

9 3372 Lime Road, Pueblo, CO 81004

April 25, 2019

Mr. Patrick Lennberg Environmental Protection Specialist Division of Reclamation, Mining and Safety 1313 Sherman St., Room 215 Denver, CO 80203

Electronically submitted to Patrick.lennberg@state.co.us

Reference: Pueblo Cement Plant and Limestone Quarry. DRMS Permit No. M-2002-004

Subject: March 2019 Preliminary Groundwater Monitoring Report

Dear Mr. Lennberg,

Pursuant to TR-03 and TR-06 of our above-referenced permit, on March 7, 2019 GCC completed semi-annual monitoring of its groundwater monitoring well MW-5 and quarterly monitoring of its monitoring wells MW-6 and MW-7. Samples were not collected from MW-5 because the well was found to be dry when checked on March 7 at 11:35 AM.

Well MW-6 was bailed dry after approximately 2 casing volumes were removed. The well was checked again 3.8 hours later. Minimal recovery had occurred and the well was bailed dry again prior to being able to collect sufficient volume for analysis. MW-6 was checked again approximately 24 hours later and the level was approximately the same as that observed after 3.8 hours. No samples were collected due to lack of a sufficient or representative volume for sampling. Enclosed is the Groundwater Sampling Record documenting those measurements.

Well MW-7 was purged and sampled normally on March 7. The Groundwater Sampling Record and the preliminary laboratory report are attached. Data are very much in line with prior analytical results.

GCC plans to perform its next quarterly monitoring of MW-6 and MW-7 in June 2019, and the next semi-annual monitoring of MW-5 in September 2019. Should you have any questions/comments about this submission, please contact me at 719-647-6861 or dfurman@gcc.com.

Sincerely,

Diana Furman Environmental Engineer

Enclosures

Building together®

	GROUN	IDWATE	R SAM	PLING F	RECOR)	SAMPLE	No. MW	-6	
Project No:	26-00	1	andet men Konstanden och den sänstanda på det mond kan	Location:	Puebl	» Pla	int		Page of	1
Date:	/19	Weather Cond	litions:	10°F			Personnel:	e /D. Fur	man /p	Bomic
Comments:	Ist Q	uarte	r 20	19			10-100			DEMD
and an end of the second s			eletitettetetetetetetetetetetetetetetete	INS	TRUMENTS L	ISED	anna an deadar ann an Arrainnen Angalantean ann an	Season and a second	an a	a a ten in a state and a fait of a ten a ten a state and a stat
Instru	ument	Manufactu	urer/Model	Seria	al No.			Calibration		
Water Level Prob	e	Gestee	h ET	675	7		alan arana ang bara kana ang ang ang ang ang ang ang ang ang		an a	ar anna an an an Arran Arran Arran an A
pH Meter		YSI Pro	1030	18510	3866	Std: 4 D 10	@18.8 °C F	Reading 7, 0		Slope:
pH Meter						Std: (4) 7 10	@18.8 °C F	Reading 4.0		
Specific Conducta	ance Meter	YSI Pro	1030	18710	3866	Std: 1413	uS @ 25 °C	Reading 1413		
Specific Conducta	ance Meter					Std:	uS @ 25 °C	Reading		
Temperature		YSI Pr	1030	18510	3866					
Other:	a that had a second a second and second and a second second second second second second second second second s	I								the state of the s
Filtration	0.45 micron in	I-line high capa	city disposable	e filter.	enter # Astronomente Character Science and a factor of the solution	ŎĸţIJĔĔĔŔIJŎŢŎĊĬŖŎĸŎĸŎĿĬŎĿĬĸŎĔŶŢŢŎĿĿĬIJŎĔĿĹ	a sha da waxa ya ku da kwang na ki da ban da na ba bayan ya mana			
		kennen er en en ander en		WELL PI	URGING INFO	RMATION	Stephen and an and a second second second			
Casing Diameter	(inches): 2		Borehole Diameter	er (inches):	T	Screened Interva	al (ft. BGL): 31.	1'- 56.1	/	
Depth to Water (fi	t below MP): 5	6.03	Total Depth (ft):	59.55	Casing Volume (gal): 0,56	6	(gal/ft: 1.5" = 0.09;	2" = 0.16; 4" = 0	0.65)
Purging Method:	Bailer	, poly							dan men yan haring ang ang ang ang ang ang ang ang ang a	
Comments:	Monitoring point (MP) is the top of the	e PVC well casing	g.						
		Depth to		Specific						
3/ Date/	Vol. Purged	Water		Conductance	Temp	Appe	earance			
Time	(gal)	(feet below MP)	pН	(uS @ 25 deg C)	(deg C)	(color, see	diment, etc.)		Comments	
2925		56.03								
0938	0,5		7.12	5487	13.2	SI. de	sudy			
2945	0.5	58.52	7,07	5636	12.7	cloud	×			
0001	0,2					cloudy	1	- Dry	1	
1350		59.26								
1400	trace	59.49					and a supervised on the state of the supervised on the state of the	- Dry	No Sa	mple
1237		59.22			L	1		Insdepni	sk to 3	ample
Cummulative Volu	ume Purged:	1.2		(gallons)	6.1		(casing vol)		ener situ taun situ taun ya contextu na sensi yini ya ku ta	
	126	\ \		WELL SA	MPLING INFO	DRMATION			a na mana da da ana ang ata ang	
Sampling Equipm	ent: NP	t					terrenden er kunnen der er andere so			
SAMPLING M		TS: MA	anga mangka di sati ng pantaké gan mananaké, na man			nanan anan kanan an ar ar ar ar ar	n (a Parting Charles Parting and a Particular			
SAMP LING W	Depth to	Denth		Coccific	T	Other	0	1		
Date/	Water	Sampled		Conductance	Temp	Outer	Other			
Time	(feet below MP)	(feet below MP)	рН	(uS @ 25 den C)	(deg C)				Commente	
				(10 6 10 10 10	(003 0)	1			Commenta	
							1			
SAMPLE HAN	IDLING: N	A				- 1 990-0-100-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0				
Date/		Aliq	uots		Filtered	Preserved				
Time	Volume (ml)	Bottle Co	mposition	Quantity	(Y/N)	(type)		Comm	ents	
		5								
								and the second		
Field QA/QC S	Samples Collec	ted (type, Sam	ple No.):					n a Dramman a Marchant (an Incident an Palan deshed)		
Equipment De	contamination									
IN SE	al D	h	- Ar.	1	(
Signature of Fish	di. Thry	e mater	13 90	ound Sn	rtan		0000		INC	
Signature of Fiel	greisonnel:	0					GUU	RIU GRANDE	, 1110.	
	conce (var	·	Contractor and the street of the second				Pueblo, CO	Stranspirester and an an and share	

3/8

	GROUN	DINAIC	IN SAINI	LINGN	LUUNI		SAMELE NO	0. 1910	v /	
Project No:	001			Location: GCC	Puebla	Plant	<u>t</u>		Page of	1
Date: 3/2	119	Weather Cond	itions:	o"F			Personnel: B. Close /	D. Furn	nan/p	. Bemis
Comments:	ct Qu	ector	2019							
'	51 91	ar (er		INS		JSED				
Instru	ument	Manufactu	irer/Model	Seria	I No.			Calibration		
Water Level Prob	e	Gester	h ET	675)					
oH Meter		YSIPE	1030	185103	3866	Std: 4 🗇 10	@ <u>18,8</u> °C Re	eading 7,0		Slope:
oH Meter	_					Std: 4 7 10	@ <u>/\$.\$</u> °C Re	eading 4, 3		
Specific Conducta	ance Meter	YSI Pr	. 1030	18510	3866	Std: 1413	uS @ 25 °C Re	eading <u>141</u>	3_	
Specific Conducta	ance Meter	0		100		Std:	uS @ 25 °C Re	eading		
Temperature		YSI PI	0/030	185107	3866					
Other:	0.45 minutes in	line high cone	aitu dianaaablu	filtor						
Filtration	0.45 micron in	-line nign capa	city disposable	WELL DI		PMATION	and the second	in a second and the second		ana ta Marajón a sina a surada
Casing Diameter	(inches): 7		Borehole Diamot	er (inches):		Screened Interval	(ft. BGL)· ス	0.4-50	5.4'	
Depth to Water (f	thelow MPI. Ur	0.79	Total Depth (ft)	59,27	Casing Volume	(gal): 2.97		(gal/ft: 1.5" = 0.09	9; 2" = 0.16; 4" =	= 0.65)
Purging Method	Barler	od	. star Dopar (it).	21121	and a sound					
Comments:	Monitoring point (MP) is the top of the	e PVC well casing	g.		2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0				
		Depth to		Specific		Т				
Date/	Vol. Purged	Water	-	Conductance	Temp	Appe	arance			
3/7 Time	(gal)	(feet below MP)	рН	(uS @ 25 deg C)	(deg C)	(color, sec	liment, etc.)	Comments		
930		40:79								
1020	3.0	41. 85	6.88	5730	13.3	SI. clau	in gray			
1040	3.0	42,26	6.86	5975	13.8	Sl. clau.	ly gray			
1100	3.0	42,35	6.88	6045	13.9	SI claud	y gray			
	l	G	L	(aallana)	2					
	une Fuigea.			WELL SA		ORMATION				
Sampling Equipm	nent: Bai	ler. Do	1.							in the second
Comments:		er ; (j · · ·	<i>y</i>							
SAMPLING N	EASUREMEN	TS:								
	Depth to	Depth		Specific		Other	Other			
	Water	Sampled		Conductance	Temp					
3/ Date/		(feet below MD)	pH	(uS @ 25 deg C)	(deg C)				Comments	
3/7 ^{Date/} Time	(feet below MP)	(Teet below MP)			and a second					·····
3/2 ^{Date/} Time	(feet below MP) 42.35	SS S	6.95	6020	13.7	-				
3/2 ^{Date/} Time 1105 SAMPLE HAM	(feet below MP) 42.35 NDLING:	(Teet Delow MP)	6.95	6020	13.7					
3/2 Date/ Time 11 0 S SAMPLE HAN 3/2 Date/	(feet below MP)	Alic	6,95 uots	6020	13,7 Filtered	Preserved				
3/2 Date/ Time 11 0 S SAMPLE HAN 3/7 Date/ Time	(feet below MP) 42.35 NDLING: Volume (ml)	Aliq Bottle Cc	uots mposition	G O Z O Quantity	Filtered (Y/N)	Preserved (type)		Con	nments	
3/2 Date/ Time 11 05 SAMPLE HAN 3/2 Date/ Time 1/ 05	(feet below MP) 42.35 NDLING: Volume (ml) 250	Alic Bottle Cc	uots mposition	G 0 2 0 Quantity	Filtered (Y/N)	Preserved (type)		Con	nments	
3/2 Date/ Time 11 05 SAMPLE HAN 3/2 Date/ Time 11 05 11 05	(feet below MP) 42,35 VDLING: Volume (ml) 250 250	Alice Bottle Co L D PE	uots mposition	6 0 2 0 Quantity 1	Filtered (Y/N)	Preserved (type) HN33 H2S34		Con	nments	
3/2 Date/ Time 11 05 SAMPLE HAN 3/2 Date/ Time 1/ 05 1/ 05 1/ 05	(feet below MP) 42,35 VDLING: Volume (ml) 250 250 250	Alice Bottle Co L D PE L D PE	uots mposition	Quantity 1 1 2	(3,7 Filtered (Y/N) Y (V iV	Preserved (type) HNO3 H2SD4 Nonc		Con	nments	
3/2 Date/ Time 1105 SAMPLE HAN 3/2 Date/ 7 Time 1105 1105 1105	(feet below MP) 42,35 VDLING: Volume (ml) 250 250 250 250	Alice Bottle Co L D PE L D PE L D PE	uots mposition	0 0 2 0 Quantity 1 1 1 1	13,7 Filtered (Y/N) Y N iV	Preserved (type) HNO3 H2SD4 NONC Nonc		Con	nments	
31.2 Date/ Time 1105 SAMPLE HAN 3/2 Time 1105 1105 1105 1105	(feet below MP) 42,35 NDLING: Volume (ml) 250 250 500	Alice Bottle Co L D PE L D PE L D PE	uots mposition	Quantity 1 1 2 1	13.7 Filtered (Y/N) Y N iV	Preserved (type) HN33 H2SD4 None None		Con	nments	
3/2 Date/ Time 1105 SAMPLE HAN 3/2 Time 1105 1105 1105	(feet below MP) 42.35 NDLING: Volume (ml) 250 250 500	Alice Bottle Co L D PE L D PE L D PE		Quantity 1 1 1 1 1	13.7 Filtered (Y/N) Y N iV	Preserved (type) HNO3 H2SD4 None None		Con	nments	
3/2 Date/ Time 11 05 SAMPLE HAN 3/2 Date/ Time 11 05 11 05 11 05 11 05 11 05	(feet below MP) 42.35 NDLING: Volume (ml) 250 250 250 533	Alice Bottle Co L D PE L D PE L D PE		Quantity 1 1 1 1 1	(3,7 Filtered (Y/N) Y iV iV	Preserved (type) HNO3 H2SO4 None None		Con	nments	
3/2 Date/ Time 11 05 SAMPLE HAN 3/2 Date/ Time 1/ 05 1/ 05 1/ 05 1/ 05 1/ 05 1/ 05 Field QA/QC	(feet below MP) 42,35 VDLING: Volume (ml) 250 250 533 Samples Collection	Alice Bottle Co L D PE L D PE L D PE L D PE L D PE	uots mposition	Quantity 1 1 1	(3,7 Filtered (Y/N) Y IN IN	Preserved (type) HNO3 H2SD4 None None		Con	nments	
3/2 Date/ Time 11 0.5 SAMPLE HAN 3/2 Time 11 0.5 11 0.5 11 0.5 11 0.5 Field QA/QC Equipment Do	(feet below MP) 42,35 VDLING: Volume (ml) 250 250 250 533 Samples College contamination Weather	Alice Bottle Cc L D PE L D PE L D PE L D PE	uots imposition	0 0 2 0 Quantity 1 1 1	13,7 Filtered (Y/N) Y N IV N	Preserved (type) HNO3 H2SO4 None None		Con	nments	
3/2 Date/ Time 11 05 SAMPLE HAN 3/2 Date/ Time 11 05 11 05 11 05 11 05 11 05 Field QA/QC Equipment Do DI Waste Dispose	(feet below MP) 42,35 NDLING: Volume (ml) 250 250 250 250 555 Samples Collected contamination water sal: 600	Alice Bottle Cc LOPE LOPE LOPE LOPE	uots imposition	Quantity 1 1 1 1 1 1 1 1 1 1 1 1 1	Filtered (Y/N) Y N N N	Preserved (type) HNO3 H2SO4 None None		Con	nments	
3/2 Date/ Time 1105 SAMPLE HAN 3/2 Time 1105 1105 1105 1105 1105 1105 1105 Unos Equipment Du DI Waste Dispos	(reet below MP) 42.35 NDLING: Volume (ml) 250 250 250 533 Samples Collered contamination water sal: Group	Alice Bottle Cc L D PE L D PE L D PE	uots imposition iple No.): face - p	Quantity 1 1 1 1 1 1 1 1 1 1 1 1 1	Filtered (Y/N) Y N N N	Preserved (type) HNO3 H2SO4 None None	GCC F		nments	

March	18.	2019
	,	

David Bemis			
3372 Lime Roa	ad		
Pueblo	CO	81004	
			 _

Project Name - Groundwater Monitoring

Project Number - [none]

Attached are your analytical results for Groundwater Monitoring received by Origins Laboratory, Inc. March 07, 2019. This project is associated with Origins project number Y903087-01.

The analytical results in the following report were analyzed under the guidelines of EPA Methods. These methods are identified as follows; "SW" are defined in SW-846, "EPA" are defined in 40CFR part 136 and "SM" are defined in the most current revision of Standard Methods For the Examination of Water and Wastewater.

The analytical results apply specifically to the samples and analyses specified per the attached Chain of Custody. As such, this report shall not be reproduced except in full, without the written approval of Origin's laboratory.

Unless otherwise noted, the analytical results for all soil samples are reported on a wet weight basis. All analytical analyses were performed under NELAP guidelines unless noted by a data qualifier.

Any holding time exceedances, deviations from the method specifications or deviations from Origins Laboratory's Standard Operating Procedures are outlined in the case narrative.

Thank you for selecting Origins for your analytical needs. Please contact us with any questions concerning this report, or if we can help with anything at all.

Origins Laboratory, Inc. 303.433.1322 o-squad@oelabinc.com

GCC Pueblo 3372 Lime Road Pueblo	со	81004		David Bemis Project Number: [no Project: Groundwat	one] er Monitoring
		CROS	REPORT		
Sample ID		Laboratory ID	Matrix	Date Sampled	Date Received
MW-7		Y903087-01	Water	March 7, 2019 11:05	03/07/2019 17:30

Origins Laboratory, Inc.

e Pellepi

Jen Pellegrini, Project Manager

GCC Pueblo

3372 Lime Road

Pueblo

81004

CO

David Bemis Project Number: [none] Project: Groundwater Monitoring

atory.con			ictions	-	2	3	4	5	6. 6	Cu 7	Mn 8	V 9	10	[me:	〕[王 次	23 H
riginslaboro	eninchine reman		Sample Instru						AI. As. 8. 8	cd cr co,	Fe, Pb, Li,	Ha, Ni, Se	5	Turnaround	Same Day	48 Hr
www.0	Furma aler ma	ysis	NITE SEC	>>					tols -					Time:	4U	Time:
-	Digna Broundw 3. Close	Analy	501 Hd	1 1					Me					Date:	5-1-9	Date:
905061	Project Manager: Project Name: Project Number: ples Collected By:	Matrix	Groundwater Soil Canister# Canister#										-{	eived By:	h	selved By:
Ŷ	Sam	Preservative	Office HNO ³ HCI Dubreserved	311										e:	/	e:
rory, In	6100 81004 1981 1980	sie	npied # of Contain	055										<u>ال</u>	13v	E.
LABORA	CC Pue 372 Lim eblo, CO 19-647-6 Furman G		Date T Sampled Sar	11 61/1/2		3/1/10 82								Date:	3-1-19	Date:
ORIG	Client: \underline{C} Address: $\underline{3}$, $\underline{4}$, Email Address: $\underline{4}$, $\underline{4}$		Sample ID Description	L-MLN		HWAR 32								Relinquished BY	1 Zerular	Relinquished By:

Origins Laboratory, Inc.

, Pellepii

Jen Pellegrini, Project Manager

GCC Pueblo

3372 Lime Road

Pueblo

81004

CO

David Bemis Project Number: [none] Project: Groundwater Monitoring

Sample Rece	eipt Che	cklist			
Drigins Work Order: 7608087	Clie	nt:	ice Pra	Hu	
	Clie	nt Projec	tID: G	W Monitoring	
Checklist Completed by:	Ship	ped Via:	Ford Ford Ha	Ho	
Date/time completed: 3-7-19	Airb	(UPS,	геоех, на	PiA	
Matrix(s) Received: (Check all that apply):Soil/Soli	id _ {	Water	Oth	er:	
Cooler Number/Temperature: / / 5.9 ° c		° C	/	(Describe) ° C/ ° C	:
Thermometer ID:					
Requirement Description	Yes	No	N/A	Comments (if any)	
If samples require cooling, was the temperature between 0°C to \leq 6°C ⁽¹⁾ ?	/				
Is there ice present (document if blue ice is used)	/				
Are custody seals present on cooler? (if so, document in comments if they are signed and dated, broken or intact)		/			
Are custody seals present on each sample container? (if so, document in comments if they are signed and dated, broken or intact)		/			
Were all samples received intact ⁽¹⁾ ?	/				
Was adequate sample volume provided ⁽¹⁾ ?	~				
Are short holding time analytes or samples with HTs due within 48 hours present ⁽¹⁾ ?	/			ptt, Anions	
Is a chain-of-custody (COC) present and filled out completely ⁽¹⁾ ?	/				
Does the COC agree with the number and type of sample bottles received ⁽¹⁾ ?	/				
Do the sample IDs on the bottle labels match the COC ⁽¹⁾ ?	/				
Is the COC properly relinquished by the client with date and time recorded ⁽¹⁾ ?	/				
For volatiles in water – is there headspace (> ¼ inch bubble) present? If yes, contact client and note in			/		
Arr samples preserved that require preservation and was it checked ⁽¹⁾ ? (note ID of confirmation instrument used in comments) / (preservation is not confirmed for subcontracted analyses in order to insure sample integrity)/(PI <2 for samples preserved with HNO3, HCL, H2SO4) / (pI <10 for samples preserved with NaAsO2+NaOH, ZnAc+NaOH)	1	/		F.F. metals preserved in Hoos, Nitrate / Nitrite preserved in Hzsai. preserved in Hzsai.	curtin
Additional Comments (if any):					

Reviewed by (Project Manager)

Date/Time Reviewed

Origins Laboratory, Inc.

Pellepi

Jen Pellegrini, Project Manager

GCC Pueblo

3372 Lime Road

Pueblo

CO

David Bemis Project Number: [none] Project: Groundwater Monitoring

			MW-7						
		3/7/	2019 11:0	5:00AM					
Analyte	Result	Min Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Notes
		GEL L	aborator	ies, Ll	_C				
		Y9	03087-01 (\	Water)					
Dissolved Metals by 601	0C								
Aluminum	ND	68.0	200	ug/L	1	1856645	03/12/2019	03/13/2019	U
Arsenic	ND	5.00	30.0	"	"	"	n	"	U
Bervllium	ND	1.00	5.00	"	"	"	"	"	U
Boron	427	15.0	50.0	"	"	"	"	"	
Cadmium	ND	1.00	5.00	"	"	"	"	"	U
Chromium	ND	1.00	5.00	"	"	"	"	"	U
Cobalt	1.97	1.00	5.00	"	"	"	"	"	J
Copper	ND	3.00	10.0	"	"	"	n	"	U
Iron	297	30.0	100	"	"	"	n	"	
Lead	ND	3.30	10.0	"	"	"	"	"	U
Manganese	152	2.00	10.0	"	"	"	"	"	
Nickel	8.00	1.50	5.00	"	"	"	n	u	
Selenium	ND	6.00	30.0	"	"	"	"	"	U
Vanadium	ND	1.00	5.00	"	"	"	II.	u	U
Zinc	9.56	3.30	10.0	"	u	u	"	"	J
Dissolved Metals by 602	0A								
Lithium	557	3.00	10.0	ug/L	1	1856509	03/11/2019	03/12/2019	
Dissolved Metals by 747	0A								
Mercury	ND	0.067	0.200	ug/L	1	1856741	03/12/2019	03/13/2019	U

Origins Laboratory, Inc.

. Pellepi

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jen Pellegrini, Project Manager

GCC Pueblo

3372 Lime Road

Pueblo

CO

David Bemis Project Number: [none] Project: Groundwater Monitoring

			MW-7								
		3/7/	2019 11:0	5:00AM							
Analyte	Result	Min Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Notes		
GEL Laboratories, LLC											
Y903087-01 (Water)											
			·								
Nitrate/Nitrite by EPA 3	53.2										
Nitrogen, Nitrate/Nitrite	0.0144	0.007	0.020	mg/L	1	1856432	03/07/2019	03/11/2019	J		
pH in Water by EPA 90	40C										
рН	7.67			pH Units	1	B9C1301	03/13/2019	03/14/2019			
TDS by EPA 160.1											
Total Dissolved Solids	5640	3.40	14.3	mg/L	1	1856659	03/07/2019	03/12/2019			

Origins Laboratory, Inc.

. Pellepi

Jen Pellegrini, Project Manager

GCC Pueblo

3372 Lime Road

Pueblo

CO

David Bemis Project Number: [none] Project: Groundwater Monitoring

Classical Chemistry Parameters - Quality Control Origins Laboratory, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B9C1301 - NO PREP										
Duplicate (B9C1301-DUP1)		Source: Y90	3087-01		Prepared	: 03/13/2019	Analyzed: 03	/14/2019		
рН	7.59		pH Units		7.67			1.05	200	

Origins Laboratory, Inc.

Pellepi

Jen Pellegrini, Project Manager

GCC Pueblo

3372 Lime Road

Pueblo

CO

David Bemis Project Number: [none] Project: Groundwater Monitoring

Dissolved Metals by 6010C - Quality Control	
GEL Laboratories, LLC	

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1856645 - SW846 3005A										
BLANK (1204235989-BLK)					Prepared	: 03/12/2019	Analyzed: 03	/13/2019		
Vanadium	ND	5.00	ug/L				-			U
Zinc	ND	10.0	"				-			U
Selenium	ND	30.0	"				-			U
Nickel	ND	5.00	"				-			U
Manganese	ND	10.0	"				-			U
Lead	ND	10.0	"				-			U
Iron	ND	100	"				-			U
Cobalt	ND	5.00	"				-			U
Chromium	ND	5.00	"				-			U
Cadmium	ND	5.00	"				-			U
Boron	ND	50.0	"				-			U
Beryllium	ND	5.00	"				-			U
Aluminum	ND	200	"				-			U
Arsenic	ND	30.0	"				-			U
Copper	ND	10.0	"				-			U
LCS (1204235990-BKS)					Prepared	: 03/12/2019	Analyzed: 03	/13/2019		
Beryllium	471	5.00	ug/L	500		94.3	80-120			
Nickel	473	5.00	"	500		94.6	80-120			
Manganese	472	10.0	"	500		94.3	80-120			
Lead	466	10.0	"	500		93.2	80-120			
Iron	4800	100	"	5000		96	80-120			
Copper	476	10.0	"	500		95.1	80-120			
Cobalt	473	5.00	"	500		94.7	80-120			
Chromium	476	5.00	"	500		95.2	80-120			
Aluminum	4830	200	"	5000		96.5	80-120			
Boron	463	50.0	"	500		92.6	80-120			

Origins Laboratory, Inc.

Pellepi

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jen Pellegrini, Project Manager

GCC Pueblo

3372 Lime Road

Pueblo

CO

David Bemis Project Number: [none] Project: Groundwater Monitoring

	Disso	olved Metals GEL L	s by 6010 aborator)C - Qua ries, LLC	lity Cont ;	rol				
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1856645 - SW846 3005A										
LCS (1204235990-BKS)					Prepared	: 03/12/2019	Analyzed: 03	/13/2019		
Arsenic	454	30.0	ug/L	500		90.9	80-120			
Vanadium	478	5.00	"	500		95.6	80-120			
Zinc	468	10.0	"	500		93.5	80-120			
Cadmium	461	5.00	"	500		92.1	80-120			
Selenium	447	30.0	"	500		89.4	80-120			
DUP (1204235991 D)		Source: 4732	208004		Prepared	: 03/12/2019	Analyzed: 03	/13/2019		
Lead	ND	10.0	ug/L		<3.30		0-20	44.3	20	U
Zinc	3.90	10.0	"		3.95		0-20	1.27	20	J
Vanadium	8.33	5.00	"		8.39		0-20	0.769	20	
Selenium	13.3	30.0	"		16.2		0-20	19.7	20	J
Cobalt	ND	5.00	"		<1.00		0-20	113	20	U
Manganese	33.6	10.0	"		34.9		0-20	3.72	20	
Iron	ND	100	"		<30.0		0-20	1.24	20	U
Copper	5.78	10.0	"		6.59		0-20	13.2	20	J
Aluminum	ND	200	"		<68.0		0-20	150	20	U
Arsenic	ND	30.0	"		<5.00		0-20	89.9	20	U
Beryllium	ND	5.00	"		<1.00		0-20	17.8	20	U
Boron	167	50.0	"		172		0-20	3.05	20	
Cadmium	ND	5.00	"		<1.00		0-20	24	20	U
Chromium	6.01	5.00	"		6.23		0-20	3.55	20	
Nickel	2.28	5.00	"		2.46		0-20	7.41	20	J
MS (1204235992 S)		Source: 4732	208004		Prepared	: 03/12/2019	Analyzed: 03	/13/2019		
Zinc	462	10.0	ug/L	500	3.95	91.6	75-125			
Cobalt	470	5.00	"	500	<1.00	94	75-125			
Vanadium	468	5.00	"	500	8.39	92	75-125			

Origins Laboratory, Inc.

Pellepi

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jen Pellegrini, Project Manager

GCC Pueblo

3372 Lime Road

Pueblo

CO

David Bemis Project Number: [none] Project: Groundwater Monitoring

Dissolved Metals by 6010C - Quality Contro)I
GEL Laboratories, LLC	

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1856645 - SW846 3005A										

MS (1204235992 S)		Source: 473208004			Analyzed: 03/13/2019			
Selenium	455	30.0	ug/L	500	16.2	87.8	75-125	
Nickel	455	5.00	"	500	2.46	90.4	75-125	
Manganese	485	10.0	"	500	34.9	90	75-125	
Lead	466	10.0	"	500	<3.30	92.9	75-125	
Chromium	460	5.00	"	500	6.23	90.8	75-125	
Cadmium	448	5.00	"	500	<1.00	89.5	75-125	
Boron	645	50.0	"	500	172	94.6	75-125	
Beryllium	462	5.00	"	500	<1.00	92.3	75-125	
Arsenic	465	30.0	"	500	<5.00	93	75-125	
Aluminum	4750	200	"	5000	<68.0	95.1	75-125	
Copper	510	10.0	"	500	6.59	101	75-125	
Iron	4690	100	"	5000	<30.0	93.5	75-125	

Origins Laboratory, Inc.

, Pellepi

Jen Pellegrini, Project Manager

GCC Pueblo

3372 Lime Road

Pueblo

CO

81004

David Bemis Project Number: [none] Project: Groundwater Monitoring

Dissolved Metals by 6020A - Quality Control GEL Laboratories, LLC

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1856509 - SW846 3010A										
BLANK (1204235693-BLK)					Prepared	: 03/11/2019	Analyzed: 03	/12/2019		
Lithium	ND	10.0	ug/L				-			U
LCS (1204235694-BKS)					Prepared	: 03/11/2019	Analyzed: 03	/12/2019		
Lithium	50.3	10.0	ug/L	50.0		101	80-120			
DUP (1204235695 D)		Source: Y90	3087-01		Prepared	: 03/11/2019	Analyzed: 03	/12/2019		
Lithium	546	10.0	ug/L		557		0-20	1.91	20	
MS (1204235696 S)		Source: Y90	3087-01		Prepared	: 03/11/2019	Analyzed: 03	/12/2019		
Lithium	613	10.0	ug/L	50.0	557	113	75-125			

Origins Laboratory, Inc.

Pellepi

Jen Pellegrini, Project Manager

GCC Pueblo

3372 Lime Road

Pueblo

CO

David Bemis Project Number: [none] Project: Groundwater Monitoring

Dissolved Metals by 7470A - Quality Control GEL Laboratories, LLC

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1856741 - SW846 7470A Prep										
BLANK (1204236267-BLK)					Prepared	: 03/12/2019	Analyzed: 03	/13/2019		
Mercury	ND	0.200	ug/L				-			U
LCS (1204236268-BKS)					Prepared	: 03/12/2019	Analyzed: 03	/13/2019		
Mercury	1.90	0.200	ug/L	2.00		94.8	80-120			
DUP (1204236269 D)		Source: 472	533002		Prepared	: 03/12/2019	Analyzed: 03	/13/2019		
Mercury	25.5	2.00	ug/L		21.8		0-20	15.8	20	
MS (1204236270 S)		Source: 472	533002		Prepared	: 03/12/2019	Analyzed: 03	/13/2019		
Mercury	42.0	2.00	ug/L	20.0	21.8	101	75-125			

Origins Laboratory, Inc.

Pellopi

Jen Pellegrini, Project Manager

GCC Pueblo

3372 Lime Road

Pueblo

CO

David Bemis Project Number: [none] Project: Groundwater Monitoring

Nitrate/Nitrite by EPA 353.2 - Quality Control GEL Laboratories, LLC

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1856432 -										
BLANK (1204235546-BLK)					Prepared	: Analyzed:	03/11/2019			
Nitrogen, Nitrate/Nitrite	ND	0.020	mg/L				-			U
LCS (1204235547-BKS)					Prepared	Analyzed:	03/11/2019			
Nitrogen, Nitrate/Nitrite	0.989	0.020	mg/L	1.00		98.9	90-110			
DUP (1204235548 D)		Source: 473	040004		Prepared	Analyzed:	03/11/2019			
Nitrogen, Nitrate/Nitrite	2.40	0.100	mg/L		2.45		0-20	1.86	20	
PS (1204235549 S)		Source: 473	040004		Prepared	Analyzed:	03/11/2019			
Nitrogen, Nitrate/Nitrite	7.45	0.100	mg/L	1.00		100	90-110			

Origins Laboratory, Inc.

Pellopi

Jen Pellegrini, Project Manager

GCC Pueblo

3372 Lime Road

Pueblo

СО

David Bemis Project Number: [none] Project: Groundwater Monitoring

TDS by EPA 160.1 - Quality Control GEL Laboratories, LLC

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1856659 -										
BLANK (1204236015-BLK)					Prepared	: Analyzed:	03/12/2019			
Total Dissolved Solids	ND	14.3	mg/L				-			U
LCS (1204236016-BKS)					Prepared	: Analyzed:	03/12/2019			
Total Dissolved Solids	297	14.3	mg/L	300		99	95-105			
DUP (1204236022 D)		Source: 473	167001		Prepared	: Analyzed:	03/12/2019			
Total Dissolved Solids	223	14.3	mg/L		217		0-5	2.6	5	

Origins Laboratory, Inc.

Pellepi

Jen Pellegrini, Project Manager

GCC Pueblo

3372 Lime Road

Pueblo CO

David Bemis Project Number: [none] Project: Groundwater Monitoring

Notes and Definitions

- U Result not detected above the detection limit
- J Greater than the detection limit but less than the reporting limit

81004

- ND Analyte NOT DETECTED at or above the reporting limit
- RPD Relative Percent Difference

All soil results are reported on a wet weight basis.

Origins Laboratory, Inc.

Pellepi

Jen Pellegrini, Project Manager

Wheat Ridge, CO

The results set forth herein are provided by SGS North America Inc.

Technical Report for

Origins Laboratory

Y903087

SGS Job Number: DA14068

Sampling Date: 03/07/19

Report to:

Origins Laboratory 1725 Elk Place Denver, CO 80211 ndoyle@originslab.com; jpellegrini@originslab.com

ATTN: Noelle Doyle

Total number of pages in report: 14

lead a del

Scott Heideman Laboratory Director

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Carissa Cumine 303-425-6021

Certifications: CO (CO00049), ID (CO00049), NE (NE-OS-06-04), ND (R-027), NJ (CO007), OK (D9942) UT (NELAP CO00049), LA (LA150028), TX (T104704511), WY (8TMS-L)

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 4036 Youngfield St. • Wheat Ridge, CO 80033-3862 • tel: 303-425-6021 • fax: 303-425-6854

Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com

03/14/19

Automated Report

e-Hardcopy 2.0

Table of Contents

N

ယ

4

сл

6

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Summary of Hits	5
Section 4: Sample Results	6
4.1: DA14068-1: Y903087-01	7
Section 5: Misc. Forms	8
5.1: Chain of Custody	9
Section 6: General Chemistry - QC Data Summaries	11
6.1: Method Blank and Spike Results Summary	12
6.2: Matrix Spike Results Summary	13
6.3: Matrix Spike Duplicate Results Summary	14

SGS

Sample Summary

Origins Laboratory

Job No: DA14068

Y903087

Sample	Collected			Matr	ix	Client
Number	Date	Time By	Received	Code	Туре	Sample ID
DA14068-1	03/07/19	11:05	03/08/19	AQ	Water	Y903087-01

SGS

CASE NARRATIVE / CONFORMANCE SUMMARY

Client:	Origins Laboratory	Job No	DA14068
Site:	Y903087	Report Date	3/14/2019 5:35:21 PM

On 03/08/2019, 1 sample(s), 0 Trip Blank(s), and 0 Field Blank(s) were received at SGS North America Inc. (SGS) at a temperature of 0 °C. The samples were intact and properly preserved, unless noted below. An SGS Job Number of DA14068 was assigned to the project. The lab sample ID, client sample ID, and date of sample collection are detailed in the report's Results Summary.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

General Chemistry By Method EPA300.0/SW846 9056A

Matrix: AQ	Batch ID:	GP24699

All samples were prepared and analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) DA14062-1MS, DA14062-1MSD were used as the QC samples for the Fluoride, Nitrogen, Nitrite, Fluoride analysis.

DA14068-1 for Fluoride and Nitrogen, Nitrite: Elevated detection limit due to matrix interference.

SGS certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting SGS's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

SGS is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. This report is authorized by SGS indicated via signature on the report cover.

Summary of Hits Job Number: DA14068

Job Number:DA14068Account:Origins LaboratoryProject:Y903087Collected:03/07/19

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
DA14068-1	Y903087-01					
Fluoride ^a		0.32 B	0.50	0.25	mg/l	EPA300.0/SW846 9056A

(a) Elevated detection limit due to matrix interference.

ω

Wheat Ridge, CO

Section 4

Sample Results

Report of Analysis

SGS North America Inc.

			- 1				e e	
Client Sample ID:	Y903087-01							
Lab Sample ID:	DA14068-1					Date S	Sampled: 03/07/19	
Matrix:	AQ - Water					Date 1	Received: 03/08/19	
						Perce	nt Solids: n/a	
Project:	Y903087							
General Chemistry	y							
Analyte	R	esult	RL	MDL	Units	DF	Analyzed By Metho	d
Fluoride ^a	0.	32 B	0.50	0.25	mg/l	5	03/08/19 12:41 JB EPA300	.0/SW846 9056A
Nitrogen, Nitrite ^a	0.	030 U	0.040	0.030	mg/l	10	03/08/19 16:02 JB EPA300	.0/SW846 9056A

Report of Analysis

(a) Elevated detection limit due to matrix interference.

4

Page 1 of 1

Wheat Ridge, CO

Section 5

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

Your Lab's	letterhead he	ere	SU	BCONTRACT ORDER
Sending Laboratory:		ซี	ubcontracted Laboratory:	DA14068
Origins Laboratory, Inc. 1725 West Eik Place Denver, CO 80211 Phone: 303.433.1322 Fax: 303.265.9645		[Accutest Laboratories 4036 Youngfield St. Wheat Ridge, CO 80033 Phone: (303) 425-6021 Fax: (303) 425-6854	
Project Manager: Jen P	ellegrini			
Work Order: Y90308	28			
Analysis	Due	Expires	Comments	
Sample ID: Y903087-01 Nitrite by 300.0 Fluoride by 300.0 <i>Containers Supplied:</i>	Water Sampled: 03/15/2019 03/15/2019 03/15/2019	/ 2019 11:05 03/09/2019 11: 03/09/2019 11:	8.5	3/8/19
	- Aff- Artico Artico			2
Released By	0905 1300	Page 1 of 1	5.4 Source By Source By	3/8/19 8:0

DA14068: Chain of Custody Page 1 of 2

SGS

SGS Accutest Sample Receipt Summary

Job Number:	DA14068	Client:	ORIGINS LABORATORY	, INC. Project: Y903087	
Date / Time Received:	3/8/2019 8:02:0	O AM	Delivery Method:	Airbill #'s: HD	
Cooler Temps (Initial/Ad	justed): <u>0</u>				
Cooler Security	<u>Y or N</u>		<u>Y or N</u>	Sample Integrity - Documentation	Y or N
1. Custody Seals Present:		3. COC Pr	esent: 🔽 🗌	1. Sample labels present on bottles:	
2. Custody Seals Intact:		4. Smpl Dates	s/Time OK 🔽 🗌	2. Container labeling complete:	
Cooler Temperature	Y or	N		3. Sample container label / COC agree:	
1. Temp criteria achieved:				Sample Integrity - Condition	Y or N
2. Cooler temp verification:	;			1. Sample recvd within HT:	
3. Cooler media:	Ice (B	ag)		2. All containers accounted for:	
4. No. Coolers:	1			3. Condition of sample:	Intact
Quality Control Preserve	<u>ation Y or</u>	N N/A		Sample Integrity - Instructions	Y or N N/A
1. Trip Blank present / cool	er:			1 Analysis requested is clear:	
2. Trip Blank listed on COC	: 🗆			2. Bottles received for unspecified tests	
3. Samples preserved prop	erly: 🗸			3. Sufficient volume recvd for analysis:	
4. VOCs headspace free:				4. Compositing instructions clear:	
				5. Filtering instructions clear:	

Comments

DA14068: Chain of Custody Page 2 of 2

5.1

S

Section 6

General Chemistry

QC Data Summaries

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries

೧

DA14068

METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: DA14068 Account: ORIGLCOD - Origins Laboratory Project: Y903087

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Bromide	GP24699/GN46301	0.050	0.0	mg/l	0.5	0.507	101.4	90-110%
Chloride	GP24699/GN46301	0.50	0.0	mg/l	5	5.08	101.6	90-110%
Fluoride	GP24699/GN46301	0.10	0.0	mg/l	1	1.03	103.0	90-110%
Nitrogen, Nitrate	GP24699/GN46301	0.010	0.0	mg/l	0.1	0.0958	95.8	90-110%
Nitrogen, Nitrite	GP24699/GN46301	0.0040	0.0	mg/l	0.05	0.0501	100.2	90-110%
Sulfate	GP24699/GN46301	0.50	0.0	mg/l	5	4.97	99.4	90-110%

Associated Samples: Batch GP24699: DA14068-1 (*) Outside of QC limits 6

MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: DA14068 Account: ORIGLCOD - Origins Laboratory Project: Y903087

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MS Result	%Rec	QC Limits
Bromide	GP24699/GN46301	DA14062-1	mg/l	1.3 U	25	25.5	102.0	80-120%
Chloride	GP24699/GN46301	DA14062-1	mg/l	271	250	534	105.2	80-120%
Fluoride	GP24699/GN46301	DA14062-1	mg/l	53.9	50	105	102.2	80-120%
Nitrogen, Nitrate	GP24699/GN46301	DA14062-1	mg/l	0.30 U	5	4.9	98.0	80-120%
Nitrogen, Nitrite	GP24699/GN46301	DA14062-1	mg/l	0.27	2.5	2.8	101.2	80-120%
Sulfate	GP24699/GN46301	DA14062-1	mg/l	102	250	352	100.0	80-120%

Associated Samples: Batch GP24699: DA14068-1 (*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

6

MATRIX SPIKE DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: DA14068 Account: ORIGLCOD - Origins Laboratory Project: Y903087

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MSD Result	RPD	QC Limit
Bromide	GP24699/GN46301	DA14062-1	mg/l	1.3 U	25	25.3	0.8	20%
Chloride	GP24699/GN46301	DA14062-1	mg/l	271	250	531	0.6	20%
Fluoride	GP24699/GN46301	DA14062-1	mg/l	53.9	50	104	1.0	20%
Nitrogen, Nitrate	GP24699/GN46301	DA14062-1	mg/l	0.30 U	5	4.9	0.0	20%
Nitrogen, Nitrite	GP24699/GN46301	DA14062-1	mg/l	0.27	2.5	2.8	0.0	20%
Sulfate	GP24699/GN46301	DA14062-1	mg/l	102	250	358	1.7	20%

Associated Samples: Batch GP24699: DA14068-1 (*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

6

6.3

