

Eschberger - DNR, Amy <amy.eschberger@state.co.us>

MW-8 Installation /Boettcher Limestone Quarry / M1977-348

Harkins, Sara <Sara_Harkins@golder.com>

Fri, Feb 19, 2021 at 3:32 PM

To: "Eschberger - DNR, Amy" <amy.eschberger@state.co.us>

Cc: Mike Toelle <mike.toelle@lafargeholcim.com>, "travis.bennett@lafargeholcim.com"

<Travis.Bennett@lafargeholcim.com>, "Moreno, Joanna" <Joanna_Moreno@golder.com>, "Hall, Tricia"

<Tricia Hall@golder.com>, "McClain, Mark" <Mark McClain@golder.com>

Hello Amy,

On behalf of Holcim, please see the attached technical memorandum detailing the drilling and installation of well MW-8 at the Boettcher Limestone Quarry near La Porte, Colorado.

A paper copy is also being mailed.

Please let us know if you have any questions.

Thanks,

Sara

Sara Harkins, PG(WY)

Senior Geologist/Geochemist

Golder Associates Inc.

2121 Abbott Road, Suite 100, Anchorage, Alaska, USA 99507

T: +1 907 344-6001 | D: +1 (907) 865-2532 | golder.com

GOLDER LinkedIn | Facebook | Twitter

Work Safe, Home Safe

This email transmission is confidential and may contain proprietary information for the exclusive use of the intended recipient. Any use, distribution or copying of this transmission, other than by the intended recipient, is strictly prohibited. If you are not the intended recipient, please notify the sender and delete all copies. Electronic media is susceptible to unauthorized modification, deterioration, and incompatibility. Accordingly, the electronic media version of any work product may not be relied upon.

Golder and the G logo are trademarks of Golder Associates Corporation

Please consider the environment before printing this email.

2 attachments

image001.jpg 13K

20378105-0-TM-A-MW8_Monitoring_19FFEB21.pdf 2789K

TECHNICAL MEMORANDUM

DATE February 19, 2021 **Reference No.** 20378105-1-TM-0

TO Amy Eschberger

Colorado Division of Reclamation, Mining and Safety

CC Michael Toelle and Travis Bennett (Holcim (US) Inc.)

FROM Sara Harkins, Joanna Moreno, Tricia Hall EMAIL sara_harkins@golder.com

HOLCIM BOETTCHER QUARRY MW-8 MONITORING WELL INSTALLATION FIELD REPORT

On behalf of Holcim (US) Inc., Golder Associates Inc. (Golder) is providing a field summary for the newly installed well associated with the groundwater monitoring network at the Boettcher Limestone Quarry (Site) located at 3060 West County Road 56, Laporte, Colorado 80535. The new background well MW-8 was installed side-gradient to the north of the CKD disposal areas and on the east side of the access road (Figure 1). The side-gradient location was selected instead of a directly upgradient location because a suitable location does not exist upgradient of the CKD disposal areas that would intercept the same geologic units as the existing Site monitoring wells. Well MW-8 was installed in accordance with the plan described in Technical Revision #11 (TR-11) of Permit M-1977-348. Activities associated with the drilling, installation, development, surveying, and permitting of the well occurred between November 11, 2020 and February 4, 2021.

1.0 DRILLING ACTIVITIES

Drilling Engineers, Inc. was subcontracted to Golder to drill and install MW-8. Drilling began on November 11, 2020 and the borehole was finished to total depth on November 13, 2020. Based on previous drilling activities at the Site, the target interval for screening MW-8 was approximately five feet above the contact of the Upper Cretaceous Niobrara Formation and the underlying Codell Sandstone, which is the uppermost, Middle Cretaceous member of the Carlile Formation.

1.1 Drilling Methods

Three drilling methods were used to complete the MW-8 borehole: hollow stem auger, air-rotary, and air-coring. Hollow stem auger drilling was used from the surface until 15 feet below ground surface (ft bgs) through two feet of overburden and 13 feet of bedrock. Air-rotary drilling was employed from 15 ft bgs to 165 ft bgs. Air-coring was used from 165 ft bgs to 235 ft bgs. The switch to air-coring ensured a higher-quality sample with which to identify the Niobrara – Codell contact, above which MW-8 was screened. The Niobrara – Codell contact was observed at 230 ft bgs.

No water was added during drilling. Upon identifying the Niobrara – Codell contact, the borehole was reamed to eight inches in diameter to a depth of 229 ft bgs. The borehole was allowed to collapse from 229 ft bgs to 235 ft bgs.

Golder Associates Inc.

7245 W Alaska Drive, Suite 200, Lakewood, Colorado, USA 80226

T: +1 303 980-0540 F: +1 303 985-2080

Reference No. 20378105-1-TM-0

February 19, 2021

1.2 Borehole Logging

A Golder hydrogeologist was on Site during drilling activities and documented drilling conditions and sample observations. The borehole log for MW-8 (Attachment A) includes the following pieces of information:

- Lithologies
 - Soil was classified following the Unified Soil Classification System (USCS)
 - Rock type was classified following the Dunham classification scheme for carbonates
- Soil or rock color identified by the Munsell color chart
- Moisture content (dry, moist, wet)
- Rock induration, sedimentary structures, fractures (if visible during air-coring)
- Driller observations
- Drilling methods

Until air-coring was used at 165 ft bgs, lithologic descriptions were based on auger cuttings and air-rotary cuttings. Bedrock was encountered at 2 ft bgs based on driller observation with silt and gravel overburden. Generally, the auger cuttings and air-rotary cuttings indicated medium gray to light olive gray calcareous shale and limestone¹.

A shallow zone of groundwater was encountered at approximately 115 ft bgs. A sample of this water was collected from the open borehole and submitted for laboratory testing, results are provided in Attachment B. Significant water entered the borehole from this shallow zone, and deeper observations of groundwater occurrences were not possible due to the water infilling from the upper groundwater zone.

Air-coring was used from 165 ft bgs to 235 ft bgs, and no water was added to circulate cuttings. Recovery was poor from approximately 165 ft bgs to 206 ft bgs due to significant mechanical fracturing. Short runs were used in this interval to prevent the core from falling out of the core barrel. Bedrock lithology was predominantly medium light gray, well indurated massive limestone with varying amounts of lamination and bioturbation, few intervals of wackestone and more fossiliferous limestone were observed. Pyrite mineralization was observed primarily along bedding surfaces. Subvertical joints were observed between 208 ft bgs and 215 ft bgs. A distinct transition at 215 ft bgs from the overlying medium light gray massive limestone to very light gray, very well indurated massive limestone with sand-filled burrows, rip-up clasts, and stylolites are indicative of the interval directly above the Niobrara – Codell contact. The Niobrara – Codell contact was observed at 230 ft bgs. The Codell Sandstone was characterized as a medium light gray, subrounded, well-sorted, very fine – fine grained sandstone dominated by quartz and black lithics. The Codell was heavily bioturbated from 230 ft bgs to 232 ft bgs with a distinct salt and pepper appearance from 232 ft bgs to 235 ft bgs.

2

¹ Limestone terminology has been used to describe observed Niobrara Formation to maintain consistency with previous core descriptions completed at the Holcim Boettcher Quarry. Core described in the field as a calcareous mudstone (micrite equivalent) which reflects the USGS (1988) Laporte Quadrangle description of the two members of the Niobrara Formation, the Smoky Hill Shale Member and the Fort Hays Limestone Member.

Reference No. 20378105-1-TM-0

February 19, 2021

2.0 MONITORING WELL INSTALLATION

The borehole total drilled depth reached 235 ft bgs to confirm the Niobrara – Codell contact at 230 ft bgs. Therefore, per the work plan a screen interval of 206 ft bgs to 226 ft bgs was selected. The borehole was reamed to 229 ft bgs, just above the Niobrara – Codell contact. Two feet of coated bentonite tablets were used to backfill the borehole from 227 ft bgs to 229 ft bgs to create a seal at the bottom of the borehole, and prior to proceeding with well construction the bentonite was allowed to hydrate for approximately an hour. Above the bentonite seal, from 226 ft bgs to 227 ft bgs, sand (10/20 fraction) was placed (Attachment C).

The well was constructed with 4-inch diameter, flush-threaded, Schedule 80 PVC screen and riser pipe. The 20-feet long screen was perforated with 0.010-inch slots. PVC casing was added to the top of the screen as it was lowered into the borehole. The screen interval spans 205.6 ft bgs to 225.6 ft bgs. A centralizer was placed in the center of the screen, and then centralizers were placed approximately every 50 feet above that point. The filter pack extends from 202.1 ft bgs to 227 ft bgs with a bentonite seal above the filter pack from 199.3 ft bgs to 202.1 ft bgs followed by grout to approximately 1 ft bgs. Additional bentonite was added on top of the grout to bring the annular space material up to grade. The PVC riser extends 3 feet above the ground surface and is protected with a locked protective steel casing. A 3 x 3 concrete pad was constructed around the protective casing.

2.1 Monitoring Well Development

MW-8 was developed on November 24, 2020, six days after grout was poured. The water level was drawn down using a stainless steel bailer to just above the top of the screen prior to surging the screen by rapidly lowering and raising the full bailer. After surging, the well was purged dry using the bailer. In total, approximately 125 gallons of water were purged from the well. Per TR-11, the purge water was discharged on the ground surface. Water quality parameters were collected approximately every half casing volume, and parameters appeared stable with pH fluctuating around 8.5 standard unit (SU) and specific conductivity ranging from approximately 4,200 – 4,900 microSiemens/cm (Attachment D). Turbidity was initially low and became moderate as development progressed. It is likely the water from the shallow saturated groundwater zone encountered at approximately 115 ft bgs flowed into the open borehole and a localized area surrounding the borehole. Groundwater recharge was monitored for an hour after the well was bailed dry and only a few inches of recharge was observed.

A second development was completed on December 7, 2020, detailed in Attachment D. Approximately 13 gallons of water were purged from the well using a disposable bailer until the well was bailed dry, and water quality parameters were recorded throughout development. Generally, water quality parameters showed pH stabilizing at 8.34 SU, specific conductivity stabilizing at 13,136 microSiemens/cm, and turbidity increasing throughout development. The purged groundwater was gray in color with a slight sulfur odor. The increase in conductivity from the initial development indicates the initial development was effective at removing a portion of the water from the shallow groundwater zone that entered the borehole and a localized area surrounding the borehole.

The depth to groundwater recorded before the initial development did not reflect the screened interval due to groundwater from the shallow saturated groundwater zone present in the borehole and well prior to development. Depth to groundwater as recorded before the second development and subsequent groundwater sampling, which will be discussed briefly in Section 3.0, are presented in Table 1. The December 7, 2020 groundwater measurement was recorded 13 days after the initial development, while the December 14, 2020 measurement

Amy Eschberger Reference No. 20378105-1-TM-0

was recorded seven days after the second development. The slow recharge observed in MW-8 and multiple well developments occurring over just several weeks likely means that stable groundwater conditions have not yet been observed.

Table 1: MW-8 Groundwater Measurements

Measurement Date	Depth to Groundwater (ft btoc¹)	Groundwater Elevation (ft amsl²)
12/7/2020	218.6	5031.9
12/14/2020	223.7	5026.8

Notes:

¹·ft btoc: :feet below top of casing ²ft amsl: feet above mean sea level

2.2 Surveying

The well was surveyed by Souder, Miller & Associates on January 13, 2021. The ground and top of casing elevations were collected and the points processed. The groundwater elevations presented in Table 1 were calculated from the top of casing measurements.

2.3 Permitting

The Notice of Intent to install MW-8 was submitted to the Colorado Division of Water Resources on November 3, 2020 prior to beginning well installation under MH-61351. The GWS-46 Monitoring Well Construction Permit and GWS-31 Well Construction and Yield Estimate Report are provided as Attachment E and were delivered to the Colorado DWR on February 4, 2021.

February 19, 2021

3.0 SUMMARY

Activities associated with the drilling, installation, development, survey, and permitting of well MW-8 occurred between November 2020 and February 2021. The well is located side-gradient of the CKD disposal areas to capture background groundwater conditions at the Site as the DRMS requested in their February 28, 2020 Inspection Report. MW-8 has been developed twice and the initial groundwater sampling at this location took place on December 14, 2020. The groundwater analytical results will be presented in a future submittal detailing the Site-wide second semi-annual 2020 groundwater sampling event. MW-8 will be sampled on the same schedule as the other seven Site wells as part of the Holcim Boettcher Quarry groundwater monitoring program.

Golder Associates Inc.

Lucio Hall

Tricia Hall

Staff Hydrogeologist

Jana Harher

Sara Harkins

Senior Geologist/Geochemist, Project Manager

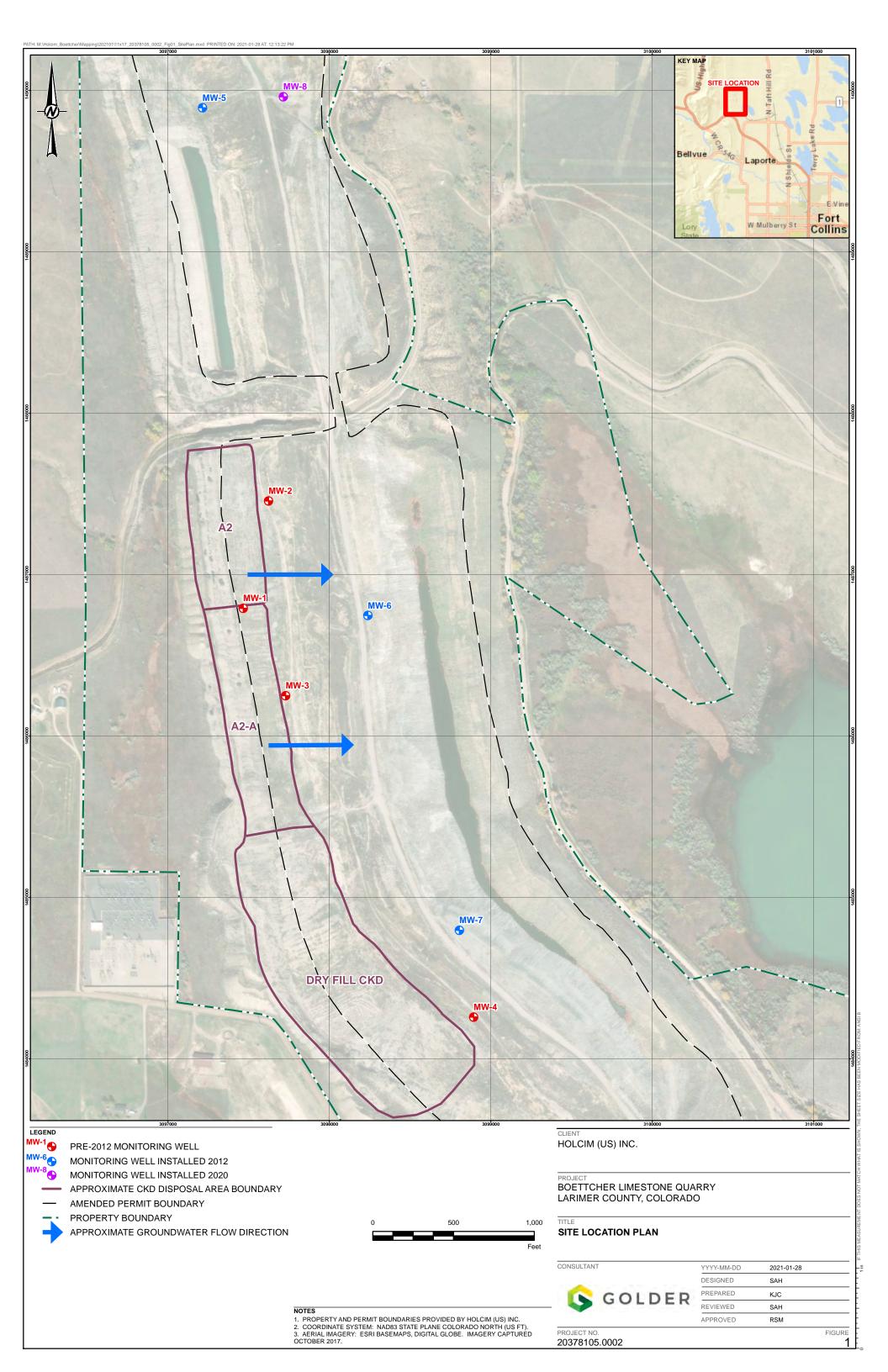
SH/JM/mp

Joanna Moreno

Groundwater Practice Leader, Associate

Appendices: Figure 1: Site Location Plan

Attachment A: MW-8 Borehole Log


Attachment B: Borehole Water Sample Results
Attachment C: Monitoring Well Construction Diagram
Attachment D: Monitoring Well Development Forms
Attachment E: Monitoring Well Construction Permit

FIGURES

Reference No. 20378105-1-TM-0

February 19, 2021

Figure 1: Site Location Plan

ATTACHMENT A

Reference No. 20378105-1-TM-0

February 19, 2021

MW-8 Borehole Log

February 2021 20378105

PROJECT: Holcim Boettcher Quarry 2020 Well Installation

PROJECT NUMBER: 20378105

LOCATION: MW-8

DRILL RIG: CME-75

INCLINATION: -90°

DRILLING METHOD: HSA, air rotary, and air-coring

DATE STARTED: 11/11/20 10:00

DATE COMPLETED: 11/13/20 13:30

DRILL FLUIDS: none

DRILL LUBRICANTS: air

RECORD OF BORING MW-8

COORDINATES: N: 1,489,961.5 E: 3,097,714.4 GROUND SURFACE ELEVATION: 5,247.5 ft

PROJECTION: UTM Zone 13

DATUM: North Zone State Plane NAD 83

HORIZONTAL UNITS: feet

TOTAL DEPTH: 235 ft

BOTTOM ELEVATION: 5,012.5 ft

HOLE DIAMETER: 8 inches

DEPTH	ELEVATION	LITHOLOGY DESCRIPTION	GRAPHIC LOG	ELEV. DEPTH (ft)	MATERIAL TYPE	COMMENTS
0.0	丰	0.0 - 2.0	ш	5245.5	ML	Cuttings collected and observed every 5 ft during HSA and
	524	Light olive gray (5Y 5/2) SILT with gravel (< 2 in), dry, no odor		2.0		air-rotary Continue with HSA into bedrock at 2 ft bgs - drillers feel bedrock
5.0		0.0 45.0				at 2 ft bgs - NIOBRARA FORMATION -
10.0	5240	Cuttings similar to above			Limestone	- NIOBRARA FORMATION -
10.	523	Light brownish gray (5YR 6/1), limestone, dry, no odor				Drilling becomes more difficult at 12 ft bgs, switch to air-rotary at
15.0	7			5232.5 15.0		15 ft bgs
	5230	15.0 - 20.0 Medium gray (N5), limestone and calcareous shale, dry, no			Limestone	
20.0	<u> </u>	odor		5227.5 20.0		
	522	5 20.0 - 115.0 Light olive gray (5YR 6/1), limestone and calcareous shale,				
25.0	-	dry, no odor				
00.	5220		肆			
30.0	521!		肆			
35.0	7-	,				
00.1	5210					
40.0	<u>.</u>					
	520	5				
45.0	=					
	5200					
50.0	=		計計			
	519!	5				
55.0	5190					
60.0	7-	,			Limestone	
00.	518	5				
65.0	1					Drilling becomes more difficult at 65 ft - harder material
	5180					
70.0	0=					
128	517	5	莊莊			
	主					
80.0	_=5170					
80.0	516					
	7-					
85.0 85.0	5160		掛			
90.0	<u>-</u>					
N N	515	5				
95.0	重					
95.0 95.0 100.	5150					
2 100.	<u></u>	Log continued on next page	1-1-1-	.1	1	,
		DRILLING CONTRACTOR: Drilling E	Engine	ers		GEOLOGIST: T. Hall
2	•	DRILLER: Sean				CHECKED: S. Harkins
2	GO	LDER				DATE: 2/5/2021 SHEET 1 of 3

February 2021 20378105

PROJECT: Holcim Boettcher Quarry 2020 Well Installation PROJECT NUMBER: 20378105

LOCATION: MW-8

RECORD OF BORING MW-8

COORDINATES: N: 1,489,961.5 E: 3,097,714.4 GROUND SURFACE ELEVATION: 5,247.5 ft

DEPTH (ft)	ELEVATION (ft)	LITHOLOGY DESCRIPTION	GRAPHIC LOG	ELEV. DEPTH (ft)	MATERIAL TYPE	COMMENTS
105.0		20.0 - 115.0 Light olive gray (5YR 6/1), limestone and calcareous shale, dry, no odor			Limestone	
115.0	_5135 - - - - - - 5130	115.0 - 120.0 Light olive gray (5Y 5/2), limestone and calcareous shale,		5132.5 115.0	Limestone	Water dripping out of air hose
120.0	_ _5125 _	wet, no odor 120.0 - 165.0 Light olive gray (5Y 5/2), limestone and calcareous shale,		5127.5 120.0		
130.0		moist, no odor			Limestone	
150.0				5082.5		
165.0 170.0		165.0 - 168.0 Medium light gray (N6), wackestone, well indurated, trace pyrite, moderately spaced bedding plane fractures, weathered bedding planes		165.0 5079.5 168.0	Wackestone	Switch to air-coring at 165 ft
175.0		168.0 - 178.0 Medium light gray (N6), fossiliferous limestone, well indurated, slightly laminated at 169 ft, minor bioturbation, pyrite along weathered bedding planes, moderately spaced bedding plane fractures		5069.5 178.0	Limestone	Poor recovery likely due to mechanical fracturing
195.0		178.0 - 206.0 Medium light gray (N6), limestone, well indurated, massive, slightly laminated, trace pyrite alteration, becomes more bioturbated at 183 ft with few very fine sandstone lenses			Limestone	
200.0				5041.5		Poor recovery, mechanical fracturing may be causing core to out of core barrel
210.0		206.0 - 208.0 Medium light gray (N6), fossiliferous limestone, very well indurated, bioturbated, slightly laminated, massive 208.0 - 215.0		206.0 5039.5 208.0 5032.5	Limestone	
220.0		Medium light gray (N6), limestone, well indurated, few bedding plane fractures with subvertical joints at 208 and 212 ft, slightly weathered bedding planes, very fine sandstone lenses 213 - 214 ft		215.0	Limestone	
225.0	-	og continued on next page				
		DRILLING CONTRACTOR: Drilling E DRILLER: Sean	Engine	ers		GEOLOGIST: T. Hall CHECKED: S. Harkins

February 2021 20378105

PROJECT: Holcim Boettcher Quarry 2020 Well Installation PROJECT NUMBER: 20378105

LOCATION: MW-8

RECORD OF BORING MW-8

COORDINATES: N: 1,489,961.5 E: 3,097,714.4 GROUND SURFACE ELEVATION: 5,247.5 ft

DEPTH (ft)	ELEVATION (ft)	LITHOLOGY DESCRIPTION	GRAPHIC LOG	ELEV. DEPTH (ft)	MATERIAL TYPE	COMMENTS
230.0	_5020 _ _ _ _5015	215.0 - 230.0 Very light gray (N8) with medium gray (N5) intervals, limestone, very well indurated, massive, very fine grained sand-infilled burrows, rip up clasts and styolites beginning at 220 ft		5017.5 230.0 5012.5	Limestone	- CODELL SANDSTONE -
235.0		230.0 - 235.0 - CODELL SANDSTONE -		235.0		Boring completed at 235 ft.
240.0_		Medium light gray (N8), very fine to fine grained sandstone, subrounded, well sorted, quartz and black lithics, heavily bioturbated from 230 - 232 ft, salt and pepper appearance from 232 - 235 ft				
250.0		Boring completed at 235 ft.				
255.0						
260.0						
265.0_						
270.0						
275.0						
280.0_						
285.0						
290.0						
295.0						
300.0						
305.0						
310.0						
315.0						
320.0						
325.0						
330.0						
335.0						
340.0						
345.0						
-						
350.0		DRILLING CONTRACTOR: Drilling E	Engine	ers		GEOLOGIST: T. Hall

GOLDER

BOETTCHER HOLCIM_2020_MW8.GPJ GNPP.GDT 2/8/21

DRILLING CONTRACTOR: Drilling Engineers

DRILLER: Sean

GEOLOGIST: T. Hall CHECKED: S. Harkins DATE: 2/5/2021

SHEET 3 of 3

ATTACHMENT B

Reference No. 20378105-1-TM-0

February 19, 2021

Borehole Water Sample Results

December 04, 2020

Report to:

Sara Harkins Golder Associates 44 Union Blvd., Suite 300 Lakewood, CO 80228

cc: Tricia Hall

Project ID: 20378105 ACZ Project ID: L62895

Sara Harkins:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on November 17, 2020. This project has been assigned to ACZ's project number, L62895. Please reference this number in all future inquiries.

Bill to:

Accounts Payable

Golder Associates

Lakewood, CO 80226

7245 W Alaska Dr Suite 200

All analyses were performed according to ACZ's Quality Assurance Plan. The enclosed results relate only to the samples received under L62895. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after January 03, 2021. If the samples are determined to be hazardous, additional charges apply for disposal (typically \$11/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical raw data reports for ten years.

If you have any questions or other needs, please contact your Project Manager.

Scott Habermehl has reviewed and approved this report.

S. Havermehl

L62895-2012041237 Page 1 of 22

Case Narrative

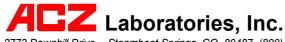
Golder Associates December 04, 2020

Project ID: 20378105 ACZ Project ID: L62895

Sample Receipt

ACZ Laboratories, Inc. (ACZ) received 1 groundwater sample from Golder Associates on November 17, 2020. The sample was received in good condition. Upon receipt, the sample custodian removed the sample from the cooler, inspected the contents, and logged the sample into ACZ's computerized Laboratory Information Management System (LIMS). The sample was assigned ACZ LIMS project number L62895. The custodian verified the sample information entered into the computer against the chain of custody (COC) forms and sample bottle labels.

Holding Times


All analyses were performed within EPA recommended holding times.

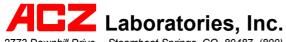
Sample Analysis

This sample was analyzed for inorganic, radiochemistry parameters. The individual methods are referenced on both, the ACZ invoice and the analytical reports. The extended qualifier reports may contain footnotes qualifying specific elements due to QC failures. In addition the following has been noted with this specific project:

1. (DE) Applies to: L62895-01/CYANIDE

Sample required dilution for testing positive for sulfide. Sample diluted until no positive indication on lead acetate test strip. Sample may contain cyanide.

Steamboat Springs, CO 80487 (800) 334-5493 2773 Downhill Drive


Golder Associates

Project ID: 20378105 Date Sampled: 11/16/20 08:30

Sample ID: B-8 Date Received: 11/17/20 Sample Matrix: Groundwater

Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	M200.8 ICP-MS	1	0.243			mg/L	0.005	0.015	11/19/20 16:21	mfm
Antimony, dissolved	M200.8 ICP-MS	1	<0.0004	U		mg/L	0.0004	0.002	11/19/20 16:21	mfm
Arsenic, dissolved	M200.8 ICP-MS	20	0.0450			mg/L	0.004	0.02	11/23/20 13:50	bsu
Barium, dissolved	M200.8 ICP-MS	1	0.177			mg/L	0.0005	0.0025	11/19/20 16:21	mfm
Beryllium, dissolved	M200.8 ICP-MS	1	<0.00008	U	*	mg/L	0.00008	0.00025	11/19/20 16:21	mfm
Boron, dissolved	M200.7 ICP	1	0.702			mg/L	0.02	0.1	11/20/20 22:05	jlw
Cadmium, dissolved	M200.8 ICP-MS	1	0.000075	В		mg/L	0.00005	0.00025	11/19/20 16:21	mfm
Calcium, dissolved	M200.7 ICP	1	28.4			mg/L	0.1	0.5	11/20/20 22:05	jlw
Chromium, dissolved	M200.8 ICP-MS	20	0.0167	В	*	mg/L	0.01	0.04	11/23/20 13:50	bsu
Cobalt, dissolved	M200.8 ICP-MS	1	0.000158	В		mg/L	0.00005	0.00025	11/19/20 16:21	mfm
Copper, dissolved	M200.8 ICP-MS	20	0.0192	В	*	mg/L	0.016	0.04	11/23/20 13:50	bsu
Iron, dissolved	M200.7 ICP	1	1.59			mg/L	0.06	0.15	11/20/20 22:05	jlw
Lead, dissolved	M200.8 ICP-MS	20	0.00329	В	*	mg/L	0.002	0.01	11/23/20 13:50	bsu
Lithium, dissolved	M200.7 ICP	1	0.428			mg/L	0.008	0.04	11/20/20 22:05	jlw
Magnesium, dissolved	M200.7 ICP	1	2.10			mg/L	0.2	1	11/20/20 22:05	jlw
Manganese, dissolved	M200.8 ICP-MS	1	0.0370			mg/L	0.0004	0.002	11/19/20 16:21	mfm
Mercury, dissolved	M245.1 CVAA	1	<0.0002	U	*	mg/L	0.0002	0.001	11/24/20 12:37	llr
Molybdenum, dissolved	M200.8 ICP-MS	1	0.00075			mg/L	0.0002	0.0005	11/19/20 16:21	mfm
Nickel, dissolved	M200.8 ICP-MS	1	0.0138			mg/L	0.0004	0.001	11/19/20 16:21	mfm
Potassium, dissolved	M200.7 ICP	1	3.79			mg/L	0.2	1	11/20/20 22:05	jlw
Selenium, dissolved	M200.8 ICP-MS	100	0.115			mg/L	0.01	0.025	11/24/20 20:26	bsu
Silver, dissolved	M200.8 ICP-MS	100	<0.01	U	*	mg/L	0.01	0.05	11/24/20 20:26	bsu
Sodium, dissolved	M200.7 ICP	1	996			mg/L	0.2	1	11/20/20 22:05	jlw
Thallium, dissolved	M200.8 ICP-MS	2	<0.0001	U		mg/L	0.0001	0.0005	12/02/20 9:48	bsu
Uranium, dissolved	M200.8 ICP-MS	20	0.00600	В	*	mg/L	0.002	0.01	11/23/20 13:50	bsu
Vanadium, dissolved	M200.8 ICP-MS	1	0.00209			mg/L	0.0005	0.002	11/19/20 16:21	mfm
Zinc, dissolved	M200.8 ICP-MS	1	0.0111	В		mg/L	0.006	0.015	11/19/20 16:21	mfm

L62895-2012041237 Page 3 of 22

SM4500H+ B

SM2540C

M300.0 - Ion Chromatography

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Golder Associates

Project ID: 20378105

Sample ID: B-8

Wet Chemistry

pH (lab)

pH measured at

Residue, Filterable

(TDS) @180C Sulfate

рΗ

Date Sampled: 11/16/20 08:30

Date Received: 11/17/20
Sample Matrix: Groundwater

Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as CaCO3		1	1400			mg/L	2	20	11/20/20 0:00	mlh
Carbonate as CaCO3		1	19.6	В		mg/L	2	20	11/20/20 0:00	mlh
Hydroxide as CaCO3		1	<2	U		mg/L	2	20	11/20/20 0:00	mlh
Total Alkalinity		1	1420		*	mg/L	2	20	11/20/20 0:00	mlh
Chloride	M300.0 - Ion Chromatography	10	440		*	mg/L	4	20	11/25/20 16:13	mss2
Cyanide, Free	D6888-09/OIA-1677-09	100	<0.3	U	*	mg/L	0.3	1	11/18/20 12:18	rbt
Fluoride	SM4500F-C	20	4.39	В	*	mg/L	2.2	7	11/19/20 22:46	еер
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2		<0.02	UH		mg/L	0.02	0.1	12/04/20 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	0.080	ВН	*	mg/L	0.02	0.1	11/21/20 21:09	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	1	0.072		*	mg/L	0.01	0.05	11/17/20 23:19	pjb

1

1

2

10

8.8

21.4

3010

333

Н

units

С

mg/L

mg/L

0.1

0.1

40

0.1

0.1

80

20

11/20/20 0:00

11/20/20 0:00

11/19/20 13:38

11/25/20 16:13

mlh

mlh

scd

mss2

L62895-2012041237 Page 4 of 22

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Explanations	Repo	rt Head	der Ex	xplana	ations
----------------------------	------	---------	--------	--------	--------

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest Limit Upper limit for RPD, in %.

Lower Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit unless omitted or equal to the PQL (see comment #5).

Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit. Synonymous with the EPA term "minimum level".

QC True Value of the Control Sample or the amount added to the Spike

Rec Recovered amount of the true value or spike added, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

	QC	Sample	Types
--	----	--------	-------

AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method. Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity.
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time.
- L Target analyte response was below the laboratory defined negative threshold.
- U The material was analyzed for, but was not detected above the level of the associated value.

 The associated value is either the sample quantitation limit or the sample detection limit.

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (4) EPA SW-846. Test Methods for Evaluating Solid Waste.
- (5) Standard Methods for the Examination of Water and Wastewater.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.
- (4) An asterisk in the "XQ" column indicates there is an extended qualifier and/or certification qualifier associated with the result.
- (5) If the MDL equals the PQL or the MDL column is omitted, the PQL is the reporting limit.

For a complete list of ACZ's Extended Qualifiers, please click:

https://acz.com/wp-content/uploads/2019/04/Ext-Qual-List.pdf

REP001.03.15.02

L62895-2012041237 Page 5 of 22

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec

in % Rec.	o coluin	, ,											
Alkalinity as CaCo	03		SM2320E	3 - Titration									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG510050													
WG510050PBW1	PBW	11/20/20 16:40				U	mg/L		-20	20			
WG510050LCSW3	LCSW	11/20/20 16:59	WC201119-1	820.0001		821.6	mg/L	100	90	110			
WG510050LCSW6	LCSW	11/20/20 19:17	WC201119-1	820.0001		831.7	mg/L	101	90	110			
WG510050PBW2	PBW	11/20/20 19:26				10.5	mg/L		-20	20			
L62914-03DUP	DUP	11/20/20 21:23			148	163	mg/L				10	20	
WG510050LCSW9	LCSW	11/20/20 23:13	WC201119-1	820.0001		822.9	mg/L	100	90	110			
WG510050PBW3	PBW	11/20/20 23:22				9.7	mg/L		-20	20			
WG510050LCSW12	LCSW	11/21/20 2:12	WC201119-1	820.0001		803	mg/L	98	90	110			
WG510050PBW4	PBW	11/21/20 2:22				11.1	mg/L		-20	20			
WG510050LCSW15	LCSW	11/21/20 6:22	WC201119-1	820.0001		817	mg/L	100	90	110			
Aluminum, dissol	ved		M200.8 I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG509956													
WG509956ICV	ICV	11/19/20 15:28	MS201021-2	.1		.1029	mg/L	103	90	110			
WG509956ICB	ICB	11/19/20 15:30		• • •		U	mg/L		-0.011	0.011			
WG509956LFB	LFB	11/19/20 15:31	MS201117-2	.050065		.0478	mg/L	95	85	115			
L62880-02AS	AS	11/19/20 16:16	MS201117-2	.050065	.0105	.0542	mg/L	87	70	130			
L62880-02ASD	ASD	11/19/20 16:18	MS201117-2	.050065	.0105	.0531	mg/L	85	70	130	2	20	
Antimony, dissolv	/ed		M200.8 I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG509956	-71	,		4-2						oppo.			
	10) (4440/00 45 00	M0004004 0	22224				404		440			
WG509956ICV	ICV	11/19/20 15:28	MS201021-2	.02004		.02076	mg/L	104	90	110			
WG509956ICB	ICB	11/19/20 15:30	M0004447.0	0.4		U	mg/L	00	-0.00088	0.00088			
WG509956LFB	LFB	11/19/20 15:31	MS201117-2	.01	22254	.00885	mg/L	89	85	115			
L62880-02AS L62880-02ASD	AS ASD	11/19/20 16:16 11/19/20 16:18	MS201117-2 MS201117-2	.01 .01	.00051 .00051	.00897	mg/L mg/L	85 89	70 70	130 130	5	20	
E02000-02AGD	AOD	11/19/20 10.10			.00031	.00341	mg/L		70	150			
Arsenic, dissolve	d		M200.8 I	CP-MS									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG510118													
WG510118ICV	ICV	11/23/20 12:56	MS201021-2	.05		.05003	mg/L	100	90	110			
WG510118ICB	ICB	11/23/20 12:57				U	mg/L		-0.00044	0.00044			
WG510118LFB	LFB	11/23/20 12:59	MS201117-2	.05005		.04898	mg/L	98	85	115			
L62923-01AS	AS	11/23/20 13:43	MS201117-2	.05005	U	.05425	mg/L	108	70	130			
	ASD	11/23/20 13:45	MS201117-2	.05005	U	.05589	mg/L	112	70	130	3	20	
L62923-01ASD													
			M200.8 I	CP-MS									
Barium, dissolved		Analyzed	M200.8 I	CP-MS	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
L62923-01ASD Barium, dissolved ACZ ID WG509956	t				Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
Barium, dissolved ACZ ID WG509956	t				Sample	Found .04955	Units mg/L	Rec%	Lower 90	Upper	RPD	Limit	Qual
Barium, dissolved	Туре	Analyzed	PCN/SCN	QC	Sample						RPD	Limit	Qual
Barium, dissolved ACZ ID WG509956 WG509956ICV	Type ICV	Analyzed 11/19/20 15:28	PCN/SCN	QC	Sample	.04955	mg/L		90	110	RPD	Limit	Qual
Barium, dissolved ACZ ID WG509956 WG509956ICV WG509956ICB	Type ICV ICB	Analyzed 11/19/20 15:28 11/19/20 15:30	PCN/SCN MS201021-2	QC .05	Sample	.04955 U	mg/L mg/L	99	90 -0.0011	110 0.0011	RPD	Limit	Qual

L62895-2012041237 Page 6 of 22

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

in % Rec.													
Beryllium, disso	lved		M200.8 IC	CP-MS									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG509956													
WG509956ICV	ICV	11/19/20 15:28	MS201021-2	.05		.048393	mg/L	97	90	110			
WG509956ICB	ICB	11/19/20 15:30				U	mg/L		-0.000176	0.000176			
WG509956LFB	LFB	11/19/20 15:31	MS201117-2	.05005		.046691	mg/L	93	85	115			
L62880-02AS	AS	11/19/20 16:16	MS201117-2	.05005	U	.048738	mg/L	97	70	130			
L62880-02ASD	ASD	11/19/20 16:18	MS201117-2	.05005	U	.047721	mg/L	95	70	130	2	20	
Boron, dissolved	d		M200.7 IC	CP									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG510008													
WG510008ICV	ICV	11/20/20 20:19	II201113-1	2		1.996	mg/L	100	95	105			
WG510008ICB	ICB	11/20/20 20:25				U	mg/L		-0.06	0.06			
WG510008LFB	LFB	11/20/20 20:38	II201112-3	.5005		.499	mg/L	100	85	115			
L62892-01AS	AS	11/20/20 21:59	II201112-3	.5005	.277	.761	mg/L	97	85	115			
L62892-01ASD	ASD	11/20/20 22:02	II201112-3	.5005	.277	.771	mg/L	99	85	115	1	20	
Cadmium, disso	lved		M200.8 IC	CP-MS									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG509956													
WG509956ICV	ICV	11/19/20 15:28	MS201021-2	.05		.050449	mg/L	101	90	110			
WG509956ICB	ICB	11/19/20 15:30				U	mg/L		-0.00011	0.00011			
WG509956LFB	LFB	11/19/20 15:31	MS201117-2	.05005		.04711	mg/L	94	85	115			
L62880-02AS	AS	11/19/20 16:16	MS201117-2	.05005	.000061	.046779	mg/L	93	70	130			
L62880-02ASD	ASD	11/19/20 16:18	MS201117-2	.05005	.000061	.046912	mg/L	94	70	130	0	20	
Calcium, dissolv	/ed		M200.7 IC	CP									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG510008													
WG510008ICV	ICV	11/20/20 20:19	II201113-1	100		99.53	mg/L	100	95	105			
WG510008ICB	ICB	11/20/20 20:15		100		U	mg/L	100	-0.3	0.3			
WG510008LFB	LFB	11/20/20 20:38	II201112-3	68.0028		67.65	mg/L	99	85	115			
L62892-01AS	AS	11/20/20 21:59	II201112-3	68.0028	54.6	120.6	mg/L	97	85	115			
L62892-01ASD	ASD	11/20/20 22:02	II201112-3	68.0028	54.6	121.4	mg/L	98	85	115	1	20	
Chloride			M300.0 -	Ion Chroma	atography								
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG509837													
WG509837ICV	ICV	11/20/20 13:32	WI201116-10	20.02		20.01	mg/L	100	90	110			
WG509837ICB	ICB	11/20/20 13:50		20.02		U	mg/L	100	-0.4	0.4			
WG510206													
WG510206LFB2	LFB	11/25/20 0:32	WI201018-4	30		31.61	mg/L	105	90	110			
L62866-07DUP	DUP	11/25/20 1:08		30	U	U U	mg/L	.00		. 10	0	20	RA
			WI201018-4	300			-	104	90	110	J	20	
					55.2								
L62892-01AS WG510206LFB1	AS LFB	11/25/20 2:20 11/25/20 11:26	WI201018-4 WI201018-4	300 30	88.2	400.43 32.09	mg/L mg/L	104 107	90 90	110 110			

L62895-2012041237 Page 7 of 22

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

in % Rec.													
Chromium, diss	olved		M200.8 IC	CP-MS									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG510118													
WG510118ICV	ICV	11/23/20 12:56	MS201021-2	.05		.05228	mg/L	105	90	110			
WG510118ICB	ICB	11/23/20 12:57				U	mg/L		-0.0011	0.0011			
WG510118LFB	LFB	11/23/20 12:59	MS201117-2	.05		.04896	mg/L	98	85	115			
L62923-01AS	AS	11/23/20 13:43	MS201117-2	.05	U	.05258	mg/L	105	70	130			
L62923-01ASD	ASD	11/23/20 13:45	MS201117-2	.05	U	.05424	mg/L	108	70	130	3	20	
Cobalt, dissolve	ed		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG509956													
WG509956ICV	ICV	11/19/20 15:28	MS201021-2	.05		.053479	mg/L	107	90	110			
WG509956ICB	ICB	11/19/20 15:30				U	mg/L		-0.00011	0.00011			
WG509956LFB	LFB	11/19/20 15:31	MS201117-2	.05005		.048858	mg/L	98	85	115			
L62880-02AS	AS	11/19/20 16:16	MS201117-2	.05005	.000475	.047723	mg/L	94	70	130			
L62880-02ASD	ASD	11/19/20 16:18	MS201117-2	.05005	.000475	.046898	mg/L	93	70	130	2	20	
Copper, dissolv	ed		M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG510118													
WG510118ICV	ICV	11/23/20 12:56	MS201021-2	.05		.05155	mg/L	103	90	110			
WG510118ICB	ICB	11/23/20 12:57				U	mg/L		-0.00176	0.00176			
WG510118LFB	LFB	11/23/20 12:59	MS201117-2	.05		.04893	mg/L	98	85	115			
L62923-01AS	AS	11/23/20 13:43	MS201117-2	.05	U	.05235	mg/L	105	70	130			
L62923-01ASD	ASD	11/23/20 13:45	MS201117-2	.05	U	.05348	mg/L	107	70	130	2	20	
Cyanide, Free			D6888-09	9/OIA-1677	-09								
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG509814													
WG509814ICV	ICV	11/18/20 11:32	WI201114-4	.3		.2827	mg/L	94	90	110			
WG509814ICB	ICB	11/18/20 11:34				U	mg/L		-0.003	0.003			
WG509814LFB	LFB	11/18/20 11:38	WI201114-5	.1		.0978	mg/L	98	90	110			
L62824-01AS	AS	11/18/20 12:12	WI201114-5	.1	U	.1035	mg/L	104	90	110			
L62824-01ASD	ASD	11/18/20 12:14	WI201114-5	.1	U	.0939	mg/L	94	90	110	10	20	
Fluoride			SM4500F	:-C									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG509974													
WG509974ICV	ICV	11/19/20 18:14	WC201113-7	2.002		2.05	mg/L	102	90	110			
WG509974ICB	ICB	11/19/20 18:22				U	mg/L		-0.33	0.33			
WG509974LFB1	LFB	11/19/20 18:29	WC200511-1	5		5.24	mg/L	105	90	110			
L62907-01AS	AS	11/19/20 23:06	WC200511-1	5	.22	4.66	mg/L	89	90	110			MA
L62907-01ASD	ASD	11/19/20 23:10	WC200511-1	5	.22	4.77	mg/L	91	90	110	2	20	
WG509974LFB3	LFB	11/19/20 23:13	WC200511-1	5		5.14	mg/L	103	90	110			

L62895-2012041237 Page 8 of 22

(800) 334-5493

ACZ Project ID: L62895 **Golder Associates**

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

III % Rec.													
Iron, dissolved			M200.7 I										
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG510008													
WG510008ICV	ICV	11/20/20 20:19	II201113-1	2		1.966	mg/L	98	95	105			
WG510008ICB	ICB	11/20/20 20:25				U	mg/L		-0.18	0.18			
WG510008LFB	LFB	11/20/20 20:38	II201112-3	1.0018		.959	mg/L	96	85	115			
L62892-01AS	AS	11/20/20 21:59	II201112-3	1.0018	U	.977	mg/L	98	85	115			
L62892-01ASD	ASD	11/20/20 22:02	II201112-3	1.0018	U	.985	mg/L	98	85	115	1	20	
Lead, dissolved			M200.8 I	CP-MS									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG510118													
WG510118ICV	ICV	11/23/20 12:56	MS201021-2	.05		.052	mg/L	104	90	110			
WG510118ICB	ICB	11/23/20 12:57				U	mg/L		-0.00022	0.00022			
WG510118LFB	LFB	11/23/20 12:59	MS201117-2	.05005		.04996	mg/L	100	85	115			
L62923-01AS	AS	11/23/20 13:43	MS201117-2	.05005	U	.05254	mg/L	105	70	130			
L62923-01ASD	ASD	11/23/20 13:45	MS201117-2	.05005	U	.05365	mg/L	107	70	130	2	20	
Lithium, dissolv	ed		M200.7 I	CP									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG510008													
WG510008ICV	ICV	11/20/20 20:19	II201113-1	2		1.974	mg/L	99	95	105			
WG510008ICB	ICB	11/20/20 20:25				U	mg/L		-0.024	0.024			
WG510008LFB	LFB	11/20/20 20:38	II201112-3	.997		.9728	mg/L	98	85	115			
L62892-01AS	AS	11/20/20 21:59	II201112-3	.997	.0573	1.028	mg/L	97	85	115			
L62892-01ASD	ASD	11/20/20 22:02	II201112-3	.997	.0573	.9948	mg/L	94	85	115	3	20	
Magnesium, dis	solved		M200.7 I	CP									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG510008													
WG510008ICV	ICV	11/20/20 20:19	II201113-1	100		100.48	mg/L	100	95	105			
WG510008ICB	ICB	11/20/20 20:25				U	mg/L		-0.6	0.6			
WG510008LFB	LFB	11/20/20 20:38	II201112-3	50.00226		49.23	mg/L	98	85	115			
L62892-01AS	AS	11/20/20 21:59	II201112-3	50.00226	32	80.45	mg/L	97	85	115			
L62892-01ASD	ASD	11/20/20 22:02	II201112-3	50.00226	32	81.23	mg/L	98	85	115	1	20	
Manganese, diss	solved		M200.8 I	CP-MS									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG509956													
WG509956ICV	ICV	11/19/20 15:28	MS201021-2	.05		.05195	mg/L	104	90	110			
WG509956ICB	ICB	11/19/20 15:30				U	mg/L	-	-0.00088	0.00088			
WG509956LFB	LFB	11/19/20 15:31	MS201117-2	.0499		.04881	mg/L	98	85	115			
L62880-02AS	AS	11/19/20 16:16	MS201117-2	.0499	.0221	.06687	mg/L	90	70	130			
L62880-02ASD	ASD	11/19/20 16:18	MS201117-2	.0499	.0221	.06582	mg/L	88	70	130	2	20	

L62895-2012041237 Page 9 of 22

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec

Mercury, dissol	ved		M245.1 C	VAA									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG510086													
WG510086ICV	ICV	11/24/20 12:09	HG201109-2	.005		.00491	mg/L	98	95	105			
WG510086ICB	ICB	11/24/20 12:10				U	mg/L		-0.0002	0.0002			
WG510086LRB	LRB	11/24/20 12:12				U	mg/L		-0.00044	0.00044			
WG510086LFB	LFB	11/24/20 12:13	HG201116-3	.002002		.0018	mg/L	90	85	115			
L62866-06LFM	LFM	11/24/20 12:34	HG201116-3	.002002	U	.00169	mg/L	84	85	115			MA
_62866-06LFMD	LFMD	11/24/20 12:35	HG201116-3	.002002	U	.0018	mg/L	90	85	115	6	20	
Molybdenum, d	issolved		M200.8 I	CP-MS									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG509956													
WG509956ICV	ICV	11/19/20 15:28	MS201021-2	.01992		.01943	mg/L	98	90	110			
WG509956ICB	ICB	11/19/20 15:30				U	mg/L		-0.00044	0.00044			
WG509956LFB	LFB	11/19/20 15:31	MS201117-2	.0501		.04541	mg/L	91	85	115			
L62880-02AS	AS	11/19/20 16:16	MS201117-2	.0501	.00485	.05345	mg/L	97	70	130			
L62880-02ASD	ASD	11/19/20 16:18	MS201117-2	.0501	.00485	.05313	mg/L	96	70	130	1	20	
Nickel, dissolve	d		M200.8 I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qua
WG509956													
WG509956ICV	ICV	11/19/20 15:28	MS201021-2	.05		.0515	mg/L	103	90	110			
WG509956ICB	ICB	11/19/20 15:30				U	mg/L		-0.00088	0.00088			
WG509956LFB	LFB	11/19/20 15:31	MS201117-2	.05		.04858	mg/L	97	85	115			
L62880-02AS	AS	11/19/20 16:16	MS201117-2	.05	.00372	.04798	mg/L	89	70	130			
L62880-02ASD	ASD	11/19/20 16:18	MS201117-2	.05	.00372	.0471	mg/L	87	70	130	2	20	
Nitrate/Nitrite as	s N, disso	olved	M353.2 -	Automated	Cadmium	Reduction	on						
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qua
WG510067													
WG510067ICV	ICV	11/21/20 19:27	WI201117-3	2.416		2.411	mg/L	100	90	110			
WG510067ICB	ICB	11/21/20 19:28				U	mg/L		-0.02	0.02			
WG510068													
WG510068LFB	LFB	11/21/20 20:51	WI201001-11	2		1.868	mg/L	93	90	110			
L62890-05AS	AS	11/21/20 20:58	WI201001-11	2	.408	2.359	mg/L	98	90	110			
L62890-06DUP	DUP	11/21/20 21:01			.977	.983	mg/L				1	20	
Nitrite as N, dis	solved		M353.2 -	Automated	Cadmium	Reduction	on						
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qua
WG509809													
WG509809ICV	ICV	11/17/20 22:55	WI201117-3	.609		.611	mg/L	100	90	110			
WG509809ICB	ICB	11/17/20 22:57				U	mg/L		-0.01	0.01			
WG509809LFB	LFB	11/17/20 23:00	WI201001-11	1		1.002	mg/L	100	90	110			
L62890-01AS	AS	11/17/20 23:03	WI201001-11	1	.029	1.019	mg/L	99	90	110			
L62890-02DUP	DUP	11/17/20 23:05			.092	.09	mg/L				2	20	RA

L62895-2012041237 Page 10 of 22

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

ACZ ID WG510050	Type	Analyzed	PCN/SCN	QC	Sample	F							
WG510050					Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG510050LCSW1	LCSW	11/20/20 16:44	PCN60577	6		6	units	100	5.9	6.1			
WG510050LCSW4	LCSW	11/20/20 19:03	PCN60577	6		6	units	100	5.9	6.1			
L62914-03DUP	DUP	11/20/20 21:23			8.4	8.4	units				0	20	
WG510050LCSW7	LCSW	11/20/20 22:57	PCN60577	6		6	units	100	5.9	6.1			
WG510050LCSW10	LCSW	11/21/20 1:58	PCN60577	6		6.1	units	102	5.9	6.1			
WG510050LCSW13	LCSW	11/21/20 6:07	PCN60577	6		6.1	units	102	5.9	6.1			
Potassium, dissol	ved		M200.7 I	CP									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG510008													
VG510008ICV	ICV	11/20/20 20:19	II201113-1	20		19.91	mg/L	100	95	105			
WG510008ICB	ICB	11/20/20 20:25				U	mg/L		-0.6	0.6			
WG510008LFB	LFB	11/20/20 20:38	II201112-3	99.96847		97.62	mg/L	98	85	115			
L62892-01AS	AS	11/20/20 21:59	II201112-3	99.96847	12.3	110.2	mg/L	98	85	115			
_62892-01ASD	ASD	11/20/20 22:02	II201112-3	99.96847	12.3	110.8	mg/L	99	85	115	1	20	
Residue, Filterable	e (TDS)	@180C	SM25400	С									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG509948													
WG509948PBW	PBW	11/19/20 12:50				U	mg/L		-20	20			
WG509948LCSW	LCSW	11/19/20 12:53	PCN62453	1000		1006	mg/L	101	80	120			
_62904-04DUP	DUP	11/19/20 14:10			4410	4432	mg/L				0	10	
Selenium, dissolv	ed		M200.8 I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG510226													
VG510226ICV	ICV	11/24/20 19:27	MS201021-2	.05		.05154	mg/L	103	90	110			
WG510226ICB	ICB	11/24/20 19:29				U	mg/L		-0.00022	0.00022			
	LFB	11/24/20 19:31	MS201117-2	.05		.04478	mg/L	90	85	115			
-62927-01AS	AS	11/24/20 19:36	MS201117-2	.05	.00019	.04779	mg/L	95	70	130			
_62927-01ASD	ASD	11/24/20 19:38	MS201117-2	.05	.00019	.04892	mg/L	97	70	130	2	20	
Silver, dissolved			M200.8 I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG510226													
WG510226ICV	ICV	11/24/20 19:27	MS201021-2	.02004		.01987	mg/L	99	90	110			
	ICB	11/24/20 19:29	· · -	.0200 Ŧ		.01307 U	mg/L	00	-0.00022	0.00022			
WG510226ICB						_	J		J. J J J J L L	5.550 <u>L</u> L			
WG510226ICB WG510226I FB			MS201117-2	01002		0085	mg/L	85	85	115			
	LFB AS	11/24/20 19:31 11/24/20 19:36	MS201117-2 MS201117-2	.01002 .01002	U	.0085 .00792	mg/L mg/L	85 79	85 70	115 130			

L62895-2012041237 Page 11 of 22

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

L62895-2012041237 Page 12 of 22

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Zinc, dissolved M200.8 ICP-MS

ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG509956													
WG509956ICV	ICV	11/19/20 15:28	MS201021-2	.05		.0504	mg/L	101	90	110			
WG509956ICB	ICB	11/19/20 15:30				U	mg/L		-0.0132	0.0132			
WG509956LFB	LFB	11/19/20 15:31	MS201117-2	.050075		.0496	mg/L	99	85	115			
L62880-02AS	AS	11/19/20 16:16	MS201117-2	.050075	.0651	.1122	mg/L	94	70	130			
L62880-02ASD	ASD	11/19/20 16:18	MS201117-2	.050075	.0651	.1111	mg/L	92	70	130	1	20	

L62895-2012041237 Page 13 of 22

Inorganic Extended Qualifier Report

Golder Associates ACZ Project ID: L62895

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L62895-01	WG509956	Beryllium, dissolved	M200.8 ICP-MS	IA	Internal standard recovery exceeded the acceptance limits. Concentration of associated target analyte(s) in the sample is < MDL.
	WG510206	Chloride	M300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG510118	Chromium, dissolved	M200.8 ICP-MS	DD	Sample required dilution due to matrix color or odor.
		Copper, dissolved	M200.8 ICP-MS	DD	Sample required dilution due to matrix color or odor.
	WG509814	Cyanide, Free	D6888-09/OIA-1677-09	DE	Sample required dilution. See Case Narrative.
	WG509974	Fluoride	SM4500F-C	DD	Sample required dilution due to matrix color or odor.
			SM4500F-C	MA	Recovery for either the spike or spike duplicate was outside of the acceptance limits; the RPD was within the acceptance limits.
	WG510118	Lead, dissolved	M200.8 ICP-MS	DD	Sample required dilution due to matrix color or odor.
	WG510086	Mercury, dissolved	M245.1 CVAA	MA	Recovery for either the spike or spike duplicate was outside of the acceptance limits; the RPD was within the acceptance limits.
	WG510068	Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	HE	Analysis performed past holding time. Method holding time is less than or equal to 7 days and sample was received with less than half of the holding time remaining (refer to item C5 of ACZ's Terms & Conditions).
	WG509809	Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG510050	рН	SM4500H+ B	ZW	Method deviation. The sample was centrifuged prior to analysis due to high solid content.
	WG510226	Silver, dissolved	M200.8 ICP-MS	D1	Sample required dilution due to matrix.
			M200.8 ICP-MS	DD	Sample required dilution due to matrix color or odor.
	WG510206	Sulfate	M300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG510050	Total Alkalinity	SM2320B - Titration	ZW	Method deviation. The sample was centrifuged prior to analysis due to high solid content.
	WG510118	Uranium, dissolved	M200.8 ICP-MS	DD	Sample required dilution due to matrix color or odor.

REPAD.15.06.05.01

RadioChemistry Analytical Results

Golder Associates

Project ID: 20378105

Sample ID: B-8

Locator:

ACZ Sample ID: **L62895-01**

Date Sampled: 11/16/20 8:30

Date Received: 11/17/20

Sample Matrix: Groundwater

Gross Alpha & Beta, dissolved

M900.0

Prep Method:

Parameter	Measure Date	Prep Date	Result	Error(+/-)	LLD	Units	XQ	Analyst
Gross Alpha	12/01/20 0:33		3.6	8.9	29	pCi/L	*	fdw/tjr
Gross Beta	12/01/20 0:33		9.3	11	38	pCi/L	*	fdw/tjr

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Explanations

Batch A distinct set of samples analyzed at a specific time

Error(+/-) Calculated sample specific uncertainty

Found Value of the QC Type of interest

Limit Upper limit for RPD, in %.

LCL Lower Control Limit, in % (except for LCSS, mg/Kg)
LLD Calculated sample specific Lower Limit of Detection

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit

QC True Value of the Control Sample or the amount added to the Spike

Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)

RER Relative Error Ratio, calculation used for Dup. QC taking into account the error factor.

RPD Relative Percent Difference, calculation used for Duplicate QC Types

UCL Upper Control Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

QC Sample Types

 DUP
 Sample Duplicate
 MS/MSD
 Matrix Spike/Matrix Spike Duplicate

 LCSS
 Laboratory Control Sample - Soil
 PBS
 Prep Blank - Soil

LCSS Laboratory Control Sample - Soil

LCSW Laboratory Control Sample - Water PBW Prep Blank - Water

PBW Prep Blank - Water

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method.

Matrix Spikes Determines sample matrix interferences, if any.

ACZ Qualifiers (Qual)

H Analysis exceeded method hold time.

Method Prefix Reference

M EPA methodology, including those under SDWA, CWA, and RCRA
 SM Standard Methods for the Examination of Water and Wastewater.

D ASTM
RP DOE
ESM DOE/ESM

Comments

- (1) Solid matrices are reported on a dry weight basis.
- (2) Preparation method: "Method" indicates preparation defined in analytical method.
- (3) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (4) An asterisk in the "XQ" column indicates there is an extended qualifier and/or certification qualifier associated with the result.

For a complete list of ACZ's Extended Qualifiers, please click:

https://acz.com/wp-content/uploads/2019/04/Ext-Qual-List.pdf

REP003.09.12.01

L62895-2012041237 Page 16 of 22

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Alpha M900.0 Units: pCi/L

ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Error	LLD	Found	Error	LLD	Rec%	Lower	Upper	RPD/RER	Limit	Qual
WG510121																
WG510121PBW	PBW	12/01/20						1	0.63	0.94			1.88			
WG510121LCSWA	LCSW	12/01/20	PCN62436	66.67				72	5.9	1.1	108	67	144			
L62717-04DUP	DUP-RPD	12/01/20			6.4	3.7	3	6.7	3.8	3				5	20	
L62781-01MSA	MS	12/01/20	PCN62436	123.46	1.8	2.7	10	68	11	26	54	67	144			M2
L62895-01DUP	DUP-RPD	12/01/20			3.6	8.9	29	7.9	10	36				75	20	RG
L62895-01DUP	DUP-RER	12/01/20			3.6	8.9	29	7.9	10	36				0.32	2	

Beta M900.0 Units: pCi/L

ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Error	LLD	Found	Error	LLD	Rec%	Lower	Upper	RPD/RER	Limit	Qual
WG510121																
WG510121PBW	PBW	12/01/20						1.6	1.8	1.8			3.6			
WG510121LCSWB	LCSW	12/01/20	RC200602-10	66.6				64	4.1	1.7	96	82	122			
L62717-04DUP	DUP-RPD	12/01/20			8.5	3.3	3	7.8	3.4	3.1				9	20	
L62895-01DUP	DUP-RPD	12/01/20			9.3	11	38	4.4	11	28				72	20	RG
L62895-01DUP	DUP-RER	12/01/20			9.3	11	38	4.4	11	28				0.31	2	
L62895-01MSB	MS	12/01/20	RC200602-10	399.6	9.3	11	38	390	26	35	95	82	122			

L62895-2012041237 Page 17 of 22

RadChem Extended
Qualifier Report

Golder Associates ACZ Project ID: L62895

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L62895-01	WG510121	Gross Alpha	M900.0		Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			M900.0	RG	Sample concentration is less than 5x LLD; RPD was not used for data validation. Replicate Error Ratio (RER) is less than 2. Precision judged to be in control.
		Gross Beta	M900.0	RG	Sample concentration is less than 5x LLD; RPD was not used for data validation. Replicate Error Ratio (RER) is less than 2. Precision judged to be in control.

L62895-2012041237 Page 18 of 22

Certification Qualifiers

Golder Associates ACZ Project ID: L62895

No certification qualifiers associated with this analysis

L62895-2012041237 Page 19 of 22

Sample Receipt

Golder Associates 20378105

ACZ Project ID: L62895

Date Received: 11/17/2020 11:22

Received By:

Date Printed: 11/18/2020

Date H	rinted:	11/	18/2020
Receipt Verification			
	YES	NO	NA
1) Is a foreign soil permit included for applicable samples?			X
2) Is the Chain of Custody form or other directive shipping papers present?	X		
3) Does this project require special handling procedures such as CLP protocol?		Χ	
4) Are any samples NRC licensable material?			Х
5) If samples are received past hold time, proceed with requested short hold time analyses?	Х		
6) Is the Chain of Custody form complete and accurate?	Х		
7) Were any changes made to the Chain of Custody form prior to ACZ receiving the samples?		Χ	
Samples/Containers			
	YES	NO	NA
8) Are all containers intact and with no leaks?	Х		
9) Are all labels on containers and are they intact and legible?	X		
10) Do the sample labels and Chain of Custody form match for Sample ID, Date, and Time?	Х		
11) For preserved bottle types, was the pH checked and within limits? 1	Х		
12) Is there sufficient sample volume to perform all requested work?	Х		
13) Is the custody seal intact on all containers?			Х
14) Are samples that require zero headspace acceptable?			Х
15) Are all sample containers appropriate for analytical requirements?	Х		
16) Is there an Hg-1631 trip blank present?			Х
17) Is there a VOA trip blank present?			Х
18) Were all samples received within hold time?	Х		
	NA indica	tes Not Ap	oplicable

Chain of Custody Related Remarks

Client Contact Remarks

Shipping Containers

Cooler Id	Temp(°C)	Temp Criteria(°C)	Rad(µR/Hr)	Custody Seal Intact?
6008	1.1	<=6.0	15	Yes

Was ice present in the shipment container(s)?

Yes - Wet ice was present in the shipment container(s).

Client must contact an ACZ Project Manager if analysis should not proceed for samples received outside of their thermal preservation acceptance criteria.

Sample Receipt

Golder Associates 20378105

ACZ Project ID: L62895

Date Received: 11/17/2020 11:22

Received By:

Date Printed: 11/18/2020

REPAD LPII 2012-03

L62895-2012041237 Page 21 of 22

The preservation of the following bottle types is not checked at sample receipt: Orange (oil and grease), Purple (total cyanide), Pink (dissolved cyanide), Brown (arsenic speciation), Sterile (fecal coliform), EDTA (sulfite), HCl preserved vial (organics), Na2S2O3 preserved vial (organics), and HG-1631 (total/dissolved mercury by method 1631).

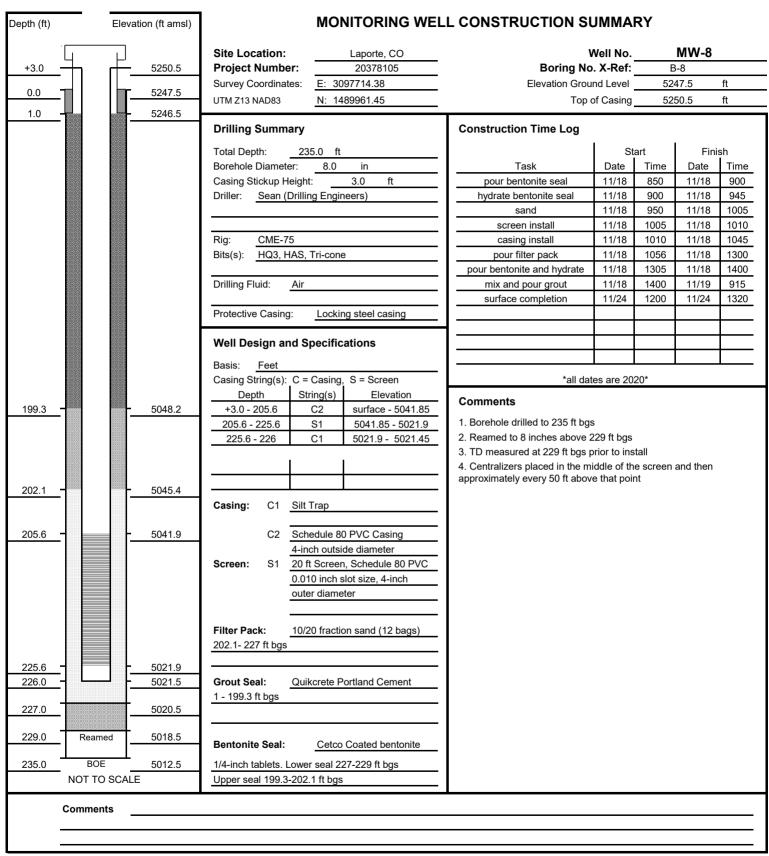
ACZ Laboratories	i, Inc. L	20E	75		CH	IAIN	of C	CUST	ODY
773 Downhill Drive Steamboat Springs, CO 80487	' (800) 334-5493								
Report to:								1.1	1.01
lame: Source Harkins		Address	: 44 <u>-</u>	183	919	NI P	ppo	++ <u> </u>	d Stel
company: Golder Associa	tes	Anc	ho	rag	<u>4,19</u>	<u>k </u>	995	757	
-mail: Sara-Harkins 6 golde	reon	Telepho	ne:						
Copy of Report to:									
lame: Tricia Hall		E-mail:	<i>₩</i>	cia	-he	416	00	<u>der</u>	com
company: Golder Associat	جک	Telepho	ne:						
nvoice to:				,					
Jame: Same as Report	L to	Address	:						
Company:									-
E-mail:		Telepho	ne:						
sample(s) received past holding time (HT), or if				ete				YES	ω
nalysis before expiration, shall ACZ proceed wit "NO" then ACZ will contact client for further instruction. If neither "YES" no				ited analyse	s, even if H	T is expire	d, and data	NO L will be qualif	ied
Then AC2 will contact client for further instruction. In neutror TES 110. Are samples for SDWA Compliance Monitoring?	is mandated, not will	Yes			No				
f yes, please include state forms. Results will be	reported to PQL f	or Colora	do.						
Sampler's Name: T. Hall Sampler's S	ite Information	State	<u>CO</u>					Time Zo	
Sampler's Signature:	*I attest to the authent tampering with the sa	ticity and validi mple in anyway	ty of this y, is cons	sample. I u idered frau	inderstand d and punis	that intenti hable by S	onally misia tate Law.	ibeling the ti	me/gate/location o
PROJECT INFORMATION			ANAL	YSES REC	QUESTED	(attach l	st or use	quote num	ber)
Quote #: BO46271		83	0			क्	{		
PO#: 20378105		igi -	ਡ	2	귛	₹ £	30	•	
Reporting state for compliance testing:		Containers	2	્રી	.\$	43	33		
Check box if samples include NRC licensed material		5	Σ	اله	ج ا	31	37		
SAMPLE IDENTIFICATION DATE:T		*		. , 	$\frac{\gamma}{\gamma}$	$\stackrel{>}{\sim}$	3/		
B-8 11/14/20	0830 GW	5	X	_X	- X 	<u>X</u>	_X,		
		\vdash							
		-							
		-							
		<u> </u>							
		 -							
		 						-	
		141.65:11:	10/-4-	·	ك لاجتمالية	CO (Seil)	01 (0)	N. Othor	(Specify)
Matrix SW (Surface Water) · GW (Ground Water) · V	/vvv (Waste Water) D	ivv (Drinking	vvate) · SL (S	iuage) · S	O (50II)	OL (UI) Other (ohemia)
REMARKS	1 0		1) .		D.		0.		Λ
metals, rads, + diss	swed u	J-C+ (′V-l	m	tie	id	41	tere	J.
Please refer to ACZ's ter	ms & conditions I	ocated o					COC.		
RELINQUISHED BY:	DATE:TIME		R	RECEIV	ED BY	:		DA	TE:TIME
Tricia Hall 11	116/20 15	32>							
		$\Gamma \sim$		\mathcal{L}	$\Pi\Pi$	712	O	1176	/ 2

-62895-2012041237

White - Return with sample.

Yellow - Retain for your records.

Page 22 of 22


ATTACHMENT C

Reference No. 20378105-1-TM-0

February 19, 2021

Monitoring Well Construction Diagram

February 2021 20378105

Supervised by: T. Hall

ATTACHMENT D

Reference No. 20378105-1-TM-0

February 19, 2021

Monitoring Well Development Forms

February 2021 20378105

WELL DEVELOPMENT/PURGING FORM

Time

10:59

GOLDER						
Project Ref:	MW-8 Well Insta	llation		Project	No.: 20378105	
Location	MW-8					
Monitored By:	T. Hall	Date	11/24/2020	Time	8:30	
Well Piezometer Da	ata					
	(circle one)					
Depth of Well (from ground)			226		feet	
Depth of Water (from ground)			34.5		feet	
Radius of Casing			4.0		inches	
					feet	
Casing Volume					cubic feet	
			125		gallons	
Development / Pur	ging Discharge D	ata				
Purging Method		N	letal Bailer			
Start Purging		Date	11/24/2020	Time	~ 8:00	

11/24/2020

Date

Monitoring

Stop Purging

Date	Time	Volume Discharge (gals)	Temp (°C)	рН	Spec.Cond. (μS/cm)	Turbidity (NTU)	Water Level (ft bgs)	Appearance of Water and Comment
11/24/2020	8:45	~20	12.8	8.41	4,291	low		229 ft btoc is bottom
11/24/2020	9:06	~30	12.8	8.51	4,322	low		Sulfur odor, clear
11/24/2020	9:12	~40	12.8	8.57	4,329	low		
11/24/2020	9:17	~50	12.9	8.52	4,313	low		
11/24/2020	9:28	~60	12.5	8.61	4,308	low		
11/24/2020	9:37	~70	13.1	8.56	4,289	low		
11/24/2020	9:54	~80	13.0	8.39	4,631	mod		Soapy and gray
11/24/2020	10:06	~90	13.2	8.46	4,530	mod		Start to surge screen
11/24/2020	10:20	~100	13.3	8.43	4,639	mod		
11/24/2020	10:32	~110	13.2	8.43	4,689	mod		
11/24/2020	10:45	~120	13.4	8.51	4,858	mod		
11/24/2020	10:59	~125					Dry	
11/24/2020	11:15			-			228.5	Observing recharge
11/24/2020	11:30			_			228.2	Observing recharge
11/24/2020	11:45			_			228.1	Observing recharge
11/24/2020	12:00			-			228.05	Observing recharge

February 2021 20378105

Comments: Discharge volumes approximate

WELL DEVELOPMENT/PURGING FORM

GOLDER Project Ref:		MW-8 We	ell Instal	llation			Project	No.: 20378105		
Location		MW-8								
Monitored By:		T. H	all	Date	12/7/20	020	Time	10	10	
Well Piezome	eter Data									
Depth of Well (from to	on of PVCV	(circle one)				229		feet		
,	,				2	18.58		<u>.</u> 1		
Depth of Water (from	top of PVC)							feet		
Radius of Casing						4		inches		
					<u> </u>			feet		
Casing Volume						1.2		cubic feet		
						1.∠		gallons		
Development	/ Purging	Discharge	e Data							
Purging Method					disposable, d	ledicated	bailer			
Start Purging				Date	12/7/2020 Time			1015		
Stop Purging				Date	12/7/20	020	Time	11	22	
Monitoring		Volume	Temp		Spec.Cond.	Turbidity	Water			
Date	Time	Discharge (gals)	(°C)	pН	(μS/cm)	(NTU)	Level (ft bgs)	Appearance of Wa	ter and Comments	
12/7/2020	1040	2	13.6	8.33	11,903	Low				
12/7/2020	1056	5	13.8	8.41	12,280	Low		Post the manner		
12/7/2020 12/7/2020	1106 1117	8 11	14.2 14.1	8.33 8.34	12,821	Low Mod		slightly more gr		
12/1/2020	1117	11	14.1	0.34	13,136	IVIOU		slight sullur odd	<u>or</u>	
12/7/2020	1122	Bailed dry	at app	rox. 13	gallons; soa	py w/ su	lfur odor	(Mod)		

ATTACHMENT E

Reference No. 20378105-1-TM-0

February 19, 2021

Monitoring Well Construction Permit

TRANSMITTAL

DATE	February 3, 2021	Project No. 2037810					
ТО	Office of the State Engineer State of Colorado 1313 Sherman St. Room 821 Denver, CO 80203	FROM Golder Associates EMAIL tricia_hall@golder.com					
	ONSTRUCTION PERMIT APPLICATION MAT TE REPORT FOR HOLCIM BOETTCHER QUA	ERIALS AND WELL CONSTRUCTION AND YEILD ARRY MONITORING WELL INSTALLATION					
☑ Mail/ □ Same		☐ Enclosed ☐ Picked Up ☐ Hand Delivered ☐ Other					
Quantity	ltem	Description					
1	Form No. GWS-31	Well Construction and Yield Estimate Report					
1	Form No. GWS-46	Monitoring/Observation Water Well Permit Application					
1	Well permit application fee	\$100 check for one new monitoring well					
Notes							
ACKNOV	dvise us if enclosures are not as described. VLEDGEMENT REQUIRED: blease email/fax to Golder) □ NO						
	ssociates.sharepoint.com/sites/135208/project files/5 technical work/well permi	ts/permit materials for submittal/well_permit_transmittal.docx					

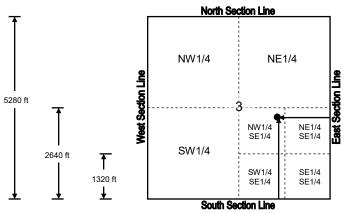
T: +1 303 980-0540 F: +1 303 985-2080

7245 W Alaska Drive, Suite 200, Lakewood, Colorado, USA 80226

Golder Associates Inc.

COLORADO DEPARTMEN						Office Use Only Form GWS-46 (01/20								
1313 SHERM	AN ST., Ste 82			80203	sitaanlina@atata oo ua									
Phone: (303) 8		OBSE	RVA		nitsonline@state.co.us	1								
Water W														
Review instructions on reverse side prior to completing form. The form must be typed, completed online or in black or blue ink.														
1. Well Owner Information Name of well owner						1								
Name of well owner						6. Use Of Well								
Mailing address						Use of this well is limited to monitoring water levels and/or water quality sampling								
g add see						7. Well Data (pro	posed)							
City	y State Zip code					Total depth		Aquifer						
							feet							
Telephone #			E-Mail (If	filing online	it is required)	8. Consultant In	formation (i	f applicable)						
						Name of contact person								
2. Type Of	• •	n (chec	k appli	cable b	oxes)	Company name								
☐ Use existing ☐ Construct n	-	☐ Repla	acement	for exist	ing monitoring well:	Company name								
Other:	iew weii	Perm	it no.:			Mailing address								
3. Refer To	(if applicat	ole)												
Monitoring hole ack		,	Well name	e or #		City		State	Zip C	ode				
MH-						Talanhana #								
4. Location	Of Propos	sed We	II (Imp	ortant	See Instructions)	Telephone #								
				1/4 of	the 1/4	9. Proposed We	II Driller Lic	ense #(optio	nal):					
Section Township N or S Range E or W Principal Meridian					10. Name of Well Owner or Authorized Agent The making of false statements herein constitutes perjury in the second									
Section	Township	N or S	Range	E or W	Principal Meridian									
Section		N or S	Range	E or W	Principal Meridian	The making of false s degree, which is puni	statements here shable as a cla	in constitutes pe ss 1 misdemear	erjury in	n the second suant to C.R.S.				
Section Distance of well from	m section lines (se	ection lines ar			/ lines)	The making of false s degree, which is puni 24-4-104 (13)(a). I ha thereof and state that	statements here shable as a clas ave read the sta t they are true to	in constitutes po ss 1 misdemear atements herein	erjury in nor pur , know	n the second suant to C.R.S. the contents				
Distance of well from	m section lines (se	ection lines at	re typically	not property	lines)	The making of false s degree, which is puni 24-4-104 (13)(a). I hi thereof and state that Sign or enter full name here	statements here ishable as a clas ave read the sta t they are true to	in constitutes po ss 1 misdemear atements herein	erjury in nor pur , know	n the second suant to C.R.S.				
	m section lines (se	ection lines at N S se and direction	re typically	not property	Y lines) Ft. from □ E □ W	The making of false s degree, which is puni 24-4-104 (13)(a). I hi thereof and state that Sign or enter full name here	statements here ishable as a clasave read the state they are true to	in constitutes pe ss 1 misdemear atements herein o my knowledge	erjury in nor pur , know	n the second suant to C.R.S. the contents				
Distance of well from	m section lines (se Ft. from ells only – distance	ection lines at N S se and direction	re typically on from old	not property	lines)	The making of false s degree, which is puni 24-4-104 (13)(a). I hi thereof and state that Sign or enter full name here	statements here ishable as a clasave read the state they are true to	in constitutes pe ss 1 misdemear atements herein o my knowledge	erjury in nor pur , know	n the second suant to C.R.S. the contents				
Distance of well from	m section lines (se Ft. from ells only – distance	ection lines at N S se and direction	re typically on from old	not property	r lines) Ft. from ☐ E ☐ W well direction	The making of false s degree, which is puni 24-4-104 (13)(a). I his thereof and state that Sign or enter full name here	statements here is hable as a classave read the state they are true to the state they are true to the state of the state o	in constitutes pe ss 1 misdemear atements herein o my knowledge	erjury in nor pur , know	n the second suant to C.R.S. the contents				
Distance of well from For replacement well location address Optional: GPS	m section lines (se Ft. from ells only – distance ss (Include City, Si well location info	ection lines and N S and direction feet tate, Zip)	re typically on from old Check i	not property well to new f well addres	r lines) Ft. from ☐ E ☐ W well direction	The making of false s degree, which is puni 24-4-104 (13)(a). I his thereof and state that Sign or enter full name here	statements here is hable as a classave read the state they are true to the state they are true to the state of the state o	in constitutes pe ss 1 misdemear atements herein o my knowledge owner.	erjury ii nor pur , know	n the second suant to C.R.S. the contents Date (mm/dd/yyyy)				
Distance of well from For replacement we Well location address	m section lines (se Ft. from ells only – distance ss (Include City, Si well location info	ection lines and N S and direction feet tate, Zip)	re typically on from old Check i	not property well to new f well addres	r lines) Ft. from ☐ E ☐ W well direction	The making of false s degree, which is puni 24-4-104 (13)(a). I his thereof and state that Sign or enter full name here	statements here is hable as a classave read the state they are true to the state they are true to the state of the state o	in constitutes pe ss 1 misdemear atements herein o my knowledge	erjury ii nor pur , know	n the second suant to C.R.S. the contents				
Distance of well from For replacement well location addres Well location addres Optional: GPS You must check	m section lines (se Ft. from ells only – distance ss (Include City, Si well location info GPS unit for rec	ection lines and N S and direction feet tate, Zip)	re typically on from old Check i	not property well to new f well addrese mat llows:	Ft. from E W well direction as is same as Item 1.	The making of false s degree, which is puni 24-4-104 (13)(a). I his thereof and state that Sign or enter full name here	statements here is hable as a classave read the state they are true to the state they are true to the state of the state o	in constitutes poss 1 misdemear atements herein o my knowledge owner.	erjury ii nor pur , know	n the second suant to C.R.S. the contents Date (mm/dd/yyyy)				
Distance of well from For replacement well Well location address Optional: GPS You must check Format must be UT	m section lines (se Ft. from ells only – distance ss (Include City, Si well location info GPS unit for rec M one 13	ection lines and N S and direction feet tate, Zip)	re typically on from old Check i	not property well to new f well addrese mat llows:	r lines) Ft. from ☐ E ☐ W well direction	The making of false s degree, which is puni 24-4-104 (13)(a). I his thereof and state that Sign or enter full name here	statements here is hable as a classave read the state they are true to the state of	in constitutes poss 1 misdemear atements herein o my knowledge owner.	erjury ii nor pur , know	n the second suant to C.R.S. the contents Date (mm/dd/yyyy)				
Distance of well from For replacement well Well location addres Optional: GPS You must check Format must be UT Zone 12 or Z Units must be Mete Datum must be NA	m section lines (se Ft. from ells only – distance ss (Include City, Si well location info GPS unit for rec M one 13 rs AD83	ection lines and N S and direction feet tate, Zip)	re typically on from old Check i	not property well to new f well addrese mat llows:	Ft. from E W well direction as is same as Item 1.	The making of false s degree, which is puni 24-4-104 (13)(a). I his thereof and state that Sign or enter full name here	statements here is hable as a classave read the state they are true to the state of	in constitutes poss 1 misdemear atements herein o my knowledge owner.	erjury ii nor pur , know	n the second suant to C.R.S. the contents Date (mm/dd/yyyy)				
Distance of well from For replacement well Well location address Optional: GPS You must check Format must be UT Zone 12 or Z Units must be Mete Datum must be NA Unit must be set to	m section lines (se Ft. from ells only – distance ss (Include City, Si well location info GPS unit for rec M one 13 rs AD83 true north	ection lines at N S and direction feet tate, Zip)	re typically on from old Check i UTM forn ngs as fol Eastin	not property well to new f well addres mat llows:	Ft. from E W well direction as is same as Item 1.	The making of false s degree, which is puni 24-4-104 (13)(a). I his thereof and state that Sign or enter full name here	statements here is hable as a classave read the state they are true to the state of	in constitutes poss 1 misdemear atements herein o my knowledge owner.	erjury ii nor pur , know	n the second suant to C.R.S. the contents Date (mm/dd/yyyy)				
Distance of well from For replacement well Well location address Optional: GPS You must check Format must be UT Zone 12 or Z Units must be Mete Datum must be NA Unit must be set to Was GPS unit check	m section lines (se Ft. from ells only – distance ss (Include City, Si well location info GPS unit for rec M one 13 rs AD83 true north sked for above?	ection lines and N S and direction feet tate, Zip) commation in equired setting	on from old Check in UTM formings as fold Easting	not property well to new f well addres mat llows:	Ft. from E W well direction ss is same as Item 1.	The making of false s degree, which is puni 24-4-104 (13)(a). I his thereof and state that Sign or enter full name here	statements here is hable as a classave read the state they are true to the state of	in constitutes poss 1 misdemear atements herein o my knowledge owner.	erjury ii nor pur , know	n the second suant to C.R.S. the contents Date (mm/dd/yyyy)				
Distance of well from For replacement well Well location address Optional: GPS You must check Format must be UT Zone 12 or Z Units must be Mete Datum must be NA Unit must be set to	m section lines (se Ft. from ells only – distance ss (Include City, Si well location info GPS unit for rec M one 13 rs AD83 true north cked for above?	ection lines and N S and direction feet tate, Zip) commation in equired setting	on from old Check in UTM formings as fold Easting	not property well to new f well addres mat llows:	Ft. from E W well direction ss is same as Item 1.	The making of false s degree, which is puni 24-4-104 (13)(a). I his thereof and state that Sign or enter full name here	statements here is hable as a classave read the state they are true to the state of	in constitutes poss 1 misdemear atements herein o my knowledge owner.	erjury ii nor pur , know	n the second suant to C.R.S. the contents Date (mm/dd/yyyy)				
Distance of well from For replacement well location addres Optional: GPS You must check Format must be UT Zone 12 or Z Units must be Mete Datum must be NA Unit must be set to Was GPS unit check 5. Property	m section lines (se Ft. from ells only – distance ss (Include City, Si well location info GPS unit for rec M one 13 rs AD83 true north cked for above?	ection lines and N S and direction feet tate, Zip) commation in equired setting	on from old Check in UTM formings as fold Easting	not property well to new f well addres mat llows:	Ft. from E W well direction ss is same as Item 1.	The making of false s degree, which is puni 24-4-104 (13)(a). I his thereof and state that Sign or enter full name here	statements here is hable as a classave read the state they are true to the state of	in constitutes poss 1 misdemear atements herein o my knowledge owner.	erjury ii nor pur , know	n the second suant to C.R.S. the contents Date (mm/dd/yyyy)				
Distance of well from For replacement well location addres Optional: GPS You must check Format must be UT Zone 12 or Z Units must be Mete Datum must be NA Unit must be set to Was GPS unit check 5. Property	m section lines (se Ft. from ells only – distance ss (Include City, Si well location info GPS unit for rec M one 13 rs AD83 true north cked for above?	ection lines and N S and direction feet tate, Zip) commation in equired setting	on from old Check in UTM formings as fold Easting	not property well to new f well addres mat llows:	Ft. from E W well direction ss is same as Item 1.	The making of false s degree, which is puni 24-4-104 (13)(a). I his thereof and state that Sign or enter full name here	statements here is hable as a classave read the state they are true to the state of	in constitutes poss 1 misdemear atements herein o my knowledge owner.	erjury ii nor pur , know	n the second suant to C.R.S. the contents Date (mm/dd/yyyy)				
Distance of well from For replacement well Well location address Optional: GPS You must check Format must be UT Zone 12 or Z Units must be Mete Datum must be NA Unit must be set to Was GPS unit check 5. Property Name of property or	m section lines (se Ft. from ells only – distance ss (Include City, Si well location info GPS unit for rec M one 13 rs AD83 true north cked for above?	ection lines and N S and direction feet tate, Zip) commation in equired setting	on from old Check in UTM formings as fold Easting	not property well to new f well addres mat llows:	Ft. from E W well direction ss is same as Item 1.	The making of false s degree, which is puni 24-4-104 (13)(a). I his thereof and state that Sign or enter full name here	statements here is hable as a classave read the state they are true to the state of	in constitutes poss 1 misdemear atements herein o my knowledge owner.	erjury ii nor pur , know	n the second suant to C.R.S. the contents Date (mm/dd/yyyy)				
Distance of well from For replacement well Well location address Optional: GPS You must check Format must be UT Zone 12 or Z Units must be Mete Datum must be NA Unit must be set to Was GPS unit check 5. Property Name of property or	m section lines (se Ft. from ells only – distance ss (Include City, Si well location info GPS unit for rec M one 13 rs AD83 true north cked for above?	ection lines and N S and direction feet tate, Zip) commation in equired setting	on from old Check in UTM formings as fold Easting	not property well to new f well addres mat llows:	Ft. from E W well direction ss is same as Item 1.	The making of false s degree, which is puni 24-4-104 (13)(a). I his thereof and state that Sign or enter full name here	statements here is hable as a classave read the state they are true to the state of	in constitutes poss 1 misdemear atements herein o my knowledge owner.	erjury ii nor pur , know	n the second suant to C.R.S. the contents Date (mm/dd/yyyy)				
Distance of well from For replacement well Well location address Optional: GPS You must check Format must be UT Zone 12 or Z Units must be Mete Datum must be NA Unit must be set to Was GPS unit check 5. Property Name of property of Mailing address	m section lines (se Ft. from ells only – distance ss (Include City, Si well location info GPS unit for rec M one 13 rs AD83 true north cked for above?	ection lines and N S and direction feet tate, Zip) commation in equired setting	on from old Check in UTM formings as fold Remeir	not property well to new f well addres mat llows:	Ft. from E W Well direction as is same as Item 1.	The making of false s degree, which is puni 24-4-104 (13)(a). I his thereof and state that Sign or enter full name here	statements here is hable as a classave read the state they are true to the state of	in constitutes poss 1 misdemear atements herein o my knowledge owner.	erjury ii nor pur , know	n the second suant to C.R.S. the contents Date (mm/dd/yyyy)				
Distance of well from For replacement well Well location address Optional: GPS You must check Format must be UT Zone 12 or Z Units must be Mete Datum must be NA Unit must be set to Was GPS unit check 5. Property Name of property of Mailing address	m section lines (se Ft. from ells only – distance ss (Include City, Si well location info GPS unit for rec M one 13 rs AD83 true north cked for above?	ection lines and N S and direction feet tate, Zip) commation in equired setting	on from old Check in UTM formings as fold Remeir	not property well to new f well addres mat llows:	Ft. from E W Well direction as is same as Item 1.	The making of false s degree, which is puni 24-4-104 (13)(a). I his thereof and state that Sign or enter full name here	statements here is hable as a classave read the state they are true to the state of	in constitutes poss 1 misdemear atements herein o my knowledge owner.	erjury ii nor pur , know	n the second suant to C.R.S. the contents Date (mm/dd/yyyy)				

MONITORING/OBSERVATION WELL PERMIT APPLICATION INSTRUCTIONS


Applications must be computer generated on-line, typewritten or printed in BLACK or BLUE INK. ALL ITEMS in the application must be completed. Incomplete applications may be returned for more information. Applications are evaluated in chronological order. Please allow approximately six weeks for processing. This form may be reproduced by photocopying or computer generation. Reproductions must retain margins and print quality of the original form. If filing online, see online filing instructions for further information. You may also save, print, scan and email the completed form to: dwrpermitsonline@state.co.us

<u>FEES</u>: This application must be submitted with a \$100 filing fee. (The fee for an application to replace or deepen an existing permitted monitoring/observation well is \$100 for locations outside Designated Ground Water Basins, and \$60 inside Designated Ground Water Basins.) Fees are nonrefundable. Please visit our website (<u>dwr.colorado.gov</u>) for acceptable payment information or contact DWR at (303) 866-3581.

<u>USES</u>: This form (GWS-46) is to be used when applying for a permit where the only uses are monitoring of water levels and/or water quality sampling. For well construction criteria refer to the Colorado Water Well Construction Rules, 2CCR 402-2. A copy of the Rules may be obtained from any Division of Water Resources Office for a fee of \$5, or you may access them online on our website (dwr.colorado.gov)

ITEM INSTRUCTIONS: (numbers correspond with those on the front of this form)

- 1. Provide the name of the well owner and the mailing address where all correspondence will be sent.
- 2. Check and complete all boxes that apply.
- 3. Provide the MH number assigned by the Division of Water Resources in response to the notice of intent to construct a monitoring/observation well. Complete the well name if the structure has a name or identifying number.
- 4. If applying for a permit to **construct a new well**, you <u>must</u> provide the county, section #, township, range and principal meridian. You **do not** need to provide the ¼ of the ¼ section designation, distances from section lines or an optional GPS location (UTM coordinates). If a permit is issued and a well constructed, the authorized individual will be required to provide an accurate GPS location (UTM coordinates) of the "as-built" well location. If applying for a permit to **use an existing well** you <u>must</u> provide the well location information stated above, as well as either a GPS location (UTM coordinates) of the existing well site, or distances from section lines (**including the** ¼ **of the** ¼ **section designation**) as follows: In a typical case, a township is comprised of 36 sections, with each section ideally one mile square, or 5,280 feet on each side. Sections are further divided into quarter sections. Each ¼ Section is 2,640 feet by 2,640 feet and comprises 160 acres. Each ¼ section can be further divided into additional quarters. Each ¼ of the ¼ Section is 1,320 feet by 1,320 feet and comprises 40 acres. The distances are measured from the section lines. In the following example, the well is located 2,500 feet from the South Section line and 1,400 feet from the East Section line:

Well Location Example: NW1/4 of the SE1/4 of Section 3, being 2500 feet from the South Section Line and 1400 feet from the East Section Line.

If providing a GPS location (UTM coordinates), the required GPS unit settings must be as indicated on this form. Colorado contains two UTM zones (12 & 13). Zone 13 covers most of Colorado. The boundary between Zone 12 and Zone 13 is the 108th Meridian (longitude). West of the 108th Meridian is UTM Zone 12 and east of the 108th Meridian is UTM Zone 13. The 108th Meridian is approximately 57 miles east of the Colorado-Utah state line. On most GPS units, the UTM zone is given as part of the Easting measurement, e.g. 12T0123456. Check the appropriate box for the zone. Provide the property address of the well location if one exists. If it is the same as the mailing address, check the box next to the well location address.

- 5. Provide property owner information.
- 6. Use of this well is limited to monitoring water levels and/or water quality sampling only.
- 7. The actual or anticipated total depth must be provided. Provide the name of the aquifer in which the well will be completed.
- 8. Provide consultant information (if applicable). Note: A consultant may sign this application on behalf of their client.
- 9. Monitoring/observation wells must be constructed by a Colorado licensed well construction contractor or authorized individual, as defined in the Well Construction Rules, 2CCR 402-2. Only a licensed contractor may construct any monitoring/observation well that penetrates a confining layer, or, is to be converted into a future production well. The well must be constructed in compliance with the Well Construction Rules, unless a variance has been approved allowing an alternative construction design.
- 10. The individual signing the application or entering their name (and title if applicable) must be the applicant or an officer of the corporation/company/ agency identified as the applicant, their attorney or consultant. An authorized agent may also sign the application, if a letter signed by the applicant or their attorney is submitted with the application authorizing that agent to sign or enter their name on the applicant's behalf. Payment must be received via phone, fax or mail prior to processing the application. If filing online please call the Records Section at 303.866.3581 to pay via credit card.

 IF YOU HAVE ANY QUESTIONS regarding any item on the application form, please call the Division of Water Resources Ground Water Information Desk (303-866-3587), or the nearest Division of Water Resources Field Office located in Greeley (970-352-8712), Pueblo (719-542-3368), Alamosa (719-589-6683), Montrose (970-249-6622), Glenwood Springs (970-945-5665), Steamboat Springs (970-879-0272), or Durango (970-247-1845), or refer to the CDWR web site at dwr.colorado.gov for general information.

For Office Use Only WELL CONSTRUCTION AND YIELD ESTIMATE REPORT Form No. State of Colorado, Office of the State Engineer **GWS-31** 1313 Sherman St., Room 821, Denver, CO 80203 303.866.3581 02/2017 dwr.colorado.gov and dwrpermitsonline@state.co.us 1. Well Permit Number: Receipt Number: 2. Owner's Well Designation: 3. Well Owner Name: 4. Well Location Street Address: 5. 5g 6i] hGPS Well Location ffYei]fYXŁ: ___ Zone 12 ___ Zone 13 Easting: Northing: 6. Legal Well Location: ____ 1/4, ____ 1/4, Sec., ____ Twp.___, ___ N or S ___, Range ____, ___ E or W ___, ___ P.M. County: Subdivision: ______, Lot ______, Block _______, Filing (Unit) ____ 7. Ground Surface Elevation:______ feet Date Completed: _____ Drilling Method: 8. Completed Aquifer Name: Total Depth: feet feet Depth Completed: **9. Advance Notification:** Was Notification Required Prior to Construction? Yes No, Date Notification Given: Laramie-Fox Hills Type I (Multiple Confining Layers) 10. Aquifer Type: Type I (One Confining Layer) Type III (alluvial/colluvial) (Check one) Type II (Not overlain by Type III) Type II (Overlain by Type III) 11. Geologic Log: 12. Hole Diameter (in.) From (ft) To (ft) Depth Type Grain Size Color Water Loc. 13. Plain Casing To (ft) OD (in) Kind Wall Size (in) From (ft) Perforated Casing Screen Slot Size (in): Kind Wall Size (in) To (ft) OD (in) From (ft) 14. Filter Pack: 15. Packer Placement: Material Type Size Depth Interval 16. Grouting Record Material Amount Density Interval Method Remarks: 17. Disinfection: Type Amt. Used Check box if Test Data is submitted on Form Number GWS-39, Well Yield Test Report 18. Well Yield Estimate Data: Well Yield Estimate Method: _____ Estimated Yield (gpm) ____ Static Level: _ Estimate Length (hrs) ____ Date/Time measured: __ Remarks: 19. I have read the statements made herein and know the contents thereof, and they are true to my knowledge. This document is signed (or name entered if filing online) and certified in accordance with Rule 17.4 of the Water Well Construction Rules, 2 CCR 402 2. The filing of a document that contains false statements is a violation of section 37 91 108(1)(e), C.R.S., and is punishable by fines up to \$1,000 and/or revocation of the contracting license. If filing online the State Engineer considers the entry of the licensed contractor's name to be compliance with Rule 17.4. Company Name: Email: Phone w/area code: License Number: Mailing Address: Sign (or enter name if filing online) Print Name and Title Date: Jucio Hall

INSTRUCTIONS FOR WELL CONSTRUCTION AND YIELD ESTIMATE REPORT

This report must be computer generated online, typed or printed in <u>BLACK OR BLUE INK</u> and may be reproduced by photocopy or computer generation. Photocopy reproductions must retain margins and print quality. Attach additional sheets if more space is required. Each additional sheet must be identified at the top by the well owner's name, the permit number, form name/number and a sequential page number. Report depths in feet below ground surface. If filing online please see the <u>Form Submittal</u>, <u>Payment Options</u>, <u>& Fee Schedule</u>. You may also save, print and email the completed form to: dwrpermitsonline@state.co.us

The form must be submitted to the State Engineer's Office within 60 days after completing the well or 7 days after the permit expiration date, whichever is earlier. A copy of the form must be provided to the well owner.

Item Instructions: (numbers correspond with those on the front of this form)

- 1. Complete the well permit and receipt number.
- 2. Provide the identification (owner's well designation) for the well.
- 3. Fill in well owner name.
- 4. Provide the street address where the well is located.
- 5. Provide the GPS location where the well was drilled (required field).

Colorado contains two (2) UTM zones. Zone 13 covers most of Colorado. The boundary between Zone 12 and Zone 13 is the 108th Meridian (longitude). West of the 108th Meridian is UTM Zone 12 and east of the 108th Meridian is UTM Zone 13. The 108th Meridian is approximately 57 miles east of the Colorado-Utah state line. On most GPS units, the UTM zone is given as part of the Easting measurement, e.g. 12T0123456. Check the appropriate box for the zone.

- 6. Complete the legal description location of the well and county. For wells located in subdivisions, the name, lot, block, and filing, must be provided.
- 7. Report the ground surface elevation in feet above sea level if available. This value may be obtained from a topographic map. Provide the date the well was completed and describe the drilling method used to construct the well.
- 8. Indicate the aguifer in which the well was completed, the total depth drilled, and the actual completed depth of the well.
- 9. Indicate whether or not the well inspection team was required to be notified prior to construction. If required, provide the date notification was given. See https://dwr.colorado.gov/services/well-construction-inspection for more information on Notifications.
- 10. Check the box indicating the type aguifer in which the well is completed (See Rule 5.2.2 Well Construction Rules).
- 11. Fully describe the materials encountered in drilling. Do not use formation names unless they are in conjunction with a description of materials. Examples of descriptive terms include:

Type - sandstone, sand, etc.

Grain size - Boulders, gravel, sand, silt, clay, etc.

Color - Denote for all materials, most critical in sedimentary rock

Water Location - Depth where water is encountered (if it can be determined)

- 12. Provide the diameters of the drilled borehole.
- 13. The outside diameter, type, wall thickness, and interval of plain and perforated casing lengths must be indicated. For perforated casing, the screen size must be indicated.
- 14. Indicate the material and size of filter pack (e.g. sand, gravel, etc.) and the interval where placed.
- 15. Indicate the type and setting depth for any packers installed.
- 16. The material, amount, and interval of the grout slurry must be reported. Density may be indicated as pounds per gallon, gallons of water per sack, total gallons of water used, or number of sacks used, etc. Specify the grout placement method, i.e. tremie pipe or positive placement. The percentage of additives mixed with the grout should be reported under remarks.
- 17. Record the type and the amount of disinfection used, how placed, and the length of time left in the hole.
- 18. Report Well Yield Estimate data as required by Rule 17.1.1. Spaces are provided to report all estimates made during the assessment. The report should show that the estimate complied with the provisions of the rules. If available, report clock time when measurements were taken. If an estimate was not performed, explain when it will be done. A full Well Yield Test may be performed instead of an estimate; if so, check the appropriate box and submit the data on form GWS-39.
- 19. Fill in Company Name, Email, and Address and License Number (or PE/PG) of the Individual who is responsible for the well construction. The licensed contractor or authorized individual responsible for the construction of the well must sign or if filing online, enter his/her name on the report. If filing online the State Engineer considers the entering of the licensed contractors name on the form to be a certification of accuracy and truthfulness in compliance with Rule 17.4 of the Water Well Construction Rules and Regulations, 2 CCR 402-2.
 - Rule 17.4 Certification Work reports must be signed and certified as to accuracy and truthfulness of the information on the report by the well construction or pump installation contractors or authorized individuals responsible for the work performed by them or under their direction or supervision, or by the private driller or private pump installer if the work was performed by them. Such reports are deemed to be completed, signed and certified under oath.

Submit completed report to: State of Colorado, Office of the State Engineer, 1313 Sherman St, Room 821, Denver, CO 80203. You may also save, print, scan and email the completed form to dwrpermitsonline@state.co.us