

GCC Energy, LLC
Telephone: 970.385.4528 6473 County Road 120
Facsimile: 970.385.4638 Hesperus, CO 81326

December 29, 2017

State of Colorado Division of Reclamation, Mining & Safety 1313 Sherman St.

Attn: Rob Zuber, Environmental Protection Specialist II

Re: Permit #C-1981-035, King II Mine

Annual Hydrologic Report 2017

Dear Mr. Zuber,

Please find enclosed "2017 King I & II Mines Annual Hydrology Report to the Colorado Division of Reclamation, Mining & Safety", for water year 2017, prepared by Resource Hydrogeologic Services, Inc. of Durango, Colorado.

Please contact Tom Bird at $970.385.4528 \times 6503$, or Sarah Vance at 505.286.6026, with questions or comments.

Sincerely,

Tom Bird

Manager of Coal Services

GCC Energy, LLC

2017 KING I & II MINES ANNUAL HYDROLOGY REPORT TO THE COLORADO DIVISION OF RECLAMATION, MINING & SAFETY

Submitted to: **GCC ENERGY, LLC**

Date:

December 26, 2017

Resource Hydrogeologic Services, Inc.

101 W. 11th St. #103 Durango, CO 81301 Tel: (970) 764-4920

Email info@resourcehydrogeologic.com

TABLE OF CONTENTS

INTRODUCTION	3
HYDROLOGIC MONITORING	
HYDROLOGIC MONITORING LOCATIONS	3
Hydrologic Monitoring Data Collection	
HYDROLOGIC MONITORING DATA ANALYSIS	
SURFACE WATER	
ALLUVIAL GROUNDWATER	7
BEDROCK GROUNDWATER	8
RECOMMENDATIONS	8
TABLES	12
FIGURES	18
ATTACHMENT - GCC HYDDOLOGIC MONITODING DATA SLIMMARY TARLES	25

INTRODUCTION

The Annual Hydrology Report is completed at the conclusion of each year to compile and interpret hydrologic data related to GCC Energy's King I and II Mine operations. This satisfies a requirement of the Colorado Department of Reclamation, Mining and Safety (CDRMS) Mining Permit C-1981-035. In 2016, Technical Revision 26 (TR-26) to Permit C-1981-035 was approved which included expansion of hydrologic monitoring in number of locations, frequency of observations, laboratory analyses performed and field parameters collected. Additionally, to best support these efforts, GCC Energy (GCC) maintains a quality assurance/quality control (QA/QC) program to:

- Conduct GCC compliance staff training on water quality sampling for all GCC monitoring locations, equipment and methodologies, with detailed written procedures for each monitoring location provided
- Collect all water quality field data with an industry-standard multi-parameter device with electronic data deliverable (EDD) output for all field and calibration data
- Collect all water quality field monitoring data on standardized sampling logs specific to surface water, groundwater and spring/seep sampling locations which are scanned and reviewed by third party, Resource Hydrogeologic Services (RHS) within one week of sampling
- Implement industry-standard, 10% random QA/QC lab sample submittals for duplicate and field blank water quality samples
- Utilize EDDs produced by the contract environmental analytical laboratory for all data analyses
- Compile and manage all water quality data in a geo-referenced Microsoft Access database

HYDROLOGIC MONITORING

HYDROLOGIC MONITORING LOCATIONS

Thirteen new compliance hydrologic monitoring locations were added in 2017 and are listed below:

Hay Gulch Alluvial Monitoring Well

MW-HGA-4

Bedrock Cluster Monitoring Wells

- MW-1-C, MW-1-A, MW-1-MI
- MW-2-C, MW-2-A, MW-2-MI
- MW-3-C, MW-3-A, MW-3-MI
- MW-4-C, MW-4-A, MW-4-MI

MW-HGA-4 was installed as a conventional 2-inch PVC monitoring well screened from approximately 8 to 43 feet below ground surface. It is located about a half-mile upgradient in Hay Gulch from the King I Mine facilities at the confluence with Roberts Canyon. The purpose of this groundwater monitoring

location is to obtain and monitor water level and quality data sufficiently upgradient from any potential historical mining impacts from the King I Mine.

Bedrock monitoring wells were installed at four locations in 2017 to meet the requirements of TR-26. At each of the four locations the wells were completed in three discrete intervals in order to collect water quantity and quality information from the mining overburden (Cliff House Sandstone, designated "C"), the mined interval (A-seam of the upper Menefee Formation, designated "A") and the underburden (upper Menefee Formation referred to as Menefee Interburden as it is between the A-seam and B-seam, and where present, designated "MI"). Each cluster is oriented in-line with the approximate direction of strata dip (210°), spaced 20 feet apart, with the MI wells upgradient, C wells downgradient, and A wells in the middle. The MW-1 location is north and sufficiently upgradient of any current or previous King II Mine workings and thus allows monitoring of baseline conditions. The MW-2 location is south and downgradient of future King II Mine workings and allows monitoring of baseline conditions now, as well as future performance monitoring as mining begins to the north and upgradient of this location. The MW-3 and MW-4 locations are to the southwest of current and future King II Mine workings and shall allow performance monitoring during mining operations. These clustered bedrock monitoring wells are constructed as conventional 2-inch PVC, with the exception of the MW-2-C well which was installed as a 7" open hole completion (steel surface casing installed and cemented to about 41 feet) to allow for future video logging documentation of water inflow location(s), should the Cliff House Formation ever contribute water at this location.

The following compliance hydrologic monitoring locations were continued in 2017:

- Hay Gulch Ditch Upgradient
- Hay Gulch Ditch Downgradient
- Wiltse Well
- Well #1 Upgradient
- Well #2 Downgradient

Figure 1 shows the 2017 compliance hydrologic monitoring locations (18) and their relation to the King I and II Mines.

HYDROLOGIC MONITORING DATA COLLECTION

Hydrologic monitoring data collection was expanded in 2017 in number of locations as indicated in the previous section. Protocols for establishing new hydrologic monitoring locations, as initiated in 2016, were continued for these locations. The frequency of field parameter monitoring for new locations is monthly for a one-year period, following the CDRMS "Guidelines for the Collection of Baseline Water Quality and Overburden Geochemistry Data" (1984). The initial monthly field parameter monitoring schedule is intended to more fully characterize any potential seasonal variation in the hydrologic system. Field parameters are collected with an In-Situ SmarTROLL multi-parameter sonde at all location types, utilizing an industry-standard low-flow cell system for the monitoring wells. The specific field parameters monitored during each event are given in **Tables 1, 2, and 3.**The purpose of the expanded analytical

suite was to collect water quality data in line with the CDRMS "Guidelines for the Collection of Baseline Water Quality and Overburden Geochemistry Data" (1984), which were adopted in TR-26. Water samples are collected quarterly at compliance monitoring locations for laboratory analysis. This baseline data collection period is intended to characterize the pre-mining environmental conditions in order to shape the long-term monitoring plan appropriately to evaluate potential mining effects on the hydrologic system. As such, this is intended as a one-year, four-quarter period to evaluate seasonal changes that may occur over a typical year. These laboratory analytical suites are approved by CDRMS in TR-26 and are presented as **Tables 1, 2 and 3**, by water source type. When reviewing the parameter lists, it is important to note the red highlighted parameters, which were added to the pre-2016 compliance list as part of the one-year baseline period for these monitoring locations.

All wet bedrock cluster monitoring wells are instrumented with industry-standard low-flow bladder pump groundwater sampling systems. The pumps are set to the approximate depth of the well screen midpoints for the A and MI wells, and set to near bottom of the C wells to allow for micro-purge sampling methodology. The dry bedrock cluster wells (MW-2-C, MW-2-A, MW-2-MI) are not instrumented with any groundwater sampling pumps and are monitored for water level only.

Other notable updates to the GCC hydrologic monitoring program in 2017 include a modified sampling methodology at the Well #2 Downgradient and MW-HGA-4. Each well was originally sampled using a standard environmental bailer; since 2005 in the case of Well #2 Downgradient and since December 2012 at MW-HGA-4. Each well was instrumented with a dedicated 12-volt electric submersible pump ahead of the 2017Q2 sampling event in June, allowing industry-standard low-flow sampling methodology.

HYDROLOGIC MONITORING DATA ANALYSIS

This 2017 annual hydrologic report presents all previous monitoring and new well data from 2017 in tables at the end of the document. A summary of water quality analyses from the Hay Gulch irrigation ditch (surface water), alluvial wells in Hay Gulch and some regional domestic wells (groundwater) was presented in the GCC 2015 Annual Hydrology Report. The 2016 report focused on water sampling on the mining property. In 2017 a number of new wells were installed in bedrock and alluvium to support a Probable Hydrologic Consequences report (PHC, 2017) and Cumulative Hydrological Impacts Assessment report (CHIA, 2017), and these have been added to routine quarterly monitoring. Graphical depictions of major ion chemistry are presented in the figures section.

Surface water has been sampled in the irrigation ditch at locations above and below the King I and II Mines, and alluvial groundwater in four wells (one new). Bedrock groundwater monitoring now covers one surface seep from the base of the Cliff House Sandstone and 12 wells in four clusters of bedrock wells with completions in, above and below the mined (A) coal seam.

Analytical data from all 2017 sampling is presented in summary tables in the **Attachment**. Full laboratory reports are not included here as they have been submitted to CDRMS quarterly following each sampling event. Full laboratory reports can also be found at:

http://www.gccenergy.net/water monitoring results.php

SURFACE WATER

The Hay Gulch Ditch is a year-round diversion from 0.5 to 1.5 cubic feet per second (360 to 1,100 acrefeet/year) from the La Plata River into the gulch, which is otherwise an intermittent drainage that flows only during storms. Ditch water applied to irrigation infiltrates from spreader dikes and infiltrates the alluvium, and return flows in the parallel, unlined channel are collected in lower Hay Gulch which is tributary to the La Plata River, and near the confluence with the lower La Plata River. It is not clear that irrigation return flows are actually able to re-enter the lined ditch at any point, but most are collected by the natural channel. The Huntington Ditch and Pipeline also divert water from the upper La Plata River to a collection point in Hay Gulch for use by the King II Mine, which water that is consumed (in evaporation) by the mine principally for dust control with no waste or return flow.

Mine facilities have stormwater containment berms and culverts directing stormwater to a sediment pond, which would be sampled if a storm event filled it sufficiently to allow this.

The surface water sample collection locations are shown in Figure 1. Figure 2 compares water quality analyses in 2016 and 2017 samples collected in the ditch upstream (upgradient) and downstream (downgradient) of the King I and II Mine facilities. The upstream ditch water contains concentrations of total dissolved solids (TDS, the top of the stacked bars) that are less than 300 mg/L, and the downstream ditch water contains highly variable concentrations of TDS, ranging from 100 mg/L, to 700 mg/L. In several sampling events (March, 2016; June, 2016; June, 2017) upgradient and downgradient concentrations are similar, but in others (September, 2016; November, 2016 and March, 2017) total concentrations are significantly greater in the downgradient samples; and in the September, 2017 samples the total concentrations are significantly less in the downgradient sample. These observations suggest some irrigation water does in fact return to the lined ditch and increase total dissolved concentrations along this reach. The apparent reversal in September, 2017, when TDS is shown as decreasing along the reach, may well reflect misidentified samples. Concentrations of sulfate and chloride are greater in the downstream ditch water, especially during the fall and winter months. Measured pH of the ditch water indicates slightly alkaline to alkaline (pH 7.8 to 8.7) conditions, with concentrations of nitrate, total organic carbon, and trace metals all below the applicable drinking water standards for samples collected from the Hay Gulch ditch.

ALLUVIAL GROUNDWATER

Major ion concentrations in water samples collected from four alluvial wells in September, 2017, are shown in Stiff diagrams in **Figure 3**. Stiff diagrams represent concentrations in milli-equivalents per liter, which are calculated from analyzed mass concentrations, ionic weight and valence, and present negative cations to the right and positive anions to the left; in this schema, a molar solution of sodium sulfate would have 23 gm of Na and 48 gm sulfate, one equivalent of each.

The four sampling locations are shown in **Figure 1**. The Wiltse well is close to the historical King I Mine portal, the Well #1 Upgradient is roughly halfway between the Wiltse well and the mouth of the side gulch in which the King II Mine facilities are located, and the Well #2 Downgradient is in Hay Gulch downstream the King II Mine facilities. New well MW-HGA-4 is located in Hay Gulch, above the King II portal, and at the confluence of Roberts Gulch; it was sampled in June and September of 2017. Coal grains were observed in the drill cuttings from this well, which may account for greater observed concentrations of sulfate at this location. Thin coal seams are also evident in hillslopes near the King I and King II mine portals. Concentrations of sodium have also been spatially variable.

Major ion concentrations in these wells have not changed significantly over 2016-2017. A plot of sulfate and total dissolved solids in the Wiltse well in **Figure 4** (updated through 2017) shows variation in these parameters over a twenty year period, demonstrating that there are long term variations, probably due to climatic variation (wet/dry periods), in the alluvial groundwater composition. There is no consistent increase in dissolved constituent concentrations (total or particular) in the direction of flow (down valley), as observed in previous hydrology reports. No trace elements exceed drinking water criteria in any of these alluvial wells.

In general, the alluvial groundwater in Hay Gulch is not used for drinking water, mostly because the sulfate is naturally elevated in some wells and emetic even for stock. Most alluvial water samples exceeded the total dissolved solids drinking water standard of 500 mg/L. Concentrations of nitrate and nitrite were less than the drinking water standard of 10 mg/L. However, traces of nitrate and nitrite up to 1 mg/L in some well samples can be attributed to infiltration of stock urine (cattle). Two trace metals, iron and manganese were detected in alluvial groundwater samples. These may derive from the weathering of iron sulfide (pyrite) in the Mesaverde Group strata. When pyrite is oxidized by infiltrating, oxygenated water, it yields sulfate, iron and trace metals which are also present. The iron tends to drop out of solution as iron oxides, but the manganese may persist over longer distances. Manganese left behind on sandstone cliffs by evaporation forms the blue-black coating characteristic of many southwest bluffs. All other trace metals (aluminum, arsenic, cadmium, lead, mercury, molybdenum, selenium, uranium and zinc) were reported to be at concentrations below drinking water standards. Concentrations of total organic carbon, an indicator parameter of wastewater, disinfection or fertilizer impacts, were reported to be less than 4 mg/L in all alluvial groundwater samples.

An assessment of the CDRMS-permitted waste rock refuse pile at the King I Mine facility was presented in 2017 in a report prepared by RHS titled "Geochemical Materials Analysis, King I and II Mines, La Plata County Colorado" and is on file with CDRMS. Coal mine waste rock typically contains roof and floor rock (overburden and underburden) which commonly has several percent of pyrite or iron sulfide, which can generate sulfate in oxygenated water in contact with these materials. The report showed no significant generation of oxidation products other than slightly elevated iron and manganese in spoil, and no discernible impacts of waste pile leachates on alluvial groundwater. No trace metal concentrations exceeded drinking water criteria.

Groundwater levels at the four alluvial monitoring wells were measured and documented per CDRMS compliance requirements at the time of each sampling event. The groundwater hydrograph for these wells over the entire period of historical record in **Figure 6** shows fairly substantial seasonal variability at all three wells over time which is not only related to variability in precipitation but also subject to the variability in flood irrigation cycles of Hay Gulch irrigated pasture. Groundwater levels measured at the Wiltse well before 2009 may have been impacted by pumping during operation and subsequent decommissioning of the King I Mine. This is shown as more pronounced variability on the order of 10 foot annual level range from 2002-2009. However, groundwater levels have been stable for the period of record. Current King I and II Mine operations have not withdrawn Hay Gulch alluvial groundwater for purposes other than routine water quality monitoring since 2009, nor discharged any fluids to Hay Gulch, and therefore do not impact Hay Gulch alluvial groundwater levels.

BEDROCK GROUNDWATER

Four clusters of bedrock monitoring wells were installed in 2017 at locations shown in Figure 1, with wells at each location open in the "A" coal seam, roof and floor (designated A, C and MI intervals). These were first sampled when completed, when not dry; sampling events are summarized in **Table 4**.

Major ion compositions were consistent between samples in each well, and Stiff diagrams representing those major ion compositions are presented in Figure 5, which were included in the 2017 CHIA report. Wells at the MW-3 site have all been dry. Coal wells (mined "A" seam) all show similar water quality, whereas roof and floor water samples do not, indicating lack of hydrological continuity in those intervals and minor variations in bedrock composition.

Tabulated bedrock water quality data show no trace element concentrations exceed water use criteria, though none of these wells could supply sufficient water for any human or agricultural purpose.

RECOMMENDATIONS

With comprehensive review of the expanded baseline parameter list results and increased frequency of monitoring for the nearly two-year period during 2016-2017 for the existing compliance Hay Gulch Ditch locations and alluvial wells, no trace metals or minor constituents to be significant with respect to water

quality have been observed. This considers drinking water standards, although naturally occurring major ion concentrations (specifically TDS, sulfate) disqualify the alluvial aquifer as a primary drinking water source. Given the spatial variation in water quality does not suggest any contamination of the alluvial aquifer by mining activity; it is proposed that revised hydrologic monitoring parameters and frequency be adopted for these locations already subjected to the expanded baseline monitoring protocol.

RHS recommends a reduction in monitoring frequency of these locations to bi-annual (twice yearly) to coincide with the high and low flow periods. This will best utilize GCC resources to capture the overall seasonal variability as the maximum and minimum wetting cycles. Based on hydrologic monitoring data collected to date, the two ideal months to conduct future long-term bi-annual compliance monitoring are April and October. This recommendation was given in the 2016 Annual Hydrology Report, however due to a very busy GCC hydrologic monitoring program expansion in 2017, discussion between CDRMS, GCC and RHS on this matter has not yet occurred.

RHS recommends a reduction in monitored parameters subjected to analytical laboratory testing, while keeping the field parameter list the same as the baseline suites. The proposed long-term compliance water quality parameter lists are given as **Table 5**. To summarize the parameter revision for the three lists:

GCC GW Compliance

- Remove Silica (SiO₂) Comparison of TDS vs. sum of ions has been accomplished and this
 parameter is no longer of interest with respect to monitoring for potential hydrologic impacts from
 GCC or other historic mining impacts.
- Remove Mercury (Hg) Four quarterly sample analyses for all wells have all shown non-detect results so baseline characterization has been accomplished.
- Remove Total Nitrogen as Nitrate-Nitrite This parameter is useful to interpret and distinguish agricultural impacts from blasting explosive impacts to groundwater in surface coal mining operations. King II is an underground mine and GCC has not used nor plans to use explosives in their operations. Four quarterly sample analyses for all wells have established baseline total nitrogen as nitrate-nitrite.
- Remove Ammonia (NH₃) This parameter was only intended for one-time collection during the baseline period to establish absence. This parameter is useful to interpret and distinguish agricultural impacts from blasting explosive impacts to groundwater in surface coal mining operations. King II is an underground mine and GCC has not used nor plans to use explosives in their operations.
- Remove Phosphate (PO₄ as P) This parameter was only intended for one-time collection during the
 baseline period to establish absence. This parameter is useful to interpret and distinguish possible
 impacts of general agriculture use versus fertilizer use for vegetation reclamation at surface coal
 mines. King II is an underground mine and GCC has not used nor plans to use any significant
 phosphate products.

GCC S&S Compliance

- Remove Silica (SiO₂) Comparison of TDS vs. sum of ions has been accomplished and this parameter is no longer of interest with respect to monitoring for potential hydrologic impacts from GCC or other historic mining impacts.
- Remove Mercury (Hg) Four quarterly sample analyses for Seep-1 have all shown non-detect results so baseline characterization has been accomplished.
- Remove Total Nitrogen as Nitrate-Nitrite This parameter is useful to interpret and distinguish
 agricultural impacts from blasting explosive impacts to groundwater in surface coal mining operations.
 King II is an underground mine and GCC has not used nor plans to use explosives in their operations.
 Four quarterly sample analyses for Seep-1 have established baseline total nitrogen as nitrate-nitrite,
 which is interpreted to be a result of wildlife activity.
- Remove Ammonia (NH₃) This parameter was only intended for one-time collection during the baseline period to establish absence. This parameter is useful to interpret and distinguish agricultural impacts from blasting explosive impacts to groundwater in surface coal mining operations. King II is an underground mine and GCC has not used nor plans to use explosives in their operations.
- Remove Phosphate (PO₄ as P) This parameter was only intended for one-time collection during the
 baseline period to establish absence. This parameter is useful to interpret and distinguish possible
 impacts of general agriculture use versus fertilizer use for vegetation reclamation at surface coal
 mines. King II is an underground mine and GCC has not used nor plans to use any significant
 phosphate products.

GCC SW Compliance

- Remove Silica (SiO₂) Comparison of TDS vs. sum of ions has been accomplished and this
 parameter is no longer of interest with respect to monitoring for potential hydrologic impacts from
 GCC or other historic mining impacts.
- Remove Mercury (Hg) Four quarterly sample analyses for the two Hay Gulch Ditch sites have all shown non-detect results so baseline characterization has been accomplished.
- Remove Total Nitrogen as Nitrate-Nitrite This parameter is useful to interpret and distinguish
 agricultural impacts from blasting explosive impacts to groundwater in surface coal mining operations.
 King II is an underground mine and GCC has not used nor plans to use explosives in their operations.
 Four quarterly sample analyses for the two Hay Gulch Ditch sites have established baseline total
 nitrogen as nitrate-nitrite.
- Remove Ammonia (NH₃) This parameter was only intended for one-time collection during the baseline period to establish absence. This parameter is useful to interpret and distinguish agricultural impacts from blasting explosive impacts to groundwater in surface coal mining operations. King II is an underground mine and GCC has not used nor plans to use explosives in their operations.
- Remove Phosphate (PO₄ as P) This parameter was only intended for one-time collection during the baseline period to establish absence. This parameter is useful to interpret and distinguish possible impacts of general agriculture use versus fertilizer use for vegetation reclamation at surface coal mines. King II is an underground mine and GCC has not used nor plans to use any significant phosphate products.
- Remove Oil and Grease Four quarterly sample analyses for the two Hay Gulch Ditch sites have all shown non-detect results so baseline characterization has been accomplished.

RHS recommends continuing water sample collection and analysis of the GCC GW Baseline suite for the bedrock cluster monitoring wells established in 2017, until four quarters have been assessed. Provided that silica, mercury, nitrate/nitrite, ammonia and phosphate are insignificant through that four quarters of monitoring, the analytical suite for samples from these locations shall thenceforth convert to the proposed long-term compliance water quality parameter list as given in **Table 5**.

TABLES

 Table 1.

 GCC Surface Water Baseline Water Quality Parameter Suite (GCC SW Baseline)

	Units	Justification for Addition	
Parameter			Comments
Potassium (K)	mg/L	Rounding out major ion constituents with K,	
Chloride (Cl ⁻)	mg/L	Cl will allow for better interpretation with trilinear plotting	
Calcium (Ca ⁺²)	mg/L		
Magnesium (Mg ⁺²)	mg/L		
Sodium (Na ⁺)	mg/L		
Sulfate (SO ₄)	mg/L		
Alkalinity, as CaCO ₃	mg/L		
Silica (SiO 2)	mg/L	Allows comparison of TDS vs. sum of major ions	
Manganese (Mn)	mg/L		
Fluoride (F)	mg/L	Secondary ion that has been identified with minor potential nuisance value	
Iron (Fe)	mg/L		
Aluminum (Al)			
Arsenic (As)	1		
Cadmium (Cd)	1		
Copper (Cu)	1		
Lead (Pb)	mg/L	Trace metals commonly associated with coal	
Mercury (Hg)	1	mining impacts	
Molybdenum (Mo)			
Selenium (Se)			
Zinc (Zn)	1		
Uranium (U)	mg/L	DRMS request via HGCAP	
Hardness, as CaCO₃	mg/L		
Bicarbonate, as CaCO ₃	mg/L		
Carbonate, as CaCO ₃	mg/L		
Hydroxide, as CaCO ₃	mg/L		
Total Nitrogen as Nitrate-Nitrite	mg/L	Distinguish fertilizer and/or stock impacts	
Ammonia (NH ₃)	mg/L	Distinguish fertilizer and/or stock impacts	1-time only with field kit to establish absence, SW and Alluvial GW only in 2016Q4
Phosphate (PO 4 as P)	mg/L	Distinguish fertilizer and/or stock impacts	1-time only to establish absence, SW and Alluvial GW only in 2016Q4
Sodium Adsorption Ratio (SAR)	mg/L	Measure of suitability for agricultural irrigation	
Oil & Grease	mg/L	Indication of background/upstream impacts	
pH (lab)	SU		
Total Dissolved Solids (TDS)	mg/L		
Total Suspended Solids (TSS)	mg/L	Provides mass of particulates causing turbidity	
Total Organic Carbon (TOC)	mg/L	Surrogate parameter for coal mining impacts	
Temperature (field)	°C		
pH (field)	SU	Allows comparison of field vs. lab measurements, key for proper Bicarb, Carb, Hydroxide calculations	
Specific Conductivity (field)	mS/cm		
Oxygen Reduction Potential (ORP) (field)	mV	To predict states of chemical speciation of water, i.e. dissolved metals	
Dissolved Oxygen (DO) (field)	mg/L	General water quality parameter to document available oxygen	
Flow Rate (field, ditch only)	cfs		

Notes:

New analytes in bold, italicized red text mg/L = milligrams per liter SU = standard units mS/cm millisiemens per centimeter cfs = cubic feet per second mV = millivolt

 Table 2.

 GCC Groundwater Baseline Water Quality Parameter Suite (GCC GW Baseline)

Parameter	Units	Justification for Addition	Comments
Potassium (K)	mg/L	Rounding out major ion constituents with K,	
	9/ -	CI will allow for better interpretation with	
Chloride (Cl ⁻)	mg/L	trilinear plotting	
Calcium (Ca ⁺²)	mg/L		
Magnesium (Mg ⁺²)	mg/L		
Sodium (Na ⁺)	mg/L		
Sulfate (SO ₄)	mg/L		
Alkalinity, as CaCO ₃	mg/L		
Silica (SiO ₂)	mg/L	Allows comparison of TDS vs. sum of major ions	
Manganese (Mn)	mg/L		
Fluoride (F)	mg/L	Secondary ion that has been identified with minor potential nuisance value	
Iron (Fe)	mg/L		
Aluminum (AI)]		
Arsenic (As)	1		
Cadmium (Cd)			
Copper (Cu)		Trace metals commonly associated with coal	
Lead (Pb)	mg/L	mining impacts	
Mercury (Hg)	1		
Molybdenum (Mo)			
Selenium (Se)			
Zinc (Zn)			
Uranium (U)	mg/L	DRMS request via HGCAP	
Hardness, as CaCO₃	mg/L		
Bicarbonate, as CaCO₃	mg/L		
Carbonate, as CaCO ₃	mg/L		
Hydroxide, as CaCO₃	mg/L		
Total Nitrogen as Nitrate-Nitrite	mg/L	Distinguish fertilizer and/or stock impacts	
Ammonia (NH₃)	mg/L	Distinguish fertilizer and/or stock impacts	1-time only to establish absence, SW and Alluvial GW only in 2016Q4
Phosphate (PO 4 as P)	mg/L	Distinguish fertilizer and/or stock impacts	1-time only to establish absence, SW and Alluvial GW only in 2016Q4
pH (lab)	SU		
Total Dissolved Solids (TDS)	mg/L		
Total Organic Carbon (TOC)	mg/L	Surrogate parameter for coal mining impacts	
Temperature (field)	°C		
рН (field)	SU	Allows comparison of field vs. lab measurements, key for proper Bicarb, Carb, Hydroxide calculations	
Specific Conductivity (field)	mS/cm		
Oxygen Reduction Potential (ORP) (field)	mV	To predict states of chemical speciation of water, i.e. dissolved metals	
Depth to Water (field, wells only)	ft		

Notes:

New analytes in bold, italicized red text
mg/L = milligrams per liter
SU = standard units
mS/cm millisiemens per centimeter
ft = feet
mV = millivolt

 Table 3.

 GCC Spring & Seep Baseline Water Quality Parameter Suite (GCC S&S Baseline)

Parameter	Units	Justification for Addition	Comments
Potassium (K)	mg/L	Rounding out major ion constituents with K, Cl will allow for better interpretation with	
Chloride (Cl ⁻)	mg/L	trilinear plotting	
Calcium (Ca ⁺²)	mg/L		
Magnesium (Mg ⁺²)	mg/L		
Sodium (Na ⁺)	mg/L		
Sulfate (SO₄)	mg/L		
Alkalinity, as CaCO ₃	mg/L		
Silica (SiO ₂)	mg/L	Allows comparison of TDS vs. sum of major ions	
Manganese (Mn)	mg/L		
Fluoride (F)	mg/L	Secondary ion that has been identified with minor potential nuisance value	
Iron (Fe)	mg/L		
Aluminum (Al)			
Arsenic (As)			
Cadmium (Cd)			
Copper (Cu)		Towns markets assumed to the desired to the	
Lead (Pb)	mg/L	Trace metals commonly associated with coal mining impacts	
Mercury (Hg)		mining impacts	
Molybdenum (Mo)			
Selenium (Se)			
Zinc (Zn)			
Uranium (U)	mg/L	DRMS request via HGCAP	
Hardness, as CaCO ₃	mg/L		
Bicarbonate, as CaCO₃	mg/L		
Carbonate, as CaCO ₃	mg/L		
Hydroxide, as CaCO₃	mg/L		
Total Nitrogen as Nitrate-Nitrite	mg/L	Distinguish fertilizer and/or stock impacts	
Ammonia (NH 3)	mg/L	Distinguish fertilizer and/or stock impacts	1-time only with field kit to establish absence, SW and Alluvial GW only in 2016Q4
Phosphate (PO 4 as P)	mg/L	Distinguish fertilizer and/or stock impacts	1-time only to establish absence, SW and Alluvial GW only in 2016Q4
Sodium Adsorption Ratio (SAR)	mg/L	Measure of suitability for agricultural irrigation	
рН (lab)	SU		
Total Dissolved Solids (TDS)	mg/L		
Total Organic Carbon (TOC)	mg/L	Surrogate parameter for coal mining impacts	
Temperature (field)	°C		
рН (field)	SU	Allows comparison of field vs. lab measurements, key for proper Bicarb, Carb, Hydroxide calculations	
Specific Conductivity (field)	mS/cm		
Oxygen Reduction Potential (ORP) (field)	mV	To predict states of chemical speciation of water, i.e. dissolved metals	
Flow Rate (field, spring/seep only)	gpm		

Notes

New analytes in bold, italicized red text mg/L = milligrams per liter SU = standard units mS/cm millisiemens per centimeter gpm = gallons per minute mV = milivolt

Table 4. Lab Samples Collected from Bedrock Cluster Monitoring Wells, 2017

	Cliff House Overburden (C wells)	Menefee A-seam Coal (A wells)	Menefee Interburden-Floor (MI wells)
MW-1 cluster	June, Sept	June, Sept	June (dry in Sept)
MW-2 cluster	Dry	dry	dry
MW-3 cluster	Mar, June, Sept	Mar, June, Sept	Mar, June, Sept
MW-4 cluster	Mar, June, Sept	Mar, June, Sept	Mar, June, Sept

Table 5. Proposed long-term compliance water quality parameter suites (Groundwater, Spring & Seep, Surface Water)

GCC Groundwater Compliance Water Quality Parameter Suite (GCC GW Compliance)

Parameter Units Potassium (K) mg/L mg/L Chloride (Cl⁻) Calcium (Ca⁺²) mg/L mg/L Magnesium (Mg+2) mg/L Sodium (Na[†]) Sulfate (SO₄) mg/L Alkalinity, as CaCO₃ mg/L Manganese (Mn) mg/L Fluoride (F) mg/L Iron (Fe) mg/L Aluminum (Al) mg/L Arsenic (As) mg/L Cadmium (Cd) mg/L Copper (Cu) mg/L Lead (Pb) mg/L Molybdenum (Mo) mg/L Selenium (Se) mg/L Zinc (Zn) mg/L Uranium (U) mg/L Hardness, as CaCO₃ mg/L Bicarbonate, as CaCO₃ mg/L Carbonate, as CaCO₃ mg/L Hydroxide, as CaCO₃ mg/L pH (lab) SU Total Dissolved Solids (TDS) mg/L Total Organic Carbon (TOC) mg/L Temperature (field) °C pH (field) $\mathsf{S}\mathsf{U}$ Specific Conductivity (field) mS/cm Oxygen Reduction Potential (ORP) (field) mV Depth to Water (field, wells only) ft

Notes:

New analytes in bold, italicized red text mg/L = milligrams per liter SU = standard units mS/cm millisiemens per centimeter ft = feet mV = milivolt

GCC Spring & Seep Compliance Water Quality Parameter Suite (GCC S&S Compliance)

Parameter	Units
Potassium (K)	mg/L
Chloride (Cl ⁻)	mg/L
Calcium (Ca ⁺²)	mg/L
Magnesium (Mg ⁺²)	mg/L
Sodium (Na ⁺)	mg/L
Sulfate (SO ₄)	mg/L
Alkalinity, as CaCO ₃	mg/L
Manganese (Mn)	mg/L
Fluoride (F)	mg/L
Iron (Fe)	mg/L
Aluminum (Al)	mg/L
Arsenic (As)	mg/L
Cadmium (Cd)	mg/L
Copper (Cu)	mg/L
Lead (Pb)	mg/L
Molybdenum (Mo)	mg/L
Selenium (Se)	mg/L
Zinc (Zn)	mg/L
Uranium (U)	mg/L
Hardness, as CaCO ₃	mg/L
Bicarbonate, as CaCO₃	mg/L
Carbonate, as CaCO ₃	mg/L
Hydroxide, as CaCO₃	mg/L
Sodium Adsorption Ratio (SAR)	mg/L
pH (lab)	SU
Total Dissolved Solids (TDS)	mg/L
Total Organic Carbon (TOC)	mg/L
Temperature (field)	°C
pH (field)	SU
Specific Conductivity (field)	mS/cm
Oxygen Reduction Potential (ORP) (field)	mV
Flow Rate (field, spring/seep only)	gpm

Notes

New analytes in bold, italicized red text mg/L = milligrams per liter SU = standard units mS/cm millisiemens per centimeter gpm = gallons per minute mV = milivolt

GCC Surface Water Compliance Water Quality Parameter Suite (GCC SW Compliance)

Parameter	Units
Potassium (K)	mg/L
Chloride (Cl ⁻)	mg/L
Calcium (Ca ⁺²)	mg/L
Magnesium (Mg ⁺²)	mg/L
Sodium (Na ⁺)	mg/L
Sulfate (SO ₄)	mg/L
Alkalinity, as CaCO ₃	mg/L
Manganese (Mn)	mg/L
Fluoride (F)	mg/L
Iron (Fe)	mg/L
Aluminum (Al)	mg/L
Arsenic (As)	mg/L
Cadmium (Cd)	mg/L
Copper (Cu)	mg/L
Lead (Pb)	mg/L
Molybdenum (Mo)	mg/L
Selenium (Se)	mg/L
Zinc (Zn)	mg/L
Uranium (U)	mg/L
Hardness, as CaCO₃	mg/L
Bicarbonate, as CaCO ₃	mg/L
Carbonate, as CaCO₃	mg/L
Hydroxide, as CaCO₃	mg/L
Sodium Adsorption Ratio (SAR)	mg/L
pH (lab)	SU
Total Dissolved Solids (TDS)	mg/L
Total Suspended Solids (TSS)	mg/L
Total Organic Carbon (TOC)	mg/L
Temperature (field)	°C
pH (field)	SU
Specific Conductivity (field)	mS/cm
Oxygen Reduction Potential (ORP) (field)	mV
Dissolved Oxygen (DO) (field)	mg/L
Flow Rate (field, ditch only)	cfs

Notes

New analytes in bold, italicized red text mg/L = milligrams per liter SU = standard units mS/cm millisiemens per centimeter cfs = cubic feet per second mV = millivolt

FIGURES

Figure 1. GCC 2017 hydrologic monitoring locations

Figure 2. Comparison of major ions in water analyses in Hay Gulch Ditch samples collected upstream and downstream of King I & II

Mines, 2016 through 2017

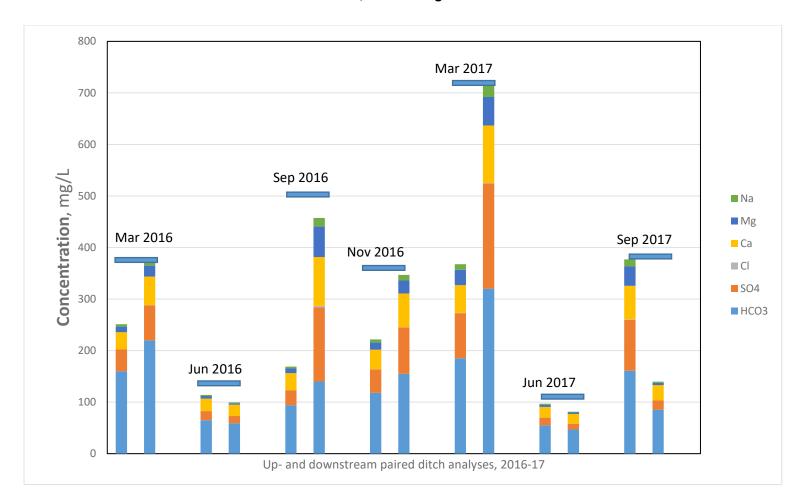
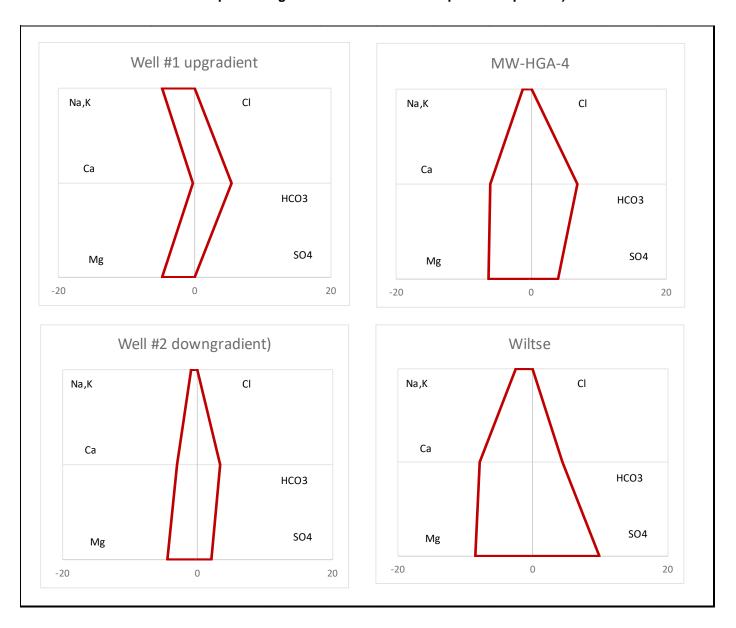




Figure 3. Comparison of major ion concentrations in alluvial monitoring wells in Hay Gulch (Stiff diagrams representing concentrations in milli-equivalents per liter)

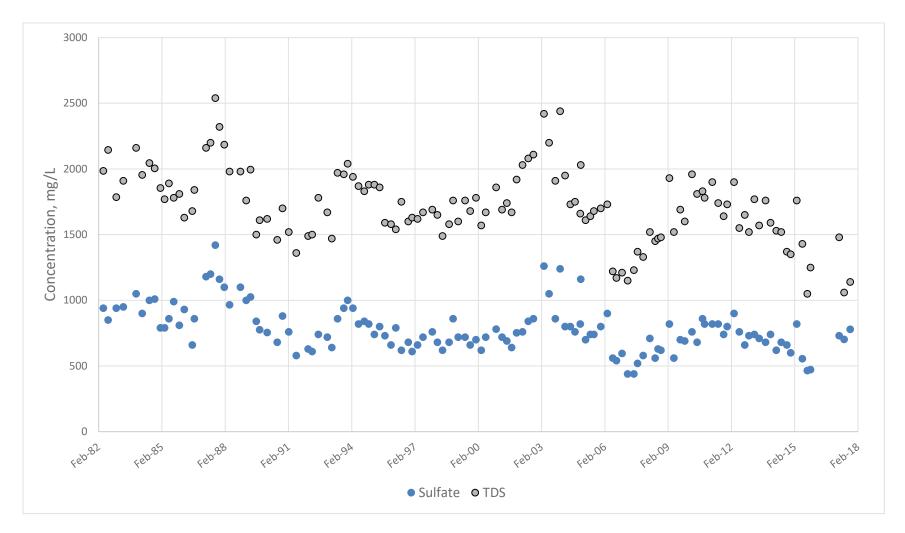
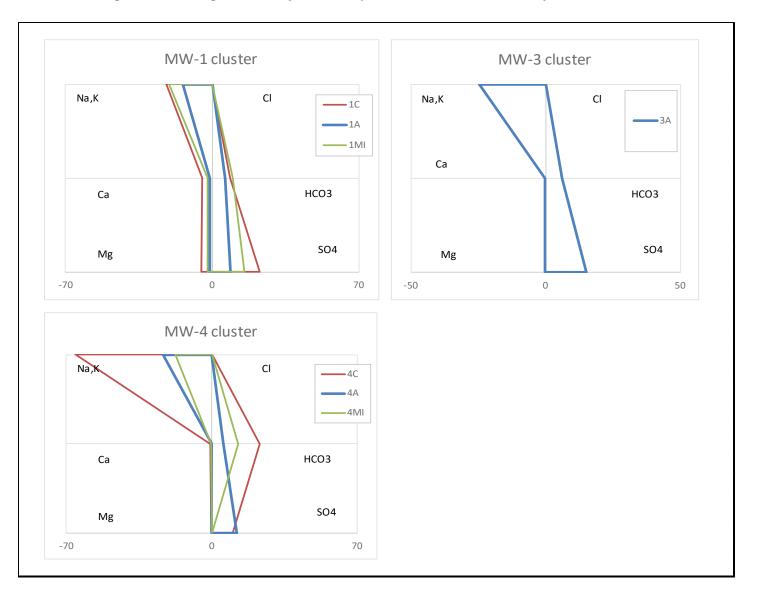



Figure 5. Stiff diagrams of major ion compositions in bedrock wells, by cluster location

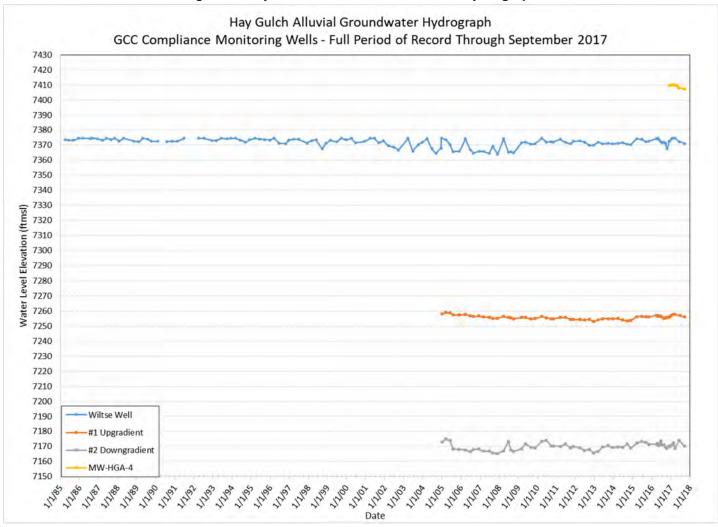


Figure 6. Hay Gulch Alluvium Groundwater Hydrograph

ATTACHMENT - GCC Hydrologic M	/lonitoring Data∜	Summary	Tables
-------------------------------	-------------------	---------	--------

							Field Pa	rameters														•						Iah Ai	nalytical Resu	te				•	·		-		-					
Location Name	Year	Q Monti	Sample Date	Lab Analysis	Flow Rate	emperature	pH S	Specific	Oxygen Reduction Potential	Dissolved Oxygen	Hardness as CaCO3		Total Dissolved Golids (Lab)	Total Suspended Solids	Calcium	Magnesium	Sodium	Potassium	Alkalinity, Total	Alkalinity, Bicarbonate	Alkalinity, Carbonate	Alkalinity, Hydroxide	Chloride	Fluoride	Sulfate as SO4		Oil & Nitri irease	rate/ ite as N	onia Ortho	Sodius	on Aluminui	n Arsenic	Cadmium	Copper	Iron Lead	Manganese	Mercury	Molybdenun	Selenium	Silica (SiO2)	Silicon	Uranium Zin	c Radium 226	Radium 228
				Y/N	cfs	deg C	SU	μS/cm	mV	mg/L	mg/L	SU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L mg	g/L mg	/L mg/	no uni	mg/L	mg/L	mg/L	mg/L	mg/L mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L mg	/L pCi/L	pCi/L
Hay Gulch Ditch Upgradient	2016	01 3	03/31/16	Υ	0.70	9.8	7.75	247	76.4	8.12	128	8.17	170	30.0	33.5	10.9	4.46	<1	160	160	<10	<10	5.77	0.213	42.1	1.41	<5 <0	0.02 N	A NA	0.17	<0.05	<0.0005	<0.0001	0.0006	<0.05 <0.0005	0.0059	<0.0002	<0.0005	<0.001	7.78	3.64	0.0002 <0.0	01 <0.4	<0.8
Hay Gulch Ditch Upgradient	2016	22 4	04/22/16	N	0.99	20.9	8.27	323	114.7	6.35													-				-			-							10.000		10.000					
Hay Gulch Ditch Upgradient	2016	22 5	05/26/16	N	1.22	11.3	7.95	197	97.2	8.03																											1							
Hay Gulch Ditch Upgradient	2016 (Q2 6	06/23/16	Υ	1.56	21.1	8.15	141	51.6	5.96	80.9	8.04	75	117	24	5.08	2.19	<1	65	65	<10	<10	2.07	0.208	17.7	1.6	<5 0.0	028 N	A NA	0.1	< 0.05	< 0.0005	< 0.0001	0.0011	<0.05 <0.0005	0.0035	<0.0002	0.0009	<0.001	8.23	3.85	0.0001 <0.0	01 NA	NA
Hay Gulch Ditch Upgradient	2016 (Q3 7	07/20/16	N	0.99	20.8	8.24	189	53.6	6.48																																		
Hay Gulch Ditch Upgradient	2016 (Q3 8	08/25/16	N	0.99	16.8	8.26	207	82.8	6.86																																		
Hay Gulch Ditch Upgradient	2016 (Q3 9	09/21/16	Υ	1.07	14.93	8.47	233.2	72.5	7.2	119	8.16	165	17.0	33.0	9.01	3.90	1.35	98.0	94.0	<10	<10	4.32	0.223	29.0	2.21	<5 <0.	.020 N	A NA	0.16	< 0.05	< 0.0005	< 0.0001	0.0011	<0.05 <0.0005	0.0043	< 0.0002	0.0007	< 0.001	10.5	4.89	0.0002 < 0.0	01 NA	NA
Hay Gulch Ditch Upgradient	2016 (24 10	10/19/16	N	0.95	16.39	8.19	210.2	105.9	4.73																																		
Hay Gulch Ditch Upgradient	2016 (24 11	11/29/16	Υ	NM	5.86	8.79	257.9	92.4	6.71	152	8.19	180	4.8	38.4	13.7	6	<1.00	118	118	<10.0	<10.0	7.92	0.208	45.3	1.14	<5.00 <0.	.020 N	A NA	0.21	< 0.050	<0.0005	< 0.0001	0.0005	<0.050 <0.0005	0.0047	<0.0002	0.0008	<0.0010	9.71	4.54	0.0003 < 0.0	010 NA	NA
Hay Gulch Ditch Upgradient	2016	24 12	12/13/16	N	1.02	6.97	8.58	233.7	116.3	6.1																																		
Hay Gulch Ditch Upgradient	2017 (21 1	01/26/17	Υ	NA	1.52	8.2	686.6	66.3	10.59	NA	NA	415	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA N	VA <0.1	100 < 0.05	10 NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA
Hay Gulch Ditch Upgradient	2017 (Q1 2	02/27/17	N	0.82	4.73	8.69	455	-12	8.96																																	-	\perp
Hay Gulch Ditch Upgradient	2017 (Q1 3	03/22/17	Υ	0.28	10.69	8.77	453.5	-10.6	6.89	257	8.34	285	2.50	53.6	29.8	10.9	1.75	185	185	<10.0	<10.0	22.7	0.215	87.7	2.49	-5.00	053 N			<0.050	0.0005	<0.0001	0.0008	<0.050 <0.0005	0.0070	<0.0002	0.0006	0.0023	9.04	4.23	0.0003 0.00	LL 161	
Hay Gulch Ditch Upgradient	2017 (Q2 6	06/28/17	Υ	2.69	20.21	8.88	106.2	23.8	4.79	69.2	8.06	65.0	63.5	20.8	4.21	1.97	<1.00	55.0	55.0	<10.0	<10.0	1.76	0.195	15.0	1.15		.020 N	1471	0.10	<0.050	<0.0005	<0.0001	0.0013	<0.050 <0.0005	0.0024	<0.0002	0.0009	<0.0010	7.71	3.60	0.0001 <0.0	101	NA
Hay Gulch Ditch Upgradient	2017 (Q3 9	09/21/17	Υ	NM	19.72	8.39	549.4	86.1	6.73	316	8.22	390	2.00	64.9	37.5	13.8	2.15	177	161	16.0	<10.0	30.8	0.265	99.0	1.90	<5.00 0.0	045 N	A NA	0.34	<0.050	0.0009	< 0.0001	0.0006	<0.050 <0.0005	0.0098	<0.0002	0.0012	< 0.0010	9.45	4.42	0.0006 <0.0	40 NA	NA

Natara & Dafinisian

Notes & Definitions

Q calendar quarter
Y/N yes or no
cfs cubic feet per second
deg C degrees Celsius
SU standard pH units
MF/cm microsiemens per centimete
millivoits
mg/L milligram per liter
pCt/L picocuries per liter
NM not measured (field)
NA not analyzed (lab)

Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the initial pH of the sample solution, each components reported as equivalent CaCO3

[&]quot;<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.

							Field	d Parameters		_		_												_				lah	Analytical	l Results																
Location Name	Year	Q Mont	h Sample Date		Flow Rate	Temperature	e nH	Specific Conductance	Oxygen	Dissolved Oxygen		ss pH 13 (Lab)	Total Dissolved Solids (Lab)	Total Suspended Solids	Calcium	Magnesiun	Sodium	Potassium	Alkalinity, Total	Alkalinity, Bicarbonat	Alkalini Carbona	y, Alkalinity te Hydroxid	Chlorid	e Fluoria	Sulfate as SO4	Total Organic Carbon (TOC)	Oil & Nit	trate/	monia as N	Ortho- hosphate as P	Sodium dsorption Ratio (SAR)	Aluminum	Arsenic	Cadmium	Copper	Iron	Lead	Manganese	Mercury	Molybdenun		Silica (SiO2)	Silicon L		Zinc	ndium Radium 226 228
				Y/N	cfs	deg C	SU	μS/cm	mV	mg/L	mg/L	SU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	L mg/L	mg/L	mg/L r	ng/L n	ng/L	mg/L	no unit	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L µ	oCi/L pCi/L
Hay Gulch Ditch Downgradient	2016	Q1 3	03/31/	16 Y	1.05	11.80	8.57	429	57.5	7.85	226	8,42	270	27.3	55.5	21.1	8.69	1.49	220	220	<10	<10	9.40	0.244	4 68.1	1.53	<5 ·	<0.02	NA	NA	0.25	<0.05	0.0005	<0.0001	0.0004	<0.05	<0.0005	0.0039	<0.0002	<0.0005	<0.001	8.96	4.19	0.0004	<0.001	<0.4 <0.8
Hay Gulch Ditch Downgradient	2016	Q2 4	04/22/	16 N	1.16	17.6	8.55	530	105.9	7.65																																				
Hay Gulch Ditch Downgradient		Q2 5	05/26/	16 N	1.13	10.90	8.14	297	33.2	8.71																																				
Hay Gulch Ditch Downgradient	2016	Q2 6	06/23/	16 Y	NM	21.90	8.14	116	32.5	5.99	67.8	8.13	55	18	21.9	3.15	1.57	<1	59	59	<10	<10	1.26	0.195	5 13.5	1.4	<5 (0.026	NA	NA	0.03	<0.05	< 0.0005	< 0.0001	0.0016	< 0.05	<0.0005	0.0044	<0.0002	0.0008	< 0.001	7.48	3.5	0.0001	0.0021	NA NA
Hay Gulch Ditch Downgradient	2016	Q3 7	07/20/	16 N	1.06	21.30	8.55	308	68.6	6.73																																				
Hay Gulch Ditch Downgradient	2016	Q3 8	08/25/	16 N	1.14	18.80	8.37	257	38.4	5.56																																				
Hay Gulch Ditch Downgradient	2016	Q3 9	09/21/	16 Y	NM	16.11	8.30	1182.9	18.7	6.81	480	8.25	630	4.20	94.7	59.1	16.8	4.48	220	140	80.0	<10	97.9	0.244	4 144	3.48	<5 (0.027	NA	NA	0.33	<0.05	0.0015	< 0.0001	0.0012	< 0.05	<0.0005	0.0059	<0.0002	0.0013	0.0026	11.8	5.51	0.0006	0.0013	NA NA
Hay Gulch Ditch Downgradient	2016	Q4 10	10/19/	16 N	0.76	11.79	8.36	420.1	88.6	7.09																																				
Hay Gulch Ditch Downgradient	2016	Q4 11	11/29/	16 Y	NM	7.02	8.64	421.4	117.5	6.54	267	8.24	320	12.4	65.5	25.2	10.7	1.46	225	155	70	<10.0	12	0.227	7 89.5	1.65	<5.00 <	0.020	NA	NA	0.28	<0.050	0.0006	< 0.0001	0.0005	< 0.050	<0.0005	0.0063	<0.0002	0.0007	< 0.0010	10.9	5.11	0.0006	0.0012	NA NA
Hay Gulch Ditch Downgradient	2016	Q4 12	12/13/		NM	6.59	8.06	727.7	155.2	7.21																																	\perp			
Hay Gulch Ditch Downgradient	2017	Q1 1	01/26/	17 Y	NM	7.17	7.28	677.9	147.6	7.62	NA	NA	640	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA <	0.100 <	<0.0500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
Hay Gulch Ditch Downgradient	2017	Q1 2	02/27/	17 N	0.79	5.01	8.06	987.4	-15.5	9.82																																	\perp			
Hay Gulch Ditch Downgradient	2017	Q1 3	03/22/	17 Y	0.25	12.7	9.00	16.9	137.8	5.58	503	8.15	615	12.7	112	54.6	22.5	2.33	320	320	<10.0	<10.0	31.9	0.224	4 204	2.31	<5.00 <	0.020	NA	NA	0.44	<0.050	0.0006	<0.0001	0.0004	<0.050	<0.0005	0.0112	<0.0002	<0.0005	0.0022	12.2	5.70	0.0009		NA NA
Hay Gulch Ditch Downgradient	2017	Q2 6	06/28/	17 Y	0.343	17.63	8.53	114.3	185.3	6.44	59.1	7.98	65.0	3.00	19.0	2.86	1.49	<1.00	47.0	47.0	<10.0		<1.00	0	0 11.3	2.16	<5.00 <	0.020	NA	NA	0.08	<0.050	0.0005	<0.0001	0.0020	<0.050	<0.0005	0.0009	<0.0002	0.0009	<0.0010	6.80		0.0001		NA NA
Hay Gulch Ditch Downgradient	2017	Q3 9	09/21/	17 Y	NM	18.72	8.66	163.5	48.0	7.13	91.4	7.98	80.0	<0.500	29.5	4.31	2.37	<1.00	85.0	85.0	<10.0	<10.0	1.54	0.227	7 17.9	0.932	<5.00 <	0.020	NA	NA	0.11	<0.050	0.0006	< 0.0001	0.0013	<0.050	<0.0005	0.0010	<0.0002	0.0011	< 0.0010	8.53	3.99	0.0002 <	<0.0040	NA NA

Q calendar quarter
Y/N yes or no
cfs cubic feet per second
deg C degrees Celsius
SU standard pH units

µS/cm microsiemens per centimeter
mV milligram per liter
pCi/L picocuries per liter
pCi/L picocuries per liter
NM not measured (field)
NA not analyzed (lab)

"<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.

Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the initial pH of the sample solution, each components reported as equivalent CaCO3.

								Fie	eld Paramete	ers	·																		Lab Analy	ytical Results														-		
Location N	lame	Year Q	Month	Sample Date	Lab Analysis	Purge Flow Rate	Total to Purged Wate	Tem	perature p	pH Con	Specific nductance	Oxygen Reduction Potential	Hardness as CaCO3	pH D. (Lab)	Total ssolved Solids (Lab)	Calcium M	lagnesium	Sodium	Potassium	Alkalinity, Total	Alkalinity, Bicarbonate	Alkalinity, Carbonate	Alkalinity, Hydroxide	Chloride	Fluoride	Sulfate as SO4		Nitrate/ Nitrite as N	Ammonia as N	Ortho- Phosphate as P	Aluminum	Arsenic	Cadmium	Copper	Iron	Lead I	Manganese	Mercury	Molybdenum	Selenium	Silica (SiO2)	Silicon Uro	anium .	Zinc	Radium 226	Radium 228
					Y/N	gpm	gal ft bgs	ıs	deg C	SU	μS/cm	mV	mg/L	SU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L n	ng/L n	mg/L	pCi/L	pCi/L
Wiltse Well		2016 Q1	3	03/31/16	Y	150.0	5850 0.35	5	6.70 7	7.22	2043	105.6	990	7.22	1580	197	121	95.9	4.64	460	440	20.0	<10	81.0	0.285	671	3.54	0.456	NA	NA	<0.05	<0.0025	<0.0005	0.0018	0.100	<0.0025	0.673	<0.0002	<0.0025	<0.005	13.9	6.51 0.	.0029 0	0.0156 0	.7 +/- 0.1	<0.8
Wiltse Well		2016 Q2	4	04/27/16	N	38.5	4228 0.00	0	8.80 7	7.32	1633	17.9																																		
Wiltse Well		2016 Q2	5	05/25/16	N	23.4	4229 0.85	5	10.40 7	7.34	1805	20.1																																		
Wiltse Well		2016 Q2	6	06/23/16	Y	18.6	3686 2.15	5 :	10.70 7	7.26	1768	38.5	1050	7.34	1480	208	128	75.2	4.56	500	500	<10	<10	76.3	<0.5	595	4.1	0.891	NA	NA	<0.05	<0.0025	<0.0005	0.0024	<0.05	<0.0025	0.857	<0.0002	<0.0025	<0.005	16.1	7.53 0.	.0021 0	0.0364	NA	NA
Wiltse Well		2016 Q3	7	07/19/16	N	19.9	2844 2.99	9 :	11.50 7	7.26	1478	26.9																																		
Wiltse Well		2016 Q3	8	08/24/16	N	17.3	2979 2.60) :	12.10 7	7.24	1602	20.0																																		
Wiltse Well		2016 Q3	9	09/20/16	Y	15.8	2637.4 3.32	2 :	11.47 7	7.22	1941	28.6	1030	7.29	1520	206	126	80.7	4.90	470	470	<10	<10	62.3	<0.5	656	3.15	1.08	NA	NA	<0.05	0.0005	<0.0005	0.0020	0.060	<0.0025	0.756	<0.0002	0.0017	0.0013	16.4	7.67 0.	.0023 0	0.0301	NA	NA
Wiltse Well		2016 Q4	10	10/24/16	N	16.95	2724.47 6.85	5 :	10.95 7	7.22	1937	21.6																																		
Wiltse Well		2016 Q4	11	11/29/16	Y	10.64	2991.59 1.90	0	9.11 7	7.32	2014	13.7	963	7.36	1520	186	121	82.4	4.42	450	450	<10.0	<10.0	70.1	0.3	676	3.02	0.965	NA	NA	<0.050	0.0008	<0.0001	0.0038	0.136	<0.0005	0.608	<0.0002	0.0016	0.0023	14.3	6.69 0.	.0026 0	0.0269	NA	NA
Wiltse Well		2016 Q4	12	12/13/16	N	18.05	2915.96 1.95	5	8.79 7	7.29	2036	20.9																																		,
Wiltse Well		2017 Q1	1	01/18/17	Υ	39.53	3594.71 0.30)	7.56 7	7.20	2262	3.2	NA	NA	1680	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.100	<0.100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Wiltse Well		2017 Q1	2	02/27/17	N	39.59	3579.79 0.00	0	7.20 7	7.17	2276	18.3																																		
Wiltse Well		2017 Q1	3	03/21/17	Υ	39.59	3559.92 0.00	0	7.53 7	7.12	2085	6.0	1040	7.22	1480	205	128	110	4.61	410	410	<10.0	<10.0	72.5	<0.500	731	3.40	0.492	NA	NA	<0.050	0.0009	<0.0001	0.0023	0.286	<0.0005	0.440	<0.0002	0.0016	0.0027	14.7	6.85 0.	.0024 0	0.0194	NA	NA
Wiltse Well		2017 Q2	6	06/13/17	Υ	NM	2979.63 2.05	5	10.34 7	7.41	1869	13.3	1060	7.46	1510	211	129	87.5	4.79	445	445	<10	<10	72.5	0.332	702	3.54	1.07	NA	NA	<0.1	0.0006	<0.0001	0.0019	0.161	<0.0005	0.797	<0.0002	0.0021	0.0019	15.5	7.22 0.	.0021	0.026	NA	NA
Wiltse Well		2017 Q3	9	09/28/17	Y	18.32	2712.36 3.40) :	11.29 7	7.27	2074	19.5	1140	7.30	1680	219	143	80.7	4.62	510	510	<10.0	<10.0	68.7	<0.500	779	3.34	1.80	NA	NA	<0.050	0.0005	<0.0001	0.0025	<0.050	<0.0005	0.881	<0.0002	0.0021	0.0016	16.1	7.54 0.	.0021 0	0.0208	NA	NA

Q calendar quarter
Y/N yes or no
gpm gallons per minute
gal gallons
ft bgs feet below ground surface
deg C degrees Celsius
SU standard pH units
microsiemens per centimeter
mV millivotts
mg/L milligram per liter
pCi/L picocuries per liter
NM not measured (field)
NA not analyzed (lab)

Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the initial pH of the sample solution, each components reported as equivalent CaCO3.

Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown in this table.

[&]quot;<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.

								Field Para	neters																 -		Lab	Analytical R	esults											·				
Location Name Year	r Q M	Month	Sample Date	Analysis	Flow Rate	Total Purged	Water	Temperatur	, ,	Specific Conductance	Potentiai	Hardness as CaCO3		Solids (Lab)		1agnesium			Alkalinity, Total	Alkalinity, Bicarbonate		Hydroxide	Chloride		Sulfate Organis SO4 Ca	rbon (OC)	Nitrate/ Nitrite as N	N Phos	ohate Alun				Copper Ir			ese Mercur			ium (Sid	i02)	icon Uran		Radium 226	228
				Y/N	gpm	gal	ft bgs	deg C	SU	μS/cm	mV	mg/L	SU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L m	ig/L	mg/L m	ı/L m	g/L m	g/L m	g/L i	mg/L	mg/L m	g/L mg/	L mg/L	mg/L	mg/	L mg	/L mg	g/L m	g/L mg	/L mg/L	pCi/L	pCi/L
Well #1 Upgradient 2016	6 Q1	3 0	3/30/16	Υ	1.5	306	4.40	8.80	7.77	1224	-123.1	230	7.73	760	44.0	29.1	199	3.00	610	570	40.0	<10	4.33	0.347	90.1 2	2.54	<0.02	A N	A <0	0.05 <0	0005 <	0.0001	0.0035 1	20 <0.00	0.267	<0.000	2 <0.00	05 <0.0	001 13	3.8 6.	.45 <0.0	001 <0.001	<0.4	<0.8
Well #1 Upgradient 2016	6 Q2	4 0	4/27/16	N	7.9	522	5.07	13.10	7.57	1199	-162.2																																	i
Well #1 Upgradient 2016	6 Q2	5 0	5/26/16	N	7.1	870	4.60	11.90	7.46	1284	-142.5																																	
Well #1 Upgradient 2016	6 Q2	6 0	6/23/16	Υ	5.8	297	4.95	14.20	7.6	1246	-185.4	306	7.57	745	59.7	38.2	196	3.15	660	660	<10	<10	6.12	<0.5	108	3.3	<0.02	A A	IA <0	0.05 <0	0005 <	0.0001	0.003 1	51 <0.00	0.344	<0.000	2 <0.00	0.05	001 15	5.2 7.	.12 0.00	021 <0.001	NA	NA
Well #1 Upgradient 2016	6 Q3	7 0	7/19/16	N	7.1	280	5.55	14.10	7.69	1226	-156.6																																	
Well #1 Upgradient 2016	6 Q3	8 0	8/24/16	N	7.4	284	6.30	12.70	7.59	1143	-196.8																																	
Well #1 Upgradient 2016	6 Q3	9 0	9/21/16	Υ	6.8	288	6.03	12.54	7.67	1176	-140.6	216	7.58	735	42.4	26.7	210	3.01	620	620	<10	<10	4.30	0.353	83.8	2.8	<0.02	A N	A <0	0.05 <0	0005 <	0.0001	0.0021 0.	946 <0.00	0.221	<0.000	2 <0.00	05 <0.0	001 14	4.8 6.	.94 <0.0	0.0023	NA	NA
Well #1 Upgradient 2016	6 Q4	10 1	0/24/16	N	7.5	300	5.73	12.58	7.77	1223	-148.9																																	
Well #1 Upgradient 2016	6 Q4	11 1	1/30/16	Υ	9.3	280	5.69	10.64	7.72	1280	-152.9	271	7.59	725	51.7	34.5	189	3.01	615	615	<10.0	<10.0	4.44	0.337	117 3	3.18	<0.200 N	A A	IA <0	.050 <0	0005 <	0.0001	0.0041 1	64 <0.00	0.312	<0.000	2 0.00	0.0	010 12	2.9 6.	.05 0.00	0.0301	NA	NA
Well #1 Upgradient 2016	6 Q4	12 1	2/14/16	N	7.5	295	5.08	11.27	7.68	1305	-141.0																																	
Trem na opproductive Loan	7 Q1		1/18/17					10.90	7.60	1392	-143.6	NA	NA	810	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA 0.	975 <0.	100	NA	NA	NA	NA N	IA NA	NA	NA	N.A	. N	A N	NA N	NA N	A NA	NA	NA
Trem in 2 Opproductive 2017	7 Q1		2/27/17			297	3.80	10.41	7.67	1415	-125.6																																\perp	
Trem na opproductive Loan	7 Q1	-	3/22/17			291		11.24	7.67	1351	-132.2	391	7.46	775	75.7	49.1	167	3.30	640	640	<10.0	<10.0	4.53			_	<0.020 N			.050 0.				01 <0.00								002 <0.0020		NA
TOTAL	7 Q2		6/28/17				4.50	11.85	7.59	1159	-201.0	277	7.74	725	54.0	34.6	189	3.00	585	585	<10.0	<10.0	4.32				<0.400							34 <0.00								001 <0.0020		NA
Well #1 Upgradient 2017	7 Q3	9 0	9/28/17	Υ	7.1	259	5.51	11.84	7.60	1162	-176.9	215	7.66	705	41.6	27.1	203	3.09	670	670	<10.0	<10.0	6.21	<0.500	74.0 2	2.84	<0.400	A N	A <0	.050 <0	0005 <	0.0001	0.0030 0.	101 <0.00	0.202	<0.000	2 <0.00	0.0	010 14	4.3 6.	.68 0.00	001 <0.0020	NA	NA

calendar quarter yes or no
gallons per minute
gallons
feet below ground surface

Q Y/N gpm gal ft bgs deg C SU μS/cm mV mg/L pCi/L NM feet below ground surface degrees Celsius standard pH units microsiemens per centimeter millivolts milligram per liter picocuries per liter not measured (field) not analyzed (lab)

Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent amount of calcium carbonate. This value is then partitioned into bicarbonate and hydroxide depending on the initial pH of the sample solution, each components reported as equivalent CaCO3. Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown in this table.

[&]quot;<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.

								Field Parame	eters																		Lab An	alytical Result	5	_		-							-			·	
Location Name	Year Q	Month	Sample Date	Lab Analysis	Purge Flow Rate	Total De Purged W	epth to Te later	emperature			Oxygen Reduction Potential	Hardness as CaCO3		Total Dissolved Solids (Lab)	Calcium	Magnesium	Sodium	Potassium	Alkalinity, Total	Alkalinity, Bicarbonate		Alkalinity, Hydroxide	Chloride		Sulfate Organis SO4 Ca	ganic rbon TOC)	rate/ ite as N Ammor	Phosphat	e Aluminum	Arsenic	Cadmium	Copper	Iron	Lead M	langanese	Mercury	Molybdenum	Selenium	Silica (Si02)	Silicon	Iranium		Radium Radiur 226 228
				Y/N	gpm	gal ft	bgs	deg C	SU	μS/cm	mV	mg/L	SU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L m	ng/L m	g/L mg/i	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	pCi/L pCi/L
Vell #2 Downgradient	2016 Q1	3	03/30/16	Υ	0.5	7.0 3	3.69	6.30	7.58	899	-9.4	444	7.63	685	72.2	63.9	22.2	2.04	342	338	<10	<10	35.8	0.230	129 3	3.34 0.	042 NA	NA	0.156	0.0008	<0.0001	0.0004	0.081 <	0.0005	0.497	<0.0002	0.0014	<0.001	11.6	5.42	0.0013	0.0034	<0.4 <0.8
Vell #2 Downgradient	2016 Q2	4	04/21/16	N	0.5	6.4	3.17	10.10	7.60	867	-13.7																																
Vell #2 Downgradient	2016 Q2	5	05/25/16	N	0.5	6.7 4	4.25	13.50	7.60	804	-35.7																																
Vell #2 Downgradient	2016 Q2	6	06/23/16	Υ	0.5	7.0 1	1.42	18.40	7.64	600	-66.9	314	7.66	470	54.9	43.1	16.5	2.1	280	280	<10	<10	6.8	0.298	70	14 <	0.02 NA	NA	< 0.05	0.0015	< 0.0001	0.0005	0.085 <	0.0005	0.54	<0.0002	0.0022	<0.001	14.7	6.89	0.0007	<0.001	NA NA
Vell #2 Downgradient	2016 Q3	7	07/19/16	Ν	0.5	6.4 4	4.17	19.80	7.68	369	-112.1																																
Vell #2 Downgradient	2016 Q3	8	08/24/16	N	0.5	6.0 4	4.17	14.00	7.73	815	-76.3																																
Vell #2 Downgradient	2016 Q3	9	09/20/16	Υ	0.5	6.0	5.50	14.13	7.53	877	-88.3	452	7.48	525	75.9	63.8	19.8	2.16	380	380	<10	<10	27.4	0.272	114 2	2.64 <	0.02 NA	NA	<0.05	0.0010	<0.0001	0.0003	0.118 <	0.0005	0.354	<0.0002	0.0024	<0.001	12.8	5.97	0.0015	0.0010	NA NA
Vell #2 Downgradient	2016 Q4	10	10/19/16	N	NM	6.0	5.40	13.29	7.66	881	-82.0																																
Vell #2 Downgradient	2016 Q4		11/30/16	Υ	7.2	6.0	4.7	10.36	7.66	904	-72.7	432	7.55	495	72.7	60.8	20.7	2.05	380	380	<10.0	<10.0	26.2	0.256	117	3.4 0.	089 NA	NA	<0.050	0.0013	< 0.0001	0.0051	<0.050	0.0078	0.359	<0.0002	0.0025	0.0011	11.9	5.55	0.0016	0.0311	NA NA
Vell #2 Downgradient	2016 Q4	12	12/14/16	N	2	6.0	5.00	12.40	7.71	872	-81.1																																
Vell #2 Downgradient	2017 Q1	1	01/26/17	Υ	NA	8.0	3.95	6.98	7.57	908	-66.8	NA	NA	545	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA I	NA <0.10	0.0500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
Vell #2 Downgradient	2017 Q1	2	02/27/17	N	NA	7.5 2	2.74	4.44	7.68	1193	-55.7																																
Vell #2 Downgradient	2017 Q1	-	03/22/17	Υ	NA	0.0	5.35	8.43	7.78	921	-67.0	485	7.72	635	81.0	68.7	21.8	1.94	375	375	<10.0	<10.0	23.3	0.228	133	J.JZ 10	.020 NA	NA	<0.050	0.0009	<0.0001	0.0007	0.213	0.0003	0.384	<0.0002	0.0021	0.0045		5.12		10.0020	NA NA
Vell #2 Downgradient	2017 Q2	-	06/13/17	Υ	NM	0.0	0.95	17.05	7.56	633	-54.3	352	7.6	415	60.9	48.5	16.1	2.22	285	285	<10	<10	7.11	0.313	75.2	3.56 <	0.02 NA	NA	<0.05	0.0017	<0.0001	0.0002	10.00	0.000	0.259	<0.0002	0.0025	<0.001	15.5				NA NA
Vell #2 Downgradient	2017 Q3	9	09/21/17	Υ	NM	8.0 4	4.85	12.13	7.66	852	-53.7	378	7.51	525	64.8	52.6	17.0	1.64	395	395	<10.0	<10.0	19.0	0.263	98.4	2.61 <0	.020 NA	NA	< 0.050	0.0006	<0.0001	0.0004	<0.050 <	0.0005	0.307	<0.0002	0.0021	<0.0010	13.0	6.08	.0013 <	<0.0040	NA NA

Q calendar quarter
Y/N yes or no
gpm gallons per minute
gal gallons
It bgs feet below ground surface
deg C degrees Celsius
SU standard pH units
µS/cm microsiemens per centimet
mV millivolts
mg/L milligram per liter
pCi/L picocuries per liter
NM not measured (field)
NA not analyzed (lab)

Total alkalinity is measured by titration with hydroxiloric acid to a set pH point, reporting this value as an equivalent amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the initial pH of the sample solution, each components reported as equivalent CaCO3.

Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown in this table.

[&]quot;<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.

										Field P	Parameter	's																	Lab Ana	ılytical Resu	ılts														
Location Nam	e Yeo	ar Q	Q Ma	onth	Gample Date	Lab Analysis	Purge Flow Rate	Total Purged	Depth to Water	Temperat	ture pH	Specific Conductance	Oxyger Reduction Potentia	Hardi as Ca		Total H Dissolv b) Solids (Lab)	Calciun	Magnesiur	Sodium	Potassium	Alkalinity, Total	Alkalinity, Bicarbonate	Alkalinity, Carbonate		Chloride	Fluoride	Sulfate as SO4	Total Organic Carbon (TOC)	Nitrate/ Nitrite as N	Ammonia as N	Ortho- Phosphate as P	Aluminum	Arsenic	Cadmium	Copper	Iron	Lead	Manganese	Mercury	Molybdenum	Selenium	Silica (SiO2)	Silicon	Uraniui	m Zinc
						Y/N	gpm	gal	ft bgs	deg	c su	μS/cm	mV	mg	L S	J mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	. mg/L
MW-HGA-4	201	16 Q	24 1	12 1	2/12/16	Υ	0.5	2.1	0.73	7.31	7.29	1284	-72.1	72	4 7.	80 855	147	86.7	19.5	2.02	545	545	<10.0	<10.0	10.9	0.577	240	4.43	<0.020	NA	NA	0.423	0.0030	<0.0001	0.0006	3.71	<0.0005	4.07	<0.0002	0.0013	<0.0010	22.3	10.4	0.0010	0 0.0039
MW-HGA-4	201	17 Q	01	1 0:	1/26/17	Y	NM	3.0	0.57	4.76	7.36	1257	-86.6	N/	\ N	A 770	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.498	<0.0500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-HGA-4	201	17 Q	Q1	2 0	2/28/17	N	NM	3.0	0.60	6.44	7.40	1201	-105.1																																
MW-HGA-4	201	17 Q	Q1	3 0:	3/22/17	Υ	NM	2.1	0.83	8.14	7.41	1155	-104.4	61	1 7.	17 710	118	76.7	27.4	2.13	465	465	<10.0	<10.0	8.75	0.485	229	4.54	<0.020	NA	NA	<0.050	0.0029	<0.0001	0.0008	7.29	<0.0005	2.78	<0.0002	0.0024	0.0030	16.8	7.86	0.0004	4 0.0046
MW-HGA-4	201	17 Q	Q2	4 0	4/27/17	N	NM	NM	0.94	7.21	7.33	1153	-74.5																																
MW-HGA-4	201	17 Q	Q2	5 0	5/31/17	N	NM	2.1	2.06	9.86	7.36	1113	-91.3																																
MW-HGA-4	201	17 Q	Q2	6 0	6/13/17	Υ	NM	2.0	2.53	8.37	7.40	1055	-134.7	61	6 7.	31 715	121	76.6	28.6	2.11	415	415	<10	<10	7.95	0.506	192	4.35	<0.02	NA	NA	<0.05	0.0028	<0.0001	0.0002	7.32	<0.0005	2.37	<0.0002	0.0027	<0.001	18	8.41	0.0004	4 <0.002
MW-HGA-4	201	17 Q	Q3	7 0	7/27/17	N	NM	2.0	3.25	8.61	7.36	1099	-137.6																											•					
MW-HGA-4	201	17 Q	23	8 0	8/16/17	N	NM	2.0	2.65	8.81	7.35	1050	-131.0																																
MW-HGA-4	201	17 Q	13	9 0	9/21/17	Y	NM	2.1	3.31	9.00	7.33	1124	-139.5	52	2 7.	25 750	102	64.9	24.9	1.75	465	465	<10.0	<10.0	8.96	0.517	205	4.69	<0.020	NA	NA	<0.050	<0.0005	<0.0001	0.0004	0.378	<0.0005	2.03	<0.0002	0.0028	<0.0010	16.5	7.72	0.0004	4 <0.0040

Q calendar quarter
Y/N yes or no
gpm gallons per minute
gal gallons
ft bgs feet below ground surface
deg C degrees Celsius
SU standard pH units
µS/cm microsiemens per centimeter
mV millivolts
mg/L milligram per liter
pCi/L picocuries per liter
NM not measured (field)
NA not analyzed (lab)

"<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.

Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the initial pH of the sample solution, each components reported as equivalent CaCO3.

											Field F	Paramete	rs																La	b Analytica	al Results														
	ation ame	Year	Q	Month	Sam _j Dat	ple te A	Lab Analysis	Purge Flow Rate	Total Purged	Depth to Water	Tempe	rature		Specific onductance	Oxygen Reduction Potential	Hardness as CaCO3	s pH B (Lab)	Total Dissolved Solids (Lab)	Calcium	Magnesium	Sodium	Potassium	Alkalinity, Total	Alkalinity, Bicarbonate	Alkalinity, Carbonate	Alkalinity, Hydroxide	Chloride	Fluoride	Sulfate as SO4	Total Organic Carbon (TOC)	Nitrate/ Nitrite as N	Aluminum	Arsenic	Cadmium	Copper	Iron	Lead	Manganese	Mercury	Molybdenur	m Selenium	Silica (Si02)	Silicon	Uranium	Zinc
							Y/N	gpm	gal	ft bgs	de	eg C	SU	μS/cm	mV	mg/L	SU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
MW	-1-C	2017	Q2	6	06/07	//17	Υ	NM	5	216.50	15.	.96 7	7.52	2446	74.3	498	8.35	2020	96.0	62.8	506	11.4	530	530	<10.0	<10.0	24.2	1.59	1090	4.56	<2.00	<0.050	0.0029	<0.0001	0.0088	<0.050	<0.0005	0.0744	<0.0002	0.0164	0.0136	10.6	4.94	0.0500	0.0293
MW		2017	Q3	7	07/18	3/17	N			dry																																			
MW	-1-C	2017	Q3	8	08/23	3/17	N			dry																																			
MW	-1-C	2017	Q3	9	09/07	/17	N			dry																																			
MW	-1-C	2017	Q3	9	09/26	/17	Υ	NM	NM	216.59	12.	.86 7	7.17	2725	77.4	1290	7.36	2440	234	172	242	3.81	700	700	<10.0	<10.0	6.97	0.864	1350	2.84	<0.400	<0.050	0.0016	<0.0001	0.0085	<0.050	<0.0005	0.0853	<0.0002	0.0049	0.0012	16.6	7.77	0.0044	0.0294

calendar quarter Y/N gpm gal ft bgs deg C SU μS/cm mV yes or no gallons per minute feet below ground surface

standard pH units microsiemens per cent millivolts

not analyzed (lab)

milligram per liter picocuries per liter not measured (field) mg/L pCi/L NM

Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent amount of calcium carbonate. This value is then partitioned into bicarbonate and hydroxide depending on the initial pH of the sample solution, each components reported as equivalent CaCO3.

[&]quot;<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.

										Field P	arameters																		Lab Analytic	al Results														
Loca	ntion me	Year	Q Mo	onth	Sample Date	Lab Analysis	Purge Flow Rate	Total Purged	Depth to Water	Tempe	rature pl	Specij Conduct	fic ance Red Pot	kygen luction tential	Hardness as CaCO3	pH D	Total Dissolved Solids (Lab)	Calcium	Magnesium	Sodium	Potassium	Alkalinity, Total	Alkalinity, Bicarbonate	Alkalinity, Carbonate	Alkalinity, Hydroxide	Chloride	Fluoride	Sulfate as SO4	Oraanic	Nitrate/ Nitrite as N	Aluminum	Arsenic	Cadmium	Copper	Iron	Lead	Manganese	Mercury	Molybdenun	Selenium	Silica (Si02)	Silicon	Uranium	Zinc
						Y/N	gpm	gal	ft bgs	de	eg C St	U μS/c	m ı	mV	mg/L	SU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
MW-	1-A	2017	Q2	6 (06/07/17	Υ	NM	12.75	215.42	17.	.72 7.3	78 136	2 -:	34.6	124	7.74	975	24.7	15.1	324	1.98	375	375	<10.0	<10.0	2.75	0.268	427	5.03	<0.200	<0.050	<0.0005	<0.0001	0.0043	0.128	<0.0005	0.0260	<0.0002	0.0007	<0.0010	12.3	5.74	0.0004	0.0270
MW-	1-A	2017	Q3	7 (07/18/17	N			dry																																			
MW-	1-A	2017	Q3	8 (08/23/17	N			dry																																			
MW-	1-A	2017	Q3	9 (09/07/17	N	NM	NM	215.54	10.	.74 7.3	35 155	5 -!	54.7																														
MW-	1-A	2017	Q3	9 (09/26/17	Υ	NM	NM	216.33	9.7	73 7.3	38 156	3 -4	46.5	133	7.35	1080	25.8	16.7	329	2.02	450	450	<10.0	<10.0	2.16	0.245	432	1.36	<0.400	<0.050	<0.0005	<0.0001	0.0057	0.367	<0.0005	0.0218	<0.0002	0.0010	<0.0010	11.9	5.56	0.0002	0.0088

calendar quarter Y/N gpm gal ft bgs deg C SU μS/cm mV yes or no gallons per minute feet below ground surface

standard pH units microsiemens per centimeter millivolts

milligram per liter picocuries per liter not measured (field) mg/L pCi/L NM not analyzed (lab)

Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent amount of calcium carbonate. This value is then partitioned into bicarbonate and hydroxide depending on the initial pH of the sample solution, each components reported as equivalent CaCO3.

[&]quot;<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.

										Field P	arameter	rs	•															Lab	Analytica	Results					*		•	•		·			
	ation ame	Year	Q I	Month	Sample Date	Lab Analysis	Purge Flow Rate	Total Purged	Depth to Water	Тетре	rature p	pH Cond	pecific ductance	Oxygen Reduction Potential	Hardness as CaCO3	pH (Lab)	Total Dissolved Solids (Lab)	Calcium	Magnesium	Sodium	Potassium	Alkalinity, Total	Alkalinity, Bicarbonate	Alkalinity, Carbonate	Alkalinity, Hydroxide	Chloride	Fluoride		Total Organic Carbon (TOC)	Nitrate/ Nitrite as N	Aluminum	Arsenic	Cadmium	Copper	Iron Lead	Manganese	Mercury	Molybdenum	Selenium	Silica (Si02)	Silicon	Uranium	Zinc
						Y/N	gpm	gal	ft bgs	de	eg C S	SU	μS/cm	mV	mg/L	SU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	4 541	2047	0.2	_	00/07/47	.,	212.4	40.5	250.00	45			2022	460.5	224	0.44	4520	46.7	27.0	470	2.55	500	500	40.0	.40.0	7 69	4.44	720		0.400	.0.050	0.0000	.0.0004	0.0007	.0.050 0.004	0.0445	-0.0000	0.0706	0.0000	44.6		0.0505	4.53
MW	-1-IVII	2017	Q2	ь	06/07/17	Y	NIVI	19.5	259.99	15	0.8	3.00	2032	160.5	231	8.14	1520	46.7	27.9	470	2.55	600	600	<10.0	<10.0	7.69	1.14	/39	5.14	0.103	<0.050	0.0029	<0.0001	0.0067	<0.050 0.0010	0.0445	<0.0002	0.0796	0.0028	11.6	5.44	0.0505	1.52
MW	-1-MI	2017	Q3	7	07/18/17	N			dry																																		
MW	-1-MI	2017	Q3	8	08/23/17	N	NM	NM	258.29	11.	.83 7.	7.94	2137	65.7																													
MW	-1-MI	2017	Q3	9	09/26/17	N*	NM	NM	258.34	21.	.73 7.	7.86	2119	61.4																													

calendar quarter Y/N gpm gal ft bgs deg C SU µS/cm mV yes or no gallons per minute

feet below ground surface

degrees Celsius standard pH units microsiemens per centimet

not analyzed (lab)

millivolts mg/L pCi/L NM milligram per liter picocuries per liter

"<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.

Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent amount of calcium carbonate. This value is then partitioned into bicarbonate and hydroxide depending on the initial pH of the sample solution, each components reported as equivalent CaCO3.

Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown in this table.

34

 $[\]ensuremath{^{*}}$ Not enough sample water volume to obtain lab sample, only field parameters collected

										Field Paran	neters						-										Lab An	alytical Res	sults						_	_		_			
Loca		ear Q	Month	Sample Date	Lab Analysi	Purg Flow Rat	je V Purge	al Dep	oth to /ater	Temperatu	re pH	Specific Conductance	Oxygen Reduction Potential	Hardne as CaCC	ss pH D3 (Lab)	Total Dissolved Solids (Lab)	Calcium	Magnesium	Sodium	Potassium	Alkalinity, Total	Alkalinity, Bicarbonate	Alkalinity, Carbonate	Alkalinity, Hydroxide	Chloride		Sulfate as SO4		Nitrate/ Nitrite as N	Aluminum	Arsenic	Cadmium	Copper	Iron Le	d Manganes	e Mercury	Molybdenun	Selenium	Silica (SiO2)	Uranium	Zinc
					Y/N	gpn	n ga	l ft	bgs	deg C	SU	μS/cm	mV	mg/L	SU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L mg	/L mg/L	mg/L	mg/L	mg/L	mg/L mg/L	mg/L	mg/L
MW-	2-C 2	017 Q1	. 3	03/30/3	.7 N				dry																																\Box
MW-		017 Q2	6	06/07/2	.7 N			C	dry																																
MW-	2-C 2	017 Q3	7	07/18/	.7 N			C	dry																																
MW-	2-C 2	017 Q3	8	08/23/2	.7 N			C	dry																																
MW-		017 Q3	9	09/26/2	.7 N			С	dry																																

calendar quarter Q Y/N yes or no gallons per minute gpm gal ft bgs deg C SU µS/cm mV mg/L pCi/L NM NA feet below ground surface degrees Celsius standard pH units

millivolts milligram per liter picocuries per liter not measured (field) not analyzed (lab)

Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the initial pH of the sample solution, each components reported as equivalent CaCO3.

[&]quot;<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.

										Field Paramete	ers														•	•	Lab Anal	ytical Result	5	·	· ·	<u> </u>										
Locat		'ear	Q Ma	onth	Gample Date	Lab Analysis	Purge Flow Rate	Total Purged	Depth to Water	Temperature	pH Coi	Specific Inductance	Oxygen Reduction Potential	Hardness as CaCO3	pH (Lab)	Total Dissolved Solids (Lab)	Calcium	Magnesium	Sodium	Potassium	Alkalinity, Total	Alkalinity, Bicarbonate	Alkalinity, Carbonate	Alkalinity, Hydroxide	Chloride	Fluoride	Sulfate as SO4	Total Organic Carbon (TOC)	itrate/ trite as A	Aluminum A	Arsenic C	admium	Copper	Iron	Lead Mang	ganese	Mercury	Molybdenum		Silica (Si02)	on Uraniu	ım Zinc
						Y/N	gpm	gal	ft bgs	deg C	SU	μS/cm	mV	mg/L	SU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L m	ng/L	mg/L	mg/L	mg/L I	mg/L mg	/L mg/	L mg/L
MW-2	2-A 2	017	Q1	3 0	3/30/17	N			dry																																	
MW-2	2-A 2	017	Q2	6 0	6/07/17	N			dry																																	
MW-2	2-A 2	017	Q3	7 0	7/18/17	N			dry																																	
MW-2	2-A 2	017	Q3	8 0	8/23/17	N			dry																																	
MW-2	2-A 2	017	Q3	9 0	9/26/17	N			dry																																	

calendar quarter Q Y/N yes or no gallons per minute gpm gal ft bgs deg C SU µS/cm mV mg/L pCi/L NM NA gallons feet below ground surface degrees Celsius standard pH units

millivolts milligram per liter picocuries per liter not measured (field) not analyzed (lab)

Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the initial pH of the sample solution, each components reported as equivalent CaCO3. Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown in this table.

[&]quot;<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.

											Field	d Parameters									_ ,							Lab Anal	lytical Resu	lts					_	_					·		
Locat Nan		Year	Q	Mont	th Sa	mple Date	Lab Analysis	Purge Flow Rate	Total Purged	l Depti d Wat	h to ter	emperature pl	Specific Conductan	Oxygen Reduction Potential	Hardness as CaCO3	pH (Lab)	Total Dissolved Solids (Lab)	Calcium	Magnesium	Sodium	Potassiun	Alkalinity, Total	Alkalinity, Bicarbonate			Chloride	Fluoride	Sulfate as SO4	Total Organic Carbon (TOC)	Nitrate/ Nitrite as N	Aluminum	Arsenic	Cadmium	Copper	Iron	Lead	Manganese	Mercury	Molybdenun	n Selenium	Silica (Si02)	n Uranii	um Zinc
							Y/N	gpm	gal	ft b	gs	deg C St	υ μS/cm	mV	mg/L	SU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L mg/	L mg/	L mg/L
MW-2-	/II	2017	Q1	3	03	/30/17	N			dr	у																																
MW-2-		2017	Q2	6	06	/07/17	N			dr	y																																
MW-2-	ΛI	2017	Q3	7	07	/18/17	N			dr	у																																
MW-2-	ΛI	2017	Q3	8	08,	/23/17	N			dr	у																																
MW-2-	/II	2017	Q3	9	09	/26/17	N			dr	у																																

calendar quarter Q Y/N yes or no gallons per minute gpm gal ft bgs deg C SU µS/cm mV mg/L pCi/L NM NA feet below ground surface degrees Celsius standard pH units

millivolts milligram per liter

picocuries per liter not measured (field) not analyzed (lab)

Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent amount of calcium carbonate. This value is then partitioned into bicarbonate, carbonate and hydroxide depending on the initial pH of the sample solution, each components reported as equivalent CaCO3. Industry standard Quality Assurance/Quality Control (QA/QC) protocol are followed for this hydrologic monitoring program by both GCC Energy and the contracted environmental water quality analytical laboratories. QA/QC results are not shown in this table.

[&]quot;<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.

									·	Field I	Parameters																	Lab A	Analytical R	esults										·		•	
Loca Nar		ear	Q N	Month	Sample Date	Lab Analysis	Purge Flow Rate	Total Purged	Depth to Water	Temperature	е рН	Specific Conductanc	Oxygen Reduction Potential	Dissolved Oxygen	Hardness as CaCO3	P	Total Dissolved Solids (Lab)	Calcium	Magnesium	Sodium	Potassium	Alkalinity, Total	Alkalinity, Bicarbonate	Alkalinity, Carbonate	,,	Chloride	Fluoride		Total Organic Carbon (TOC)		Aluminum	Arsenic	Cadmium	Copper	Iron I	ead Mai	nganese l	Mercury	Molybdenum	Selenium	Silica (SiO2)	on Uraniur	n Zinc
						Y/N	gpm	gal	ft bgs	deg C	SU	μS/cm	mV	mg/L	mg/L	SU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L r	ng/L ı	mg/L	mg/L	mg/L	mg/L	mg/L mg	/L mg/L	mg/L
MW-3	3-C 20	017	Q1	3	03/27/1	7 Y	0.5	20	304.21	10.45	8.61	3549	-129.0	2.54	14.4	8.5	2130	3.60	1.31	796	3.47	1490	1360	130	<10.0	182	4.89	73.4	10.6	<0.020	<0.050	0.0115	<0.0001	0.0109	<0.050 0	.0085 0	0.0091	<0.0002	0.0143	0.0233	7.82 3.6	6 0.0091	0.375
MW-3	3-C 20)17	Q2	6	06/30/1	7 Y	NM	1.5	296.30	12.85	8.57	3588	-87.2	NM	11.8	8.48	2360	2.87	1.12	890	3.24	1570	1480	90.0	<10.0	330	4.94	73.5	58.5	<0.400	<0.100	0.0088	<0.0010	0.0147	<0.050 <0	.0050 0	0.0188	<0.0002	0.0291	0.0121	8.86 4.1	4 0.0102	<0.0200
MW-3	3-C 20)17	Q3	7	07/27/1	7 N	NM	NM	296.93	13.13	8.51	3815	-137.5	NM																													
MW-	3-C 20)17	Q3	8	08/24/1	7 N	NM	NM	296.87	12.51	8.46	4112	-128.8	NM																													
MW-3	3-C 20	017	Q3	9	09/28/1	7 Y	NM	NM	297.43	11.80	8.44	4351	-149.9	NM	15.1	8.35	3070	3.50	1.55	1100	4.01	1690	1650	40.0	<10.0	477	4.52	46.4	219	< 0.400	<0.050	0.0098	<0.0010	0.0174	<0.050 <0	.0050 0	0.0178	<0.0002	0.0241	0.0149	9.16 4.2	8 0.0137	<0.0200

Q calendar quarter
Y/N yes or no
gpm gallons per minute
gal gallons
ft bgs feet below ground surface
deg C degrees Celsius
SU standard pH units
µS/cm microsiemens per centimeter
mV millivolts

my/L milligram per liter
pCi/L picocuries per liter
NM not measured (field)
NA not analyzed (lab)

Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent amount of calcium carbonate. This value is then partitioned into bicarbonate and hydroxide depending on the initial pH of the sample solution, each components reported as equivalent CaCO3.

[&]quot;<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.

										Field I	Parame	ters	·															Lab Analy	tical Resu	ılts											
	ration ame	ear C	Q Mon		IIIPIE	Lab Analysis	Purge Flow Rate	Total Purged	Depth to Water	Temperatui	re pH	Specific Conductance	Oxygen Reduction Potential	Dissolved Oxygen	Hardness as CaCO3	s pH 3 (Lab)	Total Dissolved Solids (Lab)	Calcium	Magnesium	Sodium	Potassium	Alkalinity, Total	Alkalinity, Bicarbonate	Alkalinity, Carbonate	Alkalinity, Hydroxide	Chloride		Sulfate O	Total rganic arbon TOC)	Nitrate/ litrite as Alun N	ninum Arse	nic Cadmi	um Coppe	· Iron Lead	Manganes	e Mercury	Molybdenui	m Selenium	Silica (SiO2)	n Uraniui	m Zinc
						Y/N	gpm	gal	ft bgs	deg C	SU	μS/cm	mV	mg/L	mg/L	SU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L ı	ng/L	mg/L m	g/L mg	L mg/	L mg/L	mg/L mg/L	mg/L	mg/L	mg/L	mg/L	mg/L mg/L	. mg/L	mg/L
M	1-3-A 2	017 Q	21 3	03/	27/17	Υ	0.5	30	297.35	11.72	8.82	2535	-269.0	2.49	7.53	8.63	1630	2.00	0.616	566	1.72	530	380	150	<10.0	16.1	0.464	729	3.52	<0.100 <0	.050 0.00	25 <0.00	01 0.0061	<0.050 <0.000	5 0.0042	<0.0002	0.0005	0.0577	10.1 4.70	0.0002	0.0031
	/- 3-A 2	017 Q	22 6	06/		Υ	NM	1.5	298.24	13.17	8.75	2446	-101.5	NM	12.6	8.69	1670	3.67	0.823	585	2.02	470	470	<10.0	<10.0	17.4	0.488	802	10.0	<0.100 <0	.050 <0.0	25 <0.00	05 0.0081	<0.050 <0.002	5 0.0251	<0.0002	0.0274	<0.0050	10.9 5.10	0.0040	<0.0100
M	/- 3-A 2	017 O	Q3 7	07/	18/17	N	NM	NM	297.45	19.46	8.56	2115	-55.3	NM																											
M	/-3-A 2	017 Q	Q3 8	08/	24/17	N	NM	NM	298.24	12.57	8.67	2524	-87.4	NM																											
M	/-3-A 2	017 Q	Q3 9	09/	28/17	Υ	NM	NM	298.11	12.32	8.72	2470	-142.3	NM	12.6	8.53	1630	3.63	0.859	589	2.04	500	440	60.0	<10.0	18.5	0.535	840	7.26	<0.020 <0	.050 <0.0	25 <0.00	0.0080	<0.050 <0.002	5 0.0194	<0.0002	0.0091	<0.0050	11.6 5.41	0.0051	<0.0100

Q calendar quarter
Y/N yes or no
gpm gallons per minute
gal gallons
ft bgs feet below ground surface
deg C degrees Celsius
SU standard pH units
µS/cm microsiemens per centimeter
mV millivolts

mV millivolts
mg/L milligram per liter
pCi/L picocuries per liter
NM not measured (field)

not analyzed (lab)

Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent amount of calcium carbonate. This value is then partitioned into bicarbonate and hydroxide depending on the initial pH of the sample solution, each components reported as equivalent CaCO3.

[&]quot;<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.

										Fie	eld Param	eters	•	•							•	•					•	•	Lab Anal	rtical Resu	ults									•				
	ation ime	Year C	Q Mo	onth	ample Date	Lab Analysis	Purge Flow Rate	Total Purged	Depth to Water	Tempera	iture pH	Spe Condu	ecific ectance	Oxygen Reduction Potential	Dissolved Oxygen	Hardness as CaCO3	s pH (Lab)	Total Dissolved Solids (Lab)	Calcium	Magnesium	Sodium	Potassium	Alkalinity, Total	Alkalinity, Bicarbonate	Alkalinity, Carbonate	Alkalinity, Hydroxide	Chloride		Sulfate of as SO4		Nitrate/ Nitrite as N	Aluminum	Arsenic	Cadmium	Copper Iron	Lead	Manganese	Mercury	Molybdenum	Selenium	Silica (Si02)	licon U	Iranium	Zinc
						Y/N	gpm	gal	ft bgs	deg	c su	/ μ5	S/cm	mV	mg/L	mg/L	SU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L mg/	L mg/L	mg/L	mg/L	mg/L	mg/L	mg/L m	ng/L	mg/L	mg/L
MW-	3-MI	2017 Q	21 3	3 03	3/27/17	Υ	0.5	19	304.49	10.0	3 9.3	4 19	907	-87.0	7.68	4.85	8.95	1550	1.32	0.374	420	2.15	740	510	230	<10.0	8.66	0.952	165	8.34	<0.020	<0.050	0.0134	<0.0001	0.0055 <0.0	0.0024	0.0022	<0.0002	0.0061	0.0013	7.97 3	3.73	0.0049	0.0405
	3-MI	2017 Q	22 6	6 06	5/30/17	Υ	NM	1.5	241.15	12.5	5 8.9	4 16	599	-54.5	NM	8.73	8.75	1120	2.32	0.714	430	2.21	675	555	120	<10.0	10.1	1.34	241	14.8	<0.020	0.102	0.0167	<0.0005	0.0058 < 0.1	0.0025	0.0058	<0.0002	0.0211	<0.0050	8.18 3	3.82	0.0084	<0.0100
MW-		2017 Q	Q3 7	7 07	7/18/17	N	NM	NM	240.46	22.0	2 8.4	6 14	102	-26.4	NM																													
MW-	3-MI	2017 Q	Q3 8	8 08	3/16/17	N	NM	NM	240.53	12.8	8 8.9	0 15	598	-108.2	NM																													
MW-	3-MI	2017 Q	Q3 9	9 09	9/28/17	Υ	NM	NM	240.46	11.0	4 8.7	4 17	737	-107.3	NM	9.02	8.72	1140	2.34	0.775	440	1.93	700	600	100	<10.0	10.7	1.26	247	10.9	<0.020	<0.050	0.0131	<0.0005	0.0065 < 0.0	<0.0025	0.0033	<0.0002	0.0148	<0.0050	9.05 4	1.23	0.0140	<0.0100

calendar quarter Y/N gpm gal ft bgs deg C SU μS/cm mV yes or no gallons per minute feet below ground surface

standard pH units

microsiemens per cent millivolts

milligram per liter picocuries per liter not measured (field) mg/L pCi/L NM not analyzed (lab)

Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent amount of calcium carbonate. This value is then partitioned into bicarbonate and hydroxide depending on the initial pH of the sample solution, each components reported as equivalent CaCO3.

[&]quot;<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.

								·	Field I	Parameter	's																Lab Ana	ytical Resul	ts												
Loca Na		ar Q	Month	Sample Date	Lab Analysis	Purge Flow Rate	Total De Purged M	pth to /ater	^T emperature	рН	Specific Conductance	Oxygen Reduction Potential	Dissolved Oxygen	Hardness as CaCO3	P	Total Dissolved Solids (Lab)	Calcium	Magnesium	Sodium	Potassium	Alkalinity, Total	Alkalinity, Bicarbonate	, uncum,	Alkalinity, Hydroxide	Chloride	Fluoride	Sulfate (Total Organic Carbon (TOC)	trate/ crite as A	Muminum	Arsenic	Cadmium	Copper	ron Lead	l Mangane:	se Mercur	y Molybdenun	Selenium	Silica (Si02)	on Urani	um Zinc
					Y/N	gpm	gal ft	bgs	deg C	SU	μS/cm	mV	mg/L	mg/L	SU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L n	ng/L	mg/L	mg/L	mg/L	mg/L r	ng/L mg/	L mg/L	mg/L	mg/L	mg/L	mg/L mg	/L mg/	L mg/L
MW-	4-C 20	17 Q1	1 3	03/30/17	Y	NM	7 3	28.33	13.31	8.33	3792	57.3	NM	46.3	7.61	3230	13.6	2.99	908	4.38	1250	1250	<10.0	<10.0	181	1.29	534	30 <	<2.00	<0.050	0.0059	<0.0001	0.0125 <	0.050 <0.00	0.0269	<0.000	2 0.0526	0.0248	9.85 4.6	0.02	0.0156
MW-	4-C 20	17 Q2	2 6	06/29/17	Υ	NM	1.5 3:	14.05	17.40	7.62	5944	20.3	NM	55.9	7.77	4050	13.7	5.26	1510	5.71	2360	2360	<10.0	<10.0	550	2.04	487	6.42 <	0.500	<0.050	0.0119	<0.0010	0.0243 <	0.050 <0.00	50 0.0772	<0.000	2 0.115	0.0231	12.6 5.8	88 0.12	1 0.0265
MW-	4-C 20	17 Q3	3 7	07/27/17	N	NM	NM 3	09.87	12.67	7.68	5997	-101.5	NM																												
MW-	4-C 20	17 Q3	3 8	08/23/17	N	NM	NM 3	06.86	12.03	7.70	5885	-111.2	NM																												
MW-	4-C 20	17 Q3	3 9	09/28/17	Υ	NM	NM 3	03.96	13.86	7.69	5813	-103.7	NM	38.9	7.79	3750	9.15	3.90	1490	6.07	2780	2780	<10.0	<10.0	587	2.17	70.2	5.08 <	0.400	<0.050	0.0128	<0.0010	0.0221 <	0.050 <0.00	50 0.0554	<0.000	2 0.0138	0.0214	12.9 6.0	0.09	34 <0.0200

Q calendar quarter
Y/N yes or no
gpm gallons per minute
gal gallons
ft bgs feet below ground surface
deg C degrees Celsius
SU standard pH units
µS/cm microsiemens per centime
mV millivolts

µS/cm microsiemens per centimeter
mV millivolts
mg/L milligram per liter
pCi/L picocuries per liter
NM not measured (field)

not analyzed (lab)

Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent amount of calcium carbonate. This value is then partitioned into bicarbonate and hydroxide depending on the initial pH of the sample solution, each components reported as equivalent CaCO3.

[&]quot;<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.

			Month				Field Parameters															,				Lo	ab Analytico	l Results	<u> </u>	<u>, </u>							<u>, </u>			
Locatio Name	Year	Q		Sample Date	Lab Analysis	Purge Flow Rate	Total Purged	Depth to Water	Tempe ture	ra pH	Specific Conductance	Oxygen Reduction Potentia	Dissolved Oxygen	Hardness as CaCO3	pH (Lab)	Total Dissolved Solids (Lab)	Calcium	Magnesium	Sodium	Potassium	Alkalinity, Total	Alkalinity, Bicarbonate	,,	Alkalinity, Hydroxide	Chloride	Fluoride S	ulfate Org	tal anic bon DC)	rate/ rite as Alur N	minum Ai	senic Cadı	nium Copp	er Iron Le	ad Manga	ese Merc	ury Molybdenui	n Selenium	Silica (Si02)	Silicon Ur	anium Zinc
					Y/N	gpm	gal	ft bgs	deg	c su	μS/cm	mV	mg/L	mg/L	SU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L m	g/L m	ng/L m	ng/L n	ng/L m	ı/L mg/	L mg/L m	/L mg/	. mg	/L mg/L	mg/L	mg/L	mg/L r	ng/L mg/L
MW-4-A	2017	Q1	3	03/29/17	Υ	NM	19	338.60	15.63	1 8.61	2163	28.6	NM	9.16	8.2	1470	2.23	0.871	515	1.57	635	635	<10.0	<10.0	9.56	<0.400	594 6	63 0.	.035 <0	0.050 0	0016 <0.	0.00	3 <0.050 0.0	0.004	4 <0.0	0.0009	0.0016	10.2	4.75 0	.0016 0.269
MW-4-A	2017	Q2	6	06/30/17	Υ	NM	1.5	334.96	16.83	8.29	2053	54.0	NM	9.85	8.40	1470	2.43	0.916	537	1.75	560	560	<10.0	<10.0	9.66	<0.400	588 1	1.7 <0	0.020 <0	0.050 <0	.0025 <0.	0.005	3 <0.050 <0.	0.006	3 <0.0	0.0275	<0.0050	10.6	4.97 <0	0.0005 0.0319
MW-4-A	2017	Q3	7	07/19/17	N	NM	1.5	335.59	25.50	8.55	1876	60.2	NM																											
MW-4-A	2017	Q3	8	08/23/17	N	NM	NM	334.79	17.63	7.98	2096	61.7	NM																											
MW-4-A	2017	Q3	9	09/28/17	Y	NM	>1	334.81	11.91	1 8.41	2180	-8.6	NM	7.77	8.36	1450	1.76	0.823	513	1.63	630	590	40.0	<10.0	10.3	<0.500	783 3	52 <0	0.020 <0	0.050 <0	.0025 <0.	0.00	6 <0.050 <0.	0.004	4 <0.0	002 <0.0025	<0.0050	9.99	4.67 <0	0.0005 < 0.0100

Q calendar quarter
Y/N yes or no
gpm gallons per minute
gal gallons
ft bgs feet below ground surface
deg C degrees Celsius
SU standard pH units
µS/cm microsiemens per centimeter
mV millivolts

mg/L milligram per liter
pCi/L picocuries per liter
NM not measured (field)
NA not analyzed (lab)

Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent amount of calcium carbonate. This value is then partitioned into bicarbonate and hydroxide depending on the initial pH of the sample solution, each components reported as equivalent CaCO3.

[&]quot;<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.

				Field Parameters											•							•		Lab Analyt	ical Resul	lts					•								
Location Name Year Q Mon	sam Da	ipie Lu	ıb İysis	Purge Flow Rate	tal Depti ged Wat	to er	mperature		Specific onductance	Oxygen Reduction Potential	Dissolved Oxygen	Hardness as CaCO3	pH (Lab)	Total Dissolved Solids (Lab)	Calcium	Magnesium	Sodium	Potassium	Alkalinity, Total	Alkalinity, Bicarbonate	Alkalinity, Carbonate	Alkalinity, Hydroxide	Chloride	Fluoride	Sulfate O as SO4 C	Total Organic Carbon (TOC)	Nitrate/ Nitrite as N	Aluminum	Arsenic	Cadmium	Copper Ir	on Lead	Manganes	e Mercury	Molybdenum	Selenium	Silica (Si02)	n Urani	um Zinc
		Υ/	'N	gpm ,	gal ft b	js .	deg C	SU	μS/cm	mV	mg/L	mg/L	SU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L m	/L mg/	. mg/L	mg/L	mg/L	mg/L	mg/L mg/	L mg/	L mg/L
MW-4-MI 2017 Q1 3	03/3	0/17 Y	,	NM 0	5 378.	20	14.97	9.08	1581	155.2	NM	5.43	8.83	1160	1.53	0.392	408	1.46	965	775	190	<10.0	2.18	4.72	17.4	2.64	<0.020	<0.050	0.0099	<0.0001	0.0059 <0	050 0.001	0 0.0020	<0.0002	0.0020	<0.0010	7.27 3.40	0.00	13 0.113
MW-4-MI 2017 Q2 6	06/1	6/17 Y	/	NM 6	5 330.	15	14.64	8.91	1668	64.7	NM	8.71	8.59	1170	2.32	0.707	458	<2.00	915	825	90.0	<10.0	7.50	5.02	64.7	6.49	<0.020	<0.100	0.0220	<0.0001	0.0058 <0	100 <0.00	0.0066	<0.0002	0.0160	0.0012	8.01 3.75	0.01	26 0.0697
MW-4-MI 2017 Q3 7	07/2	7/17 N	J	NM N	M 330.	94	12.86	8.78	1731	9.8	NM																												
MW-4-MI 2017 Q3 8	08/2	3/17 N	٧	NM N	M 330.	85	12.50	8.79	1708	35.2	NM																												
MW-4-MI 2017 Q3 9	09/2	8/17	/	NM >	1 330.	81	11.37	8.76	1784	-29.6	NM	7.07	8.63	1180	1.88	0.579	449	1.73	1100	880	220	<10.0	8.78	5.09	76.6	8.58	<0.020	<0.050	0.0131	<0.0005	0.0071 <0	0.00	0.0081	<0.0002	0.0127	<0.0050	8.80 4.11	0.01	34 < 0.0100

Q calendar quarter
Y/N yes or no
gpm gallons per minute
gal gallons
ft bgs feet below ground surface
deg C degrees Celsius
SU standard pH units
µS/cm microsiemens per centimeter
mV millivolts

mg/L milligram per liter
pCi/L picocuries per liter
NM not measured (field)
NA not analyzed (lab)

Total alkalinity is measured by titration with hydrochloric acid to a set pH point, reporting this value as an equivalent amount of calcium carbonate. This value is then partitioned into bicarbonate and hydroxide depending on the initial pH of the sample solution, each components reported as equivalent CaCO3.

[&]quot;<" values denote that the quantification of that analyte is below the reporting level for the analytical laboratory, acceptable by environmental water quality laboratory industry standards.