

[FWD: Xanthate Report]

Ibarker@aumining.net <lbarker@aumining.net> To: - Russell <elliott.russell@state.co.us> Mon, Nov 2, 2020 at 8:26 AM

M-2014-045 TR 01 sand characterisation

------ Original Message ------Subject: Xanthate Report From: "Art Braun" <braunenv@msn.com> Date: Sat, October 31, 2020 7:09 am To: <lbarker@aumining.net>

Lance,

Here is my xanthate in the tailings report. Look it over one more time before you send it out. I am not sure that it is going to fit into their current view of dangerous chemicals.

Over and out,

Art

Mineral Mountain Xanthate-Tailings Investigation.pdf 3317K

Braun Environmental, Inc.

355 S. Teller St., Suite 200, Lakewood, Colorado 80226

Office: 303-697-0950

Fax: 303-697-2140

October 30, 2020

DRAFT

Lance Barker Mineral Mountain Gold, LLC P.O. Box 247 Cripple Creek, Colorado 80813 Dear Mr. Barker,

At your request, Braun Environmental, Inc., (Braun) inspected the material located on your waste rock pile. The work was performed to satisfy orders from the Mined Land Reclamation Board, Violation Number MV2020-021.

The Division of Reclamation and Mine Safety (DRMS) performed two site inspections this last summer season and in their July of 2020 report, noted that there was a mill inside the mine along with "mill tailings [being] dumped . . . into a 'mill tailings trench' outside." In their *Findings Of Fact, Conclusions Of Law, and Order*, document dated October 8, 2020, the directive included the following: *The Technical Revision shall also include a plan to either: a. Excavate and haul uncharacterized mill tailings off-site to an appropriate disposal facility, or b. Have a third-party sample and characterize the mill tailings to determine if they can be left in place.*

Field Investigation

Field investigations were conducted by Braun to assess the site and to characterize the material referenced by DRMS, including the determination of location of the material, the volume of material, and characteristics of that material.

The material is located along the northwestern face of the waste rock pile and appears in a shallow trench that had been cut into it. The mapping found that the trench had a total length of about 100 feet. The portion that contained the material had a length of 65 feet with an effective width ranging from 9 feet on the west to 10 feet on the east. At the western end, the material had an average thickness of 2 feet and at the eastern end had an average thickness of just over 3 feet. These measurements resulted in an average thickness of 2 feet, which was used to compute the volume. Based on these dimensions, the trench contains 57 cubic yards of material. At the east end of the trench, there was an additional oval-shaped pile having basal dimensions of about 12 feet on its north-south axis and 17 feet on its east-west axis. This pile was estimated to contain an additional seven cubic yards, resulting in a total estimated volume of material on the site of 69 cubic yards.

The material was carefully inspected in the field and had the appearance of brown sand. No visual evidence was found indicating that the material contained any metallic minerals, nor did it have any strong odors indicating that it might contain any hazardous chemicals, or in fact, volatile chemicals of any kind. It simply had the characteristics of plain brown sand. The DRMS report states that "xanthate" was used in the processing, and it has been our experience that the presence of this chemical produces a distinctive odor. During our inspection, using the olfactory senses, that distinctive odor was never detected. As part of Braun's review, the material was screened and found, by geologic definition, to consist of coarse- to fine-grained sand.

The trench bottom adjacent to the material, and the sides were inspected and no evidence was found that any excess water had migrated out of the material, as evidenced by the sides showing no erosion or staining, beyond what would be expected from the placement of wet sand. While Braun was not on site to see the material during its placement, based on the evidence collected during the inspection, it appears that material, if compared to wet concrete could be characterized as having a "4- to 6-inch slump". Concrete having that consistency would not be expected to expel any water, either. Based on Braun's observations, the characteristics of the material in the trench is unchanged from when it was originally placed, and no changes to its composition were detected, with exception of a reduction in the initial water saturation which appears to have been lost to the dry air of Colorado.

Based on the inspector's report, the material is reported to contain about 25 percent country rock, but in practice the material was mixed to approximately 50 percent. This higher estimate appears reasonable, and matches our field observations, thus the actual volume of sand-sized material contained in the trenches would be expected to be about 50 percent of the measured volume, or about 35 cubic yards. This allows an estimate to be made of how much material has been crushed and ground and equates to two large dump truck loads; which is not a very large volume of material. This calculation allows an estimate to be made of how many hours of process testing had occurred, based on the theoretical throughput of the equipment described by DRMS inspectors.

Sampling

As the DRMS directive is not specific, it was decided to be thorough and, to check for anything that the Environmental Protection Agency (EPA) and the Colorado Department Human Health and Environment (CDPHE) might consider hazardous; any compound that had any reasonable chance of being contained within the materials sampled.

RCRA Metals

Twin Environmental Services, the group that operates a Subtitle D landfill in Fremont County was brought in to sample to CDPHE standards to characterize the material for possible acceptance to their landfill. They submitted the samples to ACZ Laboratories, in Steamboat, Colorado, which were tested using EPA approved methods for the Resource Conservation and Recovery Act (RCRA) metals, and for ignitability and corrosivity. In addition, they tested for volatile organic compounds, including vinyl chloride. The RCRA metals testing showed that the material met the CDPHE standards for residential soil for all elements with exception of arsenic. Those results and comparisons are included in Table 1, which includes residential and industrial worker standards.

Table 1								
Element	Concentration (mg/kg)	CDPHE Residential (mg/kg)	CDPHE Worker (mg/kg)					
Arsenic	177	0.39	1.60					
Barium	222	15,000	160,000					
Cadmium	3	70	770					
Chromium	7	120,000	1,500,000					
Lead	223	400	800					
Mercury	0.1	13	160					
Selenium	U	390	5,100					
Silver	6	390	5,100					

As is commonly known, elevated arsenic concentrations in Colorado are associated directly with hydrothermal activity. While the State has developed standards for arsenic, normal arsenic background values in Colorado can be well above those set standards. The CDPHE has recognized these elevated concentrations, and is quoted in a footnote on their published standards for soils and drinking water as follows:

"For many locations in Colorado, naturally occurring concentrations of arsenic in soil are expected to be higher than the risk-based value listed in Table 1. If adequate background sampling is available that confirms the naturally occurring background concentration of arsenic adjacent to a facility is higher than the table value, the background concentration may be used for site screening and remediation purposes. Users should also reference the document 'Risk Management Guidance for Evaluating Arsenic Concentrations in Soil' (CDPHE, June 2011) at http://www.cdphe.state.co.us /hm/arsenicinsoil.pd"

Cripple Creek is typical of these areas, and the arsenic concentrations within the entire area are elevated. It is noted that the intent was to encapsulate the material within development rock, thus conforming with the goals of both CDPHE and EPA that material having elevated concentrations be isolated from the public to the degree possible. Since the site is currently considered an industrial area, only at the end of mining will it be considered for other uses and considered for the residential soil standard. The original ACZ laboratory report is attached.

TCLP

As part of the landfill acceptance procedures, ACZ Laboratories ran a Toxic Characteristic Leaching Procedure (TCLP) text to ensure that in a landfill environment, the metals would not be subject to leaching beyond what the EPA considers to be acceptable. The results from that test are shown in Table 2 and include the results along with the EPA standard.

Table 2								
Element	Concentration	EPA RCRA Standard						
	(mg/kg)	(mg/kg)						
Arsenic	U	5.00						
Barium	0.3	100						
Cadmium	0.0107	1						
Chromium	U	5						
Lead	0.032	5						
Mercury	U	0.2						
Selenium	U	1						
Silver	U	5						

The results of this test indicates that the material passes the TCLP test and shows that it is not prone to leaching of metals, either in a landfill, nor if left in place at this site. The results of the laboratory test correlate well with experience and observations within the general Cripple Creek area, where no evidence can be found of any significant metals migration at any of the old mine waste rock piles scattered throughout the district that have similar lithologies. This lack of mobility is partly due to the specific mineral assemblages and partly the result of the acid neutralizing capability of the rock found within the district. The original ACZ laboratory report is attached.

Volatile Organic Compounds

The material was tested for volatile organic compounds using EPA Method 8260, and no detectable concentrations of any of the target compounds were found. This test rules out the possibility of the

material containing any of the standard organic compounds that EPA and CDPHE considers to be hazardous. Reproduction of the results in a table is lengthy, and the original ACZ laboratory report is attached. It should be noted that while potassium ethyl xanthate is a volatile compound, neither the EPA nor CDPHE consider it to be hazardous, thus they have never believed it important to develop a test for something they consider to be non-hazardous and generally benign in the environment.

<u>Xanthate</u>

Per the instructions given by DRMS personnel, and even though no approved test exists to directly detect xanthate, DRMS still ordered the operator to prove its presence or absence, and as a result significant research and effort was expended trying to detect or rule out its presence. Although the olfactory test has always been a fairly good indicator, Braun, in conjunction with laboratories that it works with and CDPHE, concluded that the presence of xanthate could be identified by looking at its decomposition products. One option was discussed by Lauren Duncan, during the Board meeting on August 19, 2020, where she talked about carbon disulfide and how it degrades. Analysis of her line of reasoning finds that the single carbon atom remaining after the sulfur atoms separate cannot be differentiated from any other carbon atom in the environment. Thus, looking for that carbon atom would not lead to any success. Similarly, the two sulfur atoms tied to it could not be differentiated from the natural sulfur that occurs in the environment since the natural concentrations are so large. As a review, the average crustal abundance of sulfur is around 400 parts per million (ppm), thus the compound xanthate would have to be present in significantly higher concentrations to allow any meaningful quantitative analysis. This xanthate compound also contains potassium. However, since potassium is a major component of the natural rock forming minerals in the district, it is also of no use to the chemist attempting to calculate xanthate concentrations.

This leaves only the remaining part of the decomposing molecule, the ethane portion, referred to in the compound's complete proper name. Since this compound degrades easily, the ethane component will break off upon heating and, if present, can be detected. By quantifying the concentration of ethane detected, the concentration of xanthate can then be derived. Through a group effort, it was concluded that EPA Method RSK 175 Modified, a method to test for ethane, would be suitable. Two samples were collected from the trench area and submitted to SGS Laboratories in Wheat Ridge, Colorado using Braun's standard collection and chain of custody procedures. The laboratory found no detectable concentrations of ethane in either sample. Since detectable concentrations of ethane were absent, it must be concluded that detectable concentrations of the xanthate molecule are also absent.

Braun review of the laboratory results found them to be consistent with the conditions observed on the site. First, as Elliot Russell discussed during the Board meeting on August 19, 2020, xanthate is used specifically as a collector for the materials that the operator is interested in retaining. While he was not completely technically correct in his discussion, he went on to explain that the compound adheres to the materials to be retained, allowing them to be floated to the surface where they are then collected. These materials of interest to the operator occur in parts per million concentrations, so the xanthate is also used in parts per million concentrations. If the process were 100 percent efficient, one hundred percent of the xanthate that had been added to the process would be retained in the collected materials, and none would remain in the material sent to the trench. In practice there would be expected to be some loss in the process, so some of the reagent is likely to have found its way into the material in the trench. However, at a typical initial concentration of 20 ppm, with the majority of the chemical adhering to the retained materials, the concentration anticipated to remain in the spent material would only be a couple parts per million. Theoretically, even if the entire amount of reagent were to be lost to the spent material, the highest concentration possible would be only 20 ppm.

Not discussed by Mr. Russell during the meeting, and only discussed peripherally by Ms. Duncan, this compound, while considered stable for hazard analysis purposes, tends to degrade rather rapidly. In fact, the compound can degrade during storage, and when it is mixed and not used in a timely manner, it can degrade to the point that it will no longer serve its intended purpose. Thus, this chemical has a very short life, with the anion portion degrading into ethane and carbon disulfide. The decomposition product carbon disulfide also has a very short life and rapidly degrades further to create sulfur in either gas or solid form, depending on the environment in which it is deposited. Since the compound's life is so short and the concentrations used so small, it would be expected that the samples collected from the trench would contain no remaining detectable xanthate concentrations simply based on a remedial knowledge of the chemistry.

ABA Testing

While not discussed directly during the technical portion of the Board meeting on August 19, 2020, acidbased accounting (ABA) testing also needs to be considered, and this testing was performed prior to issuance of the 110(d) permit. The sample collection and testing results were documented in a report prepared by Braun and the results were thoroughly discussed by the operator, the consultant, and DRMS personnel following completion of that report. The results of the testing showed that the acid base potential ranges from neutral in the material that was to be mined to acid neutralizing in non-mineralized country rock. The rock that has been processed is the same material that was characterized prior to the issuance of the permit, thus neutral or near-neutral rock placed within neutralizing rock is not considered to be acid generating. Once again, these test results are generally confirmed by the close inspection of the greater than 100-year old waste rock piles that lay scattered across the district, and the fact that those piles are basically in nearly the same condition as they were when first placed. It is easy to observe that there has been no significant migration of elements off of them, nor has any chemical degradation negatively affected the flora located immediately adjacent. The material that has been processed has been characterized, and Braun sees no reason at this time that any further testing be necessary. A copy of that report is attached.

Discussion and Conclusions

In summary, per DRMS orders, Braun completed an investigation of the material that was placed in the trench on the face of the waste rock pile. Braun found a total of 69 cubic yards of material had been placed in the trench, of which, about 34 cubic yards consisted of development rock, and 35 cubic yards consisted of sand-sized particles sourced from processing. The material was tested by local laboratories, using EPA approved methods, for both organic and inorganic compounds, and specifically tested for xanthate decomposition products. The only exceedance over any of the standards was for arsenic, and its presence and relation to environmental regulations has been discussed above.

These most recent test results are all consistent with initial testing that was performed prior to obtaining the 110(d) permit, and also with the principles of basic chemistry. Once again, no detectable concentrations of xanthate were found in the materials sampled, and since the compound is not considered hazardous by either EPA or CDPHE, even if a small amount would have been found to be present, neither of these two agencies would have concern in that any regulatory standards would have been exceeded. The only significant potential environmental concern regarding this compound by EPA and CDPHE is the potential danger to freshwater fish, and they were specifically interested if this might have been the reason why DRMS has made this compound an issue. The permitted mine site is not in any proximity to surface waters that might contain fish, and the nearest water that might contain fish would be several miles away from this high and dry location. If the assumption were made that fish might present near the site, review of the ecotoxicity data for freshwater fish the LC50 96-hr, has been determined to be 15 to 25 milligrams per liter (mg/L), and at that limit, if the concentration used in the process were to be reduced

by 50 percent, fresh water fish could live in the xanthate concentrations used within the process. Thus, there would not be a conceivable way that xanthate concentrations contained within the material in the trench could be anywhere near this concentration, and it would logically follow, that even lower concentrations would result if leaching would occur, even if the compound's rapid degradation rates were ignored.

It is Braun's professional opinion that the material in the trench is nonhazardous and poses no threat to human health or the environment. Therefore, per current applicable environmental laws and regulations, it may either be left in place or may be hauled to a landfill, since it meets CDPHE standards for both scenarios.

Braun does recommend that if the choice to haul to a landfill is selected, some thought be put into the decision, since based on all historic testing, the composition of the trench material is essentially the same as the nearby non-disturbed material. Transport of the material off of the mine site would not materially change the environmental condition of the mine site, and its transport to a landfill would be considered to have a negative effect on the Earth's environment when fossil fuel use is considered with respect to climate change and global warming. The unnecessary hauling of the material over public roads, additionally would create an increased in danger to humans and wildlife that might be using those roads while transport were occurring.

You are welcome to call me with any questions and I would be happy to discuss the basic chemistry and the results of our investigation in more detail with anyone else that might be interested.

Sincerely, BRAUN ENVIRONMENTAL, INC.

C. A. Braun, P.E. enc. CAB/rl

September 29, 2020

Report to: Chris Brochu Twin Enviro Services P.O. Box 774362 Steamboat Springs, CO 80477

cc: Rick McCalla, Les Liman

Bill to: Deb Beaumont Twin Enviro 2500 CR 67 Penrose, CO 81240

Project ID: Barkes ACZ Project ID: L61266

Chris Brochu:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on September 03, 2020. This project has been assigned to ACZ is project number, L61266. Please reference this number in all future inquiries.

All analyses were performed according to ACZ^S Quality Assurance Plan. The enclosed results relate only to the samples received under L61266. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ^S current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after October 29, 2020. If the samples are determined to be hazardous, additional charges apply for disposal (typically \$11/sample). If you would like the samples to be held longer than ACZs stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical raw data reports for ten years.

If you have any questions or other needs, please contact your Project Manager.

re Wall

Sue Webber has reviewed and approved this report.

Twin Enviro Services

Project ID:	Barkes
Sample ID:	BARKER

Inorganic Analytical Results

ACZ Sample ID: **L61266-01** Date Sampled: 09/02/20 09:00 Date Received: 09/03/20 Sample Matrix: Soil

Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Arsenic, total (3050)	M6010D ICP	200	177		*	mg/Kg	8	40	09/17/20 22:32	jlw
Barium, total (3050)	M6010D ICP	200	222			mg/Kg	1	7	09/17/20 22:32	jlw
Cadmium, total (3050)	M6010D ICP	200	3	В	*	mg/Kg	2	5	09/17/20 22:32	jlw
Chromium, total (3050)	M6010D ICP	200	7	В	*	mg/Kg	2	10	09/17/20 22:32	jlw
Lead, total (3050)	M6010D ICP	200	223			mg/Kg	6	30	09/17/20 22:32	jlw
Mercury, total	M7471A CVAA	211	0.10	В	*	mg/Kg	0.04	0.2	09/16/20 15:20	jlw/llr
Selenium, total (3050)	M6010D ICP	200		U		mg/Kg	10	50	09/17/20 22:32	jlw
Silver, total (3050)	M6010D ICP	200	6			mg/Kg	2	5	09/17/20 22:32	jlw
Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst

i ulullotol		Briation	rtooune		ennee			Batto	, analyse
Ignitability in Solids	M1030	1	Not Flammable	*				09/15/20 12:30	gkh
pH, Corrosivity	M9045D/M9040C								
рН		1	5.3		units	0.1	0.1	09/16/20 0:00	mlp
Temperature		1	22.1		С	0.1	0.1	09/16/20 0:00	mlp
Solids, Percent	D2216-80	1	91.8	*	%	0.1	0.5	09/09/20 16:00	krs
Total Solids	SM2540B	1	91.1	*	%	0.1	0.5	09/04/20 10:15	gkh
Soil Preparation									
Parameter	EPA Method	Dilution	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Digestion - Hot Plate	M3050B ICP							09/16/20 9:30	krs

Inorganic Reference

Report fieader	Explanations									
Batch	A distinct set of samples analyzed at a specific time									
Found	Value of the QC Type of interest									
Limit	Upper limit for RPD, in %.									
Lower	Lower Recovery Limit, in % (except for LCSS, mg/Kg)									
MDL	Method Detection Limit. Same as Minimum Reporting Limit un	ess omitted or eq	ual to the PQL (see comment #5).							
	Allows for instrument and annual fluctuations.									
PCN/SCN	A number assigned to reagents/standards to trace to the manu	facturers certifica	ite of analysis							
PQL	Practical Quantitation Limit. Synonymous with the EPA term "r	ninimum level".								
QC	True Value of the Control Sample or the amount added to the S	Spike								
Rec	Recovered amount of the true value or spike added, in % (exce	pt for LCSS, mg/	Kg)							
RPD	Relative Percent Difference, calculation used for Duplicate QC	Types								
Upper	Upper Recovery Limit, in % (except for LCSS, mg/Kg)									
Sample	Value of the Sample of interest									
QC Sample Typ	pes									
AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate							
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank							
ССВ	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix							
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate							
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank							
ICB	Initial Calibration Blank	MS	Matrix Spike							
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate							
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil							
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water							
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard							
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution							
OC Sample Tv	no Evolanations									
Blanks	Verifies that there is no or minimal co	tamination in the	prep method or calibration procedure							
Control Son	Verifies the accuracy of the method i		preprinction of calibration procedure.							
Duplicates	Verifies the precision of the instrument	t and/or mathad	procedure.							
Duplicates	ified Matrix									
Spikes/For	Med Matrix Determines sample matrix interference	es, il any.								
Standard		Standard Verifies the validity of the calibration.								
ACZ Qualifiers	(Qual)									
ACZ Qualifiers B	(Qual) Analyte concentration detected at a value between MDL and P	QL. The associate	ed value is an estimated quantity.							
ACZ Qualifiers B H	(Qual) Analyte concentration detected at a value between MDL and P Analysis exceeded method hold time. pH is a field test with an	QL. The associate	ed value is an estimated quantity. me.							
ACZ Qualifiers B H L	(Qual) Analyte concentration detected at a value between MDL and P Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg	QL. The associate immediate hold ti ative threshold.	ed value is an estimated quantity. me.							
ACZ Qualifiers B H L U	(Qual) Analyte concentration detected at a value between MDL and P Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined nega The material was analyzed for, but was not detected above the	QL. The associate immediate hold ti ative threshold. level of the associ	ed value is an estimated quantity. me. ciated value.							
ACZ Qualifiers B H L U	(Qual) Analyte concentration detected at a value between MDL and P Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined nega The material was analyzed for, but was not detected above the The associated value is either the sample guantitation limit or the	QL. The associate immediate hold ti ative threshold. level of the associ ne sample detecti	ed value is an estimated quantity. me. ciated value. on limit.							
ACZ Qualifiers B H L U	(Qual) Analyte concentration detected at a value between MDL and P Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined nega The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the	QL. The associate immediate hold ti ative threshold. level of the associ ne sample detection	ed value is an estimated quantity. me. ciated value. on limit.							
ACZ Qualifiers B H L U Method Refere	(Qual) Analyte concentration detected at a value between MDL and P Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined nega The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the nces	QL. The associate immediate hold ti ative threshold. level of the associ ne sample detecti	ed value is an estimated quantity. me. ciated value. on limit.							
ACZ Qualifiers B H L U Method Refere (1)	(Qual) Analyte concentration detected at a value between MDL and P Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined nega The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the nces EPA 600/4-83-020. Methods for Chemical Analysis of Water a	QL. The associate immediate hold ti ative threshold. level of the associate ne sample detection	ed value is an estimated quantity. me. ciated value. on limit. n 1983.							
ACZ Qualifiers B H L U Method Refere (1) (2)	(Qual) Analyte concentration detected at a value between MDL and P Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg- The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the nces EPA 600/4-83-020. Methods for Chemical Analysis of Water a EPA 600/R-93-100. Methods for the Determination of Inorgani	QL. The associate immediate hold ti ative threshold. level of the associate sample detection d Wastes, March c Substances in E	ed value is an estimated quantity. me. ciated value. on limit. n 1983. Environmental Samples, August 1993.							
ACZ Qualifiers B H L U Method Refere (1) (2) (3)	(Qual) Analyte concentration detected at a value between MDL and P Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined nega The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the nces EPA 600/R-93-100. Methods for Chemical Analysis of Water a EPA 600/R-93-100. Methods for the Determination of Inorgani EPA 600/R-94-111. Methods for the Determination of Metals in	QL. The associate immediate hold ti ative threshold. level of the associate sample detection d Wastes, March c Substances in E nenvironmental S	ed value is an estimated quantity. me. ciated value. on limit. n 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.							
ACZ Qualifiers B H L U Method Refere (1) (2) (3) (4)	(Qual) Analyte concentration detected at a value between MDL and P Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined nega The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the nces EPA 600/4-83-020. Methods for Chemical Analysis of Water a EPA 600/R-93-100. Methods for the Determination of Inorgani EPA 600/R-94-111. Methods for the Determination of Metals in EPA SW-846. Test Methods for Evaluating Solid Waste.	QL. The associate immediate hold ti ative threshold. level of the associate sample detection nd Wastes, March c Substances in E a Environmental S	ed value is an estimated quantity. me. ciated value. on limit. n 1983. Environmental Samples, August 1993. Gamples - Supplement I, May 1994.							
ACZ Qualifiers B H L U Method Refere (1) (2) (3) (4) (5)	(Qual) Analyte concentration detected at a value between MDL and P Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined nega The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the nces EPA 600/4-83-020. Methods for Chemical Analysis of Water a EPA 600/R-93-100. Methods for the Determination of Inorgani EPA 600/R-94-111. Methods for the Determination of Metals in EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wastewater	QL. The associate immediate hold ti ative threshold. level of the associate as ample detection of Wastes, March c Substances in E n Environmental S er.	ed value is an estimated quantity. me. ciated value. on limit. n 1983. Environmental Samples, August 1993. Gamples - Supplement I, May 1994.							
ACZ Qualifiers B H L U Method Refere (1) (2) (3) (4) (5)	(Qual) Analyte concentration detected at a value between MDL and P Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined nega The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the nces EPA 600/4-83-020. Methods for Chemical Analysis of Water a EPA 600/R-93-100. Methods for the Determination of Inorgani EPA 600/R-94-111. Methods for the Determination of Metals in EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wastewater	QL. The associate immediate hold ti ative threshold. level of the associate sample detection of Wastes, March c Substances in E a Environmental S er.	ed value is an estimated quantity. me. ciated value. on limit. n 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.							
ACZ Qualifiers B H L U Method Refere (1) (2) (3) (4) (5) Comments	(Qual) Analyte concentration detected at a value between MDL and P Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined nega The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the nces EPA 600/4-83-020. Methods for Chemical Analysis of Water a EPA 600/R-93-100. Methods for the Determination of Inorgani EPA 600/R-94-111. Methods for the Determination of Metals in EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wastewat	QL. The associate immediate hold ti ative threshold. level of the associate sample detection of Wastes, March c Substances in E of Environmental S er.	ed value is an estimated quantity. me. ciated value. on limit. n 1983. Environmental Samples, August 1993. Gamples - Supplement I, May 1994.							
ACZ Qualifiers B H L U Method Refere (1) (2) (3) (4) (5) Comments (1) (2)	(Qual) Analyte concentration detected at a value between MDL and P Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined nega The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the nces EPA 600/4-83-020. Methods for Chemical Analysis of Water a EPA 600/R-93-100. Methods for the Determination of Inorgani EPA 600/R-94-111. Methods for the Determination of Metals in EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wastewal QC results calculated from raw data. Results may vary slightly	QL. The associate immediate hold ti ative threshold. level of the associate asample detection of Wastes, March c Substances in E c Environmental S er.	ed value is an estimated quantity. me. ciated value. on limit. n 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.							
ACZ Qualifiers B H L U Method Refere (1) (2) (3) (4) (5) Comments (1) (2) (2) (3)	(Qual) Analyte concentration detected at a value between MDL and P Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined nega The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the nces EPA 600/4-83-020. Methods for Chemical Analysis of Water a EPA 600/R-93-100. Methods for the Determination of Inorgani EPA 600/R-94-111. Methods for the Determination of Metals in EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wastewate QC results calculated from raw data. Results may vary slightly Soil, Sludge, and Plant matrices for Inorganic analyses are rep	QL. The associate immediate hold ti ative threshold. level of the associate ne sample detection of Wastes, March c Substances in E a Environmental S er. if the rounded value orted on a dry weit	ed value is an estimated quantity. me. ciated value. on limit. n 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.							
ACZ Qualifiers B H L U Method Refere (1) (2) (3) (4) (5) Comments (1) (2) (3) (4) (5)	(Qual) Analyte concentration detected at a value between MDL and P Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined nega The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the nces EPA 600/4-83-020. Methods for Chemical Analysis of Water a EPA 600/R-93-100. Methods for the Determination of Inorgani EPA 600/R-94-111. Methods for the Determination of Metals in EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wastewate QC results calculated from raw data. Results may vary slightly Soil, Sludge, and Plant matrices for Inorganic analyses are rep Animal matrices for Inorganic analyses are reported on an "as	QL. The associate immediate hold ti ative threshold. level of the associate asample detection of Wastes, March c Substances in E a Environmental S er. if the rounded valor orted on a dry wei received" basis.	ed value is an estimated quantity. me. ciated value. on limit. n 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.							
ACZ Qualifiers B H L U Method Refere (1) (2) (3) (4) (5) Comments (1) (2) (3) (4) (5) Comments (1) (2) (3) (4) (5)	(Qual) Analyte concentration detected at a value between MDL and P Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined nega The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the nces EPA 600/R-93-100. Methods for Chemical Analysis of Water a EPA 600/R-93-100. Methods for the Determination of Inorgani EPA 600/R-94-111. Methods for the Determination of Metals in EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wastewate QC results calculated from raw data. Results may vary slightly Soil, Sludge, and Plant matrices for Inorganic analyses are rep Animal matrices for Inorganic analyses are reported on an "as An asterisk in the "XQ" column indicates there is an extended of	QL. The associate immediate hold ti ative threshold. level of the associate sample detection of Wastes, March c Substances in E a Environmental S er. if the rounded valor orted on a dry wei received" basis. jualifier and/or cel	ed value is an estimated quantity. me. ciated value. on limit. n 1983. Environmental Samples, August 1993. Gamples - Supplement I, May 1994.							
ACZ Qualifiers B H L U Method Refere (1) (2) (3) (4) (5) Comments (1) (2) (3) (4) (5) Comments (1) (2) (3) (4) (5) Comments (1) (2) (3) (4) (5) Comments (1) (2) (3) (4) (5) Comments (1) (2) (3) (4) (5) Comments (1) (2) (3) (4) (5) Comments (1) (2) (3) (4) (5) Comments (1) (2) (3) (4) (5) Comments (1) (2) (3) (4) (5) Comments (1) (2) (3) (4) (5) Comments (1) (2) (3) (4) (2) (3) (4) (5) Comments (3) (4) (5) Comments (4) (5) (5) Comments (5) (5) (5) (5) (5) (5) (5) (5)	(Qual) Analyte concentration detected at a value between MDL and P Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined nega The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the associated value is either the sample quantitation limit or the nces EPA 600/R-93-100. Methods for Chemical Analysis of Water a EPA 600/R-93-100. Methods for the Determination of Inorgani EPA 600/R-94-111. Methods for the Determination of Metals in EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wastewat QC results calculated from raw data. Results may vary slightly Soil, Sludge, and Plant matrices for Inorganic analyses are rep Animal matrices for Inorganic analyses are reported on an "as An asterisk in the "XQ" column indicates there is an extended of associated with the result.	QL. The associate immediate hold ti ative threshold. level of the associate associate associate ne sample detection of Wastes, March c Substances in E a Environmental S er. if the rounded value orted on a dry weil received" basis. jualifier and/or cer	ed value is an estimated quantity. me. ciated value. on limit. n 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.							
ACZ Qualifiers B H L U Method Refere (1) (2) (3) (4) (5) Comments (1) (2) (3) (4) (5)	(Qual) Analyte concentration detected at a value between MDL and P Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined nega The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the nces EPA 600/4-83-020. Methods for Chemical Analysis of Water a EPA 600/R-93-100. Methods for the Determination of Inorgani EPA 600/R-94-111. Methods for the Determination of Metals in EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wastewat QC results calculated from raw data. Results may vary slightly Soil, Sludge, and Plant matrices for Inorganic analyses are rep Animal matrices for Inorganic analyses are reported on an "as An asterisk in the "XQ" column indicates there is an extended of associated with the result. If the MDL equals the PQL or the MDL column is omitted, the F	QL. The associate immediate hold ti ative threshold. level of the associate ne sample detection of Wastes, March c Substances in E e Environmental S er. if the rounded valor orted on a dry wei received" basis. jualifier and/or cei QL is the reportin	ed value is an estimated quantity. me. ciated value. on limit. n 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.							
ACZ Qualifiers B H L U Method Refere (1) (2) (3) (4) (5) Comments (1) (2) (3) (4) (5) Comments (1) (2) (3) (4) (5) Comments (4) (5) Comments (5) Comments (4) (5) Comments (5) Comments (5) Comments (6) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7	(Qual) Analyte concentration detected at a value between MDL and P Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined nega The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the associated value is either the sample quantitation limit or the nces EPA 600/R-93-100. Methods for Chemical Analysis of Water a EPA 600/R-93-100. Methods for the Determination of Inorgani EPA 600/R-94-111. Methods for the Determination of Metals in EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wastewate QC results calculated from raw data. Results may vary slightly Soil, Sludge, and Plant matrices for Inorganic analyses are rep Animal matrices for Inorganic analyses are reported on an "as An asterisk in the "XQ" column indicates there is an extended of associated with the result. If the MDL equals the PQL or the MDL column is omitted, the F	QL. The associate immediate hold ti ative threshold. level of the associate sample detection of Wastes, March c Substances in E a Environmental S er. if the rounded valor orted on a dry wei received" basis. ualifier and/or cer QL is the reportin	ed value is an estimated quantity. me. ciated value. on limit. h 1983. Environmental Samples, August 1993. Environmental Samples, August 1993. Eamples - Supplement I, May 1994.							

https://acz.com/wp-content/uploads/2019/04/Ext-Qual-List.pdf

REP001.03.15.02

(800) 334-5493

Twin Enviro Services

ACZ Project ID: L61266

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L61266-01	NG505309	Arsenic, total (3050)	M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
		Cadmium, total (3050)	M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
		Chromium, total (3050)	M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG505223	Mercury, total	M7471A CVAA	Q6	Sample was received above recommended temperature.
	WG504630	Total Solids	SM2540B	Q6	Sample was received above recommended temperature.

Twin Enviro Services

Project ID:	Barkes
Sample ID:	BARKER

ACZ Sample ID: L61266-01 Date Sampled: 09/02/20 9:00 Date Received: 09/03/20 Sample Matrix: Soil

Volatile Organics by GC/MS

Analysis Method: M8260C/D GC/MS Extract Method: 5035A

Workgroup:	WG505261								
Analyst:	jmm								
Extract Date:	09/16/20 19:52								
Analysis Date:	09/16/20 19:52								
Compound		CAS	Result	QUAL	Dilution	XQ	Units	MDL	PQL
1,1,1,2-Tetrachloroet	hane	630-20-6		U	2	*	ug/Kg	8	20
1,1,1-Trichloroethane	e	71-55-6		U	2	*	ug/Kg	20	50
1,1,2,2-Tetrachloroet	hane	79-34-5		U	2	*	ug/Kg	6	20
1,1,2-Trichloroethane	e	79-00-5		U	2	*	ug/Kg	8	20
1,1-Dichloroethane		75-34-3		U	2	*	ug/Kg	8	20
1,1-Dichloroethene		75-35-4		U	2	*	ug/Kg	8	20
1,1-Dichloropropene		563-58-6		U	2	*	ug/Kg	8	20
1,2,3-Trichlorobenze	ne	87-61-6		U	2	*	ug/Kg	8	20
1,2,3-Trichloropropar	ne	96-18-4		U	2	*	ug/Kg	8	20
1,2,4-Trichlorobenze	ne	120-82-1		U	2	*	ug/Kg	6	20
1,2,4-Trimethylbenze	ene	95-63-6		U	2	*	ug/Kg	8	20
1,2-Dibromo-3-chloro	propane	96-12-8		U	2	*	ug/Kg	8	20
1,2-Dibromoethane		106-93-4		U	2	*	ug/Kg	8	20
1,2-Dichlorobenzene		95-50-1		U	2	*	ug/Kg	8	20
1,2-Dichloroethane		107-06-2		U	2	*	ug/Kg	8	20
1,2-Dichloropropane		78-87-5		U	2	*	ug/Kg	8	20
1,3,5-Trimethylbenze	ene	108-67-8		U	2	*	ug/Kg	8	20
1,3-Dichlorobenzene		541-73-1		U	2	*	ug/Kg	8	20
1,3-Dichloropropane		142-28-9		U	2	*	ug/Kg	8	20
1,4-Dichlorobenzene		106-46-7		U	2	*	ug/Kg	8	20
2,2-Dichloropropane		594-20-7		U	2	*	ug/Kg	8	20
2-Butanone		78-93-3		U	2	*	ug/Kg	20	50
2-Chloroethyl vinyl et	ther	110-75-8		U	2	*	ug/Kg	10	50
2-Chlorotoluene		95-49-8		U	2	*	ug/Kg	8	20
2-Hexanone		591-78-6		U	2	*	ug/Kg	20	50
4-Chlorotoluene		106-43-4		U	2	*	ug/Kg	8	20
4-Isopropyltoluene		99-87-6		U	2	*	ug/Kg	8	20
4-Methyl-2-Pentanon	e	108-10-1		U	2	*	ug/Kg	20	100
Acetone		67-64-1		U	2	*	ug/Kg	20	50
Acrylonitrile		107-13-1		U	2	*	ug/Kg	8	20
Benzene		71-43-2		U	2	*	ug/Kg	8	20
Bromobenzene		108-86-1		U	2	*	ug/Kg	8	20
Bromochloromethane	9	74-97-5		U	2	*	ug/Kg	8	20
Bromodichlorometha	ne	75-27-4		U	2	*	ug/Kg	8	20
Bromoform		75-25-2		U	2	*	ug/Kg	8	20
Bromomethane		74-83-9		U	2	*	ug/Kg	8	20
Carbon Disulfide		75-15-0		U	2	*	ug/Kg	8	20
Carbon Tetrachloride	9	56-23-5		U	2	*	ug/Kg	20	50

REPOR.01.01.01.02

* Please refer to Qualifier Reports for details.

ACZ Laborat	Or	Organic Analytical Results						
Twin Enviro ServicesProject ID:BarkesSample ID:BARKER			ACZ Da Dat Sar	Sample ID te Samplec e Receivec mple Matrix): : () : () : ()	L 61266- 09/02/20 09/03/20 Soil	01) 9:00)	
Chlorobenzene	108-90-7		U	2	*	ua/Ka	8	20
Chloroethane	75-00-3		U	2	*	ua/Ka	8	20
Chloroform	67-66-3		U	2	*	ua/Ka	8	20
Chloromethane	74-87-3		U	2	*	ug/Kg	8	20
cis-1,2-Dichloroethene	156-59-2		U	2	*	ug/Kg	8	20
cis-1,3-Dichloropropene	10061-01-5		U	2	*	ug/Kg	8	20
Dibromochloromethane	124-48-1		U	2	*	ug/Kg	8	20
Dibromomethane	74-95-3		U	2	*	ug/Kg	8	20
Dichlorodifluoromethane	75-71-8		U	2	*	ug/Kg	10	30
Ethylbenzene	100-41-4		U	2	*	ug/Kg	8	20
Hexachlorobutadiene	87-68-3		U	2	*	ug/Kg	8	20
Isopropylbenzene	98-82-8		U	2	*	ug/Kg	8	20
m p Xylene	1330-20-7		U	2	*	ug/Kg	20	50
Methyl Tert Butyl Ether	1634-04-4		U	2	*	ug/Kg	8	20
Methylene Chloride	75-09-2		U	2	*	ug/Kg	8	20
Naphthalene	91-20-3		U	2	*	ug/Kg	8	20
n-Butylbenzene	104-51-8		U	2	*	ug/Kg	8	20
n-Propylbenzene	103-65-1		U	2	*	ug/Kg	8	20
o Xylene	95-47-6		U	2	*	ug/Kg	8	20
sec-Butylbenzene	135-98-8		U	2	*	ug/Kg	8	20
Styrene	100-42-5		U	2	*	ug/Kg	8	20
tert-Butylbenzene	98-06-6		U	2	*	ug/Kg	8	20
Tetrachloroethene	127-18-4		U	2	*	ug/Kg	8	20
Toluene	108-88-3		U	2	*	ug/Kg	8	20
trans-1,2-Dichloroethene	156-60-5		U	2	*	ug/Kg	8	20
trans-1,3-Dichloropropene	10061-02-6		U	2	*	ug/Kg	6	20
Trichloroethene	79-01-6		U	2	*	ug/Kg	10	30
Trichlorofluoromethane	75-69-4		U	2	*	ug/Kg	8	20
Vinyl Acetate	108-05-4		U	2	*	ug/Kg	8	20
Vinyl Chloride	75-01-4		U	2	*	ug/Kg	8	20
Surrogate Recoveries	CAS	% Recovery		Dilution	XQ	Units	LCL	UCL
Bromofluorobenzene	460-00-4	92.1		2	*	%	70	130
Dibromofluoromethane	1868-53-7	101.2		2	*	%	70	130
Toluene-d8	2037-26-5	91.6		2	*	%	70	130

Organic Reference

						_			
Re	port Header I	Explanations							
	Batch	h A distinct set of samples analyzed at a specific time							
	Found	Value of the QC Type of interest							
	Limit	Upper limit for RPD, in %.							
	Lower	Lower Recovery Limit, in % (except for LCSS, mg/Kg)							
	LCL	Lower Control Limit							
	MDL	MDL Method Detection Limit. Same as Minimum Reporting Limit unless omitted or equal to the PQL (see comment #4)							
		Allows for instrument an	nd annual fluctuations.						
	PCN/SCN	A number assigned to r	eagents/standards to trace to the manu	facturers certifica	ate of analysis				
	PQL	Practical Quantitation L	imit. Synonymous with the EPA term "r	ninimum level".					
	QC	True Value of the Contr	ol Sample or the amount added to the S	Spike					
	Rec	Amount of the true value	e or spike added recovered, in % (exce	pt for LCSS, mg/ł	≺g)				
	RPD	Relative Percent Differe	nce, calculation used for Duplicate QC	Types					
	Upper	Upper Recovery Limit, i	n % (except for LCSS, mg/Kg)						
	UCL	Upper Control Limit							
	Sample	Value of the Sample of	interest						
-									
QC	Sample Typ	es							
	SURR	Surrogate		LFB	Laboratory Fortified Blank				
	INTS	Internal Standard		LFM	Laboratory Fortified Matrix				
	AS	Analytical Spike (Post D	Digestion)	LFMD	Laboratory Fortified Matrix Duplicate				
	ASD	Analytical Spike (Post D	Digestion) Duplicate	LRB	Laboratory Reagent Blank				
	DUP	Sample Duplicate		MS/MSD	Matrix Spike/Matrix Spike Duplicate				
	LCSS	Laboratory Control Sam	iple - Soil	PBS	Prep Blank - Soil				
	LCSW	Laboratory Control Sam	ple - Water	PBW	Prep Blank - Water				
00	Sample Typ	e Explanations							
er e	Blanks	o Explanationo	Verifies that there is no or minimal co	ntamination in the	e prep method or calibration procedure				
	Control Sam	nles	Verifies the accuracy of the method i	ncluding the prep	procedure				
	Duplicates	P100	Verifies the precision of the instrumer	nt and/or method	Pieceanie				
	Snikes/Fortif	ied Matrix	Determines sample matrix interference	es if any					
	opinoo/r or a			loo, ii uliy.					
AC	Z Qualifiers ((Qual)							
	0	Analyte concentration is	s estimated due to result exceeding cali	bration range.					
	н	Analysis exceeded meth	nod hold time. pH is a field test with an	immediate hold ti	ime.				
	J	Analyte concentration d	etected at a value between MDL and P	QL. The associate	ed value is an estimated quantity.				
	L	Target analyte response	e was below the laboratory defined neg	ative threshold.					
	U	The material was analyzed	zed for, but was not detected above the	level of the asso	ciated value.				
		The associated value is	either the sample quantitation limit or t	he sample detect	ion limit.				
_									
Me	thod Referen	ices							
	(1)	EPA 600/4-83-020. Me	thods for Chemical Analysis of Water a	nd Wastes, Marc	h 1983.				
	(2)	EPA 600/4-90/020. Me	thods for the Determination of Organic	Compounds in Dr	inking Water (I), July 1990.				
	(3)	EPA 600/R-92/129. Me	thods for the Determination of Organic	Compounds in D	rinking Water (II), July 1990.				
	(4)	EPA SW-846. Test Me	thods for Evaluating Solid Waste.						
	(5)	Standard Methods for th	ne Examination of Water and Wastewa	ter.					
Co	mmonte -								
C0				if the neuronal and					
	(1)	Evoluting Cil & Create	on raw data. Results may vary slightly						
	(2) (0)	Excluding OII & Grease	, solid & biological matrices for organic	analyses are repo	orieu on a wet weight basis.				
	(3) An asterisk in the "XQ" column indicates there is an extended qualifier and/or certification qualifier								

associated with the result.

(4) If the MDL equals the PQL or the MDL column is omitted, the PQL is the reporting limit.

For a complete list of ACZ is Extended Qualifiers, please click:

https://acz.com/wp-content/uploads/2019/04/Ext-Qual-List.pdf

ACZ Project ID: L61266

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L61266-01	WG505261	*All Compounds*	M8260C/D GC/MS	Q6	Sample was received above recommended temperature.
		1,1,1,2-Tetrachloroethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
		1,1,1-Trichloroethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
		1,1,2,2-Tetrachloroethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
		1,1,2-Trichloroethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
		1,1-Dichloroethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
		1,1-Dichloroethene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
		1,1-Dichloropropene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
		1,2,3-Trichlorobenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	N1A	See Case Narrative.
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
		1,2,3-Trichloropropane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
		1,2,4-Trichlorobenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	VC	CCV recovery was above the acceptance limits. Target analyte was not detected in the sample [< MDL].
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
		1,2,4-Trimethylbenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
		1,2-Dibromo-3-chloropropane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	R4	RPD for a spike and spike duplicate exceeded the method or laboratory acceptance limit. At a minimum, one spike recovery met acceptance criteria.
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
		1,2-Dibromoethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
		1,2-Dichlorobenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ

ACZ Project ID: L61266

ACZ ID	WORKNUM PARAMETER	METHOD	QUAL	DESCRIPTION
				does not have a closed-system purge and trap as described in method 5035.
	1,2-Dichloroethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	1,2-Dichloropropane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	1,3,5-Trimethylbenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	1,3-Dichlorobenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	1,3-Dichloropropane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	1,4-Dichlorobenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	2,2-Dichloropropane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	2-Butanone	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	2-Chloroethyl vinyl ether	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	2-Chlorotoluene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	2-Hexanone	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	4-Chlorotoluene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	4-Isopropyltoluene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	4-Methyl-2-Pentanone	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	R4	RPD for a spike and spike duplicate exceeded the method or laboratory acceptance limit. At a minimum, one spike recovery met acceptance criteria.
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Acetone	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.

ACZ Project ID: L61266

ACZ ID	WORKNUM PARAMETER	METHOD	QUAL	DESCRIPTION
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Acrylonitrile	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Benzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Bromobenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Bromochloromethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Bromodichloromethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Bromoform	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Bromomethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Carbon Disulfide	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Carbon Tetrachloride	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Chlorobenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Chloroethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	R4	RPD for a spike and spike duplicate exceeded the method or laboratory acceptance limit. At a minimum, one spike recovery met acceptance criteria.
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Chloroform	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Chloromethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	R4	RPD for a spike and spike duplicate exceeded the method or laboratory acceptance limit. At a minimum, one spike recovery met acceptance criteria.
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	cis-1,2-Dichloroethene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.

ACZ Project ID: L61266

ACZ ID	WORKNUM PARAMETER	METHOD	QUAL	DESCRIPTION
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	cis-1,3-Dichloropropene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Dibromochloromethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Dibromomethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg: ACZ does not have a closed-system purge and trap as described in method 5035.
	Dichlorodifluoromethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	N1	See Case Narrative.
		M8260C/D GC/MS	R4	RPD for a spike and spike duplicate exceeded the method or laboratory acceptance limit. At a minimum, one spike recovery met acceptance criteria.
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Ethylbenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Hexachlorobutadiene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	R4	RPD for a spike and spike duplicate exceeded the method or laboratory acceptance limit. At a minimum, one spike recovery met acceptance criteria.
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Isopropylbenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	m p Xylene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	R4	RPD for a spike and spike duplicate exceeded the method or laboratory acceptance limit. At a minimum, one spike recovery met acceptance criteria.
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Methyl Tert Butyl Ether	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Methylene Chloride	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	Naphthalene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	VC	CCV recovery was above the acceptance limits. Target analyte was not detected in the sample [< MDL].
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
	n-Butylbenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
		M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.

ACZ Project ID: L61266

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L61266-01	WG505261	n-Propylbenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
		o Xylene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
		sec-Butylbenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
		Styrene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
		tert-Butylbenzene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	R4	RPD for a spike and spike duplicate exceeded the method or laboratory acceptance limit. At a minimum, one spike recovery met acceptance criteria.
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
		Tetrachloroethene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
		Toluene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	R4	RPD for a spike and spike duplicate exceeded the method or laboratory acceptance limit. At a minimum, one spike recovery met acceptance criteria.
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
		trans-1,2-Dichloroethene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
		trans-1,3-Dichloropropene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
		Trichloroethene	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
		Trichlorofluoromethane	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	R4	RPD for a spike and spike duplicate exceeded the method or laboratory acceptance limit. At a minimum, one spike recovery met acceptance criteria.
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
		Vinyl Acetate	M8260C/D GC/MS	DD	Sample required dilution due to matrix color or odor.
			M8260C/D GC/MS	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			M8260C/D GC/MS	RD	For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non- homogeneity of the sample.
			M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.
		Vinvl Chloride	M8260C/D GC/MS	חק	Sample required dilution due to matrix color or odor

ACZ Project ID: L61266

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L61266-01	WG505261	Vinyl Chloride	M8260C/D GC/MS	ZM	Data is estimated because result is below 200 ug/Kg; ACZ does not have a closed-system purge and trap as described in method 5035.

Twin Enviro Services

Total Solids

ACZ Project ID: L61266

Soil Analysis

The following parameters are not offered for certification or a	re not covered by NELAC certificate #ACZ.
Ignitability in Solids	M1030
Solids, Percent	D2216-80

SM2540B

AGZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Sample Receipt

Twin Enviro Services	ACZ Projec	t ID:		L61266
Barkes	Date Recei	ived: 09	9/03/202	0 11:46
	Received	d By:		
	Date Prir	nted:	9	/4/2020
Receipt Verification				
	F	YES	NO	NA
1) Is a foreign soil permit included for applicable samples?				Х
2) Is the Chain of Custody form or other directive shipping papers present?		Х		
3) Does this project require special handling procedures such as CLP protocol?			Х	
4) Are any samples NRC licensable material?				Х
5) If samples are received past hold time, proceed with requested short hold time ana	lyses?	Х		
6) Is the Chain of Custody form complete and accurate?		Х		
7) Were any changes made to the Chain of Custody form prior to ACZ receiving the sa	amples?		Х	
Samples/Containers				
		YES	NO	NA
8) Are all containers intact and with no leaks?		Х		
9) Are all labels on containers and are they intact and legible?		Х		
10) Do the sample labels and Chain of Custody form match for Sample ID, Date, and	Time?	Х		
11) For preserved bottle types, was the pH checked and within limits? 1				Х
12) Is there sufficient sample volume to perform all requested work?		Х		
13) Is the custody seal intact on all containers?				Х
14) Are samples that require zero headspace acceptable?				Х
15) Are all sample containers appropriate for analytical requirements?		Х		
16) Is there an Hg-1631 trip blank present?				Х
17) Is there a VOA trip blank present?			Х	
18) Were all samples received within hold time?		Х		
	1	NA indicat	tes Not Ap	plicable

Chain of Custody Related Remarks

Client Contact Remarks

Shipping Containers

Cooler Id	Temp(°C)	Temp Criteria(°C)	Rad(µR/Hr)	Custody Seal Intact?
NA33550	10.1	<=6.0	15	Yes

Was ice present in the shipment container(s)?

Yes - Wet ice was present in the shipment container(s).

Client must contact an ACZ Project Manager if analysis should not proceed for samples received outside of their thermal preservation acceptance criteria.

Twin Enviro Services Barkes

ACZ Project ID: L61266 Date Received: 09/03/2020 11:46 Received By: Date Printed: 9/4/2020

¹ The preservation of the following bottle types is not checked at sample receipt: Orange (oil and grease), Purple (total cyanide), Pink (dissolved cyanide), Brown (arsenic speciation), Sterile (fecal coliform), EDTA (sulfite), HCI preserved vial (organics), Na2S2O3 preserved vial (organics), and HG-1631 (total/dissolved mercury by method 1631).

2773 Downhill Drive Steambo	aboratories, In hat Springs, CO 80487 (800) :	c. L(c ³³⁴⁻⁵⁴⁹³	5120	64	С	C	HAIN	lof	сизтс	DY
Report to:										
Name: Chris Broc	hu		Addres	s:						
Company: Twin En	0150									
E-mail: Clorochu D-	twinenuito. Con	\Box	Telepho	one: `	719	- 3`	ን2-	66	21	
Copy of Report to:										
Name: Rick MªC	alla		E-mail:	Tr	ncic	alle	a t	-	en ut m	('Doo
Company:			Telepho	one:						
Invoice to:	тал — салаад н									
Name: Debbie Be	enument		Addres	s:						
Company:					• ••					
E-mail: dbeaumont	- O twinenul ro, con	_	Telepho	one:						
If sample(s) received past he analysis before expiration, s If "NO" then ACZ will contact client for furthe	Diding time (HT), or if insuffic hall ACZ proceed with reque	cient HT rei ested short	mains to HT anal	comp yses?	olete	es even if	HT is expire	d and data	YES NO	_
Are samples for SDWA Com If yes, please include state f	pliance Monitoring? orms. Results will be reporte	ed to PQL fe	Yes	ado.		No	\times		win be quained	
Sampler's Name: <u>R:4</u> M ^s *Sampler's Signature:	Cille Sampler's Site Infor	mation est to the authenti ering with the sar	State icity and valid nple in anywa	dity of this ay, is cons	s sample. I sidered frau	Zip co understand d and puni	de <u>81</u> i that intent ishable by S	240 ionally misl itate Law.	Time Zone	MTW ate/location o
PROJECT INFORMATION				ANAL	YSES RE	QUESTEI	D (attach I	ist or use	quote number)	
Quote #:			ers			3				
PO#: Barkes			Itain	p	او کم	÷.				
Reporting state for compliance	e testing:		Cor	24	28	Ŧ	~			
		Matrix	# of	35	55	1 m	6			
Bartis	9-2-20 900	50	3			<u>_</u>	/			
				_						-
	,									
		_								
										-

FRMAD050.06.14.14 L61266-2009290833

White - Return with sample. Yellow - Retain for your records.

ı.

Analytical Report

October 13, 2020

Report to: Chris Brochu Twin Enviro Services P.O. Box 774362 Steamboat Springs, CO 80477

cc: Rick McCalla, Les Liman

Bill to: Deb Beaumont Twin Enviro 2500 CR 67 Penrose, CO 81240

Project ID: ACZ Project ID: L61935

Chris Brochu:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on October 06, 2020. This project has been assigned to ACZ is project number, L61935. Please reference this number in all future inquiries.

All analyses were performed according to ACZ^S Quality Assurance Plan. The enclosed results relate only to the samples received under L61935. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ^S current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after November 12, 2020. If the samples are determined to be hazardous, additional charges apply for disposal (typically \$11/sample). If you would like the samples to be held longer than ACZ is stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical raw data reports for ten years.

If you have any questions or other needs, please contact your Project Manager.

re gible

Sue Webber has reviewed and approved this report.

October 13, 2020

Project ID:

ACZ Project ID: L61935

Sample Receipt

ACZ Laboratories, Inc. (ACZ) received 1 miscellaneous sample from Twin Enviro Services on October 6, 2020. The sample was received in good condition. Upon receipt, the sample custodian removed the sample from the cooler, inspected the contents, and logged the sample into ACZ is computerized Laboratory Information Management System (LIMS). The sample was assigned ACZ LIMS project number L61935. The custodian verified the sample information entered into the computer against the chain of custody (COC) forms and sample bottle labels.

Holding Times

All analyses were performed within EPA recommended holding times except for Mercury flagged with an "H1". The sample was re-logged after the hold time had expired.

Sample Analysis

This sample was analyzed for inorganic parameters. The individual methods are referenced on both, the ACZ invoice and the analytical reports. The following required further explanation not provided by the Extended Qualifier Report:

1. Barium (TCLP) (B1) - Barium detected in prep blank at or above the method reporting limit. Trace levels are present in extraction reagents.

Twin Enviro Services

Project ID: Sample ID: BARKER

Inorganic Analytical Results

 ACZ Sample ID:
 L61935-01

 Date Sampled:
 09/02/20 09:00

 Date Received:
 10/06/20

 Sample Matrix:
 Soil

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Total Hot Plate Digestion	M3010A ICP								10/09/20 16:19) jlw
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Arsenic (TCLP)	M6010D ICP	1	<0.04	U	*	mg/L	0.04	0.2	10/12/20 22:15	i kja
Barium (TCLP)	M6010D ICP	1	0.300		*	mg/L	0.007	0.035	10/12/20 22:15	i kja
Cadmium (TCLP)	M6010D ICP	1	0.0107	В	*	mg/L	0.008	0.025	10/12/20 22:15	i kja
Chromium (TCLP)	M6010D ICP	1	<0.01	U	*	mg/L	0.01	0.05	10/12/20 22:15	i kja
Lead (TCLP)	M6010D ICP	1	0.032	В	*	mg/L	0.03	0.15	10/12/20 22:15	i kja
Mercury (TCLP)	M7470A CVAA	1	<0.0002	UH	*	mg/L	0.0002	0.001	10/08/20 15:59) IIr
Selenium (TCLP)	M6010D ICP	1	<0.05	U	*	mg/L	0.05	0.25	10/12/20 22:15	i kja
Silver (TCLP)	M6010D ICP	1	<0.01	U	*	mg/L	0.01	0.025	10/12/20 22:15	i kja
Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
TCLP Metal Extraction	M1311								10/07/20 10:45	5 mlp

Inorganic Reference

Report Header	Explanations		
Batch	A distinct set of samples analyzed at a specific time		
Found	Value of the QC Type of interest		
Limit	Upper limit for RPD, in %.		
Lower	Lower Recovery Limit, in % (except for LCSS, mg/Kg)		
MDL	Method Detection Limit. Same as Minimum Reporting Limit	unless omitted or eq	ual to the PQL (see comment #5).
	Allows for instrument and annual fluctuations.	·	
PCN/SCN	A number assigned to reagents/standards to trace to the ma	nufacturers certifica	te of analysis
POI	Practical Quantitation Limit Synonymous with the EPA term	"minimum level"	······································
00	True Value of the Control Sample or the amount added to the	e Snike	
Rec	Recovered amount of the true value or spike added in % (ex	c opine vcent for LCSS_ma/	Ka)
RPD	Relative Percent Difference, calculation used for Duplicate O		
Upper	Linner Peccycer (Limit in % (except for LCSS mg/Kg)	to Types	
Somolo	Volue of the Sample of interest		
Sample			
QC Sample Typ	es		
AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
ССВ	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Pren Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW/	Pren Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	POV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Soli Duplicate	FQV	
LCSW	Laboratory Control Sample - Water	SDL	Senar Dilution
QC Sample Typ	e Explanations		
Blanks	Verifies that there is no or minimal	contamination in the	prep method or calibration procedure.
Control Sam	ples Verifies the accuracy of the method	d, including the prep	procedure.
Duplicates	Verifies the precision of the instrum	ent and/or method.	
Spikes/Forti	fied Matrix Determines sample matrix interfere	ences, if any.	
Standard	Verifies the validity of the calibration	n.	
ACZ Qualifiers	(Qual)		
В	Analyte concentration detected at a value between MDL and	I PQL. The associate	ed value is an estimated quantity.
Н	Analysis exceeded method hold time. pH is a field test with a	an immediate hold tii	me.
L	Target analyte response was below the laboratory defined ne	egative threshold.	
U	The material was analyzed for, but was not detected above t	he level of the assoc	ciated value.
	The associated value is either the sample quantitation limit o	r the sample detection	on limit.
Mothod Poforor			
(1)	EBA 600/4 83 020 Methods for Chamical Analysis of Wate	r and Wastos March	1083
(1)	EDA 600/P 03 100 Mothods for the Determination of Instance	n anu vvasies, ividici anio Substanaca in F	n 1000.
(2)	EPA 600/R-93-100. Methods for the Determination of Motel	anic Substances in E	environmental Samples, August 1995.
(3)	EPA 600/R-94-111. Methods for the Determination of Metals	s in Environmental S	samples - Supplement I, May 1994.
(4)	EPA SVV-846. Test Methods for Evaluating Solid Waste.		
(5)	Standard Methods for the Examination of Water and Wastev	vater.	
Comments			
(1)	QC results calculated from raw data. Results may vary sligh	tly if the rounded val	lues are used in the calculations.
(2)	Soil, Sludge, and Plant matrices for Inorganic analyses are re	eported on a dry wei	ght basis.
(3)	Animal matrices for Inorganic analyses are reported on an "a	as received" basis	-
(4)	An asterisk in the "XQ" column indicates there is an extended	d qualifier and/or cer	rtification qualifier
()	associated with the result.	1	7
(5)	If the MDL equals the PQL or the MDL column is omitted the	e PQL is the reportin	a limit
(-)			J
	ata list of ACZE Extanded Qualifiers, placed elick:		

https://acz.com/wp-content/uploads/2019/04/Ext-Qual-List.pdf

REP001.03.15.02

Twin Enviro Services

ACZ Project ID: L61935

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Arsenic (TCLP)			M6010D I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG507084													
WG507084ICV	ICV	10/12/20 21:15	II201009-1	4		3.872	mg/L	97	90	110			
WG507084ICB	ICB	10/12/20 21:19				U	mg/L		-0.12	0.12			
WG506692PBS	PBS	10/12/20 21:43				U	mg/L		-0.12	0.12			
WG506692LFB	LFB	10/12/20 21:47	IITCLPSPIKE	1.001		1.06	mg/L	106	80	120			
L61895-01MS	MS	10/12/20 21:55	IITCLPSPIKE	1.001	U	1.042	mg/L	104	75	125			
L61895-01MSD	MSD	10/12/20 21:59	IITCLPSPIKE	1.001	U	1.064	mg/L	106	75	125	2	20	
L61895-01DUP	DUP	10/12/20 22:03			U	U	mg/L				0	20	RA
Barium (TCLP)			M6010D I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG507084													
WG507084ICV	ICV	10/12/20 21:15	II201009-1	2		1.954	mg/L	98	90	110			
WG507084ICB	ICB	10/12/20 21:19				U	mg/L		-0.021	0.021			
WG506692PBS	PBS	10/12/20 21:43				.0335	mg/L		-0.021	0.021			B1
WG506692LFB	LFB	10/12/20 21:47	IITCLPSPIKE	20.5		19.75	mg/L	96	80	120			
L61895-01MS	MS	10/12/20 21:55	IITCLPSPIKE	20.5	.0965	20.22	mg/L	98	75	125			
L61895-01MSD	MSD	10/12/20 21:59	IITCLPSPIKE	20.5	.0965	20.23	mg/L	98	75	125	0	20	
L61895-01DUP	DUP	10/12/20 22:03			.0965	.1546	mg/L				46	20	RD
													-
Cadmium (TCLP)		M6010D I	CP									
Cadmium (TCLP) Type	Analyzed	M6010D I PCN/SCN	CP QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
Cadmium (TCLP ACZ ID WG507084) Type	Analyzed	M6010D I PCN/SCN	CP QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
Cadmium (TCLP ACZ ID WG507084 WG507084ICV) Type ICV	Analyzed	M6010D I PCN/SCN II201009-1	CP QC 2	Sample	Found	Units mg/L	Rec% 96	Lower 90	Upper 110	RPD	Limit	Qual
Cadmium (TCLP ACZ ID WG507084 WG507084ICV WG507084ICB) Type ICV ICB	Analyzed 10/12/20 21:15 10/12/20 21:19	M6010D I PCN/SCN II201009-1	CP QC 2	Sample	Found 1.921 U	Units mg/L mg/L	Rec%	Lower 90 -0.024	Upper 110 0.024	RPD	Limit	Qual
Cadmium (TCLP AC2 ID WG507084 WG507084ICV WG507084ICB WG506692PBS) Type ICV ICB PBS	Analyzed 10/12/20 21:15 10/12/20 21:19 10/12/20 21:43	M6010D I PCN/SCN II201009-1	CP QC 2	Sample	Found 1.921 U U	Units mg/L mg/L mg/L	Rec%	90 -0.024 -0.024	Upper 110 0.024 0.024	RPD	Limit	Qual
Cadmium (TCLP ACZ ID WG507084 WG507084ICV WG507084ICB WG506692PBS WG506692LFB) Type ICV ICB PBS LFB	Analyzed 10/12/20 21:15 10/12/20 21:19 10/12/20 21:43 10/12/20 21:47	M6010D I PCN/SCN II201009-1 IITCLPSPIKE	CP <u>QC</u> 2 .501	Sample	Found 1.921 U U .4951	Units mg/L mg/L mg/L	Rec% 96 99	90 -0.024 -0.024 80	Upper 110 0.024 0.024 120	RPD	Limit	Qual
Cadmium (TCLP ACZ ID WG507084 WG507084ICV WG507084ICB WG506692PBS WG506692LFB L61895-01MS) Type ICV ICB PBS LFB MS	Analyzed 10/12/20 21:15 10/12/20 21:19 10/12/20 21:43 10/12/20 21:47 10/12/20 21:55	M6010D I PCN/SCN II201009-1 IITCLPSPIKE IITCLPSPIKE	CP <u>QC</u> 2 .501 .501	Sample U	Found 1.921 U U .4951 .4905	Units mg/L mg/L mg/L mg/L	Rec% 96 99 98	90 -0.024 -0.024 80 75	Upper 110 0.024 0.024 120 125	RPD	Limit	Qual
Cadmium (TCLP ACZ ID WG507084 WG507084ICV WG507084ICB WG506692PBS WG506692LFB L61895-01MS L61895-01MSD) Type ICV ICB PBS LFB MS MSD	Analyzed 10/12/20 21:15 10/12/20 21:19 10/12/20 21:43 10/12/20 21:47 10/12/20 21:55 10/12/20 21:59	M6010D I PCN/SCN II201009-1 IITCLPSPIKE IITCLPSPIKE IITCLPSPIKE	CP QC 2 .501 .501 .501	Sample U U	Found 1.921 U .4951 .4905 .4888	Units mg/L mg/L mg/L mg/L mg/L	Rec% 96 99 98 98	90 -0.024 -0.024 80 75 75	Upper 110 0.024 0.024 120 125 125	RPD	Limit 20	Qual
Cadmium (TCLP AC2 ID WG507084 WG507084ICV WG507084ICB WG506692PBS WG506692LFB L61895-01MS L61895-01MSD L61895-01DUP) Type ICV ICB PBS LFB MS MSD DUP	Analyzed 10/12/20 21:15 10/12/20 21:19 10/12/20 21:43 10/12/20 21:55 10/12/20 21:59 10/12/20 22:03	M6010D I PCN/SCN II201009-1 IITCLPSPIKE IITCLPSPIKE IITCLPSPIKE	CP 2 .501 .501 .501	Sample U U U	Found 1.921 U .4951 .4905 .4888 U	Units mg/L mg/L mg/L mg/L mg/L	Rec% 96 99 98 98	90 -0.024 -0.024 80 75 75	Upper 110 0.024 0.024 120 125 125	RPD 0 0	Limit 20 20	Qual
Cadmium (TCLP ACZ ID WG507084 WG507084ICV WG507084ICB WG506692PBS WG506692LFB L61895-01MS L61895-01MS L61895-01DUP Chromium (TCLI) Type ICV ICB PBS LFB MS MSD DUP	Analyzed 10/12/20 21:15 10/12/20 21:19 10/12/20 21:43 10/12/20 21:47 10/12/20 21:55 10/12/20 21:59 10/12/20 22:03	M6010D I PCN/SCN II201009-1 IITCLPSPIKE IITCLPSPIKE IITCLPSPIKE M6010D I	CP 2 .501 .501 .501 CP	Sample U U U	Found 1.921 U U .4951 .4888 U	Units mg/L mg/L mg/L mg/L mg/L	Rec% 96 99 98 98	90 -0.024 -0.024 80 75 75	Upper 110 0.024 0.024 120 125 125	RPD 0 0	Limit 20 20	Qual
Cadmium (TCLP AC2 ID WG507084 WG507084ICV WG507084ICB WG506692PBS WG506692LFB L61895-01MS L61895-01MSD L61895-01DUP Chromium (TCLI AC2 ID) Type ICV ICB PBS LFB MS LFB MS DUP	Analyzed 10/12/20 21:15 10/12/20 21:19 10/12/20 21:43 10/12/20 21:55 10/12/20 21:59 10/12/20 21:59 10/12/20 22:03	M6010D I PCN/SCN II201009-1 IITCLPSPIKE IITCLPSPIKE IITCLPSPIKE M6010D I PCN/SCN	CP 2 .501 .501 .501 CP QC	Sample U U U Sample	Found 1.921 U .4951 .4905 .4888 U	Units mg/L mg/L mg/L mg/L mg/L mg/L	Rec%	90 -0.024 -0.024 80 75 75 75	Upper 110 0.024 0.024 120 125 125 125	RPD 0 0 RPD	Limit 20 20 Limit	Qual RA Qual
Cadmium (TCLP ACZ ID WG507084 WG507084ICV WG507084ICB WG506692PBS WG506692LFB L61895-01MS L61895-01MS L61895-01DUP Chromium (TCLI ACZ ID WG507084) Type ICV ICB PBS LFB MS LFB MS DUP P) Type	Analyzed 10/12/20 21:15 10/12/20 21:19 10/12/20 21:43 10/12/20 21:55 10/12/20 21:59 10/12/20 22:03 Analyzed	M6010D I PCN/SCN II201009-1 IITCLPSPIKE IITCLPSPIKE IITCLPSPIKE M6010D I PCN/SCN	CP 2 .501 .501 .501 CP QC	Sample U U U Sample	Found 1.921 U .4951 .4905 .4888 U	Units mg/L mg/L mg/L mg/L mg/L mg/L	Rec% 96 99 98 98 98 Rec%	Lower 90 -0.024 -0.024 80 75 75 75	Upper 110 0.024 0.024 120 125 125 Upper	RPD 0 0 RPD	Limit 20 20 Limit	Qual RA Qual
Cadmium (TCLP ACZ ID WG507084 WG507084ICV WG507084ICB WG506692PBS WG506692LFB L61895-01MS L61895-01MS L61895-01DUP Chromium (TCLI ACZ ID WG507084 WG507084ICV) Type ICV ICB PBS LFB MS MSD DUP P) Type	Analyzed 10/12/20 21:15 10/12/20 21:19 10/12/20 21:43 10/12/20 21:55 10/12/20 21:59 10/12/20 22:03 Analyzed 10/12/20 21:15	M6010D I PCN/SCN II201009-1 IITCLPSPIKE IITCLPSPIKE IITCLPSPIKE IITCLPSPIKE IITCLPSPIKE IITCLPSPIKE	CP 2 .501 .501 .501 CP QC 2	Sample U U Sample	Found 1.921 U .4951 .4905 .4888 U V	Units mg/L mg/L mg/L mg/L Units mg/L	Rec% 96 99 98 98 98 Rec%	Lower 90 -0.024 -0.024 80 75 75 75 Lower 90	Upper 110 0.024 0.024 120 125 125 Upper 110	RPD 0 0 RPD	Limit 20 20 Limit	Qual RA Qual
Cadmium (TCLP ACZ ID WG507084 WG507084ICV WG507084ICB WG506692PBS WG506692LFB L61895-01MS L61895-01MS L61895-01MSD L61895-01DUP Chromium (TCLI ACZ ID WG507084 WG507084ICV WG507084ICV) Type ICV ICB PBS LFB MS MSD DUP P) Type ICV ICB	Analyzed 10/12/20 21:15 10/12/20 21:19 10/12/20 21:43 10/12/20 21:55 10/12/20 21:59 10/12/20 22:03 Analyzed 10/12/20 21:15 10/12/20 21:15	M6010D I PCN/SCN II201009-1 IITCLPSPIKE IITCLPSPIKE IITCLPSPIKE IITCLPSPIKE IITCLPSPIKE	CP 2 .501 .501 .501 CP QC 2	Sample U U Sample	Found 1.921 U .4951 .4888 U Found 1.942 U	Units mg/L mg/L mg/L mg/L Units mg/L	Rec% 96 99 98 98 98 Rec%	Lower 90 -0.024 -0.024 80 75 75 75 Lower 90 -0.03	Upper 110 0.024 0.024 120 125 125 Upper 110 0.03	RPD 0 0 RPD	Limit 20 20 Limit	Qual
Cadmium (TCLP ACZ ID WG507084 WG507084ICV WG507084ICV WG506692PBS WG506692LFB L61895-01MS L61895-01MSD L61895-01MSD L61895-01DUP Chromium (TCLI ACZ ID WG507084 WG507084ICV WG507084ICV WG507084ICB WG507084ICB) Type ICV ICB PBS LFB MS MSD DUP PU Type ICV ICB PBS	Analyzed 10/12/20 21:15 10/12/20 21:19 10/12/20 21:43 10/12/20 21:55 10/12/20 21:59 10/12/20 22:03 Analyzed 10/12/20 21:15 10/12/20 21:15 10/12/20 21:19 10/12/20 21:43	M6010D I PCN/SCN II201009-1 IITCLPSPIKE IITCLPSPIKE IITCLPSPIKE IITCLPSPIKE IITCLPSPIKE	CP 2 .501 .501 .501 CP QC 2	Sample U U Sample	Found 1.921 U .4951 .4888 U Found	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Rec% 96 99 98 98 98 88 88 88 98	Lower 90 -0.024 -0.024 80 75 75 Lower 90 -0.03 -0.03	Upper 110 0.024 0.024 120 125 125 Upper 110 0.03 0.03	RPD 0 0 RPD	Limit 20 20 Limit	Qual
Cadmium (TCLP AC2 ID WG507084 WG507084ICV WG507084ICV WG506692PBS WG506692LFB L61895-01MS L61895-01MS L61895-01DUP Chromium (TCLI AC2 ID WG507084ICV WG507084ICV WG507084ICV WG507084ICS WG506692PBS WG506692LFB) Type ICV ICB PBS LFB MS MSD DUP P) Type P) Type	Analyzed 10/12/20 21:15 10/12/20 21:19 10/12/20 21:43 10/12/20 21:47 10/12/20 21:55 10/12/20 21:59 10/12/20 22:03 Analyzed 10/12/20 21:15 10/12/20 21:19 10/12/20 21:43 10/12/20 21:47	M6010D I PCN/SCN II201009-1 IITCLPSPIKE IITCLPSPIKE IITCLPSPIKE II201009-1 II201009-1 IITCLPSPIKE	CP 2 .501 .501 .501 CP QC 2 .501	Sample U U Sample	Found 1.921 U .4951 .4905 .4888 U Found 1.942 U U U .501	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Rec% 96 99 98 98 97 100	Lower 90 -0.024 -0.024 80 75 75 75 Lower 90 -0.03 -0.03 80	Upper 110 0.024 0.024 120 125 125 Upper 110 0.03 0.03 120	RPD 0 0 RPD	Limit 20 20 Limit	Qual
Cadmium (TCLP ACZ ID WG507084 WG507084ICV WG507084ICB WG506692PBS WG506692PBS UG506692LFB L61895-01MS L61895-01MS L61895-01DUP Chromium (TCLI ACZ ID WG507084ICV WG507084ICV WG507084ICS WG506692PBS WG506692LFB L61895-01MS) Type ICV ICB PBS LFB MS MSD DUP Type P) Type	Analyzed 10/12/20 21:15 10/12/20 21:19 10/12/20 21:43 10/12/20 21:55 10/12/20 21:59 10/12/20 21:59 10/12/20 21:15 10/12/20 21:15 10/12/20 21:19 10/12/20 21:43 10/12/20 21:47 10/12/20 21:55	M6010D I PCN/SCN II201009-1 IITCLPSPIKE IITCLPSPIKE IITCLPSPIKE II201009-1 II201009-1 IITCLPSPIKE IITCLPSPIKE IITCLPSPIKE	CP QC 2 .501 .501 .501 CP QC 2 .501 .501 .501	Sample U U Sample	Found 1.921 U .4951 .4905 .4888 U Found 1.942 U U U .501 .497	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Rec% 96 99 98 98 98 8 8 8 7 7 100 99	Lower 90 -0.024 -0.024 80 75 75 75 Lower 90 -0.03 -0.03 80 75	Upper 110 0.024 0.024 120 125 125 Upper 110 0.03 0.03 120 125	RPD 0 0	Limit 20 20 Limit	Qual RA Qual
Cadmium (TCLP ACZ ID WG507084 WG507084ICV WG507084ICB WG506692PBS WG506692LFB L61895-01MS L61895-01MS L61895-01DUP Chromium (TCLI ACZ ID WG507084ICV WG507084ICV WG507084ICV WG507084ICS WG506692PBS WG506692LFB L61895-01MS L61895-01MS) Type ICV ICB PBS LFB MS DUP P) Type P) Type ICV ICB PBS LFB MS MSD	Analyzed 10/12/20 21:15 10/12/20 21:19 10/12/20 21:43 10/12/20 21:47 10/12/20 21:55 10/12/20 21:59 10/12/20 22:03 Analyzed 10/12/20 21:15 10/12/20 21:43 10/12/20 21:43 10/12/20 21:55 10/12/20 21:55 10/12/20 21:59	M6010D I PCN/SCN II201009-1 IITCLPSPIKE IITCLPSPIKE IITCLPSPIKE II201009-1 II201009-1 IITCLPSPIKE IITCLPSPIKE IITCLPSPIKE	CP QC 2 .501 .501 .501 CP QC 2 .501 .501 .501 .501 .501 .501	Sample U U U Sample U U	Found 1.921 U .4951 .4905 .4888 U V Found 1.942 U U U .501 .497 .499	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Rec% 96 99 98 98 97 100 99 100 99 100	Lower 90 -0.024 -0.024 80 75 75 75 Lower 90 -0.03 -0.03 80 75 75	Upper 110 0.024 0.024 120 125 125 Upper 110 0.03 0.03 120 125 125	RPD 0 0 RPD	Limit 20 20 Limit	Qual

Twin Enviro Services

ACZ Project ID: L61935

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Lead (TCLP)			M6010D	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG507084													
WG507084ICV	ICV	10/12/20 21:15	II201009-1	4		3.887	mg/L	97	90	110			
WG507084ICB	ICB	10/12/20 21:19				U	mg/L		-0.09	0.09			
WG506692PBS	PBS	10/12/20 21:43				U	mg/L		-0.09	0.09			
WG506692LFB	LFB	10/12/20 21:47	IITCLPSPIKE	1.001		1.006	mg/L	100	80	120			
L61895-01MS	MS	10/12/20 21:55	IITCLPSPIKE	1.001	U	.986	mg/L	99	75	125			
L61895-01MSD	MSD	10/12/20 21:59	IITCLPSPIKE	1.001	U	.999	mg/L	100	75	125	1	20	
L61895-01DUP	DUP	10/12/20 22:03			U	U	mg/L				0	20	RA
Mercury (TCLP) M7470A CVAA													
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG506747													
WG506747ICV	ICV	10/08/20 14:05	HG200810-2	.005		.00481	mg/L	96	95	105			
WG506747ICB	ICB	10/08/20 14:06				U	mg/L		-0.0002	0.0002			
WG506839													
WG506839PBW	PBW	10/08/20 15:52				U	mg/L		-0.00044	0.00044			
WG506692PBS	PBS	10/08/20 15:53				U	mg/L		-0.0006	0.0006			
WG506692LFB	LFB	10/08/20 15:54	HG200918-3	.002002		.00173	mg/L	86	85	115			
L61895-01MS	MS	10/08/20 15:56	HG200918-3	.002002	U	.0017	mg/L	85	85	115			
L61895-01MSD	MSD	10/08/20 15:57	HG200918-3	.002002	U	.00172	mg/L	86	85	115	1	20	
L61895-01DUP	DUP	10/08/20 15:58			U	U	mg/L				0	20	RA
Selenium (TCLP)			M6010D	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG507084													
WG507084ICV	ICV	10/12/20 21:15	II201009-1	4		3.986	mg/L	100	90	110			
WG507084ICB	ICB	10/12/20 21:19				U	mg/L		-0.15	0.15			
WG506692PBS	PBS	10/12/20 21:43				U	mg/L		-0.15	0.15			
WG506692LFB	LFB	10/12/20 21:47	IITCLPSPIKE	1.001		1.048	mg/L	105	80	120			
L61895-01MS	MS	10/12/20 21:55	IITCLPSPIKE	1.001	U	1.049	mg/L	105	75	125			
L61895-01MSD	MSD	10/12/20 21:59	IITCLPSPIKE	1.001	U	1.062	mg/L	106	75	125	1	20	
L61895-01DUP	DUP	10/12/20 22:03			U	U	mg/L				0	20	RA
Silver (TCLP)			M6010D	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG507084													
WG507084ICV	ICV	10/12/20 21:15	II201009-1	1		1.014	mg/L	101	90	110			
WG507084ICB	ICB	10/12/20 21:19				U	mg/L		-0.03	0.03			
WG506692PBS	PBS	10/12/20 21:43				U	mg/L		-0.03	0.03			
WG506692LFB	LFB	10/12/20 21:47	IITCLPSPIKE	.501		.488	mg/L	97	80	120			
L61895-01MS	MS	10/12/20 21:55	IITCLPSPIKE	.501	U	.488	mg/L	97	75	125			
L61895-01MSD	MSD	10/12/20 21:59	IITCLPSPIKE	.501	U	.493	mg/L	98	75	125	1	20	
L61895-01DUP	DUP	10/12/20 22:03			U	U	mg/L				0	20	RA

4C: **AGZ** Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487

(800) 334-5493

Inorganic Extended Qualifier Report

Twin Enviro Services

ACZ Project ID: L61935

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L61935-01	NG507084	Arsenic (TCLP)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Barium (TCLP)	M6010D ICP	B1	Target analyte detected in prep / method blank at or above the method reporting limit. See Case Narrative.
			M6010D ICP	RD	For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample.
		Cadmium (TCLP)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Chromium (TCLP)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Lead (TCLP)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG506839	Mercury (TCLP)	M7470A CVAA	H1	Sample prep or analysis performed past holding time. See case narrative.
			M7470A CVAA	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG507084	Selenium (TCLP)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Silver (TCLP)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).

Twin Enviro Services

ACZ Project ID: L61935

No certification qualifiers associated with this analysis

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493		Sample Receipt				
Twin Enviro Services ACZ Date	Proje Rece eceive	ect ID: eived: 10 ed By:	L61935 10/06/2020 09:00			
D	ate Pr	inted:	10)/6/2020		
Receipt Verification						
1) Is a foreign soil permit included for applicable samples?		YES	NO	NA X		
2) Is the Chain of Custody form or other directive shipping papers present?		Х				
3) Does this project require special handling procedures such as CLP protocol?			Х			
4) Are any samples NRC licensable material?				Х		
5) If samples are received past hold time, proceed with requested short hold time analyses	?	Х				
6) Is the Chain of Custody form complete and accurate?		Х				
7) Were any changes made to the Chain of Custody form prior to ACZ receiving the sample	es?		Х			
Samples/Containers						
		YES	NO	NA		
8) Are all containers intact and with no leaks?		Х				
9) Are all labels on containers and are they intact and legible?		Х				
10) Do the sample labels and Chain of Custody form match for Sample ID, Date, and Time	?	Х				
11) For preserved bottle types, was the pH checked and within limits? $ ^{1}$				Х		
12) Is there sufficient sample volume to perform all requested work?		Х				
13) Is the custody seal intact on all containers?				Х		
14) Are samples that require zero headspace acceptable?				Х		
15) Are all sample containers appropriate for analytical requirements?		Х				
16) Is there an Hg-1631 trip blank present?				Х		
17) Is there a VOA trip blank present?				Х		
18) Were all samples received within hold time?		Х				
		NA indica	tes Not Ap	plicable		

Chain of Custody Related Remarks

Client Contact Remarks

Shipping Containers

Temp Cooler Id Temp(°C) Rad(µR/Hr) Custody Seal Criteria(°C) Intact? _____ _____ _____ _____ _____ UNKNOWN <=6.0

Was ice present in the shipment container(s)?

Yes - Wet ice was present in the shipment container(s).

Client must contact an ACZ Project Manager if analysis should not proceed for samples received outside of their thermal preservation acceptance criteria.

Sample Receipt

Twin Enviro Service

ACZ Project ID: L61935 Date Received: 10/06/2020 09:00 Received By: Date Printed: 10/6/2020

¹ The preservation of the following bottle types is not checked at sample receipt: Orange (oil and grease), Purple (total cyanide), Pink (dissolved cyanide), Brown (arsenic speciation), Sterile (fecal coliform), EDTA (sulfite), HCI preserved vial (organics), Na2S2O3 preserved vial (organics), and HG-1631 (total/dissolved mercury by method 1631).

RELINQUISHED B	Y:	DATE:T	IME		F	RECEIV	ED B	Y:		DA1	E:TIN
Please r	efer to ACZ's t	erms & con	ditions le	ocated	on the	reverse	e side	of this (coc.		
6 1 1											
Matrix SW (Surface Water) · G	N (Ground Water)	· WW (Waste)	Water) · D	W (Drinkir	ng Wate	r) · SL (S	ludge) ·	SO (Soil)	OL (Oi	il) · Other (Specify
с о											
			<u> </u>								
			_]							
		······································									
			<u> </u>	<u> </u>							
		····		<u> </u>							
Barker	19-2.20	900	150	3	_		2			 -	
SAMPLE IDENTIFICATION	DATE	TIME	Matrix	*	Φ£	<u>> 'n</u>	H	6			
Check box if samples include NR	licensed mate	rial?		U U U	S?	22	+	1			
Reporting state for compliance tes	sting:] ta	61	516	<u>۾</u>				
PO#: Barker				l la		2	Ţ				
Quote #:				y I			~				
PROJECT INFORMATION		tamperin	g with the sa	mple in anyv	way, is con <u>ANA</u> I	sidered frau YS <u>SS R</u> E(d and pun	ishable by S Dija <u>ilasib</u> I	itate Law. ist <u>or us</u> e	quote aum	bert
Sampler's Name: Dict/7-Cl	s Sampler's	Site Inform	ation to the authent	State	idity of thi	a sample. I	Zip co	de <u>8(</u> that intenti	$\underline{<90}$	Time Zo labeling the tir	ne <u>M</u> ne/data/lo
If yes, please include state form	s. Results will	be reported	to PQL f	or Colo	rado.	· · · · · · ·		<u>.</u>	7		<i>ta</i> -
Are samples for SDWA Complia	nce Monitoring	J ?		Yes			No	\times			
ernalysis defore expiration, shall If "NO" then ACZ will contact client for further inst	I AUZ PROCOOD nuction. If noither "YES	with request " nor "NO" is indica	ted, ACZ will	roceed with	ilyses?	, netect enalitys	es, even if	HT is expire	id, and data	NO [] will be qualif	bel
If sample(s) received past holdi	ng time (HT), o	r if insufficie	nt HT re	mains to	o comp	olete				YES	\ge
E-mail: dbeaumonta	+ twinen	ino, com		Teleph	ione:						
Company:]								
Name: Debbie Ben	umont			Addres	SS:						
Invoice to:											
Company:				Teleph	ione:						
Name: Rick Mª Cal	ام			E-mail:	: Tr	ncc	صالم	<u>6</u> +	-	envis	s.C.
Copy of Report to:											
E-mail: Clorochu Dt.	יישטאיניי	. Com]	Teleph	one:	719	- 3`	<u>)2-</u>	66	71	
Company: This Eaul	50]								
Name: Chris Broch.	J			Addres	3S:						
Report to:				1.4	101-						
2173 Downing Drive Steamboard	springs, co bu	101 (000) 33	4-0430		- VIDIA						

L61935-2010131330

White - Return with sample. Yellow - Retain for your records.

Wheat Ridge, CO

The results set forth herein are provided by SGS North America Inc.

Technical Report for

Braun Environmental, Inc.

MM-01

SGS Job Number: DA28704

Sampling Date: 09/08/20

Report to:

Braun Environmental, Inc. 355 South Teller Street Suite 200 Lakewood, CO 80226 braunenv@msn.com

ATTN: Art Braun

Total number of pages in report: 31

Jason Savoie General Manager

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Elizabeth Sutcliffe 303-425-6021

Certifications: CO (CO00049), NE (NE-OS-06-04), ND (R-027), UT (NELAP CO00049) LA (LA150028), TX (T104704511), WY (8TMS-L)

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 4036 Youngfield St. • Wheat Ridge, CO 80033-3862 • tel: 303-425-6021 • fax: 303-425-6854

Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com

1 of 31

09/17/20

Automated Report

e-Hardcopy 2.0
Table of Contents

N

ယ

4

S

6

7

-1-

Section 1: Sample Summary	3 4
Section 3: Summary of Hits	5
Section 4: Sample Results	6
4.1: DA28704-1: 090820-1	7
4.2: DA28704-2: 090820-2	8
Section 5: Misc. Forms	9
5.1: Chain of Custody	10
Section 6: GC Volatiles - QC Data Summaries	12
6.1: Method Blank Summary	13
6.2: Blank Spike Summary	14
6.3: Matrix Spike/Matrix Spike Duplicate Summary	15
Section 7: GC Volatiles - Raw Data	16
7.1: Samples	17
7.2: Method Blanks	27

Sample Summary

Braun Environmental, Inc.

MM-01

Sample Number	Collected Date	l Time By	Received	Matr Code	ix e Type	Client Sample ID
This report co Organics ND	ontains resu	Its reported as = Not detecte	s ND = Nc and above the	ot dete e MD	cted. The following app L	lies:
DA28704-1	09/08/20	08:17 AB	09/08/20	AQ	Ground Water	090820-1
DA28704-2	09/08/20	09:26 AB	09/08/20	AQ	Ground Water	090820-2

Job No: D

DA28704

CASE NARRATIVE / CONFORMANCE SUMMARY

Client:	Braun Environmental, Inc.	Job No:	DA28704
Site:	MM-01	Report Date	9/17/2020 1:27:34 PM
n 00/08/202	0. 2 comple(a) 0 Trip Plank(a) and 0 Field Plank(a) were received at SC	S North Amorico	Inc. (SCS) at a temperature

On 09/08/2020, 2 sample(s), 0 Trip Blank(s), and 0 Field Blank(s) were received at SGS North America Inc. (SGS) at a temperature of 5.3 °C. The samples were intact and properly preserved, unless noted below. An SGS Job Number of DA28704 was assigned to the project. The lab sample ID, client sample ID, and date of sample collection are detailed in the report's Results Summary.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

GC Volatiles By Method RSK175 MOD

Matrix: AQ	Batch ID: GFK118

All samples were analyzed within the recommended method holding time.

Sample(s) DA19422-5MS, DA19422-5MSD were used as the QC samples indicated.

All method blanks for this batch meet method specific criteria.

SGS certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting SGS's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

SGS is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. This report is authorized by SGS indicated via signature on the report cover.

Summary of Hits

Job Number:DA28704Account:Braun Environmental, Inc.Project:MM-01Collected:09/08/20

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method

DA28704-1 090820-1

No hits reported in this sample.

DA28704-2 090820-2

No hits reported in this sample.

ω

Wheat Ridge, CO

Section 4

Sample Results

Report of Analysis

SGS North America Inc.

Report of Analysis

Page 1 of 1

Client San Lab Samp Matrix: Method: Project:	aple ID: 090820 le ID: DA287 AQ - G RSK172 MM-01	-1 04-1 round Wa 5 MOD	ter		Da Da Per	te Sampled: 09 te Received: 09 rcent Solids: n/	9/08/20 9/08/20 ′a
Run #1 Run #2	File ID FK1687.D	DF 1	Analyzed 09/09/20 14:41	By JB	Prep Date n/a	Prep Batch n/a	Analytical Batch GFK118
Run #1 Run #2	Initial Volume 39.0 ml	Headsp 4.0 ml	ace Volume Volu 500 t	me Inj 11	Temper 20.5 De	rature eg. C	
CAS No.	Compound		Result	RL	MDL Units	Q	
74-84-0	Ethane		ND	0.0016	5 0.0010 mg/l		

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

SGS North America Inc.

Report of Analysis

Page 1 of 1

Client San Lab Samp Matrix: Method: Project:	nple ID: le ID:	090820- DA2870 AQ - Gi RSK175 MM-01	-2)4-2 round Wat 5 MOD	er			Date Date Perce	Sampled: 09 Received: 09 ent Solids: n/a	1/08/20 1/08/20 a
Run #1 Run #2	File ID FK1688	3.D	DF 1	Analyzed 09/09/20	i By 14:50 JB	Prep Da n/a	ate	Prep Batch n/a	Analytical Batch GFK118
Run #1 Run #2	Initial 39.0 ml	Volume	Headspa 4.0 ml	ace Volume	Volume In 500 ul	jected 2	Tempera 20.5 Deg	ture . C	
CAS No.	Comp	ound		Resul	t RL	MDL	Units	Q	
74-84-0	Ethane	e		ND	0.001	6 0.0010	mg/l		

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Wheat Ridge, CO

Section 5

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

ene				(CHAI	N	C)F	C	ະບ	S1	٢O	D	Y								Page	e_/	_of_	1	
- AUD				40	GS Nor)36 Yound	th / afiel	Ame d Str	eet.	a In Whe	c ' eat R	Wh: idae	eat i . CO	RId 800	ge 333		Bottle O	der Contr	51 #			FED-E>	< Trackir	ıg #			
Contraction of the second s					TEL: 30	3-42 w	25-60 ww.s)21 gs.c	FA om/	X: 3 ehsu	03-4: sa	25-6	854			SGS Qu	ote #				SGS .	Job #	DF	728	87	04
Client / Reporting Information	10150315			Pr	oject Info	or m	ation	1									Reque	sted Anal	ysis (s	ee TE	ST CO	DDE st	ieet)			Matrix Codes
Company: BHUN ENVIRUME	ntal Ini	Project Name:	MA	1.01									୍ଷ										DW - Drinking Water GW - Ground Water			
Street: 3555 S Teller Ste	200	Street:				Bill	lina la	form	ation	lif dif	faran	di feori	n Par	ort tr	98000 1	leų										WW - Water SW - Surface Water
City, State: Likewood LD Q	1971	City, State:				Cor	mpany	с		(14										SO - Soll SL- Sludge
Project Contact: A. + 12	100	Project #:				Stre	eet Ad	dress								100										OI - Oil LIQ - Other Liquid
HVI 171214 Phone: 303 088-7607		Client Purchase Order #:			┝										17										AIR - Air SOL - Other Solid	
Email: brauneny P. Main	1.6im				City	, State	e ZIP:								N										WP - Wipe FB - Field Blank	
Sampler(s) Name(s): ABbu		Project Manag	er:			Atte	ention:									23										EB-Equipment Blank RB - Rinse Blank
	·	Collection			·····		r	Numbe	er of p	reserve	d Boti	ties		77		13							1	1		TB - Trip Blank
Field ID / Point of Collection	Date	Time	Sampled by	Matrix	# of bottles	NONE	HCI F	HN03	H2SO4	DI Water	ENCOR	Na2S2O	Na2SO3			RSI										LAB USE ONLY
090820-1	9/8/20	8:17A	AB	GW	4	1					T	Π				X										01
090820-2	9/8/20	9:26A	AB	GW	4											X										02
	1, 1																									
						Γ			Π		Τ	Π	ľ													
											Τ		1	Т						-						
						Ι	Π		Π																	
									Π		Τ	T		\square												
						Γ	\square				1															
											1															
				1						1		T	T													
											\top	\top														
Turnaround Time (Business days)	· · · · · · · · · · · · · · · · · · ·						- L.,	Da	ta D	elive	rabl	e Inf	form	atio	n	!			·	Comm	ents /	Specia	i Instru	uctions	;	1
Standard 10 Business Days	ipecial Repo	rting Instructio	ns		Con	mer	cial "/	A" (Le	evel	i, Res	ults (Only)														
3 Business Days RUSH	Report in P	PB				imer AMB	'ciai "i N /Re	B" (Li sults/	evel 2 IOCIE	2, Res Jarraf	ults < ivo)	• QC :	Sami	nary)												
2 Business Days RUSH	Report MD	Ls				имв	N+ [R	esult	s/QC	/Narra	itive ((+ chr	omat	ograi	ms)]											
1 Business Day EMERGENC'						T2								-												
Emergency & Rush T/A data available via	LabUnk. RU	SH TAT approv	al needed		FUL	T1] EDI	D For	rmat_												
Relinguistion for Samphill 1	Sam	ole Custody I	must be i	docume	nted belo	W ea	ach ti	me s	samp	oles c	han	ge po	sse	ssior	n, Inc	luding co	urier de	ivery.								
1//////////	9/8/20	149	50	1 5	-00	7	-f-		\leq	zennq	uisne	a By:						Date/Time: Received By:								
Kennquished by Bampler: 2	Date/Time:			Received	i By:		/		٦	Reling 4	ulshe	d By:	~	-				Date/Ti	me:		Receive 4	d By:				
Custody Seal # Intact 🕾 N	lot intact	Absent		Preserve	d where app	licab 7	le 📈	ļ. —		Cooler	Temp	p. °C: _	>.	5	TI	herm. 1D:	-084	On Ice	X		http://	www.se	as.con	n/en/te		nd-conditions

FRS&DACJ027J0.FORMJWhast Piles - DW COC- Boy Date: 440440

DA28704: Chain of Custody Page 1 of 2

5.1

S

SGS Accutest Sample Receipt Summary

Job Number: D	A28704	Client:	BRAUN ENVIRO	NMENTA	L Project: MM-01			
Date / Time Received: 9/	8/2020 2:50:00) PM	Delivery Metho	d:	Airbill #'s: HD			
Cooler Temps (Initial/Adjus	sted): <u>#1: (5.</u>	3/5.3);						
Cooler Security	<u>YorN</u>		<u>Y</u>	or N	Sample Integrity - Documentation	<u>Y o</u>	r N	
1. Custody Seals Present:	✓	3. COC Pr	esent: 🗸		1. Sample labels present on bottles:	\checkmark		
2. Custody Seals Intact:	✓ □ 4	I. Smpl Date:	s/Time OK 🖌 🖌		2. Container labeling complete:	\checkmark		
Cooler Temperature	<u>Y</u> or I	<u>N_</u>			3. Sample container label / COC agree:	\checkmark		
1. Temp criteria achieved:					Sample Integrity - Condition	<u>Y</u> o	<u>r N</u>	
2. Cooler temp verification:	IR Gur	ı;			1. Sample recvd within HT:	\checkmark		
3. Cooler media:	Ice (Ba	ag)			2. All containers accounted for:			
4. No. Coolers:	1				3. Condition of sample:	Int	act	
Quality Control Preservati	on <u>Y</u> or	<u>N N/A</u>			Sample Integrity - Instructions	<u>Y</u> o	r N	N/A
1. Trip Blank present / cooler:		✓ □			1. Analysis requested is clear:	\checkmark		
2. Trip Blank listed on COC:		✓ □			2. Bottles received for unspecified tests		\checkmark	
3. Samples preserved properly	y: 🔽 [3. Sufficient volume recvd for analysis:	\checkmark		
4. VOCs headspace free:					4. Compositing instructions clear:			\checkmark
	_	_			5. Filtering instructions clear:			\checkmark
Comments					•			

DA28704: Chain of Custody Page 2 of 2

5.<u>1</u>

() U

Section 6

GC Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

೧

Method Blank Summary

Job Numbe Account: Project:	er: DA28704 BRAECOL Bra MM-01	un Environi	mental, Inc.					
Sample GFK118-M	File ID IB FK1681.D	DF 1	Analyze 09/09/20	B B JB	Prej n/a	p Date	Prep Batch n/a	Analytical Batch GFK118
The QC re DA28704-1	ported here applies t	to the follow	ving sample	s:			Method: RSK17	75 MOD
CAS No.	Compound		Result	RL	MDL	Units	Q	
74-84-0	Ethane		ND	0.0016	0.0010	mg/l		

Blank Spike Summary

Job Numbe Account: Project:	BRAECOL Brat MM-01	ın Environı	nental,	Inc.				
Sample GFK118-BS	File ID 5 FK1680.D	DF 10	Ana 09/0	lyzed 19/20	By JB	Prep Date n/a	Prep Batch n/a	Analytical Batch GFK118
The QC rej DA28704-1	ported here applies t , DA28704-2	o the follow	ving sar	nples:			Method: RSK17	75 MOD
CAS No.	Compound		Spike mg/l	BSP mg/l	BSP %	Limits		
74-84-0	Ethane		0.923	1.13	122	70-142		

14 of 31 DA28704

SGS

Matrix Spike/Matrix Spike Duplicate Summary

Job Number:	DA28704
Account:	BRAECOL Braun Environmental, Inc.
Project:	MM-01

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
DA19422-5MS	FK1683.D	10	09/09/20	JB	n/a	n/a	GFK118
DA19422-5MSD	FK1684.D	10	09/09/20	JB	n/a	n/a	GFK118
DA19422-5	FK1682.D	1	09/09/20	JB	n/a	n/a	GFK118

The QC reported here applies to the following samples:

Method: RSK175 MOD

DA28704-1, DA28704-2

CAS No.	Compound	DA19422-5 mg/l Q	Spike mg/l	MS mg/l	MS %	Spike mg/l	MSD mg/l	MSD %	RPD	Limits Rec/RPD
74-84-0	Ethane	ND	0.923	1.11	120	0.923	1.11	120	0	64-147/30

^{6.3.1 6}

Wheat Ridge, CO

GC Volatiles

Raw Data

1) 2) 3) 4) 5) 7.1.1 7

Quantitation Report (QT Reviewed)

Data File : C:\SHARED\FK\202 Acq On : 9-9-2020 02:41:5 Sample : DA28704-1, 1X Misc : GC8813,GFK118,39 IntFile : AUTOINT1.E Quant Time: Sep 09 15:02:27 Quant Method : C:\MSDCHEM\2\ Title : RSK 175 Met Last Update : Tue Nov 19 10 Response via : Initial Calib DataAcq Meth : GAS.M	0\09.2020\09 7 PM ,20.5,500,4, 2020 Quant : METHODS\GFK5 hane, Ethene :51:10 2019 ration	0920\FK1687.D 1 Results File: 3.M (Chemstat , Ethane, and	Vial: 10 Operator: JAMILB Inst : FID10 Multiplr: 1.00 GFK53.RES ion Integrator) Propane
Volume Inj. : 100ul Signal Phase : Porapak Q 80/ Signal Info : 1/8 in	100		
Compound	R.T.	Response	Conc Units
Target Compounds			
) Methane	0.44f	388658	0.949 rawvpm
) Ethene	0.00	0	N.D. rawvp
) Ethane	0.00	0	N.D. rawvp
) Propane	0.00	0	N.D. rawvp
) n-Butane	2.59f	4216806	4.082 ppmv

(f)=RT Delta > 1/2 Window FK1687.D GFK53.M Wed Sep 09 15:09:33 2020 GCFA

DA28704

```
Sample Results: FK1687.D
```


7.1.1

FK1687.D GFK53.M Wed Sep 09 15:09:33 2020 GCFA

Page 3

DA28704

FK1687.D GFK53.M Wed Sep 09 15:09:33 2020 GCFA

Page 4

20 of 31

DA28704

Dissolved	Gases	Raw	Data	Summary	
-----------	-------	-----	------	---------	--

Sample Number:	DA28704-1	Sample Volume:	39.0 ml
Lab FileID:	FK1687.D	Headspace:	4.0 ml
Injection Time:	09/09/20 14:41	Volume Injected:	500 ul
Method:	RSK175 MOD	Temperature:	20.5 Deg. C
			-

Parameter		CAS	Γ	MW	Result (ppmv)	Heni Cons	ry's stant	Total	Unit	s	
Methane		74-82-8	1	6	0.95	3834	0	0.0	mg/l		
Ethane		74-84-0	3	30	0	2708	0	0.0	mg/l		
Ethene		74-85-1	2	28	0	1044	0	0.0	mg/l		
Propane		74-98-6	2	14	0	3255	2	0.0	mg/l		
Henry's Constants	17	18	19	20	21	22	23	24	25	26	27
Methane	35290	36060	36830	37600	38340	39080	39820	40560	41300	42020	42740
Ethane	24020	24780	25540	26300	27080	27860	28640	29420	30200	31000	31800
Ethene	9480	9720	9960	10200	10440	10680	10920	11160	11400	11660	11920
Propane	28308	29352	30408	31474	32552	33643	34744	35857	36978	38107	39244

Page 1 of 1

1) 2) 3) 4) 5)

Quantitation Report (QT Reviewed)

Data File : C:\SHAPED\EK\2020\	09 2020\09	0920\Fr1688 T	v_{ial} : 11
Acg On : 9-9-2020 02:50:21	PM	0920 (PR1000.1	Operator: JAMILB
Sample : DA28704-2, 1X			Inst : FID10
Misc : GC8813,GFK118,39,2	20.5,500,4,	1	Multiplr: 1.00
IntFile : AUTOINT1.E			
Quant Time: Sep 09 15:02:28 20	20 Quant	Results File:	GFK53.RES
Quant Method : C:\MSDCHEM\2\ME Title : RSK 175 Metha Last Update : Tue Nov 19 10:5 Response via : Initial Calibra DataAcq Meth : GAS.M	THODS\GFK5 ane, Ethene 51:10 2019 ation	3.M (Chemstat , Ethane, and	tion Integrator) N Propane
Volume Inj. : 100ul Signal Phase : Porapak Q 80/10 Signal Info : 1/8 in	00		
Compound	R.T.	Response	Conc Units
Target Compounds			
) Methane	0.44f	330702	0.696 rawvpm
2) Ethene	0.00	0	N.D. rawvp
3) Ethane	0.00	0	N.D. rawvp
) Propane	0.00	0	N.D. rawvp
5) n-Butane	2.59f	13197132	14.519 ppmv

(f)=RT Delta > 1/2 Window FK1688.D GFK53.M Wed Sep 09 15:09:34 2020 GCFA

DA28704

7.1.2

FK1688.D GFK53.M Wed Sep 09 15:09:34 2020 GCFA Page 3

FK1688.D: DA28704-2 090820-2 page 3 of 4

24 of 31 DA28704

7.1.2 7

Dissolved Gases Raw Data Summary

Sample Number:	DA28704-2	Sample Volume:	39.0 ml
Lab FileID:	FK1688.D	Headspace:	4.0 ml
Injection Time:	09/09/20 14:50	Volume Injected:	500 ul
Method:	RSK175 MOD	Temperature:	20.5 Deg. C
			-

Parameter		CAS	Γ	MW	Result (ppmv)	Heni Cons	'y's stant '	Total	Unit	S	
Methane		74-82-8	1	16	0.7	3834	0 0	0.0	mg/l		
Ethane		74-84-0	3	30	0	2708	0 0	0.0	mg/l		
Ethene		74-85-1	2	28	0	1044	0 0	0.0	mg/l		
Propane		74-98-6	2	14	0	3255	2	0.0	mg/l		
Henry's Constants	17	18	19	20	21	22	23	24	25	26	27
Methane	35290	36060	36830	37600	38340	39080	39820	40560	41300	42020	42740
Ethane	24020	24780	25540	26300	27080	27860	28640	29420	30200	31000	31800
Ethene	9480	9720	9960	10200	10440	10680	10920	11160	11400	11660	11920
Propane	28308	29352	30408	31474	32552	33643	34744	35857	36978	38107	39244

Page 1 of 1

1) 2) 3) 4) 5) 7.2.1 7

Quantitation Report (QT Reviewed)

Data File : C:	\SHARED\FK\2020\09	2020\0909;	20\FK1681.T) Vial	: 4
Acq On : 9-	9-2020 01:56:13 PM	1		Operator	: JAMILB
Sample : MB				Inst	: FID10
Misc : GC	8813,GFK118,39,20.	5,500,4,1		Multiplr	: 1.00
IntFile : AU	FOINT1.E				
Quant Time: Se	p 09 15:02:21 2020) Quant Res	sults File:	GFK53.RI	ES
Quant Method : Title : Last Update : Response via : DataAcq Meth :	C:\MSDCHEM\2\METH RSK 175 Methane Tue Nov 19 10:51: Initial Calibrati GAS.M	HODS\GFK53.M e, Ethene, H 10 2019 .on	4 (Chemstat Ethane, and	tion Integ Propane	grator)
Volume Inj. :	100ul				
Signal Phase :	Porapak Q 80/100				
Signal Info :	1/8 in				
Compound		R.T.	Response	Conc U	nits
Target Compounds					
) Methane		0.40	288847	0.512	rawvpm
) Ethene		0.00	0	N.D. 1	rawvp
) Ethane		0.00	0	N.D.	rawvp
) Propane		0.00	0	N.D.	rawvp
) n-Butane		0.00	0	N.D.]	opmv

(f)=RT Delta > 1/2 Window FK1681.D GFK53.M Wed Sep 09 15:09:27 2020 GCFA

```
QC Report: FK1681.D
                                   Quantitation Report
                                                           (QT Reviewed)
      Data File : C:\SHARED\FK\2020\09.2020\090920\FK1681.D
                                                                     Vial: 4
                : 9-9-2020 01:56:13 PM
      Acq On
                                                                 Operator: JAMILB
      Sample
                : MB
                                                                 Inst
                 : GC8813, GFK118, 39, 20.5, 500, 4, 1
      Misc
                                                                 Multiplr: 1.00
      IntFile : AUTOINT1.E
      Quant Time: Sep 9 15:06 2020 Quant Results File: GFK53.RES
      Quant Method : C:\MSDCHEM\2\METHODS\GFK53.M (Chemstation Integrator)
      Title
                    : RSK 175 Methane, Ethene, Ethane, and Propane
      Last Update : Tue Nov 19 10:51:10 2019
      Response via : Multiple Level Calibration
      DataAcq Meth : GAS.M
      Volume Inj. : 100ul
      Signal Phase : Porapak Q 80/100
Signal Info : 1/8 in
   Response_
                                               Signal: FK1681.D\FID1A.CH
     9500000
     9000000
     8500000
     8000000
     7500000
     7000000
     6500000
     6000000
     5500000
     5000000
     4500000
     4000000
     3500000
     3000000
```


GCFA

: FID10

7.2.1

Wed Sep 09 15:09:27 2020

0.20

0

FK1681.D GFK53.M

-500000 -1000000

Time

Page 2

DA28704

FK1681.D GFK53.M Wed Sep 09 15:09:27 2020 GCFA

7.2.1

FK1681.D GFK53.M Wed Sep 09 15:09:27 2020 GCFA

Page 4

DA28704

30 of 31

Sample Number:	GFK118-MB	Sample Volume:	39.0 ml
Lab FileID:	FK1681.D	Headspace:	4.0 ml
Injection Time:	09/09/20 13:56	Volume Injected:	500 ul
Method:	RSK175 MOD	Temperature:	20.5 Deg. C

Parameter		CAS	Γ	MW	Result (ppmv)	Henn Cons	ry's stant	Total	Unit	S	
Methane		74-82-8	1	6	0.51	3834	0	0.0	mg/l		
Ethane		74-84-0	3	30	0	2708	0	0.0	mg/l		
Ethene		74-85-1	2	28	0	1044	0	0.0	mg/l		
Propane		74-98-6	2	14	0	3255	2	0.0	mg/l		
Henry's											
Constants	17	18	19	20	21	22	23	24	25	26	27
Methane	35290	36060	36830	37600	38340	39080	39820	40560	41300	42020	42740
Ethane	24020	24780	25540	26300	27080	27860	28640	29420	30200	31000	31800
Ethene	9480	9720	9960	10200	10440	10680	10920	11160	11400	11660	11920
Propane	28308	29352	30408	31474	32552	33643	34744	35857	36978	38107	39244

Page 1 of 1

Braun Environmental, Inc.

ENGINEERING REPORT

ROCK TESTING FOR ACID GENERATION AND ROCK BUFFERING

MINERAL MOUNTAIN PROJECT, CRIPPLE CREEK, COLORADO

Prepared for:

LANCE BARKER

Prepared by:

C.A BRAUN, P.E, CPG

BRAUN ENVIRONMENTAL, INC.

355 TELLER STREET, SUITE 200

LAKEWOOD, COLORADO 80226

Job Number: MH-02

Date: August 6, 2014

355 Teller Street, Suite 200, Lakewood, Colorado 80226 Phone (303) 988-7697 Fax (303)-697-2140

INTRODUCTION

Braun Environmental, Inc. has been retained to do a review of the rock properties on the Mineral Mountain project, located near Cripple Creek, Colorado as they relate to potential adverse environmental conditions. The testing was specifically designed to determine if the site has potential to produce free sulfur that could lead to generation of sulfuric acid, either exhibiting itself as acid mine drainage (AMD) or as acid leaching to disturbed rock areas and adjacent soils.

BACKGROUND

In these days of high regulation, it appears that we are continually put into the position of trying to prove the negative. The reasons are many but the demand for additional reporting remains. It is well known that the Cripple Creek District is generally non-acid generating from a regulatory standpoint, but the need for reporting is necessary. Within some of the mining districts in the State of Colorado, a large amount of free sulfur was produced during the primary volcanic activity and later hydrothermal activity that occurred during the cool-down. From a chemical perspective, the sulfur produced during the volcanic activity combined chemically with whatever it could find available, with its preference being for metals and one of them being iron to form iron sulfide (pyrite). In these volcanic areas that contained abundant quantities of sulfur, the original clues to the pioneer prospectors was the presence of naturally occurring low pH surface waters.

As oxidation is currently stronger than sulfidization under Earth surface conditions, the destruction of sulfur-containing minerals from weathering and oxidation can produce free sulfur that presents itself as sulfuric acid (H₂SO₃). Certain sulfur containing minerals have a higher potential to produce sulfuric acid than others. The oxidation of iron sulfide (pyrite) produces free sulfur, while conversely in the same environment, the salts of the acid tend to bind the sulfur. A commonly occurring salt is the mineral compound calcium sulfate, commonly referred to as gypsum. In fact, calcium sulfate is currently the mineral preferred by government agencies and environmental professionals to bind sulfur, and even though the word sulfur sometimes conjures up fear, that particular sulfur-containing compound is welcomed, and even demanded by the government, as a commonly used building material in our homes.

Sulfuric acid, when allowed to mobilize, assuming buffering, will eventually become neutralized by contacting other minerals and organics that can tie up this sulfur. Once this occurs, the ions that are contained in low pH solution are forced out as a precipitate as the pH rises. A common ion found in solution in low pH water is iron. This precipitate has a characteristic red color when deposited as an oxide. These chemical reactions occur naturally in the environment and can also be created by man as a result of disturbing materials at the surface or below the water table.

The oxidation of sulfide minerals produces predictable results based on the simple chemical reactions. However, the rate of the reaction is slightly more difficult to predict without knowledge of the other minerals present and their mechanical relationships to the sulfide mineral that is to undergo oxidation. The mineral decomposition and amount of free sulfur available to become mobile can vary greatly based on the crystal habit of the mineral, and that mineral's spatial relationship with its neighboring minerals. The presence of iron sulfide in the system, increases the chances of the generation of free sulfur, over the sulfides of other metals, but certainly does not guarantee that it will be generated. In the most simple analysis, a measure of the ratio of free accessible sulfur to the whole rock volume produces a guideline for predicting the generation of sulfuric acid. This tendency to produce free sulfur is typically referred to as Acid Generation Potential (AGP).

On the other side of the equation the non-sulfur containing minerals can act to chemically collect and bind the free sulfur. This process is typically referred to as Acid Neutralization Potential (ANP). One of the best and most efficient compounds used to tie up sulfur is calcium carbonate (CaCO₃). Generally AGP and ANP are referred to in terms of relative weight of calcium carbonate as compared with weight of rock. The reaction results in the sulfur ion interacting with a carbonate anion, to form calcium sulfate. Calcium sulfate is stable in an oxidizing environment, and tends to produce a material that has a low permeability, tends to shed precipitation, thus it tends to protect sulfide-bearing materials that might be located below it from weathering.

TESTING OF MATERIALS

Braun incorporated both field and laboratory evidence to investigate the materials that had potential for producing free sulfur ions. However, prior to the collection of site-specific evidence, a review of the surface waters and the drainage tunnels within the Cripple Creek district found the waters to be mostly neutral in pH and treatment of those waters for pH has not been historically necessary. The reasons are due to the low levels of exposed sulfides in the district and the amount of buffering that naturally exists in the rocks. Using this as a guideline, it would be expected that any specific property located within the district would have similar characteristic to the rest of the district.

Site Inspection and Data

Braun engineers performed site inspections of the disturbed areas within the Mineral Mountain project area during June and July 2014. During the inspections, no evidence was found of rock destruction that occurred as a result of any modern leaching, nor was any significant evidence found of any negative affects to grasses and soils immediately adjacent to the disturbed areas as a result of acid generation. It is well known that in acid generating environments, the grasses in the areas around the toes of acid generating waste rock piles commonly show biological stressing. On the rock piles that were inspected on the north side of Mineral Hill, no evidence was found of any migration of low pH waters that negatively affected the adjacent flora.

During that inspection, Braun found a shaft that contained standing water to within 12 feet of the shaft collar. That shaft had been sunk into the same mineralized structure in which the lower tunnel had been driven. Braun personnel collected a water sample from that shaft and tested the collected sample for pH. That test showed the water to have a pH of 6.1. This value is a relatively neutral number, not significantly lower than values found in the local creeks. The visual inspection of the shaft found no evidence of acid water conditions. Careful inspection of the galvanized steel shaft liner with its integral steel ladder found both of them to be in good condition with no signs of significant acid water corrosion.

Acid Based Accounting

Braun personnel collected a set of samples for acid based accounting testing. These tests are specifically designed to determine the amount of sulfur contained in the samples and the buffering potential of the matrix materials. Three samples were chosen from within the Mineral Mountain property and prospect area. These three samples, along with two of Braun's standards, were submitted to ACZ Laboratories in Steamboat Springs, Colorado. The samples were collected using Braun's standard sampling procedures and transported using standard chain of custody and shipping procedures to the certified laboratory. A brief description of the samples follows:

Sample MH-1 was collected from approximately 75 feet below the ground surface, across the mineralized structure believed to be the target for mining. It is the same structure intercepted by the shaft located on the project area. The sample was wholly composed of a lithic tuff unit commonly called the Cripple Creek breccia, the main rock-forming unit in the district. The sample contained disseminated metal mineralization and veining.

Sample MH-2 was collected from lithic tuff unit locally called the Cripple Creek breccia. The sample contained no visible sulfide minerals and is representative of the local rock unit of the area.

Sample MH-3 consisted of a 1-inch wide vein collected from approximately 75 feet below the ground surface and typical of veins of the district. It contains a combined total ratio of sulfide plus telluride minerals to other minerals of about 5 percent and it is hoped that the sample will be found to contain economic grade minerals.

Sample MH-4 was a standard prepared by Braun. It is composed of Cripple Creek breccia and contains a predetermined sulfide concentration of 5 percent.

Sample MH-5 was a standard prepared by Braun. It is composed of quartz sulfide vein containing 20% pyrite, 5% galena, 5% sphalerite, 65% vein white quartz, and 5% percent calcite.

ACZ Laboratories tested each of the samples for total sulfur, pyritic sulfur, and for sulfate sulfur. Acid generation potential (AGP) was determined using EPA Method M600/2-78-54-054-3.2.4, acid neutralization potential (ANP) was determined using EPA Method M66/2-78-054 1.3, and the acid base potential (ABP) result was reached using EPA Method M66/2-78-054 1.3. The results are tabulated in Table 1 below with Laboratory reports attached as Appendix A.

Table 1Acid Base Accounting Data for Mineral Mountain ProjectSource - ACZ Laboratories, Inc.

Sample	Acid Generation Potential* (ton CaCO ₃ /kton)	Acid Generation Potential** (ton CaCO ₃ /kton)	Acid Neutralization Potential (ton CaCO ₃ /kton)	Acid Base Potential ¹ (ton CaCO ₃ /kton)	Sample Description
MH-1	28	24	24	0	Structure - Sample across mineralized structure
					Country Rock- non-mineralized
MH-2	1.9	0.3	13	13	
MH-3	97	75	7	-68	One-inch wide vein
MH-4	124	105	15	-90	Standard - Lithic tuff with known percentage of metal sulfides (5% by vol)
MH 5	201	221	16	215	Standard - Sulfide in Quartz Vein-25% pyrite, 5% galena, 5% sphalerite, 60% quartz, and 5% calcite (by vol)

Notes:

* Calculation using Total Sulfur

** Calculation using Pyritic Sulfur

¹ Calculated using Pyritic Sulfur

A review of Table 1 shows the results of the three samples. Column 1 contains the sample number, column 2 shows the AGP based on total sulfur, and column 3 is AGP based on pyritic sulfur. Column 4 shows the ANP of the sample, and column 5 produces the ABP value based on the pyritic sulfur. Note that while the total AGP value in column 3 is larger of the two AGP values, the number in column 2 also includes the sulfate component, which is not available to be mobile in this environment. The results show that the country rock (Sample MH-2) is acid neutralizing with an ABP of 13. Sample MH-1,
collected across the mineralized structure, shows an ABP value of zero, having neither any acid generating nor buffering value. Sample MH-3, a low percentage spot sample, was specifically chosen to represent the highest concentration of sulfur producing material found within the project area. That sample was determined to have an ABP value of -68, meaning that chemically, it has the ability to be acid generating, but represents a small fraction of the total volume of ore that might be produced. Samples MH-4 and MH-5 were Braun standards, submitted to the laboratory for quality assurance. As can be seen in the table, and by comparing the laboratory results attached in Appendix A, the laboratory results correlate well with the known percentages of minerals shown for those two samples.

Rate Testing

In order to better assess the generation of sulfur as it would relate to actual conditions that might be anticipated during actual mining, Braun ran an additional leach test. This test was designed to mimic surface storage conditions in a moist oxidizing environment, and assumed a worst case that the material would be exposed to rain and standing water.

This test is slightly less rigorous than the test used for landfills that uses glacial acidic acid as the working fluid. However, that test is designed for material that is to be buried and the test Braun performed is better suited for material that might have surface exposure. The test was run on a one kilogram sample split of Sample MH-3 with the sample placed in a water bath having a starting pH of 6.95. The test sample was agitated once per day for 11 days, and the liquor generated from the material was tested daily using a pH meter. The results of the test are shown below in Table 2. As can be seen, the initial pH started at 6.95 and rapidly decreased to the mid-5 range where it reached a low of 5.15 on day five. From that point, the pH began to slowly increase again reaching 6.31 on the eleventh day of the test. The data suggests a second order curve asymptotically approaching a pH of 6.36. The test results showed a slightly higher pH than the meteoric waters which were exposed to the walls of the shaft. It is noteworthy that this test was performed on a sample that represents the maximum percentage of sulfide to rock mass found during the investigation, and that this material could not be easily segregated by normal mining methods to allow its exposure to the environment anyway.

DISCUSSION AND CONCLUSIONS

Braun has performed a site inspection and has tested materials from the Mineral Mountain project area. It can be globally stated that the rocks making up the Cripple Creek district data are non-acid generating. This statement is also applicable for the Mineral Hill area as evidenced by the absence of low pH waters, both surface and subsurface, and the lack of low pH distressed vegetation in areas adjacent to old mine dumps.

Representative rock samples were collected on the Mineral Mountain site by Braun personnel, and tested using standard acid based accounting procedures by ACZ Laboratories of Steamboat Springs, Colorado. ACZ reported that the materials tested ranged from having the potential to generate acid to having a significant buffering potential. Sample MH-2 exhibited the best buffering capability, while Sample MH-3 showed the best acid generating potential (not including standards). While Sample MH-3 appears to have the potential to be an acid generator, a review of the description of that sample shows it being composed of a one-inch wide vein. This narrow of feature could not be physical mined using

7

currently available mining techniques, and in practice would be diluted by the adjacent rock; rock that was found by the testing to be non-acid generating. Thus, Sample MH-1, collected from the mineralized structure, best represents the materials that might be produced as ore, and review of Table 1 shows that sample to be neutral or non-acid generating. From the ACZ testing, it can be concluded that the materials that might be reasonably produced from this site will be non-acid generating.

One other characteristic on which testing was performed was the rate of acid generation, which is dependent on the rate of decomposition of the sulfide minerals. Testing was performed to create conditions similar to those anticipated to occur if the material were moved to the surface. This test was run on Sample MH-3 to produce a worst-case scenario, even though realistically that material could not be physically segregated away from the material represented by Sample MH-12. The testing revealed that sample's rate of sulfide decomposition was quite slow, as evidenced by the absence of any low pH values produced by the 11-day test. Thus, the conclusion is reached that even if sulfide minerals are present at the Mineral Mountain project site, they do not appear to rapidly break down in the typical surface environment, and sufficient buffering is available in the country rock to maintain a near-neutral to basic overall pH.

Braun Environmental has performed an investigation of the Mineral Mountain project area, and based on those results of the field investigation and from the laboratory testing, it is Braun's professional opinion that the materials sampled are aggregately non-acid generating, as viewed from a regulatory standpoint. Based on this information, and current governmental standards, no threat to human health or the environment exists with respect to acid generation, and no further studies are recommended. However, per good mining practice, it is suggested that future produced materials be periodically reviewed by the operator, and if the potential for acid production is suspected, that testing be performed. **APPENDIX A**

ACZ LABORATORY TEST REPORT

Analytical Report

July 28, 2014

Report to: Art Braun Braun Environmental, Inc. 355 S Teller St. Suite 200 Lakewood, CO 80226 Bill to: Art Braun Braun Environmental, Inc. 355 S Teller St. Suite 200 Lakewood, CO 80226

Project ID: MH-01 ACZ Project ID: L19264

Art Braun:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on July 07, 2014. This project has been assigned to ACZ's project number, L19264. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan. The enclosed results relate only to the samples received under L19264. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after August 27, 2014. If the samples are determined to be hazardous, additional charges apply for disposal (typically \$11/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical raw data reports for ten years.

If you have any questions or other needs, please contact your Project Manager.

Max janice

Max Janicek has reviewed and approved this report.

Project ID:	MH-01
Sample ID:	060514-1

ACZ Sample ID: L19264-01 Date Sampled: 07/03/14 08:05 Date Received: 07/07/14 Sample Matrix: Soil

Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Acid Generation Potential (calc on Sulfur total)	M600/2-78-054 3.2.4		28			t CaCO3/Kt	0.3	3	07/28/14 10:00	calc
Acid Neutralization Potential (calc)	M600/2-78-054 1.3		24			t CaCO3/Kt	1	5	07/28/14 10:00	calc
Acid-Base Potential (calc on Sulfur total)	M600/2-78-054 1.3		-4			t CaCO3/Kt			07/28/14 10:00	calc
Neutralization Potential as CaCO3	M600/2-78-054 3.2.3	1	2.4		*	%	0.1	0.5	07/25/14 14:03	spl
Sulfur Forms	M600/2-78-054 3.2.4-MOI	C								
Sulfur HCI Residue		1	0.76		*	%	0.01	0.1	07/21/14 0:00	cra
Sulfur HNO3 Residue		1		U	*	%	0.01	0.1	07/21/14 0:00	cra
Sulfur Organic Residual		1		U	*	%	0.01	0.1	07/21/14 0:00	cra
Sulfur Pyritic Sulfide		1	0.76		*	%	0.01	0.1	07/21/14 0:00	cra
Sulfur Sulfate		1	0.13		*	%	0.01	0.1	07/21/14 0:00	cra
Sulfur Total		1	0.89		*	%	0.01	0.1	07/21/14 0:00	cra
Total Sulfur minus Sulfate		1	0.76		*	%	0.01	0.1	07/21/14 0:00	cra
Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972								07/09/14 10:45	spl
Crush and Pulverize (Ring & Puck)	EPA-600/2-78-054 3.1.3								07/21/14 11:00	pgw

Project ID:	MH-01
Sample ID:	060514-2

ACZ Sample ID: L19264-02 Date Sampled: 07/03/14 08:25 Date Received: 07/07/14 Sample Matrix: Soil

Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Acid Generation Potential (calc on Sulfur total)	M600/2-78-054 3.2.4		1.9	В		t CaCO3/Kt	0.3	3	07/28/14 10:00	calc
Acid Neutralization Potential (calc)	M600/2-78-054 1.3		13			t CaCO3/Kt	1	5	07/28/14 10:00	calc
Acid-Base Potential (calc on Sulfur total)	M600/2-78-054 1.3		11			t CaCO3/Kt			07/28/14 10:00	calc
Neutralization Potential as CaCO3	M600/2-78-054 3.2.3	1	1.3		*	%	0.1	0.5	07/25/14 15:19	spl
Sulfur Forms	M600/2-78-054 3.2.4-MOI	C								
Sulfur HCI Residue		1	0.01	В	*	%	0.01	0.1	07/21/14 0:00	cra
Sulfur HNO3 Residue		1		U	*	%	0.01	0.1	07/21/14 0:00	cra
Sulfur Organic Residual		1		U	*	%	0.01	0.1	07/21/14 0:00	cra
Sulfur Pyritic Sulfide		1	0.01	В	*	%	0.01	0.1	07/21/14 0:00	cra
Sulfur Sulfate		1	0.05	В	*	%	0.01	0.1	07/21/14 0:00	cra
Sulfur Total		1	0.06	В	*	%	0.01	0.1	07/21/14 0:00	cra
Total Sulfur minus Sulfate		1	0.01	В	*	%	0.01	0.1	07/21/14 0:00	cra
Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972								07/09/14 17:18	spl
Crush and Pulverize (Ring & Puck)	EPA-600/2-78-054 3.1.3								07/21/14 11:15	pgw

Project ID:	MH-01
Sample ID:	060514-3

ACZ Sample ID: L19264-03 Date Sampled: 07/03/14 08:33 Date Received: 07/07/14 Sample Matrix: Soil

Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Acid Generation Potential (calc on Sulfur total)	M600/2-78-054 3.2.4		97			t CaCO3/Kt	0.3	3	07/28/14 10:00	calc
Acid Neutralization Potential (calc)	M600/2-78-054 1.3		7			t CaCO3/Kt	1	5	07/28/14 10:00	calc
Acid-Base Potential (calc on Sulfur total)	M600/2-78-054 1.3		-90			t CaCO3/Kt			07/28/14 10:00	calc
Neutralization Potential as CaCO3	M600/2-78-054 3.2.3	1	0.7		*	%	0.1	0.5	07/25/14 16:35	spl
Sulfur Forms	M600/2-78-054 3.2.4-MOI	C								
Sulfur HCI Residue		1	2.40		*	%	0.01	0.1	07/21/14 0:00	cra
Sulfur HNO3 Residue		1		U	*	%	0.01	0.1	07/21/14 0:00	cra
Sulfur Organic Residual		1		U	*	%	0.01	0.1	07/21/14 0:00	cra
Sulfur Pyritic Sulfide		1	2.40		*	%	0.01	0.1	07/21/14 0:00	cra
Sulfur Sulfate		1	0.70		*	%	0.01	0.1	07/21/14 0:00	cra
Sulfur Total		1	3.10		*	%	0.01	0.1	07/21/14 0:00	cra
Total Sulfur minus Sulfate		1	2.40		*	%	0.01	0.1	07/21/14 0:00	cra
Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972								07/09/14 23:52	spl
Crush and Pulverize (Ring & Puck)	EPA-600/2-78-054 3.1.3								07/21/14 11:30	pgw

Inorganic Analytical Results

Braun Environmental, Inc.

Project ID:	MH-01
Sample ID:	060514-4

ACZ Sample ID: L19264-04 Date Sampled: 07/03/14 08:47 Date Received: 07/07/14 Sample Matrix: Soil

Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Acid Generation Potential (calc on Sulfur total)	M600/2-78-054 3.2.4		124			t CaCO3/Kt	0.3	3	07/28/14 10:00	calc
Acid Neutralization Potential (calc)	M600/2-78-054 1.3		15			t CaCO3/Kt	1	5	07/28/14 10:00	calc
Acid-Base Potential (calc on Sulfur total)	M600/2-78-054 1.3		-109			t CaCO3/Kt			07/28/14 10:00	calc
Neutralization Potential as CaCO3	M600/2-78-054 3.2.3	1	1.5		*	%	0.1	0.5	07/25/14 17:13	spl
Sulfur Forms	M600/2-78-054 3.2.4-MOI	C								
Sulfur HCI Residue		1	3.37		*	%	0.01	0.1	07/21/14 0:00	cra
Sulfur HNO3 Residue		1		U	*	%	0.01	0.1	07/21/14 0:00	cra
Sulfur Organic Residual		1		U	*	%	0.01	0.1	07/21/14 0:00	cra
Sulfur Pyritic Sulfide		1	3.37		*	%	0.01	0.1	07/21/14 0:00	cra
Sulfur Sulfate		1	0.61		*	%	0.01	0.1	07/21/14 0:00	cra
Sulfur Total		1	3.98		*	%	0.01	0.1	07/21/14 0:00	cra
Total Sulfur minus Sulfate		1	3.37		*	%	0.01	0.1	07/21/14 0:00	cra
Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972								07/10/14 6:26	spl
Crush and Pulverize (Ring & Puck)	EPA-600/2-78-054 3.1.3								07/21/14 11:45	pgw

Inorganic Analytical Results

Braun	Environmental,	Inc.
-------	----------------	------

Project ID:	MH-01
Sample ID:	060514-5

ACZ Sample ID: L19264-05 Date Sampled: 07/03/14 08:58 Date Received: 07/07/14 Sample Matrix: Soil

Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Acid Generation Potential (calc on Sulfur total)	M600/2-78-054 3.2.4		391			t CaCO3/Kt	0.3	3	07/28/14 10:00	calc
Acid Neutralization Potential (calc)	M600/2-78-054 1.3		16			t CaCO3/Kt	1	5	07/28/14 10:00	calc
Acid-Base Potential (calc on Sulfur total)	M600/2-78-054 1.3		-375			t CaCO3/Kt			07/28/14 10:00	calc
Neutralization Potential as CaCO3	M600/2-78-054 3.2.3	1	1.6		*	%	0.1	0.5	07/25/14 17:52	spl
Sulfur Forms	M600/2-78-054 3.2.4-MO	C								
Sulfur HCI Residue		1	10.60		*	%	0.01	0.1	07/21/14 0:00	cra
Sulfur HNO3 Residue		1		U	*	%	0.01	0.1	07/21/14 0:00	cra
Sulfur Organic Residual		1		U	*	%	0.01	0.1	07/21/14 0:00	cra
Sulfur Pyritic Sulfide		1	10.60		*	%	0.01	0.1	07/21/14 0:00	cra
Sulfur Sulfate		1	1.85		*	%	0.01	0.1	07/21/14 0:00	cra
Sulfur Total		1	12.50		*	%	0.01	0.1	07/21/14 0:00	cra
Total Sulfur minus Sulfate		1	10.60		*	%	0.01	0.1	07/21/14 0:00	cra
Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972								07/10/14 13:00	spl
Crush and Pulverize (Ring & Puck)	EPA-600/2-78-054 3.1.3								07/21/14 12:00	pgw

Inorganic Reference

Report Header	Explanations									
Batch	A distinct set of samples analyzed at a specific time									
Found	Value of the QC Type of interest									
Limit	Upper limit for RPD, in %.									
Lower	Lower Recovery Limit, in % (except for LCSS, mg/Kg)									
MDL	Method Detection Limit. Same as Minimum Reporting Limit.	Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.								
PCN/SCN	A number assigned to reagents/standards to trace to the mar	nufacturer's certific	ate of analysis							
PQL	Practical Quantitation Limit, typically 5 times the MDL.									
QC	True Value of the Control Sample or the amount added to the	e Spike								
Rec	Recovered amount of the true value or spike added, in % (ex	cept for LCSS, mg	/Kg)							
RPD	Relative Percent Difference, calculation used for Duplicate Q	C Types								
Upper	Upper Recovery Limit, in % (except for LCSS, mg/Kg)									
Sample	Value of the Sample of interest									
00.0l. T.										
QC Sample Ty	pes	1.0014/0	Lakanstan Osatar Osaraka Wata Durkata							
AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate							
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Matrix							
CCB		LFM	Laboratory Fortified Matrix							
CCV		LFMD	Laboratory Fortified Matrix Duplicate							
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank							
ICB	Initial Calibration Blank	MS	Matrix Spike							
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate							
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil							
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water							
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard							
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution							
QC Sample Ty Blanks	pe Explanations Verifies that there is no or minimal c	ontamination in the	e prep method or calibration procedure.							
Control Sa	mples Verifies the accuracy of the method.	, including the prep	procedure.							
Duplicates	Verifies the precision of the instrume	ent and/or method.								
Spikes/For	tified Matrix Determines sample matrix interferer	nces. if anv.								
Standard	Verifies the validity of the calibration									
ACZ Qualifiers	(Qual)									
В	Analyte concentration detected at a value between MDL and	PQL. The associat	ed value is an estimated quantity.							
н	Analysis exceeded method hold time. pH is a field test with a	in immediate hold t	ime.							
L	Target analyte response was below the laboratory defined ne	gative threshold.								
U	The material was analyzed for, but was not detected above the	ne level of the asso	ciated value.							
	The associated value is either the sample quantitation limit or	the sample detect	ion limit.							
Method Refere	ences									
(1)	EPA 600/4-83-020. Methods for Chemical Analysis of Water	and Wastes, Marc	h 1983.							
(2)	EPA 600/R-93-100. Methods for the Determination of Inorga	nic Substances in	Environmental Samples, August 1993.							
(3)	EPA 600/R-94-111. Methods for the Determination of Metals	in Environmental	Samples - Supplement I, May 1994.							
(4)	EPA SW-846. Test Methods for Evaluating Solid Waste.									
(5)	Standard Methods for the Examination of Water and Wastew	ater.								
. ,										
Comments										
(1)	QC results calculated from raw data. Results may vary slight	ly if the rounded va	lues are used in the calculations.							
(2)	Soil, Sludge, and Plant matrices for Inorganic analyses are re	ported on a dry we	ight basis.							
(3)	Animal matrices for Inorganic analyses are reported on an "as	s received" basis.								
(4)	An asterisk in the "XQ" column indicates there is an extended	l qualifier and/or ce	ertification qualifier							
	associated with the result.									
(5)	If the MDL equals the PQL or the MDL column is omitted, the	PQL is the reporti	ng limit.							
For a comp	plete list of ACZ's Extended Qualifiers, please click:	http://ww	w.acz.com/public/extquallist.pdf							

REP001.09.12.01

Inorganic QC Summary

Braun Environmental, Inc.

ACZ Project ID: L19264

Neutralization P	otential	as CaCO3	M600/2-7	8-054 3.2.3									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG368303													
WG368303PBS	PBS	07/25/14 12:47				U	%		-0.1	0.1			
WG368303LCSS	LCSS	07/25/14 13:25	PCN45596	4.96		5	%	100.8					
L19264-01DUP	DUP	07/25/14 14:41			2.4	2.38	%				0.8	20	
L19264-02MS	MS	07/25/14 15:57	SI140528-1	1	1.3	2.2	%	90	70	130			
Sulfur Organic	Residual		M600/2-7	8-054 3.2.4	-MOD								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG367982													
L19264-01DUP	DUP	07/21/14 15:30			U	U	%				0	20	RA
Sulfur Pyritic Su	ulfide		M600/2-7	8-054 3.2.4	-MOD								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG367982													
L19264-01DUP	DUP	07/21/14 15:30			.76	.72	%				5.4	20	
Sulfur Sulfate			M600/2-7	8-054 3.2.4	-MOD								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG367982													
L19264-01DUP	DUP	07/21/14 15:30			.13	.14	%				7.4	20	
Sulfur Total			M600/2-7	8-054 3.2.4	-MOD								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG367982													
WG367982PBS	PBS	07/21/14 15:30				U	%		-0.03	0.03			
WG367982LCSS	LCSS	07/21/14 15:30	PCN45913	4.07		3.72	%	91.4	80	120			
L19264-01MS	MS	07/21/14 15:30	PCN45349	1.1	.89	1.81	%	83.6	80	120			
L19264-01DUP	DUP	07/21/14 15:30			.89	.86	%				3.4	20	
Total Sulfur Min	nus Sulfa	ite	M600/2-7	8-054 3.2.4	-MOD								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec	Lower	Upper	RPD	Limit	Qual
WG367982													
L19264-01DUP	DUP	07/21/14 15:30			.76	.72	%				5.4	20	

4C Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487

(800) 334-5493

Braun Environmental, Inc.

ACZ Project ID: L19264

40710	WORKNUM		METHOD	01141	BEAGBIBTION
ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L19264-01	WG367982	Sulfur Organic Residual	M600/2-78-054 3.2.4-MOD	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
L19264-02	WG367982	Sulfur Organic Residual	M600/2-78-054 3.2.4-MOD	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
L19264-03	WG367982	Sulfur Organic Residual	M600/2-78-054 3.2.4-MOD	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
L19264-04	WG367982	Sulfur Organic Residual	M600/2-78-054 3.2.4-MOD	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
L19264-05	WG367982	Sulfur Organic Residual	M600/2-78-054 3.2.4-MOD	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).

ACZ Project ID: L19264

Soil Analysis

he following parameters are not offered for certification or are not covered by NELAC certificate #ACZ.							
	Neutralization Potential as CaCO3	M600/2-78-054 3.2.3					
	Sulfur HCI Residue	M600/2-78-054 3.2.4-MOD					
	Sulfur HNO3 Residue	M600/2-78-054 3.2.4-MOD					
	Sulfur Organic Residual	M600/2-78-054 3.2.4-MOD					
	Sulfur Pyritic Sulfide	M600/2-78-054 3.2.4-MOD					
	Sulfur Sulfate	M600/2-78-054 3.2.4-MOD					
	Sulfur Total	M600/2-78-054 3.2.4-MOD					
	Total Sulfur minus Sulfate	M600/2-78-054 3.2.4-MOD					

AGAZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Sample Receipt

Braun Environmental, Inc.	ACZ Project ID:	07/07/20/	L19264
MH-01	Date Received By:	0//0//20	14 12:28 ear
	Date Printed:	7	7/7/2014
Receipt Verification			
	YES	3 NO	NA
1) Is a foreign soil permit included for applicable samples?			X
2) Is the Chain of Custody or other directive shipping papers present?	X		
3) Does this project require special handling procedures such as CLP protocol?			Х
4) Are any samples NRC licensable material?			Х
5) If samples are received past hold time, proceed with requested short hold time ar	nalyses?	Х	
6) Is the Chain of Custody complete and accurate?	X		
7) Were any changes made to the Chain of Custody prior to ACZ receiving the same	ples?	X	
Samples/Containers			
	YE	3 NO	NA
8) Are all containers intact and with no leaks?	X		
9) Are all labels on containers and are they intact and legible?	X		
10) Do the sample labels and Chain of Custody match for Sample ID, Date, and Tim	ne? X		
11) For preserved bottle types, was the pH checked and within limits?			Х
12) Is there sufficient sample volume to perform all requested work?	X		
13) Is the custody seal intact on all containers?			Х
14) Are samples that require zero headspace acceptable?			Х
15) Are all sample containers appropriate for analytical requirements?	X		
16) Is there an Hg-1631 trip blank present?			Х
17) Is there a VOA trip blank present?			Х
18) Were all samples received within hold time?	X		
Chain of Custody Related Remarks			

Client Contact Remarks

Shipping Containers

Cooler Id	Temp (°C)	Rad ($\mu R/Hr$)	Custody Seal Intact?
NA19971	22.7	12	N/A

Was ice present in the shipment container(s)?

No - Wet or gel ice was not present in the shipment container(s).

Client must contact an ACZ Project Manager if analysis should not proceed for samples received outside of their thermal preservation acceptance criteria.

- Standa	100-100-100-00-00-00-00-00-00-00-00-00-0	(09	AND CONTRACTOR					
100		for the second	i Sanan sa	C	HAIN	lof	CUS	TOD	Ŷ
5493	n er an ar	and a second				an an Arrista An Arrista An Arrista			
		25	597	Follor	C+ C	uito 2	00		
ŀ	Addres	ss: 30		rado	80226		00		
-	Lake		, 000	28 760	00220	J			
Ľ	Teleph	ione: ~	005-90	50-703	51				
					- Aleiteneo				
Ļ	E-mail	: NA		-					
ŀ	Teleph	one: N	IA		, 				
	Addres	_{ss:} As	abov	е					
									00000000
ŀ	Teleph	none:							
L HT rem	nains to	o comp	lete	ngan ya pun ka kata ana kajama kata			YES		
short l	HT ana	lyses?					NO	×	
ACZ will p	Yee	the reque	sted analys	es, even if H	IT is expire	d, and data	will be qua	lified	
PQL fo	or Color	rado.			لنشنا	l			
on	State (00		Zin co	1e 808	313	Time 7	one M	sanacinine an
ple in any	way, is con	sidered frac	d and puni	shable by S	itate Law. D <i>(attach l</i>	ist or use	quote nul	mber)	
	sis					en an De se			
	aine							1. 1.	
	Cont			이는 사람은			14. A.		
	0		also di Sarra	ale di		half anns a'			
	of		and the Alastan A				San Ali Ang Ang Aliper Aliper		
Matrix	# of								
Matrix SO	Jo #								
Matrix SO SO	Jo #								
Aatrix SO SO SO	Jo # 1 1								
Aatrix SO SO SO SO	yo # 1 1 1								
Aatrix SO SO SO SO SO	jo # 1 1 1 1 1 1 1								
Aatrix SO SO SO SO SO	jo # 1 1 1 1 1								
Aatrix SO SO SO SO SO	Jo # 1 1 1 1								
Aatrix SO SO SO SO SO	jo # 1 1 1 1 1								
Aatrix SO SO SO SO SO	jo # 1 1 1 1								
Aatrix SO SO SO SO SO	jo # 1 1 1 1 1								
	HT ren short Acz will p PQL fc on e authenti p e in any	E-mail Teleph E-mail Teleph Addres Teleph HT remains to short HT ana Acz will proceed with Yes PQL for Color on State c authenticity and va ple in anyway, is con	Address: AS E-mail: NA Telephone: A Address: AS Telephone: HT remains to comp short HT analyses? ACZ will proceed with the requer Yes PQL for Colorado. on State CO e authenticity and validity of this ple in anyway, is considered frat	Lakewood, Colo Telephone: 303-98 E-mail: NA Telephone: NA Address: As abov Telephone: HT remains to complete short HT analyses? Acz will proceed with the requested analys Yes PQL for Colorado. on State CO e authenticity and validity of this sample. I pele in anyway, is considered fraud and pumi ANALYSES RE	Lakewood, Colorado Telephone: 303-988-769 E-mail: NA Telephone: NA Address: As above	Lakewood, Colorado 80220 Telephone: 303-988-7697 E-mail: NA Telephone: NA Address: As above	Lakewood, Colorado 80226 Telephone: 303-988-7697 E-mail: NA Telephone: NA Address: As above Telephone: HT remains to complete short HT analyses? ACZ will proceed with the requested analyses, even if HT is expired, and data Yes No PQL for Colorado. on State CO Zip code 80813 on State CO Zip code 80813 on Mathematical state of this sample. Lunderstand that mislabeling the tiple in anyway, is considered fraud and punishable by State Law. ANALYSES REQUESTED (attach list or use So So </td <td>Lakewood, Colorado 80226 Telephone: 303-988-7697 E-mail: NA Telephone: NA Address: As above Telephone: Yes No Xip code 80813 Time Z e authenticity and validity of this sample. I understand that mislabeling the time/date/loc ple in anyway, is considered fraud and punishable by State Law. ANALYSES REQUESTED (attach list or use quote null in the sample in any state Law.</td> <td>Lakewood, Colorado 80226 Telephone: 303-988-7697 E-mail: NA Telephone: NA Address: As above Telephone: Telephone: Mathematical Stress Address: As above Telephone: HT remains to complete short HT analyses? AcZ will proceed with the requested analyses, even if HT is expired, and data will be qualified Yes No PQL for Colorado. on State_CO Zip code_80813 Time Zone_M e authenticity and validity of this sample. I understand that mislabeling the time/date/location, or ta ple in anyway, is considered fraud and punishable by State Law. ANALYSES REQUESTED (attach list or use quote number) Summing in the sample. I understand that mislabeling the time/date/location, or taple in anyway.</td>	Lakewood, Colorado 80226 Telephone: 303-988-7697 E-mail: NA Telephone: NA Address: As above Telephone: Yes No Xip code 80813 Time Z e authenticity and validity of this sample. I understand that mislabeling the time/date/loc ple in anyway, is considered fraud and punishable by State Law. ANALYSES REQUESTED (attach list or use quote null in the sample in any state Law.	Lakewood, Colorado 80226 Telephone: 303-988-7697 E-mail: NA Telephone: NA Address: As above Telephone: Telephone: Mathematical Stress Address: As above Telephone: HT remains to complete short HT analyses? AcZ will proceed with the requested analyses, even if HT is expired, and data will be qualified Yes No PQL for Colorado. on State_CO Zip code_80813 Time Zone_M e authenticity and validity of this sample. I understand that mislabeling the time/date/location, or ta ple in anyway, is considered fraud and punishable by State Law. ANALYSES REQUESTED (attach list or use quote number) Summing in the sample. I understand that mislabeling the time/date/location, or taple in anyway.

FRMAD050.03.14.13

White - Return with sample. Ye

ple. Yellow - Retain for your records.

19264 Chain of Custody

		an a						
	5 Simples all							
	1°	1						
Quote Number: CC-ABA								
Matrix: Soil Cripp	ble Creek ABA: 6 Samples							
Parameter	Method	Detection Limit	Cost/Sample					
Misc.								
Electronic Data Deliverable			\$0.00					
Quality Control Summary			\$0.00					
Sample Preparation								
Air Dry at 34 Degrees C	USDA No. 1, 1972		\$8.00					
Crush and Pulverize (Ring & Puck)	EPA-600/2-78-054 3.1.3		\$14.00					
Soil Analysis								
Acid Generation Potential (calc on Sulfur	total) M600/2-78-054 3.2.4	Calculation	\$0.00					
Acid Neutralization Potential (calc)	M600/2-78-054 1.3	Calculation	\$0.00					
Acid-Base Potential (calc on Sulfur total)	M600/2-78-054 1.3	Calculation	\$0.00					
Neutralization Potential as CaCO3	M600/2-78-054 3.2.3	0.1 %	\$16.00					
Sulfur Forms	M600/2-78-054 3.2.4-MOD	0.01 %	\$74.00					
		Cost/Sample:	\$112.00					

Pricing is based on standard 3 WEEK TAT and standard reports.

Page 2 of 2 7/2/2014

Quote Number: CC-ABA

CONTRACT DETAILS

Pricing includes shipment of all standard sample containers and related paperwork by UPS Ground Service. Please allow three to five days for delivery when ordering containers. ACZ must be notified prior to receiving samples of all special requests such as electronic data deliverables or special reporting reqirements. The client will be charged for special sample containers or express shipping and additional charges may apply for non-standard requests.

This quotation is valid for six months from the bid date unless specified otherwise in the bid. All bids must be signed and returned to ACZ before the project(s) is received. The authorized signature represents acceptance of the pricing as well as the general terms and conditions of ACZ Laboratories, Inc. which may be downloaded from our web site at http://www.acz.com/PDF/termsconditions.pdf. Please note that MDL's in this quote may possibly increase due to sample matrix or samples with high TDS.

All orders that require shipping of coolers are subject to a minimum charge of \$200.00. Local orders without shipping are subject to a minimum charge of \$125.00. Samples may incur a \$11.00/sample disposal fee for any samples deemed to be hazardous.

ACZ Representative (Authorized signature and date)

Client Representative (Authorized signature and date)

REPAD.09.06.05.01