July 22, 2020

Report to:

Jake Wilkinson CRG Mining, LLC 510 S Wisconsin St Gunnison, CO 80231 Bill to:

Jake Wilkinson CRG Mining, LLC 510 S Wisconsin St Gunnison, CO 80231

Project ID:

ACZ Project ID: L60143

Jake Wilkinson:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on July 09, 2020. This project has been assigned to ACZ project number, L60143. Please reference this number in all future inquiries.

All analyses were performed according to ACZs Quality Assurance Plan. The enclosed results relate only to the samples received under L60143. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZs current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after August 21, 2020. If the samples are determined to be hazardous, additional charges apply for disposal (typically \$11/sample). If you would like the samples to be held longer than ACZs stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical raw data reports for ten years.

If you have any questions or other needs, please contact your Project Manager.

Max Janicek has reviewed and approved this report.

Max janicele

L60143-2007221356 Page 1 of 40

Project ID:

Sample ID: GL 1

ACZ Sample ID: L60143-01

Date Sampled: 07/07/20 10:13

Date Received: 07/09/20

Sample Matrix: Surface Water

Inord	anic	Pren

Parameter	EPA Method	Dilution	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Cyanide, total	M335.4 - Manual Distillation		-					07/15/20 11:36	wtc
Lab Filtration (0.45um)	M200.7/200.8/3005A							07/13/20 16:02	ral
& Acidification									

Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual 2	(Q	Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	M200.7 ICP	1		U		mg/L	0.05	0.3	07/15/20 12:31	kja
Antimony, dissolved	M200.8 ICP-MS	1		U		mg/L	0.0004	0.002	07/16/20 13:17	enb
Arsenic, dissolved	M200.8 ICP-MS	1		U		mg/L	0.0002	0.001	07/16/20 13:17	enb
Barium, dissolved	M200.7 ICP	1	0.014	В		mg/L	0.007	0.04	07/15/20 12:31	kja
Beryllium, dissolved	M200.8 ICP-MS	1		U		mg/L	0.00008	0.0003	07/16/20 13:17	enb
Cadmium, dissolved	M200.8 ICP-MS	1		U		mg/L	0.00005	0.0003	07/16/20 13:17	enb
Calcium, dissolved	M200.7 ICP	1	12.7			mg/L	0.1	0.5	07/15/20 12:31	kja
Chromium, dissolved	M200.8 ICP-MS	1		U		mg/L	0.0005	0.002	07/16/20 13:17	enb
Cobalt, dissolved	M200.7 ICP	1		U		mg/L	0.01	0.05	07/15/20 12:31	kja
Copper, dissolved	M200.7 ICP	1		U		mg/L	0.01	0.05	07/15/20 12:31	kja
Iron, dissolved	M200.7 ICP	1		U		mg/L	0.06	0.2	07/15/20 12:31	kja
Lead, dissolved	M200.8 ICP-MS	1		U		mg/L	0.0001	0.0005	07/16/20 13:17	enb
Magnesium, dissolved	M200.7 ICP	1	4.7			mg/L	0.2	1	07/15/20 12:31	kja
Manganese, dissolved	M200.7 ICP	1		U		mg/L	0.01	0.05	07/15/20 12:31	kja
Mercury, total	M245.1 CVAA	1		U	*	mg/L	0.0002	0.001	07/14/20 18:20	slm
Nickel, dissolved	M200.7 ICP	1		U		mg/L	0.008	0.04	07/15/20 12:31	kja
Potassium, dissolved	M200.7 ICP	1	0.3	В		mg/L	0.2	1	07/15/20 12:31	kja
Sodium, dissolved	M200.7 ICP	1	1.3			mg/L	0.2	1	07/15/20 12:31	kja
Vanadium, dissolved	M200.7 ICP	1		U		mg/L	0.01	0.03	07/16/20 12:30	kja
Zinc, dissolved	M200.7 ICP	1		U		mg/L	0.02	0.05	07/15/20 12:31	kja

Project ID:

Sample ID: GL 1

ACZ Sample ID: **L60143-01**

Date Sampled: 07/07/20 10:13

Date Received: 07/09/20

Wet	Che	mistry

Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as		1	56.7		*	mg/L	2	20	07/15/20 0:00	еер
CaCO3										
Carbonate as CaCO3		1		U	*	mg/L	2	20	07/15/20 0:00	eep
Hydroxide as CaCO3		1		U	*	mg/L	2	20	07/15/20 0:00	eep
Total Alkalinity		1	56.7		*	mg/L	2	20	07/15/20 0:00	eep
Cation-Anion Balance	Calculation									
Cation-Anion Balance			-4.3			%			07/22/20 0:00	calc
Sum of Anions			1.2			meq/L			07/22/20 0:00	calc
Sum of Cations			1.1			meq/L			07/22/20 0:00	calc
Chloride	SM4500CI-E	1		U	*	mg/L	0.5	2	07/16/20 12:43	ttg
Conductivity @25C	SM2510B	1	106		*	umhos/cm	1	10	07/15/20 21:47	еер
Cyanide, total	M335.4 - Colorimetric w/ distillation	0.5		U	*	mg/L	0.003	0.01	07/18/20 22:14	pjb
Hardness as CaCO3 (dissolved)	SM2340B - Calculation		51			mg/L	0.2	5	07/22/20 0:00	calc
Lab Filtration (0.45um filter)	SOPWC050	1							07/09/20 14:39	eij
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2		0.03	ВН		mg/L	0.02	0.1	07/22/20 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	0.03	ВН	*	mg/L	0.02	0.1	07/10/20 22:54	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1		UH	*	mg/L	0.01	0.05	07/10/20 22:54	pjb
pH (lab)	SM4500H+ B									
pН		1	8.1	Н	*	units	0.1	0.1	07/15/20 0:00	еер
pH measured at		1	20.8		*	С	0.1	0.1	07/15/20 0:00	еер
Residue, Filterable (TDS) @180C	SM2540C	1	70		*	mg/L	20	40	07/10/20 14:00	jck
Sulfate	D516-02/-07/-11 - Turbidimetri	c 1	2.8	В	*	mg/L	1	5	07/15/20 9:08	rbt

Project ID:

Sample ID: GL 2

ACZ Sample ID: *L60143-02*

Date Sampled: 07/07/20 10:00

Date Received: 07/09/20

Sample Matrix: Surface Water

Inord	anic	Pren

Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Cyanide, total	M335.4 - Manual Distillation		-						07/15/20 11:4	42 wtc
Lab Filtration (0.45um)	M200.7/200.8/3005A								07/13/20 16:	02 ral
& Acidification										

Wictaio / Wiaryolo									
Parameter	EPA Method	Dilution	Result	Qual XC	Q Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	M200.7 ICP	1		U	mg/L	0.05	0.3	07/15/20 12:34	kja
Antimony, dissolved	M200.8 ICP-MS	1		U	mg/L	0.0004	0.002	07/16/20 19:07	bsu
Arsenic, dissolved	M200.8 ICP-MS	1	0.0027		mg/L	0.0002	0.001	07/16/20 19:07	bsu
Barium, dissolved	M200.7 ICP	1	0.012	В	mg/L	0.007	0.04	07/15/20 12:34	kja
Beryllium, dissolved	M200.8 ICP-MS	1		U	mg/L	0.00008	0.0003	07/16/20 19:07	bsu
Cadmium, dissolved	M200.8 ICP-MS	1	0.00328		mg/L	0.00005	0.0003	07/16/20 19:07	bsu
Calcium, dissolved	M200.7 ICP	1	23.6		mg/L	0.1	0.5	07/15/20 12:34	kja
Chromium, dissolved	M200.8 ICP-MS	1		U	mg/L	0.0005	0.002	07/16/20 19:07	bsu
Cobalt, dissolved	M200.7 ICP	1		U	mg/L	0.01	0.05	07/15/20 12:34	kja
Copper, dissolved	M200.7 ICP	1		U	mg/L	0.01	0.05	07/15/20 12:34	kja
Iron, dissolved	M200.7 ICP	1		U	mg/L	0.06	0.2	07/15/20 12:34	kja
Lead, dissolved	M200.8 ICP-MS	1	0.0001	В	mg/L	0.0001	0.0005	07/16/20 19:07	bsu
Magnesium, dissolved	M200.7 ICP	1	7.0		mg/L	0.2	1	07/15/20 12:34	kja
Manganese, dissolved	M200.7 ICP	1	0.03	В	mg/L	0.01	0.05	07/15/20 12:34	kja
Mercury, total	M245.1 CVAA	1		U *	mg/L	0.0002	0.001	07/14/20 18:23	slm
Nickel, dissolved	M200.7 ICP	1		U	mg/L	0.008	0.04	07/15/20 12:34	kja
Potassium, dissolved	M200.7 ICP	1	8.0	В	mg/L	0.2	1	07/15/20 12:34	kja
Sodium, dissolved	M200.7 ICP	1	4.1		mg/L	0.2	1	07/15/20 12:34	kja
Vanadium, dissolved	M200.7 ICP	1		U	mg/L	0.01	0.03	07/16/20 12:33	kja
Zinc, dissolved	M200.7 ICP	1	0.32		mg/L	0.02	0.05	07/15/20 12:34	kja

Project ID:

Sample ID: GL 2

ACZ Sample ID: L60143-02

Date Sampled: 07/07/20 10:00

Date Received: 07/09/20

Wet	Che	emistr	١
VVCL	Onc	/IIII3U	1

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as		1	75.4		*	mg/L	2	20	07/15/20 0:00	еер
CaCO3										
Carbonate as CaCO3		1		U	*	mg/L	2	20	07/15/20 0:00	eep
Hydroxide as CaCO3		1		U	*	mg/L	2	20	07/15/20 0:00	еер
Total Alkalinity		1	75.4		*	mg/L	2	20	07/15/20 0:00	еер
Cation-Anion Balance	Calculation									
Cation-Anion Balance			-4.8			%			07/22/20 0:00	calc
Sum of Anions			2.2			meq/L			07/22/20 0:00	calc
Sum of Cations			2			meq/L			07/22/20 0:00	calc
Chloride	SM4500CI-E	1	0.7	В	*	mg/L	0.5	2	07/16/20 12:44	ttg
Conductivity @25C	SM2510B	1	200		*	umhos/cm	1	10	07/15/20 21:57	еер
Cyanide, total	M335.4 - Colorimetric w/ distillation	0.5		U	*	mg/L	0.003	0.01	07/18/20 22:15	j pjb
Hardness as CaCO3 (dissolved)	SM2340B - Calculation		88			mg/L	0.2	5	07/22/20 0:00	calc
Lab Filtration (0.45um filter)	SOPWC050	1							07/09/20 14:42	eij
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2		0.18	Н		mg/L	0.02	0.1	07/22/20 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	0.18	Н	*	mg/L	0.02	0.1	07/10/20 22:57	, pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1		UH	*	mg/L	0.01	0.05	07/10/20 22:57	, pjb
pH (lab)	SM4500H+ B									
рН		1	8.1	Н	*	units	0.1	0.1	07/15/20 0:00	еер
pH measured at		1	21.0		*	С	0.1	0.1	07/15/20 0:00	еер
Residue, Filterable (TDS) @180C	SM2540C	1	134		*	mg/L	20	40	07/10/20 14:03	jck
Sulfate	D516-02/-07/-11 - Turbidimetri	c 1	31.6		*	mg/L	1	5	07/15/20 9:08	rbt

Project ID:

Sample ID: GL 3

ACZ Sample ID: L60143-03

Date Sampled: 07/07/20 10:25

Date Received: 07/09/20

Sample Matrix: Surface Water

Inord	anic	Pren

Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Cyanide, total	M335.4 - Manual Distillation		-						07/15/20 11:48	8 wtc
Lab Filtration (0.45um)	M200.7/200.8/3005A								07/13/20 16:02	2 ral
& Acidification										

Wictaio / Wiaryolo									
Parameter	EPA Method	Dilution	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	M200.7 ICP	1		U	mg/L	0.05	0.3	07/15/20 12:37	kja
Antimony, dissolved	M200.8 ICP-MS	1		U	mg/L	0.0004	0.002	07/16/20 19:09	bsu
Arsenic, dissolved	M200.8 ICP-MS	1		U	mg/L	0.0002	0.001	07/16/20 19:09	bsu
Barium, dissolved	M200.7 ICP	1	0.013	В	mg/L	0.007	0.04	07/15/20 12:37	kja
Beryllium, dissolved	M200.8 ICP-MS	1		U	mg/L	0.00008	0.0003	07/16/20 19:09	bsu
Cadmium, dissolved	M200.8 ICP-MS	1	0.00015	В	mg/L	0.00005	0.0003	07/16/20 19:09	bsu
Calcium, dissolved	M200.7 ICP	1	13.2		mg/L	0.1	0.5	07/15/20 12:37	kja
Chromium, dissolved	M200.8 ICP-MS	1		U	mg/L	0.0005	0.002	07/16/20 19:09	bsu
Cobalt, dissolved	M200.7 ICP	1		U	mg/L	0.01	0.05	07/15/20 12:37	kja
Copper, dissolved	M200.7 ICP	1		U	mg/L	0.01	0.05	07/15/20 12:37	kja
Iron, dissolved	M200.7 ICP	1		U	mg/L	0.06	0.2	07/15/20 12:37	kja
Lead, dissolved	M200.8 ICP-MS	1		U	mg/L	0.0001	0.0005	07/16/20 19:09	bsu
Magnesium, dissolved	M200.7 ICP	1	4.8		mg/L	0.2	1	07/15/20 12:37	kja
Manganese, dissolved	M200.7 ICP	1		U	mg/L	0.01	0.05	07/15/20 12:37	kja
Mercury, total	M245.1 CVAA	1		U *	mg/L	0.0002	0.001	07/14/20 18:24	slm
Nickel, dissolved	M200.7 ICP	1		U	mg/L	0.008	0.04	07/15/20 12:37	kja
Potassium, dissolved	M200.7 ICP	1	0.3	В	mg/L	0.2	1	07/15/20 12:37	kja
Sodium, dissolved	M200.7 ICP	1	1.4		mg/L	0.2	1	07/15/20 12:37	kja
Vanadium, dissolved	M200.7 ICP	1		U	mg/L	0.01	0.03	07/16/20 12:36	kja
Zinc, dissolved	M200.7 ICP	1		U	mg/L	0.02	0.05	07/15/20 12:37	kja

Project ID:

Sample ID: GL 3

ACZ Sample ID: *L60143-03*

Date Sampled: 07/07/20 10:25

Date Received: 07/09/20

Wet	Chei	mistry

Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as CaCO3		1	58.2		*	mg/L	2	20	07/15/20 0:00	еер
Carbonate as CaCO3		1		U	*	mg/L	2	20	07/15/20 0:00	eep
Hydroxide as CaCO3		1		U	*	mg/L	2	20	07/15/20 0:00	eep
Total Alkalinity		1	58.2		*	mg/L	2	20	07/15/20 0:00	еер
Cation-Anion Balance	Calculation									
Cation-Anion Balance			-8.3			%			07/22/20 0:00	calc
Sum of Anions			1.3			meq/L			07/22/20 0:00	calc
Sum of Cations			1.1			meq/L			07/22/20 0:00	calc
Chloride	SM4500CI-E	1		U	*	mg/L	0.5	2	07/16/20 12:45	ttg
Conductivity @25C	SM2510B	1	112		*	umhos/cm	1	10	07/15/20 22:08	еер
Cyanide, total	M335.4 - Colorimetric w/ distillation	0.5		U	*	mg/L	0.003	0.01	07/18/20 22:16	pjb
Hardness as CaCO3 (dissolved)	SM2340B - Calculation		53			mg/L	0.2	5	07/22/20 0:00	calc
Lab Filtration (0.45um filter)	SOPWC050	1							07/09/20 14:45	eij
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2		0.03	ВН		mg/L	0.02	0.1	07/22/20 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	0.03	ВН	*	mg/L	0.02	0.1	07/10/20 22:59	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1		UH	*	mg/L	0.01	0.05	07/10/20 22:59	pjb
pH (lab)	SM4500H+ B									
pН		1	8.1	Н	*	units	0.1	0.1	07/15/20 0:00	еер
pH measured at		1	21.0		*	С	0.1	0.1	07/15/20 0:00	еер
Residue, Filterable (TDS) @180C	SM2540C	1	72		*	mg/L	20	40	07/10/20 14:05	jck
Sulfate	D516-02/-07/-11 - Turbidimetri	c 1	5.6		*	mg/L	1	5	07/15/20 9:08	rbt

Project ID:

Sample ID: RM 1

ACZ Sample ID: L60143-04

Date Sampled: 07/07/20 10:38

Date Received: 07/09/20

Sample Matrix: Surface Water

Inord	anic	Pren

Parameter	EPA Method	Dilution	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Cyanide, total	M335.4 - Manual Distillation		-					07/15/20 11:54	wtc
Lab Filtration (0.45um)	M200.7/200.8/3005A							07/13/20 16:02	ral
& Acidification									

Metais Arialysis									
Parameter	EPA Method	Dilution	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	M200.7 ICP	1		U	mg/L	0.05	0.3	07/15/20 12:40	kja
Antimony, dissolved	M200.8 ICP-MS	1		U	mg/L	0.0004	0.002	07/16/20 19:11	bsu
Arsenic, dissolved	M200.8 ICP-MS	1		U	mg/L	0.0002	0.001	07/16/20 19:11	bsu
Barium, dissolved	M200.7 ICP	1	0.013	В	mg/L	0.007	0.04	07/15/20 12:40	kja
Beryllium, dissolved	M200.8 ICP-MS	1		U	mg/L	0.00008	0.0003	07/16/20 19:11	bsu
Cadmium, dissolved	M200.8 ICP-MS	1	0.00011	В	mg/L	0.00005	0.0003	07/16/20 19:11	bsu
Calcium, dissolved	M200.7 ICP	1	15.2		mg/L	0.1	0.5	07/15/20 12:40	kja
Chromium, dissolved	M200.8 ICP-MS	1		U	mg/L	0.0005	0.002	07/16/20 19:11	bsu
Cobalt, dissolved	M200.7 ICP	1		U	mg/L	0.01	0.05	07/15/20 12:40	kja
Copper, dissolved	M200.7 ICP	1		U	mg/L	0.01	0.05	07/15/20 12:40	kja
Iron, dissolved	M200.7 ICP	1		U	mg/L	0.06	0.2	07/15/20 12:40	kja
Lead, dissolved	M200.8 ICP-MS	1		U	mg/L	0.0001	0.0005	07/16/20 19:11	bsu
Magnesium, dissolved	M200.7 ICP	1	5.1		mg/L	0.2	1	07/15/20 12:40	kja
Manganese, dissolved	M200.7 ICP	1		U	mg/L	0.01	0.05	07/15/20 12:40	kja
Mercury, total	M245.1 CVAA	1		U *	mg/L	0.0002	0.001	07/14/20 18:25	slm
Nickel, dissolved	M200.7 ICP	1		U	mg/L	0.008	0.04	07/15/20 12:40	kja
Potassium, dissolved	M200.7 ICP	1	0.4	В	mg/L	0.2	1	07/15/20 12:40	kja
Sodium, dissolved	M200.7 ICP	1	1.2		mg/L	0.2	1	07/15/20 12:40	kja
Vanadium, dissolved	M200.7 ICP	1		U	mg/L	0.01	0.03	07/16/20 12:39	kja
Zinc, dissolved	M200.7 ICP	1		U	mg/L	0.02	0.05	07/15/20 12:40	kja

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

CRG Mining, LLC

Project ID:

Sample ID: RM 1

ACZ Sample ID: L60143-04

Date Sampled: 07/07/20 10:38

Date Received: 07/09/20

Sample Matrix: Surface Water

Wet	Chei	mistry

Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as CaCO3		1	66.1		*	mg/L	2	20	07/15/20 0:00	еер
Carbonate as CaCO3		1		U	*	mg/L	2	20	07/15/20 0:00	еер
Hydroxide as CaCO3		1		U	*	mg/L	2	20	07/15/20 0:00	еер
Total Alkalinity		1	66.1		*	mg/L	2	20	07/15/20 0:00	еер
Cation-Anion Balance	Calculation									
Cation-Anion Balance			-7.7			%			07/22/20 0:00	calc
Sum of Anions			1.4			meq/L			07/22/20 0:00	calc
Sum of Cations			1.2			meq/L			07/22/20 0:00	calc
Chloride	SM4500CI-E	1		U	*	mg/L	0.5	2	07/16/20 12:45	ttg
Conductivity @25C	SM2510B	1	126		*	umhos/cm	1	10	07/15/20 22:18	еер
Cyanide, total	M335.4 - Colorimetric w/ distillation	0.5		U	*	mg/L	0.003	0.01	07/18/20 22:17	pjb
Hardness as CaCO3 (dissolved)	SM2340B - Calculation		59.0			mg/L	0.2	5	07/22/20 0:00	calc
Lab Filtration (0.45um filter)	SOPWC050	1							07/09/20 14:49	eij
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2		0.03	ВН		mg/L	0.02	0.1	07/22/20 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	0.03	ВН	*	mg/L	0.02	0.1	07/10/20 23:01	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1		UH	*	mg/L	0.01	0.05	07/10/20 23:01	pjb
pH (lab)	SM4500H+ B									
pН		1	8.2	Н	*	units	0.1	0.1	07/15/20 0:00	еер
pH measured at		1	20.9		*	С	0.1	0.1	07/15/20 0:00	еер
Residue, Filterable (TDS) @180C	SM2540C	1	82		*	mg/L	20	40	07/10/20 14:08	jck
Sulfate	D516-02/-07/-11 - Turbidimetri	c 1	3.9	В	*	mg/L	1	5	07/15/20 9:08	rbt

L60143-2007221356 Page 9 of 40

Project ID:

Sample ID: RM 2

Date Sampled: 07/07/20 11:00

Date Received: 07/09/20

Sample Matrix: Surface Water

Inord	anic	Pren

Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Cyanide, total	M335.4 - Manual Distillation		-						07/15/20 12:0	0 wtc
Lab Filtration (0.45um)	M200.7/200.8/3005A								07/13/20 16:0	2 ral
& Acidification										

Parameter	EPA Method	Dilution	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	M200.7 ICP	1		U	mg/L	0.05	0.3	07/15/20 12:43	kja
Antimony, dissolved	M200.8 ICP-MS	1		U	mg/L	0.0004	0.002	07/16/20 19:20	bsu
Arsenic, dissolved	M200.8 ICP-MS	1	0.0082		mg/L	0.0002	0.001	07/16/20 19:20	bsu
Barium, dissolved	M200.7 ICP	1		U	mg/L	0.007	0.04	07/15/20 12:43	kja
Beryllium, dissolved	M200.8 ICP-MS	1		U	mg/L	80000.0	0.0003	07/16/20 19:20	bsu
Cadmium, dissolved	M200.8 ICP-MS	1	0.00062		mg/L	0.00005	0.0003	07/16/20 19:20	bsu
Calcium, dissolved	M200.7 ICP	1	15.1		mg/L	0.1	0.5	07/15/20 12:43	kja
Chromium, dissolved	M200.8 ICP-MS	1		U	mg/L	0.0005	0.002	07/16/20 19:20	bsu
Cobalt, dissolved	M200.7 ICP	1		U	mg/L	0.01	0.05	07/15/20 12:43	kja
Copper, dissolved	M200.7 ICP	1		U	mg/L	0.01	0.05	07/15/20 12:43	kja
Iron, dissolved	M200.7 ICP	1		U	mg/L	0.06	0.2	07/15/20 12:43	kja
Lead, dissolved	M200.8 ICP-MS	1	0.0002	В	mg/L	0.0001	0.0005	07/16/20 19:20	bsu
Magnesium, dissolved	M200.7 ICP	1	3.2		mg/L	0.2	1	07/15/20 12:43	kja
Manganese, dissolved	M200.7 ICP	1		U	mg/L	0.01	0.05	07/15/20 12:43	kja
Mercury, total	M245.1 CVAA	1		U *	mg/L	0.0002	0.001	07/14/20 18:26	slm
Nickel, dissolved	M200.7 ICP	1		U	mg/L	0.008	0.04	07/15/20 12:43	kja
Potassium, dissolved	M200.7 ICP	1	1.0		mg/L	0.2	1	07/15/20 12:43	kja
Sodium, dissolved	M200.7 ICP	1	3.9		mg/L	0.2	1	07/15/20 12:43	kja
Vanadium, dissolved	M200.7 ICP	1		U	mg/L	0.01	0.03	07/16/20 12:43	kja
Zinc, dissolved	M200.7 ICP	1	0.13		mg/L	0.02	0.05	07/15/20 12:43	kja

Project ID:

Sample ID: RM 2 ACZ Sample ID: L60143-05

Date Sampled: 07/07/20 11:00

Date Received: 07/09/20

Wet	Cher	nıstry
Dara	mete	ar

Parameter Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as CaCO3		1	44.9		*	mg/L	2	20	07/15/20 0:00	еер
Carbonate as CaCO3		1		U	*	mg/L	2	20	07/15/20 0:00	еер
Hydroxide as CaCO3		1		U	*	mg/L	2	20	07/15/20 0:00	еер
Total Alkalinity		1	44.9		*	mg/L	2	20	07/15/20 0:00	еер
Cation-Anion Balance	Calculation									
Cation-Anion Balance			-4.0			%			07/22/20 0:00	calc
Sum of Anions			1.3			meq/L			07/22/20 0:00	calc
Sum of Cations			1.2			meq/L			07/22/20 0:00	calc
Chloride	SM4500CI-E	1		U	*	mg/L	0.5	2	07/16/20 12:45	ttg
Conductivity @25C	SM2510B	1	124		*	umhos/cm	1	10	07/15/20 22:28	еер
Cyanide, total	M335.4 - Colorimetric w/ distillation	0.5		U	*	mg/L	0.003	0.01	07/18/20 22:19	pjb
Hardness as CaCO3 (dissolved)	SM2340B - Calculation		51			mg/L	0.2	5	07/22/20 0:00	calc
Lab Filtration (0.45um filter)	SOPWC050	1							07/09/20 14:52	eij
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2		0.04	ВН		mg/L	0.02	0.1	07/22/20 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	0.04	ВН	*	mg/L	0.02	0.1	07/10/20 23:06	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1		UH	*	mg/L	0.01	0.05	07/10/20 23:06	pjb
pH (lab)	SM4500H+ B									
pН		1	8.0	Н	*	units	0.1	0.1	07/15/20 0:00	еер
pH measured at		1	20.9		*	С	0.1	0.1	07/15/20 0:00	еер
Residue, Filterable (TDS) @180C	SM2540C	1	86		*	mg/L	20	40	07/10/20 14:10	jck
Sulfate	D516-02/-07/-11 - Turbidimetric	c 1	19.1		*	mg/L	1	5	07/15/20 9:08	rbt

Project ID:

Sample ID: RM 3

ACZ Sample ID: **L60143-06**

Date Sampled: 07/07/20 10:47

Date Received: 07/09/20

Sample Matrix: Surface Water

Inord	anic	Pren

Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Cyanide, total	M335.4 - Manual Distillation		-						07/15/20 12:0	06 wtc
Lab Filtration (0.45um)	M200.7/200.8/3005A								07/13/20 16:0)2 ral
& Acidification										

EPA Method	Dilution	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
M200.7 ICP	1		U	mg/L	0.05	0.3	07/15/20 12:47	kja
M200.8 ICP-MS	1		U	mg/L	0.0004	0.002	07/16/20 19:22	bsu
M200.8 ICP-MS	1	0.0008	В	mg/L	0.0002	0.001	07/16/20 19:22	bsu
M200.7 ICP	1	0.012	В	mg/L	0.007	0.04	07/15/20 12:47	kja
M200.8 ICP-MS	1		U	mg/L	0.00008	0.0003	07/16/20 19:22	bsu
M200.8 ICP-MS	1	0.00015	В	mg/L	0.00005	0.0003	07/16/20 19:22	bsu
M200.7 ICP	1	15.2		mg/L	0.1	0.5	07/15/20 12:47	kja
M200.8 ICP-MS	1		U	mg/L	0.0005	0.002	07/16/20 19:22	bsu
M200.7 ICP	1		U	mg/L	0.01	0.05	07/15/20 12:47	kja
M200.7 ICP	1		U	mg/L	0.01	0.05	07/15/20 12:47	kja
M200.7 ICP	1		U	mg/L	0.06	0.2	07/15/20 12:47	kja
M200.8 ICP-MS	1		U	mg/L	0.0001	0.0005	07/16/20 19:22	bsu
M200.7 ICP	1	5.0		mg/L	0.2	1	07/15/20 12:47	kja
M200.7 ICP	1		U	mg/L	0.01	0.05	07/15/20 12:47	kja
M245.1 CVAA	1		U *	mg/L	0.0002	0.001	07/14/20 18:27	slm
M200.7 ICP	1		U	mg/L	0.008	0.04	07/15/20 12:47	kja
M200.7 ICP	1	0.4	В	mg/L	0.2	1	07/15/20 12:47	kja
M200.7 ICP	1	1.4		mg/L	0.2	1	07/15/20 12:47	kja
M200.7 ICP	1		U	mg/L	0.01	0.03	07/16/20 12:46	kja
M200.7 ICP	1		U	mg/L	0.02	0.05	07/15/20 12:47	kja
	M200.7 ICP M200.8 ICP-MS M200.8 ICP-MS M200.7 ICP M200.8 ICP-MS M200.7 ICP M200.8 ICP-MS M200.7 ICP M200.8 ICP-MS M200.7 ICP	M200.7 ICP 1 M200.8 ICP-MS 1 M200.8 ICP-MS 1 M200.7 ICP 1 M200.8 ICP-MS 1 M200.7 ICP 1 M200.8 ICP-MS 1 M200.7 ICP 1	M200.7 ICP M200.8 ICP-MS 1 M200.8 ICP-MS 1 0.0008 M200.7 ICP 1 M200.8 ICP-MS 1 M200.8 ICP-MS 1 M200.8 ICP-MS 1 M200.7 ICP 1 M200.7 ICP	M200.7 ICP 1 U M200.8 ICP-MS 1 0.0008 B M200.7 ICP 1 0.012 B M200.8 ICP-MS 1 0.00015 B M200.7 ICP 1 1.5.2 M200.8 ICP-MS 1 U M200.8 ICP-MS 1 U M200.7 ICP 1	M200.7 ICP 1 U mg/L M200.8 ICP-MS 1 U mg/L M200.8 ICP-MS 1 0.0008 B mg/L M200.7 ICP 1 0.012 B mg/L M200.8 ICP-MS 1 U mg/L M200.8 ICP-MS 1 0.00015 B mg/L M200.7 ICP 1 15.2 mg/L M200.7 ICP 1 U mg/L M200.7 ICP 1 U mg/L M200.7 ICP 1 U mg/L M200.7 ICP 1 5.0 mg/L M200.7 ICP 1 U mg/L M200.7 ICP 1 U mg/L M200.7 ICP 1 0.4 B mg/L M200.7 ICP 1 </td <td>M200.7 ICP 1 U mg/L 0.05 M200.8 ICP-MS 1 U mg/L 0.0004 M200.8 ICP-MS 1 0.0008 B mg/L 0.0002 M200.7 ICP 1 0.012 B mg/L 0.007 M200.8 ICP-MS 1 0.00015 B mg/L 0.00005 M200.7 ICP 1 15.2 mg/L 0.0005 M200.7 ICP 1 U mg/L 0.001 M200.7 ICP 1 U mg/L 0.01 M200.7 ICP 1 U mg/L 0.001 M200.7 ICP 1 5.0 mg/L 0.0001 M200.7 ICP 1 U mg/L 0.001 M200.7 ICP 1 U mg/L 0.002 M200.7 ICP 1 U mg/L 0.008 M200.7 ICP 1 0.4 B mg/L 0.2 M200.7 ICP 1 0.4 B mg/L<td>M200.7 ICP 1 U mg/L 0.05 0.3 M200.8 ICP-MS 1 U mg/L 0.0004 0.002 M200.8 ICP-MS 1 0.0008 B mg/L 0.0002 0.001 M200.7 ICP 1 0.012 B mg/L 0.0008 0.0003 M200.8 ICP-MS 1 0.00015 B mg/L 0.00005 0.0003 M200.7 ICP 1 15.2 mg/L 0.0005 0.002 M200.7 ICP 1 U mg/L 0.01 0.05 M200.7 ICP 1 U mg/L 0.01 0.05 M200.7 ICP 1 U mg/L 0.06 0.2 M200.7 ICP 1 5.0 mg/L 0.001 0.005 M200.7 ICP 1 5.0 mg/L 0.01 0.05 M200.7 ICP 1 U mg/L 0.01 0.05 M245.1 CVAA 1 U mg/L 0.002</td><td>M200.7 ICP 1 U mg/L 0.05 0.3 07/15/20 12:47 M200.8 ICP-MS 1 U mg/L 0.0004 0.002 07/16/20 19:22 M200.8 ICP-MS 1 0.0008 B mg/L 0.0002 0.001 07/16/20 19:22 M200.7 ICP 1 0.012 B mg/L 0.0007 0.04 07/15/20 12:47 M200.8 ICP-MS 1 0.00015 B mg/L 0.00008 0.0003 07/16/20 19:22 M200.7 ICP 1 15.2 mg/L 0.00005 0.0003 07/16/20 19:22 M200.7 ICP 1 15.2 mg/L 0.0005 0.002 07/16/20 19:22 M200.7 ICP 1 U mg/L 0.001 0.05 07/15/20 12:47 M200.7 ICP 1 U mg/L 0.01 0.05 07/15/20 12:47 M200.8 ICP-MS 1 U mg/L 0.001 0.05 07/15/20 12:47 M200.7 ICP 1 U mg/L</td></td>	M200.7 ICP 1 U mg/L 0.05 M200.8 ICP-MS 1 U mg/L 0.0004 M200.8 ICP-MS 1 0.0008 B mg/L 0.0002 M200.7 ICP 1 0.012 B mg/L 0.007 M200.8 ICP-MS 1 0.00015 B mg/L 0.00005 M200.7 ICP 1 15.2 mg/L 0.0005 M200.7 ICP 1 U mg/L 0.001 M200.7 ICP 1 U mg/L 0.01 M200.7 ICP 1 U mg/L 0.001 M200.7 ICP 1 5.0 mg/L 0.0001 M200.7 ICP 1 U mg/L 0.001 M200.7 ICP 1 U mg/L 0.002 M200.7 ICP 1 U mg/L 0.008 M200.7 ICP 1 0.4 B mg/L 0.2 M200.7 ICP 1 0.4 B mg/L <td>M200.7 ICP 1 U mg/L 0.05 0.3 M200.8 ICP-MS 1 U mg/L 0.0004 0.002 M200.8 ICP-MS 1 0.0008 B mg/L 0.0002 0.001 M200.7 ICP 1 0.012 B mg/L 0.0008 0.0003 M200.8 ICP-MS 1 0.00015 B mg/L 0.00005 0.0003 M200.7 ICP 1 15.2 mg/L 0.0005 0.002 M200.7 ICP 1 U mg/L 0.01 0.05 M200.7 ICP 1 U mg/L 0.01 0.05 M200.7 ICP 1 U mg/L 0.06 0.2 M200.7 ICP 1 5.0 mg/L 0.001 0.005 M200.7 ICP 1 5.0 mg/L 0.01 0.05 M200.7 ICP 1 U mg/L 0.01 0.05 M245.1 CVAA 1 U mg/L 0.002</td> <td>M200.7 ICP 1 U mg/L 0.05 0.3 07/15/20 12:47 M200.8 ICP-MS 1 U mg/L 0.0004 0.002 07/16/20 19:22 M200.8 ICP-MS 1 0.0008 B mg/L 0.0002 0.001 07/16/20 19:22 M200.7 ICP 1 0.012 B mg/L 0.0007 0.04 07/15/20 12:47 M200.8 ICP-MS 1 0.00015 B mg/L 0.00008 0.0003 07/16/20 19:22 M200.7 ICP 1 15.2 mg/L 0.00005 0.0003 07/16/20 19:22 M200.7 ICP 1 15.2 mg/L 0.0005 0.002 07/16/20 19:22 M200.7 ICP 1 U mg/L 0.001 0.05 07/15/20 12:47 M200.7 ICP 1 U mg/L 0.01 0.05 07/15/20 12:47 M200.8 ICP-MS 1 U mg/L 0.001 0.05 07/15/20 12:47 M200.7 ICP 1 U mg/L</td>	M200.7 ICP 1 U mg/L 0.05 0.3 M200.8 ICP-MS 1 U mg/L 0.0004 0.002 M200.8 ICP-MS 1 0.0008 B mg/L 0.0002 0.001 M200.7 ICP 1 0.012 B mg/L 0.0008 0.0003 M200.8 ICP-MS 1 0.00015 B mg/L 0.00005 0.0003 M200.7 ICP 1 15.2 mg/L 0.0005 0.002 M200.7 ICP 1 U mg/L 0.01 0.05 M200.7 ICP 1 U mg/L 0.01 0.05 M200.7 ICP 1 U mg/L 0.06 0.2 M200.7 ICP 1 5.0 mg/L 0.001 0.005 M200.7 ICP 1 5.0 mg/L 0.01 0.05 M200.7 ICP 1 U mg/L 0.01 0.05 M245.1 CVAA 1 U mg/L 0.002	M200.7 ICP 1 U mg/L 0.05 0.3 07/15/20 12:47 M200.8 ICP-MS 1 U mg/L 0.0004 0.002 07/16/20 19:22 M200.8 ICP-MS 1 0.0008 B mg/L 0.0002 0.001 07/16/20 19:22 M200.7 ICP 1 0.012 B mg/L 0.0007 0.04 07/15/20 12:47 M200.8 ICP-MS 1 0.00015 B mg/L 0.00008 0.0003 07/16/20 19:22 M200.7 ICP 1 15.2 mg/L 0.00005 0.0003 07/16/20 19:22 M200.7 ICP 1 15.2 mg/L 0.0005 0.002 07/16/20 19:22 M200.7 ICP 1 U mg/L 0.001 0.05 07/15/20 12:47 M200.7 ICP 1 U mg/L 0.01 0.05 07/15/20 12:47 M200.8 ICP-MS 1 U mg/L 0.001 0.05 07/15/20 12:47 M200.7 ICP 1 U mg/L

Project ID:

Sample ID: RM 3

ACZ Sample ID: L60143-06

Date Sampled: 07/07/20 10:47

Date Received: 07/09/20

Wet	Cher	nistr
VVCL	OHIO	mou

Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as		1	64.8		*	mg/L	2	20	07/15/20 0:00	eep
CaCO3										
Carbonate as CaCO3		1		U	*	mg/L	2	20	07/15/20 0:00	eep
Hydroxide as CaCO3		1		U	*	mg/L	2	20	07/15/20 0:00	еер
Total Alkalinity		1	64.8		*	mg/L	2	20	07/15/20 0:00	еер
Cation-Anion Balance	Calculation									
Cation-Anion Balance			-7.7			%			07/22/20 0:00	calc
Sum of Anions			1.4			meq/L			07/22/20 0:00	calc
Sum of Cations			1.2			meq/L			07/22/20 0:00	calc
Chloride	SM4500CI-E	1		U	*	mg/L	0.5	2	07/16/20 12:45	ttg
Conductivity @25C	SM2510B	1	127		*	umhos/cm	1	10	07/15/20 22:38	еер
Cyanide, total	M335.4 - Colorimetric w/ distillation	0.5		U	*	mg/L	0.003	0.01	07/18/20 22:20	pjb
Hardness as CaCO3 (dissolved)	SM2340B - Calculation		59			mg/L	0.2	5	07/22/20 0:00	calc
Lab Filtration (0.45um filter)	SOPWC050	1							07/09/20 14:56	eij
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2		0.03	ВН		mg/L	0.02	0.1	07/22/20 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	0.03	ВН	*	mg/L	0.02	0.1	07/10/20 23:07	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1		UH	*	mg/L	0.01	0.05	07/10/20 23:07	pjb
pH (lab)	SM4500H+ B									
рН		1	8.2	Н	*	units	0.1	0.1	07/15/20 0:00	eep
pH measured at		1	21.3		*	С	0.1	0.1	07/15/20 0:00	еер
Residue, Filterable (TDS) @180C	SM2540C	1	80		*	mg/L	20	40	07/10/20 14:13	jck
Sulfate	D516-02/-07/-11 - Turbidimetri	c 1	5.0	В	*	mg/L	1	5	07/15/20 9:08	rbt

Project ID:

Sample ID: CM 1

ACZ Sample ID: *L60143-07*

Date Sampled: 07/07/20 11:22

Date Received: 07/09/20

Sample Matrix: Surface Water

Inord	anic	Pren

Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Cyanide, total	M335.4 - Manual Distillation		-						07/15/20 12:1	2 wtc
Lab Filtration (0.45um)	M200.7/200.8/3005A								07/13/20 16:0	2 ral
& Acidification										

Parameter	EPA Method	Dilution	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	M200.7 ICP	1		U	mg/L	0.05	0.3	07/15/20 12:50	kja
Antimony, dissolved	M200.8 ICP-MS	1		U	mg/L	0.0004	0.002	07/16/20 19:24	bsu
Arsenic, dissolved	M200.8 ICP-MS	1	0.0008	В	mg/L	0.0002	0.001	07/16/20 19:24	bsu
Barium, dissolved	M200.7 ICP	1	0.013	В	mg/L	0.007	0.04	07/15/20 12:50	kja
Beryllium, dissolved	M200.8 ICP-MS	1		U	mg/L	0.00008	0.0003	07/16/20 19:24	bsu
Cadmium, dissolved	M200.8 ICP-MS	1	0.00012	В	mg/L	0.00005	0.0003	07/16/20 19:24	bsu
Calcium, dissolved	M200.7 ICP	1	15.5		mg/L	0.1	0.5	07/15/20 12:50	kja
Chromium, dissolved	M200.8 ICP-MS	1		U	mg/L	0.0005	0.002	07/16/20 19:24	bsu
Cobalt, dissolved	M200.7 ICP	1		U	mg/L	0.01	0.05	07/15/20 12:50	kja
Copper, dissolved	M200.7 ICP	1		U	mg/L	0.01	0.05	07/15/20 12:50	kja
Iron, dissolved	M200.7 ICP	1		U	mg/L	0.06	0.2	07/15/20 12:50	kja
Lead, dissolved	M200.8 ICP-MS	1	0.0006		mg/L	0.0001	0.0005	07/16/20 19:24	bsu
Magnesium, dissolved	M200.7 ICP	1	5.1		mg/L	0.2	1	07/15/20 12:50	kja
Manganese, dissolved	M200.7 ICP	1		U	mg/L	0.01	0.05	07/15/20 12:50	kja
Mercury, total	M245.1 CVAA	1		U	mg/L	0.0002	0.001	07/14/20 18:28	slm
Nickel, dissolved	M200.7 ICP	1		U	mg/L	0.008	0.04	07/15/20 12:50	kja
Potassium, dissolved	M200.7 ICP	1	0.5	В	mg/L	0.2	1	07/15/20 12:50	kja
Sodium, dissolved	M200.7 ICP	1	1.4		mg/L	0.2	1	07/15/20 12:50	kja
Vanadium, dissolved	M200.7 ICP	1		U	mg/L	0.01	0.03	07/16/20 12:49	kja
Zinc, dissolved	M200.7 ICP	1		U	mg/L	0.02	0.05	07/15/20 12:50	kja

Project ID:

Sample ID: CM 1

ACZ Sample ID: L60143-07

Date Sampled: 07/07/20 11:22

Date Received: 07/09/20

Wet	Chei	mistry
-----	------	--------

Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as CaCO3		1	66.0		*	mg/L	2	20	07/15/20 0:00	еер
Carbonate as CaCO3		1		U	*	mg/L	2	20	07/15/20 0:00	еер
Hydroxide as CaCO3		1		U	*	mg/L	2	20	07/15/20 0:00	еер
Total Alkalinity		1	66.0		*	mg/L	2	20	07/15/20 0:00	еер
Cation-Anion Balance	Calculation									
Cation-Anion Balance			-3.7			%			07/22/20 0:00	calc
Sum of Anions			1.4			meq/L			07/22/20 0:00	calc
Sum of Cations			1.3			meq/L			07/22/20 0:00	calc
Chloride	SM4500CI-E	1	0.5	В	*	mg/L	0.5	2	07/16/20 12:45	ttg
Conductivity @25C	SM2510B	1	128		*	umhos/cm	1	10	07/15/20 22:49	еер
Cyanide, total	M335.4 - Colorimetric w/ distillation	0.5		U	*	mg/L	0.003	0.01	07/18/20 22:21	pjb
Hardness as CaCO3 (dissolved)	SM2340B - Calculation		60			mg/L	0.2	5	07/22/20 0:00	calc
Lab Filtration (0.45um filter)	SOPWC050	1							07/09/20 14:59	eij
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2		0.02	ВН		mg/L	0.02	0.1	07/22/20 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	0.02	ВН	*	mg/L	0.02	0.1	07/10/20 23:08	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1		UH	*	mg/L	0.01	0.05	07/10/20 23:08	pjb
pH (lab)	SM4500H+ B									
pН		1	8.2	Н	*	units	0.1	0.1	07/15/20 0:00	еер
pH measured at		1	21.5		*	С	0.1	0.1	07/15/20 0:00	еер
Residue, Filterable (TDS) @180C	SM2540C	1	76		*	mg/L	20	40	07/10/20 14:16	jck
Sulfate	D516-02/-07/-11 - Turbidimetri	c 1	4.5	В	*	mg/L	1	5	07/15/20 9:09	rbt

ODO Minima III O

CRG Mining, LLCProject ID:

Sample ID: CM 2

ACZ Sample ID: L60143-08

Date Sampled: 07/07/20 11:15

Date Received: 07/09/20

Sample Matrix: Surface Water

Inord	anic	Pren

Parameter	EPA Method	Dilution	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Cyanide, total	M335.4 - Manual Distillation		-					07/15/20 12:18	wtc
Lab Filtration (0.45um)	M200.7/200.8/3005A							07/13/20 16:02	ral
& Acidification									

Metals Analysis									
Parameter	EPA Method	Dilution	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	M200.7 ICP	1		U	mg/L	0.05	0.3	07/15/20 12:53	kja
Antimony, dissolved	M200.8 ICP-MS	1		U	mg/L	0.0004	0.002	07/16/20 19:26	bsu
Arsenic, dissolved	M200.8 ICP-MS	1	0.0019		mg/L	0.0002	0.001	07/16/20 19:26	bsu
Barium, dissolved	M200.7 ICP	1	0.013	В	mg/L	0.007	0.04	07/15/20 12:53	kja
Beryllium, dissolved	M200.8 ICP-MS	1		U	mg/L	0.00008	0.0003	07/16/20 19:26	bsu
Cadmium, dissolved	M200.8 ICP-MS	1	0.00011	В	mg/L	0.00005	0.0003	07/16/20 19:26	bsu
Calcium, dissolved	M200.7 ICP	1	17.3		mg/L	0.1	0.5	07/15/20 12:53	kja
Chromium, dissolved	M200.8 ICP-MS	1		U	mg/L	0.0005	0.002	07/16/20 19:26	bsu
Cobalt, dissolved	M200.7 ICP	1		U	mg/L	0.01	0.05	07/15/20 12:53	kja
Copper, dissolved	M200.7 ICP	1		U	mg/L	0.01	0.05	07/15/20 12:53	kja
Iron, dissolved	M200.7 ICP	1		U	mg/L	0.06	0.2	07/15/20 12:53	kja
Lead, dissolved	M200.8 ICP-MS	1		U	mg/L	0.0001	0.0005	07/16/20 19:26	bsu
Magnesium, dissolved	M200.7 ICP	1	3.2		mg/L	0.2	1	07/15/20 12:53	kja
Manganese, dissolved	M200.7 ICP	1		U	mg/L	0.01	0.05	07/15/20 12:53	kja
Mercury, total	M245.1 CVAA	1		U	mg/L	0.0002	0.001	07/14/20 18:30	slm
Nickel, dissolved	M200.7 ICP	1		U	mg/L	0.008	0.04	07/15/20 12:53	kja
Potassium, dissolved	M200.7 ICP	1	0.5	В	mg/L	0.2	1	07/15/20 12:53	kja
Sodium, dissolved	M200.7 ICP	1	5.7		mg/L	0.2	1	07/15/20 12:53	kja
Vanadium, dissolved	M200.7 ICP	1		U	mg/L	0.01	0.03	07/16/20 12:52	kja
Zinc, dissolved	M200.7 ICP	1		U	mg/L	0.02	0.05	07/15/20 12:53	kja

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

CRG Mining, LLC

Project ID:

Sample ID: CM 2 ACZ Sample ID: L60143-08

Date Sampled: 07/07/20 11:15

Date Received: 07/09/20

Wet	Che	emistr	١
VVCL	Onc	/IIII3U	1

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as		1	69.3		*	mg/L	2	20	07/15/20 0:00	еер
CaCO3										
Carbonate as CaCO3		1		U	*	mg/L	2	20	07/15/20 0:00	eep
Hydroxide as CaCO3		1		U	*	mg/L	2	20	07/15/20 0:00	еер
Total Alkalinity		1	69.3		*	mg/L	2	20	07/15/20 0:00	eep
Cation-Anion Balance	Calculation									
Cation-Anion Balance			-9.7			%			07/22/20 0:00	calc
Sum of Anions			1.7			meq/L			07/22/20 0:00	calc
Sum of Cations			1.4			meq/L			07/22/20 0:00	calc
Chloride	SM4500CI-E	1		U	*	mg/L	0.5	2	07/16/20 12:45	ttg
Conductivity @25C	SM2510B	1	143		*	umhos/cm	1	10	07/15/20 22:59	еер
Cyanide, total	M335.4 - Colorimetric w/ distillation	0.5		U	*	mg/L	0.003	0.01	07/18/20 22:22	. pjb
Hardness as CaCO3 (dissolved)	SM2340B - Calculation		56			mg/L	0.2	5	07/22/20 0:00	calc
Lab Filtration (0.45um filter)	SOPWC050	1							07/09/20 15:03	eij
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2		0.04	BH		mg/L	0.02	0.1	07/22/20 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	0.04	ВН	*	mg/L	0.02	0.1	07/10/20 23:10) pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1		UH	*	mg/L	0.01	0.05	07/10/20 23:10) pjb
pH (lab)	SM4500H+ B									
pН		1	8.1	Н	*	units	0.1	0.1	07/15/20 0:00	еер
pH measured at		1	21.2		*	С	0.1	0.1	07/15/20 0:00	еер
Residue, Filterable (TDS) @180C	SM2540C	1	98		*	mg/L	20	40	07/10/20 14:18	jck
Sulfate	D516-02/-07/-11 - Turbidimetri	c 1	14.2		*	mg/L	1	5	07/15/20 9:09	rbt

Project ID:

Sample ID: CM 3

ACZ Sample ID: L60143-09

Date Sampled: 07/07/20 11:30

Date Received: 07/09/20

Sample Matrix: Surface Water

Inord	anic	Pren

Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Cyanide, total	M335.4 - Manual Distillation		-						07/15/20 12:2	24 wtc
Lab Filtration (0.45um)	M200.7/200.8/3005A								07/13/20 16:0)2 ral
& Acidification										

Damana dam	EDA Mathead	Dilection	Daniel	OI VO	1.1 14	MDI	DOL	D-4-	Amaland
Parameter	EPA Method	Dilution	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	M200.7 ICP	1		U	mg/L	0.05	0.3	07/15/20 13:08	kja
Antimony, dissolved	M200.8 ICP-MS	1		U	mg/L	0.0004	0.002	07/16/20 19:28	bsu
Arsenic, dissolved	M200.8 ICP-MS	1	0.0009	В	mg/L	0.0002	0.001	07/16/20 19:28	bsu
Barium, dissolved	M200.7 ICP	1	0.013	В	mg/L	0.007	0.04	07/15/20 13:08	kja
Beryllium, dissolved	M200.8 ICP-MS	1		U	mg/L	80000.0	0.0003	07/16/20 19:28	bsu
Cadmium, dissolved	M200.8 ICP-MS	1	0.00012	В	mg/L	0.00005	0.0003	07/16/20 19:28	bsu
Calcium, dissolved	M200.7 ICP	1	15.6		mg/L	0.1	0.5	07/15/20 13:08	kja
Chromium, dissolved	M200.8 ICP-MS	1		U	mg/L	0.0005	0.002	07/16/20 19:28	bsu
Cobalt, dissolved	M200.7 ICP	1		U	mg/L	0.01	0.05	07/15/20 13:08	kja
Copper, dissolved	M200.7 ICP	1		U	mg/L	0.01	0.05	07/15/20 13:08	kja
Iron, dissolved	M200.7 ICP	1		U	mg/L	0.06	0.2	07/15/20 13:08	kja
Lead, dissolved	M200.8 ICP-MS	1	0.0005		mg/L	0.0001	0.0005	07/16/20 19:28	bsu
Magnesium, dissolved	M200.7 ICP	1	5.1		mg/L	0.2	1	07/15/20 13:08	kja
Manganese, dissolved	M200.7 ICP	1		U	mg/L	0.01	0.05	07/15/20 13:08	kja
Mercury, total	M245.1 CVAA	1		U	mg/L	0.0002	0.001	07/14/20 18:31	slm
Nickel, dissolved	M200.7 ICP	1		U	mg/L	0.008	0.04	07/15/20 13:08	kja
Potassium, dissolved	M200.7 ICP	1	0.5	В	mg/L	0.2	1	07/15/20 13:08	kja
Sodium, dissolved	M200.7 ICP	1	1.6		mg/L	0.2	1	07/15/20 13:08	kja
Vanadium, dissolved	M200.7 ICP	1		U	mg/L	0.01	0.03	07/16/20 13:09	kja
Zinc, dissolved	M200.7 ICP	1		U	mg/L	0.02	0.05	07/15/20 13:08	kja

Project ID:

Sample ID: CM 3

ACZ Sample ID: L60143-09

Date Sampled: 07/07/20 11:30

Date Received: 07/09/20

Wet	Cher	nistr
VVCL	OHIO	mou

Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as CaCO3		1	65.1		*	mg/L	2	20	07/15/20 0:00	еер
Carbonate as CaCO3		1		U	*	mg/L	2	20	07/15/20 0:00	еер
Hydroxide as CaCO3		1		U	*	mg/L	2	20	07/15/20 0:00	еер
Total Alkalinity		1	65.1		*	mg/L	2	20	07/15/20 0:00	еер
Cation-Anion Balance	Calculation									
Cation-Anion Balance			-3.7			%			07/22/20 0:00	calc
Sum of Anions			1.4			meq/L			07/22/20 0:00	calc
Sum of Cations			1.3			meq/L			07/22/20 0:00	calc
Chloride	SM4500CI-E	1		U	*	mg/L	0.5	2	07/16/20 12:45	ttg
Conductivity @25C	SM2510B	1	128		*	umhos/cm	1	10	07/15/20 23:09	еер
Cyanide, total	M335.4 - Colorimetric w/ distillation	0.5		U	*	mg/L	0.003	0.01	07/18/20 22:22	. pjb
Hardness as CaCO3 (dissolved)	SM2340B - Calculation		60.0			mg/L	0.2	5	07/22/20 0:00	calc
Lab Filtration (0.45um filter)	SOPWC050	1							07/09/20 15:06	eij
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2		0.05	BH		mg/L	0.02	0.1	07/22/20 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	0.05	ВН	*	mg/L	0.02	0.1	07/10/20 23:11	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1		UH	*	mg/L	0.01	0.05	07/10/20 23:11	pjb
pH (lab)	SM4500H+ B									
pН		1	8.2	Н	*	units	0.1	0.1	07/15/20 0:00	еер
pH measured at		1	20.9		*	С	0.1	0.1	07/15/20 0:00	eep
Residue, Filterable (TDS) @180C	SM2540C	1	82		*	mg/L	20	40	07/10/20 14:24	jck
Sulfate	D516-02/-07/-11 - Turbidimetri	c 1	5.2		*	mg/L	1	5	07/15/20 9:09	rbt

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report F	loador	Eval	anatione
Report	ieauei		สเเสเเบเเร

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest Limit Upper limit for RPD, in %.

Lower Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit unless omitted or equal to the PQL (see comment #5).

Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit. Synonymous with the EPA term "minimum level".

QC True Value of the Control Sample or the amount added to the Spike

Rec Recovered amount of the true value or spike added, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

QC Sample	Types
-----------	-------

	••		
AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method. Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity.
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time.
- L Target analyte response was below the laboratory defined negative threshold.
- U The material was analyzed for, but was not detected above the level of the associated value.

The associated value is either the sample quantitation limit or the sample detection limit.

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (4) EPA SW-846. Test Methods for Evaluating Solid Waste.
- (5) Standard Methods for the Examination of Water and Wastewater.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.
- (4) An asterisk in the "XQ" column indicates there is an extended qualifier and/or certification qualifier associated with the result.
- (5) If the MDL equals the PQL or the MDL column is omitted, the PQL is the reporting limit.

For a complete list of ACZ Extended Qualifiers, please click:

https://acz.com/wp-content/uploads/2019/04/Ext-Qual-List.pdf

REP001.03.15.02

L60143-2007221356 Page 20 of 40

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Alkalinity as CaC	03		SM2320I	B - Titration									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG501535													
WG501535PBW1	PBW	07/15/20 19:13				U	mg/L		-20	20			
WG501535LCSW3	LCSW	07/15/20 19:31	WC200707-4	820.0001		836	mg/L	102	90	110			
L60146-01DUP	DUP	07/15/20 23:33			478	492	mg/L				3	20	
WG501535LCSW6	LCSW	07/15/20 23:52	WC200707-4	820.0001		840	mg/L	102	90	110			
WG501535PBW2	PBW	07/16/20 0:01				U	mg/L		-20	20			
WG501535LCSW9	LCSW	07/16/20 3:12	WC200707-4	820.0001		840	mg/L	102	90	110			
WG501535PBW3	PBW	07/16/20 3:21				U	mg/L		-20	20			
WG501535LCSW12	LCSW	07/16/20 6:54	WC200707-4	820.0001		854	mg/L	104	90	110			
WG501535PBW4	PBW	07/16/20 7:03				U	mg/L		-20	20			
WG501535LCSW15	LCSW	07/16/20 11:16	WC200707-4	820.0001		866	mg/L	106	90	110			
Aluminum, disso	olved		M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG501477													
WG501477ICV	ICV	07/15/20 11:33	II200701-1	2		1.945	mg/L	97	95	105			
WG501477ICB	ICB	07/15/20 11:39				U	mg/L		-0.15	0.15			
WG501477LFB	LFB	07/15/20 11:51	II200715-2	1.0012		.972	mg/L	97	85	115			
L49994-75AS	AS	07/15/20 12:13	II200715-2	1.0012	U	1	mg/L	100	85	115			
L49994-75ASD	ASD	07/15/20 12:16	II200715-2	1.0012	U	.992	mg/L	99	85	115	1	20	
L60143-08AS	AS	07/15/20 12:56	II200715-2	1.0012	U	.989	mg/L	99	85	115			
L60143-08ASD	ASD	07/15/20 13:05	II200715-2	1.0012	U	.986	mg/L	98	85	115	0	20	
Antimony, disso	lved		M200.8 I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG501575													
WG501575ICV	ICV	07/16/20 12:22	MS200701-2	.02004		.02075	mg/L	104	90	110			
WG501575ICB	ICB	07/16/20 12:25				U	mg/L		-0.00088	0.00088			
WG501575LFB	LFB	07/16/20 12:47	MS200707-3	.01		.01018	mg/L	102	85	115			
L60140-04AS	AS	07/16/20 13:03	MS200707-3	.01	U	.00898	mg/L	90	70	130			
L60140-04ASD	ASD	07/16/20 13:06	MS200707-3	.01	U	.0103	mg/L	103	70	130	14	20	
L60143-08AS	AS	07/16/20 13:48	MS200707-3	.01	U	.00971	mg/L	97	70	130			
L60143-08ASD	ASD	07/16/20 13:51	MS200707-3	.01	U	.00988	mg/L	99	70	130	2	20	
WG501630													
WG501630ICV	ICV	07/16/20 18:58	MS200701-2	.02004		.0205	mg/L	102	90	110			
WG501630ICB	ICB	07/16/20 19:00				U	mg/L		-0.00088	0.00088			
WG501630LFB	LFB	07/16/20 19:02	MS200707-3	.01		.00985	mg/L	99	85	115			
L60143-04AS	AS	07/16/20 19:13	MS200707-3	.01	U	.0086	mg/L	86	70	130			
L60143-04ASD	ASD	07/16/20 19:15	MS200707-3	.01	U	.00958	mg/L	96	70	130	11	20	

L60143-2007221356 Page 21 of 40

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Arsenic, dissolv	/ed		M200.8 I	CP-MS									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG501575													
WG501575ICV	ICV	07/16/20 12:22	MS200701-2	.05		.04954	mg/L	99	90	110			
WG501575ICB	ICB	07/16/20 12:25				U	mg/L		-0.00044	0.00044			
WG501575LFB	LFB	07/16/20 12:47	MS200707-3	.05005		.04898	mg/L	98	85	115			
L60140-04AS	AS	07/16/20 13:03	MS200707-3	.05005	U	.05267	mg/L	105	70	130			
L60140-04ASD	ASD	07/16/20 13:06	MS200707-3	.05005	U	.05441	mg/L	109	70	130	3	20	
L60143-08AS	AS	07/16/20 13:48	MS200707-3	.05005	.0021	.04844	mg/L	93	70	130			
L60143-08ASD	ASD	07/16/20 13:51	MS200707-3	.05005	.0021	.05486	mg/L	105	70	130	12	20	
WG501630													
WG501630ICV	ICV	07/16/20 18:58	MS200701-2	.05		.05137	mg/L	103	90	110			
WG501630ICB	ICB	07/16/20 19:00				U	mg/L		-0.00044	0.00044			
WG501630LFB	LFB	07/16/20 19:02	MS200707-3	.05005		.0485	mg/L	97	85	115			
L60143-04AS	AS	07/16/20 19:13	MS200707-3	.05005	U	.04975	mg/L	99	70	130			
L60143-04ASD	ASD	07/16/20 19:15	MS200707-3	.05005	U	.05226	mg/L	104	70	130	5	20	
Barium, dissolv	ed		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG501477													
WG501477ICV	ICV	07/15/20 11:33	II200701-1	2		1.9422	mg/L	97	95	105			
WG501477ICB	ICB	07/15/20 11:39				U	mg/L		-0.021	0.021			
WG501477LFB	LFB	07/15/20 11:51	II200715-2	.5005		.4775	mg/L	95	85	115			
L49994-75AS	AS	07/15/20 12:13	II200715-2	.5005	.027	.5038	mg/L	95	85	115			
L49994-75ASD	ASD	07/15/20 12:16	II200715-2	.5005	.027	.4936	mg/L	93	85	115	2	20	
L60143-08AS	AS	07/15/20 12:56	II200715-2	.5005	.013	.4781	mg/L	93	85	115			
L60143-08ASD	ASD	07/15/20 13:05	II200715-2	.5005	.013	.487	mg/L	95	85	115	2	20	
Beryllium, disso	olved		M200.8 I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG501575													
WG501575ICV	ICV	07/16/20 12:22	MS200701-2	.05		.04759	mg/L	95	90	110			
WG501575ICB	ICB	07/16/20 12:25				U	mg/L		-0.000176	0.000176			
WG501575LFB	LFB	07/16/20 12:47	MS200707-3	.05005		.04948	mg/L	99	85	115			
L60140-04AS	AS	07/16/20 13:03	MS200707-3	.05005	U	.04764	mg/L	95	70	130			
L60140-04ASD	ASD	07/16/20 13:06	MS200707-3	.05005	U	.05252	mg/L	105	70	130	10	20	
L60143-08AS	AS	07/16/20 13:48	MS200707-3	.05005	U	.05094	mg/L	102	70	130			
L60143-08ASD	ASD	07/16/20 13:51	MS200707-3	.05005	U	.05024	mg/L	100	70	130	1	20	
WG501630													
WG501630ICV	ICV	07/16/20 18:58	MS200701-2	.05		.049483	mg/L	99	90	110			
WG501630ICB	ICB	07/16/20 19:00				.000081	mg/L		-0.000176	0.000176			
WG501630LFB	LFB	07/16/20 19:02	MS200707-3	.05005		.046505	mg/L	93	85	115			
L60143-04AS	AS	07/16/20 19:13	MS200707-3	.05005	U	.047894	mg/L	96	70	130			
L60143-04ASD	ASD	07/16/20 19:15	MS200707-3	.05005	U	.051076	mg/L	102	70	130	6	20	

L60143-2007221356 Page 22 of 40

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Cadmium, disso	lved		M200.8 I	CP-MS									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG501575													
WG501575ICV	ICV	07/16/20 12:22	MS200701-2	.05		.04875	mg/L	98	90	110			
WG501575ICB	ICB	07/16/20 12:25				U	mg/L		-0.00011	0.00011			
WG501575LFB	LFB	07/16/20 12:47	MS200707-3	.05005		.05046	mg/L	101	85	115			
L60140-04AS	AS	07/16/20 13:03	MS200707-3	.05005	.0001	.04777	mg/L	95	70	130			
L60140-04ASD	ASD	07/16/20 13:06	MS200707-3	.05005	.0001	.05314	mg/L	106	70	130	11	20	
L60143-08AS	AS	07/16/20 13:48	MS200707-3	.05005	.00009	.05034	mg/L	100	70	130			
L60143-08ASD	ASD	07/16/20 13:51	MS200707-3	.05005	.00009	.05	mg/L	100	70	130	1	20	
WG501630													
WG501630ICV	ICV	07/16/20 18:58	MS200701-2	.05		.049491	mg/L	99	90	110			
WG501630ICB	ICB	07/16/20 19:00				U	mg/L		-0.00011	0.00011			
WG501630LFB	LFB	07/16/20 19:02	MS200707-3	.05005		.047499	mg/L	95	85	115			
L60143-04AS	AS	07/16/20 19:13	MS200707-3	.05005	.00011	.046233	mg/L	92	70	130			
L60143-04ASD	ASD	07/16/20 19:15	MS200707-3	.05005	.00011	.049174	mg/L	98	70	130	6	20	
Calcium, dissolv	ved		M200.7 I	СР									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG501477													
WG501477ICV	ICV	07/15/20 11:33	II200701-1	100		97.7	mg/L	98	95	105			
WG501477ICB	ICB	07/15/20 11:39				U	mg/L		-0.3	0.3			
WG501477LFB	LFB	07/15/20 11:51	II200715-2	67.9908		66.82	mg/L	98	85	115			
L49994-75AS	AS	07/15/20 12:13	II200715-2	67.9908	110	169.9	mg/L	88	85	115			
L49994-75ASD	ASD	07/15/20 12:16	II200715-2	67.9908	110	168.3	mg/L	86	85	115	1	20	
L60143-08AS	AS	07/15/20 12:56	II200715-2	67.9908	17.3	83.61	mg/L	98	85	115			
L60143-08ASD	ASD	07/15/20 13:05	II200715-2	67.9908	17.3	83.14	mg/L	97	85	115	1	20	
Chloride			SM45000	CI-E									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG501602													
WG501602ICB	ICB	07/16/20 9:10				U	mg/L		-1.5	1.5			
WG501602ICV	ICV	07/16/20 9:10	WI200506-2	55.055		56.53	mg/L	103	90	110			
WG501602LFB1	LFB	07/16/20 12:43	WI200327-3	30.03		30.67	mg/L	102	90	110			
L60128-01AS	AS	07/16/20 12:43	WI200327-3	30.03	14.1	44.91	mg/L	103	90	110			
L60128-02DUP	DUP	07/16/20 12:43			9.4	9.38	mg/L				0	20	
L60143-06AS	AS	07/16/20 12:45	WI200327-3	30.03	U	32.55	mg/L	108	90	110			
L60143-07DUP	DUP	07/16/20 12:45			.5	U	mg/L				200	20	RA
WG501602LFB2	LFB	07/16/20 12:47	WI200327-3	30.03		31.09	mg/L	104	90	110			

L60143-2007221356 Page 23 of 40

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Chromium, disso	lved		M200.8 IC	P-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG501575													
WG501575ICV	ICV	07/16/20 12:22	MS200701-2	.05		.04849	mg/L	97	90	110			
WG501575ICB	ICB	07/16/20 12:25				U	mg/L		-0.0011	0.0011			
WG501575LFB	LFB	07/16/20 12:47	MS200707-3	.05		.04653	mg/L	93	85	115			
L60140-04AS	AS	07/16/20 13:03	MS200707-3	.05	U	.04789	mg/L	96	70	130			
L60140-04ASD	ASD	07/16/20 13:06	MS200707-3	.05	U	.04913	mg/L	98	70	130	3	20	
L60143-08AS	AS	07/16/20 13:48	MS200707-3	.05	U	.04269	mg/L	85	70	130			
L60143-08ASD	ASD	07/16/20 13:51	MS200707-3	.05	U	.04783	mg/L	96	70	130	11	20	
WG501630													
WG501630ICV	ICV	07/16/20 18:58	MS200701-2	.05		.05112	mg/L	102	90	110			
WG501630ICB	ICB	07/16/20 19:00				U	mg/L		-0.0011	0.0011			
WG501630LFB	LFB	07/16/20 19:02	MS200707-3	.05		.04723	mg/L	94	85	115			
L60143-04AS	AS	07/16/20 19:13	MS200707-3	.05	U	.04715	mg/L	94	70	130			
L60143-04ASD	ASD	07/16/20 19:15	MS200707-3	.05	U	.04919	mg/L	98	70	130	4	20	
Cobalt, dissolved	t		M200.7 IC	P									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG501477													
WG501477ICV	ICV	07/15/20 11:33	II200701-1	2.002		1.903	mg/L	95	95	105			
WG501477ICB	ICB	07/15/20 11:39				U	mg/L		-0.03	0.03			
WG501477LFB	LFB	07/15/20 11:51	II200715-2	.5		.475	mg/L	95	85	115			
L49994-75AS	AS	07/15/20 12:13	II200715-2	.5	U	.458	mg/L	92	85	115			
L49994-75ASD	ASD	07/15/20 12:16	II200715-2	.5	U	.453	mg/L	91	85	115	1	20	
L60143-08AS	AS	07/15/20 12:56	II200715-2	.5	U	.462	mg/L	92	85	115			
L60143-08ASD	ASD	07/15/20 13:05	II200715-2	.5	U	.465	mg/L	93	85	115	1	20	
Conductivity @25	5C		SM2510B										
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG501535													
WG501535LCSW2	LCSW	07/15/20 19:19	PCN61372	1410		1410	umhos/cm	100	90	110			
L60146-01DUP	DUP	07/15/20 23:33			2860	2880	umhos/cm				1	20	
WG501535LCSW5	LCSW	07/15/20 23:40	PCN61372	1410		1410	umhos/cm	100	90	110			
WG501535LCSW8	LCSW	07/16/20 3:00	PCN61372	1410		1400	umhos/cm	99	90	110			
WG501535LCSW11	LCSW	07/16/20 6:41	PCN61372	1410		1390	umhos/cm	99	90	110			
WG501535LCSW14	LCSW	07/16/20 11:02	PCN61372	1410		1380	umhos/cm	98	90	110			
Copper, dissolve	d		M200.7 IC	P									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG501477													
WG501477ICV	ICV	07/15/20 11:33	II200701-1	2		1.909	mg/L	95	95	105			
WG501477ICB	ICB	07/15/20 11:39				U	mg/L		-0.03	0.03			
WG501477LFB	LFB	07/15/20 11:51	II200715-2	.501		.483	mg/L	96	85	115			
L49994-75AS	AS	07/15/20 12:13	II200715-2	.501	U	.486	mg/L	97	85	115			
L49994-75ASD	ASD	07/15/20 12:16	II200715-2	.501	U	.477	mg/L	95	85	115	2	20	
L60143-08AS	AS	07/15/20 12:56	II200715-2	.501	U	.474	mg/L	95	85	115			
L60143-08ASD	ASD	07/15/20 13:05	II200715-2	.501	U	.484	mg/L	97	85	115	2	20	

L60143-2007221356 Page 24 of 40

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

are III /o Nec.													
Cyanide, total			M335.4 -	Colorimetr	ic w/ distill	ation							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG501743													
WG501743ICV	ICV	07/18/20 22:07	WI200707-13	.3003		.2804	mg/L	93	90	110			
WG501743ICB	ICB	07/18/20 22:08				U	mg/L		-0.003	0.003			
WG501485LRB	LRB	07/18/20 22:09				U	mg/L		-0.003	0.003			
WG501485LFB	LFB	07/18/20 22:10	WI200707-14	.2		.1962	mg/L	98	90	110			
L60128-05DUP	DUP	07/18/20 22:12			U	U	mg/L				0	20	RA
L60128-06LFM	LFM	07/18/20 22:13	WI200707-14	.2	U	.2024	mg/L	101	90	110			
L60176-05LFM	LFM	07/18/20 22:32	WI200707-14	.2	U	.1987	mg/L	99	90	110			
L60176-06DUP	DUP	07/18/20 22:33			.019	.0197	mg/L				4	20	RA
Iron, dissolved			M200.7 I	CP									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG501477	71.	, ,											
WG501477ICV	ICV	07/15/20 11:33	II200701-1	2		1.897	mg/L	95	95	105			
	ICB		11200701-1	2		1.697 U	mg/L	95					
WG501477ICB	LFB	07/15/20 11:39	II200715-2	1 0010			_	00	-0.18	0.18			
WG501477LFB		07/15/20 11:51		1.0018		.983	mg/L	98	85	115			
L49994-75AS	AS	07/15/20 12:13	II200715-2	1.0018	U	.994	mg/L	99	85	115	0	00	
L49994-75ASD	ASD	07/15/20 12:16	II200715-2	1.0018	U	.969	mg/L	97	85	115	3	20	
L60143-08AS L60143-08ASD	AS ASD	07/15/20 12:56 07/15/20 13:05	II200715-2 II200715-2	1.0018 1.0018	U U	.954 .968	mg/L mg/L	95 97	85 85	115 115	1	20	
	ASD	07/13/20 13.03	112007 13-2	1.0016		.900	mg/L	91	00	110		20	
Lead, dissolved			M200.8 I	CP-MS									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG501575													
WG501575ICV	ICV	07/16/20 12:22	MS200701-2	.05		.05035	mg/L	101	90	110			
WG501575ICB	ICB	07/16/20 12:25				U	mg/L		-0.00022	0.00022			
WG501575LFB	LFB	07/16/20 12:47	MS200707-3	.05005		.05044	mg/L	101	85	115			
L60140-04AS	AS	07/16/20 13:03	MS200707-3	.05005	.0004	.0471	mg/L	93	70	130			
L60140-04ASD	ASD	07/16/20 13:06	MS200707-3	.05005	.0004	.05342	mg/L	106	70	130	13	20	
L60143-08AS	AS	07/16/20 13:48	MS200707-3	.05005	U	.04858	mg/L	97	70	130			
L60143-08ASD	ASD	07/16/20 13:51	MS200707-3	.05005	U	.04815	mg/L	96	70	130	1	20	
WG501630													
WG501630ICV	ICV	07/16/20 18:58	MS200701-2	.05		.05038	mg/L	101	90	110			
WG501630ICB	ICB	07/16/20 19:00				U	mg/L		-0.00022	0.00022			
WG501630LFB	LFB	07/16/20 19:02	MS200707-3	.05005		.04712	mg/L	94	85	115			
L60143-04AS	AS	07/16/20 19:13	MS200707-3	.05005	U	.04641	mg/L	93	70	130			
L60143-04ASD	ASD	07/16/20 19:15	MS200707-3	.05005	U	.04923	mg/L	98	70	130	6	20	
Magnesium, dis	solved		M200.7 I	CP									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG501477													
WG501477ICV	ICV	07/15/20 11:33	II200701-1	100		95.44	mg/L	95	95	105			
WG501477ICB	ICB	07/15/20 11:39				U	mg/L		-0.6	0.6			
WG501477LFB	LFB	07/15/20 11:51	II200715-2	49.9996		47.11	mg/L	94	85	115			
L49994-75AS	AS	07/15/20 12:13	II200715-2	49.9996	5.5	51.41	mg/L	92	85	115			
L49994-75ASD	ASD	07/15/20 12:16	II200715-2	49.9996	5.5	50.8	mg/L	91	85	115	1	20	
L60143-08AS	AS	07/15/20 12:56	II200715-2	49.9996	3.2	50.55	mg/L	95	85	115			
L60143-08ASD	ASD	07/15/20 13:05	II200715-2	49.9996	3.2	50.11	mg/L	94	85	115	1	20	

L60143-2007221356 Page 25 of 40

(800) 334-5493

CRG Mining, LLC ACZ Project ID: L60143

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

are iii /o Nec.													
Manganese, dis	solved		M200.7 I	CP									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG501477													
WG501477ICV	ICV	07/15/20 11:33	II200701-1	2		1.903	mg/L	95	95	105			
WG501477ICB	ICB	07/15/20 11:39				U	mg/L		-0.03	0.03			
WG501477LFB	LFB	07/15/20 11:51	II200715-2	.5015		.49	mg/L	98	85	115			
L49994-75AS	AS	07/15/20 12:13	II200715-2	.5015	.02	.506	mg/L	97	85	115			
L49994-75ASD	ASD	07/15/20 12:16	II200715-2	.5015	.02	.496	mg/L	95	85	115	2	20	
L60143-08AS	AS	07/15/20 12:56	II200715-2	.5015	U	.479	mg/L	96	85	115			
L60143-08ASD	ASD	07/15/20 13:05	II200715-2	.5015	U	.487	mg/L	97	85	115	2	20	
Mercury, total			M245.1 C	CVAA									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG501307													
WG501307ICV	ICV	07/14/20 18:10	HG200526-2	.004995		.00494	mg/L	99	95	105			
WG501307ICB	ICB	07/14/20 18:11				U	mg/L		-0.0002	0.0002			
WG501307LRB	LRB	07/14/20 18:12				U	mg/L		-0.00044	0.00044			
WG501307LFB	LFB	07/14/20 18:13	HG200708-3	.002002		.00183	mg/L	91	85	115			
L60106-01LFM	LFM	07/14/20 18:15	HG200708-3	.002002	U	.00162	mg/L	81	85	115			M2
L60106-01LFMD	LFMD	07/14/20 18:16	HG200708-3	.002002	U	.00156	mg/L	78	85	115	4	20	M2
L60143-07LFM	LFM	07/14/20 18:28	HG200708-3	.002002	U	.00189	mg/L	94	85	115			
L60143-07LFMD	LFMD	07/14/20 18:29	HG200708-3	.002002	U	.00184	mg/L	92	85	115	3	20	
Nickel, dissolve	d		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG501477													
WG501477ICV	ICV	07/15/20 11:33	II200701-1	2		1.9358	mg/L	97	95	105			
WG501477ICB	ICB	07/15/20 11:39				U	mg/L		-0.024	0.024			
WG501477LFB	LFB	07/15/20 11:51	II200715-2	.501		.4965	mg/L	99	85	115			
L49994-75AS	AS	07/15/20 12:13	II200715-2	.501	U	.4839	mg/L	97	85	115			
L49994-75ASD	ASD	07/15/20 12:16	II200715-2	.501	U	.4699	mg/L	94	85	115	3	20	
L60143-08AS	AS	07/15/20 12:56	II200715-2	.501	U	.4777	mg/L	95	85	115			
L60143-08ASD	ASD	07/15/20 13:05	II200715-2	.501	U	.4824	mg/L	96	85	115	1	20	
Nitrate/Nitrite as	s N, diss	olved	M353.2 -	Automated	Cadmiun	n Reduc	tion						
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG501251													
WG501251ICV	ICV	07/10/20 22:47	WI200514-1	2.416		2.422	mg/L	100	90	110			
WG501251ICB	ICB	07/10/20 22:48				U	mg/L		-0.02	0.02			
WG501251LFB	LFB	07/10/20 22:53	WI200331-15	2		1.991	mg/L	100	90	110			
L60143-01AS	AS	07/10/20 22:56	WI200331-15	2	.03	1.901	mg/L	94	90	110			
L60143-02DUP	DUP	07/10/20 22:58			.18	.182	mg/L				1	20	RA
Nitrite as N, diss	solved		M353.2 -	Automated	Cadmiun	n Reduc	tion						
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample			Rec%	Lower	Upper	RPD	Limit	Qual
WG501251		•											
WG501251ICV	ICV	07/10/20 22:47	WI200514-1	.609		.62	mg/L	102	90	110			
WG501251ICB	ICB	07/10/20 22:48		.505		.02 U	mg/L	102	-0.01	0.01			
WG501251LFB	LFB	07/10/20 22:53	WI200331-15	1		1.059	mg/L	106	90	110			
L60143-01AS	AS	07/10/20 22:56	WI200331-15	1	U	.982	mg/L	98	90	110			
L60143-02DUP	DUP	07/10/20 22:58			U	.30 <u>2</u>	mg/L	50			0	20	RA
_00002001	201	J., . J, LO ZZ.OO			0	_	J-				v		

L60143-2007221356 Page 26 of 40

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

pH (lab)			SM4500	H+ B									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG501535													
WG501535LCSW1	LCSW	07/15/20 19:17	PCN60577	6		6	units	100	5.9	6.1			
L60146-01DUP	DUP	07/15/20 23:33			8.1	8.2	units				1	20	
WG501535LCSW4	LCSW	07/15/20 23:38	PCN60577	6		6	units	100	5.9	6.1			
WG501535LCSW7	LCSW	07/16/20 2:57	PCN60577	6		6	units	100	5.9	6.1			
WG501535LCSW10	LCSW	07/16/20 6:39	PCN60577	6		6.1	units	102	5.9	6.1			
WG501535LCSW13	LCSW	07/16/20 11:00	PCN60577	6		6.1	units	102	5.9	6.1			
Potassium, disso	lved		M200.7	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG501477													
WG501477ICV	ICV	07/15/20 11:33	II200701-1	20		19.54	mg/L	98	95	105			
WG501477ICB	ICB	07/15/20 11:39				U	mg/L		-0.6	0.6			
WG501477LFB	LFB	07/15/20 11:51	II200715-2	99.96847		97.92	mg/L	98	85	115			
L49994-75AS	AS	07/15/20 12:13	II200715-2	99.96847	2.4	99.9	mg/L	98	85	115			
L49994-75ASD	ASD	07/15/20 12:16	II200715-2	99.96847	2.4	98.98	mg/L	97	85	115	1	20	
L60143-08AS	AS	07/15/20 12:56	II200715-2	99.96847	.5	99.48	mg/L	99	85	115			
L60143-08ASD	ASD	07/15/20 13:05	II200715-2	99.96847	.5	98.79	mg/L	98	85	115	1	20	
Residue, Filterab	le (TDS) @180C	SM2540	С									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG501236													
WG501236PBW	PBW	07/10/20 13:50				U	mg/L		-20	20			
WG501236LCSW	LCSW	07/10/20 13:52	PCN61099	1000		1010	mg/L	101	80	120			
L60143-08DUP	DUP	07/10/20 14:21			98	100	mg/L				2	10	RA
L60176-01DUP	DUP	07/10/20 14:50			1490	1490	mg/L				0	10	
Sodium, dissolve	d		M200.7	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG501477													
WG501477ICV	ICV	07/15/20 11:33	II200701-1	100		98.29	mg/L	98	95	105			
WG501477ICB	ICB	07/15/20 11:39				U	mg/L		-0.6	0.6			
WG501477LFB	LFB	07/15/20 11:51	II200715-2	100.0157		97.69	mg/L	98	85	115			
L49994-75AS	AS	07/15/20 12:13	II200715-2	100.0157	U	97.28	mg/L	97	85	115			
L49994-75ASD	ASD	07/15/20 12:16	II200715-2	100.0157	U	96.34	mg/L	96	85	115	1	20	
L60143-08AS	AS	07/15/20 12:56	II200715-2	100.0157	5.7	103.8	mg/L	98	85	115			
L60143-08ASD	ASD	07/15/20 13:05	II200715-2	100.0157	5.7	103.4	mg/L	98	85	115	0	20	
Sulfate			D516-02	!/-07/-11 - Tu	ırbidimetr	ic							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG501466													
WG501466ICB	ICB	07/15/20 8:12				U	mg/L		-3	3			
WG501466ICV	ICV	07/15/20 8:12	WI200710-1	20		20	mg/L	100	90	110			
L60143-01AS	AS	07/15/20 9:08	WI190801-3	10.01	2.8	13	mg/L	102	90	110			
L60143-02DUP	DUP	07/15/20 9:08			31.6	31.7	mg/L				0	20	

L60143-2007221356 Page 27 of 40

(800) 334-5493

CRG Mining, LLC ACZ Project ID: L60143

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

,													
Vanadium, disso	lved		M200.7 I	CP									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG501508													
WG501508ICV	ICV	07/16/20 12:07	II200701-1	2		1.903	mg/L	95	95	105			
WG501508ICB	ICB	07/16/20 12:14				.0079	mg/L		-0.015	0.015			
WG501508LFB	LFB	07/16/20 12:27	II200715-2	.4995		.4898	mg/L	98	85	115			
L60143-08AS	AS	07/16/20 12:56	II200715-2	.4995	U	.4952	mg/L	99	85	115			
L60143-08ASD	ASD	07/16/20 13:05	II200715-2	.4995	U	.503	mg/L	101	85	115	2	20	
Zinc, dissolved			M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG501477													
WG501477ICV	ICV	07/15/20 11:33	II200701-1	2		1.913	mg/L	96	95	105			
WG501477ICB	ICB	07/15/20 11:39				U	mg/L		-0.06	0.06			
WG501477LFB	LFB	07/15/20 11:51	II200715-2	.50075		.506	mg/L	101	85	115			
L49994-75AS	AS	07/15/20 12:13	II200715-2	.50075	U	.482	mg/L	96	85	115			
L49994-75ASD	ASD	07/15/20 12:16	II200715-2	.50075	U	.5	mg/L	100	85	115	4	20	
L60143-08AS	AS	07/15/20 12:56	II200715-2	.50075	U	.511	mg/L	102	85	115			
L60143-08ASD	ASD	07/15/20 13:05	II200715-2	.50075	U	.508	mg/L	101	85	115	1	20	

Page 28 of 40 L60143-2007221356

Inorganic Extended
Qualifier Report

CRG Mining, LLC ACZ Project ID: L60143

(800) 334-5493

CZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
60143-01	NG501535	Bicarbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
		Carbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG501602	Chloride	SM4500CI-E	Q6	Sample was received above recommended temperature.
	WG501535	Conductivity @25C	SM2510B	Q6	Sample was received above recommended temperature.
	WG501743	Cyanide, total	M335.4 - Colorimetric w/ distillation	Q6	Sample was received above recommended temperature.
			M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG501535	Hydroxide as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG501307	Mercury, total	M245.1 CVAA	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG501251	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	НЗ	Sample was received and analyzed past holding time.
			M353.2 - Automated Cadmium Reduction	Q6	Sample was received above recommended temperature.
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M353.2 - Automated Cadmium Reduction	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of Filter workgroup.
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	НЗ	Sample was received and analyzed past holding time.
			M353.2 - Automated Cadmium Reduction	Q6	Sample was received above recommended temperature.
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M353.2 - Automated Cadmium Reduction	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of Filter workgroup.
	WG501535	рН	SM4500H+ B	Q6	Sample was received above recommended temperature.
		pH measured at	SM4500H+ B	Q6	Sample was received above recommended temperature.
	WG501236	Residue, Filterable (TDS) @180C	SM2540C	Q6	Sample was received above recommended temperature.
			SM2540C	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG501466	Sulfate	D516-02/-07/-11 - Turbidimetric	Q6	Sample was received above recommended temperature.
	WG501535	Total Alkalinity	SM2320B - Titration	Q6	Sample was received above recommended temperature

L60143-2007221356 Page 29 of 40

(800) 334-5493

Inorganic Extended Qualifier Report

ACZ Project ID: L60143 **CRG Mining, LLC**

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L60143-02	NG501535	Bicarbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
		Carbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG501602	Chloride	SM4500CI-E	Q6	Sample was received above recommended temperature.
	WG501535	Conductivity @25C	SM2510B	Q6	Sample was received above recommended temperature.
	WG501743	Cyanide, total	M335.4 - Colorimetric w/ distillation	Q6	Sample was received above recommended temperature.
			M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG501535	Hydroxide as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG501307	Mercury, total	M245.1 CVAA	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG501251	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	НЗ	Sample was received and analyzed past holding time.
			M353.2 - Automated Cadmium Reduction	Q6	Sample was received above recommended temperature.
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M353.2 - Automated Cadmium Reduction	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	НЗ	Sample was received and analyzed past holding time.
			M353.2 - Automated Cadmium Reduction	Q6	Sample was received above recommended temperature.
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M353.2 - Automated Cadmium Reduction	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.
	WG501535	pH	SM4500H+ B	Q6	Sample was received above recommended temperature.
		pH measured at	SM4500H+ B	Q6	Sample was received above recommended temperature.
	WG501236	Residue, Filterable (TDS) @180C	SM2540C	Q6	Sample was received above recommended temperature.
			SM2540C	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG501466	Sulfate	D516-02/-07/-11 - Turbidimetric	Q6	Sample was received above recommended temperature.
	WG501535	Total Alkalinity	SM2320B - Titration	Q6	Sample was received above recommended temperature.

REPAD.15.06.05.01

Page 30 of 40 L60143-2007221356

Inorganic Extended Qualifier Report

ACZ Project ID: L60143

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L60143-03	NG501535	Bicarbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
		Carbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG501602	Chloride	SM4500CI-E	Q6	Sample was received above recommended temperature.
	WG501535	Conductivity @25C	SM2510B	Q6	Sample was received above recommended temperature.
	WG501743	Cyanide, total	M335.4 - Colorimetric w/ distillation	Q6	Sample was received above recommended temperature.
			M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG501535	Hydroxide as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG501307	Mercury, total	M245.1 CVAA	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG501251	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	НЗ	Sample was received and analyzed past holding time.
			M353.2 - Automated Cadmium Reduction	Q6	Sample was received above recommended temperature.
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M353.2 - Automated Cadmium Reduction	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	НЗ	Sample was received and analyzed past holding time.
			M353.2 - Automated Cadmium Reduction	Q6	Sample was received above recommended temperature.
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M353.2 - Automated Cadmium Reduction	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.
	WG501535	pH	SM4500H+ B	Q6	Sample was received above recommended temperature.
		pH measured at	SM4500H+ B	Q6	Sample was received above recommended temperature.
	WG501236	Residue, Filterable (TDS) @180C	SM2540C	Q6	Sample was received above recommended temperature.
			SM2540C	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG501466	Sulfate	D516-02/-07/-11 - Turbidimetric	Q6	Sample was received above recommended temperature.
	WG501535	Total Alkalinity	SM2320B - Titration	Q6	Sample was received above recommended temperature.

(800) 334-5493

REPAD.15.06.05.01

L60143-2007221356 Page 31 of 40

Inorganic Extended
Qualifier Report

CRG Mining, LLC ACZ Project ID: L60143

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L60143-04	NG501535	Bicarbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
		Carbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG501602	Chloride	SM4500CI-E	Q6	Sample was received above recommended temperature.
	WG501535	Conductivity @25C	SM2510B	Q6	Sample was received above recommended temperature.
	WG501743	Cyanide, total	M335.4 - Colorimetric w/ distillation	Q6	Sample was received above recommended temperature.
			M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG501535	Hydroxide as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG501307	Mercury, total	M245.1 CVAA	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG501251	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	НЗ	Sample was received and analyzed past holding time.
			M353.2 - Automated Cadmium Reduction	Q6	Sample was received above recommended temperature.
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M353.2 - Automated Cadmium Reduction	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	НЗ	Sample was received and analyzed past holding time.
			M353.2 - Automated Cadmium Reduction	Q6	Sample was received above recommended temperature.
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M353.2 - Automated Cadmium Reduction	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.
	WG501535	рН	SM4500H+ B	Q6	Sample was received above recommended temperature.
		pH measured at	SM4500H+ B	Q6	Sample was received above recommended temperature.
	WG501236	Residue, Filterable (TDS) @180C	SM2540C	Q6	Sample was received above recommended temperature.
			SM2540C	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG501466	Sulfate	D516-02/-07/-11 - Turbidimetric	Q6	Sample was received above recommended temperature.
	WG501535	Total Alkalinity	SM2320B - Titration	Q6	Sample was received above recommended temperature.

L60143-2007221356 Page 32 of 40

(800) 334-5493

ACZ Project ID: L60143 **CRG Mining, LLC**

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L60143-05	NG501535	Bicarbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
		Carbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG501602	Chloride	SM4500CI-E	Q6	Sample was received above recommended temperature.
			SM4500CI-E		Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG501535	Conductivity @25C	Sample was received above recommended temperature.		
	WG501743	Cyanide, total	M335.4 - Colorimetric w/ distillation	Q6	Sample was received above recommended temperature.
			M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG501535	Hydroxide as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG501307	7 Mercury, total	M245.1 CVAA	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG501251	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	НЗ	Sample was received and analyzed past holding time.
			M353.2 - Automated Cadmium Reduction	Q6	Sample was received above recommended temperature.
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M353.2 - Automated Cadmium Reduction	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	НЗ	Sample was received and analyzed past holding time.
			M353.2 - Automated Cadmium Reduction	Q6	Sample was received above recommended temperature.
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M353.2 - Automated Cadmium Reduction	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.
	WG501535	pH	SM4500H+ B	Q6	Sample was received above recommended temperature.
		pH measured at	SM4500H+ B	Q6	Sample was received above recommended temperature.
	WG501236	Residue, Filterable (TDS) @180C	SM2540C	Q6	Sample was received above recommended temperature.
			SM2540C	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG501466	Sulfate	D516-02/-07/-11 - Turbidimetric	Q6	Sample was received above recommended temperature.
	WG501535	Total Alkalinity	SM2320B - Titration	Q6	Sample was received above recommended temperature.

Page 33 of 40 L60143-2007221356

Qualifier Report

ACZ Project ID: L60143 **CRG Mining, LLC**

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L60143-06	NG501535	Bicarbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
		Carbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG501602	Chloride	SM4500CI-E	Q6	Sample was received above recommended temperature.
			SM4500CI-E	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG501535	Conductivity @25C	SM2510B	Q6	Sample was received above recommended temperature.
	WG501743	Cyanide, total	M335.4 - Colorimetric w/ distillation	Q6	Sample was received above recommended temperature.
			M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG501535	Hydroxide as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG501307	Mercury, total	M245.1 CVAA	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
	WG501251	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	H3	Sample was received and analyzed past holding time.
			M353.2 - Automated Cadmium Reduction	Q6	Sample was received above recommended temperature.
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M353.2 - Automated Cadmium Reduction	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	H3	Sample was received and analyzed past holding time.
			M353.2 - Automated Cadmium Reduction	Q6	Sample was received above recommended temperature.
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M353.2 - Automated Cadmium Reduction	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.
	WG501535	рН	SM4500H+ B	Q6	Sample was received above recommended temperature.
		pH measured at	SM4500H+ B	Q6	Sample was received above recommended temperature.
	WG501236	Residue, Filterable (TDS) @180C	SM2540C	Q6	Sample was received above recommended temperature.
			SM2540C	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG501466	Sulfate	D516-02/-07/-11 - Turbidimetric	Q6	Sample was received above recommended temperature.
	WG501535	Total Alkalinity	SM2320B - Titration	Q6	Sample was received above recommended temperature.

REPAD.15.06.05.01

L60143-2007221356 Page 34 of 40

ACZ Project ID: L60143 **CRG Mining, LLC**

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L60143-07	NG501535	Bicarbonate as CaCO3	SM2320B - Titration		Sample was received above recommended temperature.
		Carbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG501602	Chloride	SM4500CI-E	Q6	Sample was received above recommended temperature.
			SM4500CI-E	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG501535	Conductivity @25C	SM2510B	Q6	Sample was received above recommended temperature.
	WG501743	Cyanide, total	M335.4 - Colorimetric w/ distillation	Q6	Sample was received above recommended temperature.
			M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG501535	Hydroxide as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG501251	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZs Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	Q6	Sample was received above recommended temperature.
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M353.2 - Automated Cadmium Reduction	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZs Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	Q6	Sample was received above recommended temperature.
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M353.2 - Automated Cadmium Reduction	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.
	WG501535	pH	SM4500H+ B	Q6	Sample was received above recommended temperature.
		pH measured at	SM4500H+ B	Q6	Sample was received above recommended temperature.
	WG501236	Residue, Filterable (TDS) @180C	SM2540C	Q6	Sample was received above recommended temperature.
			SM2540C	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG501466	Sulfate	D516-02/-07/-11 - Turbidimetric	Q6	Sample was received above recommended temperature.
	WG501535	Total Alkalinity	SM2320B - Titration	Q6	Sample was received above recommended temperature.

Page 35 of 40 L60143-2007221356

ACZ Project ID: L60143 **CRG Mining, LLC**

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L60143-08	NG501535	Bicarbonate as CaCO3	SM2320B - Titration		Sample was received above recommended temperature.
		Carbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG501602	Chloride	SM4500CI-E	Q6	Sample was received above recommended temperature.
			SM4500CI-E	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG501535	Conductivity @25C	SM2510B	Q6	Sample was received above recommended temperature.
	WG501743	Cyanide, total	M335.4 - Colorimetric w/ distillation	Q6	Sample was received above recommended temperature.
			M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG501535	Hydroxide as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG501251	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZs Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	Q6	Sample was received above recommended temperature.
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M353.2 - Automated Cadmium Reduction	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZs Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	Q6	Sample was received above recommended temperature.
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M353.2 - Automated Cadmium Reduction	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.
	WG501535	pH	SM4500H+ B	Q6	Sample was received above recommended temperature.
		pH measured at	SM4500H+ B	Q6	Sample was received above recommended temperature.
	WG501236	Residue, Filterable (TDS) @180C	SM2540C	Q6	Sample was received above recommended temperature.
			SM2540C	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG501466	Sulfate	D516-02/-07/-11 - Turbidimetric	Q6	Sample was received above recommended temperature.
	WG501535	Total Alkalinity	SM2320B - Titration	Q6	Sample was received above recommended temperature.

Page 36 of 40 L60143-2007221356

(800) 334-5493

ACZ Project ID: L60143 **CRG Mining, LLC**

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L60143-09	NG501535	Bicarbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
		Carbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG501602	Chloride	SM4500CI-E	Q6	Sample was received above recommended temperature.
			SM4500CI-E	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG501535	Conductivity @25C	SM2510B	Q6	Sample was received above recommended temperature.
	WG501743	Cyanide, total	M335.4 - Colorimetric w/ distillation	Q6	Sample was received above recommended temperature.
			M335.4 - Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG501535	Hydroxide as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG501251	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZs Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	Q6	Sample was received above recommended temperature.
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M353.2 - Automated Cadmium Reduction	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZs Terms & Conditions).
			M353.2 - Automated Cadmium Reduction	Q6	Sample was received above recommended temperature.
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			M353.2 - Automated Cadmium Reduction	ZU	Analysis date/time preceeds filter date/time. A portion of sample was filtered and analyzed prior to the creation of a Filter workgroup.
	WG501535	pH	SM4500H+ B	Q6	Sample was received above recommended temperature.
		pH measured at	SM4500H+ B	Q6	Sample was received above recommended temperature.
	WG501236	Residue, Filterable (TDS) @180C	SM2540C	Q6	Sample was received above recommended temperature.
	WG501466	Sulfate	D516-02/-07/-11 - Turbidimetric	Q6	Sample was received above recommended temperature.
	WG501535	Total Alkalinity	SM2320B - Titration	Q6	Sample was received above recommended temperature.

REPAD.15.06.05.01

Page 37 of 40 L60143-2007221356

Sample Receipt

CRG Mining, LLC ACZ Project ID: L60143

Date Received: 07/09/2020 11:06

Received By:

Date Printed: 7/10/2020

Date F	mileu.	- 11	10/2020
Receipt Verification			
	YES	NO	NA
Is a foreign soil permit included for applicable samples?			X
2) Is the Chain of Custody form or other directive shipping papers present?	X		
3) Does this project require special handling procedures such as CLP protocol?		Χ	
4) Are any samples NRC licensable material?			Х
5) If samples are received past hold time, proceed with requested short hold time analyses?	Χ		
6) Is the Chain of Custody form complete and accurate?	Х		
7) Were any changes made to the Chain of Custody form prior to ACZ receiving the samples?		Χ	
Samples/Containers			
	YES	NO	NA
8) Are all containers intact and with no leaks?	X		
9) Are all labels on containers and are they intact and legible?	Х		
10) Do the sample labels and Chain of Custody form match for Sample ID, Date, and Time?	X		
11) For preserved bottle types, was the pH checked and within limits? 1	X		
12) Is there sufficient sample volume to perform all requested work?	Χ		
13) Is the custody seal intact on all containers?			Х
14) Are samples that require zero headspace acceptable?			Х
15) Are all sample containers appropriate for analytical requirements?	X		
16) Is there an Hg-1631 trip blank present?			Х
17) Is there a VOA trip blank present?		-	Х
18) Were all samples received within hold time?		Х	
Some parameters were received past hold time.			

NA indicates Not Applicable

Chain of Custody Related Remarks

Client Contact Remarks

Shipping Containers

Cooler Id	Temp(°C)	Temp Criteria(°C)	Rad(µR/Hr)	Custody Seal Intact?		
6538	12.8	<=6.0	15	Yes		

Was ice present in the shipment container(s)?

Yes - Gel ice was present in the shipment container(s) but was thawed by receipt at ACZ.

Client must contact an ACZ Project Manager if analysis should not proceed for samples received outside of their thermal preservation acceptance criteria.

REPAD LPII 2012-03

Sample Receipt

CRG Mining, LLC ACZ Project ID: L60143

Date Received: 07/09/2020 11:06

Received By:

Date Printed: 7/10/2020

L60143-2007221356 Page 39 of 40

The preservation of the following bottle types is not checked at sample receipt: Orange (oil and grease), Purple (total cyanide), Pink (dissolved cyanide), Brown (arsenic speciation), Sterile (fecal coliform), EDTA (sulfite), HCl preserved vial (organics), Na2S2O3 preserved vial (organics), and HG-1631 (total/dissolved mercury by method 1631).

	oratori	•		_ ~	01	45	3	С	HAII	l of	cus	TOL	ΣY
2773 Downhill Drive Steamboat S	prings, CO 80	0487 (800) 33	84-54	93		-							
Report to:													
Name: JAKE WILKINSON					Addre	ss:	<u>012</u>	Sou	th b	<u> </u>	ousi	<u>~ S</u>	+
Company: CR L Min	sin Le L	LC		Address: Sio South Wisconsin St Gonnison, CO 8(130									
E-mail: Jwilkin Son	s echb	MINING	COA	4	Telep	hone:	97	0~	417	. 33	il_		
Copy of Report to:													
Name: SAME					E-mai	1.	C .	MË					
Company:			+		Telephone:								
					reich	HUHG.							
Invoice to:													
Name: SAME			4		Addre	ess:	7	MA	٤				
Company:			4					****					
E-mail:			_		Telep								
If sample(s) received past holdin											YES	X	
analysis before expiration, shall if "NO" then ACZ will contact client for further instru								rec even i	≠ UT ic axpin	-d and dat	NO will be que	lidiod	
Are samples for SDWA Complian					Yes		uesion	No	Īχ	54, 4114 wa	Will be q	llines.	
If yes, please include state forms	s. Results wil	l be reported	to P	QL f	or Cold	rado.	-						
Sampler's Name: Auchax					State_	CO		Zip co		101	Time Z		rs.
*Sampler's Signature:	MA JOURG						this sample. onsidered fra				labeling the	time/date/l	ocation or
PROJECT INFORMATION						ANA	ALYSES RE	QUESTE	D (attach	ist or use	quote nu	ımber)	
Quote #:					_E								
PO#:			_		ij.								
Reporting state for compliance test	ting:				Containers								
Check box if samples include NRC		erial?			of CC								
SAMPLE IDENTIFICATION	*****	E:TIME	Ма	trix									
GL1	7-7-20	10:13	15	W			†		1				
GL1	7-7-20			ì			1			7			
6L3	7-7-20	10:25	T										
RM 1	7-7-20		T				1						
hm 2	7-7-20	7.	+	-			†		 				
RM3	7-2-20	·	+						1				
CM 1	7-7-20		++				+		 				
CMI	7-7-20	11:15	++				1						
CM3	7-7-20	11:30	+				+						
<u> </u>	7-7-20	11,20	+4	/			 						
Matrix SW (Surface Water) - GW		10001 (1000+-1	A(-1		At (Daint)			<u> </u>	00 (0 11				
Matrix SW (Surface Water) · GW	(Ground water) · vvv (vvaste	vvater) · D(W (Drinki	ing vvai	er) · SL (S	sluage)	SO (Soil)	· OL (O	II) · Other	(Specify	()
INCIMARING													
Please ref	fer to ACZ's	terms & con	ditio	ns lo	ocated	on the	e revers	e side	of this	COC.			
RELINQUISHED BY		DATE:T	IME				RECEI	/EDB	Y :		DA	TE:TI	VIΕ
LAULA MART	,	7-7~20	113%	3AM	11	0	\sim	710	710		11.	(Y,	`)
10-10-0		,		(• • •	+	4~	$\overline{}$	₩		
						-							

F**B60AD435**020807421241356

White - Return with sample.