Rational Equation Calculator	Compute peak discharge from a drainage basin using the Rational Equation Method		
Rational runoff coefficien Rainfall intensity, i: Drainage area, A: Peak discharge, Q: © 2013 LMNO Enginee Units in Rational Equat s=second Rational Method Equati The Rational equation is the runoff. It is not as sophistic used for sizing sewer syster Rational Equation: Q=ciA The Rational equation requ Q = Peak discharge, cfs c = Rational method runoff i = Rainfall intensity, inch/f A = Drainage area, acre Note that our calculation all The Rational method runoff slope. A simplified table is complete tables including in The Rainfall intensity (i) is rainfall events in the geogra time of concentration of the authorities depending on th storm frequency may be spe	Click to Calculate t, c: 0.7 0.100 1.65 0.1155 ring, Research, and Software, Ltd. ion calculation: ft^3 =cubic foot, m^{32} on e simplest method to determine peak of ated as the <u>SCS TR-55 method</u> , but is ns. res the following units: coefficient our ows you to use a variety of units. Coefficient (c) is a function of the soft shown below. See the references at the npact of slope. typically found from Intensity/Duration phical region of interest. The duration drainage area. The storm frequency if e impact of the development. A 10-yr excified.	nch/hour acre ft3/s (cfs) http://www.LMNOeng. ¹ =cubic meter, mm=milli discharge from drainage s the most common meth oil type and drainage bas ne bottom of the page for ion/Frequency curves fo on is usually equivalent to is typically stated by loc r, 25-yr, 50-yr, or even 1	Image: Second
Simplified Table of Rati	low)		

Ground Cover	Runoff Coefficient, c
Lawns	0.05 - 0.35
Forest	0.05 - 0.25
Cultivated land	0.08-0.41
Meadow	0.1 - 0.5
Parks, cemeteries	0.1 - 0.25
Unimproved areas	0.1 - 0.3

9/28/21, 11:21 AM Rational Equation Calculation, Q=ciA Pasture 0.12 - 0.62 0.3 - 0.75 Residential areas **Business** areas 0.5 - 0.95 0.5 - 0.9 Industrial areas 0.7 - 0.95 Asphalt streets Brick streets 0.7 - 0.85 Roofs 0.75 - 0.95 Concrete streets 0.7 - 0.95

Error Messages given by calculation

"Need 0 < c < 1", "Need i > 0" "Need A > 0". Input values must be in these ranges.

References and Bibliography

Chin, David A. 2000. Water-Resources Engineering. Prentice-Hall.

Chow, Ven Te, David R. Maidment, and Larry W. Mays. 1988. Applied Hydrology. McGraw-Hill.

Corbitt, Robert A. 1999. Standard Handbook of Environmental Engineering. McGraw-Hill. 2ed.

Lindsley, Ray K., Joseph B. Franzini, David L. Freyberg, and George Tchobanoglous. 1992. Water-Resources Engineering. McGraw-Hill. 4ed.

McCuen, Richard H. 1998. Hydrology Analysis and Design. Prentice-Hall. 2ed.

Singh, Vijay P. 1992. Elementary Hydrology. Prentice-Hall.

© 2003-2015 LMNO Engineering, Research, and Software, Ltd. (All Rights Reserved)

Please contact us for <u>consulting</u> or questions about the rational equation for peak discharge.

LMNO Engineering, Research, and Software, Ltd. 7860 Angel Ridge Rd. Athens, Ohio 45701 USA Phone: (740) 707-2614 LMNO@LMNOeng.com https://www.LMNOeng.com