

1687 Cole Boulevard Suite 300 Golden, CO 80401 Phone: 303-985-1070 Fax: 303-716-5295 www.aggregate-us.com

April 9, 2020

Tim Cazier, P. E. Environmental Protection Specialist III - Engineering State of Colorado Department of Natural Resources Division of Reclamation Mining and Safety 1313 Sherman Street, Room 215 Denver, CO 80203

RE: Aggregate Industries-WCR, Inc. Daniels Sand Pit 2, M1973007SG Response to TR-09 Adequacy Review letter dated November 26, 2019.

Dear Mr. Cazier:

Attached please find our response to the Colorado Division of Reclamation Mining and Safety (DRMS) Technical Revision (TR) -09 Adequacy Review letter dated November 26, 2019. The TR-09 adequacy review was based on a letter dated October 14, 2019, from Brierley and Associates, LLC (Brierley) to Aggregate Industries –WCR (AI). Since the time of the October letter, key Brierley project staff has transferred to a different engineering firm, Lithos Engineering (Lithos). AI has determined that it is appropriate to allow the original design team to continue on the project, and therefore has contracted with Lithos to continue working on TR-09. The response was developed by Lithos, on our behalf. AI staff worked closely with Lithos during this time.

AI is currently obligated to initiate the stabilization of the Daniels Sand Pit 2 during the Spring of 2020. We have been working closely with Lithos to develop the response and had made progress on creating a project timeline and implementing the stabilization this spring (2020).

As you are aware, the COVID-19 pandemic has significantly and negatively impacted many businesses and entire industries, including AI operations nationally and worldwide. As a result of these personnel and operational impacts, AI is unable to develop a schedule for the mitigation proposed in TR-09. AI is hereby requesting a 1-year extension to our TR-09 obligations at the Daniels Sand Pit 2. This would place our TR-09 start schedule on a Spring 2021 timeline. This 1-year extension is based on the assumption that the COVID-19 pandemic will not last beyond early summer 2020. As pandemic timelines are unknown, this Spring 2021 extension request is tentative, and could be extended based on national and worldwide pandemic conditions. We are committed to meeting our regulatory obligations onsite, and appreciate your consideration of AI's extension request. During this time, we will perform frequent monitoring of the areas in question, and if signs of instability and/or movement are noted, we will implement emergency stabilization (per the designs provided in TR-09) and contact the DRMS.

Please don't hesitate to contact me (719.239.0974) should you have questions or concerns.

Best regards,

Jeremy Deuto, P.E., P.G. Regional Land and Environment Manager Aggregate Industries-WCR, Inc.

March 30, 2020 Project No.: 19125 2750 S. Wadsworth Blvd, Suite D-200 Lakewood, Colorado 80227 303.625.9502 www.LithosEng.com

Aggregate Industries – WCR, Inc 1687 Cole Boulevard, Suite 300 Golden, CO 80401

Attention: Andre Laroche Environment and Land Manager

> Jeremy Deuto, PE, PG Regional Land and Environment Manager

Regarding: Daniels Sand Pit 2, Permit No. M-1973-007-SG Response to TR-09 Preliminary Adequacy Review

Mr. Laroche,

In response to Timothy Cazier's November 26, 2019 Technical Revision (TR-09) Preliminary Adequacy Review, this letter provides responses to DRMS comments. Mr. Cazier's comments pertain to a letter dated October 14, 2019 from Brierley Associates to Aggregate Industries. Since the time of that letter, the key staff from Brierley (Steve Kuehr and Sarah Myers) who prepared the letter are now at Lithos Engineering. Steve and Sarah are hereinafter referred to as the Design Team.

Comment No. 1 - Figure 3, Cross Section #3

Comment: The AutoCAD section indicates a 6.6H:1V slope from the old wash pond crest down to Bradley Road. This was not the case when the DRMS inspected the site on December 7, 2016 (see Photo 1 below). The slope at the time of the inspection appeared to be steeper than 2H:1V. Has this slope been flattened since December 2016?

Response: The slope has been flattened due to the December 12, 2016 inspection report. According to the corrective action response letter, "on May 5, 2017 personnel at Daniels Sand Pit #2 completed reseeding of the newly filled and sloped southwest embankment of the current wash fines pond." A picture of the revegetation process from the May 9, 2017 corrective action response letter is shown below (Figure 1.1). The topography was surveyed in May 2018 and provided from Aggregate Industries to the Design Team to perform the required analysis. Cross section 3 is based on the May 2018 data.

Figure 1.1 Completed slope from across Bradley Road

Comment No. 2 - Factors of Safety Requiring Mitigation

Comment: Both Cross Sections D-1 [Fountain Mutual Ditch above the Recharge Pond to the south] and D-4 [Fountain Mutual Ditch above the New Wash Pond to the south] have Factors of Safety(FoS) for stability well below that required by the Mined Land Reclamation Board Policy 30. A mitigation plan is required. Please submit a mitigation plan for both these areas demonstrating how the required FoS will be met, including a schedule for the work. Both the mitigation plan and the schedule will require approval by the DRMS.

Response: A site visit with the Design Team and Aggregate Industries (Owner) occurred in the Fall of 2019. The purpose of the site visit was to make general site observations and to collect samples of stockpiled site material that was identified for use in the slope mitigation. The Design Team in agreement with the Owner, has designed mitigative measures to ensure long term stability for the slopes in question. The mitigation design is presented below. The schedule to complete the work is provided in a separate document from the Owner.

Fountain Mutual Ditch above the Recharge Pond

The mitigation plan consists of a buttress fill which will be installed to stabilize the steep mine slope which exists beneath the Fountain Mutual Ditch above the new wash fines pond. Buttress fills are a common technique to stabilize slopes. The buttress is intended to flatten the existing mine slope to 3H:1V. In March 2020, the Owner provided additional survey for the area beyond

(south of) the existing toe of slope. This area is currently under water so a bathymetric survey was performed. On-site recycled concrete and stockpiled sand will be used as the fill material. The buttress footprint will extend into the new wash pond which is partially filled with water and wash pond fines. The wash fines consist of submerged, very loose, saturated silt. The buttress material is significantly denser and will displace a portion of the wash fines.

Laboratory testing was performed on selected stockpile samples in order to obtain engineering parameters needed in the analysis. The laboratory results are attached to this letter for reference. A Slope/W analysis was performed for the proposed mitigation plan which resulted in a Factor of Safety (FOS) of 1.8. The design requires that the wash fines be stabilized with recycled crushed concrete. But, for the purpose of the slope stability analysis, the stability contribution of the broken concrete was neglected. The recycled concrete will be crushed to 12-inch minus. Slope geometry and geotechnical parameters used in the analysis are shown in Figure 2.1. Figure 2.2 presents the critical failure surfaces and calculated FOS for the proposed construction. The grading plan, construction sequence and typical cross section for the proposed construction are attached to the end of this letter as Plate 1 and Plate 2.

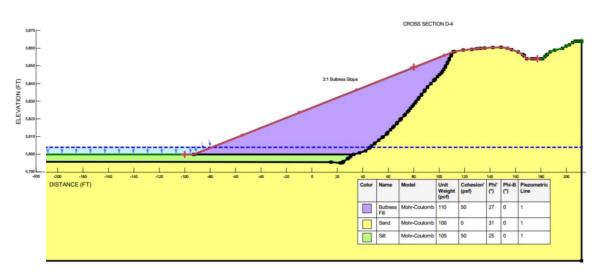


Figure 2.1 Geometry and Material Properties

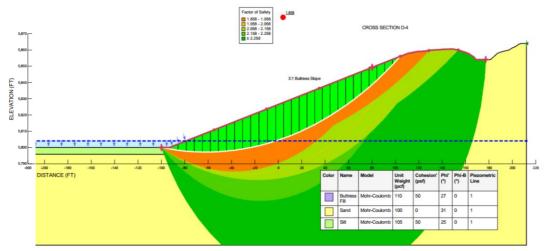


Figure 2.2 Analysis Results

Fountain Mutual Ditch Above the Recharge Pond

Regarding the Fountain Mutual Ditch above the recharge pond, the slope will be flatten to 3H:1V as part of the mines standard reclamation requirements. The conditions at the toe of the existing mine slope are favorable since open water and wash fines do not exist. Construction will follow standard reclamation procedures and a specific mitigation plan is not needed. The mine slope in this area is not as high or as steep as it is in the wash fines pond area, so addition slope stability analysis was not warranted.

Comment No. 3 - Cross Section D-3 Cohesion

Comment: Slope stability analyses for Cross Sections D-1, D-2, and D-4 use a cohesion value of 50 pounds per square foot. The analyses for Cross Section D-3 uses zero. Please explain the difference.

Response: There is no difference, a cohesion value of 50 pounds per square foot is consistent throughout the mining site. For cross section D-3, a cohesion value of 50 psf (compared to zero psf) would result in a higher factor of safety. A cohesion of 0 psf was used for the effective stress analysis and a cohesion of 50 psf was used for the total stress analysis.

Comment No. 4 - Strength Parameters

Comment: The first paragraph of Appendix A states "...37 strength values determined multiple tests have been conducted." The third paragraph states "Geotechnical information collected during previous investigations are presented in Appendix B". There is no map in Appendix B showing sample locations, nor are there any test results presented. The results of the SlopeW analyses are either well below the FoS of 1.3 for multiple strength tests or well above the FoS of 1.5 for "table values". If the goal is to demonstrate multiple strength tests support the goal of using the lower FoS of 1.3, this data and test results must be provided. If the goal is to demonstrate the gradations and USCS soil classifications

support the strength parameters used in the analyses of the four cross sections, some rationale linking these parameters and the strength parameters must be provided.

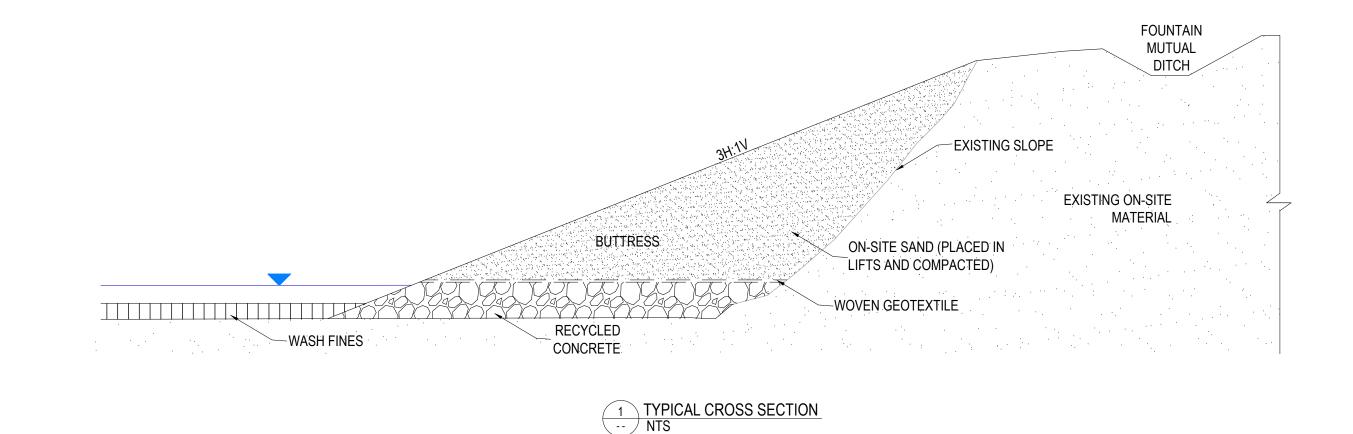
Response: Figure 1, Project Layout, presents the locations of the Lyman Henn and Brierley subsurface investigations. We recognize the confusion and apologize for the inconvenience. To clarify, the goal is not to demonstrate multiple strength tests to support the use of a lower factor of safety. Instead, a factor of safety of 1.5 was used as suggested by MLRB when generalized, assumed, or single test strength measurements are used in analysis. As stated in the previous letter, the slopes presented in cross sections D-1 and D-4 have an unacceptable factor of safety. Gradations and USCS soil classifications support the strength parameters used in the analysis based on past experiences and the following references: Foundation Analysis and Design by Joseph E. Bowles and NAVFAC DM7-02.

Comment No. 5 - Lyman Henn 2006 Data

Comment: The narrative in Section 1.2.1 references a proposed slurry wall and bedrock elevations ranging from "4577 to ft to4584 ft" with the "The depth to the top of bedrock ranged from 31 to 44 ft bgs,". This puts the ground surface at no more than 4628. The lowest elevation of the ground surface at the Daniels Pit appears to be closer to 5700, a1,000 feet higher. The DRMS is not aware of a slurry wall proposed for the Daniels Pit. Whereis this data from? It does not appear to be related to the Daniels Pit.

Response: We apologize for the inconvenience and confusion; this information is from a different Transit Mix site and should not have been included in the letter. Please ignore.

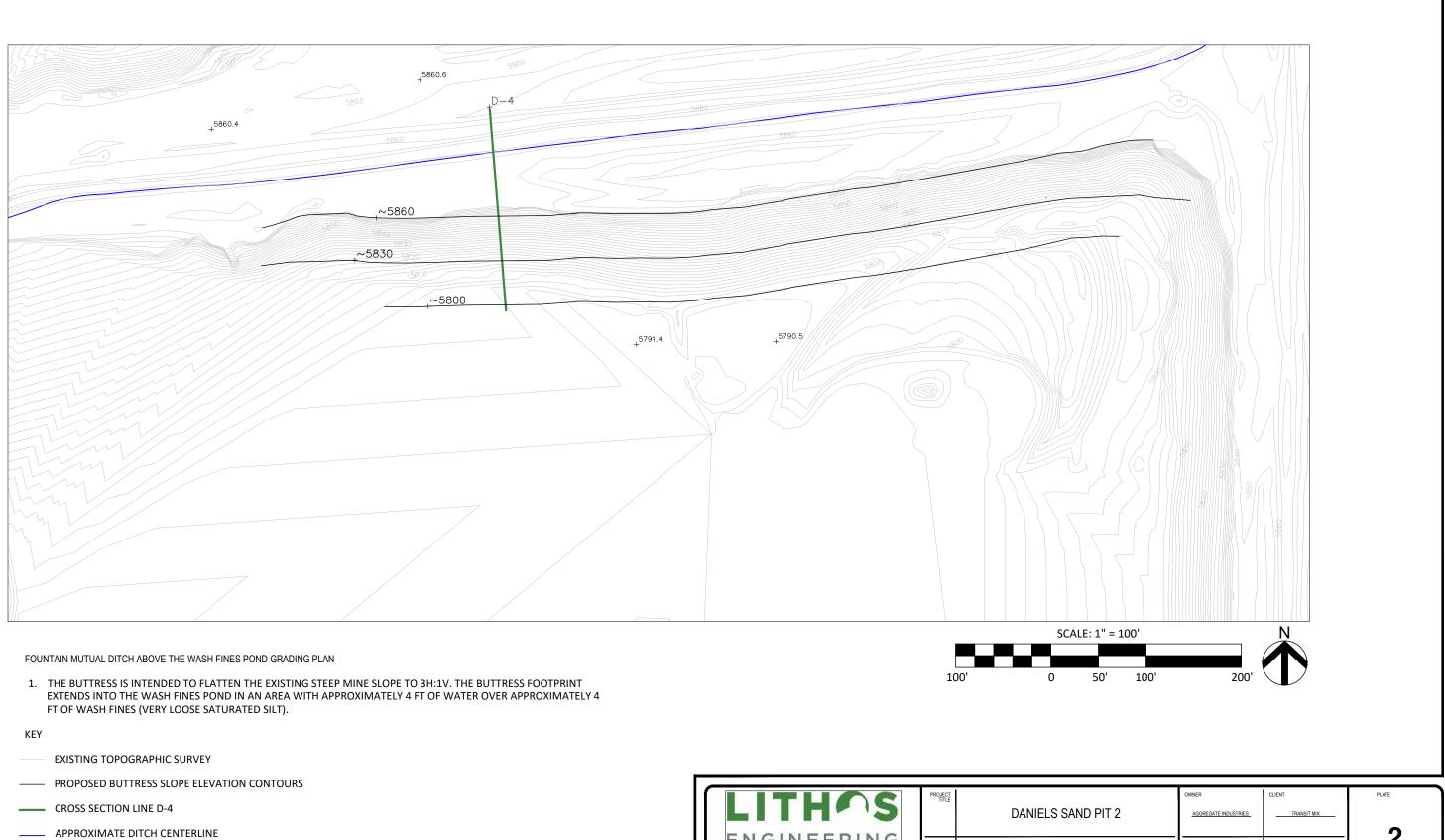
If you have any questions regarding the contents of this letter, please contact the undersigned.


Sincerely, PADO / **Lithos Engineering** 24369SONAL ENGINA

Steve Kuehr, PE Senior Consultant

Sorah Myera

Sarah Myers, EIT Project Engineer




FOUNTAIN MUTUAL DITCH ABOVE THE WASH FINES POND, EXISTING CONDITIONS AND CONSTRUCTION SEQUENCE:

- 1. THE BUTTRESS IS INTENDED TO FLATTEN THE EXISTING STEEP MINE SLOPE TO 3H:1V. THE BUTTRESS FOOTPRINT EXTENDS INTO THE WASH FINES POND IN AN AREA WITH APPROXIMATELY 4 FT OF WATER OVER APPROXIMATELY 4 FT OF WASH FINES (VERY LOOSE SATURATED SILT).
- 2. UTILIZING EXISTING ACCESS RAMP AT NW CORNER OF WASH FINES POND, PUSH RECYCLED CONCRETE (12-INCH MINUS) INTO POND ALONG TOE OF MINE SLOPE UNTIL IT DAYLIGHTS ABOVE WATER LEVEL.
- 3. USE PREVIOUSLY PLACED RECYCLED CONCRETE AS ACCESS RAMP TO CONTINUE PLACEMENT ACROSS ENTIRE TOE OF MINE SLOPE.
- 4. STRIP VEGETATION FROM THE EXISTING STEEP MINE SLOPE.
- 5. INSTALL WOVEN GEOTEXTILE (MIRAFI 600X) OVER THE RECYCLED CONCRETE. OVERLAY ADJACENT PANELS OF GEOTEXTILE MINIMUM OF 2 FT.
- 6. PLACE FILL MATERIAL (ON-SITE SAND) IN MAXIMUM 12-INCH THICK HORIZONTAL LOOSE LIFTS.
- 7. USING RUBBER-TIRED EQUIPMENT SUCH AS SCRAPERS, WATER WAGONS OR LARGE LOADERS, COMPACT EACH LIFT WITH FULL COVERAGE.
- 8. PLACE CONSECUTIVE LIFTS UNTIL FULL HEIGHT IS REACHED AND VERIFY BUTTRESS IS NO STEEPER THAN 3H:1V.
- 9. VEGETATE COMPLETED SLOPE PER RECLAMATION PLAN.

	OWNER		CLIENT		PLATE
ELS SAND PIT 2	AGGREGA	TE INDUSTRIES	TRAM	ISIT MIX	4
CROSS SECTION &	PROJECT NO .:	19125	DRAWN BY:	SM	
UCTION SEQUENCE	LOCATIONC	DLORADO SPRINGS, C	O DESIGNED BY:	SM	
	DATE:	3/27/20	CHECKED BY:	SK	

Atterberg Limits ASTM D 4318

ADVANCED	TERRA	TESTING
----------	-------	---------

In the second seco		
CLIENTLithos EngineerinJOB NO.2962-010PROJECTDaniel SandsPROJECT NO.19125LOCATIONColorado SpringDATE TESTED01/08/20TECHNICIANASE	-	BORING NO.Bags-stockpileDEPTHSAMPLE NODATE SAMPLEDSAMPLED BYDESCRIPTION
	Plastic I	imits
Mass of Wet Pan and Soil (g): Mass of Dry Pan and Soil (g): Mass of Pan (g):		
Moisture (%)		Non-Plastic
	Liquid L	imits
Number of Blows Mass of Wet Pan and Soil (g): Mass of Dry Pan and Soil (g): Mass of Pan (g): Moisture (%) Corrected Moisture (%)	~	Non-Plastic
	Plastic	
Plastic Limit Liquid Limit Plastic Index		Atterberg Classification: NP Method: A
Flow Cu	rve	Plasticity Chart
40 38 36 36 34 32 30 10 15 Number of	20 25 30 35 Blows	50 40 40 30 20 CL CL CL ML 0 0 10 20 30 40 50 60 70 80 Liquid Limit
NOTES		
Data entry by: TAF Checked by: <u>SPH</u>		Date: 1/8/2020 Date: 1-8-20
	perg ASTM D4318_0.xlsm	Date:

Grain Size Analysis **ASTM D 6913**

ADVANCED TERRA TESTING

F

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION DATE TESTED TECHNICIAN	Lithos Engineerin 2962-010 Daniel Sands 19125 Colorado Springs 01/03/20 ALH			BORING NO. DEPTH SAMPLE NO. DATE SAMPLED DESCRIPTION		
Mass We	bisture of Fines at Pan and Soil (g): y Pan and Soil (g): Mass of Pan (g): Moisture (%):	399.59 <u>118.</u> 68	Total Dry Ma	Sample Data ass of Sample (g): ass of Sample (g): Split Fraction: mple Fraction (g):	8725.1 #4	
Sieve Number	Sieve Size (mm)	Mass of Pan and Soil (g)	Mass of Pan (g)	Mass of Individual Retained Soil (g)	Correction Factor	Percent Passing by Weight (%)
3"	76.2	0.0				
1.5"	38.1	0.0				
3/4"	19.05	0.0				
3/8"	9.53	0.0				
#4	4.75	1.7		1.7	1.00	100.0
#10	2.00	0.7		0.7	1.00	99.7
#20 0.850		14.5		14.5	1.00	94.6
#40 0.425 #60 0.250		49.5		49.5	1.00	77.0
		57.4		57.4	1.00	56.5
#100	0.150	65.0		65.0	1.00	33.4
#140	0.106	32.0			1.00	22.0
#200	0.075	22.3		22.3	1.00	14.1
		Percent Pas	sing vs Log of Pa	article Size		
100 3"	1.5" 3/4" 3	/8" #4	#10 #20	#40 #60 #100	#140 #200	
90 eight						
⁰⁸ 80				X		
			_			
60						
- 50				<u> </u>		
S 40	Gravel (+#4)		Sands (+#200)		Silts & Clays (-#2	200)
<u>م</u>		â	(0)			
30 U		#+) pi	ad (+#	Sant (+#200)		
ల్ల 20		0 0	S E	Sand	N	
ല് 10 —		Coarse Sand (+# 0)	Medium Sand (+#40)	e E		
0						
100		10	1 Particle Size (mm)	0.1	0.01
		USCS CI	assification AST	M D 2487		
	erg Classification:	NP	Coefficient	of Curvature - C _c :		
Atterb	ery classification.					
Atterb	-	SM	Coefficient	of Uniformity - C		
	Group Symbol:		Coefficient	of Uniformity - C _u :		
US	Group Symbol: SCS Classification:					
	Group Symbol:		Coefficient Date: Date:	1/9/2020		

Laboratory Compaction Characteristics

ς.

E

ASTM D 698

CLIENTLithos EngineeringJOB NO.2962-010PROJECTDaniel SandsPROJECT NO.19125LOCATIONColorado SpringsDATE TESTED01/01/20TECHNICIANDPM			BORING N DEPTH SAMPLE N DATE SAN DESCRIPT	O. IPLED	Bags - Stockpile 	
	Lal	ooratory Compa	ction Characteris	tics		
Hygroscopic Moisture Mass of Wet Pan and Soil (g):	402.70	120 N	loisture vs. De	nsity Charac	teristic Curve	
Mass of Dry Pan and Soil (g): Mass of Pan (g): Moisture (%):	399.59 118.68 1.1	130				
		125	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
Rock Correction ASTM D 47						
Method:	A	120				
Course Fraction (%):	0.0					
Rock Correction Applied:	NO	କ୍ରି		\mathbf{i}		
Mass of Dry Aggregate (g): Mass of SSD Aggregate (g):		Density (pcf)		\mathbf{X}		
Mass of Aggregate in Water (g):		usit usit				
Rock Specific Gravity:	N/A	De				
Zero Air Voids Specific Gravity:	2.55	110		\sim $\langle \rangle$		
Optimum Dry Density and Mo	isture				\mathbf{X}	
Incorrected		105				
Dry Density (pcf):	113.1					
Dry Density (kg/m ³):	1811					
Moisture (%):	12.7	100				
orrected		0	5 10	15 Moisture (%)	20 25	30
Dry Density (pcf):	N/A			MOISLUI e (%)		
Dry Density (kg/m ³):	N/A	100	rected Data num Dry Density and Opti	mum Moisturo		
Moisture (%):	N/A		ir Voids Curve	mum moisture		
Sample Number:	1	2	3	4		
Mass of Wet Pan and Soil (g):	237.78	349.16	267.31	226.88		
Mass of Dry Soil and Pan (g):	208.12	308.59	240.26	202.58		
Mass of Pan (g); Moisture (%):	14.13 15.3	6.69 13.4	6.71	6.69		
Moisture (%).	10.5	13.4	11.6	12.4		
Mass of Wet Soil and Mold (g):	6209.6	6253.9	6204.6	6244.7		
Mass of Mold (g):	4324.5	4324.5	4324.5	4324.5		
Wet Density (pcf):	124.7	127.6	124.3	127.0		
Dry Density (pcf):	108.1	112.5	111.4	113.0		
Wet Density (kg/m³):	1997	2044	1992	2034		
Dry Density (kg/m³):	1732	1802	1785	1810		
Data entry by: DPM		Date				
hecked by:		Date D698 D1557_0.xl				
ile name: 2962010_compac						

Direct Shear

ASTM D 3080

JOB NO.2962-010PROJECTDaniel SandsPROJECT NO.19125					Daniel Sands 19125 Colorado Springs 01/06/20			IG NO. H LE NO. SAMPLED RIPTION	Bag - Remo	- Stockpile olded	
					1.0.0	ect Shea	r Results				
				Point: Load (psf): .oad (kPa):	: 143	82	B 7191 344.3	C 3595 172.1			
	_		Peak Stre Itimate Stre Peak Stre imate Stre	ngth (kPa):	: 801 : 442	19 2.8	4923 4475 235.7 214.3	2685 2256 128.6 108.0			
		P	eak Stren	gth				Ultim	ate Streng	gth	
		Friction A Cohesion Cohesion (I	(psf):	31.3 522 25.1				Friction Ar Cohesion (J Cohesion (k	osf):	27.8 484 23.2	
Stress (psf)	20000 2000 3000 7000 5000 4000 3000 2000						d vs. Sti				s Stress nate Stress
	0	0 20	00 40	000 6		8000 Il Load (ps	10000 f)	12000 140	00 16	4 000	
Data ent Checkeo File nam	d by:		DPM <u>SP</u> 2962	H	ct Shear A	ASTM D3	Da Da 080_0.xlsm	ite: 1-7-20		P	age 1 of 2

Direct Shear

ASTM D 3080

CLIENT IOB NO. PROJECT PROJECT NO. LOCATION	Lithos Engineerin 2962-010 Daniel Sands 19125 Colorado Springs	-	BORING N DEPTH SAMPLE N DATE SAN DESCRIPT	NO. MPLED	Bag - Stockpile Remolded
DATE TESTED ECHNICIAN	01/06/20 DPM				Admonded
		Test Pa	arameters		
E E	Displacement Rate (in/min):	0.005	Displacement	t Rate (cm/min): 0.0127
	Raw Data Files:	EDSBAGA.DAT,	LEDSBAGB.DAT, LED	DSBAGC.DAT,	
	ss of Wet Soil and Ring (g):	122.77	122.76	122.75	
	ass of Wet Soil and Pan (g):	103.39	103.53	104.16	
Ma	ass of Dry Soil and Pan (g):	90.46	90.13	90.36	
	Mass of Ring (g):	27.34	27.34	27.34	
	Mass of Pan (g):	6.68	6.68	6.70	
	Diameter (in):	1.94	1.94	1.94	
	Initial Height (in):	1.00	1.00	1.00	
	Height Change (in):	0.0278	0.0208	0.0164	
	Area (i=2).	0.05	0.05	0.05	
	Area (in ²):	2.95 123.2	2.95 123.2	2.95	
	Initial Wet Density (pcf): Initial Dry Density (pcf):	123.2	123.2	123.2	
	Initial Wet Density (kg/m³):	106.2	1974	108.1 1974	
	Initial Dry Density (kg/m ³):	1974	1974	1974	
	Initial Moisture (%):	13.9	14.3	14.0	1
	Final Wet Density (pcf):	128.5	14.3	128.0	
	Final Dry Density (pcf):	111.3	110.1	120.0	
	Final Wet Density (kg/m ³):	2058	2046	2050	
	Final Dry Density (kg/m ³):	1783	1763	1760	
	Final Moisture (%):	1703	16.1	16.5	
	Displacement vs. Stress	10.4	10.1		and a Mariata Lind a la sur
10000.0	Displacement vs. stress		0.0080	Displaceme	nt vs. Vertical Displacement
9000.0			0.0060		
8000.0		-	E 0.0040		
7000.0			0.0040 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		
= 6000.0			0.0000		
5000.0					
5000.0 4000.0 3000.0			-0.0020		
3000.0			-0.0040		
2000.0		-	-0.0060		
1000.0			9 -0.0080		
0.0			-0.0100		
0.0000 0.0500		0.2500 0.3000	0.0000	0.0500 0.1000	0.1500 0.2000 0.2500 0
Point A	Horizontal Displacement (in)	Point C	Poin		Displacement (in) Point B Point C
0.7.7.0					
OTES:					
		•			
					Page 2 o
le name:	2962010 Direct	Shear ASTM	D3080 0 ylem		Fage 2 0
	Dieot				

Direct Shear Data ASTM D3080

CLIENT JOB NO. 2962-010 PROJECT PROJECT NO. 19125 LOCATION 01/06/20 DATE TESTED **TECHNICIAN** DPM

Lithos Engineering Daniel Sands Colorado Springs

BORING NO. DEPTH SAMPLE NO. DATE SAMPLED DESCRIPTION

Bag - Stockpile ---------

Remolded

	Point A			Point B			Point C		1
	TOILLA	Vertical		FOILT	Vertical		Foline	Vertical	
Displacement		Displacment	Displacement		Displacment	Displacement		Displacment	
(in)	Stress (psf)	(in)	(in)	Stress (psf)	(in)	(in)	Stress (psf)	(in)	
0.0000	0.0	0.0000	0.0000	19.0	0.0000	0.0000	0.0	0.0000	
0.0050	1268.0	-0.0003	0.0050	951.0	0.0000	0.0050	690.0	0.0000	
0.0100	2014.0	-0.0005	0.0100	1305.0	0.0000	0.0100	1156.0	-0.0001	
0.0150	2834.0	-0.0007	0.0150	1977.0	-0.0001	0.0150	1566.0	-0.0002	
0.0200	3860.0	-0.0011	0.0200	2611.0	-0.0002	0.0200	1883.0	-0.0001	
0.0250	4737.0	-0.0013	0.0250	3133.0	-0.0002	0.0250	2144.0	0.0001	
0.0300	5538.0	-0.0015	0.0300	3562.0	-0.0002	0.0300	2331.0	0.0006	
0.0350	6172.0	-0.0017	0.0350	3897.0	-0.0001	0.0350	2462.0	0.0010	
0.0400	5744.0	-0.0020	0.0400	4196.0	0.0001	0.0400	2555.0	0.0017	
0.0450	5408.0	-0.0021	0.0450	4420.0	0.0004	0.0450	2629.0	0.0023	
0.0500	5445.0	-0.0022	0.0500	4569.0	0.0008	0.0500	2667.0	0.0029	
0.0550	5762.0	-0.0023	0.0550	4681.0	0.0010	0.0550	2685.0	0.0034	
0.0600	6508.0	-0.0023	0.0600	4774.0	0.0014	0.0600	2685.0	0.0040	
0.0650	7142.0	-0.0023	0.0650	4848.0	0.0017	0.0650	2685.0	0.0047	
0.0700	7627.0	-0.0023	0.0700	4886.0	0.0021	0.0700	2648.0	0.0050	
0.0750	8112.0	-0.0023	0.0750	4923.0	0.0024	0.0750	2648.0	0.0056	
0.0800	8466.0	-0.0023	0.0800	4923.0	0.0027	0.0800	2611.0	0.0059	
0.0850	8727.0	-0.0022	0.0850	4904.0	0.0031	0.0850	2573.0	0.0063	
0.0900	8932.0	-0.0021	0.0900	4886.0	0.0033	0.0900	2536.0	0.0065	
0.0950	9081.0	-0.0020	0.0950	4867.0	0.0035	0.0950	2499.0	0.0067	
0.1000	9156.0	-0.0020	0.1000	4792.0	0.0037	0.1000	2462.0	0.0068	
0.1050	9231.0	-0.0018	0.1050	4737.0	0.0039	0.1050	2402.0	0.0069	
0.1000	9249.0	-0.0016	0.1100	4681.0	0.0039	0.1000	2424.0		
0.1150	9249.0 9231.0	-0.0015	0.1150	4587.0	0.0039	0.1150	2357.0	0.0069	
0.1100	9291.0 9193.0	-0.0013	0.1130	4531.0	0.0040			0.0069	
0.1250	9155.0 9156.0	-0.0014				0.1200	2312.0	0.0067	
0.1200	9156.0 9119.0		0.1250	4475.0	0.0039	0.1250	2294.0	0.0065	
		-0.0013	0.1300	4420.0	0.0036	0.1300	2275.0	0.0063	
0.1350	9044.0	-0.0013	0.1350	4382.0	0.0034	0.1350	2256.0	0.0061	
0.1400	8988.0	-0.0013	0.1400	4345.0	0.0032	0.1400	2256.0	0.0058	
0.1450	8876.0	-0.0013	0.1450	4345.0	0.0029	0.1450	2238.0	0.0056	
0.1500	8764.0	-0.0013	0.1500	4326.0	0.0026	0.1500	2238.0	0.0053	
0.1550	8653.0	-0.0015	0.1550	4345.0	0.0024	0.1550	2219.0	0.0049	
0.1600	8559.0	-0.0018	0.1600	4364.0	0.0021	0.1600	2219.0	0.0047	
0.1650	8429.0	-0.0020	0.1650	4345.0	0.0017	0.1650	2219.0	0.0043	
0.1700	8336.0	-0.0022	0.1700	4364.0	0.0015	0.1700	2200.0	0.0040	
0.1750	8224.0	-0.0025	0.1750	4382.0	0.0011	0.1750	2200.0	0.0037	
0.1800	8130.0	-0.0028	0.1800	4401.0	0.0008	0.1800	2219.0	0.0033	
0.1850	8130.0	-0.0030	0.1850	4420.0	0.0006	0.1850	2219.0	0.0031	
0.1900	8130.0	-0.0034	0.1900	4401.0	0.0002	0.1900	2238.0	0.0027	
0.1950	8056.0	-0.0037	0.1950	4438.0	0.0000	0.1950	2238.0	0.0024	
0.2000	8037.0	-0.0041	0.2000	4457.0	-0.0003	0.2000	2238.0	0.0020	
0.2050	8037.0	-0.0045	0.2050	4457.0	-0.0007	0.2050	2219.0	0.0017	
0.2100	8019.0	-0.0048	0.2100	4457.0	-0.0008	0.2100	2219.0	0.0015	

Direct Shear Data ASTM D3080

CLIENTLithos EngineeringJOB NO.2962-010PROJECTDaniel SandsPROJECT NO.19125LOCATIONColorado SpringsDATE TESTED01/06/20TECHNICIANDPM

,

BORING NO. DEPTH SAMPLE NO. DATE SAMPLED DESCRIPTION Bag - Stockpile ------

Remolded

	Point A			Point B			Point C		
Displacement		Vertical Displacment	Displacement		Vertical Displacment	Displacement		Vertical Displacment	
(in)	Stress (psf)	(in)	(in)	Stress (psf)	(in)	(in)	Stress (psf)	(in)	
0.2150	8000.0	-0.0052	0.2150	4475.0	-0.0012	0.2150	2200.0	0.0011	
0.2200	8000.0	-0.0056	0.2200	4494.0	-0.0015	0.2200	2200.0	0.0008	
0.2250	8000.0	-0.0060	0.2250	4494.0	-0.0017	0.2250	2182.0	0.0005	
0.2300	8019.0	-0.0064	0.2300	4494.0	-0.0020	0.2300	2182.0	0.0002	
0.2350	8000.0	-0.0068	0.2350	4475.0	-0.0023	0.2350	2200.0	-0.0001	
0.2400	8037.0	-0.0072	0.2400	4494.0	-0.0025	0.2400	2238.0	-0.0006	
0.2450	8037.0	-0.0077	0.2450	4494.0	-0.0028	0.2450	2256.0	-0.0008	
0.2500	8019.0	-0.0081	0.2500	4475.0	-0.0031	0.2500	2256.0	-0.0012	

Cazier - DNR, Tim <tim.cazier@state.co.us>

M1973007SG TR-09 Preliminary Adequacy Review Response

1 message

Andre LA ROCHE <Andre.Laroche@transitmix.com> To: "Tim Cazier, P.E." <Tim.Cazier@state.co.us> Cc: Jeremy Deuto <jeremy.deuto@lafargeholcim.com> Thu, Apr 9, 2020 at 4:35 PM

Hello Tim:

Attached please find our TR-09 Preliminary Adequacy Review Response for Daniels Sand Pit 2, M1973007SG.

Best regards,

Andre Laroche | Environment and Land Manager Aggregate Industries | Transit Mix Concrete Co. Address: 1687 Cole Blvd., Suite 300 | Golden, CO 80401 Office & Mobile: (719) 491-0288 Email: andre.laroche@aggregate-us.com

2020 0409 AI TR09 Adequacy Review Response M1973007SG.pdf 1285K