

July 31, 2018

Project No. 1899205

Ms. Amy Eschberger Colorado Division of Reclamation Mining and Safety Department of Natural Resources 1313 Sherman Street, Room 215 Denver, Colorado 80203

FIRST SEMI-ANNUAL EVENT 2018 GROUNDWATER SAMPLING AT THE BOETTCHER QUARRY

Dear Ms. Eschberger:

On behalf of Holcim (US) Inc., Golder Associates Inc. is pleased to submit analytical laboratory results for the first semi-annual 2018 groundwater sampling event at the Boettcher Limestone Quarry near La Porte, Colorado. Attached are Tables 1 through 7, summarizing the results, and a copy of the laboratory report. In addition to sampling wells MW-1 through MW-7, a field duplicate at MW-1 (MW-20) and a field blank (MW-15) were collected. The locations of monitoring wells MW-1 through MW-7 are presented in Figure 1.

In December 2016, the Colorado Division of Reclamation Mining and Safety approved a revision to change the required groundwater monitoring frequency from quarterly to semi-annually (Revision TR07) based on evidence that the groundwater wells were not fully recharging between sampling events. Figure 2 presents a graph of the monitoring well water elevations measured during each sampling event from 2013 to present. Recent water levels, taken in May 2017, November 2017, and May 2018 after more than six months of recharge, are higher than the previous range of levels observed for wells that are purged dry prior to sampling (MW-2, MW-3, MW-4, MW-6, and MW-7), indicating more recharge, and further evidence that the groundwater wells were not fully recharging between sampling events.

If you have any questions, please call the undersigned at (303) 980-0540.

Sincerely,

GOLDER ASSOCIATES INC.

Sara Harkins, PG Geologist

march R

Randy March, PE, PG Principal Geological Engineer

Attachments: Table 1 – Summary of Monitoring Results for MW-1 Table 2 – Summary of Monitoring Results for MW-2 Table 3 – Summary of Monitoring Results for MW-3 Table 4 – Summary of Monitoring Results for MW-4 Table 5 – Summary of Monitoring Results for MW-5 Table 6 – Summary of Monitoring Results for MW-6 Table 7 – Summary of Monitoring Results for MW-7 Figure 1 – Location Map Figure 2 – Groundwater Elevations vs. Time Attachment 1 – ACZ Laboratory Report

Golder Associates Inc.

44 Union Boulevard, Suite 300 Lakewood, Colorado, USA 80228

c:\users\dskinner\golder associates\1899205, holcim boettcher quarry 2018 co - reports\boettcher_samplresults_1sthalf2018_fnl_31jul18\1899205 boettchergwsamp1sthalf2018_fnl-31jul18.docx

T: +1 303 980-0540 +1 303 985-2080

Tables

Table 1: Summary of Monitoring Results for MW-1

Date	Interim Narrative Standard	9/27/2010	3/31/2011	6/28/2011	8/31/2011	11/17/2011	3/27/2012	6/27/2012	9/13/2012	11/13/2012	3/19/2013	5/28/2013	8/26/2013	11/14/2013	2/18/2014
Metals			.		.	-	-	.							
Arsenic, Dissolved (mg/L)	0.01	0.015	0.005 B	0.01 B	0.011	<0.01 U	< 0.01 U	0.003 B	0.001 B	0.002 B	0.002 B	< 0.005 U	0.002 B	< 0.005 U	0.001 B
Barium, Dissolved (mg/L)	2	< 0.08 U	0.04 B	0.005 B	< 0.08 U	<0.08 U	0.017 B	< 0.08 U	0.02 B	0.02 B	0.011 B	< 0.08 U	< 0.08 U	0.011 B	0.008 B
Boron, Dissolved (mg/L)	0.75	0.54	0.59	0.58	0.64	0.64	0.62	0.59	0.71	0.73	0.64	0.69	0.61	0.6	0.61
Chromium, Dissolved (mg/L)	0.1	< 0.01 U	< 0.01 U	< 0.01 U	< 0.01 U	<0.01 U	< 0.01 U	< 0.01 U	< 0.01 U	< 0.01 U	< 0.01 U	< 0.01 U	< 0.01 U	< 0.01 U	< 0.01 U
Copper, Dissolved (mg/L)	0.2	< 0.3 U	< 0.3 U	< 0.05 U	< 0.3 U	<0.3 U	< 0.05 U	< 0.3 U	< 0.3 U	< 0.3 U	< 0.05 U	< 0.3 U	< 0.3 U	< 0.05 U	< 0.05 U
Iron, Dissolved (mg/L)	0.3	< 0.3 U	0.3	< 0.05 U	< 0.3 U	0.2 B	0.15	1.4	< 0.3 U	< 0.3 U	< 0.05 U	< 0.3 U	< 0.3 U	< 0.05 U	< 0.05 U
Lead, Dissolved (mg/L)	0.05	0.0019 B	0.0027 B	0.0052	0.0045	0.0007 B	< 0.003 U	0.0035	< 0.003 U	< 0.003 U	< 0.003 U	< 0.003 U	< 0.003 U	< 0.003 U	< 0.003 U
Lithium, Dissolved (mg/L)	2.5	1.3	1.3	1.18	1.2	1.1	1.15	1.1	1.1	1.2	NA	NA	NA	NA	NA
Manganese, Dissolved (mg/L)	0.05	< 0.1 U	0.05 B	0.041	< 0.1 U	< 0.1 U	0.026 B	0.04 B	0.04 B	0.04 B	0.025	< 0.1 U	0.04 B	0.044	0.054
Selenium, Dissolved (mg/L)	0.02	0.4928	0.2684	0.2656	0.2826	0.275	0.2328	0.2204	0.1995	0.1756	0.1826	0.2278	0.257	0.2616	0.2067
Thallium, Dissolved (mg/L)	0.002	0.0016 B	0.0025 B	0.0014 B	0.0017 B	<0.003 U	< 0.003 U	0.0007 B	< 0.003 U	< 0.003 U	< 0.003 U	< 0.003 U	< 0.003 U	< 0.003 U	< 0.003 U
Uranium, Dissolved (mg/L)	0.0168-0.03	0.0364	0.0303	0.0397	0.0344	0.0403	0.0338	0.0367	0.0433	0.0371	NA	NA	NA	NA	NA
Zinc, Dissolved (mg/L)	2	0.13 B	< 0.3 U	< 0.05 U	< 0.3 U	<0.3 U	< 0.05 U	< 0.3 U	< 0.3 U	< 0.3 U	0.02	< 0.3 U	< 0.3 U	< 0.05 U	0.01 B
Other				-					-	-				-	
Chloride (mg/L)	250	< 300 U	< 300 U	< 300 U	40 B	36.4 B	50 B	< 250 U	< 250 U	< 250 U	86 B	< 250 U	55.5 B	< 250 U	< 250 U
Fluoride (mg/L)	2	0.4 B	0.5	0.4 B	0.4 B	0.6	0.6	0.6	0.6	0.7	0.6	0.5	0.5	0.5	0.5
Nitrate as N (mg/L)	10	96	88	70	81.6	81	76	89	85	78.5	NA	NA	NA	NA	NA
Nitrite as N (mg/L)	1	0.24	0.36	0.34	0.4	0.26	0.29	0.56	0.21	0.11	NA	NA	NA	NA	NA
Nitrate+Nitrite as N (mg/L)	10	96	88	70	82	81	76	90	85	78.6	NA	NA	NA	NA	NA
Lab pH (s.u)	6.5 - 8.5	8.1 H	8.1 H	8.0 H	8.0 H	8.0 H	8.0 H	8.1 H	8.2 H	8.2 H	8.1 H	8.0 H	8.0 H	7.8 H	7.9 H
Total Dissolved Solids, filterable residue (mg/L)	8595*	7,770	7,560	7,610	7,540	7,110	7,150	6,770	6,770	6,660	6,610	7,420	6,650 H	7,800 H	7,330
Sulfate (mg/L)	250	4,840	4,540	4,820	4,620	4,306	4,056	4,090	4,041	3,991	3,980	4,610	4,230	5,150	4,980
Gross Alpha (pCi/L)	15.0	41 (±31)	53 (±31)	22 (±25)	5.8 (±29)	32 (±30)	48 (±30)	180 (±52)	24 (±23)	-0.51 (±22)	NA	NA	NA	NA	NA
Gross Beta (pCi/L)	none	39 (±28)	36 (±28)	20 (±28)	23 (±32)	27 (±31)	8.1 (±25)	190 (±36)	25 (±29)	12 (±27)	NA	NA	NA	NA	NA
Supplementary Analytes (Not Historically analy	/zed)														
Bicarbonate as CaCO3 (mg/L)	none	279	305	309	312	311	333	334	285	337	334	334	330	320	357
Carbonate as CaCO3 (mg/L)	none	< 20 U	< 20 U	< 20 U	< 20 U	< 20 U	< 20 U	< 20 U	< 20 U	< 20 U	< 20 U				
Calcium, Dissolved (mg/L)	none	323	225	305	270	240	198	222	218	169	178	276	258	302	254
Magnesium, Dissolved (mg/L)	none	336	240	313	272	246	210	213	203	175	180	265	225	308	256
Potassium, Dissolved (mg/L)	none	22	18	22.7	17	15	14.8	17	17	13	14.5	19	20	20.7	16.5
Sodium, Dissolved (mg/L)	none	1,660	1,800	1,680	1,670	1,610	1,680	1,630	1,650	1,770	1,670	1,660	1,580	1,820	1,790
Notes:															

B = Estimated value, less than the practical quantitation limit for that analyte, but greater than the method detection limit

U = Analyte not detected, reported less than the practical quantitation limit

H = Analysis exceeded method hold time. pH is a field test with an immediate hold time.

NA = Analyte not analyzed

^ = Second and third quarter 2015 reports presented calculated total dissolved solids results Per Section 41.5 (C) (6) the of Regulation 41, the "Interim Narrative Standard", is the minimum of Table 1- Table 4 of The Basic Standards for Groundwater (BSGW)

Table 1: Summary of Monitoring Results for MW-1

Date	Interim Narrative Standard	5/21/2014	8/27/2014	11/11/2014	2/18/2015	5/27/2015	8/27/2015	11/9/2015	2/15/2016	5/31/2016	8/16/2016	11/9/2016	5/31/2017	11/15/2017	6/6/2018
Metals															
Arsenic, Dissolved (mg/L)	0.01	0.001 B	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium, Dissolved (mg/L)	2.0	0.004 B	0.006 B	0.007 B	0.009 B	< 0.08 U	< 0.08 U	< 0.08 U	0.03 B	< 0.08 U	< 0.08 U	0.007 B	< 0.08 U	< 0.08 U	< 0.08 U
Boron, Dissolved (mg/L)	0.75	0.57	0.56	0.58	0.59	0.55	0.57	0.52	0.6	0.51	0.51	0.56	0.61	0.61	0.65
Chromium, Dissolved (mg/L)	0.1	< 0.01 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper, Dissolved (mg/L)	0.2	< 0.05 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron, Dissolved (mg/L)	0.3	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.3 U	< 0.3 U	< 0.3 U	< 0.3 U	< 0.3 U	< 0.3 U	< 0.05 U	< 0.3 U	< 0.3 U	< 0.3 U
Lead, Dissolved (mg/L)	0.05	< 0.003 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lithium, Dissolved (mg/L)	2.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese, Dissolved (mg/L)	0.05	0.033	0.045	0.041	0.052	< 0.1 U	0.04 B	< 0.1 U	0.04 B	< 0.1 U	< 0.1 U	0.04	< 0.1 U	< 0.1 U	< 0.1 U
Selenium, Dissolved (mg/L)	0.02	0.2775	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thallium, Dissolved (mg/L)	0.002	< 0.003 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Uranium, Dissolved (mg/L)	0.0168	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc, Dissolved (mg/L)	2.0	< 0.05 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Other				-					-		-			-	
Chloride (mg/L)	250	< 250 U	< 250 U	< 250 U	68.9 B	154 B	< 250 U	47.5 B	32.2 B	41.3 BH	27.5 B				
Fluoride (mg/L)	2.0	0.44	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate as N (mg/L)	10.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrite as N (mg/L)	1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate+Nitrite as N (mg/L)	10.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lab pH (s.u)	6.5 - 8.5	7.8 H	7.8 H	8 H	7.9 H	7.9 H	8 H	7.9 H	7.84	7.9 H	8.1 H	8.1 H	8.2 H	8 H	8.3 H
Total Dissolved Solids, filterable residue (mg/L)	8595*	6,910 H	6,950	7,900	7,380	8,210 ^	7,760 ^	8,020	7,660	8,450	8,040	7,460	7,010	7,070	7,240
Sulfate (mg/L)	250	6,850	4,670	4,300	4,800	5,540	5,640	5,430	5,250	5,470	5,540	4,700	4,690	4,340 H	4,530
Gross Alpha (pCi/L)	15.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gross Beta (pCi/L)	none	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Supplementary Analytes (Not Historically analy	zed)										•			•	
Bicarbonate as CaCO3 (mg/L)	none	333	310	325	NA	320	302	306	319	307	329	325	369	361	358
Carbonate as CaCO3 (mg/L)	none	< 20 U	< 20 U	< 20 U	NA	< 20 U	3.1 B								
Calcium, Dissolved (mg/L)	none	330	287	309	230	301	320	289	279	345	275	269	187	175	220
Magnesium, Dissolved (mg/L)	none	364	297	303	247	300	342	301	290	376	301	283	202	188	225
Potassium, Dissolved (mg/L)	none	18.9	19.4	21.8	15.6	19	20	18	18.6	22	16	20.5	13	12	16
Sodium, Dissolved (mg/L)	none	1,910	1,570	1,510	1,770	1,670	1,740	1,770	1,720	1,570	1,710	1,640	1,710	1,660	1,650
Notes:															

Notes:

B = Estimated value, less than the practical quantitation limit for that analyte, but greater than the method detection limit

U = Analyte not detected, reported less than the practical quantitation limit

H = Analysis exceeded method hold time. pH is a field test with an immediate hold time.

NA = Analyte not analyzed

^ = Second and third quarter 2015 reports presented calculated total dissolved solids results
 Per Section 41.5 (C) (6) the of Regulation 41, the "Interim Narrative Standard", is the minimum of Table 1- Table 4 of The Basic Standards for Groundwater (BSGW)

Table 2: Summary of Monitoring Results for MW-2

Date	Interim Narrative Standard	9/27/2010	3/31/2011	6/28/2011	8/31/2011	11/17/2011	3/27/2012	6/27/2012	9/13/2012	11/13/2012	3/19/2013	5/28/2013	8/26/2013	11/14/2013
Metals														
Arsenic, Dissolved (mg/L)	0.01	0.036	0.021	0.03	0.036	< 0.01 U	< 0.01 U	< 0.01 U	< 0.005 U	0.001 B	0.002 B	0.001 B	0.002 B	0.001 B
Barium, Dissolved (mg/L)	2	2.09	1.33	1.09	0.96	1.09	1.42	1.55	1.72	1.26	1.3	1.07	1.23	1.22
Boron, Dissolved (mg/L)	0.75	0.7	0.64	0.69	0.78	0.64	0.73	0.72	0.70	0.79	0.71	0.76	0.70	0.74
Chromium, Dissolved (mg/L)	0.1	< 0.01 U	< 0.01 U	< 0.01 U	< 0.01 U	< 0.01 U	< 0.01 U	< 0.01 U	< 0.01 U	< 0.01 U				
Copper, Dissolved (mg/L)	0.2	< 0.3 U	< 0.3 U	< 0.05 U	< 0.3 U	< 0.3 U	< 0.05 U	< 0.3 U	< 0.3 U	< 0.3 U	< 0.05 U	< 0.3 U	< 0.3 U	< 0.05 U
Iron, Dissolved (mg/L)	0.3	< 0.3 U	0.1 B	0.15	< 0.3 U	0.3 B	0.91	0.8	0.7	0.16	1.1	0.2 B	0.9	1.32
Lead, Dissolved (mg/L)	0.05	< 0.003 U	< 0.003 U	0.0011 B	0.0006 B	< 0.003 U	< 0.003 U	< 0.003 U	< 0.003 U	< 0.003 U	< 0.003 U	< 0.003 U	< 0.003 U	< 0.003 U
Lithium, Dissolved (mg/L)	2.5	1.3	1.2	1.12	1.1	1.1	1.16	1.2	1.2	1.36	NA	NA	NA	NA
Manganese, Dissolved (mg/L)	0.05	0.08 B	0.12	0.139	0.1	0.12	0.102	0.06 B	0.06 B	0.114	0.121	0.09	0.11	0.127
Selenium, Dissolved (mg/L)	0.02	0.0006 B	0.0015	0.0006 B	< 0.001 U	< 0.001 U	< 0.001 U	< 0.001 U	0.0008 B	0.0007 B	0.0011	0.0032	< 0.001 U	0.0006 B
Thallium, Dissolved (mg/L)	0.002	< 0.003 U	0.0007 B	< 0.003 U	< 0.003 U	< 0.003 U	< 0.003 U	< 0.003 U	< 0.003 U	< 0.003 U	< 0.003 U	< 0.003 U	< 0.003 U	< 0.003 U
Uranium, Dissolved (mg/L)	0.0168-0.03	0.0048	0.0033	0.0025 B	< 0.003 U	0.0011 B	0.0009 B	0.0012 B	0.0012 B	0.0012 B	NA	NA	NA	NA
Zinc, Dissolved (mg/L)	2	< 0.3 U	< 0.3 U	< 0.05 U	< 0.3 U	< 0.3 U	< 0.05 U	< 0.3 U	< 0.3 U	< 0.3 U	< 0.05 U	< 0.3 U	< 0.3 U	< 0.05 U
Other														
Chloride (mg/L)	250	3,050	3,100	3,090	3,240	3,017	3,052	3,079	3,188	2,968	3,227	3,220	2,960	3,080
Fluoride (mg/L)	2	1.7	1.5	1.5	1.4	1.6	1.5	1.6	1.5	1.7	1.7	1.6	1.6	1.5
Nitrate as N (mg/L)	10	0.14	0.07 B	0.06 B	0.03 B	< 0.1 U	0.04 B	0.04 B	0.03 B	0.04 B	NA	NA	NA	NA
Nitrite as N (mg/L)	1	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	NA	NA	NA	NA				
Nitrate+Nitrite as N (mg/L)	10	0.14	0.07 B	0.06 B	0.03 B	< 0.1 U	0.04 B	0.04 B	0.03 B	0.04 B	NA	NA	NA	NA
Lab pH (s.u)	6.5 - 8.5	8.6 H	8.2 H	8.4 H	8.3 H	8.2 H	8.3 H	8.3 H	8.6 H	8.3 H	8.3 H	8.3 H	8.2 H	8.1 H
Total Dissolved Solids, filterable residue (mg/L)	7084*	6,270	6,390	6,350	6,320	6,140	6,340	6,120	6,270	6,180	6,300	6,400	6,210 H	6,150 H
Sulfate (mg/L)	250	< 300 U	60 B	90 B	< 100 U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U
Gross Alpha (pCi/L)	15	15 (±26)	9.8 (±25)	18 (±24)	0 (±26)	38 (±38)	-1.1 (±21)	5.1 (±12)	-6.2 (±13)	-12 (±21)	NA	NA	NA	NA
Gross Beta (pCi/L)	none	4.5 (±30)	42 (±31)	12 (±29)	0 (±27)	73 (±44)	8.5 (±29)	82 (±30)	21 (±26)	11 (±28)	NA	NA	NA	NA
Supplementary Analytes (Not Historically analyzed)	zed)													
Bicarbonate as CaCO3 (mg/L)	none	993	965	978	953	914	995	968	964	978	955	963	979	1,020
Carbonate as CaCO3 (mg/L)	none	108	< 20 U	37	22	57	< 20 U	21	< 20 U	23	29	22	< 20 U	< 20 U
Calcium, Dissolved (mg/L)	none	14	14	14.4	16	15	15.5	14	16	16.3	15.1	18	17	16.9
Magnesium, Dissolved (mg/L)	none	8	8	7.8	7	7	7.4	8	8	8	7.5	8	7	7.4
Potassium, Dissolved (mg/L)	none	7 B	8 B	7.4	4 B	6 B	6.6	7 B	7 B	10.8 B	7.0	7	6 B	6.1
Sodium, Dissolved (mg/L)	none	2,480	2,430	2,470	2,410	2,260	2,410	2,420	2,420	2,310	2,550	2,500	2,540	2,490
Notes:														

B = Estimated value, less than the practical quantitation limit for that analyte, but greater than the method detection limit

U = Analyte not detected, reported less than the practical quantitation limit

H = Analysis exceeded method hold time. pH is a field test with an immediate hold time.

NA = Analyte not analyzed

^ = Second and third quarter 2015 reports presented calculated total dissolved solids results

Per Section 41.5 (C) (6) the of Regulation 41, the "Interim Narrative Standard", is the minimum of Table 1- Table 4 of The Basic Standards for Groundwater (BSGW)

Table 2: Summary of Monitoring Results for MW-2

Date	Interim Narrative Standard	2/18/2014	5/21/2014	8/27/2014	11/11/2014	2/18/2015	5/27/2015	8/27/2015	11/9/2015	2/15/2016	5/31/2016	8/16/2016	11/9/2016	5/31/2017	11/15/2017	6/6/2018
Metals																
Arsenic, Dissolved (mg/L)	0.01	0.004 B	0.006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium, Dissolved (mg/L)	2	1.74	2.28	2.57	1.71	2.03	2.65	2.04	1.90	2.0	1.93	2.23	1.88	2.61	2.77	3.32
Boron, Dissolved (mg/L)	0.75	0.7	0.75	0.75	0.74	0.73	0.72	0.75	0.68	0.79	0.68	0.73	0.71	0.77	0.72	0.78
Chromium, Dissolved (mg/L)	0.1	< 0.01 U	< 0.01 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper, Dissolved (mg/L)	0.2	< 0.05 U	< 0.05 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron, Dissolved (mg/L)	0.3	1.51	2.5	1.16	0.82	0.38	0.6	0.7	0.4	0.4 B	0.2 B	1.2	0.28	0.5	0.3	0.3
Lead, Dissolved (mg/L)	0.05	< 0.003 U	< 0.003 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lithium, Dissolved (mg/L)	2.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese, Dissolved (mg/L)	0.05	0.099	0.097	0.105	0.103	0.075	0.05 B	0.07 B	0.08 B	0.08 B	0.05 B	0.10	0.06	0.05 B	< 0.1 U	0.06 B
Selenium, Dissolved (mg/L)	0.02	< 0.001 U	0.0007 B	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thallium, Dissolved (mg/L)	0.002	< 0.003 U	< 0.003 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Uranium, Dissolved (mg/L)	0.0168	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc, Dissolved (mg/L)	2	< 0.05 U	< 0.05 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Other																
Chloride (mg/L)	250	3,180	3,240	2,930	2,980	2,990	3,150	3,100	3,040	3,240	3,120	3,110	3,010	3,170	3,070	3,030
Fluoride (mg/L)	2	1.5	1.48	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate as N (mg/L)	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrite as N (mg/L)	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate+Nitrite as N (mg/L)	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lab pH (s.u)	6.5 - 8.5	8.0 H	8.0 H	8.0 H	8.3 H	8.0 H	8.0 H	8.3 H	8.2 H	8.3	8.1 H	8.4 H	8.4 H	8.2 H	8.0 H	8.0 H
Total Dissolved Solids, filterable residue (mg/L)	7084*	5,720	6,040 H	5,730	6,180	6,230	6,000 ^	5,520 ^	6,020	6,230	6,080	6,010	6,300	6,160	6,400	6,270 H
Sulfate (mg/L)	250	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 125 U	< 250 U	< 125 U	< 250 U	< 200 U	22 B
Gross Alpha (pCi/L)	15	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gross Beta (pCi/L)	none	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Supplementary Analytes (Not Historically analy	yzed)															
Bicarbonate as CaCO3 (mg/L)	none	1,060	1,100	1,080	1,100	NA	1,070	1,040	1,050	1,040	1,100	1,000	1,010	1,070	1,030	1,080
Carbonate as CaCO3 (mg/L)	none	< 20 U	< 20 U	< 20 U	< 20 U	NA	< 20 U	40.9	40.7	< 20 U	< 20 U	< 20 U				
Calcium, Dissolved (mg/L)	none	17.6	18.2	17.9	17.4	17.5	17.3	17.3	17.2	18	16.9	17.5	16.6	16.7	16.6	16.8
Magnesium, Dissolved (mg/L)	none	7.3	6.9	6.6	7.4	7.4	7.0	8.0	7.0	8.0 B	7.0	8.0	6.6	7.0	7.0	7.0
Potassium, Dissolved (mg/L)	none	6.2	6.5	6.1	6	6.4	7.0	7.0	6.0	8.0	6.0	6.0	6.7	6.0	6.0	6.0
Sodium, Dissolved (mg/L)	none	2,440	2,440	2,330	2,260	2,390	2,270	2,370	2,260	2,560	2,350	2,230	2,430	2,430	2,270	2,360
Notes:																

B = Estimated value, less than the practical quantitation limit for that analyte, but greater than the method detection limit

U = Analyte not detected, reported less than the practical quantitation limit

H = Analysis exceeded method hold time. pH is a field test with an immediate hold time.

NA = Analyte not analyzed

^ = Second and third quarter 2015 reports presented calculated total dissolved solids results

Per Section 41.5 (C) (6) the of Regulation 41, the "Interim Narrative Standard", is the minimum of Table 1- Table 4 of The Basic Standards for Groundwater (BSGW)

Table 3: Summary of Monitoring Results for MW-3

Date	Interim Narrative Standard	9/27/2010	3/31/2011	6/30/2011	8/31/2011	11/17/2011	3/27/2012	6/27/2012	9/13/2012	11/13/2012	3/19/2013	5/28/2013	8/26/2013	11/14/2013
Metals														
Arsenic, Dissolved (mg/L)	0.01	0.019	0.01	0.011	0.02	< 0.004 U	< 0.01 U	0.0011 B	< 0.005 U	0.0005 B	0.0008 B	< 0.005 U	0.001 B	< 0.002 U
Barium, Dissolved (mg/L)	2	2.4	2.95	2.23	2.73	2.25	2.51	2.08	2.52	2.23	2.5	2.20	2.41	2.25
Boron, Dissolved (mg/L)	0.75	0.77	0.75	0.74	0.8	0.78	0.77	0.76	0.76	0.85	0.79	0.84	0.75	0.76
Chromium, Dissolved (mg/L)	0.1	0.003 B	0.001 B	< 0.01 U	0.004 B	< 0.004 U	< 0.01 U	< 0.002 U	< 0.01 U	< 0.01 U	< 0.004 U	< 0.01 U	< 0.01 U	< 0.004 U
Copper, Dissolved (mg/L)	0.2	< 0.1 U	< 0.1 U	< 0.3 U	< 0.1 U	< 0.1 U	< 0.05 U	< 0.05 U	< 0.3 U	< 0.3 U	< 0.05 U	< 0.3 U	< 0.3 U	< 0.05 U
Iron, Dissolved (mg/L)	0.3	0.04 B	0.27	< 0.3 U	< 0.1 U	0.1	0.22	0.32	< 0.3 U	0.1	0.11	< 0.3 U	< 0.3 U	0.14
Lead, Dissolved (mg/L)	0.05	< 0.001 U	0.0007 B	0.0002 *B	0.0004 B	< 0.001 U	< 0.003 U	0.0007	< 0.003 U	0.0003 B	< 0.001 U	< 0.003 U	< 0.003 U	< 0.001 U
Lithium, Dissolved (mg/L)	2.5	0.8	0.74	0.8	0.71	0.64	0.72	0.7	0.7	0.83	NA	NA	NA	NA
Manganese, Dissolved (mg/L)	0.05	0.04 B	0.05	0.03 B	0.04 B	0.03 B	0.021 B	0.034	< 0.1 U	0.047	0.026	< 0.1	< 0.1 U	0.031
Selenium, Dissolved (mg/L)	0.02	0.0006	0.0012	< 0.001 U	0.0005	< 0.005 U	0.0065	0.0007	< 0.001 U	0.0005 B	0.0006	0.0043	< 0.001 U	0.0003 B
Thallium, Dissolved (mg/L)	0.002	< 0.001 U	< 0.001 U	< 0.003 U	< 0.001 U	< 0.001 U	< 0.003 U	< 0.0005 U	< 0.003 U	< 0.003 U	< 0.001 U	< 0.003 U	< 0.003 U	< 0.001 U
Uranium, Dissolved (mg/L)	0.0168-0.03	0.0015	0.0008 B	0.001 B	0.0006 B	0.0012	0.0006 B	0.0011	0.0005 B	0.0005 B	NA	NA	NA	NA
Zinc, Dissolved (mg/L)	2	< 0.1 U	< 0.1 U	< 0.3 U	< 0.1 U	< 0.1 U	< 0.05 U	< 0.05 U	< 0.3 U	< 0.3 U	< 0.05 U	< 0.3 U	< 0.3 U	< 0.05 U
Other														
Chloride (mg/L)	250	1,550	1,530	1,550	1,620	1,530	1,565	1,505	1,681	1,721	1,665	1,620	1,570	1,610
Fluoride (mg/L)	2	2.4	2.3	2.2	2.4	2.4	2.3	2.5	2.3	2.4	2.3	2.4	2.4	2.3
Nitrate as N (mg/L)	10	< 0.1 U	0.37	0.79	0.03 B	< 0.1 U	< 0.1 U	0.02 B	0.17	0.09 B	NA	NA	NA	NA
Nitrite as N (mg/L)	1	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	NA	NA	NA	NA				
Nitrate+Nitrite as N (mg/L)	10	< 0.1 U	0.37	0.79	0.03 B	< 0.1 U	< 0.1 U	0.02 B	0.17	0.09 B	NA	NA	NA	NA
Lab pH (s.u)	6.5 - 8.5	8.6 H	8.4 H	8.6 H	8.5 H	8.2 H	8.4 H	8.4 H	8.5 H	8.5 H	8.5 H	8.4 H	8.5 H	8.4 H
Total Dissolved Solids, filterable residue (mg/L)	4620*	3,930	3,940	4,000	3,940	3,860	4,000	3,790	4,000	3,950	3,990	4,000	4,000	3,880 H
Sulfate (mg/L)	250	< 100 U	< 100 U	< 300 U	< 50 U	< 125 U	< 125 U	30.1 B	< 125 U	< 125 U	< 125 U	< 125 U	< 125 U	< 125 U
Gross Alpha (pCi/L)	15	5.7 (±13)	33 (±20)	5.7 (±17)	15 (±18)	20 (±18)	8 (±13)	66 (±27)	0.85 (±14)	-8.2 (±8.6)	NA	NA	NA	NA
Gross Beta (pCi/L)	none	3.2 (±17)	25 (±21)	7.2 (±18)	5 (±19)	5.4 (±18)	13 (±18)	110 (±24)	15 (±17)	-4.9 (±18)	NA	NA	NA	NA
Supplementary Analytes (Not Historically analyzed)	zed)													
Bicarbonate as CaCO3 (mg/L)	none	1,110	1,130	1,100	1,090	1,100	1,160	1,130	1,130	1,130	1,140	1,130	1,130	1,170
Carbonate as CaCO3 (mg/L)	none	98	31	96	75	78	50	52	51	78	71	60	75	40
Calcium, Dissolved (mg/L)	none	6.6	11.9	7	7.5	6.8	6.3	9.4	7	7.5	6.1	7	8	6.8
Magnesium, Dissolved (mg/L)	none	3	3.4	3 B	2.7	2.8	2.9	2.9	4 B	3.6	3.0	3	3 B	2.8
Potassium, Dissolved (mg/L)	none	4.4	5.5	5.0 B	3.2	3.6	4.2	4.1	4.0 B	6.9	4.4	4.0	4.0 B	3.9
Sodium, Dissolved (mg/L)	none	1,600	1,450	1,560	1,490	1,370	1,550	1,530	1,580	1,550	1,620	1,590	1,600	1,600
Notes:														

B = Estimated value, less than the practical quantitation limit for that analyte, but greater than the method detection limit

U = Analyte not detected, reported less than the practical quantitation limit

H = Analysis exceeded method hold time. pH is a field test with an immediate hold time.

NA = Analyte not analyzed

^ = Second and third quarter 2015 reports presented calculated total dissolved solids results

Per Section 41.5 (C) (6) the of Regulation 41, the "Interim Narrative Standard", is the minimum of Table 1- Table 4 of The Basic Standards for Groundwater (BSGW)

Table 3: Summary of Monitoring Results for MW-3

Date	Interim Narrative Standard	2/18/2014	5/21/2014	8/27/2014	11/11/2014	2/18/2015	5/27/2015	8/27/2015	11/9/2015	2/15/2016	5/31/2016	8/16/2016	11/9/2016	5/31/2017	11/15/2017	6/6/2018
Metals																
Arsenic, Dissolved (mg/L)	0.01	0.0009 B	0.0005 B	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium, Dissolved (mg/L)	2	2.31	2.02	2.23	2.62	2.25	2.83	2.47	2.81	2.58	3.16	3.16	2.57	2.45	2.93	2.18
Boron, Dissolved (mg/L)	0.75	0.74	0.76	0.76	0.78	0.81	0.74	0.79	0.74	0.76	0.74	0.79	0.77	0.75	0.74	0.81
Chromium, Dissolved (mg/L)	0.1	< 0.004 U	< 0.004 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper, Dissolved (mg/L)	0.2	< 0.05 U	< 0.05 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron, Dissolved (mg/L)	0.3	0.19	0.30	0.29	0.29	0.79	0.19	0.26	0.21	0.2 B	0.2 B	0.17	0.29	0.11	0.14	0.41
Lead, Dissolved (mg/L)	0.05	< 0.001 U	0.0002 B	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lithium, Dissolved (mg/L)	2.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese, Dissolved (mg/L)	0.05	0.043	0.05	0.05	0.061	0.054	0.02 B	0.03 B	0.03 B	< 0.1 U	< 0.1 U	0.02 B	0.033	0.01 B	0.01 B	0.06
Selenium, Dissolved (mg/L)	0.02	< 0.0005 U	0.0002 B	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thallium, Dissolved (mg/L)	0.002	< 0.001 U	< 0.001 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Uranium, Dissolved (mg/L)	0.0168-0.03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc, Dissolved (mg/L)	2	0.02 B	< 0.05 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Other																
Chloride (mg/L)	250	1,570	1,580	1,520	1,540	1,530	1,620	1,570	1,560	1,640	1,690	1,550	1,550	1,550	1,580	1,560
Fluoride (mg/L)	2	2.4	2.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate as N (mg/L)	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrite as N (mg/L)	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate+Nitrite as N (mg/L)	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lab pH (s.u)	6.5 - 8.5	8.4 H	8.3 H	8.3 H	8.4 H	8.2 H	8.3 H	8.4 H	8.3 H	8.4	8.3 H	8.5 H	8.4 H	8.5 H	8.3 H	8.3 H
Total Dissolved Solids, filterable residue (mg/L)	4620*	3,890	3,910 H	3,920	3,890	3,920	3,930 ^	3,910 ^	3,970	3,970	4,040	3,790	4,000	3,820	3,940	4,020 H
Sulfate (mg/L)	250	< 125 U	< 125 U	< 125 U	< 125 U	< 125 U	< 125 U	< 125 U	< 125 U	< 50 U	< 50 U	< 50 U	< 50 U	< 50 U	< 40 U	< 40 U
Gross Alpha (pCi/L)	15	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gross Beta (pCi/L)	none	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Supplementary Analytes (Not Historically analyzed)	zed)															
Bicarbonate as CaCO3 (mg/L)	none	1,220	982	1,270	1,260	NA	1,200	1,170	1,230	1,210	1,300	1,170	1,200	1,160	1,160	1,250
Carbonate as CaCO3 (mg/L)	none	37	57	< 20 U	41.6	NA	56.5	98.5	30.6	37.4	21.4	71.5	44.9	54.5	26.7	19.6 B
Calcium, Dissolved (mg/L)	none	6.7	7.2	6.7	7.7	8.7	7	7.6	6.9	6.7	7.4	7.8	7.3	6.8	6.5	6.9
Magnesium, Dissolved (mg/L)	none	3	3.1	3.4	3.2	3.3	2.8	3.1	2.9	2.8	3.0 B	3.2	2.6	2.5	2.6	3.1
Potassium, Dissolved (mg/L)	none	4.0	3.8	4.0	4.1	4.0	5.3	4.0	4.0	4.1	4.0	4	4.4	3.5	4.0	3.4
Sodium, Dissolved (mg/L)	none	1,570	1,610	1,500	1,490	1,430	1,480	1,450	1,480	1,540	1,510	1,470	1,600	1,430	1,410	1490
Notes:																

B = Estimated value, less than the practical quantitation limit for that analyte, but greater than the method detection limit

U = Analyte not detected, reported less than the practical quantitation limit

H = Analysis exceeded method hold time. pH is a field test with an immediate hold time.

NA = Analyte not analyzed

^ = Second and third quarter 2015 reports presented calculated total dissolved solids results

Per Section 41.5 (C) (6) the of Regulation 41, the "Interim Narrative Standard", is the minimum of Table 1- Table 4 of The Basic Standards for Groundwater (BSGW)

Table 4: Summary of Monitoring Results for MW-4

Date	Interim Narrative Standard	9/27/2010	3/31/2011	6/28/2011	8/31/2011	11/172011	3/27/2012	6/27/2012	9/13/2012	11/13/2012	3/19/2013	5/28/2013	8/26/2013	11/15/2013
Metals									-	•				
Arsenic, Dissolved (mg/L)	none	0.068	0.04	0.055	0.076	<0.02 U	< 0.02 U	0.0009 B	< 0.01 U	< 0.01 U	< 0.01 U	< 0.01 U	< 0.01 U	< 0.01 U
Barium, Dissolved (mg/L)	none	8.69	8.84	7.83 *	8.93	7.94	8.73	8.41	8.91	8.67	9.22	8.74	9.13	8.8
Boron, Dissolved (mg/L)	none	0.7	0.5 B	0.62 *	0.7	0.7	0.7	0.8 B	0.5	0.72	0.7	0.7	0.6	0.7
Chromium, Dissolved (mg/L)	none	< 0.02 U	< 0.02 U	< 0.02 U	< 0.02 U	< 0.02 U	< 0.02 U	0.0014 B	< 0.02 U	< 0.02 U	< 0.02 U	< 0.02 U	< 0.02 U	< 0.02 U
Copper, Dissolved (mg/L)	none	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 1 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
Iron, Dissolved (mg/L)	none	0.3 B	0.3 B	0.28 *	0.8	< 0.5 U	0.6	1.0	< 0.5 U	0.32 U	0.8	0.5 U	0.4 B	0.3 B
Lead, Dissolved (mg/L)	none	< 0.005 U	< 0.005 U	0.002 B	0.001 B	< 0.005 U	< 0.005 U	< 0.01 U	< 0.005 U	< 0.005 U	< 0.005 U	< 0.005 U	< 0.005 U	< 0.005 U
Lithium, Dissolved (mg/L)	none	2	1.9	2.25 *	1.8	1.6	1.8	1.9 B	1.9	2.38	NA	NA	NA	NA
Manganese, Dissolved (mg/L)	none	< 0.3 U	< 0.3 U	< 0.3 U	< 0.3 U	< 0.3 U	< 0.3 U	< 0.5 U	< 0.3 U	0.018 B	< 0.3 U	< 0.3 U	< 0.3 U	< 0.3 U
Selenium, Dissolved (mg/L)	none	< 0.003 U	0.012	< 0.003 U	< 0.003 U	<0.003 U	0.007	0.0029	< 0.003 U	0.002 B	0.003 B	0.006	< 0.003 U	< 0.003 U
Thallium, Dissolved (mg/L)	none	< 0.005 U	0.001 B	< 0.005 U	< 0.005 U	< 0.005 U	< 0.005 U	< 0.01 U	< 0.005 U	< 0.005 U	< 0.005 U	< 0.005 U	< 0.005 U	< 0.005 U
Uranium, Dissolved (mg/L)	none	< 0.005 U	0.001 B	< 0.005 U	0.002 B	< 0.005 U	< 0.005 U	< 0.01 U	< 0.005 U	< 0.005 U	NA	NA	NA	NA
Zinc, Dissolved (mg/L)	none	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 1.0 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
Other														
Chloride (mg/L)	none	6,300	6,200	6,200	6,500	6,282	6,063	6,105	6,566	6,077	6,744	6,490	6,470	6,750
Fluoride (mg/L)	none	1.1	1.1	1	1.1	1.1	1.0	1.1	1.2	1.1	1.1	1.1	1.1	1.1
Nitrate as N (mg/L)	none	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	1.83	0.04 B	0.04 B	0.04 B	NA	NA	NA	NA
Nitrite as N (mg/L)	none	< 0.05 U	0.01 B	< 0.05 U	< 0.05 U	NA	NA	NA	NA					
Nitrate+Nitrite as N (mg/L)	none	< 0.1 U	0.02 B	< 0.1 U	< 0.1 U	< 0.1 U	1.83	0.04 B	0.04 B	0.04 B	NA	NA	NA	NA
Lab pH (s.u)	none	8.3 H	8.2 H	8.2	8.2 H	8.3 U	8.1 H	8.1 H	8.1 H	8.2 H	8.1 H	8.2 H	8.1 H	8.1 H
Total Dissolved Solids, filterable residue (mg/L)	none	11,000	11,100	11,100	10,900	11,100	11,200	10,800	11,100	10,800	11,100	11,000	10,900	10,300 H
Sulfate (mg/L)	none	< 500 U	< 500 U	< 500 U	< 300 U	< 500 U	< 500 U	< 500 U	< 500 U	< 500 U	< 500 U	< 500 U	< 500 U	< 500 U
Gross Alpha (pCi/L)	none	-10 (±39)	73 (±47)	16 (±37)	40 (±52)	19 (±52)	-33 (±18)	260 (±76)	-0.11 (±17)	-15 (±30)	NA	NA	NA	NA
Gross Beta (pCi/L)	none	-7.5 (±53)	80 (±49)	22 (±45)	51 (±57)	66 (±63)	38 (±51)	270 (±61)	53 (±53)	9.9 (±42)	NA	NA	NA	NA
Supplementary Analytes (Not Historically analy	zed)						F	r	1	r	r			
Bicarbonate as CaCO3 (mg/L)	none	585	565	569	562	573	597	580	576	571	573	567	590	576
Carbonate as CaCO3 (mg/L)	none	16 B	< 20 U	< 20 U	< 20 U	< 20 U	< 20 U	< 20 U						
Calcium, Dissolved (mg/L)	none	37	38	79	37	35	36	42	38	39.2	37	37	37	36
Magnesium, Dissolved (mg/L)	none	18	18	38	16	16	17	22	19	18.9	18	18	17	16
Potassium, Dissolved (mg/L)	none	10 B	12 B	20 B	7.0 B	9.0 B	7.0 B	15 B	10 B	22	10 B	10 B	9.0 B	9 B
Sodium, Dissolved (mg/L)	none	4,270	4,180	4,280	4,200	3,930	4,220	4,240	4,250	4,150	4,390	4,260	4,350	4,070

Notes:

B = Estimated value, less than the practical quantitation limit for that analyte, but greater than the method detection limit U = Analyte not detected, reported less than the practical quantitation limit H = Analysis exceeded method hold time. pH is a field test with an immediate hold time. NA = Analyte not analyzed

^ = Second and third quarter 2015 reports presented calculated total dissolved solids results
 Per Section 41.5 (C) (6) the of Regulation 41, the "Interim Narrative Standard" does not apply the waters with TDS grater than 10,000 mg/L

Table 4: Summary of Monitoring Results for MW-4

Date	Interim Narrative Standard	2/18/2014	5/21/2014	8/27/2014	11/11/2014	2/18/2015	5/27/2015	8/27/2015	11/9/2015	2/15/2016	5/31/2016	8/16/2016	11/9/2016	5/31/2017	11/15/2017	6/6/2018
Metals					•											
Arsenic, Dissolved (mg/L)	none	< 0.01 U	< 0.01 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium, Dissolved (mg/L)	none	8.58	9.64	8.01	8.56	8.77	8.76	8.81	8.80	8.66	8.79	8.91	8.61	8.95	8.60	9
Boron, Dissolved (mg/L)	none	0.63	0.6	0.7	0.7	0.8 B	0.6	0.7	0.6	0.7	0.6	0.6	0.61	0.7	0.6	0.8
Chromium, Dissolved (mg/L)	none	< 0.02 U	< 0.02 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper, Dissolved (mg/L)	none	< 0.3 U	< 0.5 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron, Dissolved (mg/L)	none	0.8	0.2 B	0.5	0.3 B	< 1 U	0.3 B	0.1 B	0.4 B	0.2 B	0.14	< 0.5 U	0.15	< 0.5 U	< 0.5 U	< 0.5 U
Lead, Dissolved (mg/L)	none	< 0.005 U	< 0.005 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lithium, Dissolved (mg/L)	none	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese, Dissolved (mg/L)	none	< 0.1 U	< 0.3 U	< 0.3 U	< 0.3 U	< 0.5 U	< 0.3 U	< 0.1 U	< 0.3 U	< 0.3 U	< 0.03 U	< 0.3 U	< 0.03 U	< 0.3 U	< 0.3 U	< 0.3 U
Selenium, Dissolved (mg/L)	none	< 0.003 U	< 0.003 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thallium, Dissolved (mg/L)	none	< 0.005 U	< 0.005 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Uranium, Dissolved (mg/L)	none	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc, Dissolved (mg/L)	none	< 0.3 U	< 0.5 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Other																
Chloride (mg/L)	none	7,080	6,450	5,600	6,260	6,650	6,410	6,630	6,880	6,530	6,290	6,350	5,960	6,390	6,170 H	6,150
Fluoride (mg/L)	none	1.1	1.13	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate as N (mg/L)	none	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrite as N (mg/L)	none	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate+Nitrite as N (mg/L)	none	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lab pH (s.u)	none	8 H	7.9 H	8.1 H	8.2 H	8 H	8.1 H	8.2 H	8.2 H	8.2	7.9 H	8.3 H	8.2 H	8.3 H	7.9 H	8.1 H
Total Dissolved Solids, filterable residue (mg/L)	none	10,800 H	10,300 H	9,530	10,900	10,600	10,600 ^	9,720 ^	10,800	10,900	10,100	10,800	11,100	10,500	11,000	10,900
Sulfate (mg/L)	none	< 500 U	< 500 U	< 500 U	< 500 U	< 500 U	< 500 U	< 500 U	< 500 U	< 500 U	< 250 U	< 250 U	< 250 U	< 250 U	< 200 UH	< 200 U
Gross Alpha (pCi/L)	none	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gross Beta (pCi/L)	none	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Supplementary Analytes (Not Historically analyzed)	zed)	-			P	1							-			
Bicarbonate as CaCO3 (mg/L)	none	606	623	616	611	NA	604	599	615	606	664	613	619	612	592	602
Carbonate as CaCO3 (mg/L)	none	< 20 U	< 20 U	< 20 U	< 20 U	NA	< 20 U	6.2 B	< 20 U	< 20 U	< 20 U	< 20 U				
Calcium, Dissolved (mg/L)	none	36.1	38	37	37	38	38	36.9	38	38	36	37	35.8	36	36	36
Magnesium, Dissolved (mg/L)	none	16	17	18	18	21	17	18	17	17	16.4	18	16.1	16	16	17
Potassium, Dissolved (mg/L)	none	9	9 B	9 B	10.0	12.0 B	9.0	9.0	10.0	11.0	9.1	9	9	10.0	9.0	8.0 B
Sodium, Dissolved (mg/L)	none	4,120	4,360	4,050	3,950	4,070	4,040	4,030	4,050	4,290	4,020	4,000	4,160	4,080	3,950	4,030

Notes:

B = Estimated value, less than the practical quantitation limit for that analyte, but greater than the method detection limit U = Analyte not detected, reported less than the practical quantitation limit

H = Analysis exceeded method hold time. pH is a field test with an immediate hold time. NA = Analyte not analyzed

^ = Second and third quarter 2015 reports presented calculated total dissolved solids results
 Per Section 41.5 (C) (6) the of Regulation 41, the "Interim Narrative Standard" does not apply the waters with TDS grater than 10,000 mg/L

Table 5: Summary of Monitoring Results for MW-5

Date	Interim Narrative Standard	3/19/2013	5/28/2013	8/26/2013	11/14/2013	2/18/2014	5/21/2014	8/27/2014	11/11/2014	2/18/2015	5/27/2015	8/27/2015	11/9/2015	2/15/2016	5/31/2016	8/16/2016	11/9/2016
Metals	• • •		•														
Arsenic, Dissolved (mg/L)	0.01	0.002 B	0.0004 B	0.005	< 0.002 U	0.0004 B	< 0.002 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium, Dissolved (mg/L)	2	0.015 B	0.014 B	0.015 B	0.014 B	0.015 B	0.006 B	0.008 B	0.011 B	0.012 B	0.009 B	< 0.03 U	0.015 B	0.017 B	0.013 B	0.006 B	0.013 B
Boron, Dissolved (mg/L)	0.75	0.37	0.33	0.25	0.32	0.33	0.36	0.33	0.36	0.36	0.26	0.30	0.29	0.33	0.26	0.26	0.29
Chromium, Dissolved (mg/L)	0.1	< 0.01 U	< 0.004 U	< 0.004 U	< 0.004 U	< 0.004 U	< 0.004 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper, Dissolved (mg/L)	0.2	< 0.05 U	< 0.1 U	< 0.1 U	< 0.05 U	< 0.05 U	< 0.05 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron, Dissolved (mg/L)	0.3	17.5	15.60	85.4	1.39	9.56	0.15	0.7	8.11	19.6	0.05	0.6	20.3	7.11	0.58	11.6	33.5
Lead, Dissolved (mg/L)	0.05	< 0.003 U	< 0.001 U	< 0.001 U	< 0.001 U	< 0.001 U	< 0.001 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese, Dissolved (mg/L)	0.05	0.168	0.13	0.16	0.074	0.091	0.069	0.12	0.093	0.109	0.072	< 0.3 B	0.11	0.1	0.07	0.09	0.11
Selenium, Dissolved (mg/L)	0.02	0.0008 B	0.0593	0.0013	0.0027	0.0005	0.023	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thallium, Dissolved (mg/L)	0.002	< 0.003 U	< 0.001 U	< 0.001 U	< 0.001 U	< 0.001 U	< 0.001 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc, Dissolved (mg/L)	2	0.01 B	< 0.1 U	< 0.1 U	< 0.05 U	< 0.05 U	< 0.05 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Other																	
Chloride (mg/L)	250	79.4 B	27.6 B	36.3 B	18.6	26.4 B	27.9 B	< 125 U	< 125 U	50.8 B	27 B	44.5 B	< 250 U	< 250 U	18.5 B	18.6 B	42.4 B
Fluoride (mg/L)	2	0.8	0.7	1.3	0.6	0.7	0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lab pH (s.u)	6.5 - 8.5	7.5 H	7.7 H	7.3 H	7.4 H	7.4 H	7.6 H	7.5 H	7.7 H	7.4 H	7.6 H	7.5 H	7.5 H	7.2	7.3 H	7.9 H	7.7 H
Total Dissolved Solids, filterable residue (mg/L)	1.25 x Background*	4,950	3,360	3,710	3,110	3,100	3,010 H	2,970	3,140	3,240	3,160 ^	3,070 ^	3,220	3,540	3,140	2,850	3,310
Sulfate (mg/L)	250	3,273	2,050	2,200	1,690	1,770	1,870	1,630	1,690	1,900	1,860	1,720	1,940	2,250	1,920	1,770	1,940
Supplementary Analytes																	
Bicarbonate as CaCO3 (mg/L)	none	225	320	205	343	380	410	378	377	NA	347	376	377	361	409	357	311
Carbonate as CaCO3 (mg/L)	none	< 20 U	< 20 U	< 20 U	< 20 U	< 20 U	< 20 U	< 20 U	< 20 U	NA	< 20 U						
Calcium, Dissolved (mg/L)	none	426	464	523	446	433	441	442	461	453	505	520	478	464	486	495	494
Magnesium, Dissolved (mg/L)	none	147	126	131	101	109	106	101	111	118	112	115	115	124	112	113	122
Potassium, Dissolved (mg/L)	none	10.1	8.1	10.2	6.2	7.1	6.5	6.3	6.9	7.7	6	6	7.1	7.6	6	6.6	8.7
Sodium, Dissolved (mg/L)	none	865	373	312	269	332	308	257	285	344	232	209	260	450	229	221	281

Notes:

B = Estimated value, less than the practical quantitation limit for that analyte, but greater than the method detection limit

U = Analyte not detected, reported less than the practical quantitation limit

H = Analysis exceeded method hold time. pH is a field test with an immediate hold time. NA = Analyte not analyzed

^ = Second and third quarter 2015 reports presented calculated total dissolved solids results

Per Section 41.5 (C) (6) the of Regulation 41, the "Interim Narrative Standard", is the minimum of Table 1- Table 4 of The Basic Standards for Groundwater (BSGW) *TDS standard is 1.25 * Background, where background is the average of the 1999-2000 sampling Values in **bold** indicate a value greater than the BSGW

Table 5: Summary of Monitoring Results for MW-5

Date	Interim Narrative Standard	5/31/2017	11/15/2017	6/6/2018
Metals				
Arsenic, Dissolved (mg/L)	0.01	NA	NA	NA
Barium, Dissolved (mg/L)	2	0.01 B	< 0.03 U	< 0.03 U
Boron, Dissolved (mg/L)	0.75	0.36	0.36	0.35
Chromium, Dissolved (mg/L)	0.1	NA	NA	NA
Copper, Dissolved (mg/L)	0.2	NA	NA	NA
Iron, Dissolved (mg/L)	0.3	2.15	10.3	0.97
Lead, Dissolved (mg/L)	0.05	NA	NA	NA
Manganese, Dissolved (mg/L)	0.05	0.09	0.09	0.08
Selenium, Dissolved (mg/L)	0.02	NA	NA	NA
Thallium, Dissolved (mg/L)	0.002	NA	NA	NA
Zinc, Dissolved (mg/L)	2	NA	NA	NA
Other				
Chloride (mg/L)	250	45.4 B	25.8 BH	19.7 B
Fluoride (mg/L)	2	NA	NA	NA
Lab pH (s.u)	6.5 - 8.5	7.8 H	7.3 H	7.7 H
Total Dissolved Solids, filterable residue (mg/L)	1.25 x Background*	3,970	3,160	3,020 H
Sulfate (mg/L)	250	2,540	1,820 H	1,780
Supplementary Analytes				
Bicarbonate as CaCO3 (mg/L)	none	348	375	401
Carbonate as CaCO3 (mg/L)	none	< 20 U	< 20 U	< 20 U
Calcium, Dissolved (mg/L)	none	429	461	425
Magnesium, Dissolved (mg/L)	none	128	119	109
Potassium, Dissolved (mg/L)	none	8.2	7.2	6.6
Sodium, Dissolved (mg/L)	none	614	322	329

Notes:

B = Estimated value, less than the practical quantitation limit for that analyte, but greater than the method detection limit

U = Analyte not detected, reported less than the practical quantitation limit

H = Analysis exceeded method hold time. pH is a field test with an immediate hold time.

NA = Analyte not analyzed

^ = Second and third quarter 2015 reports presented calculated total dissolved solids results

Per Section 41.5 (C) (6) the of Regulation 41, the "Interim Narrative Standard", is the minimum of Table 1- Table 4 of The Basic Standards

for Groundwater (BSGW) *TDS standard is 1.25 * Background, where background is the average of the 1999-2000 sampling

Values in **bold** indicate a value greater than the BSGW

Table 6: Summary of Monitoring Results for MW-6

Date	Interim Narrative	3/19/2013	5/28/2013	8/27/2013	11/14/2013	2/18/2014	5/21/2014	8/27/2014	11/11/2014	2/18/2015	5/27/2015	8/27/2015	11/9/2015	2/15/2016	5/31/2016	8/16/2016	11/9/2016
	Standard																
Metals																	-
Arsenic, Dissolved (mg/L)	none	0.002 B	< 0.01 U	< 0.01 U	< 0.01 U	0.004 B	0.007	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium, Dissolved (mg/L)	none	0.97	3.22	3.56	4.12	5.95	3.32	3.46	4.37	7.37	7.47	8.74	8.12	8.34	8.26	8.42	8.25
Boron, Dissolved (mg/L)	none	0.6	0.7	0.6	0.6	0.58	0.7	0.6	0.7	0.6 B	0.6	0.65	0.6	0.57	0.5	0.5	0.55
Chromium, Dissolved (mg/L)	none	< 0.01 U	< 0.02 U	0.018 B	< 0.02 U	< 0.02 U	< 0.01 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper, Dissolved (mg/L)	none	< 0.5 U	< 0.5 U	< 0.5 U	< 0.3 U	< 0.3 U	< 0.5 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron, Dissolved (mg/L)	none	1.0	1.3	0.6	0.6	0.6	2.1	1.9	1.3	2.5	4.1	3.9	5.2	5.3	5.5	5.4	5
Lead, Dissolved (mg/L)	none	< 0.003 U	< 0.005 U	< 0.005 U	< 0.005 U	< 0.005 U	< 0.003 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese, Dissolved (mg/L)	none	0.33	0.29 B	0.2 B	0.19	0.19	0.21 B	0.2 B	0.25 B	0.3 B	0.31	0.39	0.42	0.45	0.37	0.35	0.31
Selenium, Dissolved (mg/L)	none	0.0048	0.007	0.0016	0.002 B	0.001 B	0.0033	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thallium, Dissolved (mg/L)	none	< 0.003 U	< 0.005 U	< 0.005 U	< 0.005 U	< 0.005 U	< 0.003 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc, Dissolved (mg/L)	none	< 0.5 U	< 0.5 U	< 0.5 U	< 0.3 U	< 0.3 U	< 0.5 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Other																	
Chloride (mg/L)	none	5,090	5,680	6,080 U	5,860	6,020	6,520	5,610	6,110	5,960	5,680	5,880	5,800	5,590	5,520	6,050	5,620
Fluoride (mg/L)	none	1.3	1.4	1.4	1.3	1.3	1.25	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lab pH (s.u)	none	8.1 H	8.2 H	8.2 H	8.2 H	8.2 H	7.9 H	8.0 H	8.1 H	7.7 H	7.8 H	7.8 H	7.7 H	7.78	7.4 H	7.6 H	7.7 H
Total Dissolved Solids, filterable residue (mg/L)	none	9,110	10,200	9,340 H	10,100 H	10,900	8,800 H	9,350	10,400	10,600	10,300 ^	8,840 ^	10,200	9,780	10,800	10,400	10,500
Sulfate (mg/L)	none	249.7	< 250 U	< 250 U	98.6 B	< 250 U	52.5 B	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U
Supplementary Analytes																	
Bicarbonate as CaCO3 (mg/L)	none	463	507	513	529	558	580	608	632	NA	656	673	702	691	736	716	715
Carbonate as CaCO3 (mg/L)	none	< 20 U	< 20 U	< 20 U	< 20 U	< 20 U	< 20 U	< 20 U	< 20 U	NA	< 20 U						
Calcium, Dissolved (mg/L)	none	58	44	33	34	32.2	40	41	45	51	49	57.9	63	68	67	69	66.1
Magnesium, Dissolved (mg/L)	none	21	20	18	17	16	16	17	18	22	17	18	17	18	16	19	17.3
Potassium, Dissolved (mg/L)	none	14 B	12 B	12 B	11	10	11	10	10	13 B	10	10	10	11	9 B	10	10.7
Sodium, Dissolved (mg/L)	none	3,600	3,920	3,860	4,000	3,960	4,060	3,770	3,710	3,840	3,930	3,850	3,840	4,100	3,770	3,780	3,960

Notes:

B = Estimated value, less than the practical quantitation limit for that analyte, but greater than the method detection limit U = Analyte not detected, reported less than the practical quantitation limit H = Analysis exceeded method hold time. pH is a field test with an immediate hold time.

NA = Analyte not analyzed

^ = Second and third quarter 2015 reports presented calculated total dissolved solids results

Per Section 41.5 (C) (6) the of Regulation 41, the "Interim Narrative Standard" does not apply the waters with TDS grater than 10,000 mg/L

Table 6: Summary of Monitoring Results for MW-6

Date	Interim Narrative Standard	5/31/2017	11/15/2017	6/6/2018
Metals				
Arsenic, Dissolved (mg/L)	none	NA	NA	NA
Barium, Dissolved (mg/L)	none	7.85	7.77	7.65
Boron, Dissolved (mg/L)	none	0.7	0.8	0.6
Chromium, Dissolved (mg/L)	none	NA	NA	NA
Copper, Dissolved (mg/L)	none	NA	NA	NA
Iron, Dissolved (mg/L)	none	1.7	3.4	3.0
Lead, Dissolved (mg/L)	none	NA	NA	NA
Manganese, Dissolved (mg/L)	none	0.14 B	0.07 B	0.06 B
Selenium, Dissolved (mg/L)	none	NA	NA	NA
Thallium, Dissolved (mg/L)	none	NA	NA	NA
Zinc, Dissolved (mg/L)	none	NA	NA	NA
Other				
Chloride (mg/L)	none	6,130	5,900	5,880
Fluoride (mg/L)	none	NA	NA	NA
Lab pH (s.u)	none	8.1 H	7.7 H	7.8 H
Total Dissolved Solids, filterable residue (mg/L)	none	10,500	10,400	10,500
Sulfate (mg/L)	none	< 250 U	< 200 U	51 B
Supplementary Analytes				
Bicarbonate as CaCO3 (mg/L)	none	658	639	652
Carbonate as CaCO3 (mg/L)	none	< 20 U	< 20 U	< 20 U
Calcium, Dissolved (mg/L)	none	51	44	41
Magnesium, Dissolved (mg/L)	none	16	16	16
Potassium, Dissolved (mg/L)	none	9 B	9 B	8 B
Sodium, Dissolved (mg/L)	none	3,920	4,060	3,870

Notes:

B = Estimated value, less than the practical quantitation limit for that analyte, but greater than the method detection limit U = Analyte not detected, reported less than the practical quantitation limit H = Analysis exceeded method hold time. pH is a field test with an immediate hold time.

NA = Analyte not analyzed

^ = Second and third quarter 2015 reports presented calculated total dissolved solids results

Per Section 41.5 (C) (6) the of Regulation 41, the "Interim Narrative Standard" does not apply the waters with TDS grater than 10,000 mg/l

1899205

Table 7: Summary of Monitoring Results for MW-7

Date	Interim Narrative Standard	3/19/2013	5/29/2013	8/27/2013	11/14/2013	2/18/2014	5/21/2014	8/27/2014	11/11/2014	2/18/2015	5/27/2015	8/27/2015	11/9/2015	2/15/2016	5/31/2016	8/16/2016	11/9/2016
Metals																	
Arsenic, Dissolved (mg/L)	none	0.010	0.010 B	0.011	0.008 B	0.015	0.009 B	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium, Dissolved (mg/L)	none	0.16 B	0.14 B	0.33	2.08	1.78	3.52	2.35	3.7	5.43	4.74	2.66	2.65	4.66	3.79	1.24	4.19
Boron, Dissolved (mg/L)	none	0.6	0.9	0.79	0.75	0.75	0.7	0.8	0.8	0.7 B	0.6	0.73	0.7	0.8	0.6	0.5	0.63
Chromium, Dissolved (mg/L)	none	< 0.01 U	< 0.02 U	0.009 B	< 0.02 U	< 0.02 U	< 0.02 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper, Dissolved (mg/L)	none	< 0.5 U	< 0.5 U	< 0.3 U	< 0.3 U	< 0.3 U	< 0.5 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron, Dissolved (mg/L)	none	1.6	3.4	1.5	2.9	2.9	2.8	4.4	3.8	4.6	5.8	4.7	4.6	6.3	5.9	2.3	3.26
Lead, Dissolved (mg/L)	none	< 0.003 U	< 0.005 U	< 0.005 U	< 0.005 U	< 0.005 U	< 0.005 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese, Dissolved (mg/L)	none	0.27	0.66	0.51	0.61	0.53	0.41	0.66	0.45	0.3 B	0.38	0.37	0.36	0.3	0.3	0.26 B	0.205
Selenium, Dissolved (mg/L)	none	0.0025	0.006	< 0.003 U	0.002 B	0.001 B	0.001 B	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thallium, Dissolved (mg/L)	none	< 0.003 U	< 0.005 U	< 0.005 U	< 0.005 U	< 0.005 U	< 0.005 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc, Dissolved (mg/L)	none	< 0.5 U	< 0.5 U	< 0.3 U	< 0.3 U	< 0.3 U	< 0.5 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Other																	
Chloride (mg/L)	none	3,701	5,280	6,040	6,430	6,030	6,510	5,330	5,850	6,140	6,330	5,860	5,680	6,230	5,850	5,550	5,990
Fluoride (mg/L)	none	1.3	1.0	1.1	1.1	1	1.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lab pH (s.u)	none	8.1 H	8.0 H	7.9 H	7.9 H	8.0 H	7.6 H	7.9 H	7.9 H	7.8 H	7.8 H	7.9 H	7.8 H	7.75	7.6 H	7.6 H	8 H
Total Dissolved Solids, filterable residue (mg/L)	none	8,640	11,500	10,200 H	10,700 H	10,300	10,600 H	10,100	10,600	10,500	10,200 ^	8,800 ^	10,400	10,800	10,900	10,100	10,700
Sulfate (mg/L)	none	1,589	1,240	510	130 B	104 B	60.9 B	80.2 B	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	179 B	101 B
Supplementary Analytes	•					•	•		•			•	•				
Bicarbonate as CaCO3 (mg/L)	none	458	596	696	715	838	822	785	837	NA	765	853	828	821	828	844	836
Carbonate as CaCO3 (mg/L)	none	< 20 U	< 20 U	< 20 U	< 20 U	< 20 U	< 20 U	< 20 U	< 20 U	NA	< 20 U						
Calcium, Dissolved (mg/L)	none	105	142	103	72	67.8	58	56	51	50	47	52	53	54	50	54	47.1
Magnesium, Dissolved (mg/L)	none	40	43	30	25	22	21	21	20	23	19	19	18	20	18	19	18
Potassium, Dissolved (mg/L)	none	11 B	13 B	12	11	10	10	11	9 B	13 B	9 B	9	10	11	10	10	8.8
Sodium, Dissolved (mg/L)	none	3,200	4,150	4,720	4,280	4,020	4,350	3,910	3,740	3,970	4,010	3,930	3,880	4,240	3,930	3,820	4,330

Notes:

B = Estimated value, less than the practical quantitation limit for that analyte, but greater than the method detection limit
 U = Analyte not detected, reported less than the practical quantitation limit
 H = Analysis exceeded method hold time. pH is a field test with an immediate hold time.

NA = Analyte not analyzed

^ = Second and third quarter 2015 reports presented calculated total dissolved solids results

Per Section 41.5 (C) (6) the of Regulation 41, the "Interim Narrative Standard" does not apply the waters with TDS grater than 10,000 mg/L

Table 7: Summary of Monitoring Results for MW-7

				1
Date	Interim Narrative Standard	5/31/2017	11/15/2017	6/6/2018
Metals	- 1			
Arsenic, Dissolved (mg/L)	none	NA	NA	NA
Barium, Dissolved (mg/L)	none	3.96	3.8	5.5
Boron, Dissolved (mg/L)	none	0.7	0.8	0.7
Chromium, Dissolved (mg/L)	none	NA	NA	NA
Copper, Dissolved (mg/L)	none	NA	NA	NA
Iron, Dissolved (mg/L)	none	5.5	6.1	3.2
Lead, Dissolved (mg/L)	none	NA	NA	NA
Manganese, Dissolved (mg/L)	none	0.19 B	0.18 B	0.14 B
Selenium, Dissolved (mg/L)	none	NA	NA	NA
Thallium, Dissolved (mg/L)	none	NA	NA	NA
Zinc, Dissolved (mg/L)	none	NA	NA	NA
Other	· · · · ·			
Chloride (mg/L)	none	6,480	6,240	6,440
Fluoride (mg/L)	none	NA	NA	NA
Lab pH (s.u)	none	8 H	7.8 H	7.7 H
Total Dissolved Solids, filterable residue (mg/L)	none	11,100	11,300	11,500 H
Sulfate (mg/L)	none	59 B	58 B	75 B
Supplementary Analytes				
Bicarbonate as CaCO3 (mg/L)	none	745	700	714
Carbonate as CaCO3 (mg/L)	none	< 20 U	< 20 U	< 20 U
Calcium, Dissolved (mg/L)	none	52	55	52
Magnesium, Dissolved (mg/L)	none	19	20	20
Potassium, Dissolved (mg/L)	none	11	9 B	9 B
Sodium, Dissolved (mg/L)	none	4,240	4,320	4,170

Notes:

B = Estimated value, less than the practical quantitation limit for that analyte, but greater than the method detection limit U = A nalyte not detected, reported less than the practical quantitation limit H = A nalysis exceeded method hold time. pH is a field test with an immediate hold time.

NA = Analyte not analyzed

^ = Second and third quarter 2015 reports presented calculated total dissolved solids results

Per Section 41.5 (C) (6) the of Regulation 41, the "Interim Narrative Standard" does not apply the waters with TDS grater than 10,000 mg/L

1899205

Figures

06/17/14 1:09pm MTMarks May 15, 2013 11:06 NRosenthal | Plotted: N: \10\103-81640_A FIGURES\ 10381640A010.dwg | Layout: 8.5X11 Portrait | Modified: File: Drawing

Plot Time: 06/17/14 13:09

C:/Users/DSkinner/Golder Associates/1899205, Holcim Boettcher Quarry 2018 CO - Reports/Boettcher_SampIResults_1stHaft2018_Dft-23Jul18/Figures/Figure 2.xlsx/2

ATTACHMENT 1

ACZ Laboratory Report

Analytical Report

July 03, 2018

Report to: Kristina Minchow Golder Associates 44 Union Blvd Suite 300 Lakewood, CO 80228

cc: Sara Harkins

Accounts Payable Golder Associates 44 Union Blvd., Suite 300 Lakewood, CO 80228

Bill to:

Project ID: ACZ Project ID: L44806

Kristina Minchow:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on June 08, 2018. This project has been assigned to ACZ's project number, L44806. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan. The enclosed results relate only to the samples received under L44806. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after August 02, 2018. If the samples are determined to be hazardous, additional charges apply for disposal (typically \$11/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical raw data reports for ten years.

If you have any questions or other needs, please contact your Project Manager.

S. Habermehl

Scott Habermehl has reviewed and approved this report.

July 03, 2018

Project ID: ACZ Project ID: L44806

Sample Receipt

ACZ Laboratories, Inc. (ACZ) received 9 groundwater samples from Golder Associates on June 8, 2018. The samples were received in good condition. Upon receipt, the sample custodian removed the samples from the cooler, inspected the contents, and logged the samples into ACZ's computerized Laboratory Information Management System (LIMS). The samples were assigned ACZ LIMS project number L44806. The custodian verified the sample information entered into the computer against the chain of custody (COC) forms and sample bottle labels.

Holding Times

Any analyses not performed within EPA recommended holding times have been qualified with an "H" flag.

Sample Analysis

These samples were analyzed for inorganic parameters. The individual methods are referenced on both, the ACZ invoice and the analytical reports. The extended qualifier reports may contain footnotes qualifying specific elements due to QC failures. In addition the following has been noted with this specific project:

1. (N1) The 105 C oven was OOS over the weekend. The WG was removed when the oven was within range.

M300.0 - Ion Chromatography

M300.0 - Ion Chromatography

SM4500H+ B

SM2540C

Calculation

Calculation

Golder Associates

Project ID: Sample ID: MW-1

Inorganic Analytical Results

07/03/18 0:00

07/03/18 0:00

06/22/18 18:45

06/16/18 0:00

06/16/18 0:00

06/13/18 15:45

06/22/18 18:45

07/03/18 0:00

07/03/18 0:00

calc

calc

las

enb

enb

kja

las

calc

calc

ACZ Sample ID:	L44806-01
Date Sampled:	06/06/18 12:05
Date Received:	06/08/18
Sample Matrix:	Groundwater

Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Barium, dissolved	M200.7 ICP	5		U		mg/L	0.02	0.08	06/18/18 22:51	dcm
Boron, dissolved	M200.7 ICP	5	0.65			mg/L	0.05	0.3	06/18/18 22:51	dcm
Calcium, dissolved	M200.7 ICP	5	220		*	mg/L	0.5	3	06/18/18 22:51	dcm
Iron, dissolved	M200.7 ICP	5		U		mg/L	0.1	0.3	06/18/18 22:51	dcm
Magnesium, dissolved	M200.7 ICP	5	225			mg/L	1	5	06/18/18 22:51	dcm
Manganese, dissolved	M200.7 ICP	5		U		mg/L	0.03	0.1	06/18/18 22:51	dcm
Potassium, dissolved	M200.7 ICP	5	16			mg/L	1	5	06/18/18 22:51	dcm
Sodium, dissolved	M200.7 ICP	5	1650			mg/L	1	5	06/18/18 22:51	dcm
Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as CaCO3		1	358		*	mg/L	2	20	06/16/18 0:00	enb
Carbonate as CaCO3		1	3.1	В	*	mg/L	2	20	06/16/18 0:00	enb
Hydroxide as CaCO3		1		U	*	mg/L	2	20	06/16/18 0:00	enb
Total Alkalinity		1	361		*	mg/L	2	20	06/16/18 0:00	enb
Cation-Anion Balance	Calculation									
Cation-Anion Balance			-0.5			%			07/03/18 0:00	calc

103

102

27.5

8.3

20.3

7240

4530

6890

1.05

В

Н

*

*

50

1

1

5

50

meq/L

meq/L

mg/L

units

С

mg/L

mg/L

mg/L

20

0.1

0.1

50

20

100

0.1

0.1

100

100

TDS (ratio -	
measured/calculated)	

Sum of Anions

Sum of Cations

pH measured at

Residue, Filterable

(TDS) @180C

TDS (calculated)

Chloride

pH (lab)

pН

Sulfate

Project ID: Sample ID: MW-2

ACZ Sample ID:	L44806-02
Date Sampled:	06/06/18 10:35
Date Received:	06/08/18
Sample Matrix:	Groundwater

Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Barium, dissolved	M200.7 ICP	5	3.32			mg/L	0.02	0.08	06/18/18 22:54	dcm
Boron, dissolved	M200.7 ICP	5	0.78			mg/L	0.05	0.3	06/18/18 22:54	dcm
Calcium, dissolved	M200.7 ICP	5	16.8		*	mg/L	0.5	3	06/18/18 22:54	dcm
Iron, dissolved	M200.7 ICP	5	0.3			mg/L	0.1	0.3	06/18/18 22:54	dcm
Magnesium, dissolved	M200.7 ICP	5	7			mg/L	1	5	06/18/18 22:54	dcm
Manganese, dissolved	M200.7 ICP	5	0.06	В		mg/L	0.03	0.1	06/18/18 22:54	dcm
Potassium, dissolved	M200.7 ICP	5	6			mg/L	1	5	06/18/18 22:54	dcm
Sodium, dissolved	M200.7 ICP	5	2360			mg/L	1	5	06/18/18 22:54	dcm
Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as CaCO3		1	1080		*	mg/L	2	20	06/18/18 0:00	ecc
Carbonate as CaCO3		1		U	*	mg/L	2	20	06/18/18 0:00	ecc
Hydroxide as CaCO3		1		U	*	mg/L	2	20	06/18/18 0:00	ecc
Total Alkalinity		1	1080		*	mg/L	2	20	06/18/18 0:00	ecc
Cation-Anion Balance	Calculation									
Cation-Anion Balance			-0.9			%			07/03/18 0:00	calc
Sum of Anions			107			meq/L			07/03/18 0:00	calc
Sum of Cations			105			meq/L			07/03/18 0:00	calc
Chloride	M300.0 - Ion Chromatography	50	3030		*	mg/L	20	100	06/22/18 19:21	las
pH (lab)	SM4500H+ B									
рН		1	8.0	Н	*	units	0.1	0.1	06/18/18 0:00	ecc
pH measured at		1	19.9		*	С	0.1	0.1	06/18/18 0:00	ecc
Residue, Filterable (TDS) @180C	SM2540C	5	6270	Н	*	mg/L	50	100	06/15/18 14:31	mh
Sulfate	M300.0 - Ion Chromatography	50	22.0	В	*	mg/L	20	100	06/22/18 19:21	las
TDS (calculated)	Calculation		6100			mg/L			07/03/18 0:00	calc
TDS (ratio - measured/calculated)	Calculation		1.03						07/03/18 0:00	calc

Project ID: Sample ID: MW-3

ACZ Sample ID:	L44806-03
Date Sampled:	06/06/18 13:55
Date Received:	06/08/18
Sample Matrix:	Groundwater

Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Barium, dissolved	M200.7 ICP	2	2.18			mg/L	0.006	0.03	06/18/18 22:57	dcm
Boron, dissolved	M200.7 ICP	2	0.81			mg/L	0.02	0.1	06/18/18 22:57	dcm
Calcium, dissolved	M200.7 ICP	2	6.9		*	mg/L	0.2	1	06/18/18 22:57	dcm
Iron, dissolved	M200.7 ICP	2	0.41			mg/L	0.04	0.1	06/18/18 22:57	dcm
Magnesium, dissolved	M200.7 ICP	2	3.1			mg/L	0.4	2	06/18/18 22:57	dcm
Manganese, dissolved	M200.7 ICP	2	0.06			mg/L	0.01	0.05	06/18/18 22:57	dcm
Potassium, dissolved	M200.7 ICP	2	3.4			mg/L	0.4	2	06/18/18 22:57	dcm
Sodium, dissolved	M200.7 ICP	2	1490			mg/L	0.4	2	06/18/18 22:57	dcm
Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as CaCO3		1	1250		*	mg/L	2	20	06/18/18 0:00	ecc
Carbonate as CaCO3		1	19.6	В	*	mg/L	2	20	06/18/18 0:00	ecc
Hydroxide as CaCO3		1		U	*	mg/L	2	20	06/18/18 0:00	ecc
Total Alkalinity		1	1270		*	mg/L	2	20	06/18/18 0:00	ecc
Cation-Anion Balance	Calculation									
Cation-Anion Balance			-2.2			%			07/03/18 0:00	calc
Sum of Anions			69			meq/L			07/03/18 0:00	calc
Sum of Cations			66			meq/L			07/03/18 0:00	calc
Chloride	M300.0 - Ion Chromatography	20	1560		*	mg/L	8	40	06/21/18 23:05	las
pH (lab)	SM4500H+ B									
рН		1	8.3	Н	*	units	0.1	0.1	06/18/18 0:00	ecc
pH measured at		1	19.5		*	С	0.1	0.1	06/18/18 0:00	ecc
Residue, Filterable (TDS) @180C	SM2540C	2	4020	Н	*	mg/L	20	40	06/15/18 14:33	mh
Sulfate	M300.0 - Ion Chromatography	20		U	*	mg/L	8	40	06/21/18 23:05	las
TDS (calculated)	Calculation		3840			mg/L			07/03/18 0:00	calc
TDS (ratio - measured/calculated)	Calculation		1.05						07/03/18 0:00	calc

Project ID: Sample ID: MW-4

ACZ Sample ID:	L44806-04
Date Sampled:	06/06/18 13:15
Date Received:	06/08/18
Sample Matrix:	Groundwater

Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Barium, dissolved	M200.7 ICP	10	9.00			mg/L	0.03	0.2	06/18/18 23:00	dcm
Boron, dissolved	M200.7 ICP	10	0.8			mg/L	0.1	0.5	06/18/18 23:00	dcm
Calcium, dissolved	M200.7 ICP	10	36		*	mg/L	1	5	06/18/18 23:00	dcm
Iron, dissolved	M200.7 ICP	10		U		mg/L	0.2	0.5	06/18/18 23:00	dcm
Magnesium, dissolved	M200.7 ICP	10	17			mg/L	2	10	06/18/18 23:00	dcm
Manganese, dissolved	M200.7 ICP	10		U		mg/L	0.05	0.3	06/18/18 23:00	dcm
Potassium, dissolved	M200.7 ICP	10	8	В		mg/L	2	10	06/18/18 23:00	dcm
Sodium, dissolved	M200.7 ICP	10	4030			mg/L	2	10	06/18/18 23:00	dcm

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as CaCO3		1	602		*	mg/L	2	20	06/18/18 0:00	ecc
Carbonate as CaCO3		1		U	*	mg/L	2	20	06/18/18 0:00	ecc
Hydroxide as CaCO3		1		U	*	mg/L	2	20	06/18/18 0:00	ecc
Total Alkalinity		1	602		*	mg/L	2	20	06/18/18 0:00	ecc
Cation-Anion Balance	Calculation									
Cation-Anion Balance			-0.8			%			07/03/18 0:00	calc
Sum of Anions			184			meq/L			07/03/18 0:00	calc
Sum of Cations			181			meq/L			07/03/18 0:00	calc
Chloride	M300.0 - Ion Chromatography	100	6150		*	mg/L	40	200	06/22/18 19:57	las
pH (lab)	SM4500H+ B									
рН		1	8.1	н	*	units	0.1	0.1	06/18/18 0:00	ecc
pH measured at		1	19.0		*	С	0.1	0.1	06/18/18 0:00	ecc
Residue, Filterable (TDS) @180C	SM2540C	5	10900		*	mg/L	50	100	06/13/18 16:52	mh
Sulfate	M300.0 - Ion Chromatography	100		U	*	mg/L	40	200	06/22/18 19:57	las
TDS (calculated)	Calculation		10600			mg/L			07/03/18 0:00	calc
TDS (ratio - measured/calculated)	Calculation		1.03						07/03/18 0:00	calc

Project ID:	
Sample ID:	MW-5

ACZ Sample ID:	L44806-05
Date Sampled:	06/06/18 09:15
Date Received:	06/08/18
Sample Matrix:	Groundwater

Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Barium, dissolved	M200.7 ICP	2		U		mg/L	0.006	0.03	06/18/18 23:09	dcm
Boron, dissolved	M200.7 ICP	2	0.35			mg/L	0.02	0.1	06/18/18 23:09	dcm
Calcium, dissolved	M200.7 ICP	2	425		*	mg/L	0.2	1	06/18/18 23:09	dcm
Iron, dissolved	M200.7 ICP	2	0.97			mg/L	0.04	0.1	06/18/18 23:09	dcm
Magnesium, dissolved	M200.7 ICP	2	109			mg/L	0.4	2	06/18/18 23:09	dcm
Manganese, dissolved	M200.7 ICP	2	0.08			mg/L	0.01	0.05	06/18/18 23:09	dcm
Potassium, dissolved	M200.7 ICP	2	6.6			mg/L	0.4	2	06/18/18 23:09	dcm
Sodium, dissolved	M200.7 ICP	2	329			mg/L	0.4	2	06/18/18 23:09	dcm
Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as CaCO3		1	401		*	mg/L	2	20	06/18/18 0:00	ecc
Carbonate as CaCO3		1		U	*	mg/L	2	20	06/18/18 0:00	ecc
Hydroxide as CaCO3		1		U	*	mg/L	2	20	06/18/18 0:00	ecc
Total Alkalinity		1	401		*	mg/L	2	20	06/18/18 0:00	ecc
Cation-Anion Balance	Calculation									
Cation-Anion Balance			-1.1			%			07/03/18 0:00	calc
Sum of Anions			46.0			meq/L			07/03/18 0:00	calc
Sum of Cations			45			meq/L			07/03/18 0:00	calc
Chloride	M300.0 - Ion Chromatography	20	19.7	В	*	mg/L	8	40	06/22/18 20:15	las
pH (lab)	SM4500H+ B									
рН		1	7.7	н	*	units	0.1	0.1	06/18/18 0:00	ecc
pH measured at		1	19.3		*	С	0.1	0.1	06/18/18 0:00	ecc
Residue, Filterable (TDS) @180C	SM2540C	2	3020	Н	*	mg/L	20	40	06/15/18 14:35	mh
Sulfate	M300.0 - Ion Chromatography	20	1780		*	mg/L	8	40	06/22/18 20:15	las
TDS (calculated)	Calculation		2910			mg/L			07/03/18 0:00	calc
TDS (ratio - measured/calculated)	Calculation		1.04						07/03/18 0:00	calc

Project ID: Sample ID: MW-6

ACZ Sample ID:	L44806-06
Date Sampled:	06/06/18 09:57
Date Received:	06/08/18
Sample Matrix:	Groundwater

Metals Analysis									
Parameter	EPA Method	Dilution	Result	Qual X	Q Units	MDL	PQL	Date	Analyst
Barium, dissolved	M200.7 ICP	10	7.65		mg/L	0.03	0.2	06/18/18 23:12	dcm
Boron, dissolved	M200.7 ICP	10	0.6		mg/L	0.1	0.5	06/18/18 23:12	dcm
Calcium, dissolved	M200.7 ICP	10	41	*	mg/L	1	5	06/18/18 23:12	dcm
Iron, dissolved	M200.7 ICP	10	3.0		mg/L	0.2	0.5	06/18/18 23:12	dcm
Magnesium, dissolved	M200.7 ICP	10	16		mg/L	2	10	06/18/18 23:12	dcm
Manganese, dissolved	M200.7 ICP	10	0.06	В	mg/L	0.05	0.3	06/18/18 23:12	dcm
Potassium, dissolved	M200.7 ICP	10	8	В	mg/L	2	10	06/18/18 23:12	dcm
Sodium, dissolved	M200.7 ICP	10	3870		mg/L	2	10	06/18/18 23:12	dcm
Wet Chemistry									
Parameter	EDA Mothod	Dilution	Pequit		0 Unito	MDI	POI	Data	Analyst

Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as CaCO3		1	652		*	mg/L	2	20	06/18/18 0:00	ecc
Carbonate as CaCO3		1		U	*	mg/L	2	20	06/18/18 0:00	ecc
Hydroxide as CaCO3		1		U	*	mg/L	2	20	06/18/18 0:00	ecc
Total Alkalinity		1	652		*	mg/L	2	20	06/18/18 0:00	ecc
Cation-Anion Balance	Calculation									
Cation-Anion Balance			-1.4			%			07/03/18 0:00	calc
Sum of Anions			179			meq/L			07/03/18 0:00	calc
Sum of Cations			174			meq/L			07/03/18 0:00	calc
Chloride	M300.0 - Ion Chromatography	100	5880		*	mg/L	40	200	06/21/18 23:59) las
pH (lab)	SM4500H+ B									
pН		1	7.8	Н	*	units	0.1	0.1	06/18/18 0:00	ecc
pH measured at		1	19.7		*	С	0.1	0.1	06/18/18 0:00	ecc
Residue, Filterable (TDS) @180C	SM2540C	5	10500		*	mg/L	50	100	06/13/18 16:54	mh
Sulfate	M300.0 - Ion Chromatography	100	51.4	В	*	mg/L	40	200	06/21/18 23:59) las
TDS (calculated)	Calculation		10300			mg/L			07/03/18 0:00	calc
TDS (ratio - measured/calculated)	Calculation		1.02						07/03/18 0:00	calc

Project ID: Sample ID: MW-7

ACZ Sample ID:	L44806-07
Date Sampled:	06/06/18 15:11
Date Received:	06/08/18
Sample Matrix:	Groundwater

Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Barium, dissolved	M200.7 ICP	10	5.50			mg/L	0.03	0.2	06/18/18 23:15	dcm
Boron, dissolved	M200.7 ICP	10	0.7			mg/L	0.1	0.5	06/18/18 23:15	dcm
Calcium, dissolved	M200.7 ICP	10	52		*	mg/L	1	5	06/18/18 23:15	dcm
Iron, dissolved	M200.7 ICP	10	3.2			mg/L	0.2	0.5	06/18/18 23:15	dcm
Magnesium, dissolved	M200.7 ICP	10	20			mg/L	2	10	06/18/18 23:15	dcm
Manganese, dissolved	M200.7 ICP	10	0.14	В		mg/L	0.05	0.3	06/18/18 23:15	dcm
Potassium, dissolved	M200.7 ICP	10	9	В		mg/L	2	10	06/18/18 23:15	dcm
Sodium, dissolved	M200.7 ICP	10	4170			mg/L	2	10	06/18/18 23:15	dcm
Wet Chemistry										

wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as		1	714		*	mg/L	2	20	06/18/18 0:00	ecc
CaCO3										
Carbonate as CaCO3		1		U	*	mg/L	2	20	06/18/18 0:00	ecc
Hydroxide as CaCO3		1		U	*	mg/L	2	20	06/18/18 0:00	ecc
Total Alkalinity		1	714		*	mg/L	2	20	06/18/18 0:00	ecc
Cation-Anion Balance	Calculation									
Cation-Anion Balance			-2.1			%			07/03/18 0:00	calc
Sum of Anions			196			meq/L			07/03/18 0:00	calc
Sum of Cations			188			meq/L			07/03/18 0:00	calc
Chloride	M300.0 - Ion Chromatography	100	6440		*	mg/L	40	200	06/22/18 0:53	las
pH (lab)	SM4500H+ B									
рН		1	7.7	н	*	units	0.1	0.1	06/18/18 0:00	ecc
pH measured at		1	20.0		*	С	0.1	0.1	06/18/18 0:00	ecc
Residue, Filterable (TDS) @180C	SM2540C	5	11500	Н	*	mg/L	50	100	06/28/18 10:48	enb
Sulfate	M300.0 - Ion Chromatography	100	75.3	В	*	mg/L	40	200	06/22/18 0:53	las
TDS (calculated)	Calculation		11200			mg/L			07/03/18 0:00	calc
TDS (ratio - measured/calculated)	Calculation		1.03						07/03/18 0:00	calc

Project ID: Sample ID: MW-15

ACZ Sample ID:	L44806-08
Date Sampled:	06/06/18 11:40
Date Received:	06/08/18
Sample Matrix:	Groundwater

Aetals Analysis									
Parameter	EPA Method	Dilution	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Barium, dissolved	M200.7 ICP	1		U	mg/L	0.003	0.02	06/18/18 23:18	dcm
Boron, dissolved	M200.7 ICP	1		U	mg/L	0.01	0.05	06/18/18 23:18	dcm
Calcium, dissolved	M200.7 ICP	1		U *	mg/L	0.1	0.5	06/18/18 23:18	dcm
Iron, dissolved	M200.7 ICP	1		U	mg/L	0.02	0.05	06/18/18 23:18	dcm
Magnesium, dissolved	M200.7 ICP	1		U	mg/L	0.2	1	06/18/18 23:18	dcm
Manganese, dissolved	M200.7 ICP	1		U	mg/L	0.005	0.03	06/18/18 23:18	dcm
Potassium, dissolved	M200.7 ICP	1		U	mg/L	0.2	1	06/18/18 23:18	dcm
Sodium, dissolved	M200.7 ICP	1	0.3	В	mg/L	0.2	1	06/18/18 23:18	dcm

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as CaCO3		1		U	*	mg/L	2	20	06/18/18 0:00	ecc
Carbonate as CaCO3		1		U	*	mg/L	2	20	06/18/18 0:00	ecc
Hydroxide as CaCO3		1		U	*	mg/L	2	20	06/18/18 0:00	ecc
Total Alkalinity		1		U	*	mg/L	2	20	06/18/18 0:00	ecc
Cation-Anion Balance	Calculation									
Cation-Anion Balance			n/a			%			07/03/18 0:00	calc
Sum of Anions			N/A			meq/L			07/03/18 0:00	calc
Sum of Cations				U		meq/L			07/03/18 0:00	calc
Chloride	M300.0 - Ion Chromatography	1		U	*	mg/L	0.4	2	06/22/18 1:11	las
pH (lab)	SM4500H+ B									
рН		1	6.9	Н	*	units	0.1	0.1	06/18/18 0:00	ecc
pH measured at		1	20.3		*	С	0.1	0.1	06/18/18 0:00	ecc
Residue, Filterable (TDS) @180C	SM2540C	1	12	В	*	mg/L	10	20	06/12/18 15:41	mh
Sulfate	M300.0 - Ion Chromatography	1		U	*	mg/L	0.4	2	06/22/18 1:11	las
TDS (calculated)	Calculation		0.3			mg/L			07/03/18 0:00	calc
TDS (ratio - measured/calculated)	Calculation		40.00						07/03/18 0:00	calc

Project ID: Sample ID: MW-20

Inorganic Analytical Results

ACZ Sample ID:	L44806-09
Date Sampled:	06/06/18 00:00
Date Received:	06/08/18
Sample Matrix:	Groundwater

Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Barium, dissolved	M200.7 ICP	5		U		mg/L	0.02	0.08	06/18/18 23:22	dcm
Boron, dissolved	M200.7 ICP	5	0.67			mg/L	0.05	0.3	06/18/18 23:22	dcm
Calcium, dissolved	M200.7 ICP	5	217		*	mg/L	0.5	3	06/18/18 23:22	dcm
Iron, dissolved	M200.7 ICP	5		U		mg/L	0.1	0.3	06/18/18 23:22	dcm
Magnesium, dissolved	M200.7 ICP	5	224			mg/L	1	5	06/18/18 23:22	dcm
Manganese, dissolved	M200.7 ICP	5		U		mg/L	0.03	0.1	06/18/18 23:22	dcm
Potassium, dissolved	M200.7 ICP	5	15			mg/L	1	5	06/18/18 23:22	dcm
Sodium, dissolved	M200.7 ICP	5	1640			mg/L	1	5	06/18/18 23:22	dcm
Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration									
Bicarbonate as CaCO3		1	361		*	mg/L	2	20	06/18/18 0:00	ecc
Carbonate as CaCO3		1		U	*	mg/L	2	20	06/18/18 0:00	ecc
Hydroxide as CaCO3		1		U	*	mg/L	2	20	06/18/18 0:00	ecc

00000										
Carbonate as CaCO3		1		U	*	mg/L	2	20	06/18/18 0:00	ecc
Hydroxide as CaCO3		1		U	*	mg/L	2	20	06/18/18 0:00	ecc
Total Alkalinity		1	361		*	mg/L	2	20	06/18/18 0:00	ecc
Cation-Anion Balance	Calculation									
Cation-Anion Balance			-1.0			%			07/03/18 0:00	calc
Sum of Anions			104			meq/L			07/03/18 0:00	calc
Sum of Cations			102			meq/L			07/03/18 0:00	calc
Chloride	M300.0 - Ion Chromatography	50	26.2	В	*	mg/L	20	100	06/22/18 1:28	las
pH (lab)	SM4500H+ B									
рН		1	8.0	н	*	units	0.1	0.1	06/18/18 0:00	ecc
pH measured at		1	20.3		*	С	0.1	0.1	06/18/18 0:00	ecc
Residue, Filterable (TDS) @180C	SM2540C	5	7320		*	mg/L	50	100	06/13/18 16:57	mh
Sulfate	M300.0 - Ion Chromatography	50	4550		*	mg/L	20	100	06/22/18 1:28	las
TDS (calculated)	Calculation		6890			mg/L			07/03/18 0:00	calc
TDS (ratio -	Calculation		1.06						07/03/18 0:00	calc

measured/calculated)

Inorganic Reference

Poport Hooder	Explanations								
Report Header									
Batch	A distinct set of samp	nes analyzeo al a specific time							
Found	Value of the QC Type	e of interest							
Limit	Upper limit for RPD, i	n %.							
Lower	Lower Recovery Limi	t, in % (except for LCSS, mg/Kg)							
MDL	Method Detection Lin	nit. Same as Minimum Reporting Limit u	nless omitted or ed	qual to the PQL (see comment #5).					
	Allows for instrument	and annual fluctuations.							
PCN/SCN	A number assigned to	o reagents/standards to trace to the man	ufacturer's certifica	ate of analysis					
PQL	Practical Quantitation	Limit. Synonymous with the EPA term "	'minimum level".						
QC	QC True Value of the Control Sample or the amount added to the Spike								
Rec	Rec Recovered amount of the true value or spike added, in % (except for LCSS, mg/Kg)								
RPD	Relative Percent Diffe	erence, calculation used for Duplicate QC	C Types						
Upper	Upper Recovery Limi	t, in % (except for LCSS, mg/Kg)							
Sample	Value of the Sample	of interest							
QC Sample Ty	pes		1.0014/2						
AS	Analytical Spike (Pos	t Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate					
ASD	Analytical Spike (Pos	t Digestion) Duplicate	LFB	Laboratory Fortified Blank					
CCB	Continuing Calibration Blank LFM Laboratory Fortified Matrix								
CCV	Continuing Calibration	n Verification standard	LFMD	Laboratory Fortified Matrix Duplicate					
DUP	Sample Duplicate		LRB	Laboratory Reagent Blank					
ICB	Initial Calibration Blar	ık	MS	Matrix Spike					
ICV	Initial Calibration Veri	fication standard	MSD	Matrix Spike Duplicate					
ICSAB	Inter-element Correct	ion Standard - A plus B solutions	PBS	Prep Blank - Soil					
LCSS	Laboratory Control Sa	ample - Soil	PBW	Prep Blank - Water					
LCSSD	Laboratory Control Sa	ample - Soil Duplicate	PQV	Practical Quantitation Verification standard					
LCSW	Laboratory Control Sa	ample - Water	SDL	Serial Dilution					
QC Sample Ty	pe Explanations								
Blanks		Verifies that there is no or minimal co	ontamination in the	prep method or calibration procedure.					
Control Sar	nples	Verifies the accuracy of the method,	including the prep	procedure.					
Duplicates		Verifies the precision of the instrume	ent and/or method.						
Spikes/Fort	lified Matrix	Determines sample matrix interferen	ces, if any.						
Standard		Verifies the validity of the calibration.							
ACZ Qualifiers	(Qual)								
R R	Analyte concentration	detected at a value between MDL and I	POI The associat	ed value is an estimated quantity					
ы	Analysis exceeded m	ethod hold time of is a field test with an	n immediate hold t						
	Target analyte respon	ection field time. prins a field test with a	n ininectiate nota t	ine.					
	The material was and	his was below the laboratory defined neg	a lovel of the acco	ciated value					
0	The material was and	in sither the semale supertitation limit on							
	The associated value	is either the sample quantitation limit or	the sample detect	on inflit.					
Method Refere	nces								
(1)	EPA 600/4-83-020.	Methods for Chemical Analysis of Water	and Wastes, Marc	h 1983.					
(2)	EPA 600/R-93-100.	Methods for the Determination of Inorgan	nic Substances in I	Environmental Samples, August 1993.					
(3)	EPA 600/R-94-111	Methods for the Determination of Metals	in Environmental S	Samples - Supplement I. May 1994.					
(4)	EPA SW-846. Test M	Aethods for Evaluating Solid Waste.							
(5) Standard Methods for the Evanination of Water and Wastewater									
Comments									
(1)	QC results calculated	from raw data. Results may vary slightly	y if the rounded va	lues are used in the calculations.					
(2)	Soil, Sludge, and Pla	nt matrices for Inorganic analyses are rep	ported on a dry we	ight basis.					
(3)	Animal matrices for Ir	norganic analyses are reported on an "as	received" basis.						
(4)	An asterisk in the "XC	Q" column indicates there is an extended	qualifier and/or ce	rtification qualifier					
	associated with the re	esult.							
(=)	associated with the result.								

(5) If the MDL equals the PQL or the MDL column is omitted, the PQL is the reporting limit.

For a complete list of ACZ's Extended Qualifiers, please click:

http://www.acz.com/public/extquallist.pdf

REP001.03.15.02

ACZ Project ID: L44806

Alkalinity as CaC	03		SM2320I	3 - Titration									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG449603													
WG449603PBW1	PBW	06/16/18 12:30				38	mg/L		-20	20			
WG449603I CSW3	LCSW	06/16/18 12:47	WC180615-7	820 0001		809	ma/L	99	90	110			
WG449603LCSW6	LCSW	06/16/18 15:07	WC180615-7	820 0001		829	ma/L	101	90	110			
WG449603PBW/2	PRW	06/16/18 15:13		020.0001		11	ma/L	101	-20	20			
WG449603I CSW9	LCSW	06/16/18 17:08	WC180531-2	820 0001		837	ma/L	102	90	110			
WG449603PBW/3	PRW	06/16/18 17:16		020.0001		11	ma/l	102	-20	20			
WG449603I CSW12	LCSW	06/16/18 19:54	WC180531-2	820 0001		841	ma/L	103	90	110			
WG449603PBW4	PBW	06/16/18 20:01		020.0001		1	ma/L	100	-20	20			
1 44835-07DUP		06/16/18 21:47			432	419	ma/L		20	20	3	20	
WG449603I CSW15	LCSW	06/16/18 22:17	WC180531-2	820 0001	102	844	ma/L	103	90	110	Ū	20	
W0440754	LOON	00/10/10 22:17		020.0001		044	···g·=	100	50	110			
WG449751													
WG449751PBW1	PBW	06/18/18 16:44				6	mg/L		-20	20			
WG449751LCSW3	LCSW	06/18/18 17:00	WC180615-7	820.0001		792	mg/L	97	90	110			
L44824-02DUP	DUP	06/18/18 19:05			29.7	29.7	mg/L				0	20	
WG449751LCSW6	LCSW	06/18/18 21:00	WC180615-7	820.0001		802	mg/L	98	90	110			
WG449751PBW2	PBW	06/18/18 21:06				U	mg/L		-20	20			
WG449751LCSW9	LCSW	06/19/18 0:33	WC180615-7	820.0001		818	mg/L	100	90	110			
WG449751PBW3	PBW	06/19/18 0:41				2.4	mg/L		-20	20			
WG449751LCSW12	LCSW	06/19/18 4:12	WC180615-7	820.0001		823	mg/L	100	90	110			
WG449751PBW4	PBW	06/19/18 4:19				U	mg/L		-20	20			
WG449751LCSW15	LCSW	06/19/18 7:48	WC180615-7	820.0001		823	mg/L	100	90	110			
Barium, dissolve	d		M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG449740													
WG449740ICV	ICV	06/18/18 22:14	II180612-1	2		1.9985	mg/L	100	95	105			
WG449740ICB	ICB	06/18/18 22:20				U	mg/L		-0.009	0.009			
WG449740LFB	LFB	06/18/18 22:32	II180608-2	.5025		.507	mg/L	101	85	115			
L44622-03AS	AS	06/18/18 22:44	II180608-2	.5025	.009	.5324	mg/L	104	85	115			
L44622-03ASD	ASD	06/18/18 22:47	II180608-2	.5025	.009	.537	mg/L	105	85	115	1	20	
L44824-04AS	AS	06/18/18 23:37	II180608-2	.5025	.139	.6651	mg/L	105	85	115			
L44824-04ASD	ASD	06/18/18 23:46	II180608-2	.5025	.139	.6513	mg/L	102	85	115	2	20	
Boron dissolved			M200 7 I	CP									
	Turno	Applyzod	DCN/SCN		Sampla	Found	Unito	Boo%	Lower	Uppor	BBD	Limit	Qual
	туре	Analyzeu	PCN/SCN	QC	Sample	Found	Units	Rec %	Lower	Opper	KPU	LIIIIIL	Qual
WG449740													
WG449740ICV	ICV	06/18/18 22:14	II180612-1	2		2.058	mg/L	103	95	105			
WG449740ICB	ICB	06/18/18 22:20				U	mg/L		-0.03	0.03			
WG449740LFB	LFB	06/18/18 22:32	II180608-2	.5005		.535	mg/L	107	85	115			
L44622-03AS	AS	06/18/18 22:44	II180608-2	.5005	.18	.7	mg/L	104	85	115			
L44622-03ASD	ASD	06/18/18 22:47	II180608-2	.5005	.18	.706	mg/L	105	85	115	1	20	
L44824-04AS	AS	06/18/18 23:37	II180608-2	.5005	.07	.614	mg/L	109	85	115			
L44824-04ASD	ASD	06/18/18 23:46	II180608-2	.5005	.07	.602	mg/L	106	85	115	2	20	

ACZ Project ID: L44806

Calcium, dissolv	ed		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG449740													
WG449740ICV	ICV	06/18/18 22:14	II180612-1	100		99.38	mg/L	99	95	105			
WG449740ICB	ICB	06/18/18 22:20				U	mg/L		-0.3	0.3			
WG449740LFB	LFB	06/18/18 22:32	II180608-2	68.22088		68.24	mg/L	100	85	115			
L44622-03AS	AS	06/18/18 22:44	II180608-2	68.22088	223	279.6	mg/L	83	85	115			M3
L44622-03ASD	ASD	06/18/18 22:47	II180608-2	68.22088	223	280.3	mg/L	84	85	115	0	20	M3
L44824-04AS	AS	06/18/18 23:37	II180608-2	68.22088	214	270.6	mg/L	83	85	115			M3
L44824-04ASD	ASD	06/18/18 23:46	II180608-2	68.22088	214	268.6	mg/L	80	85	115	1	20	M3
Chloride			M300.0 -	Ion Chroma	atography	1							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG450092													
WG4500921 FB	I FB	06/21/18 21:36	WI180430-12	30		30.6	ma/L	102	90	110			
1 44806-01DUP		06/22/18 19:03		00	27.5	27.5	ma/L	102	00	110	0	20	RA
L44806-02AS	AS	06/22/18 19:39	WI180430-12	1500	3030	4460	mg/L	95	90	110	U	20	101
Iron dissolved	-		M200 7 I	CP			-			-			
ACZ ID	Type	Analyzed	PCN/SCN	00	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG449740	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,								- pp.			
WC440740ICV		06/19/19 22:14	1180612-1	2		1 042	ma/l	07	05	105			
WG449740ICV		06/18/18 22:14	1100012-1	2		1.943	mg/L	97	90	0.06			
WG4497401EB	I EB	06/18/18 22:20	11180608-2	1 0011		1 042	mg/L	104	-0.00	115			
144622-0345		06/18/18 22:32	1180608-2	1.0011	33	1 354	mg/L	107	85	115			
L44622-03ASD	ASD	06/18/18 22:44	II180608-2	1.0011	.00	1.35	ma/L	102	85	115	0	20	
1 44824-04AS	AS	06/18/18 23:37	II180608-2	1.0011	.00	1 057	mg/L	106	85	115	U	20	
L44824-04ASD	ASD	06/18/18 23:46	II180608-2	1.0011	U	1.046	mg/L	104	85	115	1	20	
Magnesium diss	solved		M200 7 I	CP									
	Туре	Analyzed	PCN/SCN		Sample	Found	Unite	Pec%	Lower	Upper	PPD	Limit	Qual
	туре	Analyzeu		QO	Gample	Tound	Units	Nec /0	Lowei	Opper	N D	Linin	Quai
WG449740	1011		11400040.4	100		~~ ~~		100		105			
WG449740ICV	ICV	06/18/18 22:14	11180612-1	100		99.83	mg/L	100	95	105			
WG449740ICB	ICB	06/18/18 22:20	11400000 0	50 05007		U	mg/L	07	-0.6	0.6			
WG449740LFB	LFB	06/18/18 22:32	11180608-2	50.05667	00.4	48.36	mg/L	97	85	115			
L44622-03AS	AS	06/18/18 22:44	11100008-2	50.05007	88.4	134.3	mg/L	92	85	115	•	20	
L44622-03ASD	ASD	06/18/18 22:47	11180608-2	50.05667	88.4 14.1	134.8	mg/L	93	85	115	0	20	
L44824-04AS	AS ASD	06/18/18 23:46	II 180608-2 II 180608-2	50.05667	14.1	62.73 61.97	mg/L	97 96	ор 85	115	1	20	
Mangapaga dia			M200 7 H	00			-				-		
Manganese, diss	T	6 m o lumo d		6P	0	E a consta	1 lusite		1	11	000	1:	Qual
	гуре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Quai
W0443/4U		00/40/40 00 17	11100010 1	~		4 00-0		~~	05	105			
WG449740ICV		06/18/18 22:14	1180612-1	2		1.9858	mg/L	99	95	105			
WG449740ICB	ICB	06/18/18 22:20	11400000 0	5005		U	mg/L	404	-0.015	0.015			
VVG449/4ULFB	LFB	06/18/18 22:32	1100008-2	.5005	40	.5183	mg/L	104	85	115			
L44022-U3AS	AS	06/18/18 22:44	1100008-2	.5005	.13	.0464	mg/L	103	85	115	4	20	
L44022-U3ASD	ASD	06/18/18 22:47	1100000-2	.5005	.13	8000. 5077	mg/L	104	85 85	115	Т	20	
L44024-U4AS	AO	06/10/10 23:37	1100000-2	.5005	.205	.1/0/	mg/L	103	05 0 <i>5</i>	115	2	20	
L44024-04ASD	49D	00/10/10 23:40	1100000-2	.5005	.205	./001	mg/L	100	60	611	2	∠0	

ACZ Project ID: L44806

pH (lab)			SM4500	H+ B									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG449603													
WG449603LCSW1	LCSW	06/16/18 12:33	PCN54162	6.01		6	units	100	5.9	6.1			
WG449603LCSW4	LCSW	06/16/18 14:53	PCN54162	6.01		6	units	100	5.9	6.1			
WG449603LCSW7	LCSW	06/16/18 16:54	PCN54162	6.01		6	units	100	5.9	6.1			
WG449603LCSW10	LCSW	06/16/18 19:40	PCN54162	6.01		6	units	100	5.9	6.1			
L44835-07DUP	DUP	06/16/18 21:47			8.4	8.4	units				0	20	
WG449603LCSW13	LCSW	06/16/18 22:02	PCN54162	6.01		6	units	100	5.9	6.1			
WG449751													
WG449751LCSW1	LCSW	06/18/18 16:47	PCN54162	6.01		6.1	units	101	5.9	6.1			
L44824-02DUP	DUP	06/18/18 19:05			7.9	7.7	units				3	20	
WG449751LCSW4	LCSW	06/18/18 20:47	PCN54162	6.01		6.1	units	101	5.9	6.1			
WG449751LCSW7	LCSW	06/19/18 0:19	PCN54162	6.01		6.1	units	101	5.9	6.1			
WG449751LCSW10	LCSW	06/19/18 3:58	PCN54162	6.01		6.1	units	101	5.9	6.1			
WG449751LCSW13	LCSW	06/19/18 7:34	PCN54162	6.01		6.1	units	101	5.9	6.1			
Potassium, disso	lved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG449740													
WG449740ICV	ICV	06/18/18 22:14	II180612-1	20		19.94	mg/L	100	95	105			
WG449740ICB	ICB	06/18/18 22:20				U	mg/L		-0.6	0.6			
WG449740LFB	LFB	06/18/18 22:32	II180608-2	99.72934		99.79	mg/L	100	85	115			
L44622-03AS	AS	06/18/18 22:44	II180608-2	99.72934	14	116.4	mg/L	103	85	115			
L44622-03ASD	ASD	06/18/18 22:47	II180608-2	99.72934	14	116.3	mg/L	103	85	115	0	20	
L44824-04AS	AS	06/18/18 23:37	II180608-2	99.72934	7.9	110.5	mg/L	103	85	115			
L44824-04ASD	ASD	06/18/18 23:46	II180608-2	99.72934	7.9	109.5	mg/L	102	85	115	1	20	

ACZ Project ID: L44806

Residue, Filtera	ble (TDS	5) @180C	SM25400	С									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG449286													
WG449286PBW	PBW	06/12/18 15:17				U	mg/L		-20	20			
WG449286LCSW	LCSW	06/12/18 15:18	PCN56036	260		272	mg/L	105	80	120			
L44843-04DUP	DUP	06/12/18 15:59			1450	1470	mg/L				1	10	
WG449411													
WG449411PBW	PBW	06/13/18 15:30				16	mg/L		-20	20			
WG449411LCSW	LCSW	06/13/18 15:31	PCN56036	260		270	mg/L	104	80	120			
L44907-02DUP	DUP	06/13/18 15:53			31800	34400	mg/L				8	10	
WG449432													
WG449432PBW	PBW	06/13/18 16:48				U	mg/L		-20	20			
WG449432LCSW	LCSW	06/13/18 16:50	PCN56036	260		266	mg/L	102	80	120			
L44915-06DUP	DUP	06/13/18 17:15			136	136	mg/L				0	10	
WG449609													
WG449609PBW	PBW	06/15/18 14:19				U	mg/L		-20	20			
WG449609LCSW	LCSW	06/15/18 14:20	PCN56035	260		258	mg/L	99	80	120			
L44860-01DUP	DUP	06/15/18 14:40			1540	1540	mg/L				0	10	
WG450540													
WG450540PBW	PBW	06/28/18 10:45				U	mg/L		-20	20			
WG450540LCSW	LCSW	06/28/18 10:46	PCN56362	260		262	mg/L	101	80	120			
L45103-01DUP	DUP	06/28/18 11:08			3540	3570	mg/L				1	10	
Sodium, dissolv	/ed		M200.7 I	СР									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG449740													
WG449740ICV	ICV	06/18/18 22:14	II180612-1	100		100.1	mg/L	100	95	105			
WG449740ICB	ICB	06/18/18 22:20				U	mg/L		-0.6	0.6			
WG449740LFB	LFB	06/18/18 22:32	II180608-2	100.6711		101.5	mg/L	101	85	115			
L44622-03AS	AS	06/18/18 22:44	II180608-2	100.6711	60.4	161.6	mg/L	101	85	115			
L44622-03ASD	ASD	06/18/18 22:47	II180608-2	100.6711	60.4	161.3	mg/L	100	85	115	0	20	
L44824-04AS	AS	06/18/18 23:37	II180608-2	100.6711	41.2	142.6	mg/L	101	85	115			
L44824-04ASD	ASD	06/18/18 23:46	II180608-2	100.6711	41.2	141	mg/L	99	85	115	1	20	
Sulfate			M300.0 -	Ion Chrom	atography	/							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG450092													
WG450092LFB	LFB	06/21/18 21:36	WI180430-12	30		31.8	mg/L	106	90	110			
L44806-01DUP	DUP	06/22/18 19:03			4530	4530	mg/L				0	20	
L44806-02AS	AS	06/22/18 19:39	WI180430-12	1500	22	1570	mg/L	103	90	110			

Golder Associates

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L44806-01	WG449603	Bicarbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG449740	Calcium, dissolved	M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG449603	Carbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG450092	Chloride	M300.0 - Ion Chromatography	DC	Sample required dilution. Non-target analyte exceeded calibration range.
			M300.0 - Ion Chromatography	Q6	Sample was received above recommended temperature.
			M300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG449603	Hydroxide as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
		pН	SM4500H+ B	Q6	Sample was received above recommended temperature.
		pH measured at	SM4500H+ B	Q6	Sample was received above recommended temperature.
	WG449411	Residue, Filterable (TDS) @180C	SM2540C	Q6	Sample was received above recommended temperature.
	WG450092	Sulfate	M300.0 - Ion Chromatography	Q6	Sample was received above recommended temperature.
	WG449603	Total Alkalinity	SM2320B - Titration	Q6	Sample was received above recommended temperature.
L44806-02	WG449751	Bicarbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG449740	Calcium, dissolved	M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG449751	Carbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG450092	Chloride	M300.0 - Ion Chromatography	Q6	Sample was received above recommended temperature.
			M300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG449751	Hydroxide as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
		рН	SM4500H+ B	Q6	Sample was received above recommended temperature.
		pH measured at	SM4500H+ B	Q6	Sample was received above recommended temperature.
	WG449609	Residue, Filterable (TDS) @180C	SM2540C	HC	Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.
			SM2540C	N1	See Case Narrative.
			SM2540C	Q6	Sample was received above recommended temperature.
	WG450092	Sulfate	M300.0 - Ion Chromatography	DC	Sample required dilution. Non-target analyte exceeded calibration range.
			M300.0 - Ion Chromatography	Q6	Sample was received above recommended temperature.
	WG449751	Total Alkalinity	SM2320B - Titration	Q6	Sample was received above recommended temperature.

Inorganic Extended Qualifier Report

Golder Associates

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L44806-03	WG449751	Bicarbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG449740	Calcium, dissolved	M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG449751	Carbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG450092	Chloride	M300.0 - Ion Chromatography	Q6	Sample was received above recommended temperature.
			M300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG449751	Hydroxide as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
		pН	SM4500H+ B	Q6	Sample was received above recommended temperature.
		pH measured at	SM4500H+ B	Q6	Sample was received above recommended temperature.
	WG449609	Residue, Filterable (TDS) @180C	SM2540C	HC	Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.
			SM2540C	N1	See Case Narrative.
			SM2540C	Q6	Sample was received above recommended temperature.
	WG450092	Sulfate	M300.0 - Ion Chromatography	DC	Sample required dilution. Non-target analyte exceeded calibration range.
			M300.0 - Ion Chromatography	Q6	Sample was received above recommended temperature.
	WG449751	Total Alkalinity	SM2320B - Titration	Q6	Sample was received above recommended temperature.
L44806-04	WG449751	Bicarbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG449740	Calcium, dissolved	M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG449751	Carbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG450092	Chloride	M300.0 - Ion Chromatography	Q6	Sample was received above recommended temperature.
			M300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG449751	Hydroxide as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
		рН	SM4500H+ B	Q6	Sample was received above recommended temperature.
		pH measured at	SM4500H+ B	Q6	Sample was received above recommended temperature.
	WG449432	Residue, Filterable (TDS) @180C	SM2540C	Q6	Sample was received above recommended temperature.
	WG450092	Sulfate	M300.0 - Ion Chromatography	DC	Sample required dilution. Non-target analyte exceeded calibration range.
			M300.0 - Ion Chromatography	Q6	Sample was received above recommended temperature.
	WG449751	Total Alkalinity	SM2320B - Titration	Q6	Sample was received above recommended temperature.

Golder Associates

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L44806-05	WG449751	Bicarbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG449740	Calcium, dissolved	M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG449751	Carbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG450092	Chloride	M300.0 - Ion Chromatography	DC	Sample required dilution. Non-target analyte exceeded calibration range.
			M300.0 - Ion Chromatography	Q6	Sample was received above recommended temperature.
			M300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG449751	Hydroxide as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
		pН	SM4500H+ B	Q6	Sample was received above recommended temperature.
		pH measured at	SM4500H+ B	Q6	Sample was received above recommended temperature.
	WG449609	Residue, Filterable (TDS) @180C	SM2540C	HC	Initial analysis within holding time. Reanalysis was past holding time, which was required due to a QC failure during the initial analysis.
			SM2540C	N1	See Case Narrative.
			SM2540C	Q6	Sample was received above recommended temperature.
	WG450092	Sulfate	M300.0 - Ion Chromatography	Q6	Sample was received above recommended temperature.
	WG449751	Total Alkalinity	SM2320B - Titration	Q6	Sample was received above recommended temperature.
L44806-06	WG449751	Bicarbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG449740	Calcium, dissolved	M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG449751	Carbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG450092	Chloride	M300.0 - Ion Chromatography	Q6	Sample was received above recommended temperature.
			M300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG449751	Hydroxide as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
		рН	SM4500H+ B	Q6	Sample was received above recommended temperature.
		pH measured at	SM4500H+ B	Q6	Sample was received above recommended temperature.
	WG449432	Residue, Filterable (TDS) @180C	SM2540C	Q6	Sample was received above recommended temperature.
	WG450092	Sulfate	M300.0 - Ion Chromatography	DC	Sample required dilution. Non-target analyte exceeded calibration range.
			M300.0 - Ion Chromatography	Q6	Sample was received above recommended temperature.
	WG449751	Total Alkalinity	SM2320B - Titration	Q6	Sample was received above recommended temperature.

Golder Associates

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L44806-07	WG449751	Bicarbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG449740	Calcium, dissolved	M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG449751	Carbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG450092	Chloride	M300.0 - Ion Chromatography	Q6	Sample was received above recommended temperature.
			M300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG449751	Hydroxide as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
		pH	SM4500H+ B	Q6	Sample was received above recommended temperature.
		pH measured at	SM4500H+ B	Q6	Sample was received above recommended temperature.
	WG450540	Residue, Filterable (TDS) @180C	SM2540C	C5	Confirmatory analysis was past holding time. Original result not confirmed.
			SM2540C	Q6	Sample was received above recommended temperature.
	WG450092	Sulfate	M300.0 - Ion Chromatography	DC	Sample required dilution. Non-target analyte exceeded calibration range.
			M300.0 - Ion Chromatography	Q6	Sample was received above recommended temperature.
	WG449751	Total Alkalinity	SM2320B - Titration	Q6	Sample was received above recommended temperature.
L44806-08	WG449751	Bicarbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG449740	Calcium, dissolved	M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG449751	Carbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG450092	Chloride	M300.0 - Ion Chromatography	Q6	Sample was received above recommended temperature.
			M300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG449751	Hydroxide as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
		рН	SM4500H+ B	Q6	Sample was received above recommended temperature.
		pH measured at	SM4500H+ B	Q6	Sample was received above recommended temperature.
	WG449286	Residue, Filterable (TDS) @180C	SM2540C	Q6	Sample was received above recommended temperature.
	WG450092	Sulfate	M300.0 - Ion Chromatography	Q6	Sample was received above recommended temperature.
	WG449751	Total Alkalinity	SM2320B - Titration	Q6	Sample was received above recommended temperature.
L44806-09	WG449751	Bicarbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG449740	Calcium, dissolved	M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG449751	Carbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG450092	Chloride	M300.0 - Ion Chromatography	DC	Sample required dilution. Non-target analyte exceeded calibration range.
			M300.0 - Ion Chromatography	Q6	Sample was received above recommended temperature.
			M300.0 - Ion Chromatography	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG449751	Hydroxide as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
		рН	SM4500H+ B	Q6	Sample was received above recommended temperature.
		pH measured at	SM4500H+ B	Q6	Sample was received above recommended temperature.
	WG449432	Residue, Filterable (TDS) @180C	SM2540C	Q6	Sample was received above recommended temperature.
	WG450092	Sulfate	M300.0 - Ion Chromatography	Q6	Sample was received above recommended temperature.
	WG449751	Total Alkalinity	SM2320B - Titration	Q6	Sample was received above recommended temperature.

ACZ Project ID: L44806

No certification qualifiers associated with this analysis

ACZ	Laborator	ries,	Inc.	
2773 Downhill Drive	Steamboat Springs	CO ROA	87 (800)	331-510

2113 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Golder Associates

Sample Receipt

ACZ Project ID: L44806 Date Received: 06/08/2018 10:54 Received By: Date Printed: 6/11/2018

Receipt Verification

- 1) Is a foreign soil permit included for applicable samples?
- 2) Is the Chain of Custody form or other directive shipping papers present?
- 3) Does this project require special handling procedures such as CLP protocol?
- 4) Are any samples NRC licensable material?
- 5) If samples are received past hold time, proceed with requested short hold time analyses?
- 6) Is the Chain of Custody form complete and accurate?
- 7) Were any changes made to the Chain of Custody form prior to ACZ receiving the samples?

A change was made in the Sample ID: Line 8 and Sample ID: Date:Time Line 9 section prior to ACZ custody.

Samples/Containers

8) Are all containers intact and with no leaks?
9) Are all labels on containers and are they intact and legible?
10) Do the sample labels and Chain of Custody form match for Sample ID, Date, and Time?
11) For preserved bottle types, was the pH checked and within limits?
12) Is there sufficient sample volume to perform all requested work?
13) Is the custody seal intact on all containers?

- 14) Are samples that require zero headspace acceptable?
- 15) Are all sample containers appropriate for analytical requirements?
- 16) Is there an Hg-1631 trip blank present?
- 17) Is there a VOA trip blank present?
- 18) Were all samples received within hold time?

Chain of Custody Related Remarks

Client Contact Remarks

Shipping Containers

Cooler Id	Temp(°C)	Temp Criteria(°C)	$Rad(\mu R/Hr)$	Custody Seal Intact?
 4171	7.2	<=6.0	13	Yes

Was ice present in the shipment container(s)?

Yes - Wet ice was present in the shipment container(s) but was thawed by receipt at ACZ.

Client must contact an ACZ Project Manager if analysis should not proceed for samples received outside of their thermal preservation acceptance criteria.

YES	NO	NA
		Х
Х		
	Х	
		Х
Х		
Х		
Х		

YES	NO	NA
Х		
Х		
Х		
Х		
Х		
		Х
		Х
Х		
		Х
		Х
Х		

NA indicates Not Applicable

Golder Associates ACZ Project IE	D: L44806
Date Received	d: 06/08/2018 10:54
Received B	y:
Date Printee	d: 6/11/2018
¹ The preservation of the following bottle types is not checked at sample receipt: Orange (oil ar grease), Purple (total cyanide), Pink (dissolved cyanide), Brown (arsenic speciation), Sterile (fe coliform), EDTA (sulfite), HCI preserved vial (organics), Na2S2O3 preserved vial (organics), a HG-1631 (total/dissolved mercury by method 1631).	nd ∋cal ınd

REPAD LPII 2012-03

2773 Downhill Drive Steamt	aboratories, Inc poat Springs, CO 80487 (800) 3	34-5493	21800	5	CHAIN	of CUST	ODY
Report to: Name: Kristing Company: Colder	Minchow	A	ddress: 4	4 Unior ewood	n Blvd	Suite 3	60
E-mail: KINNCh	Logolaer.com		elephone:	3039	<u> XO 65</u>	40	
Name: Sava Hau Company: Gobler	-kins	E	-mail: Sk elephone:	av King 3020	agole 884	der.con	~
Invoice to:				200			
Name: Kristing Company: See al	Minchau one	A	ddress:	see Alon	10_		
E-mail:		Т	elephone:				
If sample(s) received past h analysis before expiration, If "NO" then ACZ will contact client for furth	olding time (HT), or if insuffici shall ACZ proceed with reques er instruction. If neither "YES" nor "NO" is indic	ent HT rema sted short H	ains to comp T analyses?	plete	if UT is evaluated as	YES NO	\mathbf{X}
Are samples for SDWA Con	npliance Monitoring?		es	NO	IT HI IS EXpired, ar	nd data will be qualified	
Sampler's Name: D. Roow	Sampler's Site Inform	to PQL for	Colorado.) Zin a	odo	Time 7er	LAST
*Sampler's Signature:	*i attest tamper	to the authenticity ing with the sample	and validity of thi in anyway, is con	sample. I understa sidered fraud and pu	DQC nd that intentional inishable by State I	I IME ZON ly mislabeling the time Law.	date/location or
PROJECT INFORMATION	N		ANAL	YSES REQUEST	ED (attach list o	or use quote numbe	r)
Quote #: BO 3992	3		lers 8				
PO#: Reporting state for compliance	e testing:		A lair				
Check box if samples include	NRC licensed material?		Su 6				$\boldsymbol{\wedge}$
SAMPLE IDENTIFICAT	ON DATE:TIME	Matrix	* 33 *			X	
MW-1	6618 1205	GN	$3 \times$				
MW-2	6018 1035	GW 3	$3 \times$				
NIV-3	6/6/18 1355	GW 3	<u>3 X</u>				
10100-4	16/18 13/2	GW -			$+ \cancel{4}$		
MANITA	61418 915	GW			\vee +		
	<u> </u>	<u>60</u> -		/	1		
MW-Tank	10/10/18 1511	1401	$\frac{1}{2}$				
MW-7 MW-85	6618 1511	GID :	$\frac{3}{3} \times$	$- \not\vdash$			
MW-7, MW-815 MW-20	616/18 1511 616/19 1140	GW 3	$\frac{3}{3} \times \frac{1}{3} \times \frac{1}$	\neq			
MW-7 5 MW-815 MW-20	66618 1511 616/19 1140 196/18	GUO : GUU : GUU :	$\begin{array}{c} 3 \\ 3 \\ 3 \\ \end{array}$				
MW-7 MW-8.5 MW-20 Matrix SW (Surface Water)	6618 1511 61619 1140 6618 140	GU GU Water) · DW (I	3 X 3 X Drinking Water) · SL (Sludge)	SO (Soil) · OL	L (Oil) · Other (Sp	ecify)
MW-7 MW-815 MW-20 Matrix SW (Surface Water) REMARKS Sumples	6618 1511 61618 1511 61618 140 646 18 • GW (Ground Water) • WW (Waste Field Fiftured	GU GU Water) · DW (I	3 X 3 X Drinking Water) · SL (Sludge)	SO (Soil) · OL	L (Oil) · Other (Sp	ecify)
MW-7 MW-20 Matrix SW (Surface Water) REMARKS Sumples Pleas	GW (Ground Water) · WW (Waste Field Fittured GW (Ground Water) · WW (Waste	ditions loca	3 X 3 X Drinking Water) · SL (Sludge)	SO (Soil) · OL	L (Oil) · Other (Sp	ecify)
MW-7 MW-815 MW-20 Matrix SW (Surface Water) REMARKS Sumples Pleas RELINQUISHEE	GW (Ground Water) · WW (Waster) · GW (Ground Water) · WW (Waster) · WW (ditions loca	3 X 3 X Drinking Water) · SL (Sludge) reverse side ECEIVED B	SO (Soil) · OL of this CO(Y:	C.	ecify)
MW-7 MW-85 MW-20 Matrix SW (Surface Water) REMARKS Sumples Pleas RELINQUISHED DIGMA Brow	16/6/18 15/1 16/6/18 15/1 16/6/18 1140 16/6/18 1140 16/6/18 1140 16/6/18 1140 16/6/18 1140 16/6/18 1140 16/6/18 1140 16/6/18 1140 16/6/18 1140 16/6/18 16/6/18	ditions loca	3 X 3 X Drinking Water) · SL (Sludge) reverse side ECEIVED B	SO (Soil) · OL of this COO Y:	C.	ecify) :TIME