2019 KING I & II MINES ANNUAL HYDROLOGY REPORT TO THE UTE MOUNTAIN UTE TRIBE

Submitted to: GCC ENERGY, LLC

Date: January 15, 2020

Resource Hydrogeologic Services, Inc.

232 Ute Pass West Durango, CO 81301 Tel: (970) 247-1959 Email info@resourcehydrogeologic.com





# TABLE OF CONTENTS

| INTRODUCTION                                               | 3  |
|------------------------------------------------------------|----|
| HYDROLOGIC MONITORING                                      |    |
| Hydrologic Monitoring Locations                            | 3  |
| HYDROLOGIC MONITORING DATA COLLECTION                      | 4  |
| HYDROLOGIC MONITORING DATA ANALYSIS                        | 5  |
| Alluvial Groundwater                                       | 5  |
| Alluvial Groundwater Quality                               | 6  |
| Alluvial Groundwater Level                                 | 6  |
| BEDROCK GROUNDWATER                                        | 6  |
| Bedrock Groundwater Quality                                | 7  |
| Bedrock Groundwater Level                                  |    |
| TABLES                                                     | 9  |
| FIGURES                                                    |    |
| ATTACHMENT - GCC HYDROLOGIC MONITORING DATA SUMMARY TABLES | 25 |



## INTRODUCTION

The Annual Hydrology Report is completed at the conclusion of each year to compile and interpret hydrologic data related to GCC Energy's King I and II Mine operations. This satisfies the agreement between GCC Energy (GCC) and UMUT of the "Preliminary Hydrologic Monitoring Plan - Ute Mountain Ute Tribe MW-5 Cluster Monitoring Wells at King II Coal Mine", prepared by Resource Hydrogeologic Services, Inc. (RHS). GCC installed monitoring wells in late 2018 at two additional locations, MW-7 and MW-8 (5 wells total), on UMUT owned lands. These latter wells were installed per the 1<sup>st</sup> Addendum to Surface Use Agreement, referenced above, entered into October 26, 2016 between the UMUT and GCC.

To best support these efforts, GCC Energy (GCC) maintains a quality assurance/quality control (QA/QC) program to:

- Conduct GCC compliance staff training on water quality sampling for all GCC monitoring locations, equipment and methodologies, with detailed written procedures for each monitoring location provided.
- Collect all water quality field data with an industry-standard multi-parameter device with electronic data deliverable (EDD) output for all field and calibration data.
- Enter and document all water quality field monitoring data by mobile (digital/paperless) field sampling logs specific to surface water, groundwater and spring/seep sampling locations which are automatically distributed to a third party, Resource Hydrogeologic Services (RHS) for same-day review following sampling.
- Implement industry-standard, 10% random QA/QC lab sample submittals for duplicate and field blank water quality samples.
- Utilize EDDs produced by the contract environmental analytical laboratory for all data analyses.
- Compile and manage all water quality data in a geo-referenced Microsoft Access database.

# HYDROLOGIC MONITORING

## HYDROLOGIC MONITORING LOCATIONS

Eight groundwater monitoring wells were monitored for water level and quality in water year 2018 on UMUT lands. The wells are identified as MW-5-C, MW-5-A, MW-5-MI, MW-7-EAA, MW-8-EAA, MW-8-MI, MW-8-LM and MW-8-PL.

Bedrock monitoring wells were installed at the MW-5 location in the summer of 2017 to meet the requirements of UMUT, the surface owner. At the location the wells were completed in three discrete intervals in order to collect water quantity and quality information from the mining overburden (Cliff House Sandstone, designated "C"), the mined interval ("A" seam coal of the upper Menefee Formation, designated "A") and the underburden (upper Menefee Formation referred to as Menefee Interburden as it is between the A-seam and B-seam, where present, designated "MI"). The cluster of wells is oriented



in-line with the approximate direction of strata dip (210°), spaced 20 feet apart, with the MI well upgradient, C well downgradient, and A well in the middle. The MW-5 location is north and sufficiently upgradient of any current or previous King II Mine workings and thus allows monitoring of baseline conditions. These MW-5 bedrock monitoring wells are constructed as conventional 2-inch PVC, with the exception of the MW-5-C well which was installed as a 7" open hole completion (8-5/8" steel surface casing installed and cemented to 39 feet) to allow for future video logging documentation of water inflow location(s).

Bedrock monitoring wells were installed in December 2018 at the MW-8 location, located on UMUT land, to establish new CDRMS compliance sites. This location is approximately 400 feet downgradient of the proposed low cover crossing in East Alkali Gulch. At this location the Cliff House Formation and "A" coal seam have been eroded away by the gulch so the intervals monitored in stratigraphic sequence top to bottom are the Menefee Formation Interburden ("MI"), which was found to be first bedrock water, the Lower Menefee Formation ("LM") which includes water-bearing lesser coal seams including the "B" coal seam where present, and the Point Lookout Formation ("PL"), specifically the uppermost approximate 25 feet.

Alluvial monitoring wells were installed in December 2018 at the MW-7 and MW-8 locations, also as new CDRMS compliance sites. These locations are approximately 400 feet upgradient and 400 feet downgradient, respectively, of the proposed low cover crossing in East Alkali Gulch. The "EAA" designation represents well completion in the East Alkali Gulch Alluvium, composed of unconsolidated sediments from ground surface to approximately 70 feet depth.

**Table 1** lists and **Figure 1** shows the eight 2019 UMUT hydrologic monitoring locations and their spatial relation to the King I and II Mines.

## HYDROLOGIC MONITORING DATA COLLECTION

Hydrologic monitoring data collection was expanded in December 2018 in number of locations and continued through 2019. Protocols for establishment of new hydrologic monitoring locations, as initiated in 2016, were continued for these locations. The purpose of the expanded analytical suite was to collect water quality data in line with the CDRMS "Guidelines for the Collection of Baseline Water Quality and Overburden Geochemistry Data" (1984), which were adopted in the Mining Permit Technical Revision-26. Water samples are collected quarterly at compliance monitoring locations for laboratory analysis. Depth to water measurements are also documented for wells. This baseline data collection period is intended to characterize the pre-mining environmental conditions in order to shape the long-term monitoring plan appropriately to evaluate potential mining effects on the hydrologic system. This is intended as a one-year, four-quarter period to evaluate seasonal changes that may occur over a typical year; however, the baseline laboratory analytical suite analyses have continued through 2019 for all compliance monitoring locations. This laboratory analytical suite is approved by CDRMS in TR-26 and are presented in **Table 2**.



Most wet bedrock cluster monitoring wells are instrumented with dedicated industry-standard low-flow bladder pump groundwater sampling systems. MW-5-A is dry and does not have a pump installed. Otherwise, the pumps are set to the approximate depth of the well screen mid-points for the A, MI, LM and PL wells, and set to near bottom of the C wells to allow for micro-purge sampling methodology. The exception is for wells MW-8-MI, MW-8-LM, which have relatively high static and pumping water levels, allowing use of dedicated stainless steel 12-volt electric submersible pumps with the pump or extended pump intake set to the approximate depth of well screen mid-points. The same model 12-volt electric submersible pumps are also installed at MW-7-EAA and MW-8-EAA.

# HYDROLOGIC MONITORING DATA ANALYSIS

Field parameter and analytical data from all 2016-2019 sampling is presented in summary tables in the **Attachment**. Full laboratory reports are not included here as they have been already been submitted to UMUT in the quarterly monitoring technical memorandums prepared to document and interpret hydrologic conditions of the GCC monitoring wells installed on UMUT lands. The quarterly-updated analytical summary tables for the GCC CDRMS compliance wells found in the Attachment (MW-7 and MW-8 wells) are also available in PDF format at:

## http://www.gccenergy.net/water\_monitoring\_results.php

A graphical analysis of water quality samples from alluvial and bedrock groundwater monitoring stations, is provided below in stacked bar formats for major ions and in distribution plots for trace constituents. The natural variability of water quality in bedrock units is demonstrated in these plots. Although the King Mines have operated for many years, the monitoring data presented within this report are believed to represent natural "baseline" water.

**Figures 2 and 5 through 8** show major ion concentrations through sampling history by monitoring site. Concentrations are given in milli-equivalents (milligrams of solute mass divided by ionic weight and multiplied by ionic charge) per liter so the ionic balance between positive and negative ions can be seen in each analysis. Many bedrock wells have poor yields and have been slow to purge to steady compositions. In the plots, magnesium and calcium are added together (Mg+Ca) since magnesium is usually a minor fraction of the divalent cations, and potassium is added to sodium (Na+K).

## ALLUVIAL GROUNDWATER

Alluvial groundwater monitoring was initiated in East Alkali Gulch in quarter four of 2018. The purpose is for baseline data collection upgradient (MW-7-EAA) and downgradient (MW-8-EAA) of the proposed low cover crossing which would allow access from the existing King II Mine underground workings to the coal reserves within the proposed Dunn Ranch lease extension on the west side of East Alkali Gulch.



## Alluvial Groundwater Quality

**Figure 2** shows the major ion concentrations of the two East Alkali Gulch alluvial wells, MW-7-EAA and MW-8-EAA. The concentration axes on all alluvial well plots have the same scale, so that total salinity is readily compared. The wells have higher total dissolved solids concentrations and higher concentrations of sulfate than observed in Hay Gulch monitoring wells. East Alkali Gulch is not irrigated upgradient or in the vicinity of these wells and is therefore not subject to the relatively consistent fresh water infiltration dilution process apparently observed in Hay Gulch.

## Alluvial Groundwater Level

Groundwater levels at all alluvial monitoring wells were measured and documented per CDRMS compliance requirements at the time of each sampling event. The groundwater hydrograph for East Alkali Gulch in **Figure 3** represents the first year of monitoring; the fluctuation of the water table measured in both MW-7-EAA and MW-8-EAA was within one foot. Based on this limited monitoring period, this indicates that East Alkali Gulch does not appear to be subject to the same magnitude of seasonal water table fluctuation as Hay Gulch. This may be an artifact of the additional monthly measurements at the East Alkali Gulch wells versus the quarterly measurements in Hay Gulch, however it must be reiterated that Hay Gulch is subject to fluctuating, but year-round ditch irrigation water importation and subsequent infiltration to the alluvium.

A water table elevation contour map for the alluvium in the vicinity of the King Mines is presented as **Figure 4**. This figure compiles water levels reported on CDWR Well Construction and Test Reports, converted to elevation for the associated water wells. Some of these measurements are several decades in the past, with a subset of the wells utilized in a 1983 USGS Level Survey. A significant portion of these data points are in a separate but adjacent La Plata River watershed, however several alluvial wells in the more relevant Hay Gulch and Alkali Gulch watersheds provide general water table elevation infill data to compliment the GCC compliance wells in these watersheds. The GCC monitoring well level data utilized in this figure is from 2019. Continued observations in East Alkali Gulch alluvial GCC monitoring wells will build the water table elevation data set to determine if this non-irrigated alluvial aquifer water table level trends differently than the irrigated Hay Gulch alluvium over time.

## BEDROCK GROUNDWATER

Bedrock groundwater monitoring was initiated in 2017 at the MW-5 location and expanded in December 2018 at the MW-8 location. The purpose is for baseline data collection upgradient of the King II Mine (MW-5) and downgradient of the proposed low cover crossing in East Alkali Gulch (MW-8). The MW-8 location also serves as a bedrock and alluvial monitoring location upgradient from the Vista de Oro residential subdivision.



The Lower Menefee and Point Lookout hydrostratigraphic intervals were targeted for baseline monitoring in the 2018 monitoring well installation program as these are intervals included in domestic water wells in and around the Vista de Oro subdivision downgradient from the proposed King II Mine Dunn Ranch lease area. Of specific interest is the characterization of the East Alkali Gulch alluvial groundwater recharge to the underlying Menefee bedrock, as this is likely the most significant recharge area for the neighboring water wells. The MW-8 location is approximately 400 feet directly downgradient from the proposed low cover crossing in the bottom of East Alkali Gulch to monitor groundwater level and quality in all significant water-bearing intervals from surface (alluvium) to 310 feet depth (upper Point Lookout) for potential effects of King II Mine operations.

## **Bedrock Groundwater Quality**

Stacked bar diagrams representing those major ion compositions are presented in **Figures 5 through** 8.

"C" wells completed in the Cliff House Formation typically show the greatest concentrations and most variation in major ion makeup. This variability and the elevated concentrations in the Cliff House wells indicate slow-moving (long residence time) water, and some water with variable dissolved oxygen content, leading to the non-uniform oxidation of pyrite in some rock types. Major ion concentrations of MW-5-C, the only "C" well monitored on behalf of UMUT, are shown in **Figure 5**.

"MI" wells completed in the "A" seam floor strata have total dissolved solids concentrations that are less than in the "A" coal seam, and are dominated by sodium and bicarbonate. This suggests that either the lower Menefee is recharged in different areas, or that sulfate is reduced and calcium and magnesium are exchanged for sodium along the flow path. The most likely mechanism for the reduction of sulfate is microbial metabolism of sulfate and coal methane, which can yield hydrogen sulfide and also precipitate calcium carbonate. Hydrogen sulfide is commonly observed in regional domestic water wells. Major ion concentrations of the Menefee Interburden wells are shown as stacked-bar plots in **Figure 6**. Of the newest "MI" wells, MW-8-MI is completed in East Alkali Gulch just downgradient from significant alluvial recharge; the well is screened across the first bedrock water encountered. This interval flow tested at 24 gallons per minute (gpm) at borehole total depth of 102 feet, with cemented steel casing sealing off all alluvium 73 feet to ground surface. This is in stark contrast to every other "MI" monitoring well that drilled dry and then either remained dry to date, wetted and then dried up, or wetted but demonstrates very low yield.

The "LM" well completed in the lower Menefee in East Alkali Gulch is MW-8-LM. This well yields little water and total salinity has dropped and major ions shifted in successive sampling events. Sulfate and chloride have also decreased in successive samples. Cation ratios (sodium and calcium) are also variable in this low-yielding well, illustrating the chemical discontinuity in these low permeability groundwater lenses located in minor coal seams and minor fractured intervals. The major ion concentration comparison plots are presented as **Figure 7**.



The single "PL" well completed in the upper Point Lookout is at MW-8-PL in East Alkali Gulch. As with the "LM" wells, total salinity has also been generally decreasing in successive sampling events during the first year of monitoring. Major ions concentrations of the four samples collected from the Point Lookout to date are found in **Figure 8**.

## **Bedrock Groundwater Level**

Groundwater potentiometric surface contour maps have been prepared for each monitored hydrostratigraphic interval and are presented as **Figures 9-13**. Contouring is only possible for intervals that include three or more monitoring locations, so the "LM" and "PL" figures do not include contours to indicate groundwater flow direction or gradient. Regardless, it is expected that regional flow direction in these intervals is south-southwest in the direction of strata dip, as documented in the overlying three hydrostratigraphic intervals. Groundwater flow gradient appears to be approximately 100 feet per mile (1.89% or 1.09°) for all intervals, which is about 1/3 to 1/2 of the strata dip. The King II Mine permit area is an excellent demonstration of the formation of a multiple bedrock aquifer system in an arid basin. Dry unsaturated (vadose) rock is present at the upland outcrop basin margin areas; water infiltration must pass through initially unconfined fractured networks filling fractures and pore space while displacing gases (air), and then finally into fully confined conditions with depth towards the central part of the San Juan Basin. When the head pressure observed at any given point in the aquifer is greater than the equivalent distance from ground surface to the top of that aquifer then the aquifer is defined as confined. Significant recharge areas, inferred by buried bedrock exposure to saturated alluvium, are also displayed in these figures.

Groundwater levels, as measured from wellheads during routine compliance monitoring, are given in the GCC Hydrologic Monitoring Summary Tables, provided in this report as the Attachment.



# TABLES



| Monitoring Location ID | Water Resource Monitored                     | UTM NAD 83<br>Zone 13N<br>Easting<br>(meters) | UTM NAD 83<br>Zone 13N<br>Northing<br>(meters) | Surface<br>Elevation<br>(ft amsl) |
|------------------------|----------------------------------------------|-----------------------------------------------|------------------------------------------------|-----------------------------------|
| MW-5-A                 | Groundwater - Bedrock "A" coal seam          | 757132.319                                    | 4130205.100                                    | 8407.4                            |
| MW-5-C                 | Groundwater - Bedrock Cliff House overburden | 757128.949                                    | 4130200.072                                    | 8407.1                            |
| MW-5-MI                | Groundwater - Bedrock Menefee interburden    | 757135.778                                    | 4130210.290                                    | 8407.7                            |
| MW-7-EAA               | Groundwater - Alluvial East Alkali Gulch     | 753001.888                                    | 4127319.951                                    | 7460.0                            |
| MW-8-EAA               | Groundwater - Alluvial East Alkali Gulch     | 752916.895                                    | 4127107.544                                    | 7440.0                            |
| MW-8-MI                | Groundwater - Bedrock Menefee interburden    | 752912.969                                    | 4127110.290                                    | 7447.0                            |
| MW-8-LM                | Groundwater - Bedrock Lower Menefee          | 752908.636                                    | 4127106.081                                    | 7446.0                            |
| MW-8-PL                | Groundwater - Bedrock Point Lookout          | 752904.413                                    | 4127101.783                                    | 7445.0                            |

### Table 1. GCC UMUT Hydrologic Monitoring Locations



## Table 2.

## GCC Groundwater Baseline Water Quality Parameter Suite (GCC GW Baseline)

| Parameter                                | Units |
|------------------------------------------|-------|
| Potassium (K)                            | mg/L  |
| Chloride (Cl <sup>-</sup> )              | mg/L  |
| Calcium (Ca <sup>+2</sup> )              | mg/L  |
| Magnesium (Mg <sup>+2</sup> )            | mg/L  |
| Sodium (Na⁺)                             | mg/L  |
| Sulfate (SO₄)                            | mg/L  |
| Alkalinity, as CaCO₃                     | mg/L  |
| Silica (SiO <sub>2</sub> )               | mg/L  |
| Manganese (Mn)                           | mg/L  |
| Fluoride (F)                             | mg/L  |
| Iron (Fe)                                | mg/L  |
| Aluminum (Al)                            | mg/L  |
| Arsenic (As)                             | mg/L  |
| Cadmium (Cd)                             | mg/L  |
| Copper (Cu)                              | mg/L  |
| Lead (Pb)                                | mg/L  |
| Mercury (Hg)                             | mg/L  |
| Molybdenum (Mo)                          | mg/L  |
| Selenium (Se)                            | mg/L  |
| Zinc (Zn)                                | mg/L  |
| Uranium (U)                              | mg/L  |
| Hardness, as CaCO <sub>3</sub>           | mg/L  |
| Bicarbonate, as CaCO <sub>3</sub>        | mg/L  |
| Carbonate, as $CaCO_3$                   | mg/L  |
| Hydroxide, as CaCO <sub>3</sub>          | mg/L  |
| Total Nitrogen as Nitrate-Nitrite        | mg/L  |
| pH (lab)                                 | SU    |
| Total Dissolved Solids (TDS)             | mg/L  |
| Total Organic Carbon (TOC)               | mg/L  |
| Temperature (field)                      | °C    |
| pH (field)                               | SU    |
| Specific Conductivity (field)            | mS/cm |
| Oxygen Reduction Potential (ORP) (field) | mV    |
| Depth to Water (field, wells only)       | ft    |

Notes:

mg/L = milligrams per liter SU = standard units mS/cm millisiemens per centimeter ft = feet mV = millivolt



# **FIGURES**



Figure 1. GCC 2019 UMUT hydrologic monitoring locations











## Figure 3. East Alkali Gulch Alluvial Groundwater Hydrograph



GCC ENERGY, LLC 2019 ANNUAL HYDROLOGY REPORT - UMUT



#### Figure 4. Alluvial Groundwater Table Contour Map







## Figure 5. Major ion concentrations in Cliff House ("A" seam overburden) bedrock monitoring well.





Figure 6. Comparison of major ion concentrations in Menefee Interburden ("A" seam underburden) bedrock monitoring wells.





Figure 7. Major ion concentrations in Lower Menefee bedrock monitoring well.

Figure 8. Major ion concentrations in the Point Lookout bedrock monitoring well.







### Figure 9. Cliff House groundwater potentiometric map August 2019.





Figure 10. "A" seam coal groundwater potentiometric map August 2019.





#### Figure 11. Menefee Interburden groundwater potentiometric map August 2019.





Figure 12. Lower Menefee groundwater potentiometric map August 2019.





### Figure 13. Point Lookout groundwater potentiometric map August 2019.



# ATTACHMENT - GCC Hydrologic Monitoring Data Summary Tables



|                              |             |        |       |        |       |          |        |        | N        | 1W-5-C      |       |          |        |        |          |     |        |          |          |          |          |          |
|------------------------------|-------------|--------|-------|--------|-------|----------|--------|--------|----------|-------------|-------|----------|--------|--------|----------|-----|--------|----------|----------|----------|----------|----------|
|                              | Year        |        |       |        |       | 2017     |        |        |          |             |       |          |        |        | 2018     |     |        |          |          |          | 2019     |          |
|                              | Quarter     | Q2     |       | 0      | 13    |          |        | C      | (4       |             |       | Q1       |        | C      | 2        |     | Q3     |          | Q4       | Q1       | Q2       | Q3       |
|                              | Month       | 6      | 7     | 8      | 9     | 9        | 10     | 11     | 11       | 12          | 1     | 2        | 3      | 4      | 5        | 6   | 7      | 8        | 11       | 2        | 5        | 8        |
| Sa                           | mple Date   | 6/7    | 7/18  | 8/23   | 9/7   | 9/26     | 10/26  | 11/2   | 11/16    | 12/5        | 1/2   | 2/9      | 3/22   | 4/11   | 5/10     |     | 7/23   | 8/7      | 11/1     | 2/20     | 5/30     | 8/14     |
| Lab Ana                      | lysis (Y/N) | N      | N     | N      | N     | Y        | N      | N      | Y        | N           | N     | Y        | N      | N      | Y        | N   | N      | Y        | Y        | Y        | Y        | Y        |
| Field Parameters:            |             |        |       |        |       |          |        |        |          |             |       |          |        |        |          |     |        |          |          |          |          |          |
| Purge Flow Rate              | gpm         | NM     | NM    | NM     | NM    | NM       | NM     | 0.1    | NM       | NM          | NM    | 0.1      | NM     | 0.1    | 0.1      | *** | 0.1    | 0.1      | 0.1      | 0.1      | 0.12     | 0.06     |
| Total Purged                 | gal         | NM     | NM    | NM     | NM    | NM       | NM     | 3.0    | 1.0      | 1.0         | 1.5   | 2.0      | 1.5    | 1.0    | 1.3      |     | 1.3    | 1.5      | 1.6      | 1.3      | 1.5      | 1.3      |
| Depth to Water               | ft bgs      | 248.15 | 240.8 | 235.02 | 233.2 | 230.75   | 229.44 | 228.45 | 227.43   | 227.64      | 225.4 | 222.46   | 219.31 | 218.22 | 216.04   |     | 210.87 | 210.5    | 205.1    | 198.44   | 193.2    | 191.11   |
| Temperature                  | deg C       | NM     | NM    | NM     | 35.32 | 11.29    | NM     | 9.46   | 9.70     | 9.04        | 9.33  | 9.37     | 9.56   | 9.7    | 10.08    |     | 10.66  | 10.7     | 9.37     | 8.63     | 10.14    | 10.89    |
| pН                           | SU          | NM     | NM    | NM     | 8.75  | 7.58     | NM     | 7.59   | 7.63     | 7.64        | 7.65  | 7.68     | 7.77   | 7.56   | 7.6      |     | 7.52   | 7.61     | 7.55     | 7.72     | 7.72     | 7.74     |
| Specific Conductance         | µ\$/cm      | NM     | NM    | NM     | 0.1   | 4903     | NM     | 4905   | 4827     | 4977        | 4974  | 4958     | 4285   | 4787   | 4772     |     | 4674   | 4687     | 4768     | 4623     | 4418     | 4355     |
| Oxygen Reduction Potential   | mV          | NM     | NM    | NM     | 48.2  | -24.8    | NM     | 7.60   | -74.20   | -110.50     | -99.8 | -90.5    | -84.6  | -49.6  | -51.3    |     | -59.5  | -66.4    | -138     | -56.2    | -29.9    | -88.24   |
|                              |             |        |       |        |       |          |        |        | Lab Ana  | lytical Res | ults: |          |        |        |          |     |        |          |          |          | ,        |          |
| Hardness as CaCO3            | mg/L        |        |       |        |       | 80.3     |        |        | 67.7     |             |       | 61.3     |        |        | 50.3     |     |        | 51.2     | 51.4     | 43       | 41.1     | 38.8     |
| pH (Lab)                     | SU          |        |       |        |       | 7.57     |        |        | 8.11     |             |       | 7.74     |        |        | 7.79     |     |        | 7.64     | 7.69     | 7.72     | 7.46     | 7.75     |
| Total Dissolved Solids (Lab) | mg/L        |        |       |        |       | 3470     |        |        | 3540     |             |       | 3480     |        |        | 3430     |     |        | 3290     | 3260     | 3160     | 3090     | 3130     |
| Calcium                      | mg/L        |        |       |        |       | 18.3     |        |        | 15.4     |             |       | 13.7     |        |        | 11.1     |     |        | 11.4     | 11.5     | 9.78     | 9.34     | 8.69     |
| Magnesium                    | mg/L        |        |       |        |       | 8.40     |        |        | 7.11     |             |       | 6.57     |        |        | 5.46     |     |        | 5.52     | 5.50     | 4.51     | 4.32     | 4.14     |
| Sodium                       | mg/L        |        |       |        |       | 1280     |        |        | 1220     |             |       | 1250     |        |        | 1200     |     |        | 1230     | 1250     | 1220     | 1070     | 1120     |
| Potassium                    | mg/L        |        |       |        |       | 4.57     |        |        | <5.00    |             |       | <5.00    |        |        | 3.6      |     |        | <5.00    | <5.00    | <5.00    | <5.00    | <5.00    |
| Alkalinity, Total            | mg/L        |        |       |        |       | 1480     |        |        | 1540     |             |       | 1590     |        |        | 1490     |     |        | 1520     | 1540     | 1560     | 1630     | 1620     |
| Alkalinity, Bicarbonate      | mg/L        |        |       |        |       | 1480     |        |        | 1540     |             |       | 1590     |        |        | 1490     |     |        | 1520     | 1540     | 1560     | 1630     | 1620     |
| Alkalinity, Carbonate        | mg/L        |        |       |        |       | <10.0    |        |        | <10.0    |             |       | <10.0    |        |        | <10      |     |        | <10.0    | <10.0    | <10.0    | <10      | <10.0    |
| Alkalinity, Hydroxide        | mg/L        |        |       |        |       | <10.0    |        |        | <10.0    |             |       | <10.0    |        |        | <10      |     |        | <10.0    | <10.0    | <10.0    | <10      | <10.0    |
| Chloride                     | mg/L        |        |       |        |       | 8.66     |        |        | 10.6     |             |       | 10.1     |        |        | <10      |     |        | 7.15     | 7.08     | 7.1      | 7.02     | 6.62     |
| Fluoride                     | mg/L        |        |       |        |       | 1.90     |        |        | 1.93     |             |       | 1.89     |        |        | 1.79     |     |        | 1.74     | 1.80     | 1.95     | 2.01     | 1.95     |
| Sulfate as SO4               | mg/L        |        |       |        |       | 1470     |        |        | 1600     |             |       | 1190     |        |        | 1220     |     |        | 1130     | 1070     | 1040     | 975      | 948      |
| Total Organic Carbon (TOC)   | mg/L        |        |       |        |       | 2.86     |        |        | 2.94     |             |       | 3.24     |        |        | 3.06     |     |        | 3.28     | 3.64     | 3.05     | 3.00     | 3.03     |
| Nitrate/Nitrite as N         | mg/L        |        |       |        |       | < 0.100  |        |        | <0.020   |             |       | <0.020   |        |        | <0.02    |     |        | 0.026    | <0.020   | <0.020   | <0.020   | < 0.020  |
| Aluminum                     | mg/L        |        |       |        |       | < 0.050  |        |        | <0.250   |             |       | <0.250   |        |        | < 0.05   |     |        | <0.250   | <0.250   | <0.250   | <0.25    | <0.250   |
| Arsenic                      | mg/L        |        |       |        |       | <0.0025  |        |        | <0.0050  |             |       | <0.0025  |        |        | 0.0044   |     |        | 0.0046   | 0.0036   | 0.004    | 0.0013   | <0.0025  |
| Cadmium                      | mg/L        |        |       |        |       | < 0.0005 |        |        | <0.0010  |             |       | < 0.0005 |        |        | < 0.0005 |     |        | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0001 | < 0.0005 |
| Copper                       | mg/L        |        |       |        |       | 0.0272   |        |        | 0.0161   |             |       | 0.0342   |        |        | 0.0171   |     |        | 0.0226   | 0.0178   | 0.0294   | 0.01     | 0.0138   |
| Iron                         | mg/L        |        |       |        |       | < 0.050  |        |        | <0.250   |             |       | 0.399    |        |        | 0.237    |     |        | <0.250   | <0.250   | <0.250   | <0.25    | <0.250   |
| Lead                         | mg/L        |        |       |        |       | < 0.0025 |        |        | <0.0050  |             |       | < 0.0025 |        |        | < 0.0025 |     |        | < 0.0025 | < 0.0025 | <0.0025  | < 0.0005 | < 0.0025 |
| Manganese                    | mg/L        |        |       |        |       | 0.0367   |        |        | 0.0283   |             |       | 0.0138   |        |        | 0.0128   |     |        | 0.0131   | 0.0117   | 0.0115   | 0.0079   | 0.0078   |
| Mercury                      | mg/L        |        |       |        |       | < 0.0002 |        |        | < 0.0002 |             |       | < 0.0002 |        |        | < 0.0002 |     |        | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 |
| Molybdenum                   | mg/L        |        |       |        |       | 0.0376   |        |        | 0.0201   |             |       | 0.0154   |        |        | 0.0142   |     |        | 0.0127   | 0.0109   | 0.0096   | 0.0054   | 0.0041   |
| Selenium                     | mg/L        |        |       |        |       | < 0.0050 |        |        | <0.0100  |             |       | < 0.0050 |        |        | < 0.005  |     |        | < 0.0050 | < 0.0050 | < 0.0050 | 0.0015   | < 0.0050 |
| Silica (SiO2)                | mg/L        |        |       |        |       | 6.57     |        |        | <5.35    |             |       | 7.64     |        |        | 7.65     |     |        | 8.18     | 8.94     | 7.84     | 8.00     | 8.00     |
| Silicon                      | mg/L        |        |       |        |       | 3.07     |        |        | <2.50    |             |       | 3.57     |        |        | 3.58     |     |        | 3.83     | 4.18     | 3.67     | 3.74     | 3.74     |
| Uranium                      | mg/L        |        |       |        |       | 0.0088   |        |        | 0.0054   |             |       | 0.0048   |        |        | 0.0047   |     |        | 0.0036   | 0.0035   | 0.0029   | 0.0021   | 0.0018   |
| Zinc                         | mg/L        |        |       |        |       | <0.010   |        |        | <0.020   |             |       | <0.010   |        |        | <0.01    |     |        | < 0.0100 | < 0.0100 | < 0.0100 | < 0.002  | < 0.0100 |

| ***   | La Plata County stage 3 fire restrict | ions j | prevented sampling activity                                                                                    |
|-------|---------------------------------------|--------|----------------------------------------------------------------------------------------------------------------|
| Y/N   | yes or no                             | 1.     | "<" values denote that the quantification of that analyte is below the reporting level for the analytical      |
| gpm   | gallons per minute                    |        | laboratory, acceptable by environmental water quality laboratory industry standards.                           |
| deg C | degrees Celsius                       |        |                                                                                                                |
| SU    | standard pH units                     | 2.     | Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an |
| μS/cm | microsiemens per centimeter           |        | equivalent amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and         |
| mV    | millivolts                            |        | hydroxide depending on the initial pH of the sample solution, each components reported as equivalent CaCO3.    |
| mg/L  | milligram per liter                   |        |                                                                                                                |
| pCi/L | picocuries per liter                  | 3.     | Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic          |
| NM    | not measured (field)                  |        | monitoring program by both GCC Energy and the contracted environmental water quality analytical laboratories.  |
| NA    | not analyzed (lab)                    |        | QA/QC results are not shown in this table.                                                                     |



|                              |              |     |          |      |      |       |       | Ν       | /W-5-A      |       |      |      |      |     |      |     |       |      |      |      |
|------------------------------|--------------|-----|----------|------|------|-------|-------|---------|-------------|-------|------|------|------|-----|------|-----|-------|------|------|------|
|                              | Year         |     |          |      | 2017 |       |       |         |             |       |      |      | 2018 |     |      |     |       |      | 2019 |      |
|                              | Quarter      | Q2  |          | Q3   |      |       | Q4    |         |             | Q1    |      | (    | 2    |     | Q3   |     | Q4    | Q1   | Q2   | Q3   |
|                              | Month        | 6   | 7        | 8    | 9    | 10    | 11    | 12      | 1           | 2     | 3    | 4    | 5    | 6   | 7    | 8   | 11    | 2    | 5    | 8    |
| Sa                           | mple Date    | 6/7 | 7/18     | 8/23 | 9/26 | 10/26 | 11/16 | 12/5    | 1/2         | 2/9   | 3/22 | 4/11 | 5/10 |     | 7/23 | 8/7 | 11/26 | 2/20 | 5/30 | 8/14 |
| Lab And                      | alysis (Y/N) | N   | N        | N    | N    | N     | N     | N       | N           | N     | N    | N    | N    | N   | N    | N   | N     | N    | N    | N    |
|                              |              |     |          |      |      |       |       | Field   | Paramete    | rs:   |      |      |      |     |      |     |       |      |      |      |
| Purge Flow Rate              | gpm          |     |          |      |      |       |       |         |             |       |      |      |      |     |      |     |       |      |      |      |
| Total Purged                 | gal          |     |          |      |      |       |       |         |             |       |      |      |      |     |      |     |       |      |      |      |
| Depth to Water               | ft bgs       |     |          |      |      |       |       |         |             |       |      |      |      |     |      |     |       |      |      |      |
| Temperature                  | deg C        | dry | dry      | dry  | dry  | dry   | dry   | dry     | dry         | dry   | dry  | dry  | dry  | *** | dry  | dry | dry   | dry  | dry  | dry  |
| pН                           | SU           |     |          |      |      |       |       |         |             |       |      |      |      |     |      |     |       |      |      |      |
| Specific Conductance         | µ\$/cm       |     |          |      |      |       |       |         |             |       |      |      |      |     |      |     |       |      |      |      |
| Oxygen Reduction Potential   | mV           |     |          |      |      |       |       |         |             |       |      |      |      |     |      |     |       |      |      |      |
|                              |              |     |          |      |      |       |       | Lab And | lytical Res | ults: |      |      |      |     |      |     |       |      |      |      |
| Hardness as CaCO3            | mg/L         |     |          |      |      |       |       |         |             |       |      |      |      |     |      |     |       |      |      |      |
| pH (Lab)                     | SU           |     |          |      |      |       |       |         |             |       |      |      |      |     |      |     |       |      |      |      |
| Total Dissolved Solids (Lab) | mg/L         |     |          |      |      |       |       |         |             |       |      |      |      |     |      |     |       |      |      |      |
| Calcium                      | mg/L         |     |          |      |      |       |       |         |             |       |      |      |      |     |      |     |       |      |      |      |
| Magnesium                    | mg/L         |     |          |      |      |       |       |         |             |       |      |      |      |     |      |     |       |      |      |      |
| Sodium                       | mg/L         |     |          |      |      |       |       |         |             |       |      |      |      |     |      |     |       |      |      |      |
| Potassium                    | mg/L         |     |          |      |      |       |       |         |             |       |      |      |      |     |      |     |       |      |      |      |
| Alkalinity, Total            | mg/L         |     |          |      |      |       |       |         |             |       |      |      |      |     |      |     |       |      |      |      |
| Alkalinity, Bicarbonate      | mg/L         |     |          |      |      |       |       |         |             |       |      |      |      |     |      |     |       |      |      |      |
| Alkalinity, Carbonate        | mg/L         |     |          |      |      |       |       |         |             |       |      |      |      |     |      |     |       |      |      |      |
| Alkalinity, Hydroxide        | mg/L         |     |          |      |      |       |       |         |             |       |      |      |      |     |      |     |       |      |      |      |
| Chloride                     | mg/L         |     |          |      |      |       |       |         |             |       |      |      |      |     |      |     |       |      |      |      |
| Fluoride                     | mg/L         |     |          |      |      |       |       |         |             |       |      |      |      |     |      |     |       |      |      |      |
| Sulfate as SO4               | mg/L         |     |          |      |      |       |       |         |             |       |      |      |      |     |      |     |       |      |      |      |
| Total Organic Carbon (TOC)   | mg/L         |     |          |      |      |       |       |         |             |       |      |      |      |     |      |     |       |      |      |      |
| Nitrate/Nitrite as N         | mg/L         |     |          |      |      |       |       |         |             |       |      |      |      |     |      |     |       |      |      |      |
| Aluminum                     | mg/L         |     |          |      |      |       |       |         |             |       |      |      |      |     |      |     |       |      |      |      |
| Arsenic                      | mg/L         |     |          |      |      |       |       |         |             |       |      |      |      |     |      |     |       |      |      |      |
| Cadmium                      | mg/L         |     |          |      |      |       |       |         |             |       |      |      |      |     |      |     |       |      |      |      |
| Copper                       | mg/L         |     |          |      |      |       |       |         |             |       |      |      |      |     |      |     |       |      |      |      |
| Iron                         | mg/L         |     |          |      |      |       |       |         |             |       |      |      |      |     |      |     |       |      |      |      |
| Lead                         | mg/L         |     |          |      |      |       |       |         |             |       |      |      |      |     |      |     |       |      |      |      |
| Manganese                    | mg/L         |     |          |      |      |       |       |         |             |       |      |      |      |     |      |     |       |      |      |      |
| Mercury                      | mg/L         |     |          |      |      |       |       |         |             |       |      |      |      |     |      |     |       |      |      |      |
| Molybdenum                   | mg/L         |     |          |      |      |       |       |         |             |       |      |      |      |     |      |     |       |      |      |      |
| Selenium                     | mg/L         |     |          |      |      |       |       |         |             |       |      |      |      |     |      |     |       |      |      |      |
| Silica (SiO2)                | mg/L         |     |          |      |      |       |       |         |             |       |      |      |      |     |      |     |       |      |      |      |
| Silicon                      | mg/L         |     | <u> </u> |      |      |       |       |         |             |       |      |      |      |     |      |     |       |      |      |      |
| Uranium                      | mg/L         |     |          |      |      |       |       |         |             |       |      |      |      |     |      |     |       |      |      |      |
| Zinc                         | mg/L         |     |          |      |      |       |       |         |             |       |      |      |      |     |      |     |       |      |      |      |

#### Notes & Definitions:

| <br>La P | lata | Coun | ty |
|----------|------|------|----|

|        | La riata county stage o jire restire |    | prevenced sumpling delivity                                                                                             |
|--------|--------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------|
| Y/N    | yes or no                            | 1. | "<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory,   |
| gpm    | gallons per minute                   |    | acceptable by environmental water quality laboratory industry standards.                                                |
| deg C  | degrees Celsius                      |    |                                                                                                                         |
| SU     | standard pH units                    | 2. | Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivale |
| µ\$/cm | microsiemens per centimeter          |    | amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending         |
|        |                                      |    |                                                                                                                         |

all an an all the

- µS/cm mi mV millivolts
- mg/L milligram per liter
- pCi/L picocuries per liter
- NM not measured (field)
- NA not analyzed (lab)

drochloric acid to a set pH point, reporting this value as an equivalent partitioned into bicarbonate, carbonate and hydroxide depending on the initial pH of the sample solution, each components reported as equivalent CaCO3.

3. Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown in this table.



|                              |             |          |        |        |          |        |          | N      | 1W-5-M      |          |        |        |          |     |       |          |          |          |          |          |
|------------------------------|-------------|----------|--------|--------|----------|--------|----------|--------|-------------|----------|--------|--------|----------|-----|-------|----------|----------|----------|----------|----------|
|                              | Year        |          |        |        | 2017     |        |          |        |             |          |        |        | 2018     |     |       |          |          |          | 2019     |          |
|                              | Quarter     | Q2       |        | Q3     |          |        | Q4       |        |             | 01       |        | C      | 12       |     | Q3    |          | Q4       | Q1       | Q2       | Q3       |
|                              | Month       | 6        | 7      | 8      | 9        | 10     | 11       | 12     | 1           | 2        | 3      | 4      | 5        | 6   | 7     | 8        | 11       | 2        | 5        | 8        |
| Sa                           | mple Date   | 6/7      | 7/18   | 8/23   | 9/26     | 10/26  | 11/16    | 12/5   | 1/2         | 2/9      | 3/22   | 4/11   | 5/10     |     | 7/23  | 8/7      | 11/5-6   | 2/20     | 5/30     | 8/14     |
| Lab Ana                      | lysis (Y/N) | Y        | N      | N      | Y        | N      | Y        | N      | N           | Y        | NM     | N      | Y        | N   | N     | Y        | Y        | Y        | Y        | Y        |
|                              |             |          |        |        |          |        |          | Field  | Paramete    | rs:      |        |        |          |     |       |          |          |          |          |          |
| Purge Flow Rate              | gpm         | NM       | NM     | NM     | NM       | NM     | NM       | NM     | NM          | 0.1      | NM     | 0.1    | 0.1      | ••• | 0.1   | 0.1      | 0.1      | 0.12     | 0.1      | 0.1      |
| Total Purged                 | gal         | 7.5      | NM     | NM     | NM       | 1.3    | 1        | 1      | 1           | 1.5      | 1.5    | 1      | 1.3      |     | 1.3   | 1        | 1.1      | 1.25     | 1.3      | 1.1      |
| Depth to Water               | ft bgs      | 276.48   | 264.03 | 236.52 | 268.98   | 263.77 | 262.82   | 263.78 | 263.77      | 263.67   | 263.65 | 263.69 | 263.74   |     | 263.9 | 263.92   | 264.68   | 263.45   | 263.7    | 263.92   |
| Temperature                  | deg C       | 22.5     | NM     | NM     | 11.1     | 10.4   | 9.9      | 8.8    | 9.3         | 9.9      | 9.5    | 9.5    | 10.1     |     | 12.5  | 11.7     | 9.6      | 6.66     | 10.2     | 11.1     |
| pН                           | SU          | 8.38     | NM     | NM     | 8.81     | 8.81   | 8.86     | 8.84   | 8.84        | 8.83     | 8.87   | 8.59   | 8.55     |     | 8.56  | 8.61     | 8.54     | 8.62     | 8.36     | 8.45     |
| Specific Conductance         | μS/cm       | 1355     | NM     | NM     | 1621     | 1647   | 1637     | 1670   | 1664        | 1622     | 1610   | 1592   | 1596     |     | 1553  | 1558     | 1570     | 1606.9   | 1527     | 1572     |
| Oxygen Reduction Potential   | mV          | 77.1     | NM     | NM     | 47.8     | 50.6   | 53.3     | 41.5   | 12.6        | 12       | -33.8  | 5.7    | -21.3    |     | -44.7 | 14.5     | -38.2    | -39.7    | -12.1    | -16.01   |
|                              |             |          |        |        |          |        |          | Lab An | alytical Re | sults:   |        |        |          |     |       |          |          |          |          |          |
| Hardness as CaCO3            | mg/L        | 13.6     |        |        | 14.0     |        | 10.2     |        |             | 10.5     |        |        | 9.11     |     |       | 9.34     | 9.48     | 8.79     | 8.47     | 8.74     |
| pH (Lab)                     | SU          | 8.80     |        |        | 8.66     |        | 8.58     |        |             | 8.62     |        |        | 8.67     |     |       | 8.60     | 8.50     | 8.54     | 8.14     | 8.37     |
| Total Dissolved Solids (Lab) | mg/L        | 1160     |        |        | 1120     |        | 1070     |        |             | 1030     |        |        | 1010     |     |       | 990      | 975      | 1050     | 975      | 1010     |
| Calcium                      | mg/L        | 3.89     |        |        | 3.69     |        | 2.87     |        |             | 2.74     |        |        | 2.36     |     |       | 2.37     | 2.39     | 2.25     | 2.16     | 2.20     |
| Magnesium                    | mg/L        | 0.943    |        |        | 1.16     |        | 0.750    |        |             | 0.880    |        |        | 0.78     |     |       | 0.829    | 0.854    | 0.769    | 0.748    | 0.787    |
| Sodium                       | mg/L        | 428      |        |        | 433      |        | 411      |        |             | 416      |        |        | 398      |     |       | 404      | 417      | 416      | 384      | 392      |
| Potassium                    | mg/L        | <5.00    |        |        | 1.70     |        | <5.00    |        |             | 1.68     |        |        | 1.25     |     |       | <2.00    | <2.00    | 1.9      | 1.29     | 1.35     |
| Alkalinity, Total            | mg/L        | 940      |        |        | 985      |        | 945      |        |             | 1000     |        |        | 900      |     |       | 940      | 900      | 860      | 945      | 905      |
| Alkalinity, Bicarbonate      | mg/L        | 730      |        |        | 815      |        | 855      |        |             | 820      |        |        | 780      |     |       | 760      | 810      | 720      | 805      | 775      |
| Alkalinity, Carbonate        | mg/L        | 210      |        |        | 170      |        | 140      |        |             | 180      |        |        | 120      |     |       | 180      | 90.0     | 140      | 140      | 130      |
| Alkalinity, Hydroxide        | mg/L        | <10.0    |        |        | <10.0    |        | <10.0    |        |             | <10.0    |        |        | <10      |     |       | <10.0    | <10.0    | <10.0    | <10      | <10.0    |
| Chloride                     | mg/L        | 11.4     |        |        | 6.32     |        | 8.60     |        |             | 5.93     |        |        | 7.48     |     |       | 5.23     | 4.98     | 5.17     | 5.3      | 5.11     |
| Fluoride                     | mg/L        | 0.954    |        |        | 0.606    |        | 0.815    |        |             | 0.535    |        |        | 0.565    |     |       | 0.536    | 0.340    | 0.367    | 0.404    | 0.327    |
| Sulfate as SO4               | mg/L        | 32.6     |        |        | 38.1     |        | 32.3     |        |             | 21.6     |        |        | 17.3     |     |       | 13.3     | 9.01     | 7.39     | 7.62     | 6.48     |
| Total Organic Carbon (TOC)   | mg/L        | 6.32     |        |        | 3.42     |        | 3.69     |        |             | 3.65     |        |        | 3.82     |     |       | 3.78     | 3.68     | 3.46     | 3.46     | 3.24     |
| Nitrate/Nitrite as N         | mg/L        | 0.599    |        |        | <0.400   |        | <0.020   |        |             | <0.020   |        |        | < 0.02   |     |       | <0.020   | <0.020   | <0.020   | < 0.020  | <0.020   |
| Aluminum                     | mg/L        | < 0.250  |        |        | < 0.050  |        | <0.250   |        |             | < 0.050  |        |        | < 0.05   |     |       | < 0.100  | <0.100   | < 0.050  | < 0.050  | <0.050   |
| Arsenic                      | mg/L        | 0.0129   |        |        | 0.0200   |        | 0.0151   |        |             | 0.0192   |        |        | 0.0232   |     |       | 0.0234   | 0.0165   | 0.0177   | 0.0176   | 0.0194   |
| Cadmium                      | mg/L        | < 0.0005 |        |        | < 0.0001 |        | < 0.0005 |        |             | < 0.0001 |        |        | < 0.0001 |     |       | < 0.0001 | <0.0002  | < 0.0002 | < 0.0001 | < 0.0001 |
| Copper                       | mg/L        | 0.0229   |        |        | 0.0074   |        | 0.0060   |        |             | 0.0076   |        |        | 0.0049   |     |       | 0.0072   | 0.0074   | 0.0103   | 0.0148   | 0.0054   |
| Iron                         | mg/L        | <0.250   |        |        | <0.050   |        | <0.250   |        |             | <0.050   |        |        | < 0.05   |     |       | <0.100   | <0.100   | <0.050   | < 0.050  | <0.050   |
| Lead                         | mg/L        | < 0.0025 |        |        | <0.0005  |        | <0.0025  |        |             | < 0.0005 |        |        | <0.0005  |     |       | < 0.0005 | < 0.001  | < 0.0010 | < 0.0005 | < 0.0005 |
| Manganese                    | mg/L        | < 0.0025 |        |        | 0.0036   |        | 0.0066   |        |             | 0.0082   |        |        | 0.0104   |     |       | 0.0121   | 0.0155   | 0.017    | 0.0146   | 0.0158   |
| Mercury                      | mg/L        | < 0.0002 |        |        | < 0.0002 |        | < 0.0002 |        |             | < 0.0002 |        |        | < 0.0002 |     |       | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 |
| Molybdenum                   | mg/L        | 0.0395   |        |        | 0.0274   |        | 0.0247   |        |             | 0.0158   |        |        | 0.0113   |     |       | 0.0114   | 0.0078   | 0.0066   | 0.0053   | 0.0051   |
| Selenium                     | mg/L        | < 0.0050 |        |        | 0.0014   |        | < 0.0050 |        |             | < 0.0010 |        |        | < 0.001  |     |       | 0.0010   | < 0.002  | < 0.0020 | < 0.001  | < 0.0010 |
| Silica (SiO2)                | mg/L        | <5.35    |        |        | 9.07     |        | <5.35    |        |             | 8.66     |        |        | 8.17     |     |       | 8.28     | 9.20     | 8.37     | 8.4      | 9.18     |
| Silicon                      | mg/L        | <2.50    |        |        | 4.24     |        | <2.50    |        |             | 4.05     |        |        | 3.82     |     |       | 3.87     | 4.30     | 3.91     | 3.93     | 4.29     |
| Uranium                      | mg/L        | 0.0117   |        |        | 0.0098   |        | 0.0104   |        |             | 0.0095   |        |        | 0.0089   |     |       | 0.0112   | 0.0099   | 0.0103   | 0.0085   | 0.0093   |
| Zinc                         | mg/L        | 0.204    |        |        | 0.138    |        | 0.109    |        |             | 0.0933   |        |        | 0.0816   |     |       | 0.0801   | 0.0919   | 0.115    | 0.0576   | 0.0567   |

#### Notes & Definitions:

#### \*\*\* La Plata County stage 3 fire restrictions prevented sampling activity

Y/N

gpm

deg C

| yes or no          | 1. | "<" values denote that the quantification of that analyte is below the reporting level for the analytical |
|--------------------|----|-----------------------------------------------------------------------------------------------------------|
| gallons per minute |    | laboratory, acceptable by environmental water quality laboratory industry standards.                      |
| degrees Celsius    |    |                                                                                                           |
| standard pH units  | 2. | Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value  |

- SU standard pH units
- µS/cm microsiemens per centimeter mV millivolts
- mg/L milligram per liter
- pCi/L picocuries per liter
- NM not measured (field)
- NA not analyzed (lab)
- as an equivalent amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the initial pH of the sample solution, each components
- 3. Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown in this table.



|                              |             | MW-7-EAA |       |          |       |       |          |             |       |          |  |  |
|------------------------------|-------------|----------|-------|----------|-------|-------|----------|-------------|-------|----------|--|--|
|                              | Year        | 2018     |       |          |       | 20    | 019      |             |       |          |  |  |
|                              | Quarter     | Q4       |       | Q1       |       |       | Q2       |             | 0     | 13       |  |  |
|                              | Month       | 12       | 1     | 2        | 3     | 4     | 5        | 6           | 7     | 8        |  |  |
| Sa                           | mple Date   | 12/23    | 1/29  | 2/19     | 3/20  | 4/16  | 5/29     | 6/20        | 7/24  | 8/13     |  |  |
| Lab Ana                      | lysis (Y/N) | Y        | N     | Y        | N     | N     | Y        | N           | N     | Y        |  |  |
|                              |             |          |       | r        |       |       | Field    | Paramete    | rs:   |          |  |  |
| Purge Flow Rate              | gpm         | 1.10     | 1.10  | 1.00     | 3.00  | 1.00  | 1.00     | 1.00        | 1.00  | 1.00     |  |  |
| Total Purged                 | gal         | 15.0     | 18.0  | 15.0     | 3.0   | 15.0  | 16.0     | 15.3        | 15.3  | 17.0     |  |  |
| Depth to Water               | ft bgs      | 36.13    | 36.27 | 36.45    | 36.52 | 36.70 | 36.25    | 36.22       | 36.48 | 36.49    |  |  |
| Temperature                  | deg C       | 10.0     | 10.0  | 10.0     | 9.9   | 10.1  | 10.4     | 10.4        | 10.6  | 10.5     |  |  |
| pН                           | SU          | 6.99     | 7.01  | 7.04     | 6.93  | 7.00  | 7.06     | 7.07        | 6.28  | 6.95     |  |  |
| Specific Conductance         | μS/cm       | 2001     | 1910  | 1910     | 1926  | 1912  | 1767     | 1836        | 1885  | 1890     |  |  |
| Oxygen Reduction Potential   | mV          | -68.0    | -36.7 | -41.4    | -38.1 | -48.8 | 14.1     | -13.8       | -33.9 | -37.8    |  |  |
|                              |             | _        |       |          |       |       | Lab And  | lytical Res | ults: |          |  |  |
| Hardness as CaCO3            | mg/L        | 936      |       | 1030     |       |       | 982      |             |       | 997      |  |  |
| pH (Lab)                     | SU          | 7.2      |       | 7.37     |       |       | 7.17     |             |       | 7.09     |  |  |
| Total Dissolved Solids (Lab) | mg/L        | 1460     |       | 1480     |       |       | 1490     |             |       | 1480     |  |  |
| Calcium                      | mg/L        | 170      |       | 179      |       |       | 171      |             |       | 173      |  |  |
| Magnesium                    | mg/L        | 124      |       | 142      |       |       | 135      |             |       | 137      |  |  |
| Sodium                       | mg/L        | 75.3     |       | 81.3     |       |       | 75.0     |             |       | 75.2     |  |  |
| Potassium                    | mg/L        | 3.87     |       | 3.9      |       |       | <5.00    |             |       | 3.74     |  |  |
| Alkalinity, Total            | mg/L        | 380      |       | 367      |       |       | 405      |             |       | 392      |  |  |
| Alkalinity, Bicarbonate      | mg/L        | 380      |       | 367      |       |       | 405      |             |       | 392      |  |  |
| Alkalinity, Carbonate        | mg/L        | <10.0    |       | <10.0    |       |       | <10.0    |             |       | <10.0    |  |  |
| Alkalinity, Hydroxide        | mg/L        | <10.0    |       | <10.0    |       |       | <10.0    |             |       | <10.0    |  |  |
| Chloride                     | mg/L        | 11.9     |       | 10.7     |       |       | 10.8     |             |       | 10.9     |  |  |
| Fluoride                     | mg/L        | <0.500   |       | 0.332    |       |       | 0.322    |             |       | 0.322    |  |  |
| Sulfate as SO4               | mg/L        | 732      |       | 736      |       |       | 733      |             |       | 844      |  |  |
| Total Organic Carbon (TOC)   | mg/L        | 3.72     |       | 3.57     |       |       | 3.73     |             |       | 3.70     |  |  |
| Nitrate/Nitrite as N         | mg/L        | <0.020   |       | < 0.020  |       |       | <0.020   |             |       | <0.020   |  |  |
| Aluminum                     | mg/L        | < 0.050  |       | <0.100   |       |       | <0.250   |             |       | <0.100   |  |  |
| Arsenic                      | mg/L        | 0.0014   |       | 0.0015   |       |       | 0.0013   |             |       | 0.0016   |  |  |
| Cadmium                      | mg/L        | < 0.0001 |       | < 0.0002 |       |       | < 0.0001 |             |       | < 0.0001 |  |  |
| Copper                       | mg/L        | 0.0003   |       | 0.0018   |       |       | 0.0011   |             |       | 0.0008   |  |  |
| Iron                         | mg/L        | 1.82     |       | 1.95     |       |       | 1.81     |             |       | 2.12     |  |  |
| Lead                         | mg/L        | < 0.0005 |       | < 0.0010 |       |       | < 0.0005 |             |       | < 0.0005 |  |  |
| Manganese                    | mg/L        | 3.72     |       | 4.49     |       |       | 4.01     | l           |       | 4.22     |  |  |
| Mercury                      | mg/L        | < 0.0002 |       | < 0.0002 |       |       | < 0.0002 |             |       | < 0.0002 |  |  |
| Molybdenum                   | mg/L        | 0.0008   |       | 0.0011   |       |       | 0.0007   |             |       | 0.0009   |  |  |
| Selenium                     | ma/L        | <0.0020  |       | < 0.0020 |       |       | <0.0010  |             |       | 0.0011   |  |  |
| Silica (Si02)                | ma/L        | 16.6     |       | 16.1     |       |       | 16.1     |             |       | 16.9     |  |  |
| Silicon                      | ma/L        | 7.75     |       | 7.52     |       |       | 7.55     |             |       | 7.90     |  |  |
| Uranium                      | ma/L        | 0.0021   |       | 0.0018   |       |       | 0.0017   |             |       | 0.0018   |  |  |
| Zinc                         | ma/l        | <0.0050  |       | <0.0040  |       |       | 0.0021   |             |       | 0.0020   |  |  |
| LIIIC                        | mg/L        | ~0.0030  |       | ~0.0040  |       |       | 0.0021   |             |       | 0.0020   |  |  |

- Y/N yes or no gpm gallons per minute
- deg C degrees Celsius
- SU standard pH units
- µS/cm microsiemens per centimeter
- mV millivolts
- mg/L milligram per liter
- pCi/L picocuries per liter
- NM not measured (field)
- NA not analyzed (lab)
- \* Anomalous value under review

- "<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.
- Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent
  amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the
  initial pH of the sample solution, each components reported as equivalent CaCO3.
- Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown in this table.



|                              | MW-8-EAA     |          |       |          |       |       |          |             |       |          |  |  |
|------------------------------|--------------|----------|-------|----------|-------|-------|----------|-------------|-------|----------|--|--|
|                              | Year         | 2018     |       |          |       | 20    | 019      |             |       |          |  |  |
|                              | Quarter      | Q4       |       | Q1       |       |       | Q2       |             | C     | 23       |  |  |
|                              | Month        | 12       | 1     | 2        | 3     | 4     | 5        | 6           | 7     | 8        |  |  |
| Sa                           | imple Date   | 12/23    | 1/29  | 2/19     | 3/20  | 4/16  | 5/29     | 6/20        | 7/24  | 8/13     |  |  |
| Lab And                      | alysis (Y/N) | Y        | N     | Y        | N     | N     | Y        | N           | N     | Y        |  |  |
|                              |              |          | _     |          |       |       | Field    | Paramete    | rs:   |          |  |  |
| Purge Flow Rate              | gpm          | 0.85     | 1.10  | 0.50     | 3.00  | 0.50  | 0.75     | 1.00        | 1.00  | 0.75     |  |  |
| Total Purged                 | gal          | 18.0     | 14.0  | 15.0     | 3.0   | 15.0  | 17.0     | 15.3        | 15.3  | 18.0     |  |  |
| Depth to Water               | ft bgs       | 40.00    | 39.95 | 40.10    | 43.45 | 40.44 | 40.05    | 39.94       | 40.10 | 40.08    |  |  |
| Temperature                  | deg C        | 10.3     | 10.2  | 10.0     | 9.9   | 10.3  | 10.5     | 10.6        | 10.5  | 10.6     |  |  |
| pН                           | SU           | 7.12     | 7.09  | 7.13     | 7.17  | 7.09  | 7.02     | 7.17        | 7.09  | 7.05     |  |  |
| Specific Conductance         | µS/cm        | 1781     | 1696  | 1720     | 1725  | 1729  | 1628     | 1676        | 1699  | 172      |  |  |
| Oxygen Reduction Potential   | mV           | -65      | -52.8 | -51.8    | -53.0 | -59.7 | 11.0     | -29.5       | -46.6 | -44.8    |  |  |
|                              |              |          |       |          |       | 1     | Lab And  | lytical Res | ults: |          |  |  |
| Hardness as CaCO3            | mg/L         | 870      |       | 861      |       |       | 864      |             |       | 883      |  |  |
| pH (Lab)                     | SU           | 7.28     |       | 7.36     |       |       | 7.13     |             |       | 7.05     |  |  |
| Total Dissolved Solids (Lab) | mg/L         | 1220     |       | 1290     |       |       | 1240     |             |       | 1280     |  |  |
| Calcium                      | mg/L         | 152      |       | 151      |       |       | 148      |             |       | 154      |  |  |
| Magnesium                    | mg/L         | 119      |       | 118      |       |       | 120      |             |       | 121      |  |  |
| Sodium                       | mg/L         | 81.7     |       | 82.6     |       |       | 77.2     |             |       | 78.6     |  |  |
| Potassium                    | mg/L         | 3.80     |       | 3.27     |       |       | 3.55     |             |       | 3.18     |  |  |
| Alkalinity, Total            | mg/L         | 400      |       | 435      |       |       | 450      |             |       | 431      |  |  |
| Alkalinity, Bicarbonate      | mg/L         | 400      |       | 435      |       |       | 450      |             |       | 431      |  |  |
| Alkalinity, Carbonate        | mg/L         | <10.0    |       | <10.0    |       |       | <10.0    |             |       | <10.0    |  |  |
| Alkalinity, Hydroxide        | mg/L         | <10.0    |       | <10.0    |       |       | <10.0    |             |       | <10.0    |  |  |
| Chloride                     | mg/L         | 9.83     |       | 10.5     |       |       | 10.3     |             |       | 11.1     |  |  |
| Fluoride                     | mg/L         | 0.380    |       | 0.370    |       |       | 0.338    |             |       | 0.342    |  |  |
| Sulfate as SO4               | mg/L         | 533      |       | 559      |       |       | 606      |             |       | 643      |  |  |
| Total Organic Carbon (TOC)   | mg/L         | 3.77     |       | 3.59     |       |       | 3.77     |             |       | 3.68     |  |  |
| Nitrate/Nitrite as N         | mg/L         | <0.020   |       | <0.020   |       |       | <0.020   |             |       | <0.020   |  |  |
| Aluminum                     | mg/L         | <0.100   |       | <0.100   |       |       | < 0.050  |             |       | <0.100   |  |  |
| Arsenic                      | mg/L         | 0.0020   |       | 0.0018   |       |       | 0.0018   |             |       | 0.0021   |  |  |
| Cadmium                      | mg/L         | <0.0001  |       | <0.0002  |       |       | < 0.0001 |             |       | <0.0001  |  |  |
| Copper                       | mg/L         | 0.0004   |       | 0.0024   |       |       | 0.0023   |             |       | 0.0008   |  |  |
| Iron                         | mg/L         | 2.12     |       | 2.13     |       |       | 2.42     |             |       | 2.46     |  |  |
| Lead                         | mg/L         | < 0.0005 |       | <0.0010  |       |       | < 0.0005 |             |       | < 0.0005 |  |  |
| Manganese                    | mg/L         | 3.17     |       | 3.52     |       |       | 3.06     |             |       | 3.37     |  |  |
| Mercury                      | mg/L         | < 0.0002 |       | <0.0002  |       |       | < 0.0002 |             |       | < 0.0002 |  |  |
| Molybdenum                   | mg/L         | 0.0009   |       | 0.0011   |       |       | 0.0008   |             |       | 0.0011   |  |  |
| Selenium                     | mg/L         | < 0.0020 |       | < 0.0020 |       |       | 0.0010   |             |       | 0.0013   |  |  |
| Silica (Si02)                | mg/L         | 16.3     |       | 15.3     |       |       | 15.7     |             |       | 16.1     |  |  |
| Silicon                      | mg/L         | 7.63     |       | 7.15     |       |       | 7.32     |             |       | 7.52     |  |  |
| Uranium                      | mg/L         | 0.0021   |       | 0.0017   |       |       | 0.0016   |             |       | 0.0018   |  |  |
| Zinc                         | mall         | <0.0050  |       | <0.0040  |       | 1     | <0.0020  |             |       | <0.0020  |  |  |

- Y/N yes or no
- gpm gallons per minute
- deg C degrees Celsius
- SU standard pH units
- μS/cm microsiemens per centimeter mV millivolts
- mg/L milligram per liter
- pCi/L picocuries per liter
- NM not measured (field)
- NA not analyzed (lab)
- \* Anomalous value under review

- "<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.
- Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent
  amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the
  initial pH of the sample solution, each components reported as equivalent CaCO3.
- Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown in this table.



|                              |              |         | _      |                 | _      | _     | M           | W-8-MI      |        |             |
|------------------------------|--------------|---------|--------|-----------------|--------|-------|-------------|-------------|--------|-------------|
|                              | Year         | 2018    |        |                 |        | 20    | 019         |             |        |             |
|                              | Quarter      | Q4      |        | Q1              |        |       | Q2          |             | C      | <b>Q</b> 3  |
|                              | Month        | 12      | 1      | 2               | 3      | 4     | 5           | 6           | 7      | 8           |
| Sai                          | mple Date    | 12/23   | 1/29   | 2/19            | 3/20   | 4/16  | 5/29        | 6/20        | 7/24   | 8/13        |
| Lab Ana                      | lysis (Y/N)  | Y       | N      | Y               | N      | N     | Y           | N           | N      | Y           |
|                              |              |         |        |                 |        |       | Field       | Paramete    | rs:    |             |
| Purge Flow Rate              | gpm          | 1.10    | 1.00   | 0.50            | 3.00   | 0.50  | 0.50        | 0.25        | 0.50   | 0.75        |
| Total Purged                 | gal          | 27.5    | 18.0   | 1.0             | 3.0    | 1.5   | 2.5         | 2.5         | 2.3    | 3.0         |
| Depth to Water               | ft bgs       | 45.75   | 43.48  | 43.50           | 44.30  | 44.47 | 44.10       | 44.24       | 44.45  | 44.59       |
| Temperature                  | deg C        | 10.8    | 10.8   | 10.6            | 11.2   | 10.4  | 11.1        | 11.4        | 11.0   | 11.4        |
| рН                           | SU           | 7.57    | 7.5    | 7.48            | 7.47   | 7.34  | 7.31        | 7.48        | 7.42   | 7.382       |
| Specific Conductance         | μS/cm        | 1786    | 1667   | 1651            | 1658   | 1643  | 1595        | 1639        | 1645   | 1658        |
| Oxygen Reduction Potential   | mV           | -84.4   | -177.1 | -122.1          | -113.3 | -87.2 | -54.4       | -97.1       | -116.4 | -119.4      |
|                              |              |         |        |                 |        |       | Lab And     | lytical Res | ults:  |             |
| Hardness as CaCO3            | mg/L         | 167     |        | 249             |        |       | 273         |             |        | 253         |
| pH (Lab)                     | SU           | 7.73    |        | 7.54            |        |       | 7.24        |             |        | 7.46        |
| Total Dissolved Solids (Lab) | mg/L         | 1050    |        | 1030            |        |       | 1100        |             |        | 1110        |
| Calcium                      | mg/L         | 34.0    |        | 48.5            |        |       | 52.4        |             |        | 49.7        |
| Magnesium                    | mg/L         | 19.9    |        | 31.0            |        |       | 34.5        |             |        | 31.4        |
| Sodium                       | mg/L         | 344     |        | 312             |        |       | 289         |             |        | 289         |
| Potassium                    | mg/L         | 4.47    |        | 5.25            |        |       | <5.00       |             |        | 4.55        |
| Alkalinity, Total            | mg/L         | 500     |        | 565             |        |       | 560         |             |        | 573         |
| Alkalinity, Bicarbonate      | mg/L         | 500     |        | 565             |        |       | 560         |             |        | 573         |
| Alkalinity, Carbonate        | mg/L         | <10.0   |        | <10.0           |        |       | <10.0       |             |        | <10.0       |
| Alkalinity, Hydroxide        | mg/L         | <10.0   |        | <10.0           |        |       | <10.0       |             |        | <10.0       |
| Chloride                     | ma/L         | 12.7    |        | 10.0            |        |       | 9.33        |             |        | 9.06        |
| Fluoride                     | ma/L         | <0.500  |        | <0.200          |        |       | <0.200      |             |        | <0.200      |
| Sulfate as SO4               | ma/L         | 347     |        | 353             |        |       | 343         |             |        | 366         |
| Total Organic Carbon (TOC)   | ma/L         | 2.73    |        | 2.83            |        |       | 2.81        |             |        | 2.74        |
| Nitrate/Nitrite as N         | ma/L         | <0.020  |        | <0.020          |        |       | <0.020      |             |        | <0.020      |
| Aluminum                     | ma/L         | < 0.050 |        | <0.100          |        |       | <0.250      |             |        | <0.100      |
| Arsenic                      | ma/L         | 0.0008  |        | < 0.0010        |        |       | 0.0006      |             |        | 0.0005      |
| Cadmium                      | ma/1         | <0.0001 |        | <0.0002         |        |       | <0.0001     |             |        | <0.0001     |
| Copper                       | ma/1         | 0.0031  |        | 0.0066          |        |       | 0.0036      |             |        | 0.0035      |
| Iron                         | ma/1         | 0.137   |        | 0.162           |        |       | <0.250      |             |        | 0.129       |
| lead                         | ma/l         | <0.0005 |        | <0.0010         |        |       | <0.0005     |             |        | <0.0005     |
| Manaanese                    | ma/l         | 0.0495  |        | 0.0383          |        |       | 0.0327      |             |        | 0.0351      |
| Mercury                      | ma/l         | <0.0002 |        | <0.0002         |        |       | <0.00027    |             |        | <0.0002     |
| Molybdenum                   | ma/I         | 0.0005  |        | <0.0010         |        |       | <0.0005     |             |        | <0.0005     |
| Solonium                     | mall         | <0.0000 |        | <0.0020         |        |       | 0.0010      |             |        | 0.0010      |
| Silica (SiO2)                | mg/L<br>mg/l | 12.1    |        | 12.4            |        |       | 12.8        |             |        | 12.5        |
| Silicon                      | ma/I         | 5.65    |        | 5.78            |        |       | 5.00        |             |        | 5.83        |
| Uranium                      | mg/L<br>mg/L | 0.0002  |        | 0.0002          |        |       | 0.0002      |             |        | 0.0001      |
| Zinc                         | mg/L         | <0.0002 |        | <0.0002         |        |       | <0.0002     |             |        | <0.0001     |
|                              | 100000000    |         |        | 1 1 1 1 1 1 1 1 |        |       | 1.511101/11 |             |        | 1.511101/11 |

- Y/N yes or no
- gpm gallons per minute
- deg C degrees Celsius
- SU standard pH units
- µS/cm microsiemens per centimeter mV millivolts
- mg/L milligram per liter
- pCi/L picocuries per liter
- NM not measured (field)
- NA not analyzed (lab)
- \* Anomalous value under review

- "<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.
- Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent
  amount of calcium carbonate. This value is then partitioned into biarabonate, carbonate and hydroxide depending on the
  initial pH of the sample solution, each components reported as equivalent CaC03.
- Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown in this table.



| MW-8-LM                      |              |          |        |          |        |        |          |             |        |          |
|------------------------------|--------------|----------|--------|----------|--------|--------|----------|-------------|--------|----------|
|                              | Year         | 2018     |        |          |        | 20     | 019      |             |        |          |
|                              | Quarter      | Q4       |        | Q1       |        |        | Q2       |             | 0      | 13       |
|                              | Month        | 12       | 1      | 2        | 3      | 4      | 5        | 6           | 7      | 8        |
| Sa                           | mple Date    | 12/28    | 1/29   | 2/19     | 3/21   | 4/16   | 5/29     | 6/18        | 7/24   | 8/13     |
| Lab And                      | alysis (Y/N) | Y        | N      | Y        | N      | N      | Y        | N           | N      | Y        |
|                              |              |          |        | -        |        | 1      | Field    | Paramete    | rs:    |          |
| Purge Flow Rate              | gpm          | NM       | 1.00   | 0.25     | 1.00   | 0.50   | 0.10     | 0.25        | 0.25   | 0.50     |
| Total Purged                 | gal          | 30       | 4.0    | 1.5      | 1.0    | 2.0    | 1.3      | 6.8         | 2.0    | 2.0      |
| Depth to Water               | ft bgs       | 136.39   | 130.52 | 134.30   | 144.03 | 140.03 | 137.48   | 142.23      | 144.15 | 138.06   |
| Temperature                  | deg C        | 4.1      | 13.9   | 13.2     | 8.7    | 13.6   | 13.9     | 12.8        | 13.7   | 13.4     |
| pH                           | SU           | 8.37     | 8.7    | 8.71     | 8.41   | 8.7    | 8.5      | 8.66        | 8.64   | 8.58     |
| Specific Conductance         | µS/cm        | 2306     | 1274   | 1265     | 1310   | 1262   | 1234     | 1264        | 1226   | 1269     |
| Oxygen Reduction Potential   | mV           | 37.5     | -114.3 | 112.8    | 77.0   | -36.2  | 33.2     | -63.9       | -93.5  | -103.0   |
|                              |              |          | -      |          |        | 1      | Lab And  | lytical Res | sults: |          |
| Hardness as CaCO3            | mg/L         | 45.0     |        | 7.29     |        |        | 16.9     |             |        | 6.67     |
| pH (Lab)                     | SU           | 8.57     |        | 8.63     |        |        | 8.02     |             |        | 8.56     |
| Total Dissolved Solids (Lab) | mg/L         | 1420     |        | 770      |        |        | 780      |             |        | 785      |
| Calcium                      | mg/L         | 10.8     |        | 1.93     |        |        | 3.84     |             |        | 1.78     |
| Magnesium                    | mg/L         | 4.39     |        | 0.600    |        |        | 1.77     |             |        | 0.541    |
| Sodium                       | mg/L         | 382      |        | 341      |        |        | 317      |             |        | 306      |
| Potassium                    | mg/L         | 45.7     |        | 3.49     |        |        | <5.00    |             |        | 2.27     |
| Alkalinity, Total            | mg/L         | 615      |        | 720      |        |        | 745      |             |        | 731      |
| Alkalinity, Bicarbonate      | mg/L         | 535      |        | 610      |        |        | 645      |             |        | 645      |
| Alkalinity, Carbonate        | mg/L         | 80.0     |        | 110      |        |        | 100      |             |        | 86.0     |
| Alkalinity, Hydroxide        | mg/L         | <10.0    |        | <10.0    |        |        | <10.0    |             |        | <10.0    |
| Chloride                     | mg/L         | 175      |        | 5.11     |        |        | 6.80     |             |        | 2.63     |
| Fluoride                     | mg/L         | 2.06     |        | 3.91     |        |        | 3.95     |             |        | 3.97     |
| Sulfate as SO4               | mg/L         | 190      |        | 3.79     |        |        | 9.58     |             |        | 1.02     |
| Total Organic Carbon (TOC)   | mg/L         | 2.80     |        | 1.80     |        |        | 3.33     |             |        | 1.94     |
| Nitrate/Nitrite as N         | mg/L         | <0.020   |        | <0.020   |        |        | < 0.020  |             |        | <0.020   |
| Aluminum                     | mg/L         | < 0.050  |        | <0.100   |        |        | <0.250   |             |        | < 0.050  |
| Arsenic                      | mg/L         | 0.0106   |        | < 0.0010 |        |        | 0.0006   |             |        | 0.0007   |
| Cadmium                      | mg/L         | < 0.0001 |        | < 0.0002 |        |        | < 0.0001 |             |        | < 0.0001 |
| Copper                       | mg/L         | 0.0337   |        | 0.0077   |        |        | 0.0047   |             |        | 0.0041   |
| Iron                         | ma/L         | < 0.050  |        | <0.100   |        |        | <0.250   |             |        | <0.050   |
| Lead                         | ma/L         | < 0.0005 |        | < 0.0010 |        |        | < 0.0005 |             |        | < 0.0005 |
| Manaanese                    | ma/L         | 0.0258   |        | 0.0038   |        |        | 0.0150   |             |        | 0.0020   |
| Mercury                      | ma/L         | < 0.0002 |        | < 0.0002 |        |        | < 0.0002 |             |        | <0.0002  |
| Molybdenum                   | ma/L         | 0.0142   |        | < 0.0010 |        |        | 0.0009   |             |        | < 0.0005 |
| Selenium                     | ma/I         | 0.0020   |        | <0.0020  |        |        | <0.0010  |             |        | <0.0010  |
| Silica (Si02)                | ma/L         | 9.09     |        | 8.45     |        |        | 8.68     |             |        | 8.28     |
| Silicon                      | ma/I         | 4.25     |        | 3.95     |        |        | 4.06     |             |        | 3.87     |
| Uranium                      | ma/I         | 0.0044   |        | <0.0002  |        |        | 0.0001   |             |        | 0.0001   |
| Zinc                         | ma/I         | 0.0080   |        | <0.0040  |        |        | 0.0023   |             |        | <0.0020  |

- Y/N yes or no
- gpm gallons per minute
- deg C degrees Celsius
- SU standard pH units
- μS/cm microsiemens per centimeter mV millivolts
- mg/L milligram per liter
- pCi/L picocuries per liter
- NM not measured (field)
- NA not analyzed (lab)
- \* Anomalous value under review

- "<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.
- Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent
  amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the
  initial pH of the sample solution, each components reported as equivalent CaCO3.
- Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown in this table.



|                              |              | -       | -      |          |        |        | N        | 1W-8-PL           |        |         |
|------------------------------|--------------|---------|--------|----------|--------|--------|----------|-------------------|--------|---------|
|                              | Year         | 2018    |        |          |        | 20     | 019      |                   |        |         |
|                              | Quarter      | Q4      |        | Q1       |        |        | Q2       |                   | 0      | 13      |
|                              | Month        | 12      | 1      | 2        | 3      | 4      | 5        | 6                 | 7      | 8       |
| So                           | ample Date   | 12/27   | 1/29   | 2/19     | 3/20   | 4/16   | 5/29     | 6/20              | 7/24   | 8/13    |
| Lab And                      | alysis (Y/N) | Y       | N      | Y        | N      | N      | Y        | N                 | N      | Y       |
|                              |              |         |        |          |        |        | Field    | Paramete          | rs:    |         |
| Purge Flow Rate              | gpm          | 0.25    | 1.00   | 0.50     | 3.00   | 0.50   | 0.25     | 0.50              | 1.00   | 0.50    |
| Total Purged                 | gal          | 20.0    | 5.0    | 2.0      | 3.0    | 2.0    | 3.0      | 2.5               | 2.3    | 2.5     |
| Depth to Water               | ft bgs       | 125.97  | 126.29 | 126.40   | 127.10 | 126.98 | 126.70   | 126.82            | 127.25 | 127.38  |
| Temperature                  | deg C        | 10.3    | 14.2   | 13.4     | 12.9   | 13.2   | 14.2     | 14.8              | 14.7   | 14.9    |
| pН                           | SU           | 7.50    | 7.30   | 7.49     | 7.30   | 7.29   | 7.31     | 7.57              | 7.56   | 7.52    |
| Specific Conductance         | μS/cm        | 1690    | 1531   | 1571     | 1558   | 1554   | 1411     | 1326              | 1165   | 1083    |
| Oxygen Reduction Potential   | mV           | 30.2    | -116.5 | 97.9     | -108.7 | -110.6 | 34.2     | -57.6             | -74.0  | -79.5   |
|                              |              |         |        |          |        |        | Lab And  | ,<br>alytical Res | ults:  |         |
| Hardness as CaCO3            | mg/L         | 617     |        | 644      |        |        | 596      |                   |        | 411     |
| pH (Lab)                     | SU           | 7.28    |        | 7.40     |        |        | 7.26     |                   |        | 7.22    |
| Total Dissolved Solids (Lab) | mg/L         | 1150    |        | 1090     |        |        | 995      |                   |        | 705     |
| Calcium                      | mg/L         | 112     |        | 120      |        |        | 105      |                   |        | 73.1    |
| Magnesium                    | mg/L         | 82.1    |        | 83.8     |        |        | 81.4     |                   |        | 55.4    |
| Sodium                       | ma/L         | 106     |        | 124      |        |        | 102      |                   |        | 91.7    |
| Potassium                    | ma/L         | 5.14    |        | 5.62     |        |        | <5.00    |                   |        | 2.80    |
| Alkalinity, Total            | ma/I         | 370     |        | 415      |        |        | 435      |                   |        | 393     |
| Alkalinity, Bicarbonate      | ma/L         | 370     |        | 415      |        |        | 435      |                   |        | 393     |
| Alkalinity, Carbonate        | ma/L         | <10.0   |        | <10.0    |        |        | <10.0    |                   |        | <10.0   |
| Alkalinity, Hydroxide        | ma/L         | <10.0   |        | <10.0    |        |        | <10.0    |                   |        | <10.0   |
| Chloride                     | ma/I         | 18.8    |        | 18.5     |        |        | 9.03     |                   |        | 5.61    |
| Eluoride                     | ma/l         | 0.505   |        | 0 474    |        |        | 0.290    |                   |        | 0.291   |
| Sulfate as SO4               | ma/l         | 478     |        | 471      |        |        | 390      |                   |        | 232     |
| Total Organic Carbon (TOC)   | ma/I         | 4 17    |        | 4.02     |        |        | 2.92     |                   |        | 2 21    |
| Nitrate/Nitrite as N         | ma/l         | <0.020  |        | <0.020   |        |        | <0.020   |                   |        | <0.020  |
| Aluminum                     | mall         | <0.050  |        | <0.100   |        |        | <0.250   |                   |        | <0.050  |
| Arsenic                      | mall         | 0.0074  |        | 0.0124   |        |        | 0.0190   |                   |        | 0.0156  |
| Cadmium                      | mall         | <0.0001 |        | <0.0002  |        |        | <0.0001  |                   |        | <0.0001 |
| Conner                       | mall         | 0.0016  |        | 0.0025   |        |        | 0.0017   |                   |        | 0.0011  |
| Iron                         | mall         | <0.050  |        | 0.352    |        |        | <0.250   |                   |        | 0.120   |
| Lead                         | mall         | <0.0005 |        | <0.0010  |        |        | <0.230   |                   |        | <0.0005 |
| Managnese                    | mall         | 1 21    |        | 1 22     |        |        | 0.607    | -                 |        | 0.505   |
| Marcuru                      | mall         | <0.0002 |        | <0.0002  |        |        | <0.007   |                   |        | <0.0002 |
| Melubdenum                   | mg/L         | 0.0002  |        | 0.0002   |        |        | <0.0002  |                   |        | 0.0002  |
| norybuenum<br>o-logicum      | mg/L         | 0.0090  |        | 0.0008   |        |        | 0.0020   |                   |        | 0.0021  |
| Selenium                     | mg/L         | 0.0012  |        | <0.0020  |        |        | <0.0010  |                   |        | <0.0010 |
| Silica (SIU2)                | mg/L         | 14.1    |        | 16.5     |        |        | 1/./     |                   |        | 18.5    |
| Silicon                      | mg/L         | 6.58    | l      | 7.64     |        |        | 8.28     |                   |        | 8.67    |
| Uranium                      | mg/L         | 0.0052  |        | 0.0040   |        |        | 0.0010   |                   |        | 0.0009  |
| Zinc                         | ma/L         | 0.0344  |        | < 0.0040 | 1      | 1      | < 0.0020 |                   | 1      | <0.0080 |

- Y/N yes or no
- gpm gallons per minute
- deg C degrees Celsius
- SU standard pH units
- µS/cm microsiemens per centimeter
- mV millivolts
- mg/L milligram per liter
- pCi/L picocuries per liter
- NM not measured (field)
- NA not analyzed (lab)
- \* Anomalous value under review

- "<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.
- Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent
  amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the
  initial pH of the sample solution, each components reported as equivalent CaCO3.
- Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown in this table.