Table 1. 2018 Water Quality Results - La Plata River - Upper Sampling Point (SW-1) May Day Idaho Mine Complex Sunrise Mining, LLC

All values in mg/L unless otherwise noted

		Da	ate	Safe Drinking Water Act	
Analyte	2/9/2018	4/27/2018		MCL ⁽¹⁾ or SMCL ⁽²⁾	
Field Measurements					
Temperature (°C)	Dry	10.4			
Conductivity (µS/cm)	Dry	109			
рН (S.U.)	Dry	7.71		6 - 8.5	
Flow (cfs)*	Dry	40			
Lab Results					
Alkalinity, Bicarbonate	Dry	31			
Alkalinity, Carbonate	Dry	ND			
Alkalinity, Hydroxide	Dry	ND			
Alkalinity, Total	Dry	31.0		(2)	
Aluminum Dissolved by ICP	Dry	ND		0.05 to 0.2 ⁽²⁾	
Ammonia	Dry	ND		TVS ⁽⁴⁾	
Antimony Dissolved by ICPMS	Dry	ND		0.006 ⁽¹⁾	
Arsenic 200.8 by ICPMS	Dry	ND		0.01 ⁽¹⁾	
Arsenic Dissolved by ICPMS	Dry	ND		0.01 ⁽¹⁾	
Barium Dissolved by ICPMS	Dry	0.0342		2 ⁽¹⁾	
Beryllium Dissolved by ICPMS	Dry	ND		0.004 ⁽¹⁾	
Boron 200.2 by ICP	Dry	ND			
Cadmium Dissolved by ICPMS	Dry	ND		0.005 ⁽¹⁾	
Calcium Dissolved by ICP	Dry	17.2			
Chloride by IC	Dry	ND		250 ⁽²⁾	
Chromium 200.8 by ICPMS	Dry	ND		0.1 ⁽¹⁾	
Copper Dissolved by ICPMS	Dry	0.0052		1.3 ⁽¹⁾⁽³⁾ , 1.0 ⁽²⁾	
Cyanide, WAD	Dry	ND		0.2 ⁽¹⁾	
Fluoride by IC	Dry	0.237		4.0 ⁽¹⁾ , 2.0 ⁽²⁾	
Hardness, dis	Dry	52.1		4.0 , 2.0	
Iron 200.2 by ICP	Dry	ND		0.30 ⁽²⁾	
Iron Dissolved by ICP	Dry	ND		0.30 ⁽²⁾	
Lead 200.8 by ICPMS	Dry	ND		0.015 ⁽¹⁾⁽³⁾	
· · · · · · · · · · · · · · · · · · ·		ND		0.015 ⁽¹⁾⁽³⁾	
Lead Dissolved by ICPMS	Dry				
Magnesium Dissolved by ICP	Dry	2.22		0.05 ⁽²⁾	
Manganese Dissolved by ICPMS	Dry	2.0		TVS ⁽⁴⁾ μg/L	
Mercury Dissolved by CVAA	Dry	ND		0.002 ⁽¹⁾	
Molybdenum Dissolved by ICPMS	Dry	0.0010		(1)	
Nickel Dissolved by ICPMS	Dry	0.0014		0.1 ⁽¹⁾	
Nitrate as N by IC	Dry	0.139		10 ⁽¹⁾	
Nitrate/Nitrite as N by IC Package	Dry	0.139		10 ⁽¹⁾	
Nitrite as N by IC	Dry	ND		1 ⁽¹⁾	
pH (Standard Units)	Dry	8.17		6 - 8.5	
Selenium Dissolved by ICPMS	Dry	ND		0.05 ⁽¹⁾	
Silver Dissolved by ICPMS	Dry	ND		0.10 ⁽²⁾	
Solids, Total Dissolved (TDS)	Dry	65.0		500 ⁽²⁾	
Solids, Total Suspended (TSS)	Dry	1.00			
Sulfate by IC	Dry	14.9		250 ⁽²⁾	
Thallium Dissolved by ICPMS	Dry	ND		0.002 ⁽¹⁾	
Uranium Dissolved by ICPMS	Dry	0.1		30 µg/L ⁽¹⁾	
Zinc Dissolved by ICPMS	Dry	0.0039		TVS ⁽⁴⁾	

Notes: mg/L = milligrams per Liter °C = degrees Celsius μ S/cm = microsiemens per centimeter S.U. = standard units mV = millivolts cfs = cubic feet per second μ g/L = microgram per Liter NA = not applicable ND = not detected

TVS = table value standards

Footnotes:

* La Plata River flow taken from Hesperus Gage (LAPHESCO).

(1) SDWA NPDWR MCL= Safe Drinking Water Act National Primary Drinking Water Regulations Maximum Contaminant Level. These are legally enforceable standards that apply to public drinking water systems. Primary standards protect public health by limiting the levels of contaminants in drinking water.

(2) SDWA NSDWR SMCL= Safe Drinking Water Act National Secondary Drinking water Regulations Secondary Maximum Contaminant Level. These are non-enforceable guidelines regulating contaminants that may cause cosmetic effects (such as skin or tooth discoloration) or aesthetic effects (such as taste, odor, or color) in drinking water. EPA recommends secondary standards to water systems but does not require systems to comply.
 (3) Treatments Technique (TT). A required process intended to reduce the level of a contaminants in drinking water. Lead and copper are regulated

by a Treatment Technique that requires a system to control the corrosiveness of their water. If more than 10% of tap water samples exceed the Action Level, water systems must take additional steps to treat the water.

Table 2. 2018 Water Quality Results - La Plata River - Lower Sampling Point (SW-2) May Day Idaho Mine Complex Sunrise Mining, LLC All values in mg/L unless otherwise noted

Analyte		Da	ate	Safe Drinking Water Act	
	2/9/2018	4/27/2018		MCL ⁽¹⁾ or SMCL ⁽²⁾	
Field Measurements					
Temperature (°C)	5.0	3.6			
Conductivity (µS/cm)	182	131			
pH (S.U.)	7.53	7.34		6 - 8.5	
Flow (cfs)*	4.16	40			
Lab Results					
Alkalinity, Bicarbonate	68.0	34.0			
Alkalinity, Carbonate	ND	ND			
Alkalinity, Hydroxide	ND	ND			
Alkalinity, Total	68.0	34.0		(2)	
Aluminum Dissolved by ICP	ND	ND		0.05 to 0.2 ⁽²⁾	
Ammonia	ND	ND		TVS (4)	
Antimony Dissolved by ICPMS	ND	ND		0.006 ⁽¹⁾	
Arsenic 200.8 by ICP-MS	ND	ND		0.01 ⁽¹⁾	
Arsenic Dissolved by ICPMS	ND	ND		0.01 ⁽¹⁾	
Barium Dissolved by ICPMS	0.0715	0.0404		2(1)	
Beryllium Dissolved by ICPMS	ND	ND		0.004 ⁽¹⁾	
Boron 200.7 by ICP	ND	ND			
Cadmium Dissolved by ICPMS	ND	ND		0.005 ⁽¹⁾	
Calcium Dissolved by ICP	30.8	20.3			
Chloride by IC	ND	ND		250 ⁽²⁾	
Chromium 200.8 by ICPMS	ND	ND		0.1 ⁽¹⁾	
Copper Dissolved by ICPMS	0.0018	0.0040		1.3 ⁽¹⁾⁽³⁾ , 1.0 ⁽²⁾	
Cyanide, WAD	ND	ND		0.2 ⁽¹⁾	
Fluoride by IC	0.224	0.225		4.0 ⁽¹⁾ , 2.0 ⁽²⁾	
Hardness, dis	93.4	61.2		4.0 , 2.0	
Iron 200.7 by ICP	0.239	0.137		0.30 ⁽²⁾	
Iron Dissolved by ICP	0.200 ND	0.107 ND		0.30 ⁽²⁾	
Lead 200.8 by ICPMS	0.0011	0.0007		0.015 ⁽¹⁾⁽³⁾	
Lead Dissolved by ICPMS	0.0011 ND	0.0007 ND		0.015 ⁽¹⁾⁽³⁾	
Magnesium Dissolved by ICP	4.02	2.56		0.05 ⁽²⁾	
Manganese Dissolved by ICPMS	0.7	1.3		TVS ⁽⁴⁾ μg/L	
Mercury Dissolved by CVAA	ND	ND		0.002 ⁽¹⁾	
Molybdenum Dissolved by ICPMS	0.0011	0.0009		(4)	
Nickel Dissolved by ICPMS	0.0025	0.0017		0.1 ⁽¹⁾	
Nitrate as N by IC	0.100	0.145		10 ⁽¹⁾	
Nitrate/Nitrite as N by IC Package	0.0996	0.145		10 ⁽¹⁾	
Nitrite as N by IC	ND	ND		1 ⁽¹⁾	
pH (S.U.)	7.78	7.95		6 - 8.5	
Selenium Dissolved by ICPMS	ND	ND		0.05 ⁽¹⁾	
Silver Dissolved by ICPMS	ND	ND		0.10 ⁽²⁾	
Solids, Total Dissolved (TDS)	85.0	95.0			
Solids, Total Suspended (TSS)	NA	2.83			
Sulfate by IC	31.0	19.2		250 ⁽²⁾	
Thallium Dissolved by ICPMS	ND	ND		0.002 ⁽¹⁾	
Uranium Dissolved by ICPMS	0.3	0.2	├ ─── │ ──	30 µg/L ⁽¹⁾	
Zinc Dissolved by ICPMS	0.0024	0.0034		TVS ⁽⁴⁾	

Notes: mg/L = milligrams per Liter $^{\circ}C = degrees Celsius$ $\mu S/cm = microsiemens per centimeter$ S.U. = standard unitsmV = millivolts cfs = cubic feet per second μ g/L = microgram per Liter NA = not applicable ND = not detected TVS = table value standards

Footnotes:

* La Plata River flow taken from Hesperus Gage (LAPHESCO).

(1) SDWA NPDWR MCL= Safe Drinking Water Act National Primary Drinking Water Regulations Maximum Contaminant Level. These are legally enforceable standards that apply to public drinking water systems. Primary standards protect public health by limiting the levels of contaminants in

drinking water. (2) SDWA NSDWR SMCL= Safe Drinking Water Act National Secondary Drinking water Regulations Secondary Maximum Contaminant Level. These are non-enforceable guidelines regulating contaminants that may cause cosmetic effects (such as skin or tooth discoloration) or aesthetic effects (such as taste, odor, or color) in drinking water. EPA recommends secondary standards to water systems but does not require systems to (3) Treatments Technique (TT). A required process intended to reduce the level of a contaminants in drinking water. Lead and copper are regulated by a Treatment Technique that requires a system to control the corrosiveness of their water. If more than 10% of tap water samples exceed the Action Level, water systems must take additional steps to treat the water.
 (4) 1002-31 - Regulation 31 - Colorado Water Quality Control Division, Tables III and IV.

Table 3. 2018 Water Quality Results - Beaver Pond (BP-1) May Day Idaho Mine Complex Sunrise Mining, LLC All values in mg/L unless otherwise noted

Analysis		Date	Safe Drinking Water Act	
Analyte	2/8/2018	4/27/2018		MCL ⁽¹⁾ or SMCL ⁽²⁾
Field Measurements				
Temperature (°C)	4.0	6.3		
Conductivity (µS/cm)	176	160		
pH (S.U.)	7.26	6.67		6 - 8.5
Flow (cfs)	Pond	Pond		
Lab Results				
Alkalinity, Bicarbonate	56.0	59.0		
Alkalinity, Carbonate	ND	ND		
Alkalinity, Hydroxide	ND	ND		
Alkalinity, Total	56.0	59.0		
Aluminum Dissolved by ICP	ND	ND		0.05 to 0.2 ⁽²⁾
Ammonia	ND	ND		TVS ⁽⁴⁾
Antimony Dissolved by ICPMS	ND	ND		0.006 ⁽¹⁾
Arsenic 200.8 by ICPMS	ND	ND		0.01 ⁽¹⁾
Arsenic Dissolved by ICPMS	ND	ND		0.01 ⁽¹⁾
Barium Dissolved by ICPMS	0.0658	0.0539		2 ⁽¹⁾
Beryllium Dissolved by ICPMS	ND	ND		0.004 ⁽¹⁾
Boron 200.7 by ICP	ND	ND		0.001
Cadmium Dissolved by ICPMS	ND	ND		0.005 ⁽¹⁾
Calcium Dissolved by ICP	29.4	26.0		0.000
Chloride by IC	ND	ND		250 ⁽²⁾
Chromium 200.8 by ICPMS	ND	ND		0.1 ⁽¹⁾
Copper Dissolved by ICPMS	0.0015	0.0017		1.3 ⁽¹⁾⁽³⁾ , 1.0 ⁽²⁾
Cyanide, WAD	ND	0.0017 ND		0.2 ⁽¹⁾
Fluoride by IC	0.227	0.232		4.0 ⁽¹⁾ , 2.0 ⁽²⁾
Hardness, dis	89.5	79.4		4.0 , 2.0
Iron 200.7 by ICP	ND			0.30 ⁽²⁾
,				
Iron Dissolved by ICP	ND	ND		0.30 ⁽²⁾
Lead 200.8 by ICPMS	0.0005	0.0007		0.015 ⁽¹⁾⁽³⁾
Lead Dissolved by ICPMS	ND	ND		0.015 ⁽¹⁾⁽³⁾
Magnesium Dissolved by ICP	3.91	3.53		0.05 ⁽²⁾
Manganese Dissolved by ICPMS	0.9	0.8		TVS ⁽⁴⁾ μg/L
Mercury Dissolved by CVAA	ND	ND		0.002 ⁽¹⁾
Molybdenum Dissolved by ICPMS	0.0011	0.0011		
Nickel Dissolved by ICPMS	0.0025	0.0034		0.1 ⁽¹⁾
Nitrate as N by IC	0.089	0.078		10 ⁽¹⁾
Nitrate/Nitrite as N by IC Package	0.0891	0.0777		10 ⁽¹⁾
Nitrite as N by IC	ND	ND		1 ⁽¹⁾
pH (S.U.)	7.47	7.45		6 - 8.5
Selenium Dissolved by ICPMS	ND	ND		0.05 ⁽¹⁾
Silver Dissolved by ICPMS	ND	ND		0.10 ⁽²⁾
Solids, Total Dissolved (TDS)	120	90.0		
Solids, Total Suspended (TSS)	NA	2.75		
Sulfate by IC	30.2	25.8		250 ⁽²⁾
Thallium Dissolved by ICPMS	ND	ND	<u> </u>	0.002 ⁽¹⁾
Uranium Dissolved by ICPMS	0.3	0.3	├ ─── ├ ──	30 µg/L ⁽¹⁾
Zinc Dissolved by ICPMS	ND	0.0041	I I	TVS ⁽⁴⁾

Notes: mg/L = milligrams per Liter $^{\circ}C = degrees Celsius$ $\mu S/cm = microsiemens per centimeter$ S.U. = standard unitsmV = millivolts cfs = cubic feet per second $\mu g/L = microgram per Liter NA = not applicable$ ND = not detected TVS = table value standards

Footnotes:

(1) SDWA NPDWR MCL= Safe Drinking Water Act National Primary Drinking Water Regulations Maximum Contaminant Level. These are legally enforceable standards that apply to public drinking water systems. Primary standards protect public health by limiting the levels of contaminants in

enforceable standards that apply to public drinking water systems. Primary standards protect public realition by influing the levels of contaminants in drinking water. (2) SDWA NSDWR SMCL= Safe Drinking Water Act National Secondary Drinking water Regulations Secondary Maximum Contaminant Level. These are non-enforceable guidelines regulating contaminants that may cause cosmetic effects (such as skin or tooth discoloration) or aesthetic effects (such as taste, odor, or color) in drinking water. EPA recommends secondary standards to water systems but does not require systems to comply. (3) Treatments Technique (TT). A required process intended to reduce the level of a contaminants in drinking water. Lead and copper are regulated by a Treatment Technique that requires a system to control the corrosiveness of their water. If more than 10% of tap water samples exceed the Action Level, water systems must take additional steps to treat the water. (4) 1002-31 - Regulation 31 - Colorado Water Quality Control Division, Tables III and IV.

Table 4. 2018 Water Quality Results - Idaho Mill Spring (ID-SW)May Day Idaho Mine ComplexSunrise Mining, LLC All values in mg/L unless otherwise noted

		Da	ate	Safe Drinking Water Act	
Analyte	2/9/2018	4/27/2018		MCL ⁽¹⁾ or SMCL ⁽²⁾	
Field Measurements				.	
Temperature (°C)	5.6	6.6			
Conductivity (µS/cm)	294	288			
pH (S.U.)	8.26	7.94		6 - 8.5	
Flow (cfs)	NA	NA			
Lab Results					
Alkalinity, Bicarbonate	123	118			
Alkalinity, Carbonate	12.0	ND			
Alkalinity, Hydroxide	ND	ND			
Alkalinity, Total	135	118			
Aluminum Dissolved by ICP	ND	ND		0.05 to 0.2 ⁽²⁾	
Ammonia	ND	ND		TVS ⁽⁴⁾	
Antimony Dissolved by ICPMS	0.0008	ND		0.006 ⁽¹⁾	
Arsenic 200.8 by ICPMS	ND	ND		0.01 ⁽¹⁾	
Arsenic Dissolved by ICPMS	ND	0.0011		0.01 ⁽¹⁾	
Barium Dissolved by ICPMS	0.0877	0.0756		2 ⁽¹⁾	
Beryllium Dissolved by ICPMS	ND	ND		0.004 ⁽¹⁾	
Boron 200.7 by ICP	ND	ND		0.004	
Cadmium Dissolved by ICPMS	0.0001	ND		0.005 ⁽¹⁾	
Calcium Dissolved by ICP	41.3	39.2		0.000	
Chloride by IC	ND	ND		250 ⁽²⁾	
Chromium 200.8 by ICPMS	ND	ND		0.1 ⁽¹⁾	
Copper Dissolved by ICPMS	0.0005	0.0013		1.3 ⁽¹⁾⁽³⁾ , 1.0 ⁽²⁾	
Cyanide, WAD	0.0003 ND	0.0013 ND		0.2 ⁽¹⁾	
Fluoride by IC	ND	ND		4.0 ⁽¹⁾ , 2.0 ⁽²⁾	
Hardness, dis	161	154		4.0**, 2.0**	
	ND	ND		0.30 ⁽²⁾	
Iron 200.7 by ICP					
Iron Dissolved by ICP	ND	ND		0.30 ⁽²⁾	
Lead 200.8 by ICPMS	ND	0.0005		0.015 ⁽¹⁾⁽³⁾	
Lead Dissolved by ICPMS	ND	ND		0.015 ⁽¹⁾⁽³⁾	
Magnesium Dissolved by ICP	14.1	13.7		0.05 ⁽²⁾	
Manganese Dissolved by ICPMS	ND	0.8		TVS ⁽⁴⁾ μg/L	
Mercury Dissolved by CVAA	ND	ND		0.002 ⁽¹⁾	
Molybdenum Dissolved by ICPMS	0.0006	0.0006			
Nickel Dissolved by ICPMS	0.0039	0.0026		0.1 ⁽¹⁾	
Nitrate as N by IC	0.157	0.190		10 ⁽¹⁾	
Nitrate/Nitrite as N by IC Package	0.157	0.190		10 ⁽¹⁾	
Nitrite as N by IC	ND	ND		1 ⁽¹⁾	
pH (S.U.)	8.25	8.26		6 - 8.5	
Selenium Dissolved by ICPMS	ND	ND		0.05 ⁽¹⁾	
Silver Dissolved by ICPMS	ND	ND		0.10 ⁽²⁾	
Solids, Total Dissolved (TDS)	215	180			
Solids, Total Suspended (TSS)	NA	N			
Sulfate by IC	40.4	38.8		250 ⁽²⁾	
Thallium Dissolved by ICPMS	ND	ND		0.002(1)	
Uranium Dissolved by ICPMS	1.1	1.2		30 µg/L ⁽¹⁾	
Zinc Dissolved by ICPMS	0.0158	0.0152		TVS ⁽⁴⁾	

Notes: mg/L = milligrams per Liter $^{\circ}C = degrees Celsius$ $\mu S/cm = microsiemens per centimeter$ S.U. = standard unitsmV = millivolts cfs = cubic feet per second $\mu g/L = microgram per Liter NA = not applicable$ ND = not detectedTVS = table value standards

Footnotes:

(1) SDWA NPDWR MCL= Safe Drinking Water Act National Primary Drinking Water Regulations Maximum Contaminant Level. These are legally enforceable standards that apply to public drinking water systems. Primary standards protect public health by limiting the levels of contaminants in

 (2) SDWA NSDWR SMCL= Safe Drinking Water Act National Secondary Drinking water Regulations Secondary Maximum Contaminant Level.
 (2) SDWA NSDWR SMCL= Safe Drinking Water Act National Secondary Drinking water Regulations Secondary Maximum Contaminant Level.
 These are non-enforceable guidelines regulating contaminants that may cause cosmetic effects (such as skin or tooth discoloration) or aesthetic effects (such as taste, odor, or color) in drinking water. EPA recommends secondary standards to water systems but does not require systems to that the three the level of a contaminants in drinking water. Lead and copper are effects (such as taste, odor, or color) in drinking water. EPA recommends secondary standards to water systems but does not require systems (3) Treatments Technique (TT). A required process intended to reduce the level of a contaminants in drinking water. Lead and copper are regulated by a Treatment Technique that requires a system to control the corrosiveness of their water. If more than 10% of tap water samples exceed the Action Level, water systems must take additional steps to treat the water. (4) 1002-31 - Regulation 31 - Colorado Water Quality Control Division, Tables III and IV.

Table 5. 2018 Water Quality Results - Little Deadwood Gulch - Upper Station (LDG-1) May Day Idaho Mine Complex Sunrise Mining, LLC All values in mg/L unless otherwise noted

Angleta		Date		Safe Drinking Water Act	
Analyte	2/9/2018	4/27/2018		MCL ⁽¹⁾ or SMCL ⁽²⁾	
Field Measurements					
Temperature (°C)	Dry	Dry			
Conductivity (µS/cm)	Dry	Dry			
pH (S.U.)	Dry	Dry	r	6 - 8.5	
Flow (cfs)	Dry	Dry	r		
Lab Results					
Alkalinity, Bicarbonate	Dry	Dry			
Alkalinity, Carbonate	Dry	Dry			
Alkalinity, Hydroxide	Dry	Dry			
Alkalinity, Total	Dry	Dry		(2)	
Aluminum Dissolved by ICP	Dry	Dry		0.05 to 0.2 ⁽²⁾	
Ammonia	Dry	Dry		TVS ⁽⁴⁾	
Antimony Dissolved by ICPMS	Dry	Dry		0.006 ⁽¹⁾	
Arsenic 200.2 by ICP-MS	Dry	Dry		0.01 ⁽¹⁾	
Arsenic Dissolved by ICPMS	Dry	Dry		0.01 ⁽¹⁾	
Barium Dissolved by ICPMS	Dry	Dry		2 ⁽¹⁾	
Beryllium Dissolved by ICPMS	Dry	Dry	,	0.004 ⁽¹⁾	
Boron 200.2 by ICP	Dry	Dry			
Cadmium Dissolved by ICPMS	Dry	Dry	,	0.005 ⁽¹⁾	
Calcium Dissolved by ICP	Dry	Dry			
Chloride by IC	Dry	Dry	,	250 ⁽²⁾	
Chromium 200.2 by ICPMS	Dry	Dry	,	0.1 ⁽¹⁾	
Chromium	Dry	Dry			
Cobalt	Dry	Dry			
Copper Dissolved by ICPMS	Dry	Dry		1.3 ⁽¹⁾⁽³⁾ , 1.0 ⁽²⁾	
Cyanide, WAD	Dry	Dry	,	0.2 ⁽¹⁾	
Fluoride by IC	Dry	Dry	,	4.0 ⁽¹⁾ , 2.0 ⁽²⁾	
Hardness, dis	Dry	Dry			
Iron 200.2 by ICP	Dry	Dry	,	0.30 ⁽²⁾	
Iron Dissolved by ICP	Dry	Dry		0.30 ⁽²⁾	
Lead 200.2 by ICPMS	Dry	Dry		0.015 ⁽¹⁾⁽³⁾	
Lead Dissolved by ICPMS	Drv	Drv		0.015 ⁽¹⁾⁽³⁾	
Magnesium Dissolved by ICP	Dry	Dry		0.05 ⁽²⁾	
Manganese Dissolved by ICPMS	Dry	Dry		TVS ⁽⁴⁾ µg/L	
Mercury Dissolved by CVAA	Dry	Dry		0.002 ⁽¹⁾	
Molybdenum Dissolved by ICPMS	Dry	Dry		0.002	
Nickel Dissolved by ICPMS	Dry	Dry		0.1 ⁽¹⁾	
Nitrate as N by IC	Dry	Dry		10 ⁽¹⁾	
Nitrate/Nitrite as N by IC Package	Dry	Dry		10 ⁽¹⁾	
Nitrite as N by IC	4	1		1 ⁽¹⁾	
	Dry	Dry		6 - 8.5	
pH (S.U.)	Dry	Dry	 	0.05 ⁽¹⁾	
Selenium Dissolved by ICPMS	Dry	Dry	<u>}</u>		
Silver Dissolved by ICPMS	Dry	Dry	<u> </u>	0.10 ⁽²⁾	
Solids, Total Dissolved (TDS) Solids, Total Suspended (TSS)	Dry Drv	Dry Dry	╂───╂──		
Sulfate by IC	Dry	Dry		250 ⁽²⁾	
Thallium Dissolved by ICPMS	Dry	Dry	<u> </u>	0.002 ⁽¹⁾	
Uranium Dissolved by ICPMS	Dry	Dry	1 1	30 µg/L ⁽¹⁾	
Vanadium	Dry	Dry	1		
Zinc Dissolved by ICPMS	Dry	Dry		TVS ⁽⁴⁾	

Notes: mg/L = milligrams per Liter $^{\circ}C = degrees Celsius$ $\mu S/cm = microsiemens per centimeter$ S.U. = standard unitsmV = millivolts cfs = cubic feet per second

 $\label{eq:gamma} \begin{array}{l} \mbox{constraint} \mbox{$

(1) SDWA NPDWR MCL= Safe Drinking Water Act National Primary Drinking Water Regulations Maximum Contaminant Level. These are legally enforceable standards that apply to public drinking water systems. Primary standards protect public health by limiting the levels of contaminants in drinking water.

(2) SDWA NSDWR SMCL= Safe Drinking Water Act National Secondary Drinking water Regulations Secondary Maximum Contaminant Level. These are non-enforceable guidelines regulating contaminants that may cause cosmetic effects (such as skin or tooth discoloration) or aesthetic effects (such as taste, odor, or color) in drinking water. EPA recommends secondary standards to water systems but does not require systems to comply.

(3) Treatments Technique (TT). A required process intended to reduce the level of a contaminants in drinking water. Lead and copper are regulated by a Treatment Technique that requires a system to control the corrosiveness of their water. If more than 10% of tap water samples exceed the Action Level, water systems must take additional steps to treat the water.

Table 6. 2018 Water Quality Results - Little Deadwood Gulch - Lower Station (LDG-2) May Day Idaho Mine Complex Sunrise Mining, LLC All values in mg/L unless otherwise noted

		Date	Safe Drinking Water Act	
Analyte	2/9/2018	4/27/2018		MCL ⁽¹⁾ or SMCL ⁽²⁾
Field Measurements				
Temperature (°C)	Dry	Dry		
Conductivity (µS/cm)	Drv	Dry		
pH (S.U.)	Dry	Dry		6 - 8.5
Flow (cfs)	Dry	Dry		
Lab Results				
Alkalinity, Bicarbonate	Dry	Dry		
Alkalinity, Carbonate	Dry	Dry		
Alkalinity, Hydroxide	Dry	Dry		
Alkalinity, Total	Dry	Dry		
Aluminum Dissolved by ICP	Dry	Dry		0.05 to 0.2 ⁽²⁾
Ammonia	Dry	Dry		TVS ⁽⁴⁾
Antimony Dissolved by ICPMS	Dry	Dry		0.006 ⁽¹⁾
Arsenic 200.2 by ICP-MS	Dry	Dry		0.01 ⁽¹⁾
Arsenic Dissolved by ICPMS	Dry	Dry		0.01 ⁽¹⁾
Barium Dissolved by ICPMS	Dry	Dry		2 ⁽¹⁾
Beryllium Dissolved by ICPMS	Drv	Drv		0.004 ⁽¹⁾
Boron 200.2 by ICP	Dry	Dry		
Cadmium Dissolved by ICPMS	Dry	Dry		0.005 ⁽¹⁾
Calcium Dissolved by ICP	Dry	Dry		
Chloride by IC	Dry	Dry		250 ⁽²⁾
Chromium 200.2 by ICPMS	Dry	Drv		0.1 ⁽¹⁾
Chromium	Dry	Dry		
Cobalt	Dry	Dry		
Copper Dissolved by ICPMS	Dry	Dry		$1.3^{(1)(3)}, 1.0^{(2)}$
Cyanide, WAD	Dry	Dry		0.2 ⁽¹⁾
Fluoride by IC	Drv	Drv		4.0 ⁽¹⁾ , 2.0 ⁽²⁾
Hardness, dis	Dry	Dry		110 ; 210
Iron 200.2 by ICP	Dry	Dry		0.30 ⁽²⁾
Iron Dissolved by ICP	Drv	Drv		0.30 ⁽²⁾
Lead 200.2 by ICPMS	Dry	Dry		0.015 ⁽¹⁾⁽³⁾
Lead Dissolved by ICPMS	Dry	Drv		0.015 ⁽¹⁾⁽³⁾
Magnesium Dissolved by ICP	Dry	Dry		0.05 ⁽²⁾
Magnese Dissolved by ICPMS	Dry	Dry		TVS ⁽⁴⁾ μg/L
	,	,		0.002 ⁽¹⁾
Mercury Dissolved by CVAA Molybdenum Dissolved by ICPMS	Dry Dry	Dry Dry		0.002
Nickel Dissolved by ICPMS	Dry	Dry		0.1 ⁽¹⁾
		,		10 ⁽¹⁾
Nitrate as N by IC	Dry	Dry		
Nitrate/Nitrite as N by IC Package	Dry	Dry		10 ⁽¹⁾
Nitrite as N by IC	Dry	Dry		1(1)
pH (S.U.)	Dry	Dry		6 - 8.5
Selenium Dissolved by ICPMS	Dry	Dry	├ ─── ├ ──	0.05 ⁽¹⁾
Silver Dissolved by ICPMS	Dry	Dry	├───┼──	0.10 ⁽²⁾
Solids, Total Dissolved (TDS) Solids, Total Suspended (TSS)	Dry Dry	Dry Dry	├ ─── ├ ──	
		1		250 ⁽²⁾
Sulfate by IC Thallium Dissolved by ICPMS	Dry Drv	Dry Drv		0.002 ⁽¹⁾
Uranium Dissolved by ICPMS	Dry	Dry		30 µg/L ⁽¹⁾
Vanadium	Dry	Dry		50 µg, L
Zinc Dissolved by ICPMS	Dry	Dry		TVS ⁽⁴⁾

Notes: mg/L = milligrams per Liter $^{\circ}C = degrees Celsius$ $\mu S/cm = microsiemens per centimeter$ S.U. = standard units mV = millivolts cfs = cubic feet per second $\mu g/L = microgram per Liter$ NA = not applicable ND = not detectedTVS = table value standards

(1) SDWA NPDWR MCL= Safe Drinking Water Act National Primary Drinking Water Regulations Maximum Contaminant Level. These are legally enforceable standards that apply to public drinking water systems. Primary standards protect public health by limiting the levels of contaminants in drinking

enforceable standards that apply to public drinking water systems. Primary standards protect public health by limiting the levels of contaminants in drinking water. (2) SDWA NSDWR SMCL= Safe Drinking Water Act National Secondary Drinking water Regulations Secondary Maximum Contaminant Level. These are non-enforceable guidelines regulating contaminants that may cause cosmetic effects (such as skin or tooth discoloration) or aesthetic effects (such as taste, odor, or color) in drinking water. EPA recommends secondary standards to water systems but does not require systems to comply. (3) Treatments Technique (TT). A required process intended to reduce the level of a contaminants in drinking water. Lead and copper are regulated by a Treatment Technique that requires a system to control the corrosiveness of their water. If more than 10% of tap water samples exceed the Action Level, water systems must take additional steps to treat the water. (4) 1002-31 - Regulation 31 - Colorado Water Quality Control Division, Tables III and IV.

Table 7. 2018 Water Quality Results - May Day No. 1 Well (MD-1)May Day Idaho Mine Complex
Sunrise Mining, LLC

All values in mg/L unless otherwise noted

Anakata		Da	ite	Safe Drinking Water Act
Analyte	2/9/2018	4/27/2018		MCL ⁽¹⁾ or SMCL ⁽²⁾
Field Measurements				
Temperature (°C)	7.7	7.8		
Conductivity (µS/cm)	751	747		
pH (S.U.)	7.18	7.14		6 - 8.5
Static Water Level (feet)	143	140.17		
Lab Results				
Aluminum Dissolved by ICP	ND	ND		0.05 to 0.2 ⁽²⁾
Antimony Dissolved by ICPMS	ND	ND		0.006 ⁽¹⁾
Arsenic Dissolved by ICPMS	ND	ND		0.01 ⁽¹⁾
Barium Dissolved by ICPMS	0.0181	0.0169		2 ⁽¹⁾
Beryllium Dissolved by ICPMS	ND	ND		0.004 ⁽¹⁾
Boron Dissolved by ICP	ND	ND		
Cadmium Dissolved by ICPMS	ND	ND		0.005 ⁽¹⁾
Chromium Dissolved by ICPMS	0.0093	0.0081		0.1 ⁽¹⁾
Cobalt Dissolved by ICPMS	0.0005	0.0005		
Copper Dissolved by ICPMS	0.0004	0.0030		$1.3^{(1)(3)}, 1.0^{(2)}$
Cyanide, WAD	ND	ND		0.2 ⁽¹⁾
Fluoride by IC	0.241	0.233		4.0 ⁽¹⁾ , 2.0 ⁽²⁾
Iron Dissolved by ICP	ND	ND		0.30 ⁽²⁾
Lead Dissolved by ICPMS	ND	ND		0.015 ⁽¹⁾⁽³⁾
Manganese Dissolved by ICPMS	236	216		TVS ⁽⁴⁾ µg/L
Mercury Dissolved by CVAA	ND	ND		0.002 ⁽¹⁾
Molybdenum Dissolved by ICPMS	ND	ND		
Nickel Dissolved by ICPMS	0.0092	0.0070		0.1 ⁽¹⁾
Nitrate as N by IC	ND	ND		10 ⁽¹⁾
Nitrate/Nitrite as N by IC Package	ND	ND		10 ⁽¹⁾
Nitrite as N by IC	ND	ND		1 ⁽¹⁾
pH (S.U)	7.51	7.32		6 - 8.5
Selenium Dissolved by ICPMS	ND	ND		0.05 ⁽¹⁾
Silver Dissolved by ICPMS	ND	ND		0.10 ⁽²⁾
Sodium Dissolved by ICP	2.54	2.52		
Solids, Total Dissolved (TDS)	555	535		
Sulfate by IC	154	145		250 ⁽²⁾
Thallium Dissolved by ICPMS	ND	ND		0.002 ⁽¹⁾
Uranium Dissolved by ICPMS	0.7	0.8		30 µg/L ⁽¹⁾
Vanadium	ND	ND		
Zinc Dissolved by ICPMS	0.0032	0.0053		TVS ⁽⁴⁾

Notes:

mg/L = milligrams per Liter $^{\circ}C = degrees Celsius$ $\mu S/cm = microsiemens per centimeter$ S.U. = standard units mV = millivolts $\mu g/L = microgram per Liter$ NA = not applicable ND = not detected TVS = table value standards

(1) SDWA NPDWR MCL= Safe Drinking Water Act National Primary Drinking Water Regulations Maximum Contaminant Level. These are legally enforceable standards that apply to public drinking water systems. Primary standards protect public health by limiting the levels of contaminants in drinking water.

(2) SDWA NSDWR SMCL= Safe Drinking Water Act National Secondary Drinking water Regulations Secondary Maximum Contaminant Level. These are non-enforceable guidelines regulating contaminants that may cause cosmetic effects (such as skin or tooth discoloration) or aesthetic effects (such as taste, odor, or color) in drinking water. EPA recommends secondary standards to water systems but does not require systems to (3) Treatments Technique (TT). A required process intended to reduce the level of a contaminants in drinking water. Lead and copper are regulated by a Treatment Technique that requires a system to control the corrosiveness of their water. If more than 10% of tap water samples exceed the Action Level, water systems must take additional steps to treat the water.

Table 8. 2018 Water Quality Results - May Day No. 2 Well (MD-2)May Day Idaho Mine Complex
Sunrise Mining, LLC

All values in mg/L unless otherwise noted

Australia		Da	te	Safe Drinking Water Act	
Analyte	2/9/2018	4/27/2018		MCL ⁽¹⁾ or SMCL ⁽²⁾	
Field Measurements				•	
Temperature (°C)	8.8	9.1			
Conductivity (µS/cm)	613	610			
pH (S.U.)	7.37	7.32		6 - 8.5	
Static Water Level (feet)	50	57.58			
Lab Results					
Aluminum Dissolved by ICP	ND	ND		0.05 to 0.2 ⁽²⁾	
Antimony Dissolved by ICPMS	ND	ND		0.006 ⁽¹⁾	
Arsenic Dissolved by ICPMS	ND	ND		0.01 ⁽¹⁾	
Barium Dissolved by ICPMS	0.0563	0.0501		2(1)	
Beryllium Dissolved by ICPMS	ND	ND		0.004 ⁽¹⁾	
Boron Dissolved by ICP	ND	ND			
Cadmium Dissolved by ICPMS	0.0003	0.0002		0.005 ⁽¹⁾	
Chromium Dissolved by ICPMS	0.0089	0.0074		0.1 ⁽¹⁾	
Cobalt Dissolved by ICPMS	0.0002	0.0001			
Copper Dissolved by ICPMS	0.0011	0.0060		1.3 ⁽¹⁾⁽³⁾ , 1.0 ⁽²⁾	
Cyanide, WAD	ND	ND		0.2 ⁽¹⁾	
Fluoride by IC	0.819	0.799		4.0 ⁽¹⁾ , 2.0 ⁽²⁾	
Iron Dissolved by ICP	ND	ND		0.30 ⁽²⁾	
Lead Dissolved by ICPMS	ND	ND		0.015 ⁽¹⁾⁽³⁾	
Manganese Dissolved by ICPMS	49.1	0.0527		TVS ⁽⁴⁾ μg/L	
Mercury Dissolved by CVAA	ND	ND		0.002 ⁽¹⁾	
Molybdenum Dissolved by ICPMS	ND	ND		0.002	
Nickel Dissolved by ICPMS	0.0046	0.0036		0.1 ⁽¹⁾	
Nitrate as N by IC	ND	ND		10 ⁽¹⁾	
Nitrate/Nitrite as N by IC Package	ND	ND		10 ⁽¹⁾	
Nitrite as N by IC	ND	ND		1 ⁽¹⁾	
pH (S.U.)	7.66	7.65		6 - 8.5	
Selenium Dissolved by ICPMS	ND	ND		0.05 ⁽¹⁾	
Silver Dissolved by ICPMS	ND	ND		0.10 ⁽²⁾	
Sodium Dissolved by ICP	38.5	37.9		0.10	
Solids, Total Dissolved (TDS)	390	400			
Sulfate by IC	46.7	48.2		250 ⁽²⁾	
Thallium Dissolved by ICPMS	ND	ND		0.002 ⁽¹⁾	
Uranium Dissolved by ICPMS	1.5	1.5		30 µg/L ⁽¹⁾	
Vanadium	ND	ND			
Zinc Dissolved by ICPMS	ND	0.0082		TVS ⁽⁴⁾	

Notes:

mg/L = milligrams per Liter °C = degrees Celsius μ S/cm = microsiemens per centimeter S.U. = standard units mV = millivolts μ g/L = microgram per Liter NA = not applicable ND = not detected TVS = table value standards

(1) SDWA NPDWR MCL= Safe Drinking Water Act National Primary Drinking Water Regulations Maximum Contaminant Level. These are legally enforceable standards that apply to public drinking water systems. Primary standards protect public health by limiting the levels of contaminants in drinking water.

(2) SDWA NSDWR SMCL= Safe Drinking Water Act National Secondary Drinking water Regulations Secondary Maximum Contaminant Level. These are non-enforceable guidelines regulating contaminants that may cause cosmetic effects (such as skin or tooth discoloration) or aesthetic effects (such as taste, odor, or color) in drinking water. EPA recommends secondary standards to water systems but does not require systems to comply.
(3) Treatments Technique (TT). A required process intended to reduce the level of a contaminants in drinking water. Lead and copper are regulated by a Treatment Technique that requires a system to control the corrosiveness of their water. If more than 10% of tap water samples exceed the Action Level, water systems must take additional steps to treat the water.

Table 9. 2018 Water Quality Results - La Plata River Alluvium Well (LP-1) May Day Idaho Mine Complex Sunrise Mining, LLC

All values in mg/L unless otherwise noted

		Dat	te	Safe Drinking Water Act
Analyte	2/9/2018	4/27/2018		MCL ⁽¹⁾ or SMCL ⁽²⁾
Field Measurements				•
Temperature (°C)	4.0	8.0		
Conductivity (µS/cm)	179	755		
pH (S.U.)	7.51	7.14		6 - 8.5
Static Water Level (feet)	9.25	8.17		
Lab Results				
Aluminum Dissolved by ICP	ND	ND		0.05 to 0.2 ⁽²⁾
Antimony Dissolved by ICPMS	ND	ND		0.006 ⁽¹⁾
Arsenic Dissolved by ICPMS	ND	ND		0.01 ⁽¹⁾
Barium Dissolved by ICPMS	0.0558	0.0446		2 ⁽¹⁾
Beryllium Dissolved by ICPMS	ND	ND		0.004 ⁽¹⁾
Boron Dissolved by ICP	ND	ND		
Cadmium Dissolved by ICPMS	ND	ND		0.005 ⁽¹⁾
Chromium Dissolved by ICPMS	0.0017	0.0020		0.1 ⁽¹⁾
Cobalt Dissolved by ICPMS	0.0004	0.0004		
Copper Dissolved by ICPMS	0.0020	0.0034		1.3 ⁽¹⁾⁽³⁾ , 1.0 ⁽²⁾
Cyanide, WAD	ND	ND		0.2 ⁽¹⁾
Fluoride by IC	0.222	0.227		4.0 ⁽¹⁾ , 2.0 ⁽²⁾
Iron Dissolved by ICP	0.151	0.135		0.30 ⁽²⁾
Lead Dissolved by ICPMS	ND	ND		0.015 ⁽¹⁾⁽³⁾
Manganese Dissolved by ICPMS	24.6	16.2		TVS ⁽⁴⁾ µg/L
Mercury Dissolved by CVAA	ND	ND		0.002 ⁽¹⁾
Molybdenum Dissolved by ICPMS	0.0029	0.0027		0.002
Nickel Dissolved by ICPMS	0.0127	0.0108		0.1 ⁽¹⁾
Nitrate as N by IC	0.100	0.102		10 ⁽¹⁾
Nitrate/Nitrite as N by IC Package	0.100	0.102		10 ⁽¹⁾
Nitrite as N by IC	ND	ND		1 ⁽¹⁾
pH (S.U.)	7.88	7.69		6 - 8.5
Selenium Dissolved by ICPMS	ND	ND		0.05 ⁽¹⁾
Silver Dissolved by ICPMS	ND	ND		0.10 ⁽²⁾
Sodium Dissolved by ICP	1.48	1.04		
Solids, Total Dissolved (TDS)	140	95.0		
Sulfate by IC	30.4	21.3		250 ⁽²⁾
Thallium Dissolved by ICPMS	ND	ND		0.002 ⁽¹⁾
Uranium Dissolved by ICPMS	0.3	0.2		30 µg/L ⁽¹⁾
Vanadium	ND	ND		
Zinc Dissolved by ICPMS	ND	ND		TVS ⁽⁴⁾ µg/L

Notes:

mg/L = milligrams per Liter °C = degrees Celsius μ S/cm = microsiemens per centimeter S.U. = standard units mV = millivolts μ g/L = microgram per Liter NA = not applicable ND = not detected TVS = table value standards

(1) SDWA NPDWR MCL= Safe Drinking Water Act National Primary Drinking Water Regulations Maximum Contaminant Level. These are legally enforceable standards that apply to public drinking water systems. Primary standards protect public health by limiting the levels of contaminants in drinking water.

(2) SDWA NSDWR SMCL= Safe Drinking Water Act National Secondary Drinking water Regulations Secondary Maximum Contaminant Level. These are non-enforceable guidelines regulating contaminants that may cause cosmetic effects (such as skin or tooth discoloration) or aesthetic effects (such as taste, odor, or color) in drinking water. EPA recommends secondary standards to water systems but does not require systems to (3) Treatments Technique (TT). A required process intended to reduce the level of a contaminants in drinking water. Lead and copper are regulated by a Treatment Technique that requires a system to control the corrosiveness of their water. If more than 10% of tap water samples exceed the Action Level, water systems must take additional steps to treat the water.

Table 10. 2018 Water Quality Results - Idaho Mill Well (ID-GW) May Day Idaho Mine Complex Sunrise Mining, LLC

All values in mg/L unless otherwise noted

		Date	Safe Drinking Water Act	
Analyte	2/9/2018	4/27/2018		MCL ⁽¹⁾ or SMCL ⁽²⁾
Field Measurements				
Temperature (°C)	6.7	7.0		
Conductivity (µS/cm)	287	296		
pH (S.U.)	8.24	8.19		6 - 8.5
Static Water Level (feet)	46.75	46.5		
Lab Results				
Aluminum Dissolved by ICP	ND	ND		0.05 to 0.2 ⁽²⁾
Antimony Dissolved by ICPMS	0.0006	ND		0.006 ⁽¹⁾
Arsenic Dissolved by ICPMS	0.0015	0.0013		0.01 ⁽¹⁾
Barium Dissolved by ICPMS	0.0546	0.0476		2 ⁽¹⁾
Beryllium Dissolved by ICPMS	ND	ND		0.004 ⁽¹⁾
Boron Dissolved by ICP	ND	ND		
Cadmium Dissolved by ICPMS	0.0001	0.0001		0.005 ⁽¹⁾
Chromium Dissolved by ICPMS	0.0037	0.0030		0.1 ⁽¹⁾
Cobalt Dissolved by ICPMS	0.0001	0.0001		
Copper Dissolved by ICPMS	0.0009	0.0022		1.3 ⁽¹⁾⁽³⁾ , 1.0 ⁽²⁾
Cyanide, WAD	ND	ND		0.2 ⁽¹⁾
Fluoride by IC	0.105	ND		4.0 ⁽¹⁾ , 2.0 ⁽²⁾
Iron Dissolved by ICP	ND	ND		0.30 ⁽²⁾
Lead Dissolved by ICPMS	ND	ND		0.015 ⁽¹⁾⁽³⁾
Manganese Dissolved by ICPMS	0.5	8.6	1	TVS ⁽⁴⁾ µg/L
Mercury Dissolved by CVAA	ND	ND		0.002 ⁽¹⁾
Molybdenum Dissolved by ICPMS	0.0009	0.0010		0.002
Nickel Dissolved by ICPMS	0.0027	0.0026		0.1 ⁽¹⁾
Nitrate as N by IC	0.148	0.164		10 ⁽¹⁾
Nitrate/Nitrite as N by IC Package	0.148	0.164		10 ⁽¹⁾
Nitrite as N by IC	ND	0.104 ND		1 ⁽¹⁾
pH (S.U.)	8.21	8.23		6 - 8.5
Selenium Dissolved by ICPMS	ND	ND	1 1	0.05 ⁽¹⁾
Silver Dissolved by ICPMS	ND	ND		0.10 ⁽²⁾
Sodium Dissolved by ICP	4.92	5.48		0.10
Solids, Total Dissolved (TDS)	175	170		
Sulfate by IC	33.4	35.9		250 ⁽²⁾
Thallium Dissolved by ICPMS	ND	ND		0.002 ⁽¹⁾
Uranium Dissolved by ICPMS	1.2	1.4		30 µg/L ⁽¹⁾
Vanadium	ND	ND		
Zinc Dissolved by ICPMS	ND	ND		TVS ⁽⁴⁾ µg/L

Notes:

 $\begin{array}{l} mg/L = milligrams \ per \ Liter \\ ^{\circ}C = degrees \ Celsius \\ \mu S/cm = microsiemens \ per \ centimeter \\ S.U. = standard \ units \\ mV = millivolts \\ \mu g/L = microgram \ per \ Liter \\ NA = not \ applicable \\ ND = not \ detected \\ TVS = table \ value \ standards \end{array}$

(1) SDWA NPDWR MCL= Safe Drinking Water Act National Primary Drinking Water Regulations Maximum Contaminant Level. These are legally enforceable standards that apply to public drinking water systems. Primary standards protect public health by limiting the levels of contaminants in drinking water.

(2) SDWA NSDWR SMCL= Safe Drinking Water Act National Secondary Drinking water Regulations Secondary Maximum Contaminant Level. These are non-enforceable guidelines regulating contaminants that may cause cosmetic effects (such as skin or tooth discoloration) or aesthetic effects (such as taste, odor, or color) in drinking water. EPA recommends secondary standards to water systems but does not require systems to comply.

(3) Treatments Technique (TT). A required process intended to reduce the level of a contaminants in drinking water. Lead and copper are regulated by a Treatment Technique that requires a system to control the corrosiveness of their water. If more than 10% of tap water samples exceed the Action Level, water systems must take additional steps to treat the water.