

Cripple Creek & Victor Gold P 719.689.2977 P.O. Box 191 100 North 3rd Street Victor, Colorado 80860

F 719.689.3254

August 5, 2021

ELECTRONIC DELIVERY

Mr. Patrick Lennberg **Environmental Protection Specialist** Colorado Department of Natural Resources Division of Reclamation, Mining, and Safety Office of Mined Land Reclamation 1313 Sherman Street, Room 215 Denver, Colorado 80203

Re: Division Adequacy Review; First (1st) Quarter 2021 Groundwater and Surface Water Report; Cresson Project, Permit No. M-1980-244 Response

Dear Mr. Lennberg,

On June 9, 2021, Newmont Corporation's Cripple Creek & Victor Gold Mining Company (CC&V) received the Division of Reclamation, Mining, and Safety's (DRMS) first adequacy review to the first quarter 2021 groundwater and surface water report, requesting responses to sixteen questions regarding the report submission dated April 28, 2021. Below are DRMS' comments in italics followed by CC&V's responses in bold.

First Adequacy Response, Dated June 9, 2021

1. Please state why no rinsate or rinse blanks were collected from the decontaminated field equipment? In Section 6.3 of the QAPP, provided in AM-13, it states the field technician will collect a minimum of 5 rinse blanks per quarter. Additionally, please clarify how many sampling locations are sampled with reusable equipment.

As reported to DRMS in the first adequacy response to the Q4 2020 Groundwater and Surface water report dated April 19, question #3; CC&V collected two trip blank samples and a duplication sample in Q1, 2021 for analysis. CC&V also committed to ensure that all specified duplicate and blank samples are collected, submitted to the laboratory for analysis and included within the quarterly report. In Q2, 2021 CC&V collected all blank and duplicate samples specified within the QAPP and commits to doing so going forward.

2. The blanks that were collected are they field blanks, which are collected in the field during sampling to quantify ambient conditions during sampling, or are they trip blanks, to quantify possible sources of contamination from shipping and the laboratory? If they are field blanks, they should be associated with a sample location, please identify the location these samples are associated with.

Blank samples submitted in Q1, 2021 were trip blanks. Going forward, CC&V will specify blank sample type on the quarterly report.

- 3. CRMW-3C, from the field sheet, it appears that the sample was collected by turning on the pump long enough to collect enough volume for water quality parameters and sample volume.
 - Why was the well not purged long enough to accurately determine parameter stabilization? If the well

Cripple Creek & Victor Gold P 719.689.2977 P.O. Box 191 100 North 3rd Street Victor, Colorado 80860

F 719.689.3254

is sampled using volume based well purging then the field sheet needs to document the calculation used to determine the well volume and show that parameters were collected after each well volume was removed.

Additional clarification is needed. It appears the well was purged for one minute removing 0.4 gallons • which resulted in a water level drop of 16 feet. The Division calculated that a well diameter of less than 1-inch would be required to see a 16 foot drop in water level with the removal of 0.4 gallons.

As discussed with DRMS on June 7, 2021, monitoring well CRMW-3C is one of the pump back wells within Arequa Gulch and, as such, the water within the well bore is being discharged to the pump-back vault through an automatic pump back system. Due to this system, grab samples are collected from this well as water being discharged at the pump-back vault is considered representative of formation water and purging is not necessary.

- **4.** In Section 8.5 of the QAPP, provided in AM-13, it states the criteria for parameter stabilization over three consecutive measurements. Explain why the following seven wells were sampled before parameters stabilized:
 - CRMW-5A, 5B, 5C, 5D,
 - GVMW-22B,
 - SGMW-6B, and
 - VIN-2B

In review of the documentation, it appears that the field technician made an error when calculating the stabilization parameters during sample collection and, as a result, the samples we collected before parameter stabilization had occurred. CC&V will review field parameter stabilization calculations with field personnel to ensure samples are only collected after parameter stabilization has occurred.

5. CRMW-3A, the first field sheet for this well indicates it was purged at a rate of one liter per eight seconds (1L/8s) for three minutes, which would yield approximately six gallons of purge water. Why were there no parameters collected during the purging process? The Division calculated the casing volume, using the static water level from the first field sheet and the total depth from the second field sheet, for the well to be either 10.4 gallons for a 4inch well (0.65 gal/ft) or 2.6 gallons if it is a 2- inch well (0.16 gal/ft).

As discussed with DRMS on June 7, 2021 CC&V is uncertain why there were no field parameters collected during the purging process.

6. CRMW-3B, the first field sheet for this well indicates that it was purges at a rate of one liter per eight seconds (1L/8s) for 15 minutes which would be approximately 30 gallons of purge water. Why were there no parameters collected during the purging process? Additionally, the field sheet indicates the well was revisited later the same day and purged dry, why was this done?

As discussed with DRMS on June 7, 2021 CC&V is uncertain why no field parameters were collected during the purging process. As this technician is no longer employed at the mine site, CC&V hypothesizes that the well was revisited later the same day and purged dry to ensure that water within the well bore would be representative of formation water for sample collection the following day.

Cripple Creek & Victor Gold P 719.689.2977 P.O. Box 191 100 North 3rd Street Victor, Colorado 80860

F 719.689.3254

7. CRMW-3B, second field sheet states the well was purges 3x volume yet there is only one set of parameters. Explain where the other set of parameters are? According to the QAPP water quality parameters are to be collected at a minimum of once per casing volume.

As discussed with DRMS on Jun 7, 2021 CC&V is uncertain why the field technician did not collect parameters for each purge volume collected. Reviewing the data, demonstrates analysis results are within range of previous results obtained.

8. For monitoring wells GVMW-8B and PGMW-2 provide the missing dry at depth

The dry at depth for monitoring well PGMW-2 is 218 ft and the dry at depth for monitoring well GVMW-8B is 50 ft.

9. GVMW-22A, did the operator attempt to collect separate samples from GVMW-22A on two different occasions, once on February 1, and again on March 23 and if so why?

As discussed with DRMS on June 7, 2021 it is uncertain why the field technician attempted to collect samples from GVMW-22A on two different occasions. From examination of the field forms the well was inspected by two different technicians. CC&V hypothesizes that the technician attempting to collect the sample on March 23, 2021 was unaware that the well had been sampled on February 1, 2021.

10. GVMW-22A, the March field sheet states the well casing was frozen, is this referring to the protective outside casing or was the inside well casing frozen?

As discussed with DRMS on June 7, 2021 CC&V hypothesizes that this would refer to the inside well casing as the field sheet also states, "cannot get pump down well".

11. The analytical table for CRMW-3C has the standard value for Manganese (Mn) listed as 8.1 mg/L, this is incorrect the standard for Mn at this well is 3.0 mg/L, please correct.

This has been corrected in the updated Q1 report, which is included in Attachment B to this response.

12. Uranium in CRMW-5A has almost doubled in concentration since the beginning of monitoring. Currently this is the only well being monitored at the site that has an exceedance of this constituent, please provide an explanation for the exceedance.

At this time CC&V is uncertain why uranium concentrations are elevated at monitoring well CRMW-5A. CC&V hypothesizes that due to uranium being a naturally occurring element within granitic formations, and that monitoring well CRMW-5A is completed to a depth of 205 ft. within granite, the granite in which the well is constructed may account for the presence and changes in observed concentrations of uranium.

13. CRMW-5D had a pH exceedance that was not documented in the text of the report nor was a trend graph provided. Please update the text and provide the missing graph. Please note the pH exceedance was not documented in the Water Quality Exceedance Notification dated March 17, 2021.

Cripple Creek & Victor Gold Mining Company P.O. Box 191 100 North 3rd Street Victor, Colorado 80860 719.689.2977 719.689.3254

CC&V has updated the Q1 quarterly report to include the exceedance and graph, enclosed in this response as Attachment B.

14. SGMW-6B had a Beryllium (Be) exceedance that was not documented in the text of the report nor was a trend graph provided. Please update the text and provide the missing graph. Please note the Be exceedance was not documented in the Water Quality Exceedance Notification dated April 27, 2021.

CC&V has updated the Q1 quarterly report to include the exceedance and graph, enclosed in this response as Attachment B.

15. Over the past year, at CRMW-3C, concentrations of Fluoride and Manganese have increased dramatically please provide an explanation to account for the increase. Other wells at the site that may be influenced by historical mining activities do not exhibit such an increase.

At this time, CC&V is unsure why the concentrations of fluoride and manganese have increased during this period. Both of the above referenced parameters have varied over the period of record for CRMW-3C which is from March 7, 2012 to present with recent concentrations observed similar to the range of data over the period of record. Graphs of the above referenced parameters over the period of record are included within Attachment A.

Sincerely,

Justin Raglin Sustainability & External Relations Manager Cripple Creek & Victor Gold Mining Co

JR/rp

Ec: M. Cunningham – DRMS E. Russell – DRMS P. Lennberg - DRMS J. Raglin – CC&V R. Parratt – CC&V K. Blake – CC&V N. Townley – CC&V

Enc. (2)

File: S:\CrippleCreek\na.cc.admin\Environmental\New File Structure\2-Correspondence\DNR\DRMS\2021\Outgoing

Cripple Creek & Victor Gold P 719.689.2977 Mining Company F 719.689.3254 P.O. Boy 101 newmont.com P.O. Box 191 100 North 3rd Street Victor, Colorado 80860

Attachment A

Cripple Creek & Victor Gold P 719.689.2977 Mining Company F 719.689.3254 P.O. Box 191 newmont.com P.O. Box 191 100 North 3rd Street Victor, Colorado 80860

Attachment B

P 719.689.2977 F 719.689.3254 newmont.com

Sent VIA EMAIL

August 5, 2021

Mr. Elliott Russell Environmental Protection Specialist Colorado Department of Natural Resources Division of Reclamation, Mining, and Safety Office of Mined Land Reclamation 1313 Sherman Street, Room 215 Denver, Colorado 80203

RE: Cresson Project Permit M-1980-244: Ground Water Monitoring Data: 1st Quarter 2021 Surface Water Monitoring Data: 1st Quarter 2021

Dear Mr. Russell:

Cripple Creek & Victor Gold Mining Company ("CC&V") hereby provides the updated ground water & surface water monitoring report for the Cresson Project compliance locations for the 1st quarter, (January through March) 2021.

CC&V collected all required samples as outlined in Permit No. M-1980-244. During the quarter CC&V was unable to collect water samples at the Arequa Gulch well CRMW-3A due to insufficient volume / head to reach the discharge point. Additionally the dedicated pump at monitoring well ESMPW was unable to discharge water for sample. CC&V is in the process of examining monitoring well ESMPW to correct the failure for future monitoring. Grassy Valley monitoring well GVMW-8B was reported dry and GVMW-25 did not have sufficient volume / head to discharge a sample. (depth to water (DTW) 74.6 ft, Well total depth 79 ft.)

Poverty Gulch monitoring wells PGMW-2 and PGMW-4 were reported dry and PGMW-3 did not have sufficient volume / head to discharge a sample. (DTW 53 ft., Well total depth 56 ft.). Squaw Gulch monitoring wells SGMW-5, SGMW-6A, and SGMW-7A were reported dry. Monitoring well SGMW-7B did not have sufficient volume / head to discharge a sample with a reported DTW of 59.7 ft. with a well total depth of 60 ft. Vindicator Valley monitoring well VIN-2A did not have sufficient volume / head to discharge a sample with a DTW of 258 ft. and a well total depth of 270 ft. Wilson Creek monitoring wells WCMW-3 and WCMW-6 were inaccessible due to snow accumulation in the first quarter.

Surface water sampling locations in Arequa Gulch (AG 2.0), Vindicator Valley (T-2), and Grassy Valley (GV-02 & GV-03) had no flow and were reported dry. Surface water sampling location WCSW-01 was inaccessible due to snow in the first quarter.

As reported to DRMS on March 16, 2021 the pump within monitoring well CRMW-3B failed. The pump and controller for this well have been replaced, and are currently functioning as intended.

At the end of the first quarter 2021 (3-29-2021) CC&V's field deployable pump failed & was sent back to the manufacturer for repair. During that time monitoring well CRMW-3A sample attempt was completed using the pump assembly from monitoring well CRMW-3C. As explained above,

CC&V was not able to collect a sample from monitoring well CRMW-3A for Q1, 2021 due to insufficient volume within monitoring well CRMW-3A to reach the discharge point.

CC&V Collected three QA/QC samples in Q1, 2021. One duplicate sample from monitoring well VIN-2B was collected, and two blank samples were submitted to our lab for analysis. Reagent water for blank samples was produced using CC&V's Thermo Scientific Barnstead automatic deionizer. Relative percent difference calculations completed for the duplicate monitoring well samples are included within the QA/QC section.

Exceedances recorded in the Squaw Gulch drainage from samples collected on February 23, 2021 pertain to analytes fluoride, manganese, sulfate and pH. First quarter 2021 concentrations are consistent with previously reported concentrations, and pH data is consistent with previous measurements taken. No new or anomalous concentrations are reported for this drainage.

Exceedances recorded in the Grassy Valley drainage from samples collected on February 1, 2021 pertain to the analyte fluoride. First quarter 2021 concentrations are consistent with previously reported concentrations. No new or anomalous concentrations are reported for this drainage.

Exceedances recorded in the Arequa Gulch drainage from samples collected on February 24, 2021, March 25, 2021 and March 31, pertain to cobalt, fluoride, manganese, uranium, and sulfate. First quarter 2021 concentrations are generally consistent with previously reported concentrations. No new or anomalous concentrations are reported for this drainage.

As reported on February 25, 2021, CC&V collected first quarter compliance groundwater samples from monitoring well GVMW-22A on February 1, 2021. CC&V received the lab reports for the GVMW-22A analysis on February 17, 2021. Upon review, CC&V determined that monitoring well GVMW-22A exceeded established numeric protection limits for fluoride. Table 1 lists the exceedance for the location and the associated parameter.

Table 1.

Location	Sample Date	Parameter	Value (mg/L)	NPL (mg/L)	Table Standard (mg/L)
GVMW-22A	2/1/2021	Fluoride	2.08	2.0	2.0

As reported on March 17, 2021, CC&V collected first quarter compliance groundwater samples from monitoring wells CRMW-5A, CRMW-5B, CRMW-5C, and CRMW-5D on February 24, 2021. CC&V received the lab reports for the monitoring wells analysis on March 11, 2021. Upon review, CC&V determined that monitoring wells CRMW-5A, CRMW-5B, CRMW-5C, and CRMW-5D exceeded established numeric protection limits for fluoride and pH, and monitoring well CRMW-5A exceeded table value standards for uranium. Table 2 lists the exceedance for the location and the associated parameter.

P 719.689.2977 F 719.689.3254 newmont.com

Table 2.					
Location	Sample Date	Parameter	Value (mg/L)	NPL (mg/L)	Table Standard (mg/L)
CRMW-5A	2/24/2021	Fluoride	2.01	2.0	2.0
CRMW-5A	2/24/2021	Uranium	0.0892		0.03
CRMW-5B	2/24/2021	Fluoride	2.95	2.0	2.0
CRMW-5C	2/24/2021	Fluoride	2.95	2.0	2.0
CRMW-5D	2/24/2021	Fluoride	3.15	2.0	2.0
CRMW-5D	2/24/2021	рН	5.87	6.0 – 8.5	6.5 – 8.5

As reported on April 14, 2021, CC&V collected first quarter compliance groundwater samples from monitoring well CRMW-3C on March 25, 2021. CC&V received the lab reports for the monitoring wells analysis on April 9, 2021. Upon review, CC&V determined that monitoring wells CRMW-3C exceeded established numeric protection limits for fluoride, and manganese, and exceeded the table value standard for sulfate. Table 3 lists the exceedance for the location and the associated parameter.

Table 3.

Location	Sample Date	Parameter	Value (mg/L)	NPL (mg/L)	Table Standard (mg/L)
CRMW-3C	3/25/2021	Fluoride	3.0	2.0	2.0
CRMW-3C	3/25/2021	Manganese	3.12	3.0	0.20
CRMW-3C	3/25/2021	Sulfate	702		250

As reported on April 21, 2021, CC&V collected first quarter compliance groundwater samples from monitoring well CRMW-3B on March 31, 2021. CC&V received the lab reports for the monitoring wells analysis on April 14, 2021. Upon review, CC&V determined that monitoring wells CRMW-3B exceeded established numeric protection limits for fluoride, and manganese, and exceeded the table value standard for cobalt. Table 4 lists the exceedance for the location and the associated parameter.

Table 4.

Location	Sample Date	Parameter	Value (mg/L)	NPL (mg/L)	Table Standard (mg/L)
CRMW-3B	3/31/2021	Fluoride	3.24	2.0	2.0
CRMW-3B	3/31/2021	Manganese	8.44	8.1	0.05
CRMW-3B	3/31/2021	Cobalt	0.0506		0.05

As reported on April 27, 2021, CC&V collected first quarter compliance groundwater samples from monitoring well SGMW-6B on February 23, 2021. CC&V received the lab reports for the monitoring wells analysis on March 11, 2021. Upon review, CC&V determined that monitoring wells SGMW-6B exceeded established numeric protection limits for fluoride, manganese, and pH, and exceeded the table value standard for sulfate and beryllium. Table 5

100 North 3rd Street P.O. Box 191 Victor, Colorado 80860 719.689.2977 719.689.3254

lists the exceedance for the location and the associated parameter.

Table 5.

Location	Sample Date	Parameter	Value (mg/L)	NPL (mg/L)	Table Standard (mg/L)
SGMW-6B	2/23/2021	Fluoride	7.14	2.0	2.0
SGMW-6B	2/23/2021	Manganese	6.98	3.0	0.05
SGMW-6B	2/23/2021	Sulfate	915		250
SGMW-6B	2/23/2021	рН	5.96	6.0-8.5	6.5 – 8.5
SGMW-6B	2/23/2021	Beryllium	0.0568		0.004

Should you require additional information please do not hesitate to contact Ronald Parratt at 719.689.4019 or <u>ronald.parratt@newmont.com</u> or myself at 719.689.4042 or justin.raglin@newmont.com

Sincerely, «

Justin Raglin Sustainability & External Relations Manager Cripple Creek & Victor Gold Mining Company

ECC: Lynda Morgan

P 719.689.2977 F 719.689.3254 newmont.com

Appendix A

P 719.689.2977 F 719.689.3254 newmont.com

Location Maps

P 719.689.2977 F 719.689.3254 newmont.com

Field Sheets

Cripple Creek & Victor Gold Mining Co

Surface Water Sampling Log

Location : _____AG-2.0

Technician: KASY TOMPKANS

Date: 2/24/21 Quarter:

	Time	Estimated water level (ft)	рН (S.U.)	Cond. (uS/cm)	DO (%/mg/L)	Temp. (°C)	Notes
	11:55	BROZEN Enow, no water	NA	MA	nIA	N/A	
-		(Enow no water)				
	Sample Meth	iod: ראס :bod	A	-			
	Oil/Gas visibl	ie [}					
	Turbid	[3	Aln IN/	-			
	Clear	[3	(N] //	A			
	Weather:	sunny, c	cor, cold,	un may			
	Signature: _	Kety To	yhi				
	Commonts:						

Comments:

Location :CCV Technician:GADNOC Static Water LvI:9 F	Date: <u>3-3</u> Quarter: Well ID:	
Dry? [Y/🕅 Dry at: _		
Insufficient to Pump? Reason f [Y/Ô insufficio		Revisit in 24 hours? ()/ N]

Time	Drawdown (ft)	pH (S.U.}	Cond. (uS/cm)	DO (%/mg/L)	Temp. (°C)	Notes
11:25	PURG	ETC	DR	Y@	12/85	End@ 11:28
1:15	LKY					
	· ·					
Sample Method:	dedicated	Rate (gpm)):	12/83	Time Start: 1	25 Time End: NS

Sample Method:	-pump	Rate	(gpm):	16/85 Time Start: 1125 Time End: 115
Final Parameters	Stabalization Guid	е	Met?	Comments
рН		0.1	Y/N	
Conductivity		3%	Y/N	
Temp. (°C)	:	10%	Y/N	
DO (mg/L)		10%	Y/N	
Final H2O level	1	feet		

Oil/Gas visible 3 Rinse Decontamination procedure used: 6 nowu Weather: Signature:

Location :	V	Groundwate	r Sampling L	-	te: <u>3-3</u>	51-21
Technician: A	nnon Mc(a	mick				
	25.5 A					
Static Water Lvl: _	200 IT			We		nu 3A
Dry? [Y / 🕥	Dry at:					
Insufficient to Pump? (V/ N]	Reason for insufficient:	TD = 3 not e pump pump		head fr discharge ix power	om point IVI. 4	Revisit in 24 hours? [Y/(1) purged 3-30-21
Time	Drawdown (ft)	pH (S.U.)	Cond. (uS/cm)	DO (%/mg/L)	Temp. (°C)	Notes
100pm						
Sample Method:	dedicated pump	Rate (gpm)	:		Time Start:]	00 Time End: 1:00
Final Parameters	Stabalization Gui				Commen	ts
рН		0.1 ¥/K				
Conductivity		3% Y/N				
Temp. (°C)	$ \ge $	10% Y/N				
DO (mg/L)		10% Y/N				
Final H2O level		feet				
Oil/Gas visible	[Y/N]					
Decontamination proc	edure used:	rinse				
Weather:	EDVC + COC					
Signature:	Hann	~~~	~-~			
	4P					
	V					

Location :(Technician:(Static Water LvI:	annon McG	Groundwater Sar	npling Log	Date: 3-3 Quarter: 1 Well ID: CRM	
Dry? [Y / 🔊	Dry at:				
Insufficient to Pump? [Y/N	Reason for insufficient:	purge 1	run		Revisit in 24 hours?

Time	Drawdown (ft)	рН (S.U.}	Cond. (uS/cm)	DO (%/mg/L)	Temp. (°C)	Notes
11:05	TD PL	RGED	DRY			End@ 11 20
105	TD PL	RGED	DRY			Endra 1:08
			2. 			
	المحقل محمل من					
Sample Method:	dedicated	Rate (gpm)): <u> </u>	L/85	Time Start:	Time End:
Sample Method: Final Parameters	Stabalization Gui			L/85_	Time Start: Commer	
		ide Met	? \	L/85_		
Final Parameters		ide Met 0.1 //M 3% Y/M	-? J	L/85		
Final Parameters pH		ide Met 0.1 /// 3% Y/N 10% Y/N	-? 4 4 4	L/85		
Final Parameters pH Conductivity Temp. (°C) DO (mg/L)		ide Met 0.1 Y/N 3% Y/N 10% Y/N 10% Y/N	-? 4 4 4	L/85 N/A		
Final Parameters pH Conductivity Temp. (°C)		ide Met 0.1 /// 3% Y/N 10% Y/N	-? 4 4 4	L/85 N/A		
Final Parameters pH Conductivity Temp. (°C) DO (mg/L) Final H2O level	Stabalization Gui	ide Met 0.1 Y/N 3% Y/N 10% Y/N 10% Y/N feet Y/N	? \ \ \ \ \ \	L/85 N/A		
Final Parameters pH Conductivity Temp. (°C) DO (mg/L) Final H2O level	Stabalization Gui	ide Met 0.1 Y/N 3% Y/N 10% Y/N 10% Y/N	? \ \ \ \ \ \	L/85		
Final Parameters pH Conductivity Temp. (°C) DO (mg/L) Final H2O level Oil/Gas visible	Stabalization Gui	ide Met 0.1 Y/N 3% Y/N 10% Y/N 10% Y/N feet Y/N	? \ \ \ \ \ \	L/85		
Final Parameters pH Conductivity Temp. (°C) DO (mg/L) Final H2O level Oil/Gas visible Decontamination proce	Stabalization Gui	ide Met 0.1 Y/N 3% Y/N 10% Y/N 10% Y/N feet Y/N	? \ \ \ \ \ \	L/85_		

	annon Mc(a	Groundwater Sampling Log	Date: 3-3 Quarter: 1 Well ID: CRM	
Dry? [Y /	Dry at:			
Insufficient to Pump? [Y/(0)	Reason for insufficient:			Revisit in 24 hours? [Y/N])

Time	Drawdown (ft)	pH (S.U.}	Cond. (uS/cm)	DO (%/mg/L)	Temp. (°C)	Notes
1230 PM	9.Ft	6.70	2365	1.50	13.3	
	-					
	_					
	-					
	_					
Sample Method:	dedicated purge 3x	Rate (gpm):	.3	Time Start:	230 Time End: 1230

inal Parameters	Stabalization (Guide	Met?	Comments
pН	6.70	0.1	/\v/N	
Conductivity	2365	3%	ŴN	NIA PORGED
Temp. (°C)	13.3	10%	Y/N	
DO (mg/L)	1.5	10%	Y/N	2-30-2
Final H2O level	35.6	feet		0 00 11

Oil/Gas visible [Y/0] 3 Rinse Decontamination procedure used: Clear - Ca Weather: Signature:

Location :C	<u>cv</u> non McCorr	Groundwater Sampling Log	Date: <u>3-2</u> Quarter:	
Static Water Lvl:	27.3		Well ID:	nW - 3C
Dry? [Y / 🕅	Dry at: A	I/A		
Insufficient to Pump?	Reason for insufficient:	NIA		Revisit in 24 hours? [Y / N]

Time	Drawdown (ft)	рН (S.U.}	Cond. (uS/cm)	DO (%/mg/L)	Temp. (°C)	Notes
11 10	AMM 16.3	6.79	2571	5.75	15.9	
		<u> </u>				
	+					
	-					

Sample Method:	dedirated high	Ra	ate (gpm):	<u>0.40</u> Time Start: 11:10 Time End: 11:10
Final Parameters	Stabalization G	uide	Met?	Comments
рН	6.79	0.1	(1/N	
Conductivity	2591	3%	/ YYN	
Temp. (°C)	15.1	10%	Y/N	
DO (mg/L)	5.75	10%	Y/N	
Final H2O level		feet	10.9	
Oil/Gas visible		3	Rinsa	

Decontaminatio	n procedure used:	3	Rinse	
Weather: Signature:	Clear +	(00)	$\sim >$	

Groundwater Sampling Log

Location :	CCIV	Date:	2/24/21
Technician:	KARY TOMPKINS	Quarter:	Ĺ
Static Water Level:	197.9'	Well ID:	CRMW-SA

Time	Drawdown (ft)	pH (S.U.)	Cond. (uS/cm)	Temp. (°C)	DO (%/mg/L)	Notes
13:20	199 = 1.1'	6.71	704.0	7.6	4.7/0.56	
13:25	1996 17	6.98	693.0	8.2	5.0/0.58	
13:30	200 = 2.1'	7.01	689.0	11.2	22.5/2.48	
13:35	201,1=3.2'	7.28	664.6	11.8	39.8/4.31	FINAL

1

Sample Method:

low flow _____ Rate (gpm): 0.45 ____ Time Start: 13.11 Time End: 13.35

Final Parameters	inal Parameters Stabilization Guid		Met?	Comments
pН	7.28	0.1	Y/N	
Conductivity	6646	3%	Y/N	
Temp©	11.8	10%	Y/N	•
DO (mg/L)	4.31	10%	Y/N	
Final H2O level	201.1	feet		

YN Y/D O/G visible: Turbid? **Equipment Decontaminated:** RINSE/DI Decontamination procedure used: Signature: windy Weather: (d

Location :	CCJV	Date:	2/24/21
Technician:	KATY TOMPKINS	Quarter:	
Static Water Level:	24.7	Weli ID:	CRMW-5B

Groundwater Sampling Log

Time	Drawdown (ft)	pH (S.U.)	Cond. (uS/cm)	Temp. (°C)	DO (%/mg/L)	Notes
15:18	25.3 - 0.6		398.0		10/1.21	
15:23	25.3=0.6'	7.47	395.0	7.3	10/1.21	FINAL
						1
	1		1			

ţ

Sample Method:

low flow_____ Rate (gpm): 0.35___ Time Start: 15:05Time End: 15:23

Final Parameters	Stabilization G	Stabilization Guidance		Comments
рН	7.47	0.1	Y/N	
Conductivity	395.0	3%	Y/N	
Temp©	7.3	10%	Y/N	-
DO (mg/L)	1.21	10%	Y/N	
Final H2O level	25.3'	feet	V	

YN YN Turbid? O/G visible: (Y)N Equipment Decontaminated: 3 RUNSE /DI Decontamination procedure used: Signature: Weather: winde 10 LAF

Location :	CCUV	Date:	2/24/21
Technician:	KAN TOMPKINS	Quarter:	I
Static Water Level:	24.5'	Well ID:	CRMW-SC

Groundwater Sampling Log

Time	Drawdown (ft)	pH (S.U.)	Cond. (uS/cm)	Temp. (°C)	D0 (%/mg/L)	Notes
14:30	24.9'= 0.4'	6.97	243.3	7.5	35.2/4.19	
14:37	25.0=0.5	6.79	241.2	7.4	34.1/4.09	
14 44	25.5 = 1.0	6.77	242.2	7.6	32.4/3.95	FINAL
5 S.					/	
	-					

I

Sample Method:

low flow_____ Rate (gpm): 0.35_ Time Start: 14:20 Time End: 14:44

Final Parameters	Stabilization G	Stabilization Guidance		Comments
рН	6.77	0.1	/ YXN	
Conductivity	242.2	3%	Y/N	
Temp©	7.6	10%	Y/M	-
DO (mg/L)	3.95	10%	(Y/N	
Final H2O level	25.51	feet	$\langle \rangle$	

O/G visible: Equipment Decontamir	Y/N hated:	Р/N	Turbid?	YN	
Decontamination proce		3 RINJE	/0I		
Signature: Weather:	aty De sunny,	fr6 Iclear, cold	windy		

.

Groundwater	Sampling Log	
-------------	--------------	--

Location :	CCIV	Date:	2/24/21
Technician:	KARY TOMPKINS	Quarter:	
Static Water Level:	17.7	Well ID:	CRMW-5D

Time	Drawdown (ft)	рН (S.U.)	Cond. (uS/cm)	Temp. (°C)	DO (%/mg/L)	Notes
12:35	18.2=0.5'	5.5	206.2	5.7	54.6 6.85	
12;41	18.3=0.6'	5.7	205.7	5.9	54.6.83	
12:46	104 07	5 87	206.1	6.0	55.0/6.85	FINAL
-						

Sample Method: (ow flow Rate (gpm): 0,19 Time Start: 12:15 Time End: 12:146

Final Parameters	Stabilization Guidance		Met?	Comments
рН	5.87	0.1	MN	
Conductivity	206,1	3%	Y/N	
Temp©	6.0	10%	Y/N	
DO (mg/L)	6.85	10%	V/N	
Final H2O level	18.4	feet	~	

O/G visible:	YN			Turbid?	YN	
Equipment Deconta	aminated:	(?)N		с.	<u> </u>	
Decontamination p	rocedure used:		3 RINSE	DI		
-	1/4	1	/	1		
Signature:	later	Dun	5			
Weather:	sunny	, cl	w cold	, wondy		
	- 1	1	1	()		

Cripple Creek & Victor Gold Mining Co

Surface Water Sampling Log Location: D.I Blank Technician: <u>Gannon McCormick</u>

Date: 3-25-2

Quarter: ____]

Time	Estimated water level (ft)	рН (S.U.}	Cond. (uS/cm)	DO (%/mg/L)	Temp. (°C)	Notes
1:50Pm		7.69	157	7.18	10.5	

Sample Method:	p.I blank
Oil/Gas visible	
Turbid	
Clear	() / N]
Weather:	O/NI N/A
Signature:	form
Comments:	
6/0	ank

Surface Water Sampling Log Location: DT. Blank #2 Technician: Gannon McCormick

Date: 3-31-21 Quarter:

Time	Estimated water level (ft)	рН (S.U.}	Cond. (uS/cm)	DO (%/mg/L)	Temp. (°C)	Notes
z:15		7,57	164.9	6.03	10.2	

Sample Method:	Grab		
Oil/Gas visible			
Turbid			
Clear			
Weather:	Clear +	(00)	
Signature:	Ha	m	
Comments:			
Blan	.10		

Location : Technician:	Technician: <u>FFO.5</u> Ty? [Y/N) Dry at:			Date: <u>3-31-21</u> Quarter: <u>1</u> Well ID: <u>ESPMW-0</u>			
Insufficient to Pump?	•			head. NO HZO pensing			
Time	Drawdown (ft)	pH (S.U.}	Cond. (uS/cm)	DO (%/mg/L)	Temp. (°C)	Notes	
1:40							
	_						
	In L'on La d						
Sample Method:	dedicated	Rate (gpm)	-	NIA	Time Start: 🚶	:40 Time End: 1:40	
Final Parameters	Stabalization Gui	de Met			Commer	its	

Final Parameters	Stabalization Gu	ue	wet:		Comments	
рН		0.1	YAN			
Conductivity		3%	Y/N	11/0		
Temp. (°C)	>	√0%	Y/N	NA		
DO (mg/L)		10%	Y/N			
Final H2O level		feet				
Oil/Gas visible	-TX/NI N/A	. 20				
Decontamination pro	ocedure used:	N/I		woter lu	il indicator	

Clear, + Cool Weather: Signature: 6 4

3 rinse

Cripple Creek & Victor Gold Mining Co

Surface	Water	Sampling	Log
---------	-------	----------	-----

Location : _____GV-02_____

Technician: <u>ILATY TOMPKINS</u>

Date: 2/11/21 Quarter: _____

Time	Estimated water level (ft)	рН (S.U.}	Cond. (uS/cm)	DO (%/mg/L)	Temp. (°C)	Notes
11:00	Dey	NIA	NJA	NA	n/n	

DRY
, clear, cold, windy
Doffe

Comments:
Cripple Creek & Victor Gold Mining Co

Surface Water Sampling Log

Location : <u>GV-03</u> Technician: <u>KATY TOMPKLWS</u>

Date: ____2/11/2/____ Quarter: ____]

Time	Estimated water level (ft)	рН (S.U.)	Cond. (uS/cm)	DO (%/mg/L)	Temp. (°C)	Notes
10:45	DRY	MA	NA	N/A	NA	

Sample Method:	DRY
Oil/Gas visible	[Y/ []
Turbid	[Y/N] N/A
Clear	$[Y/N] \sim A$
Weather:	ny, clear cold, windy
Signature:	aty Daylo
•	

Comments:

Groundwater Sampling Log

Location :GV	mW-SA		Date:	3-2	3-21
Technician:	nnon piclo	simill			
Static Water Lvl:	158		Well ID:	ĜV	mw-st
Dry? [Y / N)	Dry at:				
Insufficient to Pump? [Y/N]	Reason for insufficient:				Revisit in 24 l

/isit in 24 hours? [Y / N]

Time	Drawdown (ft)	рН (S.U.}	Cond. (uS/cm)	DO (%/mg/L)	Temp. (°C)	Notes
10:15	1.0	4.20	421	2.90	7.1	
10:20	1.2	7.16	421	2.80	78	
10 25	1.3	7.13	420	2.00	7.7	
A . 5						

Sample Method:	pump/low	FIGNRA	te (gpm):	12/min	Time Start: 10iろ	Time End: 1023
Final Parameters	Stabalization G	lide	Met?		Comments	
рН	7.13	0.1	(¥/N			
Conductivity	420	3%	G∕/N			
Temp. (°C)	17.7	10%	Q/N			
DO (mg/L)	2.60	10%	Q/N			
Final H2O level		feet	159.3			
Oil/Gas visible Decontamination proc Weather:	305 + COS	3	i ratist	_pump		

Groundwater	Sampling	Log
OIO	- and a second	

Location :	CCIV	Date:	3/2/21
Technician:	KATY TOMPKINS	Quarter:	1
Static Water Level:	DRY	Well ID:	GVMW-8B

GVMW-8B Dry at 50 ft.

Time	Drawdown (ft)	pH (S.U.)	Cond. (uS/cm)	Temp. (°C)	DO (%/mg/l)	Notes
12:20						
		1	RY			
			p)-			
			/			
/			0			

1

Sample Method:		Rate (gpm):	Time Start:	Time End:
	Final Parameters	Stabilization Guidance	Met?	Comments
	рН	0.1	Y/N	_
	Conductivity	3%	Y/N	
	Temp©	10%	Y/N	-
	DO (mg/L)	10%	Y/N	
	Final H2O level	feet		

O/G visible:	Y/N		Turbid?	Y/N	
Equipment Decont	aminated:	Y/N			
Decontamination p	rocedure used:				
		4			
Signature:	llot	Type			
Weather:	SUN/	ny cllear , c	osl, wind	h	
		// /	/	/	

Cripple Creek & Victor Gold Mining Co

Groundwater Sampling Log

Location :	CC+V	Date:	2/1/21
Technician:	KATY TOMPKINS	Quarter:	
Static Water Level:	3.1	Well ID:	GUMW-22A

Time	Drawdown (ft)	pH (S.U.)	Cond. (uS/cm)	Temp. (*C)	DO (%/mg/L)	Notes
12:14	2.3	6.98	404.5	5.7	0.04	
12:20	4.5	7.13	403.8	5.9	0.05	
12:27	7.8	7.34	402.6	6.0	1.10	
12:33	9.5	7.42	401-2	5.9	1.65	
12138	10.4	7.47	401.4	6.)	0.68	
12:44	10.8	7.52	401.8	6.2	0.35	FINAL

Sample Method:

1

(ow Frow Rate (gpm): 0.217 Time Start: 12:14 Time End: 12:53

Final Parameters	Stabilization GL	uidance	Met?	Comments
рН	7.52	0.1	1/N	
Conductivity	401.8	3%	Y/N	
Temp©	6.2	10%	Y/N	· ·
DO (mg/L)	0.35	10%	Y/N	
Final H2O level	13.9	feet	V	

O/G visible:	Y/N		Turbid?	Y.N	
Equipment Decon	taminated:	(Y)N			
Decontamination	procedure used:	3 RINSE	TAP/LIA.	AINOX DI	
	1/4		<u>, , , , , , , , , , , , , , , , , , , </u>		
Signature:	llily (1 by hr			
Weather:	_ werca	ste what ba	eze, di	1(4	
	1.	1 8	1	1	

		Groundwater Sampling L	og	
Location :	CEV		Date: 3	23-21
Technician:	annen Melo	mick		
Static Water Lvl: _	~ 8 Ft		Well ID: GU	1mw-22/4-
Dry? [Y / N]	Dry at:			
Insufficient to Pump? [Y / N]	Reason for insufficient:	Well casing Cannot get	is frozen pump down wel	Revisit in 24 hours? [Y / N]

Drawdown (ft)	pH (S.U.}	Cond. (uS/cm)	DO (%/mg/L)	Temp. (°C)	Notes
<					
The second se					
an age of the state of the					
- ava we have	1 2 Sam.				3
	A MARKAN PARAMAN PARAM	Constant of the local data			
- Transaction and the second s					
	Drawdown (ft)	Drawdown (ft) pH (S.U.} Image: Constraint of the second			

Sample Method:		ate (gpm):	Time Start: Time End:
Final Parameters	Stabalization Guide	Met?	Comments
рН	0.1	Y/N	
Conductivity	3%	Y/N	
Temp. (°C)	10%	Y/N	
DO (mg/L)	10%	Y/N	
Final H2O level	feet		

Oil/Gas	visible	ΓY	/N]
0117 000			

Decontamination	procedure used:
Weather:	Clear + Gold
Signature:	America

Cripple Creek & Victor Gold Mining Co

Groundwater	Sampling	Log
-------------	----------	-----

Location :	cctV		Date:	z/1/21
Technician:	ICATY	TUMPKINS	Quarter:	
Static Water Level:		4.6	Well ID:	GMVW-22B

Time	Drawdown (ft)	pH (S.U.)	Cond. (uS/cm)	Temp. (°C)	DO (%/mg/L)	Notes
11:02	9.8	6.69	446,0	5.8	0.25	
11:08	1,0	6.45	432.5	5.9	0.36	
11:14	1.0	6.41	413.3	5.9	0.55	
11:20	0,9	6.38	396.1	5.8	0,62	
11:27	0.8	6.39	381.3	5.8	0.68	FINAL

1

Sample Method:

Low Frow Rate (gpm): 0.369 Time Start: 11:02 Time End: 11:30 (43 Sec/L)

	(4) (())				
Final Parameters	Stabilization G	uidance	Met?	Comments	
рН	6.39	0.1	/Y/N		
Conductivity	381.3	3%	Y/N		
Temp©	5.8	10%	Y/N	·	
DO (mg/L)	0,68	10%	Y/N		
Final H2O level	5.4'	feet			

O/G visible:	YN	Turbid? YA	
Equipment Decon		(Y)N	
Decontamination	procedure used:	3 RINSE + TAP/LIQUINON/DI	
	the second second	1	
Signature:	1/uti T	Think	-
Weather:	overcas	st no wind cold	

Newmont Mining Co Cripple Creek & Victor Gold Mining Co Groundwater Sampling Log

Location :	CCIV	Date:	3/2/21
Technician:	KATY TOMPKINS	Quarter:	
Static Water Level:	73.2'	Well ID:	GVMW-25

Time	Drawdown (ft)	pH (S.U.)	Cond. (uS/cm)	Temp. (°C)	D0 (%/mg/L)	Notes
13:15						
Χ.						
					DUM	P
					pu	}
			15	FIO	RM	
			SUT	AN D		
		$ = \mu^{\circ}$	R	₽,°		
		OUN	Nr -			
		PM				
/						

No.

Sample Method:		Rate (gpm):	Time Start:	Time End:
3	Final Parameters	Stabilization Guidance	Met?	Comments
	рН	0.1	Y/N	
	Conductivity	. 3%	Y/N	
	Temp©	10%	Y/N	
	DO (mg/L)	10%	Y/N	
	Final H2O level	feet		
O/G visible:	YN	Turbid?		

O/G visible:	YN		Turbid?	(VAN)	
Equipment Deconta	minated:	(YN	1	×	
Decontamination pr	ocedure used:	3 RUNSE	01		
-	1.	1	1		-
Signature:	laty D	yh?			 -
Weather:	SUNI	y, clear, &	ool, windy	Y	
	•	,, ,	/ /		

NOTES: NEED TO TRY TO SAMPLE AGAIN.

Cripple Creek & Victor Gold Mining Co

		Groundwater Sampling Log				
Location :	CCV		Date:	312	2121	
Technician:	annon McCon	mick	Quarter:	/		
Static Water Lvl: _			Well ID:	GVM	w-25	
Dry? [Y / N]	Dry at:					
lpsufficient to Pump? [Y // N]	Reason for insufficient:	Dry run on pump Not enough head	•		Revisit in 24 hours? [Y /ɗ	D

Time	Drawdown (ft)	pH (S.U.}	Cond. (uS/cm)	DO (%/mg/L)	Temp. (°C)	Notes

Sample Method:	R	ate (gpm):	Time Start: Time End:
Final Parameters	Stabalization Guide	Met?	Comments
рН	0.1	Y/N	
Conductivity	3%	Y/N	
Temp. (°C)	10%	Y/N	
DO (mg/L)	10%	Y/N	
Final H2O level	feet		

Oil/Gas visible [Y/N]

e Ervial

Decontamination procedure used:

Snoy Weather: Signature: < Som

Groundwater Sampling Log

Location :	CC+V			÷:	Date:	2/11/21 12:2	Lopm
Technician:	катч	TOMPY	uns	•:	Quarter:		
Static Water Level	l:	DRA	1	÷.	Well ID:	PGMW-2	
PGMW-2 Dry			/				
Time	Drawdown (ft)	рН (S.U.)	Cond. (uS/cm)	Temp. (°C)	DO (%/mg/L)	Notes	
				_			
					-/		
			/				
			AN				
		Ŧ	R				
			N. C.				
Sample Method:			Rate (gpm)):	Time Start:	Time End:	

inal Parameters	Stabilization Guidance	Met?	Comments
рН	0.1	Y/N	
Conductivity	3%	Y/N	
Temp©	10%	Y/N	
DO (mg/L)	10%	Y/N	
Final H2O level	feet		

O/G visible: Y/N Equipment Decontaminated: Decontamination procedure used:

Turbid?

Y/N NIA

Signature: Weather:

Y/N

X

Groundwater Sampling Log

Location :	(C) V	Date:	2/22/21
Technician: _	KATY TOMPKINS	Quarter:	1
Static Water Level:	51.7'	Well ID:	PGMW - 3

Time	Drawdown (ft)	рН (S.U.)	Cond. (uS/cm)	Temp. (°C)	DO (%/mg/L)	Notes
11:15						
					-25	
			1	EICIC	,,	
			EUT		AP	
		IN	2	pu	~ \	
		1.	JD	1		
	/					

Sample Method:		Rate (gpm):	Time Start:	Time End:
	Final Parameters	Stabilization Guidance	Met?	Comments
	pН	0.1	Y/N	
	Conductivity	3%	Y/N	
	Temp©	10%	Y/N	
	DO (mg/L)	10%	Y/N	
	Final H2O level	feet		
		Turkida	V/N	

O/G visible:	Y/N		i urbia ?	1/N	
Equipment Deconta	aminated:	Y/N			
Decontamination p	rocedure used:				
		1 -			
Signature:	late De	45			
Weather:	clear	Sunny, cold			
2-		1. 11.			

		Groundwater Sampling Log		
Location :	CCV		Date:	29-21
	unnan McCe	rmick	Quarter:]	
Static Water Lvl:	53ft		Well ID: PGr	<u>nw-3</u>
Dry? [Y / 🕖	Dry at:	NA		
Insufficient to Pump?	Reason for insufficient:	Dry Run indicated pump. Insufficient TD = 56Ft 3Ft 1	on head	Revisit in 24 hours? [Y / 🕅

Sample Method:	low flow	Ra	te (gpm):	Time Start: Time End:
Final Parameters	Stabalization Gu	ide	Met?	Comments
рН		0.1	Y/N	
Conductivity		3%	Y/N	
Temp. (°C)		10%	Y/N	
DO (mg/L)		10%	Y/N	
Final H2O level		feet		
Oil/Gas visible Decontamination pro Weather: Signature:	[Y/N cedure used: <u>3</u> Cltar + Coc Har	Rin N		

	Groundwater	Samplin	ig Log
--	-------------	---------	--------

Location :	CCAV	Date:	2/11/21 13100
Technician:	KATY TOMPKINS	Quarter:	
Static Water Level:	DRM	Well ID:	PGMW-4

Time	Drawdown (ft)	pH (S.U.)	Cond. (uS/cm)	Temp. (°C)	DO (%/mg/L)	Notes
				M		
			De			

Sample Method:		Rate (gpm):		- Time Start:	Time End:
	Final Parameters	Stabilization Guida	ance	Met?	Comments
	рН		0.1	Y/N	
	Conductivity		3%	Y/N	
	Temp©		10%	Y/N	
	DO (mg/L)		10%	Y/N	
	Final H2O level		feet		
O/G visible: Equipment Decont Decontamination p Signature: Weather:		Y/W/A	iurbid?	Y/N NGA	t

Groundwater Sampling Log

Location :	(CHV	Date:	2/22/21
Technician:	KATY TOMPKINS	Quarter:	1
Static Water Level:	Day	Well ID:	SGMW-S

Time	Drawdown (ft)	pH (S.U.)	Cond. (uS/cm)	Temp. (°C)	DO (%/mg/L)	Notes
14:30						
					/	
				11		
			DR	4		
(
~						

Sample Method:	Rate (gpm):	Time Start:	Time End:
	Final Parameters	Stabilization Gui	dance	Met?	Comments
-	рН		0.1	Y/N	
	Conductivity		3%	Y/N	
	Temp©		10%	Y/N	
	DO (mg/L)		10%	Y/N	
	Final H2O level		feet		
O/G visible:	Y/N		Turbid?	Y/N	
Equipment Decont	aminated:	Y/N			
Decontamination p	procedure used:				
Signature: Weather:	Clear, su	may reald			

Groundwater Sampling Log

CC+V	Date:	2/22/21
KATY TOMPKINS	Quarter:	
	Well ID:	SGMW- 6A
	KATY TOMPKINS	KATY TOMPKINS Quarter:

Time	Drawdown (ft)	рН (S.U.)	Cond. (uS/cm)	Temp. (°C)	DO (%/mg/L)	Notes
14:15						
				/		
			/			
			Sol	4		
			De			
				/		

Sample Method:		Rate (gpm):		Time Start:	Time End:
	Final Parameters	Stabilization Gu	idance	Met?	Comments
	рН		0.1	Y/N	
	Conductivity		3%	Y/N	
	Temp©		10%	Y/N	
	DO (mg/L)		10%	Y/N	
	Final H2O level		feet		
O/G visible:	Y/N		Turbid?	Y/N	
Equipment Decont	aminated:	Y/N			
Decontamination p	procedure used:				
Signature: Weather:	later, su	my cold			

Cripple Creek & Victor Gold Mining Co

Groundwater Sampling Log

Location :	CCIV	Date:	2/23/21
Technician:	KATY TOMPKINS	Quarter:	
Static Water Level:	29.5	Well ID:	SGMW-6B

			Cond.		DO	
Time	Drawdown (ft)	pH (S.U.)	(uS/cm)	Temp. (°C)	(%/mg/L)	Notes
13:25	30.2 = 0.7	5.7	2230	9.3	0.31	
13 33	30,5'= 1.0'	5.89	2239	9.8	0.24	
13:40	30.7:1.2	5.96	2217	10.1	0.24	FINAL

Sample Method:

And Rate (gpm): 0.26 Time Start: 13:25 Time End: 13:40

inal Parameters	Stabilization G	uidance	Met?	Comments
рН	5.96	0.1	/ YYN	
Conductivity	2217	3%	Y/N	
Temp©	10.1	10%	Y/N	
DO (mg/L)	0.24	10%	V/N	
Final H2O level	30.7	feet		

O/G visible:	YN	_			Turbid?	Y.N	
Equipment Decont	aminated:	ØN				-	
Decontamination p	procedure used:	3	rinse	, D I	rinse	tigunox	
Signature:	lety 1	yh-					
Weather:	Sunny	clea	ricelo	ι <u> </u>			

Cripple Creek & Victor Gold Mining Co

Groundwater Sampling Log

Location :	CC4V	Date:	2/22/21
Technician:	KATY TOMPKINS	Quarter:	
Static Water Level:	DRY	Well ID:	SGMW - 7A

SG	MW	~	7A
	1 .		

Time	Drawdown (ft)	рН (S.U.)	Cond. (uS/cm)	Temp. (°C)	DO (%/mg/L)	Notes
13:45		p (0.01)	(00) 000		(_
				A		
			DRY			
	/		V			
			-			
/	ſ					1

Sample Method:		Rate (gpm):	_Time Start:	Time End:
	Final Parameters	Stabilization Guidance	Met?	Comments
	рН	0.1	Y/N	
	Conductivity	3%	Y/N	
	Temp©	10%	Y/N	
	DO (mg/L)	10%	Y/N	
	Final H2O level	feet		
O/G visible: Equipment Decont Decontamination p		Turbid? ′N	Y/N	
Signature: Weather:	Kety Byth clear, su.	s my cold		

Signature: Weather:

Cripple Creek & Victor Gold Mining Co

Groundwater Sampling Log

Location :	CCIV	Date:	2/23/21
Technician:	KATY TOMOKINS	Quarter:	1
Static Water Level:	59.7	Well ID:	SGMW-7B

Time	Drawdown (ft)	рН (S.U.)	Cond. (uS/cm)	Temp. (°C)	DO (%/mg/L)	Notes
12:30						
					0	
			/	EF 1	/	
			insu	DUMP		
			1	pui		
	/					
-/						

Sample Method:		Rate (gpm):	Time Start:	Time End:
	Final Parameters	Stabilization Gui	dance	Met?	Comments
	рН		0.1	Y/N	
	Conductivity		3%	Y/N	
	Temp©		10%	Y/N	
	DO (mg/L)		10%	Y/N	
	Final H2O level		feet		
O/G visible:	Y/N		Turbid?	Y/N	
Equipment Decont	-	Y/N		•	
Decontamination p					
		1			
Signature:	Vata Joy	ho			
Weather:		lear, cold			

Cripple Creek & Victor Gold Mining Co

Surface	Water	Sampling	Log
---------	-------	----------	-----

Date: 1/13/21 1

Location : ______ Technician: __KASY TOMPKUNS

Quarter:			
	-		

Time	Estimated water level (ft)	рН (S.U.)	Cond. (uS/cm)	DO (%/mg/L)	Temp. (°C)	Notes
10:12	DRy	~)~	NA	NA	NA	

Sample Method:	DRY	
Oil/Gas visible	[Y/(X)	
Turbid	[Y/N]	NIK
Clear	[Y/N]	r) a
	<i>(</i>	

Weather:	SUNNY	

Signature: Vaty Dylo

Comments:

Cripple Creek & Victor Gold Mining Co

U

Location :CC Technician:GO Static Water LvI:	innon McCor	Groundwater Sampling Log	Date: <u>3-7</u> Quarter: <u>1</u> Well ID: <u>VIN</u>	
Dry? [Y /N]	Dry at:			
Insufficient to Pump?	Reason for insufficient:	TD = 240ft pump does not	have enough	Revisit in 24 hours? [Y / 🕅

Time	Drawdown (ft)	pH (S.U.}	Cond. (uS/cm)	DO (%/mg/L)	Temp. (°C)	Notes
9:20 AM						

Sample Method:	dedicated	Ra	ite (gpm):	Ş 		Time Start:	Time End:
Final Parameters	Stabalization Gu	ide	Met?			Comment	S
рН		0.1	Y/N				
Conductivity		3%	Y/N				
Temp. (°C)		10%	Y/N				
DO (mg/L)		10%	Y/N				
Final H2O level		feet					
Oil/Gas visible Decontamination proc	[Y/N] <i>MIA</i> redure used:	3	Rinse	w/	PI + a	Equinox	
Weather:C	Kart Cool	~	1				

Cripple Creek & Victor Gold Mining Co

Groundwate	r Sampling Log
------------	----------------

Location :	CCV				
Technician:	Elannon	Mc	Corm	ict	
Static Wate	r LvI: <u>92</u>	.5	<u>Pt</u>		
Dry? [Y / 🕥	Dry at	;			

Date:	3-29-21
Quarter:	1
Well ID:	VIN-ZB

Revisit in 24 hours? [Y (N)

Insufficient to Pump? Reason for [Y/N insufficient: TD = 14064

Drawdown (ft)	pH (S.U.}	Cond. (uS/cm)	DO (%/mg/L)	Temp. (°C)	Notes
3 Ft	6.87	1358	6.37	6.2	
9.9 ft	6.85		3.09	6.3	
17.0FF	6.93		1.73	6.7	4
17.244	7.01	1338	1.3	6.9	recharge
16.9 ft	7.07	1340	1.18		4 0-
16.9.Ft	7.08	1340	1.16	7.1	V
	n)				
	·				
	17.0Ft 17.2ft 16.9ft	9.9 ft 6.85 17.0 ft 6.93 17.2 ft 7.01 16.9 ft 7.07 16.9 ft 7.08	3 ft 6.87 1358 9.9 ft 6.85 1351 17.0 ft 6.93 1343 17.2 ft 7.01 1338 16.9 ft 7.07 1340 16.9 ft 7.08 1340	3 ft 6.87 1358 6.37 9.9 ft 6.85 1351 3.09 17.0 ft 6.93 1343 1.73 17.2 ft 7.01 1338 1.51 16.9 ft 7.07 1340 1.18 16.9 ft 7.08 1340 1.16	3 ft 6.87 1358 6.37 6.2 9.9 ft 6.85 1351 3.09 6.3 17.0 ft 6.93 1343 1.73 6.7 17.2 ft 7.01 1338 1.51 6.9 16.9 ft 7.07 1340 1.18 7.1 16.9 ft 7.08 1340 1.18 7.1 16.9 ft 7.08 1340 1.18 7.1 16.9 ft 7.08 1340 1.16 7.1 16.9 ft 7.08 1340 1.16 7.1

Sample	Method:
-	the state of the s

dedicate low flow

1L/min Rate (gpm):

Time Start: 10:01 Time End: 16:26

Final Parameters	Stabalization	Guide	Met?	Comments	
рН	7.08	0.1	(Y)N		
Conductivity	1340	3%	Y/N		
Temp. (°C)	14.1	10%	YN		
DO (mg/L)	1.16	10%	V/N		
Final H2O level		feet	v		

[Y/0 Oil/Gas visible 3 Rinst Decontamination procedure used: Clear + Coo Weather: Signature:

Cripple Creek & Victor Gold Mining Company 100 North 3rd Street P.O. Box 191 Victor, Colorado 80860 P 719.689.2977 F 719.689.3254 newmont.com

Groundwater

DIVISION OF RECLAMATION MINING AND SAFETY PERMIT: M-1980-244

SAMPLE LOCATION :	CRMW 3A-35	Collar Elv (ft) :	N/A	Reporting Period	2021 1st Qtr

Description	Standards	1st Qtr
Name of Certified Lab	(mg/L)*	Field
Lab Reference #	-	
Sample Date	-	03/31/2021
Lab Test Date	-	
Sampled By	-	GM
	•	•

No Sample Reason		Insufficient
------------------	--	--------------

Results of Profile / Analyses

Description

DIVISION OF RECLAMATION MINING AND SAFETY PERMIT: M-1980-244

Standards

SAMPLE LOCATION :	CRMW 3B-63	Collar Elv (ft) :	N/A	Reporting Period	2021 1st Qtr

1st Qtr

Name of Certified Lab	(mg/L)*	SVL Analytical, Inc.
Lab Reference #	-	X1D0009-02
Sample Date	-	03/31/2021
Lab Test Date	-	04/14/2021
Sampled By	-	GM
pH Field (pH unit)	6.00-9.00	6.70
Aluminium - Dissolved (mg/L)	7.0000	<0.080
Ammonia (mg/L)		0.062
Antimony - Dissolved (mg/L)	0.0060	<0.00300
Arsenic - Dissolved (mg/L)	0.0100	< 0.00300
Barium - Dissolved (mg/L)	2.0000	0.0215
Beryllium - Dissolved (mg/L)	0.0040	<0.00200
Boron - Dissolved (mg/L)	0.7500	0.0684
Cadmium - Dissolved (mg/L)	0.0050	<0.0020
Chloride - Total (mg/L)		288
Chromium - Dissolved (mg/L)	0.1000	<0.0060
Cobalt - Dissolved (mg/L)	0.0500	0.0506
Copper - Dissolved (mg/L)	0.2000	<0.0100
Cyanide - Free (mg/L)	0.2000	<0.0050
Cyanide - Total (mg/L)		0.0071
Cyanide - WAD (mg/L)	0.2000	<0.0100
Flow (gpm)		1.3
Fluoride - Total F (mg/L)	2.0000	3.24
Iron - Dissolved (mg/L)	14.0000	2.76
Lead - Dissolved (mg/L)	0.0500	<0.0075
Lithium - Dissolved (mg/L)	2.5000	<0.040
Manganese - Dissolved (mg/L)	8.1000	8.44
Mercury - Dissolved (mg/L)	0.00200000	<0.000200
Molybdenum - Dissolved (mg/L)	0.2100	0.0229
Nickel - Dissolved (mg/L)	0.2000	<0.0100
Nitrate as Nitrogen (mg/L)	10.0000	0.269
Nitrite as Nitrogen (mg/L)	1.0000	<0.050
Nitrite + Nitrate as Nitrogen (mg/L)	11.0000	0.269
No Sample Reason		Sample Collected
Selenium - Dissolved (mg/L)	0.0240	<0.00300
Silver - Dissolved (mg/L)	0.0500	<0.0050
Sodium - Dissolved (mg/L)		96.1
Sulfate - Total (mg/L)	1070.00	715
Thallium - Dissolved (mg/L)	0.0020	<0.00100
Total Dissolved Solids (mg/L)		1770
Total Suspended Solids (mg/L)		155
Uranium - Dissolved (mg/L)	0.0300	0.0199
Vanadium - Dissolved (mg/L)	0.1000	<0.0050
Zinc - Dissolved (mg/L)	2.0000	0.0271

Lab Test Date

Sampled By

DIVISION OF RECLAMATION MINING AND SAFETY PERMIT: M-1980-244

SAMPLE LOCATION :	CRMW 3C-124	Collar Elv (ft) :	N/A	Reporting Period	2021 1st Qtr
				-	

04/09/2021

GM

-

-

<u>Results of Profile / Analyses</u>				
Description	Standards	1st Qtr		
Name of Certified Lab	(mg/L)*	SVL Analytical, Inc.		
Lab Reference #	-	X1C0465-01		
Sample Date	-	03/25/2021		

pH Field (pH unit)	6.00-8.50	6.79
Aluminium - Dissolved (mg/L)	7.0000	<0.080
Ammonia (mg/L)		0.069
Antimony - Dissolved (mg/L)	0.0060	<0.00300
Arsenic - Dissolved (mg/L)	0.0100	<0.00300
Barium - Dissolved (mg/L)	2.0000	0.0089
Beryllium - Dissolved (mg/L)	0.0040	0.00273
Boron - Dissolved (mg/L)	0.7500	0.0751
Cadmium - Dissolved (mg/L)	0.0050	<0.0020
Chloride - Total (mg/L)		298
Chromium - Dissolved (mg/L)	0.1000	<0.0060
Cobalt - Dissolved (mg/L)	0.0500	0.0376
Copper - Dissolved (mg/L)	0.2000	<0.0100
Cyanide - Free (mg/L)	0.2000	<0.0050
Cyanide - Total (mg/L)		0.0093
Cyanide - WAD (mg/L)	0.2000	<0.0100
Flow (gpm)		0.40
Fluoride - Total F (mg/L)	2.0000	3.00
Iron - Dissolved (mg/L)	14.0000	0.220
Lead - Dissolved (mg/L)	0.0500	<0.0075
Lithium - Dissolved (mg/L)	2.5000	0.114
Manganese - Dissolved (mg/L)	3.0	3.12
Mercury - Dissolved (mg/L)	0.00200000	<0.000200
Molybdenum - Dissolved (mg/L)	0.2100	<0.0080
Nickel - Dissolved (mg/L)	0.2000	<0.0100
Nitrate as Nitrogen (mg/L)	10.0000	0.238
Nitrite as Nitrogen (mg/L)	1.0000	<0.050
Nitrite + Nitrate as Nitrogen (mg/L)	11.0000	0.238
No Sample Reason		Sample Collected
Selenium - Dissolved (mg/L)	0.0240	<0.00300
Silver - Dissolved (mg/L)	0.0500	<0.0050
Sodium - Dissolved (mg/L)		98.0
Sulfate - Total (mg/L)	250.00	702
Thallium - Dissolved (mg/L)	0.0020	<0.00100
Total Dissolved Solids (mg/L)		1470
Total Suspended Solids (mg/L)		<5.0
Uranium - Dissolved (mg/L)	0.0300	0.0242
Vanadium - Dissolved (mg/L)	0.1000	<0.0050
Zinc - Dissolved (mg/L)	2.0000	0.0350

DIVISION OF RECLAMATION MINING AND SAFETY PERMIT: M-1980-244

SAMPLE LOCATION :	CRMW 5A-205	Collar Elv (ft) :	N/A	Reporting Period	2021 1st Qtr

Description	Standards	1st Qtr
Name of Certified Lab	(mg/L)*	SVL Analytical, Inc
Lab Reference #	-	X1B0410-02
Sample Date	-	02/24/2021
Lab Test Date	-	03/11/2021
Sampled By	-	KT

Aluminium - Dissolved (mg/L)	7.0000	<0.080
Ammonia (mg/L)		<0.030
Antimony - Dissolved (mg/L)	0.0060	<0.00300
Arsenic - Dissolved (mg/L)	0.0100	<0.00300
Barium - Dissolved (mg/L)	2.0000	0.0462
Beryllium - Dissolved (mg/L)	0.0040	<0.00200
Boron - Dissolved (mg/L)	0.7500	0.0637
Cadmium - Dissolved (mg/L)	0.0050	<0.0020
Chloride - Total (mg/L)		12.3
Chromium - Dissolved (mg/L)	0.1000	<0.0060
Cobalt - Dissolved (mg/L)	0.0500	<0.0060
Copper - Dissolved (mg/L)	0.2000	<0.0100
Cyanide - Free (mg/L)	0.2000	<0.0050
Cyanide - Total (mg/L)		<0.0050
Cyanide - WAD (mg/L)	0.2000	<0.0100
Fluoride - Total F (mg/L)	2.0000	2.01
Iron - Dissolved (mg/L)	14.0000	<0.100
Lead - Dissolved (mg/L)	0.0500	<0.0075
Lithium - Dissolved (mg/L)	2.5000	0.042
Manganese - Dissolved (mg/L)	3.0000	0.0220
Mercury - Dissolved (mg/L)	0.00200000	<0.000200
Molybdenum - Dissolved (mg/L)	0.2100	0.0218
Nickel - Dissolved (mg/L)	0.2000	<0.0100
Nitrate as Nitrogen (mg/L)	10.0000	0.514
Nitrite as Nitrogen (mg/L)	1.0000	<0.050
Nitrite + Nitrate as Nitrogen (mg/L)	11.0000	0.514
pH Field (pH unit)	6.0 - 8.5	7.28
Selenium - Dissolved (mg/L)	0.0240	<0.00300
Silver - Dissolved (mg/L)	0.0500	<0.0050
Sodium - Dissolved (mg/L)		32.8
Sulfate - Total (mg/L)	250.00	168
Thallium - Dissolved (mg/L)	0.0020	<0.00100
Total Dissolved Solids (mg/L)		417
Total Suspended Solids (mg/L)		8.0
Uranium - Dissolved (mg/L)	0.0300	0.0892
Vanadium - Dissolved (mg/L)	0.1000	<0.0050
Zinc - Dissolved (mg/L)	2.0000	<0.0100

Results of Profile / Analyses

DIVISION OF RECLAMATION MINING AND SAFETY PERMIT: M-1980-244

SAMPLE LOCATION :	CRMW 5B-143	Collar Elv (ft) :	N/A	Reporting Period	2021 1st Qtr

Description	Standards	1st Qtr
Name of Certified Lab	(mg/L)*	SVL Analytical, Inc.
Lab Reference #	-	X1B0410-04
Sample Date	-	02/24/2021
Lab Test Date	-	03/11/2021
Sampled By	-	KT
pH Field (pH unit)	6.00-8.50	7.47
Aluminium - Dissolved (mg/L)	7.0000	<0.080
Ammonia (mg/L)		<0.030
Antimony - Dissolved (mg/L)	0.0060	<0.00300
Arsenic - Dissolved (mg/L)	0.0100	<0.00300
Barium - Dissolved (mg/L)	2.0000	0.0133
Beryllium - Dissolved (mg/L)	0.0040	<0.00200
Boron - Dissolved (mg/L)	0.7500	<0.0400
Cadmium - Dissolved (mg/L)	0.0050	<0.0020
Chloride - Total (mg/L)		8.70
Chromium - Dissolved (mg/L)	0.1000	<0.0060
Cobalt - Dissolved (mg/L)	0.0500	<0.0060
Copper - Dissolved (mg/L)	0.2000	<0.0100
Cyanide - Free (mg/L)	0.2000	<0.0050
Cyanide - Total (mg/L)		<0.0050
Cyanide - WAD (mg/L)	0.2000	<0.0100
Flow (gpm)		0.35
Fluoride - Total F (mg/L)	2.0000	2.95
Iron - Dissolved (mg/L)	14.0000	<0.100
Lead - Dissolved (mg/L)	0.0500	<0.0075
Lithium - Dissolved (mg/L)	2.5000	<0.040
Manganese - Dissolved (mg/L)	3.0000	0.101
Mercury - Dissolved (mg/L)	0.00200000	<0.000200
Molybdenum - Dissolved (mg/L)	0.2100	<0.0080
Nickel - Dissolved (mg/L)	0.2000	<0.0100
Nitrate as Nitrogen (mg/L)	10.0000	<0.050
Nitrite as Nitrogen (mg/L)	1.0000	<0.050
Nitrite + Nitrate as Nitrogen (mg/L)	11.0000	<0.100
No Sample Reason		Sample Collected
Selenium - Dissolved (mg/L)	0.0240	<0.00300
Silver - Dissolved (mg/L)	0.0500	<0.0050
Sodium - Dissolved (mg/L)		11.2
Sulfate - Total (mg/L)	250.00	65.2
Thallium - Dissolved (mg/L)	0.0020	<0.00100
Total Dissolved Solids (mg/L)		222
Total Suspended Solids (mg/L)		<5.0
Uranium - Dissolved (mg/L)	0.0300	0.00935
Vanadium - Dissolved (mg/L)	0.1000	< 0.0050
Vanadiani Dissonved (mg/E)		

DIVISION OF RECLAMATION MINING AND SAFETY PERMIT: M-1980-244

SAMPLE LOCATION :	CRMW 5C-60	Collar Elv (ft) : 	N/A	Reporting Period	2021 1st
Results of Profile / Analyses					
Description	Standards	1st Qtr			
Name of Certified Lab	(mg/L)*	SVL Analytical, Inc.			
Lab Reference #	-	X1B0410-03			
Sample Date	-	02/24/2021			
Lab Test Date	-	03/11/2021			
Sampled By	-	KT			

pH Field (pH unit)	6.00-8.50	6.77
Aluminium - Dissolved (mg/L)	7.0000	<0.080
Ammonia (mg/L)		<0.030
Antimony - Dissolved (mg/L)	0.0060	<0.00300
Arsenic - Dissolved (mg/L)	0.0100	<0.00300
Barium - Dissolved (mg/L)	2.0000	0.0062
Beryllium - Dissolved (mg/L)	0.0040	<0.00200
Boron - Dissolved (mg/L)	0.7500	<0.0400
Cadmium - Dissolved (mg/L)	0.0050	<0.0020
Chloride - Total (mg/L)		10.2
Chromium - Dissolved (mg/L)	0.1000	<0.0060
Cobalt - Dissolved (mg/L)	0.0500	<0.0060
Copper - Dissolved (mg/L)	0.2000	<0.0100
Cyanide - Free (mg/L)	0.2000	<0.0050
Cyanide - Total (mg/L)		<0.0050
Cyanide - WAD (mg/L)	0.2000	<0.0100
Flow (gpm)		0.35
Fluoride - Total F (mg/L)	2.0000	2.95
Iron - Dissolved (mg/L)	14.0000	<0.100
Lead - Dissolved (mg/L)	0.0500	<0.0075
Lithium - Dissolved (mg/L)	2.5000	<0.040
Manganese - Dissolved (mg/L)	3.0000	<0.0080
Mercury - Dissolved (mg/L)	0.00200000	<0.000200
Molybdenum - Dissolved (mg/L)	0.2100	<0.0080
Nickel - Dissolved (mg/L)	0.2000	<0.0100
Nitrate as Nitrogen (mg/L)	10.0000	0.084
Nitrite as Nitrogen (mg/L)	1.0000	<0.050
Nitrite + Nitrate as Nitrogen (mg/L)	11.0000	<0.100
No Sample Reason		Sample Collected
Selenium - Dissolved (mg/L)	0.0240	<0.00300
Silver - Dissolved (mg/L)	0.0500	<0.0050
Sodium - Dissolved (mg/L)		8.78
Sulfate - Total (mg/L)	250.00	49.0
Thallium - Dissolved (mg/L)	0.0020	<0.00100
Total Dissolved Solids (mg/L)		118
Total Suspended Solids (mg/L)		<5.0
Uranium - Dissolved (mg/L)	0.0300	<0.00100
Vanadium - Dissolved (mg/L)	0.1000	<0.0050
Zinc - Dissolved (mg/L)	2.0000	<0.0100

Results of Profile / Analyses

Description

DIVISION OF RECLAMATION MINING AND SAFETY PERMIT: M-1980-244

Standards

SAMPLE LOCATION :	CRMW 5D-27	Collar Elv (ft) :	N/A	Reporting Period	2021 1st Qtr

1st Qtr

Name of Certified Lab	(mg/L)*	SVL Analytical, Inc.
Lab Reference #	-	X1B0410-01
Sample Date	-	02/24/2021
Lab Test Date	-	03/11/2021
Sampled By	-	KT
Aluminium - Dissolved (mg/L)	7.0000	<0.080
Ammonia (mg/L)		<0.030
Antimony - Dissolved (mg/L)	0.0060	<0.00300
Arsenic - Dissolved (mg/L)	0.0100	<0.00300
Barium - Dissolved (mg/L)	2.0000	0.0447
Beryllium - Dissolved (mg/L)	0.0040	<0.00200
Boron - Dissolved (mg/L)	0.7500	<0.0400
Cadmium - Dissolved (mg/L)	0.0050	<0.0020
Chloride - Total (mg/L)		12.3
Chromium - Dissolved (mg/L)	0.1000	<0.0060
Cobalt - Dissolved (mg/L)	0.0500	<0.0060
Copper - Dissolved (mg/L)	0.2000	<0.0100
Cyanide - Free (mg/L)	0.2000	<0.0050
Cyanide - Total (mg/L)		<0.0050
Cyanide - WAD (mg/L)	0.2000	<0.0100
Fluoride - Total F (mg/L)	2.0000	3.15
Iron - Dissolved (mg/L)	14.0000	<0.100
Lead - Dissolved (mg/L)	0.0500	<0.0075
Lithium - Dissolved (mg/L)	2.5000	<0.040
Manganese - Dissolved (mg/L)	3.0000	<0.0080
Mercury - Dissolved (mg/L)	0.00200000	<0.000200
Molybdenum - Dissolved (mg/L)	0.2100	0.0170
Nickel - Dissolved (mg/L)	0.2000	<0.0100
Nitrate as Nitrogen (mg/L)	10.0000	0.113
Nitrite as Nitrogen (mg/L)	1.0000	<0.050
Nitrite + Nitrate as Nitrogen (mg/L)	11.0000	0.113
pH Field (pH unit)	6.0 - 8.5	5.87
Selenium - Dissolved (mg/L)	0.0240	<0.00300
Silver - Dissolved (mg/L)	0.0500	<0.0050
Sodium - Dissolved (mg/L)		6.99
Sulfate - Total (mg/L)	250.00	42.4
Thallium - Dissolved (mg/L)	0.0020	<0.00100
Total Dissolved Solids (mg/L)		94
Total Suspended Solids (mg/L)		5.0
Uranium - Dissolved (mg/L)	0.0300	<0.00100
Vanadium - Dissolved (mg/L)	0.1000	<0.0050

Zinc - Dissolved (mg/L)

< 0.0100

2.0000

Newmont USA Limited

DIVISION OF RECLAMATION MINING AND SAFETY PERMIT: M-1980-244

		Coller Ely (ff)	N1/A	Dowowtin w Dowio d	0001 1-1 04
SAMPLE LOCATION :	ESPMW	Collar Elv (ft) :	N/A	Reporting Period	2021 1st Qtr

Description	Standards	1st Qtr
Name of Certified Lab	(mg/L)*	Field
Lab Reference #	-	
Sample Date	-	03/31/2021
Lab Test Date	-	
Sampled By	-	GM

No Sample Reason		Not Pumping
------------------	--	-------------

DIVISION OF RECLAMATION MINING AND SAFETY PERMIT: M-1980-244

SAMPLE LOCATION :	
-------------------	--

GVMW 8A-250

Collar Elv (ft) : N/A

Reporting Period

2021 1st Qtr

Description	Standards	1st Qtr
Name of Certified Lab	(mg/L)*	SVL Analytical, Inc.
Lab Reference #	-	X1C0413-01
Sample Date	-	03/23/2021
Lab Test Date	-	04/09/2021
Sampled By	-	GM

pH Field (pH unit)	6.50-8.50	7.13
Aluminium - Dissolved (mg/L)	7.0000	<0.080
Ammonia (mg/L)		<0.030
Antimony - Dissolved (mg/L)	0.0060	<0.00300
Arsenic - Dissolved (mg/L)	0.0100	<0.00300
Barium - Dissolved (mg/L)	2.0000	<0.0020
Beryllium - Dissolved (mg/L)	0.0040	<0.00200
Boron - Dissolved (mg/L)	0.7500	<0.0400
Cadmium - Dissolved (mg/L)	0.0050	<0.0020
Chloride - Total (mg/L)		49.7
Chromium - Dissolved (mg/L)	0.1000	<0.0060
Cobalt - Dissolved (mg/L)	0.0500	<0.0060
Copper - Dissolved (mg/L)	0.2000	<0.0100
Cyanide - Free (mg/L)	0.2000	<0.0050
Cyanide - Total (mg/L)		<0.0050
Cyanide - WAD (mg/L)	0.2000	<0.0100
Flow (gpm)		0.26
Fluoride - Total F (mg/L)	2.0000	1.93
Iron - Dissolved (mg/L)	14.0000	<0.100
Lead - Dissolved (mg/L)	0.0500	<0.0075
Lithium - Dissolved (mg/L)	2.5000	<0.040
Manganese - Dissolved (mg/L)	1.0000	<0.0080
Mercury - Dissolved (mg/L)	0.00200000	<0.000200
Molybdenum - Dissolved (mg/L)	0.2100	<0.0080
Nickel - Dissolved (mg/L)	0.2000	<0.0100
Nitrate as Nitrogen (mg/L)	10.0000	1.49
Nitrite as Nitrogen (mg/L)	1.0000	<0.050
Nitrite + Nitrate as Nitrogen (mg/L)	11.0000	1.49
No Sample Reason		Sample Collected
Selenium - Dissolved (mg/L)	0.0240	<0.00300
Silver - Dissolved (mg/L)	0.0500	<0.0050
Sodium - Dissolved (mg/L)		24.1
Sulfate - Total (mg/L)	250.00	65.2
Thallium - Dissolved (mg/L)	0.0020	<0.00100
Total Dissolved Solids (mg/L)		260
Total Suspended Solids (mg/L)		<5.0
Uranium - Dissolved (mg/L)	0.0300	0.00456
Vanadium - Dissolved (mg/L)	0.1000	<0.0050
Zinc - Dissolved (mg/L)	2.0000	<0.0100

Newmont USA Limited

DIVISION OF RECLAMATION MINING AND SAFETY PERMIT: M-1980-244

SAMPLE LOCATION :	GVMW 8B-50	Collar Elv (ft) :	N/A	Reporting Period	2021 1st Qtr

Description	Standards	1st Qtr
Name of Certified Lab	(mg/L)*	Field
Lab Reference #	-	
Sample Date	-	03/02/2021
Lab Test Date	-	
Sampled By	-	KT
	•	•

No Sample Reason		DRY
------------------	--	-----

DIVISION OF RECLAMATION MINING AND SAFETY PERMIT: M-1980-244

SAMPLE	LOCATION :	
--------	------------	--

Results of Profile / Analyses

GVMW 22A-70

Collar Elv (ft) : N/A

Description	Standards	1st Qtr
Name of Certified Lab	(mg/L)*	SVL Analytical, Inc.
Lab Reference #	-	X1B0018-01
Sample Date	-	02/01/2021
Lab Test Date	-	02/17/2021
Sampled By	-	KT
Aluminium - Dissolved (mg/L)	7.0000	<0.080
Ammonia (mg/L)		<0.030
Antimony - Dissolved (mg/L)	0.0060	<0.00300
Arsenic - Dissolved (mg/L)	0.0100	<0.00300
Barium - Dissolved (mg/L)	2.0000	0.111
Beryllium - Dissolved (mg/L)	0.0040	<0.00200
Boron - Dissolved (mg/L)	0.7500	<0.0400
Cadmium - Dissolved (mg/L)	0.0050	<0.0020
Chloride - Total (mg/L)		3.82
Chromium - Dissolved (mg/L)	0.1000	<0.0060
Cobalt - Dissolved (mg/L)	0.0500	<0.0060
Copper - Dissolved (mg/L)	0.2000	<0.0100
Cyanide - Free (mg/L)	0.2000	< 0.0032
Cyanide - Total (mg/L)		< 0.0050
Cyanide - WAD (mg/L)	0.2000	< 0.0067
Fluoride - Total F (mg/L)	2.0000	2.08
Iron - Dissolved (mg/L)	14.0000	<0.100
Lead - Dissolved (mg/L)	0.0500	< 0.0075
Lithium - Dissolved (mg/L)	2.5000	<0.040
Manganese - Dissolved (mg/L)	3.0000	0.149
Mercury - Dissolved (mg/L)	0.00200000	<0.000200
Molybdenum - Dissolved (mg/L)	0.2100	0.0135
Nickel - Dissolved (mg/L)	0.2000	<0.0100
Nitrate as Nitrogen (mg/L)	10.0000	<0.050
Nitrite as Nitrogen (mg/L)	1.0000	<0.050
Nitrite + Nitrate as Nitrogen (mg/L)	11.0000	<0.100
pH Field (pH unit)	6.0 - 8.5	7.52
Selenium - Dissolved (mg/L)	0.0240	<0.00300
Silver - Dissolved (mg/L)	0.0500	<0.0050
Sodium - Dissolved (mg/L)		35.6
Sulfate - Total (mg/L)	250.00	34.6
Thallium - Dissolved (mg/L)	0.0020	<0.00100
Total Dissolved Solids (mg/L)		217
Total Suspended Solids (mg/L)		<5.0
Uranium - Dissolved (mg/L)	0.0300	0.00302
Vanadium - Dissolved (mg/L)	0.1000	<0.0050
Zinc - Dissolved (mg/L)	2.0000	<0.0100
,	1	

Results of Profile / Analyses

Name of Certified Lab

Description

DIVISION OF RECLAMATION MINING AND SAFETY PERMIT: M-1980-244

Standards

(mg/L)*

SAMPLE LOCATION :	GVMW 22B-30	Collar Elv (ft) :	N/A	Reporting Period	2021 1st Qtr
				•	

1st Qtr

SVL Analytical, Inc.

		•
Lab Reference #	-	X1B0018-02
Sample Date	-	02/01/2021
Lab Test Date	-	02/17/2021
Sampled By	-	KT
		<u>.</u>
pH Field (pH unit)	6.00-8.50	6.39
Aluminium - Dissolved (mg/L)	7.0000	<0.080
Ammonia (mg/L)		<0.030
Antimony - Dissolved (mg/L)	0.0060	<0.00300
Arsenic - Dissolved (mg/L)	0.0100	<0.00300
Barium - Dissolved (mg/L)	2.0000	0.0439
Beryllium - Dissolved (mg/L)	0.0040	<0.00200
Boron - Dissolved (mg/L)	0.7500	<0.0400
Cadmium - Dissolved (mg/L)	0.0050	<0.0020
Chloride - Total (mg/L)		9.36
Chromium - Dissolved (mg/L)	0.1000	<0.0060
Cobalt - Dissolved (mg/L)	0.0500	<0.0060
Copper - Dissolved (mg/L)	0.2000	<0.0100
Cyanide - Free (mg/L)	0.2000	<0.0032
Cyanide - Total (mg/L)		<0.0050
Cyanide - WAD (mg/L)	0.2000	<0.0067
Flow (gpm)		0.369
Fluoride - Total F (mg/L)	2.0000	0.341
Iron - Dissolved (mg/L)	14.0000	<0.100
Lead - Dissolved (mg/L)	0.0500	<0.0075
Lithium - Dissolved (mg/L)	2.5000	<0.040
Manganese - Dissolved (mg/L)	3.0000	0.0097
Mercury - Dissolved (mg/L)	0.00200000	<0.000200
Molybdenum - Dissolved (mg/L)	0.2100	<0.0080
Nickel - Dissolved (mg/L)	0.2000	<0.0100
Nitrate as Nitrogen (mg/L)	10.0000	0.568
Nitrite as Nitrogen (mg/L)	1.0000	<0.050
Nitrite + Nitrate as Nitrogen (mg/L)	11.0000	0.568
No Sample Reason		Sample Collected
Selenium - Dissolved (mg/L)	0.0240	<0.00300
Silver - Dissolved (mg/L)	0.0500	<0.0050
Sodium - Dissolved (mg/L)		21.2
Sulfate - Total (mg/L)	250.00	82.8
Thallium - Dissolved (mg/L)	0.0020	<0.00100
Total Dissolved Solids (mg/L)		229
Total Suspended Solids (mg/L)		<5.0
Uranium - Dissolved (mg/L)	0.0300	<0.00100
Vanadium - Dissolved (mg/L)	0.1000	<0.0050
Zinc - Dissolved (mg/L)	2.0000	<0.0100
<u>.</u>	•	·

DIVISION OF RECLAMATION MINING AND SAFETY PERMIT: M-1980-244

	0.0000		N1/A	Describer Desired	0001 1 - 1 01-
SAMPLE LOCATION :	GVMW-25	Collar Elv (ft) :	N/A	Reporting Period	2021 1st Qtr

Field
03/22/2021
GM

No Sample Reason		Insufficient
------------------	--	--------------

Newmont USA Limited

DIVISION OF RECLAMATION MINING AND SAFETY PERMIT: M-1980-244

SAMPLE LOCATION :	PGMW-2	Collar Elv (ft) :	N/A	Reporting Period	2021 1st Qtr	

Description	Description Standards	
Name of Certified Lab	(mg/L)*	Field
Lab Reference #	-	
Sample Date	-	02/11/2021
Lab Test Date	-	
Sampled By	-	KT

No Sample Reason		DRY
------------------	--	-----

Newmont USA Limited

DIVISION OF RECLAMATION MINING AND SAFETY PERMIT: M-1980-244

SAMPLE LOCATION :	PGMW-3	Collar Elv (ft) :	N/A	Reporting Period	2021 1st Qtr

Description	Description Standards	
Name of Certified Lab	(mg/L)*	Field
Lab Reference #	-	
Sample Date	-	03/29/2021
Lab Test Date	-	
Sampled By	-	GM

No Sample Reason		Not Pumping
------------------	--	-------------
DIVISION OF RECLAMATION MINING AND SAFETY PERMIT: M-1980-244

SAMPLE LOCATION :	PGMW-4	Collar Elv (ft) :	N/A	Poporting Poriod	2021 1st Qtr
SAWFLE LUCATION .	FGIWIW-4		IN/A	Reporting Period	2021 151 011

Description	Standards	1st Qtr
Name of Certified Lab	(mg/L)*	Field
Lab Reference #	-	
Sample Date	-	02/11/2021
Lab Test Date	-	
Sampled By	-	KT

No Sample Reason	 DRY

DIVISION OF RECLAMATION MINING AND SAFETY PERMIT: M-1980-244

SAMPLE LOCATION :	SGMW-5	Collar Elv (ft) :	N/A	Reporting Period	2021 1st Qtr

Description	Standards	1st Qtr
Name of Certified Lab	(mg/L)*	Field
Lab Reference #	-	
Sample Date	-	02/22/2021
Lab Test Date	-	
Sampled By	-	KT

No Sample Reason	 DRY

DIVISION OF RECLAMATION MINING AND SAFETY PERMIT: M-1980-244

SAMPLE LOCATION :	SGMW 6A-400	Collar Elv (ft) :	N/A	Reporting Period	2021 1st Qtr
		()	-		

Description	Standards	1st Qtr
Name of Certified Lab	(mg/L)*	Field
Lab Reference #	-	
Sample Date	-	02/22/2021
Lab Test Date	-	
Sampled By	-	KT
		-

No Sample Reason		DRY
------------------	--	-----

SAMPLE LOCATION :	SGMW 6B-60	Collar Elv (ft) :	N/A	Reporting Period	2021 1st Qtr

Description	Standards	1st Qtr
Name of Certified Lab	(mg/L)*	SVL Analytical, Inc.
Lab Reference #	-	X1B0385-01
Sample Date	-	02/23/2021
Lab Test Date	-	03/11/2021
Sampled By	-	KT

pH Field (pH unit)	6.00-8.50	5.96
Aluminium - Dissolved (mg/L)	7.0000	0.146
Ammonia (mg/L)		0.096
Antimony - Dissolved (mg/L)	0.0060	<0.00300
Arsenic - Dissolved (mg/L)	0.0100	0.00355
Barium - Dissolved (mg/L)	2.0000	0.0113
Beryllium - Dissolved (mg/L)	0.0040	0.0568
Boron - Dissolved (mg/L)	0.7500	0.0894
Cadmium - Dissolved (mg/L)	0.0050	<0.0020
Chloride - Total (mg/L)		140
Chromium - Dissolved (mg/L)	0.1000	<0.0060
Cobalt - Dissolved (mg/L)	0.0500	0.0149
Copper - Dissolved (mg/L)	0.2000	<0.0100
Cyanide - Free (mg/L)	0.2000	<0.0050
Cyanide - Total (mg/L)		<0.0050
Cyanide - WAD (mg/L)	0.2000	<0.0100
Flow (gpm)		0.26
Fluoride - Total F (mg/L)	2.0000	7.14
Iron - Dissolved (mg/L)	14.0000	12.8
Lead - Dissolved (mg/L)	0.0500	<0.0075
Lithium - Dissolved (mg/L)	2.5000	0.082
Manganese - Dissolved (mg/L)	3.0000	6.98
Mercury - Dissolved (mg/L)	0.00200000	<0.000200
Molybdenum - Dissolved (mg/L)	0.2100	<0.0080
Nickel - Dissolved (mg/L)	0.2000	0.0184
Nitrate as Nitrogen (mg/L)	10.0000	<0.050
Nitrite as Nitrogen (mg/L)	1.0000	<0.050
Nitrite + Nitrate as Nitrogen (mg/L)	11.0000	<0.100
No Sample Reason		Sample Collected
Selenium - Dissolved (mg/L)	0.0240	<0.00300
Silver - Dissolved (mg/L)	0.0500	<0.0050
Sodium - Dissolved (mg/L)		53.0
Sulfate - Total (mg/L)	250.00	915
Thallium - Dissolved (mg/L)	0.0020	<0.00100
Total Dissolved Solids (mg/L)		1740
Total Suspended Solids (mg/L)		19.0
Uranium - Dissolved (mg/L)	0.0300	0.00221
Vanadium - Dissolved (mg/L)	0.1000	<0.0050
Zinc - Dissolved (mg/L)	2.0000	0.0875

SAMPLE LOCATION :	SGMW 7A-400	Collar Elv (ft) :	N/A	Reporting Period	2021 1st Qtr

Description	Standards	1st Qtr
Name of Certified Lab	(mg/L)*	Field
Lab Reference #	-	
Sample Date	-	02/22/2021
Lab Test Date	-	
Sampled By	-	KT
	F	

No Sample Reason DRY

SAMPLE LOCATION :	SGMW 7B-60	Collar Elv (ft) :	N/A	Reporting Period	2021 1st Qtr

Description	Standards	1st Qtr
Name of Certified Lab	(mg/L)*	Field
Lab Reference #	-	
Sample Date	-	02/23/2021
Lab Test Date	-	
Sampled By	-	KT
	·	*

No Sample Reason		INSUFFICIENT
------------------	--	--------------

SAMPLE LOCATION :	VIN 2A-270	Collar Elv (ft) :	N/A	Reporting Period	2021 1st Qtr

Description	Standards	1st Qtr	
Name of Certified Lab	(mg/L)*	Field	Field
Lab Reference #	-		
Sample Date	-	03/22/2021	03/29/2021
Lab Test Date	-		
Sampled By	-		GM

No Sample Reason		Inaccessible	INSUFFICIENT
------------------	--	--------------	--------------

SAMPLE LOCATION : VII	N 2B-140	Collar Elv (ft) : —	N/A	Reporting Period	2021 1st Q
Results of Profile / Analyses					
Description	Standards	1st Qtr			
Name of Certified Lab	(mg/L)*	SVL Analytical, Inc.			
Lab Reference #	-	X1C0531-01			
Sample Date	-	03/29/2021			
Lab Test Date	-	04/09/2021			
Sampled By	-	GM			
pH Field (pH unit)	6.50-8.50	7.08			
Aluminium - Dissolved (mg/L)	7.0000	<0.080			
Ammonia (mg/L) Antimony - Dissolved (mg/L)	0.0060	<0.030			
Anamony - Dissolved (mg/L) Arsenic - Dissolved (mg/L)	0.0000	<0.00300			
Barium - Dissolved (mg/L)	2.0000	0.0091			
	0.0040	<0.0091			
Beryllium - Dissolved (mg/L) Boron - Dissolved (mg/L)	0.7500	<0.00200			
Cadmium - Dissolved (mg/L)	0.0050	<0.0400			
Chloride - Total (mg/L)	0.0050	9.42			
Chromium - Dissolved (mg/L)	0.1000	<0.0060			
Cobalt - Dissolved (mg/L)	0.0500	0.0066			
Copper - Dissolved (mg/L)	0.2000	<0.0000			
Cyanide - Free (mg/L)	0.2000	<0.0050			
Cyanide - Total (mg/L)	0.2000	<0.0050			
Cyanide - WAD (mg/L)	0.2000	<0.0000			
Flow (gpm)		0.26			
Fluoride - Total F (mg/L)	2.0000	0.148			
Iron - Dissolved (mg/L)	14.0000	0.673			
Lead - Dissolved (mg/L)	0.0500	<0.075			
Lithium - Dissolved (mg/L)	2.5000	<0.040			
Manganese - Dissolved (mg/L)	4.0000	3.24			
Mercury - Dissolved (mg/L)	0.00200000	<0.000200			
Molybdenum - Dissolved (mg/L)	0.2100	<0.0080			
Nickel - Dissolved (mg/L)	0.2000	<0.0000			
Nitrate as Nitrogen (mg/L)	10.0000	<0.050			
Nitrite as Nitrogen (mg/L)	1.0000	<0.050			
Nitrite + Nitrate as Nitrogen (mg/L)	11.0000	<0.100			
No Sample Reason		Sample Collected			
Selenium - Dissolved (mg/L)	0.0240	<0.00300			
Silver - Dissolved (mg/L)	0.0500	<0.0050			
Sodium - Dissolved (mg/L)		34.3			
Sulfate - Total (mg/L)	800.00	708			
Thallium - Dissolved (mg/L)	0.0020	<0.00100			
		1010			

Total Dissolved Solids (mg/L)

Total Suspended Solids (mg/L)

Uranium - Dissolved (mg/L)

Zinc - Dissolved (mg/L)

Vanadium - Dissolved (mg/L)

1040

<5.0

< 0.00100

< 0.0050

< 0.0100

0.0300

0.1000

2.0000

SAMPLE LOCATION :	WCMW 3-134	Collar Elv (ft) :	N/A	Reporting Period	2021 1st Qtr

Description	Standards	1st Qtr
Name of Certified Lab	(mg/L)*	Field
Lab Reference #	-	
Sample Date	-	03/22/2021
Lab Test Date	-	
Sampled By	-	GM
		*

No Sample Reason		Inaccessible
------------------	--	--------------

SAMPLE LOCATION :	WCMW 6-234	Collar Elv (ft) :	N/A	Reporting Period	2021 1st Qtr

Description	Standards	1st Qtr
Name of Certified Lab	(mg/L)*	Field
Lab Reference #	-	
Sample Date	-	03/22/2021
Lab Test Date	-	
Sampled By	-	GM

No Sample Reason		Inaccessible
------------------	--	--------------

Cripple Creek & Victor G old Mining Company 100 North 3rd Street P.O. Box 191 Victor, Colorado 80860 P 719.689.2977 F 719.689.3254 newmont.com

Surface Water

SAMPLE LOCATION :	AG 2.0	Collar Elv (ft) :	N/A	Reporting Period	2021 1st Qtr

Description	Standards	1st Qtr
Name of Certified Lab	(mg/L)*	Field
Lab Reference #	-	
Sample Date	-	02/24/2021
Lab Test Date	-	
Sampled By	-	KT

No Sample Reason		Frozen, snow no wa
------------------	--	--------------------

SAMPLE LOCATION :	GV-02	Collar Elv (ft) :	N/A	Reporting Period	2021 1st Qtr

<u>Results of Profile / Analyses</u>

Description	Standards	1st Qtr	
Name of Certified Lab	(mg/L)*	Field	
Lab Reference #	-		
Sample Date	-	02/11/2021	
Lab Test Date	-		
Sampled By	-	KT	

No Sample Reason	 DRY

DIVISION OF RECLAMATION MINING AND SAFETY PERMIT: M-1980-244

SAMPLE LOCATION :	GV-03	Collar Elv (ft) :	N/A	Reporting Period	2021 1st Qtr
SAMPLE LOCATION :	GV-03		IN/A	Reporting Perior	u

<u>Results of Profile / Analyses</u>

Description	Standards	1st Qtr
Name of Certified Lab	(mg/L)*	Field
Lab Reference #	-	
Sample Date	-	02/11/2021
Lab Test Date	-	
Sampled By	-	KT

No Sample Reason	 DRY

SAMPLE LOCATION :	WCSW-01	Collar Elv (ft) :	N/A	Reporting Period	2021 1st Qtr

Description	Standards	1st Qtr
Name of Certified Lab	(mg/L)*	Field
Lab Reference #	-	
Sample Date	-	03/22/2021
Lab Test Date	-	
Sampled By	-	GM
	1	1

No Sample Reason		inaccessible
------------------	--	--------------

		• ··· -· ···		
SAMPLE LOCATION :	T2	Collar Elv (ft) :	N/A	Reporting Period 2021 1st Qtr

Description	Standards	1st Qtr
Name of Certified Lab	(mg/L)*	Field
Lab Reference #	-	
Sample Date	-	01/13/2021
Lab Test Date	-	
Sampled By	-	KT

No Sample Reason	 DRY

Cripple Creek & Victor G old Mining Company 100 North 3rd Street P.O. Box 191 Victor, Colorado 80860 P 719.689.2977 F 719.689.3254 newmont.com

Graphs

QA/QC

SAMPLE LOCATION :	
-------------------	--

CC&V Blank Sample

Collar Elv (ft) : N/A

Reporting Period

3000 1st Qtr

Description	Standards	1st Qtr	
Name of Certified Lab	(mg/L)*	SVL Analytical, Inc.	SVL Analytical, Inc.
Lab Reference #	-	X1C0465-03	X1D0009-01RE1
Sample Date	-	03/25/2021	03/31/2021
Lab Test Date	-	04/09/2021	04/14/2021
Sampled By	-	GM	GM

Aluminium - Dissolved (mg/L)	7.00	<0.080	<0.080
Ammonia (mg/L)		<0.030	<0.030
Antimony - Dissolved (mg/L)	0.0060	<0.00300	<0.00300
Arsenic - Dissolved (mg/L)	0.0100	<0.00300	<0.00300
Barium - Dissolved (mg/L)	2.000	0.0130	0.0160
Beryllium - Dissolved (mg/L)	0.0040	<0.00200	<0.00200
Boron - Dissolved (mg/L)	0.7500	<0.0400	<0.0400
Cadmium - Dissolved (mg/L)	0.0050	<0.0020	<0.0020
Chloride - Total (mg/L)		5.16	4.57
Chromium - Dissolved (mg/L)	0.1000	<0.0060	<0.0060
Cobalt - Dissolved (mg/L)	0.0500	<0.0060	<0.0060
Copper - Dissolved (mg/L)	0.2000	0.0102	0.0116
Cyanide - Free (mg/L)	0.2000	<0.0050	<0.0050
Cyanide - Total (mg/L)		<0.0050	<0.0050
Cyanide - WAD (mg/L)	0.2000	<0.0100	<0.0100
Fluoride - Total F (mg/L)	2.000	2.16	2.30
Iron - Dissolved (mg/L)	14.000	<0.100	<0.100
Lead - Dissolved (mg/L)	0.0500	<0.0075	<0.0075
Lithium - Dissolved (mg/L)	2.5000	<0.040	<0.040
Manganese - Dissolved (mg/L)	3.0000	0.0102	<0.0080
Mercury - Dissolved (mg/L)	0.0020	<0.000200	<0.000200
Molybdenum - Dissolved (mg/L)	0.2100	<0.0080	<0.0080
Nickel - Dissolved (mg/L)	0.2000	<0.0100	<0.0100
Nitrate as Nitrogen (mg/L)	10.000	0.240	0.260
Nitrite + Nitrate as Nitrogen (mg/L)	11.000	0.240	0.260
Nitrite as Nitrogen (mg/L)	1.0000	<0.050	<0.050
pH Lab (pH unit)	6.0 – 8.5	7.9	7.7
Selenium - Dissolved (mg/L)	0.0240	<0.00300	<0.00300
Silver - Dissolved (mg/L)	0.0500	<0.0050	<0.0050
Sodium - Dissolved (mg/L)		22.0	20.3
Sulfate - Total (mg/L)	250.00	4.95	5.18
Thallium - Dissolved (mg/L)	0.0020	<0.00100	<0.00100
Total Dissolved Solids (mg/L)		89	80
Total Suspended Solids (mg/L)		<5.0	<5.0
Uranium - Dissolved (mg/L)	0.0300	<0.00100	<0.00100
Vanadium - Dissolved (mg/L)	0.1000	<0.0050	<0.0050
Zinc - Dissolved (mg/L)	2.000	<0.0100	<0.0100

DIVISION OF RECLAMATION MINING AND SAFETY PERMIT: QA/QC

VIN-2B_Duplicate

Collar Elv (ft) : N/A

Reporting Period

3000 1st Qtr

Description	Standards	1st Qtr
Name of Certified Lab	(mg/L)*	SVL Analytical, Inc.
Lab Reference #	-	X1C0531-02
Sample Date	-	03/29/2021
Lab Test Date	-	04/09/2021
Sampled By	-	

pH Field (pH unit)	6.50 - 8.50	7.08
Aluminium - Dissolved (mg/L)	7.0000	<0.080
Ammonia (mg/L)		<0.030
Antimony - Dissolved (mg/L)	0.0060	<0.00300
Arsenic - Dissolved (mg/L)	0.0100	<0.00300
Barium - Dissolved (mg/L)	2.0000	0.0087
Beryllium - Dissolved (mg/L)	0.0040	<0.00200
Boron - Dissolved (mg/L)	0.7500	<0.0400
Cadmium - Dissolved (mg/L)	0.0050	<0.0020
Chloride - Total (mg/L)		9.62
Chromium - Dissolved (mg/L)	0.1000	<0.0060
Cobalt - Dissolved (mg/L)	0.0500	<0.0060
Copper - Dissolved (mg/L)	0.2000	<0.0100
Cyanide - Free (mg/L)	0.2000	<0.0050
Cyanide - Total (mg/L)		<0.0050
Cyanide - WAD (mg/L)	0.2000	<0.0100
Fluoride - Total F (mg/L)	2.000	0.141
Iron - Dissolved (mg/L)	14.000	0.695
Lead - Dissolved (mg/L)	0.0500	<0.0075
Lithium - Dissolved (mg/L)	2.5000	<0.040
Manganese - Dissolved (mg/L)	4.0000	3.24
Mercury - Dissolved (mg/L)	0.0020	<0.000200
Molybdenum - Dissolved (mg/L)	0.2100	<0.0080
Nickel - Dissolved (mg/L)	0.2000	<0.0100
Nitrate as Nitrogen (mg/L)	10.000	<0.050
Nitrite + Nitrate as Nitrogen (mg/L)	11.000	<0.100
Nitrite as Nitrogen (mg/L)	1.000	<0.050
pH Lab (pH unit)	6.50 - 8.50	7.5
Selenium - Dissolved (mg/L)	0.0240	<0.00300
Silver - Dissolved (mg/L)	0.0500	<0.0050
Sodium - Dissolved (mg/L)		34.1
Sulfate - Total (mg/L)	800	713
Thallium - Dissolved (mg/L)	0.0020	<0.00100
Total Dissolved Solids (mg/L)		1000
Total Suspended Solids (mg/L)		<5.0
Uranium - Dissolved (mg/L)	0.0300	<0.00100
Vanadium - Dissolved (mg/L)	0.1000	<0.0050
Zinc - Dissolved (mg/L)	2.0000	<0.0100

Relative Percent Difference Calculations:

The Division has requested that relative percent difference calculations be completed for duplicate samples collected within the same quarter. In the first quarter, 2021 CC&V submitted duplicate samples for monitoring well VIN-2B, collected on 3-29-2021. For all data where a calculation is applicable, the RPD is presented below. When laboratory analysis for both samples was below reporting limit, a RPD was not calculated. When one sample result was above the reporting limit, and one sample was below the reporting limit CC&V used the reporting limit in the RPD calculation. CC&V used the following formula to determine Relative Percent Difference (RPD):

$$RPD = \frac{|X_1 - X_2|}{(X_1 + X_2)/2} \times 100$$

where,

RPD = Relative Percent Difference (as %)

 $|X_1 - X_2|$ = Absolute value (always positive) of $X_1 - X_2$

 $X_I =$ Original sample concentration

 X_2 = Duplicate sample concentration

Parameter	VIN-2B Sample	VIN-2B Duplicate	Relative Percent Difference (RPD)
pH Field (pH unit)	7.08	7.08	0
Barium - Dissolved (mg/L)	0.0091	0.0087	4.49
Chloride - Total (mg/L)	9.42	9.62	2.10
Cobalt - Dissolved (mg/L)	0.0066	0.006	9.52
Fluoride - Total F (mg/L)	0.148	0.141	4.84
Iron - Dissolved (mg/L)	0.673	0.695	3.22
Manganese - Dissolved (mg/L)	3.24	3.24	0.00
Sodium - Dissolved (mg/L)	34.3	34.1	0.58
Sulfate - Total (mg/L)	708	713	0.70
Total Dissolved Solids (mg/L)	1040	1000	3.92

Indicates that reporting limit used for calculation