II210517-1	1		.961	mg/L	96	90	110			
WG519844CCB2	CCB	05/25/21 22:21				U	mg/L		-0.18	0.18			
Lead, dissolved			M200.8 I	ICP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG520028													
WG520028ICV	ICV	05/27/21 16:53	MS210503-1	.05		.05036	mg/L	101	90	110			
WG520028ICB	ICB	05/27/21 16:54				U	mg/L		-0.00022	0.00022			
WG520028LFB	LFB	05/27/21 16:56	MS210420-3	.05005		.04821	mg/L	96	85	115			
L65863-02AS	AS	05/27/21 17:02	MS210420-3	.05005	U	.04927	mg/L	98	70	130			
L65863-02ASD	ASD	05/27/21 17:04	MS210420-3	.05005	U	.0489	mg/L	98	70	130	1	20	
WG520028CCV1	CCV	05/27/21 17:11	MS210521-8	.25025		.24674	mg/L	99	90	110			
WG520028CCB1	CCB	05/27/21 17:13				U	mg/L		-0.0003	0.0003			
L65982-01AS	AS	05/27/21 17:27	MS210420-3	.05005	.0002	.04887	mg/L	97	70	130			
L65982-01ASD	ASD	05/27/21 17:29	MS210420-3	.05005	.0002	.04821	mg/L	96	70	130	1	20	
WG520028CCV2	CCV	05/27/21 17:33	MS210521-8	.25025		.24835	mg/L	99	90	110			
	CCB	05/27/21 17:34				U	mg/L		-0.0003	0.0003			
WG520028CCB2													
WG520028CCB2 WG520028CCV3	CCV	05/27/21 17:49	MS210521-8	.25025		.24794	mg/L	99	90	110			

GCC Rio Grande

ACZ Project ID: L65969

Lithium, dissolv	ed		M200.7	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG519844													
WG519844ICV	ICV	05/25/21 21:08	II210514-2	2		1.967	mg/L	98	95	105			
WG519844ICB	ICB	05/25/21 21:14				U	mg/L		-0.024	0.024			
WG519844PQV	PQV	05/25/21 21:18	II210503-4	.03996		.0354	mg/L	89	70	130			
WG519844SIC	SIC	05/25/21 21:21	II210506-2	.0999		.0951	mg/L	95	80	120			
WG519844LFB	LFB	05/25/21 21:28	II210507-4	.999		.9902	mg/L	99	85	115			
L65954-05AS	AS	05/25/21 21:51	II210507-4	1.998	.0388	2.008	mg/L	99	85	115			
L65954-05ASD	ASD	05/25/21 21:54	II210507-4	1.998	.0388	2.072	mg/L	102	85	115	3	20	
WG519844CCV1	CCV	05/25/21 22:01	II210517-1	1		.983	mg/L	98	90	110			
WG519844CCB1	ССВ	05/25/21 22:04				U	mg/L		-0.024	0.024			
WG519844CCV2	CCV	05/25/21 22:17	II210517-1	1		.983	mg/L	98	90	110			
WG519844CCB2	ССВ	05/25/21 22:21				U	mg/L		-0.024	0.024			
Magnesium, dis	solved		M200.7	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG519844													
WG519844ICV	ICV	05/25/21 21:08	II210514-2	100		96.58	mg/L	97	95	105			
WG519844ICB	ICB	05/25/21 21:14				U	mg/L		-0.6	0.6			
WG519844PQV	PQV	05/25/21 21:18	II210503-4	1.0001		.94	mg/L	94	70	130			
WG519844SIC	SIC	05/25/21 21:21	II210506-2	201.0201		201.3	mg/L	100	1	200			
WG519844LFB	LFB	05/25/21 21:28	II210507-4	50.00302		49.86	mg/L	100	85	115			
L65954-05AS	AS	05/25/21 21:51	II210507-4	100.00604	102	197.3	mg/L	95	85	115			
L65954-05ASD	ASD	05/25/21 21:54	II210507-4	100.00604	102	199	mg/L	97	85	115	1	20	
WG519844CCV1	CCV	05/25/21 22:01	II210517-1	50		49.18	mg/L	98	90	110			
WG519844CCB1	ССВ	05/25/21 22:04				U	mg/L		-0.6	0.6			
WG519844CCV2	CCV	05/25/21 22:17	II210517-1	50		48.83	mg/L	98	90	110			
WG519844CCB2	ССВ	05/25/21 22:21				U	mg/L		-0.6	0.6			
Manganese, dise	solved		M200.7	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG519844													
WG519844ICV	ICV	05/25/21 21:08	II210514-2	2		1.937	mg/L	97	95	105			
WG519844ICB	ICB	05/25/21 21:14				U	mg/L		-0.03	0.03			
WG519844PQV	PQV	05/25/21 21:18	II210503-4	.05005		.046	mg/L	92	70	130			
WG519844SIC	SIC	05/25/21 21:21	II210506-2	50.10005		47.66	mg/L	95	1	200			
WG519844LFB	LFB	05/25/21 21:28	II210507-4	.5005		.486	mg/L	97	85	115			
L65954-05AS	AS	05/25/21 21:51	II210507-4	1.001	7.95	8.574	mg/L	62	85	115			M3
L65954-05ASD	ASD	05/25/21 21:54	II210507-4	1.001	7.95	8.63	mg/L	68	85	115	1	20	M3
WG519844CCV1	CCV	05/25/21 22:01	II210517-1	1		.98	mg/L	98	90	110			
WG519844CCB1	ССВ	05/25/21 22:04				U	mg/L		-0.03	0.03			
WG519844CCV2	CCV	05/25/21 22:17	II210517-1	1		.98	mg/L	98	90	110			

GCC Rio Grande

ACZ Project ID: L65969

Mercury, dissol	ved		M245.1 C	CVAA									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG519741													
WG519741ICV	ICV	05/24/21 13:18	HG210329-2	.00501		.00512	mg/L	102	95	105			
WG519741ICB	ICB	05/24/21 13:19				U	mg/L		-0.0002	0.0002			
WG519741PQV	PQV	05/24/21 13:19	HG210513-3	.001001		.00093	mg/L	93	70	130			
WG519741LRB	LRB	05/24/21 13:20				U	mg/L		-0.00044	0.00044			
WG519741LFB	LFB	05/24/21 13:21	HG210513-4	.002002		.00194	mg/L	97	85	115			
WG519741CCV1	CCV	05/24/21 13:29	HG210329-2	.00501		.00547	mg/L	109	90	110			
WG519741CCB1	CCB	05/24/21 13:30				U	mg/L		-0.0002	0.0002			
L65927-01LFM	LFM	05/24/21 13:39	HG210513-4	.002002	U	.00195	mg/L	97	85	115			
WG519741CCV2	CCV	05/24/21 13:40	HG210329-2	.00501		.00539	mg/L	108	90	110			
WG519741CCB2	CCB	05/24/21 13:41				U	mg/L		-0.0002	0.0002			
L65927-01LFMD	LFMD	05/24/21 13:42	HG210513-4	.002002	U	.002	mg/L	100	85	115	3	20	
WG519741CCV3	CCV	05/24/21 13:49	HG210329-2	.00501		.0055	mg/L	110	90	110			
WG519741CCB3	CCB	05/24/21 13:50				U	mg/L		-0.0002	0.0002			
WG519827													
WG519827ICV	ICV	05/25/21 13:57	HG210329-2	.00501		.00515	mg/L	103	90	110			
WG519827ICB	ICB	05/25/21 13:57				U	mg/L		-0.0006	0.0006			
WG519830													
WG519830CCV1	CCV	05/25/21 14:34	HG210329-2	.00501		.00525	mg/L	105	90	110			
WG519830CCB1	ССВ	05/25/21 14:35				U	mg/L		-0.0002	0.0002			
WG519830PQV	PQV	05/25/21 14:36	HG210513-3	.001001		.00104	mg/L	104	70	130			
WG519830LRB	LRB	05/25/21 14:37				U	mg/L		-0.00044	0.00044			
WG519830LFB	LFB	05/25/21 14:38	HG210513-4	.002002		.00197	mg/L	98	85	115			
WG519830CCV2	CCV	05/25/21 14:46	HG210329-2	.00501		.00523	mg/L	104	90	110			
WG519830CCB2	ССВ	05/25/21 14:47				U	mg/L		-0.0002	0.0002			
L65969-04LFM	LFM	05/25/21 14:54	HG210513-4	.002002	U	.00191	mg/L	95	85	115			
L65969-04LFMD	LFMD	05/25/21 14:55	HG210513-4	.002002	U	.00189	mg/L	94	85	115	1	20	
WG519830CCV3	CCV	05/25/21 14:56	HG210329-2	.00501		.00529	mg/L	106	90	110			
WG519830CCB3	ССВ	05/25/21 14:57				U	mg/L		-0.0002	0.0002			
Nickel, dissolve	d		M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG519844													
WG519844ICV	ICV	05/25/21 21:08	II210514-2	2		1.9288	mg/L	96	95	105			
WG519844ICB	ICB	05/25/21 21:14				U	mg/L		-0.024	0.024			
WG519844POV	POV	05/25/21 21.18	11210503-4	04016		0426	ma/l	106	70	130			

WG519844ICB	ICB	05/25/21 21:14				U	mg/L		-0.024	0.024			
WG519844PQV	PQV	05/25/21 21:18	II210503-4	.04016		.0426	mg/L	106	70	130			
WG519844SIC	SIC	05/25/21 21:21	II210506-2	.1004		.0926	mg/L	92	80	120			
WG519844LFB	LFB	05/25/21 21:28	II210507-4	.5		.4885	mg/L	98	85	115			
L65954-05AS	AS	05/25/21 21:51	II210507-4	1	.351	1.2862	mg/L	94	85	115			
L65954-05ASD	ASD	05/25/21 21:54	II210507-4	1	.351	1.3182	mg/L	97	85	115	2	20	
WG519844CCV1	CCV	05/25/21 22:01	II210517-1	1		.987	mg/L	99	90	110			
WG519844CCB1	CCB	05/25/21 22:04				U	mg/L		-0.024	0.024			
WG519844CCV2	CCV	05/25/21 22:17	II210517-1	1		.974	mg/L	97	90	110			
WG519844CCB2	CCB	05/25/21 22:21				U	mg/L		-0.024	0.024			

GCC Rio Grande

ACZ Project ID: L65969

Nitrate/Nitrite as	N, diss	olved	M353.2	Automate	d Cadmiun	n Reduc	tion						
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG519719													
WG519719ICV	ICV	05/21/21 22:15	WI210302-17	2.416		2.416	mg/L	100	90	110			
WG519719ICB	ICB	05/21/21 22:16				U	mg/L		-0.02	0.02			
WG519723													
WG519723CCV1	CCV	05/22/21 0:21	WI210520-7	2		2.026	mg/L	101	90	110			
WG519723CCB1	CCB	05/22/21 0:24				U	mg/L		-0.02	0.02			
WG519723LFB	LFB	05/22/21 0:25	WI210331-13	2		2.078	mg/L	104	90	110			
WG519723CCV2	CCV	05/22/21 0:37	WI210520-7	2		2.015	mg/L	101	90	110			
WG519723CCB2	CCB	05/22/21 0:40				U	mg/L		-0.02	0.02			
L65876-02AS	AS	05/22/21 0:47	WI210331-13	2	.119	2.124	mg/L	100	90	110			
L65969-01DUP	DUP	05/22/21 0:49			.032	.039	mg/L				20	20	RA
WG519723CCV3	CCV	05/22/21 0:54	WI210520-7	2		2.028	mg/L	101	90	110			
WG519723CCB3	CCB	05/22/21 0:57				U	mg/L		-0.02	0.02			
WG519723CCV4	CCV	05/22/21 1:11	WI210520-7	2		2.028	mg/L	101	90	110			
WG519723CCB4	CCB	05/22/21 1:14				U	mg/L		-0.02	0.02			
WG519723CCV5	CCV	05/22/21 1:21	WI210520-7	2		2.013	mg/L	101	90	110			
WG519723CCB5	CCB	05/22/21 1:24				U	mg/L		-0.02	0.02			
Nitrite as N, diss	solved		M353.2 -	Automate	d Cadmiun	n Reduc	tion						
Nitrite as N, diss ACZ ID	solved Type	Analyzed	M353.2 - , PCN/SCN	Automated QC	d Cadmiun Sample			Rec%	Lower	Upper	RPD	Limit	Qual
		Analyzed						Rec%	Lower	Upper	RPD	Limit	Qual
ACZ ID		Analyzed 05/21/21 22:15						Rec%	Lower 90	Upper 110	RPD	Limit	Qual
ACZ ID WG519719	Туре		PCN/SCN	QC		Found	Units				RPD	Limit	Qual
ACZ ID WG519719 WG519719ICV	Type	05/21/21 22:15	PCN/SCN	QC		Found	Units mg/L		90	110	RPD	Limit	Qual
ACZ ID WG519719 WG519719ICV WG519719ICB	Type	05/21/21 22:15	PCN/SCN	QC		Found	Units mg/L		90	110	RPD	Limit	Qual
ACZ ID WG519719 WG519719ICV WG519719ICB WG519723	Type ICV ICB	05/21/21 22:15 05/21/21 22:16	PCN/SCN WI210302-17	QC .609		Found .622 U	Units mg/L mg/L	102	90 -0.01	110 0.01	RPD	Limit	Qual
ACZ ID WG519719 WG519719ICV WG519719ICB WG519723 WG519723CCV1	Type ICV ICB CCV	05/21/21 22:15 05/21/21 22:16 05/22/21 0:21	PCN/SCN WI210302-17	QC .609		Found .622 U .961	Units mg/L mg/L	102	90 -0.01 90	110 0.01 110	RPD	Limit	Qual
ACZ ID WG519719 WG519719ICV WG519719ICB WG519723 WG519723CCV1 WG519723CCB1	Type ICV ICB CCV CCB	05/21/21 22:15 05/21/21 22:16 05/22/21 0:21 05/22/21 0:24	PCN/SCN WI210302-17 WI210520-7	QC .609 1		Found .622 U .961 U	Units mg/L mg/L mg/L	102 96	90 -0.01 90 -0.01	110 0.01 110 0.01	RPD	Limit	Qual
ACZ ID WG519719 WG519719ICV WG519719ICB WG519723 WG519723CCV1 WG519723CCB1 WG519723LFB	Type ICV ICB CCV CCB LFB	05/21/21 22:15 05/21/21 22:16 05/22/21 0:21 05/22/21 0:24 05/22/21 0:25	PCN/SCN Wi210302-17 Wi210520-7 Wi210331-13	QC .609 1 1		Found .622 U .961 U .989	Units mg/L mg/L mg/L mg/L	102 96 99	90 -0.01 90 -0.01 90	110 0.01 110 0.01 110	RPD	Limit	Qual
ACZ ID WG519719 WG519719ICV WG519719ICB WG519723 WG519723CCV1 WG519723CCB1 WG519723LFB WG519723CCV2	Type ICV ICB CCV CCB LFB CCV	05/21/21 22:15 05/21/21 22:16 05/22/21 0:21 05/22/21 0:24 05/22/21 0:25 05/22/21 0:37	PCN/SCN Wi210302-17 Wi210520-7 Wi210331-13	QC .609 1 1		Found .622 U .961 U .989 .955	Units mg/L mg/L mg/L mg/L mg/L	102 96 99	90 -0.01 90 -0.01 90 90	110 0.01 110 0.01 110 110	RPD	Limit	Qual
ACZ ID WG519719ICV WG519719ICB WG519723CCV1 WG519723CCB1 WG519723LFB WG519723CCV2 WG519723CCB2	ICV ICB CCV CCB LFB CCV CCB	05/21/21 22:15 05/21/21 22:16 05/22/21 0:21 05/22/21 0:24 05/22/21 0:25 05/22/21 0:37 05/22/21 0:40	PCN/SCN Wi210302-17 Wi210520-7 Wi210331-13 Wi210520-7	QC .609 1 1 1	Sample	Found .622 U .961 U .989 .955 U	Units mg/L mg/L mg/L mg/L mg/L	102 96 99 96	90 -0.01 90 -0.01 90 90 -0.01	110 0.01 110 0.01 110 110 0.01	RPD	Limit	Qual
ACZ ID WG519719ICV WG519719ICB WG519719ICB WG519723CCV1 WG519723CCB1 WG519723LFB WG519723CCV2 WG519723CCB2 UG519723CCB2 L65876-02AS	ICV ICB CCV CCB LFB CCV CCB AS	05/21/21 22:15 05/21/21 22:16 05/22/21 0:21 05/22/21 0:24 05/22/21 0:25 05/22/21 0:37 05/22/21 0:40 05/22/21 0:47	PCN/SCN Wi210302-17 Wi210520-7 Wi210331-13 Wi210520-7	QC .609 1 1 1	Sample	Found .622 U .961 U .989 .955 U .933	Units mg/L mg/L mg/L mg/L mg/L mg/L	102 96 99 96	90 -0.01 90 -0.01 90 90 -0.01	110 0.01 110 0.01 110 110 0.01			
AC2 ID WG519719ICV WG519719ICV WG519719ICB WG519723CV1 WG519723CCB1 WG519723CCB1 WG519723LFB WG519723CCB2 L65876-02AS L65969-01DUP	Type ICV ICB CCV CCB LFB CCV CCB AS DUP	05/21/21 22:15 05/21/21 22:16 05/22/21 0:21 05/22/21 0:24 05/22/21 0:25 05/22/21 0:37 05/22/21 0:40 05/22/21 0:49	PCN/SCN WI210302-17 WI210520-7 WI210331-13 WI210331-13	QC .609 1 1 1 1	Sample	Found .622 U .961 U .989 .955 U .933 U	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L	102 96 99 96 93	90 -0.01 90 -0.01 90 90 -0.01 90	110 0.01 110 0.01 110 110 0.01 110			
AC2 ID WG519719ICV WG519719ICV WG519719ICB WG519723CV1 WG519723CCV1 WG519723CCB1 WG519723LFB WG519723CCV2 WG519723CCB2 L65876-02AS L65969-01DUP WG519723CCV3	Type ICV ICB CCV CCB LFB CCV CCB AS DUP CCV	05/21/21 22:15 05/21/21 22:16 05/22/21 0:21 05/22/21 0:24 05/22/21 0:25 05/22/21 0:37 05/22/21 0:40 05/22/21 0:49 05/22/21 0:54	PCN/SCN WI210302-17 WI210520-7 WI210331-13 WI210331-13	QC .609 1 1 1 1	Sample	Found .622 U .961 U .989 .955 U .933 U .933 U .958	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	102 96 99 96 93	90 -0.01 90 -0.01 90 90 -0.01 90 90	110 0.01 110 0.01 110 110 0.01 110 110			
AC2 ID WG519719ICV WG519719ICB WG519723CV1 WG519723CCV1 WG519723CCB1 WG519723CFB WG519723CCV2 WG519723CCB2 L65876-02AS L65969-01DUP WG519723CCV3 WG519723CCV3	Type ICV ICB CCV CCB LFB CCV CCB AS DUP CCV CCB	05/21/21 22:15 05/21/21 22:16 05/22/21 0:21 05/22/21 0:24 05/22/21 0:25 05/22/21 0:37 05/22/21 0:40 05/22/21 0:47 05/22/21 0:49 05/22/21 0:54 05/22/21 0:57	PCN/SCN WI210302-17 WI210520-7 WI210520-7 WI210520-7 WI210331-13 WI210520-7	QC .609 1 1 1 1 1	Sample	Found .622 U .961 U .989 .955 U .933 U .933 U .958 U	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	102 96 99 96 93 96	90 -0.01 90 -0.01 90 90 -0.01 90 90 -0.01	110 0.01 110 0.01 110 110 0.01 110 110 0.01			
AC2 ID WG519719ICV WG519719ICB WG519723CV1 WG519723CCV1 WG519723CCB1 WG519723CCB2 WG519723CCB2 L65876-02AS L65969-01DUP WG519723CCV3 WG519723CCV3 WG519723CCV3	Type ICV ICB CCV CCB LFB CCV CCB AS DUP CCV CCB CCV	05/21/21 22:15 05/21/21 22:16 05/22/21 0:21 05/22/21 0:24 05/22/21 0:25 05/22/21 0:37 05/22/21 0:40 05/22/21 0:47 05/22/21 0:49 05/22/21 0:57 05/22/21 0:57	PCN/SCN WI210302-17 WI210520-7 WI210520-7 WI210520-7 WI210331-13 WI210520-7	QC .609 1 1 1 1 1	Sample	Found .622 U .961 U .989 .955 U .933 U .933 U .958 U .957	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	102 96 99 96 93 96	90 -0.01 90 -0.01 90 90 -0.01 90 -0.01 90	110 0.01 110 0.01 110 110 0.01 110 110 0.01 110			

GCC Rio Grande

ACZ Project ID: L65969

Potassium, diss	olved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG519844													
WG519844ICV	ICV	05/25/21 21:08	II210514-2	20		19.51	mg/L	98	95	105			
WG519844ICB	ICB	05/25/21 21:14				U	mg/L		-0.6	0.6			
WG519844PQV	PQV	05/25/21 21:18	II210503-4	1.004		1	mg/L	100	70	130			
WG519844SIC	SIC	05/25/21 21:21	II210506-2	1.004		1.02	mg/L	102	80	120			
WG519844LFB	LFB	05/25/21 21:28	II210507-4	100.0157		100.1	mg/L	100	85	115			
L65954-05AS	AS	05/25/21 21:51	II210507-4	200.0314	124	322.8	mg/L	99	85	115			
L65954-05ASD	ASD	05/25/21 21:54	II210507-4	200.0314	124	324.4	mg/L	100	85	115	0	20	
WG519844CCV1	CCV	05/25/21 22:01	II210517-1	10		10.27	mg/L	103	90	110			
WG519844CCB1	CCB	05/25/21 22:04				.31	mg/L		-0.6	0.6			
WG519844CCV2	CCV	05/25/21 22:17	II210517-1	10		10.35	mg/L	104	90	110			
WG519844CCB2	CCB	05/25/21 22:21				.45	mg/L		-0.6	0.6			
Residue, Filteral	ble (TDS) @180C	SM2540	С									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG519862													
WG519862PBW	PBW	05/25/21 14:00				U	mg/L		-20	20			
WG519862LCSW	LCSW	05/25/21 14:01	PCN62899	1000		988	mg/L	99	80	120			
L65969-04DUP	DUP	05/25/21 14:23			5590	5450	mg/L				3	10	
WG520265													
WG520265PBW	PBW	06/02/21 12:10				U	mg/L		-20	20			
WG520265LCSW	LCSW	06/02/21 12:12	PCN63554	1000		1002	mg/L	100	80	120			
L66149-01DUP	DUP	06/02/21 12:25			3010	3014	mg/L				0	10	
Selenium, disso	lved		M200.8 I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG520028													
WG520028ICV	ICV	05/27/21 16:53	MS210503-1	.05		.05075	mg/L	102	90	110			
WG520028ICB	ICB	05/27/21 16:54				U	mg/L		-0.00022	0.00022			
WG520028LFB	LFB	05/27/21 16:56	MS210420-3	.05		.0495	mg/L	99	85	115			
L65863-02AS	AS	05/27/21 17:02	MS210420-3	.05	.00019	.05447	mg/L	109	70	130			
L65863-02ASD	ASD	05/27/21 17:04	MS210420-3	.05	.00019	.05352	mg/L	107	70	130	2	20	
WG520028CCV1	CCV	05/27/21 17:11	MS210521-8	.25		.24153	mg/L	97	90	110			
WG520028CCB1	CCB	05/27/21 17:13				U	mg/L		-0.0003	0.0003			
L65982-01AS	AS	05/27/21 17:27	MS210420-3	.05	U	.0508	mg/L	102	70	130			
L65982-01ASD	ASD	05/27/21 17:29	MS210420-3	.05	U	.05014	mg/L	100	70	130	1	20	
WG520028CCV2	CCV	05/27/21 17:33	MS210521-8	.25		.24691	mg/L	99	90	110			
WG520028CCB2	CCB	05/27/21 17:34				U	mg/L		-0.0003	0.0003			
WG520028CCV3	CCV	05/27/21 17:49	MS210521-8	.25		.2471	mg/L	99	90	110			
WG520028CCB3	CCB	05/27/21 17:51				U	mg/L		-0.0003	0.0003			

GCC Rio Grande

ACZ Project ID: L65969

Sodium, dissolved													
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG519844													
WG519844ICV	ICV	05/25/21 21:08	II210514-2	100		96.33	mg/L	96	95	105			
WG519844ICB	ICB	05/25/21 21:14				U	mg/L		-0.6	0.6			
WG519844PQV	PQV	05/25/21 21:18	II210503-4	.998		.98	mg/L	98	70	130			
WG519844SIC	SIC	05/25/21 21:21	II210506-2	.998		1.04	mg/L	104	80	120			
WG519844LFB	LFB	05/25/21 21:28	II210507-4	100.0605		99.13	mg/L	99	85	115			
L65954-05AS	AS	05/25/21 21:51	II210507-4	200.121	664	829.2	mg/L	83	85	115			М3
L65954-05ASD	ASD	05/25/21 21:54	II210507-4	200.121	664	829.2	mg/L	83	85	115	0	20	М3
WG519844CCV1	CCV	05/25/21 22:01	II210517-1	50		49.16	mg/L	98	90	110			
WG519844CCB1	CCB	05/25/21 22:04				.5	mg/L		-0.6	0.6			
WG519844CCV2	CCV	05/25/21 22:17	II210517-1	50		49.24	mg/L	98	90	110			
WG519844CCB2	CCB	05/25/21 22:21				.69	mg/L		-0.6	0.6			BB
WG519909													
WG519909ICV	ICV	05/26/21 15:41	II210514-2	100		97.53	mg/L	98	95	105			
WG519909ICB	ICB	05/26/21 15:47				U	mg/L		-0.6	0.6			
WG519909PQV	PQV	05/26/21 15:50	II210503-4	.998		.99	mg/L	99	70	130			
WG519909SIC	SIC	05/26/21 15:53	II210506-2	.998		1.07	mg/L	107	80	120			
WG519909LFB	LFB	05/26/21 16:00	II210507-4	100.0605		99.68	mg/L	100	85	115			
L65954-05AS	AS	05/26/21 16:20	II210507-4	200.121	669	824	mg/L	77	85	115			M3
L65954-05ASD	ASD	05/26/21 16:23	II210507-4	200.121	669	839.6	mg/L	85	85	115	2	20	
WG519909CCV1	CCV	05/26/21 16:33	II210517-1	50		49.07	mg/L	98	90	110			
WG519909CCB1	CCB	05/26/21 16:36				.35	mg/L		-0.6	0.6			
WG519909CCV2	CCV	05/26/21 16:46	II210517-1	50		48.89	mg/L	98	90	110			
WG519909CCB2	CCB	05/26/21 16:49				.31	mg/L		-0.6	0.6			

GCC Rio Grande

ACZ Project ID: L65969

Sulfate			D516-02/-	07/-11 - TI	URBIDIM	ETRIC							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG520205													
WG520205ICB	ICB	06/04/21 8:56				U	mg/L		-3	3			
WG520205ICV	ICV	06/04/21 8:56	WI210531-2	20.46		19.7	mg/L	96	90	110			
WG520205CCV1	CCV	06/04/21 9:04	WI210531-3	25		24.9	mg/L	100	90	110			
NG520205CCB1	CCB	06/04/21 9:04				U	mg/L		-3	3			
NG520205LFB	LFB	06/04/21 9:04	WI210105-3	10		10.4	mg/L	104	90	110			
NG520205CCV2	CCV	06/04/21 9:06	WI210531-3	25		24.9	mg/L	100	90	110			
NG520205CCB2	CCB	06/04/21 9:06				U	mg/L		-3	3			
NG520205CCV3	CCV	06/04/21 9:08	WI210531-3	25		24.9	mg/L	100	90	110			
VG520205CCB3	CCB	06/04/21 9:08				U	mg/L		-3	3			
VG520205CCV4	CCV	06/04/21 9:10	WI210531-3	25		25	mg/L	100	90	110			
VG520205CCB4	CCB	06/04/21 9:10				U	mg/L		-3	3			
VG520205CCV5	CCV	06/04/21 9:13	WI210531-3	25		24.5	mg/L	98	90	110			
VG520205CCB5	CCB	06/04/21 9:13		-		U	mg/L		-3	3			
VG520205CCV6	CCV	06/04/21 9:14	WI210531-3	25		24.9	mg/L	100	90	110			
VG520205CCB6	CCB	06/04/21 9:15		_0		U	mg/L		-3	3			
.65986-01AS	AS	06/04/21 9:18	SO4TURB5X	10	68.5	78.4	mg/L	99	90	110			
VG520205CCV7	CCV	06/04/21 9:21	WI210531-3	25	55.0	24.8	mg/L	99	90	110			
VG520205CCB7	CCB	06/04/21 9:21		_0		24.0 U	mg/L		-3	3			
VG520205CCV8	CCV	06/04/21 9:21	WI210531-3	25		24.7	mg/L	99	90	110			
VG520205CCB8	CCB	06/04/21 9:21		20		U	mg/L	00	-3	3			
VG520205CCV9	CCV	06/04/21 9:30	WI210531-3	25		25.1	mg/L	100	90	110			
VG520205CCB9	CCB	06/04/21 9:30		20		U	mg/L	100	-3	3			
VG520205CCV10	CCV	06/04/21 9:32	WI210531-3	25		25	mg/L	100	90	110			
VG520205CCB10	CCB	06/04/21 9:32		20		U	mg/L	100	-3	3			
VG520205CCV11	CCV	06/04/21 9:42	WI210531-3	25		25	mg/L	100	90	110			
VG520205CCB11	CCB	06/04/21 9:42		20		U	mg/L	100	-3	3			
.65969-04DUP	DUP	06/04/21 9:44			3280	3422.6	mg/L		0	0	4	20	
VG520205CCV12	CCV	06/04/21 9:44	WI210531-3	25	0200	24.9	mg/L	100	90	110	7	20	
VG520205CCB12	CCB	06/04/21 9:45		20		U	mg/L	100	-3	3			
VG520205CCV13	CCV	06/04/21 9:52	WI210531-3	25		25.1	mg/L	100	-0 90	110			
VG520205CCB13	CCB	06/04/21 9:52		20		U	mg/L	100	-3	3			
VG520205CCB13	CCV	06/04/21 9:53	WI210531-3	25		24.8	mg/L	99	-3 90	3 110			
VG520205CCV14 VG520205CCB14	CCB	06/04/21 9:53		20		24.0 U	mg/L	55	-3	3			
/anadium, disso	lvod		M200.7 IC	P									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
NG519844													
VG519844ICV	ICV	05/25/21 21:08	II210514-2	2		1.973	mg/L	99	95	105			
VG519844ICV VG519844ICB	ICB	05/25/21 21:14		2		1.973 U	mg/L	33	-0.015	0.015			
VG519844ICB VG519844PQV	PQV	05/25/21 21:14	II210503-4	.025025		.022	mg/L	88	-0.015	130			
VG519844PQV VG519844SIC	SIC	05/25/21 21:18	ll210506-2	.025025		.022	mg/L	00 93	70 80	130			
			ll210500-2				mg/L	93 102					
VG519844LFB	LFB	05/25/21 21:28		.5005		.5099			85 85	115			
65954-05AS	AS	05/25/21 21:51	II210507-4	1.001	U	1.011	mg/L	101	85 85	115	4	20	
65954-05ASD	ASD	05/25/21 21:54	II210507-4	1.001	U	1.024	mg/L	102	85	115	1	20	
VG519844CCV1	CCV	05/25/21 22:01	II210517-1	1		.995	mg/L	100	90	110			
VG519844CCB1	CCB	05/25/21 22:04	1040547.4			U	mg/L	100	-0.03	0.03			
VG519844CCV2	CCV	05/25/21 22:17	II210517-1	1		1	mg/L	100	90	110			
VG519844CCB2	CCB	05/25/21 22:21				U	mg/L		-0.03	0.03			
GCC Rio Grande

ACZ Project ID: L65969

Zinc, dissolved			M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG519844													
WG519844ICV	ICV	05/25/21 21:08	II210514-2	2		1.944	mg/L	97	95	105			
WG519844ICB	ICB	05/25/21 21:14				U	mg/L		-0.06	0.06			
WG519844PQV	PQV	05/25/21 21:18	II210503-4	.05015		.047	mg/L	94	70	130			
WG519844SIC	SIC	05/25/21 21:21	II210506-2	.1003		.095	mg/L	95	80	120			
WG519844LFB	LFB	05/25/21 21:28	II210507-4	.50075		.498	mg/L	99	85	115			
L65954-05AS	AS	05/25/21 21:51	II210507-4	1.0015	2.7	3.56	mg/L	86	85	115			
L65954-05ASD	ASD	05/25/21 21:54	II210507-4	1.0015	2.7	3.59	mg/L	89	85	115	1	20	
WG519844CCV1	CCV	05/25/21 22:01	II210517-1	1		.983	mg/L	98	90	110			
WG519844CCB1	CCB	05/25/21 22:04				U	mg/L		-0.06	0.06			
WG519844CCV2	CCV	05/25/21 22:17	II210517-1	1		.972	mg/L	97	90	110			
WG519844CCB2	CCB	05/25/21 22:21				U	mg/L		-0.06	0.06			

(800) 334-5493

GCC Rio Grande

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L65969-01	WG519844	Calcium, dissolved	M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG520642	Chloride	SM4500CI-E	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG520126	Fluoride	SM4500F-C	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG519844	Iron, dissolved	M200.7 ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
		Manganese, dissolved	M200.7 ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG519723	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	H3	Sample was received and analyzed past holding time.
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	H3	Sample was received and analyzed past holding time.
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG520265	Residue, Filterable (TDS) @180C	SM2540C	H2	Initial analysis within holding time. Reanalysis for the required dilution was past holding time.
	WG519844	Sodium, dissolved	M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.

(800) 334-5493

GCC Rio Grande

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L65969-02	WG519844	Calcium, dissolved	M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG520642	Chloride	SM4500CI-E	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG520126	Fluoride	SM4500F-C	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG519844	Iron, dissolved	M200.7 ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
		Manganese, dissolved	M200.7 ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG519723	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG519844	Sodium, dissolved	M200.7 ICP	BB	Target analyte detected in calibration blank at or above acceptance limit. Sample value was > 10X the concentration in the calibration blank.
			M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.

(800) 334-5493

GCC Rio Grande

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L65969-03	WG519844	Calcium, dissolved	M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG520642	Chloride	SM4500CI-E	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG519844	Iron, dissolved	M200.7 ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
		Manganese, dissolved	M200.7 ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG519723	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG519909	Sodium, dissolved	M200.7 ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.

(800) 334-5493

GCC Rio Grande

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L65969-04	WG519844	Calcium, dissolved	M200.7 ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG520642	Chloride	SM4500CI-E	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG519844	Iron, dissolved	M200.7 ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
		Manganese, dissolved	M200.7 ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG519723	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG519844	Sodium, dissolved	M200.7 ICP	BB	Target analyte detected in calibration blank at or above acceptance limit. Sample value was > 10X the concentration in the calibration blank.
			M200.7 ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.

ACZ	Laboratories, Inc.
	Steamboat Springs, CO 80487 (800) 334-5493

93 Steamboat Springs, CO 80487 (800) 334-54

GCC Rio Grande

Sample Receipt

ACZ Project ID: L65969 Date Received: 05/21/2021 11:05 Received By: Date Printed: 5/24/2021

Х

Receipt Verification

- 1) Is a foreign soil permit included for applicable samples?
- 2) Is the Chain of Custody form or other directive shipping papers present?
- 3) Does this project require special handling procedures such as CLP protocol?
- 4) Are any samples NRC licensable material?
- 5) If samples are received past hold time, proceed with requested short hold time analyses?
- 6) Is the Chain of Custody form complete and accurate?
- 7) Were any changes made to the Chain of Custody form prior to ACZ receiving the samples?

A change was made in the Remarks section prior to ACZ custody. A change was made in the Remarks section prior to ACZ custody.

A change was made in the Remarks section prior to ACZ custody.

A change was made in the Remarks section prior to ACZ custody.

A change was made in the Remarks section prior to ACZ custody.

Samples/Containers YES NO NA 8) Are all containers intact and with no leaks? Х 9) Are all labels on containers and are they intact and legible? Х 10) Do the sample labels and Chain of Custody form match for Sample ID, Date, and Time? Х 11) For preserved bottle types, was the pH checked and within limits? 1 Х 12) Is there sufficient sample volume to perform all requested work? Х 13) Is the custody seal intact on all containers? Х 14) Are samples that require zero headspace acceptable? Х 15) Are all sample containers appropriate for analytical requirements? Х 16) Is there an Hg-1631 trip blank present? Х 17) Is there a VOA trip blank present? Х 18) Were all samples received within hold time? Х

Some parameters were received past hold time.

REPAD LPII 2012-03

YES NO NA Х Х Х Х Х Х

L65969-2106101222

NA indicates Not Applicable

	Il Drive Steamboat		s, Inc. 80487 (800) 334-5	5493			leceipt
GCC Rio G	Grande				ACZ	Project ID:	L65969
					Date	Received:	05/21/2021 11:05
					Re	ceived By:	
					Da	te Printed:	5/24/2021
	NA35131	4.1	<=6.0	15	Yes		

Sampla

Was ice present in the shipment container(s)?

Yes - Wet ice was present in the shipment container(s).

Client must contact an ACZ Project Manager if analysis should not proceed for samples received outside of their thermal preservation acceptance criteria.

¹ The preservation of the following bottle types is not checked at sample receipt: Orange (oil and grease), Purple (total cyanide), Pink (dissolved cyanide), Brown (arsenic speciation), Sterile (fecal coliform), EDTA (sulfite), HCl preserved vial (organics), Na2S2O3 preserved vial (organics), and HG-1631 (total/dissolved mercury by method 1631).

06.285.49 @resourc 70.459.48	977 Sehydroge 965 oad, Pueb	ologic.com	
06.285.49 @resourc 70.459.48 2 Lime Ro 06.285.49	977 Sehydroge 965 oad, Pueb	ologic.com	
06.285.49 @resourc 70.459.48 2 Lime Ro 06.285.49	977 Sehydroge 965 oad, Pueb	ologic.com	
@resourc 70.459.48 2 Lime Ro 06.285.49	cehydroge 65 oad, Pueb		
@resourc 70.459.48 2 Lime Ro 06.285.49	cehydroge 65 oad, Pueb		
2 Lime Ro 06.285.49	65 oad, Pueb		
2 Lime Ro 06.285.49	65 oad, Pueb		
2 Lime Ro 06.285.49	oad, Pueb	olo CO 8100	
06.285.49		olo CO 8100	
06.285.49		olo CO 810(
06.285.49			<u>)</u> 4
	977		
		YES X	
		NO	
	HT is expired, and da	ata will be qualified	_
No	×		
71	1. 9) and		m.
le. I understand that	t intentionally mislah	Time Zone	cation of
fraud and punishab	le by State Law.		
ES REQUESTED) (attach list or us	se quote number)	Ļ
			T
	пп		
╡┼╒┤	FF	FR	Ť
╡┤╞┤┤			╧
╡╎╠┥┤	片片	┼╠┤╠	
╧┥╧┥	빌빌	누브누브	
			T
	ПП		┼╴
	Inderstand that raid and punishes REQUESTED	I understand that intentionally mislate raud and punishable by State Law. Is REQUESTED (attach list or us	Image: Signature of the second sec

FRMAD050.06.14.14

65969 Chain of Custody

White - Return with sample. Yellow - Retain for your records.

September 20, 2021

Report to: Greg Gannon GCC Rio Grande 3372 Lime Road Pueblo, CO 81004

cc: Landon Beck

Bill to: Greg Gannon GCC Rio Grande 3372 Lime Road Pueblo, CO 81004

Project ID: ACZ Project ID: L68204

Greg Gannon:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on September 02, 2021. This project has been assigned to ACZ's project number, L68204. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan. The enclosed results relate only to the samples received under L68204. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after September 20, 2022. If the samples are determined to be hazardous, additional charges apply for disposal (typically \$11/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical raw data reports for ten years.

If you have any questions or other needs, please contact your Project Manager.

Bill Lane has reviewed and approved this report

Project ID: Sample ID: MW-6

Inorganic Analytical Results

ACZ Sample ID: L68204-01 Date Sampled: 08/31/21 13:30 Date Received: 09/02/21 Sample Matrix: Groundwater

Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	M200.7 ICP	1	<0.05	U		mg/L	0.05	0.25	09/10/21 17:59	jlw
Arsenic, dissolved	M200.8 ICP-MS	5	<0.001	U		mg/L	0.001	0.005	09/14/21 13:19	mfm
Beryllium, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	09/10/21 17:59	jlw
Boron, dissolved	M200.7 ICP	1	0.240			mg/L	0.03	0.1	09/10/21 17:59	jlw
Cadmium, dissolved	M200.8 ICP-MS	5	<0.00025	U		mg/L	0.00025	0.00125	09/14/21 13:19	mfm
Calcium, dissolved	M200.7 ICP	1	410		*	mg/L	0.1	0.5	09/10/21 17:59	jlw
Chromium, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	09/10/21 17:59	jlw
Cobalt, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	09/10/21 17:59	jlw
Copper, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	09/10/21 17:59	jlw
Iron, dissolved	M200.7 ICP	1	<0.06	U		mg/L	0.06	0.15	09/10/21 17:59	jlw
Lead, dissolved	M200.8 ICP-MS	5	<0.0005	U		mg/L	0.0005	0.0025	09/14/21 13:19	mfm
Lithium, dissolved	M200.7 ICP	1	0.491			mg/L	0.008	0.04	09/10/21 17:59	jlw
Magnesium, dissolved	M200.7 ICP	1	498		*	mg/L	0.2	1	09/10/21 17:59	jlw
Manganese, dissolved	M200.7 ICP	1	0.279			mg/L	0.01	0.05	09/10/21 17:59	jlw
Mercury, dissolved	M245.1 CVAA	1	<0.0002	U		mg/L	0.0002	0.001	09/08/21 14:19	mlh
Nickel, dissolved	M200.7 ICP	1	0.0845			mg/L	0.008	0.04	09/10/21 17:59	jlw
Potassium, dissolved	M200.7 ICP	1	11.2			mg/L	0.2	1	09/10/21 17:59	jlw
Selenium, dissolved	M200.8 ICP-MS	5	0.0148			mg/L	0.0005	0.00125	09/16/21 13:33	mfm
Sodium, dissolved	M200.7 ICP	1	575		*	mg/L	0.2	1	09/10/21 17:59	jlw
Vanadium, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.025	09/10/21 17:59	jlw
Zinc, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	09/10/21 17:59	jlw
Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									,, ,
Bicarbonate as		1	459			mg/L	2	20	09/11/21 0:00	eep
CaCO3		-					_			
Carbonate as CaCO3		1	<2	U		mg/L	2	20	09/11/21 0:00	eep
Hydroxide as CaCO3		1	<2	U		mg/L	2	20	09/11/21 0:00	eep
Total Alkalinity		1	459		*	mg/L	2	20	09/11/21 0:00	eep
Chloride	SM4500CI-E	1	74.3			mg/L	0.5	2	09/13/21 16:14	md
Fluoride	SM4500F-C	1	0.58			mg/L	0.15	0.35	09/15/21 17:22	eep
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2		4.20	Н		mg/L	0.04	0.2	09/20/21 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	2	4.24	Н	*	mg/L	0.04	0.2	09/03/21 1:57	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	0.038	BH	*	mg/L	0.01	0.05	09/03/21 1:39	pjb
Residue, Filterable (TDS) @180C	SM2540C	2	6100			mg/L	40	80	09/07/21 14:15	jck
Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	° 100	3390		*	mg/L	100	500	09/15/21 11:28	wtc

Project ID: Sample ID: MW-7

Inorganic Analytical Results

ACZ Sample ID: L68204-02 Date Sampled: 08/31/21 12:20 Date Received: 09/02/21 Sample Matrix: Groundwater

Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	M200.7 ICP	1	<0.05	U		mg/L	0.05	0.25	09/10/21 18:03	jlw
Arsenic, dissolved	M200.8 ICP-MS	5	<0.001	U		mg/L	0.001	0.005	09/14/21 13:21	mfm
Beryllium, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	09/10/21 18:03	jlw
Boron, dissolved	M200.7 ICP	1	0.313			mg/L	0.03	0.1	09/10/21 18:03	jlw
Cadmium, dissolved	M200.8 ICP-MS	5	<0.00025	U		mg/L	0.00025	0.00125	09/14/21 13:21	mfm
Calcium, dissolved	M200.7 ICP	1	391		*	mg/L	0.1	0.5	09/10/21 18:03	jlw
Chromium, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	09/10/21 18:03	jlw
Cobalt, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	09/10/21 18:03	jlw
Copper, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	09/10/21 18:03	jlw
Iron, dissolved	M200.7 ICP	1	<0.06	U		mg/L	0.06	0.15	09/10/21 18:03	jlw
Lead, dissolved	M200.8 ICP-MS	5	<0.0005	U		mg/L	0.0005	0.0025	09/14/21 13:21	mfm
Lithium, dissolved	M200.7 ICP	1	0.521			mg/L	0.008	0.04	09/10/21 18:03	jlw
Magnesium, dissolved	M200.7 ICP	1	397		*	mg/L	0.2	1	09/10/21 18:03	jlw
Manganese, dissolved	M200.7 ICP	1	0.067			mg/L	0.01	0.05	09/10/21 18:03	jlw
Mercury, dissolved	M245.1 CVAA	1	<0.0002	U		mg/L	0.0002	0.001	09/08/21 14:20	mlh
Nickel, dissolved	M200.7 ICP	1	0.0155	в		mg/L	0.008	0.04	09/10/21 18:03	jlw
Potassium, dissolved	M200.7 ICP	1	10.8			mg/L	0.2	1	09/10/21 18:03	jlw
Selenium, dissolved	M200.8 ICP-MS	5	0.0115			mg/L	0.0005	0.00125	09/16/21 13:35	mfm
Sodium, dissolved	M200.7 ICP	1	666		*	mg/L	0.2	1	09/10/21 18:03	jlw
Vanadium, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.025	09/10/21 18:03	jlw
Zinc, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	09/10/21 18:03	jlw
Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration	Bliddon	Result	Quui	ΛQ	Onits	MDL		Date	Analyst
Bicarbonate as		1	467			mg/L	2	20	09/11/21 0:00	eep
CaCO3		I	407			ing/∟	2	20	03/11/21 0.00	eep
Carbonate as CaCO3		1	<2	U		mg/L	2	20	09/11/21 0:00	eep
Hydroxide as CaCO3		1	<2	U		mg/L	2	20	09/11/21 0:00	eep
Total Alkalinity		1	467			mg/L	2	20	09/11/21 0:00	eep
Chloride	SM4500CI-E	1	95.5			mg/L	0.5	2	09/13/21 16:14	md
Fluoride	SM4500F-C	1	0.52			mg/L	0.15	0.35	09/15/21 17:30	eep
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2		0.91	н		mg/L	0.02	0.1	09/20/21 0:00	calc
Nitrate/Nitrite as N,	M353.2 - Automated	1	0.907	н	*	mg/L	0.02	0.1	09/03/21 1:40	pjb
dissolved	Cadmium Reduction					-				
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	<0.01	UH	*	mg/L	0.01	0.05	09/03/21 1:40	pjb
Residue, Filterable (TDS) @180C	SM2540C	2	5790			mg/L	40	80	09/07/21 14:17	jck
Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	^C 100	3360		*	mg/L	100	500	09/15/21 11:08	wtc

Project ID: Sample ID: MW-8

Inorganic Analytical Results

ACZ Sample ID: L68204-03 Date Sampled: 08/31/21 13:00 Date Received: 09/02/21 Sample Matrix: Groundwater

Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	M200.7 ICP	1	<0.05	U		mg/L	0.05	0.25	09/10/21 18:06	jlw
Arsenic, dissolved	M200.8 ICP-MS	5	0.00124	В		mg/L	0.001	0.005	09/14/21 13:23	mfm
Beryllium, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	09/10/21 18:06	jlw
Boron, dissolved	M200.7 ICP	1	0.784			mg/L	0.03	0.1	09/10/21 18:06	jlw
Cadmium, dissolved	M200.8 ICP-MS	5	<0.00025	U		mg/L	0.00025	0.00125	09/14/21 13:23	mfm
Calcium, dissolved	M200.7 ICP	1	111		*	mg/L	0.1	0.5	09/10/21 18:06	jlw
Chromium, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	09/10/21 18:06	jlw
Cobalt, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	09/10/21 18:06	jlw
Copper, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	09/10/21 18:06	jlw
Iron, dissolved	M200.7 ICP	1	<0.06	U		mg/L	0.06	0.15	09/10/21 18:06	jlw
Lead, dissolved	M200.8 ICP-MS	5	<0.0005	U		mg/L	0.0005	0.0025	09/14/21 13:23	mfm
Lithium, dissolved	M200.7 ICP	1	0.383			mg/L	0.008	0.04	09/10/21 18:06	jlw
Magnesium, dissolved	M200.7 ICP	1	38.5		*	mg/L	0.2	1	09/10/21 18:06	jlw
Manganese, dissolved	M200.7 ICP	1	0.319			mg/L	0.01	0.05	09/10/21 18:06	jlw
Mercury, dissolved	M245.1 CVAA	1	< 0.0002	U		mg/L	0.0002	0.001	09/08/21 14:21	mlh
Nickel, dissolved	M200.7 ICP	1	<0.008	U		mg/L	0.008	0.04	09/10/21 18:06	jlw
Potassium, dissolved	M200.7 ICP	1	5.93			mg/L	0.2	1	09/10/21 18:06	jlw
Selenium, dissolved	M200.8 ICP-MS	5	<0.0005	U		mg/L	0.0005	0.00125	09/16/21 13:36	mfm
Sodium, dissolved	M200.7 ICP	5	1300			mg/L	1	5	09/14/21 16:42	jlw
Vanadium, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.025	09/10/21 18:06	jlw
Zinc, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	09/10/21 18:06	jlw
Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									, manyou
Bicarbonate as		1	1080			mg/L	2	20	09/11/21 0:00	eep
CaCO3			1000			iiig/L	-	20	00/11/21 0.00	000
Carbonate as CaCO3		1	<2	U		mg/L	2	20	09/11/21 0:00	eep
Hydroxide as CaCO3		1	<2	U		mg/L	2	20	09/11/21 0:00	eep
Total Alkalinity		1	1080			mg/L	2	20	09/11/21 0:00	eep
Chloride	SM4500CI-E	5	272			mg/L	2.5	10	09/13/21 16:47	md
Fluoride	SM4500F-C	1	1.00			mg/L	0.15	0.35	09/15/21 17:38	eep
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2		<0.02	UH		mg/L	0.02	0.1	09/20/21 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	0.022	BH	*	mg/L	0.02	0.1	09/03/21 1:42	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	0.014	BH	*	mg/L	0.01	0.05	09/03/21 1:42	pjb
Residue, Filterable (TDS) @180C	SM2540C	2	4250			mg/L	40	80	09/07/21 14:20	jck
Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	c 60	1820		*	mg/L	60	300	09/15/21 11:09	wtc

Project ID: Sample ID: MW-2B

Inorganic Analytical Results

ACZ Sample ID: L68204-04 Date Sampled: 08/31/21 12:35 Date Received: 09/02/21 Sample Matrix: Groundwater

Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	M200.7 ICP	1	<0.05	U		mg/L	0.05	0.25	09/10/21 18:09	jlw
Arsenic, dissolved	M200.8 ICP-MS	5	<0.001	U		mg/L	0.001	0.005	09/14/21 13:24	mfm
Beryllium, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	09/10/21 18:09	jlw
Boron, dissolved	M200.7 ICP	1	0.309			mg/L	0.03	0.1	09/10/21 18:09	jlw
Cadmium, dissolved	M200.8 ICP-MS	5	<0.00025	U		mg/L	0.00025	0.00125	09/14/21 13:24	mfm
Calcium, dissolved	M200.7 ICP	1	390		*	mg/L	0.1	0.5	09/10/21 18:09	jlw
Chromium, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	09/10/21 18:09	jlw
Cobalt, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	09/10/21 18:09	jlw
Copper, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	09/10/21 18:09	jlw
Iron, dissolved	M200.7 ICP	1	<0.06	U		mg/L	0.06	0.15	09/10/21 18:09	jlw
Lead, dissolved	M200.8 ICP-MS	5	<0.0005	U		mg/L	0.0005	0.0025	09/14/21 13:24	mfm
Lithium, dissolved	M200.7 ICP	1	0.520			mg/L	0.008	0.04	09/10/21 18:09	jlw
Magnesium, dissolved	M200.7 ICP	1	396		*	mg/L	0.2	1	09/10/21 18:09	jlw
Manganese, dissolved	M200.7 ICP	1	0.066			mg/L	0.01	0.05	09/10/21 18:09	jlw
Mercury, dissolved	M245.1 CVAA	1	<0.0002	U		mg/L	0.0002	0.001	09/08/21 14:26	mlh
Nickel, dissolved	M200.7 ICP	1	0.0170	В		mg/L	0.008	0.04	09/10/21 18:09	jlw
Potassium, dissolved	M200.7 ICP	1	10.9			mg/L	0.2	1	09/10/21 18:09	jlw
Selenium, dissolved	M200.8 ICP-MS	5	0.0109			mg/L	0.0005	0.00125	09/16/21 13:42	mfm
Sodium, dissolved	M200.7 ICP	1	661		*	mg/L	0.2	1	09/10/21 18:09	jlw
Vanadium, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.025	09/10/21 18:09	jlw
Zinc, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	09/10/21 18:09	jlw
Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration	Bilation	Result	Guui	ΛQ	onito	MBE		Build	Analyst
Bicarbonate as		1	464			mg/L	2	20	09/11/21 0:00	eep
CaCO3			707			iiig/L	2	20	00/11/21 0.00	ccp
Carbonate as CaCO3		1	<2	U		mg/L	2	20	09/11/21 0:00	eep
Hydroxide as CaCO3		1	<2	U		mg/L	2	20	09/11/21 0:00	еер
Total Alkalinity		1	464		*	mg/L	2	20	09/11/21 0:00	eep
Chloride	SM4500CI-E	5	109		*	mg/L	2.5	10	09/13/21 16:47	md
Fluoride	SM4500F-C	1	0.53			mg/L	0.15	0.35	09/15/21 17:46	еер
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2		0.91	н		mg/L	0.02	0.1	09/20/21 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	0.907	Н	*	mg/L	0.02	0.1	09/03/21 1:50	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	<0.01	UH	*	mg/L	0.01	0.05	09/03/21 1:50	pjb
Residue, Filterable (TDS) @180C	SM2540C	2	5760			mg/L	40	80	09/07/21 14:23	jck
Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	^C 120	3480		*	mg/L	120	600	09/15/21 11:09	wtc

* Please refer to Qualifier Reports for details.

Inorganic Reference

Batch	A distinct set of samples analyzed at a specific time		
Found	Value of the QC Type of interest		
Limit	Upper limit for RPD, in %.		
Lower	Lower Recovery Limit, in % (except for LCSS, mg/Kg)		
MDL	Method Detection Limit. Same as Minimum Reporting Limit u	inless omitted or ed	qual to the PQL (see comment #5).
	Allows for instrument and annual fluctuations.		
PCN/SCN	A number assigned to reagents/standards to trace to the mar	nufacturer's certifica	ate of analysis
PQL	Practical Quantitation Limit. Synonymous with the EPA term	"minimum level".	
QC	True Value of the Control Sample or the amount added to the	e Spike	
Rec	Recovered amount of the true value or spike added, in % (ex	cept for LCSS, mg	/Kg)
RPD	Relative Percent Difference, calculation used for Duplicate Q0	C Types	
Upper	Upper Recovery Limit, in % (except for LCSS, mg/Kg)		
Sample	Value of the Sample of interest		
Sample Ty	rpes		
AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
			, , , , , , , , , , , , , , , , , ,
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSS LCSSD	Laboratory Control Sample - Soil Laboratory Control Sample - Soil Duplicate	PBW PQV	Prep Blank - Water Practical Quantitation Verification standard
			•
LCSSD LCSW	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSSD LCSW	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water vpe Explanations	PQV SDL	Practical Quantitation Verification standard
LCSSD LCSW Sample Ty	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water ype Explanations Verifies that there is no or minimal c	PQV SDL	Practical Quantitation Verification standard Serial Dilution e prep method or calibration procedure.
LCSSD LCSW Sample Ty Blanks	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water Pe Explanations Verifies that there is no or minimal c mples Verifies the accuracy of the method	PQV SDL contamination in the , including the prep	Practical Quantitation Verification standard Serial Dilution
LCSSD LCSW Sample Ty Blanks Control Sat Duplicates	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water Pe Explanations Verifies that there is no or minimal c mples Verifies the accuracy of the method	PQV SDL contamination in the , including the prep ent and/or method.	Practical Quantitation Verification standard Serial Dilution
LCSSD LCSW Sample Ty Blanks Control Sat Duplicates	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water Type Explanations Merifies that there is no or minimal c Verifies the accuracy of the method Verifies the precision of the instrume	PQV SDL contamination in the , including the prep ent and/or method. nces, if any.	Practical Quantitation Verification standard Serial Dilution
LCSSD LCSW Sample Ty Blanks Control Sat Duplicates Spikes/For	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations Werifies that there is no or minimal of mples Verifies the accuracy of the method. Verifies the precision of the instrume tified Matrix Determines sample matrix interferent Verifies the validity of the calibration	PQV SDL contamination in the , including the prep ent and/or method. nces, if any.	Practical Quantitation Verification standard Serial Dilution
LCSSD LCSW Sample Ty Blanks Control Sat Duplicates Spikes/For Standard	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations Werifies that there is no or minimal of mples Verifies the accuracy of the method. Verifies the precision of the instrume tified Matrix Determines sample matrix interferent Verifies the validity of the calibration	PQV SDL contamination in the , including the prep ent and/or method. nces, if any.	Practical Quantitation Verification standard Serial Dilution
LCSSD LCSW Sample Ty Blanks Control Sa Duplicates Spikes/For Standard	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water Type Explanations Type Explanations Type Explanations Type Explanations Type Explanations Type Explanations Verifies that there is no or minimal of Verifies the accuracy of the method, Verifies the precision of the instrument tified Matrix Determines sample matrix interferent Verifies the validity of the calibration s (Qual)	PQV SDL contamination in the , including the prep ent and/or method. nces, if any. PQL. The associat	Practical Quantitation Verification standard Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity.
LCSSD LCSW Sample Ty Blanks Control Sat Duplicates Spikes/For Standard Z Qualifiers B	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water rpe Explanations mples Verifies that there is no or minimal c verifies the accuracy of the method, verifies the precision of the instrume tified Matrix Determines sample matrix interferer Verifies the validity of the calibration s (Qual) Analyte concentration detected at a value between MDL and	PQV SDL contamination in the , including the prep ent and/or method. nces, if any. PQL. The associat n immediate hold t	Practical Quantitation Verification standard Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity.
LCSSD LCSW Sample Ty Blanks Control Sat Duplicates Spikes/For Standard Z Qualifiers B H	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water TPE Explanations Type Explana	PQV SDL contamination in the , including the prep ent and/or method. nces, if any. PQL. The associat n immediate hold t gative threshold.	Practical Quantitation Verification standard Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity.
LCSSD LCSW Sample Ty Blanks Control Sar Duplicates Spikes/For Standard Z Qualifiers B H L	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water rpe Explanations mples Verifies that there is no or minimal c working Verifies the accuracy of the method. Verifies the precision of the instrume tified Matrix Determines sample matrix interferent Verifies the validity of the calibration s (Qual) Analyte concentration detected at a value between MDL and Analysis exceeded method hold time. pH is a field test with a Target analyte response was below the laboratory defined ne	PQV SDL contamination in the , including the prep ent and/or method. nces, if any. PQL. The associat n immediate hold t gative threshold. ne level of the asso	Practical Quantitation Verification standard Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity. time. procedure.
LCSSD LCSW Sample Ty Blanks Control Sar Duplicates Spikes/For Standard Z Qualifiers B H L	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water rpe Explanations Werifies that there is no or minimal of mples Verifies the accuracy of the method, Verifies the precision of the instrument tified Matrix Determines sample matrix interferent Verifies the validity of the calibration s (Qual) Analyte concentration detected at a value between MDL and Analysis exceeded method hold time. pH is a field test with a Target analyte response was below the laboratory defined ne The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or	PQV SDL contamination in the , including the prep ent and/or method. nces, if any. PQL. The associat n immediate hold t gative threshold. ne level of the asso	Practical Quantitation Verification standard Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity. time. procedure.
LCSSD LCSW Sample Ty Blanks Control Sau Duplicates Spikes/For Standard Z Qualifiers B H L U	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water rpe Explanations Werifies that there is no or minimal of mples Verifies the accuracy of the method, Verifies the precision of the instrument tified Matrix Determines sample matrix interferent Verifies the validity of the calibration s (Qual) Analyte concentration detected at a value between MDL and Analysis exceeded method hold time. pH is a field test with a Target analyte response was below the laboratory defined ne The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or	PQV SDL contamination in the , including the prep ent and/or method. nces, if any. PQL. The associat n immediate hold t gative threshold. ne level of the associat the sample detect	Practical Quantitation Verification standard Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity. time. pociated value. tion limit.
LCSSD LCSW Sample Ty Blanks Control Sat Duplicates Spikes/For Standard Z Qualifiers B H L U	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water rpe Explanations Werifies that there is no or minimal control of the method, Werifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferer Verifies the validity of the calibration s (Qual) Analyte concentration detected at a value between MDL and Analysis exceeded method hold time. pH is a field test with a Target analyte response was below the laboratory defined ne The material was analyzed for, but was not detected above th The associated value is either the sample quantitation limit or ences	PQV SDL contamination in the , including the prep ent and/or method. nces, if any. PQL. The associat n immediate hold t gative threshold. ne level of the asso the sample detect and Wastes, Marc	Practical Quantitation Verification standard Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. bociated value. tion limit. bociated value.
LCSSD LCSW Sample Ty Blanks Control Sat Duplicates Spikes/For Standard Z Qualifiers B H L U	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations Werifies that there is no or minimal of mples Verifies the accuracy of the method Verifies the precision of the instrume tified Matrix Determines sample matrix interferer Verifies the validity of the calibration s (Qual) Analyte concentration detected at a value between MDL and Analysis exceeded method hold time. pH is a field test with a Target analyte response was below the laboratory defined ne The material was analyzed for, but was not detected above th The associated value is either the sample quantitation limit or ences EPA 600/4-83-020. Methods for Chemical Analysis of Water	PQV SDL contamination in the , including the prep ent and/or method. nces, if any. PQL. The associat n immediate hold t gative threshold. ne level of the asso the sample detect and Wastes, Marc nic Substances in I	Practical Quantitation Verification standard Serial Dilution e prep method or calibration procedure. procedure. to procedure. ted value is an estimated quantity. time. botated value. tion limit. th 1983. Environmental Samples, August 1993.
LCSSD LCSW Sample Ty Blanks Control Sar Duplicates Spikes/For Standard Z Qualifiers B H L U U	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations Type Explanations Merifies that there is no or minimal of mples Verifies the accuracy of the method. Verifies the precision of the instrume tified Matrix Determines sample matrix interferent Verifies the validity of the calibration 5 (Qual) Analyte concentration detected at a value between MDL and Analysis exceeded method hold time. pH is a field test with a Target analyte response was below the laboratory defined ne The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or ences EPA 600/4-83-020. Methods for Chemical Analysis of Water EPA 600/R-93-100. Methods for the Determination of Inorgan	PQV SDL contamination in the , including the prep ent and/or method. nces, if any. PQL. The associat n immediate hold t gative threshold. ne level of the asso the sample detect and Wastes, Marc nic Substances in I	Practical Quantitation Verification standard Serial Dilution e prep method or calibration procedure. procedure. to procedure. ted value is an estimated quantity. time. botated value. tion limit. th 1983. Environmental Samples, August 1993.
LCSSD LCSW Sample Ty Blanks Control San Duplicates Spikes/For Standard Z Qualifiers B H L U U thod Reference (1) (2) (3)	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations Werifies that there is no or minimal of mples Verifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferer Verifies the validity of the calibration s (Qual) Analyte concentration detected at a value between MDL and Analysis exceeded method hold time. pH is a field test with a Target analyte response was below the laboratory defined ne The material was analyzed for, but was not detected above th The associated value is either the sample quantitation limit or ences EPA 600/R-93-100. Methods for Chemical Analysis of Water EPA 600/R-94-111. Methods for the Determination of Inorgan	PQV SDL contamination in the , including the prep ent and/or method. nces, if any. PQL. The associat n immediate hold t gative threshold. ne level of the associat the sample detect and Wastes, Marc nic Substances in I in Environmental S	Practical Quantitation Verification standard Serial Dilution e prep method or calibration procedure. procedure. to procedure. ted value is an estimated quantity. time. botated value. tion limit. th 1983. Environmental Samples, August 1993.
LCSSD LCSW Sample Ty Blanks Control Sat Duplicates Spikes/For Standard Z Qualifiers B H L U U thod Refere (1) (2) (3) (4)	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations Werifies that there is no or minimal of mples Verifies the accuracy of the method Verifies the precision of the instrume tified Matrix Determines sample matrix interferer Verifies the validity of the calibration s (Qual) Analyte concentration detected at a value between MDL and Analysis exceeded method hold time. pH is a field test with a Target analyte response was below the laboratory defined ne The material was analyzed for, but was not detected above th The associated value is either the sample quantitation limit or ences EPA 600/R-93-100. Methods for Chemical Analysis of Water EPA 600/R-94-111. Methods for the Determination of Inorgan EPA SW-846. Test Methods for Evaluating Solid Waste.	PQV SDL contamination in the , including the prep ent and/or method. nces, if any. PQL. The associat n immediate hold t gative threshold. ne level of the associat the sample detect and Wastes, Marc nic Substances in I in Environmental S	Practical Quantitation Verification standard Serial Dilution e prep method or calibration procedure. procedure. to procedure. ted value is an estimated quantity. time. botated value. tion limit. th 1983. Environmental Samples, August 1993.
LCSSD LCSW Sample Ty Blanks Control Sat Duplicates Spikes/For Standard Z Qualifiers B H L U U thod Refere (1) (2) (3) (4) (5)	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations Werifies that there is no or minimal of mples Verifies the accuracy of the method Verifies the precision of the instrume tified Matrix Determines sample matrix interferer Verifies the validity of the calibration s (Qual) Analyte concentration detected at a value between MDL and Analysis exceeded method hold time. pH is a field test with a Target analyte response was below the laboratory defined ne The material was analyzed for, but was not detected above th The associated value is either the sample quantitation limit or ences EPA 600/R-93-100. Methods for Chemical Analysis of Water EPA 600/R-94-111. Methods for the Determination of Inorgan EPA SW-846. Test Methods for Evaluating Solid Waste.	PQV SDL contamination in the , including the prep ent and/or method. nces, if any. PQL. The associat n immediate hold t gative threshold. ne level of the asso the sample detect and Wastes, Marc nic Substances in I in Environmental S ater.	Practical Quantitation Verification standard Serial Dilution a prep method or calibration procedure. b procedure. ted value is an estimated quantity. time. b ciated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.
LCSSD LCSW Sample Ty Blanks Control Sat Duplicates Spikes/For Standard Z Qualifiers B H L U thod Reference (1) (2) (3) (4) (5)	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations Werifies that there is no or minimal of mples Verifies the accuracy of the method. Verifies the precision of the instrume tified Matrix Determines sample matrix interferer Verifies the validity of the calibration s (Qual) Analyte concentration detected at a value between MDL and Analysis exceeded method hold time. pH is a field test with a Target analyte response was below the laboratory defined ne The material was analyzed for, but was not detected above th The associated value is either the sample quantitation limit or ences EPA 600/R-93-100. Methods for Chemical Analysis of Water EPA 600/R-94-111. Methods for the Determination of Inorgan EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wastew	PQV SDL contamination in the , including the prep ent and/or method. nces, if any. PQL. The associat n immediate hold t gative threshold. ne level of the associat the sample detect and Wastes, Marc nic Substances in I in Environmental S ater.	Practical Quantitation Verification standard Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity. ime. beiated value. tion limit. th 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations.
LCSSD LCSW Sample Ty Blanks Control Sar Duplicates Spikes/For Standard Z Qualifiers B H L U U thod Refere (1) (2) (3) (4) (5) mments (1)	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations Werifies that there is no or minimal of mples Verifies the accuracy of the method. Verifies the precision of the instrume tified Matrix Determines sample matrix interferent Verifies the validity of the calibration 5 (Qual) Analyte concentration detected at a value between MDL and Analysis exceeded method hold time. pH is a field test with a Target analyte response was below the laboratory defined ne The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or Preces EPA 600/R-93-100. Methods for Chemical Analysis of Water EPA 600/R-94-111. Methods for the Determination of Inorgan EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wastew	PQV SDL contamination in the , including the prep ent and/or method. nces, if any. PQL. The associat n immediate hold t gative threshold. ne level of the associat the sample detect and Wastes, Marc nic Substances in I in Environmental S ater.	Practical Quantitation Verification standard Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity. ime. beiated value. tion limit. th 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations.
LCSSD LCSW Sample Ty Blanks Control Sat Duplicates Spikes/For Standard Z Qualifiers B H L U thod Refere (1) (2) (3) (4) (5) mments (1) (2)	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water pe Explanations Werifies that there is no or minimal of mples Verifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferent Verifies the validity of the calibration 5 (Qual) Analyte concentration detected at a value between MDL and Analysis exceeded method hold time. pH is a field test with a Target analyte response was below the laboratory defined ne The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or ences EPA 600/R-93-100. Methods for Chemical Analysis of Water EPA 600/R-94-111. Methods for the Determination of Inorgan EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wastew QC results calculated from raw data. Results may vary slight Soil, Sludge, and Plant matrices for Inorganic analyses are re-	PQV SDL contamination in the , including the prep ent and/or method. nces, if any. PQL. The associat n immediate hold t gative threshold. ne level of the associat the sample detect and Wastes, Marc nic Substances in I in Environmental S ater.	Practical Quantitation Verification standard Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity. time. ciated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations. eight basis.
LCSSD LCSW Sample Ty Blanks Control Sat Duplicates Spikes/For Standard Z Qualifiers B H L U U thod Refere (1) (2) (3) (4) (5) mments (1) (2) (3)	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water mple Explanations Werifies that there is no or minimal of moles Verifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferer Verifies the validity of the calibration s (Qual) Analyte concentration detected at a value between MDL and Analysis exceeded method hold time. pH is a field test with a Target analyte response was below the laboratory defined ne The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or ences EPA 600/R-93-100. Methods for Chemical Analysis of Water EPA 600/R-93-100. Methods for the Determination of Inorgate EPA 800/R-94-111. Methods for the Determination of Metals EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wastew QC results calculated from raw data. Results may vary slight Soil, Sludge, and Plant matrices for Inorganic analyses are reported on an "at	PQV SDL contamination in the , including the prep ent and/or method. nces, if any. PQL. The associat n immediate hold t gative threshold. ne level of the associat the sample detect and Wastes, Marc nic Substances in I in Environmental S ater.	Practical Quantitation Verification standard Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity. time. ciated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations. eight basis.

https://acz.com/wp-content/uploads/2019/04/Ext-Qual-List.pdf

REP001.03.15.02

ACZ Project ID: L68204

Alkalinity as CaC	O3		SM2320	B - Titration									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG526961													
WG526961PBW1	PBW	09/10/21 20:17				2.6	mg/L		-20	20			
WG526961LCSW3	LCSW	09/10/21 20:34	WC210908-1	820.0001		784.1	mg/L	96	90	110			
WG526961LCSW6	LCSW	09/10/21 23:25	WC210908-1	820.0001		793	mg/L	97	90	110			
WG526961PBW2	PBW	09/10/21 23:32				U	mg/L		-20	20			
L68204-03DUP	DUP	09/11/21 1:14			1080	1078.7	mg/L				0	20	
L68219-08DUP	DUP	09/11/21 2:40			U	U	mg/L				0	20	RA
WG526961LCSW9	LCSW	09/11/21 2:57	WC210908-1	820.0001		794	mg/L	97	90	110			
WG526961PBW3	PBW	09/11/21 3:05				U	mg/L		-20	20			
WG526961LCSW12	LCSW	09/11/21 6:26	WC210908-1	820.0001		815.1	mg/L	99	90	110			
WG526961PBW4	PBW	09/11/21 6:34				U	mg/L		-20	20			
WG526961LCSW15	LCSW	09/11/21 10:35	WC210908-1	820.0001		811.4	mg/L	99	90	110			
Aluminum, disso	lved		M200.7	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG526939													
WG526939ICV	ICV	09/10/21 16:41	II210826-1	2		2.016	mg/L	101	95	105			
WG526939ICB	ICB	09/10/21 16:47		2		2.010 U	mg/L	101	-0.15	0.15			
WG526939PQV	PQV	09/10/21 16:51	II210901-4	.250325		.25	mg/L	100	-0.13	130			
WG526939SIC	SIC	09/10/21 16:54	II210907-1	200.410325		205.3	mg/L	100	1	200			
WG526939LFB	LFB	09/10/21 17:00	II210910-2	1.0008		1.02	mg/L	102	85	115			
WG526939CCV1	CCV	09/10/21 17:33	II210826-2	1.0000		1.003	mg/L	102	90	110			
WG526939CCB1	ССВ	09/10/21 17:36	12100202	1		U	mg/L	100	-0.15	0.15			
WG526939CCV2	CCV	09/10/21 18:13	II210826-2	1		.993	mg/L	99	90	110			
WG526939CCB2	ССВ	09/10/21 18:16				.000 U	mg/L	00	-0.15	0.15			
L68204-04AS	AS	09/10/21 18:19	II210910-2	1.0008	U	1.081	mg/L	108	85	115			
L68204-04ASD	ASD	09/10/21 18:23	II210910-2	1.0008	U	1.079	mg/L	108	85	115	0	20	
WG526939CCV3	CCV	09/10/21 18:36	II210826-2	1.0000	0	.994	mg/L	99	90	110	Ū	20	
WG526939CCB3	ССВ	09/10/21 18:39				.554 U	mg/L	00	-0.15	0.15			
Arsenic, dissolve			M200.8										
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG527157													
WG527157ICV	ICV	09/14/21 13:14	MS210727-2	.05		.05016	mg/L	100	90	110			
WG527157ICB	ICB	09/14/21 13:15				U	mg/L		-0.00044	0.00044			
WG527157LFB	LFB	09/14/21 13:17	MS210827-2	.05005		.05058	mg/L	101	85	115			
L68208-01AS	AS	09/14/21 13:28	MS210827-2	.05005	.00085	.05481	mg/L	108	70	130			
L68208-01ASD	ASD	09/14/21 13:30	MS210827-2	.05005	.00085	.0536	mg/L	105	70	130	2	20	
WG527157CCV1	CCV	09/14/21 13:35	MS210909-2	.1001		.0959	mg/L	96	90	110			
WG527157CCB1	CCB	09/14/21 13:37				U	mg/L		-0.0006	0.0006			
WG527157CCV2	CCV	09/14/21 13:57	MS210909-2	.1001		.10011	mg/L	100	90	110			
WG527157CCB2	CCB	09/14/21 13:59				U	mg/L		-0.0006	0.0006			
WG527157CCV3	CCV	09/14/21 14:10	MS210909-2	.1001		.09949	mg/L	99	90	110			
WG527157CCB3	ССВ	09/14/21 14:12				U	mg/L		-0.0006	0.0006			

GCC Rio Grande

ACZ Project ID: L68204

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Beryllium, disso	olved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG526939													
WG526939ICV	ICV	09/10/21 16:41	II210826-1	2		1.965	mg/L	98	95	105			
WG526939ICB	ICB	09/10/21 16:47				U	mg/L		-0.03	0.03			
WG526939PQV	PQV	09/10/21 16:51	II210901-4	.05		.052	mg/L	104	70	130			
WG526939SIC	SIC	09/10/21 16:54	II210907-1	.1		.099	mg/L	99	80	120			
WG526939LFB	LFB	09/10/21 17:00	II210910-2	.5005		.495	mg/L	99	85	115			
WG526939CCV1	CCV	09/10/21 17:33	II210826-2	1		.991	mg/L	99	90	110			
WG526939CCB1	CCB	09/10/21 17:36				U	mg/L		-0.03	0.03			
WG526939CCV2	CCV	09/10/21 18:13	II210826-2	1		.984	mg/L	98	90	110			
WG526939CCB2	CCB	09/10/21 18:16				U	mg/L		-0.03	0.03			
L68204-04AS	AS	09/10/21 18:19	II210910-2	.5005	U	.474	mg/L	95	85	115			
L68204-04ASD	ASD	09/10/21 18:23	II210910-2	.5005	U	.472	mg/L	94	85	115	0	20	
WG526939CCV3	CCV	09/10/21 18:36	II210826-2	1		.986	mg/L	99	90	110			
WG526939CCB3	CCB	09/10/21 18:39				U	mg/L		-0.03	0.03			
Boron, dissolve			M200.7 I	СР									

D01011, 015501Ve	u		101200.71	CI									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG526939													
WG526939ICV	ICV	09/10/21 16:41	II210826-1	2		1.99	mg/L	100	95	105			
WG526939ICB	ICB	09/10/21 16:47				U	mg/L		-0.09	0.09			
WG526939PQV	PQV	09/10/21 16:51	II210901-4	.1001		.1	mg/L	100	70	130			
WG526939SIC	SIC	09/10/21 16:54	II210907-1	.1001		.092	mg/L	92	80	120			
WG526939LFB	LFB	09/10/21 17:00	II210910-2	.5005		.498	mg/L	100	85	115			
WG526939CCV1	CCV	09/10/21 17:33	II210826-2	1		.99	mg/L	99	90	110			
WG526939CCB1	CCB	09/10/21 17:36				U	mg/L		-0.09	0.09			
WG526939CCV2	CCV	09/10/21 18:13	II210826-2	1		.987	mg/L	99	90	110			
WG526939CCB2	CCB	09/10/21 18:16				U	mg/L		-0.09	0.09			
L68204-04AS	AS	09/10/21 18:19	II210910-2	.5005	.309	.806	mg/L	99	85	115			
L68204-04ASD	ASD	09/10/21 18:23	II210910-2	.5005	.309	.805	mg/L	99	85	115	0	20	
WG526939CCV3	CCV	09/10/21 18:36	II210826-2	1		.986	mg/L	99	90	110			
WG526939CCB3	CCB	09/10/21 18:39				U	mg/L		-0.09	0.09			

Cadmium, dissolved

M200.8 ICP-MS

ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG527157													
WG527157ICV	ICV	09/14/21 13:14	MS210727-2	.05		.050184	mg/L	100	90	110			
WG527157ICB	ICB	09/14/21 13:15				U	mg/L		-0.00011	0.00011			
WG527157LFB	LFB	09/14/21 13:17	MS210827-2	.05005		.048698	mg/L	97	85	115			
L68208-01AS	AS	09/14/21 13:28	MS210827-2	.05005	.000744	.052514	mg/L	103	70	130			
L68208-01ASD	ASD	09/14/21 13:30	MS210827-2	.05005	.000744	.051068	mg/L	101	70	130	3	20	
WG527157CCV1	CCV	09/14/21 13:35	MS210909-2	.1001		.094361	mg/L	94	90	110			
WG527157CCB1	CCB	09/14/21 13:37				U	mg/L		-0.00015	0.00015			
WG527157CCV2	CCV	09/14/21 13:57	MS210909-2	.1001		.096508	mg/L	96	90	110			
WG527157CCB2	CCB	09/14/21 13:59				U	mg/L		-0.00015	0.00015			
WG527157CCV3	CCV	09/14/21 14:10	MS210909-2	.1001		.096185	mg/L	96	90	110			
WG527157CCB3	CCB	09/14/21 14:12				U	mg/L		-0.00015	0.00015			

GCC Rio Grande

ACZ Project ID: L68204

VG526939ICV ICV 09/10/21 16:41 III/10/26-1 100 97.85 mpl. 98 95 105 IGS26939ICS ICB 09/10/21 16:51 III/10/91-4 .50015 .53 mpl. 96 1 200 IGS26939ICS GC 09/10/21 16:51 III/10/91-4 .50015 .53 mpl. 96 1 200 IGS26939ICV CCV 09/10/21 17:30 III/10/91-2 67.98972 67.13 mpl. 99 55 115 IGS26939ICV CCV 09/10/21 17:36 III/10/92-2 67.98972 390 44.2.2 mpl. 99 90 110 IGS26939CV2 CCV 09/10/21 18:18 III/10/92-2 67.98972 390 44.2.2 mpl. -0.3 0.3 IGS26939CV3 CCV 09/10/21 18:38 III/10/92-2 67.98972 390 44.2.2 mpl. 69 55 115 1 20 M3 IGS26939CV3 CCV 09/10/21 18:38 III/	Calcium, dissolv	ved		M200.7 I	СР									
RG268391CV ICV 09/10/21 16.41 1210826-1 100 97.85 mg/L 98 95 105 VG2629391CB ICB 09/10/21 16.57 11210910-1 50015 110 106 70 130 VG2629391CB ICB 09/10/21 16.54 11210910-1 200.56015 193.8 mg/L 96 1 200 VG2629391CH CCB 09/10/21 17.30 11210910-2 67.98972 67.13 mg/L 99 90 110 106 105 103 106269393CCV2 CCV 09/10/21 18.13 11210910-2 67.98972 390 442.2 mg/L 99 90 110 105 M33 VG2628939CCV3 CCV 09/10/21 18.13 11210910-2 67.98972 390 442.2 mg/L 69 85 115 1 20 M33 VG2628939CCV3 CCV 09/10/21 18.23 11210910-2 67.98972 390 436.7 mg/L 69 85 115 1 20 M33 VG2628939CCV3 CCV 09/10/21 18.23 11210910-2 67.98972	ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
NGS209391CB ICB 09/10/21 16:41 1210901-4 .501 .53 mg/L 100 mg/L 100 130 IGS208391CW PCV 09/10/21 16:54 11210901-4 .5005615 153.5 mg/L 90 110 200 150.5 mg/L 90 110 100	WG526939													
NGS28339PQV PQV 0910/2116:51 1/21091-4 5.0015 .5.3 mg/L 06 7.0 1.30 NGS28339EC Sic 0910/2116:54 1/21091-2 07.002170 1/2001-2 07.002170 1/2001-2 07.002170 1/2001-2 07.002 07.01 090 96 1 2.00 NGS28393CC1 CCV 0910/2117.33 1/21091-2 07.99972 50 49.31 mg/L 99 90 110 100 100 VGS28393CC2 CCV 0910/2118:13 1/210926-2 50 49.33 mg/L 99 90 110 1 20 M3 VGS28393CC32 CC0 0910/2118:13 1/210910-2 67.98972 390 442.2 mg/L 99 85 115 1 20 M3 VGS26939CC33 CC0 0910/2118:30 1/210910-2 67.98972 390 442.2 mg/L 99 85 115 1 20 M3 VGS26939CC33 CC0 0910/2118:30 1/210910-2 67.98972 300 442.2 mg/L 90	WG526939ICV	ICV	09/10/21 16:41	II210826-1	100		97.85	mg/L	98	95	105			
NGS2839SIC SIC 0910/21 16:54 1/20097-1 200.56015 193.5 mg/L 96 1 200 NGS28939LFB LFB 0910/21 17:30 1/20097-2 67.98972 67.13 mg/L 99 85 115 NGS28939CCV1 CCV 0910/21 17:33 1/210826-2 50 49.43 mg/L 99 90 110 100 NGS28939CCV2 CCV 0910/21 18:31 1/210826-2 50 49.43 mg/L 99 90 110 100<	WG526939ICB	ICB	09/10/21 16:47				U	mg/L		-0.3	0.3			
RG528939LFB LFB 09/10/21 17:30 III21082-2 50 67.13 mpl. 99 85 115 VG528939CCV1 CCW 09/10/21 17:31 III21082-2 50 49.31 mpl. 99 90 110 VG526939CCV2 CCW 09/10/21 18:18 III21082-2 50 49.43.1 mpl. 99 90 110 VG526939CCV2 CCW 09/10/21 18:18 III210910-2 67.98972 390 48.2 mpl. 99 90 110 50 M3 VG526939CCV3 CCW 09/10/21 18:36 III210910-2 67.98972 390 48.2 mpl. 99 90 110 50 M3 VG526939CCV3 CCW 09/10/21 18:36 III21080-2 67.98972 390 48.2 mpl. 99 90 110 50 M3 VG526939CCV3 CCW 09/10/21 18:36 III21080-2 F3.8972 M9L 101 90 110 50 50 mpl. 101 90 110 50 50 50 50 50 15	WG526939PQV	PQV	09/10/21 16:51	II210901-4	.50015		.53	mg/L	106	70	130			
MG528939CCV1 CCV 09/10/21 17.33 III210826-2 50 49.31 mpl. 99 90 110 //G528939CC12 CCV 09/10/21 18:18 III210826-2 50 49.43 mpl. -0.3 0.3 //G526939CC22 CCV 09/10/21 18:18 III210910-2 67.98972 390 442.2 mpl. 77 85 115 M M3 68204-04AS AS 09/10/21 18:18 III210910-2 67.98972 390 442.2 mpl. 90 90 110 M3 68204-04ASD ASD 09/10/21 18:31 III210826-2 50 49.28 myl. 90 90 110 M3 (G526939CCV CCV 09/10/21 18:31 III210826-2 50 49.28 myl. 90 90 110 M3 (G526939CCV2 CCW 09/10/21 18:31 III210826-2 50 Hayl myl. 90 90 110 M3 50 50 myl. 100 90 110 M3 50 50 50 myl. 100 90 <	WG526939SIC	SIC	09/10/21 16:54	II210907-1	200.56015		193.5	mg/L	96	1	200			
RG526939CC81 CC8 09/10/21 17:36 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	WG526939LFB	LFB	09/10/21 17:00	II210910-2	67.98972		67.13	mg/L	99	85	115			
RG526939CCV2 CCV 09/10/21 18:13 11210826-2 50 49.43 mg/L 99 90 110 VG526939CCB2 CCB 09/10/21 18:16 1121011-2 67.98972 390 442.2 mg/L 77 85 115 1 20 M3 S820-404XS AS 09/10/21 18:36 1121091-2 67.98972 390 442.2 mg/L 99 90 110 1 20 M3 VG526939CCB3 CCB 09/10/21 18:36 1121091-2 67.98972 390 442.2 mg/L 99 90 110 1 20 M3 VG520580CC3 CCB 09/10/21 18:36 11210826-2 50 49.28 mg/L 99 90 110 1 20 M3 VG5270581CV CCV 09/13/21 16:07 VI210503-1 54.85 mg/L 100 90 110 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 <	WG526939CCV1	CCV	09/10/21 17:33	II210826-2	50		49.31	mg/L	99	90	110			
Construction Construction<	WG526939CCB1	CCB	09/10/21 17:36				U	mg/L		-0.3	0.3			
B8204-04AS AS 09/10/21 18:19 II210910-2 67.98972 390 442.2 mg/L 77 85 115 1 20 M3 88204-04ASD ASD 09/10/21 18:23 II210910-2 67.98972 390 436.7 mg/L 69 85 115 1 20 M3 (G5269390CC3 CCW 09/10/21 18:39 II210826-2 50 49.28 mg/L 69 85 115 1 20 M3 (G5206930CC3 CCW 09/10/21 18:39 II210826-2 50 49.28 mg/L 69 90 0110 -0.3 0.3 (G520580CV CCW Analyzed PCN/SCN QC Sample Found Ints Ref 100 90 110 - - 16.5 15.5 1 5.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5	WG526939CCV2	CCV	09/10/21 18:13	II210826-2	50		49.43	mg/L	99	90	110			
B8204-04ASD (G526939CCV3 ASD CCV 09/10/21 18:23 09/10/21 18:39 II210910-2 III210826-2 67.98972 50 390 49.28 49.28 mpL 49.28 mgL 99 90 90 115 100 1 20 M3 Id5056939CC83 CCV 09/10/21 18:30 III10826-2 50 190 99 90 110 .0.3 .0.3 Idforde SM4500CI-E C21D Type Analyzed PCN/SCN QC Sample Found Units Rec/ Lower Upper RPD Limit Qual VG527058 CV 09/13/21 16:07 W1210503-1 54.89 54.85 mgL 100 90 110 Sample	WG526939CCB2	CCB	09/10/21 18:16				U	mg/L		-0.3	0.3			
RG526939CCV3 CCV 09/10/21 18:39 II20826-2 50 49.28 mg/L 99 90 110 RG526939CCB3 CCV 09/10/21 18:39 II20826-2 50 U mg/L 99 90 110 RG526939CCB3 CCV 09/10/21 18:39 PCN/SCN QC Sample Found Units Res/ Lower Upper RPD Lmit Qual RG5270580 ICV 09/13/21 16:07 WI210503-1 54.85 mg/L 100 90 110 Sample Found Interval Interval Interval RPD Lmit Qual VG5270581C ICV 09/13/21 16:07 WI210908-11 29.97 16.7 46.54 mg/L 100 90 110 Sample Particip Sample Particip Interval I	L68204-04AS	AS	09/10/21 18:19	II210910-2	67.98972	390	442.2	mg/L	77	85	115			M3
CGS26030CCB3 CCB 09/10/21 18:39 U mg/L -0.3 0.3 hloride SM4500Cl-E CZ ID Type Analyzed PCN/SCN QC Sample Found Units Res% Lower Upper RPD Limit Qual VG527058 VC527058 V VI210503-1 54.89 54.85 mg/L 100 90 110 V <thv< td=""><td>L68204-04ASD</td><td>ASD</td><td>09/10/21 18:23</td><td>II210910-2</td><td>67.98972</td><td>390</td><td>436.7</td><td>mg/L</td><td>69</td><td>85</td><td>115</td><td>1</td><td>20</td><td>M3</td></thv<>	L68204-04ASD	ASD	09/10/21 18:23	II210910-2	67.98972	390	436.7	mg/L	69	85	115	1	20	M3
hloride SM4500Cl-E CZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec% Lower Upper RPD Limit Qual VG527058 U 09/13/21 16:07 WI210503-1 54.89 54.85 mg/L 100 90 110 1.5 1.5 1.0 90 110	WG526939CCV3	CCV	09/10/21 18:36	II210826-2	50		49.28	mg/L	99	90	110			
C2 ID Type Analyzed PCN/SCN QC Sample Found Units Rec% Lower Upper RPD Limit Qual VG527058 09/13/21 16:07 W1210503-1 54.89 54.85 mg/L 100 90 110	WG526939CCB3	CCB	09/10/21 18:39				U	mg/L		-0.3	0.3			
VG527058 V/G527058 //G527058/ICV ICV 09/13/21 16:07 54.89 54.85 mg/L 100 90 110 //G527058/ICB ICB 09/13/21 16:07 1.5 1.5 //G527058/ICB ILFB 09/13/21 16:08 WI210908-11 29.97 31.14 mg/L 104 90 110 38200-06DUP DUP 09/13/21 16:10 17.1 16.83 mg/L 2 20 //G527058CCV1 CCV 09/13/21 16:13 WI210203-7 50.05 50.5 mg/L 101 90 110 //G527058CCV2 CCV 09/13/21 16:13 WI210203-7 50.05 50.22 mg/L 101 90 110 //G527058CCB2 CCB 09/13/21 16:20 U mg/L -1.5 1.5 //G527058CCB2 CCB 09/13/21 16:20 WI210203-7 50.05 50.31 mg/L 101 90 110 //G527058CCB3 CCB 09/13/21 16:26	Chloride			SM4500	CI-E									
Victor 09/13/21 16:07 WI210503-1 54.89 54.85 mg/L 100 90 110 Victor27058ICB ICB 09/13/21 16:07 WI210908-11 29.97 31.14 mg/L 104 90 110 S8200-05AS AS 09/13/21 16:09 WI210908-11 29.97 16.7 46.54 mg/L 100 90 110 S8200-06DUP DUP 09/13/21 16:10 WI210203-7 50.05 50.5 mg/L 101 90 110 Victor27058CCV1 CCV 09/13/21 16:13 WI210203-7 50.05 50.5 mg/L 101 90 110 Victor27058CCV2 CCV 09/13/21 16:13 WI210203-7 50.05 50.22 mg/L 100 90 110 Victor27058CCV2 CCV 09/13/21 16:20 WI210203-7 50.05 50.22 mg/L 100 90 110 Victor27058CCV2 CCV 09/13/21 16:20 WI210203-7 50.05 50.31 mg/L 101 <t< td=""><td>ACZ ID</td><td>Туре</td><td>Analyzed</td><td>PCN/SCN</td><td>QC</td><td>Sample</td><td>Found</td><td>Units</td><td>Rec%</td><td>Lower</td><td>Upper</td><td>RPD</td><td>Limit</td><td>Qual</td></t<>	ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
KG527058ICB ICB 09/13/21 16:07 .6.55 mg/L -1.5 1.5 KG527058LFB1 LFB 09/13/21 16:08 WI210908-11 29.97 31.14 mg/L 104 90 110 S8200-05AS AS 09/13/21 16:09 WI210908-11 29.97 16.7 46.54 mg/L 100 90 110 S8200-05DUP DUP 09/13/21 16:10 WI210203-7 50.05 50.55 mg/L 101 90 110 /G527058CCV1 CCV 09/13/21 16:13 WI210203-7 50.05 50.55 mg/L 101 90 110 /G527058CCV2 CCV 09/13/21 16:17 . .82 .66 mg/L -1.5 1.5 /G527058CCV2 CCV 09/13/21 16:19 WI210203-7 50.05 50.22 mg/L 100 90 110 /G527058CCV2 CCV 09/13/21 16:29 WI210203-7 50.05 50.31 mg/L 101 90 110 /G527058CCV3 CCV 09/13/21 16:29 WI210203-7 50.05 51.66 mg/L 101 <td>WG527058</td> <td></td>	WG527058													
GS27058LFB1 LFB 09/13/21 16:08 WI210908-11 29.97 31.14 mg/L 104 90 110 58200-05AS AS 09/13/21 16:09 WI210908-11 29.97 16.7 46.54 mg/L 100 90 110 58200-06DUP DUP 09/13/21 16:10 WI210203-7 50.05 50.5 mg/L 101 90 110 /G527058CCB1 CCB 09/13/21 16:13 WI210203-7 50.05 50.5 mg/L 101 90 110 /G527058CCB2 CCB 09/13/21 16:17 22 20 RA /G527058CCV2 CCV 09/13/21 16:19 WI210203-7 50.05 50.22 mg/L 100 90 110 22 20 RA /G527058CCP3 CCB 09/13/21 16:20 WI210203-7 50.05 50.31 mg/L 101 90 110	WG527058ICV	ICV	09/13/21 16:07	WI210503-1	54.89		54.85	mg/L	100	90	110			
88200-05AS AS 09/13/21 16:09 Wl210908-11 29.97 16.7 46.54 mg/L 100 90 110 68200-06DUP DUP 09/13/21 16:10 Wl210203-7 50.05 50.5 mg/L 101 90 110 /G527058CCB1 CCB 09/13/21 16:13 Wl210203-7 50.05 50.5 mg/L 101 90 110 /G527058CCB1 CCB 09/13/21 16:13 Wl210203-7 50.05 50.22 mg/L 100 90 110 /G527058CCV2 CCV 09/13/21 16:19 Wl210203-7 50.05 50.22 mg/L 100 90 110 /G527058CCV2 CCV 09/13/21 16:20 Wl210203-7 50.05 50.22 mg/L 101 90 110 /G527058CCV2 CCV 09/13/21 16:20 Wl210203-7 50.05 50.31 mg/L 101 90 110 /G527058CCV3 CCV 09/13/21 16:25 Wl210203-7 50.05 51.66 mg/L 101 90 110 /G527058CCV3 CCV 09/13/21 16:30 Wl2	WG527058ICB	ICB	09/13/21 16:07				.65	mg/L		-1.5	1.5			
B8200-06DUP DUP 09/13/21 16:10 17.1 16.83 mg/L 2 20 /G527058CCV1 CCV 09/13/21 16:13 W1210203-7 50.05 50.5 mg/L 101 90 110 /G527058CCB1 CCB 09/13/21 16:13 W1210203-7 50.05 50.5 mg/L 101 90 110 /G527058CCV2 CCV 09/13/21 16:17	WG527058LFB1	LFB	09/13/21 16:08	WI210908-11	29.97		31.14	mg/L	104	90	110			
VG527058CCV1 CCV 09/13/21 16:13 WI210203-7 50.05 50.5 mg/L 101 90 110 VG527058CCB1 CCB 09/13/21 16:13 WI210203-7 50.05 50.2 mg/L -1.5 1.5 S8208-01DUP DUP 09/13/21 16:17 82 66 mg/L 22 20 RA VG527058CCV2 CCV 09/13/21 16:19 WI210203-7 50.05 50.22 mg/L 100 90 110 VG527058CCB2 CCB 09/13/21 16:20 U mg/L 101 90 110 VG527058CCV3 CCV 09/13/21 16:23 WI210203-7 50.05 50.31 mg/L 101 90 110 VG527058CCV3 CCV 09/13/21 16:25 WI210203-7 50.05 50.31 mg/L 101 90 110 VG527058CCV4 CCV 09/13/21 16:30 WI210203-7 50.05 51.66 mg/L 103 90 110 VG527058CCV4 CCV 09/13/21 16:45 WI210203-7 50.05	L68200-05AS	AS	09/13/21 16:09	WI210908-11	29.97	16.7	46.54	mg/L	100	90	110			
V/G527058CCB1 CCB 09/13/21 16:13 U mg/L -1.5 1.5 68208-01DUP DUP 09/13/21 16:17 .82 .66 mg/L 22 20 RA //G527058CCV2 CCV 09/13/21 16:19 WI210203-7 50.05 50.22 mg/L 100 90 110 //G527058CCB2 CCB 09/13/21 16:20 U mg/L -1.5 1.5 1.5 //G527058CCB3 CCB 09/13/21 16:20 WI210203-7 50.05 50.31 mg/L 101 90 110 //G527058CCV3 CCV 09/13/21 16:25 WI210203-7 50.05 50.31 mg/L 101 90 110 //G527058CCV3 CCB 09/13/21 16:26 WI210203-7 50.05 51.66 mg/L 103 90 110 //G527058CCV4 CCV 09/13/21 16:45 WI210203-7 50.05 51.46 mg/L 103 90 110 //G527058CCV5 CCV 09/13/21 16:45 WI210203-7 50.05 51.81 mg/L 104 90 110 <	L68200-06DUP	DUP	09/13/21 16:10			17.1	16.83	mg/L				2	20	
B8208-01DUP DUP 09/13/21 16:17 .82 .66 mg/L 22 20 RA /G527058CCV2 CCV 09/13/21 16:19 W1210203-7 50.05 50.22 mg/L 100 90 110 /G527058CCB2 CCB 09/13/21 16:20 U mg/L -1.5 1.5 1.5 /G527058CCB3 CCB 09/13/21 16:20 W1210203-7 50.05 50.31 mg/L 101 90 110 /G527058CCB3 CCB 09/13/21 16:25 W1210203-7 50.05 50.31 mg/L 101 90 110 /G527058CCB3 CCB 09/13/21 16:26 W1210203-7 50.05 51.66 mg/L 103 90 110 /G527058CCV4 CCV 09/13/21 16:30 W1210203-7 50.05 51.66 mg/L 103 90 110 /G527058CCV5 CCV 09/13/21 16:45 W1210203-7 50.05 51.46 mg/L 103 90 110 /G527058CCV5 CCV 09/13/21 16:45 W1210203-7 50.05 51.81 mg/L 104	WG527058CCV1	CCV	09/13/21 16:13	WI210203-7	50.05		50.5	mg/L	101	90	110			
/G527058CCV2 CCV 09/13/21 16:19 WI210203-7 50.05 50.22 mg/L 100 90 110 /G527058CCB2 CCB 09/13/21 16:20 U mg/L 101 90 110 /G527058CCB2 LFB 09/13/21 16:20 WI210908-11 29.97 30.3 mg/L 101 90 110 /G527058CCV3 CCV 09/13/21 16:25 WI210203-7 50.05 50.31 mg/L 101 90 110 /G527058CCV3 CCB 09/13/21 16:26 WI210203-7 50.05 51.66 mg/L 103 90 110 /G527058CCV4 CCV 09/13/21 16:30 WI210203-7 50.05 51.66 mg/L 103 90 110 /G527058CCV5 CCV 09/13/21 16:45 WI210203-7 50.05 51.46 mg/L 103 90 110 /G527058CCV5 CCV 09/13/21 16:45 WI210203-7 50.05 51.46 mg/L 103 90 110 /G527058CCV5 CCV 09/13/21 16:46 U mg/L 104 90	WG527058CCB1	CCB	09/13/21 16:13				U	mg/L		-1.5	1.5			
VG527058CCB2 CCB 09/13/21 16:20 U mg/L -1.5 1.5 VG527058LFB2 LFB 09/13/21 16:23 WI210908-11 29.97 30.3 mg/L 101 90 110 VG527058CCV3 CCV 09/13/21 16:25 WI210203-7 50.05 50.31 mg/L 101 90 110 VG527058CCV3 CCB 09/13/21 16:26 WI210203-7 50.05 51.66 mg/L 103 90 110 VG527058CCV4 CCB 09/13/21 16:30 WI210203-7 50.05 51.66 mg/L 103 90 110 VG527058CCV5 CCV 09/13/21 16:45 WI210203-7 50.05 51.46 mg/L 103 90 110 VG527058CCV5 CCV 09/13/21 16:45 WI210203-7 50.05 51.46 mg/L 103 90 110 VG527058CCV5 CCV 09/13/21 16:45 WI210203-7 50.05 51.46 mg/L 103 90 110 VG527058CCV6 CCV 09/13/21 16:46 WI210203-7 50.05 51.81 mg/L <t< td=""><td>L68208-01DUP</td><td>DUP</td><td>09/13/21 16:17</td><td></td><td></td><td>.82</td><td>.66</td><td>mg/L</td><td></td><td></td><td></td><td>22</td><td>20</td><td>RA</td></t<>	L68208-01DUP	DUP	09/13/21 16:17			.82	.66	mg/L				22	20	RA
/G527058LFB2 LFB 09/13/21 16:23 WI210908-11 29.97 30.3 mg/L 101 90 110 /G527058CCV3 CCV 09/13/21 16:25 WI210203-7 50.05 50.31 mg/L 101 90 110 /G527058CCV3 CCB 09/13/21 16:26 WI210203-7 50.05 50.31 mg/L 101 90 110 /G527058CCV4 CCV 09/13/21 16:30 WI210203-7 50.05 51.66 mg/L 103 90 110 /G527058CCV4 CCB 09/13/21 16:45 WI210203-7 50.05 51.46 mg/L 103 90 110 /G527058CCV5 CCV 09/13/21 16:45 WI210203-7 50.05 51.46 mg/L 103 90 110 /G527058CCV5 CCV 09/13/21 16:45 WI210203-7 50.05 51.46 mg/L 103 90 110 /G527058CCV5 CCV 09/13/21 16:45 WI210203-7 50.05 51.81 mg/L 104 90 110 /G527058CCV6 CCV 09/13/21 16:48 WI210203-7	WG527058CCV2	CCV	09/13/21 16:19	WI210203-7	50.05		50.22	mg/L	100	90	110			
VG527058CCV3 CCV 09/13/21 16:25 WI210203-7 50.05 50.31 mg/L 101 90 110 VG527058CCB3 CCB 09/13/21 16:26 U mg/L 101 90 110 VG527058CCB4 CCV 09/13/21 16:30 WI210203-7 50.05 51.66 mg/L 103 90 110 VG527058CCB4 CCB 09/13/21 16:30 WI210203-7 50.05 51.46 mg/L 103 90 110 VG527058CCV5 CCV 09/13/21 16:45 WI210203-7 50.05 51.46 mg/L 103 90 110 VG527058CCV5 CCV 09/13/21 16:45 WI210203-7 50.05 51.46 mg/L 103 90 110 VG527058CCV5 CCV 09/13/21 16:45 WI210203-7 50.05 51.81 mg/L 104 90 110 VG527058CCV6 CCV 09/13/21 16:48 WI210203-7 50.05 51.81 mg/L 104 90 110	WG527058CCB2	CCB	09/13/21 16:20				U	mg/L		-1.5	1.5			
VG527058CCB3 CCB 09/13/21 16:26 U mg/L -1.5 1.5 VG527058CCV4 CCV 09/13/21 16:30 WI210203-7 50.05 51.66 mg/L 103 90 110 VG527058CCV4 CCB 09/13/21 16:30 WI210203-7 50.05 51.66 mg/L 103 90 110 VG527058CCV5 CCV 09/13/21 16:45 WI210203-7 50.05 51.46 mg/L 103 90 110 VG527058CCV5 CCV 09/13/21 16:45 WI210203-7 50.05 51.46 mg/L 103 90 110 VG527058CCV6 CCV 09/13/21 16:46 WI210203-7 50.05 51.81 mg/L 104 90 110 VG527058CCV6 CCV 09/13/21 16:48 WI210203-7 50.05 51.81 mg/L 104 90 110	WG527058LFB2	LFB	09/13/21 16:23	WI210908-11	29.97		30.3	mg/L	101	90	110			
/G527058CCV4 CCV 09/13/21 16:30 WI210203-7 50.05 51.66 mg/L 103 90 110 /G527058CCV4 CCB 09/13/21 16:30 U mg/L -1.5 1.5 /G527058CCV5 CCV 09/13/21 16:45 WI210203-7 50.05 51.46 mg/L 103 90 110 /G527058CCV5 CCV 09/13/21 16:45 WI210203-7 50.05 51.46 mg/L 103 90 110 /G527058CCV6 CCB 09/13/21 16:46 WI210203-7 50.05 51.81 mg/L 104 90 110 /G527058CCV6 CCV 09/13/21 16:48 WI210203-7 50.05 51.81 mg/L 104 90 110	WG527058CCV3	CCV	09/13/21 16:25	WI210203-7	50.05		50.31	mg/L	101	90	110			
/G527058CCB4 CCB 09/13/21 16:30 U mg/L -1.5 1.5 /G527058CCV5 CCV 09/13/21 16:45 WI210203-7 50.05 51.46 mg/L 103 90 110 /G527058CCV5 CCB 09/13/21 16:46 U mg/L -1.5 1.5 /G527058CCV6 CCV 09/13/21 16:48 WI210203-7 50.05 51.81 mg/L 104 90 110	WG527058CCB3	CCB	09/13/21 16:26				U	mg/L		-1.5	1.5			
/G527058CCV5 CCV 09/13/21 16:45 WI210203-7 50.05 51.46 mg/L 103 90 110 /G527058CCB5 CCB 09/13/21 16:46 U mg/L -1.5 1.5 /G527058CCV6 CCV 09/13/21 16:48 WI210203-7 50.05 51.81 mg/L 104 90 110	WG527058CCV4	CCV	09/13/21 16:30	WI210203-7	50.05		51.66	mg/L	103	90	110			
/G527058CCB5 CCB 09/13/21 16:46 U mg/L -1.5 1.5 /G527058CCV6 CCV 09/13/21 16:48 WI210203-7 50.05 51.81 mg/L 104 90 110	WG527058CCB4	CCB	09/13/21 16:30				U	mg/L		-1.5	1.5			
/G527058CCV6 CCV 09/13/21 16:48 WI210203-7 50.05 51.81 mg/L 104 90 110	WG527058CCV5	CCV	09/13/21 16:45	WI210203-7	50.05		51.46	mg/L	103	90	110			
	WG527058CCB5	CCB	09/13/21 16:46				U	mg/L		-1.5	1.5			
IC527058CCB6 CCB 00/13/21 16:48 51 mg/l _15 1.5	WG527058CCV6	CCV	09/13/21 16:48	WI210203-7	50.05		51.81	mg/L	104	90	110			
	WG527058CCB6	CCB	09/13/21 16:48				.51	mg/L		-1.5	1.5			
/G527058CCV7 CCV 09/13/21 16:59 WI210203-7 50.05 50.55 mg/L 101 90 110	WG527058CCV7	CCV	09/13/21 16:59	WI210203-7	50.05		50.55	mg/L	101	90	110			
/G527058CCB7 CCB 09/13/21 16:59 U mg/L -1.5 1.5	WG527058CCB7	CCB	09/13/21 16:59				U	mg/L		-1.5	1.5			
68204-04AS AS 09/13/21 17:00 5XCL 30 109 133.4 mg/L 81 90 110 M2	L68204-04AS	AS	09/13/21 17:00	5XCL	30	109	133.4	mg/L	81	90	110			M2
/G527058CCV8 CCV 09/13/21 17:00 WI210203-7 50.05 52.36 mg/L 105 90 110	WG527058CCV8	CCV	09/13/21 17:00	WI210203-7	50.05		52.36	mg/L	105	90	110			
/G527058CCB8 CCB 09/13/21 17:01 .52 mg/L -1.5 1.5	WG527058CCB8	CCB	09/13/21 17:01				.52	mg/L		-1.5	1.5			

GCC Rio Grande

ACZ Project ID: L68204

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Chromium, diss	olved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG526939													
WG526939ICV	ICV	09/10/21 16:41	II210826-1	2		1.974	mg/L	99	95	105			
WG526939ICB	ICB	09/10/21 16:47				U	mg/L		-0.06	0.06			
WG526939PQV	PQV	09/10/21 16:51	II210901-4	.0502		.047	mg/L	94	70	130			
WG526939SIC	SIC	09/10/21 16:54	II210907-1	.1004		.081	mg/L	81	80	120			
WG526939LFB	LFB	09/10/21 17:00	II210910-2	.5005		.494	mg/L	99	85	115			
WG526939CCV1	CCV	09/10/21 17:33	II210826-2	1		.993	mg/L	99	90	110			
WG526939CCB1	CCB	09/10/21 17:36				U	mg/L		-0.06	0.06			
WG526939CCV2	CCV	09/10/21 18:13	II210826-2	1		.994	mg/L	99	90	110			
WG526939CCB2	CCB	09/10/21 18:16				U	mg/L		-0.06	0.06			
L68204-04AS	AS	09/10/21 18:19	II210910-2	.5005	U	.488	mg/L	98	85	115			
L68204-04ASD	ASD	09/10/21 18:23	II210910-2	.5005	U	.488	mg/L	98	85	115	0	20	
WG526939CCV3	CCV	09/10/21 18:36	II210826-2	1		.991	mg/L	99	90	110			
WG526939CCB3	CCB	09/10/21 18:39				U	mg/L		-0.06	0.06			
Cobalt, dissolve	ed		M200.7 I	СР									

Cobait, dissolve	^{zu}		101200.7										
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG526939													
WG526939ICV	ICV	09/10/21 16:41	II210826-1	2.01		1.959	mg/L	97	95	105			
WG526939ICB	ICB	09/10/21 16:47				U	mg/L		-0.06	0.06			
WG526939PQV	PQV	09/10/21 16:51	II210901-4	.05005		.049	mg/L	98	70	130			
WG526939SIC	SIC	09/10/21 16:54	II210907-1	.1001		.091	mg/L	91	80	120			
WG526939LFB	LFB	09/10/21 17:00	II210910-2	.5005		.482	mg/L	96	85	115			
WG526939CCV1	CCV	09/10/21 17:33	II210826-2	1.005		.995	mg/L	99	90	110			
WG526939CCB1	CCB	09/10/21 17:36				U	mg/L		-0.06	0.06			
WG526939CCV2	CCV	09/10/21 18:13	II210826-2	1.005		.991	mg/L	99	90	110			
WG526939CCB2	CCB	09/10/21 18:16				U	mg/L		-0.06	0.06			
L68204-04AS	AS	09/10/21 18:19	II210910-2	.5005	U	.472	mg/L	94	85	115			
L68204-04ASD	ASD	09/10/21 18:23	II210910-2	.5005	U	.473	mg/L	95	85	115	0	20	
WG526939CCV3	CCV	09/10/21 18:36	II210826-2	1.005		.991	mg/L	99	90	110			
WG526939CCB3	CCB	09/10/21 18:39				U	mg/L		-0.06	0.06			

Copper, dissolved

M200.7 ICP

ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG526939													
WG526939ICV	ICV	09/10/21 16:41	II210826-1	2		1.952	mg/L	98	95	105			
WG526939ICB	ICB	09/10/21 16:47				U	mg/L		-0.03	0.03			
WG526939PQV	PQV	09/10/21 16:51	II210901-4	.05		.05	mg/L	100	70	130			
WG526939SIC	SIC	09/10/21 16:54	II210907-1	.1		.101	mg/L	101	80	120			
WG526939LFB	LFB	09/10/21 17:00	II210910-2	.5		.496	mg/L	99	85	115			
WG526939CCV1	CCV	09/10/21 17:33	II210826-2	1		.975	mg/L	98	90	110			
WG526939CCB1	CCB	09/10/21 17:36				U	mg/L		-0.03	0.03			
WG526939CCV2	CCV	09/10/21 18:13	II210826-2	1		.971	mg/L	97	90	110			
WG526939CCB2	CCB	09/10/21 18:16				U	mg/L		-0.03	0.03			
L68204-04AS	AS	09/10/21 18:19	II210910-2	.5	U	.5	mg/L	100	85	115			
L68204-04ASD	ASD	09/10/21 18:23	II210910-2	.5	U	.501	mg/L	100	85	115	0	20	
WG526939CCV3	CCV	09/10/21 18:36	II210826-2	1		.971	mg/L	97	90	110			
WG526939CCB3	CCB	09/10/21 18:39				U	mg/L		-0.03	0.03			

GCC Rio Grande

ACZ Project ID: L68204

Fluoride			SM4500F	-C									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG527249													
WG527249ICV	ICV	09/15/21 15:35	WC210903-1	2.002		2.04	mg/L	102	90	110			
WG527249ICB	ICB	09/15/21 15:40				U	mg/L		-0.3	0.3			
WG527249PQV	PQV	09/15/21 15:44	WC210803-3	.3514		.36	mg/L	102	70	130			
WG527249LFB1	LFB	09/15/21 15:47	WC210803-9	5.02		4.74	mg/L	94	90	110			
L68077-04AS	AS	09/15/21 16:23	WC210803-9	5.02	U	4.55	mg/L	91	90	110			
L68077-04ASD	ASD	09/15/21 16:31	WC210803-9	5.02	U	4.59	mg/L	91	90	110	1	20	
WG527249CCV1	CCV	09/15/21 16:58	WC210903-1	2.002		2.09	mg/L	104	90	110			
WG527249CCB1	CCB	09/15/21 17:06				U	mg/L		-0.3	0.3			
WG527249CCV2	CCV	09/15/21 18:56	WC210903-1	2.002		2.11	mg/L	105	90	110			
WG527249CCB2	CCB	09/15/21 19:04				U	mg/L		-0.3	0.3			
L68221-01AS	AS	09/15/21 19:20	WC210803-9	5.02	.31	5.19	mg/L	97	90	110			
L68221-01ASD	ASD	09/15/21 19:28	WC210803-9	5.02	.31	5.21	mg/L	98	90	110	0	20	
WG527249LFB2	LFB	09/15/21 19:56	WC210803-9	5.02		4.76	mg/L	95	90	110			
WG527249CCV3	CCV	09/15/21 20:30	WC210903-1	2.002		2.11	mg/L	105	90	110			
WG527249CCB3	CCB	09/15/21 20:38				U	mg/L		-0.3	0.3			
WG527249CCV4	CCV	09/15/21 22:13	WC210903-1	2.002		2.13	mg/L	106	90	110			
WG527249CCB4	CCB	09/15/21 22:21				U	mg/L		-0.3	0.3			
WG527249CCV5	CCV	09/15/21 23:40	WC210903-1	2.002		2.11	mg/L	105	90	110			
WG527249CCB5	CCB	09/15/21 23:48				U	mg/L		-0.3	0.3			
Iron, dissolved			M200.7 IC	P									

ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG526939													
WG526939ICV	ICV	09/10/21 16:41	II210826-1	2		1.977	mg/L	99	95	105			
WG526939ICB	ICB	09/10/21 16:47				U	mg/L		-0.18	0.18			
WG526939PQV	PQV	09/10/21 16:51	II210901-4	.150015		.149	mg/L	99	70	130			
WG526939SIC	SIC	09/10/21 16:54	II210907-1	200.170015		192.5	mg/L	96	1	200			
WG526939LFB	LFB	09/10/21 17:00	II210910-2	1.0001		1.017	mg/L	102	85	115			
WG526939CCV1	CCV	09/10/21 17:33	II210826-2	1		1.005	mg/L	101	90	110			
WG526939CCB1	CCB	09/10/21 17:36				U	mg/L		-0.18	0.18			
WG526939CCV2	CCV	09/10/21 18:13	II210826-2	1		1.004	mg/L	100	90	110			
WG526939CCB2	CCB	09/10/21 18:16				U	mg/L		-0.18	0.18			
L68204-04AS	AS	09/10/21 18:19	II210910-2	1.0001	U	1.017	mg/L	102	85	115			
L68204-04ASD	ASD	09/10/21 18:23	II210910-2	1.0001	U	1.022	mg/L	102	85	115	0	20	
WG526939CCV3	CCV	09/10/21 18:36	II210826-2	1		.995	mg/L	100	90	110			
WG526939CCB3	CCB	09/10/21 18:39				U	mg/L		-0.18	0.18			

GCC Rio Grande

ACZ Project ID: L68204

Lead, dissolved			M200.8 I	ICP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG527157													
WG527157ICV	ICV	09/14/21 13:14	MS210727-2	.05		.05138	mg/L	103	90	110			
WG527157ICB	ICB	09/14/21 13:15				U	mg/L		-0.00022	0.00022			
WG527157LFB	LFB	09/14/21 13:17	MS210827-2	.05005		.04997	mg/L	100	85	115			
L68208-01AS	AS	09/14/21 13:28	MS210827-2	.05005	.00048	.05219	mg/L	103	70	130			
L68208-01ASD	ASD	09/14/21 13:30	MS210827-2	.05005	.00048	.05122	mg/L	101	70	130	2	20	
WG527157CCV1	CCV	09/14/21 13:35	MS210909-2	.25025		.23798	mg/L	95	90	110			
WG527157CCB1	ССВ	09/14/21 13:37				U	mg/L		-0.0003	0.0003			
WG527157CCV2	CCV	09/14/21 13:57	MS210909-2	.25025		.24182	mg/L	97	90	110			
WG527157CCB2	ССВ	09/14/21 13:59				.00012	mg/L		-0.0003	0.0003			
WG527157CCV3	CCV	09/14/21 14:10	MS210909-2	.25025		.23909	mg/L	96	90	110			
WG527157CCB3	ССВ	09/14/21 14:12				.00012	mg/L		-0.0003	0.0003			
Lithium dissolu	ad		M200.7 I										
Lithium, dissolv		Anolyzed			Comula	Found	Unite	Deel	1	Linner		Lineit	Qual
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG526939													
WG526939ICV	ICV	09/10/21 16:41	II210826-1	2		1.9772	mg/L	99	95	105			
WG526939ICB	ICB	09/10/21 16:47				U	mg/L		-0.024	0.024			
WG526939PQV	PQV	09/10/21 16:51	II210901-4	.03996		.0391	mg/L	98	70	130			
WG526939SIC	SIC	09/10/21 16:54	II210907-1	.0999		.0995	mg/L	100	80	120			
WG526939LFB	LFB	09/10/21 17:00	II210910-2	.999		.9742	mg/L	98	85	115			
WG526939CCV1	CCV	09/10/21 17:33	II210826-2	1		.9821	mg/L	98	90	110			
WG526939CCB1	CCB	09/10/21 17:36				U	mg/L		-0.024	0.024			
WG526939CCV2	CCV	09/10/21 18:13	II210826-2	1		.9754	mg/L	98	90	110			
WG526939CCB2	CCB	09/10/21 18:16				U	mg/L		-0.024	0.024			
L68204-04AS	AS	09/10/21 18:19	II210910-2	.999	.52	1.508	mg/L	99	85	115			
L68204-04ASD	ASD	09/10/21 18:23	II210910-2	.999	.52	1.514	mg/L	99	85	115	0	20	
WG526939CCV3	CCV	09/10/21 18:36	II210826-2	1		.9797	mg/L	98	90	110			
WG526939CCB3	CCB	09/10/21 18:39				U	mg/L		-0.024	0.024			
Magnesium, dis	solved		M200.7 I	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG526939													
WG526939ICV	ICV	09/10/21 16:41	II210826-1	100		95.67	mg/L	96	95	105			
WG526939IC8	ICB	09/10/21 16:47				55.07 U	mg/L	00	-0.6	0.6			
WG526939PQV	PQV	09/10/21 16:51	II210901-4	1.0001		1.05	mg/L	105	-0:0	130			
WG5269395IC	SIC	09/10/21 16:54	II210907-1	201.0201		199.7	mg/L	99	1	200			
WG526939LFB	LFB	09/10/21 17:00	II210910-2	49.99828		47.68	mg/L	95 95	85	115			
WG526939CCV1	CCV	09/10/21 17:33	II210826-2	49.99020 50		47.93	mg/L	95 96	90	110			
WG526939CCV1 WG526939CCB1	CCB	09/10/21 17:35		50		47.93 U	mg/L	30	-0.6	0.6			
WG526939CCV2	CCV	09/10/21 18:13	II210826-2	50		48.34	mg/L	97	-0.0 90	110			
WG526939CCV2	CCB	09/10/21 18:15		00		40.34 U	mg/L	51	-0.6	0.6			
L68204-04AS	AS	09/10/21 18:10	II210910-2	49.99828	396	434.1	mg/L	76	-0.0 85	0.8 115			M3
L68204-04ASD	ASD	09/10/21 18:23	II210910-2	49.99828	396	429.2	mg/L	66	85	115	1	20	M3
WG526939CCV3	CCV	09/10/21 18:23	II210826-2	49.99828 50	330	429.2 48.04	mg/L	96	90	115	I	20	UND
WG526939CCV3	CCB	09/10/21 18:30	1210020-2	50		40.04 U	mg/L	30	-0.6	0.6			
** 33203330003	COB	03/10/21 10.39				0	my/∟		-0.0	0.0			

GCC Rio Grande

ACZ Project ID: L68204

Manganese, dis	solved		M200.7	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG526939													
WG526939ICV	ICV	09/10/21 16:41	II210826-1	2		1.951	mg/L	98	95	105			
WG526939ICB	ICB	09/10/21 16:47				U	mg/L		-0.03	0.03			
WG526939PQV	PQV	09/10/21 16:51	II210901-4	.05005		.049	mg/L	98	70	130			
WG526939SIC	SIC	09/10/21 16:54	II210907-1	50.10005		46.79	mg/L	93	1	200			
WG526939LFB	LFB	09/10/21 17:00	II210910-2	.5005		.498	mg/L	100	85	115			
WG526939CCV1	CCV	09/10/21 17:33	II210826-2	1		.988	mg/L	99	90	110			
WG526939CCB1	CCB	09/10/21 17:36				U	mg/L		-0.03	0.03			
WG526939CCV2	CCV	09/10/21 18:13	II210826-2	1		.985	mg/L	99	90	110			
WG526939CCB2	CCB	09/10/21 18:16				U	mg/L		-0.03	0.03			
L68204-04AS	AS	09/10/21 18:19	II210910-2	.5005	.066	.555	mg/L	98	85	115			
L68204-04ASD	ASD	09/10/21 18:23	II210910-2	.5005	.066	.552	mg/L	97	85	115	1	20	
WG526939CCV3	CCV	09/10/21 18:36	II210826-2	1		.984	mg/L	98	90	110			
WG526939CCB3	CCB	09/10/21 18:39				U	mg/L		-0.03	0.03			

Mercury, dissolv	/ed		M245.1 C	VAA									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG526711													
WG526711ICV	ICV	09/08/21 11:29	HG210830-3	.00501		.00497	mg/L	99	95	105			
WG526711ICB	ICB	09/08/21 11:30				U	mg/L		-0.0002	0.0002			
WG526731													
WG526731CCV1	CCV	09/08/21 14:11	HG210830-3	.00501		.00525	mg/L	105	90	110			
WG526731CCB1	CCB	09/08/21 14:12				U	mg/L		-0.0002	0.0002			
WG526731PQV	PQV	09/08/21 14:13	HG210830-8	.001001		.00085	mg/L	85	70	130			
WG526731LRB	LRB	09/08/21 14:14				U	mg/L		-0.00044	0.00044			
WG526731LFB	LFB	09/08/21 14:15	HG210830-6	.002002		.00179	mg/L	89	85	115			
L68204-03LFM	LFM	09/08/21 14:22	HG210830-6	.002002	U	.00183	mg/L	91	85	115			
WG526731CCV2	CCV	09/08/21 14:23	HG210830-3	.00501		.00499	mg/L	100	90	110			
WG526731CCB2	CCB	09/08/21 14:24				U	mg/L		-0.0002	0.0002			
L68204-03LFMD	LFMD	09/08/21 14:25	HG210830-6	.002002	U	.00184	mg/L	92	85	115	1	20	
WG526731CCV3	CCV	09/08/21 14:34	HG210830-3	.00501		.00497	mg/L	99	90	110			
WG526731CCB3	CCB	09/08/21 14:35				U	mg/L		-0.0002	0.0002			
WG526731CCV4	CCV	09/08/21 14:40	HG210830-3	.00501		.00498	mg/L	99	90	110			
WG526731CCB4	CCB	09/08/21 14:41				U	mg/L		-0.0002	0.0002			

GCC Rio Grande

ACZ Project ID: L68204

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Nickel, dissolve	d		M200.7 IC	P									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG526939													
WG526939ICV	ICV	09/10/21 16:41	II210826-1	2		1.9758	mg/L	99	95	105			
WG526939ICB	ICB	09/10/21 16:47				U	mg/L		-0.024	0.024			
WG526939PQV	PQV	09/10/21 16:51	II210901-4	.04		.04	mg/L	100	70	130			
WG526939SIC	SIC	09/10/21 16:54	II210907-1	.1		.0943	mg/L	94	80	120			
WG526939LFB	LFB	09/10/21 17:00	II210910-2	.5		.4933	mg/L	99	85	115			
WG526939CCV1	CCV	09/10/21 17:33	II210826-2	1		1.005	mg/L	101	90	110			
WG526939CCB1	CCB	09/10/21 17:36				U	mg/L		-0.024	0.024			
WG526939CCV2	CCV	09/10/21 18:13	II210826-2	1		1.007	mg/L	101	90	110			
WG526939CCB2	CCB	09/10/21 18:16				U	mg/L		-0.024	0.024			
L68204-04AS	AS	09/10/21 18:19	II210910-2	.5	.017	.4924	mg/L	95	85	115			
L68204-04ASD	ASD	09/10/21 18:23	II210910-2	.5	.017	.4942	mg/L	95	85	115	0	20	
WG526939CCV3	CCV	09/10/21 18:36	II210826-2	1		1.003	mg/L	100	90	110			
WG526939CCB3	CCB	09/10/21 18:39				U	mg/L		-0.024	0.024			

Nitrate/Nitrite as N, dissolved

M353.2 - Automated Cadmium Reduction

ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG526531													
WG526531ICV	ICV	09/03/21 1:13	WI210603-7	2.416		2.362	mg/L	98	90	110			
WG526531ICB	ICB	09/03/21 1:14				U	mg/L		-0.02	0.02			
WG526531PQV	PQV	09/03/21 1:18	WI210331-14	.1		.097	mg/L	97	70	130			
WG526531LFB	LFB	09/03/21 1:19	WI210331-13	2		2.097	mg/L	105	90	110			
L68133-01AS	AS	09/03/21 1:21	WI210331-13	2	U	2.063	mg/L	103	90	110			
L68133-02DUP	DUP	09/03/21 1:24			.681	.668	mg/L				2	20	
WG526531CCV1	CCV	09/03/21 1:28	WI210828-1	2		2.086	mg/L	104	90	110			
NG526531CCB1	CCB	09/03/21 1:31				U	mg/L		-0.02	0.02			
L68204-02AS	AS	09/03/21 1:41	WI210331-13	2	.907	3.061	mg/L	108	90	110			
L68204-03DUP	DUP	09/03/21 1:44			.022	.033	mg/L				40	20	RA
WG526531CCV2	CCV	09/03/21 1:45	WI210828-1	2		2.119	mg/L	106	90	110			
WG526531CCB2	CCB	09/03/21 1:48				U	mg/L		-0.02	0.02			
WG526531CCV3	CCV	09/03/21 2:01	WI210828-1	2		2.096	mg/L	105	90	110			
WG526531CCB3	CCB	09/03/21 2:04				U	mg/L		-0.02	0.02			

GCC Rio Grande

ACZ Project ID: L68204

Nitrite as N, dise	solved		M353.2 -	Automated	l Cadmiun	n Reduc	tion						
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG526531													
WG526531ICV	ICV	09/03/21 1:13	WI210603-7	.609		.584	mg/L	96	90	110			
WG526531ICB	ICB	09/03/21 1:14				U	mg/L		-0.01	0.01			
WG526531PQV	PQV	09/03/21 1:18	WI210331-14	.05		.051	mg/L	102	70	130			
WG526531LFB	LFB	09/03/21 1:19	WI210331-13	1		1.004	mg/L	100	90	110			
L68133-01AS	AS	09/03/21 1:21	WI210331-13	1	U	.994	mg/L	99	90	110			
L68133-02DUP	DUP	09/03/21 1:24			U	U	mg/L				0	20	RA
WG526531CCV1	CCV	09/03/21 1:28	WI210828-1	1		.983	mg/L	98	90	110			
WG526531CCB1	CCB	09/03/21 1:31				U	mg/L		-0.01	0.01			
L68204-02AS	AS	09/03/21 1:41	WI210331-13	1	U	1.027	mg/L	103	90	110			
L68204-03DUP	DUP	09/03/21 1:44			.014	.014	mg/L				0	20	RA
WG526531CCV2	CCV	09/03/21 1:45	WI210828-1	1		.993	mg/L	99	90	110			
WG526531CCB2	CCB	09/03/21 1:48				U	mg/L		-0.01	0.01			
WG526531CCV3	CCV	09/03/21 2:01	WI210828-1	1		.992	mg/L	99	90	110			
WG526531CCB3	CCB	09/03/21 2:04				U	mg/L		-0.01	0.01			
Potassium, diss	olved		M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG526939													
WG526939ICV	ICV	09/10/21 16:41	II210826-1	20		19.8	mg/L	99	95	105			
WG526939ICB	ICB	09/10/21 16:47				U	mg/L		-0.6	0.6			
WG526939PQV	PQV	09/10/21 16:51	II210901-4	.9958		1.06	mg/L	106	70	130			
WG526939SIC	SIC	09/10/21 16:54	II210907-1	.9958		1.08	mg/L	108	80	120			
WG526939LFB	LFB	09/10/21 17:00	II210910-2	99.96008		97.78	mg/L	98	85	115			
WG526939CCV1	CCV	09/10/21 17:33	II210826-2	10		9.88	mg/L	99	90	110			
WG526939CCB1	ССВ	09/10/21 17:36				U	mg/L		-0.6	0.6			
WG526939CCV2	CCV	09/10/21 18:13	II210826-2	10		10.12	mg/L	101	90	110			
WG526939CCB2	ССВ	09/10/21 18:16				.28	mg/L		-0.6	0.6			
L68204-04AS	AS	09/10/21 18:19	II210910-2	99.96008	10.9	112	mg/L	101	85	115			
L68204-04ASD	ASD	09/10/21 18:23	II210910-2	99.96008	10.9	112	mg/L	101	85	115	0	20	
WG526939CCV3	CCV	09/10/21 18:36	II210826-2	10		10.12	mg/L	101	90	110			
WG526939CCB3	CCB	09/10/21 18:39				.28	mg/L		-0.6	0.6			
Residue, Filtera	ble (TDS) @180C	SM25400	С									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG526687													
WG526687PBW	PBW	09/07/21 14:10				U	mg/L		-20	20			
WG526687LCSW	LCSW	09/07/21 14:12	PCN64129	1000		998	mg/L	100	80	120			

GCC Rio Grande

ACZ Project ID: L68204

Selenium, disso	lved		M200.8 I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG527379													
WG527379ICV	ICV	09/16/21 13:20	MS210727-2	.05		.0503	mg/L	101	90	110			
WG527379ICB	ICB	09/16/21 13:21				.00012	mg/L		-0.00022	0.00022			
WG527379LFB	LFB	09/16/21 13:31	MS210827-2	.05		.04655	mg/L	93	85	115			
L68204-03AS	AS	09/16/21 13:38	MS210827-2	.25	U	.2091	mg/L	84	70	130			
L68204-03ASD	ASD	09/16/21 13:40	MS210827-2	.25	U	.22762	mg/L	91	70	130	8	20	
WG527379CCV1	CCV	09/16/21 13:49	MS210909-2	.25		.24021	mg/L	96	90	110			
WG527379CCB1	ССВ	09/16/21 13:51				.00013	mg/L		-0.0003	0.0003			
WG527379CCV2	CCV	09/16/21 14:12	MS210909-2	.25		.24758	mg/L	99	90	110			
WG527379CCB2	ССВ	09/16/21 14:14				.00012	mg/L		-0.0003	0.0003			
WG527379CCV3	CCV	09/16/21 14:25	MS210909-2	.25		.2368	mg/L	95	90	110			
WG527379CCB3	CCB	09/16/21 14:26				.00017	mg/L		-0.0003	0.0003			
Sodium, dissolv	ved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG526939													
WG526939ICV	ICV	09/10/21 16:41	II210826-1	100		99.83	mg/L	100	95	105			
WG526939ICV WG526939ICB	ICB	09/10/21 16:41	1210020-1	100		99.65 U	mg/L	100	-0.6	0.6			
WG526939PQV	PQV	09/10/21 16:51	II210901-4	1.0053		1.01	mg/L	100	-0.0	130			
WG5269395IC	SIC	09/10/21 16:54	II210907-1	1.0053		1.01	mg/L	100	80	130			
WG526939LFB	LFB	09/10/21 10:54	II210901-1	100.007		98.81	mg/L	99	80 85	120			
WG526939CCV1	CCV	09/10/21 17:33	II210826-2	50		49.56	mg/L	99 99	90	110			
WG526939CCB1	CCB	09/10/21 17:36	11210020-2	50		49.30 U	mg/L	99	-0.6	0.6			
WG526939CCV2	CCV	09/10/21 18:13	II210826-2	50		49.65	mg/L	99	-0.0 90	110			
WG526939CCB2	CCB	09/10/21 18:16	12100202	00		.24	mg/L	00	-0.6	0.6			
L68204-04AS	AS	09/10/21 18:19	II210910-2	100.007	661	744.4	mg/L	83	85	115			M3
L68204-04ASD	ASD	09/10/21 18:23	II210910-2	100.007	661	738.5	mg/L	77	85	115	1	20	M3
WG526939CCV3	CCV	09/10/21 18:36	II210826-2	50	001	49.48	mg/L	99	90	110		20	ivio
WG526939CCB3	CCB	09/10/21 18:39		00		.2	mg/L	00	-0.6	0.6			
WG527044	000	00,10,21 10,00					5		0.0	010			
WG527044ICV	ICV	09/14/21 16:04	II210826-1	100		100.6	mg/L	101	95	105			
WG527044ICB	ICB	09/14/21 16:10		100		U	mg/L	101	-0.6	0.6			
WG527044PQV	PQV	09/14/21 16:13	II210901-4	1.0053		.99	mg/L	98	70	130			
WG5270445IC	SIC	09/14/21 16:13	II210907-1	1.0053		1.12	mg/L	111	80	120			
WG527044LFB	LFB	09/14/21 16:23	II210910-2	100.007		99.78	mg/L	100	85	120			
WG527044CCV1	CCV	09/14/21 16:55	II210826-2	50		50.16	mg/L	100	90	110			
WG527044CCB1	CCB	09/14/21 16:58	-			U	mg/L		-0.6	0.6			
L68291-03AS	AS	09/14/21 17:02	II210910-2	100.007	3.49	103.3	mg/L	100	85	115			
L68291-03ASD	ASD	09/14/21 17:05	II210910-2	100.007	3.49	102.5	mg/L	99	85	115	1	20	
WG527044CCV2	CCV	09/14/21 17:34	II210826-2	50	0.10	49.56	mg/L	99	90	110			
WG527044CCB2	CCB	09/14/21 17:37				U	mg/L		-0.6	0.6			
WG527044CCV3	CCV	09/14/21 17:56	II210826-2	50		49.42	mg/L	99	90	110			
WG527044CCB3	CCB	09/14/21 18:00		50		43.42 U	mg/L	00	-0.6	0.6			
	000	50,11,2110.00				5			0.0	0.0			

GCC Rio Grande

ACZ Project ID: L68204

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Sulfate			D516-02/-	07/-11 - T	URBIDIM	ETRIC							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG527177													
WG527177ICB	ICB	09/15/21 9:54				U	mg/L		-3	3			
WG527177ICV	ICV	09/15/21 9:54	WI210909-1	20.46		19.9	mg/L	97	90	110			
WG527177CCV1	CCV	09/15/21 10:21	WI210909-2	25		25.9	mg/L	104	90	110			
WG527177CCB1	CCB	09/15/21 10:21				U	mg/L		-3	3			
WG527177LFB	LFB	09/15/21 10:21	WI210105-3	10		9.2	mg/L	92	90	110			
WG527177CCV2	CCV	09/15/21 10:23	WI210909-2	25		25.7	mg/L	103	90	110			
WG527177CCB2	CCB	09/15/21 10:23				U	mg/L		-3	3			
WG527177CCV3	CCV	09/15/21 10:25	WI210909-2	25		25.6	mg/L	102	90	110			
WG527177CCB3	CCB	09/15/21 10:25				U	mg/L		-3	3			
WG527177CCV4	CCV	09/15/21 10:46	WI210909-2	25		25.6	mg/L	102	90	110			
WG527177CCB4	CCB	09/15/21 10:46				U	mg/L		-3	3			
L68241-01DUP	DUP	09/15/21 10:46			87.1	86	mg/L				1	20	
WG527177CCV5	CCV	09/15/21 10:48	WI210909-2	25		25.4	mg/L	102	90	110			
WG527177CCB5	CCB	09/15/21 10:48				U	mg/L		-3	3			
WG527177CCV6	CCV	09/15/21 10:52	WI210909-2	25		24.8	mg/L	99	90	110			
WG527177CCB6	CCB	09/15/21 10:52				U	mg/L		-3	3			
WG527177CCV7	CCV	09/15/21 10:53	WI210909-2	25		25.4	mg/L	102	90	110			
WG527177CCB7	CCB	09/15/21 10:53				U	mg/L		-3	3			
WG527177CCV8	CCV	09/15/21 11:06	WI210909-2	25		25.7	mg/L	103	90	110			
WG527177CCB8	CCB	09/15/21 11:06				U	mg/L		-3	3			
L68209-02AS	AS	09/15/21 11:08	SO4TURB20X	10	758	750.6	mg/L	-74	90	110			M3
WG527177CCV9	CCV	09/15/21 11:08	WI210909-2	25		24.2	mg/L	97	90	110			
WG527177CCB9	CCB	09/15/21 11:08				U	mg/L		-3	3			
WG527177CCV10	CCV	09/15/21 11:10	WI210909-2	25		25.1	mg/L	100	90	110			
WG527177CCB10	CCB	09/15/21 11:10				U	mg/L		-3	3			
WG527177CCV11	CCV	09/15/21 11:28	WI210909-2	25		26	mg/L	104	90	110			
WG527177CCB11	CCB	09/15/21 11:28				U	mg/L		-3	3			
WG527177CCV12	CCV	09/15/21 11:29	WI210909-2	25		25.4	mg/L	102	90	110			
WG527177CCB12	CCB	09/15/21 11:29				U	mg/L		-3	3			
Vanadium, disso	olved		M200.7 IC	P									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG526939													
WG526939ICV	ICV	09/10/21 16:41	II210826-1	2		1.959	mg/L	98	95	105			
WG526939ICB	ICB	09/10/21 16:47		-		U	mg/L		-0.015	0.015			
WG526939PQV	PQV	09/10/21 16:51	II210901-4	.025025		.025	mg/L	100	70	130			
WG526939SIC	SIC	09/10/21 16:54	II210907-1	.1001		.085	mg/L	85	80	120			
WG526939LFB	LFB	09/10/21 17:00	II210910-2	.5005		.4961	mg/L	99	85	115			
WG526939CCV1	CCV	09/10/21 17:33	II210826-2	1		.982	mg/L	98	90	110			
WG526939CCB1	CCB	09/10/21 17:36		•		U	mg/L		-0.03	0.03			
WG526939CCV2	CCV	09/10/21 18:13	II210826-2	1		.979	mg/L	98	90	110			
		30, 10, ET 10, TU		•			-3						

U

.4823

.482

.98

U

U

U

mg/L

mg/L

mg/L

mg/L

mg/L

96

96

98

-0.03

85

85

90

-0.03

0.03

115

115

110

0.03

0

20

WG526939CCB2

L68204-04AS

L68204-04ASD

WG526939CCV3

WG526939CCB3

CCB 09/10/21 18:16

09/10/21 18:19

09/10/21 18:23

09/10/21 18:36

09/10/21 18:39

AS

ASD

CCV

CCB

II210910-2

II210910-2

II210826-2

.5005

.5005

1

GCC Rio Grande

ACZ Project ID: L68204

Zinc, dissolved			M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG526939													
WG526939ICV	ICV	09/10/21 16:41	II210826-1	2		1.965	mg/L	98	95	105			
WG526939ICB	ICB	09/10/21 16:47				U	mg/L		-0.06	0.06			
WG526939PQV	PQV	09/10/21 16:51	II210901-4	.05015		.049	mg/L	98	70	130			
WG526939SIC	SIC	09/10/21 16:54	II210907-1	.1003		.096	mg/L	96	80	120			
WG526939LFB	LFB	09/10/21 17:00	II210910-2	.50045		.508	mg/L	102	85	115			
WG526939CCV1	CCV	09/10/21 17:33	II210826-2	1		.982	mg/L	98	90	110			
WG526939CCB1	CCB	09/10/21 17:36				U	mg/L		-0.06	0.06			
WG526939CCV2	CCV	09/10/21 18:13	II210826-2	1		.987	mg/L	99	90	110			
WG526939CCB2	CCB	09/10/21 18:16				U	mg/L		-0.06	0.06			
L68204-04AS	AS	09/10/21 18:19	II210910-2	.50045	U	.524	mg/L	105	85	115			
L68204-04ASD	ASD	09/10/21 18:23	II210910-2	.50045	U	.525	mg/L	105	85	115	0	20	
WG526939CCV3	CCV	09/10/21 18:36	II210826-2	1		.984	mg/L	98	90	110			
WG526939CCB3	CCB	09/10/21 18:39				U	mg/L		-0.06	0.06			

(800) 334-5493

GCC Rio Grande

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L68204-01	WG526939	Calcium, dissolved	M200.7 ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
		Magnesium, dissolved	M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG526531	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG526939	Sodium, dissolved	M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527177	Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG526961	Total Alkalinity	SM2320B - Titration	ZW	Method deviation. The sample was centrifuged prior to analysis due to high solid content.
L68204-02	WG526939	Calcium, dissolved	M200.7 ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
		Magnesium, dissolved	M200.7 ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG526531	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG526939	Sodium, dissolved	M200.7 ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527177	Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.

(800) 334-5493

ACZ Project ID: L68204

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L68204-03	NG526939	Calcium, dissolved	M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
		Magnesium, dissolved	M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG526531	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG527177	Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
L68204-04	NG526939	Calcium, dissolved	M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527058	Chloride	SM4500CI-E	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			SM4500CI-E	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG526939	Magnesium, dissolved	M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG526531	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG526939	Sodium, dissolved	M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG527177	Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG526961	Total Alkalinity	SM2320B - Titration	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).

REPAD.15.06.05.01

ACZ Project ID: L68204

No certification qualifiers associated with this analysis

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493			imple ceipt	
GCC Rio Grande	ACZ Proje	ect ID:		L68204
	Date Rec	eived: 09	9/02/202	1 11:12
	Receive	•		
	Date Pr	rinted:	9	/3/2021
Receipt Verification		YES	NO	NA
1) Is a foreign soil permit included for applicable samples?		160	NO	X
2) Is the Chain of Custody form or other directive shipping papers present?		X		
3) Does this project require special handling procedures such as CLP protocol?			Х	
4) Are any samples NRC licensable material?				Х
5) If samples are received past hold time, proceed with requested short hold time and	alyses?	X		
6) Is the Chain of Custody form complete and accurate?	5	X		
7) Were any changes made to the Chain of Custody form prior to ACZ receiving the	samples?		Х	
Samples/Containers				
		YES	NO	NA
8) Are all containers intact and with no leaks?		Х		
9) Are all labels on containers and are they intact and legible?		Х		
10) Do the sample labels and Chain of Custody form match for Sample ID, Date, and	d Time?	Х		
11) For preserved bottle types, was the pH checked and within limits? $ ^{1}$		Х		
12) Is there sufficient sample volume to perform all requested work?		Х		
13) Is the custody seal intact on all containers?				Х
14) Are samples that require zero headspace acceptable?				Х
15) Are all sample containers appropriate for analytical requirements?		Х		
16) Is there an Hg-1631 trip blank present?				Х
17) Is there a VOA trip blank present?				V
(7) is there a voa the blank present?				Х

NA indicates Not Applicable

Chain of Custody Related Remarks

Client Contact Remarks

Shipping Containers

Cooler Id	Temp(°C)	Temp Criteria(°C)	Rad(µR/Hr)	Custody Seal Intact?
NA35837	2.7	<=6.0	15	Yes

Was ice present in the shipment container(s)?

Yes - Wet ice was present in the shipment container(s).

Client must contact an ACZ Project Manager if analysis should not proceed for samples received outside of their thermal preservation acceptance criteria.

Sample Receipt

GCC Rio Grande	
----------------	--

ACZ Project ID: L68204 Date Received: 09/02/2021 11:12 Received By:

Date Printed:

9/3/2021

¹ The preservation of the following bottle types is not checked at sample receipt: Orange (oil and grease), Purple (total cyanide), Pink (dissolved cyanide), Brown (arsenic speciation), Sterile (fecal coliform), EDTA (sulfite), HCl preserved vial (organics), Na2S2O3 preserved vial (organics), and HG-1631 (total/dissolved mercury by method 1631).

		oratories, Inc		R	200	$\overline{\mathbf{x}}$	C	HAII	N of	CUS	TOI	ΟY
	2773 Downhill Drive Steamboat	Springs, CO 80487 (800) 33	34-5493			<u> </u>						
	Report to: Name: Greg Gannon											
	Company: GCC Rio Gran	-	Address: 3372 Lime Road, Pueblo CO 81004									
	E-mail: ggannon@gcc.co		-	Tolor	ohone:	406.2	85 /0			<u>.</u>		
	Copy of Report to:			Tele	onone:	400.2	.05.48				_	
	Name: Landon Beck											
	Company: Resource Hyd		-		<u>iii: Ibec</u>			· · · · · ·	ogeol	ogic.c	om	
				lelep	hone:	970.4	59.48	65				
	Invoice to:											
	Name: Greg Gannon	4	Addre	ess: 33	372 Li	oad, F	, Pueblo CO 81004					
	Company: GCC Rio Gran		Telephone: 406.285.4977									
	E-mail: ggannon@gcc.cc If sample(s) received past holdi						85.45	977		VEO		
	analysis before expiration, shal	ACZ proceed with request	ed short	HT an	alyses?					YES NO	Ĥ	
	If "NO" then ACZ will contact client for further inst		ted, ACZ will		ith the reque	sted analys		HT is expire	d, and data	will be qual	ified	
	Are samples for SDWA Complia If yes, please include state form		to PQL f	Yes or Cold		J	No	×				
	Sampler's Name: 5. Laga	Sampler's Site Inform		State	CC		Zin co	de Sc	Bery.	Timo 7	no M	M
	*Sampler's Signature:	l 🖌 📲	o the authenti with the sam	- icity and val	lidity of this s	ample. I und	- lerstand tha	t intentiona	llv mislabelir			
	PROJECT INFORMATION					LYSES RE				quote nun	iber)	
	Quote #: GW-COMPLIANC	CE SUITE		ş	2							
	PO#: N/A '			of Containers	iote, n						[ľ
	Reporting state for compliance tes	sting: CO		ont	nb per							
	Check box if samples include NR	C licensed material?		с б	attached quote,							
	SAMPLE IDENTIFICATION	DATE:TIME	Matrix	*	Per							
	MVV-6	8/31/21 : 1330	GW	3								
	MW-7	8/31/21:1270	au	3	×							
	MW-8 MW-2B	8/31/21:1300	GW	3	X							
	IVIVV-2D	3/31/21:1235	ω	3	X			片				
								片	╞	╞┼		
							H		╞			붜
					F	H	H		H	H		
						Ē	Ē	F	n	Ħ	H	뉨
	Matrix SW (Surface Water)	(Ground Water) · WW (Waste V	Vater) · D	W (Drink	ing Wate	r) · SL (SI	udge) · {	SO (Soil)	· OL (Oil)	• Other	(Specify)	
	REMARKS											
ō												
st od		efer to ACZ's terms & cond	litions lo	cated	on the i	reverse	side o	of this C	OC.			
Ö	RELINQUISHED BY	CONTE:TI	ME		R	ECEIV	ED BY	:		DA	ГЕ:ТІ№	E
ų	300 Kar	× 31/21	1402	$\overline{\mathbf{A}}$			~ ~				1	
<u> </u>	()_	$>$ $i \cdot i$		V	$2 \sim$		$ \leq 1 $	21	21		<u> -/</u>	Í L
E		Mathite Determination 1					/	/				
	FRMAD050.06.14.14	White - Return with sample	. Yelk	ow - Re	tain for y	our reco	ords.					
828												
68204	-2109201235											Page
L00204	2100201200											, aye

December 09, 2021

Report to: Greg Gannon GCC Rio Grande 3372 Lime Road Pueblo, CO 81004 Bill to: Greg Gannon GCC Rio Grande 3372 Lime Road Pueblo, CO 81004

Project ID: ACZ Project ID: L70041

Greg Gannon:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on November 19, 2021. This project has been assigned to ACZ's project number, L70041. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan. The enclosed results relate only to the samples received under L70041. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after December 09, 2022. If the samples are determined to be hazardous, additional charges apply for disposal (typically \$11/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical raw data reports for ten years.

If you have any questions or other needs, please contact your Project Manager.

Bill Lane has reviewed and approved this report

Project ID: Sample ID: MW-6

Inorganic Analytical Results

ACZ Sample ID: L70041-01 Date Sampled: 11/18/21 14:28 Date Received: 11/19/21 Sample Matrix: Groundwater

Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	M200.7 ICP	1	<0.05	U		mg/L	0.05	0.25	11/29/21 18:30	kja
Arsenic, dissolved	M200.8 ICP-MS	5	<0.001	U		mg/L	0.001	0.005	12/01/21 10:59	mfm
Beryllium, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	11/29/21 18:30	kja
Boron, dissolved	M200.7 ICP	1	0.245			mg/L	0.03	0.1	11/29/21 18:30	kja
Cadmium, dissolved	M200.8 ICP-MS	5	<0.00025	U		mg/L	0.00025	0.00125	12/01/21 10:59	mfm
Calcium, dissolved	M200.7 ICP	1	383			mg/L	0.1	0.5	11/29/21 18:30	kja
Chromium, dissolved	M200.7 ICP	5	<0.1	U		mg/L	0.1	0.25	11/30/21 21:46	kja
Cobalt, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	11/29/21 18:30	kja
Copper, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	11/29/21 18:30	kja
Iron, dissolved	M200.7 ICP	1	<0.06	U		mg/L	0.06	0.15	11/29/21 18:30	kja
Lead, dissolved	M200.8 ICP-MS	5	<0.0005	U		mg/L	0.0005	0.0025	12/03/21 17:25	mfm
Lithium, dissolved	M200.7 ICP	1	0.469			mg/L	0.008	0.04	11/29/21 18:30	kja
Magnesium, dissolved	M200.7 ICP	1	473			mg/L	0.2	1	11/29/21 18:30	kja
Manganese, dissolved	M200.7 ICP	1	0.241			mg/L	0.01	0.05	11/29/21 18:30	kja
Mercury, dissolved	M245.1 CVAA	1	< 0.0002	U		mg/L	0.0002	0.001	11/24/21 12:42	mlh
Nickel, dissolved	M200.7 ICP	1	0.0763			mg/L	0.008	0.04	11/29/21 18:30	kja
Potassium, dissolved	M200.7 ICP	1	10.3			mg/L	0.2	1	11/29/21 18:30	kja
Selenium, dissolved	M200.8 ICP-MS	5	0.0153			mg/L	0.0005	0.00125	12/03/21 17:25	mfm
Sodium, dissolved	M200.7 ICP	1	589		*	mg/L	0.2	1	11/29/21 18:30	kja
Vanadium, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.025	11/30/21 12:10	jlw
Zinc, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	11/29/21 18:30	kja
Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as CaCO3		1	450			mg/L	2	20	12/01/21 0:00	jck
Carbonate as CaCO3		1	<2	U		mg/L	2	20	12/01/21 0:00	jck
Hydroxide as CaCO3		1	<2	U		mg/L	2	20	12/01/21 0:00	jck
Total Alkalinity		1	450			mg/L	2	20	12/01/21 0:00	jck
Chloride	SM4500CI-E	1	76.1		*	mg/L	0.5	2	12/03/21 11:11	md
Fluoride	SM4500F-C	1	0.62			mg/L	0.15	0.35	12/02/21 21:05	eep
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2		0.846			mg/L	0.02	0.1	12/09/21 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	0.846		*	mg/L	0.02	0.1	11/20/21 1:06	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	<0.01	U	*	mg/L	0.01	0.05	11/20/21 0:58	pjb
Residue, Filterable (TDS) @180C	SM2540C	5	5670		*	mg/L	100	200	11/24/21 14:22	anc
Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	^C 100	3750		*	mg/L	100	500	12/03/21 16:31	wtc

Project ID: Sample ID: MW-7

Inorganic Analytical Results

ACZ Sample ID: L70041-02 Date Sampled: 11/18/21 12:01 Date Received: 11/19/21 Sample Matrix: Groundwater

Metals Analysis									
Parameter	EPA Method	Dilution	Result	Qual XC	Q Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	M200.7 ICP	1	<0.05	U	mg/L	0.05	0.25	11/29/21 18:33	kja
Arsenic, dissolved	M200.8 ICP-MS	5	<0.001	U	mg/L	0.001	0.005	12/01/21 11:01	mfm
Beryllium, dissolved	M200.7 ICP	1	<0.01	U	mg/L	0.01	0.05	11/29/21 18:33	kja
Boron, dissolved	M200.7 ICP	1	0.187		mg/L	0.03	0.1	11/29/21 18:33	kja
Cadmium, dissolved	M200.8 ICP-MS	5	<0.00025	U	mg/L	0.00025	0.00125	12/01/21 11:01	mfm
Calcium, dissolved	M200.7 ICP	1	429		mg/L	0.1	0.5	11/29/21 18:33	kja
Chromium, dissolved	M200.7 ICP	5	<0.1	U	mg/L	0.1	0.25	11/30/21 21:49	kja
Cobalt, dissolved	M200.7 ICP	1	<0.02	U	mg/L	0.02	0.05	11/29/21 18:33	kja
Copper, dissolved	M200.7 ICP	1	<0.01	U	mg/L	0.01	0.05	11/29/21 18:33	kja
Iron, dissolved	M200.7 ICP	1	<0.06	U	mg/L	0.06	0.15	11/29/21 18:33	kja
Lead, dissolved	M200.8 ICP-MS	5	<0.0005	U	mg/L	0.0005	0.0025	12/03/21 17:27	mfm
Lithium, dissolved	M200.7 ICP	1	0.375		mg/L	0.008	0.04	11/29/21 18:33	kja
Magnesium, dissolved	M200.7 ICP	1	386		mg/L	0.2	1	11/29/21 18:33	kja
Manganese, dissolved	M200.7 ICP	1	0.060		mg/L	0.01	0.05	11/29/21 18:33	kja
Mercury, dissolved	M245.1 CVAA	1	<0.0002	U	mg/L	0.0002	0.001	11/24/21 12:45	mlh
Nickel, dissolved	M200.7 ICP	1	0.0157	В	mg/L	0.008	0.04	11/29/21 18:33	kja
Potassium, dissolved	M200.7 ICP	1	10.6		mg/L	0.2	1	11/29/21 18:33	kja
Selenium, dissolved	M200.8 ICP-MS	5	0.0284	*	mg/L	0.0005	0.00125	12/01/21 11:01	mfm
Sodium, dissolved	M200.7 ICP	1	402	*	mg/L	0.2	1	11/29/21 18:33	kja
Vanadium, dissolved	M200.7 ICP	1	<0.01	U	mg/L	0.01	0.025	11/30/21 12:13	jlw
Zinc, dissolved	M200.7 ICP	1	<0.02	U	mg/L	0.02	0.05	11/29/21 18:33	kja
Wet Chemistry									
Parameter	EPA Method	Dilution	Result	Qual XC) Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration								
Bicarbonate as CaCO3		1	299		mg/L	2	20	12/01/21 0:00	jck
Carbonate as CaCO3		1	<2	U	mg/L	2	20	12/01/21 0:00	jck
Hydroxide as CaCO3		1	<2	U	mg/L	2	20	12/01/21 0:00	jck
Total Alkalinity		1	299		mg/L	2	20	12/01/21 0:00	jck
Chloride	SM4500CI-E	1	52.9	*	mg/L	0.5	2	12/03/21 11:11	md
Fluoride	SM4500F-C	1	0.53		mg/L	0.15	0.35	12/02/21 21:13	eep
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2		3.84		mg/L	0.02	0.1	12/09/21 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	3.84	*	mg/L	0.02	0.1	11/20/21 0:59	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	<0.01	U *	mg/L	0.01	0.05	11/20/21 0:59	pjb
Residue, Filterable (TDS) @180C	SM2540C	2	4810	*	mg/L	40	80	11/24/21 14:24	anc
Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	² 100	3700	*	mg/L	100	500	12/03/21 16:31	wtc

Project ID: Sample ID: MW-2B

Inorganic Analytical Results

ACZ Sample ID: L70041-03 Date Sampled: 11/18/21 14:06 Date Received: 11/19/21 Sample Matrix: Groundwater

Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	M200.7 ICP	1	<0.05	U		mg/L	0.05	0.25	11/29/21 18:37	kja
Arsenic, dissolved	M200.8 ICP-MS	2	0.00084	В		mg/L	0.0004	0.002	12/01/21 11:03	mfm
Beryllium, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	11/29/21 18:37	kja
Boron, dissolved	M200.7 ICP	1	0.809			mg/L	0.03	0.1	11/29/21 18:37	kja
Cadmium, dissolved	M200.8 ICP-MS	2	<0.0001	U		mg/L	0.0001	0.0005	12/01/21 11:03	mfm
Calcium, dissolved	M200.7 ICP	1	104			mg/L	0.1	0.5	11/29/21 18:37	kja
Chromium, dissolved	M200.7 ICP	2	<0.04	U		mg/L	0.04	0.1	11/30/21 21:52	kja
Cobalt, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	11/29/21 18:37	kja
Copper, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	11/29/21 18:37	kja
Iron, dissolved	M200.7 ICP	1	<0.06	U		mg/L	0.06	0.15	11/29/21 18:37	kja
Lead, dissolved	M200.8 ICP-MS	2	<0.0002	U		mg/L	0.0002	0.001	12/03/21 17:29	mfm
Lithium, dissolved	M200.7 ICP	1	0.380			mg/L	0.008	0.04	11/29/21 18:37	kja
Magnesium, dissolved	M200.7 ICP	1	43.2			mg/L	0.2	1	11/29/21 18:37	kja
Manganese, dissolved	M200.7 ICP	1	0.270			mg/L	0.01	0.05	11/29/21 18:37	kja
Mercury, dissolved	M245.1 CVAA	1	<0.0002	U		mg/L	0.0002	0.001	11/24/21 12:46	mlh
Nickel, dissolved	M200.7 ICP	1	<0.008	U		mg/L	0.008	0.04	11/29/21 18:37	kja
Potassium, dissolved	M200.7 ICP	1	6.31			mg/L	0.2	1	11/29/21 18:37	kja
Selenium, dissolved	M200.8 ICP-MS	2	<0.0002	U	*	mg/L	0.0002	0.0005	12/01/21 11:03	mfm
Sodium, dissolved	M200.7 ICP	2	1150			mg/L	0.4	2	11/30/21 12:17	jlw
Vanadium, dissolved	M200.7 ICP	2	<0.02	U		mg/L	0.02	0.05	11/30/21 12:17	jlw
Zinc, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	11/29/21 18:37	kja
Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as CaCO3		1	1130			mg/L	2	20	12/01/21 0:00	jck
Carbonate as CaCO3		1	<2	U		mg/L	2	20	12/01/21 0:00	jck
Hydroxide as CaCO3		1	<2	U		mg/L	2	20	12/01/21 0:00	jck
Total Alkalinity		1	1130			mg/L	2	20	12/01/21 0:00	jck
Chloride	SM4500CI-E	5	288		*	mg/L	2.5	10	12/03/21 11:40	md
Fluoride	SM4500F-C	1	0.89			mg/L	0.15	0.35	12/02/21 21:21	eep
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2		0.078	В		mg/L	0.02	0.1	12/09/21 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	0.107		*	mg/L	0.02	0.1	11/20/21 1:00	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	0.029	В	*	mg/L	0.01	0.05	11/20/21 1:00	pjb
Residue, Filterable (TDS) @180C	SM2540C	5	3900		*	mg/L	100	200	11/24/21 14:27	anc
Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	75	1920		*	mg/L	75	375	12/03/21 15:20	wtc

GCC Rio Grande

Project ID: Sample ID: MW-8

Inorganic Analytical Results

ACZ Sample ID: L70041-04 Date Sampled: 11/18/21 13:51 Date Received: 11/19/21 Sample Matrix: Groundwater

Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	M200.7 ICP	1	<0.05	U		mg/L	0.05	0.25	11/29/21 18:47	kja
Arsenic, dissolved	M200.8 ICP-MS	5	<0.001	U		mg/L	0.001	0.005	12/01/21 11:05	mfm
Beryllium, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	11/29/21 18:47	kja
Boron, dissolved	M200.7 ICP	1	0.798			mg/L	0.03	0.1	11/29/21 18:47	kja
Cadmium, dissolved	M200.8 ICP-MS	5	<0.00025	U		mg/L	0.00025	0.00125	12/01/21 11:05	mfm
Calcium, dissolved	M200.7 ICP	1	107			mg/L	0.1	0.5	11/29/21 18:47	kja
Chromium, dissolved	M200.7 ICP	5	<0.1	U		mg/L	0.1	0.25	11/30/21 21:55	kja
Cobalt, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	11/29/21 18:47	kja
Copper, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	11/29/21 18:47	kja
Iron, dissolved	M200.7 ICP	1	<0.06	U		mg/L	0.06	0.15	11/29/21 18:47	kja
Lead, dissolved	M200.8 ICP-MS	5	<0.0005	U		mg/L	0.0005	0.0025	12/03/21 17:30	mfm
Lithium, dissolved	M200.7 ICP	1	0.378			mg/L	0.008	0.04	11/29/21 18:47	kja
Magnesium, dissolved	M200.7 ICP	1	46.5			mg/L	0.2	1	11/29/21 18:47	kja
Manganese, dissolved	M200.7 ICP	1	0.265			mg/L	0.01	0.05	11/29/21 18:47	kja
Mercury, dissolved	M245.1 CVAA	1	<0.0002	U		mg/L	0.0002	0.001	11/24/21 12:47	mlh
Nickel, dissolved	M200.7 ICP	1	<0.008	U		mg/L	0.008	0.04	11/29/21 18:47	kja
Potassium, dissolved	M200.7 ICP	1	6.44			mg/L	0.2	1	11/29/21 18:47	kja
Selenium, dissolved	M200.8 ICP-MS	5	<0.0005	U	*	mg/L	0.0005	0.00125	12/01/21 11:05	mfm
Sodium, dissolved	M200.7 ICP	2	1150			mg/L	0.4	2	11/30/21 12:20	jlw
Vanadium, dissolved	M200.7 ICP	2	<0.02	U		mg/L	0.02	0.05	11/30/21 12:20	jlw
Zinc, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	11/29/21 18:47	kja
Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as CaCO3		1	1140			mg/L	2	20	12/01/21 0:00	jck
Carbonate as CaCO3		1	<2	U		mg/L	2	20	12/01/21 0:00	jck
Hydroxide as CaCO3		1	<2	U		mg/L	2	20	12/01/21 0:00	jck
Total Alkalinity		1	1140			mg/L	2	20	12/01/21 0:00	jck
Chloride	SM4500CI-E	5	283		*	mg/L	2.5	10	12/03/21 11:41	md
Fluoride	SM4500F-C	1	0.90			mg/L	0.15	0.35	12/08/21 18:29	eep
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2		0.068	В		mg/L	0.02	0.1	12/09/21 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	0.096	В	*	mg/L	0.02	0.1	11/20/21 1:02	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	0.028	В	*	mg/L	0.01	0.05	11/20/21 1:02	pjb
Residue, Filterable (TDS) @180C	SM2540C	5	4040		*	mg/L	100	200	11/24/21 14:30	anc
Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	75	1920		*	mg/L	75	375	12/03/21 15:20	wtc

Inorganic Reference

Batch	A distinct set of samples analyzed at a specific time		
Found	Value of the QC Type of interest		
Limit	Upper limit for RPD, in %.		
Lower	Lower Recovery Limit, in % (except for LCSS, mg/Kg)		
MDL	Method Detection Limit. Same as Minimum Reporting Limit u	nless omitted or ed	gual to the PQL (see comment #5).
	Allows for instrument and annual fluctuations.		
PCN/SCN	A number assigned to reagents/standards to trace to the mar	ufacturer's certifica	ate of analysis
PQL	Practical Quantitation Limit. Synonymous with the EPA term	"minimum level".	
QC	True Value of the Control Sample or the amount added to the	Spike	
Rec	Recovered amount of the true value or spike added, in % (ex	cept for LCSS, mg	/Kg)
RPD	Relative Percent Difference, calculation used for Duplicate Q0	C Types	
Upper	Upper Recovery Limit, in % (except for LCSS, mg/Kg)		
Sample	Value of the Sample of interest		
C Sample Ty	rpes		
AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
ССВ	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSSD LCSW	Laboratory Control Sample - Soil Duplicate Laboratory Control Sample - Water	PQV SDL	Practical Quantitation Verification standard Serial Dilution
LCSW			
LCSW	Laboratory Control Sample - Water	SDL	
<i>LCSW</i> C Sample Ty	Laboratory Control Sample - Water vpe Explanations Verifies that there is no or minimal c	SDL ontamination in the	Serial Dilution e prep method or calibration procedure.
<i>LCSW</i> C Sample Ty Blanks	Laboratory Control Sample - Water	SDL ontamination in the including the prep	Serial Dilution e prep method or calibration procedure. procedure.
LCSW Sample Ty Blanks Control San Duplicates	Laboratory Control Sample - Water	SDL ontamination in the including the prep ent and/or method.	Serial Dilution e prep method or calibration procedure. procedure.
LCSW Sample Ty Blanks Control San Duplicates	Laboratory Control Sample - Water	SDL ontamination in the including the prep ent and/or method. nces, if any.	Serial Dilution e prep method or calibration procedure. procedure.
LCSW Sample Ty Blanks Control Sa Duplicates Spikes/For	Laboratory Control Sample - Water	SDL ontamination in the including the prep ent and/or method. nces, if any.	Serial Dilution e prep method or calibration procedure. procedure.
LCSW Sample Ty Blanks Control Sau Duplicates Spikes/For Standard	Laboratory Control Sample - Water	SDL ontamination in the including the prep ent and/or method. nces, if any.	Serial Dilution
LCSW Sample Ty Blanks Control San Duplicates Spikes/For Standard	Laboratory Control Sample - Water vpe Explanations with the explanations	SDL ontamination in the , including the prep ent and/or method. nces, if any. PQL. The associat	Serial Dilution e prep method or calibration procedure. procedure. e procedure.
LCSW Sample Ty Blanks Control Sar Duplicates Spikes/For Standard Z Qualifiers B	Laboratory Control Sample - Water rpe Explanations mples Verifies that there is no or minimal c mples Verifies the accuracy of the method, verifies the precision of the instrume tified Matrix Determines sample matrix interferent Verifies the validity of the calibration s (Qual) Analyte concentration detected at a value between MDL and	SDL ontamination in the including the prep ent and/or method. nces, if any. PQL. The associat n immediate hold t	Serial Dilution e prep method or calibration procedure. procedure. e procedure.
LCSW Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H	Laboratory Control Sample - Water ype Explanations mples Verifies that there is no or minimal c working Verifies the accuracy of the method, verifies the precision of the instrume Verifies the precision of the instrume ttified Matrix Determines sample matrix interferent Verifies the validity of the calibration s (Qual) Analyte concentration detected at a value between MDL and Analysis exceeded method hold time. pH is a field test with a	SDL ontamination in the including the prep ent and/or method. nces, if any. PQL. The associat n immediate hold t gative threshold.	Serial Dilution a prep method or calibration procedure. procedure. ted value is an estimated quantity. ime.
LCSW Sample Ty Blanks Control Sau Duplicates Spikes/For Standard Z Qualifiers B H L	Laboratory Control Sample - Water vpe Explanations mples Verifies that there is no or minimal or minimal or verifies the accuracy of the method, Verifies the precision of the instrument tified Matrix Determines sample matrix interferer Verifies the validity of the calibration s (Qual) Analyte concentration detected at a value between MDL and Analysis exceeded method hold time. pH is a field test with a Target analyte response was below the laboratory defined net	SDL ontamination in the including the prep ent and/or method. nces, if any. PQL. The associat n immediate hold t gative threshold. ne level of the associat	Serial Dilution a prep method or calibration procedure. procedure. ted value is an estimated quantity. ime. ciated value.
LCSW Sample Ty Blanks Control Sau Duplicates Spikes/For Standard Z Qualifiers B H L	Laboratory Control Sample - Water vpe Explanations with the explanations Werifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferer Verifies the validity of the calibration s (Qual) Analyte concentration detected at a value between MDL and Analysis exceeded method hold time. pH is a field test with a Target analyte response was below the laboratory defined ne The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or	SDL ontamination in the including the prep ent and/or method. nces, if any. PQL. The associat n immediate hold t gative threshold. ne level of the associat	Serial Dilution a prep method or calibration procedure. procedure. ted value is an estimated quantity. ime. ciated value.
LCSW Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U	Laboratory Control Sample - Water vpe Explanations mples Verifies that there is no or minimal control for the instrument of the data and the precision of the instrument of the data and the precision of the instrument of the data and the precision of the calibration tified Matrix Determines sample matrix interferent verifies the validity of the calibration s (Qual) Analyte concentration detected at a value between MDL and Analysis exceeded method hold time. pH is a field test with a Target analyte response was below the laboratory defined new The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the associated value is either the sample quantitation limit or the associated value is either the sample quantitation limit or the calibration of the test with a test of the test with a test of the data analyzed for the test and the precision of the test and the test of test of the test of test	SDL ontamination in the including the prep ent and/or method. nces, if any. PQL. The associat n immediate hold t gative threshold. ne level of the asso the sample detect	Serial Dilution a prep method or calibration procedure. procedure. de value is an estimated quantity. ime. deciated value. ion limit. h 1983.
LCSW Blanks Control Sau Duplicates Spikes/For Standard Z Qualifiers B H L U U ethod Reference (1) (2)	Laboratory Control Sample - Water vpe Explanations mples Verifies that there is no or minimal of verifies the accuracy of the method, Verifies the precision of the instrument to the instrument in the precision of the instrument in the precision of the instrument in the precision of the calibration s (Qual) Analyte concentration detected at a value between MDL and Analysis exceeded method hold time. pH is a field test with a Target analyte response was below the laboratory defined nee The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or ences EPA 600/4-83-020. Methods for Chemical Analysis of Water EPA 600/R-93-100. Methods for the Determination of Inorgan	SDL ontamination in the including the prep ent and/or method. nces, if any. PQL. The associat n immediate hold t gative threshold. In level of the associat the sample detect and Wastes, Marc nic Substances in I	Serial Dilution a prep method or calibration procedure. procedure. ed value is an estimated quantity. ime. ciated value. ion limit. h 1983. Environmental Samples, August 1993.
LCSW Blanks Control Sau Duplicates Spikes/For Standard CQUalifiers B H L U U Ethod Reference (1) (2) (3)	Laboratory Control Sample - Water vpe Explanations mples Verifies that there is no or minimal or verifies the accuracy of the method, Verifies the precision of the instrument the precision of the instrument interferent verifies the validity of the calibration s (Qual) Analyte concentration detected at a value between MDL and Analysis exceeded method hold time. pH is a field test with a Target analyte response was below the laboratory defined near The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or ences EPA 600/R-93-100. Methods for Chemical Analysis of Water EPA 600/R-94-111. Methods for the Determination of Inorgan EPA 600/R-94-111. Methods for the Determination of Metals	SDL ontamination in the including the prep ent and/or method. nces, if any. PQL. The associat n immediate hold t gative threshold. In level of the associat the sample detect and Wastes, Marc nic Substances in I	Serial Dilution a prep method or calibration procedure. procedure. ed value is an estimated quantity. ime. ciated value. ion limit. h 1983. Environmental Samples, August 1993.
LCSW Blanks Control Sau Duplicates Spikes/For Standard Z Qualifiers B H L U U ethod Refere (1) (2) (3) (4)	Laboratory Control Sample - Water vpe Explanations mples Verifies that there is no or minimal of verifies the accuracy of the method, Verifies the precision of the instrument to the instrument in the precision of the instrument in the precision of the instrument in the precision of the calibration s (Qual) Analyte concentration detected at a value between MDL and Analysis exceeded method hold time. pH is a field test with a Target analyte response was below the laboratory defined nee The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or ences EPA 600/4-83-020. Methods for Chemical Analysis of Water EPA 600/R-93-100. Methods for the Determination of Inorgan	SDL ontamination in the including the prep ent and/or method. nces, if any. PQL. The associat n immediate hold t gative threshold. In level of the associat the sample detect and Wastes, Marc nic Substances in I	Serial Dilution a prep method or calibration procedure. procedure. ed value is an estimated quantity. ime. ciated value. ion limit. h 1983. Environmental Samples, August 1993.
LCSW Blanks Control Sau Duplicates Spikes/For Standard CQUalifiers B H L U U Ethod Reference (1) (2) (3)	Laboratory Control Sample - Water vpe Explanations mples Verifies that there is no or minimal or verifies the accuracy of the method, Verifies the precision of the instrument the precision of the instrument interferent verifies the validity of the calibration s (Qual) Analyte concentration detected at a value between MDL and Analysis exceeded method hold time. pH is a field test with a Target analyte response was below the laboratory defined near The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or ences EPA 600/R-93-100. Methods for Chemical Analysis of Water EPA 600/R-94-111. Methods for the Determination of Inorgan EPA 600/R-94-111. Methods for the Determination of Metals	SDL ontamination in the including the prep ent and/or method. nces, if any. PQL. The associat n immediate hold t gative threshold. ne level of the asso the sample detect and Wastes, Marc nic Substances in I in Environmental S	Serial Dilution a prep method or calibration procedure. procedure. ed value is an estimated quantity. ime. ciated value. ion limit. h 1983. Environmental Samples, August 1993.
LCSW Blanks Control Sau Duplicates Spikes/For Standard Z Qualifiers B H L U U ethod Refere (1) (2) (3) (4)	Laboratory Control Sample - Water ype Explanations Imples Verifies that there is no or minimal or verifies the accuracy of the method, Verifies the precision of the instrume ttified Matrix Determines sample matrix interferent Verifies the validity of the calibration s (Qual) Analyte concentration detected at a value between MDL and Analysis exceeded method hold time. pH is a field test with a Target analyte response was below the laboratory defined near The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or ences EPA 600/R-93-100. Methods for Chemical Analysis of Water EPA 600/R-93-111. Methods for the Determination of Inorgan EPA 600/R-94-111. Methods for Evaluating Solid Waste.	SDL ontamination in the including the prep ent and/or method. nces, if any. PQL. The associat n immediate hold t gative threshold. ne level of the asso the sample detect and Wastes, Marc nic Substances in I in Environmental S	Serial Dilution a prep method or calibration procedure. procedure. ted value is an estimated quantity. ime. ciated value. ion limit. h 1983. Environmental Samples, August 1993.
LCSW Blanks Control Sau Duplicates Spikes/For Standard Z Qualifiers B H L U U ethod Reference (1) (2) (3) (4) (5) Entrol Reference (1)	Laboratory Control Sample - Water vpe Explanations mples Verifies that there is no or minimal of verifies the accuracy of the method, Verifies the precision of the instrument to the matrix tified Matrix Determines sample matrix interferer Verifies the validity of the calibration s (Qual) Analyte concentration detected at a value between MDL and Analysis exceeded method hold time. pH is a field test with a Target analyte response was below the laboratory defined nee The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or ences EPA 600/R-93-100. Methods for Chemical Analysis of Water EPA 600/R-94-111. Methods for the Determination of Inorgan EPA 600/R-94-111. Methods for the Determination of Metals EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wasteward QC results calculated from raw data. Results may vary slight	SDL ontamination in the including the prep ent and/or method. nces, if any. PQL. The associat n immediate hold t gative threshold. ne level of the asso the sample detect and Wastes, Marc nic Substances in I in Environmental S ater.	Serial Dilution e prep method or calibration procedure. procedure. ed value is an estimated quantity. ime. ciated value. ion limit. h 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations.
LCSW Blanks Control Sau Duplicates Spikes/For Standard CQualifiers B H L U U C C C C C C C C C C C C C C C C C	Laboratory Control Sample - Water ype Explanations Imples Verifies that there is no or minimal or verifies the accuracy of the method, Verifies the precision of the instrument to the instrument interferer verifies the validity of the calibration s (Qual) Analyte concentration detected at a value between MDL and Analysis exceeded method hold time. pH is a field test with a Target analyte response was below the laboratory defined nee The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or ences EPA 600/4-83-020. Methods for Chemical Analysis of Water EPA 600/R-93-100. Methods for the Determination of Inorgate EPA 600/R-94-111. Methods for the Determination of Metals EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wasteward	SDL ontamination in the including the prep ent and/or method. nces, if any. PQL. The associat n immediate hold t gative threshold. ne level of the asso the sample detect and Wastes, Marc nic Substances in I in Environmental S ater.	Serial Dilution e prep method or calibration procedure. procedure. ed value is an estimated quantity. ime. ciated value. ion limit. h 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations.
LCSW Blanks Control Sar Duplicates Spikes/For Standard Z Qualifiers B H L U U ethod Refere (1) (2) (3) (4) (5) D mments (1) (2) (3)	Laboratory Control Sample - Water vpe Explanations mples Verifies that there is no or minimal of verifies the accuracy of the method, Verifies the precision of the instrument the method of the verifies the precision of the instrument of the matrix tified Matrix Determines sample matrix interferent Verifies the validity of the calibration s (Qual) Analyte concentration detected at a value between MDL and Analysis exceeded method hold time. pH is a field test with a Target analyte response was below the laboratory defined new The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or ences EPA 600/R-93-100. Methods for Chemical Analysis of Water EPA 600/R-94-111. Methods for the Determination of Inorgan EPA 600/R-94-111. Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wasteward Soil, Sludge, and Plant matrices for Inorganic analyses are readmined for the method state. Results may vary slight Soil, Sludge, and Plant matrices for Inorganic analyses are readmined for the method state.	SDL ontamination in the including the prep ent and/or method. nces, if any. PQL. The associat n immediate hold t gative threshold. ne level of the asso the sample detect and Wastes, Marc nic Substances in I in Environmental S ater.	Serial Dilution a prep method or calibration procedure. procedure. ted value is an estimated quantity. ime. ted value. ion limit. h 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. telues are used in the calculations. teight basis.
LCSW Blanks Control Sau Duplicates Spikes/For Standard CQUalifiers B H L U U Ethod Reference (1) (2) (3) (4) (5) Comments (1) (2)	Laboratory Control Sample - Water	SDL ontamination in the including the prep ent and/or method. nces, if any. PQL. The associat n immediate hold t gative threshold. ne level of the asso the sample detect and Wastes, Marc nic Substances in I in Environmental S ater.	Serial Dilution e prep method or calibration procedure. procedure. ed value is an estimated quantity. ime. iciated value. ion limit. h 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. elues are used in the calculations. eight basis.
LCSW Blanks Control Sar Duplicates Spikes/For Standard Z Qualifiers B H L U U ethod Refere (1) (2) (3) (4) (5) D mments (1) (2) (3)	Laboratory Control Sample - Water vpe Explanations mples Verifies that there is no or minimal of verifies the accuracy of the method, Verifies the precision of the instrument the method of the verifies the precision of the instrument of the matrix tified Matrix Determines sample matrix interferent Verifies the validity of the calibration s (Qual) Analyte concentration detected at a value between MDL and Analysis exceeded method hold time. pH is a field test with a Target analyte response was below the laboratory defined new The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or ences EPA 600/R-93-100. Methods for Chemical Analysis of Water EPA 600/R-94-111. Methods for the Determination of Inorgan EPA 600/R-94-111. Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wasteward Soil, Sludge, and Plant matrices for Inorganic analyses are readmined for the method state. Results may vary slight Soil, Sludge, and Plant matrices for Inorganic analyses are readmined for the method state.	SDL ontamination in the including the prep ent and/or method. nces, if any. PQL. The associat n immediate hold t gative threshold. ne level of the asso the sample detect and Wastes, Marc nic Substances in I in Environmental S ater.	Serial Dilution a prep method or calibration procedure. procedure. ted value is an estimated quantity. ime. ciated value. ion limit. h 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. Hues are used in the calculations. Eight basis. ertification qualifier

https://acz.com/wp-content/uploads/2019/04/Ext-Qual-List.pdf

REP001.03.15.02

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

GCC

ACZ Project ID: L70041

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Alkalinity as CaC			SM2320	B - Titration									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG532647	21.												
WG532647PBW1	PBW	11/30/21 19:08	W0011110 1			U	mg/L		-20	20			
WG532647LCSW3	LCSW	11/30/21 19:30	WC211118-1	820.0001		816.6	mg/L	100	90	110			
WG532647PQV2	PQV	11/30/21 19:40	WC210630-2	20		24.4	mg/L	122	50	150			
WG532647LCSW6	LCSW	11/30/21 22:20	WC211118-1	820.0001		820.8	mg/L	100	90	110			
WG532647PBW2	PBW	11/30/21 22:27				4.7	mg/L		-20	20			
WG532647LCSW9	LCSW	12/01/21 1:34	WC211118-1	820.0001		823.8	mg/L	100	90	110			
WG532647PBW3	PBW	12/01/21 1:41				4.9	mg/L		-20	20			
L70041-03DUP	DUP	12/01/21 3:55			1130	1156.6	mg/L				2	20	
L70082-01DUP	DUP	12/01/21 5:56			1130	1139.2	mg/L				1	20	
WG532647LCSW12		12/01/21 6:16	WC211118-1	820.0001		808.9	mg/L	99	90	110			
WG532647PBW4	PBW	12/01/21 6:24				U	mg/L		-20	20			
WG532647LCSW15	LCSW	12/01/21 9:56	WC211118-1	820.0001		817	mg/L	100	90	110			
Aluminum, disso	lved		M200.7	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG532511													
WG532511ICV	ICV	11/29/21 18:04	II211118-1	2		1.992	mg/L	100	95	105			
WG532511ICB	ICB	11/29/21 18:10				U	mg/L		-0.15	0.15			
WG532511PQV	PQV	11/29/21 18:14	II211104-2	.250325		.213	mg/L	85	70	130			
WG532511SIC	SIC	11/29/21 18:17	II211027-2	200.410325		209.1	mg/L	104	1	200			
WG532511LFB	LFB	11/29/21 18:24	II211118-4	1.0008		1.01	mg/L	101	85	115			
L70041-03AS	AS	11/29/21 18:40	II211118-4	1.0008	U	1.013	mg/L	101	85	115			
L70041-03ASD	ASD	11/29/21 18:43	II211118-4	1.0008	U	1.008	mg/L	101	85	115	0	20	
WG532511CCV1	CCV	11/29/21 18:57	II211118-2	1		.973	mg/L	97	90	110			
WG532511CCB1	ССВ	11/29/21 19:00				U	mg/L		-0.15	0.15			
WG532511CCV2	CCV	11/29/21 19:36	ll211118-2	1		.973	mg/L	97	90	110			
WG532511CCB2	ССВ	11/29/21 19:39				U	mg/L		-0.15	0.15			
WG532511CCV3	CCV	11/29/21 19:58	II211118-2	1		.977	mg/L	98	90	110			
WG532511CCB3	ССВ	11/29/21 20:01				U	mg/L		-0.15	0.15			
Arsenic, dissolve	d		M200.8	ICP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG532669													
WG532669ICV	ICV	12/01/21 10:10	MS211013-2	.05		.05181	mg/L	104	90	110			
WG532669ICB	ICB	12/01/21 10:10		.00		.03181 U	mg/L		-0.00044	0.00044			
WG532669LFB	LFB	12/01/21 10:12	MS211115-2	.05005		.05071	mg/L	101	85	115			
WG532669CCV1	CCV	12/01/21 10:14	MS211119-2	.1001		.10336	mg/L	101	90	115			
		12/01/21 10:32	MOL 11110-Z	.1001		. 10330 U	mg/L	100					
WG532669CCB1 L69990-14AS	CCB AS		MS211115-2	05005	00224			108	-0.0006 70	0.0006			
		12/01/21 10:48		.05005	.00221	.05603	mg/L			130	10	20	
L69990-14ASD	ASD	12/01/21 10:50	MS211115-2	.05005	.00221	.05073	mg/L	97	70	130	10	20	
WG532669CCV2	CCV	12/01/21 10:54	MS211119-2	.1001		.10101	mg/L	101	90	110			
WG532669CCB2	CCB	12/01/21 10:56	M0044440.0	4004		U	mg/L	46.4	-0.0006	0.0006			
WG532669CCV3	CCV	12/01/21 11:06	MS211119-2	.1001		.10077	mg/L	101	90	110			
WG532669CCB3	CCB	12/01/21 11:08				U	mg/L		-0.0006	0.0006			

4 🗖 **AGZ** Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (

Inorganic QC Summary

(800) 334-5493

GCC

ACZ Project ID: L70041

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Beryllium, disso	lved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG532511													
WG532511ICV	ICV	11/29/21 18:04	II211118-1	2		1.952	mg/L	98	95	105			
WG532511ICB	ICB	11/29/21 18:10				U	mg/L		-0.03	0.03			
WG532511PQV	PQV	11/29/21 18:14	II211104-2	.05		.045	mg/L	90	70	130			
WG532511SIC	SIC	11/29/21 18:17	II211027-2	.1		.092	mg/L	92	80	120			
WG532511LFB	LFB	11/29/21 18:24	ll211118-4	.5005		.493	mg/L	99	85	115			
L70041-03AS	AS	11/29/21 18:40	ll211118-4	.5005	U	.475	mg/L	95	85	115			
L70041-03ASD	ASD	11/29/21 18:43	ll211118-4	.5005	U	.475	mg/L	95	85	115	0	20	
WG532511CCV1	CCV	11/29/21 18:57	ll211118-2	1		.982	mg/L	98	90	110			
WG532511CCB1	CCB	11/29/21 19:00				U	mg/L		-0.03	0.03			
WG532511CCV2	CCV	11/29/21 19:36	ll211118-2	1		.981	mg/L	98	90	110			
WG532511CCB2	CCB	11/29/21 19:39				U	mg/L		-0.03	0.03			
WG532511CCV3	CCV	11/29/21 19:58	ll211118-2	1		.981	mg/L	98	90	110			
WG532511CCB3	CCB	11/29/21 20:01				U	mg/L		-0.03	0.03			
Boron, dissolve	d		M200.7 I	CP									

ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG532511													
WG532511ICV	ICV	11/29/21 18:04	II211118-1	2		1.98	mg/L	99	95	105			
WG532511ICB	ICB	11/29/21 18:10				U	mg/L		-0.09	0.09			
WG532511PQV	PQV	11/29/21 18:14	II211104-2	.1001		.092	mg/L	92	70	130			
WG532511SIC	SIC	11/29/21 18:17	II211027-2	.1001		.084	mg/L	84	80	120			
WG532511LFB	LFB	11/29/21 18:24	II211118-4	.5005		.5	mg/L	100	85	115			
L70041-03AS	AS	11/29/21 18:40	II211118-4	.5005	.809	1.256	mg/L	89	85	115			
L70041-03ASD	ASD	11/29/21 18:43	II211118-4	.5005	.809	1.266	mg/L	91	85	115	1	20	
WG532511CCV1	CCV	11/29/21 18:57	II211118-2	1		.992	mg/L	99	90	110			
WG532511CCB1	CCB	11/29/21 19:00				U	mg/L		-0.09	0.09			
WG532511CCV2	CCV	11/29/21 19:36	ll211118-2	1		.984	mg/L	98	90	110			
WG532511CCB2	CCB	11/29/21 19:39				U	mg/L		-0.09	0.09			
WG532511CCV3	CCV	11/29/21 19:58	II211118-2	1		.976	mg/L	98	90	110			
WG532511CCB3	CCB	11/29/21 20:01				U	mg/L		-0.09	0.09			

Cadmium, dissolved

M200.8 ICP-MS

ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG532669													
WG532669ICV	ICV	12/01/21 10:10	MS211013-2	.05		.051195	mg/L	102	90	110			
WG532669ICB	ICB	12/01/21 10:12				.000108	mg/L		-0.00011	0.00011			
WG532669LFB	LFB	12/01/21 10:14	MS211115-2	.05005		.049899	mg/L	100	85	115			
WG532669CCV1	CCV	12/01/21 10:32	MS211119-2	.1001		.102532	mg/L	102	90	110			
WG532669CCB1	CCB	12/01/21 10:34				U	mg/L		-0.00015	0.00015			
L69990-14AS	AS	12/01/21 10:48	MS211115-2	.05005	U	.051052	mg/L	102	70	130			
L69990-14ASD	ASD	12/01/21 10:50	MS211115-2	.05005	U	.046486	mg/L	93	70	130	9	20	
WG532669CCV2	CCV	12/01/21 10:54	MS211119-2	.1001		.101576	mg/L	101	90	110			
WG532669CCB2	CCB	12/01/21 10:56				U	mg/L		-0.00015	0.00015			
WG532669CCV3	CCV	12/01/21 11:06	MS211119-2	.1001		.102548	mg/L	102	90	110			
WG532669CCB3	CCB	12/01/21 11:08				.000051	mg/L		-0.00015	0.00015			

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 ((800) 334-5493

Inorganic QC Summary

GCC

ACZ Project ID: L70041

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Calcium, dissolv	ved		M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG532511													
WG532511ICV	ICV	11/29/21 18:04	II211118-1	100		97.86	mg/L	98	95	105			
WG532511ICB	ICB	11/29/21 18:10				.18	mg/L		-0.3	0.3			
WG532511PQV	PQV	11/29/21 18:14	II211104-2	.50015		.63	mg/L	126	70	130			
WG532511SIC	SIC	11/29/21 18:17	II211027-2	200.56015		194.5	mg/L	97	1	200			
WG532511LFB	LFB	11/29/21 18:24	ll211118-4	67.98808		68.63	mg/L	101	85	115			
L70041-03AS	AS	11/29/21 18:40	II211118-4	67.98808	104	166	mg/L	91	85	115			
L70041-03ASD	ASD	11/29/21 18:43	II211118-4	67.98808	104	165.7	mg/L	91	85	115	0	20	
WG532511CCV1	CCV	11/29/21 18:57	ll211118-2	50		48.83	mg/L	98	90	110			
WG532511CCB1	CCB	11/29/21 19:00				.15	mg/L		-0.3	0.3			
WG532511CCV2	CCV	11/29/21 19:36	ll211118-2	50		48.69	mg/L	97	90	110			
WG532511CCB2	ССВ	11/29/21 19:39				.14	mg/L		-0.3	0.3			
WG532511CCV3	CCV	11/29/21 19:58	ll211118-2	50		48.65	mg/L	97	90	110			
WG532511CCB3	CCB	11/29/21 20:01				.15	mg/L		-0.3	0.3			
Chloride			SM4500	CI-E									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
NG532858													
NG532858ICV	ICV	12/03/21 10:59	WI210503-1	54.89		53.96	mg/L	98	90	110			
NG532858ICB	ICB	12/03/21 11:00				U	mg/L		-1.5	1.5			
WG532858LFB1	LFB	12/03/21 11:00	WI210908-11	29.97		30.36	mg/L	101	90	110			
WG532858CCV1	CCV	12/03/21 11:06	WI211201-1	49.95		53.59	mg/L	107	90	110			
WG532858CCB1	CCB	12/03/21 11:06				U	mg/L		-1.5	1.5			
_70022-01AS	AS	12/03/21 11:09	WI210908-11	29.97	72.5	96.67	mg/L	81	90	110			M2
WG532858CCV2	CCV	12/03/21 11:12	WI211201-1	49.95		54.27	mg/L	109	90	110			
NG532858CCB2	CCB	12/03/21 11:12				U	mg/L		-1.5	1.5			
WG532858LFB2	LFB	12/03/21 11:15	WI210908-11	29.97		29.63	mg/L	99	90	110			
NG532858CCV3	CCV	12/03/21 11:18	WI211201-1	49.95		53.84	mg/L	108	90	110			
NG532858CCB3	CCB	12/03/21 11:18				U	mg/L		-1.5	1.5			
WG532858CCV4	CCV	12/03/21 11:22	WI211201-1	49.95		54.33	mg/L	109	90	110			
WG532858CCB4	CCB	12/03/21 11:23				U	mg/L		-1.5	1.5			
WG532858CCV5	CCV	12/03/21 11:38	WI211201-1	49.95		54.25	mg/L	109	90	110			
WG532858CCB5	CCB	12/03/21 11:38				U	mg/L		-1.5	1.5			
L70022-02DUP	DUP	12/03/21 11:40			159	157.56	mg/L				1	20	
WG532858CCV6	CCV	12/03/21 11:42	WI211201-1	49.95		53.76	mg/L	108	90	110			
WG532858CCB6	CCB	12/03/21 11:42				.74	mg/L		-1.5	1.5			
WG532858CCV9	CCV	12/03/21 12:15	WI211201-1	49.95		53.88	mg/L	108	90	110			
WG532858CCB9	CCB	12/03/21 12:16		10.00		U	mg/L	100	-1.5	1.5			
	000	12/00/21 12.10				0			1.0	1.0			
WG532858CCV10	CCV	12/03/21 12:17	WI211201-1	49.95		54.63	mg/L	109	90	110			

4 🗖 **AGZ** Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 ((800) 334-5493

Inorganic QC Summary

GCC

ACZ Project ID: L70041

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Chromium, diss	olved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG532631													
WG532631ICV	ICV	11/30/21 21:15	II211118-1	2		1.95	mg/L	98	95	105			
WG532631ICB	ICB	11/30/21 21:21				U	mg/L		-0.06	0.06			
WG532631PQV	PQV	11/30/21 21:24	II211104-2	.0502		.05	mg/L	100	70	130			
WG532631SIC	SIC	11/30/21 21:27	II211027-2	.1004		.103	mg/L	103	80	120			
WG532631LFB	LFB	11/30/21 21:33	ll211118-4	.5005		.49	mg/L	98	85	115			
L70065-01AS	AS	11/30/21 22:01	II211118-4	.5005	U	.512	mg/L	102	85	115			
WG532631CCV1	CCV	11/30/21 22:04	ll211118-2	1		.996	mg/L	100	90	110			
WG532631CCB1	CCB	11/30/21 22:07				U	mg/L		-0.06	0.06			
L70065-01ASD	ASD	11/30/21 22:10	II211118-4	.5005	U	.505	mg/L	101	85	115	1	20	
WG532631CCV2	CCV	11/30/21 22:40	II211118-2	1		.97	mg/L	97	90	110			
WG532631CCB2	CCB	11/30/21 22:43				U	mg/L		-0.06	0.06			
WG532631CCV3	CCV	11/30/21 23:02	II211118-2	1		.98	mg/L	98	90	110			
WG532631CCB3	CCB	11/30/21 23:05				U	mg/L		-0.06	0.06			
Cobalt, dissolve	d		M200.7 I	CP									

ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG532511													
WG532511ICV	ICV	11/29/21 18:04	II211118-1	2.01		2.005	mg/L	100	95	105			
WG532511ICB	ICB	11/29/21 18:10				U	mg/L		-0.06	0.06			
WG532511PQV	PQV	11/29/21 18:14	II211104-2	.05005		.047	mg/L	94	70	130			
WG532511SIC	SIC	11/29/21 18:17	II211027-2	.1001		.091	mg/L	91	80	120			
WG532511LFB	LFB	11/29/21 18:24	ll211118-4	.5005		.496	mg/L	99	85	115			
L70041-03AS	AS	11/29/21 18:40	ll211118-4	.5005	U	.485	mg/L	97	85	115			
L70041-03ASD	ASD	11/29/21 18:43	ll211118-4	.5005	U	.486	mg/L	97	85	115	0	20	
WG532511CCV1	CCV	11/29/21 18:57	ll211118-2	1.005		1.016	mg/L	101	90	110			
WG532511CCB1	CCB	11/29/21 19:00				U	mg/L		-0.06	0.06			
WG532511CCV2	CCV	11/29/21 19:36	ll211118-2	1.005		1.012	mg/L	101	90	110			
WG532511CCB2	CCB	11/29/21 19:39				U	mg/L		-0.06	0.06			
WG532511CCV3	CCV	11/29/21 19:58	ll211118-2	1.005		1.008	mg/L	100	90	110			
WG532511CCB3	CCB	11/29/21 20:01				U	mg/L		-0.06	0.06			

Copper, dissolved

M200.7 ICP

ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG532511													
WG532511ICV	ICV	11/29/21 18:04	II211118-1	2		1.942	mg/L	97	95	105			
WG532511ICB	ICB	11/29/21 18:10				U	mg/L		-0.03	0.03			
WG532511PQV	PQV	11/29/21 18:14	II211104-2	.05		.047	mg/L	94	70	130			
WG532511SIC	SIC	11/29/21 18:17	II211027-2	.1		.097	mg/L	97	80	120			
WG532511LFB	LFB	11/29/21 18:24	II211118-4	.5		.488	mg/L	98	85	115			
L70041-03AS	AS	11/29/21 18:40	II211118-4	.5	U	.489	mg/L	98	85	115			
L70041-03ASD	ASD	11/29/21 18:43	II211118-4	.5	U	.485	mg/L	97	85	115	1	20	
WG532511CCV1	CCV	11/29/21 18:57	II211118-2	1		.974	mg/L	97	90	110			
WG532511CCB1	CCB	11/29/21 19:00				U	mg/L		-0.03	0.03			
WG532511CCV2	CCV	11/29/21 19:36	II211118-2	1		.974	mg/L	97	90	110			
WG532511CCB2	CCB	11/29/21 19:39				U	mg/L		-0.03	0.03			
WG532511CCV3	CCV	11/29/21 19:58	II211118-2	1		.975	mg/L	98	90	110			
WG532511CCB3	CCB	11/29/21 20:01				U	mg/L		-0.03	0.03			

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 ((800) 334-5493

GCC

ACZ Project ID: L70041

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Fluoride			SM4500F	-C									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG532786													
WG532786ICV	ICV	12/02/21 12:57	WC211129-1	2.002		2.09	mg/L	104	90	110			
WG532786ICB	ICB	12/02/21 13:04				U	mg/L		-0.3	0.3			
WG532786PQV	PQV	12/02/21 13:09	WC211011-2	.3514		.36	mg/L	102	70	130			
WG532786LFB1	LFB	12/02/21 13:13	WC210803-9	5.02		5.02	mg/L	100	90	110			
WG532786CCV1	CCV	12/02/21 14:51	WC211129-1	2.002		2.18	mg/L	109	90	110			
WG532786CCB1	CCB	12/02/21 14:57				U	mg/L		-0.3	0.3			
WG532786CCV2	CCV	12/02/21 16:27	WC211129-1	2.002		2.11	mg/L	105	90	110			
WG532786CCB2	CCB	12/02/21 16:35				U	mg/L		-0.3	0.3			
WG532786LFB2	LFB	12/02/21 17:38	WC210803-9	5.02		4.84	mg/L	96	90	110			
WG532786CCV3	CCV	12/02/21 18:21	WC211129-1	2.002		2.05	mg/L	102	90	110			
WG532786CCB3	CCB	12/02/21 18:28				U	mg/L		-0.3	0.3			
WG532786CCV4	CCV	12/02/21 20:01	WC211129-1	2.002		2.12	mg/L	106	90	110			
WG532786CCB4	CCB	12/02/21 20:09				U	mg/L		-0.3	0.3			
L69990-16AS	AS	12/02/21 20:25	WC210803-9	5.02	.18	5.05	mg/L	97	90	110			
L69990-16ASD	ASD	12/02/21 20:33	WC210803-9	5.02	.18	5.05	mg/L	97	90	110	0	20	
WG532786CCV5	CCV	12/02/21 21:33	WC211129-1	2.002		2.09	mg/L	104	90	110			
WG532786CCB5	CCB	12/02/21 21:41				U	mg/L		-0.3	0.3			
WG533168													
WG533168ICV	ICV	12/08/21 17:10	WC211129-1	2.002		2.13	mg/L	106	90	110			
WG533168ICB	ICB	12/08/21 17:14				U	mg/L		-0.3	0.3			
WG533168PQV	PQV	12/08/21 17:19	WC211203-1	.3514		.36	mg/L	102	70	130			
WG533168LFB1	LFB	12/08/21 17:23	WC210803-9	5.02		5.17	mg/L	103	90	110			
WG533168CCV1	CCV	12/08/21 18:49	WC211129-1	2.002		2.17	mg/L	108	90	110			
WG533168CCB1	CCB	12/08/21 18:57				U	mg/L		-0.3	0.3			
L70065-01AS	AS	12/08/21 19:13	WC210803-9	5.02	U	5.14	mg/L	102	90	110			
L70065-01ASD	ASD	12/08/21 19:21	WC210803-9	5.02	U	5.14	mg/L	102	90	110	0	20	
WG533168CCV2	CCV	12/08/21 20:21	WC211129-1	2.002		2.18	mg/L	109	90	110			
WG533168CCB2	CCB	12/08/21 20:29				U	mg/L		-0.3	0.3			
WG533168LFB2	LFB	12/08/21 21:13	WC210803-9	5.02		5.29	mg/L	105	90	110			
WG533168CCV3	CCV	12/08/21 21:33	WC211129-1	2.002		2.17	mg/L	108	90	110			
WG533168CCB3	ССВ	12/08/21 21:41				U	mg/L		-0.3	0.3			
WG533168CCV4	CCV	12/08/21 22:52	WC211129-1	2.002		2.2	mg/L	110	90	110			
WG533168CCB4	ССВ	12/08/21 22:57				U	mg/L		-0.3	0.3			

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (

Inorganic QC Summary

(800) 334-5493

GCC

ACZ Project ID: L70041

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Iron, dissolved			M200.7	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG532511													
WG532511ICV	ICV	11/29/21 18:04	II211118-1	2		1.953	mg/L	98	95	105			
WG532511ICB	ICB	11/29/21 18:10				U	mg/L		-0.18	0.18			
WG532511PQV	PQV	11/29/21 18:14	II211104-2	.150015		.142	mg/L	95	70	130			
WG532511SIC	SIC	11/29/21 18:17	II211027-2	200.170015		197.2	mg/L	99	1	200			
WG532511LFB	LFB	11/29/21 18:24	II211118-4	1.0001		1.002	mg/L	100	85	115			
L70041-03AS	AS	11/29/21 18:40	II211118-4	1.0001	U	.979	mg/L	98	85	115			
L70041-03ASD	ASD	11/29/21 18:43	II211118-4	1.0001	U	.971	mg/L	97	85	115	1	20	
WG532511CCV1	CCV	11/29/21 18:57	II211118-2	1		.984	mg/L	98	90	110			
WG532511CCB1	CCB	11/29/21 19:00				U	mg/L		-0.18	0.18			
WG532511CCV2	CCV	11/29/21 19:36	ll211118-2	1		.986	mg/L	99	90	110			
WG532511CCB2	CCB	11/29/21 19:39				U	mg/L		-0.18	0.18			
WG532511CCV3	CCV	11/29/21 19:58	ll211118-2	1		.982	mg/L	98	90	110			
WG532511CCB3	CCB	11/29/21 20:01				U	mg/L		-0.18	0.18			
Lead, dissolved			M200.8	ICP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG532909													
WG532909ICV	ICV	12/03/21 16:38	MS211013-2	.05		.0525	mg/L	105	90	110			
WG532909ICB	ICB	12/03/21 16:40				U	mg/L		-0.00022	0.00022			
WG532909LFB	LFB	12/03/21 16:42	MS211115-2	.05005		.05173	mg/L	103	85	115			
WG532909CCV1	CCV	12/03/21 17:00	MS211119-2	.25025		.24581	mg/L	98	90	110			
WG532909CCB1	ССВ	12/03/21 17:02				U	mg/L		-0.0003	0.0003			
L69990-14AS	AS	12/03/21 17:14	MS211115-2	.05005	U	.05223	mg/L	104	70	130			
L69990-14ASD	ASD	12/03/21 17:16	MS211115-2	.05005	U	.0529	mg/L	106	70	130	1	20	
WG532909CCV2	CCV	12/03/21 17:21	MS211119-2	.25025		.24844	mg/L	99	90	110			
WG532909CCB2	CCB	12/03/21 17:23				U	mg/L		-0.0003	0.0003			

WG532909CCV3 WG532909CCB3 WG532909CCV4	CCV CCB CCV	12/03/21 17:32 12/03/21 17:34 12/03/21 17:41	MS211119-2 MS211119-2	.25025 .25025		.25099 U .25348	mg/L mg/L mg/L	100 101	90 -0.0003 90	110 0.0003 110			
WG532909CCB4	CCB	12/03/21 17:43				U	mg/L		-0.0003	0.0003			
Lithium, dissolv	ved		M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	
WG532511													
WG532511ICV	ICV	11/29/21 18:04	II211118-1	2		1.9982	mg/L	100	95	105			
WG532511ICB	ICB	11/29/21 18:10				U	mg/L		-0.024	0.024			
WG532511PQV	PQV	11/29/21 18:14	II211104-2	.03996		.0339	mg/L	85	70	130			
WG532511SIC	SIC	11/29/21 18:17	II211027-2	.0999		.0938	mg/L	94	80	120			
WG532511LFB	LFB	11/29/21 18:24	II211118-4	.999		1.006	mg/L	101	85	115			

WG532511LFB	LFB	11/29/21 18:24	II211118-4	.999		1.006	mg/L	101	85	115			
L70041-03AS	AS	11/29/21 18:40	II211118-4	.999	.38	1.381	mg/L	100	85	115			
L70041-03ASD	ASD	11/29/21 18:43	II211118-4	.999	.38	1.381	mg/L	100	85	115	0	20	
WG532511CCV1	CCV	11/29/21 18:57	II211118-2	1		.9959	mg/L	100	90	110			
WG532511CCB1	CCB	11/29/21 19:00				U	mg/L		-0.024	0.024			
WG532511CCV2	CCV	11/29/21 19:36	ll211118-2	1		.9958	mg/L	100	90	110			
WG532511CCB2	CCB	11/29/21 19:39				U	mg/L		-0.024	0.024			
WG532511CCV3	CCV	11/29/21 19:58	ll211118-2	1		.9975	mg/L	100	90	110			
WG532511CCB3	CCB	11/29/21 20:01				U	mg/L		-0.024	0.024			

Qual

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-54

(800) 334-5493

Inorganic QC Summary

GCC

ACZ Project ID: L70041

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Magnesium, dis	solved		M200.7	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG532511													
WG532511ICV	ICV	11/29/21 18:04	II211118-1	100		95.43	mg/L	95	95	105			
WG532511ICB	ICB	11/29/21 18:10				U	mg/L		-0.6	0.6			
WG532511PQV	PQV	11/29/21 18:14	II211104-2	1.0001		1.14	mg/L	114	70	130			
WG532511SIC	SIC	11/29/21 18:17	II211027-2	201.0201		204.9	mg/L	102	1	200			
WG532511LFB	LFB	11/29/21 18:24	II211118-4	49.99847		48.72	mg/L	97	85	115			
L70041-03AS	AS	11/29/21 18:40	ll211118-4	49.99847	43.2	88.98	mg/L	92	85	115			
L70041-03ASD	ASD	11/29/21 18:43	ll211118-4	49.99847	43.2	88.93	mg/L	91	85	115	0	20	
WG532511CCV1	CCV	11/29/21 18:57	ll211118-2	50		47.51	mg/L	95	90	110			
WG532511CCB1	CCB	11/29/21 19:00				U	mg/L		-0.6	0.6			
WG532511CCV2	CCV	11/29/21 19:36	ll211118-2	50		47.57	mg/L	95	90	110			
WG532511CCB2	CCB	11/29/21 19:39				U	mg/L		-0.6	0.6			
WG532511CCV3	CCV	11/29/21 19:58	ll211118-2	50		47.28	mg/L	95	90	110			
WG532511CCB3	CCB	11/29/21 20:01				U	mg/L		-0.6	0.6			
Manganese, dis	solved		M200.7	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG532511													
WG532511ICV	ICV	11/29/21 18:04	II211118-1	2		1.953	mg/L	98	95	105			
WG532511ICB	ICB	11/29/21 18:10				U	mg/L		-0.03	0.03			
WG532511PQV	PQV	11/29/21 18:14	II211104-2	.05005		.044	mg/L	88	70	130			
WG532511SIC	SIC	11/29/21 18:17	II211027-2	50.10005		47.62	mg/L	95	1	200			
WG532511LFB	LFB	11/29/21 18:24	II211118-4	.499		.497	mg/L	100	85	115			
L70041-03AS	AS	11/29/21 18:40	II211118-4	.499	.27	.742	mg/L	95	85	115			
L70041-03ASD	ASD	11/29/21 18:43	II211118-4	.499	.27	.741	mg/L	94	85	115	0	20	
WG532511CCV1	CCV	11/29/21 18:57	II211118-2	1		.985	mg/L	99	90	110			
WG532511CCB1	CCB	11/29/21 19:00				U	mg/L		-0.03	0.03			
WG532511CCV2	CCV	11/29/21 19:36	ll211118-2	1		.983	mg/L	98	90	110			
100020110012													
WG532511CCB2	CCB	11/29/21 19:39				U	mg/L		-0.03	0.03			
		11/29/21 19:39 11/29/21 19:58	ll211118-2	1		U .982	mg/L mg/L	98	-0.03 90	0.03 110			

4CZ Laboratories, Inc.

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

GCC

ACZ Project ID: L70041

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Mercury, dissol	ved		M245.1 C	CVAA									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG532380													
WG532380ICV	ICV	11/24/21 9:50	HG211115-3	.00501		.00498	mg/L	99	95	105			
WG532380ICB	ICB	11/24/21 9:51				U	mg/L		-0.0002	0.0002			
WG532322													
WG532322CCV1	CCV	11/24/21 12:17	HG211115-3	.00501		.00491	mg/L	98	90	110			
WG532322CCB1	CCB	11/24/21 12:17		100001		U	mg/L		-0.0002	0.0002			
WG532322PQV	PQV	11/24/21 12:18	HG211115-5	.001001		.00097	mg/L	97	70	130			
WG532322LRB	LRB	11/24/21 12:19				U	mg/L		-0.00044	0.00044			
WG532322LFB	LFB	11/24/21 12:20	HG211115-6	.002002		.00193	mg/L	96	85	115			
WG532322CCV2	CCV	11/24/21 12:28	HG211115-3	.00501		.00527	mg/L	105	90	110			
WG532322CCB2	CCB	11/24/21 12:29				U	mg/L		-0.0002	0.0002			
WG532322CCV3	CCV	11/24/21 12:39	HG211115-3	.00501		.00523	mg/L	104	90	110			
WG532322CCB3	CCB	11/24/21 12:40				U	mg/L		-0.0002	0.0002			
L70041-01LFM	LFM	11/24/21 12:43	HG211115-6	.002002	U	.00191	mg/L	95	85	115			
L70041-01LFMD	LFMD	11/24/21 12:44	HG211115-6	.002002	U	.00187	mg/L	93	85	115	2	20	
WG532322CCV4	CCV	11/24/21 12:48	HG211115-3	.00501		.00511	mg/L	102	90	110			
WG532322CCB4	CCB	11/24/21 12:49				U	mg/L		-0.0002	0.0002			
Nickel, dissolve	d		M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG532511													
WG532511ICV	ICV	11/29/21 18:04	II211118-1	2		1.9562	mg/L	98	95	105			
WG532511ICB	ICB	11/29/21 18:10				U	mg/L		-0.024	0.024			
WG532511PQV	PQV	11/29/21 18:14	II211104-2	.04		.0411	mg/L	103	70	130			
WG532511SIC	SIC	11/29/21 18:17	II211027-2	.1		.101	mg/L	101	80	120			
WG532511LFB	LFB	11/29/21 18:24	II211118-4	.5		.4988	mg/L	100	85	115			
L70041-03AS	AS	11/29/21 18:40	II211118-4	.5	U	.4859	mg/L	97	85	115			
L70041-03ASD	ASD	11/29/21 18:43	II211118-4	.5	U	.4881	mg/L	98	85	115	0	20	
WG532511CCV1	CCV	11/29/21 18:57	II211118-2	1		.9994	mg/L	100	90	110			
WG532511CCB1	CCB	11/29/21 19:00				U	mg/L		-0.024	0.024			
WG532511CCV2	CCV	11/29/21 19:36	II211118-2	1		.9967	mg/L	100	90	110			
WG532511CCB2	CCB	11/29/21 19:39				U	mg/L		-0.024	0.024			
WG532511CCV3	CCV	11/29/21 19:58	II211118-2	1		.9893	mg/L	99	90	110			
WG532511CCB3	CCB	11/29/21 20:01				U	mg/L		-0.024	0.024			
Nitrate/Nitrite as	s N, diss	olved	M353.2 -	Automated	d Cadmiur	n Reduc	tion						
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG532147													
WG532147ICV	ICV	11/20/21 0:20	WI210904-1	2.4161		2.268	mg/L	94	90	110			
WG532147ICB	ICB	11/20/21 0:21				U	mg/L		-0.02	0.02			
WG532147LFB	LFB	11/20/21 0:25	WI211001-5	2		1.996	mg/L	100	90	110			
WG532147CCV1	CCV	11/20/21 0:35	WI211113-1	2		1.953	mg/L	98	90	110			
WG532147CCB1	CCB	11/20/21 0:38				U	mg/L		-0.02	0.02			
L70021-02AS	AS	11/20/21 0:47	WI211001-5	2	.9	2.853	mg/L	98	90	110			
L70022-01DUP	DUP	11/20/21 0:50			.123	.123	mg/L				0	20	RA
WG532147CCV2	CCV	11/20/21 0:52	WI211113-1	2		1.951	mg/L	98	90	110			
WG532147CCB2	CCB	11/20/21 0:55				U	mg/L		-0.02	0.02			

CCV 11/20/21 1:09

11/20/21 1:13

CCB

WG532147CCV3

WG532147CCB3

WI211113-1

2

1.929

U

mg/L

mg/L

96

90

-0.02

110 0.02

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

GCC

ACZ Project ID: L70041

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Nitrite as N, diss	olved		M353.2 ·	- Automated	Cadmiun	n Reduc	tion						
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG532147													
WG532147ICV	ICV	11/20/21 0:20	WI210904-1	.6089		.585	mg/L	96	90	110			
WG532147ICB	ICB	11/20/21 0:21				U	mg/L		-0.01	0.01			
WG532147LFB	LFB	11/20/21 0:25	WI211001-5	1		.976	mg/L	98	90	110			
WG532147CCV1	CCV	11/20/21 0:35	WI211113-1	1		.985	mg/L	99	90	110			
WG532147CCB1	CCB	11/20/21 0:38				U	mg/L		-0.01	0.01			
L70021-02AS	AS	11/20/21 0:47	WI211001-5	1	U	.982	mg/L	98	90	110			
L70022-01DUP	DUP	11/20/21 0:50			.022	.021	mg/L				5	20	RA
WG532147CCV2	CCV	11/20/21 0:52	WI211113-1	1		.979	mg/L	98	90	110			
WG532147CCB2	CCB	11/20/21 0:55				U	mg/L		-0.01	0.01			
WG532147CCV3	CCV	11/20/21 1:09	WI211113-1	1		.984	mg/L	98	90	110			
WG532147CCB3	CCB	11/20/21 1:13				U	mg/L		-0.01	0.01			
Potassium, diss	olved		M200.7	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG532511													
WG532511ICV	ICV	11/29/21 18:04	II211118-1	20		19.83	mg/L	99	95	105			
WG532511ICB	ICB	11/29/21 18:10				U	mg/L		-0.6	0.6			
WG532511PQV	PQV	11/29/21 18:14	II211104-2	.9958		1.1	mg/L	110	70	130			
WG532511SIC	SIC	11/29/21 18:17	II211027-2	.9958		1.09	mg/L	109	80	120			
WG532511LFB	LFB	11/29/21 18:24	ll211118-4	99.96008		100.7	mg/L	101	85	115			
L70041-03AS	AS	11/29/21 18:40	ll211118-4	99.96008	6.31	107	mg/L	101	85	115			
L70041-03ASD	ASD	11/29/21 18:43	II211118-4	99.96008	6.31	106.2	mg/L	100	85	115	1	20	
WG532511CCV1	CCV	11/29/21 18:57	II211118-2	10		10.1	mg/L	101	90	110			
WG532511CCB1	CCB	11/29/21 19:00				U	mg/L		-0.6	0.6			
WG532511CCV2	CCV	11/29/21 19:36	II211118-2	10		10	mg/L	100	90	110			
WG532511CCB2	CCB	11/29/21 19:39				U	mg/L		-0.6	0.6			
WG532511CCV3	CCV	11/29/21 19:58	II211118-2	10		9.96	mg/L	100	90	110			
WG532511CCB3	CCB	11/29/21 20:01				U	mg/L		-0.6	0.6			
Residue, Filteral	ble (TDS) @180C	SM2540	С									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG532428													
WG532428PBW	PBW	11/24/21 14:04				U	mg/L		-20	20			
WG532428LCSW	LCSW	11/24/21 14:06	PCN64720	1000		970	mg/L	97	80	120			

4 🗖 **AGZ** Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 ((800) 334-5493

GCC

ACZ Project ID: L70041

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Selenium, disso	lved		M200.8 IC	P-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG532669													
WG532669ICV	ICV	12/01/21 10:10	MS211013-2	.05		.05242	mg/L	105	90	110			
WG532669ICB	ICB	12/01/21 10:12				U	mg/L		-0.00022	0.00022			
WG532669LFB	LFB	12/01/21 10:14	MS211115-2	.05		.05192	mg/L	104	85	115			
WG532669CCV1	CCV	12/01/21 10:32	MS211119-2	.25		.26251	mg/L	105	90	110			
L69990-14AS	AS	12/01/21 10:48	MS211115-2	.05	.00011	.05642	mg/L	113	70	130			
L69990-14ASD	ASD	12/01/21 10:50	MS211115-2	.05	.00011	.0517	mg/L	103	70	130	9	20	
WG532669CCV2	CCV	12/01/21 10:54	MS211119-2	.25		.26119	mg/L	104	90	110			
WG532669CCB2	CCB	12/01/21 10:56				.0004	mg/L		-0.0003	0.0003			BB BE
WG532669CCV3	CCV	12/01/21 11:06	MS211119-2	.25		.26203	mg/L	105	90	110			
WG532669CCB3	CCB	12/01/21 11:08				.00042	mg/L		-0.0003	0.0003			BB BE
WG532909													
WG532909ICV	ICV	12/03/21 16:38	MS211013-2	.05		.05181	mg/L	104	90	110			
WG532909ICB	ICB	12/03/21 16:40				U	mg/L		-0.00022	0.00022			
WG532909LFB	LFB	12/03/21 16:42	MS211115-2	.05		.04997	mg/L	100	85	115			
WG532909CCV1	CCV	12/03/21 17:00	MS211119-2	.25		.24441	mg/L	98	90	110			
WG532909CCB1	CCB	12/03/21 17:02				.0003	mg/L		-0.0003	0.0003			BE
L69990-14AS	AS	12/03/21 17:14	MS211115-2	.05	U	.05432	mg/L	109	70	130			
L69990-14ASD	ASD	12/03/21 17:16	MS211115-2	.05	U	.05452	mg/L	109	70	130	0	20	
WG532909CCV2	CCV	12/03/21 17:21	MS211119-2	.25		.23788	mg/L	95	90	110			
WG532909CCB2	CCB	12/03/21 17:23				.00018	mg/L		-0.0003	0.0003			
WG532909CCV3	CCV	12/03/21 17:32	MS211119-2	.25		.25189	mg/L	101	90	110			
WG532909CCB3	CCB	12/03/21 17:34				.00024	mg/L		-0.0003	0.0003			
WG532909CCV4	CCV	12/03/21 17:41	MS211119-2	.25		.25579	mg/L	102	90	110			
WG532909CCB4	CCB	12/03/21 17:43				.00015	mg/L		-0.0003	0.0003			

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (

GCC

(800) 334-5493

ACZ Project ID: L70041

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Sodium, dissolv	ved		M200.7	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG532511													
WG532511ICV	ICV	11/29/21 18:04	II211118-1	100		99.34	mg/L	99	95	105			
WG532511ICB	ICB	11/29/21 18:10				U	mg/L		-0.6	0.6			
WG532511PQV	PQV	11/29/21 18:14	II211104-2	1.0053		1.04	mg/L	103	70	130			
WG532511SIC	SIC	11/29/21 18:17	II211027-2	1.0053		1.08	mg/L	107	80	120			
WG532511LFB	LFB	11/29/21 18:24	II211118-4	100.0086		100.9	mg/L	101	85	115			
L70041-03AS	AS	11/29/21 18:40	II211118-4	100.0086	1220	1248	mg/L	28	85	115			М3
L70041-03ASD	ASD	11/29/21 18:43	II211118-4	100.0086	1220	1252	mg/L	32	85	115	0	20	М3
WG532511CCV1	CCV	11/29/21 18:57	II211118-2	50		49.86	mg/L	100	90	110			
WG532511CCB1	CCB	11/29/21 19:00				.23	mg/L		-0.6	0.6			
WG532511CCV2	CCV	11/29/21 19:36	II211118-2	50		49.68	mg/L	99	90	110			
WG532511CCB2	CCB	11/29/21 19:39				U	mg/L		-0.6	0.6			
WG532511CCV3	CCV	11/29/21 19:58	ll211118-2	50		49.66	mg/L	99	90	110			
WG532511CCB3	CCB	11/29/21 20:01				U	mg/L		-0.6	0.6			
WG532584													
WG532584ICV	ICV	11/30/21 11:49	II211118-1	100		99.52	mg/L	100	95	105			
WG532584ICB	ICB	11/30/21 11:55				U	mg/L		-0.6	0.6			
WG532584PQV	PQV	11/30/21 11:58	II211104-2	1.0053		1.01	mg/L	100	70	130			
WG532584SIC	SIC	11/30/21 12:01	II211027-2	1.0053		1.06	mg/L	105	80	120			
WG532584LFB	LFB	11/30/21 12:07	II211118-4	100.0086		98.45	mg/L	98	85	115			
L70067-01AS	AS	11/30/21 12:35	II211118-4	100.0086	7.04	105.7	mg/L	99	85	115			
WG532584CCV1	CCV	11/30/21 12:38	II211118-2	50		49.47	mg/L	99	90	110			
WG532584CCB1	CCB	11/30/21 12:41				U	mg/L		-0.6	0.6			
L70067-01ASD	ASD	11/30/21 12:44	II211118-4	100.0086	7.04	106.5	mg/L	99	85	115	1	20	
WG532584CCV2	CCV	11/30/21 12:50	II211118-2	50		49.2	mg/L	98	90	110			
WG532584CCB2	CCB	11/30/21 12:53				U	mg/L		-0.6	0.6			

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

GCC

ACZ Project ID: L70041

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Sulfate			D516-02/-	07/-11 - T	URBIDIM	ETRIC							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG532901													
WG532901ICB	ICB	12/03/21 10:47				U	mg/L		-3	3			
WG532901ICV	ICV	12/03/21 10:47	WI211129-1	20		20.7	mg/L	104	90	110			
WG532901CCV1	CCV	12/03/21 14:41	WI211129-2	25		25.6	mg/L	102	90	110			
WG532901CCB1	ССВ	12/03/21 14:41				U	mg/L		-3	3			
WG532901LFB	LFB	12/03/21 14:41	WI210105-3	10		10.8	mg/L	108	90	110			
L70030-01DUP	DUP	12/03/21 14:41			16.3	15.8	mg/L				3	20	
WG532901CCV2	CCV	12/03/21 14:43	WI211129-2	25		25.5	mg/L	102	90	110			
WG532901CCB2	CCB	12/03/21 14:43				U	mg/L		-3	3			
WG532901CCV3	CCV	12/03/21 14:44	WI211129-2	25		25.4	mg/L	102	90	110			
NG532901CCB3	CCB	12/03/21 14:44				U	mg/L		-3	3			
WG532901CCV4	CCV	12/03/21 14:46	WI211129-2	25		25.3	mg/L	101	90	110			
NG532901CCB4	ССВ	12/03/21 14:46				U	mg/L		-3	3			
NG532901CCV5	CCV	12/03/21 14:51	WI211129-2	25		25	mg/L	100	90	110			
NG532901CCB5	CCB	12/03/21 14:51				U	mg/L		-3	3			
WG532901CCV6	CCV	12/03/21 14:54	WI211129-2	25		25.1	mg/L	100	90	110			
NG532901CCB6	ССВ	12/03/21 14:54				U	mg/L		-3	3			
NG532901CCV7	CCV	12/03/21 15:20	WI211129-2	25		25.2	mg/L	101	90	110			
NG532901CCB7	ССВ	12/03/21 15:20				U	mg/L		-3	3			
VG532901CCV8	CCV	12/03/21 15:21	WI211129-2	25		25.2	mg/L	101	90	110			
NG532901CCB8	ССВ	12/03/21 15:22				U	mg/L		-3	3			
NG532901CCV9	CCV	12/03/21 16:31	WI211129-2	25		25.1	mg/L	100	90	110			
NG532901CCB9	ССВ	12/03/21 16:31				U	mg/L		-3	3			
.70041-01AS	AS	12/03/21 16:31	SO4TURB20X	50	3750	3783.9	mg/L	68	90	110			М3
NG532901CCV10	CCV	12/03/21 16:33	WI211129-2	25		25.1	mg/L	100	90	110			
VG532901CCB10	ССВ	12/03/21 16:33				U	mg/L		-3	3			
WG532901CCV11	CCV	12/03/21 16:35	WI211129-2	25		25	mg/L	100	90	110			
VG532901CCB11	ССВ	12/03/21 16:35				U	mg/L		-3	3			
/anadium, disso	lved		M200.7 IC	P									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qua
WG532584	21												
VG532584ICV	ICV	11/30/21 11:49	II211118-1	2		2.037	mg/L	102	95	105			
WG532584ICB	ICB	11/30/21 11:55		2		2.007 U	mg/L	102	-0.015	0.015			
WG532584PQV	PQV	11/30/21 11:58	II211104-2	.025025		.024	mg/L	96	-0.013	130			
WG532584SIC	SIC	11/30/21 12:01	II211027-2	.1001		.101	mg/L	101	80	120			
WG532584LFB	LFB	11/30/21 12:07	II211118-4	.5005		.5036	mg/L	101	85	120			
_70067-01AS	AS	11/30/21 12:35	ll211118-4	.5005	U	.4932	mg/L	99	85	115			
NG532584CCV1	CCV	11/30/21 12:38	ll211118-2	.5005	0	1.005	mg/L	99 101	90	110			
WG532584CCB1	CCB	11/30/21 12:41				1.005 U	mg/L	101	-0.03	0.03			
_70067-01ASD	ASD	11/30/21 12:44	II211118-4	.5005	U	.505	mg/L	101	-0.03 85	115	2	20	
WG532584CCV2	CCV	11/30/21 12:44	ll211118-2	.5005	0	.982	mg/L	98	90	115	2	20	
	000	1100/21 12.00						50	50	110			

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 ((800) 334-5493

GCC

ACZ Project ID: L70041

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Zinc, dissolved			M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG532511													
WG532511ICV	ICV	11/29/21 18:04	II211118-1	2		1.998	mg/L	100	95	105			
WG532511ICB	ICB	11/29/21 18:10				U	mg/L		-0.06	0.06			
WG532511PQV	PQV	11/29/21 18:14	II211104-2	.05015		.047	mg/L	94	70	130			
WG532511SIC	SIC	11/29/21 18:17	II211027-2	.1003		.095	mg/L	95	80	120			
WG532511LFB	LFB	11/29/21 18:24	II211118-4	.50045		.517	mg/L	103	85	115			
L70041-03AS	AS	11/29/21 18:40	II211118-4	.50045	U	.523	mg/L	105	85	115			
L70041-03ASD	ASD	11/29/21 18:43	II211118-4	.50045	U	.524	mg/L	105	85	115	0	20	
WG532511CCV1	CCV	11/29/21 18:57	II211118-2	1		.999	mg/L	100	90	110			
WG532511CCB1	CCB	11/29/21 19:00				U	mg/L		-0.06	0.06			
WG532511CCV2	CCV	11/29/21 19:36	II211118-2	1		.998	mg/L	100	90	110			
WG532511CCB2	CCB	11/29/21 19:39				U	mg/L		-0.06	0.06			
WG532511CCV3	CCV	11/29/21 19:58	II211118-2	1		.994	mg/L	99	90	110			
WG532511CCB3	CCB	11/29/21 20:01				U	mg/L		-0.06	0.06			

4C AGZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487

(800) 334-5493

GCC Rio Grande

ACZ Project ID: L70041

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L70041-01	WG532858	Chloride	SM4500CI-E	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG532147	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG532428	Residue, Filterable (TDS) @180C	SM2540C	N1	See Case Narrative.
	WG532511	Sodium, dissolved	M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG532901	Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
L70041-02	WG532858	Chloride	SM4500CI-E	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG532147	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG532428	Residue, Filterable (TDS) @180C	SM2540C	N1	See Case Narrative.
	WG532669	Selenium, dissolved	M200.8 ICP-MS	BB	Target analyte detected in calibration blank at or above acceptance limit. Sample value was > 10X the concentration in the calibration blank.
	WG532511	Sodium, dissolved	M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG532901	Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
L70041-03	WG532858	Chloride	SM4500CI-E	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG532147	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG532428	Residue, Filterable (TDS) @180C	SM2540C	N1	See Case Narrative.
	WG532669	Selenium, dissolved	M200.8 ICP-MS	BE	Target analyte in continuing calibration blank (CCB) at or above the acceptance criteria. Target analyte was not detected in the sample [< MDL].
	WG532901	Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.

4C **AGZ** Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487

(800) 334-5493

Inorganic Extended Qualifier Report

GCC Rio Grande

ACZ Project ID: L70041

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L70041-04	NG532858	Chloride	SM4500CI-E	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG532147	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG532428	Residue, Filterable (TDS) @180C	SM2540C	N1	See Case Narrative.
	WG532669	Selenium, dissolved	M200.8 ICP-MS	BE	Target analyte in continuing calibration blank (CCB) at or above the acceptance criteria. Target analyte was not detected in the sample [< MDL].
	WG532901	Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.

GCC Rio Grande

ACZ Project ID: L70041

No certification qualifiers associated with this analysis

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493		ample eceipt	
GCC Rio Grande ACZ Pi	oject ID:		L70041
	eceived: 1	1/19/202	21 11:37
	eived By:		
	Printed:	11/2	22/2021
Receipt Verification	YES	NO	NA
1) Is a foreign soil permit included for applicable samples?			X
2) Is the Chain of Custody form or other directive shipping papers present?	Х		
3) Does this project require special handling procedures such as CLP protocol?		Х	
4) Are any samples NRC licensable material?			Х
5) If samples are received past hold time, proceed with requested short hold time analyses?	Х		
6) Is the Chain of Custody form complete and accurate?	Х		
7) Were any changes made to the Chain of Custody form prior to ACZ receiving the samples?		Х	
Samples/Containers			
	YES	NO	NA
8) Are all containers intact and with no leaks?	Х		
9) Are all labels on containers and are they intact and legible?	Х		
10) Do the sample labels and Chain of Custody form match for Sample ID, Date, and Time?	Х		
11) For preserved bottle types, was the pH checked and within limits? 1	Х		
12) Is there sufficient sample volume to perform all requested work?	Х		
13) Is the custody seal intact on all containers?			Х
14) Are samples that require zero headspace acceptable?			Х
15) Are all sample containers appropriate for analytical requirements?	Х		
16) Is there an Hg-1631 trip blank present?			Х
17) Is there a VOA trip blank present?			Х
18) Were all samples received within hold time?	Х		
	NA indica	tes Not Ap	plicable

Chain of Custody Related Remarks

Client Contact Remarks

Shipping Containers

Cooler Id	Temp(°C)	Temp Criteria(°C)	Rad(µR/Hr)	Custody Seal Intact?
6635	1.1	<=6.0	15	N/A

Was ice present in the shipment container(s)?

Yes - Wet ice was present in the shipment container(s).

Client must contact an ACZ Project Manager if analysis should not proceed for samples received outside of their thermal preservation acceptance criteria.

Sample Receipt

GCC Rio	Grande
---------	--------

ACZ Project ID: L70041 Date Received: 11/19/2021 11:37 Received By: Date Printed: 11/22/2021

¹ The preservation of the following bottle types is not checked at sample receipt: Orange (oil and grease), Purple (total cyanide), Pink (dissolved cyanide), Brown (arsenic speciation), Sterile (fecal coliform), EDTA (sulfite), HCl preserved vial (organics), Na2S2O3 preserved vial (organics), and HG-1631 (total/dissolved mercury by method 1631).

	aborator	ies. Inc	Lr	7/	γ_{1}	11	C	HAI	N <u>of</u>	CUS	TO)Y
2773 Downhill Drive Steamb	oat Springs, CO	80487 (800) 3	34-5493	10		1 1						
Report to:												
_{Name:} Diana Furman				Addre	ess: 3	372 L	ime F	Road.	Pueb	o CC	810	04
Company: GCC Rio G			-									<u> </u>
E-mail: dfurman@gcc				Telep	hone:	(719)	647-6	861				
Copy of Report to:												
Name: Ben Wellowd				E-ma	ii: \a\	(a)) m	12			(• •	_	
Company: Aquianiy	······		-		hone:	1210) <u>ayvi</u> 0 - 5:			<u>`</u>	
Invoice to:		······································		Telep	none.	1210	10-1	0-7.	570			
_{Name:} Diana Furman					24			a a al II)		04.04	
Company: GCC Rio Gr	ando Inc			Addre	ess: 33	S/Z LI	meR	oad, F	uebio	5, CO	8100)4
E-mail: dfurman@gcc.				T . I	hone:	(710)	647 6	061				
If sample(s) received past h		or if insufficie	 ent HT rer	<u> </u>			047-0	1001		YES	X	
analysis before expiration, s	shall ACZ procee	d with reques	ted short	HT an	alyses?					NO		
If "NO" then ACZ will contact client for furth			ated, ACZ will		th the reque	sted analys			d, and data	will be qua	lified	-
Are samples for SDWA Com If yes, please include state f	•	•	to PQL f	Yes or Cold	rado.	J	No	×				
Sampler's Name: Ben Well		er's Site Inform		State			Zip co	_{de} 81	004	Time Z	one N	IDT
*Sampler's Signature:	Pag	*l attest	to the authentions with the same	city and val	idity of this s		erstand th	at intentiona	illy mislabel			
PROJECT INFORMATION								D (attach l		quote nu	mber)	
Quote #: GW-COMPLIA	NCE 03/27/2	2019		S	but							
PO#: N/A				aine	lote b							
Reporting state for compliance	e testing: Color	ado		ont	ied qu							
Check box if samples include				of Containers	Per attached quote b no pH							
SAMPLE IDENTIFICAT	ON DAT	E:TIME	Matrix	*	Per no p							
MW-6	11/14/21	14:26	GW	3	×							
MW-7	11/18/21	12:01	GW	3	×							
MW-2B	11/18/21	14:06	GW	3								
MW-8	11/18/21	13:51	GW	3	X							
·					<u> </u>		Concelling of the second		لنستك			

FRMAD050.06.14.14

Yellow - Retain for your records.

GCC/GCC Rio Grande Account:

Bottle Order: BO48511

Internal Note:

Bottle Order Packing List

Bill to Account: Bill to ACZ Ship Date Requested: 11/12/2021 Request Placed at: 11/11/2021 16:11 Service Requested: UPS Ground

Sampling supplies

PACK	Qty	ACZ ID	Туре	Description
1	1	COC	Chain of Custody	Chain of Custody, 1 for 10 samples.
2	2	SEAL	Custody Seal	Custody seals for cooler, two for each cooler.
	1	RETURN	Return Address	Return Address label, one for each cooler.
12	18	LABELS	Sample Labels	ACZ supplied labels for sample containers
		TRIP HG		

ACZ Coolers

	Qty 1	ACZ ID 6635	Size Large	Weight 11	UPS Tracking Number
Quote r Sample			OMPLIAI		Quarterly Groundwater Compliance Monitoring: 2019 4 samples
PACK	Qty	Туре	Size	Filter/Raw/Preserve	Instructions
4	1	GREEN PC	125 ML	Green pre-cleaned Filtered/Nitiric	Metals (dissolved including ICPMS) - Filter sample with .45 micron filter. Do not overfill as there is Nitric Acid in the bottle.
4	1	RAW	500 ML	Raw	Wet Chemistry (analyses that do not require preservative or filtration) - Completely fill container.
Ч	1	WHITE	250 ML	Filtered	Wet chemistry (dissolved) - Filter sample with .45 micron filter. Completely fill container.

Prepared By/Date:

ATTACHMENT 3 - GCC Groundwater Sampling Lab Data Validation Report

DIANE SHORT & ASSOCIATES, INC.__

2634 S. Deframe Circle Lakewood CO 80228 303:271-9642 dsa7cbc@eazyqaqc.com

INORGANIC DATA QUALITY REVIEW REPORT METALS BY ICPMS, ICP, CVAA, WET CHEMISTRY AND SPECIAL METHODS

SDG	L64379, L65969, L68204, L70041					
PROJECT	GCC Rio Grande – First through Fourth Quarters 2021, Resource Hydrogeologic Services and GCC					
LABORATORY	ACZ Laboratori	es, Steamboat S	Springs, CO			
SAMPLE MATRIX	Water	SAN	IPLING DATE:	2/22; 5/19; 8/31, 11/18/2021		
ANALYSES REQUESTED	245.1 (mercury, nitrite as nitroge	dissolved), SM n, nitrate as nit	14500F-C (Fluoric	8 (metals by ICPMS, dissolved), EPA le), M353.2 (nitrate + nitrite as nitrogen, c (total dissolved solids); D516-02/-07/- ide)		
SAMPLE NUMBER	MW-6, MW-7, 1	MW-2B and M	W-8			
DATA REVIEWER	: John Huntingtor	l				
QA REVIEWER:]	Diane Short & Ass	ociates, Inc.	INITIALS/DA	TE: DLS		

Telephone Logs included	Yes	No	Х
Contractual Violations	Yes	No _	_X_

The Contract Laboratory Program National Functional Guidelines for Inorganic Data Review 2016 (NFG) and the requested EPA Methods, Methods of Chemical Analysis of Water and Wastes (MCAWW) and Standard Methods (SM, current updates) have been referenced by the reviewer to perform this data validation review. The review includes evaluation of calibration, holding times and Quality Control (QC) for all samples; and 10% review of transcription and calculation algorithms from the raw data. Determining the exact analytical sequence was performed to verify that the frequencies of QC sample analyses were met, where applicable, on 10% of the data. General comments regarding the data/analytical quality are part of the review when raw data are submitted. The reports use Diane Short & Associates (DSA) validation qualifiers in the text and tables that include the compilation of the reasons for qualification and the associated values, as defined in each section for QC outliers. The United States Environmental Protection Agency (EPA) qualifiers have been provided. The DSA qualifiers, EPA qualifiers, and validation codes are included in the Electronic Data Deliverable (EDD). Note: those items in this report which have an asterisk (*) are specific to inductively coupled plasma-mass spectrometry (ICP-MS) and may include inductively coupled plasma-atomic emission spectroscopy (ICP-AES) as applicable.

I. **DELIVERABLES**

All deliverables were present as specified in the Statement of Work (SOW), SW-846, or in the project contract. This includes the Case Narrative.

Yes X No

Data were submitted for EPA 200.7 (16 metals by ICP, dissolved), EPA 200.8 (4 metals by ICPMS, dissolved), EPA 245.1 (mercury, dissolved), SM4500F-C (Fluoride), M353.2 (nitrate + nitrite as nitrogen, nitrite as nitrogen, nitrate as nitrogen); SM2540C (total dissolved solids); D516-02/-07/-11 -Sulfate by turbidimetry; SM4500Cl-E (Chloride). Note that for these SDGS, pH was not requested. Note 12 ICP metals for 3rd quarter.

The data were validated at EPA Level III (EPA Stage 2B) with a minimum of 10% validated as EPA raw data review). All SDGs are Level IV.

The laboratory has reported detections to the MDL and has flagged results between the MDL and the PQL with a "B". This is noted because many laboratories use "J" instead of "B" for this purpose, so the meaning of this flag needs to be kept in mind when reviewing the data. The definition of lab flags is provided in the report in the Inorganic Reference section.

II. **ANALYTICAL REPORT FORMS**

The Analytical Report or Data Sheets are present and complete for all requested analyses. Α.

Yes X No

B. Holding Times

The contract holding times were met for all analyses (time of sample receipt to date of analysis). 1.

Yes X No N/AData are qualified from date of collection to analysis, as presented in the next section.

The method holding times were met for all analyses (time of sample collection to date of analysis per the 2. holding times in the project OAPP).

Yes No X The method holding times were met for all analyses, with the following clarifications and exceptions.

Results reported by the lab are qualified as JH#, where # is the number of days since sampling. An outlier that is greater than 4 x the hold time is rejected. Such results should be considered as estimates due to time and temperature changes in the samples.

In this set of data, nitrate and nitrite results have been flagged by the laboratory as out of hold in SDG L65969 and in SDG L68204. The analysis has exceeded the 48-hr hold time for individual determination of nitrate or nitrite. The results could be biased due to microbial degradation or formation of nitrate and nitrite. The bias is typically thought to be low, but a positive bias is also possible. In this case, the outliers are only about 12 hours beyond the hold time. Any degradation is likely to be insignificant during this brief time since the samples were kept cold, which suppresses microbial activity.

Note that the laboratory extended qualifier section of the report states that the hold time for nitrate and nitrite is 7 days, which is incorrect for the methods quoted. The laboratory has actually used 48 hours as stipulated by 40CFR. This is a report error that should be corrected but has no impact on the results.

In addition, one TDS analysis in SDG L65969 was analyzed at a dilution 7 days after the expiration of the 7-day hold time, and that result is qualified accordingly. The original result contained more than 200 mg of final

residue, and the method specifies that there must be less than 200 mg. Therefore, the laboratory reanalyzed the sample. The reason for the 200-mg method limit is to avoid a crust over the solid material that prevents proper drying. This phenomenon is dependent on the area over which the residue is distributed, so different laboratory evaporation dishes used in this method may produce different results. From the raw data review, the original result was essentially the same as the second analysis so there is not likely to be a bias due to the hold time outlier for TDS.

CLIENTID	LABID	ANALYTE	RESULT	QUAL	UNITS	MDL	PQL	DSA	EPA
MW-2B	L68204-04	Nitrate as N, dissolved	0.91	Н	mg/L	0.02	0.1	JHT0.55	J-
MW-2B	L65969-04	Nitrate as N, dissolved	7.45	Н	mg/L	0.08	0.4	JHT0.52	J-
MW-6	L68204-01	Nitrate as N, dissolved	4.20	Н	mg/L	0.04	0.2	JHT0.52	J-
MW-6	L65969-01	Nitrate as N, dissolved	.03	BH	mg/L	0.02	0.1	JHT0.58	J-
MW-7	L68204-02	Nitrate as N, dissolved	0.91	Н	mg/L	0.02	0.1	JHT0.56	J-
MW-7	L65969-02	Nitrate as N, dissolved	7.51	Н	mg/L	0.08	0.4	JHT0.53	J-
MW-8	L68204-03	Nitrate as N, dissolved		UH	mg/L	0.02	0.1	UJHT0.53	UJ-
MW-8	L65969-03	Nitrate as N, dissolved	.99	Н	mg/L	0.02	0.1	JHT0.52	J-
MW-2B	L68204-04	Nitrate/Nitrite as N, dissolved	0.907	Н	mg/L	0.02	0.1	JHT0.55	J-
MW-2B	L65969-04	Nitrate/Nitrite as N, dissolved	7.48	Н	mg/L	0.08	0.4	JHT0.52	J-
MW-6	L68204-01	Nitrate/Nitrite as N, dissolved	4.24	Н	mg/L	0.04	0.2	JHT0.52	J-
MW-6	L65969-01	Nitrate/Nitrite as N, dissolved	0.032	BH	mg/L	0.02	0.1	JHT0.58	J-
MW-7	L68204-02	Nitrate/Nitrite as N, dissolved	0.907	Н	mg/L	0.02	0.1	JHT0.56	J-
MW-7	L65969-02	Nitrate/Nitrite as N, dissolved	7.54	Н	mg/L	0.08	0.4	JHT0.53	J-
MW-8	L68204-03	Nitrate/Nitrite as N, dissolved	0.022	BH	mg/L	0.02	0.1	JHT0.53	J-
MW-8	L65969-03	Nitrate/Nitrite as N, dissolved	1.01	Н	mg/L	0.02	0.1	JHT0.52	J-

Qualifiers added are shown below and in the qualified EDD.

CLIENTID	LABID	ANALYTE	RESULT	QUAL	UNITS	MDL	PQL	DSA	EPA
MW-2B	L68204-04	Nitrite as N, dissolved		UH	mg/L	0.01	0.05	UJHT0.55	UJ-
MW-2B	L65969-04	Nitrite as N, dissolved	0.028	BH	mg/L	0.01	0.05	JHT0.52	J-
MW-6	L68204-01	Nitrite as N, dissolved	0.038	BH	mg/L	0.01	0.05	JHT0.51	J-
MW-6	L65969-01	Nitrite as N, dissolved		UH	mg/L	0.01	0.05	UJHT0.58	UJ-
MW-7	L68204-02	Nitrite as N, dissolved		UH	mg/L	0.01	0.05	UJHT0.56	UJ-
MW-7	L65969-02	Nitrite as N, dissolved	0.027	BH	mg/L	0.01	0.05	JHT0.51	J-
MW-8	L68204-03	Nitrite as N, dissolved	0.014	BH	mg/L	0.01	0.05	JHT0.53	J-
MW-8	L65969-03	Nitrite as N, dissolved	0.016	BH	mg/L	0.01	0.05	JHT0.52	J-
MW-6	L65969-01	Residue, Filterable (TDS) @180C	5430	Н	mg/L	100	200	JHT7.06	J-

3. Samples were properly preserved to pH < 2 for metals, and applicable preservative was used for other methods.

Yes X No N/A

C. Chains of Custody (COC)

Chains of Custody (COC) were reviewed and all fields were complete, signatures were present, and cross outs were clean and initialed.

Yes X No All sample analyses were sent under a COC to ACZ Labs, Steamboat Springs, CO.

III. **CALIBRATION AND STANDARDIZATION**

Initial calibration, mass calibration, and resolution checks for both low and high mass isotopes were within 1. 0.1 atomic mass unit (amu) of the true value. (*)

Yes X No

Yes X No All requisite instrument tuning or performance measures were done according to the method requirements. (*).

US EPA Tune Check Sample reports were provided in the raw data and reports indicated the tunes passed in all cases.

2. Mass calibration and resolution checks for both low and high mass isotopes produced a peak width of approximately 0.6 to 0.9 amu at 10% peak height. (*)

Yes X No

3. Instrument Stability

A tuning solution was analyzed a minimum of four times, and the relative standard deviation (RSD) of absolute signals for all analytes was less than 5%. (*)

Yes X No

B. Instrument Performance and Calibration Standards

1. The Initial Calibration Verification (ICV) standard was within the required control limits of $\pm 10\%$ of the established value for all analytes. (80 - 120% for mercury, 85 - 115% for Se species)

Yes X No

2. The Continuing Calibration Verification (CCV) standards were analyzed at the required frequency following every 10 analyses.

Yes X No Sequencing was performed to verify that the frequencies were met for client samples and for proper application of the qualifiers.

3. The CCV standard percent recovery results were within the required control limits of 90 - 110% (80 - 120% for mercury, 75 - 125% for Se species)

Yes X No All CCVs were within criteria.

4. The correlation coefficients met the ≥ 0.995 criterion, as applicable to the method for mercury.

Yes X No

IV. CONTRACT REQUIRED DETECTION LIMIT (CRDL) STANDARDS

1. The 2x CRDL standards were analyzed for metals as required in the QAPP.

Yes X No N/A

2. The 2x CRDL standards were within the required control limits of 70 - 130% (ICP: 50 - 150% for Lead, Antimony, and Thallium; ICPMS: 50 - 150% for Cobalt, Manganese, and Zinc).

Yes X No

All CRDLs were within criteria. A CRDL check is not required for Method 200.8. However, the laboratory initial calibration run each day has a low-level standard that is very near the reporting limit. This meets method requirements. The 200.7 method does include an RL Check standard that meets criteria.

V. INTERFERENCES

Isobaric Elemental and Molecular Interferences (* for ICP-MS) The isotope selected was free of isobaric elemental and elemental interferences as measured by the Interference Check Sample Solutions A and AB (ICSA/ICSAB) for ICP-AES and ICP-MS.

Yes X No

Data are only qualified if the interfering analyte is present in the sample and at levels near the high end of the linear range of the instrument. Note that the interference check standards are only reported in the raw data for ICP. Method 200.8 (ICPMS) does not specify the use of interference check standards.

VI. LABORATORY REAGENT BLANK (LRB) OR PREPARATION BLANK

A. Blanks were prepared and analyzed at the required frequency of at least one per each set of samples.

Yes X No

The ICB is used as the method blank. This is acceptable since no digestion was performed on the samples prior to analysis.

B. All analytes in the blank were less than the MDL.

Yes X No

Analytes reported as contaminants in the Preparation Blank are qualified with the DSA qualifier "UMB#," where # is the value of the associated blank. Only detected data less than 10x the blank for metals or 5x the blank for other analyses are qualified. Such data are fully usable as non-detected values at the reported concentration or elevated reporting limit. All associated client field sample data were either non-detect or > 10x the blank for metals. Note that the preparation blanks are all run as totals and are applied to both total and dissolved samples.

SDG L70041: Dissolved cadmium and calcium had low-level detections in the associated ICB. However, cadmium was not detected in any sample, and calcium was present at levels much greater than the blank level. No qualifiers are required.

C. The source of contamination was corrected, and the samples were reanalyzed.

Yes _____ No _____ N/A __X___

VII. CALIBRATION BLANKS

The highest blank associated with any particular analyte is used for the qualification process and is the value entered after the DSA "B" blank-qualifier descriptor.

A. Calibration Blanks were prepared and analyzed at the required frequency after each set of 10 samples as required by the method.

Yes X No Sequencing was required to verify association with client samples.

B. The Calibration Blank results were within the required control limits or did not require data qualification.

Yes X No N/A Analytes reported as contaminants in the Calibration Blanks are qualified with the DSA qualifier "UCB#," where # is the value of the blank. Such data are fully usable as non-detected values at the reported concentration or elevated reporting limit. Only detected data less than 10 × blank for metals and 5 × blank for other analyse are qualified.

There are several analytes detected in CCBs. However, these are all associated with non-detects in samples or else with sample results > 10x the CCB level. No qualifiers are required.

C. Field, decon rinse or other Field Blanks are contained and identified in the package.

Yes _____ No __X ____N/A _____

D. The reported results for the Field Blanks are less than the CRDL or less than the MDL, whichever is lower.

Yes _____ No _____ N/A __X___

VIII. INTERNAL STANDARD RESPONSES (*)

A. A minimum of three internal standards were present in all standards and blanks at identical levels.

Yes X No

B. The absolute response of each internal standard (IS) was within the required EPA control limits of 60 - 125%.

Yes X No For the analytes reported.

C. Dilutions were performed as required by the method to minimize errors if the internal standard analyte is naturally present in a sample.

Yes No N/A X

D. If not, the appropriate test procedures were performed, and the required corrections made.

Yes _____ No _____ N/A __X___

IX. MATRIX SPIKES

A. Matrix Spike and Matrix Spike Duplicate (MS/MSD) samples were prepared and analyzed at one per every 20 or fewer samples for each matrix and each sampling event per day as required.

Yes No X

Matrix spikes, duplicates, and matrix spike duplicates were present, but none were specifically for client samples for Method 200.8. For wet chemistry, a matrix spike and a matrix duplicate are analyzed. The project manager will determine if the project frequency is met for these methods. Matrix spikes associated with this set of data are shown in the table below. It is recommended that the client collect Representative samples for each method and designate them to the laboratory to be used for the MS/MSDs. As these samples are collected quarterly, only 1 QC sample would be required per year.

The ICP-MS data (200.8) included MS/MSDs, but these were associated with a different project and are not applicable to these samples. Nitrate and nitrate (M353.2) had a MS and sample duplicate performed. Matrix spikes are not appropriate for the other methods performed.

Spiked Sample - SDG L68204	Methods
MW-2B	M200.7 ICP
MW-2B	SM4500C1-E
MW-8	M245.1 CVAA
MW-8	M353.2 - Automated Cadmium Reduction
MW-7	M353.2 - Automated Cadmium Reduction
Spiked Sample – SDG L64379	Methods
MW-7	M245.1 CVAA
Spiked Sample -SDG L65969	Methods
MW-8	SM4500C1-E
MW-7	SM4500F-C
MW-2B	M245.1 CVAA
Spiked Sample - SDG L70041	
MW-2B	M200.7 ICP

Spiked Sample - SDG L68204	Methods
MW-6	M245.1 CVAA
MW-6	D516-02/-07/-11 – TURBIDIMETRIC Sulfate

B. The MS/MSD percent recoveries were within the required control limits of 75 - 125%.

Yes X No N/A

When matrix spikes are present, associated data are qualified with the DSA qualifier JMS#, where # is the value of the %R for the associated MS or MSD. Data may be biased high or low proportional to the spike recovery. The laboratory 'flags' data as M1 whether they are > 4x spike or within the qualifying limits. The laboratory flags are not recommended for use in evaluating the data as MS/MSD recoveries are not used for qualification of data if the result in the parent sample is > 4x the spike. Non-detected data are not qualified for high spikes. Only those MS/MSDs with parent samples in these projects are considered.

For some methods, such as Method 300.0 and Method 353.2, the laboratory uses a recovery window of 90-110%. Results are only qualified if the recoveries are outside the window specified above.

No samples are qualified for matrix spike outliers.

C. A Post Digestion Spike was prepared and analyzed if required.

Yes No N/A X Not required in this case.

D. The MS/MSD samples were client samples.

Yes X No

MS/MSD analyses were also performed on client samples from other SDGs but are not pertinent for qualification.

X. MATRIX DUPLICATE

A. Matrix Duplicate samples were prepared and analyzed per every 20 samples for each matrix.

Yes X No For nitrate, nitrite, chloride, and TDS the duplicate precision criteria are met.

Parent Sample L68204	Methods
MW-8	SM2320B - alkalinity
MW-7	M353.2 - Automated Cadmium Reduction
MW-7	SM2540C – TDS
Parent Sample L65969	Methods
MW-2B	SM2540C – TDS
MW-6	M353.2 - Automated Cadmium Reduction
MW-7	SM4500Cl-E
Parent Sample L64379	Methods
MW-2B	SM2540C – TDS
Parent Sample SDG L70041	Methods
MW-2B	SM2320B -alkalinity

B. The MS/MSD or MD relative percent difference (RPD) values were within the required control limit of ≤ 20 RPD for water samples or \leq 35% RPD for soil samples. If either of the MD results is less than 5x RL, the RPD is not used. In that case the difference between the results is evaluated and the QC limit is the difference between the original and the duplicate results (\pm 1x RL for water samples or \pm 2x RL for soil samples). If the parent sample result is greater than 4 x the spike concentration, the MS/MSD is not evaluated. Only detected results are qualified for MS/MSD RPD outliers. Only those MS/MSDs with parent samples in these projects are considered.

Yes X No

Data are qualified with the DSA qualifier JD#, where # is the value of the RPD for the associated MD or MS/MSD analyses, when there are outliers. In this case there are no qualifiers.

LABORATORY CONTROL SAMPLE XI.

Laboratory Control Samples (LCS) were prepared and analyzed per every 20 samples for each matrix. Α.

Yes X No

The LCS recoveries were within the required control limits of 80 - 120% for metals and for wet chemistry B. analyses 85 – 115%.

Yes X No All LCS analyses were within criteria.

XII. FIELD QC

Field QC samples were identified. A.

Yes X No

Sample MW-2B is a blind duplicate of sample MW-7 in all SDGs except L70041. For that SDG, MW-2B is a blind duplicate of sample MW-8.

Field duplicates were within the guidance limit of < 30% RPD for water samples or < 50% RPD for soil B. samples. If values are less than 5x RL, the water limit is $\pm 1x$ RL or the soil limit is $\pm 2x$ RL.

Yes X No _ N/A ____

XIII. SERIAL DILUTION

Serial Dilutions were analyzed for every 20 samples if the analyte concentrations were greater than A. 50x IDL.

Yes X No N/A Analyte concentrations are too low to require serial dilutions.

The percent difference (% D) criteria of $\pm 10\%$ were met. B.

Yes No N/A X

When outliers are present, data are qualified with the DSA qualifier JE#, where # is the %D. Data could be biased, usually high, due to non-linear matrix or chemical effects.

XIV. CALCULATIONS

Data calculations were checked when required, and significant figures were correctly reported. Α.

Yes Х No

Over $\overline{25\%}$ of the data were checked from the raw data to the EDD values for each method and each SDG.

- B. Appropriate dilution factors were applied to the calculated sample concentrations.
- Yes X No _____
- C. Data were acceptable for the total versus dissolved and the cation/ anion balance.

Yes X No NA

Total metals were not requested, so the total vs dissolved check cannot be performed. For two of the SDGs, the analytes required for a minimal cation/anion balance are present, but this is not part of the scope for this validation. As part of the calculation check, one sample was checked (L68204-01) and passed Standard Methods criteria for cation-anion balance.

XV. OVERALL ASSESSMENT OF THE CASE

The laboratory has complied with the requested methods and the data is considered fully useable for project purposes with consideration of the following qualifications or comments.

Data were submitted for EPA 200.7 (16 metals by ICP, dissolved), EPA 200.8 (4 metals by ICPMS, dissolved), EPA 245.1 (mercury, dissolved), SM4500F-C (Fluoride), M353.2 (nitrate + nitrite as nitrogen, nitrite as nitrogen, nitrate as nitrogen); SM2540C (total dissolved solids); D516-02/-07/-11 -Sulfate by turbidimetry; SM4500Cl-E (Chloride). Note that for these SDGS, pH was not requested. Note 12 ICP metals for 3rd quarter.

The data were validated at EPA Level III (EPA Stage 2B) with a minimum of 10% validated as EPA raw data review). All SDGs are Level IV.

The laboratory has reported detections to the MDL and has flagged results between the MDL and the PQL with a "B". This is noted because many laboratories use "J" instead of "B" for this purpose, so the meaning of this flag needs to be kept in mind when reviewing the data. The definition of lab flags are provided in the report in the Inorganic Reference section.

Holding Times

The method holding times were met for all analyses, with the following clarifications and exceptions.

Results reported by the lab are qualified as JH#, where # is the number of days since sampling. An outlier that is greater than 4 x the hold time is rejected. Such results should be considered as estimates due to time and temperature changes in the samples.

In this set of data, nitrate and nitrite results have been flagged by the laboratory as out of hold in SDG L65969 and in SDG L68204. The analysis has exceeded the 48-hr hold time for individual determination of nitrate or nitrite. The results could be biased due to microbial degradation or formation of nitrate and nitrite. The bias is typically thought to be low, but a positive bias is also possible. In this case, the outliers are only about 12 hours beyond the hold time. Any degradation is likely to be insignificant during this brief time since the samples were kept cold, which suppresses microbial activity.

Note that the laboratory extended qualifier section of the report states that the hold time for nitrate and nitrite is 7 days, which is incorrect. The laboratory has actually used 48 hours as stipulated by 40CFR. This is a report error that should be corrected but has no impact on the results.

In addition, one TDS analysis in SDG L65969 was analyzed at a dilution 7 days after the expiration of the 7-day hold time, and that result is qualified accordingly. The original result contained more than 200 mg of final residue, and the method specifies that there must be less than 200 mg. Therefore, the laboratory reanalyzed the sample. The reason for the 200-mg method limit is to avoid a crust over the solid material that prevents proper drying. This phenomenon is dependent on the area over which the residue is distributed, so different laboratory

evaporation dishes used in this method may produce different results. From the raw data review, the original result was essentially the same as the second analysis so there is not likely to be a bias due to the hold time outlier for TDS.

Qualifiers added are shown below and in the qualified EDD.

Method Blanks

The ICB is used as the method blank. This is acceptable since no digestion was performed on the samples prior to analysis.

Analytes reported as contaminants in the Preparation Blank are qualified with the DSA qualifier "UMB#," where # is the value of the associated blank. Only detected data less than 10x the blank for metals or 5x the blank for other analyses are qualified. Such data are fully usable as non-detected values at the reported concentration or elevated reporting limit. All associated client field sample data were either non-detect or > 10x the blank for metals. Note that the preparation blanks are all run as totals and are applied to both total and dissolved samples.

SDG L70041: Dissolved cadmium and calcium had low-level detections in the associated ICB. However, cadmium was not detected in any sample, and calcium was present at levels much greater than the blank level. No qualifiers are required.

Continuing Calibration Blanks

Analytes reported as contaminants in the Calibration Blanks are qualified with the DSA qualifier "UCB#," where # is the value of the blank. Such data are fully usable as non-detected values at the reported concentration or elevated reporting limit. Only detected data less than $10 \times$ blank for metals and $5 \times$ blank for other analyses are qualified.

There are several analytes detected in CCBs. However, these are all associated with non-detects in samples or else with sample results > 10x the CCB level. No qualifiers are required.

Matrix Spikes, Matrix Spike Duplicates, and Matrix Duplicates

Matrix spikes, duplicates, and matrix spike duplicates were present but none were specifically for client samples for Method 200.8. For wet chemistry, a matrix spike and a matrix duplicate are analyzed. The project manager will determine if the project frequency is met for these methods. Matrix spikes associated with this set of data are shown in the table below. It is recommended that the client collect Representative samples for each method and designate them to the laboratory to be used for the MS/MSDs. As these samples are collected quarterly, only 1 QC sample would be required per year.

The ICP-MS data (200.8) included MS/MSDs, but these were associated with a different project and are not applicable to these samples. Nitrate and nitrate (M353.2) had a MS and sample duplicate performed. Matrix spikes are not appropriate for the other methods performed.

For some methods, such as Method 300.0 and Method 353.2, the laboratory uses a recovery window of 90-110%. Results are only qualified if the recoveries are outside the window specified above.

No samples are qualified for matrix spike outliers. Matrix duplicates were run for nitrate, nitrite, chloride, and TDS. The duplicate precision criteria are met.

Field QC

Sample MW-2B is a blind duplicate of sample MW-7 in all SDGs except L70041. For that SDG, MW-2B is a blind duplicate of sample MW-8. All are in control.

TABLE OF QUALIFIED DATA

CLIENTID	LABID	ANALYTE	RESULT	QUAL	UNITS	MDL	PQL	DSA	EPA
MW-2B	L68204-04	Nitrate as N, dissolved	0.91	Н	mg/L	0.02	0.1	JHT0.55	J-
MW-2B	L65969-04	Nitrate as N, dissolved	7.45	Н	mg/L	0.08	0.4	JHT0.52	J-
MW-6	L68204-01	Nitrate as N, dissolved	4.20	Н	mg/L	0.04	0.2	JHT0.52	J-
MW-6	L65969-01	Nitrate as N, dissolved	.03	BH	mg/L	0.02	0.1	JHT0.58	J-
MW-7	L68204-02	Nitrate as N, dissolved	0.91	Н	mg/L	0.02	0.1	JHT0.56	J-
MW-7	L65969-02	Nitrate as N, dissolved	7.51	Н	mg/L	0.08	0.4	JHT0.53	J-
MW-8	L68204-03	Nitrate as N, dissolved		UH	mg/L	0.02	0.1	UJHT0.53	UJ-
MW-8	L65969-03	Nitrate as N, dissolved	.99	Н	mg/L	0.02	0.1	JHT0.52	J-
MW-2B	L68204-04	Nitrate/Nitrite as N, dissolved	0.907	Н	mg/L	0.02	0.1	JHT0.55	J-
MW-2B	L65969-04	Nitrate/Nitrite as N, dissolved	7.48	Н	mg/L	0.08	0.4	JHT0.52	J-
MW-6	L68204-01	Nitrate/Nitrite as N, dissolved	4.24	Н	mg/L	0.04	0.2	JHT0.52	J-
MW-6	L65969-01	Nitrate/Nitrite as N, dissolved	0.032	ВН	mg/L	0.02	0.1	JHT0.58	J-
MW-7	L68204-02	Nitrate/Nitrite as N, dissolved	0.907	Н	mg/L	0.02	0.1	JHT0.56	J-
MW-7	L65969-02	Nitrate/Nitrite as N, dissolved	7.54	Н	mg/L	0.08	0.4	JHT0.53	J-
MW-8	L68204-03	Nitrate/Nitrite as N, dissolved	0.022	ВН	mg/L	0.02	0.1	JHT0.53	J-
MW-8	L65969-03	Nitrate/Nitrite as N, dissolved	1.01	Н	mg/L	0.02	0.1	JHT0.52	J-
MW-2B	L68204-04	Nitrite as N, dissolved		UH	mg/L	0.01	0.05	UJHT0.55	UJ-
MW-2B	L65969-04	Nitrite as N, dissolved	0.028	BH	mg/L	0.01	0.05	JHT0.52	J-

CLIENTID	LABID	ANALYTE	RESULT	QUAL	UNITS	MDL	PQL	DSA	EPA
MW-6	L68204-01	Nitrite as N, dissolved	0.038	BH	mg/L	0.01	0.05	JHT0.51	J-
MW-6	L65969-01	Nitrite as N, dissolved		UH	mg/L	0.01	0.05	UJHT0.58	UJ-
MW-7	L68204-02	Nitrite as N, dissolved		UH	mg/L	0.01	0.05	UJHT0.56	UJ-
MW-7	L65969-02	Nitrite as N, dissolved	0.027	BH	mg/L	0.01	0.05	JHT0.51	J-
MW-8	L68204-03	Nitrite as N, dissolved	0.014	BH	mg/L	0.01	0.05	JHT0.53	J-
MW-8	L65969-03	Nitrite as N, dissolved	0.016	BH	mg/L	0.01	0.05	JHT0.52	J-
MW-6	L65969-01	Residue, Filterable (TDS) @180C	5430	Н	mg/L	100	200	JHT7.06	J-