

Eschberger - DNR, Amy <amy.eschberger@state.co.us>

June 2021 Schwartzwalder Surface Water Report

Evan Valencia <evalencia@ensero.com>

Mon, Aug 23, 2021 at 11:14 AM

To: "daniel.arnold@denverwater.org" <daniel.arnold@denverwater.org>, "Eschberger - DNR, Amy" <amy.eschberger@state.co.us>, Evelyn Rhodes <erhodes@arvada.org>, "eric.mink@state.co.us" <eric.mink@state.co.us>, "bwyant@arvada.org" <bwyant@arvada.org> Cc: Jim Harrington <jimharrington@ensero.com>, Elizabeth Busby <ebusby@ensero.com>, Billy Ray <bray@ensero.com>

Ms. Eschberger, Mr. Mink, Mr. Arnold, Mr. Wyant, and Ms. Rhodes,

Please find attached a transmittal letter, report, and electronic deliverable (EDD) for surface water data collected in June 2021 from the Schwartzwalder Mine in Golden, Colorado.

Best,

Evan Valencia, EIT

Environmental Engineer I

12150 E. Briarwood Ave., Suite 135

Centennial, CO 80112

C. 818-688-1839 | P. 303-642-3893

www.ensero.com | evalencia@ensero.com

Ensero – Solutions for a better world.

This email contains privileged or confidential information and is intended only for the named recipients. If you have received this email in error or are not a named recipient, please notify the sender and destroy the email.

Please consider the environment before printing this e-mail.

JUN2021_Schwartz_RPT.pdf 901K

12150 E. Briarwood Ave. Suite 135, Centennial, CO 80112 T. (303) 862-3928

August 23, 2021

Colorado Department of Public Health and Environment Water Quality Control Division / WQCD-B2-CAS Compliance Assurance Section Attention: Eric Mink 4300 Cherry Creek Drive South Denver, CO 80246-1530

Subject:June 2021 SW-AWD and SW-BPL Surface Monitoring Data for Sampling Stations,
Schwartzwalder Mine, Paragraph 26, WQCD Order Number: IO 100601-1, June1, 2010,
Schwartzwalder Mine, Golden, Colorado

Dear Mr. Mink:

Pursuant to Paragraph 26 of the above referenced Order, please find enclosed data reports from contract laboratories as received by Ensero Solutions, Inc working on behalf of Colorado Legacy Land. This data originates from the analysis of surface water samples collected in June 2021 at the Schwartzwalder Mine, monitoring stations SW-AWD and SW-BPL. Review of the data indicates that the total and dissolved uranium concentrations at SW-AWD and SW-BPL were below 30 µg/L.

These results are being reported later than typical due to extended turnaround times from the subcontract laboratory ACZ. In June and July, ACZ experienced difficulties with tracer recovery for Radium-228 analysis. As a result, samples were re-analyzed which extended the sample turnaround time and subsequent reporting.

If you have any questions, please don't hesitate to contact me.

Sincerely,

Jon M. Myte.

Jim Harrington, Managing Director COLORADO LEGACY LAND Jim@ColoradoLegacy.Land

Distribution List:

Dan Arnold, Denver Water, 1 electronic copy via weblink, <u>Daniel.Arnold@DenverWater.org</u>
Eric Mink, CDPHE, 1 electronic copy via weblink, <u>Eric.Mink@state.co.us</u>
Amy Eschberger, DRMS, 1 electronic copy via weblink and 1 hard copy via FedEx, <u>amy.eschberger@state.co.us</u>
Billy Ray, Ensero Solutions, 1 electronic copy, <u>bray@ensero.com</u>
Brad Wyant, City of Arvada, 1 electronic copy, <u>bwyant@arvada.org</u>

Evelyn Rhodes, City of Arvada, 1 electronic copy, erhodes@arvada.org

Certification

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Jon Mr. Myt.

Jim Harrington, Managing Director COLORADO LEGACY LAND

June 2021 Schwartzwalder Monthly Surface Water Report

Contents:

Sample Location	Sample Date	Analysis	Sample ID	Temp (°C)	Field pH (S.U.)	Conductivity(µS/cm)	DO (mg/L)	ORP (mV)
SW-BPL	6/15/2021	Sample Suite 2	L66559-01	13.6	6.76	219.8	11.30	172.1
SW-AWD	6/15/2021	Sample Suite 2	L66559-02	14.8	8.81	228.1	11.14	106.3

Analytical Report

August 18, 2021

Report to: Christie Brizinski Ensero Solutions 131 E. Lincoln Ave Ste. 200 Fort Collins, CO 80524

cc: Ensero/Alexco Importer, Evan Valencia

Bill to: Pauline Wong Ensero Solutions 131 E. Lincoln Ave Ste. 200 Fort Collins, CO 80524

Project ID: 3100-PO205 ACZ Project ID: L66559

Christie Brizinski:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on June 17, 2021. This project has been assigned to ACZ's project number, L66559. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan. The enclosed results relate only to the samples received under L66559. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after September 17, 2021. If the samples are determined to be hazardous, additional charges apply for disposal (typically \$11/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical raw data reports for ten years.

If you have any questions or other needs, please contact your Project Manager.

Max janicele

Max Janicek has reviewed and approved this report.

Ensero Solutions

Project ID: 3100-PO205 Sample ID: SW-BPL

Inorganic Analytical Results

ACZ Sample ID:	L66559-01
Date Sampled:	06/15/21 09:30
Date Received:	06/17/21
Sample Matrix:	Surface Water

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Cyanide, WAD	SM4500-CN I- distillation		-						06/22/21 15:15	syw
Phosphorus, total	M365.1 - Auto Ascorbic Acid Digestion								06/29/21 11:58	emh
Total Hot Plate Digestion	M200.2 ICP-MS				*				07/01/21 8:10	mfm
Total Hot Plate Digestion	M200.2 ICP				*				06/30/21 17:54	jlw
Total Recoverable Digestion	M200.2 ICP-MS								06/30/21 8:40	mfm
Total Recoverable Digestion	M200.2 ICP								06/29/21 15:26	kja
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Antimony, total recoverable	M200.8 ICP-MS	1	<0.0004	U		mg/L	0.0004	0.002	07/01/21 13:07	mfm
Arsenic, total	M200.8 ICP-MS	10	<0.002	U		mg/L	0.002	0.01	07/02/21 17:43	mfm
Boron, total	M200.7 ICP	2	<0.06	U		mg/L	0.06	0.2	07/04/21 15:53	kja
Chromium, total recoverable	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	06/30/21 21:55	kja
Copper, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	06/24/21 19:30	kja
Molybdenum, dissolved	1 M200.7 ICP	1	<0.02	U		mg/L	0.02	0.1	06/24/21 19:30	kja
Molybdenum, total	M200.7 ICP	2	<0.04	U		mg/L	0.04	0.2	07/04/21 15:53	kja
Silver, dissolved	M200.8 ICP-MS	1	<0.0001	U		mg/L	0.0001	0.0005	07/08/21 16:10	mfm
Thallium, total recoverable	M200.8 ICP-MS	1	<0.0001	U		mg/L	0.0001	0.0005	07/01/21 13:07	mfm
Uranium, dissolved	M200.8 ICP-MS	1	0.00998			mg/L	0.0001	0.0005	07/08/21 16:10	mfm
Uranium, total	M200.8 ICP-MS	10	0.00954			mg/L	0.001	0.005	07/02/21 17:43	mfm
Zinc, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	06/24/21 19:30	kja
Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Cyanide, WAD	SM4500-CN I,E- Colorimetric w/ distillation	0.5	<0.003	U	*	mg/L	0.003	0.01	06/23/21 14:48	md
Fluoride	SM4500F-C	1	0.30	В	*	mg/L	0.15	0.35	07/01/21 12:31	eep
Nitrate/Nitrite as N	M353.2 - H2SO4 preserved	1	0.082	В	*	mg/L	0.02	0.1	07/03/21 3:00	pjb
Phosphate, total	Calculation based on total Phosphorus		<0.03	U		mg/L	0.03	0.2	08/18/21 0:00	calc
Phosphorus, total	M365.1 - Auto Ascorbic Acid (digest)	1	<0.01	U	*	mg/L	0.01	0.05	06/30/21 0:36	pjb
Residue, Filterable (TDS) @180C	SM2540C	1	210		*	mg/L	20	40	06/21/21 14:39	jck
Residue, Non- Filterable (TSS) @105C	SM2540D	1	5.0	BH	*	mg/L	5	20	06/23/21 14:17	еер
Sulfate	D516-02/-07/-11 - TURBIDIMETRI	^C 1	14.4		*	mg/L	1	5	07/09/21 11:28	wtc

* Please refer to Qualifier Reports for details.

Ensero Solutions

Project ID: 3100-PO205 Sample ID: SW-AWD

Inorganic Analytical Results

ACZ Sample ID:	L66559-02
Date Sampled:	06/15/21 11:10
Date Received:	06/17/21
Sample Matrix:	Surface Water

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Cyanide, WAD	SM4500-CN I- distillation		-						06/22/21 15:25	syw
Phosphorus, total	M365.1 - Auto Ascorbic Acid Digestion								06/29/21 12:07	•
Total Hot Plate Digestion	M200.2 ICP-MS				*				07/01/21 8:10	mfm
Total Hot Plate Digestion	M200.2 ICP				*				06/30/21 18:07	jlw
Total Recoverable Digestion	M200.2 ICP-MS								06/30/21 8:40	mfm
Total Recoverable Digestion	M200.2 ICP								06/29/21 15:59	kja
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Antimony, total recoverable	M200.8 ICP-MS	1	<0.0004	U		mg/L	0.0004	0.002	07/01/21 13:09	mfm
Arsenic, total	M200.8 ICP-MS	10	<0.002	U		mg/L	0.002	0.01	07/02/21 17:45	mfm
Boron, total	M200.7 ICP	2	<0.06	U		mg/L	0.06	0.2	07/04/21 15:56	kja
Chromium, total recoverable	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	06/30/21 22:04	kja
Copper, dissolved	M200.7 ICP	1	<0.01	U		mg/L	0.01	0.05	06/24/21 19:40	kja
Molybdenum, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.1	06/24/21 19:40	kja
Molybdenum, total	M200.7 ICP	2	<0.04	U		mg/L	0.04	0.2	07/04/21 15:56	kja
Silver, dissolved	M200.8 ICP-MS	1	<0.0001	U		mg/L	0.0001	0.0005	07/08/21 16:11	mfm
Thallium, total recoverable	M200.8 ICP-MS	1	<0.0001	U		mg/L	0.0001	0.0005	07/01/21 13:09	mfm
Uranium, dissolved	M200.8 ICP-MS	1	0.00091			mg/L	0.0001	0.0005	07/08/21 16:11	mfm
Uranium, total	M200.8 ICP-MS	10	<0.001	U		mg/L	0.001	0.005	07/02/21 17:45	mfm
Zinc, dissolved	M200.7 ICP	1	<0.02	U		mg/L	0.02	0.05	06/24/21 19:40	kja
Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Cyanide, WAD	SM4500-CN I,E- Colorimetric w/ distillation	0.5	<0.003	U	*	mg/L	0.003	0.01	06/23/21 14:49	md
Fluoride	SM4500F-C	1	0.32	В	*	mg/L	0.15	0.35	07/01/21 12:34	eep
Nitrate/Nitrite as N	M353.2 - H2SO4 preserved	1	0.041	В	*	mg/L	0.02	0.1	07/03/21 3:01	pjb
Phosphate, total	Calculation based on total Phosphorus		<0.03	U		mg/L	0.03	0.2	08/18/21 0:00	calc
Phosphorus, total	M365.1 - Auto Ascorbic Acid (digest)	1	<0.01	U	*	mg/L	0.01	0.05	06/30/21 0:37	pjb
Residue, Filterable (TDS) @180C	SM2540C	1	226		*	mg/L	20	40	06/21/21 14:42	jck
Residue, Non- Filterable (TSS) @105C	SM2540D	1	<5	UH	*	mg/L	5	20	06/23/21 14:19	еер
Sulfate	D516-02/-07/-11 - TURBIDIMETRI	^C 1	12.1		*	mg/L	1	5	07/09/21 11:30	wtc

* Please refer to Qualifier Reports for details.

Inorganic Reference

Batch	r Explanations A distinct set of samples analyzed at a specific time		
Found	Value of the QC Type of interest		
Limit	Upper limit for RPD, in %.		
Lower	Lower Recovery Limit, in % (except for LCSS, mg/Kg)		
MDL	Method Detection Limit. Same as Minimum Reporting Limit ur	nless omitted or e	gual to the POL (see comment #5)
MDL	Allows for instrument and annual fluctuations.		
PCN/SCN	A number assigned to reagents/standards to trace to the man	ufacturer's certific	ate of analysis
PQL	Practical Quantitation Limit. Synonymous with the EPA term "		
QC	True Value of the Control Sample or the amount added to the		
Rec	Recovered amount of the true value or spike added, in % (exc		/Kq)
RPD	Relative Percent Difference, calculation used for Duplicate QC		
Upper	Upper Recovery Limit, in % (except for LCSS, mg/Kg)		
Sample	Value of the Sample of interest		
0l- T -			
Sample Ty AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicat
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MS MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	•
		FUV	Practical Quantitation Verification standard
		SDL	Practical Quantitation Verification standard Serial Dilution
LCSW	Laboratory Control Sample - Water		
<i>LCSW</i> Sample Ty	Laboratory Control Sample - Water	SDL	Serial Dilution
<i>LCSW</i> Sample Ty Blanks	Laboratory Control Sample - Water ype Explanations Verifies that there is no or minimal co	SDL	Serial Dilution e prep method or calibration procedure.
LCSW Sample Ty Blanks Control Sa	Laboratory Control Sample - Water	SDL ontamination in the including the prep	Serial Dilution e prep method or calibration procedure. o procedure.
LCSW Sample Ty Blanks Control Sa Duplicates	Laboratory Control Sample - Water The Explanations Verifies that there is no or minimal comples Verifies the accuracy of the method, Verifies the precision of the instrume	SDL ontamination in the including the prep nt and/or method	Serial Dilution e prep method or calibration procedure. o procedure.
LCSW Sample Ty Blanks Control Sa Duplicates Spikes/For	Laboratory Control Sample - Water	SDL ontamination in the including the prep nt and/or method ces, if any.	Serial Dilution e prep method or calibration procedure. o procedure.
LCSW Sample Ty Blanks Control Sa Duplicates	Laboratory Control Sample - Water The Explanations Verifies that there is no or minimal comples Verifies the accuracy of the method, Verifies the precision of the instrume	SDL ontamination in the including the prep nt and/or method ces, if any.	Serial Dilution e prep method or calibration procedure. o procedure.
LCSW Sample Ty Blanks Control Sa Duplicates Spikes/For	Laboratory Control Sample - Water rpe Explanations weifies that there is no or minimal comples Verifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferen Verifies the validity of the calibration.	SDL ontamination in the including the prep nt and/or method ces, if any.	Serial Dilution e prep method or calibration procedure. o procedure.
LCSW Sample Ty Blanks Control Sa Duplicates Spikes/For Standard	Laboratory Control Sample - Water rpe Explanations weifies that there is no or minimal comples Verifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferen Verifies the validity of the calibration.	SDL ontamination in the including the prep nt and/or method ces, if any.	Serial Dilution e prep method or calibration procedure. o procedure.
LCSW Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers	Laboratory Control Sample - Water	SDL ontamination in the including the prep nt and/or method ces, if any.	Serial Dilution e prep method or calibration procedure. o procedure. ted value is an estimated quantity.
LCSW Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B	Laboratory Control Sample - Water rpe Explanations weifies that there is no or minimal comples Verifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferen Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F	SDL ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold	Serial Dilution e prep method or calibration procedure. o procedure. ted value is an estimated quantity.
LCSW Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H	Laboratory Control Sample - Water rpe Explanations with the explanations with explanations	SDL ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold gative threshold.	Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time.
LCSW Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L	Laboratory Control Sample - Water vpe Explanations with the explanation of the explanation with the explanation of the explanation s (Qual) Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined negative	SDL ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold gative threshold. e level of the assoc	Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. pciated value.
LCSW Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L	Laboratory Control Sample - Water vpe Explanations with the explanations	SDL ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold gative threshold. e level of the assoc	Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. pciated value.
LCSW Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U	Laboratory Control Sample - Water vpe Explanations with the explanations	SDL ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold gative threshold. e level of the associate the sample detect	Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity. time. pociated value. tion limit.
LCSW Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U	Laboratory Control Sample - Water rpe Explanations mples Verifies that there is no or minimal comples tifies Verifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferent Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analyte concentration detected at a value between MDL and F Analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the	SDL ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold gative threshold. e level of the associate the sample detection and Wastes, Marc	Serial Dilution e prep method or calibration procedure. p procedure. to procedure. ted value is an estimated quantity. time. botiated value. tion limit. ch 1983.
LCSW Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U	Laboratory Control Sample - Water rpe Explanations Werifies that there is no or minimal comples Verifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferent Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analyte concentration detected at a value between MDL and F Analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the EPA 600/4-83-020. Methods for Chemical Analysis of Water and	SDL ontamination in the including the prep nt and/or method ces, if any. PQL. The associa in immediate hold gative threshold. e level of the associa the sample detect and Wastes, Marc in Substances in	Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993.
LCSW Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U U thod Refere (1) (2)	Laboratory Control Sample - Water ype Explanations with the explanation of the instrume with the explanation of the instrume Werifies the validity of the calibration. with the explanation of the exploration. state with the exploration of the exploration. with the exploration of the exploration. with the exploration of the exploration. with the exploration. with the exploration.	SDL ontamination in the including the prep nt and/or method ces, if any. PQL. The associa in immediate hold gative threshold. e level of the associa the sample detect and Wastes, Marc in Substances in	Serial Dilution e prep method or calibration procedure. p procedure. to procedure. ted value is an estimated quantity. time. bciated value. tion limit. bch 1983. Environmental Samples, August 1993.
LCSW Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U U thod Reference (1) (2) (3)	Laboratory Control Sample - Water vpe Explanations Werifies that there is no or minimal comples Verifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferent Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analyte sexceeded method hold time. pH is a field test with ar Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the ences EPA 600/R-83-020. Methods for Chemical Analysis of Water at EPA 600/R-94-111. Methods for the Determination of Inorgan EPA 600/R-94-111. Methods for the Determination of Metals in	SDL ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold gative threshold. e level of the assoc the sample detect and Wastes, Marca nic Substances in in Environmental	Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993.
LCSW Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U U thod Reference (1) (2) (3) (4) (5)	Laboratory Control Sample - Water rpe Explanations Imples Verifies that there is no or minimal comples Verifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferent Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analyte concentration detected at a value between MDL and F Analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the ences EPA 600/R-93-100. Methods for Chemical Analysis of Water at EPA 600/R-94-111. Methods for the Determination of Inorgan EPA 600/R-94-111. Methods for Evaluating Solid Waste.	SDL ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold gative threshold. e level of the assoc the sample detect and Wastes, Marca nic Substances in in Environmental	Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993.
LCSW Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U thod Referent (1) (2) (3) (4) (5) mments	Laboratory Control Sample - Water rpe Explanations Werifies that there is no or minimal comples Verifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferent Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with ar Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the ences EPA 600/R-93-100. Methods for Chemical Analysis of Water at EPA 600/R-94-111. Methods for the Determination of Inorgan EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wastewal	SDL ontamination in the including the prep nt and/or method ces, if any. PQL. The associa in immediate hold gative threshold. e level of the associa the sample detect and Wastes, Marc in Environmental ater.	Serial Dilution e prep method or calibration procedure. procedure. to procedure. ted value is an estimated quantity. time. botated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.
LCSW Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U thod Reference (1) (2) (3) (4) (5) mments (1)	Laboratory Control Sample - Water rpe Explanations Werifies that there is no or minimal comples Verifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferent Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with and Target analyte response was below the laboratory defined negot The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the associated value is either the sample quantitation limit or the EPA 600/R-93-100. Methods for Chemical Analysis of Water and EPA 600/R-94-111. Methods for the Determination of Inorgan EPA 600/R-94-111. Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wasteward QC results calculated from raw data. Results may vary slightly	SDL ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold gative threshold. e level of the associate the sample detect and Wastes, Marco nic Substances in in Environmental ater.	Serial Dilution e prep method or calibration procedure. p procedure. to procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations.
LCSW Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U thod Reference (1) (2) (3) (4) (5) mments (1) (2)	Laboratory Control Sample - Water rpe Explanations Werifies that there is no or minimal comples Verifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferent Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the ences EPA 600/R-93-100. Methods for Chemical Analysis of Water at EPA 600/R-94-111. EPA 600/R-94-111. Methods for the Determination of Inorgan EPA SW-846. Cresults calculated from raw data. Results may vary slightly Soil, Sludge, and Plant matrices for Inorganic analyses are reported.	SDL ontamination in the including the prep int and/or method ces, if any. PQL. The associa in immediate hold gative threshold. e level of the association the sample detection and Wastes, Marco in Environmental ater.	Serial Dilution e prep method or calibration procedure. p procedure. to procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations.
LCSW Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U thod Reference (1) (2) (3) (4) (5) mments (1) (2) (3) (3)	Laboratory Control Sample - Water rpe Explanations Werifies that there is no or minimal comples Verifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferent Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with ar Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the ences EPA 600/R-93-100. Methods for the Determination of Inorganic EPA 600/R-94-111. Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wastewa QC results calculated from raw data. Results may vary slightly Soil, Sludge, and Plant matrices for Inorganic analyses are reported on an "as	SDL ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold gative threshold. e level of the association the sample detection and Wastes, Marca in Environmental ater.	Serial Dilution e prep method or calibration procedure. procedure. to procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations. eight basis.
LCSW Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U thod Reference (1) (2) (3) (4) (5) mments (1) (2)	Laboratory Control Sample - Water rpe Explanations Imples Verifies that there is no or minimal comples Verifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferen Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg. The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the associated value is either the sample quantitation limit or the EPA 600/R-93-100. Methods for Chemical Analysis of Water and EPA 600/R-93-100. Methods for the Determination of Inorgani EPA 600/R-94-111. Methods for the Determination of Metals is EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wasteward QC results calculated from raw data. Results may vary slightly Soil, Sludge, and Plant matrices for Inorganic analyses are reported on an "as An asterisk in the "XQ" column indicates there is an extended	SDL ontamination in the including the prep nt and/or method ces, if any. PQL. The associa n immediate hold gative threshold. e level of the association the sample detection and Wastes, Marca in Environmental ater.	Serial Dilution e prep method or calibration procedure. p procedure. to procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations. eight basis.
LCSW Sample Ty Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U thod Reference (1) (2) (3) (4) (5) mments (1) (2) (3) (3)	Laboratory Control Sample - Water rpe Explanations Werifies that there is no or minimal comples Verifies the accuracy of the method, Verifies the precision of the instrume tified Matrix Determines sample matrix interferent Verifies the validity of the calibration. s (Qual) Analyte concentration detected at a value between MDL and F Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with ar Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the ences EPA 600/R-93-100. Methods for the Determination of Inorganic EPA 600/R-94-111. Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wastewa QC results calculated from raw data. Results may vary slightly Soil, Sludge, and Plant matrices for Inorganic analyses are reported on an "as	SDL ontamination in the including the prep int and/or method ces, if any. PQL. The associa in immediate hold gative threshold. e level of the association the sample detect and Wastes, Marco in Environmental ater. y if the rounded va- ported on a dry we received" basis. qualifier and/or ca	Serial Dilution e prep method or calibration procedure. p procedure. to procedure. ted value is an estimated quantity. time. botated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations. eight basis. ertification qualifier

https://acz.com/wp-content/uploads/2019/04/Ext-Qual-List.pdf

REP001.03.15.02

AGZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Ensero Solutions

ACZ Project ID: L66559

Antimony, total	recovera	able	M200.8 IC	P-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG522351													
WG522351ICV	ICV	07/01/21 12:51	MS210630-2	.0201		.02033	mg/L	101	90	110			
WG522351ICB	ICB	07/01/21 12:53				U	mg/L		-0.0012	0.0012			
WG522203LRB	LRB	07/01/21 12:54				U	mg/L		-0.00088	0.00088			
WG522203LFB	LFB	07/01/21 12:56	MS210610-2	.01		.01041	mg/L	104	85	115			
WG522351CCV1	CCV	07/01/21 13:12	MS210521-8	.0125		.01217	mg/L	97	90	110			
WG522351CCB1	CCB	07/01/21 13:14				U	mg/L		-0.0012	0.0012			
L66648-01LFM	LFM	07/01/21 13:16	MS210610-2	.01	.00068	.01045	mg/L	98	70	130			
L66648-01LFMD	LFMD	07/01/21 13:18	MS210610-2	.01	.00068	.01081	mg/L	101	70	130	3	20	
WG522351CCV2	CCV	07/01/21 13:34	MS210521-8	.0125		.01207	mg/L	97	90	110			
WG522351CCB2	CCB	07/01/21 13:36				U	mg/L		-0.0012	0.0012			
WG522351CCV3	CCV	07/01/21 13:49	MS210521-8	.0125		.01233	mg/L	99	90	110			
WG522351CCB3	CCB	07/01/21 13:50				U	mg/L		-0.0012	0.0012			
Arsenic, total			M200.8 IC	P-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG522473													
WG522473ICV	ICV	07/02/21 17:25	MS210630-2	.05		.05147	mg/L	103	90	110			
WG522473ICB	ICB	07/02/21 17:27				U	mg/L		-0.0006	0.0006			
WG522305LRB	LRB	07/02/21 17:28				U	mg/L		-0.00044	0.00044			
WG522305LFB	LFB	07/02/21 17:30	MS210610-2	.05005		.04886	mg/L	98	85	115			
L66558-02LFM	LFM	07/02/21 17:37	MS210610-2	.05005	U	.04803	mg/L	96	70	130			
L66558-02LFMD	LFMD	07/02/21 17:39	MS210610-2	.05005	U	.04963	mg/L	99	70	130	3	20	
WG522473CCV1	CCV	07/02/21 17:46	MS210521-8	.1001	Ū	.09626	mg/L	96	90	110	Ũ	20	
WG522473CCB1	CCB	07/02/21 17:48				U	mg/L		-0.0006	0.0006			
WG522473CCV2	CCV	07/02/21 18:08	MS210521-8	.1001		.09602	mg/L	96	90	110			
WG522473CCB2	CCB	07/02/21 18:10				U	mg/L		-0.0006	0.0006			
WG522473CCV3	CCV	07/02/21 18:22	MS210521-8	.1001		.10212	mg/L	102	90	110			
WG522473CCB3	CCB	07/02/21 18:24				U	mg/L		-0.0006	0.0006			
Boron, total			M200.7 IC	P									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG522346													
WG522346	ICV	07/04/21 15:10	ll210620-2	2		2.003	mg/L	100	95	105			
WG522346ICV WG522346ICB	ICB	07/04/21 15:10	112 10020-2	2		2.003 U	mg/L	100	95 -0.09	0.09			
			11210603 2	1001			mg/L	106					
WG522346PQV WG522346SIC	PQV SIC	07/04/21 15:19 07/04/21 15:22	ll210603-2	.1001 .1001		.106 .1	mg/L	106 100	70 80	130 120			
WG522346SIC WG522274LRB	LRB	07/04/21 15:22	ll210518-2	. 1001		. I U	mg/L	100	80 -0.066	0.066			
WG522274LRB WG522274LFB	LFB	07/04/21 15:29	II210622-2	.5005		.52	mg/L	104	-0.000 85	115			
L66558-03LFM	LFD	07/04/21 15:32	ll210622-2	.5005	U	.528	mg/L	104	85 70	130			
L66558-03LFMD		07/04/21 15:50	ll210622-2	.5005	U	.520	mg/L	105	70	130	1	20	
WG522346CCV1	CCV	07/04/21 15:59	ll210629-1	.5005	0	1.032	mg/L	100	90	130	1	20	
WG522346CCV1 WG522346CCB1	CCB	07/04/21 15:59	1210023-1	I		1.032 U	mg/L	100	-0.09	0.09			
WG522346CCB1 WG522346CCV2	CCV	07/04/21 16:36	II210629-1	1		.984	mg/L	98	-0.09 90	110			
WG522346CCV2 WG522346CCB2	CCB	07/04/21 16:30	1210023-1			.904 U	mg/L	30	-0.09	0.09			
WG522346CCV3	CCV	07/04/21 17:01	II210629-1	1		.98	mg/L	98	-0.09 90	110			
WG522346CCB3	CCB	07/04/21 17:01	1210020-1			.90 U	mg/L	50	-0.09	0.09			
	000	5110-121 11.04				5			-0.03	0.03			

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Ensero Solutions

ACZ Project ID: L66559

Chromium, total recoverable		M200.7 IC	CP										
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG522280													
WG522280ICV	ICV	06/30/21 20:22	II210628-1	2		1.947	mg/L	97	95	105			
WG522280ICB	ICB	06/30/21 20:28				U	mg/L		-0.06	0.06			
WG522280PQV	PQV	06/30/21 20:31	II210603-2	.0502		.052	mg/L	104	70	130			
WG522280SIC	SIC	06/30/21 20:34	II210602-1	.1004		.11	mg/L	110	80	120			
WG522124LRB	LRB	06/30/21 20:40				U	mg/L		-0.044	0.044			
WG522124LFB	LFB	06/30/21 20:43	II210622-2	.502		.464	mg/L	92	85	115			
WG522280CCV1	CCV	06/30/21 21:11	II210628-2	1		.962	mg/L	96	90	110			
WG522280CCB1	CCB	06/30/21 21:14				U	mg/L		-0.06	0.06			
WG522280CCV2	CCV	06/30/21 21:48	II210628-2	1		.962	mg/L	96	90	110			
WG522280CCB2	CCB	06/30/21 21:51				U	mg/L		-0.06	0.06			
L66559-01LFM	LFM	06/30/21 21:58	ll210622-2	.502	U	.46	mg/L	92	70	130			
L66559-01LFMD	LFMD	06/30/21 22:01	II210622-2	.502	U	.462	mg/L	92	70	130	0	20	
L66559-02LFM	LFM	06/30/21 22:07	ll210622-2	.502	U	.465	mg/L	93	70	130			
L66559-02LFMD	LFMD	06/30/21 22:10	ll210622-2	.502	U	.459	mg/L	91	70	130	1	20	
WG522280CCV3	CCV	06/30/21 22:13	ll210628-2	1		.955	mg/L	96	90	110			
WG522280CCB3	CCB	06/30/21 22:16				U	mg/L		-0.06	0.06			

Copper, dissolv		M200.7 ICP											
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG521828													
WG521828ICV	ICV	06/24/21 18:42	II210608-1	2		1.947	mg/L	97	95	105			
WG521828ICB	ICB	06/24/21 18:48				U	mg/L		-0.03	0.03			
WG521828PQV	PQV	06/24/21 18:51	II210603-2	.0502		.047	mg/L	94	70	130			
WG521828SIC	SIC	06/24/21 18:54	ll210602-1	.1004		.097	mg/L	97	80	120			
WG521828LFB	LFB	06/24/21 19:01	ll210622-2	.502		.491	mg/L	98	85	115			
WG521828CCV1	CCV	06/24/21 19:34	ll210609-1	1		.93	mg/L	93	90	110			
WG521828CCB1	CCB	06/24/21 19:37				U	mg/L		-0.03	0.03			
L66559-02AS	AS	06/24/21 19:43	ll210622-2	.502	U	.477	mg/L	95	85	115			
L66559-02ASD	ASD	06/24/21 19:47	ll210622-2	.502	U	.48	mg/L	96	85	115	1	20	
WG521828CCV2	CCV	06/24/21 19:50	ll210609-1	1		.956	mg/L	96	90	110			
WG521828CCB2	CCB	06/24/21 19:53				U	mg/L		-0.03	0.03			

Cyanide, WAD			SM4500-C	N I,E-Co	lorimetric v	w/ distilla	ation						
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG521742													
WG521742ICV	ICV	06/23/21 14:35	WI210616-7	.3		.2988	mg/L	100	90	110			
WG521742ICB	ICB	06/23/21 14:36				U	mg/L		-0.003	0.003			
WG521627LRB	LRB	06/23/21 14:37				U	mg/L		-0.003	0.003			
WG521627LFB	LFB	06/23/21 14:38	WI210616-6	.2		.1964	mg/L	98	90	110			
L66516-01DUP	DUP	06/23/21 14:40			U	U	mg/L				0	20	RA
L66524-01LFM	LFM	06/23/21 14:41	WI210616-6	.2	U	.1548	mg/L	77	90	110			M2
WG521742CCV1	CCV	06/23/21 14:45	WI210616-8	.25		.2498	mg/L	100	90	110			
WG521742CCB1	CCB	06/23/21 14:46				U	mg/L		-0.003	0.003			
WG521742CCV2	CCV	06/23/21 14:56	WI210616-8	.25		.2431	mg/L	97	90	110			
WG521742CCB2	CCB	06/23/21 14:56				U	mg/L		-0.003	0.003			
WG521742CCV3	CCV	06/23/21 15:04	WI210616-8	.25		.2478	mg/L	99	90	110			
WG521742CCB3	CCB	06/23/21 15:05				U	mg/L		-0.003	0.003			

AGZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Ensero Solutions

ACZ Project ID: L66559

Fluoride			SM4500F	-C									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG522332													
WG522332ICV	ICV	07/01/21 11:38	WC210609-3	2.002		1.98	mg/L	99	90	110			
WG522332ICB	ICB	07/01/21 11:43				U	mg/L		-0.3	0.3			
WG522332PQV	PQV	07/01/21 11:46	WC210528-8	.35105		.38	mg/L	108	70	130			
WG522332LFB1	LFB	07/01/21 11:51	WC201221-2	5.015		4.93	mg/L	98	90	110			
WG522332CCV1	CCV	07/01/21 12:43	WC210609-3	2.002		2.15	mg/L	107	90	110			
WG522332CCB1	CCB	07/01/21 12:49				U	mg/L		-0.3	0.3			
L66658-03AS	AS	07/01/21 13:01	WC201221-2	5.015	7.73	11.99	mg/L	85	90	110			M2
L66658-03ASD	ASD	07/01/21 13:09	WC201221-2	5.015	7.73	12.05	mg/L	86	90	110	0	20	M2
WG522332CCV2	CCV	07/01/21 13:40	WC210609-3	2.002		2.07	mg/L	103	90	110			
WG522332CCB2	CCB	07/01/21 13:47				U	mg/L		-0.3	0.3			
WG522332LFB2	LFB	07/01/21 14:17	WC201221-2	5.015		5.02	mg/L	100	90	110			
WG522332CCV3	CCV	07/01/21 14:48	WC210609-3	2.002		2.06	mg/L	103	90	110			
WG522332CCB3	CCB	07/01/21 14:55				U	mg/L		-0.3	0.3			
WG522332CCV4	CCV	07/01/21 15:55	WC210609-3	2.002		2.06	mg/L	103	90	110			
WG522332CCB4	CCB	07/01/21 16:02				U	mg/L		-0.3	0.3			
WG522332CCV5	CCV	07/01/21 16:57	WC210609-3	2.002		2.01	mg/L	100	90	110			
WG522332CCB5	CCB	07/01/21 17:05				U	mg/L		-0.3	0.3			

ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG521828													
WG521828ICV	ICV	06/24/21 18:42	II210608-1	2		2.027	mg/L	101	95	105			
WG521828ICB	ICB	06/24/21 18:48				U	mg/L		-0.06	0.06			
WG521828PQV	PQV	06/24/21 18:51	II210603-2	.1002		.102	mg/L	102	70	130			
WG521828SIC	SIC	06/24/21 18:54	II210602-1	.1002		.089	mg/L	89	80	120			
WG521828LFB	LFB	06/24/21 19:01	II210622-2	.501		.501	mg/L	100	85	115			
WG521828CCV1	CCV	06/24/21 19:34	II210609-1	1		.97	mg/L	97	90	110			
WG521828CCB1	CCB	06/24/21 19:37				U	mg/L		-0.06	0.06			
L66559-02AS	AS	06/24/21 19:43	II210622-2	.501	U	.495	mg/L	99	85	115			
L66559-02ASD	ASD	06/24/21 19:47	II210622-2	.501	U	.484	mg/L	97	85	115	2	20	
WG521828CCV2	CCV	06/24/21 19:50	II210609-1	1		.998	mg/L	100	90	110			
WG521828CCB2	CCB	06/24/21 19:53				U	mg/L		-0.06	0.06			

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 ((800) 334-5493

Ensero Solutions

ACZ Project ID: L66559

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Molybdenum, to	tal		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG522346													
WG522346ICV	ICV	07/04/21 15:10	II210620-2	2		1.997	mg/L	100	95	105			
WG522346ICB	ICB	07/04/21 15:16				U	mg/L		-0.06	0.06			
WG522346PQV	PQV	07/04/21 15:19	II210603-2	.1002		.101	mg/L	101	70	130			
WG522346SIC	SIC	07/04/21 15:22	II210518-2	.1002		.09	mg/L	90	80	120			
WG522274LRB	LRB	07/04/21 15:29				U	mg/L		-0.044	0.044			
WG522274LFB	LFB	07/04/21 15:32	II210622-2	.501		.515	mg/L	103	85	115			
L66558-03LFM	LFM	07/04/21 15:47	II210622-2	.501	U	.51	mg/L	102	70	130			
L66558-03LFMD	LFMD	07/04/21 15:50	II210622-2	.501	U	.516	mg/L	103	70	130	1	20	
WG522346CCV1	CCV	07/04/21 15:59	II210629-1	1		1.04	mg/L	104	90	110			
WG522346CCB1	CCB	07/04/21 16:02				U	mg/L		-0.06	0.06			
WG522346CCV2	CCV	07/04/21 16:36	II210629-1	1		.996	mg/L	100	90	110			
WG522346CCB2	CCB	07/04/21 16:39				U	mg/L		-0.06	0.06			
WG522346CCV3	CCV	07/04/21 17:01	II210629-1	1		.995	mg/L	100	90	110			
WG522346CCB3	CCB	07/04/21 17:04				U	mg/L		-0.06	0.06			

M353.2 - H2SO4 preserved

ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG522496													
WG522496ICV	ICV	07/02/21 23:47	WI210603-7	2.416		2.395	mg/L	99	90	110			
WG522496ICB	ICB	07/02/21 23:48				U	mg/L		-0.02	0.02			
WG522501													
WG522501CCV1	CCV	07/03/21 2:48	WI210701-1	2		1.989	mg/L	99	90	110			
WG522501CCB1	CCB	07/03/21 2:51				U	mg/L		-0.02	0.02			
WG522501LFB	LFB	07/03/21 2:52	WI210331-13	2		1.972	mg/L	99	90	110			
L66558-01AS	AS	07/03/21 2:54	WI210331-13	2	.047	2.138	mg/L	105	90	110			
L66558-02DUP	DUP	07/03/21 2:57			.062	.067	mg/L				8	20	RA
WG522501CCV2	CCV	07/03/21 3:05	WI210701-1	2		1.996	mg/L	100	90	110			
WG522501CCB2	CCB	07/03/21 3:07				U	mg/L		-0.02	0.02			
WG522501CCV3	CCV	07/03/21 3:21	WI210701-1	2		1.991	mg/L	100	90	110			
WG522501CCB3	CCB	07/03/21 3:24				U	mg/L		-0.02	0.02			
WG522501CCV4	CCV	07/03/21 3:34	WI210701-1	2		1.976	mg/L	99	90	110			
WG522501CCB4	CCB	07/03/21 3:37				U	mg/L		-0.02	0.02			

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Ensero Solutions

ACZ Project ID: L66559

Phosphorus, tot	tal		M365.1 -	Auto Asco	rbic Acid (digest)							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG522196													
WG522196ICV	ICV	06/29/21 21:46	WI210603-3	.65228		.687	mg/L	105	90	110			
WG522196ICB	ICB	06/29/21 21:48				U	mg/L		-0.01	0.01			
WG522201													
WG522201CCV1	CCV	06/30/21 0:25	WI210603-4	.5		.523	mg/L	105	90	110			
WG522201CCB1	CCB	06/30/21 0:26				U	mg/L		-0.01	0.01			
WG522118LRB	LRB	06/30/21 0:28				U	mg/L		-0.01	0.01			
WG522118LFB	LFB	06/30/21 0:29	WI210617-5	.5		.519	mg/L	104	90	110			
L66558-01LFM	LFM	06/30/21 0:31	WI210617-5	.5	U	.523	mg/L	105	90	110			
L66558-02DUP	DUP	06/30/21 0:33			U	U	mg/L				0	20	RA
WG522201CCV2	CCV	06/30/21 0:39	WI210603-4	.5		.523	mg/L	105	90	110			
WG522201CCB2	CCB	06/30/21 0:40				U	mg/L		-0.01	0.01			
WG522201CCV3	CCV	06/30/21 0:53	WI210603-4	.5		.517	mg/L	103	90	110			
WG522201CCB3	CCB	06/30/21 0:54				U	mg/L		-0.01	0.01			
WG522201CCV4	CCV	06/30/21 1:05	WI210603-4	.5		.525	mg/L	105	90	110			
WG522201CCB4	CCB	06/30/21 1:06				U	mg/L		-0.01	0.01			
Residue, Filtera	ble (TDS) @180C	SM25400	;									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qua
WG521521													
WG521521PBW	PBW	06/21/21 13:55				U	mg/L		-20	20			
WG521521LCSW	LCSW	06/21/21 13:57	PCN63551	1000		998	mg/L	100	80	120			
L66562-04DUP	DUP	06/21/21 14:55			108	104	mg/L				4	10	RA
Residue, Non-Fi	Iterable	(TSS) @105C	SM2540E)									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qua
WG521721													
WG521721PBW	PBW												
	FDVV	06/23/21 14:00				U	mg/L		-5	5			
WG521721LCSW	LCSW	06/23/21 14:00 06/23/21 14:01	PCN63833	100		U 100	mg/L mg/L	100	-5 80	5 120			
			PCN63833	100	U		-	100			0	10	RA
L66562-01DUP	LCSW DUP	06/23/21 14:01	PCN63833 M200.8 IC		U	100	mg/L	100			0	10	RA
L66562-01DUP Silver, dissolved	LCSW DUP	06/23/21 14:01			U Sample	100	mg/L mg/L	100 Rec%	80		0 RPD	10 Limit	RA
L66562-01DUP Silver, dissolved ACZ ID	LCSW DUP	06/23/21 14:01 06/23/21 14:23	M200.8 IC	CP-MS		100 U	mg/L mg/L		80	120			
L66562-01DUP Silver, dissolved ACZ ID WG522768	LCSW DUP	06/23/21 14:01 06/23/21 14:23	M200.8 IC	CP-MS		100 U	mg/L mg/L		80	120			
L66562-01DUP Silver, dissolved ACZ ID WG522768 WG522768ICV	LCSW DUP d Type	06/23/21 14:01 06/23/21 14:23 Analyzed	M200.8 (PCN/SCN	CP-MS QC		100 U Found	mg/L mg/L Units	Rec%	80 Lower	120 Upper			
L665562-01DUP Silver, dissolved ACZ ID WG522768 WG522768ICV WG522768ICB	LCSW DUP d Type ICV	06/23/21 14:01 06/23/21 14:23 Analyzed 07/08/21 15:53	M200.8 (PCN/SCN	CP-MS QC		100 U Found	mg/L mg/L Units mg/L	Rec%	80 Lower 90	120 Upper 110			
L66562-01DUP Silver, dissolved ACZ ID WG522768 WG522768ICV WG522768ICB WG522768LFB	LCSW DUP d Type ICV ICB	06/23/21 14:01 06/23/21 14:23 Analyzed 07/08/21 15:53 07/08/21 15:55	M200.8 IG PCN/SCN MS210630-2	CP-MS QC .02		100 U Found .01802 U	mg/L mg/L Units mg/L mg/L	Rec%	80 Lower 90 -0.00022	120 Upper 110 0.00022			
L66562-01DUP Silver, dissolved ACZ ID WG522768 WG522768ICV WG522768ICB WG522768LFB L66558-03AS	LCSW DUP d Type ICV ICB LFB	06/23/21 14:01 06/23/21 14:23 Analyzed 07/08/21 15:53 07/08/21 15:55 07/08/21 15:57	M200.8 IG PCN/SCN MS210630-2 MS210702-2	CP-MS QC .02 .01002	Sample	100 U Found .01802 U .00934	mg/L mg/L Units mg/L mg/L mg/L	Rec% 90 93	80 Lower 90 -0.00022 85	120 Upper 110 0.00022 115		Limit	
L665562-01DUP Silver, dissolved ACZ ID WG522768 WG522768ICV WG522768ICB WG522768LFB L66558-03AS L66558-03ASD	LCSW DUP Type ICV ICB LFB AS ASD	06/23/21 14:01 06/23/21 14:23 Analyzed 07/08/21 15:53 07/08/21 15:55 07/08/21 15:57 07/08/21 16:06 07/08/21 16:08	M200.8 K PCN/SCN MS210630-2 MS210702-2 MS210702-2	CP-MS QC .02 .01002 .01002 .01002	Sample U	100 U Found .01802 U .00934 .00791 .00838	mg/L mg/L Units mg/L mg/L mg/L	Rec% 90 93 79	80 Lower -0.00022 85 70 70 70	120 Upper 110 0.00022 115 130 130	RPD		
L66562-01DUP Silver, dissolved ACZ ID WG522768 WG522768ICV WG522768ICB WG522768LFB L66558-03AS L66558-03ASD WG522768CCV1	LCSW DUP Type ICV ICB LFB AS ASD CCV	06/23/21 14:01 06/23/21 14:23 Analyzed 07/08/21 15:53 07/08/21 15:55 07/08/21 15:57 07/08/21 16:06 07/08/21 16:08 07/08/21 16:15	M200.8 IG PCN/SCN MS210630-2 MS210702-2 MS210702-2 MS210702-2	CP-MS QC .02 .01002 .01002	Sample U	100 U Found .01802 U .00934 .00791 .00838 .02493	mg/L mg/L Units mg/L mg/L mg/L mg/L	Rec% 90 93 79 84	80 Lower 90 -0.00022 85 70 70 90	120 Upper 110 0.00022 115 130 130 110	RPD	Limit	
L66562-01DUP Silver, dissolver ACZ ID WG522768 WG522768ICV WG522768ICB WG522768LFB L66558-03AS L66558-03ASD WG522768CCV1 WG522768CCB1	LCSW DUP Type ICV ICB LFB AS ASD CCV CCB	06/23/21 14:01 06/23/21 14:23 Analyzed 07/08/21 15:53 07/08/21 15:55 07/08/21 15:57 07/08/21 16:06 07/08/21 16:08 07/08/21 16:15 07/08/21 16:17	M200.8 IG PCN/SCN MS210630-2 MS210702-2 MS210702-2 MS210702-2	CP-MS QC .02 .01002 .01002 .01002 .02505	Sample U	100 U Found .01802 U .00934 .00791 .00838	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Rec% 90 93 79 84	80 Lower 90 -0.00022 85 70 70 90 -0.0003	120 Upper 110 0.00022 115 130 130 130 110 0.0003	RPD	Limit	
WG521721LCSW L66562-01DUP Silver, dissolved ACZ ID WG522768 WG522768ICV WG522768LFB L66558-03AS L66558-03ASD WG522768CCV1 WG522768CCB1 WG522768CCV2 WG522768CCV2	LCSW DUP Type ICV ICB LFB AS ASD CCV	06/23/21 14:01 06/23/21 14:23 Analyzed 07/08/21 15:53 07/08/21 15:55 07/08/21 15:57 07/08/21 16:06 07/08/21 16:08 07/08/21 16:15	M200.8 K PCN/SCN MS210630-2 MS210702-2 MS210702-2 MS210702-2 MS210521-8	CP-MS QC .02 .01002 .01002 .01002	Sample U	100 U Found .01802 U .00934 .00791 .00838 .02493 U	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Rec% 90 93 79 84 100	80 Lower 90 -0.00022 85 70 70 90	120 Upper 110 0.00022 115 130 130 110	RPD	Limit	

AGZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Ensero Solutions

ACZ Project ID: L66559

Sulfate			D516-02/-(07/-11 - T	URBIDIM	ETRIC							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG522738													
WG522738ICB	ICB	07/09/21 10:44				U	mg/L		-3	3			
WG522738ICV	ICV	07/09/21 10:44	WI210629-1	20.46		20	mg/L	98	90	110			
WG522738CCV1	CCV	07/09/21 11:27	WI210629-2	25		25.5	mg/L	102	90	110			
WG522738CCB1	CCB	07/09/21 11:27				U	mg/L		-3	3			
WG522738LFB	LFB	07/09/21 11:27	WI210105-3	10		10	mg/L	100	90	110			
WG522738CCV2	CCV	07/09/21 11:30	WI210629-2	25		24.7	mg/L	99	90	110			
WG522738CCB2	CCB	07/09/21 11:30				U	mg/L		-3	3			
WG522738CCV3	CCV	07/09/21 11:31	WI210629-2	25		24.6	mg/L	98	90	110			
WG522738CCB3	CCB	07/09/21 11:31				U	mg/L		-3	3			
WG522738CCV4	CCV	07/09/21 11:33	WI210629-2	25		24.8	mg/L	99	90	110			
WG522738CCB4	CCB	07/09/21 11:33				U	mg/L		-3	3			
WG522738CCV5	CCV	07/09/21 11:37	WI210629-2	25		24.8	mg/L	99	90	110			
WG522738CCB5	CCB	07/09/21 11:37				U	mg/L		-3	3			
WG522738CCV6	CCV	07/09/21 12:08	WI210629-2	25		25.4	mg/L	102	90	110			
WG522738CCB6	CCB	07/09/21 12:08				U	mg/L		-3	3			
L66536-09DUP	DUP	07/09/21 12:08			2840	2826.9	mg/L				0	20	
L66536-10AS	AS	07/09/21 12:08	SO4TURB20X	50	2950	2851.8	mg/L	-196	90	110			M3
WG522738CCV7	CCV	07/09/21 12:10	WI210629-2	25		25.2	mg/L	101	90	110			
WG522738CCB7	CCB	07/09/21 12:10				U	mg/L		-3	3			
WG522738CCV8	CCV	07/09/21 12:12	WI210629-2	25		24.7	mg/L	99	90	110			
WG522738CCB8	CCB	07/09/21 12:12				U	mg/L		-3	3			
Thallium, total r	ecovera	ble	M200.8 IC	P-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG522351													
WG522351ICV	ICV	07/01/21 12:51	MS210630-2	.05		.0517	mg/L	103	90	110			
WG522351ICB	ICB	07/01/21 12:53				U	mg/L		-0.0003	0.0003			
WG522203LRB	LRB	07/01/21 12:54				U	mg/L		-0.00022	0.00022			
WG522203LFB	LFB	07/01/21 12:56	MS210610-2	.05		.04652	mg/L	93	85	115			
WG522351CCV1	CCV	07/01/21 13:12	MS210521-8	.1		.09722	mg/L	97	90	110			
WG522351CCB1	CCB	07/01/21 13:14				U	mg/L		-0.0003	0.0003			
L66648-01LFM	LFM	07/01/21 13:16	MS210610-2	.05	U	.04665	mg/L	93	70	130			
L66648-01LFMD	LFMD	07/01/21 13:18	MS210610-2	.05	U	.04804	mg/L	96	70	130	3	20	
WG522351CCV2	CCV	07/01/21 13:34	MS210521-8	.1		.10025	mg/L	100	90	110			
WG522351CCB2	CCB	07/01/21 13:36				U	mg/L		-0.0003	0.0003			
WG522351CCV3	CCV	07/01/21 13:49	MS210521-8	.1		.1019	mg/L	102	90	110			
WG522351CCB3	CCB	07/01/21 13:50				U	mg/L		-0.0003	0.0003			

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Ensero Solutions

ACZ Project ID: L66559

Uranium, dissol	ved		M200.8 I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG522768													
WG522768ICV	ICV	07/08/21 15:53	MS210630-2	.05		.04961	mg/L	99	90	110			
WG522768ICB	ICB	07/08/21 15:55				U	mg/L		-0.00022	0.00022			
WG522768LFB	LFB	07/08/21 15:57	MS210702-2	.05		.05077	mg/L	102	85	115			
L66558-03AS	AS	07/08/21 16:06	MS210702-2	.05	.0009	.05095	mg/L	100	70	130			
L66558-03ASD	ASD	07/08/21 16:08	MS210702-2	.05	.0009	.05367	mg/L	106	70	130	5	20	
WG522768CCV1	CCV	07/08/21 16:15	MS210521-8	.1		.10027	mg/L	100	90	110			
WG522768CCB1	CCB	07/08/21 16:17				U	mg/L		-0.0003	0.0003			
WG522768CCV2	CCV	07/08/21 16:36	MS210521-8	.1		.10371	mg/L	104	90	110			
WG522768CCB2	CCB	07/08/21 16:38				U	mg/L		-0.0003	0.0003			
WG522768CCV3	CCV	07/08/21 16:49	MS210521-8	.1		.09568	mg/L	96	90	110			
WG522768CCB3	CCB	07/08/21 16:51				U	mg/L		-0.0003	0.0003			
Uranium, total			M200.8 I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG522473													
WG522473ICV	ICV	07/02/21 17:25	MS210630-2	.05		.05032	mg/L	101	90	110			
WG522473ICB	ICB	07/02/21 17:27				U	mg/L		-0.0003	0.0003			
WG522305LRB	LRB	07/02/21 17:28				U	mg/L		-0.00022	0.00022			
WG522305LFB	LFB	07/02/21 17:30	MS210610-2	.05		.04622	mg/L	92	85	115			
L66558-02LFM	LFM	07/02/21 17:37	MS210610-2	.05	.00251	.05282	mg/L	101	70	130			
L66558-02LFMD	LFMD	07/02/21 17:39	MS210610-2	.05	.00251	.05295	mg/L	101	70	130	0	20	
WG522473CCV1	CCV	07/02/21 17:46	MS210521-8	.1		.09485	mg/L	95	90	110			
WG522473CCB1	CCB	07/02/21 17:48				U	mg/L		-0.0003	0.0003			
WG522473CCV2	CCV	07/02/21 18:08	MS210521-8	.1		.09416	mg/L	94	90	110			
WG522473CCB2	CCB	07/02/21 18:10				U	mg/L		-0.0003	0.0003			
WG522473CCV3	CCV	07/02/21 18:22	MS210521-8	.1		.0958	mg/L	96	90	110			
WG522473CCB3	CCB	07/02/21 18:24				U	mg/L		-0.0003	0.0003			
Zinc, dissolved			M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG521828													
WG521828ICV	ICV	06/24/21 18:42	II210608-1	2		1.983	mg/L	99	95	105			
WG521828ICB	ICB	06/24/21 18:48				U	mg/L		-0.06	0.06			
WG521828PQV	PQV	06/24/21 18:51	II210603-2	.05015		.05	mg/L	100	70	130			
WG521828SIC	SIC	06/24/21 18:54	II210602-1	.1003		.096	mg/L	96	80	120			
WG521828LFB	LFB	06/24/21 19:01	II210622-2	.50075		.5	mg/L	100	85	115			
WG521828CCV1	CCV	06/24/21 19:34	II210609-1	1		.949	mg/L	95	90	110			
WG521828CCB1	ССВ	06/24/21 19:37				U	mg/L		-0.06	0.06			
L66559-02AS	AS	06/24/21 19:43	II210622-2	.50075	U	.49	mg/L	98	85	115			
L66559-02ASD	ASD	06/24/21 19:47	II210622-2	.50075	U	.479	mg/L	96	85	115	2	20	
WG521828CCV2	CCV	06/24/21 19:50	II210609-1	1		.977	mg/L	98	90	110			
WG521828CCB2	ССВ	06/24/21 19:53				U	mg/L		-0.06	0.06			

4C AGZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487

(800) 334-5493

Ensero Solutions

ACZ Project ID: L66559

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L66559-01	NG521742	Cyanide, WAD	SM4500-CN I,E-Colorimetric w/ distillation	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			SM4500-CN I,E-Colorimetric w/ distillation	Q6	Sample was received above recommended temperature.
			SM4500-CN I,E-Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG522332	Fluoride	SM4500F-C	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			SM4500F-C	Q6	Sample was received above recommended temperature.
	WG522501	Nitrate/Nitrite as N	M353.2 - H2SO4 preserved	Q6	Sample was received above recommended temperature.
			M353.2 - H2SO4 preserved	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG522201	Phosphorus, total	M365.1 - Auto Ascorbic Acid (digest)	Q6	Sample was received above recommended temperature.
			M365.1 - Auto Ascorbic Acid (digest)	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG521521	Residue, Filterable (TDS) @180C	SM2540C	Q6	Sample was received above recommended temperature.
			SM2540C	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG521721	Residue, Non-Filterable (TSS) @105C	SM2540D	HC	Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.
			SM2540D	Q6	Sample was received above recommended temperature.
			SM2540D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			SM2540D	Z3	Sample volume yielded a residue less than 2.5 mg
	WG522738	Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
			D516-02/-07/-11 - TURBIDIMETRIC	Q6	Sample was received above recommended temperature.
	WG522274	Total Hot Plate Digestion	M200.2 ICP	DJ	Sample dilution required due to insufficient sample.
	WG522305		M200.2 ICP-MS	DJ	Sample dilution required due to insufficient sample.

4C AGZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487

(800) 334-5493

Ensero Solutions

ACZ Project ID: L66559

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L66559-02	NG521742	Cyanide, WAD	SM4500-CN I,E-Colorimetric w/ distillation	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			SM4500-CN I,E-Colorimetric w/ distillation	Q6	Sample was received above recommended temperature.
			SM4500-CN I,E-Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG522332	Fluoride	SM4500F-C	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			SM4500F-C	Q6	Sample was received above recommended temperature.
	WG522501	Nitrate/Nitrite as N	M353.2 - H2SO4 preserved	Q6	Sample was received above recommended temperature.
			M353.2 - H2SO4 preserved	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG522201	Phosphorus, total	M365.1 - Auto Ascorbic Acid (digest)	Q6	Sample was received above recommended temperature.
			M365.1 - Auto Ascorbic Acid (digest)	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG521521	Residue, Filterable (TDS) @180C	SM2540C	Q6	Sample was received above recommended temperature.
			SM2540C	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG521721	Residue, Non-Filterable (TSS) @105C	SM2540D	HC	Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.
			SM2540D	Q6	Sample was received above recommended temperature.
			SM2540D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			SM2540D	Z3	Sample volume yielded a residue less than 2.5 mg
	WG522738	Sulfate	D516-02/-07/-11 - TURBIDIMETRIC	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
			D516-02/-07/-11 - TURBIDIMETRIC	Q6	Sample was received above recommended temperature.
	WG522274	Total Hot Plate Digestion	M200.2 ICP	DJ	Sample dilution required due to insufficient sample.
	WG522305		M200.2 ICP-MS	DJ	Sample dilution required due to insufficient sample.

· · · j · · · · · ·	00-PO205 V-BPL			Date Date	Sample ID e Sampled e Received ople Matrix	: 06/15 : 06/17	5/21 9:3	
Combined Radium (tota Calculation (RA226 + R	,						Pre	p Method:
Parameter Combined Radium (tota	Measure Date al) 07/21/21 10:48	Prep Date	Result 0	Error(+/-)	LLD	Units pCi/L	XQ	Analyst calc
Gross Alpha & Beta, to M900.0	tal						Pre	p Method:
Parameter	Measure Date	Prep Date	Result	Error(+/-)	LLD	Units	XQ	Analyst
Gross Alpha	07/03/21 0:04		6.4	2.7	6.4	pCi/L		ess
Gross Beta	07/03/21 0:04		3.7	2.7	5.2	pCi/L	*	ess
Radium 226, total M903.1							Pre	p Method:
Parameter	Measure Date	Prep Date	Result	Error(+/-)	LLD	Units	XQ	Analyst
Radium 226, total	07/14/21 0:21		0.19	0.09	0.27	pCi/L	*	djc
Radium 228, total M904.0							Pre	p Method:
Parameter	Measure Date	Prep Date	Result	Error(+/-)	LLD	Units	XQ	Analyst
Radium 228, total	08/16/21 17:00		0.44	0.89	2.2	pCi/L	*	cer

(800) 334-5493

Laboratories, Inc.

2773 Downhill Drive Steamboat Springs, CO 80487

Ensero Solutio Project ID: Sample ID: Locator:		PO205 WD			Dat Date	Sample ID e Sampled e Received nple Matrix	: 06/15 : 06/17	5/21 11:	
Combined Radium Calculation (RA226		8)						Pre	ep Method:
Parameter		Measure Date	Prep Date	Result	Error(+/-)	LLD	Units	XQ	Analyst
Combined Radium	(total)	07/21/21 10:48		0			pCi/L		calc
Gross Alpha & Beta M900.0	a, total							Pre	ep Method:
Parameter		Measure Date	Prep Date	Result	Error(+/-)	LLD	Units	XQ	Analyst
Gross Alpha		07/03/21 0:08		3.6	2.2	5.3	pCi/L		ess
Gross Beta		07/03/21 0:08		5.6	2.9	9.2	pCi/L	*	ess
Radium 226, total M903.1								Pre	ep Method:
Parameter		Measure Date	Prep Date	Result	Error(+/-)	LLD	Units	XQ	Analyst
Radium 226, total		07/14/21 0:24		0.13	0.12	0.31	pCi/L	*	djc
Radium 228, total M904.0								Pre	ep Method:
Parameter		Measure Date	Prep Date	Result	Error(+/-)	LLD	Units	XQ	Analyst
Radium 228, total		08/16/21 17:00		0.71	0.97	2.3	pCi/L	*	cer

(800) 334-5493

2773 Downhill Drive Steamboat Springs, CO 80487 (8

Radiochemistry Reference

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

r Explanations
A distinct set of samples analyzed at a specific time
Calculated sample specific uncertainty
Value of the QC Type of interest
Upper limit for RPD, in %.
Lower Control Limit, in % (except for LCSS, mg/Kg)
Calculated sample specific Lower Limit of Detection
A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis
Practical Quantitation Limit
True Value of the Control Sample or the amount added to the Spike
Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)
Relative Error Ratio, calculation used for Dup. QC taking into account the error factor.
Relative Percent Difference, calculation used for Duplicate QC Types
Upper Control Limit, in % (except for LCSS, mg/Kg)
Value of the Sample of interest

QC Sample Types

DUP	Sample Duplicate	MS/MSD	Matrix Spike/Matrix Spike Duplicate
LCSS	Laboratory Control Sample - Soil	PBS	Prep Blank - Soil
LCSW	Laboratory Control Sample - Water	PBW	Prep Blank - Water

QC Sample Type Explanations	
Blanks	Verifies that there is no or minimal contamination in the prep method procedure.
Control Samples	Verifies the accuracy of the method, including the prep procedure.
Duplicates	Verifies the precision of the instrument and/or method.
Matrix Spikes	Determines sample matrix interferences, if any.

ACZ Qualifiers (Qual)

H Analysis exceeded method hold time.

Method Prefix Reference

М	EPA methodology, including those under SDWA, CWA, and RCRA
SM	Standard Methods for the Examination of Water and Wastewater.
D	ASTM
RP	DOE
ESM	DOE/ESM

Comments

(1)	Solid matrices are reported on a dry weight basis.
(2)	Preparation method: "Method" indicates preparation defined in analytical method.
(3)	QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
(4)	An asterisk in the "XQ" column indicates there is an extended qualifier and/or certification
	qualifier associated with the result.

For a complete list of ACZ's Extended Qualifiers, please click:

https://acz.com/wp-content/uploads/2019/04/Ext-Qual-List.pdf

REP003.09.12.01

Ensero Solutions

ACZ Project ID: L66559

Alpha			M900.0										Unit	t s: pCi/L		
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Error	LLD	Found	Error	LLD	Rec%	Lower	Upper	RPD/RER	Limit	Qual
WG522051																
WG522051PBW	PBW	07/03/21						39	0.17	0.75			1.5			
WG522051LCSWA	LCSW	07/03/21	PCN62436	100				110	9	1.3	110	67	144			
L66559-01MSA	MS	07/03/21	PCN62436	100	6.4	2.7	6.4	120	11	5.5	114	67	144			
L66559-01DUP	DUP-RPD	07/03/21			6.4	2.7	6.4	7.3	2.9	10				13	20	
L66709-02DUP	DUP-RPD	07/03/21			11	3.5	5.3	11	3.4	6.3				0	20	
Beta			M900.0										Unit	t s: pCi/L		
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Error	LLD	Found	Error	LLD	Rec%	Lower	Upper	RPD/RER	Limit	Qual
WG522051																
WG522051PBW	PBW	07/03/21						-1.4	1.6	1.8			3.6			
WG522051LCSWB	LCSW	07/03/21	RC210621-11	49.9				55	4.9	2.5	110	82	122			
L66559-01DUP	DUP-RPD	07/03/21			3.7	2.7	5.2	4.6	2.8	11				22	20	RG
L66559-01DUP	DUP-RER	07/03/21			3.7	2.7	5.2	4.6	2.8	11				0.23	2	
L66709-02MSB	MS	07/03/21	RC210621-11	49.9	6.5	2.9	9.2	59	5.2	6.7	105	82	122			
L66709-02DUP	DUP-RPD	07/03/21			6.5	2.9	9.2	6	3.1	8.2				8	20	
Radium 226, tot	al		M903.1										Unit	t s: pCi/L		
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Error	LLD	Found	Error	LLD	Rec%	Lower	Upper	RPD/RER	Limit	Qual
WG522609																
WG522609PBW	PBW	07/14/21						.08	0.09	0.07			0.14			
WG522609LCSW	LCSW		PCN62879	20				14	0.52	0.13	70	43	148			
L66559-01DUP1	DUP-RPD	07/14/21			0.19	0.09	0.27	.16	0.18	0.39				17	20	
L66559-02DUP2	DUP-RER	07/14/21			0.13	0.12	0.31	.35	0.23	0.38				0.85	2	
L66559-02DUP2	DUP-RPD	07/14/21			0.13	0.12	0.31	.35	0.23	0.38				92	20	RG
L66590-03MS	MS	07/14/21	PCN62879	40	0.10	0.12	0.24	40	1.2	0.36	99	43	148	<u>.</u>	_0	

Ensero Solutions

ACZ Project ID: L66559

Radium 228, to	tal		M904.0										Uni	ts: pCi/L		
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Error	LLD	Found	Error	LLD	Rec%	Lower	Upper	RPD/RER	Limit	Qual
WG524988																
L67260-03DUP	DUP-RER	08/16/21			0.2	0.72	1.8	.95	0.7	1.7				0.75	2	
WG524988LCSW	LCSW	08/16/21	PCN63356	9.55				8.2	1	1.8	86	47	123			
WG524988PBW	PBW	08/16/21						.04	0.7	1.8			3.6			
L67260-03DUP	DUP-RPD	08/16/21			0.2	0.72	1.8	.95	0.7	1.7				130	20	RG
L67442-02MS	MS	08/17/21	PCN63356	19.09	0.66	0.93	2.1	17	2.5	4.3	86	47	123			
L67442-03DUP	DUP-RPD	08/17/21			-0.28	0.94	2.1	.51	1.3	3.3				687	20	RG
L67442-03DUP	DUP-RER	08/17/21			-0.28	0.94	2.1	.51	1.3	3.3				0.49	2	
L01442-03DUP	DOF-RER	00/17/21			-0.20	0.94	2.1	.01	1.5	5.5				0.49	2	

4C **AGZ** Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487

(800) 334-5493

Ensero Solutions

ACZ Project ID: L66559

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L66559-01	WG522051	Gross Beta	M900.0	RG	Sample concentration is less than 5x LLD; RPD was not used for data validation. Replicate Error Ratio (RER) is less than 2. Precision judged to be in control.
	WG522609	Radium 226, total	M903.1	RG	Sample concentration is less than 5x LLD; RPD was not used for data validation. Replicate Error Ratio (RER) is less than 2. Precision judged to be in control.
	WG524988	Radium 228, total	M904.0	RG	Sample concentration is less than 5x LLD; RPD was not used for data validation. Replicate Error Ratio (RER) is less than 2. Precision judged to be in control.
L66559-02	WG522051	Gross Beta	M900.0	RG	Sample concentration is less than 5x LLD; RPD was not used for data validation. Replicate Error Ratio (RER) is less than 2. Precision judged to be in control.
	WG522609	Radium 226, total	M903.1	RG	Sample concentration is less than 5x LLD; RPD was not used for data validation. Replicate Error Ratio (RER) is less than 2. Precision judged to be in control.
	WG524988	Radium 228, total	M904.0	RG	Sample concentration is less than 5x LLD; RPD was not used for data validation. Replicate Error Ratio (RER) is less than 2. Precision judged to be in control.

Ensero Solutions

ACZ Project ID: L66559

No certification qualifiers associated with this analysis

REPAD.05.06.05.01

AGAINE Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Sample Receipt

Ensero Solutions ACZ Pro	ject ID:		L66559
	ceived: 0	6/17/202	21 11:12
Recei	ved By:		
	Printed:	6/	18/2021
Receipt Verification			
1) Is a foreign soil permit included for applicable samples?	YES	NO	NA X
			^
2) Is the Chain of Custody form or other directive shipping papers present?	Х		
3) Does this project require special handling procedures such as CLP protocol?		Х	
4) Are any samples NRC licensable material?			Х
5) If samples are received past hold time, proceed with requested short hold time analyses?	Х		
6) Is the Chain of Custody form complete and accurate?	Х		
7) Were any changes made to the Chain of Custody form prior to ACZ receiving the samples?		Х	
Samples/Containers			
	YES	NO	NA
8) Are all containers intact and with no leaks?	Х		
9) Are all labels on containers and are they intact and legible?	Х		
10) Do the sample labels and Chain of Custody form match for Sample ID, Date, and Time?	Х		
11) For preserved bottle types, was the pH checked and within limits? ¹	Х		
12) Is there sufficient sample volume to perform all requested work?	Х		
13) Is the custody seal intact on all containers?			Х
14) Are samples that require zero headspace acceptable?			Х
15) Are all sample containers appropriate for analytical requirements?	Х		
16) Is there an Hg-1631 trip blank present?			Х
17) Is there a VOA trip blank present?			Х
18) Were all samples received within hold time?	Х		
	NA indica	ites Not Ap	oplicable

Chain of Custody Related Remarks

Client Contact Remarks

Shipping Containers

Cooler Id	Temp(°C)	Temp Criteria(°C)	Rad(µR/Hr)	Custody Seal Intact?
6674	8.5	<=6.0	15	N/A

Was ice present in the shipment container(s)?

Yes - Wet ice was present in the shipment container(s) but was thawed by receipt at ACZ.

Client must contact an ACZ Project Manager if analysis should not proceed for samples received outside of their thermal preservation acceptance criteria.

Ensero Solutions 3100-PO205

ACZ Project ID: L66559 Date Received: 06/17/2021 11:12 Received By: Date Printed: 6/18/2021

¹ The preservation of the following bottle types is not checked at sample receipt: Orange (oil and grease), Purple (total cyanide), Pink (dissolved cyanide), Brown (arsenic speciation), Sterile (fecal coliform), EDTA (sulfite), HCI preserved vial (organics), Na2S2O3 preserved vial (organics), and HG-1631 (total/dissolved mercury by method 1631).

co sed material? DATE:TIME 3-15-2021: 9:30	t HT ren d short d. Acz will p o PQL fc	E-mail Telepl Addre Fort Telepl mains to HT ana proceed with Yes for Colo State_fort Sta	Collir none: { ss: 13 Collir none: { co comp lyses? http://www.second rado. CO	ns, CC 867-60 encial 318-68 1 E. L ns, CC 778-4 lete) 805 68-64 @ens 38-18 incoli) 805 04-11	63, ex ero.cc 39 n Ave 24 82	om Ste. 2	200 YES NO	
te (HT), or if insufficien proceed with requeste reither "YE8" nor "NO" is indicate lonitoring? sults will be reported to Sampler's Site Informa "I attest to tampering u CO sed material? DATE:TIME S-15-2021: 9:30	t HT ren d short d, AC2 will p o PQL fo tion the authentic with the samp	Telepi E-mail Telepi Addre Fort Telepi mains to HT ana proceed wit Yes or Colo State_ icity and valle pie in anywar	i: eval none: 8 ss: 13 Collin none: o comp lyses? h the reque rado. CO	867-60 enciad 318-68 1 E. L ns, CC 778-4 lete	@ens 38-18 incoli 0 805 04-11	63, ex ero.cc 39 n Ave 24 82	om Ste. 2	200 YES NO	
te (HT), or if insufficien proceed with requeste reither "YE8" nor "NO" is indicate lonitoring? sults will be reported to Sampler's Site Informa "I attest to tampering u CO sed material? DATE:TIME S-15-2021: 9:30	t HT ren d short d, AC2 will p o PQL fo tion the authentic with the samp	E-mail Telepl Addre Fort Telepl mains to HT ana proceed wite Yes or Colo State_ Citty and valle ple in anywa	: eval none: { ss: 13 Collin none: o comp lyses? h the reque rado. CO	encia 318-68 1 E. L ns, CC 778-4 lete	@ens 38-18 incoli 0 805 04-11	ero.cc 39 n Ave 24 82	om Ste. 2	200 YES NO	
proceed with requeste reither "YE8" nor "No" is indicate ionitoring? sults will be reported to Sampler's Site Informa 'I attest to I tampering of tampering of CO sed material? DATE:TIME S-15-2021: 9:30	t HT ren d short d, AC2 will p o PQL fo tion the authentic with the samp	Addre Fort Telepi mains to HT ana proceed wite Yes or Colo State_ city and valie pie in anywe	ss: 13 Collin none: o comp lyses? h the reque the reque	318-68 1 E. L ns, CC 778-4 lete	incoli) 805 04-11	39 n Ave 24 82	Ste. 2	YES NO	
proceed with requeste reither "YE8" nor "No" is indicate ionitoring? sults will be reported to Sampler's Site Informa 'I attest to I tampering of tampering of CO sed material? DATE:TIME S-15-2021: 9:30	t HT ren d short d, AC2 will p o PQL fo tion the authentic with the samp	Addre Fort Telepi mains to HT ana proceed wite Yes or Colo State_ city and valie pie in anywe	ss: 13 Collin none: o comp lyses? h the reque the reque	318-68 1 E. L ns, CC 778-4 lete	incoli) 805 04-11	39 n Ave 24 82	Ste. 2	YES NO	X
proceed with requeste reither "YE8" nor "No" is indicate ionitoring? sults will be reported to Sampler's Site Informa 'I attest to I tampering of tampering of CO sed material? DATE:TIME S-15-2021: 9:30	It HT ren d short d AC2 will p o PQL fo tion the authentic with the same	Addre Fort Telepi mains to HT ana proceed wit Yes or Colo State city and valle pie in anywe	ss: 13 Collin none: o comp lyses? h the reque rado. CO	1 E. L ns, CC 778-4 lete	incoli 0 805: 04-11	n Ave 24 82		YES NO	X
proceed with requeste reither "YE8" nor "No" is indicate ionitoring? sults will be reported to Sampler's Site Informa 'I attest to I tampering of tampering of CO sed material? DATE:TIME S-15-2021: 9:30	It HT ren d short d. ACZ will p o PQL fo tion the suthentic with the same	Fort Telepi mains to HT ana proceed wite Yes or Colo State	Collin none: o comp lyses? h the reque rado. CO	ns, CC 778-4 lete) 805: 04-11	24 82		YES NO	X
proceed with requeste reither "YE8" nor "No" is indicate ionitoring? sults will be reported to Sampler's Site Informa 'I attest to I tampering of tampering of CO sed material? DATE:TIME S-15-2021: 9:30	It HT ren d short d. ACZ will p o PQL fo tion the suthentic with the same	Fort Telepi mains to HT ana proceed wite Yes or Colo State	Collin none: o comp lyses? h the reque rado. CO	ns, CC 778-4 lete) 805: 04-11	24 82		YES NO	X
proceed with requeste reither "YE8" nor "No" is indicate ionitoring? sults will be reported to Sampler's Site Informa 'I attest to I tampering of tampering of CO sed material? DATE:TIME S-15-2021: 9:30	t HT ren d short d AC2 will p o PQL fc tion the authentic with the samp	Telepi mains to HT ana proceed wit Yes or Colo State_ city and vali- ple in anywa	none: o comp Ilyses? h the reque the reque rado. CO	778-4 lete sted analys	04-11	82	l, and data	NO	X
proceed with requeste reither "YE8" nor "No" is indicate ionitoring? sults will be reported to Sampler's Site Informa 'I attest to I tampering of tampering of CO sed material? DATE:TIME S-15-2021: 9:30	t HT ren d short d AC2 will p o PQL fc tion the authentic with the samp	mains to HT ana proceed with Yes or Colo State_ incity and valid ple in anywa	o comp ilyses? h the reque rado. CO dity of this s	iete sted analys	ıs, even if i	HT is expired	, and data	NO	×
proceed with requeste reither "YE8" nor "No" is indicate ionitoring? sults will be reported to Sampler's Site Informa 'I attest to I tampering of tampering of CO sed material? DATE:TIME S-15-2021: 9:30	d short d, ACZ will p o PQL fo tion the suthentic with the same	HT ana proceed with Yes or Colo State State ple in anywa	h the reque rado.	sted analys			, and data	NO	×
CO sed material? DATE:TIME	o PQL for tion the authenticity with the samp	Yes or Colo State_ icity and vali- ple in anywa	rado. CO					will be quali	Ned
Sampler's Site Informa "I attest to tampering v CO Sed material? DATE:TIME S-15-2021: 9:30	tion the suthentic with the same	State	CO dity of this s			الشنور			
"I attest to I tampering u CO sed material? DATE:TIME 5-15-2021: 9:30	the suthenticity in the same	city and vali ple in anywa	dity of this s						
CO sed material? DATE:TIME 3-15-2021: 9:30	with the samp	ple in anywa				de <u>804</u>		Time Zo	
CO sed material? DATE:TIME 3-15-2021: 9:30		ners		red fraud a	nd punishab	le by State La	w.		
CO sed material? DATE:TIME 3-15-2021: 9:30		ners	ANAL	YSES RE		rattach lis	st or use	quote nun	ber;
sed material? DATE:TIME 5-15-2021: 9:30				e #1	÷#2		ž		
sed material? DATE:TIME 5-15-2021: 9:30		nta		suite	suite		b Di	\$	
DATE:TIME -15-2021: 9:30		Ö		ple	ple		i i	suite	
-15-2021: 9:30		10 #	TSS	Sample suite	Sample	COD	LLHG trip blank	Sample suite	TDS
	SW	8			S X				
-15-2021: 11:10	SW	8			X			┢	H
									П
									Π
		_							
		W (Drinki	ng Wate	') · SL (S	udge) · (SO (Soil)	· OL (Oil) · Other	Specify