

Ebert - DNR, Jared <jared.ebert@state.co.us>

Fri, Jan 12, 2018 at 2:02 PM

Knox Pit Groundwater Study 2nd Submittal

William Katz <wkatz@telesto-inc.com>

To: "Jared Ebert (jared.ebert@state.co.us)" <jared.ebert@state.co.us>

Cc: Walt Niccoli «wniccoli@telesto-inc.com», Stephanie Fancher-English <stephanieh@lrmconcrete.com>

Hello Mr. Ebert,

Attached is the Second <u>Submittal Loveland Ready-Mix's Proposed LaPorte Operations, Knox Pit</u> <u>Groundwater Study</u>. This attachment contains the text and figures. The appendices well be sent later today.

We will get the hard copies to you and the Larimer County Clerk and Recorder early next week.

If you require additional information or have questions, please contact me.

William M. Katz

Senior Hydrogeologist

Telesto Solutions Inc.

W (970)484-7704

C (303)918-0699

wkatz@telesto-inc.com

20180112_GroundWaterStudy_2ndSubmittal.pdf

Ebert - DNR, Jared <jared.ebert@state.co.us>

Appendices to Laprote Operations Groundwater Study

William Katz <wkatz@telesto-inc.com> To: Jared Ebert <jared.ebert@state.co.us> Cc: Walt Niccoli <wniccoli@telesto-inc.com> Sat, Jan 13, 2018 at 1:40 PM

Hello Mr. Ebert,

Attached are the appendices to the Second <u>Submittal Loveland Ready-Mix's Proposed LaPorte</u> <u>Operations, Knox Pit Groundwater Study</u>.

We will get the hard copies to you and the Larimer County Clerk and Recorder early next week.

If you require additional information or have questions, please contact me.

William M. Katz

Senior Hydrogeologist

Telesto Solutions Inc.

W (970)484-7704

C (303)918-0699

wkatz@telesto-inc.com

20180112_Appendices_GroundWaterStudy_2ndSubmittal.pdf 8723K

Second Submittal

Second Submittal Loveland Ready-Mix's Proposed LaPorte Operations, Knox Pit Groundwater Study

Prepared for Loveland Ready-Mix Concrete, Inc. PO Box 299 Loveland, Colorado 80539

Prepared by Telesto Solutions Inc. 3801 Automation Way, Suite 201 Fort Collins, Colorado 80525

January 2018

Second Submittal

Signature Page

First Submittal Loveland Ready-Mix's Proposed LaPorte Operations, Knox Pit Groundwater Study

January 2018

Report Authors and Contributors

Telesto Solutions, Inc.

Walter Niccoli, PE - Primary Author

William Katz - Report Review

Contributors:

Parker Coit David Bauer Corrie Kaiser Taryn Tigges Stacy Tyler Tilda Evans

Table of Contents

1.0	INTRO	INTRODUCTION1					
	1.1 1.2 1.3	Project Description					
2.0) BACKGROUND						
	2.1 2.2 2.3	Geologic Setting					
3.0	NUME	ERICAL MODEL FRAMEWORK13					
	3.1 3.2 3.3 3.4 3.5	Numerical Modeling Code13Numerical Modeling Domain13Numerical Model Boundaries13Model Parameters14Model Timeframe14					
4.0	MODEL CALIBRATION15						
	4.1 4.2 4.3 4.4	Calibration Targets15Calibration Results15Parameter/Boundary Sensitivity16Discussion16					
5.0	0 MODEL PREDICTIONS						
	5.1 5.2 5.3	Mining Plan–Phases 1 through 5					
	5.4	Discussion215.4.1Model Stability5.4.2Predictive Results21					
6.0	MITIGATION STRATEGIES						

	6.1	Plantorium Potential Mitigation	22
	6.2	Morgan Timber Potential Mitigation	22
	6.3	Water Management Pond	22
7.0	MON	IITORING PLAN	24
	7.1	Monitoring Plan	24
		7.1.1 Monitoring Locations	25
		7.1.2 Purpose of Monitoring Locations	25
		7.1.3 Potential Impacts from Mining Operations	25
		7.1.4 Data Collection	
		7.1.5 Water Quality	
		7.1.6 Proposed Trigger Levels and Corrective Actions	26
8.0	CON	CLUSIONS	27
9.0	REF	ERENCES	

List of Figures

- Figure 1 Project Location and Area Features
- Figure 2 Ditches, Drains and Permitted Gravel Operations
- Figure 3 Summer 2017 Groundwater Elevations
- Figure 4 Site Monitoring Well Depths to Groundwater
- Figure 5 Top of Pierre Shale
- Figure 6 Alluvial Aquifer Thickness
- Figure 7 Local Groundwater Elevations and Flow Directions
- Figure 8 Conceptual Groundwater Flow Model
- Figure 9 Model Domain in Colorado State Plane Coordinates (Feet)
- Figure 10 Numerical Model Boundaries
- Figure 11 Simulated vs. Measured Groundwater Elevations
- Figure 12 Simulated 2017 Groundwater Contours
- Figure 13 Mining Plan–Phase 1 and 2
- Figure 14 Mining Plan–Phases 3 and 4
- Figure 15 Mining Phase 5 and Perimeter Drain Cross Section
- Figure 16 Predicted Drawdown at the End of Phase 1
- Figure 17 Predicted Drawdown at the End of Phase 2
- Figure 18 Predicted Drawdown at the End of Phase 3
- Figure 19 Predicted Drawdown at the End of Phase 4
- Figure 20 Predicted Drawdown at the End of Phase 5
- Figure 21 Predicted Drawdown after Reclamation

List of Appendices

- Appendix A Neighborhood Well Questionnaire and Notes
- Appendix B Knox Pit Monitoring Well Logs and Report
- Appendix C Northern Boundary Flux Estimate
- Appendix D Specific Capacity Analyses
- Appendix E Site-Specific Aquifer Tests
- Appendix F Miscellaneous Calculations and Model Documentation

1.0 INTRODUCTION

A groundwater study was conducted by Telesto Solutions, Inc. (Telesto) to assess potential impacts associated with the proposed Loveland Read-Mix's LaPorte Operations, Knox Pit (Pit) sand and gravel mine. The proposed sand and gravel mine will require the dewatering of pits, transfer of groundwater, and the management of the affected groundwater levels. To gain a thorough understanding of potential outcomes of the proposed mining project, conceptual models were developed that summarize the available data and mechanics of the groundwater system. These conceptual models were used to build a numerical representation (i.e., numerical model). The numerical model was then calibrated using measured groundwater level data, and predictive scenarios that simulated mining impacts. Based on these predictive scenarios, mitigation plans and management techniques were created and tested in simulation to verify the efficacy of the mitigation plans and ensure groundwater resources would not be harmed.

1.1 Project Description

Loveland Ready-Mix Concrete, Inc. (LRM) is proposing a new sand and gravel pit, and associated concrete batch plant located adjacent to Larimer County Road 54G, approximately one-half mile west of Taft Hill Road (Site). The sand and gravel pit and associated concrete batch plant are called the LaPorte Operations (Project). LRM is seeking approval for the Project through Larimer County's Use by Special Review process. The total Project area is 126.58 acres. When sand and gravel mining has ceased, disturbed areas will be reclaimed to natural agricultural conditions with the former gravel pit areas reclaimed for pasture. The Project will include phased reclamation so that as mining progresses across the properties, mined and disturbed areas will be sequentially lined, backfilled, re-graded, and revegetated.

The Site lies approximately 4,000 feet north of the Cache la Poudre River (River) and contains alluvial sand and gravel deposited by the ancestral Poudre River. The area to the south of the Project has experienced extensive sand and gravel mining operations, both historically and currently, as seen in Figure 1.

1

Second Submittal

The 126.58 acre Site is currently being used for agriculture, with irrigated hay being the primary crop. The property is relatively flat, with a gentle slope toward the southeast. The abutting properties include 17 parcels that are in use as single family residential, 4 agricultural parcels, 2 retail/service parcels, 1 multi-family residential parcel, and 1 industrial parcel.

Key features affecting groundwater in the area include multiple irrigation ditches, irrigated agricultural operations, and the afore-mentioned existing gravel mining operations (Figure 2). Another feature affecting groundwater are historical sub-surface drains used to lower the water table in area fields. The exact location of the individual pipes of the collector drain network is unknown. It is surmised that these drain networks feed two known main drain structures: the Callahan Drain, located south of the site, and the Childers Underground Drainage Ditch (Childer's Drain), located east of the site. A subset of the Callahan drain system, the Bethke Stockwater drain provides water to a small stock pond near the outlet of the Callahan drain into the Taylor and Gill ditch.

Based on interviews with Mr. Ray Stegner, the physical attributes of the Childers Drain (Stegner, 2016) are:

- The physical location of the drain appears to run on the east edge of the property and collects water from north and west of the Hwy 287/ Hwy 287 Bypass
- There are five collector drains east of Taft Hill and north of the old Hwy 287
- At least two of the collector drains were crushed in the 1980s when the Bypass was built
- Part of the water drains into the Terry Lake inlet ditch since the crushing in the 1980s
- There is no evidence of any water being collected south of Hwy 287 from the groundwater system (i.e., drain tiles are solid)
- The drain flows into a pond (off site) and the pond overflows into the Eaton Ditch

1.2 Objectives

The objectives of this report are to:

- Describe the groundwater system associated with the Project
 - Predict potential impacts to groundwater and its users, including:
 - Changes in groundwater elevations that would affect residents or well users
 - Changes in flow paths for potential migration of impacted water
- Provide mitigation strategies should impacts (predicted or realized) be unacceptable

1.3 Approach

This report consolidates available information on climate, geology, surface water, and groundwater to develop a conceptual hydrogeologic model for the proposed Project and adjacent area. The conceptual model is then quantified by developing a two-dimensional numerical groundwater flow model that incorporates relevant aspects of the hydrologic system. To improve its predictive capabilities, the numerical model is calibrated to known hydraulic heads and groundwater flow rates. The focus of this effort is to provide a defensible technical basis for predicting groundwater-related impacts associated with commencement of mining, on-going operation, and future closure of the Pit, and to provide an evaluation tool for developing mitigation strategies if required.

2.0 BACKGROUND

Sand and gravel mining has occurred along the Cache La Poudre River corridor for decades. As the alluvial deposits were excavated and processed into construction materials, the gravel pit sites were depleted of sand and gravel and reclaimed for residential, agricultural, wildlife habitat, or water storage uses. In the reclamation processes, groundwater conditions reverted to conditions similar to the pre-mining status. Figure 2 shows the locations of local sand and gravel mines that have accessed Poudre River alluvium; the Colorado Department of Natural Resources, Division of Reclamation Mining and Safety (DRMS) maintains a map of sand and gravel sites (CDRMS, 2017). Following cessation of mining, many pits have been reclaimed as lakes, or reverted to open space used for grazing or wildlife habitat.

2.1 Geologic Setting

The Project lies at the western margin of the Denver-Julesburg Basin with the Northern Rocky Mountain Front Range uplift to the west. The Project terrain is characterized by low relief fields and pasture. To the west-northwest of the Project lies the Bellvue Dome anticline, which has been breached by erosion exposing the Permian-Triassic age Lykins Formation at its core (Hagardorn, 2001). Resistant beds of Permian Lyons, Satanka, and Ingleside Formations cap the top of the ridge forming the east half of the dome.

The Project overlies unconsolidated alluvial deposits of Quaternary age deposited during natural meandering of the ancestral Cache la Poudre River system. The alluvial sands and gravel were eroded from the Rocky Mountains to the west and deposited along broad areas of the river valley. Alluvial deposits underlying the Project can be characterized as poorly sorted (well graded) granite-sourced clays, silts, sands, gravel and cobbles. These alluvial deposits are exposed at the ground surface and extend approximately 1,500 feet to the north of the Project, and for some distance south across the current Cache la Poudre River floodplain. In the vicinity of the Project, the alluvium is deposited on an erosional contact with the Cretaceous Pierre Shale. The Pierre Shale is relatively

4

impermeable and considered a bedrock aquiclude when evaluating alluvial-bedrock groundwater interactions.

2.2 Hydrologic Setting

2.2.1 Climate

The Site is located in a semi-arid region of the northern Front Range area of Colorado. The regional climate is summarized by data obtained from the Western Regional Climate Center website (WRCC, 2017).

2.2.2 Surface Water

Regional Drainage

The Site is located within the Cache la Poudre River Basin, a tributary to the South Platte River that generally drains to the east. Within Larimer County, the River drains a total area of approximately 460 square miles. Perennial flow exists in the River from the mouth of the Poudre canyon downstream past LaPorte and through the City of Fort Collins. In the spring and early summer, the River recharges an extensive valley-fill alluvial aquifer. Infiltration from irrigation diversions and roadside swales adds to the alluvial aquifer recharge from mid-summer through early fall. Dry season River flows are minimal and consist primarily of municipal wastewater plant discharges, and irrigation sourced groundwater return flows from the extensive valley-fill alluvial aquifer.

To the north of the proposed Project is a small ephemeral drainage flowing generally north to south. This unnamed drainage is partially blocked by the elevated portion of the Highway 287 by-pass. An existing 24-inch corrugated metal pipe allows a portion of this drainage flows to pass from north to south beneath the highway embankment. Perennial wetlands have formed on the north and south sides of the embankment due to this surface drainage and the aforementioned damaged irrigation drains.

Second Submittal

Local Drainage

The Project is located within the Cache la Poudre River drainage basin. Site ground surface elevations range from 5,056 feet in the northwest corner of the property to 5,049 feet at the southeast corner. It lies outside the 100-year Cache la Poudre River regulatory floodplain as defined by FEMA. Surface runoff from the Site and surrounding area can be characterized as sheet flow off pasture and agricultural land.

Offsite storm water runoff reaching the Site flows across as sheet flow. The Little Cache la Poudre Ditch is elevated and traverses west to east across the approximate middle of the Project area, and serves as a surface drainage divide. The Little Cache la Poudre Ditch is not anticipated to intercept surface runoff. Storm water north of the Little Cache la Poudre ditch flows to the east and northeast; storm water south of the Cache la Poudre ditch flows to the southeast. Surface runoff in the area flows generally south and southeast toward the river when not intercepted by irrigation ditches or the constructed roadside drainage system of swales and culverts. There are no named natural waterways through or adjacent to the Site.

During the anticipated 10-12 years of gravel mining operations for the Project, on-site runoff and off-site runoff that historically flowed across the Site will be directed to and retained in the Pits, which will be excavated to 15 to 20 feet depths below the current ground surface. Storm water directed to the unlined Pits will be captured and utilized in the process water circuit. LRM plans to obtain the required water rights to retain this storm water.

2.2.3 Groundwater

Regional

Groundwater is a source of water for municipal, domestic, agricultural, and industrial uses within Larimer County; however, diverted Cache la Poudre river flows and transmountain diversions form the bulk of the water sources for these uses in urban areas along the Front Range.

The viability of the groundwater resource is dependent on characteristics of the geologic unit from which groundwater is extracted. Well yields (flow rates expressed in gallons per minute) of groundwater wells are controlled by the permeability of the host rocks.

- Metamorphic and igneous rocks have relatively small well yields [1 and 15 gallons per minute (gpm)], except in highly weathered granitic rocks that can produce higher yields. Metamorphic and igneous rocks do not provide groundwater in the Project area and will not be penetrated by any proposed mining activities
- Marine sedimentary rocks are generally poor aquifers in Larimer County. However, fractured carbonate rocks, which most commonly occur near major fault structures, can locally provide significant well yields. Marine sedimentary rocks do not provide groundwater in the Project area and will not be penetrated by any proposed mining activities
- Wells completed in consolidated and semi-consolidated Tertiary and Cretaceous clastic deposits can yield up to several hundred gpm. These deposits will not be penetrated by any proposed mining activities and do not provide groundwater in the Project area
- Unconsolidated stream alluvium along major stream channels range in thickness from 5 to 30 feet thick and can locally provide well yields up to several hundred gpm (Topper, 2003). Properties adjacent to the Site have shallow groundwater wells completed in alluvium.

LaPorte Area Wells

Local groundwater flow and levels are strongly controlled by the River, irrigation ditches and agricultural irrigation. In early summer 2017, Telesto sent questionnaires to landowners and registered well owners in the area requesting information from their wells. Telesto also offered to measure depths to groundwater in their wells. Of 269 questionnaires sent, 46 neighbors responded—35 neighbors responded that depth-towater measurements could be taken. Of the 35 neighbors, Telesto was able to arrange times to measure 18 neighbors' wells. Copies of the questionnaires and field notes are included in Appendix A. None of the wells are used for domestic drinking water and most are used for lawn and garden watering.

Additionally, Telesto installed 14 monitoring wells on the Site. Monitoring well logs are provided in Appendix B. Early summer 2017 depth-to-groundwater measurements are summarized in Figure 3, which depicts the resulting groundwater elevations. Since the issuance of the first submittal of this report, LRM and Telesto have continued to monitor

depths to water in the Project monitoring wells. Data from this effort are presented in Figure 4.

Bedrock

The Cretaceous Pierre shale (Pierre) underlies the unconsolidated sands and gravels of the alluvial aquifer. The Pierre is low permeability marine shale that is considered to be an aquiclude relative to the overlying alluvium. The groundwater wells and monitoring wells near the Site are typically screened to the top of the Pierre shale. Utilizing the Colorado Decision Support System (CDSS) groundwater well database (CDWR, 2017) and Site monitoring wells, the top of the Pierre shale was inferred as shown in Figure 5.

2.2.4 Alluvial Aquifer

The primary aquifer is hosted in the shallow alluvium of the Cache la Poudre River. This alluvial aquifer is recharged by infiltration of up gradient River flows, from storm water and snowmelt infiltration, irrigation waters applied to the ground surface and seepage from adjacent irrigation ditches when the ditches are flowing water (usually mid-April through October).

Domestic and monitoring wells completed in the alluvial aquifer in the Project vicinity indicate a saturated thickness of 20 feet or less. Figure 6 shows the thickness of the alluvial aquifer for Project area. As can be seen in Figure 6, the alluvium varies from 11 to 28 feet in thickness across the Site.

2.2.5 Groundwater Flow Patterns

Figure 7 shows groundwater elevations from depth to groundwater measurements in vicinity wells. Data for Figure 7 were collected by Telesto during monitoring well testing on site and during the neighborhood water level measurement campaign during early summer. The groundwater elevations depicted in Figure 7 represent the spring-summer irrigation season when infiltration of irrigation ditch flows raise the water table. Groundwater in the Cache la Poudre alluvial system in the vicinity generally flows from the north and northwest to the south and southeast, paralleling the Cache la Poudre River.

LRM will measure depth to groundwater in the same wells (with owner's permission) during the winter (i.e., non-irrigation season) when irrigation infiltration, rainfall, and irrigation ditch flows have ceased allowing the water table to drop.

2.2.6 Local Water Quality

It is well documented that surface and some groundwater in Northern Larimer County suffer from increased selenium concentrations (Elmund, 2014; Herr, 1977; Pierce, 2014), mostly sourced from oxidation of generally selenium-sulfide (selenium is in a reduced state) minerals dispersed throughout the Pierre shale. Where the Pierre shale outcrops and surface waters come into contact, the oxygen rich surface water oxidizes the reduced selenium minerals and produces more soluble selenium mineral phases (e.g., selenite, selenate), which are dissolved and transported in surface waters. Enhancing the mobilization of selenium is the erosion of the Pierre shale, which continually exposes fresh minerals while placing solid selenium minerals in the water column.

The same oxidation potential exists for well oxygenated alluvial groundwater where it is in contact with the Pierre shale. However, the erosion potential does not exist and the only mechanism for moving the selenium into the alluvial groundwater system is molecular diffusion (which is a slow process). Thus, alluvial groundwater generally does not exhibit the same concentrations as surface water unless it is sourced from a surface water with high selenium concentrations.

LRM collected random samples from monitoring wells MW-2, MW-6 and MW-13, and from the Cache la Poudre River nearby. Laboratory reports are provided in Appendix B. All samples reported non-detect for selenium with the exception of MW-6 (0.043 mg/L). MW-6 had a trace of sediment in the sample, which is the likely source of the selenium. LRM also collected samples of the Pierre shale and subjected them to the Environmental Protection Agency's Synthetic Precipitation Leaching Procedure (SPLP) test. SPLP subjects soil/solid samples to direct contact with slightly acidic water to examine the potential for release of chemicals from the solid. The SPLP results indicated that of the four samples taken, one had the potential to release selenium (B20, 0.13 mg/L in the

leachate). Lab reports are provided in Appendix B. No other metals were detected in the SPLP results. Implications of these results are described in section 7.1

2.3 Conceptual Model

A conceptual groundwater flow model is a graphical, semi-quantitative description of the parameters and conditions that control groundwater flow. Figure 8 displays the conceptual groundwater flow model associated with the Site as limited to the model boundary shown. Components of the conceptual model are represented in the numerical flow model as various boundary conditions and variables.

2.3.1 Boundary Conditions

Model Top

The top of the conceptual model is defined by the topography (represented by the US digital elevation model, 10 m grid spacing, and Site topographic surveys), and a variable flux boundary. The flux represents natural recharge on non-irrigated areas, and excess irrigation that percolates below the rooting zone in irrigated areas. The bounding condition is assumed to be relatively constant throughout the year as irrigation induced percolation will be attenuated on its vertical path to the groundwater table. Likewise, naturally occurring precipitation driven percolation is assumed to be constant throughout the year.

Model Bottom

The bottom of the conceptual model is the Pierre Shale. As described previously, the Pierre shale acts as an aquitard and is therefore represented as a no-flow (i.e., zero flux) boundary.

Perimeter

The southern perimeter of the model is the Cache la Poudre River, which is represented as a constant head boundary that varies with time. In the spring and early summer, the height of the river is several feet above its winter flow stage. The height variability is a relative function of the staff gauge height/flow measurements taken at USGS gauging station 06752260.

The northern boundary is a flux boundary. Where bedrock outcrops, the flux is minimal, dictated by meteoric shallow groundwater flow through bedrock (mostly shales). As shown in Figure 8, there is a small deposit of terrace sediments associated with an unnamed drainage to the north that are connected to the alluvial aquifer. This small alluvial extension is treated as a steady flux boundary because the mechanisms for flow into the conceptual model are dampened by the porous media flow in this alluvial extension. Flux rates are estimated to range between 1.9 and 4.5 acre-feet/day as shown in Appendix C.

The eastern and western boundaries of the model are flux boundaries that vary in time. To represent this flux, constant head boundaries are used that are related to the stage in the river.

Internal Boundaries

Within the area of interest, several types of hydrologic boundaries exist related to groundwater flow. Old gravel ponds that have been sealed from interaction with the groundwater system have zero flux boundaries as groundwater flow through the seals is insignificantly small when compared to fluxes through the alluvial aquifer. Area ditches provide recharge and discharge opportunities for groundwater. Leakage rates can range from 10 to 25% of the flow in the ditch. Un-sealed gravel lakes and active mining pits become discharge points for the alluvial aquifer. Evaporation can be a significant sink in the summer when evaporation rates can reach up to 5.74 inches in the month of July (CDWR, 2011). While no large capacity pumping from wells is known to exist in the area, groundwater wells are documented sinks to groundwater in the area of interest. These range from 20 to 40 gpm.

2.3.2 Hydraulic Parameters

Porosity/Storage Coefficient

The storage coefficient dictates the amount of groundwater that moves in and out of the pore space as aquifer conditions change (e.g., pumping from a well or cessation of irrigation returns). Storage coefficients for the Cache la Poudre alluvium range from 15 to 25%. A typical value used in the LaPorte area is 20% (CDWR, 2017).

Saturated Hydraulic Conductivity

The saturated hydraulic conductivity dictates how easily groundwater moves through porous media (i.e., alluvium in this case). Transmissivity is a product of the saturated aquifer thickness and hydraulic conductivity. The CDSS (CDWR, 2017) indicates that the transmissivity in the LaPorte area is around 50,000 gallons/day/ft. With an average thickness of 20 feet, the associated hydraulic conductivity is 2,500 gallons/day/ft² (334 ft/day, or 0.12 cm/sec).

An additional method of estimating hydraulic conductivity is to apply a specific capacity evaluation to available aquifer data from the CDSS database that assumes the drillers reported flow rate is from "blowing the hole dry" and thus, the drawdown in the well is the top of water minus the total depth of the well. Applying a specific capacity test to the wells in the LaPorte area yields a range of transmissivity from 3.6 to 950 ft²/day, as shown in Appendix D.

Telesto performed aquifer pumping test analyses on four of the 14 monitoring wells installed. Saturated hydraulic conductivity from testing ranged from approximately 40 to 260 ft/day (0.015 to 0.092 cm/sec). Appendix E documents the monitoring well aquifer tests.

3.0 NUMERICAL MODEL FRAMEWORK

3.1 Numerical Modeling Code

Telesto chose the widely-accepted groundwater flow model, MODFLOW 2005 (Harbaugh, 2017). Groundwater flow is mathematically simulated utilizing a block-centered, finite difference approach to solve the corresponding governing differential equations. MODFLOW 2005 is a series of modular subroutines that are highly independent of one another that allows flexibility in simulating a multitude of boundary and geometric conditions. Modeling input was accomplished with a variety of tools including Model Muse (Winston, 2009), Global Mapper 16 (Blue Marble Geographics, 2015) and internal codes developed by Telesto.

3.2 Numerical Modeling Domain

The modeling domain is best described as a rectangular grid oriented parallel to the main direction of groundwater flow. In MODFLOW, the modeling coordinates start in the upper left corner and are defined by rows and columns. The upper left corner of the model is located at geographical northing of 40° 38' 57.2758" N and easting of 105° 08' 05.4861" W. The modeling grid is oriented clockwise around the upper left corner at 208° 07' 29.0" from true north. The model domain is 23,609 feet (4.47 miles) in the x-dimension and 9,834 feet (1.86 miles) in the y-dimension. The model domain is gridded in the x-dimension by 158 columns ranging from 25 to 1,000 feet in width, and in the y-dimension by 147 rows ranging from 24 to 1,000 feet. The extents of the model are sufficiently large as to avoid unduly influencing the hydraulics near the Site and areas of concern. Figure 9 displays the model domain oriented against Colorado State Plane North coordinates.

3.3 Numerical Model Boundaries

Model boundaries define the hydrologic conditions of the aquifer throughout the model domain. As described in Section 2.3.1, various boundary conditions exist. Where bedrock outcrops or sub-crops, the model is inactive or has a zero flux boundary. Sealed gravel pits are also treated as zero flux boundaries and are represented by inactive cells in

the model. The two main ditches influencing groundwater near the Site are the Little Cache la Poudre and the Taylor and Gill. Both are treated as general head boundaries using the MODFLOW river package. Drain boundary conditions are associated with the Callahan and Childers drains. Figure 10 quantifies and further describe the numerical boundaries utilized in the model.

3.4 Model Parameters

Appendix F summarizes the range of individual parameters utilized in the modeling effort along with the value used in the model.

3.5 Model Timeframe

The groundwater system within the model domain is quite dynamic due to the seasonal nature of the irrigation ditches, river flows, and water supply deliveries. From Site monitoring wells, the groundwater system reaches a new equilibrium relatively quickly after ditches start to flow in the spring. For this effort, Telesto chose to utilize a steady-state model representing the irrigation-season groundwater levels (highest levels). The steady-state model provides the basis for a series of transient models that simulate groundwater behavior as the stresses associated with mining progress. The timeframe of the transient models is one year, representing one-half of each phase of mining as described in the mine plan. The total simulated time is 10 years, representing the five phases of mining. Reclamation (after 10 years) is simulated by imposing the drains and liners on to the steady-state model.

4.0 MODEL CALIBRATION

Calibration is the process by which model parameters are adjusted within the range of measured/known values until a set of "targets" is matched. For a groundwater model, targets are drainage discharge rates, increases or losses to surface water features, but most commonly groundwater elevations measured in wells.

4.1 Calibration Targets

For this modeling effort, the calibration targets are the spring and early summer groundwater elevation measurements from the Site monitoring wells and from the neighbor's wells. Although the neighbor's wells were not professionally surveyed like Site monitoring wells, equal credibility was given to every well to evaluate model calibration.

4.2 Calibration Results

The model was set up in a step-wise fashion, adding boundaries (ditches, drains, ponds) one model-run at a time until the model was built. Once the model was running, adjustments were made to boundary conditions within ranges as defined previously that represented the early irrigation season (May-July). This time period was chosen as representative of the first round of groundwater elevations measurements. The adjustments to boundary conditions were made until the model represented the distribution of measured groundwater elevations in the monitoring and neighborhood wells. Hydraulic conductivity and porosity were set as defined by the CDSS (CDWR, 2017) database in order to provide consistency with LRM's substitute water supply plan submitted to the DWR.

Simulated groundwater elevations from the model cells representing wells on the date measurements were compared against measured elevations as shown in Figure 11. Also, shown in Figure 11 are results of regression analyses (coefficient of determination-r², regression line slope and intercept) and the sum of the difference squared between simulated and measured groundwater elevations indicating the capacity of the model to

accurately simulate groundwater levels in the wells. Figure 12 is a contour plot of the simulated groundwater elevations representative of the early irrigation season. Comparison of Figure 12 to Figure 3 shows good correlation between model simulated groundwater elevations and flow directions and those measured in the field.

4.3 Parameter/Boundary Sensitivity

A sensitivity analysis examines how changing variables within their acceptable range affects the calibration results. Because the model domain contains so many internal boundaries, the model is relatively insensitive to hydraulic parameters. It is very sensitive to the physical construct of the internal boundaries. For example, changing the elevation of the bottom of the ditch in the area of the nearby wells has a direct correlation to the simulated water elevation in the well. Because the physical nature of ditches and other internal boundaries are fairly well known or limited (e.g., agricultural drains are typically less than five and no more than 10 feet below ground surface), the model sensitivity is less critical.

4.4 Discussion

The statistics and plot showing in Figure 11 indicate that the model successfully mimicked groundwater elevation distributions near the Site for the existing conditions. Visual examination of the scatter around the best fit line and calculated slope of the best fit line of 1.0 indicates that the model does not have bias in the groundwater level predictions and the groundwater flow direction. During the irrigation season, the model is highly constrained, meaning that water elevations are significantly controlled by internal boundary conditions (i.e., irrigation ditches). Given that the approach for this modeling effort was to use CDSS parameters, the main adjustments that could be made were to the behavior of the irrigation ditches.

On the Front Range of Colorado, a rule of thumb is that irrigation ditches lose from 10% to 25% of the water diverted from the river (known as shrink). Using this as a guide, the overall leakage from the Little Cache and the Taylor and Gill were adjusted until an acceptable match between the simulated and observed heads was achieved.

5.0 MODEL PREDICTIONS

The previous four sections of this report describe the building of the numerical model to provide a base upon which potential impacts from LRM's proposed operations can be evaluated. The good calibration provides a high level of comfort that the model can accurately identify problematic areas that might produce impacts from the operational scenarios.

The overall mine plan related to groundwater is to excavate a dewatering sump and remove groundwater to the water management pond where water is re-infiltrated into the alluvial aquifer. From the initial sump excavation, mining will progress and is described by five phases depicted in Figures 13 through 15. A perimeter drain (Figure 15) will be placed along the outer perimeter of the excavation that will serve during mining to dewater the toe of the high wall to maintain stability, and direct groundwater to the dewatering sump. As reclamation materials become available, a compacted earth barrier (i.e., sometimes referred to as a seal or liner) will be installed over the perimeter drain such that the drain is hydraulically connected to the surrounding alluvial aquifer and hydraulically separated from the interior of the gravel pit. Once the gravel pit perimeter is entirely sealed, the perimeter drain will serve to route groundwater around the barrier by maintaining a high permeability adjacent to the compacted backfill.

Five phases of mining describe the mine plan and are modeled to predict potential impacts on the groundwater system. Sealed portions of the mine pits were simulated as no-flow boundaries. The perimeter drains were simulated using a higher hydraulic conductivity at a factor of 2 times higher than the CDSS value used for the rest of the model. This conductivity value is lower than the calculated equivalent (Appendix F) hydraulic conductivity that the drain system will provide, lending a level of conservatism to the preditions.

Most wells in the area range in depth from 5 to 20 feet. Thus, for the purposes of describing modeling predictions, we considered drawdowns of five feet or more during the irrigation season (when wells are used) to indicate a potential area for concern from

dewatering impacts. Similarly, we considered a mound (shown as negative value contours on the figures) of two feet or more to indicate areas where a potential may exist for increases in groundwater levels that could pose an issue. This value was chosen because the standard deviation was 2.1 feet, meaning predicted values above this become statistically significant in terms of potential impacts.

5.1 Mining Plan–Phases 1 through 5

Figure 16 through Figure 20 display predicted drawdowns at the ends of Phases 1 through 5, respectively. As the simulation moves through the phases, the areas of greatest potential impact (considered to be a drawdown of 5 feet or more and mound of 2 feet or more) are clearly seen. The potential for impacts progresses from the south side of the Site to the north over the 10-year model timeframe.

The largest off-site drawdowns occur from the mining north of the Little Cache la Poudre ditch. No wells are known to exist in this area north of the Site. The most significantly impacted wells are those in the "enclave" at the south side of the mine (the Cherry and the West wells). Although the Plantorium Greenhouse and Nursery did not respond to Telesto's questionnaire, we know that they have an irrigation well used to water their greenhouse plants. The Plantorium is inside the five-foot impact zone during the end of the first half of Phase 1. These three wells may require mitigation.

5.2 Mine Plan–Reclamation

Figure 21 shows the model-predicted drawdowns after reclamation is complete. No offsite drawdowns greater than 5 feet are predicted. The largest is 3 feet in the enclave area. Three feet is statistically significant in this model, thus, that is one area to provide monitoring and mitigation if necessary after mining. The model predicts mounding in the statistically significant range up to approximately 370 feet west of the western Site boundary.

5.3 Results Discussion

5.3.1 Drawdown

Overall, the model predicts that five wells (Cherry, West, two Morgan Timber and the Plantorium) may be impacted for a period of time during the advancement of mining. The Cherry and West wells are predicted to be essentially dry while the other wells will maintain a saturated thickness that could allow continued production. Despite the remaining capacity, mitigation measures may be required for those wells.

Mitigation measures could include: 1) providing a water tap from the West Fort Collins Water District, 2) deepening wells to ensure there is still adequate saturated thickness from which groundwater can be extracted, and 3) re-introducing pumped groundwater through a leach field or injection well back into the aquifer near the impacted well.

5.3.2 Mounding

As exhibited in Figure 16 though Figure 20, slight mounding is predicted up gradient of the pits west boundary. The area that is predicted to be statistically significant (above 2 feet) extends occurs after reclamation. The most significant predicted mounding is due to reinjection into the water management pond. The predicted maximum rise in the groundwater adjacent to the water management pond is predicted to be 4 feet as dewatering is initiated in Phase 1. As mining progresses the projected dewatering rate is anticipated to be less. In the predictions, it was assumed that the maximum dewatering rates would be sent to the water management pond to maintain conservatism in the predictions. The maximum rise is 3 feet or less as the Phases progress and the drawdown impacts expand to provide extra storage capacity in the alluvium.

5.3.3 Ditch / Drain Effects

Potential ditch and drain effects were evaluated by comparing the steady-state numerical model simulated ditch loss or drain flows to the individual predicted flows during each phase. No measurements of flows are losses were made for this effort and we relied on the rule of thumb to evaluate if the model simulation and predictions were reasonable.

The simulated, pre-mining loss rates for the ditches were 6.98, 2.57, and 6.02 cfs for the Little Cache la Poudre, Taylor and Gill, and Larimer and Weld ditches, respectively. Due to its distance from the Site, no impacts were predicted on the Larimer and Weld ditch. The simulated pre-mining discharge for the Callahan and Childer's drains were 0.93 and 5.37 cfs, respectively.

Little Cache la Poudre Ditch

The model predictions indicate that additional losses to the Little Cache la Poudre ditch are minimal during the first half of mining of Phase 1. This is primarily due to the "silting up of the ditch" (silt layer restricts flow into and out of the ditch). Personal communications with Jeff Smith, manager of the ditch at the time indicate that they measured inflow and outflow of the ditch as it passes through the Site. They did not measure any ditch losses at that time, corroborating the model predictions. The model shows that there is a potential to decrease the ditch loss by approximately 4% after reclamation because the pit liners reduce loss through the Site.

Taylor and Gill

Due to the drawdown downgradient of the Site (south of 54G), the model predicts that there could be a potential increase in ditch loss of up to 7% (0.1 cfs). After reclamation, predictions are that the additional potential ditch loss is essentially zero (0.03 cfs). Because ditch losses were not measured, the accuracy of the predictions cannot be verified. However, given the small potential change in flows indicated, we do not anticipate that the Taylor and Gill will be impacted.

Drains

The model predicted the maximum reduction in the Callahan drain of 15.8% (0.14 cfs) to occur during Phases 1 through 3. After reclamation, the drain flow is predicted to increase by 2.1% (0.02 cfs). Given the small potential change in flows indicated, we do not anticipate that the Callahan drain will be significantly impacted. If flows do decrease significantly, dewatering water can be returned to the Taylor and Gill ditch to make up the reduction.

5.3.4 Water Quality

One of the concerns voiced by neighbors during the neighborhood meeting was the potential for water quality impacts from the Site. No constituents of concern are produced on site that could significantly impact water quality. Constituents of concern contained in fuel, cement, and admixtures are fully contained and tracked. Primary containment is backed up by secondary containment (e.g., buildings, storm water containment, secondary containers/liners). Thus, there is no exposure of waters to chemicals. Additionally, all surface and storm water will be contained on site. Thus, there can be no off-site impacts to surface water. Similarly, the direction of groundwater flow during all phases of mining is towards the dewatering sump. Thus, there can be no off-site migration of groundwater should the unlikely event of a release occur.

5.4 Discussion

5.4.1 Model Stability

The model converged to a solution during every iteration for the calibration and predictive scenarios, meeting the minimum error criteria in the heads of 0.001 foot. No other significant errors were reported in the model runs. These statistics provide confidence that the model runs were numerically accurate and that the results are numerically sound.

5.4.2 Predictive Results

Based on the good correlation and numerical stability of the model, confidence can be placed in the predictive results. The predictions provide a good indicator of areas that will require special attention as dewatering progresses and gives the opportunity for LRM and neighbors to be pro-active.

6.0 MITIGATION STRATEGIES

Prior to implementing any mitigation strategies for neighboring wells that could potentially be impacted, LRM will discuss the options with neighbors and evaluate suitability of the three mitigation strategies described in Section 5.3.1. To aid in the

evaluation, the reinjection strategy is simulated for the Plantorium and Morgan Timber wells. Unfortunately, the West and Cherry wells are too close to the mine boundary for a reinjection scenario to be practicable. They will require water supplied to them via a water tap from West Fort Collins Water District (LRM has 23 taps available) or a feed from the sump dewatering system. LRM commits to working with the Wests and Mr. Cherry and has reached an agreement with them to mitigate their wells. It could be that the Plantorium and Morgan Timber may desire water taps as well.

6.1 Plantorium Potential Mitigation

One potential mitigation strategy for the Plantorium's well is to supply pumped groundwater to an injection well installed south of County Road 54 G. This plan would require state permitting and crossing under the county road with a water supply pipe. Given that the mitigation would only be required for a short period of time, this option, while physically viable, may have too many other constraints. Again, LRM commits to working with the Plantorium, and has reached an agreement with them to develop the best mitigation solution for both parties.

6.2 Morgan Timber Potential Mitigation

One potential mitigation strategy for the Morgan Timber's wells is to supply pumped groundwater to a shallow French drain east of the Site. This plan would also require state permitting. If mitigation is required, LRM commits to working with Morgan Timber to develop the best mitigation solution for both parties.

6.3 Water Management Pond

Current minimum depth to groundwater from ground surface in the summer in the area is approximately 4 feet. The predictions indicate that during Phase 1, additional water management activities may be necessary to maintain the water table below the ground surface adjacent to the pond. This could include increasing the water management pond footprint by approximately 10% to accommodate the additional area needed to keep the water table below ground surface. The pond infiltration capacity area can also be

increased by installing shallow drains radially around the outer edge of the pond perpendicular to the sides. Additionally, areas in the pit can be utilized to manage excess water during Phase 1 dewatering activities. After Phase 1, predictions indicate that the water management pond should have capacity to adequately manage water and maintain approximately 1.5 feet of freeboard. This is more than enough capacity for a 100 year storm event.

7.0 MONITORING PLAN

This modeling effort was completed prior to implementation of the mining process. It is calibrated to the early summer timeframe. As time goes by and more data are collected, the model will be updated and verified. The updated model will provide more accurate predictions and therefore will provide more confidence in the predictive results. The model can be used as a tool to evaluate water supply and other groundwater related issues during operations. The model, however, is only as good as the data on which it is based. Thus, ongoing monitoring of the groundwater is essential.

7.1 Monitoring Plan

The mining plan for the Pit assumes a ten-year mine life during which the active pit excavations will be dewatered. Upon closure, a compacted backfill liner with perimeter drain will exist around the perimeter of the mined area. The backfill liner and perimeter drain will be constructed congruent to mining. Concerns have been raised as to the potential for mining activities and the perimeter drain to mobilize selenium. Taking a very conservative approach (Appendix F show an example for the southern drain) that selenium is present everywhere that the perimeter drain is installed and it has not leached from the top 1 cm of the Pierre shale, the resulting concentration in the collected drain water is estimated at 0.0006 mg/L, which is below the laboratory reporting limit of 0.006 mg/L. A more reasonable assumption is that the depth to the first selenium is 2.5 feet (depth of sample). This results in a concentration of 0.000008 mg/L. Regardless, LRM is committing to monitoring for selenium as described herein.

In addition to this preliminary water quality sampling, LRM has initiated a pre-mining groundwater monitoring program. The monitoring program consists of monthly depth to ground water measurements of the 14 on-site monitoring wells. Depth monitoring of on-site monitoring wells will shift to quarterly schedule after one-years' worth of data are collected and until active operations are completed. One round of neighborhood well depth to groundwater measurements were taken. LRM is reaching out to inquire about a February neighborhood round of depth measurements.

7.1.1 Monitoring Locations

To facilitate monitoring groundwater immediately adjacent to the Site, LRM constructed 14 new monitoring wells on the Site properties in April 2017 under State Engineering Office approved monitoring well permits. Monitoring well locations are shown in Figure 3 and well construction permits are included in Appendix B. With the cooperation and permission of neighbors, LRM also intends to monitor the 24 neighbor wells.

7.1.2 Purpose of Monitoring Locations

The proposed monitoring locations can be easily accessed by LRM to provide real-time groundwater elevation data. These monitoring locations are intended to provide baseline data representative of pre-mining groundwater levels for the area. It should be noted that the wells on neighboring properties have been pumped at a variety of times and rates and utilized for residential, agricultural, and commercial purposes over past years. The effects of this variation in pumping times, rates and water uses will be captured in any monitoring event. Once mining and pit dewatering commences, the monitoring locations will serve as indicators of dewatering impacts, and provide a base upon which model predicted impacts can be judged and updated.

7.1.3 Potential Impacts from Mining Operations

As described previously, potential dewatering impacts are predicted to occur at five neighboring well locations during the mining operation. In two wells (Cherry and West), the drawdown is predicted to be significant enough to require mitigation. In the remaining wells, adequate saturated thickness is predicted that would allow continued production.

If monitoring results show mounding in the areas that the model predicts are a potential for mounding and flooding of neighbors' properties occurs, LRM will take immediate action to determine the cause for the change. If it is in fact due to mounding, LMR could immediately pump from the perimeter drain to reduce the mound and find a long-term solution. Long-term solutions may be to increase drain capacity by adding another drain higher in the profile or implementing siphons from the perimeter drain.

7.1.4 Data Collection

As mentioned previously, LRM has already installed 14 monitoring wells and monthly depth-to-water measurements are already being taken. LRM has committed to collecting groundwater monitoring data monthly for the first 12 months of mining operations, and quarterly thereafter for the duration of mining at the Site. LRM proposes, with neighbors permission, to monitor elevations in these neighboring wells semi-annually prior to and throughout mine dewatering. Attempts will be made to sample during times when the neighbors' wells have not been pumped to help distinguish between mine-related and pumping-related drawdown.

7.1.5 Water Quality

Groundwater quality is not expected to be impacted by mining at the Site. However, the Little Cache la Poudre ditch has requested that water quality be monitored. Thus, LRM has committed to monitoring for pH, iron, selenium and TDS in MW-13. In addition. LRM has committed to monitoring for these parameters plus oil sheens in the water management pond and ditch. These are the typical sector-specific benchmarks tested in CDPHS discharge permits for sand and gravel pits and batch plants. The water quality monitoring plan is attached as Appendix G.

7.1.6 Proposed Trigger Levels and Corrective Actions

LRM proposes use of a five-foot drawdown as a trigger that would initiate more intensive monitoring and discussions of potential mitigation measures with neighbors. If required, LRM will negotiate in good faith to implement corrective actions that are amenable to both parties. Corrective actions could include: 1) providing a water tap from the West Fort Collins Water District, 2) deepening wells (there is typically an extra 10 feet to bedrock in most domestic wells surveyed) to ensure there is still adequate saturated thickness from which groundwater can be extracted, and 3) re-introducing pumped groundwater through a leach field or injection well back into the aquifer near the impacted well.

8.0 CONCLUSIONS

In addition to the objectives summarized in this section, this study describes just a few of the potential mitigation measures available, and emphasizes the collaborative strategies that LRM would implement toward neighbors if needed. LRM will work with neighbors to ensure that they have access to, and are able to interpret the well monitoring results available on the DRMS website, and will continue to collaborate directly with individual landowners as requested. LRM is committed to maintaining communication with neighbors, and has taken steps to share the results of this study with adjacent well owners as practical.

The modeling efforts met the objectives as outlined in Section 1.2 as follows:

- The conceptual model described in detail the groundwater system associated with LRM's Site
- The numerical model mimicked existing conditions and then was used to predict impacts. It showed:
 - Changes in groundwater elevations affecting known well users, and provided maps of zones of potential drawdown impacts
 - Groundwater flow paths were shown to be towards the dewatering sumps
- Potential mitigation strategies were discussed and evaluated and a plan to monitor and implement corrective actions was provided.

As with all models, this model is a numerical representation of the physical system that mimics trends and magnitudes of physical values. While great effort is taken to ensure the most accurate representation of the groundwater system, there are still uncertainties resulting from the required assumptions used during the modeling effort. Thus, the model is most useful in identifying areas of potential concern so that management plans can be made to mitigate any potential issues. Again, these areas are where groundwater is predicted to drawdown more than five feet or mound higher than 2 feet.

9.0 **REFERENCES**

- Blue Marble Geographics, 2015. *Global Mapper V:16*, Hallowell, Main: Blue Marble Geographics.
- CDRMS, 2017. Colorado Division of Reclamation Mining & Safety. [Online] Available at: (<u>http://mining.state.co.us/Programs/MineralMines/Pages/GIS.aspx</u> [Accessed 05 July 2017].
- CDWR, 2011. General Administration Guidelines for Reservoirs, Amended February 2016, Denver, Colorado: Colorado Division of Water Resources. October 31, 2011.
- CDWR, 2017. Colorado Division of Water Resources, Department of Natural Resources - Data Search. [Online] Available at: <u>http://water.state.co.us/DataMaps/DataSearch/Pages/DataSearch.aspx</u> [Accessed 10 May 2017].
- CDWR, 2017. GIS Data Library Division 1-South Platte. [Online] Available at: <u>http://cdss.state.co.us/GIS/Pages/Division1SouthPlatte.aspx</u>
- Elmund, K. S. S. a. B. H., 2014. 2013 City of Fort Collins Lower Cache la Poudre River & Urban Creek Water Quality Report, Fort Collins, Colorado: City of Fort Collins Utilities. July 30, 2014.
- Hagardorn, J. K. W. a. B. L., 2001. *The Permian-Triassic transtion in Colorado.*. Field Guide 44 ed. Denver Colorado: Geological Society of America.
- Harbaugh, A. L. C. H. J. N. R. a. K. L. F., 2017. MODFLOW-2005 version 1.12.00, the U.S. Geological Survey modular groundwater model: U.S. Geological Survey Software Release. [Online] Available at: <u>http://dx.doi.org/10.5066/F7RF5S7G</u> [Accessed 03 02 2017].
- Herr, R. T. a. P. A. S. J., 1977. Ground-Water Resources of the Alluvial Aquifers in Northeastern Larimer County, Colorado, Lakewood, Colorado: Water-Resources Investigations 77-7. January 1977.
- Pierce, A. L., 2014. *Thesis: Prediction of Selenium in Spring Creek and Fossil Creek, Colorado*, Fort Collins, Colorado: Colorado State University. Fall 2014.
- Stegner, R., 2016. *Personal Conversation Between Ray Stegner and Dale Leach* [Interview] (August 2016).
- Topper, E. A., 2003. *Ground Water Atlas of Colorado*, Denver Colorado: Colorado Geological Survey. 2003.

Winston, R. B., 2009. *ModelMuse : a Graphical User Interface for MODFLOW-2005 and PHAST*, Reston, Virginia: U.S. Geological Survey.

WRCC,	2017.	Western	Regional	Climate	Center.	[Online]
Available			at:		https://w	/rcc.dri.edu/
[Ac	ccessed 05 J	uly 2017].				
FIRST SUBMITTAL

Figures

PROJECT:	TASK:	PREPARED FOR:	
360100	08	11	LOVELAND.
PREPARED BY:		11	READY MIX
TELEST			CONCRETE

FIGURE 1 PROJECT LOCATION AND AREA FEATURES

 PROJECT:
 TASK:

 360100
 08

 PREPARED BY:
 OVELAND

 TELESTO

 SOLUTION READY HIX

FIGURE 2 DITCHES, DRAINS AND PERMITTED GRAVEL OPERATIONS

 PROJECT:
 TASK:

 360100
 08

 PREPARED BY:
 PREPARED FOR:

 TELESTO

 CONCRETE

FIGURE 3 SUMMER 2017 GROUNDWATER ELEVATIONS

Place path and filename here

TELEST

TOP OF PIERRE SHALE

FIGURE 6 ALLUVIAL AQUIFER THICKNESS

PROJECT:	task:	TASK: PREPARED FOR:	
360100	08	08	
PREPARED BY:			READY-NIX CONCRETE

FIGURE 7 GENERAL GROUNDWATER ELEVATIONS AND FLOW DIRECTIONS

x17

 PROJECT:
 TASK:

 360100
 08

 PREPARED BY:
 CONCRETE

 TELESTO

 SOLUTION NUMBER OF CONCRETE

PROJECT:	TASK:	PREPARED FOR:
360100	08	LOVELAND
PREPARED BY:		READY-MIX
TELEST		CONCRETE
SOLUTIONSALNCORPERS	TED	

FIGURE 9 MODEL DOMAIN IN COLORADO STATE PLANE COORDINATES (FEET)

PROJECT: 360100	task: 08	P	REPARED FOR:	LOVELAND
TELEST				READY-MIX Concrete

FIGURE 10 NUMERICAL MODEL BOUNDARIES

Place path and filename here

TELESTO

SIMULATED 2017 GROUNDWATER CONTOURS

FIGURE 13 MINING PLAN PHASES 1 AND 2

EE)

R

PHASE 5

11

72

FIGURE 14 MINING PLAN PHASES 3 AND 4

 PROJECT:
 TASK:

 360100
 08

 PREPARED BY:
 DELESTO

 TELESTO
 CONCRETE

MINING PHASE 5 AND PERIMETER DRAIN CROSS SECTION

Б

PROJECT: 360100	TASK: 08	PREPARED	FOR:
PREPARED BY:			READY MIX CONCRETE

PHASE 1

Б

TELEST

PREDICTED DRAWDOWN AT THE END OF PHASE 2

Б

PROJECT:	TASK:	PREPARED FOR:	AN I
360100	08		LOVELAND
PREPARED BY:		11	READY-MIX
TELEST			CONCRETE

PREDICTED DRAWDOWN AT THE END OF PHASE 3

BM

BM 503

50

PREDICTED DRAWDOWN (1 FT INTERVAL, NEGATIVE VALUE INDICATES MOUNDING)

SECOND SUBMITTAL

Appendix A Neighborhood Well Questionnaire and Notes

14 April 2017

Subject: Do You Have a Water Well?

To Whom it May Concern:

As you may know, Loveland Ready-Mix Concrete (LRM) is in the process of applying for a special use permit through Larimer County to open and operate an aggregate mine and ancillary concrete batch plant near LaPorte, Colorado. As part of the permitting process, a thorough understanding of the groundwater system is necessary to mitigate any potential impact to nearby well users.

Telesto Solutions, Inc. (Telesto), on behalf of LRM, will be performing a groundwater analysis to support the permitting process and help minimize any impacts to wells neighboring the proposed aggregate mine site. A key component of the analysis is knowing where wells are located and understanding the depth to the water in those wells. Because the State of Colorado's well permit information is not highly accurate, we are asking for your help in performing this study by filling out the attached questionnaire and mailing it back to us in the stamped envelope provided by the end of April 2017.

Additionally and with your permission, we would like to measure the depth to water in your well. The measurement results will be provided to you and used in the groundwater analysis. If you agree, we will contact you and make an appointment to take this measurement.

If you have any questions or would like more information, please call Parker Coit at (970) 484-7704 (Telesto) or Mrs. Stephanie Fancher-English (LRM) at (970) 667-2680.

Thank you in advance for your consideration

Sincerely, *Telesto Solutions, Inc.*

Parker Coit Geologist

PJC:wln Enclosure cc: File

Grand Junction 751 Horizon Court. Suite 109 Grand Junction, Colorado 81506 970-697-1550 New Mexico Office 1303 Pope Street Silver City. New Mexico 88061 575-538-5620 / 575-538-5625 (FAX) 2.

LOVELAND READY-MIX CONCRETE and TELESTO SOLUTIONS

QUESTIONNAIRE FOR WELL WATER

1. Please confirm the following information so that we can contact you:

Name VICTORIA MAGISANO
Mailing Address Po Box 276
Street Address 2816 Three DR
City, State, Zip Code Laporte Co 80535
Best Phone Number to Contact You (170) 484-3409
Please provide the physical location of your well near LaPorte:
Street or Rural Address No Well AT MY Appress, That I know of

- 3. Is your well (please circle only one):
 - a. Active (currently in use?)
 - b. Inactive (not currently in use, but could be easily used)?
 - c. Abandoned (damaged or otherwise unusable)?
- 4. Would you allow someone to measure depth to water in your well? (Circle yes or no).

a. Yes b. No

NA

5. Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

The 7.10 CARCADO Property VAIN

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

2.

3.

LOVELAND READY-MIX CONCRETE and TELESTO SOLUTIONS

QUESTIONNAIRE FOR WELL WATER

1. Please confirm the following information so that we can contact you:

Name MALCOLM BOYD
Mailing Address P.O. BOX 81
Street Address 3040 CORTS
City, State, Zip Code LANDRTE, CO 80535
Best Phone Number to Contact You (970) 212 1463
Please provide the physical location of your well near LaPorte: Street or Rural Address <u>MO WELL ON MY PROPERTY</u>
Is your well (please circle only one):

- a. Active (currently in use?)
- b. Inactive (not currently in use, but could be easily used)?
- c. Abandoned (damaged or otherwise unusable)?
- 4. Would you allow someone to measure depth to water in your well? (Circle yes or no).
 - a. Yes b. No
- 5. Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

QUESTIONNAIRE FOR WELL WATER

1. Please confirm the following information so that we can contact you:

Name TAMES BROOKMAN Mailing Address PO. BOX 44 LAPORTE 8053: Street Address 2721 Shady GRove LANE 80524 City, State, Zip Code coll Best Phone Number to Contact You (910) 214-8709 2. Please provide the physical location of your well near LaPorte: 2721 Shady store - Testwell N Street or Rural Address Is your well (please circle only one): 3. MARKER Active (currently in use?) - +037 well a. / Б. Inactive (not currently in use, but could be easily used)? Abandoned (damaged or otherwise unusable)? c. 4. Would you allow someone to measure depth to water in your well? (Circle yes or no).

b. No a.

5. Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

ell dvilled by mother developer MARIETTA HAS THE KET- LOCK IS LOOSE PRESEN

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

QUESTIONNAIRE FOR WELL WATER

1. Please confirm the following information so that we can contact you:

Mail	ng Address 220 n. Shelds St, Fort Collins, (08002
Stree	Address
City.	State, Zip Code
Best	Phone Number to Contact You ()
Best Pleas Stree	Phone Number to Contact You () e provide the physical location of your well near LaPorte: t or Rural Address
Best Pleas Stree Is yo	Phone Number to Contact You () e provide the physical location of your well near LaPorte: t or Rural Address ur well (please circle only one):
Best Pleas Stree Is yc	Phone Number to Contact You () e provide the physical location of your well near LaPorte: t or Rural Address ur well (please circle only one): Active (currently in use?)
Best Pleas Stree Is yc a. b.	Phone Number to Contact You (

(Circle yes or no).

2.

3.

4.

- a. Yes b. No
- 5. Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

2.

3.

LOVELAND READY-MIX CONCRETE and TELESTO SOLUTIONS

QUESTIONNAIRE FOR WELL WATER

1. Please confirm the following information so that we can contact you:

Name BARNY BAKEN
Mailing Address 720 Peterson St
Street Address 2320 Cuty Red 546
City, State, Zip Code Fout Collins, CO 80524
Best Phone Number to Contact You (970) 217-306 f
Please provide the physical location of your well near LaPorte: Street or Rural Address 2320 Curty Rel 546, Foat Collins, CO 60521
Is your well (please circle only one):
a. Active (currently in use?)
b. Inactive (not currently in use, but could be easily used)?
(c.) Abandoned (damaged or otherwise unusable)?

4. Would you allow someone to measure depth to water in your well? (Circle yes or no).

a. Yes b. No N/A

5. Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

Not sund a well was even Inilled

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

2.

3.

LOVELAND READY-MIX CONCRETE and TELESTO SOLUTIONS

QUESTIONNAIRE FOR WELL WATER

1. Please confirm the following information so that we can contact you:

Name <u>Lak</u>	we Frederick
Mailing Address	P.O. Bry 1376 Daporte
Street Address _ 32	252 Summie Kluve
City, State, Zip Code	80535
Best Phone Number to	Contact You (<u>970) 484 - 9</u> 360
Please provide the phys Street or Rural Address	sical location of your well near LaPorte:
Is your well (please cire	cle only one):

- a. Active (currently in use?)
- b. Inactive (not currently in use, but could be easily used)?
- (c.) Abandoned (damaged or otherwise unusable)?
- 4. Would you allow someone to measure depth to water in your well? (Circle yes or no).

b. No a. Yes

5. Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

QUESTIONNAIRE FOR WELL WATER

1. Please confirm the following information so that we can contact you:

	Name Mark A/ Karens, Morgan
	Mailing Address 2532 County Kal. 546
	Street AddressSame
	City, State, Zip Code Fort Collins, Co 80524
	Best Phone Number to Contact You (970) H8H - 40165
2.	Please provide the physical location of your well near LaPorte: Street or Rural Address <u>3 wells: I near office, Inear Sawmill</u> +
3.	Is your well (please circle only one): a. Active (currently in use?) b. Inactive (not currently in use, but could be easily used)? c. Abandoned (damaged or otherwise unusable)?
4.	Would you allow someone to measure depth to water in your well? (Circle yes or no).
	a. Yes b. No
5.	Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

QUESTIONNAIRE FOR WELL WATER

1. Please confirm the following information so that we can contact you:

	Name Don Brown
	Mailing Address 2400 Winty Rd 546
	Street Address
	City, State, Zip Code Fort Collins, CO. 8531
	Best Phone Number to Contact You EAD 484. 4184
2.	Please provide the physical location of your well near LaPorte: Street or Rural Address 240010, CISTRY Rd 54G
3.	Is your well (please circle only one):

- Active (currently in use?) a.
 - Inactive (not currently in use, but could be easily used)? b.
 - Abandoned (damaged or otherwise unusable)? c.
- Would you allow someone to measure depth to water in your well? 4. (Circle yes or no).

b. No Yes a.

5. Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

QUESTIONNAIRE FOR WELL WATER

1. Please confirm the following information so that we can contact you:

	Name Steve Benoit and Paula Brobst
	Mailing Address PO BOX 509 LAPORTE, CO 80535
	Street Address 3010 N. Overland Trail, La Porte CO 80535
	City, State, Zip Code <u>See above</u>
	Best Phone Number to Contact You (970) 231-0657 Paula's cell
2.	Please provide the physical location of your well near LaPorte: Street or Rural Address (between overland trail & Coalis Drive) About 1/2 way back on the property by the fence on
3.	Is your well (please circle only one): a. Active (currently in use?) Inactive (not currently in use, but could be easily used)? c. Abandoned (damaged or otherwise unusable)?

4. Would you allow someone to measure depth to water in your well? (Circle yes or no).

Yes b.No a.

5. Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

We would use if to irrigate our back yard. We have the pump, but if is not installed. We have rights to the ditch water the pumpies well is one The water table is at about 5' on our property - as we built a workshop and hit water 5' down. You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

2.

3.

LOVELAND READY-MIX CONCRETE and TELESTO SOLUTIONS

QUESTIONNAIRE FOR WELL WATER

1. Please confirm the following information so that we can contact you:

Mailii	ng Address PO BOX VZZLe
Street	Address 2812 GARDNER PL
City,	State, Zip Code LAPORTE CO 50535-1226
Best F	hone Number to Contact You (970) 227 3220
Please Street	provide the physical location of your well near LaPorte: or Rural Address

- c. Abandoned (damaged or otherwise unusable)?
- 4. Would you allow someone to measure depth to water in your well? (Circle yes or no).

a. Yes b. No

5. Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

2.

3.

4.

LOVELAND READY-MIX CONCRETE and TELESTO SOLUTIONS

QUESTIONNAIRE FOR WELL WATER

1. Please confirm the following information so that we can contact you:

Name
Mailing Address
Street Address
City, State, Zip Code
<u>م 3 صدح - 83 (970)</u> Best Phone Number to Contact You
Please provide the physical location of your well near LaPorte: Street or Rural Address <u>there is no well on the LaPorte property</u>
Is your well (please circle only one):
a. Active (currently in use?)
b. Inactive (not currently in use, but could be easily used)?
(c.) Abandoned (damaged or otherwise unusable)?
Would you allow someone to measure depth to water in your well? (Circle yes or no). I doubt that is possible
a. Yes b. No

5. Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

the well on above address property at rot flow of water in it. being a good

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

QUESTIONNAIRE FOR WELL WATER

1. Please confirm the following information so that we can contact you:

Name RALPH EUGENE WATT
Mailing Address Po Box 723
Street Address 2626 NOVERLAND TRALL
City, State, Zip Code LABORTE, CO 80535
Best Phone Number to Contact You (970) 218-2040
Please provide the physical location of your well near LaPorte:
Street or Rural Address 2626 NOVERLAND TRIALL LABORTE

3. Is your well (please circle only one):

a. Active (currently in use?)

b. Inactive (not currently in use, but could be easily used)?

c. Abandoned (damaged or otherwise unusable)?

4. Would you allow someone to measure depth to water in your well? (Circle yes or no).

Yes b. No a.

2.

5. Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

AN UNREGISTERED LIVESTOCK LUELL USED FAILO WELL BITCHUP IF CITY WATER SYSTEMS SINCE 1920 (ESTIMATED) EEN IN PLACE

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com
LOVELAND READY-MIX CONCRETE and TELESTO SOLUTIONS

QUESTIONNAIRE FOR WELL WATER

1. Please confirm the following information so that we can contact you:

Name TOM	& SUSAN BARBOUR
Mailing Address	1000 LOAGEPOLE PL
Street Address	
City, State, Zip Cod	BellVUE, CO BOSIZ
Best Phone Number	to Contact You (970) 224-4828
Please provide the p Street or Rural Add 2500 V	Thysical location of your well near LaPorte: COFA 54G

- 3. Is your well (please circle only one):
 - a. Active (currently in use?)
 - b. Inactive (not currently in use, but could be easily used)?
 - c. Abandoned (damaged or otherwise unusable)?
- 4. Would you allow someone to measure depth to water in your well? (Circle yes or no).

5. Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

Currently used to irrigate lawns

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

QUESTIONNAIRE FOR WELL WATER

1. Please confirm the following information so that we can contact you:

Name Duncan Jahn
Mailing Address 2722 Farview Dr.
Street Address Same
City, State, Zip Code Fort Collins, CO 80524
Best Phone Number to Contact You 979-218-1320
Please provide the physical location of your well near LaPorte:
Street or Rural Address

3. Is your well (please circle only one):

a. 16. C.

2.

- Active (currently in use?)
- Inactive (not currently in use, but could be easily used)?
- Abandoned (damaged or otherwise unusable)?
- 4. Would you allow someone to measure depth to water in your well? (Circle yes or no).

b. No a. Yes

5. Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

ignation well with no pump cur belowgrade. Pump for i-Summel

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

3.

LOVELAND READY-MIX CONCRETE and TELESTO SOLUTIONS

QUESTIONNAIRE FOR WELL WATER

1. Please confirm the following information so that we can contact you:

Name _ Erin Crowgey
Mailing Address PO Box 785
Street Address 3300 Thorp Dr.
City, State, Zip Code Laporte, CO 80535
Best Phone Number to Contact You (<u>434)</u> 284 - 1479
Please provide the physical location of your well near LaPorte: Street or Rural Address We your have a well on any property - we are not sive
whether the structure is a well or just a pump
a Active (currently in use?)
b. Inactive (not currently in use, but could be easily used)?
c. Abandoned (damaged or otherwise unusable)?
d. Unsure.

- 4. Would you allow someone to measure depth to water in your well? (Circle yes or no).
 - a. Yes b. No
- 5. Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

renuously Pr NIL pratic HNP. application ever Step 6

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

QUESTIONNAIRE FOR WELL WATER

1. Please confirm the following information so that we can contact you:

	Name Ruth Wallick
	Mailing Address PO Box 380, La Porte CO 80535
	Street Address 3000 No Overland Trail & 2912 No Overland Tr
	City, State, Zip Code La Porte, CO 80535
	Best Phone Number to Contact You (970) 482-7655
2.	Please provide the physical location of your well near LaPorte: Street or Rural Address 3000 N, Overland Tr. & 2912 No Overland. One well at
3.	Is your well (please circle only one): (a.) Active (currently in use?) b. Inactive (not currently in use, but could be easily used)? c. Abandoned (damaged or otherwise unusable)?
4.	Would you allow someone to measure depth to water in your well? (Circle yes or no).
	(a.) Yes b. No

5. Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

Used bor watering in spring, somme a early ball, Not dry in winter but not used when below & reezing

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

3.

LOVELAND READY-MIX CONCRETE and TELESTO SOLUTIONS

QUESTIONNAIRE FOR WELL WATER

1. Please confirm the following information so that we can contact you:

Name TERRY	WATERS
Mailing Address	PO BOX 291
Street Address	3200 THARP DRIVE
City, State, Zip Code_	LAPORTE CO 80535
Best Phone Number to	Contact You (970) 482-4462-
Please provide the phy Street or Rural Addres 3200 THARP	sical location of your well near LaPorte: s DRIVE - NORTH STDE OF PROPERTY
Is your well (please cir a. Active (current b. Inactive (not cr c. Abandoned (da	rcle only one): tly in use?) urrently in use, but could be easily used)? umaged or otherwise unusable)?

4. Would you allow someone to measure depth to water in your well? (Circle yes or no).

Yes b. No a.

5. Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

QUESTIONNAIRE FOR WELL WATER

1. Please confirm the following information so that we can contact you:

	Name HERB Still
	Mailing Address 2801 Co. RQ. 546
	Street Address Name
	City, State, Zip Code Ft - Coilws, Co 80524
	Best Phone Number to Contact You (970) 217 8771
2.	Please provide the physical location of your well near LaPorte: Street or Rural Address 2301 Ca. Rel. 54 G
3.	Is your well (please circle only one): a. Active (currently in use?) b. Inactive (not currently in use, but could be easily used)? c. Abandoned (damaged or otherwise unusable)?
4.	Would you allow someone to measure depth to water in your well? (Circle yes or no).
	a. (Yes b. No

5. Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

QUESTIONNAIRE FOR WELL WATER

1. Please confirm the following information so that we can contact you:

	Name RITA Hildred
	Mailing Address PO 86 LAPORTE CO# 80535#
	Street Address 2403 Brookh, 11 rd
	City, State, Zip Code LA Porte, CD 80524
	Best Phone Number to Contact You (970) 214 6174 (Don Hilded Contact Person)
2.	Please provide the physical location of your well near LaPorte: Street or Rural Address 2403 Brookhill Ropd
3.	Is your well (please circle only one): a. Active (currently in use?) b. Inactive (not currently in use, but could be easily used)? c. Abandoned (damaged or otherwise unusable)?
4.	Would you allow someone to measure depth to water in your well? (Circle yes or no). a. Yes b. No
5.	Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

This is not old well That want out of use When west Fort Collins wAter CiAme to the arcAc

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

3.

4.

LOVELAND READY-MIX CONCRETE and TELESTO SOLUTIONS

QUESTIONNAIRE FOR WELL WATER

1. Please confirm the following information so that we can contact you:

Name Donald J. Chaver
Mailing Address 2919 Farview Dr. Fort Collins, CO 80524
Street Address 2919 For view Dr.
City, State, Zip Code Fort Colling CO 80524
Best Phone Number to Contact You (970) 388-2924
Please provide the physical location of your well near LaPorte: Street or Rural Address 2919 Farview Dr., Fort Collins, CO 80524
 Is your well (please circle only one): a. Active (currently in use?) b. Inactive (not currently in use, but could be easily used)? c. Abandoned (damaged or otherwise unusable)?
Would you allow someone to measure depth to water in your well? (Circle yes or no).
a. Yes b. No

5. Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

We use the well for irrigation. It does not dry up, Not she sure of the pumping rate

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

LOVELAND READY-MIX CONCRETE and TELESTO SOLUTIONS

QUESTIONNAIRE FOR WELL WATER

1. Please confirm the following information so that we can contact you:

Name Joe	e Sincavage
Mailing Address	2813 Farview Dr.
Street Address	Jane
City, State, Zip Coc	e Fort Callins CO 80524
Best Phone Numbe	r to Contact You (9%) 631-2224
Please provide the p Street or Rural Add	ohysical location of your well near LaPorte: ress

- 3. Is your well (please circle only one):
 - Active (currently in use?)
 - b. Inactive (not currently in use, but could be easily used)?
 - c. Abandoned (damaged or otherwise unusable)?
- 4. Would you allow someone to measure depth to water in your well? (Circle yes or no).

a. Yes b. No

5. Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

nue inte hard 10 wave 41. 177

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

LOVELAND READY-MIX CONCRETE and TELESTO SOLUTIONS

QUESTIONNAIRE FOR WELL WATER

1. Please confirm the following information so that we can contact you:

Name Martha Aney	
Mailing Address 2903 Forview Dr.	
Street Address 2903 Farview Dr	
City, State, Zip Code Fort Colling (10 80524	
Best Phone Number to Contact You (<u>970) 224-2950</u>	
Please provide the physical location of your well near LaPorte: Street or Rural Address	
2903 Farview Dr.	

- 3. Is your well (please circle only one):
 - (a) Active (currently in use?) Year around water for land + Animals
 - b. Inactive (not currently in use, but could be easily used)?
 - c. Abandoned (damaged or otherwise unusable)?
- 4. Would you allow someone to measure depth to water in your well? (Circle yes or no).

a. Yes b. No - we need true flow rute nieasured.

5. Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

I do not know flow rates, shough we can new two hoses for several hours to water the overden, moset porses! Why we we only given a little over week to respond? I also set a letter to Wayne Hatchens it and weddress, I and not sure who he is, He will need to be able to reegond, also most of this neighborhood You may return this form in the enclosed stamped envelope or email it to: Two a well, Not all were at the meeting, you need to go to every liance pcoit@telesto-inc.com

QUESTIONNAIRE FOR WELL WATER

1.	Please confirm the following information so that we can contact you:
	Name Nicolas Koontz
	Mailing Address 2930 Forview Dr
	Street Address Serie
	City, State, Zip Code Pf. Collins, CO 80524
	Best Phone Number to Contact You (970) 217-8964
2.	Please provide the physical location of your well near LaPorte: Street or Rural Address 2930 Forwew Dr 2100 CR54a
3.	Is your well (please circle only one): a. Active (currently in use?) b. Inactive (not currently in use, but could be easily used)? c. Abandoned (damaged or otherwise unusable)?
4.	Would you allow someone to measure depth to water in your well?

Yes b. No a.

(Circle yes or no).

5. Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

8-105 deep Irrigation UX ne drups

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

QUESTIONNAIRE FOR WELL WATER

1. Please confirm the following information so that we can contact you:

	Name Jack & and Ladelle & West
	Mailing Address 2812 County Rol 54G
	Street Address Same
	City, State, Zip Code Fort Collins CD 80524
	Best Phone Number to Contact You (970) 219 - 158 /
2.	Please provide the physical location of your well near LaPorte: Street or Rural Address 2812 County Rd 54G
3.	Is your well (please circle only one): a. Active (currently in use?) b. Inactive (not currently in use, but could be easily used)? c. Abandoned (damaged or otherwise unusable)?
4.	Would you allow someone to measure depth to water in your well? (Circle yes or no).
(a. Yes b. No
5.	Any additional information that you can provide concerning your well (e.g.

5. Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

It is used ?	for yard and	gardening, I	t has
nevel run di	ig We pull the	Pump & diain	it during
the will run	10this/das wit	thout running dr	gorden
			1

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

54

LOVELAND READY-MIX CONCRETE and TELESTO SOLUTIONS

QUESTIONNAIRE FOR WELL WATER

1. Please confirm the following information so that we can contact you:

	Name CHARLES CHERRY
	Mailing Address 2816 COUNTY RD. 54-0
	Street Address SAME
	City, State, Zip Code FORT COLLINS CO 80524
	Best Phone Number to Contact You (970) 443-8798
2.	Please provide the physical location of your well near LaPorte: Street or Rural Address <u>SUFEET NORTH OF N.W. CORNER OF CARPORE</u> FEETEROM
3.	Is your well (please circle only one): (a.) Active (currently in use?) b. Inactive (not currently in use, but could be easily used)? c. Abandoned (damaged or otherwise unusable)? $\omega ESI - N. South (PRD/PE19)$
4.	Would you allow someone to measure depth to water in your well? (Circle yes or no).
	a. Yes b. No
5.	Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help: $FROH$
AF	TER RIVER COMES UP ALITTLE SPRING TIME PLASTIC. TER RIVER COMES UP ALITTLE SPRING TIME PIPE ED FOR LAWN & GARDEN

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

LOVELAND READY-MIX CONCRETE and TELESTO SOLUTIONS

QUESTIONNAIRE FOR WELL WATER

1. Please confirm the following information so that we can contact you:

Mailing Address	P.O. Box 206 laporte (0 80525
Street Address	230/ FDDV / and
street Address	HILL OWAL
City, State, Zip Code	Port Ullings, Lo 80529
Best Phone Number	to Contact You (970) 227-3322

- 3. Is your well (please circle only one):
 - a. Active (currently in use?)
 - b. Inactive (not currently in use, but could be easily used)?
 - c. Abandoned (damaged or otherwise unusable)?
- 4. Would you allow someone to measure depth to water in your well? (Circle yes or no).

b. No Yes a.

5. Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

m UNPVI 1110 MA or emai ned envelope My N is what pcoit@telesto-inc.com Nailon Lunaul 20170414 GroundwaterWellSurvey Existing Monttoring we

LOVELAND READY-MIX CONCRETE and TELESTO SOLUTIONS

QUESTIONNAIRE FOR WELL WATER

1. Please confirm the following information so that we can contact you:

Name James Maxwell
Mailing Address P. U. Box 52
Street Address 2816 Gardwer P1
City, State, Zip Code Le Porte, CO. 80535
Best Phone Number to Contact You (970) 217-3170
Please provide the physical location of your well near LaPorte: Street or Rural Address 28/16 Gardner P/

- 3. Is your well (please circle only one):
 - a. Active (currently in use?)
 - b. Inactive (not currently in use, but could be easily used)?
 - c. Abandoned (damaged or otherwise unusable)?
- 4. Would you allow someone to measure depth to water in your well? (Circle yes or no).

Yes) b. No a.

5. Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

I use the well to Water my property (Grass, Flowers, Plants I only Pump Water from it in the Summer

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

To:	Who	m It	May	Concern
Dat	e: 14	Apr	il 201	7
Pag	e 2			

Page 2	Sandra Gomez.
LOVELAND READY-MIX CONCRETE and T	(970) E. 493-9362
QUESTIONNAIRE FOR WELL WATER	(029
1. Please confirm the following information so that we	e ci
Name Kitty / Cunt Tay 1 Cunt	
Mailing Address <u>M/A</u>	
Street Address N/A	
City, State, Zip Code//4	
Best Phone Number to Contact You $(N)/A$	
2. Please provide the physical location of your well ne Street or Rural Address	ear LaPorte:

- 3. Is your well (please circle only one):
 - a. Active (currently in use?)
 - b. Inactive (not currently in use, but could be easily used)?
 - c. Abandoned (damaged or otherwise unusable)?
- 4. Would you allow someone to measure depth to water in your well? (Circle yes or no).
 - a. Yes b. No
- 5. Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

Iwunde Yau ms 14/04 ho 101 ne

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

20170414_GroundwaterWellSurvey

3205 Wilson Court

QUESTIONNAIRE FOR WELL WATER

1. Please confirm the following information so that we can contact you:

	Name Cole Thompson
	Mailing Address 4780 TOTONKA TRL
	Street Address
	City, State, Zip Code (APORTP, CO 80535
	Best Phone Number to Contact You (910) 218-9649
2.	Please provide the physical location of your well near LaPorte: Street or Rural Address
3.	 Is your well (please circle only one): Active (currently in use?) Inactive (not currently in use, but could be easily used)? Abandoned (damaged or otherwise unusable)?
1.	Would you allow someone to measure depth to water in your well? (Circle yes or no).
	(a. Yes b. No
5.	Any additional information that you can provide concerning your well (e.g.

5. Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

2001 330 ft Ude - static under level 70' - 13.5 and/min

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

QUESTIONNAIRE FOR WELL WATER

1. Please confirm the following information so that we can contact you:

	Name Robert & Rosemary Dickson
	Mailing Address 2726 19 42 View
	Street Address
	City, State, Zip Code 1= ort Collins CO. 80524
	Best Phone Number to Contact You (970) 551 0475
2.	Please provide the physical location of your well near LaPorte: Street or Rural Address 2726 Farview Fort Collins
3.	 Is your well (please circle only one): Active (currently in use?) Inactive (not currently in use, but could be easily used)? Abandoned (damaged or otherwise unusable)?
4.	Would you allow someone to measure depth to water in your well? (Circle yes or no).

(a.) (Yes b. No

5. Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

Use for grass & theeg on property

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

LOVELAND READY-MIX CONCRETE and TELESTO SOLUTIONS

QUESTIONNAIRE FOR WELL WATER

1.	Please confirm the following information so that we can contact you:
	Name KINTZLEY, RAYMOND (Kelly
	Mailing Address 2601 WCR546
	Street Address
	City, State, Zip Code FT. COLLINS, CO 80524
	Best Phone Number to Contact You (303 250 4720
2.	Please provide the physical location of your well near LaPorte: Street or Rural Address $3AME AS ABOVE$
3.	Is your well (please circle only one): a. Active (currently in use?) b. Inactive (not currently in use, but could be easily used)? c. Abandoned (damaged or otherwise unusable)?
4.	Would you allow someone to measure depth to water in your well?

a. (Yes) b. No

(Circle yes or no).

5. Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

01101 60.05 NG/SUMMER

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

3.

4.

5.

LOVELAND READY-MIX CONCRETE and TELESTO SOLUTIONS

QUESTIONNAIRE FOR WELL WATER

1. Please confirm the following information so that we can contact you:

	Steeper Dairy Farm
Mailing Address	1817 U.S. Hwy 287 N.
	Fort Collins, CO 80524
Street Address	
City, State, Zip Code	
Best Phone Number to Co	ontact You (970) 453-5180
Please provide the physica	al location of your well near LaPorte:
Street or Rural Address	No wells
0	
Is your well (please circle	only one):
a. Active (currently i	in use?)
b. Inactive (not curre	ently in use, but could be easily used)?
c. Abandoned (dama	aged or otherwise unusable)?
Would you allow someon	e to measure depth to water in your well?
(Circle yes or no).	1
a. Yes b. No 🖡	J.T.
Any additional informat pumping rate, does it go o	tion that you can provide concerning your well (e.g. dry during the winter, how do you use it) would help:

Dans MADE	Location
	- un and
Miss Marked	on county MPS'

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

3.

LOVELAND READY-MIX CONCRETE and TELESTO SOLUTIONS

QUESTIONNAIRE FOR WELL WATER

1. Please confirm the following information so that we can contact you:

Name API'N JEANNETTE
Mailing Address Boy 266
Street Address <u>LAPORTE</u>
City, State, Zip Code Co 80535
Best Phone Number to Contact You $(926) 493-0139$
Please provide the physical location of your well near LaPorte: Street or Rural Address
Is your well (please circle only one): a. Active (currently in use?) (b. Inactive (not currently in use, but could be easily used)? c. Abandoned (damaged or otherwise unusable)?

4. Would you allow someone to measure depth to water in your well? (Circle yes or no).

a. Yes b. No

5. Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

QUESTIONNAIRE FOR WELL WATER

1. Please confirm the following information so that we can contact you:

	Name Brobert D. Boner
	Mailing Address 3/21 Gold Channe Dr.
	Street Address & & a me
	City, State, Zip Code Int Collins Co, 80524
	Best Phone Number to Contact You ()_ho ford
2.	Please provide the physical location of your well near LaPorte: Street or Rural Address 3121 Icld Channel Dr.
3.	Is your well (please circle only one):

- Active (currently in use?)
- a. b. Inactive (not currently in use, but could be easily used)?
- Abandoned (damaged or otherwise unusable)? C.
- 4. Would you allow someone to measure depth to water in your well? (Circle yes or no).

b. No a.

5. Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

water cate 6 Pogs & Horses & lawn & garden

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

LOVELAND READY-MIX CONCRETE and TELESTO SOLUTIONS

QUESTIONNAIRE FOR WELL WATER

1. Please confirm the following information so that we can contact you:

Name REGINA BACHMANN
Mailing Address 2820 THARP OR.
Street Address SAME AS ADOUS
City, State, Zip Code LA PORTE, CO. 80535
Best Phone Number to Contact You (970) 493 1513
Please provide the physical location of your well near LaPorte:

Street or Rural Address		
BACK YARD	DE	NESEDENCS

- 3. Is your well (please circle only one):
 - a. Active (currently in use?)
 - (b) Inactive (not currently in use, but could be easily used)?
 - c. Abandoned (damaged or otherwise unusable)?
- 4. Would you allow someone to measure depth to water in your well? (Circle yes or no).

b. No a. Yes

5. Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

HAS	1007	DEEW	USED	FOR	VERY	LONG	TIME.
					/		

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

QUESTIONNAIRE FOR WELL WATER

1. Please confirm the following information so that we can contact you:

Name Robin Rippe
Mailing Address 3613 gold Charm Dr
Street Address Sume
City, State, Zip Code Ft. Collins Co 80524
Best Phone Number to Contact You (970) 484-6413
Please provide the physical location of your well near LaPorte:

- 2. Please provide the physical location of your well near LaPorte: Street or Rural Address
- 3. Is your well (please circle only one):
 - Active (currently in use?)
 - (b.) Inactive (not currently in use, but could be easily used)?
 - Abandoned (damaged or otherwise unusable)?
- 4. Would you allow someone to measure depth to water in your well? (Circle yes or no).

5. Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

10.00 m

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

QUESTIONNAIRE FOR WELL WATER

1. Please confirm the following information so that we can contact you:

	Name Bill Friehauf
	Mailing Address 2504 W. Cty Rd 54G
	Street Address <u>SAMR</u>
	City, State, Zip Code FFT. Collins, Co 80524
	Best Phone Number to Contact You (976) 416 - 7785
2.	Please provide the physical location of your well near LaPorte: Street or Rural Address Thside Garage
3.	Is your well (please circle only one): (a. Active (currently in use?) b. Inactive (not currently in use, but could be easily used)? c. Abandoned (damaged or otherwise unusable)?
4.	Would you allow someone to measure depth to water in your well? (Circle yes or no).
	a. (Yes b. No

5. Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

GPM Spinkler tor SP ten

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

QUESTIONNAIRE FOR WELL WATER

1. Please confirm the following information so that we can contact you:

	Name Linda J. Doran
	Mailing Address 522 11th Street FEGILINS CO 80524
	Street Address 3303 W. County Rd. 52 Laporte
	City, State, Zip Code UPorte CO 80535
	Best Phone Number to Contact You (971) 402-8826 (Mok for mike Doran)
2.	Please provide the physical location of your well near LaPorte:
	Street or Rural Address North Sipe of the house

3. Is your well (please circle only one):

a. Active (currently in use?)

b. Inactive (not currently in use, but could be easily used)?

Abandoned (damaged or otherwise unusable)?

4. Would you allow someone to measure depth to water in your well? (Circle yes or no).

a. Yes b. No

5. Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

residence 10 Scoblems

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

LOVELAND READY-MIX CONCRETE and TELESTO SOLUTIONS

QUESTIONNAIRE FOR WELL WATER

1. Please confirm the following information so that we can contact you:

Name RANDY WOOD
Mailing Address 2412 W COUNTY RD 546
Street Address SAME
City, State, Zip Code FT COLLINS CO 80524
Best Phone Number to Contact You (970) 484-8226
Please provide the physical location of your well near LaPorte: Street or Rural Address

SAME AS ABOVE

3. Is your well (please circle only one):

a. Active (currently in use?)

(T.) Inactive (not currently in use, but could be easily used)?

c. Abandoned (damaged or otherwise unusable)?

- 4. Would you allow someone to measure depth to water in your well? (Circle yes or no).
 - a. Yes **b**. No
- 5. Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

DOES	NOT	60	DRY	IN	WINTE	R			
GETS	Low	IN	AUG	UST	-				
My w	IELL J	5 60	CAT	ED	INSIDE	OF	HOUSE	50	15 1007
PASY	TOM	EAS	URE	DE	PTH				

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

LOVELAND READY-MIX CONCRETE and TELESTO SOLUTIONS

QUESTIONNAIRE FOR WELL WATER

1. Please confirm the following information so that we can contact you:

Name Cecil E Bowden
Mailing Address 709 EAST dale Dr
Street Address
City, State, Zip Code_FTCollins Co E0524
Best Phone Number to Contact You (970) 482 - 860 f
Please provide the physical location of your well near LaPorte: Street or Rural Address <u>675 Cry Rd Cherekee Plack Ares</u>

- 3. Is your well (please circle only one):
 - a. Active (currently in use?)
 - b. Inactive (not currently in use, but could be easily used)?
 - c. Abandoned (damaged or otherwise unusable)?
- 4. Would you allow someone to measure depth to water in your well? (Circle yes or no).

Yes b. No a.

5. Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

LIMITED USE WITH CADIN SITE

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

LOVELAND READY-MIX CONCRETE and TELESTO SOLUTIONS

QUESTIONNAIRE FOR WELL WATER

1. Please confirm the following information so that we can contact you:

Name BARBARA Schuldt	
Mailing Address P.U. Box 528 LAPORTE, COS	2535
Street Address 2819 FARVIEW DR.	
City, State, Zip Code Pt. Collins, CO 80524	
Best Phone Number to Contact You (480) 277-0893	
Please provide the physical location of your well near LaPorte: Street or Rural Address 2819 FARVIEW DR.	
Is your well (please circle only one):	

3.

Active (currently in use?)

- Inactive (not currently in use, but could be easily used)?
- Abandoned (damaged or otherwise unusable)? C.
- Would you allow someone to measure depth to water in your well? 4. (Circle yes or no).

b. No Yes

5. Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

IT is GRANd FAThered AWN & GARden. LOR PPd VOUR GRAVEL DONO WANT NPAK LovelANd OR ANYONE Elses 10 4 9 US AldNe. HAVE SIGNEd Petition to ST OV

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

LOVELAND READY-MIX CONCRETE and TELESTO SOLUTIONS

QUE	STIONNAIRE FOR MELL MATER
1.	Please confirm the fc Freedom can contact you:
	Name
	Mailing Address 2729 County Road 54G Fort Collins CO 80524
	Street Address
	City, State, Zip Code
	Best Phone Number to Contact You (99) 224-2315
2.	Please provide the physical location of your well near LaPorte: Street or Rural Address Wask such flower
3.	Is your well (please circle only one):
	a. Active (currently in use?)
	c. Abandoned (damaged or otherwise unusable)?
4.	Would you allow someone to measure depth to water in your well? (Circle yes or no).
	a. Yes b. No
5.	Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

LOVELAND READY-MIX CONCRETE and TELESTO SOLUTIONS

QUESTIONNAIRE FOR WELL WATER

1.	Please confirm the following information so that we can contact you:			
	Name BOB GRESIEY			
	Mailing Address 5829 RIST CANYON ROAD			
	Street Address 51-2			
	City, State, Zip Code BELLVELE COLUMADO, 80512			
	Best Phone Number to Contact You (170) 402 - 1984			
2.	Please provide the physical location of your well near LaPorte: Street or Rural Address $A B \circ V \Sigma$			
3.	Is your well (please circle only one): a. Active (currently in use?) b. Inactive (not currently in use, but could be easily used)? c. Abandoned (damaged or otherwise unusable)?			
4.	Would you allow someone to measure depth to water in your well? $\rightarrow APP$: 30 $4\pi\pi$ (Circle yes or no).			
	a. Yes b. No APP. 30 YEARS			
5.	Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:			
ا رر ب سر	KNOWN NO NO WASKING			
NOTE: I WANT TO GO ON RECORD, ON RECERPT OF THIS JORN- SHOULD WE LOSE OUR WELL WATER, WE DEMAND WHATEVER You may return this form in the enclosed stamped envelope or email it to: COMPANY(S) (ABOVE) RESPONSIBLE, MUST RE-DRILL IT. proit@telesto-inc.com				

Page 2 LOVELAND READY-MIX CONCRETE and TELESTO SOLUTIONS **QUESTIONNAIRE FOR WELL WATER** 1. Please confirm the following information so that we can contact you. Name Donald J. Chaver Mailing Address 2419 Farview Dr. Fort Collins, CO 80524 Street Address 2919 Farview Dr City, State, Zip Code For Colling Co 80524 Best Phone Number to Contact You (970) 388-2924 2 Please provide the physical location of your well near LaPorte: Street or Rural Address 2919 Farview Dr., Fort Collins CO 80524 3 Is your well (please circle only one): a Active (currently in use?) Ь. Inactive (not currently in use, but could be easily used)? Abandoned (damaged or otherwise unusable)? C Would you allow someone to measure depth to water in your well? 4. (Circle yes or no). Yes b No 5 Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help. We use the well for irrigation. It does not dry up, Not she sure of the pumping rate You may return this form in the enclosed stamped envelope or email it to: pcoit/a telesto-inc.com 20170414 Groundwater WellSurvey TELESTO

QUESTIONNAIRE FOR WELL WATER

1.	Please confirm the following information so that we can contact you:				
	Name Millet Liz Sutherland				
	Mailing Address 2725 farview Dr				
	Street Address Fort Cottins				
	City, State, Zip Code Fort Collins, Colo 86524				
	Best Phone Number to Contact You <u>(170)</u> <u>(690 - 689</u>)				
2.	Please provide the physical location of your well near LaPorte: Street or Rural Address 2125 fav View DV				
3.	Is your well (please circle only one): a. Active (currently in use?) b. Inactive (not currently in use, but could be easily used)? c. Abandoned (damaged or otherwise unusable)?				
4.	Would you allow someone to measure depth to water in your well? (Circle yes or no). a. Yes b. No				
5.	Any additional information that you can provide concerning your well (e.g. pumping rate, does it go dry during the winter, how do you use it) would help:				

You may return this form in the enclosed stamped envelope or email it to:

pcoit@telesto-inc.com

ID	Owner	Location	Water_Depth (ft)	Stickup (in)	Total_Depth (ft)	Northing	Easting	Elevation (ft)	Water Elevation	Field1
1	M. MORGAN	2532 W County Rd 54G	4.32	0		4497560	489522	5047.9	5043.6	
2	M. MORGAN	2532 W County Rd 54G	5.33	30	-	4497807	489527	5046.6	5043.8	
3	D. Hildred	2403 Brookhill Rd	3.35	0	-	4496687	489433	5038.4	5035.0	
4	R. WALLICK	3000 N Overland Trl	7.62	16.5	-	4497719	488378	5066.9	5060.7	
5	R. WALLICK	2912 N Overland Trl	5.65	0	-	4497626	488472	5064.6	5059.0	
6	T. WATERS	3200 Tharp DR	5.94	13.5	-	4497606	489194	5063.0	5058.2	
7	H. STILL	2801 W County Rd 54G	5.4	0	-	4497174	489193	5049.5	5044.1	
8	J. WEST	2812 W County Rd 54G	5.55	2	-	4497263	489125	5051.8	5046.5	
9	C. CHERRY	2816 W County Rd 54G	4.65	8.25	-	4497277	489086	5052.2	5048.2	
10	J. MAXWELL	2816 Gardner Pl	4.45	0	-	4497503	488485	5062.0	5057.6	
11	D. CHAVEZ	2919 Farview Dr	4.69	1.8	7.1	4497565	490134	5037.4	5032.9	
12	J. SINCAVAGE	2813 Farview Dr	3.33	7	8.45	4497426	490121	5037.1	5034.3	
13	P. BROBST	3010 N OVERLAND TRL	5.55	0	7.75	4497752	488388	5067.3	5061.7	
14	E. STONER	2301 Eddy Ln	4.02	25.2	-	4496806	488733	5049.5	-	
15	E. STONER	2301 Eddy Ln	7.82	17	-	4497277	489086	5047.9	5041.5	
16	E. STONER	2301 Eddy Ln	6.6	21	-	4496766	488948	5044.6	5039.8	
17	E. STONER	2301 Eddy Ln	5.81	24	-	4496704	489037	5044.9	5038.8	
18	M. AMEY	2903 Farview Dr	4.09	9	-	4497523	490140	5037.1	5033.7	
19	M. AMEY	2903 Farview Dr	3.42	3	6.04	4497505	490146	5036.4	5033.2	
20	D.BROWN	2400 W COUNTY ROAD 54G	4.35	10	15.7	4497327	489819	5042.0	5038.5	
21	D.BROWN	2400 W COUNTY ROAD 54G	4.3	0	7.2	4497328	489826	5041.7	5037.4	
22	G. KOMER	2817 W COUNTY ROAD 54G	-	-	-	4496843	489119	5046.6	-	LAKE
23	L. SUTHERLAND	2725 FARVIEW DR	3.9	1	16.1	4497330	490104	5037.1	5033.3	
24	E. WATT	2626 N Overland Trl	4.66	-	-	4497104	488413	5059.7	5055.1	
25	S. GOMEZ	3205 WILSON CT	3.4	-	-	4497626	488536	5064.0	5060.0	

SECOND SUBMITTAL

Appendix B Knox Pit Monitoring Well Logs and Report And Groundwater Sample Data

Loveland Ready Mix	WELL IDENTIFICATION: MW-01
TOTAL DEPTH: 28 GROUND SURFACE ELEVATION: 5052.27	LOCATION: Knox Pit COORDINATE SYSTEM:UTM NAD 83 NORTHING: 4497284.407 EASTING: 48907284.945
WELL CASING ELEVATION: 5055.14	DRILLING CO: Authentic Drilling
CASING: 2" PVC Schedule 40	DRILLING METHOD: Hollow Stem Auger
SCREEN: 0.1 Slot	OVERSIGHT CONTRACTOR: Telesto Solutions Inc.
DEPTH TO WATER (FT): 11.5 TOC	GEOLOGIST: PARKER COIT
	DATE BEGUN: 4/3/2017 DATE COMPLETED: 4/4/2017

DEPTH	WELL INSTALLATION	LITHOLOGY	DESCRIPTION					
	Surface Monument							
0-			Ground Surface					
	PVC Casing		Topsoil: Dark brown fine loam with high organics, very silty towards bottom.					
	31-18-20		Alluvium: 5ft- Cobbles 1-2in, well rounded, arkosic, 50% cobbles, 50% coarse sand.					
			Sand; coarse to very coarse, clear, white and pink grains, very hard					
			Quartz and feldspar sand grains, sub-angular					
10			Well graded, poor sorted alluvium					
- 20 -	20/40 Sand PVC Screen		15ft on large cobbles > 4in Very coarse sand and gravel, poor sorting, little fines					
			Weathered Shale: Shale bedrock, very soft, clayey black to orange					
			Shale: Fissle very dry shale					
	20/40 Sand		Hard shale, dry					
			Very hard black shale, planer, fine laminate					
30								
50	TELESTO							
Loveland Ready Mix	WELL IDENTIFICATION: MW-02							
--	---							
TOTAL DEPTH: 29 GROUND SURFACE ELEVATION: 5055.63	LOCATION: Knox PitCOORDINATE SYSTEM:UTM NAD 83NORTHING: 4497238.85EASTING: 488751.113							
WELL CASING ELEVATION: 5058.63	DRILLING CO: Authentic Drilling							
CASING: 2" PVC Schedule 40	DRILLING METHOD: ODEX							
SCREEN: 0.1 Slot	OVERSIGHT CONTRACTOR: Telesto Solutions Inc./ Terracon							
DEPTH TO WATER (FT): 11.1 TOC	GEOLOGIST: PARKER COIT							
	DATE BEGUN: 4/4/2017 DATE COMPLETED: 4/4/2017							

DEPTH	WELL INSTALLATION	LITHOLOGY	DESCRIPTION
0-	Surface Monument		Counter
		~ ム~ ム~ ム ム ム ム	Ground Surface
	11-18-20		Alluvium: 2ft- Coarse sand to gravel, 1/2 to 1 in gravels, arkosic, 50% sand matrix
-	PVC Casing		4ft- Coarse alluvium, cobbles >1in, fine sand and silt, well graded, sub-rounded
10	Bentonite Seal		9ft- Gravels and coarse sand, moist, > 4in cobbles
-	20-40-30		14ft- Coarse sand, sub-round, arkosic, inteterbed with slight clay (red), quartz rich sand
20 –	35-40-50 20/40 Sand PVC Screen		19ft- Very coarse sand, slight sticky clay, sub-round to sub-angular, interbed gravels
-	30-50/5"		24ft- Coarse gravels and cobbles
	20/40 Sand		Shale: Bedrock, very hard and dry black shale
30 -	50/5"		
50			Page 1 of 1

Loveland Ready Mix	WELL IDENTIFICATION: MW-03
TOTAL DEPTH: 26 GROUND SURFACE ELEVATION: 5059.07	LOCATION: Knox Pit COORDINATE SYSTEM:UTM NAD 83 NORTHING: 4497527.971 EASTING: 488758.694
WELL CASING ELEVATION: 5062.07	DRILLING CO: Authentic Drilling
CASING: 2" PVC Schedule 40	DRILLING METHOD: ODEX
SCREEN: 0.1 Slot	OVERSIGHT CONTRACTOR: Telesto Solutions Inc.
DEPTH TO WATER (FT): 9.5 TOC	GEOLOGIST: PARKER COIT
	DATE BEGUN: 4/4/2017 DATE COMPLETED: 4/4/2017

L

DEPTH	WELL INSTALLATION	LITHOLOGY	DESCRIPTION
0-	Surface Monument	[^]	Ground Surface
	1-2 (12in)		Topsoil: Dark brown silty clay soil, wet, very dense, high organics, sticky
-	PVC Casing Bentonite Seal		Alluvium: 5ft- Wet coarse sands at base of topsoil, grade to cobbles and gravel, subround Sandy, very loose, arkosic
10 —	24-8 (12in)		9ft- Very coarse gravels, cobbles > 1in; slight black clay
	20/40 Sand		Loose cobbles 1/2in to > 4in, very sandy
	PVC Screen		14ft- Coarse gravles, sub-round, ~70% gravel
20 -			20ft- 1/2in to 1 in gravles; 75% gravel, 25% sand
			Weathered Shale: Weathered bedrock, wet, red to black, soft
-	20/40 Sand 50/3"		Snale: Black to grey bedrock snale, very nard, dry an dusty
Т	ELESTO		Page 1 of 1

Loveland Ready Mix	WELL IDENTIFICATION: MW-04
TOTAL DEPTH: 20 GROUND SURFACE ELEVATION: 5055.03	LOCATION: Knox Pit COORDINATE SYSTEM:UTM NAD 83 NORTHING: 4497627.416 EASTING: 489065.838
WELL CASING ELEVATION: 5058.03	DRILLING CO: Authentic Drilling
CASING: 2" PVC Schedule 40	DRILLING METHOD: ODEX
SCREEN: 0.1 Slot	OVERSIGHT CONTRACTOR: Telesto Solutions Inc.
DEPTH TO WATER (FT): 8.6 TOC	GEOLOGIST: PARKER COIT
	DATE BEGUN: 4/4/2017 DATE COMPLETED: 4/4/2017

DEPTH	WELL INSTALLATION	LITHOLOGY	DESCRIPTION
	Surface Monument		
0-			Ground Surface
	1-2 (12in) PVC Casing Bentonite Seal		Topsoil: Dark brown top soil, fine grain loam, organic rich, hard
	20-30 (1211)		Alluvium: 4ft- Coarse gravels, slight sand, gravel (red), sub-rounded
			Granitic cobbles with interbedded coarse feldspar sands.
10 —			9ft- Loose sands and gravels, red, pink, clear and white
	PVC Screen		Large cobbles, rig bouncing
-			14ft- Coarse gravels, sub-rounded
20	20/40 Sand		Shale: Black to grey bedrock shale, very hard, no weathered zone observed
Т	ELESTO	1	Page 1 of 1

Loveland Ready Mix	WELL IDENTIFICATION: MW-05
TOTAL DEPTH: 22 GROUND SURFACE ELEVATION: 5059.76	LOCATION: Knox Pit COORDINATE SYSTEM:UTM NAD 83 NORTHING: 4497715.521 EASTING: 488787.732
WELL CASING ELEVATION: 5062.79	DRILLING CO: Authentic Drilling
CASING: 2" PVC Schedule 40	DRILLING METHOD: ODEX
SCREEN: 0.1 Slot	OVERSIGHT CONTRACTOR: Telesto Solutions Inc.
DEPTH TO WATER (FT): 8.0 TOC	GEOLOGIST: PARKER COIT
	DATE BEGUN: 4/4/2017 DATE COMPLETED: 4/4/2017

DEPTH	WELL INSTALLATION	LITHOLOGY	DESCRIPTION
0-	Surface Monument	^م ی ^م ی ^م	Ground Surface
	PVC Casing 2-2 (12in) Bentonite Seal		Topsoil: Dark brown clay loam, organics
	9-17 (12in)		Alluvium: 4ft- Coarse sand and gravels, poor sort, well rounded
			Very coarse sand to gravel, ~60% sand, arkosic
			Medium to fine grain sand to gravels; 50% sand 50 % gravel
10 —			9ft- Thick gravel and large cobbles >2in, sub round, granitic origin, quartz, feldspar
	20/40 Sand		Large cobbels >4in
-	PVC Screen 37-50/4"		14ft- Coarse cobbles and gravels
			Weathered Shale: Pasty claystone, orange to black, slight silt
20 -	20/40 Sand		Shale: Competent bedrock, black hard shale
	50/3"		
Т	TELESTO Page 1 of 1		

Loveland Ready Mix	WELL IDENTIFICATION: MW-06
TOTAL DEPTH: 22 GROUND SURFACE ELEVATION: 5059.15	LOCATION: Knox Pit COORDINATE SYSTEM:UTM NAD 83 NORTHING: 4498009.682 EASTING: 488785.638
WELL CASING ELEVATION: 5061.83	DRILLING CO: Authentic Drilling
CASING: 2" PVC Schedule 40	DRILLING METHOD: ODEX
SCREEN: 0.1 Slot	OVERSIGHT CONTRACTOR: Telesto Solutions Inc./ Terracon
DEPTH TO WATER (FT): 8.52 TOC	GEOLOGIST: PARKER COIT
	DATE BEGUN: 4/5/2017 DATE COMPLETED: 4/5/2017

DEPTH	WELL INSTALLATION	LITHOLOGY	DESCRIPTION
0-	Surface Monument		Ground Surface Topsoil: Organic rich, dark brown, dense clay loam
-	PVC Casing Bentonite Seal 50/4"		Alluvium: 2ft- ~ 1in cobbles, well rounded, 20% silts Loose sand, coarse 4ft- Large cobbles > 4in, broken rock fragments 9ft- Cobbles and loose sand, silght fines
10	50/4" 20/40 Sand PVC Screen		14ft- Well graded alluvium, unconsolidated
20	田 20/40 Sand 50/1"		Shale: Dark grey to black shale bedrock
Т	ELESTO	1	Page 1 of 1

Loveland Ready Mix	WELL IDENTIFICATION: MW-07
TOTAL DEPTH: 24 GROUND SURFACE ELEVATION: 5054.91	LOCATION: Knox Pit COORDINATE SYSTEM:UTM NAD 83 NORTHING: 4497680.669 EASTING: 489084.521
WELL CASING ELEVATION: 5057.94	DRILLING CO: Authentic Drilling
CASING: 2" PVC Schedule 40	DRILLING METHOD: ODEX
SCREEN: 0.1 Slot	OVERSIGHT CONTRACTOR: Telesto Solutions Inc./ Terracon
DEPTH TO WATER (FT): 8.65 TOC	GEOLOGIST: PARKER COIT
	DATE BEGUN: 4/5/2017 DATE COMPLETED: 4/5/2017

DEPTH	WELL INSTALLATION	LITHOLOGY	DESCRIPTION
0-	Surface Monument		
			Ground Surface
	7-6 (12in)	ૣ૾ૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ	Topsoil: Dark brown dense clayey loam, organics
	Bentonite Seal		
-	19-16-15 		Alluvium: 4ft- Coarse gravels, cobbles, coarse sand, well rounded, loose
			Thick arkosic alluvium
			Sandy (coarse), cobbles ~60%
10	5/5.5 "		9ft- Cobble cuttings, cobbles > 4in
			Alluvium, round pea gravels, coarse sands, slight fines
-	20/40 Sand PVC Screen 43-29-21		14ft- Coarse sands with silts, ~20% cobbles
20-	50/5"		Weathered Shale: Weathered bedrock, red/orange to light grey claystone. Pastey and sticky.
			Shale: Very hard dark black shale, fine lamiante
	20/40 Sand		
-			
Τ	ELESTO		Page 1 of 1

Loveland Ready Mix	WELL IDENTIFICATION: MW-08
TOTAL DEPTH: 22 GROUND SURFACE ELEVATION: 5059.58	LOCATION: Knox Pit COORDINATE SYSTEM:UTM NAD 83 NORTHING: 4497887.601 EASTING: 488771.077
WELL CASING ELEVATION: 5062.67	DRILLING CO: Authentic Drilling
CASING: 2" PVC Schedule 40	DRILLING METHOD: ODEX
SCREEN: 0.1 Slot	OVERSIGHT CONTRACTOR: Telesto Solutions Inc.
DEPTH TO WATER (FT): 11.99 TOC	GEOLOGIST: PARKER COIT
	DATE BEGUN: 4/5/2017 DATE COMPLETED: 4/5/2017

DEPTH	WELL INSTALLATION	LITHOLOGY	DESCRIPTION
0-	Surface Monument		
			Ground Surface
	<u>30-50-0</u>		Topsoil: Very dense clay, dark brown, high organics
	Bentonite Seal		Alluvium: 2ft- Cobbles and gravels, slight sand, slight interbed clay loam
-			4ft- Good cobbles > 2in, coarse sand
	50/3"		9ft- Very coarse gavels \sim 1/4in, sub-round, cobbles, coarse sand, very hard
10 -	20/40 Sand		12 ft- Medium to fine grain sand, well round Large cobbles > 4in
	PVC Screen		14ft- Coarse sand, poor sorting, gravelly, arkosic
			Weathered Shale: Weathered bedrock, red to orange soft clay
20 -	- 20/40 Sand		Shale: Black shale, competent bedrock
	50/3"		
Т	TELESTO Page 1 of 1		

Loveland Ready Mix	WELL IDENTIFICATION: MW-09
TOTAL DEPTH: 20 GROUND SURFACE ELEVATION: 5053.66	LOCATION: Knox Pit COORDINATE SYSTEM:UTM NAD 83 NORTHING: 4498001.461 EASTING: 489008.375
WELL CASING ELEVATION: 5056.61	DRILLING CO: Authentic Drilling
CASING: 2" PVC Schedule 40	DRILLING METHOD: ODEX
SCREEN: 0.1 Slot	OVERSIGHT CONTRACTOR: Telesto Solutions Inc.
DEPTH TO WATER (FT): 10.1 TOC	GEOLOGIST: PARKER COIT
	DATE BEGUN: 4/5/2017 DATE COMPLETED: 4/5/2017

DEPTH	WELL INSTALLATION	LITHOLOGY	DESCRIPTION
	Surface Monument		
0-	Concrete Base		Ground Surface
	PVC Casing		Topsoil: Clay loam, very dense, organics, clay rich, hard and dry
	40-50/6" Bentonite Seal		Alluvium: 2ft- Interbedded sands and gravels, Large cobbles (10%) Cobbles > 4in, pink to red cuttings, sub-angular
_			4ft- Gravels and coarse sands (wet)
	50/4"		9ft- Large cobbles > 4in
10 -			
	20/40 Sand		
-			14ft- Very loose coarse to medium/fine sand, well rounded
			Shale: Bedrock, all competent, hard black shale
	20/40 Sand		
20 -	50/3"		
Τ	ELESTO		Page 1 of 1

Loveland Ready Mix	WELL IDENTIFICATION: MW-10
TOTAL DEPTH: 20 GROUND SURFACE ELEVATION: 5048.27	LOCATION: Knox Pit COORDINATE SYSTEM:UTM NAD 83 NORTHING: 4497999.974 EASTING: 489348.838
WELL CASING ELEVATION: 5051.40	DRILLING CO: Authentic Drilling
CASING: 2" PVC Schedule 40	DRILLING METHOD: ODEX
SCREEN: 0.1 Slot	OVERSIGHT CONTRACTOR: Telesto Solutions Inc.
DEPTH TO WATER (FT): 7.85 TOC	GEOLOGIST: PARKER COIT
	DATE BEGUN: 4/5/2017 DATE COMPLETED: 4/5/2017

Loveland Ready Mix	WELL IDENTIFICATION: MW-11
TOTAL DEPTH: 19 GROUND SURFACE ELEVATION: 5048.08	LOCATION: Knox Pit COORDINATE SYSTEM:UTM NAD 83 NORTHING: 4497933.417 EASTING: 489346.603
WELL CASING ELEVATION: 5051.18	DRILLING CO: Authentic Drilling
CASING: 2" PVC Schedule 40	DRILLING METHOD: ODEX
SCREEN: 0.1 Slot	OVERSIGHT CONTRACTOR: Telesto Solutions Inc./ Terracon
DEPTH TO WATER (FT): 6.5 TOC	GEOLOGIST: PARKER COIT
	DATE BEGUN: 4/6/2017 DATE COMPLETED: 4/6/2017

Loveland Ready Mix	WELL IDENTIFICATION: MW-12
TOTAL DEPTH: 23 GROUND SURFACE ELEVATION: 5047.23	LOCATION: Knox Pit COORDINATE SYSTEM:UTM NAD 83 NORTHING: 4497239.596 EASTING: 489356.207
WELL CASING ELEVATION: 5050.37	DRILLING CO: Authentic Drilling
CASING: 2" PVC Schedule 40	DRILLING METHOD: ODEX
SCREEN: 0.1 Slot	OVERSIGHT CONTRACTOR: Telesto Solutions Inc./ Terracon
DEPTH TO WATER (FT): 10.0 TOC	GEOLOGIST: PARKER COIT
	DATE BEGUN: 4/6/2017 DATE COMPLETED: 4/6/2017

DEPTH	WELL INSTALLATION	LITHOLOGY	DESCRIPTION
0-	Surface Monument		
			Ground Surface
	6-12 (12in)		Topsoil: Dark brown clay loam, organics, dense
-	PVC Casing Bentonite Seal		4ft- Transition to sandy clay loam, dark brown to black, soft, very loose
	29-50/2"		Alluvium: 6ft- Coarse sands and cobbles (wet)
10 -			9ft- Gravels and coarse sands, few cobbles, 1/2-1in gravels
			Loose cobbles, gravels and arkosic sand
_	18-17-19 20/40 Sand		14ft- Large cobbles, cobble cuttings > 4in
20 -	50/4"		
20	Natural pack, sluff in		Shale: Black to dark grey bedrock shale, very hard, dry
Т	ELESTO		Page 1 of 1

Loveland Ready Mix	WELL IDENTIFICATION: MW-13
TOTAL DEPTH: 19 GROUND SURFACE ELEVATION: 5049.58	LOCATION: Knox Pit COORDINATE SYSTEM:UTM NAD 83 NORTHING: 4497559.239 EASTING: 489387.11
WELL CASING ELEVATION: 5052.41	DRILLING CO: Authentic Drilling
CASING: 2" PVC Schedule 40	DRILLING METHOD: ODEX
SCREEN: 0.1 Slot	OVERSIGHT CONTRACTOR: Telesto Solutions Inc.
DEPTH TO WATER (FT): 7.6 TOC	GEOLOGIST: PARKER COIT
	DATE BEGUN: 4/6/2017 DATE COMPLETED: 4/6/2017

DEPTH	WELL INSTALLATION	LITHOLOGY	DESCRIPTION
	Surface Monument		
0-	Concrete Base	እ አ ³ አ ³ አ	Ground Surface
	PVC Casing Bentonite Seal		Topsoil: Overburden, dark brown clay,hard Transition to sandy loam, slight gravel
			Alluvium: 3ft-Cobbles >1/3in
-			Thick cobbles > 4in, returning cobble cuttings
	14-32-20		9ft- Pea gravel and cobbles, slight sand $\sim 25\%$
10 -			On large cobbles
	PVC Screen		
-			14ft- Loose sand, gravel and cobbles
			Weathered Shale: Weathered bedrock, orange to light grey claystone, pastey
	20/40 Sand 50/6"		Shale: Very hard black shale, dry
20 -			
Т	TELEST©		

Loveland Ready Mix	WELL IDENTIFICATION: MW-14
TOTAL DEPTH: 22 GROUND SURFACE ELEVATION: 5050.94	LOCATION: Knox Pit COORDINATE SYSTEM:UTM NAD 83 NORTHING: 4497277.399 EASTING: 489149.108
WELL CASING ELEVATION: 5054.09	DRILLING CO: Authentic Drilling
CASING: 2" PVC Schedule 40	DRILLING METHOD: ODEX
SCREEN: 0.1 Slot	OVERSIGHT CONTRACTOR: Telesto Solutions Inc.
DEPTH TO WATER (FT): 8.5 TOC	GEOLOGIST: PARKER COIT
	DATE BEGUN: 4/6/2017 DATE COMPLETED: 4/6/2017

DEPTH	WELL INSTALLATION	LITHOLOGY	DESCRIPTION
0-	Surface Monument		
		사가가가	Ground Surface
	2-2-2		Topsoil: Overburden, dark brown top soil, organics, cakey
-	PVC Casing Bentonite Seal		4ft- Dark brown soil, soft, ~50% sand, wet, sticky Alluvium: 5ft- Cobbles and gravels, very sandy, coarse, loose, ~70% sand
			Good cobbles > 4in
10			9ft- Coarse gravels, pea size to 2in
-	20/40 Sand 32-35-45 PVC Screen		Coarse cobbles, cobble cuttings > 4in 14ft- Loose sand, very coarse, well round
			Weathered Shale: Weathered bedrock, orange to light grey claystone, pastey
20 –	EI		Shale: Competent very hard black shale
Т	ELESTO		Page 1 of 1

SECOND SUBMITTAL

Appendix C Northern Boundary – Flux Estimate

Job No:

360100-003-08

Page <u>1</u> of <u>5</u>

Task: MODFLOW Boundary FlowComputed By: P. Coit Date: 7/28/17 **Condition Estimates**

Client: LRM

Checked By: W. Niccoli Date: 7/29/17

Problem Statement: Calculation Documentation

To assess potential impacts of the Loveland Ready-Mix Concrete, Inc. (LRM) Knox Pit Mine development on groundwater, the hydraulic properties of the aggregate resource (alluvium) should be estimated to develop the boundary groundwater flow conditions for the numerical groundwater model (MODFLOW) for the site.

Objectives:

- 1. Calculate the boundary condition groundwater flow through the alluvium at the model boundary.
- 2. Analyze multiple methods to calculate groundwater flow.

Approach:

Monthly Totals

- 1. Calculate flux recharge of groundwater into the aggregate resource
- 2. Using Darcy's Law Calculate the flow through the aggregate resource at the model boundary and compare to the Flux

Data and Assumptions:

- 1. Hydraulic gradient mimics surface topography
- 2. Precipitation = 16.05 in/year

YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANN
2007	0.54	0.22	1.59	0.97	1.22	0.33	0.84	3.6	1.04	1.74	0.37	1.2	13.66
2007 100-yr dry year	0.12	0.6	0.01	1.39	0.27	1.6	0.62	0.63	1.16	0.43	0.45	0.06	7.34
2008	0.03	0.26	0.78	0.85	1.61	2.06	1.11	3.94	1.28	0.81	0.01	0.53	13.27
2009	0.28	0.16	0.93	4.44	2.23	5.03	3.95	0.22	0.67	2.16	0.7	1.11	21.88
2009 100-yr wet year	0.19	1.39	2.74	2.18	4.46	6.23	4.5	0.62	1.36	3.55	0.1	0.25	27.57
2010	0.15	0.65	1.55	3.15	2.13	1.96	1.26	1.23	0.06	0.87	0.7	0.22	13.93
2011	0.29	0.66	0.29	2.05	4.5	2.78	1.7	0.12	1.97	1.77	0.87	0.79	17.79
2012	0.07	0.72	0	0.4	1.69	0.61	3.11	0.03	2.72	0.66	0.14	0.4	10.55
2013	0.11	0.55	0.98	2.84	2.83	0.59	1.9	0.57	6.09	1.68	0.22	0.45	18.81
2014	1.43	0.3	1.37	0.62	4.76	0.99	3.04	0.58	1.28	0.8	0.88	0.64	16.69
2015	0.11	1.09	0.21	3.32	6.34	1.55	1.69	0.69	0.2	1.81	1.56	0.94	19.51
2016	0.58	1.01	2.28	2.75	1.84	0.05	0.91	0.76					11.63
									Av.01	and Dr	ocin (I	M)- [16.0525

3. Hydraulic properties of alluvium are consistent throughout geologic unit. Average Hydraulic Conductivity = 140.56 FT/Day Aquifer Hydraulic Property Estimates from the Cooper Jacob Method

			Aquifer			
Monitoring Well	Q (gpm)	T (FT ² /day)	Thickness (FT)	K (FT/day)	K (cm/s)	
MW-02	5.54	1189.2	20.3	58.6	2.07E-02	
MW-04	8	2378.8	12.4	191.9	6.77E-02	
MW-06	6.85	365.0	8.8	41.4	1.46E-02	
MW-10	9.2	1014.5	11.7	86.6	3.06E-02	
MW-12	6.08		14.7			
					-	

		Thickness					
Monitoring W	ell T (FT ⁻ /day)	(FT)	K	(FT/day)	K (cm/s)		
VW-02	4227.718	20.280		208.467	7.35E-02		
vW-04	1746.469	12.398		140.873	4.97E-02		
√W-06	2294.270	8.806		260.550	9.19E-02		
√W-10	1592.378	11.715		135.926	4.80E-02		
√W-12		14.7					

360100-003-08 Job No:

____ Page <u>2</u> of <u>5</u>

Task: MODFLOW Boundary FlowComputed By: P. Coit Date: 7/28/17 **Condition Estimates**

Client: LRM

Checked By: W. Niccoli ____Date: 7/29/17

Data and Assumptions:

4. Average alluvium thickness equals observed thickness of wells drilling on the north side of Knox Mine site = 13.625 FT Monitoring Well Alluvim Thickness (FT)

wontoning wen	And And Annu Annu Annu Annu Annu Annu An
MW-06	16
MW-09	15
MW-10	13
MW-11	10.5

- 5. 5% is the average percentage of precipitation that becomes groundwater recharge on Colorado Front Range under natural vegetative conditions (USGS, 2011). 10% of precipitation will be used to calculate a conservative maximum flow.
- 6. Recharge area flows to model boundary
- 7. USGS Preliminary integrated geologic map databases for the United States Colorado (USGS, 2005)

Calculations:

1. Calculate contributing recharge areas to model boundary using GlobalMapper 2016®

Job No:

360100-003-08

Page <u>5</u> of <u>5</u>

Task: MODFLOW Boundary FlowComputed By: P. Coit Date: 7/28/17 **Condition Estimates**

Client: LRM

Checked By: W. Niccoli

Date: 7/29/17

Results:

Recharge Method = 4.45 ACFT/Day Darcy Method = 1.91 ACFT/Day

Discussion and Recommendations:

The estimated values were within range and the results can be considered accurately calculated. The estimates present the upper and lower boundary conditions of groundwater flow along the model boundary. An over estimation of percent of precipitation that becomes groundwater flow of 10% was used to calculate the upper boundary of flow at 4.45 ACFT/Day. If the USGS recommended value of 5% was used the estimated flow 2.2 ACFT/Day which is within 14% of the Darcy Method calculated value of 1.91 ACFT/Day.

There are a lot of uncertainties that go into estimating groundwater flow passing through materials. Thus, the estimates of flow calculated within are only good as the assumptions used in the calculations.

Conclusions:

The calculation set achieved the objectives set forth through robust use of the available data and design information. The hydraulic flow properties can be used as boundary conditions in the numeric groundwater model for the Knox Pit.

References:

USGS, 2005. USGS Open-File Report 2005-1351, Preliminary integrated geologic map databases for the United States: Central States: Montana, Wyoming, Colorado, New Mexico, North Dakota, South Dakota, Nebraska, Kansas, Oklahoma, Texas, Iowa, Missouri, Arkansas, and Louisiana. Denver, Colorado.: United States Geological Survey. 2005.

USGS, 2011. Groundwater Availability of the Denver Basin Aquifer System, Colorado; Professional Paper 1770. Suzanne Pashke, Ed., Denver, Colorado.: United States Geological Survey. February 2, 2011.

SECOND SUBMITTAL

Appendix D Specific Capacity Analyses

Job No:

360100-003-08

Page <u>1</u> of <u>2</u>

Task: Specific Capacity Analyses Computed By: P. Coit Date: 8/11/17

Client: _LRM

Checked By: W. Niccoli Date: 8/11/17

Calculation Documentation **Problem Statement:**

Using specific capacity and pumping data from alluvial wells located in the vicinity of the Proposed Loveland Ready-Mix Concrete, Inc. (LRM) Knox Pit Mine, estimate the transmissivity of the alluvial aquifer at the site.

Assumptions and Approach :

Specific capacity is defined as the discharge per unit drawdown in an aquifer. Using specific capacity to estimate aquifer transmissivity is most applicable in an aquifers test where drawdowns have approximately stabilized. For horizontal, steady state flow, the discharge rate from a well is given by

$$Q = \frac{2 \pi T s_w}{F}$$
(1)

where:

T= Transmissivity s_w = drawdown at the well face

T

F = shape factor (typical values range between 5.5 and 6.5

Assuming $F \cong 2\pi$, then:

(2)

Analysis/Results:

Based on the assumptions above, the results of specific capacity analyses for alluvial wells in the vicinity of Proposed Knox Pit are shown in Figure 1. Corresponding results are located :

R:\LarimerCounty CO\LovelandReadyMix\LaPorte\Calculations\Spreadsheets\

				Job N	lo: 36	50100-0	03-08	Cl	ient: L	RM		Page	_2_of_2	<u>,</u>
TF	IF:	ST								_			- / /	
SOLUTIC	DNSINC	ORPO	RATE	Task:	Speci	fic Capa	city Ana	lyses _{Cc}	mputed	d By: <u>P.C</u>	Coit	Date:	8/11/17	
											' ali			
								Ch	ecked E	By: W. N	iccoli	Date:	8/11/17	— I
Results	2													
		<u> </u>												
Figuro	1. Snocif	ic Car	escity	Walk	Noar	- LaDo	rto							
Figure	I: speci	ις ταρ	acity	vvens	INCAL	Laru	rie							
geometry	objectid	moreinfo	receipt	permit	wdid	welldepth	topperfcas	botperfcas	yield	staticwl		Drawdown	T (gpm/ft)	K (ft/day)
X:-11703621.1	382284	http://wwv	9040212	45723-		15			15	5		10	0.900	17.32
X: -11701367.0	391194	http://wwv	3616454	274062A		21	12	21	8	4		17	0.505	
X: -11701527.4	393933	http://www	9038951	13962-		14	ļļ		/	6		8 17	0.525	12.63
X: -11702040.1	42544	http://www	9036551	13844-		15	6	15	30	6		9	0.467	9,98
X: -11701527.4	43189	http://www	9039008	14699-		17			50	8		9	3.333	71.29
X: -11702564.6	43194	http://wwv	9039019	14966-		10			10	2		8	0.750	18.05
X: -11702573.4	43207	http://wwv	9039048	15579-		22	10	22	15	3		19	0.474	4.80
X: -11701527.4	43234	http://wwv	9039142	17456-		16			12	5		11	0.655	11.45
X: -11701515.8	43249	http://wwv	9039193	18817-		13	ļ!		10	6		7	0.857	23.57
X: -11701527.4	43364	http://www	9039566	26230-		15	ļļ		10	0		9	0.667	14.26
X: -11701869 5	204/02	http://www	316868	39146- 158089A		20	10	20	15	7		14	0.692	8.84
X: -11701527.4	275024	http://www	9038164	2345-		20		20	25	8		16	0.938	11.28
X: -11701515.8	275025	http://www	9038231	3528-		22			15	6		16	0.563	6.77
X: -11703096.5	280044	http://wwv	9038950	13954-		16	7	16	7	6		10	0.420	8.08
X: -11703011.7	219003	http://wwv	9040091	41368-		10			30	2		8	2.250	54.14
X: -11701306.7	285084	http://wwv	9040550	58653-		9	5	9	8	5		4	1.200	57.75
X: -11701527.4	43475	http://wwv	9039886	33719-		7	10	10	6	4		3	1.200	77.00
X: -11702309.4	43514	http://www	9040018	39016-		10	14	18	28	7		12	2.000	122.40
X: -11703798.0	43960	http://www	9041505	86321-		25			10	7		18	0.333	3.56
X: -11703621.1	160070	http://wwv	9038725	11081-R	305372	10			1200	2		8	01000	
X: -11701297.0	218996	http://www	9039976	37621-		9	!		33	7		2	9.900	952.81
X: -11701373.4	219002	http://wwv	9040089	41291-		7			7	4		3	1.400	89.83
X: -11701403.6	233954	http://wwv	9039969	37303-		9			6	7		2	1.800	173.24
X: -11703621.1	240313	http://wwv	9039795	30825-		17	ļ!		15	5		12	0.750	12.03
X: -11701464.6	293747	http://www	9040126	42402-		15		15	5	2		6	0.500	16.04
X: -11703027.7	334865	http://www	9036074	10558-F		13	13	13	10	5		12	0.850	32.06
X: -11702050.5	349674	http://wwv	9039376	21497-		13	7	13	10	6		7	0.857	23.57
X: -11701527.4	370544	http://www	9038261	4043-		25		-	30	4		21	0.857	7.86
X: -11701515.8	474430	http://wwv	9038533	8278-		23			15	6		17	0.529	5.99
X: -11703627.7	460157	http://wwv	9040177	44427-	307414	10	9	10	21	4		6	2.100	67.37
—					—	—				-			Min	3.56
													Geomean	21.9
													Average	952.91
													IVIAX	332.01
	•		++++++				1				++++			
Conclus	sion:													

The calculation set achieved the objective to use available pumping data estimate the alluvial aquifer transmissivity and specific capacity.

SECOND SUBMITTAL

Appendix E Site-Specific Aquifer Tests

360100-003-08 Job No:

Page <u>1</u> of <u>9</u>

Task: Short Term Aquifer Tests Computed By: P. Coit Date: 8/1/17

Client: _LRM

Checked By: W. Niccoli Date: 8/7/17

Calculation Documentation **Problem Statement:**

To assess potential impacts of the Loveland Ready-Mix Concrete, Inc. (LRM) Knox Pit Mine development on groundwater, a series of short-term aquifer tests were performed on 4 wells at the Proposed Knox Pix. The tests were performed on 4 monitoring wells (MW-02, MW-04, MW-06, MW-10) installed by LRM in April of 2017 to provide robust hydraulic conductivity data for the aggregate resource (alluvium) for the site.

Objective:

The main objective of the short-term aquifer testing program was to obtain reasonable estimates of the hydraulic conductivity of the alluvium at the Proposed Knox Pit. Given this objective, several simplifying assumptions were used in analyzing the aquifer test data:

Assumptions and Approach :

- 1. Groundwater flow to the wells is horizontal and vertical components of flow are negligible
- 2. The bottom of the well screen represents the bottom of the aquifer
- 3. Flow to the well is radial and the aquifer is of "seemingly" infinite lateral extent
- 4. The aquifer is homogeneous and isotropic
- 5. The drainable porosity of the well sandpack material is 0.25
- 6. Due to water table drawdown near the well, the appropriate aquifer thickness is given by:

$$b = hw + hi_{/2}$$

where:

b = The representative aquifer thickness

 h_w = The height of water in the well at the end of the test

h_i = The initial height of water in the well.

Analysis:

Based on the assumptions above, Telesto used methods to analyze aquifer tests that were based, on the Theis solution of radial flow to a well in an infinite aquifer:

$$s = Q/4\pi T * W(u) \tag{1}$$

where:

s = drawdown at an observation point (L)

Q = pumping rate of the well (L^3/T)

 $T = aquifer transmissivity (L^2/T)$

W(u) = Theis well function

u = variable defined by: (2) $u = r^2 S / 4 \mathrm{Tt}$ where: r = radius of interest (L) S = storage coefficient of the aquifer t = time(T)

TELECTO	Job No: 360100-003-08	Client: LRM	Page <u>2</u> of <u>9</u>
	Task: Short Term Aquifer Tests	_Computed By: <u>P. Coit</u>	Date: 8/1/17
		Checked By: W. Niccoli	Date: <u>8/7/17</u>
Pumping Drawdown Analys	is :		
For small values of u (from a pra by:	ctical standpoint $u \leq 0.1$), th	e well function can be a	oproximated
	$W(u) = \ln\left(\frac{2.246Tt}{Sr^2}\right)$		(3)
Thus, for Sr^2 the Theis So	lution can be written as :		
0.4T		$s = \frac{2.303Q}{4\pi T} \log\left(\frac{2.246Tt}{Sr^2}\right)$	(4)
This late-time approximation of (t) versus s.	the Theis equation plots as a	a straight line on a semi-l	og plot of log
Thus, if drawdown (s) data are p nas been performed for an adeq Through either a linear regressic transmissivity can then be calcul	lotted against log time (t) or uate amount of time, the da on analysis or visual fitting of ated from the following equ	n semi-log paper, and the ata should approximate a f a straight line to this da nation:	e pumping test straight line. ta, the aquifer
	2 202 0		
	$T = \frac{2.303 Q}{4\pi \Delta s}$		(5)
where:			
Δs is the change i	n drawdown over 1 log cycle	e of time.	

By definition, the transmissivity is a product of the aquifer thickness (b) and the hydraulic conductivity (K). Thus, the hydraulic conductivity can be estimated by:

McWhorter and Sunada (1977) describe this procedure, called the Jacob method, in more detail. This type of analysis was applicable to the 4 tests performed at Knox Pit . Figures 1 through 4 and Table 1 display the semi-log plots and results of this method used on the Knox Pit wells.

 $K = \frac{T}{b}$

(6)

FLECTO	Job No: 360100-003-08	Client: LRM	Page <u>3</u> of <u>9</u>
	Task: Short Term Aquifer Tests	_Computed By: <u>P. Coit</u>	Date: 8/1/17
		Checked By: W. Niccoli	Date: 8/7/17

Drawdown Recovery Analysis :

Using superposition and the semi-log approximation, the Theis solution may also be used to analyze the residual drawdown during the recovery portion of a pumping-drawdown test. The late-time approximation for a well recovering from pumping can be written as (McWhorter and Sunada, 1977):

$$s_{r} = \frac{2.303}{4\pi T} \log\left(\frac{t}{t'}\right)$$
(7)

where:

t is the time since pumping began and t' is the time after pumping stopped.

Similar to the Jacob Method, a plot of later time residual drawdown (s_r) data versus log (t/t') on semi-log paper should produce a straight line. This procedure is commonly referred to as the Theis Recovery Method. Transmissivity can be computed using Equation 5, where Δ s is the change in residual drawdown per log cycle of (t/t') on semi-log recovery plot. Table 2 and Figures 5-8 summarize the results of the Theis analysis.

Data and Results:

Data and Results are located:

 $\label{eq:larger} R:\LarimerCounty_CO\LovelandReadyMix\LaPorte\Calculations\Modeling\GWModel\Pumping Tests\20170523\ MW-02.xlsx$

R:\LarimerCounty_CO\LovelandReadyMix\LaPorte\Calculations\Modeling\GWModel\Pumping Tests\20170523 MW-04.xlsx

R:\LarimerCounty_CO\LovelandReadyMix\LaPorte\Calculations\Modeling\GWModel\Pumping Tests\20170523 MW-06.xlsx

R:\LarimerCounty_CO\LovelandReadyMix\LaPorte\Calculations\Modeling\GWModel\Pumping Tests\20170523 MW-10.xlsx

Job No: 360100-003-08

Page <u>4</u> of <u>9</u>

Task: <u>Short Term Aquifer Tests</u> Computed By: P. Coit

Client: LRM

Date: 8/1/17

Checked By: W. Niccoli Date: 8/7/17

Data and Results:

Table 1: Aquifer Hydraulic Property Estimates from the Cooper Jacob Method										
Aquifer										
Monitoring Well	Q (gpm)	T (FT ² /day)	Thickness (FT)	K (FT/day)	K (cm/s)					
MW-02	5.54	1189.2	20.3	58.6	2.07E-02					
MW-04	8	2378.8	12.4	191.9	6.77E-02					
MW-06	6.85	365.0	8.8	41.4	1.46E-02					
MW-10	9.2	1014.5	11.7	86.6	3.06E-02					

Table 2: Aquifer Hydraulic Properties Estimated from the Theis

Recovery Method												
Monitoring Well	T (FT ² /day)	Thickness (FT)	K (FT/day)	K (cm/s)								
MW-02	4227.718	20.280	208.467	7.35E-02								
MW-04	1746.469	12.398	140.873	4.97E-02								
MW-06	2294.270	8.806	260.550	9.19E-02								
MW-10	1592.378	11.715	135.926	4.80E-02								

Job No: 360100-003-08

Client: LRM

____ Page <u>9</u> of <u>9</u>

Task: <u>Short Term Aquifer Tests</u> Computed By: P. Coit Date: 8/1/17

Checked By: W. Niccoli Date: 8/7/17

Discussion :

Assumptions 1 and 2 are valid because the screen length is very large compared to the well diameter. Assumptions 2 and 3 are appropriate due to the short-term nature of the aquifer tests performed at the Proposed Knox Site. Assumption 5 is based on porosity values cited in the literature for a clean sand (McWhorter and Sunada [1977], Freeze and Cherry [1979], and Spitz and Moreno [1996]). Assumption 6 is based on the Dupuit-Forcheimer assumption and is explained in McWhorter and Sunada (1977).

Conclusions:

The calculation set achieved the objectives set forth through robust use of the available data and design information. The short-term aquifer tests provided a quick and acceptably accurate method to gain insight into hydraulic properties of the alluvium at the Knox Pit. These properties can be used to estimate groundwater flow in the groundwater model for the Proposed Knox Pit.

References:

Freeze, R. Allan and John A. Cherry. 1979. *Groundwater*. Prentice Hall, Inc. Englewood Cliffs, New Jersey.

McWhorter, David B and Daniel K. Sunada. 1977. *Ground-Water Hydrology and Hydraulics.* Water Resources Publications. Littleton, Colorado.

Spitz, Karlheinz and Joanna Moreno. 1996. *A Practical Guide to Groundwater Modeling*. John Wiley & Sons. New York, New York.

SECOND SUBMITTAL

Appendix F Miscellaneous Calculations and Model Documentation

VARIOUS MODEL INPUT PARAMETERS

Item	Description	Units	Low	High	Modeled Value
Kx	Hydraulic Conductivity in the x model direction	ft/day	3.56	1070	334
Ку	Hydraulic Conductivity in the y model direction	ft/day			Kx
Kz=Kx/10	Hydraulic Conductivity in the z model direction	ft/day			Kx/10
n	Porosity	unitless	0.1	0.3	0.2
Constant head	West Boundary	feet	bedrock	flood	5079.5
Constant head	East Boundary	feet	bedrock	flood	4960 to 4978
Constant head	Southern Boundary (Poudre River)	feet	bedrock	flood	5079.5 to 4960
Flux boundary	Flux (see calculations Appendix C)	ft3/day			87017.75
Internal drains	Drain Elevations	feet	bedrock	DEM	5' below DEM
	Drain factor (multiple)	ft/day			10 x Kx
	Drain material thickness	feet			1
Internal ditches	River cells. Elevation	feet			2 to 3' above DEM
	Ksat of silt	ft/day			0.06
	Thickness of silt	feet			1
Site perimeter drains	Drain Elevations	feet	bedrock	DEM	l'above bedrock
	Drain factor (multiple)	ft/day			10 x Kx
	Drain material thickness	feet			1

EQUIVALENT MATERIAL PROPERTIES OF THE PERIMETER DRAINS

Job No: 360100-004-04

Client: LRM

Page <u>1</u> of <u>4</u> Date: 1/12/18

Task: Equivalent drain size

ize Computed By: W. Niccoli

Checked By: W. Katz

Calculation Documentation

Problem Statement:

LRM's proposed closure plan for the Knox Pit involves backfilling the pits with excess fines and overburden material. Around the perimeter of the pit, compacted backfill is proposed in order to seal the groundwater system from the pits. In order to limit the amount of groundwater level impacts up and downgradient of the sealed pits, LRM proposes to install a perimeter drain to convey naturally flowing groundwater. The size of the drains is unknown.

Objectives:

1. Determine the layout and size of drains required to move groundwater around the sealed pits

Approach:

- 1. Estimate the natural groundwater flow through the north and south sides of the site utilizing Darcy's law and site dimensions
- 2. Utilize the Hazen-William's formula to calculate the minimum pipe diameter required to convey the calculated groundwater flow
- 3. Check the calculated pipe diameters in an equivalent porous medium

Data and Assumptions:

- 1. Transmissivity of aquifer = 50,000 gal/ft-day, average thickness = 20 ft
- 2. Summer groundwater elevations and gradients:

Job No: 360100-004-04	Client: LRM	Page of
TELESTO solutions to corporated Task: <u>Equivalent drain size</u>	Computed By:W. Niccoli	Date:1/12/18
	Checked By: W. Katz	Date: 01/12/18
Data and Assumptions Con d: https://www.engineeringtoolbo	ox.com/hazen-williams-coefficients-d_798.	ptm]
	Material Coefficie	nt
3. Hazen Williams Coefficient for plastic pipe	ABS - Acrylonite Butadiene 130	
4. Assume drain pipes have zero slope	Aluminum 130 - 15	0
	Asbestos Cement 140	0
	Brass 130 - 14	0
	Brick sewer 90 - 10	2
	Cast-Iron - new unlined (CIP) 130 Cast-Iron 10 years old 107 - 11	3
	Cast-Iron 20 years old 89 - 10	
	Cast-Iron 30 years old 75 - 90 Cast-Iron 40 years old 64-83	
	Cast-Iron, asphalt coated 100	
	Cast-Iron, cement lined 140 Cast-Iron, bituminous lined 140	
	Cast-Iron, sea-coated 120	
	Cast-Iron, wrought plain 100 Cement lining 130 - 14	0
	Concrete 100 - 14	0
	Concrete lined, steel forms 140 Concrete lined, wooden	
	forms 120	0
	Copper 130 - 14	0
	Corrugated Metal 60	
	Ductile Iron, cement lined 120	
	Fiber 140	
	Galvanized iron 120	
	Glass 130	0
	Vietal Pipes - Very to 130 - 14	0
	Plastic 130 - 15	0
	Polyethylene, PE, PEH 140	
Calculations: Calculate the natural groundwater flow through t 	he north and south side	s of the property:
$\mathbf{b}_{avg} \coloneqq 20 \cdot \mathbf{ft}$ $\mathbf{T}_{aq} \coloneqq 50000 \cdot \frac{\mathbf{gal}}{\mathbf{ft} \cdot \mathbf{day}}$ $\mathbf{K}_{aq} \coloneqq \frac{\mathbf{T}_{aq}}{\mathbf{b}_{avg}}$ $\mathbf{K}_{aq} \approx$	= 334.201 ft day	
$w_{north} := 1125 \cdot ft$ $b_{north} := 18 \cdot ft$ $H_{1north} := 5056 \cdot ft$	$H_{2north} \simeq 5046 \text{-ft}$ $L_{north} \simeq 2250 \text{-ft}$	
$Q_{\text{north}} := w_{\text{north}} \cdot b_{\text{north}} \cdot K_{aq} \cdot \frac{(-1 \text{north})^{-2 \text{north}}}{L_{\text{north}}}$	north = 156.25 gpm	
$w_{south} := 1472 \cdot ft$ $b_{south} := 18 \cdot ft$ $H_{lsouth} := 5056 \cdot ft$	$H_{2south} := 5042 \cdot ft$ $L_{south} := 2352 \cdot ft$	
$Q_{\text{south}} := w_{\text{south}} \cdot b_{\text{south}} \cdot K_{\text{sq}} \cdot \frac{(H_{1\text{south}} - H_{2\text{south}})}{L_{\text{south}}}$	south = 273.81 gpm	

	Job No: 360100-004-04	Client: LRM	Page _4 of _4
TELESTO	Task: Equivalent drain size	Computed By W. Niccoli	Date: 1/12/18
SOLUTIONS IN CORPORATED			01/12/18
		Checked By: <u>W. Katz</u>	Date:
Calculations Con'd:			
4. Calculate the equivalent wide)	t transmissivity and hydra	ulic conductivity of the dr	rain (assume 2'
North Side	S	outh Side	
$T_{eff} \coloneqq \frac{L \cdot Q}{6 \cdot ft \cdot h_f} \qquad T_{eff} = 1.65$	$11 \times 10^7 \frac{\text{gal}}{\text{day-ft}}$ $T_{\text{eff}} \coloneqq \frac{L \cdot Q}{6 \cdot \text{ft} \cdot h_f}$	$T_{eff} = 3.352 \times 10^7 \frac{gal}{day ft}$	
$K_{eff} := \frac{T_{eff}}{b_{avg}}$ $K_{eff} = 1.10$	$14 \times 10^5 \frac{\text{ft}}{\text{day}}$ $K_{\text{eff}} = \frac{T_{\text{eff}}}{b_{\text{avg}}}$	$K_{\text{eff}} = 2.241 \times 10^5 \frac{\text{ft}}{\text{day}}$	
Results:			
The required drain size for the Conclusion: The calculation objectives we existing groundwater flow arc	e south side is 5.83 inches e south side is 7.06 inches re met. The drain sizes ar bund the sealed pits after	e more than sufficient to	drain pipe drain pipe carry amount of
	fund the sealed pits after		

SELENIUM TRANSPORT ESTIMATE

TELESTO SOLUTIONS OF N C O R P O R AT E D

Job No: 360100-003-04

0-003-04 Client: LRM

_ Page <u>1</u> of <u>2</u>

Task: Selenium Concentration Computed By: T. Tigges Date: 1/10/2018

Checked By: W. Niccoli Date: 1/10/2018

Calculation Documentation

Problem Statement:

Selenium has been found in the Pierre shale underlying the proposed Knox gravel pit. Concerns have been expressed over selenium leaking into the groundwater and into the drains from the property once mining begins. This calculation seeks to determine how much selenium may be expected in the water.

Objectives:

1. Find the concentration of selenium in the groundwater per unit width

Approach:

- 1. Create a mass balance for selenium around the alluvium
- 2. Use Fick's law to find the diffusive flux of selenium from the underlying shale
- 3. Complete the concentration gradient over a depth of 1 cm and over a depth of 2.5 ft, which is the average depth that samples from the Pierre shale were taken

Data and Assumptions:

- Diffusion coefficient of Se⁻ is assumed to be similar to that of Br⁻, which is 20.1x10⁻¹⁰ m²/s
- 2. The concentration of selenium in the shale is 0.13 mg/L
- 3. The concentration of selenium in the alluvium is zero
- 4. The groundwater flow rate through the alluvium is 180 gpm
- 5. The length of the perimeter drain is 5000 ft
- 6. The width of the perimeter drain is 2 ft
- 7. The porosity of the shale is 30%

Q = 26.7 ft2/day C=0 mg/L		Q = 26.7 ft2/day C=??? mg/L
((s	e = 0.13 mg/L	
←	5,000 ft	

MODEL INPUT FILES PROVIDED UPON REQUEST

1:	# Name File for	MOD	LOW created c	on 1/9/2018 by	ModelMuse	Version	3.9.0.0
2:	LIST	11	2017221 Cal 2	21.lst REPLACE			2.2.000
3:	DATA(BINARY)	9	2017221 Cal 2	21.cbc REPLACE			
4:	DIS	12	2017221 Cal 2	21.dis OLD			
5:	BAS6	13	2017221 Cal 2	21.bas OLD			
6:	0C	39	2017221 Cal 2	21.oc OLD			
7:	DATA	37	2017221 Cal 2	21.fhd REPLACE			
8:	DATA	38	2017221_Cal_2	21.fdn REPLACE			
9:	PCG	18	2017221_Cal_2	21.pcg OLD			
10:	LPF	14	2017221_Cal_2	21.lpf OLD			
11:	CHD	17	2017221_Cal_2	21.chd OLD			
12:	RIV	21	2017221_Cal_2	21.riv OLD			
13:	DRN	22	2017221_Cal_2	21.drn OLD			
14:	FHB	146	2017221_Cal_2	21.fhb OLD			
15:	RCH	24	2017221_Cal_2	21.rch OLD			
16:	EVT	25	2017221_Cal_2	21.evt OLD			
17:	ZONE	15	2017221_Cal_2	21.zon OLD			
18:	MULT	16	2017221_Cal_2	21.mlt OLD			
19:	PVAL	52	2017221_Cal_2	21.pval OLD			
20:							

1:	<pre># Name File for</pre>	MODF	LOW created on 1/10/2018 by ModelMuse Version 3.9.0.0
2:	LIST	11	20180109_Phase1_First.lst REPLACE
3:	DATA(BINARY)	9	20180109_Phase1_First.cbc REPLACE
4:	DIS	12	20180109_Phase1_First.dis OLD
5:	BAS6	13	20180109_Phase1_First.bas OLD
6:	0C	39	20180109_Phase1_First.oc OLD
7:	DATA	37	20180109_Phase1_First.fhd REPLACE
8:	DATA	38	20180109_Phase1_First.fdn REPLACE
9:	PCG	18	20180109_Phase1_First.pcg OLD
10:	LPF	14	20180109_Phase1_First.lpf OLD
11:	CHD	17	20180109_Phase1_First.chd OLD
12:	RIV	21	20180109_Phase1_First.riv OLD
13:	DRN	22	20180109_Phase1_First.drn OLD
14:	FHB	146	20180109_Phase1_First.fhb OLD
15:	RCH	24	20180109_Phase1_First.rch OLD
16:	EVT	25	20180109_Phase1_First.evt OLD
17:	ZONE	15	20180109_Phase1_First.zon OLD
18:	MULT	16	20180109_Phase1_First.mlt OLD
19:	PVAL	52	20180109_Phase1_First.pval OLD
20:			

1:	<pre># Name File for</pre>	MODE	FLOW created on 1/10/2018 by ModelMuse Version 3.9.0.0
2:	LIST	11	20180109_Phase1_2nd.lst REPLACE
3:	DATA(BINARY)	9	20180109_Phase1_2nd.cbc REPLACE
4:	DIS	12	20180109_Phase1_2nd.dis OLD
5:	BAS6	13	20180109_Phase1_2nd.bas OLD
6:	OC	39	20180109_Phase1_2nd.oc OLD
7:	DATA	37	20180109_Phase1_2nd.fhd REPLACE
8:	DATA	38	20180109_Phase1_2nd.fdn REPLACE
9:	PCG	18	20180109_Phase1_2nd.pcg OLD
10:	LPF	14	20180109_Phase1_2nd.lpf OLD
11:	CHD	17	20180109_Phase1_2nd.chd OLD
12:	RIV	21	20180109_Phase1_2nd.riv OLD
13:	DRN	22	20180109_Phase1_2nd.drn OLD
14:	FHB	146	20180109_Phase1_2nd.fhb OLD
15:	RCH	24	20180109_Phase1_2nd.rch OLD
16:	EVT	25	20180109_Phase1_2nd.evt OLD
17:	ZONE	15	20180109_Phase1_2nd.zon OLD
18:	MULT	16	20180109_Phase1_2nd.mlt OLD
19:	PVAL	52	20180109_Phase1_2nd.pval OLD
20:			

1:	<pre># Name File for</pre>	MODE	LOW cr	eated	on 3	1/10/20	18 b	by I	ModelMuse	Version	3.9.0.0
2:	LIST	11	201801	09_Pha	ase2	_1st.ls	t RE	PL	ACE		
3:	DATA(BINARY)	9	201801	09_Pha	ase2		c RE	PL	ACE		
4:	DIS	12	201801	09_Pha	ase2_	_1st.di	s OL	D			
5:	BAS6	13	201801	09_Pha	ase2_	_1st.ba	s OL	D			
6:	OC	39	201801	09_Pha	ase2_	_1st.oc	OLD)			
7:	DATA	37	201801	09_Pha	ase2_	_1st.fh	d RE	PL	ACE		
8:	DATA	38	201801	09_Pha	ase2_	_1st.fd	n RE	PL	ACE		
9:	PCG	18	201801	09_Pha	ase2_	_1st.pc	g OL	D			
10:	LPF	14	201801	09_Pha	ase2_	_1st.lp	f OL	D			
11:	CHD	17	201801	09_Pha	ase2_	_1st.ch	d OL	D			
12:	RIV	21	201801	09_Pha	ase2_	_1st.ri	v OL	D			
13:	DRN	22	201801	09_Pha	ase2_	_1st.dr	n OL	D			
14:	FHB	146	201801	09_Pha	ase2_	_1st.fh	b OL	D			
15:	RCH	24	201801	09_Pha	ase2_	_1st.rc	h OL	D			
16:	EVT	25	201801	09_Pha	ase2_	_1st.ev	t OL	D			
17:	ZONE	15	201801	09_Pha	ase2_	_1st.zo	n OL	D			
18:	MULT	16	201801	09_Pha	ase2_	_1st.ml	t OL	D			
19:	PVAL	52	201801	09_Pha	ase2_	_1st.pv	al O)LD			
20:											

1:	<pre># Name File for</pre>	MODE	FLOW created on 1/10/2018 by ModelMuse Version 3.9.0.0
2:	LIST	11	20180109_Phase2_2nd.lst REPLACE
3:	DATA(BINARY)	9	20180109_Phase2_2nd.cbc REPLACE
4:	DIS	12	20180109_Phase2_2nd.dis OLD
5:	BAS6	13	20180109_Phase2_2nd.bas OLD
6:	OC	39	20180109_Phase2_2nd.oc OLD
7:	DATA	37	20180109_Phase2_2nd.fhd REPLACE
8:	DATA	38	20180109_Phase2_2nd.fdn REPLACE
9:	PCG	18	20180109_Phase2_2nd.pcg OLD
10:	LPF	14	20180109_Phase2_2nd.lpf OLD
11:	CHD	17	20180109_Phase2_2nd.chd OLD
12:	RIV	21	20180109_Phase2_2nd.riv OLD
13:	DRN	22	20180109_Phase2_2nd.drn OLD
14:	FHB	146	20180109_Phase2_2nd.fhb OLD
15:	RCH	24	20180109_Phase2_2nd.rch OLD
16:	EVT	25	20180109_Phase2_2nd.evt OLD
17:	ZONE	15	20180109_Phase2_2nd.zon OLD
18:	MULT	16	20180109_Phase2_2nd.mlt OLD
19:	PVAL	52	20180109_Phase2_2nd.pval OLD
20:			

1:	<pre># Name File for</pre>	MODE	LOW c	reat	ed o	on 1	/10/2	2018	3 by	ModelMuse	Version	3.9.0.0
2:	LIST	11	20180	109_	Phas	se3_	lst.	lst	REPL	_ACE		
3:	DATA(BINARY)	9	20180	109_	Phas	se3_		cbc	REPL	_ACE		
4:	DIS	12	20180	109_	Phas	se3_	_1st.0	dis	OLD			
5:	BAS6	13	20180	109_	Phas	se3_	lst.	bas	OLD			
6:	OC	39	20180	109_	Phas	se3_	_1st.o	oc C)LD			
7:	DATA	37	20180	109_	Phas	se3_	lst.	fhd	REPL	_ACE		
8:	DATA	38	20180	109_	Phas	se3_	lst.	fdn	REPL	_ACE		
9:	PCG	18	20180	109_	Phas	se3_	_lst.µ	ocg	OLD			
10:	LPF	14	20180	109_	Phas	se3_	1st.	lpf	OLD			
11:	CHD	17	20180	109_	Phas	se3_	_1st.0	chd	OLD			
12:	RIV	21	20180	109_	Phas	se3_	_1st.u	riv	OLD			
13:	DRN	22	20180	109_	Phas	se3_	_lst.	drn	OLD			
14:	FHB	146	20180	109_	Phas	se3_	lst.	fhb	OLD			
15:	RCH	24	20180	109_	Phas	se3_	_1st.1	rch	OLD			
16:	EVT	25	20180	109_	Phas	se3_	_1st.@	evt	OLD			
17:	ZONE	15	20180	109_	Phas	se3_	_1st.:	zon	OLD			
18:	MULT	16	20180	109_	Phas	se3_	_1st.r	nlt	OLD			
19:	PVAL	52	20180	109_	Phas	se3_	lst.µ	oval	. OLD)		
20:												

1:	<pre># Name File for</pre>	MODF	FLOW created on 1/10/2018 by ModelMuse Version 3.9.0.0
2:	LIST	11	20180109_Phase3_2nd.lst REPLACE
3:	DATA(BINARY)	9	20180109_Phase3_2nd.cbc REPLACE
4:	DIS	12	20180109_Phase3_2nd.dis OLD
5:	BAS6	13	20180109_Phase3_2nd.bas OLD
6:	OC	39	20180109_Phase3_2nd.oc OLD
7:	DATA	37	20180109_Phase3_2nd.fhd REPLACE
8:	DATA	38	20180109_Phase3_2nd.fdn REPLACE
9:	PCG	18	20180109_Phase3_2nd.pcg OLD
10:	LPF	14	20180109_Phase3_2nd.lpf OLD
11:	CHD	17	20180109_Phase3_2nd.chd OLD
12:	RIV	21	20180109_Phase3_2nd.riv OLD
13:	DRN	22	20180109_Phase3_2nd.drn OLD
14:	FHB	146	20180109_Phase3_2nd.fhb OLD
15:	RCH	24	20180109_Phase3_2nd.rch OLD
16:	EVT	25	20180109_Phase3_2nd.evt OLD
17:	ZONE	15	20180109_Phase3_2nd.zon OLD
18:	MULT	16	20180109_Phase3_2nd.mlt OLD
19:	PVAL	52	20180109_Phase3_2nd.pval OLD
20:			

1:	<pre># Name File for</pre>	MODE	FLOW created on 1/10/2018 by ModelMuse Version 3.9.0.0
2:	LIST	11	20180109_Phase4_1st.lst REPLACE
3:	DATA(BINARY)	9	20180109_Phase4_1st.cbc REPLACE
4:	DIS	12	20180109_Phase4_1st.dis OLD
5:	BAS6	13	20180109_Phase4_1st.bas OLD
6:	OC	39	20180109_Phase4_1st.oc OLD
7:	DATA	37	20180109_Phase4_1st.fhd REPLACE
8:	DATA	38	20180109_Phase4_1st.fdn REPLACE
9:	PCG	18	20180109_Phase4_1st.pcg OLD
10:	LPF	14	20180109_Phase4_1st.lpf OLD
11:	CHD	17	20180109_Phase4_1st.chd OLD
12:	RIV	21	20180109_Phase4_1st.riv OLD
13:	DRN	22	20180109_Phase4_1st.drn OLD
14:	FHB	146	20180109_Phase4_1st.fhb OLD
15:	RCH	24	20180109_Phase4_1st.rch OLD
16:	EVT	25	20180109_Phase4_1st.evt OLD
17:	ZONE	15	20180109_Phase4_1st.zon OLD
18:	MULT	16	20180109_Phase4_1st.mlt OLD
19:	PVAL	52	20180109_Phase4_1st.pval OLD
20:			

1:	<pre># Name File for</pre>	MODE	FLOW created on 1/10/2018 by ModelMuse Version 3.9.0.0
2:	LIST	11	20180109_Phase4_2nd.lst REPLACE
3:	DATA(BINARY)	9	20180109_Phase4_2nd.cbc REPLACE
4:	DIS	12	20180109_Phase4_2nd.dis OLD
5:	BAS6	13	20180109_Phase4_2nd.bas OLD
6:	OC	39	20180109_Phase4_2nd.oc OLD
7:	DATA	37	20180109_Phase4_2nd.fhd REPLACE
8:	DATA	38	20180109_Phase4_2nd.fdn REPLACE
9:	PCG	18	20180109_Phase4_2nd.pcg OLD
10:	LPF	14	20180109_Phase4_2nd.lpf OLD
11:	CHD	17	20180109_Phase4_2nd.chd OLD
12:	RIV	21	20180109_Phase4_2nd.riv OLD
13:	DRN	22	20180109_Phase4_2nd.drn OLD
14:	FHB	146	20180109_Phase4_2nd.fhb OLD
15:	RCH	24	20180109_Phase4_2nd.rch OLD
16:	EVT	25	20180109_Phase4_2nd.evt OLD
17:	ZONE	15	20180109_Phase4_2nd.zon OLD
18:	MULT	16	20180109_Phase4_2nd.mlt OLD
19:	PVAL	52	20180109_Phase4_2nd.pval OLD
20:			

1:	<pre># Name File for</pre>	MODE	W created on 1/10/2018	by ModelMuse Version 3.9.0.0
2:	LIST	11	180109_Phase5_1st.lst R	REPLACE
3:	DATA(BINARY)	9	180109_Phase5_1st.cbc F	REPLACE
4:	DIS	12	180109_Phase5_1st.dis C	DLD
5:	BAS6	13	180109_Phase5_1st.bas C	DLD
6:	OC	39	180109_Phase5_1st.oc OL	_D
7:	DATA	37	180109_Phase5_1st.fhd F	REPLACE
8:	DATA	38	180109_Phase5_1st.fdn R	REPLACE
9:	PCG	18	180109_Phase5_1st.pcg C)LD
10:	LPF	14	180109_Phase5_1st.lpf C)LD
11:	CHD	17	180109_Phase5_1st.chd C)LD
12:	RIV	21	180109_Phase5_1st.riv ()LD
13:	DRN	22	180109_Phase5_1st.drn ()LD
14:	FHB	146	180109_Phase5_1st.fhb C)LD
15:	RCH	24	180109_Phase5_1st.rch C)LD
16:	EVT	25	180109_Phase5_1st.evt C)LD
17:	ZONE	15	180109_Phase5_1st.zon C)LD
18:	MULT	16	180109_Phase5_1st.mlt C)LD
19:	PVAL	52	180109_Phase5_1st.pval	OLD
20:				

1:	<pre># Name File for</pre>	MODE	FLOW created on 1/10/2018 by ModelMuse Version 3.9.0.0
2:	LIST	11	20180109_Phase5_2nd.lst REPLACE
3:	DATA(BINARY)	9	20180109_Phase5_2nd.cbc REPLACE
4:	DIS	12	20180109_Phase5_2nd.dis OLD
5:	BAS6	13	20180109_Phase5_2nd.bas OLD
6:	OC	39	20180109_Phase5_2nd.oc OLD
7:	DATA	37	20180109_Phase5_2nd.fhd REPLACE
8:	DATA	38	20180109_Phase5_2nd.fdn REPLACE
9:	PCG	18	20180109_Phase5_2nd.pcg OLD
10:	LPF	14	20180109_Phase5_2nd.lpf OLD
11:	CHD	17	20180109_Phase5_2nd.chd OLD
12:	RIV	21	20180109_Phase5_2nd.riv OLD
13:	DRN	22	20180109_Phase5_2nd.drn OLD
14:	FHB	146	20180109_Phase5_2nd.fhb OLD
15:	RCH	24	20180109_Phase5_2nd.rch OLD
16:	EVT	25	20180109_Phase5_2nd.evt OLD
17:	ZONE	15	20180109_Phase5_2nd.zon OLD
18:	MULT	16	20180109_Phase5_2nd.mlt OLD
19:	PVAL	52	20180109_Phase5_2nd.pval OLD
20:			

1:	<pre># Name File for</pre>	MODF	LOW created on 1/10/2018 by ModelMuse Version 3.9.0.0
2:	LIST	11	20180109_Reclaim.lst REPLACE
3:	DATA(BINARY)	9	20180109_Reclaim.cbc REPLACE
4:	DIS	12	20180109_Reclaim.dis OLD
5:	BAS6	13	20180109_Reclaim.bas OLD
6:	OC	39	20180109_Reclaim.oc OLD
7:	DATA	37	20180109_Reclaim.fhd REPLACE
8:	DATA	38	20180109_Reclaim.fdn REPLACE
9:	PCG	18	20180109_Reclaim.pcg OLD
10:	LPF	14	20180109_Reclaim.lpf OLD
11:	CHD	17	20180109_Reclaim.chd OLD
12:	RIV	21	20180109_Reclaim.riv OLD
13:	DRN	22	20180109_Reclaim.drn OLD
14:	FHB	146	20180109_Reclaim.fhb OLD
15:	RCH	24	20180109_Reclaim.rch OLD
16:	EVT	25	20180109_Reclaim.evt OLD
17:	ZONE	15	20180109_Reclaim.zon OLD
18:	MULT	16	20180109_Reclaim.mlt OLD
19:	PVAL	52	20180109_Reclaim.pval OLD
20:			

SECOND SUBMITTAL

Appendix G Water Quality Monitoring Plan

November 30, 2017

Jeff Smith Maintenance Manager Cache La Poudre Irrigating Ditch Company 106 Elm Avenue Eaton, CO 80615

RE: Proposed Gravel Pit in LaPorte

Dear Jeff,

The purpose of this letter is to summarize the topics discussed at our meeting on October 27, 2017. Thank you for taking the time to discuss your concerns and to listen to our plans for mining at the Knox Pit.

LRM has agreed to incorporate the following operational procedures into our mining plan in order to protect the Little Cache La Poudre Ditch and the rights of the ditch users.

- 1. We will maintain clear access of a minimum of 30 feet on both sides of the ditch. The conveyor system that transports mining material across the ditch will be designed to span this distance. LRM's haul road will be separate from the ditch road.
- 2. Replacement bridge structures at ditch crossings will be designed so that abutments will not "pinch in" and restrict any ditch flow.
- 3. All dewatering from the mining cells will be pumped to the water management pond at the east end of the site. We believe this will help keep the ditch whole and prevent any ditch loss for downstream users. However, if it is determined there is excessive leakage caused by dewatering, LRM will line the ditch or work with you to determine other means of eliminating ditch loss.
- Mining will progress in phases that open up 5 to 7 acres cell areas at a time. The mining cells will be sealed with a clay liner in progression with mining. This clay lining will help prevent ditch seapage.
- 5. Due to concerns over water quality that may be compromised due to dewatering and the adjacent batch plant operations, LRM will test the water management pond and one of our monitoring wells 600 feet east of the mining boundary and adjacent to ditch for the following:

Parameter
Total Suspended Solids, TSS
Total Iron
PH, minimum and maximum
Total Selenium

These monitoring parameters were determined using CDPS Stormwater General Permit COG500000 for Discharges from Sand and Gravel Mining and Processing, they include the Sector Specific Benchmarks for Concrete Batch Plants, and will use the monitoring procedures as detailed in that Permit. A comparison sample will be taken from the ditch as it enters the west end of the mining permit boundary at least once per year. Baseline comparison samples will be taken prior to any mining or production.

If measured results exceed allowable values at any time, immediate action will be taken to address the cause and remove the source of the pollutant. Copies of quarterly monitoring results will be sent to the ditch company, and will be available for ditch users review upon request.

- 6. All process water from the batch plant site and mining operations will be prevented from entering the ditch through grading and berming on site.
- 7. Ground water levels throughout the mining site will be monitored monthly using existing monitoring wells. If any major deviations in groundwater levels are identified that indicate an injury to the ditch or ditch users, you will be notified to determine if mitigation measures are required. These well readings will be submitted to the Division of Reclamation Mining and Safety with our Annual Reports.

We trust this summarizes the major topics covered at our meeting, however, if we have missed one of your concerns or if you would like us to consider adding additional monitoring, measuring, or site design requirements to our operating procedures, please advise.

Regards,

Stephanie Fancher-English Loveland Ready Mix Concrete, Inc.

cc: file

Loveland Ready-Mix Concrete PO Box 299 Loveland, Colorado 80539