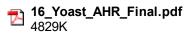


Musick - DNR, Jason <jason.musick@state.co.us>

#### Yoast 2016 AHR

1 message


Watterson, Brian <BWatterson@peabodyenergy.com>

Thu, Mar 30, 2017 at 11:12 AM

To: "Musick - DNR, Jason <jason.musick@state.co.us> (jason.musick@state.co.us)" <jason.musick@state.co.us>

#### E-mail Disclaimer:

The information contained in this e-mail, and in any accompanying documents, may constitute confidential and/or legally privileged information. The information is intended only for use by the designated recipient. If you are not the intended recipient (or responsible for the delivery of the message to the intended recipient), you are hereby notified that any dissemination, distribution, copying, or other use of, or taking of any action in reliance on this e-mail is strictly prohibited. If you have received this email communication in error, please notify the sender immediately and delete the message from your system.





**Seneca Coal Company** 

Peabody Energy PO Box 670 36600 Routt County Road 27 Hayden, CO 81639

February 24, 2017

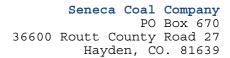
Jason Musick Colorado Division of Reclamation, Mining and Safety 1313 Sherman Street, Room 215 Denver, CO 80203-2273

RE: Yoast AHR, Permit C-94-082

Dear Jason,

Enclosed is the 2016 Annual Hydrology Report (AHR) for the Yoast Mine (Yoast). This report contains a compilation and analysis of hydrologic data collected during the period extending from October 1, 2015 through September 30, 2016.

Please contact me with any comments and/or questions.


Sincerely,

Brian Watterson Geologist

TNS/tns

Enclosure: Yoast AHR

cc: Alan Boehms, OSMRE Jennifer Maiolo, BLM





# 2016 WATER YEAR ANNUAL HYDROLOGY REPORT YOAST MINE



FEBRUARY 2017

## 2016 ANNUAL HYDROLOGY REPORT YOAST MINE

### 2016 ANNUAL HYDROLOGY REPORT YOAST MINE

#### Table of Contents

|                                                            | Page |
|------------------------------------------------------------|------|
| Introduction                                               | 1    |
| Meteorological Data                                        | 2    |
| Ground Water                                               | 3    |
| Water Levels                                               | 3    |
| Ground Water Level Summary                                 | 3    |
| Ground Water Quality                                       | 3    |
| Alluvium                                                   | 4    |
| Wadge Overburden                                           | 4    |
| Wadge Coal                                                 | 4    |
| Wadge Underburden                                          | 5    |
| Wolf Creek Coal and Underburden                            | 5    |
| Comparison of Ground Water Quality to Water Use Standards  | 5    |
| Ground Water Points of Compliance                          | 6    |
| Ground Water Quality Summary                               | 6    |
| Surface Water                                              | 8    |
| Sage Creek                                                 | 9    |
| Site YSSF3                                                 | 9    |
| NPDES12                                                    | 9    |
| NPDES13                                                    | 9    |
| NPDES14                                                    | 9    |
| Site YSS2                                                  | 9    |
| Grassy Creek/Annand Draw                                   | 10   |
| NPDES10                                                    | 10   |
| NPDES11                                                    | 10   |
| Site YSGF5                                                 | 10   |
| Site YSG5                                                  | 11   |
| Springs                                                    | 11   |
| Comparison of Surface Water Quality to Water Use Standards | 11   |
| NPDES Effluent Criteria                                    | 14   |
| Surface Water Summary                                      | 14   |
| References                                                 | 16   |

#### LIST OF APPENDICES

#### Appendix No.

| A | Tables                                     |
|---|--------------------------------------------|
| В | Ground Water Level Reports and Hydrographs |
| C | Ground Water Quality Data                  |
| D | Surface Water Ouality Data and Hydrographs |

#### TABLE A

#### Hydrologic Monitoring Site Numbering System

Bedrock well site syntax: mine/aquifer/site #

Alluvial well site syntax: mine/drainage/aquifer/site #

Stream station syntax: mine/S "for stream"/drainage/site #

Spring site syntax: mine/spring abbr./site #

NPDES site syntax: NPDES/site#

Mine designations: Yoast - Y; Seneca II-W = W; Seneca II = S

#### Aquifer designations:

Wadge Overburden = OV Lennox Overburden = LOV

Wadge Coal = W Trout Creek = TC

Wadge Underburden = WU Spoil = SP

Wolf Creek = WC Spring = SPG

Wolf Creek Under = WCU Spoil Spring = SSPG

Lennox Coal = L Alluvium = AL preceded by drainage designation

#### Drainage designations:

Watering Trough = WT Grassy Creek = G Little Grassy Creek = LG Fish Creek = F Sage Creek = S Cow Camp = C Dry Creek = D Bond Creek = B Hubberson N. of Bond Creek = NB = H

Annand Draw = A

NOTE: An "F" that follows the drainage designation on stream sites indicate the presence of a flume (see examples).

#### Examples:

II-W Overburden Site 4-02 WOV4-2 Yoast Stream Site 3 on Sage YSS3
Yoast Annand Draw Alluv. Site 14 YAAL14 Seneca Spoil Spring #8 SSSPG8

Yoast flume Site 5 on Grassy YSG

#### Introduction

The information assembled in this 2016 Annual Hydrology Report (AHR) includes data collected from approved monitoring sites established at Seneca Coal Company's (SCC) Yoast Mine (State Permit No. C-94-082). Locations of monitoring sites discussed in this report can be found by referring to Exhibit 7-1, Hydrology Monitoring Map, provided in the Yoast Mine Permit Application Package (PAP). In addition, NPDES ponds and surface water sites are depicted on Figures 1 and 2, Appendix A. A map of ground water monitor wells is provided as Figure 3.

All references to 2016 (or to "this year") will be for Water Year 2016 (October 1, 2015 through September 30, 2016) unless otherwise noted. All tables referred to in the following text can be found in Appendix A. In addition, a table of contents for Appendix A is given at the beginning of that appendix.

The Yoast Mine permit went into effect on August 8, 1995. Overburden removal began in October 1996 in the Grassy Creek basin and in 2000 in the Sage Creek basin. The last of the coal at the Yoast Mine was removed in February 2006.

Field conductivity and pH meters were calibrated prior to each day's use. The conductivity meter is calibrated using a potassium chloride solution with an electrical conductivity in the 1000 to 4000 umhos/cm range. The pH meter is calibrated using NBS traceable buffers with pH values of 7 and 10. Lab analyses have been performed by ACZ Laboratory in Steamboat Springs, Colorado since May 31, 1983. ACZ Laboratory performs all analyses by EPA or equivalent methods. Samples are delivered the day of collection to the lab in an iced cooler.

SCC instituted in 1995 a new monitoring site numbering system for its new Paradox $^{\text{TM}}$  water quality database. This revised system is detailed in Table A. For convenience sake, this table has been placed at the end of the Table of Contents (see previous page).

#### Meteorological Data

Data from the National Climatic Data Center's (NCDC) Hayden Station are used to evaluate the precipitation trend. These data are provided in Appendix Al. For this year, 18.43 inches of precipitation was measured, which is 0.17 inch (1%) above the 1981-2015 average, 18.26 inches. All months except October, February, March, June, July, August, and September were above average. Snowpack runoff, as estimated by totaling November through March precipitation values, was 9.66 inches, which was 2.29 inches (31%) above the 1981-2015 average, 7.37 inches.

#### Ground Water

#### Water Levels.

Table 3 provides a summary of ground water monitoring sites at the Yoast Mine. Water level data are provided in Appendix B. For each well water level reports for the past ten years are presented immediately after the water level hydrograph of all data since 1991. Water level measurements are collected with an electrical water level indicator or a steel tape. Pressure readings (in psi) obtained from flowing wells with pressure gages are multiplied by 2.31 to obtain head in feet. The current ground water monitoring program is presented in Table 15-8 of the Yoast Mine PAP.

#### Ground Water Level Summary.

This year, water levels at all wells were within their historic ranges, except for well YW30. Well YW30 exhibited its highest water level this year with a value of 151.19 feet to water. All alluvial wells exhibit distinct seasonal water level fluctuations in response to periods of precipitation recharge or the lack of precipitation. Overburden and coal well water levels are fluctuating in response to the precipitation recharge and induced ground water flow to the reclaimed mine pits.

#### Ground Water Quality.

Table 3 provides a summary of ground water monitoring sites at the Yoast Mine. Tables 4a and 4b show the 2010 ground water parameter lists. Appendix C provides all ground water quality data collected during this year, along with sampling remarks. This is followed by a plot of TDS versus time for the entire period of record. The regression line on this plot is generated by a method known as LOWESS which is an acronym from Locally Weighted Scatter plot Smoothing (Cleveland, 1979). Unless otherwise noted, smoothness factor (SF) of 1 (on a scale of 0 to 1) was used, which gives maximum smoothing.

A statistical report representing baseline (i.e., premining) data for each well (when available) is presented in Appendix C1 of the 2010 AHR. On this statistics report, "censored data" refers to analytical values that were below the detection limit, which were censored from the min/max/mean calculations. The time frame for baseline conditions is listed under "conditions specified" at the bottom of each page.

#### Alluvium.

One well, YAAL14, monitors water quality in the Annand Draw alluvium. TDS values for this well display an increasing TDS trend with the peak value occurring in May 2008.

One well, YGAL16, monitors water quality in the Grassy Creek alluvium. This well is located immediately below NPDES11 on a Grassy Creek tributary. It displays an increasing TDS trend. However, the peak value occurred in May 2011.

Two wells, YSAL1 and YSAL3, monitor water quality in the Sage Creek alluvium. Well 1 is the furthest downstream well for the Yoast Mine. It displays an increasing TDS trend, with the peak value occurring in October 2007. Well 3 is upstream of Well 1, and is located along Sage Creek, just below the discharge from NPDES12. It displays an increasing TDS trend with the peak value occurring in May 2011.

#### Wadge Overburden.

Well YOV30 displays an increasing TDS trend. However, the peak values occurred in September 1992 and September 2014.

#### Wadge Coal.

Well YW30 displays an increasing TDS trend, with the peak value occurring in May 2014.

Wadge Underburden.

Well YWU30 displays a decreasing TDS trend with the peak values occurring in December 1990 and August 2007.

Wolf Creek Coal and Underburden.

As of September 2002, Well YWC33 monitors the Wolf Creek coal water quality in the Sage Creek basin. This well displays a decreasing TDS trend, with the peak value occurring in 2005. Mining of this seam began in November 2002. Well YWCU33 now monitors the Wolf Creek underburden water quality in the Sage Creek basin. It displays a decreasing TDS trend with the peak value occurring in August 2003.

#### Comparison of Ground Water Quality to Water Use Standards.

SCC has compiled a list of ground water standards for agricultural uses (Table 5). This list is composed of Colorado Department of Health ground water standards (CDPHE, Reg. 41, May 2008).

Table 6 provides a comparison of ground water quality to agricultural standards. This Paradox database-generated table does not include the units of concentration (mg/l or ug/l) for each parameter. The units used for each parameter are the same as those listed on the standards table (Table 5) and are also the same as those used in the water quality reports. The frequency column on Table 6 indicates, in this order: uncensored, that is, the number of exceedances above the Method Detection Limit (MDL) / the number of exceedances between the MDL and the Practical Quantitation Level (PQL) / censored, that is, the number of sample values below the MDL but the MDL was higher than the standard / the total number of samples. This year, no excursions were observed at any site.

#### Ground Water Points of Compliance

Two GWPOCs have been established for the Yoast Mine. Attachment 15-1 of the Yoast Mine PAP provides the details. The ground water standards for Grassy Creek Alluvial Well SGAL70 are provided in this AHR on Table 7. Data from Well SGAL70 may be found in the Peabody Sage Creek Mine AHR, Appendix C. No exceedances of those standards were observed in the sample collected from this well this year.

The ground water standards for Sage Creek Alluvial Well YSAL3 are provided in this AHR on Table 8. Data from Well YSAL3 may be found in Appendix C of this AHR. The sole exceedance of those standards was observed in May. Well SGAL70 exhibited an elevated concentration of selenium, 43.70 ug/l. The September concentration decreased to 0.30 ug/l. The selenium standard is 20.0 ug/l.

#### Ground Water Summary

TDS trends are decreasing at three wells and increasing at six wells. CDPHE agricultural ground water standards were not exceeded this year. In the area surrounding Yoast, ground water is not being pumped for irrigation or livestock watering purposes, nor has the CDPHE classified any aquifer in this region for any use. The above discussion is provided only to serve as a comparative basis to judge ground water quality.

In the Probable Hydrological Consequences (PHC, Tab 17, Attachment 17-5) section of the Yoast Mine PAP, predictions were made as to the expected TDS increases to be observed at various monitoring wells. The following table outlines these predictions along with this year's observed average values (annual average for bedrock wells, May-September average for alluvial wells).

| <u>Well</u> | Predicted TDS values (mg/l) | This year's average TDS $(mg/l)$ |
|-------------|-----------------------------|----------------------------------|
| YOV30       | 3201                        | 2900                             |
| YW30        | 2570                        | 7790*                            |
| YWC33       | 2721                        | 742                              |
| YWCU33      |                             | 898                              |
| YWU30       |                             | 568                              |
| YAAL14      | 2036                        | 2010                             |
| YGAL16      | 1296                        | 1480*                            |
| YSAL1       | 798                         | 1430*                            |
| YSAL3       | 798                         | 1150*                            |

<sup>\*</sup> indicates value above prediction

This year's TDS value at Wadge coal well YW30 was 7790 mg/l. The PHC predicted value for this well is 2570 mg/l. Since 2009, TDS values have been fluctuating up and down, making it difficult to determine an accurate trend.

At Grassy Creek alluvial well YGAL16, the average TDS value observed this year was 1480 mg/l. This value exceeds the predicted value of 1296 mg/l. The GWPOC well for the Grassy Creek Alluvium, SGAL70, did not exceed the TDS GWPOC standard, 5038 mg/l.

At Sage Creek alluvial well YSAL1, the average TDS value observed this year was 1430 mg/l. The TDS value observed this year upstream at Well YSAL3 (directly below Pond 012) was 1150 mg/l. These two values exceed the predicted value of 798 mg/l. The GWPOC well for the Sage Creek Alluvium, YSAL3, did not exceed the TDS GWPOC standard, 2675 mg/l.

At well YSAL3, the average TDS value observed this year was 1150 mg/l. This value exceeded the predicted value of 798 mg/l. The GWPOC well for the Sage Creek Alluvium, YSAL3, did not exceed the TDS GWPOC standard, 2675 mg/l.

#### Surface Water

A summary of surface water sites is provided in Table 9. Stream monitoring occurs on Sage Creek at Sites YSSF3 and YSS2, and on Grassy Creek at Sites YSGF5 and YSG5. These surface water sites are monitored biannually for flow and field parameters (pH, temperature, and electrical conductivity [EC]). All five NPDES sites are monitored monthly for NPDES parameters and field parameters. Samples obtained at the stream sites are analyzed for one of the new surface water parameter lists during spring runoff and summer baseflow. Spring sites are monitored in the spring season. The current surface water and spring monitoring program is presented in Table 15-9 of the Yoast Mine PAP.

All surface water data collected during this reporting period are provided in Appendix D. Data for each site begin with a flow hydrograph of all historic data (plus an annual hydrograph for NPDES sites), followed by a listing of individual water quality and quantity data for the current water year, followed by an instantaneous flow measurement report, and followed by remarks, if present. This is followed by a TDS regression plot using the LOWESS method (see the Ground Water Quality section).

A statistical report representing baseline (i.e., premining) data for each site downstream of mining (when available) is provided in Appendix D1 of the 2010 AHR. On this statistics report, "censored data" refers to analytical values that were below the detection limit, which were censored from the min/max/mean calculations. The time frame for baseline conditions is listed under "conditions specified" at the bottom of each page.

#### Sage Creek

Site YSSF3.

This site exists on Sage Creek upstream of all potential Yoast Mine discharges. It displays a decreasing TDS trend.

#### NPDES12.

Mining in this basin began in 2000. Reconstruction of the water augmentation Pond Y1 (Site YSSF2) was completed on September 13, 1999. It is now referred to as Pond 012 (NPDES12). This pond began to flow again (after reconstruction) in April 2000. Flow at this pond is continuous. The average flow value for this year was 0.14 cfs, which was 40% greater than the historic (2000-2016) average for Pond 012, 0.10 cfs. The timing of when flow values are collected affects these averages. A statistical summary of baseline chemistry data from Site YSSF2 (Y1 outflow) and YSS3 (Y1 inflow) is provided in Appendix D1 of the 2010 AHR. NPDES12 exhibits a decreasing TDS trend, with the peak value occurring in July 2007.

A slide north of Pond 012 was repaired in 2010 and 2011. An additional pond, 012A, was constructed in August 2008 to compensate for the lost capacity in Pond 012. Pond 012 was cleaned out in 2010 and 2012.

#### NPDES13.

Construction of this pond was completed in December 2003. It first began discharging on March 14, 2005. Average flow this year was 0.023 cfs, which was 130% higher than the historic (2005-2016) average value, 0.01 cfs. The timing of when flow values are collected affects these averages. The TDS trend is increasing.

#### NPDES14.

Construction of this pond was completed in September 2001. It discharged for the first time on April 4, 2006. The average flow this year was 0.022 cfs, which was 10% greater than the historic (2006-2016) average value, 0.02 cfs. The timing of when flow values are collected affects these averages. TDS values are slightly increasing with the peak occurring this year.

#### Site YSS2.

This site exists on Sage Creek below all potential Yoast Mine discharges. Monitoring at this site was resumed in 1998 after the monitoring requirement was discontinued in 1993 (although field

parameters were occasionally collected in 1994 to 1997). A statistical summary of baseline chemistry data is provided in Appendix D1 of the 2010 AHR. Its TDS plot indicates a slightly increasing trend, with the peak value occurring in September 2006.

#### Grassy Creek / Annand Draw

#### NPDES10.

This sediment pond on Annand Draw was completed in August 1996. Flow was observed at this site for the first time ever on February 24, 1997. Flow at this pond is normally continuous. Average flow this year was 0.085 cfs, which is 47% less than its historic (1997-2016) average, 0.16 cfs. The timing of when flow values are collected affects these averages. This pond was dredged out in 2002. Baseline data for this site, both downstream (Site YSA4) and upstream (Site YSAF4) of the pond, have been provided in Appendix D1 of the 2010 AHR. NPDES10 exhibits a slightly increasing TDS trend. However, the peak value occurred in 2002.

#### NPDES11.

This pond exists on a Grassy Creek tributary and was completed in October 1997. Flow was first observed at this site in 1998. No discharge occurred in 1999 or 2000. Average flow this year was 0.038 cfs, which was 27% higher than the historic (1998-2016) average, 0.03 cfs. The timing of when flow values are collected affects these averages. Due to high sediment level, this pond was dredged out in the fall of 2003. TDS values exhibited an increasing trend, with the peak value occurring in 2011.

#### Site YSGF5.

This site exists on Grassy Creek below the NPDES11 pond. A statistical summary of baseline chemistry data is provided in Appendix D1 of the 2010 AHR. Its TDS plot indicates an increasing trend, with the peak value occurring in 2013. This site is also a part of the Peabody Sage Creek Mine monitoring program.

Site YSG5.

This site exists on Grassy Creek below all discharges from both the Yoast and Peabody Sage Creek Mines. It became part of the required monitoring program in October 1995. TDS values here are affected more by the Peabody Sage Creek Mine than the Yoast Mine. TDS values recently display a stable trend, with the peak value occurring in 2013. This site is also a part of the Peabody Sage Creek Mine monitoring program.

#### Springs

Spoil Spring 1 (YSSPG1).

This spoil spring was discovered in September 2002. It is located just above the old haul road culvert crossing Annand Draw. Its TDS plot displays a increasing trend.

Spoil Spring 2 (YSSPG2).

This spoil spring was discovered in May 2005 below Stock Pond 011A (i.e., above NPDES Pond 011). It is normally dry in the fall. Its TDS plot displays decreasing trend since 2010.

Spoil Spring 3 (YSSPG3).

This spoil spring was discovered in September 2005 above NPDES Pond 012. Its TDS plot displays an increasing trend.

Spoil Spring 4 (YSSPG4).

This spoil spring was discovered in June 2006, in the main channel that feeds NPDES Pond 012. It is located to the north of Spoil Spring 3. Recently, its TDS plot displays a slightly increasing trend.

#### Comparison of Surface Water Quality to Water Use Standards.

SCC has compiled a list of surface water standards for agricultural uses (Table 11). This list is composed of CDPHE surface water agricultural use standards (CDPHE, Reg.31, November 2009).

Table 12 provides a comparison of surface water quality (including springs) to agricultural standards. This Paradox database-generated table does not include the units of concentration (mg/l or ug/l) for each parameter. The units used for each parameter are the same as those listed on the standards table (Table 11) and are also the same as those used in the water quality reports. The frequency column on Table 12 indicates, in this order: uncensored, that is, the number of exceedances above the Method Detection Limit (MDL) / the number of exceedances between the MDL and the Practical Quantitation Level (PQL) / censored, that is, the number of sample values below the MDL but the MDL was higher than the standard / the total number of samples. Below is a summary of standards that were exceeded. Given in parenthesis is the source and use of each standard. Although the CDPHE does not indicate between livestock and irrigation uses in their surface agricultural standards, they have done so in their similar ground water agricultural standards (see Table 5). For the sake of discussion, SCC chooses to use those ground water use standards classifications (livestock or irrigation) for surface water use evaluation. Following is a list of standards exceeded this year.

| <u>Parameter</u>             | # of Sites / # of Excursions |
|------------------------------|------------------------------|
| Manganese (CDPHE irrigation) | 4/4                          |
| Selenium                     | 1/1                          |

This summary indicates that two CDPHE surface water agricultural use standards were exceeded. The manganese standard was exceeded at four sites and the selenium standard was exceeded at one site. However, as indicated in the recently revised CDPHE Regulation 31, the standard of 0.2 mg/l for manganese, applies to plants grown in acidic (<6.0 pH) soils. In alkaline soils, as are found in the Seneca II region, a more appropriate (EPA) standard would be 10 mg/l. The maximum manganese value for any surface water site observed this year was 1.58 mg/l. Premining manganese values often exceeded the 0.2 mg/l standard.

Table 13 shows the CDPHE receiving stream standards for Sage Creek (Yampa Segment 13e), Table 15 shows the upper Grassy Creek (Yampa

Segment 13i) and Table 17 shows the lower Grassy Creek (Yampa Segment 13j). Sage Creek was re-segmented by the CDPHE in 2003. Regulation 33 was further revised in 2005, 2008 and 2015. These standards were based on the presence of fish in the lower portions of the creeks. However, the upper portions that the Yoast Mine discharges into have no fish present. Tables 14 (Yampa Segment 13e) 16 (Yampa Segment 13i) and 18 (Yampa Segment 13j) provide a comparison of those standards to water quality data collected this year from NPDES and stream sites in those basins. Standards that were exceeded are:

| <u>Parameter</u>             | # of Sites / # of Excursions |
|------------------------------|------------------------------|
| Iron, Total Recoverable (TR) | 2/2                          |
| Mercury, Total               | 3/3                          |

The total recoverable iron standard (1.0 mg/l) was exceeded two times at two sites this year (YSGF5 and YSG5) with a high of 2.53 mg/l. Iron excursions were likely the result of high suspended solids (TSS) and are generally observed during snowmelt runoff. This strict aquatic life standard was exceeded in over half of the pre-mining stream samples.

The aquatic life ammonia standard is dependent on pH and temperature. The detection limit for ammonia is 0.05 mg/l. All values above detection limit are compared to table standards found on this website, page 87: https://nepis.epa.gov/Adobe/PDF/2000303L.pdf

No ammonia excursions occurred this year.

The drinking water standard for mercury is 2 ug/l. The aquatic life standard for mercury is 0.01 ug/l, which is set to protect the average human consumer of fish. SCC runs two different mercury tests, a high level test with a MDL of 0.2 ug/l (for streams) and a low level test with a MDL of 0.0002 ug/l (for certain NPDES sites only). All high level test values this year were less than the detection limit, which is 0.2 ug/l.

The sulfide data presented in Appendix D are the total of both the ionized  $(S^-)$  and un-ionized  $(H_2S)$  forms of hydrogen sulfide. The un-

ionized form is the potentially toxic form, and is what the CDPHE water quality standard is based upon. A procedure for calculating the unionized form may be found on the website, page 5, Table 1: <a href="http://www.mullalyengineering.com.au/images/product/file/Problem\_of\_Hydrogen\_Sulphide\_in\_Sewers.pdf">http://www.mullalyengineering.com.au/images/product/file/Problem\_of\_Hydrogen\_Sulphide\_in\_Sewers.pdf</a>

No excursions of the  $0.002\ \text{mg/l}$  un-ionized sulfide standard occurred this year.

#### NPDES Effluent Criteria (Permit No. CO-0000221)

No excursions of NPDES limits occurred this year.

#### Surface Water Summary

The Yoast Mine PHC (PAP Tab 17, Attachment 17-5) predicts TDS increases to be observed at various stream sites during the irrigation season (June-September). The following table outlines those predictions along with this year's observed averages.

| Stream Site  | Predicted TD | S values | (mg/l) | This | year's | average | TDS | (mg/l) |
|--------------|--------------|----------|--------|------|--------|---------|-----|--------|
| YSGF5        |              | 1337     |        | 8    | 852    |         |     |        |
| NPDES10      |              | 3938     |        | 24   | 462    |         |     |        |
| NPDES12      |              | 4291     |        | 30   | 075    |         |     |        |
| WSSF3 (Senec | a II-W site) | 2118     |        | 8    | 339    |         |     |        |

No sites exceeded the PHC predictions.

TDS trends are increasing at NPDES10, NPDES11, NPDES13, NPDES14; Stream Sites YSS2, YSGF5; Spoil Spring 3 (YSSPG3) and Spoil Springs 1 (YSSPG1). TDS values have decreased at sites NPDES12, YSSF3, and Spoil Springs 2 (YSSPG2). A recently stable trend has been observed at Spoil Spring 4 (YSSPG4) and at YSG5. Average flow values this year were above historic averages at all NPDES sites, except NPDES10.

Water discharged from the Yoast Mine is not used directly for irrigation. Indirectly, although, water discharged from the mine is significantly diluted by water from Grassy Creek, Sage Creek, or the Yampa River before it is diverted and used for irrigation. Due to the relative amount of dilution, the ambient water qualities of Grassy Creek, Sage Creek, and the Yampa River are the dominant factors in determining their suitability for irrigation. Water discharged from the Yoast Mine is, however, used for livestock watering. NPDES discharges are suitable for livestock and irrigation, but sometimes exceed water quality standards for aquatic life.

#### References

American Public Health Association (Ed.). 1985. "Standard Methods for the Examination of Water and Wastewater", 16th Edition, Washington, D.C.

Brakensieh and others. 1979. "Field Manual for Research in Agricultural Hydrology".

Buchanan and Sumers. 1968. "Stage Measurements at Gaging Stations".

Cleveland, W.S. 1979. "Robust Locally Weighted Regression and Smoothing Scatterplots: J.Am.Stat.Assoc. 74, 829-836.

Colorado Dept. of Health. August 2005. "Regulation No. 31, The Basic Standards and Methodologies for Surface Water"

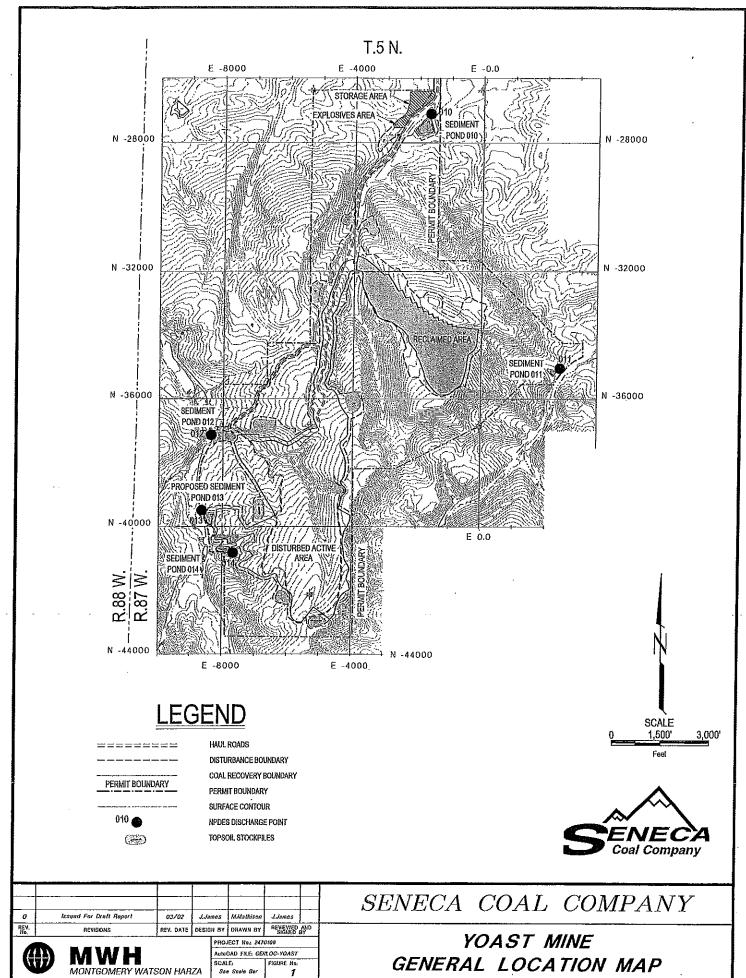
Colorado Dept. of Health. December 2005. "Regulation No. 33, Classification and Numeric Standards for the Upper Colorado River Basin"

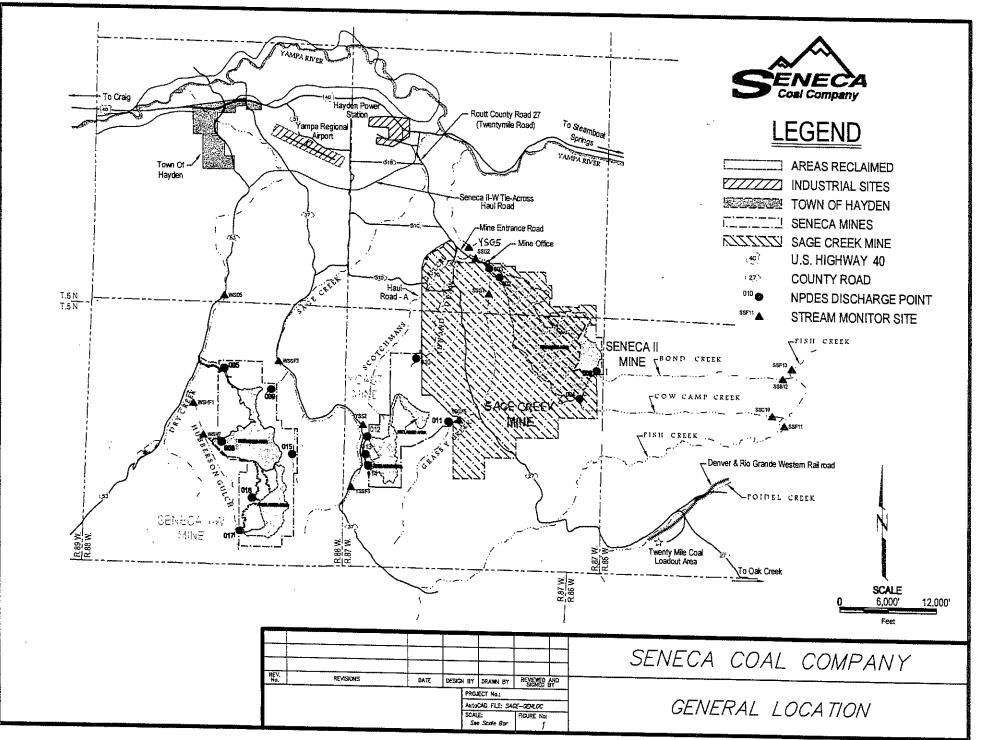
Colorado Dept. of Health. November 2004. "Regulation No. 41, The Basic Standards for Ground Water"

EPA. 1976. "Quality Criteria for Water"

Hem, John D. 1985. "Study and Interpretation of the Chemical Characteristics of Natural Water" USGS Water Supply Paper 2254, Third Edition

APPENDIX A


TABLES


#### APPENDIX A

#### Yoast Mine

#### Table of Contents

| Figure No. |                                                              |
|------------|--------------------------------------------------------------|
| 1          | Yoast Mine General Location                                  |
| 2          | Seneca Coal Company General Location                         |
| 3          | Yoast Mine Monitoring Wells                                  |
| mahla Na   |                                                              |
| Table No.  | Not Ugod                                                     |
| 1          | Not Used                                                     |
| 2          | Total Precipitation (1981-2016 Water Years) PSC Mine         |
| 3          | Summary of Ground Water Monitoring Sites                     |
| 4a         | Ground Water Parameter New Long List                         |
| 4b         | Ground Water Parameter New Short List                        |
| 5          | Ground Water Agricultural Use Standards                      |
| 6          | Comparison of Ground Water Quality to CDPHE Agricultural Use |
|            | Standards                                                    |
| 7          | Ground Water Point of Compliance, Grassy Creek Alluvium      |
| 8          | Ground Water Point of Compliance, Sage Creek Alluvium        |
| 9          | Summary of Surface Water Monitoring Sites                    |
| 10a        | Surface Water Parameter New Long List                        |
| 10b        | Surface Water Parameter New Short List                       |
| 11         | Surface Water Agricultural Use Standards                     |
| 12         | Comparison of Surface Water Quality to CDPHE Agricultural    |
|            | Use Standards                                                |
| 13         | CDOH Yampa Segment 13e (Sage Creek) Standards                |
| 14         | Comparison of Surface Water Quality to Yampa Segment 13e     |
|            | Standards                                                    |
| 15         | CDOH Yampa Segment 13i (upper Grassy Creek) Standards        |
| 16         | Comparison of Surface Water Quality to Yampa Segment 13i     |
|            | Standards (Sites YSGF5 and NPDES11)                          |
| 17         | CDOH Yampa Segment 13j (lower Grassy Creek) Standards        |
| 18         | Comparison of Surface Water Quality to Yampa Segment 13j     |
|            | Standards (Sites YSG5 and NPDES10)                           |





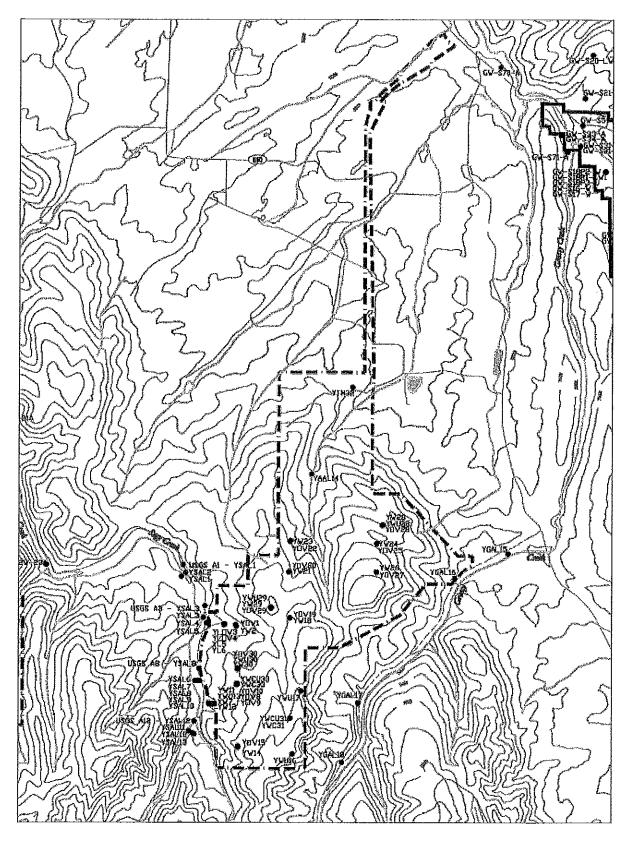



Figure 3: Map showing the monitoring well locations at Yoast Mine. Major drainages include Sage Creek to the west and Grassy Creek to the east. Minor drainages include Annand Draw to the north.

TABLE 2
Total Precipitation in Inches 1981-2016 Water Years
Yoast Mine, Routt County, Colorado

|         | Oct  | Nov  | Dec  | Jan  | Feb Y | oast Mine<br>Mar | , Routt Co | unty, Col<br>May | orado<br>Jun | Jul  | Aug  | Sept | Total |
|---------|------|------|------|------|-------|------------------|------------|------------------|--------------|------|------|------|-------|
| 2016    | 1.39 | 1.9  | 2.55 | 2.65 | 1.16  | 1.40             | 3.02       | 1.94             | .40          | .81  | .19  | 1.02 | 18.43 |
| 2015    | 1.60 | 2.10 | 1.84 | 0.55 | 1.02  | 1.30             | 1.60       | 4.36             | 0.61         | 2.36 | 1.53 | 0.90 | 19.77 |
| 2014    | 2.69 | 1.75 | 1.42 | 2.02 | 0.78  | 1.96             | 1.19       | 2.58             | 0.72         | 1.50 | 3.77 | 0.87 | 21.25 |
| 2013    | 0.86 | 0.46 | 3.21 | 1.02 | 0.73  | 1.29             | 3.58       | 1.67             | 0.06         | 0.46 | 1.48 | 2.76 | 17.58 |
| 2012    | 1.41 | 1.65 | 0.36 | 0.87 | 1.97  | 0.50             | 1.13       | 0.22             | 0.15         | 2.43 | 0.55 | 1.56 | 12.80 |
| 2011    | 2.18 | 1.91 | 2.98 | 1.59 | 2.09  | 2.52             | 4.50       | 3.56             | 0.85         | 1.82 | 0.65 | 1.14 | 25.79 |
| 2010    | 1.22 | 0.77 | 1.24 | 0.75 | 0.90  | 0.73             | 1.98       | 2.80             | 1.34         | 1.19 | 1.56 | 0.62 | 15.10 |
| 2009    | 0.53 | 1.16 | 1.38 | 2.80 | 0.60  | 1.32             | 1.40       | 1.89             | 2.08         | 0.51 | 1.04 | 0.48 | 15.19 |
| 2008    | 1.41 | 0.13 | 3.36 | 2.51 | 1.70  | 1.64             | 0.94       | 1.68             | 0.37         | 0.57 | 0.75 | 0.91 | 15.97 |
| 2007    | 2.64 | 0.76 | 0.86 | 1.04 | 1.34  | 1.46             | 0.62       | 0.87             | 0.33         | 0.52 | 1.12 | 2.72 | 14.28 |
| 2006    | 2.27 | 2.04 | 2.01 | 1.78 | 0.58  | 1.06             | 0.95       | 0.93             | 0.24         | 1.48 | 2.71 | 2.75 | 18.80 |
| 2005    | 1.34 | 1.68 | 0.50 | 1.49 | 0.84  | 0.99             | 1.97       | 1.41             | 3.36         | 0.57 | 1.57 | 1.30 | 17.02 |
| 2004    | 0.44 | 2.90 | 1.58 | 0.74 | 1.64  | 0.40             | 1.57       | 1.26             | 0.86         | 1.00 | 1.44 | 2.76 | 16.59 |
| 2003    | 1.88 | 1.09 | 1.28 | 0.74 | 1.95  | 0.99             | 2.57       | 1.15             | 1.33         | 0.47 | 0.62 | 1.83 | 15.90 |
| 2002    | 1.14 | 1.17 | 0.54 | 0.88 | 0.92  | 1.06             | 1.39       | 0.40             | 0.37         | 0.78 | 1.26 | 1.94 | 11.86 |
| 2001    | 0.67 | 1.60 | 1.16 | 0.96 | 1.41  | 1.07             | 1.28       | 1.15             | 0.85         | 1.11 | 2.06 | 1.66 | 14.98 |
| 2000    | 0.43 | 0.61 | 1.66 | 1.66 | 1.68  | 1.46             | 1.84       | 1.94             | 0.54         | 0.75 | 2.38 | 2.00 | 16.95 |
| 1999    | 1.85 | 0.81 | 1.13 | 2.13 | 0.99  | 0.57             | 3.21       | 2.00             | 1.39         | 2.10 | 1.85 | 0.78 | 18.81 |
| 1998    | 2.37 | 1.08 | 0.95 | 1.34 | 1.93  | 1.77             | 1.77       | 0.62             | 2.51         | 1.50 | 0.48 | 1.50 | 17.82 |
| 1997    | 1.79 | 2.39 | 1.69 | 2.88 | 0.97  | 0.48             | 3.19       | 2.75             | 1.60         | 1.05 | 3.57 | 5.48 | 27.84 |
| 1996    | 1.32 | 2.20 | 1.26 | 3.60 | 2.19  | 0.99             | 1.34       | 2.10             | 1.00         | 1.33 | 0.35 | 1.37 | 19.05 |
| 1995    | 0.95 | 2.09 | 0.68 | 1.47 | 0.97  | 0.82             | 3.36       | 4.48             | 1.54         | 1.23 | 0.73 | 2.69 | 21.01 |
| 1994    | 3.02 | 1.61 | 1.16 | 0.69 | 1.13  | 0.56             | 1.85       | 1.07             | 0.43         | 0.24 | 0.98 | 0.72 | 13.46 |
| 1993    | 1.46 | 1.48 | 1.33 | 2.28 | 1.66  | 1.53             | 2.55       | 1.14             | 1.29         | 0.65 | 1.37 | 1.39 | 18.13 |
| 1992    | 1.18 | 2.79 | 0.85 | 0.88 | 1.16  | 1.20             | 1.66       | 3.08             | 1.15         | 4.38 | 0.95 | 0.98 | 20.26 |
| 1991    | 3.20 | 1.71 | 1.18 | 1.75 | 0.86  | 2.42             | 1.09       | 0.96             | 1.74         | 1.59 | 2.00 | 1.32 | 19.82 |
| 1990    | 0.77 | 1.38 | 2.08 | 0.65 | 1.64  | 1.54             | 1.36       | 1.12             | 1.38         | 1.14 | 0.51 | 1.22 | 14.79 |
| 1989    | 0.13 | 2.79 | 1.13 | 1.02 | 2.50  | 1.38             | 0.45       | 1.39             | 0.53         | 1.82 | 1.33 | 1.52 | 15.99 |
| 1988    | 1.27 | 1.22 | 2.32 | 2.80 | 0.70  | 1.31             | 0.83       | 1.85             | 1.93         | 0.60 | 1.03 | 2.31 | 18.17 |
| 1987    | 2.65 | 1.00 | 0.56 | 1.28 | 1.35  | 1.50             | 1.60       | 1.92             | 0.64         | 1.78 | 1.35 | 0.46 | 16.09 |
| 1986    | 3.51 | 4.19 | 1.34 | 0.79 | 3.01  | 1.59             | 2.70       | 0.99             | 1.00         | 1.65 | 1.96 | 2.12 | 24.85 |
| 1985    | 2.61 | 1.68 | 1.80 | 2.40 | 1.01  | 2.40             | 3.77       | 1.40             | 0.68         | 1.28 | 0.64 | 1.17 | 20.84 |
| 1984    | 2.16 | 2.82 | 5.03 | 0.59 | 0.43  | 2.31             | 2.68       | 1.33             | 2.36         | 1.84 | 2.61 | 1.31 | 25.47 |
| 1983    | 1.64 | 1.52 | 1.03 | 1.10 | 1.66  | 2.17             | 2.28       | 1.57             | 2.76         | 1.88 | 1.08 | 0.79 | 19.48 |
| 1982    | 3.76 | 0.78 | 2.51 | 1.71 | 0.62  | 2.64             | 1.92       | 0.97             | 0.46         | 1.60 | 1.19 | 2.64 | 20.80 |
| 1981    | 1.09 | 0.33 | 0.43 | 0.53 | 0.45  | 2.50             | 0.69       | 3.97             | 1.65         | 2.24 | 1.12 | 1.33 | 16.33 |
| Average | 1.69 | 1.6  | 1.57 | 1.5  | 1.29  | 1.41             | 1.94       | 1.79             | 1.13         | 1.34 | 1.38 | 1.62 | 18.26 |

Data October 80 to February 82, and 2011 Water Year and later, from U.S. Department of Commerce - NOAA - Hayden Station. All other data from Seneca II Mine Meteorological Station with Belfort Weighing Bucket Rain Gage. Site relocated to USGS site on 8/31/91.

TABLE 3
Summary of Ground Water Monitoring Sites, Yoast Mine

| Well<br>Number | USGS<br>Number | Coordinates               | Formation<br>Completed In | Well Depth<br>(ft) | Casing<br>Dia. (in) | Surface<br>Elev. (ft) | Remarks                                                                          | Historic<br>Water Quality Data |
|----------------|----------------|---------------------------|---------------------------|--------------------|---------------------|-----------------------|----------------------------------------------------------------------------------|--------------------------------|
| YSAL1          | A1             | S 35,180.90<br>W 9,544.48 | Sage Creek<br>Alluvium    | 39.1               | 4                   | 7174.93               |                                                                                  | Yes                            |
| YSAL2          | A2             | S 35,020.85<br>W 9,344.12 | Sage Creek<br>Alluvium    | 40.0               | 2                   | 7179.47               | Well abandoned 2014                                                              | No                             |
| YSAL3          | A3             | S 36,967.39<br>W 8,585.95 | Sage Creek<br>Alluvium    | 44.0               | 2                   | 7223.53               | Point of compliance well                                                         | Yes                            |
| YSAL4          | A4             | s 37,206.98<br>W 8,443.68 | Sage Creek<br>Alluvium    | 59.0               | 2                   | 7230.80               | Well abandoned 2014                                                              | No                             |
| YSAL5          | <b>A</b> 5     | s 37,224.27<br>W 8,393.76 | Sage Creek<br>Alluvium    | 45.0               | 2                   | 7233.33               | Well abandoned 2014                                                              | No                             |
| YSAL6          | <b>A</b> 6     | S 39,713.05<br>W 8,935.08 | Sage Creek<br>Alluvium    | 40.0               | 2                   | 7318.08               | Well abandoned 2014                                                              | No                             |
| YSAL7          | <b>A</b> 7     | s 39,717.24<br>W 8,836.39 | Sage Creek<br>Alluvium    | 45.0               | 2                   | 7325.21               | Discontinued 10/95, duplicate wel Well abandoned 2014                            | 1. No                          |
| YSAL8          | A8             | S 39,707.34<br>W 8,840.15 | Sage Creek<br>Alluvium    | 20.0               | 4                   | 7324.76               | Well abandoned 2014                                                              | Yes                            |
| YSAL9          | <b>A</b> 9     | S 39,697.69<br>W 8,842.49 | Sage Creek<br>Alluvium    | 20.0               | 4                   | 7324.52               | Discontinue 10/95, duplicate well Well abandoned 2014                            | . No                           |
| YSAL10         | A10            | S 39,715.52<br>W 8,732.48 | Sage Creek<br>Alluvium    | 53.0               | 2                   | 7330.13               | Abandoned 10/01 (TR 22)                                                          | No                             |
| YSAL11         | A11            | S 41,880<br>W 9,200       | Sage Creek<br>Alluvium    | 40.0               | 2                   | 7382                  | Well destroyed by farming,<br>location and elevation estimated<br>Last data 8/83 | No                             |
| YSAL12         | A12            | S 41,972.54<br>W 9,052.38 | Sage Creek<br>Alluvium    | 40.0               | 4                   | 7381.13               |                                                                                  | Yes                            |
| YSAL13         | A13            | S 42,025.40<br>W 8,963.62 | Sage Creek<br>Alluvium    | 30.0               | 2                   | 7384.23               | Casing damaged by farming, well abandoned 8/96                                   | No                             |

TABLE 3 (Continued)

| Well<br>Number | USGS<br>Number | Coordinates                | Formation We Completed In      | ell Depth<br>(ft) | Casing<br>Dia. (in) | Surface<br>Elev. (ft) | Remarks                                                                                    | Historic<br>Water Quality Data |
|----------------|----------------|----------------------------|--------------------------------|-------------------|---------------------|-----------------------|--------------------------------------------------------------------------------------------|--------------------------------|
| YAAL14         | n/a            | S 30,718.62<br>W 3,904.05  | Annand Draw<br>Alluvium        | 22.3              | 4                   | 6971.97               |                                                                                            | Yes                            |
| YGAL15         | N/A            | S 34,182.12<br>E 4,745.60  | Grassy Creek<br>Alluvium       | 12.5              | 4                   | 6909.16               |                                                                                            | Yes                            |
| YGAL16         | N/A            | S 35,257.00<br>E 2,400.86  | Grassy Creek<br>Trib. Alluvium | 28.7              | 4                   | 6982.12               |                                                                                            | Yes                            |
| YGAL17         | n/a            | S 40,670.06<br>W 1,816.56  | Grassy Creek<br>Trib. Alluvium | 27.4              | 4                   | 7178.04               | Discontinued 11/99<br>Well abandoned 2014                                                  | Yes                            |
| YGAL18         | N/A            | S 43,243.86<br>W 2,521.10  | Grassy Creek<br>Trib. Alluvium | 48.6              | 4                   | 7302.09               | Discontinued 11/99<br>Well abandoned 2014                                                  | Yes                            |
| WSAL12         | N/A            | S 28,958.95<br>W 18,280.44 | Sage Creek<br>Alluvium         | 20.2              | 4                   | 6859.14               | Also part of Seneca II-W monitoring program                                                | Yes                            |
| YOVI           | 1              | s 37,279.85<br>W 7,174.11  | Wadge Overburden               | 62.0              | 4                   | 7329.35               | Some cement may be present in gravel pack. Bottom 8 ft of casing filled in. Abandoned 7/99 | Yes                            |
| YW2            | 2              | S 37,352.29<br>W 7,149.85  | Wadge Coal                     | 58.5              | 2                   | 7325.36               | Abandoned 7/99                                                                             | Yes                            |
| YLOV3          | 3              | S 37,270.86<br>W 7,684.96  | Lennox Overburden              | 47.0              | 4                   | 7282.36               | Abandoned 7/99                                                                             | Yes                            |
| YLOV4          | 4              | S 37,280.56<br>W 7,685.00  | Lennox Overburden              | 47.0              | 4                   | 7282.45               | Abandoned 7/99                                                                             | Yes                            |
| YL5            | 5              | S 37,257.28<br>W 7,641.88  | Lennox Coal                    | 54.0              | 4                   | 7283.38               | Abandoned 7/99                                                                             | Yes                            |
| YL6            | 6              | S 37,266.04<br>W 7,644.64  | Lennox Coal                    | 54.0              | 4                   | 7282.86               | Abandoned 7/99                                                                             | Yes                            |
| <b>YW7</b>     | 7              | S 39,849.88<br>W 7,096.90  | Wadge Coal                     | 146.3             | 4                   | 7591.99               | Some cement may be present in gravel pack. Well abandoned 2                                | Yes<br>014                     |

TABLE 3 (Continued)

| Well<br>Number | USGS<br>Number | Coordinates               | Formation W<br>Completed In | ell Depth<br>(ft) | Casing<br>Dia. (in) | Surface<br>Elev. (ft) | Remarks Wat                                                                                                                    | Historic<br>ter Quality Data |
|----------------|----------------|---------------------------|-----------------------------|-------------------|---------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| XOV8           | 8              | S 39,854.09<br>W 7,115.76 | Wadge Overburden            | 133.0             | 2                   | 7590.52               | Some cement may be present in gravel pack. Discontinued monitoring 9/94. Well abandoned 2014                                   | No                           |
| Y0V9           | 9              | S 39,843.92<br>W 7,121.53 | Wadge Overburden            | 135.0             | 4                   | 7589.94               | Well abandoned 2014                                                                                                            | Yes                          |
| YOV10          | 10             | S 39,847.96<br>W 7,131.91 | Wadge Overburden            | 135.0             | 4                   | 7588.97               | Pump test observation well for YOV9. Discontinue monitoring 9/94.                                                              | No                           |
| YW11           | 11             | S 39,840.76<br>W 7,098.58 | Wadge Coal                  | 151.0             | 4                   | 7592.33               | Bottom 5' of 10' of completion<br>zone has filled in. Discontinue<br>monitoring 9/94.<br>Well abandoned 2014                   | No                           |
| YW12           | 12             | S 39,835.67<br>W 7,090.33 | Wadge Coal                  | 151.0             | 4                   | 7592.91               | Discontinue monitoring 8/93.  June '90 total depth (130') is  higher than top of completion  zone (141'). Well abandoned 2014  | No                           |
| YWU13          | 13             | S 39,832.10<br>W 7,082.54 | Wadge<br>Underburden        | 170.0             | 4                   | 7593.59               | Discontinue monitoring 8/93. Well partially filled in. Better underburden data exists at adjacent Well YWU30. Well abandoned 2 | No<br>2014                   |
| YW14           | 14             | s 42,573.41<br>w 7,071.19 | Wadge Coal                  | 26.3              | 2                   | 7721.19               | Discontinued 7/01 (TR 22)<br>Well abandoned 2014                                                                               | No                           |
| YOV15          | 15             | S 42,548.14<br>W 7,070.48 | Wadge Overburden            | 9.5               | 4                   | 7720.87               | Discontinued 7/01 (TR 22)<br>Well abandoned 2014                                                                               | No                           |
| YWU16          | 16             | S 42,871.69<br>W 4,687.51 | Wadge<br>Underburden        | 65.0              | 4                   | 7975.23               |                                                                                                                                | Мо                           |
| YWU17          | 17             | S 40,156.52<br>W 4,335.27 | Wadge<br>Underburden        | 48.0              | 4                   | 7797.00               | Some cement may have flowed past packer into completion Zone, abandoned 6/00                                                   | No                           |
| YW18           | 18             | s 36,987.99<br>W 4,821.26 | Wadge Coal                  | 37.4              | 4                   | 7679.24               | Discontinued 10/99,<br>mined out 12/99.                                                                                        | Yes                          |

TABLE 3 (Continued)

| Well<br>Number | USGS<br>Number | Coordinates               | Formation W Completed In | ell Depth<br>(ft) | Casing<br>Dia. (in) | Surface<br>Elev. (ft) | Remarks                                                                                                                        | Historic<br>Water Quality Data |
|----------------|----------------|---------------------------|--------------------------|-------------------|---------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| YOV19          | 19             | s 36,982.28<br>W 4,814.65 | Wadge Overburden         | 27.0              | 2                   | 7679.32               | Discontinued 10/99,<br>mined out 12/99.                                                                                        | No                             |
| YOV20          | 20             | S 34,968.70<br>W 4,859.54 | Wadge Overburden         | 85.7              | 2                   | 7550.96               | Discontinued monitoring 8/83.<br>June '90 total depth (32') is<br>higher than top of completion<br>zone (56'). Abandoned 8/98. | No                             |
| YW21           | 21             | S 34,986.14<br>W 4,863.92 | Wadge Coal               | 100.5             | 4                   | 7551.62               | Bottom 3' of 4' of completion zone has filled in. Abandoned 8/98                                                               | No .                           |
| YOV22          | 22             | S 33,645.85<br>W 4,824.44 | Wadge Overburden         | 79.3              | 4                   | 7376.95               | Improper completion (see construction form). Abandoned 8/98                                                                    | No.                            |
| YW23           | 23             | S 33,632.52<br>W 4,804.15 | Wadge Coal               | 104.0             | 4                   | 7375.35               | Abandoned 8/98.                                                                                                                | Yes                            |
| YW24           | 24             | S 33,749.35<br>W 1,021.11 | Wadge Coal               | 108.8             | 2                   | 7560.09               | Discontinued monitoring 10/91. June '90 total depth (67') is higher than top of completion zone (103'). Mined out:             | Ио                             |
| <b>YOV25</b>   | 25             | S 33,767.84<br>W 1,009.79 | Wadge Overburden         | 90.0              | 4                   | 7559.71               | Discontinued monitoring 9/94.<br>June '90 total depth (47') is<br>higher than top of completion<br>zone (50'). Mined out 1998. | Yes                            |
| YW26           | 26             | S 34,985.61<br>W 1,042.53 | Wadge Coal               | 43.0              | 4                   | 7746.39               | Mined out 8/97                                                                                                                 | No                             |
| YOV27          | 27             | S 35,000.07<br>W 1,025.40 | Wadge Overburden         | 25.0              | 2                   | 7746.79               | Mined out 8/97                                                                                                                 | No                             |
| YOV28          | N/A            | S 32,950.98<br>W 798.11   | Wadge Overburden         | 305.0             | 4                   | 7503.05               |                                                                                                                                | Yes                            |
| YW28           | N/A            | s 32,952.04<br>W 777.41   | Wadge Coal               | 323.0             | 4                   | 7503.33               |                                                                                                                                | Yes                            |
| YWU28          | N/A            | S 32,943.32<br>W 744.56   | Wadge Underburden        | . 383.5           | 4                   | 7503.13               |                                                                                                                                | Yes                            |

TABLE 3 (Continued)

| Well<br>Number | USGS<br>Number | Coordinates               | Formation W<br>Completed In | Mell Depth<br>(ft) | Casing<br>Dia. (in) | Surface<br>Elev. (ft) | Remarks Water Qual:                                               | istoric<br>ity Data |
|----------------|----------------|---------------------------|-----------------------------|--------------------|---------------------|-----------------------|-------------------------------------------------------------------|---------------------|
| YOV29          | N/A            | S 36,561.00<br>W 5,654.38 | Wadge Overburden            | 221.0              | 4                   | 7705.67               |                                                                   | No                  |
| YW29           | n/a            | S 36,545.45<br>W 5,646.88 | Wadge Coal                  | 259.0              | 4                   | 7705.53               |                                                                   | Yes                 |
| YWU29          | N/A            | S 36,520.99<br>W 5,635.87 | Wadge<br>Underburden        | 303.9              | 4                   | 7705.87               |                                                                   | Yes                 |
| YOV30          | n/a            | S 39,202.68<br>W 7,083.35 | Wadge Overburden            | 141.0              | 4                   | 7585.45               |                                                                   | Yes                 |
| YW30           | N/A            | s 39,175.95<br>W 7,075.14 | Wadge Coal                  | 208.0              | 4                   | 7586.49               |                                                                   | Yes                 |
| YWU30          | N/A            | S 39,189.87<br>W 7,078.95 | Wadge<br>Underburden        | 261.0              | 4                   | 7586.62               |                                                                   | Yes                 |
| YWC31          | N/A            | s 41,334.97<br>W 4,798.52 | Wolf Creek<br>Coal          | 108.0              | 4                   | 7809.03               | Abandoned 10/01                                                   | Yes                 |
| YWCU31         | n/a            | S 41,325.10<br>W 4,801.04 | Wolf Creek<br>Underburden   | 180.0              | 4                   | 7808.61               | Abandoned 10/01                                                   | No                  |
| YTM32          | n/a            | S 26,947.95<br>W 2,107.89 | Twentymile<br>Sandstone     | 1000.0             | 5                   | 6856.13               | Shop Well, currently not in service                               | No                  |
| YWC33          | n/a            | S 39,868.44<br>W 7,128.03 | Wolf Creek<br>Coal          | 309.38             | 3                   | 7588.39               | Replaces YWC31, drilled 8/02                                      | No                  |
| YWCU33         | N/A            | s 39,883.37<br>W 7,122.79 | Wolf Creek<br>Underburden   | 391.61             | 3                   | 7587.79               | Replaces YWCU31, drilled 8/02                                     | No                  |
| SGAL70         | n/a            | S 12889.99<br>W 4358.42   | Grassy Creek<br>Alluvium    | 22.0               | 4                   | 6537.04               | Point of compliance well (also downstream of the Sage Creek Mine) | Yes                 |

### Table 4a Ground Water Parameter New Long List Seneca Coal Company

| Parameter            | Analysis Technique          | Units               |
|----------------------|-----------------------------|---------------------|
| Field                |                             |                     |
| Conductivity         | Direct Measurement          | umhos/cm            |
| рн                   | Direct Measurement          | units               |
| Temperature          | Direct Measurement          | °C                  |
|                      |                             |                     |
| Laboratory           |                             |                     |
| Alkalinity as CaCO3  | Dissolved                   | mg/l                |
| Aluminum             | Dissolved                   | mg/l                |
| Arsonic              | Dissolved                   | <del>ug/l</del>     |
| Bicarbonate          | Dissolved                   | mg/l                |
| Boron                | Dissolved                   | <del>ug/l</del>     |
| Gadmium              | Dissolved                   | <del>ug/l</del>     |
| Galeium              | Dissolved                   | mg/l                |
| Carbonate            | Dissolved                   | mg/l                |
| Chlorido             | Dissolved                   | mg/l                |
| Chromium             | Dissolved                   | <del>ug/l</del>     |
|                      | (+3 & +6 valences combined) |                     |
| Conductivity-at-25°C | Direct Measurement          | <del>umhos/em</del> |
| Copper               | Dissolved                   | <del></del>         |
| Fluoride             | Dissolved                   | mg/l                |
| Hardness-as-GaGO.3   | Dissolved                   | mg/l                |
| Iron                 | Dissolved                   | mg/l                |
| Lead                 | Dissolved                   | ug/l                |
| Magnesium            | Dissolved                   | <del>mg/l</del>     |
| Manganese            | Dissolved                   | mg/1                |

#### Table 4a (cont.)

#### Ground Water Parameter New Long List

#### Seneca Coal Company

| Parameter                         | Analysis Technique | Units            |
|-----------------------------------|--------------------|------------------|
| Mercury                           | Dissolved          | ug/l             |
| Nickel                            | Dissolved          | ug/l             |
| Nitrogen, Nitrate                 | Dissolved          | mg/l             |
| Nitrogen, Nitrite                 | Dissolved          | mg/l             |
| Н                                 | Direct Measurement | <del>units</del> |
| Potassium                         | Dissolved          | mg/l             |
| Selenium                          | Dissolved          | ug/l             |
| Sodium                            | Dissolved          | mg/l             |
| Sodium Adsorption Ratio           | Calculated-        | unitless         |
| Sulfate                           | Dissolved          | mg/l             |
| Sulfide                           | Total              | mg/l             |
| Suspended Solids                  | Total              | mg/l             |
| Zinc                              | Dissolved          | mg/l             |
| Cation/Anion Balance              | <u>Calculated</u>  | percent          |
| Total Dissolved Solids at 180°C   | Dissolved          | mg/l             |
| Total Dissolved Solids Calculated | Calculated         | mg/l             |

Parameters crossed out were suspended in 2010 TR 69. These parameters will be analyzed again one year prior to final bond release.

# Table 4b Ground Water Short Parameter List Seneca Coal Company

| Parameter                       | Analysis Technique | Units    |
|---------------------------------|--------------------|----------|
|                                 |                    |          |
| <u>Field</u>                    |                    |          |
| Conductivity                    | Direct Measurement | umhos/cm |
| рн                              | Direct Measurement | units    |
| Temperature                     | Direct Measurement | °C       |
|                                 |                    |          |
| Laboratory                      |                    |          |
| Iron                            | Dissolved          | mg/l     |
| Manganese                       | Dissolved          | mg/l     |
| Total Dissolved Solids at 180°C | Dissolved          | mg/l     |

TABLE 5

CDOH 2008 Ground Water Agricultural Use Standards

| Aluminum, mg/l <sup>A</sup>             | 5.0     |
|-----------------------------------------|---------|
| Arsenic, ug/1                           | 100.0   |
| Boron, ug/l B                           | 750.0   |
| Cadmium, ug/l                           | 10.0    |
| Chromium, ug/1                          | . 100.0 |
| Copper, ug/1                            | 200.0   |
| Fluoride, mg/l                          | 2.0     |
| Iron, mg/l                              | 5.0     |
| Lead, ug/l <sup>A</sup>                 | 100.0   |
| Manganese, mg/l <sup>c</sup>            | 0.2     |
| Mercury, ug/1 <sup>A</sup>              | 10.0    |
| Nickel, ug/l                            | 200.0   |
| Nitrate/Nitrite as N, mg/l $^{\lambda}$ | 100.0   |
| Nitrite as N, mg/l A                    | 10.0    |
| рн (s.u.)                               | 6.5-8.5 |
| Selenium, ug/l                          | 20.0    |
| Zinc, mg/l                              | 2.0     |

- A : CDOH livestock standard, without this footnote indicates a CDOH irrigation standard. Irrigation standard for lead is 5000 ug/l.
- B : CDOH standard is set to protect plant sensitive species. Standard for most species found in Routt County is 5000 ug/l.
- C : This standard in only appropriate where irrigation water is applied to soils with pH values lower than 6.0.

| Analyte                       |                | andard          | No.<br>Sites | Sites | Frequency | Exceedence<br>Date Range | Exceedence<br>Value Range | Exceedence<br>Median |
|-------------------------------|----------------|-----------------|--------------|-------|-----------|--------------------------|---------------------------|----------------------|
| CDOH (5/08) AGRICULTURAL GROU | NDWATER STANDA | RDS ONLY - AHRG | W.STD        |       |           |                          |                           |                      |
| Aluminum, Dissolved           | 0.0000 -       | 5.0000          | 0            | none  |           |                          |                           |                      |
| Arsenic, Dissolved            | 0.0000 -       | 100.0000        | 0            | none  |           |                          |                           |                      |
| Boron, Dissolved              | 0.0000 -       | 750.0000        | 0            | none  |           |                          |                           |                      |
| Boron, Dissolved              | 0.0000 -       | 5000.0000       | 0            | none  |           |                          |                           |                      |
| Cadmium, Dissolved            | 0.0000 -       | 10.0000         | 0            | none  |           |                          |                           |                      |
| Chromium, Dissolved           | 0.0000 -       | 100.0000        | 0            | none  |           |                          |                           |                      |
| Copper, Dissolved             | 0.0000 -       | 200.0000        | 0            | none  |           |                          |                           |                      |
| Field Ph                      | 6.5000 -       | 8.5000          | 0            | none  |           |                          |                           |                      |
| Fluoride                      | 0.0000 -       | 2.0000          | 0            | none  |           |                          |                           |                      |
| Iron, Dissolved               | 0.0000 -       | 5.0000          | 0            | none  |           |                          |                           |                      |
| Lead, Dissolved               | 0.0000 -       | 100.0000        | 0            | none  |           |                          |                           |                      |
| Manganese, Dissolved          | 0.0000 -       | 0.2000          | 0            | none  |           |                          |                           |                      |
| Mercury, Dissolved            | 0.0000 -       | 10.0000         | 0            | none  |           |                          |                           |                      |
| Nickel, Dissolved             | 0.0000 -       | 200.0000        | 0            | none  |           |                          |                           |                      |
| Nitrate/Nitrite Nitrogen_N    | 0.0000 -       | 100.0000        | 0            | none  |           |                          |                           |                      |
| Nitrite Nitrogen_N            | 0.0000 -       | 10.0000         | 0            | none  |           |                          |                           |                      |
| Selenium, Dissolved           | 0.0000 -       | 20.0000         | 0            | none  |           |                          |                           |                      |
| Zinc, Dissolved               | 0.0000 -       | 2.0000          | 0            | none  |           |                          |                           |                      |

Frequency = uncensored/between MDL&PQL/censored/no. samples, (B) = Between MDL&PQL range, (<) = Censored range

Table 6
Comparison of Ground Water Quality to CDPHE Agricultural Use Standards

|        | Water | Use | Summary | Report |      |
|--------|-------|-----|---------|--------|------|
| Site   |       |     |         |        | CDOH |
| YAAL14 |       |     |         |        |      |
| YGAL16 |       |     |         |        |      |
| YOV30  |       |     |         |        |      |
| YSAL1  |       |     |         |        |      |
| YSAL3  |       |     |         |        |      |
| YW30   |       |     |         |        |      |
| YWC33  |       |     |         |        |      |

YWCU33 YWU30

TABLE 7

Ground Water Point of Compliance Standards
Grassy Creek Alluvial Well SGAL70
As Provided in Permit Attachment 15-1, Table 4

| Aluminum, mg/l             | 5.0     |
|----------------------------|---------|
| Arsenic, ug/l              | 50.0    |
| Boron, ug/1                | 750.0   |
| Cadmium, ug/l              | 5.0     |
| Chloride, mg/l             | 250.0   |
| Chromium, ug/l             | 100.0   |
| Copper, ug/l               | 200.0   |
| Fluoride, mg/l             | 2.0     |
| Iron, mg/l                 | 14.1    |
| Lead, ug/l                 | 70.0    |
| Manganese, mg/l            | 2,44    |
| Mercury, ug/l              | 2.0     |
| Nickel, ug/l               | 100.0   |
| Nitrate as N, mg/l         | 10.0    |
| Nitrite as N, mg/l         | 1.0     |
| Nitrate/Nitrite as N, mg/l | 10.0    |
| Selenium, ug/l             | 20.0    |
| Sulfate, mg/l              | 2517.0  |
| Zinc, mg/l                 | 2.0     |
| рH (S.U.)                  | 6.5-8.5 |
| TDS, mg/l (from Table 7)   | 5038.0  |

TABLE 8

Ground Water Point of Compliance Standards
Sage Creek Alluvial Well YSAL3
As Provided in Permit Attachment 15-1, Table 1

| Aluminum, mg/1             | 20.0    |
|----------------------------|---------|
| Arsenic, ug/l              | 50.0    |
| Boron, ug/l                | 750.0   |
| Cadmium, ug/l              | 12.0    |
| Chloride, mg/l             | 250.0   |
| Chromium, ug/l             | 100.0   |
| Copper, ug/l               | 200.0   |
| Fluoride, mg/l             | 2.0     |
| Iron, mg/l                 | 4.91    |
| Lead, ug/l                 | 60.0    |
| Manganese, mg/l            | 0.76    |
| Mercury, ug/l              | 2.0     |
| Nickel, ug/l               | 100.0   |
| Nitrate as N, mg/l         | 10.0    |
| Nitrite as N, mg/l         | 1.0     |
| Nitrate/Nitrite as N, mg/l | 10.0    |
| Selenium, ug/l             | 20.0    |
| Sulfate, mg/l              | 1200.0  |
| Zinc, mg/l                 | 2.0     |
| pH (S.U.)                  | 6.5-8.5 |
| TDS, mg/l (from Table 3)   | 2675.0  |

TABLE 9
Summary of Surface Water Monitoring Sites, Yoast Mine

| Site<br>Number | Location and<br>Elevation                                             | Period of<br>Operation    | Comments                                                                                                                                                                                                                                                                                         |
|----------------|-----------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| YSSF1          | Middle Sage Creek<br>7216 feet<br>(5N87W18CDD)                        | 01/81-10/83               | 2.5 ft. wide (2.0 ft. deep) Parshall flume w/continuous recorder, monitors downstream of Yoast Mine. Data for this for this site contained in USGS Open-File Report 90-708. Discontinued 10/83, flume relocated to Site YSSF3 (see above) summer 1990. Replaced by Site YSS2 (see below) in 5/91 |
| YSSF2          | Y1 Pond, Tributary to Sage Creek<br>7258 feet<br>(5N87W19BAA)         | 03/91-10/99               | 1.0 ft. wide (1.5 ft. deep) Parshall flume w/continuous flow recorder, monitors discharge of Y1 Fond (renamed to NPDES12 11/99).                                                                                                                                                                 |
| YSSF3          | Upper Sage Creek<br>7409 feet<br>(5N87W30BBA)                         | 09/90-present             | 2.5 ft. wide (2.0 ft. deep) Parshall flume w/continuous flow recorder, monitors upstream of Yoast Mine                                                                                                                                                                                           |
| wssf3          | Lower Sage Creek<br>6857 feet<br>(5N88WL1ACC)                         | 09/90-present             | 3.0 ft. wide (2.5 ft. deep) Parshall flume w/continuous flow recorder, monitors downstream of both Yoast and Seneca II-W Mines (not now required for Yoast monitoring)                                                                                                                           |
| ¥SS2           | Middle Sage Creek<br>7218 feet<br>(5N87W18CDD)                        | 05/91-present             | No instrumentation, replaces Site YSSF1 (see above), located approx. 150 ft. upstream of Site YSSF1 due to beaver dams                                                                                                                                                                           |
| YSS3           | Y1 Draw, Tributary to Sage Creek 7265 feet (5N87W19ABB)               | 05/91-10/93<br>5/98-10/98 | No instrumentation, monitors inflow to Y1 Pond Discontinued 11/1999.                                                                                                                                                                                                                             |
| YSA4           | Annand Draw Tributary<br>to Grassy Creek<br>6780 feet<br>(5N87W8ABD)  | 06/94-08/96               | No instrumentation, monitors Annand Draw below NPDES10 site, discontinued 1996 upon completion of that pond.                                                                                                                                                                                     |
| YSAF4          | Annand Draw, Tributary to Grassy<br>Creek<br>6968 feet<br>(5N87W8CDB) | 05/91-06/96               | 1.5 ft. wide (1.5 ft. deep) Parshall flume w/continuous flow recorder. Monitors baseline data only for Annand Draw downstream of proposed mining. Discontinued and replaced with YSA4                                                                                                            |
| YSGF5          | Grassy Creek<br>6905 feet<br>(5N87W16DAA)                             | 04/91-present             | 2.0 ft. wide (2.0 ft. deep) Parshall flume w/continuous flow recorder. Monitors downstream of minor disturbances by Yoast Mine in Grassy Creek basin. Will discontinue continuous flow recorder starting in 1994                                                                                 |

### TABLE 9 (Continued)

| Site<br>Number | Location and<br>Elevation                                            | Period of<br>Operation | Comments                                                                                                                                                                                        |
|----------------|----------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| YSG5           | Grassy Creek<br>below Scotchmans Gulch<br>6550 Feet<br>(6N87W28DAD)  | 10/96-present          | No instrumentation<br>Monitor discharges from both Seneca II and Yoast<br>Mines on Grassy Creek                                                                                                 |
| NPDES10        | Annand Draw Tributary<br>to Grassy Creek<br>6780 feet<br>(5N87W8ABD) | Constructed 8/96       | 1.5 ft. wide (1.5 ft. deep) Parchall flume with continuous flow recorder Install 3-ft H-flume in 2015                                                                                           |
| npdes11        | Tributary to Grassy Creek<br>7000 ft.<br>(5N87W16CAD)                | Constructed 10/97      | 1.0 ft. wide (1.5 ft. deep) Parshall flume with continuous flow recorded                                                                                                                        |
| NPDES12        | Tributary to Sage Creek<br>7258 ft.<br>(5N87W19BAA)                  | Constructed 9/99       | 1.0 ft. wide (1.5 ft. deep) Parshall flume with continuous flow recorder                                                                                                                        |
| NPDES13        | Tributary to Sage Creek<br>7380 ft.<br>(5N87W19CAA)                  | Constructed 12/03      | 2' H-flume with continuous flow recorder                                                                                                                                                        |
| NPDES14        | Tributary to Sage Creek<br>7400 ft.<br>(5N87W19DBC)                  | Constructed 9/01       | 3' H-flume with continuous flow recorder                                                                                                                                                        |
| YSPG1          | Pond 012 Basin<br>7250 feet<br>(5N87W19BAA)                          | n/a                    | Spring w/water rights aka Yoast Spring #1, now inundated by Y1 (012) Pond                                                                                                                       |
| YSPG2          | Pond 012 Basin<br>7268 feet<br>(5N87W19ABB)                          | N/A                    | Spring w/water rights aka Yoast Spring #2. Per water rights document, this is a stock pond at the YSS3 site (see above). Will be replaced by NPDES12 pond.                                      |
| YSPG3          | Pond 012 Basin<br>7338 feet<br>(5N87W19ABA)                          | 06/91-08/93            | Clearwell spring w/water rights aka Yoast Spring #3, former water supply to Valora Ranch. Sample site was exposed waterline approx. 700 ft. west (downstream) of clear well. Removed by mining. |

TABLE 9 (Continued)

| Site<br>Number | Location and<br>Elevation                      | Period of<br>Operation | Comments                                                                                                                                                                                                      |
|----------------|------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| YSPG4          | Pond 012 Basin<br>7620 feet<br>(5N87W20CBC)    | 06/91-08/93            | Spring w/water rights aka Yoast Spring #4. Apparent bedrock discharge adjacent to ephemeral stream channel                                                                                                    |
| YSPG5          | Pond 012 Basin<br>7697 feet<br>(5N87W20CBB)    | 06/91-08/93            | Spring w/water rights aka Yoast Spring #5. Per water rights document, this is a stock pond. No flow out of this pond has ever been noted; therefore, no sample has ever been collected.                       |
| YSPG6          | Annand Draw Basin<br>6875 feet<br>(5N87W8CAA)  | 06/91-2004             | Spring with water rights aka Annand Spring #1. Spring house supplies water to trough at old Annand homestead                                                                                                  |
| YSPG7          | Annand Draw Basin<br>6915 feet<br>(5N87W8CAB)  | 06/91-08/93            | Spring w/water rights aka Annand Spring #2. Per water rights document, this is a stock pond. This pond has now washed out. Samples were collected 50 yds below the pond in the stream channel                 |
| YSPG8          | Annand Draw Basin<br>6960 feet<br>(5N87W8CDB)  | 06/91-08/93            | Spring w/water rights aka Annand Spring #3. Per water rights document, this is a stock pond. Discharge from this pond is too widespread and marshy to measure; therefore, only water quality can be monitored |
| YSPG9          | Annand Draw Basin<br>7057 feet<br>(5N87W17BBA) | 06/91-08/93            | Not water righted. Sample is collected downstream of marshy area in Annand Draw. Aka Annand Draw Spring #1                                                                                                    |
| YSPG10         | Annand Draw Basin<br>6925 feet<br>(5N87W8CAC)  | 05/93-2004             | Spring w/water rights. Spring is actually an artesian well aka Annand Artesian Well. 600 ft deep per water rights document. Only sampled when flowing.                                                        |
| YSSPG1         | Annand Draw Basin<br>7050 feet<br>(5N87W17BAB) | 9/02-present           | Spoil Spring 1, located at Annand Draw road culvert, above Well YAAL14                                                                                                                                        |

TABLE 9 (Continued)

| Site<br>Number | Location and Elevation                      | Period of<br>Operation | Comments                                                                     |
|----------------|---------------------------------------------|------------------------|------------------------------------------------------------------------------|
| YSSPG2         | Pond 011 Basin<br>7380 feet<br>(5N87W16CBB) | 5/05-present           | Spoil Spring 2, located just below Pond 011A                                 |
| YSSPG3         | Pond 012 Basin<br>7260 feet<br>(5N87W19BAA) | 9/05-present           | Spoil Spring 3, located just above Pond 012                                  |
| YSSPG4         | Pond 012 Basin<br>7260 feet<br>(5N87W19BAA) | 6/06-present           | Spoil Spring 4, located just above Pond 012 in main channel, north of YSSPG3 |

Location Key : First Number = Township, Second Number = Range, Third Number = Section A = Northeast quarter, B = Northwest, C = Southwest, D = Southeast

#### TABLE 10a

#### Surface Water Parameter New Long List

#### Seneca Coal Company

| Parameter                     | Analysis Technique    | Units           |  |
|-------------------------------|-----------------------|-----------------|--|
|                               |                       |                 |  |
| <u>Field</u>                  |                       |                 |  |
| Conductivity                  | Direct Measurement    | umhos/cm        |  |
| рн                            | Direct Measurement    | units           |  |
| Temperature                   | Direct Measurement    | °C              |  |
| Laboratory                    |                       |                 |  |
| Alkalinity as CaCO3           | Dissolved             | mg/1            |  |
| Arsenic                       | Total Recoverable     | ug/1.           |  |
| Bicarbonate                   | Dissolved             | mg/1            |  |
| Boron                         | Dissolved             | ug/1            |  |
| Cadmium                       | Potentially Dissolved | ug/1            |  |
| Calcium                       | Dissolved             |                 |  |
| Carbonate                     | Dissolved             | mg/l            |  |
| Chloride                      | Dissolved             | mg/1            |  |
| Chromium                      | Potentially Dissolved | ug/l            |  |
|                               | (+3 & +6 valences)    |                 |  |
| Conductivity at 25°C          | Direct Measurement    | umhos/cm        |  |
| Copper                        | Potentially Dissolved | ug/1            |  |
| Hardness as CaCO <sub>3</sub> | Dieselved             | mg/L            |  |
| Iron                          | Total Recoverable*    | mg/l            |  |
| Lead                          | Potentially Dissolved | <del>ug/1</del> |  |
| Magnesium                     | Dissolved             | mg/1            |  |
| Manganese                     | Potentially Dissolved | mg/1            |  |

#### TABLE 10a (cont.)

#### Surface Water Parameter New Long List

#### Seneca Coal Company

| Parameter                         | Analysis Technique    | Units             |
|-----------------------------------|-----------------------|-------------------|
|                                   |                       | /7                |
| Mercury                           | Total                 | ug/l              |
| Nickel                            | Potentially Dissolved | —ug/ <del>1</del> |
| Nitrogen, Ammonia                 | Total                 | mg/l              |
| Nitrogen, Nitrate                 | Dissolved             | mg/l              |
| Nitrogen, Nitrite                 | Dissolved             | mg/l              |
| рН                                | Direct Measurement    | units             |
| Potassium                         | Dissolved             | mg/l              |
| Selenium                          | Potentially Dissolved | ug/l              |
| Silver                            | Potentially Dissolved | ug/l              |
| Sodium                            | Dissolved             | mg/l              |
| Sodium Adsorption Ratio           | Galculated            | unitless          |
| Sulfate                           | Dissolved             | mg/l              |
| Sulfide                           | Total                 | mg/l              |
| Suspended Solids                  | Total                 | mg/l              |
| Zinc                              | Potentially Dissolved | mg/l              |
| Cation/Anion Balance              | Galculated            | percent           |
| Total Dissolved Solids at 180°C   | Dissolved             | mg/l              |
| Total Dissolved Solids Calculated | Galculated            | mg/l              |

Parameters crossed out were suspended in 2010 TR 69. These parameters will be analyzed again one year prior to final bond release. Also, the 'Potentially Dissolved' analytical technique will be changed to 'Dissolved' as recommended by the CDPHE.

\* If Colorado Water Quality Control Commission changes the required analytical technique for iron (for aquatic life) from total recoverable to another technique, then Seneca Coal Company will do likewise.

#### TABLE 10b

#### Surface Water Short Parameter List

#### Seneca Coal Company

| Parameter                       | Analysis Technique | Units    |
|---------------------------------|--------------------|----------|
|                                 |                    |          |
|                                 |                    |          |
| Field                           |                    |          |
| Conductivity                    | Direct Measurement | umhos/cm |
| рн                              | Direct Measurement | units    |
| Temperature                     | Direct Measurement | °c       |
|                                 |                    |          |
| Laboratory                      |                    |          |
| Iron                            | Total Recoverable* | mg/l     |
| Manganese                       | Dissolved          | mg/l     |
| Suspended Solids                | Total              | mg/l     |
| Total Dissolved Solids at 180°C | Dissolved          | mg/l     |

<sup>\*</sup> If Colorado Water Quality Control Commission changes the required analytical technique for iron (for aquatic life) from total recoverable to another technique, then Seneca Coal Company will do likewise.

TABLE 11

CDOH Surface Water Agricultural Use Standards

| Arsenic, ug/l A                      | 100.0 |
|--------------------------------------|-------|
| Boron, ug/1 B                        | 750.0 |
| Cadmium, ug/l <sup>A</sup>           | 10.0  |
| Chromium, ug/1 A                     | 100.0 |
| Copper, ug/1 A                       | 200.0 |
| Lead, ug/1 <sup>c</sup>              | 100.0 |
| Manganese, mg/l A,D                  | 0.2   |
| Nickel, ug/l A                       | 200.0 |
| Nitrate, Nitrogen, mg/l <sup>c</sup> | 100.0 |
| Nitrite, Nitrogen, mg/l c            | 10.0  |
| Selenium, ug/l <sup>A</sup>          | 20.0  |
| Zinc, mg/l A                         | 2.0   |

A : CDOH surface water agricultural standard. Same as the CDOH groundwater irrigation standard.

B : CDOH surface water standard is set to protect sensitive plant species. Standard for plant species grown in Routt County is 5000 ug/l.

C : CDOH surface water agricultural standard. Same as the CDOH groundwater livestock standard.

 ${\tt D}$  : This standard in only appropriate where irrigation water is applied to soils with pH values lower than 6.0.

Table 12 Comparison of Surface Water Quality to CDPHE Agricultural

| Analyte                        |          | ndard    | No.<br>Sites | Sites                                 | Frequen | cy D               | exceedence<br>late Range                                                         | Exceedence<br>Value Range                    | Exceedence<br>Median                 |                                      |
|--------------------------------|----------|----------|--------------|---------------------------------------|---------|--------------------|----------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------|
| CDOH (11/09) AG. SURFACE WATER |          |          |              |                                       |         |                    |                                                                                  |                                              |                                      |                                      |
| Arsenic, Total Rec.            | 0.0000 - | 100.0000 | 0            | none                                  |         |                    |                                                                                  |                                              |                                      |                                      |
| Boron, Dissolved               | 0.0000 - | 750.0000 | 0            | none                                  |         |                    |                                                                                  |                                              |                                      |                                      |
| Cadmium, Pot. Diss.            | 0.0000 - | 10.0000  | 0            | none                                  |         |                    |                                                                                  |                                              |                                      |                                      |
| Cadmium, Total Rec.            | 0.0000 - | 10.0000  | 0            | none                                  |         |                    |                                                                                  |                                              |                                      |                                      |
| Chromium, Dissolved            | 0.0000 - | 100.0000 | 0            | none                                  |         |                    |                                                                                  |                                              |                                      |                                      |
| Chromium, Pot. Diss.           | 0.0000 - | 100.0000 | 0            | none                                  |         |                    |                                                                                  |                                              |                                      |                                      |
| Chromium, Total Rec.           | 0.0000 - | 100.0000 | 0            | none                                  |         |                    |                                                                                  |                                              |                                      |                                      |
| Copper, Dissolved              | 0.0000 - | 200.0000 | 0            | none                                  |         |                    |                                                                                  |                                              |                                      |                                      |
| Copper, Pot. Diss.             | 0.0000 - | 200.0000 | 0            | none                                  |         |                    |                                                                                  |                                              |                                      |                                      |
| Copper, Total Rec.             | 0.0000 - | 200.0000 | 0            | none                                  |         |                    |                                                                                  |                                              |                                      |                                      |
| Lead, Dissolved                | 0.0000 - | 100.0000 | 0            | none                                  |         |                    |                                                                                  |                                              |                                      |                                      |
| Lead, Pot. Diss.               | 0.0000 - | 100.0000 | 0            | none                                  |         |                    |                                                                                  |                                              |                                      |                                      |
| Lead, Total Rec.               | 0.0000 - | 100.0000 | 0            | none                                  |         |                    |                                                                                  |                                              |                                      |                                      |
| Manganese, Dissolved           | 0.0000 - | 0.2000   | 0            | none                                  |         |                    |                                                                                  |                                              |                                      |                                      |
| Manganese, Pot. Diss.          | 0.0000 - | 0.2000   | 4            | NPDES12<br>YSSPG1<br>YSSPG2<br>YSSPG4 |         | 1/0/0/1<br>1/0/0/1 | 01/13/16-01/13/16<br>06/01/16-06/01/16<br>06/01/16-06/01/16<br>06/01/16-06/01/16 | 0.4430 -<br>0.3230 -<br>1.3200 -<br>1.5800 - | 0.4430<br>0.3230<br>1.3200<br>1.5800 | 0.4430<br>0.3230<br>1.3200<br>1.5800 |
| Manganese, Total               | 0.0000 - | 0.2000   | 0            | none                                  |         |                    |                                                                                  |                                              |                                      |                                      |
| Nickel, Dissolved              | 0.0000 - | 200.0000 | 0            | none                                  |         |                    |                                                                                  |                                              |                                      |                                      |
| Nickel, Pot. Diss.             | 0.0000 - | 200.0000 | 0            | none                                  |         |                    |                                                                                  |                                              |                                      |                                      |
| Nickel, Total Rec.             | 0.0000 - | 200.0000 | 0            | none                                  |         |                    |                                                                                  |                                              |                                      |                                      |
| Nitrate Nitrogen_N             | 0.0000 - | 100.0000 | 0            | none                                  |         |                    |                                                                                  |                                              |                                      |                                      |
| Nitrite Nitrogen_N             | 0.0000 - | 10.0000  | 0            | none                                  |         |                    |                                                                                  |                                              |                                      |                                      |
| Selenium, Dissolved            | 0.0000 - | 20.0000  | 0            | none                                  |         |                    |                                                                                  |                                              |                                      |                                      |
| Selenium, Pot. Diss.           | 0.0000 - | 20.0000  | 1            | NPDES10                               | 1       | /0/0/12            | 02/03/16-02/03/16                                                                | 149.0000 -                                   | 149.0000                             | 149.0000                             |
| Selenium, Total Rec.           | 0.0000 - | 20.0000  | 0            | none                                  |         |                    |                                                                                  |                                              |                                      |                                      |

Table 12 Comparison of Surface Water Quality to CDPHE Agricultural

| Analyte          | Stand    |        | No.<br>Sites | Sites | Frequency | Exceedence<br>Date Range | Exceedence<br>Value Range | Exceedence<br>Median |
|------------------|----------|--------|--------------|-------|-----------|--------------------------|---------------------------|----------------------|
| Zinc, Dissolved  | 0.0000 - | 2.0000 | 0            | none  |           |                          |                           |                      |
| Zinc, Pot. Diss. | 0.0000 - | 2.0000 | 0            | none  |           |                          |                           |                      |
| Zinc, Total Rec. | 0.0000 - | 2.0000 | 0            | none  |           |                          |                           |                      |

Frequency = uncensored/between MDL&PQL/censored/no. samples, (B) = Between MDL&PQL range, (<) = Censored range

Table 12 Comparison of Surface Water Quality to CDPHE Agricultural

|                                           | Water Use Summary Report      |
|-------------------------------------------|-------------------------------|
| Site                                      | СДОН                          |
| NPDES10                                   | Selenium, Pot. Diss.(1/12)    |
| NPDES11                                   |                               |
| NPDES12                                   | Manganese, Pot. Diss. $(1/4)$ |
| NPDES13<br>YSG5<br>YSGF5<br>YSS2<br>YSSF3 |                               |
| YSSPG1                                    | Manganese, Pot. Diss.(1/1)    |
| YSSPG2                                    | Manganese, Pot. Diss.(1/1)    |
| YSSPG3                                    |                               |

Manganese, Pot. Diss.(1/1)

YSSPG4

TABLE 13
CDOH Yampa Segment 13e (Sage Creek) Standards

| FIELD PH                  | 6.5 - 9.0                  |
|---------------------------|----------------------------|
| AMMONIA, NITROGEN, MG/L   | 0.05 <sup>A</sup>          |
| ARSENIC, TOTAL REC., UG/L | 340.0 (acute)              |
| ARSENIC, TOTAL REC., UG/L | 100.0 (chronic)            |
| BORON, DISSOLVED, UG/L    | 750.0                      |
| CADMIUM, UG/L             | 9.2 (acute)                |
| CADMIUM, UG/L             | 1.2 (chronic)              |
| CHROMIUM, UG/L            | 1773 (acute)               |
| CHROMIUM, UG/L            | 231 (chronic)              |
| COPPER, UG/L              | 50.0 (acute)               |
| COPPER, UG/L              | 29.0 (chronic)             |
| IRON, TOTAL REC., MG/L    | 1.25 <sup>A1</sup>         |
| IRON, TOTAL REC., MG/L    | 1.00 <sup>A1</sup>         |
| LEAD, UG/L                | 281.0 (acute)              |
| LEAD, UG/L                | 11.0 (chronic)             |
| MANGANESE, MG/L           | 4.738 (acute)              |
| MANGANESE, MG/L           | 2.618 (chronic)            |
| MERCURY, TOTAL, UG/L      | 0.01 <sup>B</sup>          |
| NICKEL, UG/L              | 1513.0 (acute)             |
| NICKEL, UG/L              | 168.0 (chronic)            |
| NITRITE, NITROGEN, MG/L   | 0.05                       |
| NITRATE, NITROGEN, MG/L   | 100.0                      |
| SELENIUM, UG/L            | 18.4 (acute)               |
| SELENIUM, UG/L            | 4.6 <sup>C</sup> (chronic) |
| SULFIDE, MG/L             | 0.02 <sup>D</sup>          |
| SILVER, UG/L              | 22.0 (acute)               |
| SILVER, UG/L              | 3.5 (chronic)              |
| ZINC, MG/L                | 0.565 (acute)              |
| ZINC, MG/L                | 0.428 (chronic)            |

Acute = one day max., Chronic = 30 day average. These values were taken from Table IV, CDOH Reg. 31, using a mean hardness of 400 mg/l. All acute/chronic values are the 'dissolved' form.

#### TABLE 13 (cont.)

- A = Detection limit is 0.05 mg/l. All values above detection limit are compared to table standards found on this website: http://nepis.epa.gov/Adobe/PDF/20003O3L.pdf
- A1 = Upper Sage Creek iron standard = 1.25 mg/1. Lower Sage Creek = 1.00 mg/1. Break between two sections is upper edge of old Sage Creek Res..
- All Yoast Mines outfalls discharge into Upper Sage Creek.
- B = Detection limit for stream and spring sites is 0.2 ug/l.
- C = Temporary Modification Se(ch): "current conditions" expires 12/31/18
- D = Standard is 0.002 mg/l (un-ionized). Detection limit is 0.02 mg/l.

Table 14
Comparison of Surface Water Quality to Yampa Segment 13e Standards

| Analyte                     |          | andard    | No.<br>Sites | Sites         | Frequency        | Exceedence<br>Date Range                   | Exceedence<br>Value Range | Exceedence<br>Median |                  |
|-----------------------------|----------|-----------|--------------|---------------|------------------|--------------------------------------------|---------------------------|----------------------|------------------|
| RECEIVING STREAM STANDARDS, |          |           |              |               |                  |                                            |                           |                      |                  |
| Ammonia Nitrogen_N          | 0.0000 - | 0.0500    | 0            | none          |                  |                                            |                           |                      |                  |
| Arsenic, Total Rec.         | 0.0000 - | 100.0000  | 0            | none          |                  |                                            |                           |                      |                  |
| Arsenic, Total Rec.         | 0.0000 - | 340.0000  | 0            | none          |                  |                                            |                           |                      |                  |
| Boron, Dissolved            | 0.0000 - | 750.0000  | 0            | none          |                  |                                            |                           |                      |                  |
| Cadmium, Dissolved          | 0.0000 - | 1.2000    | 0            | none          |                  |                                            |                           |                      |                  |
| Cadmium, Dissolved          | 0.0000 - | 9.2000    | 0            | none          |                  |                                            |                           |                      |                  |
| Cadmium, Pot. Diss.         | 0.0000 - | 1.2000    | 0            | none          |                  |                                            |                           |                      |                  |
| Cadmium, Pot. Diss.         | 0.0000 - | 9.2000    | 0            | none          |                  |                                            |                           |                      |                  |
| Chromium, Dissolved         | 0.0000 - | 231.0000  | 0            | none          |                  |                                            |                           |                      |                  |
| Chromium, Dissolved         | 0.0000 - | 1773.0000 | 0            | none          |                  |                                            |                           |                      |                  |
| Chromium, Pot. Diss.        | 0.0000 - | 231.0000  | 0            | none          |                  |                                            |                           |                      |                  |
| Chromium, Pot. Diss.        | 0.0000 - | 1773.0000 | 0            | none          |                  |                                            |                           |                      |                  |
| Copper, Dissolved           | 0.0000 - | 29.0000   | 0            | none          |                  |                                            |                           |                      |                  |
| Copper, Dissolved           | 0.0000 - | 50.0000   | 0            | none          |                  |                                            |                           |                      |                  |
| Copper, Pot. Diss.          | 0.0000 - | 29.0000   | 0            | none          |                  |                                            |                           |                      |                  |
| Copper, Pot. Diss.          | 0.0000 - | 50.0000   | 0            | none          |                  |                                            |                           |                      |                  |
| Field Ph                    | 6.5000 - | 9.0000    | 0            | none          |                  |                                            |                           |                      |                  |
| Iron, Total Rec.            | 0.0000 - | 1.0000    | 2            | YSG5<br>YSGF5 | 2/0/0/<br>2/0/0/ |                                            | 1.0700 -<br>1.4600 -      | 2.5300<br>2.3300     | 1.8000<br>1.8950 |
| Iron, Total Rec.            | 0.0000 - | 1.2500    | 2            | YSG5<br>YSGF5 | 1/0/0/<br>2/0/0/ | 3 04/20/16-04/20/16<br>3 04/20/16-06/21/16 | 2.5300 -<br>1.4600 -      | 2.5300<br>2.3300     | 2.5300<br>1.8950 |
| Lead, Dissolved             | 0.0000 - | 11.0000   | 0            | none          |                  |                                            |                           |                      |                  |
| Lead, Dissolved             | 0.0000 - | 281.0000  | 0            | none          |                  |                                            |                           |                      |                  |
| Lead, Pot. Diss.            | 0.0000 - | 11.0000   | 0            | none          |                  |                                            |                           |                      |                  |
| Lead, Pot. Diss.            | 0.0000 - | 281.0000  | 0            | none          |                  |                                            |                           |                      |                  |
| Manganese, Dissolved        | 0.0000 - | 2.6180    | 0            | none          |                  |                                            |                           |                      |                  |

Table 14
Comparison of Surface Water Quality to Yampa Segment 13e Standards

| Analyte               | Sta      | andard    | No.<br>Sites | Sites                 | Frequency                  | Exceedence<br>Date Range | Exceedence<br>Value Range        | Exceedence<br>Median       |                            |
|-----------------------|----------|-----------|--------------|-----------------------|----------------------------|--------------------------|----------------------------------|----------------------------|----------------------------|
| Manganese, Dissolved  | 0.0000 - | 4.7380    | 0            | none                  |                            |                          |                                  |                            |                            |
| Manganese, Pot. Diss. | 0.0000 - | 2.6180    | 0            | none                  |                            |                          |                                  |                            |                            |
| Manganese, Pot. Diss. | 0.0000 - | 4.7380    | 0            | none                  |                            |                          |                                  |                            |                            |
| Mercury, Total        | 0.0000 - | 0.0100    | 3            | YSG5<br>YSGF5<br>YSS2 | 0/0/3/<br>0/0/3/<br>0/0/2/ |                          | 0.2000 -<br>0.2000 -<br>0.2000 - | 0.2000<br>0.2000<br>0.2000 | 0.2000<br>0.2000<br>0.2000 |
| Mercury, Total        | 0.0000 - | 0.2000    | 0            | none                  |                            |                          |                                  |                            |                            |
| Nickel, Dissolved     | 0.0000 - | 168.0000  | 0            | none                  |                            |                          |                                  |                            |                            |
| Nickel, Dissolved     | 0.0000 - | 1513.0000 | 0            | none                  |                            |                          |                                  |                            |                            |
| Nickel, Pot. Diss.    | 0.0000 - | 168.0000  | 0            | none                  |                            |                          |                                  |                            |                            |
| Nickel, Pot. Diss.    | 0.0000 - | 1513.0000 | 0            | none                  |                            |                          |                                  |                            |                            |
| Nitrate Nitrogen_N    | 0.0000 - | 100.0000  | 0            | none                  |                            |                          |                                  |                            |                            |
| Nitrite Nitrogen_N    | 0.0000 - | 0.0500    | 0            | none                  |                            |                          |                                  |                            |                            |
| Selenium, Dissolved   | 0.0000 - | 4.6000    | 0            | none                  |                            |                          |                                  |                            |                            |
| Selenium, Dissolved   | 0.0000 - | 18.4000   | 0            | none                  |                            |                          |                                  |                            |                            |
| Selenium, Pot. Diss.  | 0.0000 - | 4.6000    | 0            | none                  |                            |                          |                                  |                            |                            |
| Selenium, Pot. Diss.  | 0.0000 - | 18.4000   | 0            | none                  |                            |                          |                                  |                            |                            |
| Selenium, Total Rec.  | 0.0000 - | 4.6000    | 0            | none                  |                            |                          |                                  |                            |                            |
| Selenium, Total Rec.  | 0.0000 - | 18.4000   | 0            | none                  |                            |                          |                                  |                            |                            |
| Silver, Dissolved     | 0.0000 - | 3.5000    | 0            | none                  |                            |                          |                                  |                            |                            |
| Silver, Dissolved     | 0.0000 - | 22.0000   | 0            | none                  |                            |                          |                                  |                            |                            |
| Silver, Pot. Diss.    | 0.0000 - | 3.5000    | 0            | none                  |                            |                          |                                  |                            |                            |
| Silver, Pot. Diss.    | 0.0000 - | 22.0000   | 0            | none                  |                            |                          |                                  |                            |                            |
| Sulfide               | 0.0000 - | 0.0200    | 0            | none                  |                            |                          |                                  |                            |                            |
| Zinc, Dissolved       | 0.0000 - | 0.4280    | 0            | none                  |                            |                          |                                  |                            |                            |
| Zinc, Dissolved       | 0.0000 - | 0.5650    | 0            | none                  |                            |                          |                                  |                            |                            |
| Zinc, Pot. Diss.      | 0.0000 - | 0.4280    | 0            | none                  |                            |                          |                                  |                            |                            |
| Zinc, Pot. Diss.      | 0.0000 - | 0.5650    | 0            | none                  |                            |                          |                                  |                            |                            |

Table 14
Comparison of Surface Water Quality to Yampa Segment 13e Standards

|         |          | No.   |       |           | Exceedence | Exceedence  | Exceedence |
|---------|----------|-------|-------|-----------|------------|-------------|------------|
| Analyte | Standard | Sites | Sites | Frequency | Date Range | Value Range | Median     |
|         |          |       |       |           |            |             |            |

Frequency = uncensored/between MDL&PQL/censored/no. samples, (B) = Between MDL&PQL range, (<) = Censored range

Table 14
Comparison of Surface Water Quality to Yampa Segment 13e Standards

|       | Water Use Summary Report                               |
|-------|--------------------------------------------------------|
| Site  | RECEIVING                                              |
| YSG5  | <pre>Iron, Total Rec.(3/6)   Mercury, Total(3/6)</pre> |
| YSGF5 | <pre>Iron, Total Rec.(4/6) Mercury, Total(3/6)</pre>   |
| YSS2  | Mercury, Total(2/4)                                    |
| YSSF3 |                                                        |

TABLE 15
CDOH Yampa Segment 13i (upper Grassy Creek) Standards

| FIELD PH                  | 6.5 - 9.0                  |
|---------------------------|----------------------------|
| AMMONIA, NITROGEN, MG/L   | 0.05 <sup>A</sup>          |
| ARSENIC, TOTAL REC., UG/L | 340.0 (acute)              |
| ARSENIC, TOTAL REC., UG/L | 100.0 (chronic)            |
| BORON, DISSOLVED, UG/L    | 750.0                      |
| CADMIUM, UG/L             | 9.2 (acute)                |
| CADMIUM, UG/L             | 1.2 (chronic)              |
| CHROMIUM, UG/L            | 1773 (acute)               |
| CHROMIUM, UG/L            | 231 (chronic)              |
| COPPER, UG/L              | 50.0 (acute)               |
| COPPER, UG/L              | 29.0 (chronic)             |
| IRON, TOTAL REC., MG/L    | 1.0 <sup>B</sup>           |
| LEAD, UG/L                | 281.0 (acute)              |
| LEAD, UG/L                | 11.0 (chronic)             |
| MANGANESE, MG/L           | 4.738 (acute)              |
| MANGANESE, MG/L           | 2.618 (chronic)            |
| MERCURY, TOTAL, UG/L      | 0.01 <sup>C</sup>          |
| NICKEL, UG/L              | 1513.0 (acute)             |
| NICKEL, UG/L              | 168.0 (chronic)            |
| NITRITE, NITROGEN, MG/L   | 0.05                       |
| NITRATE, NITROGEN, MG/L   | 100.0                      |
| SELENIUM, UG/L            | 18.4 (acute)               |
| SELENIUM, UG/L            | 4.6 <sup>D</sup> (chronic) |
| SULFIDE, MG/L             | 0.02 <sup>E</sup>          |
| SILVER, UG/L              | 22.0 (acute)               |
| SILVER, UG/L              | 3.5 (chronic)              |
| ZINC, MG/L                | 0.565 (acute)              |
| ZINC, MG/L                | 0.428 (chronic)            |

Acute = one day max., Chronic = 30 day average. These values were taken from Table IV, CDOH Reg. 31, using a mean hardness of 400 mg/l. All acute/chronic values are the 'dissolved' form.

#### TABLE 15 (cont.)

- A = Detection limit is 0.05 mg/l. All values above detection limit are compared to table standards found on this website:
- http://nepis.epa.gov/Adobe/PDF/2000303L.pdf
- B = Temporary Modification Fe(ch): "current conditions" expires 12/31/17
- C = Detection limit for stream and spring sites is 0.2 ug/1.
- D = Temporary Modification Se(ch): "current conditions" expires 12/31/18
- E = Standard is 0.002 mg/l (un-ionized). Detection limit is 0.02 mg/l.

Table 16
Comparison of Surface Water Quality to Yampa Segment 13i Standards (Sites YSGF5 and NPDES11)

| Analyte                     | Sta      | andard    | No.<br>Sites | Sites         | Frequency | Exceedence Date Range                          | Exceedence Value Range | Exceedence<br>Median |                  |
|-----------------------------|----------|-----------|--------------|---------------|-----------|------------------------------------------------|------------------------|----------------------|------------------|
| RECEIVING STREAM STANDARDS, |          |           |              |               |           |                                                |                        |                      |                  |
| Ammonia Nitrogen_N          | 0.0000 - | 0.0500    | 0            | none          |           |                                                |                        |                      |                  |
| Arsenic, Total Rec.         | 0.0000 - | 100.0000  | 0            | none          |           |                                                |                        |                      |                  |
| Arsenic, Total Rec.         | 0.0000 - | 340.0000  | 0            | none          |           |                                                |                        |                      |                  |
| Boron, Dissolved            | 0.0000 - | 750.0000  | 0            | none          |           |                                                |                        |                      |                  |
| Cadmium, Dissolved          | 0.0000 - | 1.2000    | 0            | none          |           |                                                |                        |                      |                  |
| Cadmium, Dissolved          | 0.0000 - | 9.2000    | 0            | none          |           |                                                |                        |                      |                  |
| Cadmium, Pot. Diss.         | 0.0000 - | 1.2000    | 0            | none          |           |                                                |                        |                      |                  |
| Cadmium, Pot. Diss.         | 0.0000 - | 9.2000    | 0            | none          |           |                                                |                        |                      |                  |
| Chromium, Dissolved         | 0.0000 - | 231.0000  | 0            | none          |           |                                                |                        |                      |                  |
| Chromium, Dissolved         | 0.0000 - | 1773.0000 | 0            | none          |           |                                                |                        |                      |                  |
| Chromium, Pot. Diss.        | 0.0000 - | 231.0000  | 0            | none          |           |                                                |                        |                      |                  |
| Chromium, Pot. Diss.        | 0.0000 - | 1773.0000 | 0            | none          |           |                                                |                        |                      |                  |
| Copper, Dissolved           | 0.0000 - | 29.0000   | 0            | none          |           |                                                |                        |                      |                  |
| Copper, Dissolved           | 0.0000 - | 50.0000   | 0            | none          |           |                                                |                        |                      |                  |
| Copper, Pot. Diss.          | 0.0000 - | 29.0000   | 0            | none          |           |                                                |                        |                      |                  |
| Copper, Pot. Diss.          | 0.0000 - | 50.0000   | 0            | none          |           |                                                |                        |                      |                  |
| Field Ph                    | 6.5000 - | 9.0000    | 0            | none          |           |                                                |                        |                      |                  |
| Iron, Total Rec.            | 0.0000 - | 1.0000    | 2            | YSG5<br>YSGF5 |           | 0/3 04/20/16-06/20/16<br>0/3 04/20/16-06/21/16 | 1.0700 -<br>1.4600 -   |                      | 1.8000<br>1.8950 |
| Lead, Dissolved             | 0.0000 - | 11.0000   | 0            | none          |           |                                                |                        |                      |                  |
| Lead, Dissolved             | 0.0000 - | 281.0000  | 0            | none          |           |                                                |                        |                      |                  |
| Lead, Pot. Diss.            | 0.0000 - | 11.0000   | 0            | none          |           |                                                |                        |                      |                  |
| Lead, Pot. Diss.            | 0.0000 - | 281.0000  | 0            | none          |           |                                                |                        |                      |                  |
| Manganese, Dissolved        | 0.0000 - | 2.6180    | 0            | none          |           |                                                |                        |                      |                  |
| Manganese, Dissolved        | 0.0000 - | 4.7380    | 0            | none          |           |                                                |                        |                      |                  |
| Manganese, Pot. Diss.       | 0.0000 - | 2.6180    | 0            | none          |           |                                                |                        |                      |                  |

Table 16
Comparison of Surface Water Quality to Yampa Segment 13i Standards (Sites YSGF5 and NPDES11)

0.2000 0.2000 0.2000

| Analyte               |          | andard    | No.<br>Sites<br> | Sites                 | Frequency                  | Exceedence<br>Date Range | Exceedence<br>Value Range        | Exceedence<br>Median       |   |
|-----------------------|----------|-----------|------------------|-----------------------|----------------------------|--------------------------|----------------------------------|----------------------------|---|
| Manganese, Pot. Diss. | 0.0000 - | 4.7380    | 0                | none                  |                            |                          |                                  |                            |   |
| Mercury, Total        | 0.0000 - | 0.0100    | 3                | YSG5<br>YSGF5<br>YSS2 | 0/0/3/<br>0/0/3/<br>0/0/2/ |                          | 0.2000 -<br>0.2000 -<br>0.2000 - | 0.2000<br>0.2000<br>0.2000 | ( |
| Mercury, Total        | 0.0000 - | 0.2000    | 0                | none                  |                            |                          |                                  |                            |   |
| Nickel, Dissolved     | 0.0000 - | 168.0000  | 0                | none                  |                            |                          |                                  |                            |   |
| Nickel, Dissolved     | 0.0000 - | 1513.0000 | 0                | none                  |                            |                          |                                  |                            |   |
| Nickel, Pot. Diss.    | 0.0000 - | 168.0000  | 0                | none                  |                            |                          |                                  |                            |   |
| Nickel, Pot. Diss.    | 0.0000 - | 1513.0000 | 0                | none                  |                            |                          |                                  |                            |   |
| Nitrate Nitrogen_N    | 0.0000 - | 100.0000  | 0                | none                  |                            |                          |                                  |                            |   |
| Nitrite Nitrogen_N    | 0.0000 - | 0.0500    | 0                | none                  |                            |                          |                                  |                            |   |
| Selenium, Dissolved   | 0.0000 - | 4.6000    | 0                | none                  |                            |                          |                                  |                            |   |
| Selenium, Dissolved   | 0.0000 - | 18.4000   | 0                | none                  |                            |                          |                                  |                            |   |
| Selenium, Pot. Diss.  | 0.0000 - | 4.6000    | 0                | none                  |                            |                          |                                  |                            |   |
| Selenium, Pot. Diss.  | 0.0000 - | 18.4000   | 0                | none                  |                            |                          |                                  |                            |   |
| Selenium, Total Rec.  | 0.0000 - | 4.6000    | 0                | none                  |                            |                          |                                  |                            |   |
| Selenium, Total Rec.  | 0.0000 - | 18.4000   | 0                | none                  |                            |                          |                                  |                            |   |
| Silver, Dissolved     | 0.0000 - | 3.5000    | 0                | none                  |                            |                          |                                  |                            |   |
| Silver, Dissolved     | 0.0000 - | 22.0000   | 0                | none                  |                            |                          |                                  |                            |   |
| Silver, Pot. Diss.    | 0.0000 - | 3.5000    | 0                | none                  |                            |                          |                                  |                            |   |
| Silver, Pot. Diss.    | 0.0000 - | 22.0000   | 0                | none                  |                            |                          |                                  |                            |   |
| Sulfide               | 0.0000 - | 0.0200    | 0                | none                  |                            |                          |                                  |                            |   |
| Zinc, Dissolved       | 0.0000 - | 0.4280    | 0                | none                  |                            |                          |                                  |                            |   |
| Zinc, Dissolved       | 0.0000 - | 0.5650    | 0                | none                  |                            |                          |                                  |                            |   |
| Zinc, Pot. Diss.      | 0.0000 - | 0.4280    | 0                | none                  |                            |                          |                                  |                            |   |
| Zinc, Pot. Diss.      | 0.0000 - | 0.5650    | 0                | none                  |                            |                          |                                  |                            |   |

Frequency = uncensored/between MDL&PQL/censored/no. samples, (B) = Between MDL&PQL range, (<) = Censored range

Table 16

|                          | Comparison of | Surface | Water | Quality | to | Yampa | Segment | 131 | Standards | (Sites | YSGF5 | and | NPDES11) |  |
|--------------------------|---------------|---------|-------|---------|----|-------|---------|-----|-----------|--------|-------|-----|----------|--|
| Water Use Summary Report |               |         |       |         |    |       |         |     |           |        |       |     |          |  |

Site RECEIVING

YSG5 Iron, Total Rec.(2/3)

Mercury, Total(3/6)

YSGF5 Iron, Total Rec.(2/3)

Mercury, Total(3/6)

YSS2 Mercury, Total(2/4)

YSSF3

TABLE 17
CDOH Yampa Segment 13j (lower Grassy Creek) Standards

| FIELD PH                  | 6.5 - 9.0                  |
|---------------------------|----------------------------|
| AMMONIA, NITROGEN, MG/L   | 0.05 <sup>A</sup>          |
| ARSENIC, TOTAL REC., UG/L | 340.0 (acute)              |
| ARSENIC, TOTAL REC., UG/L | 100.0 (chronic)            |
| BORON, DISSOLVED, UG/L    | 750.0                      |
| CADMIUM, UG/L             | 9.2 (acute)                |
| CADMIUM, UG/L             | 1.2 (chronic)              |
| CHROMIUM, UG/L            | 1773 (acute)               |
| CHROMIUM, UG/L            | 231 (chronic)              |
| COPPER, UG/L              | 50.0 (acute)               |
| COPPER, UG/L              | 29.0 (chronic)             |
| IRON, TOTAL REC., MG/L    | 1.0                        |
| LEAD, UG/L                | 281.0 (acute)              |
| LEAD, UG/L                | 11.0 (chronic)             |
| MANGANESE, MG/L           | 4.738 (acute)              |
| MANGANESE, MG/L           | 2.618 (chronic)            |
| MERCURY, TOTAL, UG/L      | 0.01 <sup>B</sup>          |
| NICKEL, UG/L              | 1513.0 (acute)             |
| NICKEL, UG/L              | 168.0 (chronic)            |
| NITRITE, NITROGEN, MG/L   | 0.05                       |
| NITRATE, NITROGEN, MG/L   | 100.0                      |
| SELENIUM, UG/L            | 18.4 (acute)               |
| SELENIUM, UG/L            | 4.6 <sup>C</sup> (chronic) |
| SULFIDE, MG/L             | 0.02 <sup>D</sup>          |
| SILVER, UG/L              | 22.0 (acute)               |
| SILVER, UG/L              | 3.5 (chronic)              |
| ZINC, MG/L                | 0.565 (acute)              |
| ZINC, MG/L                | 0.428 (chronic)            |

Acute = one day max., Chronic = 30 day average. These values were taken from Table IV, CDOH Reg. 31, using a mean hardness of 400 mg/l. All acute/chronic values are the 'dissolved' form.

#### TABLE 17 (cont.)

- A = Detection limit is 0.05 mg/l. All values above detection limit are compared to table standards found on this website: http://nepis.epa.gov/Adobe/PDF/2000303L.pdf
- B = Detection limit for stream and spring sites is 0.2 ug/l.
- C = Temporary Modification Se(ch): "current conditions" expires 12/31/18
- D = Standard is 0.002 mg/l (un-ionized). Detection limit is 0.02 mg/l.

Table 18 Comparison of Surface Water Quality to Yampa Segment 13j Standards (Sites YSG5 and NPDES10)

| Analyte<br>                   |                 | andard         | No.<br>Sites | Sites         | Frequency | Exceedence<br>Date Range                     | Exceedence<br>Value Range | Exceedence<br>Median |                  |
|-------------------------------|-----------------|----------------|--------------|---------------|-----------|----------------------------------------------|---------------------------|----------------------|------------------|
| RECEIVING STREAM STANDARDS, 1 | .31 LO GRASSYCR | SCOTS JUNE 201 | 4 DISS.STD   |               |           |                                              |                           |                      |                  |
| Ammonia Nitrogen_N            | 0.0000 -        | 0.0500         | 0            | none          |           |                                              |                           |                      |                  |
| Arsenic, Total Rec.           | 0.0000 -        | 100.0000       | 0            | none          |           |                                              |                           |                      |                  |
| Arsenic, Total Rec.           | 0.0000 -        | 340.0000       | 0            | none          |           |                                              |                           |                      |                  |
| Boron, Dissolved              | 0.0000 -        | 750.0000       | 0            | none          |           |                                              |                           |                      |                  |
| Cadmium, Dissolved            | 0.0000 -        | 1.2000         | 0            | none          |           |                                              |                           |                      |                  |
| Cadmium, Dissolved            | 0.0000 -        | 9.2000         | 0            | none          |           |                                              |                           |                      |                  |
| Cadmium, Pot. Diss.           | 0.0000 -        | 1.2000         | 0            | none          |           |                                              |                           |                      |                  |
| Cadmium, Pot. Diss.           | 0.0000 -        | 9.2000         | 0            | none          |           |                                              |                           |                      |                  |
| Chromium, Dissolved           | 0.0000 -        | 231.0000       | 0            | none          |           |                                              |                           |                      |                  |
| Chromium, Dissolved           | 0.0000 -        | 1773.0000      | 0            | none          |           |                                              |                           |                      |                  |
| Chromium, Pot. Diss.          | 0.0000 -        | 231.0000       | 0            | none          |           |                                              |                           |                      |                  |
| Chromium, Pot. Diss.          | 0.0000 -        | 1773.0000      | 0            | none          |           |                                              |                           |                      |                  |
| Copper, Dissolved             | 0.0000 -        | 29.0000        | 0            | none          |           |                                              |                           |                      |                  |
| Copper, Dissolved             | 0.0000 -        | 50.0000        | 0            | none          |           |                                              |                           |                      |                  |
| Copper, Pot. Diss.            | 0.0000 -        | 29.0000        | 0            | none          |           |                                              |                           |                      |                  |
| Copper, Pot. Diss.            | 0.0000 -        | 50.0000        | 0            | none          |           |                                              |                           |                      |                  |
| Field Ph                      | 6.5000 -        | 9.0000         | 0            | none          |           |                                              |                           |                      |                  |
| Iron, Total Rec.              | 0.0000 -        | 1.0000         | 2            | YSG5<br>YSGF5 |           | /3 04/20/16-06/20/16<br>/3 04/20/16-06/21/16 | 1.0700 -<br>1.4600 -      | 2.5300<br>2.3300     | 1.8000<br>1.8950 |
| Lead, Dissolved               | 0.0000 -        | 11.0000        | 0            | none          |           |                                              |                           |                      |                  |
| Lead, Dissolved               | 0.0000 -        | 281.0000       | 0            | none          |           |                                              |                           |                      |                  |
| Lead, Pot. Diss.              | 0.0000 -        | 11.0000        | 0            | none          |           |                                              |                           |                      |                  |
| Lead, Pot. Diss.              | 0.0000 -        | 281.0000       | 0            | none          |           |                                              |                           |                      |                  |
| Manganese, Dissolved          | 0.0000 -        | 2.6180         | 0            | none          |           |                                              |                           |                      |                  |
| Manganese, Dissolved          | 0.0000 -        | 4.7380         | 0            | none          |           |                                              |                           |                      |                  |
| Manganese, Pot. Diss.         | 0.0000 -        | 2.6180         | 0            | none          |           |                                              |                           |                      |                  |

Table 18

|                       | Comp     | earison of Surfa | ace Water Qual | lity to Yampa | a Segment 13j Star | ndards (Sites YSG5 and N<br>Exceedence           | PDES10) Exceedence   | Exceedence       |   |
|-----------------------|----------|------------------|----------------|---------------|--------------------|--------------------------------------------------|----------------------|------------------|---|
| Analyte               |          | andard           | Sites          | Sites         | Frequency          | Date Range                                       | Value Range          | Median           |   |
|                       |          |                  |                |               |                    |                                                  |                      |                  |   |
| Manganese, Pot. Diss. | 0.0000 - | 4.7380           | 0              | none          |                    |                                                  |                      |                  |   |
| Mercury, Total        | 0.0000 - | 0.0100           | 3              | YSG5<br>YSGF5 |                    | 3 04/20/16-09/06/16(<)<br>3 04/20/16-09/06/16(<) | 0.2000 -<br>0.2000 - | 0.2000<br>0.2000 | , |
|                       |          |                  |                | YSS2          |                    | 2 04/21/16-06/21/16(<)                           | 0.2000 -             | 0.2000           | - |
| Mercury, Total        | 0.0000 - | 0.2000           | 0              | none          |                    |                                                  |                      |                  |   |
| Nickel, Dissolved     | 0.0000 - | 168.0000         | 0              | none          |                    |                                                  |                      |                  |   |
| Nickel, Dissolved     | 0.0000 - | 1513.0000        | 0              | none          |                    |                                                  |                      |                  |   |
| Nickel, Pot. Diss.    | 0.0000 - | 168.0000         | 0              | none          |                    |                                                  |                      |                  |   |
| Nickel, Pot. Diss.    | 0.0000 - | 1513.0000        | 0              | none          |                    |                                                  |                      |                  |   |
| Nitrate Nitrogen_N    | 0.0000 - | 100.0000         | 0              | none          |                    |                                                  |                      |                  |   |
| Nitrite Nitrogen_N    | 0.0000 - | 0.0500           | 0              | none          |                    |                                                  |                      |                  |   |
| Selenium, Dissolved   | 0.0000 - | 4.6000           | 0              | none          |                    |                                                  |                      |                  |   |
| Selenium, Dissolved   | 0.0000 - | 18.4000          | 0              | none          |                    |                                                  |                      |                  |   |
| Selenium, Pot. Diss.  | 0.0000 - | 4.6000           | 0              | none          |                    |                                                  |                      |                  |   |
| Selenium, Pot. Diss.  | 0.0000 - | 18.4000          | 0              | none          |                    |                                                  |                      |                  |   |
| Selenium, Total Rec.  | 0.0000 - | 4.6000           | 0              | none          |                    |                                                  |                      |                  |   |
| Selenium, Total Rec.  | 0.0000 - | 18.4000          | 0              | none          |                    |                                                  |                      |                  |   |
| Silver, Dissolved     | 0.0000 - | 3.5000           | 0              | none          |                    |                                                  |                      |                  |   |
| Silver, Dissolved     | 0.0000 - | 22.0000          | 0              | none          |                    |                                                  |                      |                  |   |
| Silver, Pot. Diss.    | 0.0000 - | 3.5000           | 0              | none          |                    |                                                  |                      |                  |   |
| Silver, Pot. Diss.    | 0.0000 - | 22.0000          | 0              | none          |                    |                                                  |                      |                  |   |
| Sulfide               | 0.0000 - | 0.0200           | 0              | none          |                    |                                                  |                      |                  |   |
| Zinc, Dissolved       | 0.0000 - | 0.4280           | 0              | none          |                    |                                                  |                      |                  |   |
| Zinc, Dissolved       | 0.0000 - | 0.5650           | 0              | none          |                    |                                                  |                      |                  |   |
| Zinc, Pot. Diss.      | 0.0000 - | 0.4280           | 0              | none          |                    |                                                  |                      |                  |   |
| Zinc, Pot. Diss.      | 0.0000 - | 0.5650           | 0              | none          |                    |                                                  |                      |                  |   |

0.2000 0.2000 0.2000

Frequency = uncensored/between MDL&PQL/censored/no. samples, (B) = Between MDL&PQL range, (<) = Censored range

Table 18

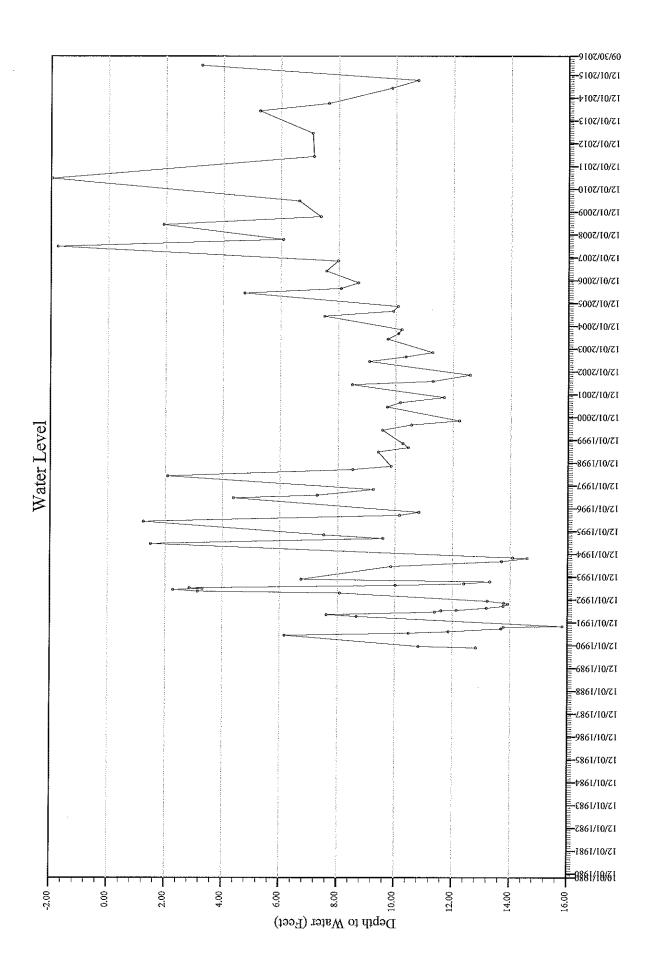
Comparison of Surface Water Quality to Yampa Segment 13j Standards (Sites YSG5 and NPDES10)

#### ---- Water Use Summary Report ----

YSSF3

| Site  | RECEIVING                                              |
|-------|--------------------------------------------------------|
| YSG5  | <pre>Iron, Total Rec.(2/3)   Mercury, Total(3/6)</pre> |
| YSGF5 | <pre>Iron, Total Rec.(2/3)   Mercury, Total(3/6)</pre> |
| YSS2  | Mercury, Total(2/4)                                    |

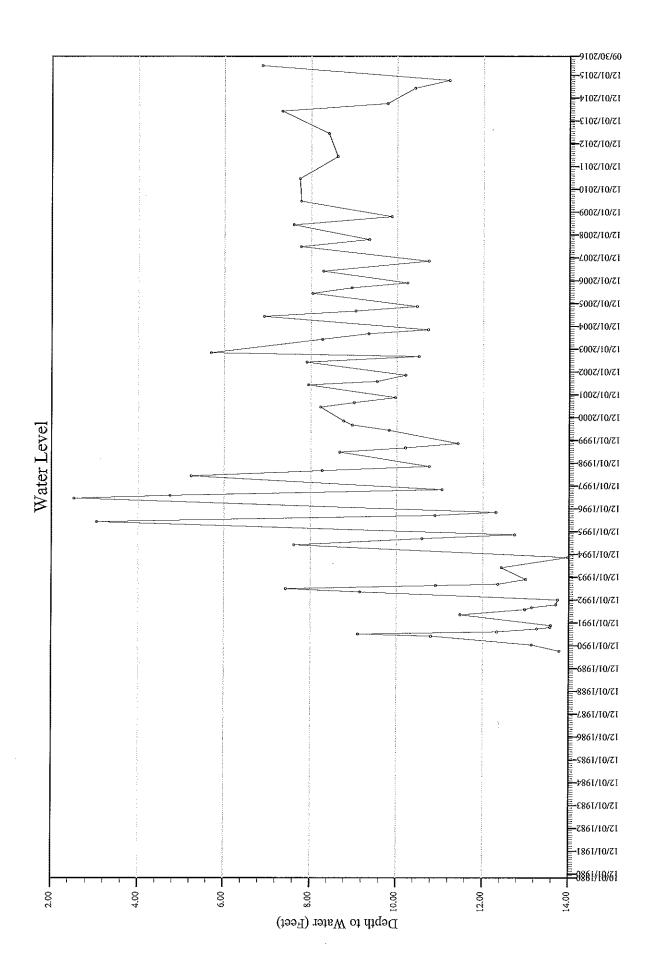
#### APPENDIX B


GROUND WATER LEVEL REPORTS

AND HYDROGRAPHS

#### APPENDIX B

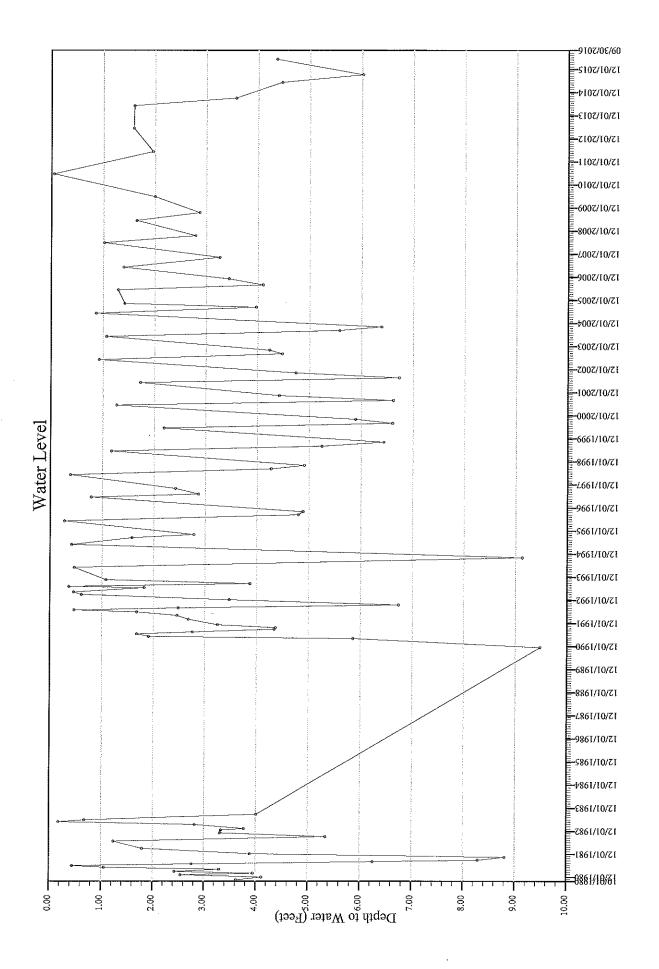
## Ground Water Level Reports and Hydrographs Table of Contents


| Geologic Unit          | Well ID |
|------------------------|---------|
|                        |         |
| Annand Draw Alluvium   | YAAL14  |
| Grassy Creek Alluvium  | YGAL16  |
| Sage Creek Alluvium    | YSAL1   |
|                        | YSAL3   |
| Wadge Overburden       | YOV30   |
| Wadge Coal             | YW30    |
| Wadge Underburden      | YWU30   |
| Wolf Creek Coal        | YWC33   |
| Wolf Creek Underburden | YWCU33  |



#### Water Level Report YAAL14 10/01/2015-00:00 to 09/30/2016-23:59

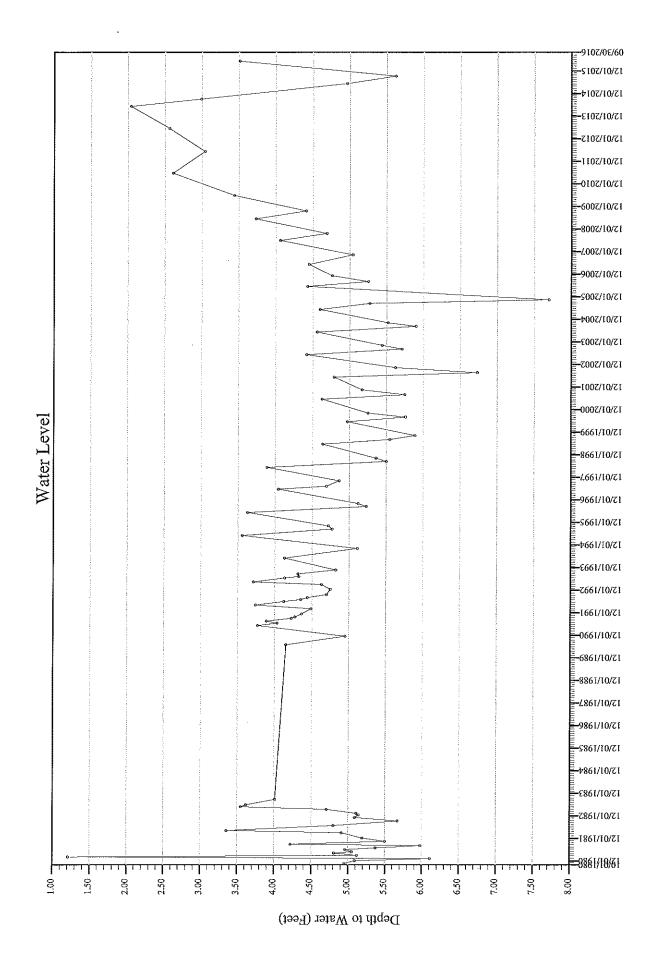
| Date       | Time     | Instrument | Water Level | Elevation | Correction | Status |
|------------|----------|------------|-------------|-----------|------------|--------|
|            |          |            |             |           |            |        |
| 05/05/2016 | 12:05:00 | MANF       | 3.24        | 6968.73   | 0.00       |        |


Average water level = 0.00 feet Minimum water level 3.24 feet at 05/05/2016-12:05:00 Maximum water level 3.24 feet at 05/05/2016-12:05:00



## Water Level Report YGAL16 10/01/2015-00:00 to 09/30/2016-23:59

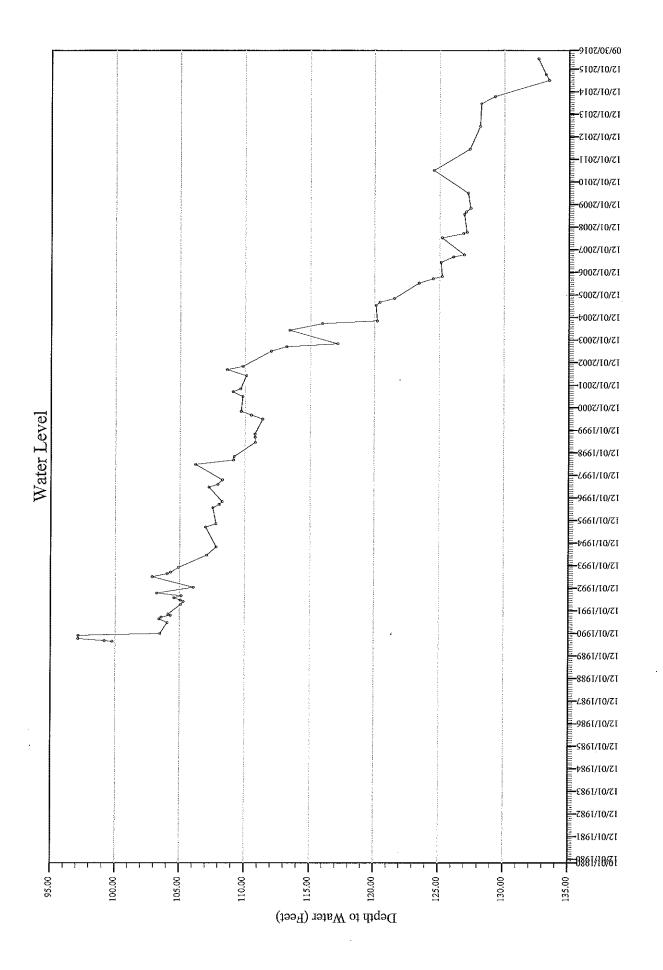
| Status | Correction | Elevation | Water Level | Instrument | Time     | Date       |
|--------|------------|-----------|-------------|------------|----------|------------|
|        |            |           |             |            |          |            |
|        | 0.00       | 6975.25   | 6.87        | MANE       | 12:55:00 | 05/05/2016 |


Average water level  $\approx 0.00$  feet Minimum water level 6.87 feet at 05/05/2016-12:55:00 Maximum water level 6.87 feet at 05/05/2016-12:55:00



#### Water Level Report YSAL1 10/01/2015-00:00 to 09/30/2016-23:59

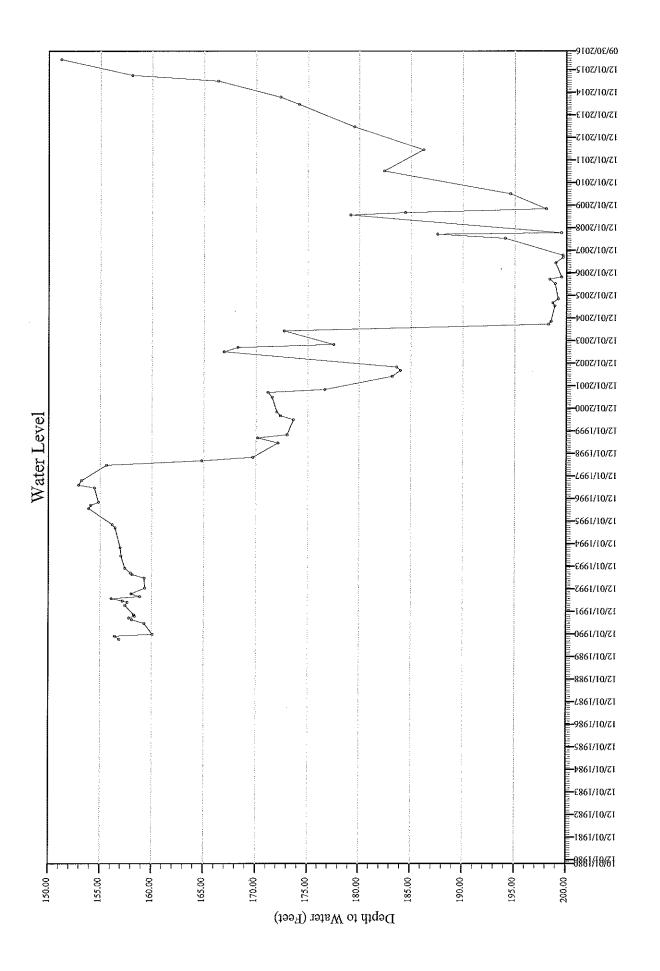
| Date       | Time     | Instrument | Water Level | Elevation | Correction | Status |
|------------|----------|------------|-------------|-----------|------------|--------|
|            |          |            |             |           |            |        |
| 05/11/2016 | 07:55:00 | MANE       | 4.36        | 7170.57   | 0.00       |        |


Average water level = 0.00 feet Minimum water level 4.36 feet at 05/11/2016-07:55:00 Maximum water level 4.36 feet at 05/11/2016-07:55:00



## Water Level Report YSAL3 10/01/2015-00:00 to 09/30/2016-23:59

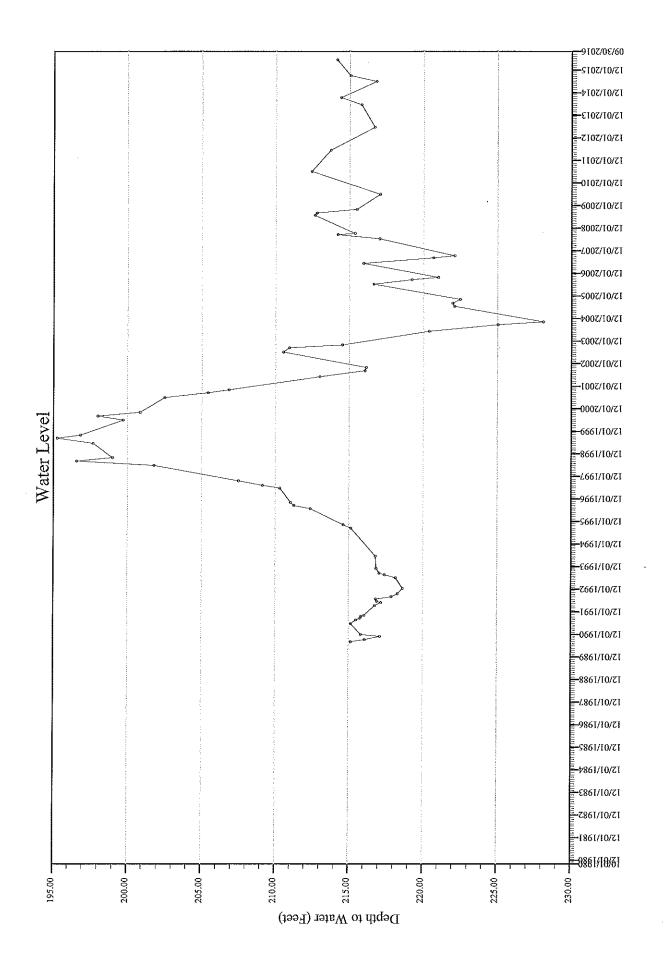
| Date       | Time     | Instrument | Water Level | Elevation | Correction | Status |
|------------|----------|------------|-------------|-----------|------------|--------|
|            |          |            |             |           |            |        |
| 05/11/2016 | 07:15:00 | Mane       | 3.51        | 7220.02   | 0.00       |        |


Average water level = 0.00 feet
Minimum water level 3.51 feet at 05/11/2016-07:15:00
Maximum water level 3.51 feet at 05/11/2016-07:15:00



#### Water Level Report YOV30 10/01/2015-00:00 to 09/30/2016-23:59

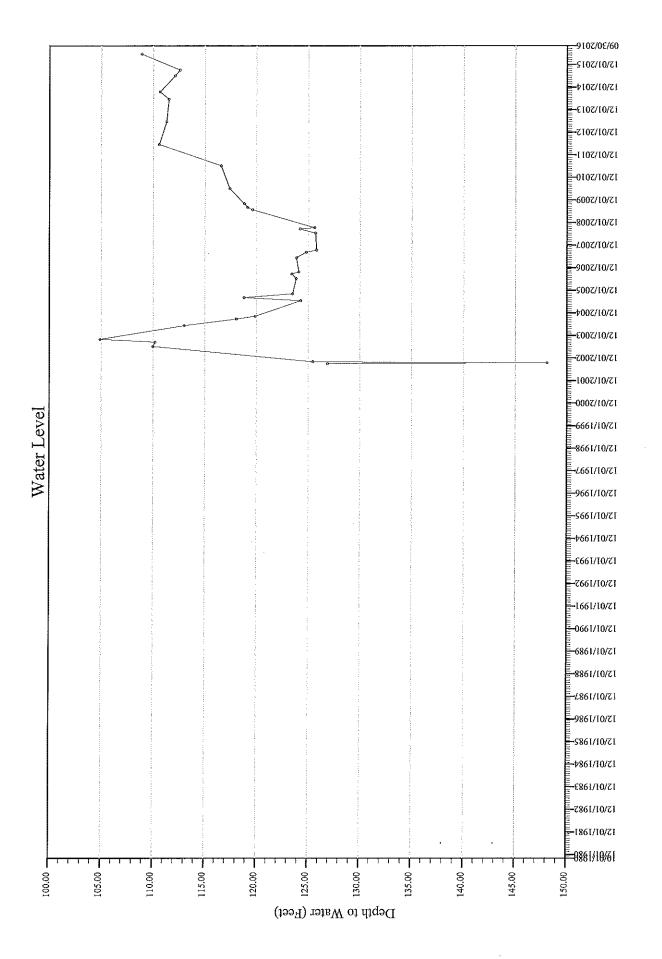
| Date       | Time     | Instrument | Water Level | Elevation | Correction | Status |
|------------|----------|------------|-------------|-----------|------------|--------|
|            |          |            |             |           |            |        |
| 05/19/2016 | 10:45:00 | MANF       | 132.61      | 7452.84   | 0.00       |        |


Average water level = 0.00 feet
Minimum water level 132.61 feet at 05/19/2016-10:45:00
Maximum water level 132.61 feet at 05/19/2016-10:45:00



## Water Level Report YW30 10/01/2015-00:00 to 09/30/2016-23:59

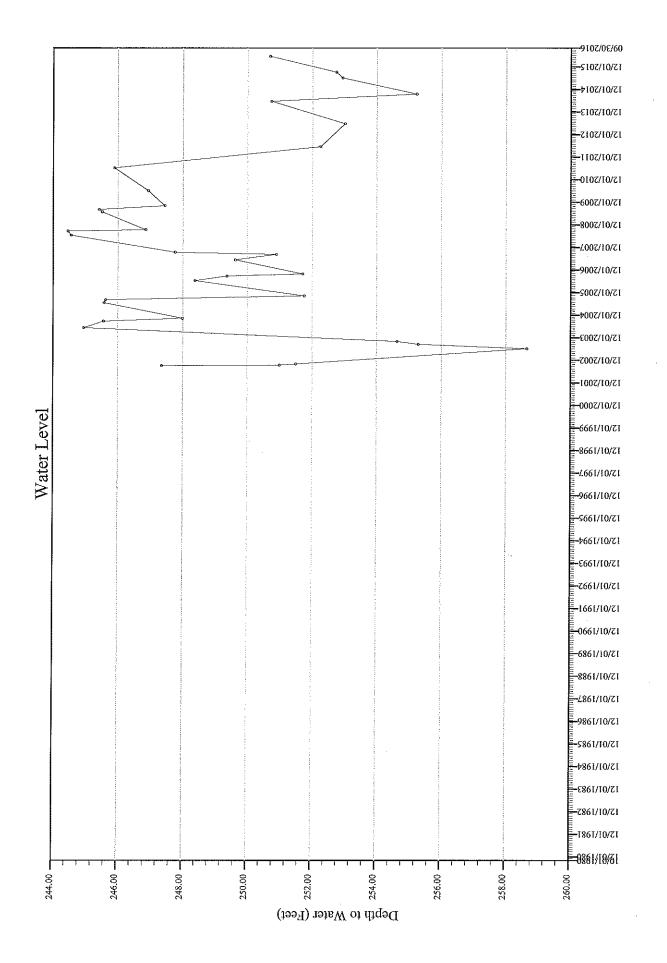
| Date       | Time     | Instrument | Water Level | Elevation | Correction | Status |
|------------|----------|------------|-------------|-----------|------------|--------|
|            |          |            |             |           |            |        |
| 05/19/2016 | 12:00:00 | MANF       | 151,19      | 7435.30   | 0.00       |        |


Average water level = 0.00 feet
Minimum water level 151.19 feet at 05/19/2016-12:00:00
Maximum water level 151.19 feet at 05/19/2016-12:00:00



## Water Level Report YWU30 10/01/2015-00:00 to 09/30/2016-23:59

| Date       | Time     | Instrument | Water Level | Elevation | Correction | Status |
|------------|----------|------------|-------------|-----------|------------|--------|
|            |          |            |             |           |            |        |
| 05/19/2016 | 11:20:00 | Manf       | 214.14      | 7372.48   | 0.00       |        |


Average water level = 0.00 feet
Minimum water level 214.14 feet at 05/19/2016-11:20:00.
Maximum water level 214.14 feet at 05/19/2016-11:20:00



#### Water Level Report YWC33 10/01/2015-00:00 to 09/30/2016-23:59

| Date       | Time     | Instrument | Water Level | Elevation | Correction | Status |
|------------|----------|------------|-------------|-----------|------------|--------|
|            |          |            |             |           |            |        |
| 05/19/2016 | 09:55:00 | MANE       | 108.91      | 7479.48   | 0.00       |        |

Average water level = 0.00 feet Minimum water level 108.91 feet at 05/19/2016-09:55:00 Maximum water level 108.91 feet at 05/19/2016-09:55:00



## Water Level Report YWCU33 10/01/2015-00:00 to 09/30/2016-23:59

| Date       | Time     | Instrument | Water Level | Elevation | Correction | Status |
|------------|----------|------------|-------------|-----------|------------|--------|
|            |          |            |             |           |            |        |
| 05/19/2016 | 08:55:00 | MANF       | 250.70      | 7337.09   | 0.00       |        |

Average water level = 0.00 feet Minimum water level 250.70 feet at 05/19/2016-08:55:00 Maximum water level 250.70 feet at 05/19/2016-08:55:00

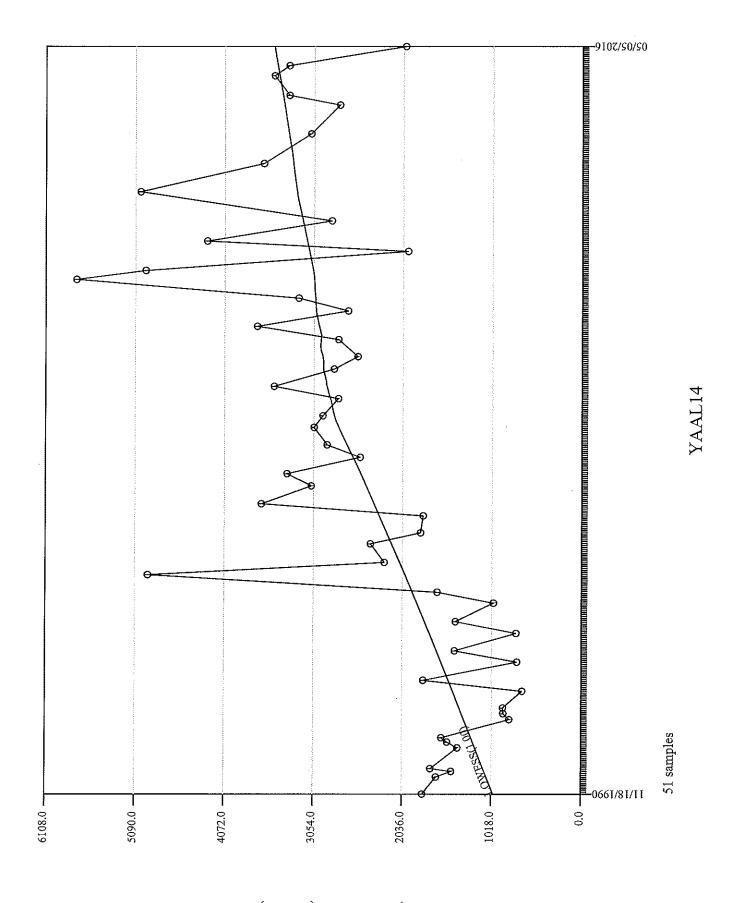
APPENDIX C

GROUND WATER QUALITY DATA

#### APPENDIX C

## Ground Water Quality Data Table of Contents

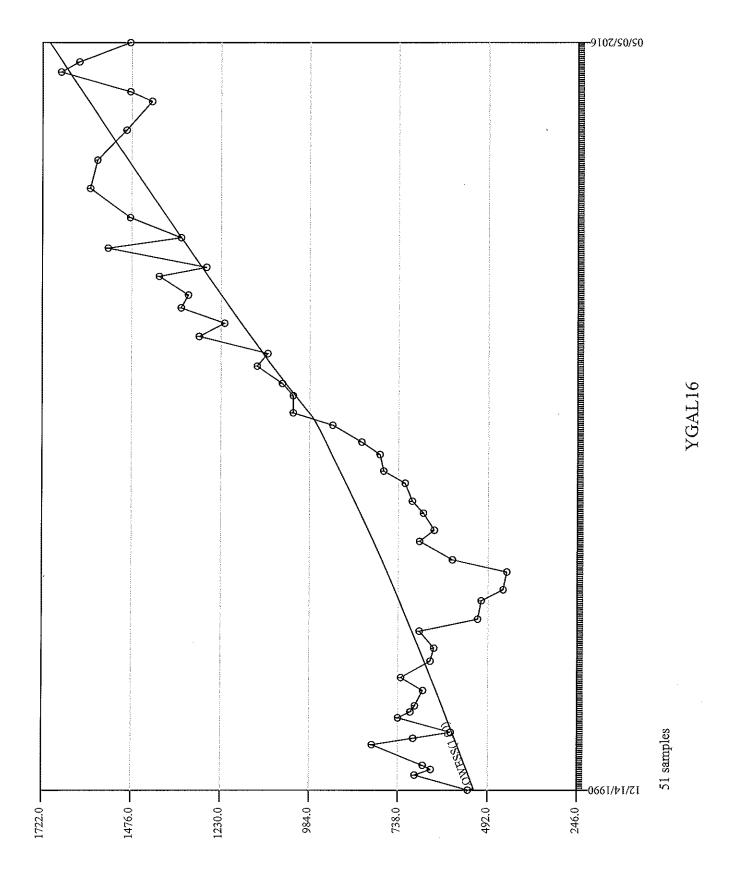
| Geologic Unit          | Well ID |
|------------------------|---------|
|                        |         |
| Annand Draw Alluvium   | YAAL14  |
| Grassy Creek Alluvium  | YGAL16  |
| Sage Creek Alluvium    | YSAL1   |
|                        | YSAL3   |
| Wadge Overburden       | YOV30   |
| Wadge Coal             | YW30    |
| Wadge Underburden      | YWU30   |
| Wolf Creek Coal        | YWC33   |
| Wolf Creek Underburden | YWCU33  |


On water quality reports: < indicates an analytical value below the Method Detection Limit

B indicates an analytical value between the Method Detection

Limit and the Practical Quantitation Limit

# Water Quality Report YAAL14 10/01/2015-00:00 to 09/30/2016-23:59

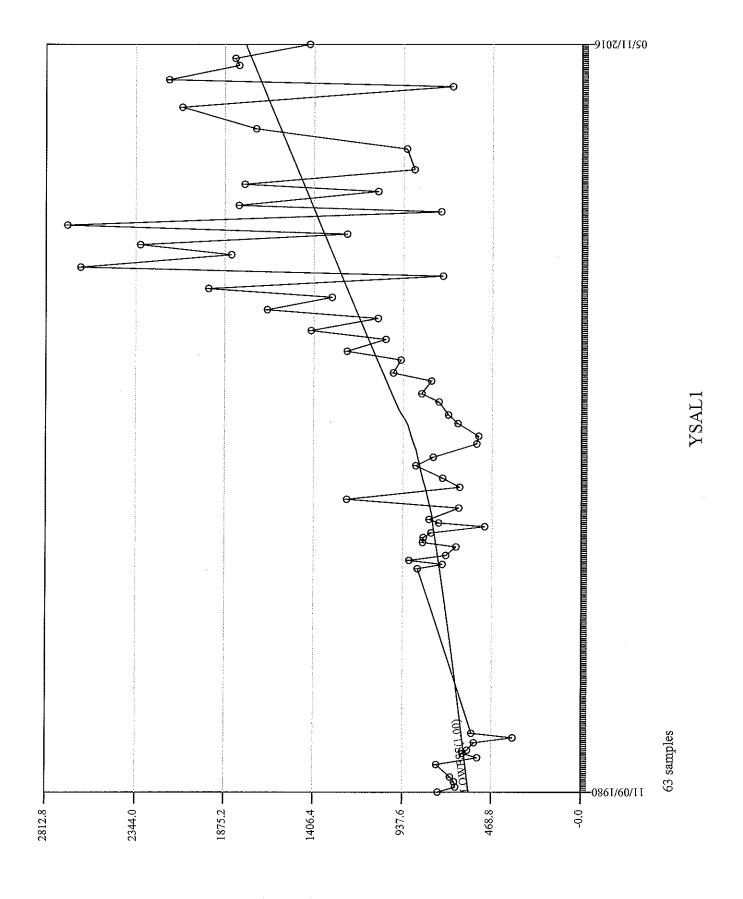

| 05/05/2016 | 7.1200<br>7.4000<br>2340.0000                            | B 0.1800<br>< 0.0200<br>0.0200<br>0.1800<br>< 0.0100<br>< 0.1100<br>B 2.4000<br>2010.0000                                                                                              |
|------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Units<br>  | S.U.<br>C<br>UMHOS/CM                                    | 7,000 M MG/L<br>7,000 U G/L<br>7,000 U G/L                                                   |
| Paremeters | Field Parameters Field Ph Temperature Field Conductivity | Indocratory Parameters Fluoride Iron, Dissolved Manganese, Dissolved Nitrates Nitrogen N Nitrate Nitrogen N Nitrate Nitrogen N Selenium, Dissolved Solids, Dissolved Solids, Dissolved |



Remark Date-Time Remark
05/05/2016-12:05 PUMP GAL/GPM: 45/3

# Water Quality Report YGAL16 10/01/2015-00:00 to 09/30/2016-23:59

| 05/05/2016<br>12:55 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 7.2800                       | 9.2000      | 1800.0000          |                       | B 0.1700 | < 0.0200        | B 0.0170             | 0.7400             | < 0.0100           | 0 7400                     | < 1.0000            | 1480 0000         | 800.0000 |
|---------------------|-----------------------------------------|------------------------------|-------------|--------------------|-----------------------|----------|-----------------|----------------------|--------------------|--------------------|----------------------------|---------------------|-------------------|----------|
| Units               |                                         | s.c.                         | ပ           | UMBOS/CM           |                       | MG/L     | MG/I            | MG/L                 | MG/L               | MG/L               | MG/L                       | T/9D                | MG/L              | MG/L     |
| Parameters          |                                         | Field Parameters<br>Field Ph | Temperature | Field Conductivity | Laboratory Parameters | Fluoride | Iron, Dissolved | Manganese, Dissolved | Nitrate Nitrogen N | Nitrite Nitrogen N | Nitrate/Nitrite Nitrogen_N | Selenium, Dissolved | Solids, Dissolved | Sulfate  |




Remark Date-Time Remark
05/05/2016-12:55 PUMP GAL/GPM: 60/3

# Water Quality Report YSAL1 10/01/2015-00:00 to 09/30/2016-23:59

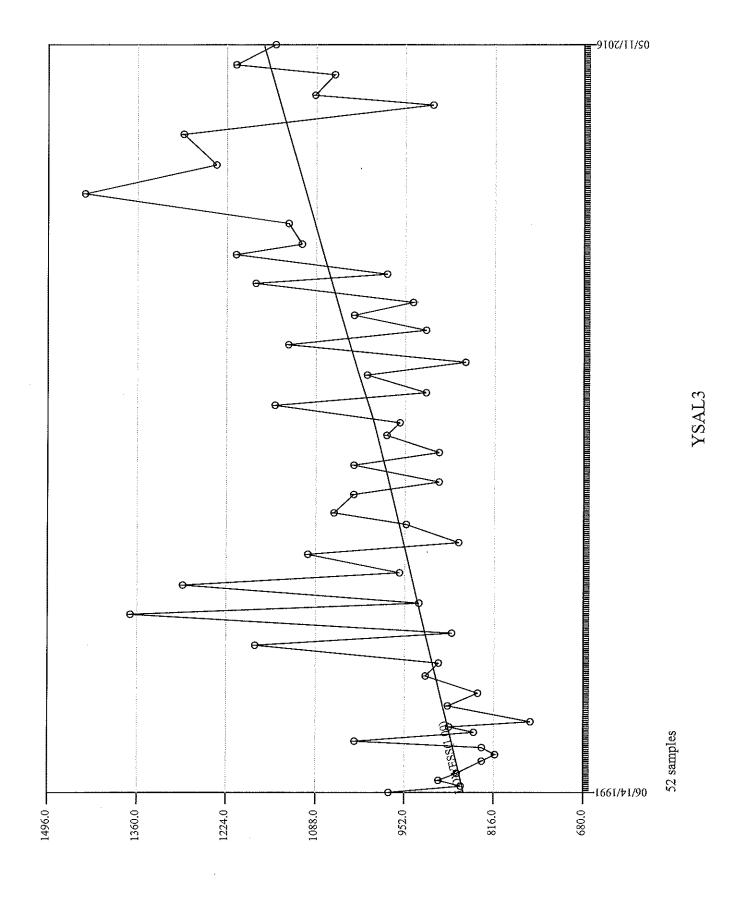
| 05/11/2016<br>07:55 | :<br>!<br>!<br>!   |                  | 7,0900   | 6.4000      | 1850.0000          |                       | B 0.2300 | B 0.0300        | B 0.0060             | 1.7300             | < 0.0100           | 1.7300                     | 10.000              | 1430.0000         | 670.0000 |
|---------------------|--------------------|------------------|----------|-------------|--------------------|-----------------------|----------|-----------------|----------------------|--------------------|--------------------|----------------------------|---------------------|-------------------|----------|
| Units               | the top and lot up |                  | S.U.     | ບ           | UMHOS/CM           |                       | MG/I     | MG/L            | MG/L                 | MG/L               | MG/L               | MG/L                       | T/SD                | MG/I              | MG/L     |
| Parameters          |                    | Field Parameters | Field Ph | Temperature | Field Conductivity | Laboratory Parameters | Fluoride | Iron, Dissolved | Manganese, Dissolved | Nitrate Nitrogen_N | Nitrite Nitrogen N | Nitrate/Nitrite Nitrogen_N | Selenium, Dissolved | Solids, Dissolved | Sulfate  |

<sup>&</sup>quot;B" -- Between MDL and PQL, "<" -- Less than detection limit



10/01/2015 to 09/30/2016 YSAL1 Sample Remarks

Remark Date-Time Remark
05/11/2016-07:55 PUMP GAL/GPM: 60/3


# Water Quality Report YSAL3 10/01/2015-00:00 to 09/30/2016-23:59

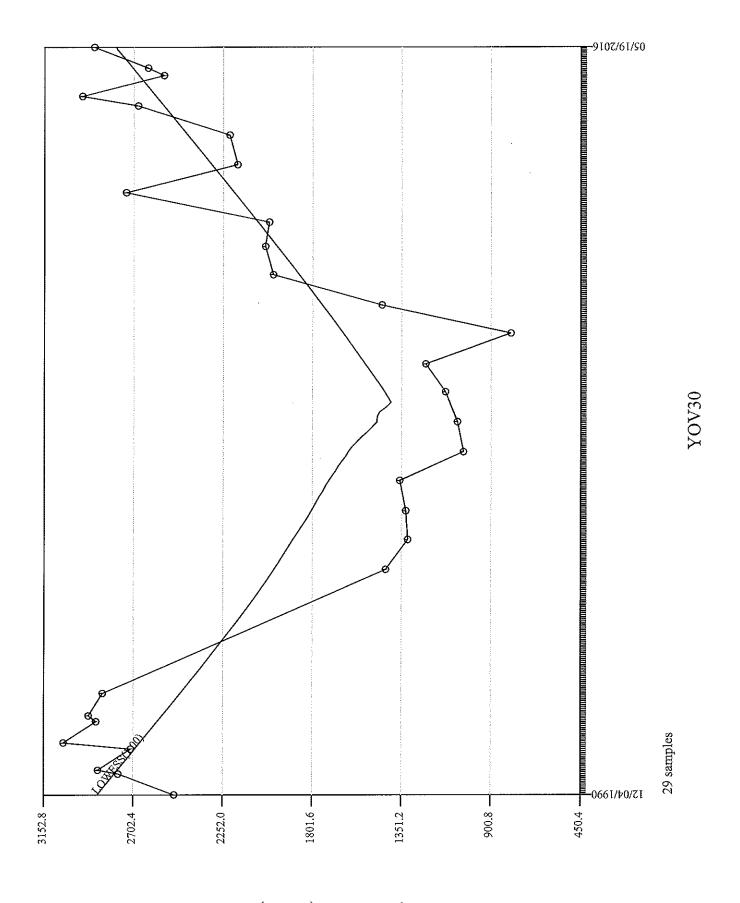
| 05/11/2016<br>07:15 | 7.7000<br>6.7000<br>1670.0000                            | 331.0000<br>331.0000<br>6 2.0000<br>6 2.0000<br>7 0.0300<br>8 0.4000<br>120.0000<br>13 0000                                                                                                          | 1620.0000<br>1620.0000<br>1030.0000<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>1031000<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>1031000<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103100<br>103 | 0.1200<br>0.1200<br>0.1200<br>0.0200<br>0.0200<br>0.0300<br>0.0300<br>1150.0000<br>1150.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 |
|---------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Units               | S.U<br>C<br>UMHOS/CM                                     | MG/L<br>MG/L<br>MG/L<br>MG/L<br>MG/L<br>MG/L<br>MG/L<br>MG/L                                                                                                                                         | TANNO<br>TANO<br>TANO<br>TANO<br>TANO<br>TANO<br>TANO<br>TANO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MG/L<br>UG/L<br>MG/L<br>MG/L<br>MG/L<br>MG/L<br>MG/L<br>MG/L<br>MG/L<br>M                                                                                                                                                                |
| Parameters          | Field Parameters Field Ph Temperature Field Conductivity | laboratory Parameters Alk As CaCO3, Ph 4.5 Alk, Bicarb As CaCO3 Alk, Carb As CaCO3 Alw, Hydrox As CaCO3 Alwinum, Dissolved Arsenic, Dissolved Boron, Dissolved Cadmium, Dissolved Calcium, Dissolved | ជ ហ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2220 + 4 4 0                                                                                                                                                                                                                             |

"B" -- Between MDL and PQL, "<" -- Less than detection limit

# Water Quality Report YSAL3 10/01/2015-00:00 to 09/30/2016-23:59

| 05/11/2016<br>07:15 |             |                       | 1150.0000            | 19.0000       | 19.0000        | 1.0000    |
|---------------------|-------------|-----------------------|----------------------|---------------|----------------|-----------|
| Units               | !<br>!<br>! |                       | I/SW                 | MEQ/L         | MEQ/L          | ANAL/CALC |
| Parameters          |             | Laboratory Parameters | Solids, Diss. (Calc) | Sum Of Anions | Sum Of Cations | Ids Ratio |



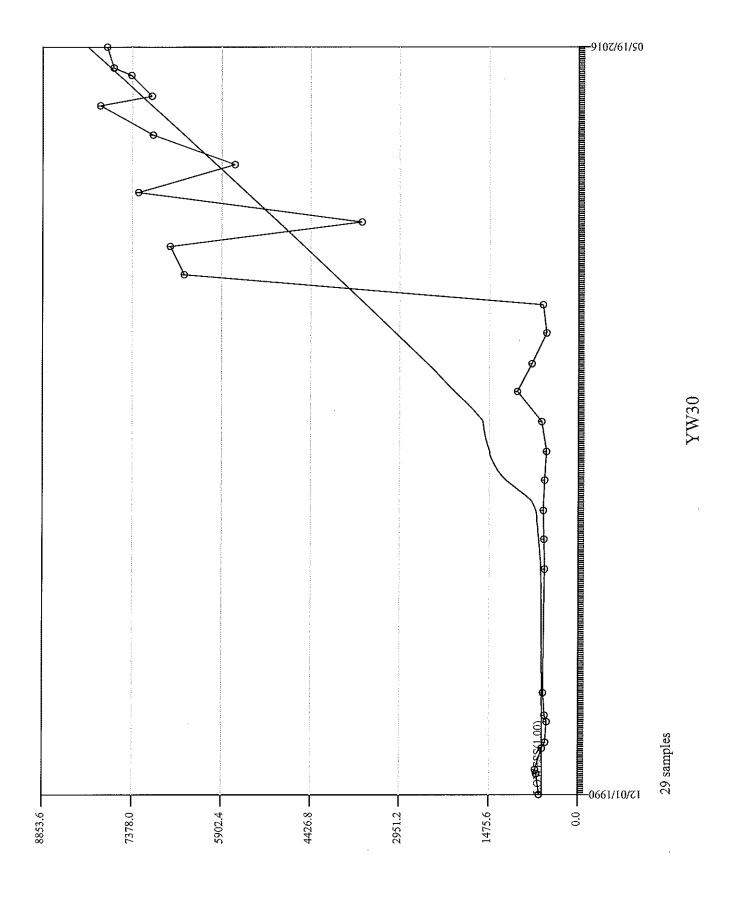

10/01/2015 to 09/30/2016 YSAL3 Sample Remarks

Remark Date-Time Remark
05/11/2016-07:15 PUMP GAL/GPM: 15/2

# Water Quality Report YOV30 10/01/2015-00:00 to 09/30/2016-23:59

| 05/19/2016<br>10:45 | 7.3000<br>9.1000<br>3760.0000                            | 1.1200                         | 0.3100                                                        | 0.0100<br>0.2000<br>1.0000                                              | 2900.0000                    |
|---------------------|----------------------------------------------------------|--------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------|
| Units               | S.U.S<br>C<br>UMHOS/GM                                   | MG/L                           | T/C)VI<br>W(C)/II                                             | MG/L<br>MG/L<br>UG/L                                                    | MG/1                         |
| Parameters          | Field Parameters Field Ph Temperature Field Conductivity | Laboratory Parameters Fluoride | Lron, Dissolved<br>Manganese, Dissolved<br>Nitrate Nitrogen N | Nitrite Nitrogen_N<br>Nitrate/Nitrite Nitrogen_N<br>Selenium, Dissolved | Solids, Dissolved<br>Sulfate |

"B" -- Between MDL and PQL, "<" -- Less than detection limit



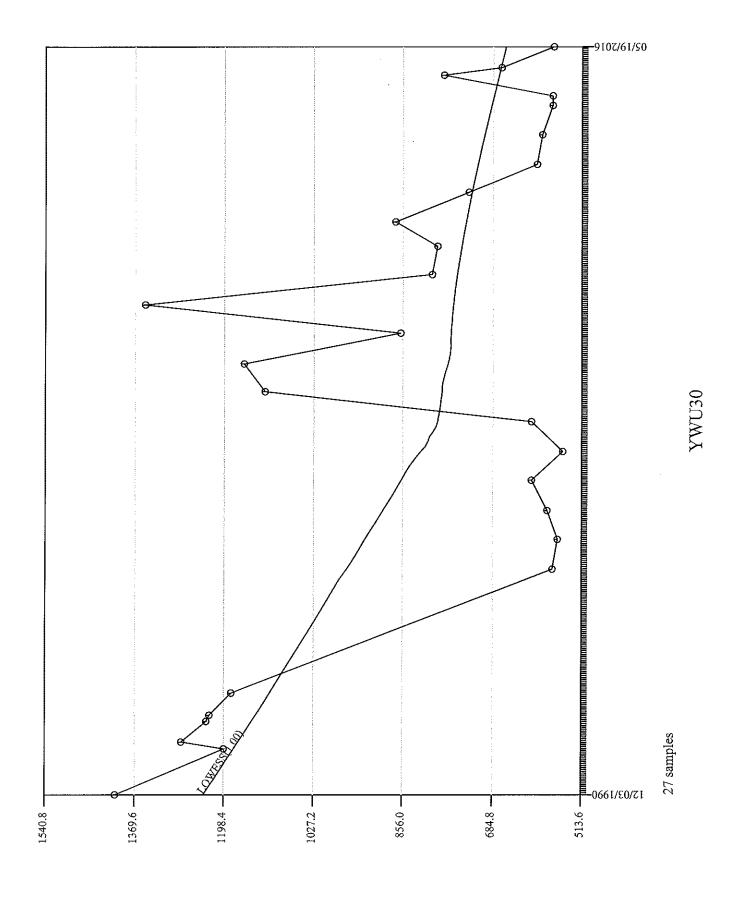

Remark Date-Time Remark
05/19/2016-10:45 PUMP GAL/GPM: 24/1

# Water Quality Report 10/01/2015-00:00 to 09/30/2016-23:59

| 05/19/2016<br>12:00 | <br>7.4900                   | 9.2000      | 9940.0000          |                       | 0.9100   | 0.3700          | 0.0740               | 1.8500             | 0.4900             | 2.3400                     | < 1.0000            | 7790.0000         | ****        |
|---------------------|------------------------------|-------------|--------------------|-----------------------|----------|-----------------|----------------------|--------------------|--------------------|----------------------------|---------------------|-------------------|-------------|
| 05/1<br>Units       | <br>s, d                     | υ           | TIMEOS/COM 994     |                       | MG/L     | MG/L            | MG/L                 | MG/L               | MG/L               | MG/L                       | VG/12 <             |                   | -/ []       |
| Parameters          | rieid Farameters<br>Field Ph | Temperature | Field Conductivity | Laboratory Parameters | Fluoride | Iron, Dissolved | Manganese, Dissolved | Nitrate Nitrogen N | Nitrite Nitrogen N | Nitrate/Nitrite Nitrogen_N | Selenium, Dissolved | Solids, Dissolved | - + - U F C |

"B" -- Between MDL and PQL, "<" -- Less than detection limit



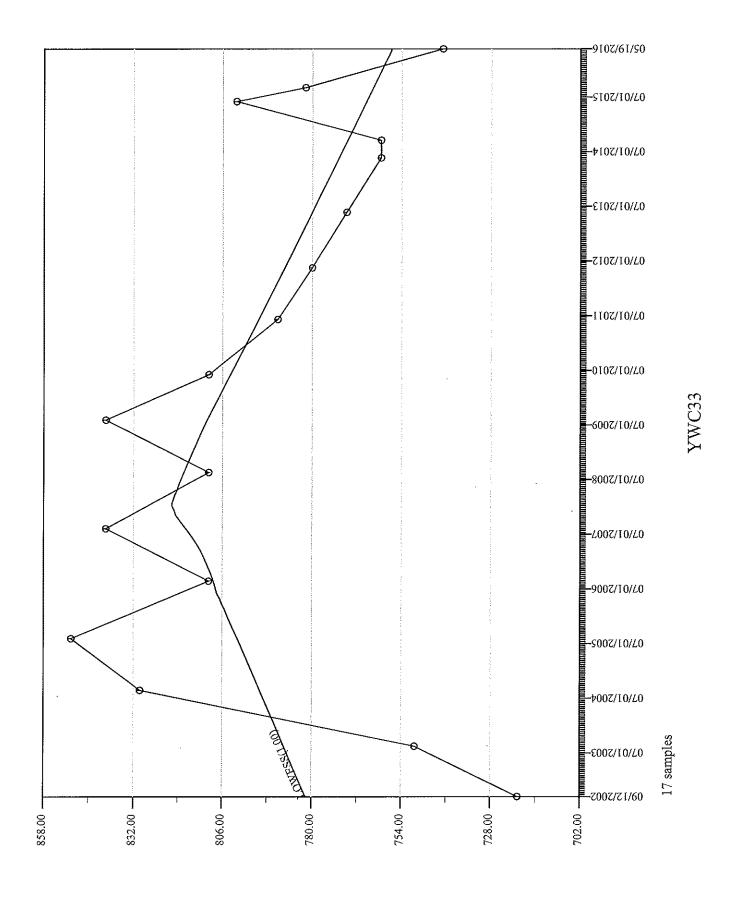

10/01/2015 to 09/30/2016 YW30 Sample Remarks

Remark Date-Time Remark 05/19/2016-12:00 PUMP GAL/GPM: 110/3

### Water Quality Report XWU30 10/01/2015-00:00 to 09/30/2016-23:59

| 05/19/2016<br>11:20 |                  | 7.2100   | 10.6000     | 1000.0000          |                       | B 0.1400 | 0.3100          | 0.0650               | 1.1900             | < 0.0100           | 1.1900                     | < 1.0000            | 568.0000          | 90.0000 |
|---------------------|------------------|----------|-------------|--------------------|-----------------------|----------|-----------------|----------------------|--------------------|--------------------|----------------------------|---------------------|-------------------|---------|
| Units               |                  | s.u.     | O           | UMHOS/CM           |                       | MG/L     | MG/I            | MG/L                 | MG/L               | MG/L               | MG/L                       | T/50                | MG/I              | MG/L    |
| Parameters          | Field Parameters | Field Ph | Temperature | Field Conductivity | Laboratory Parameters | Fluoride | Iron, Dissolved | Manganese, Dissolved | Nitrate Nitrogen_N | Nitrite Nitrogen N | Nitrate/Nitrite Nitrogen_N | Selenium, Dissolved | Solids, Dissolved | Sulfate |

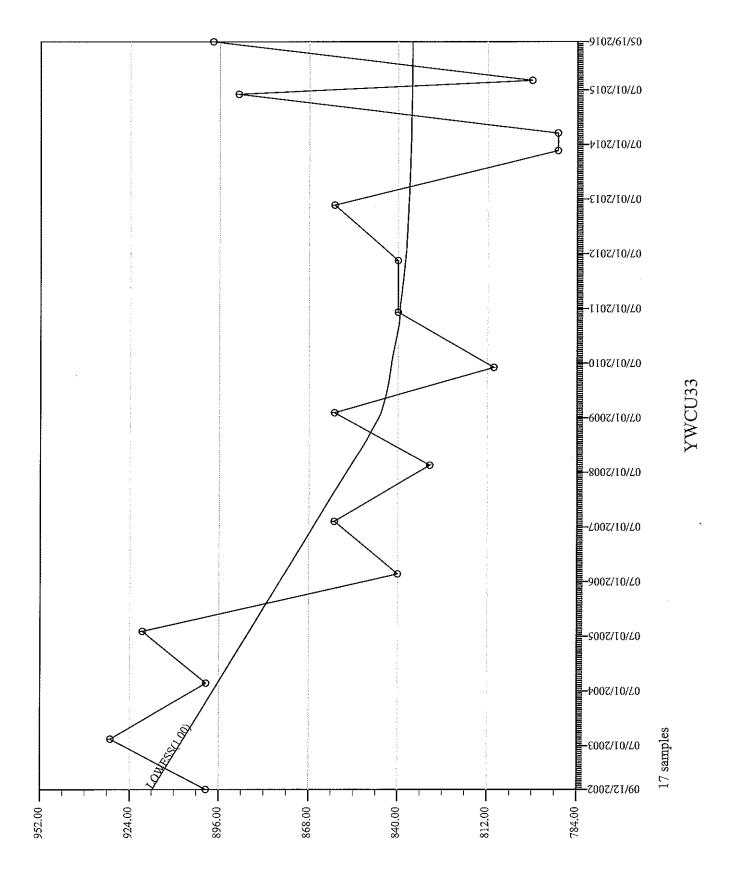
<sup>&</sup>quot;B" -- Between MDL and PQL, "<" -- Less than detection limit




10/01/2015 to 09/30/2016 YWU30 Sample Remarks

Remark Date-Time Remark
05/19/2016-11:20 PUMP GAL/GPM: 15/1

# Water Quality Report YWC33 10/01/2015-00:00 to 09/30/2016-23:59


| 05/19/2016<br>09:55 | 7.3700<br>10.8000<br>1310.0000                           | 0.2300<br>B 0.0270<br>742.0000                                               |
|---------------------|----------------------------------------------------------|------------------------------------------------------------------------------|
| Units               | S.U.S<br>C<br>UMHOS/CM                                   | MG/L<br>MG/L                                                                 |
| Parameters          | Field Parameters Field Ph Temperature Field Conductivity | Laboratory Parameters Iron, Dissolved Manganese, Dissolved Solids, Dissolved |



Remark Date-Time Remark
05/19/2016-09:55 PUMP GAL/GPM: 100/2

Water Quality Report xWCU33 10/01/2015-00:00 to 09/30/2016-23:59

| 05/19/2016<br>Parameters Units 08:55 | <br>eters            | Field Ph S.U. 8.4100 | Temperature C 11.0000 | Field Conductivity UMEOS/CM 1490.0000 | Parameters            | Iron, Dissolved MG/L < 0.0200 | Mandahasa Dissolwad MG/T. / 0 0050 |
|--------------------------------------|----------------------|----------------------|-----------------------|---------------------------------------|-----------------------|-------------------------------|------------------------------------|
| re d                                 | <br>Field Parameters | щ                    | Tem                   | Field Condu                           | Laboratory Parameters | Iron, Di                      | Manganese, Di                      |



10/01/2015 to 09/30/2016 YWCU33 Sample Remarks

Remark Date-Time Remark
05/19/2016-08:55 PUMP GAL/GPM: 100/2

### APPENDIX D

SURFACE WATER QUALITY DATA AND HYDROGRAPHS

### APPENDIX D

### Surface Water Quality Data

### Table of Contents

### Drainage

Sage Creek

Site YSSF3

NPDES12

NPDES13

NPDES14

Site YSS2

Grassy Creek/Annand Draw

NPDES10

NPDES11

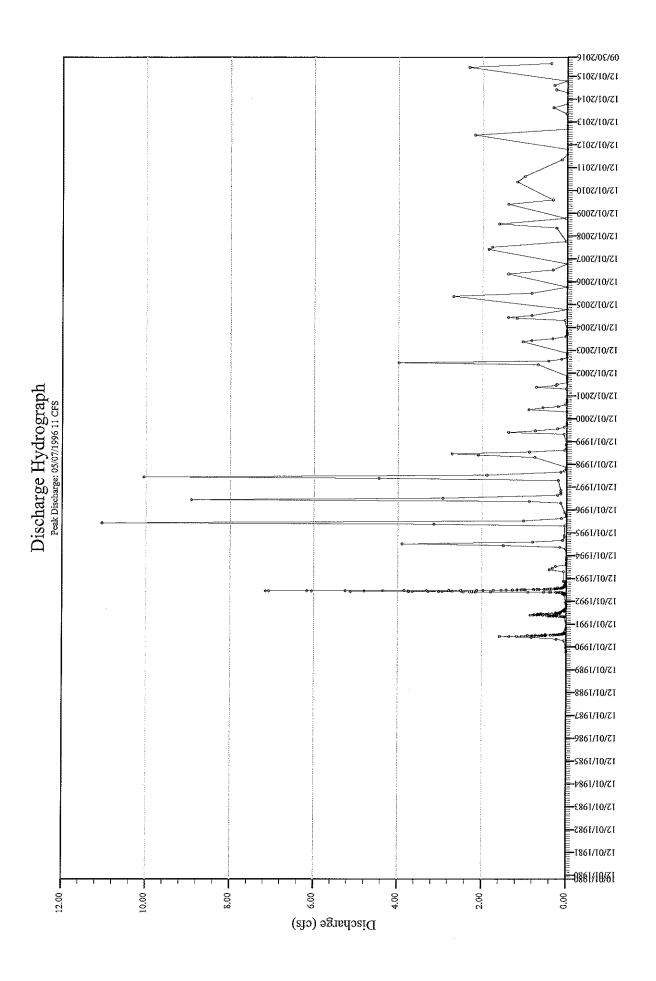
Site YSGF5

Site YSG5

Springs

YSSPG1

YSSPG2


YSSPG3

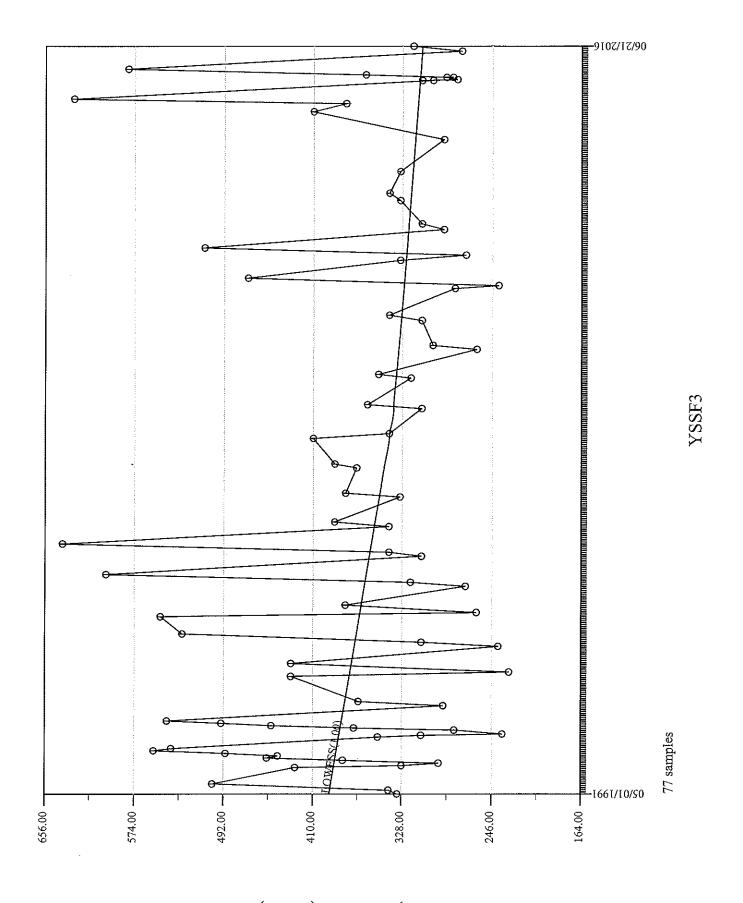
YSSPG4

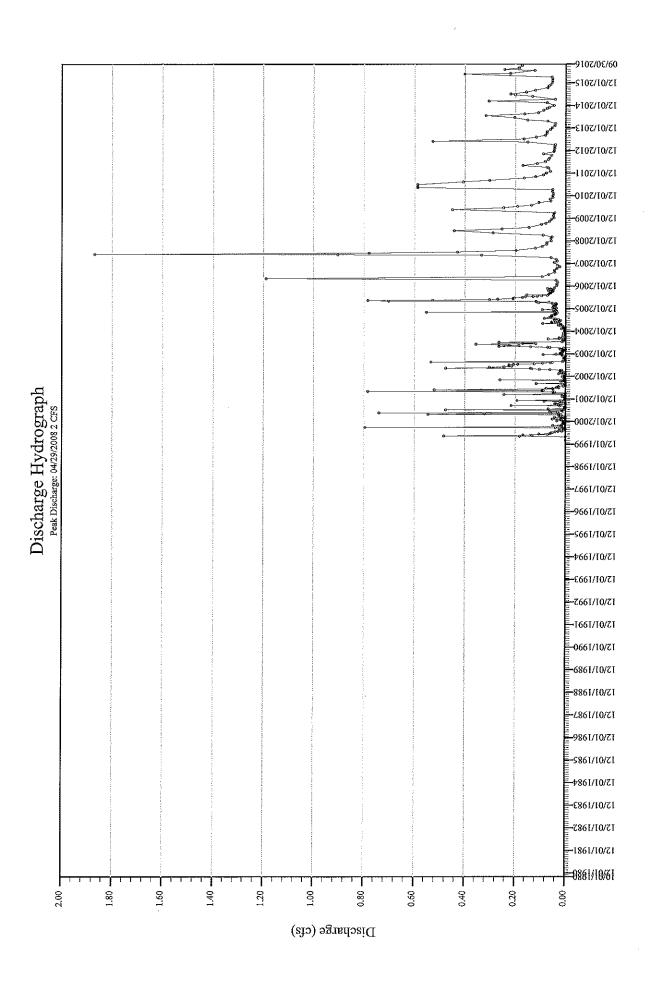
On water quality reports: < indicates an analytical value below the Method Detection Limit

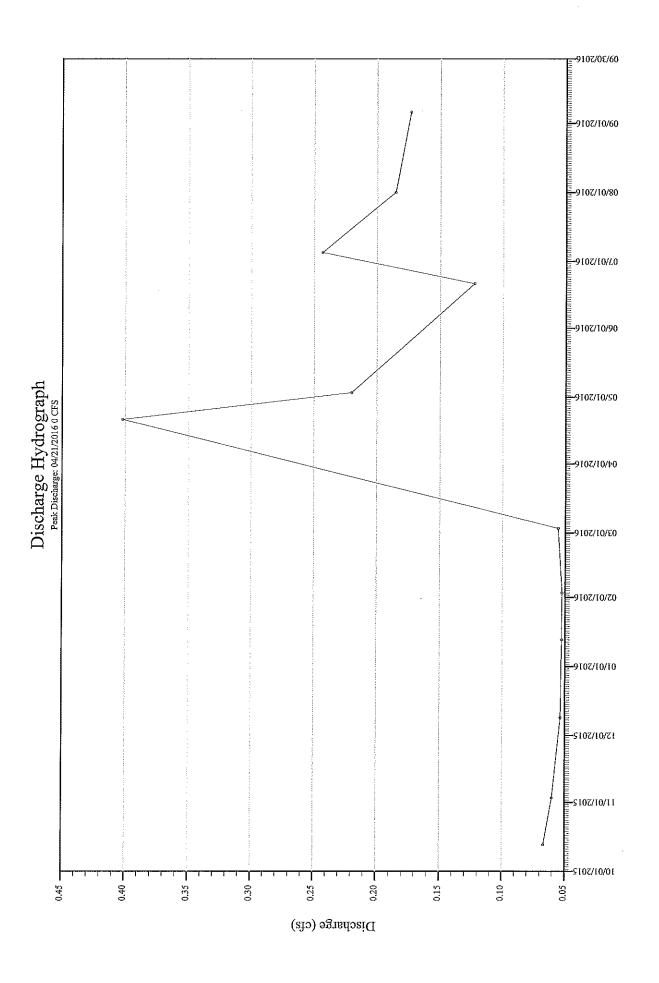
B indicates an analytical value between the Method Detection

Limit and the Practical Quantitation Limit




### Extended Water Quality Report YSSF3 - SW-S2W-FG5 10/01/2015-00:00 to 09/30/2016-23:59


| 06/21/2016<br>13:15 |                  | 7.7700   | 20.9000     | 490.0000           | 0.3866 |                       | < 0.1000            | 318.0000          | B 6.0000          | 0.5500           | B 0.2000             | 0.0090                | B 0.2000             |
|---------------------|------------------|----------|-------------|--------------------|--------|-----------------------|---------------------|-------------------|-------------------|------------------|----------------------|-----------------------|----------------------|
| 04/21/2016<br>11:15 |                  | 7,7800   | 9.1000      | 540.0000           | 2.3260 |                       | 0.5000              | 274.0000          | B 7.0000          | 0.3200           | 0.5000               | 0.0088                | 0.4000               |
| Units               |                  | s.u.     | บ           | UMHOS/CM           | CFS    |                       | T/SO                | MG/L              | MG/L              | MG/I             | UG/L                 | MG/L                  | TG/L                 |
| Parameters          | Field Parameters | Field Ph | Temperature | Field Conductivity | MOTA   | Laboratory Parameters | Selenium, Dissolved | Solids, Dissolved | Solids, Suspended | Iron, Total Rec. | Selenium, Total Rec. | Manganese, Pot. Diss. | Selenium, Pot. Diss. |


"B" -- Between MDL and PQL, "<" -- Less than detection limit

### Instantaneous Flow Measurements Report YSSF3 - SW-S2W-FG5 10/01/2015-00:00 to 09/30/2016-23:59

| Date       | Time     | Instrument | $\mathbf{Type}$ | Flag | Begin/End | Stage | CFS  | GPM     | MGD  |
|------------|----------|------------|-----------------|------|-----------|-------|------|---------|------|
|            |          |            |                 |      |           |       |      |         |      |
| 04/21/2016 | 11:15:00 | MANE       | INS             |      |           |       | 2.33 | 1044.00 | 1,50 |
| 06/21/2016 | 13:15:00 | MANF       | INS             |      |           |       | 0.39 | 173,50  | 0.25 |



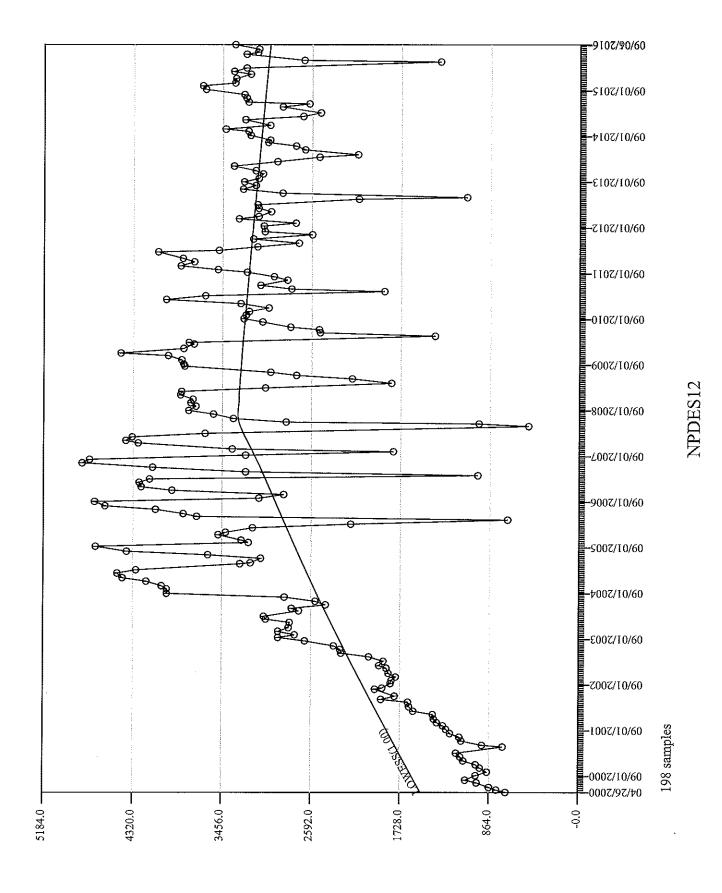


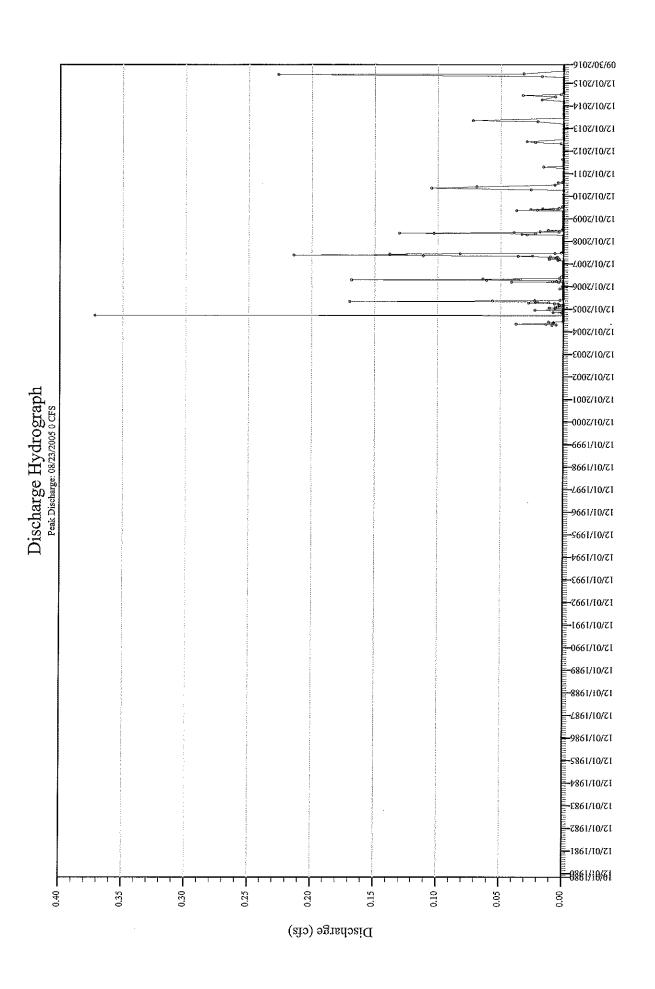


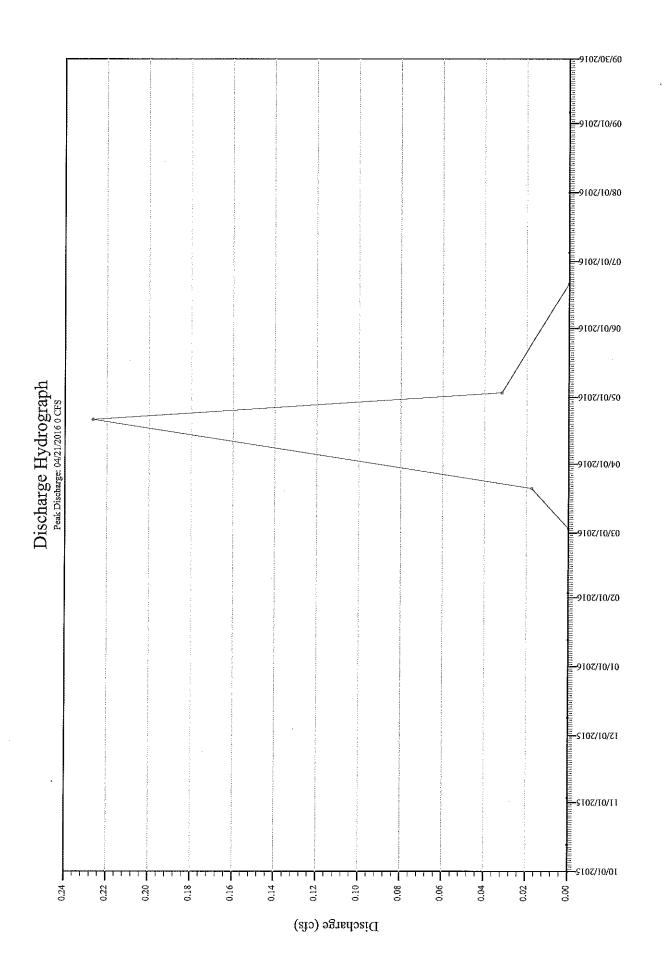
Extended Water Quality Report NPDES12 - NPDES 012 (YOAST) 10/01/2015-00:00 to 09/30/2016-23:59

| 05/03/2016          | 7.6800<br>15.3000<br>2980.0000                                | 2670.0000<br>< 0.0400<br>3.5000<br>3.9000                                                                                |
|---------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 04/21/2016<br>10:35 | 7.4500<br>11.1000<br>1820.0000                                | 1350.0000<br>0.2600<br>1.9000<br>0.0660                                                                                  |
| 03/03/2016          | 7.5300<br>7.5000<br>3650.0000                                 | 3230.0000<br>0.1000<br>1.7000                                                                                            |
| 02/04/2016          | 0.0525                                                        | 3350.0000<br>0.1200<br>1.1000<br>1.1000                                                                                  |
| 02/03/2016          | 7.5900<br>0.9000<br>3640.0000                                 |                                                                                                                          |
| 01/13/2016          | 7.4600<br>2.0000<br>3700.0000                                 | 3150.0000<br>0.11700<br>B 0.3000<br>0.4430                                                                               |
| 12/09/2015<br>12:20 | 7.7400<br>5.4000<br>3830.0000                                 | 3330.0000<br>0.2100<br>0.6000                                                                                            |
| 11/03/2015<br>08:45 | 7.7900<br>6.6000<br>3820.0000                                 | 3340.0000<br>0.2900<br>0.9000                                                                                            |
| 10/13/2015<br>11:45 | 7.7500<br>12.6000<br>3910.0000                                | 3650.0000<br>0.2400<br>1.3000<br>0.1070                                                                                  |
| Units               | S.U.<br>C<br>UMHOS/CM<br>CFS                                  | MG/L<br>MG/L<br>UG/L<br>MG/L<br>UG/L                                                                                     |
| Parameters          | Field Parameters Field Ph Temperature Field Conductivity Flow | Laboratory Parameters Solids, Dissolved Iron, Total Rec. Selenium, Total Rec. Manganese, Pot. Diss. Selenium, Pot. Diss. |

ž


Extended Water Quality Report NPDES12 - NPDES 012 (YOAST) 10/01/2015-00:00 to 09/30/2016-23:59


| 09/06/2016<br>15:30 | 7.7600<br>18.8000<br>3630.0000                                | 3340.0000<br>0.2200<br>0.8000                                                                                            |
|---------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 08/01/2016<br>14:30 | 7.9400<br>24.4000<br>3430.0000<br>0.1856                      | 3110.0000<br>0.1100<br>1.1000<br>1.0000                                                                                  |
| 07/05/2016          | 7.4800<br>22.5000<br>3400.0000<br>0.2433                      | 3120.0000<br>B 0.0600<br>1.4000<br>0.0800<br>3.6000                                                                      |
| 06/21/2016<br>12:55 | 7.7000<br>21.3000<br>2970.0000                                | 3230.0000<br>B 0.0600<br>2.3000                                                                                          |
| Units               | S.U.<br>C<br>UMHOS/CM<br>CFS                                  | MG/1<br>MG/1<br>UG/1<br>MG/1                                                                                             |
| Parameters          | Field Parameters Field Ph Temperature Field Conductivity Flow | Laboratory Parameters Solids, Dissolved Iron, Total Rec. Selenium, Total Rec. Manganese, Pot. Diss. Selenium, Pot. Diss. |


"B" -- Between MDL and PQL, "<" -- Less than detection limit

### Instantaneous Flow Measurements Report NPDES12 - NPDES 012 (YOAST) 10/01/2015-00:00 to 09/30/2016-23:59

| Date       | Time     | Instrument | Type | Flag | Begin/End | Stage | CFS  | GPM    | MGD  |
|------------|----------|------------|------|------|-----------|-------|------|--------|------|
|            |          |            |      |      |           |       |      |        |      |
| 10/13/2015 | 11:45:00 | MANF       | INS  |      |           |       | 0.07 | 30.00  | 0.04 |
| 11/03/2015 | 08:45:00 | MANF       | INS  |      |           |       | 0.06 | 27.00  | 0.04 |
| 12/09/2015 | 12:20:00 | MANE       | INS  |      |           |       | 0.05 | 24.00  | 0.03 |
| 01/13/2016 | 10:10:00 | MANF       | INS  |      |           |       | 0.05 | 23.61  | 0.03 |
| 02/03/2016 | 08:50:00 | MANF       | INS  |      |           |       | 0.05 | 23.56  | 0.03 |
| 03/03/2016 | 13:45:00 | MANF       | INS  |      |           |       | 0.06 | 24.97  | 0.04 |
| 04/21/2016 | 10:35:00 | MANF       | INS  |      |           |       | 0.40 | 180.40 | 0.26 |
| 05/03/2016 | 16:25:00 | MANE       | INS  |      |           |       | 0.22 | 98.74  | 0.14 |
| 06/21/2016 | 12:55:00 | MANE       | INS  |      |           |       | 0.12 | 55.20  | 0.08 |
| 07/05/2016 | 15:20:00 | MANE       | INS  |      |           |       | 0.24 | 109.20 | 0.16 |
| 08/01/2016 | 14:30:00 | MANE       | INS  |      |           |       | 0.19 | 83.30  | 0.12 |
| 09/06/2016 | 15:30:00 | MANF       | INS  |      |           |       | 0.17 | 77.85  | 0.11 |



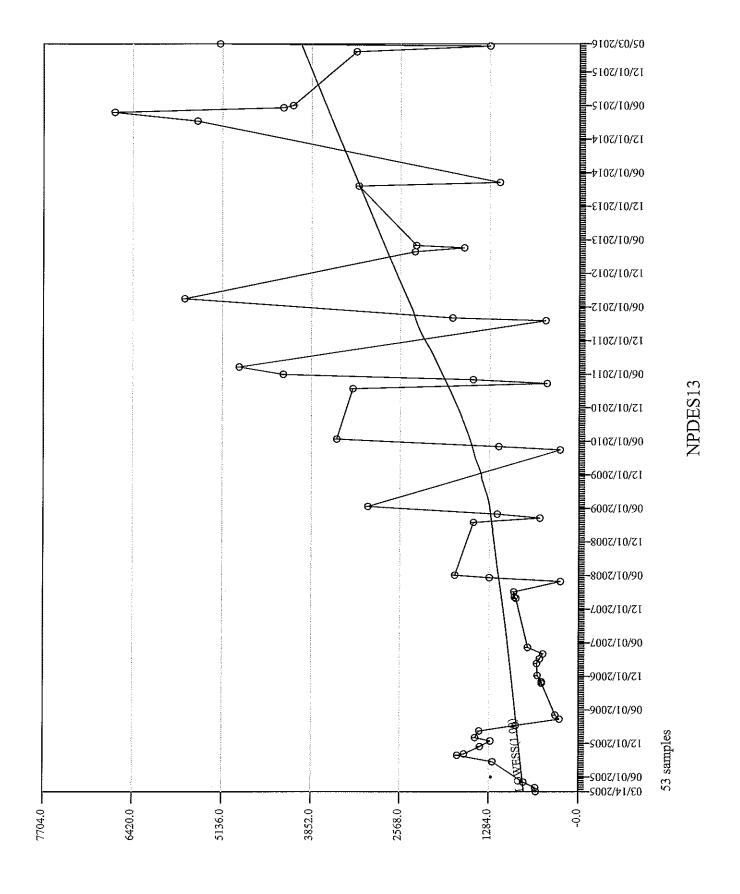


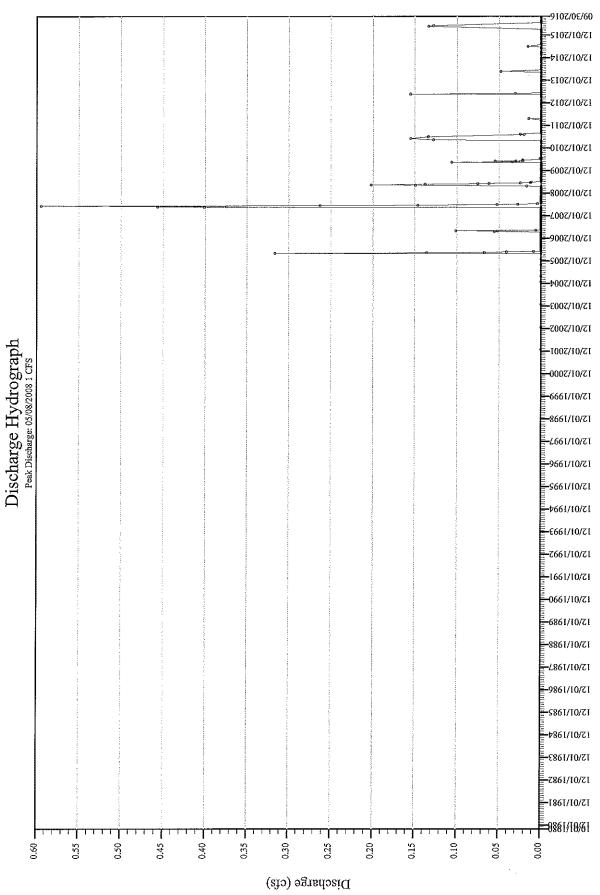


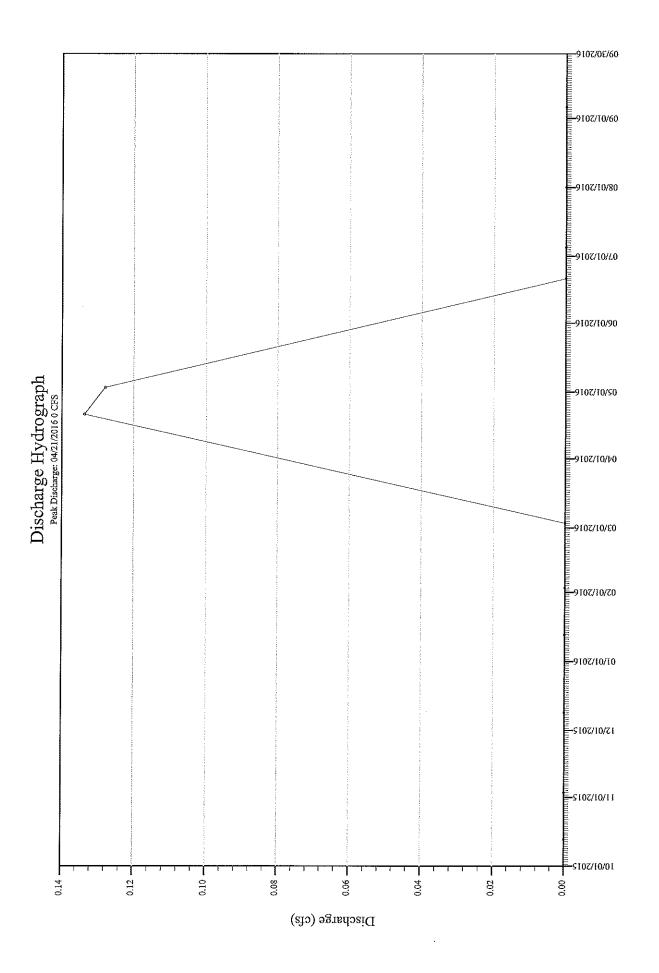
Extended Water Quality Report NPDES13 - NPDES 013 (YOAST) 10/01/2015-00:00 to 09/30/2016-23:59

| 05/03/2016<br>16:45 | 8.4900<br>17.1000<br>5180.0000                                | 5170.0000                                                                                           | < 0.1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 04/21/2016<br>11:00 | 7.7400<br>12.5000<br>1700.0000                                | 0.7800<br>0.0036<br>1280.0000<br>B 8.0000                                                           | A A W W W W A A CONTROL OF CONTRO |
| 03/21/2016<br>09:50 | 7.9200<br>4.8000<br>3700.0000                                 | 3200.0000                                                                                           | 0.4300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Units               | S.U.S<br>CU.S<br>CU.S                                         | MG/L<br>UG/L<br>MG/L<br>MG/L                                                                        | 1/90<br>1/90<br>1/90<br>1/90<br>1/90<br>1/90<br>1/90<br>1/90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Parameters          | Field Parameters Field Ph Temperature Field Conductivity Flow | Laboratory Parameters Iron, Total Mercury, Total Solids, Dissolved Solids, Suspended Areanic, Total | Iron, Total Rec. Selenium, Total Rec. Cadmium, Pot. Diss. Chromium, Pot. Diss. Copper, Pot. Diss. Lead, Pot. Diss. Manganese, Pot. Diss. Nickel, Pot. Diss. Selenium, Pot. Diss. Selenium, Pot. Diss. Silver, Pot. Diss.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

"B" -- Between MDL and PQL, "<" -- Less than detection limit


#### Instantaneous Flow Measurements Report NPDES13 - NPDES 013 (YOAST) 10/01/2015-00:00 to 09/30/2016-23:59


| Date       | Time     | Instrument | Type | Flag | Begin/End | Stage | CFS  | GPM    | MGD  |
|------------|----------|------------|------|------|-----------|-------|------|--------|------|
|            |          |            |      |      |           |       |      |        |      |
| 10/13/2015 | 12:35:00 | MANF       | INS  |      |           |       | 0.00 | 0.00   | 0.00 |
| 11/03/2015 | 09:20:00 | MANE       | INS  |      |           |       | 0.00 | 0.00 . | 0.00 |
| 12/09/2015 | 12:45:00 | Mane       | INS  |      |           |       | 0.00 | 0.00   | 0.00 |
| 01/13/2016 | 10:30:00 | MANE       | INS  |      |           |       | 0.00 | 0.00   | 0.00 |
| 02/03/2016 | 08:45:00 | MANE       | INS  |      |           |       | 0.00 | 0.00   | 0.00 |
| 03/03/2016 | 15:40:00 | MANE       | INS  |      |           |       | 0.00 | 0.00   | 0.00 |
| 03/21/2016 | 09:50:00 | MANF       | INS  |      |           |       | 0.02 | 7.77   | 0.01 |
| 04/21/2016 | 11:00:00 | MANF       | INS  |      |           |       | 0.23 | 101.75 | 0.15 |
| 05/03/2016 | 16:45:00 | MANF       | INS  |      |           |       | 0.03 | 14.33  | 0.02 |
| 06/21/2016 | 13:00:00 | MANF       | INS  |      |           |       | 0.00 | 0.00   | 0.00 |
| 07/05/2016 | 15:50:00 | MANE       | INS  |      |           |       | 0.00 | 0.00   | 0.00 |
| 08/01/2016 | 14:55:00 | MANF       | INS  |      |           |       | 0.00 | 0.00   | 0.00 |
| 09/06/2016 | 15:45:00 | MANE       | INS  |      |           |       | 0.00 | 0.00   | 0.00 |


10/01/2015 to 09/30/2016 NPDES13 Sample Remarks

| <b>semark</b> |
|---------------|
| ime F         |
| Date-T        |
| Remark        |

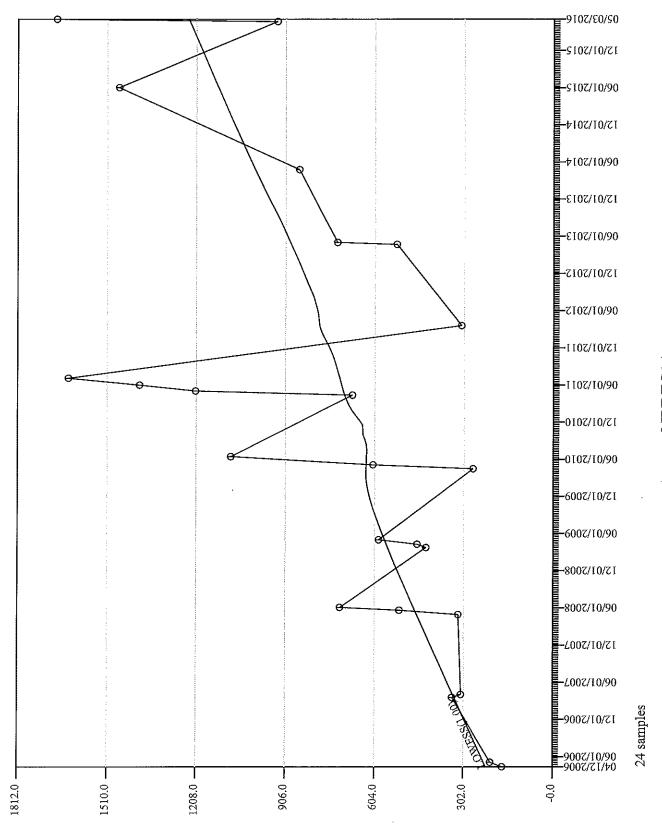
| 09/06/2016-15:45 NO FLOW |
|--------------------------|







### Extended Water Quality Report NPDES14 - NPDES 014 (YOAST) 10/01/2015-00:00 to 09/30/2016-23:59


| 05/03/2016<br>17:05 | 7.9400<br>15.6000<br>2120.0000                           | 1680.0000                                  |
|---------------------|----------------------------------------------------------|--------------------------------------------|
| 04/21/2016<br>11:35 | 7.5800<br>10.5000<br>1310.0000                           | 934.0000                                   |
| Units               | S.U.S<br>C<br>UMBOS/CM<br>CES                            | MG/L                                       |
| Darrameters         | Field Parameters Field Ph Temperature Field Conductivity | Laboratory Parameters<br>Solids, Dissolved |

### Instantaneous Flow Measurements Report NPDES14 - NPDES 014 (YOAST) 10/01/2015-00:00 to 09/30/2016-23:59

| Date       | Time     | Instrument | Type | Flag | Begin/End | Stage | CFS  | GPM   | MGD  |
|------------|----------|------------|------|------|-----------|-------|------|-------|------|
|            |          |            |      |      |           |       |      |       |      |
| 10/13/2015 | 12:20:00 | MANE       | INS  |      |           |       | 0.00 | 0.00  | 0.00 |
| 11/03/2015 | 09:05:00 | MANE       | INS  |      |           |       | 0.00 | 0.00  | 0.00 |
| 12/09/2015 | 12:35:00 | MANF       | INS  |      |           |       | 0.00 | 0.00  | 0.00 |
| 01/13/2016 | 10:20:00 | MANF       | INS  |      |           |       | 0.00 | 0.00  | 0.00 |
| 02/03/2016 | 08:40:00 | MANE       | INS  |      |           |       | 0.00 | 0.00  | 0.00 |
| 03/03/2016 | 15:10:00 | MANF       | INS  |      |           |       | 0.00 | 0.00  | 0.00 |
| 04/21/2016 | 11:35:00 | MANE       | INS  |      |           |       | 0.13 | 60.00 | 0.09 |
| 05/03/2016 | 17:05:00 | MANF       | INS  |      |           |       | 0.13 | 57.42 | 0.08 |
| 06/21/2016 | 13:05:00 | MANF       | INS  |      |           |       | 0.00 | 0.00  | 0.00 |
| 07/05/2016 | 16:10:00 | MANF       | INS  |      |           |       | 0.00 | 0.00  | 0.00 |
| 08/01/2016 | 15:10:00 | MANF       | INS  |      |           |       | 0.00 | 0.00  | 0.00 |
| 09/06/2016 | 16:00:00 | MANF       | INS  |      |           |       | 0.00 | 0.00  | 0.00 |

## NPDES14 Sample Remarks 10/01/2015 to 09/30/2016

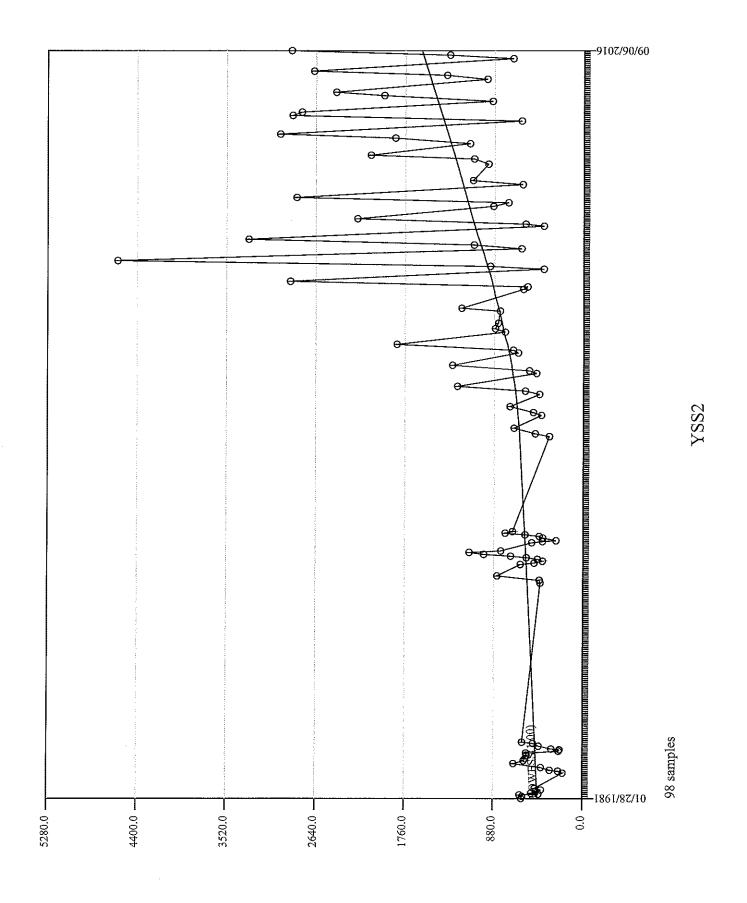
| Remark Date-Time | Remark  |
|------------------|---------|
| 06/21/2016-13:05 | NO FLOW |
| 07/05/2016-16:10 | NO FLOW |
| 08/01/2016-15:10 | NO FLOW |
| 09/06/2016:16:00 | NO FLOW |

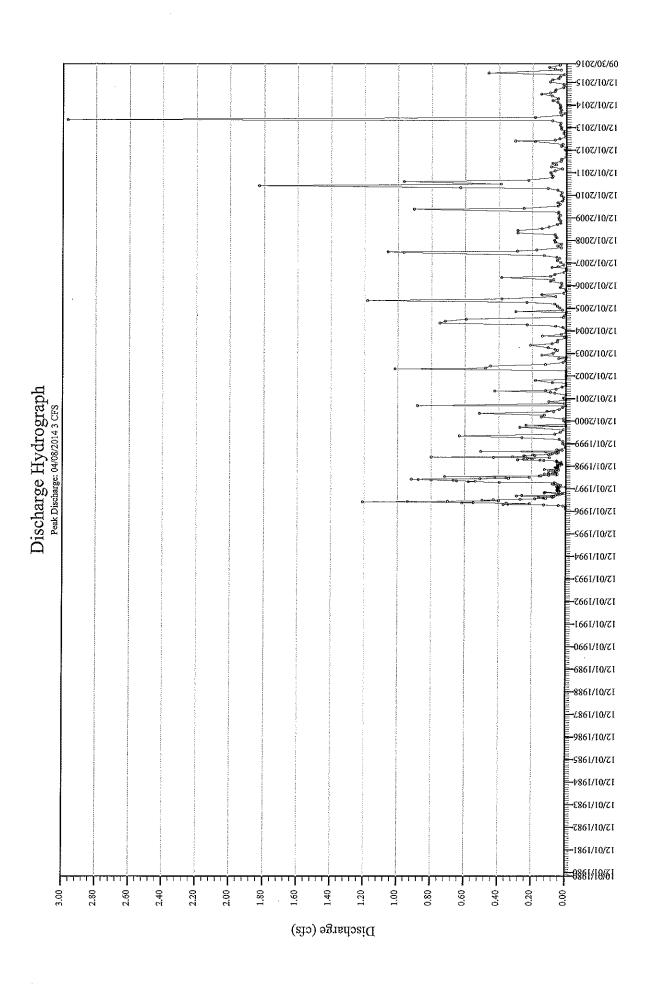


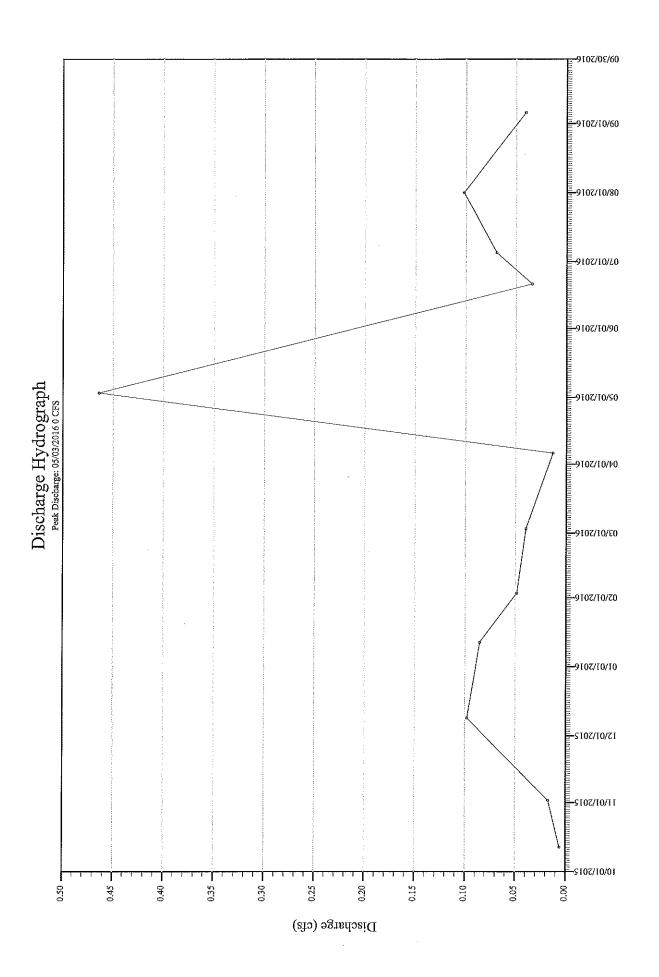
NPDES14

Discharge (cfs)

-9107/0E/60 -5107/10/71


Extended Water Quality Report YSS2 10/01/2015-00:00 to 09/30/2016-23:59


| Parameters                 | Units    | 04/21/2016<br>10:10 | 06/21/2016<br>12: <b>4</b> 5 | 09/06/2016<br>15:10 |  |
|----------------------------|----------|---------------------|------------------------------|---------------------|--|
|                            |          |                     |                              |                     |  |
| Field Parameters           |          |                     |                              |                     |  |
| Field Ph                   | S.U.     | 7.4500              | 7.9700                       | 7.8500              |  |
| Temperature                | Ö        | 0000.6              | 20.3000                      | 16.5000             |  |
| Field Conductivity         | UMBOS/CM | 1100.0000           | 1450,0000                    | 3200.0000           |  |
| Flow                       | CFS      | 7.0071              | 1.7958                       | 0.1540              |  |
| Laboratory Parameters      |          |                     |                              |                     |  |
| Mercury, Total             | T/SD     | < 0.2000            | < 0.2000                     |                     |  |
| Ammonia Nitrogen N         | MG/L     | < 0.0500            | < 0.0500                     |                     |  |
| Nitrate Nitrogen N         | MG/L     | 0.4800              | 0.1700                       |                     |  |
| Nitrite Nitrogen N         | MG/L     | < 0.0100            | < 0.0100                     |                     |  |
| Nitrate/Nitrite Nitrogen N | MG/L     | 0.4800              | 0.1700                       |                     |  |
| Selenium, Dissolved        | UG/L     | 1.3000              | 0.9000                       | 0.8000              |  |
| Solids, Dissolved          | MG/L     | 694.0000            | 1320.0000                    | 2880.0000           |  |
| Solids, Suspended          | MG/I     | B 11.0000           | B 14.0000                    | < 5.0000            |  |
| Sulfate                    | MG/L     | 337,0000            | 669.0000                     |                     |  |
| Sulfide                    | MG/I     | < 0.0200            | < 0.0200                     |                     |  |
| Iron, Total Rec.           | MG/L     | 0.8100              | 0.5400                       | 0.4800              |  |
| Selenium, Total Rec.       | T/SD     | 1.2000              | 0.8000                       | 0.9000              |  |
| Manganese, Pot. Diss.      | MG/I     | 0.0470              | 0.0273                       | 0.0360              |  |
| Selenium, Pot. Diss.       | UG/I     | 1.3000              | 0.8000                       | 1.0000              |  |


"B" -- Between MDL and PQL, "<" -- Less than detection limit

## Instantaneous Flow Measurements Report YSS2 10/01/2015-00:00 to 09/30/2016-23:59

| Date       | Time     | Instrument | Туре | Flag | Begin/End | Stage | CFS  | GPM     | MGD  |
|------------|----------|------------|------|------|-----------|-------|------|---------|------|
|            |          | ~~~~       |      |      |           |       |      |         |      |
| 04/21/2016 | 10:10:00 | MANF       | INS  |      |           |       | 7.01 | 3145.00 | 4.53 |
| 06/21/2016 | 12:45:00 | MANF       | INS  |      |           |       | 1.80 | 806.00  | 1.16 |
| 09/06/2016 | 15:10:00 | MANF       | INS  |      |           |       | 0.15 | 69.10   | 0.10 |

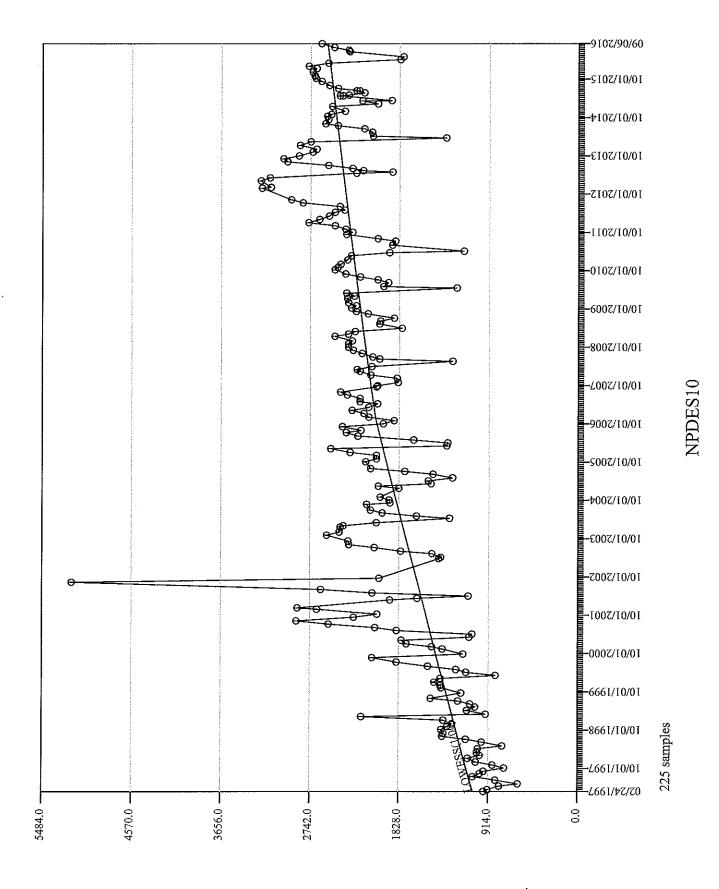


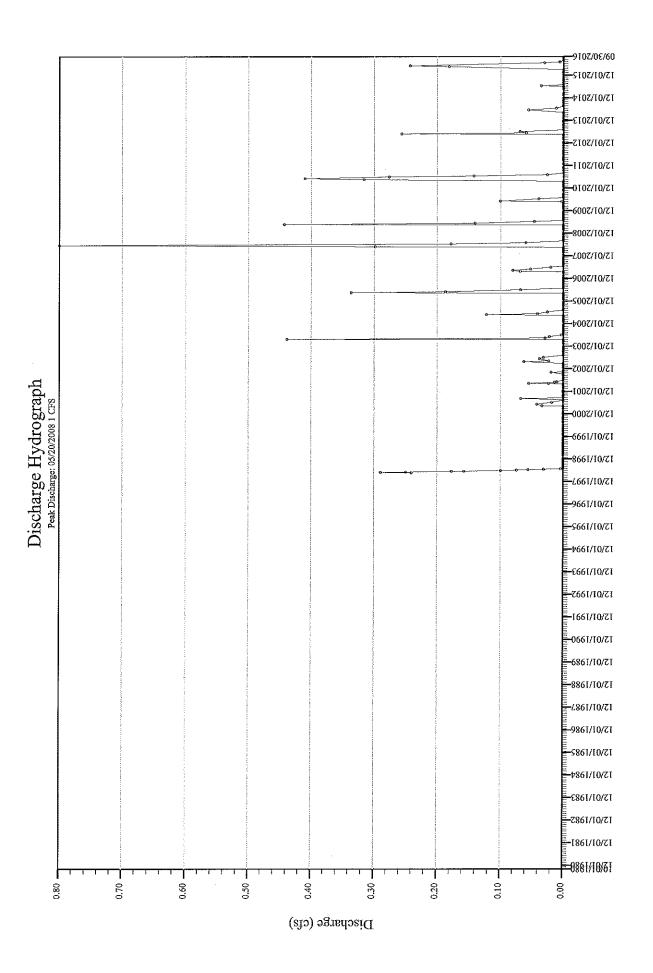


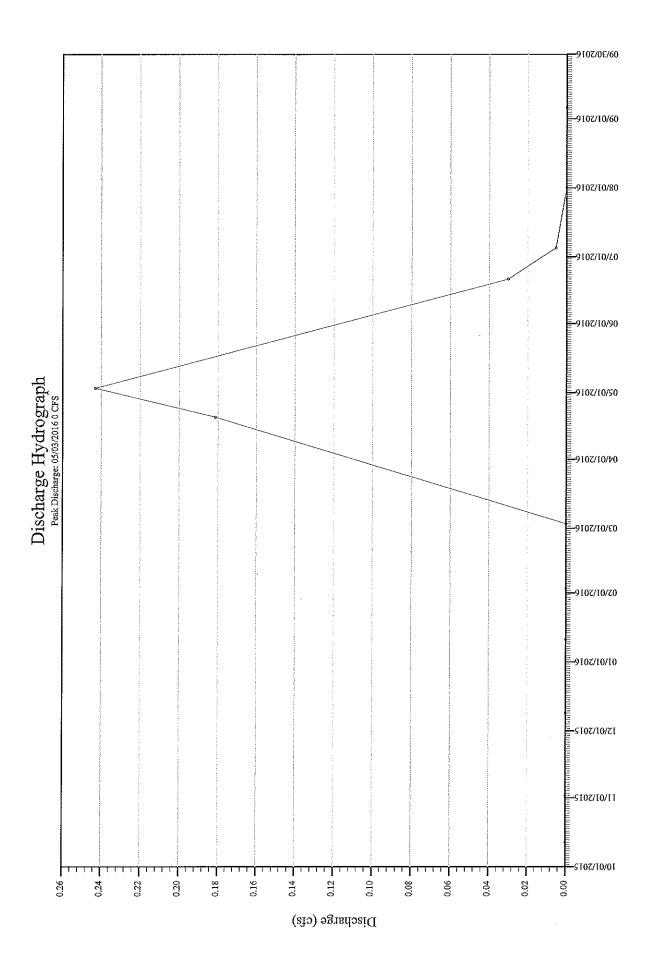


Extended Water Quality Report NPDESIO - NPDES 010 (YOAST) 10/01/2015-00:00 to 09/30/2016-23:59

| 06/21/2016          | 7.2100<br>24.5000<br>2280.0000<br>0.0341                      | 2340.0000  # 0.1000  # 0.3000  A 1.0000                                                                                                  |  |
|---------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|
| 05/03/2016<br>12:30 | 7.7300<br>12.8000<br>2220.0000<br>0.4642                      | 1790.0000<br>B 0.0500<br>B 0.7000<br>0.5000                                                                                              |  |
| 04/06/2016          | 7.7000<br>4.2000<br>2260.0000<br>0.0134                       | 1820.0000<br>0.2000<br>0.7000<br>B 0.6000<br>0.7000                                                                                      |  |
| 03/03/2016<br>07:30 | 7.0400<br>1.8000<br>3030.0000                                 | 0.1700<br>8 0.3000<br>0.7000                                                                                                             |  |
| 02/03/2016<br>11:00 | 7.1900<br>1.3000<br>3270.0000                                 | 2760.0000<br>B 0.0500<br>< 0.5000<br>< 1.0000                                                                                            |  |
| 01/12/2016<br>12:00 | 7.8300<br>0.5000<br>3230.0000<br>0.0854                       | 2680.0000<br>0.1500<br>0.4000<br>< 0.5000<br>0.4000                                                                                      |  |
| 12/09/2015<br>08:55 | 8.1300<br>2.6000<br>3210.0000                                 | 2720.0000<br>B 0.0500<br>B 0.3000<br>< 1.0000                                                                                            |  |
| 11/02/2015<br>10:50 | 8.1300<br>9.2000<br>3130.0000                                 | 0.0800<br>0.0800<br>0.2000<br>0.2000<br>0.2000                                                                                           |  |
| 10/12/2015          | 7.7500<br>15.2000<br>3100.0000                                | 2690.0000<br>< 0.4000<br>B 0.000<br>< 0.2000<br>< 1.0000<br>B 0.3000                                                                     |  |
| Units               | S.U.<br>C<br>UMHOS/CM<br>CES                                  | 7,50<br>7,50<br>7,50<br>7,50<br>7,50<br>7,50<br>7,50<br>7,50                                                                             |  |
| Parameters          | Field Parameters Field Ph Temperature Field Conductivity Flow | Laboratory Parameters Solids, Dissolved Solids, Settleable Iron, Total Rec. Selenium, Total Rec. Copper, Pot. Diss. Selenium, Pot. Diss. |  |


"B" -- Between MDL and PQL, "<" -- Less than detection limit


Extended Water Quality Report
NPDESIO - NPDES 010 (YOAST)
10/01/2015-00:00 to 09/30/2016-23:59


| 09/06/2016<br>13:10 | 7.6800                                | 3020.0000               | 2630.0000                                                  | 0.1800           | < 0.2000             | < 1.0000           | B 0.3000             |
|---------------------|---------------------------------------|-------------------------|------------------------------------------------------------|------------------|----------------------|--------------------|----------------------|
| 08/01/2016          | 7.7000                                | 0.1023                  | 2500.0000                                                  | B 0.0900         | B 0.3000             | < 0.5000           | < 0.2000             |
| 07/05/2016<br>13:15 | 7.4800                                | 0.0693                  | 2350.0000                                                  | B 0.0900         | B 0.3000             | < 1.0000           | < 0.2000             |
| Units               | S.U.                                  | SED<br>CES              | MG/L<br>ML/L                                               | MG/L             | ug/r                 | TG/L               | 1/50                 |
| . Parameters        | Field Parameters Field Ph Temperature | Fleid Conductivity Flow | Laboratory Parameters Solids, Dissolved Solids, Settleable | Iron, Total Rec. | Selenium, Total Rec. | Copper, Pot. Diss. | Selenium, Pot. Diss. |

## Instantaneous Flow Measurements Report NPDES10 - NPDES 010 (YOAST) 10/01/2015-00:00 to 09/30/2016-23:59

| Date       | Time     | Instrument | Туре | Flag | Begin/End | Stage | CFS  | GPM    | MGD  |
|------------|----------|------------|------|------|-----------|-------|------|--------|------|
|            |          |            |      |      |           |       |      |        |      |
| 10/12/2015 | 14:10:00 | MANE       | INS  |      |           |       | 0.01 | 2.70   | 0.00 |
| 11/02/2015 | 10:50:00 | MANF       | INS  |      |           |       | 0.02 | 7.80   | 0.01 |
| 12/09/2015 | 08:55:00 | MANF       | INS  |      |           |       | 0.10 | 44.00  | 0.06 |
| 01/12/2016 | 12:00:00 | MANF       | INS  |      |           |       | 0.09 | 38,35  | 0.06 |
| 02/03/2016 | 11:00:00 | MANE       | INS  |      |           |       | 0.05 | 21,82  | 0.03 |
| 03/03/2016 | 07:30:00 | MANE       | INS  |      |           |       | 0.04 | 17.87  | 0.03 |
| 04/06/2016 | 07:00:00 | MANE       | INS  |      |           |       | 0.01 | 6,00   | 0.01 |
| 05/03/2016 | 12:30:00 | MANE       | INS  |      |           |       | 0.46 | 208.33 | 0.30 |
| 06/21/2016 | 14:00:00 | MANF       | INS  |      |           |       | 0.03 | 15.30  | 0.02 |
| 07/05/2016 | 13:15:00 | MANE       | INS  |      |           |       | 0.07 | 31.10  | 0.04 |
| 08/01/2016 | 12:20:00 | MANE       | INS  |      |           |       | 0.10 | 45.90  | 0.07 |
| 09/06/2016 | 13:10:00 | MANF       | INS  |      |           |       | 0.04 | 18.23  | 0.03 |

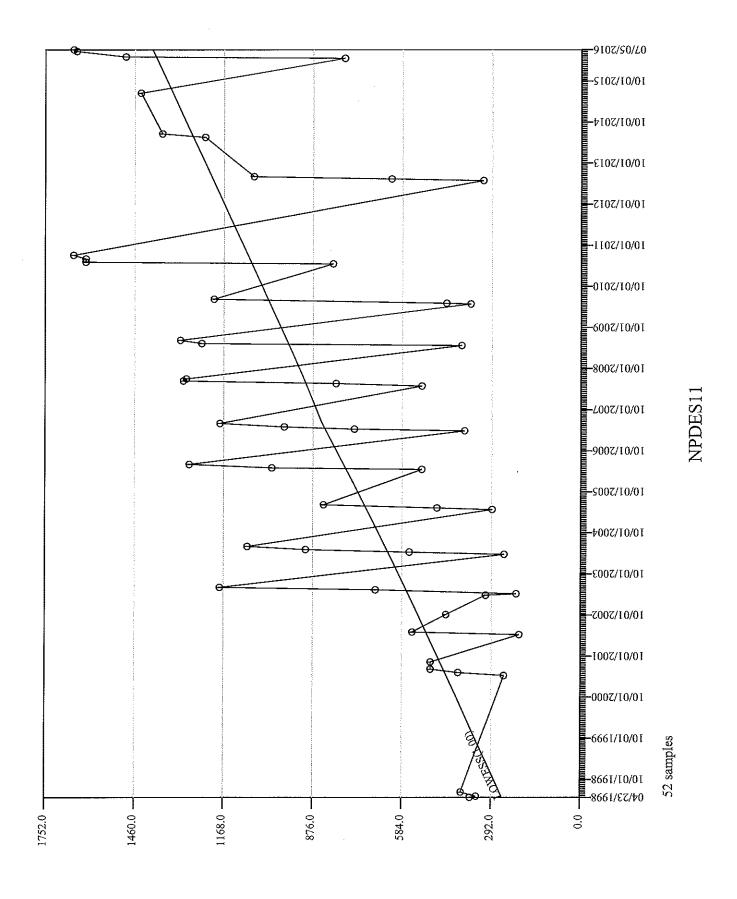


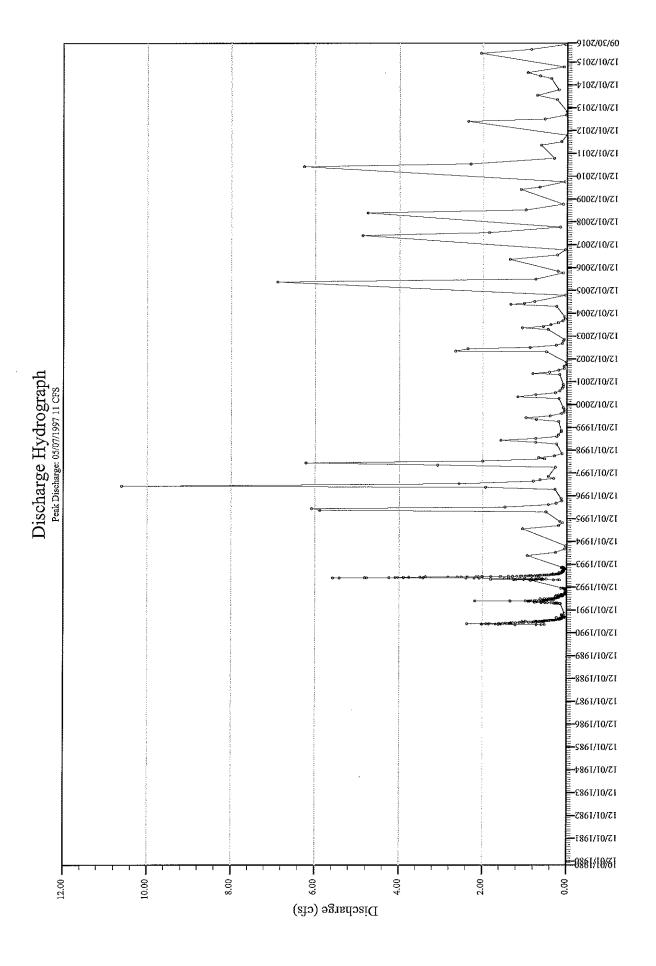




Extended Water Quality Report NPDES11 - NPDES 011 (YOAST) 10/01/2015-00:00 to 09/30/2016-23:59

| 07/05/2016<br>11:00 | 7.7200<br>21.7000<br>1932.0000                         | # 0.0004<br>1,660.0000<br>0.0800<br>0.0800<br>0.04000<br>0.5000<br>0.5000<br>0.4000<br>0.4000<br>0.0500<br>0.0500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 06/21/2016          | 7.4200<br>24.6000<br>1700.0000                         | 1650.0000<br>< 0.0200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 05/03/2016<br>13:30 | 7.8400<br>13.7000<br>1880.0000                         | 1490.0000<br>0.0700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 04/20/2016<br>14:15 | 7.7700<br>11.7000<br>11.60.0000                        | 772.0000<br>0.2900<br>0.2900<br>0.2900<br>0.1000<br>0.5000<br>0.5000<br>0.5000<br>0.6000<br>0.6000<br>0.6000<br>0.6000<br>0.6000<br>0.6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 01/11/2016          | 0.0000                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 12/09/2015          | 0.0000                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11/02/2015<br>11:35 | 0.000.0                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10/12/2015          | 0.000.0                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Units               | S.U.<br>C<br>UMBOS/CM<br>CFS                           | 7,5%<br>7,6%<br>7,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6%<br>1,6% |
| Parameters          | Field Parameters  Temperature  Field Conductivity Flow | Laboratory Parameters  Mercury, Total  Solids, Dissolved  Iron, Total Rec. Selenium, Total Rec. Cadmium, Pot. Diss. Chromium, Pot. Diss. Lead, Pot. Diss. Nickel, Pot. Diss. Selenium, Pot. Diss. Silver, Pot. Diss. Silver, Pot. Diss.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |


"B" -- Between MDL and PQL, "<" -- Less than detection limit


### Instantaneous Flow Measurements Report NPDES11 - NPDES 011 (YOAST) 10/01/2015-00:00 to 09/30/2016-23:59

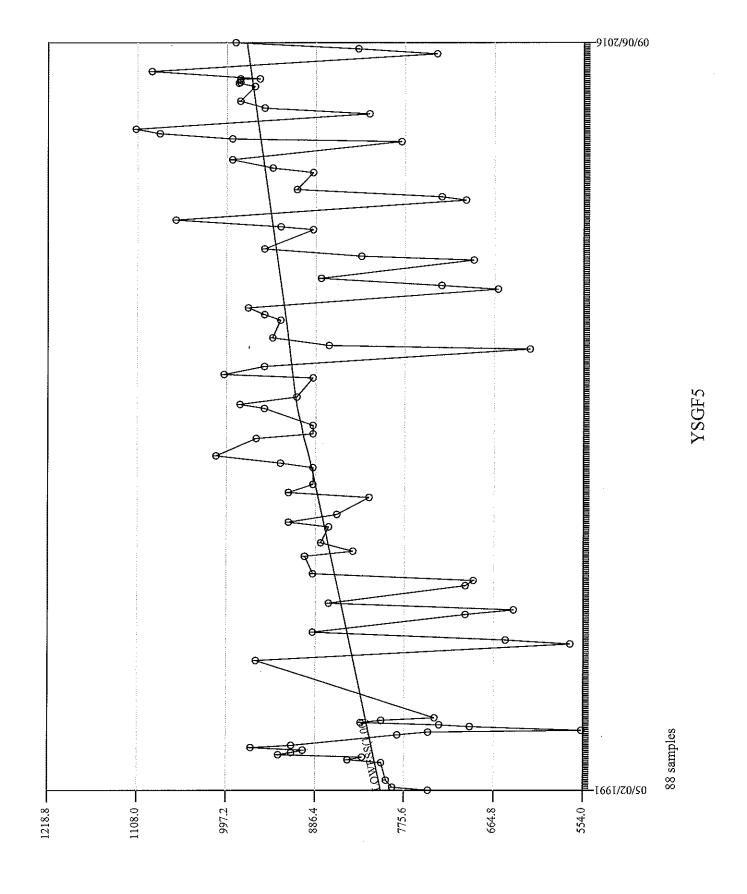
| Date       | Time     | Instrument | Туре | Flag | Begin/End | Stage | CFS  | GPM    | MGD  |
|------------|----------|------------|------|------|-----------|-------|------|--------|------|
|            | ***      |            |      |      |           |       |      |        |      |
| 10/12/2015 | 14:50:00 | MANE       | INS  | Q    |           |       | 0.00 | 0.00   | 0.00 |
| 11/02/2015 | 11:35:00 | MANF       | INS  | Q    |           |       | 0.00 | 0.00   | 0.00 |
| 12/09/2015 | 13:10:00 | MANE       | INS  | Q    |           |       | 0.00 | 0.00   | 0.00 |
| 01/11/2016 | 15:15:00 | MANE       | INS  | Q    |           |       | 0.00 | 0.00   | 0.00 |
| 02/03/2016 | 08:05:00 | MANE       | INS  |      |           |       | 0.00 | 0,00   | 0.00 |
| 03/03/2016 | 15:55:00 | MANE       | INS  |      |           |       | 0.00 | 0.00   | 0.00 |
| 04/20/2016 | 14:15:00 | MANE       | INS  |      |           |       | 0.18 | 81,39  | 0.12 |
| 05/03/2016 | 13:30:00 | MANE       | INS  |      |           |       | 0.24 | 109.09 | 0.16 |
| 06/21/2016 | 14:30:00 | MANE       | INS  |      |           |       | 0.03 | 13.58  | 0.02 |
| 07/05/2016 | 11:00:00 | MANF       | INS  |      |           |       | 0.01 | 2.50   | 0.00 |
| 08/01/2016 | 11:45:00 | MANF       | INS  |      |           |       | 0.00 | 0.00   | 0.00 |
| 09/06/2016 | 12:30:00 | MANF       | INS  |      |           |       | 0.00 | 0.00   | 0.00 |

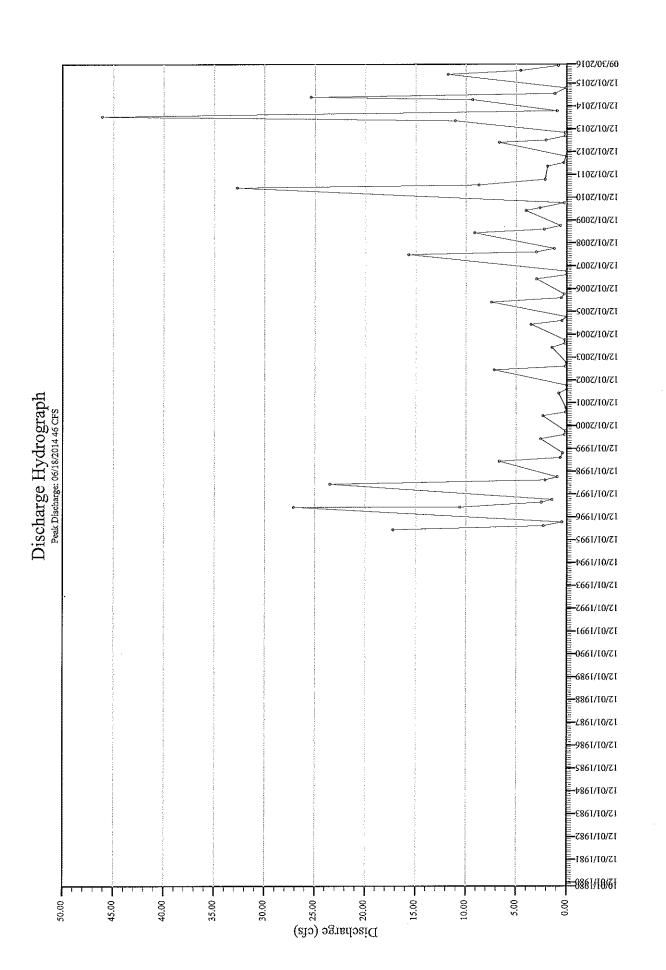
10/01/2015 to 09/30/2016 NPDES11 Sample Remarks

## Remark Date-Time Remark 08/01/2016-11:45 NO FLOW 09/06/2016-12:30 NO FLOW






Extended Water Quality Report YSGF5 10/01/2015-00:00 to 09/30/2016-23:59


| 09/06/2016          | 8.2100<br>18.7000<br>1326.0000                           | 0.0410                     |                  | < 0.0500           | < 0.0100           | < 0.0200                   | B 0.2000            | 986,0000          | B 19.0000         | 464.0000 | < 0.0200 | 0.8200           | B 0.3000             | 0.0446                | B 0.3000             |
|---------------------|----------------------------------------------------------|----------------------------|------------------|--------------------|--------------------|----------------------------|---------------------|-------------------|-------------------|----------|----------|------------------|----------------------|-----------------------|----------------------|
| 06/21/2016<br>14:45 | 7.6100<br>24.5000<br>1010.0000                           | 9538.O                     | 0.2000<br>0.2000 | B 0.1000           | < 0.0100           | B 0.1000                   | 0.5000              | 834.0000          | 113.0000          | 354.0000 | < 0.0200 | 2.3300           | 0.6000               | 0.0381                | 0.4000               |
| 04/20/2016<br>14:45 | 7.8600<br>10.3000<br>1110.0000                           | 7.0520                     |                  | 0.1400             | < 0.0100           | 0.1400                     | 0.9000              | 736.0000          | B 20.0000         | 373,0000 | < 0.0200 | 1.4600           | 0.8000               | 0.0682                | 0.8000               |
| Units               | S.U.S<br>C<br>UMBOS/CM                                   | a .                        | 1,9%             | MG/L               | MG/L               | T/5W                       | T/SD                | MG/L              | MG/L              | MG/L     | MG/I     | MG/L             | T/SD                 | MG/L                  | UG/L                 |
| Parameters          | Field Parameters Field Ph Temperature Field Conductivity | Flow Laboratory Parameters | Mercury, Total   | Nitrate Nitrogen N | Nitrite Nitrogen_N | Nitrate/Witrite Nitrogen N | Selenium, Dissolved | Solids, Dissolved | Solids, Suspended | Sulfate  | Sulfide  | Iron, Total Rec. | Selenium, Total Rec. | Manganese, Pot. Diss. | Selenium, Pot. Diss. |

"B" -- Between NDL and PQL, "<" -- Less than detection limit

## Instantaneous Flow Measurements Report YSGF5 10/01/2015-00:00 to 09/30/2016-23:59

| Date       | Time     | Instrument | Type | Flag | Begin/End | Stage | CFS  | GPM    | MGD  |
|------------|----------|------------|------|------|-----------|-------|------|--------|------|
|            |          |            |      |      |           |       |      |        |      |
| 04/20/2016 | 14:45:00 | MANF       | INS  |      |           |       | 2.05 | 921.00 | 1.33 |
| 06/21/2016 | 14:45:00 | Manf       | INS  |      |           |       | 0.86 | 385.80 | 0.56 |
| 09/06/2016 | 12:40:00 | MANE       | INS  |      |           |       | 0.04 | 18.40  | 0.03 |

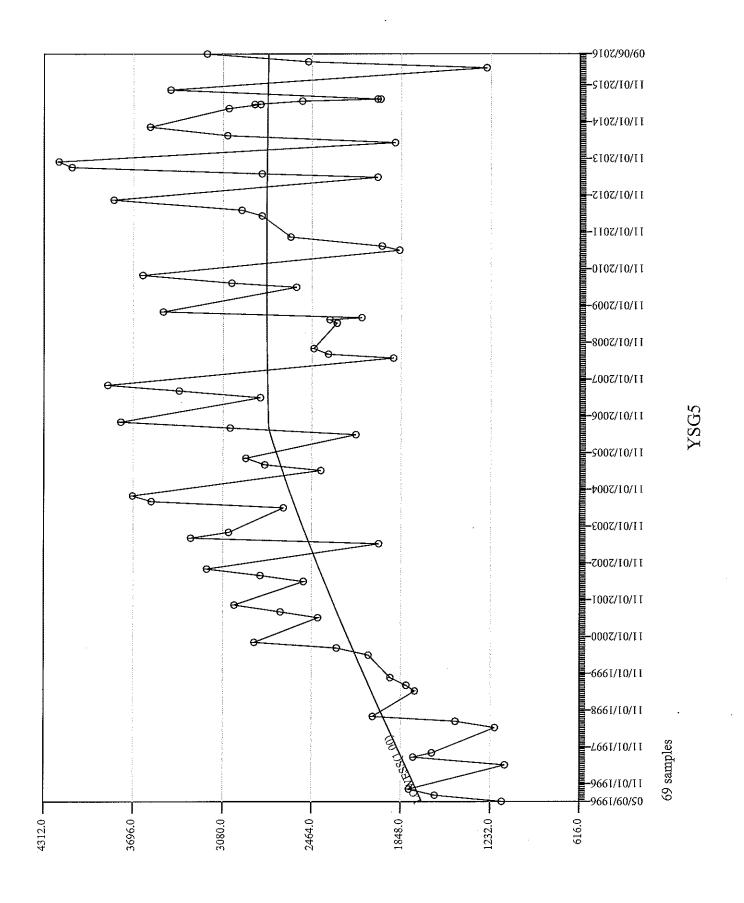




# Extended Water Quality Report YSG5 10/01/2015-00:00 to 09/30/2016-23:59

| 09/06/2016 | 7.9500<br>16.4000<br>3590.0000<br>0.8564                                                      | 300.0000 292.0000 8 7.4000 < 2.0000 220.0000 318.0000 34.10000 330.00000 < 1.0000 < 1.0000 < 1.0000 < 0.2000 < 0.2000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.00000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.00000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.00000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.00000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.00000 < 0.0000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.000000 < 0.0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B 4.5000<br>< 2.0000<br>< 0.0000<br>1.1000<br>2930.0000                        |
|------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 06/20/2016 | 7.8200<br>26.1000<br>2780.0000<br>4.5875                                                      | 2592<br>269.0000<br>22.6000<br>180.0000<br>248.0000<br>253.0000<br>16.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15.1000<br>15 | # 13.6000<br>< 2.0000<br>< -5.6000<br>2270.0000                                |
| 04/20/2016 | 7.9900<br>11.7000<br>10.0000<br>11.7906                                                       | 1174.0000 163.0000  ( 2.0000 ( 2.0000 ( 2.0000 ( 2.0000 ( 2.0000 ( 2.0000 ( 2.0000 ( 2.0000 ( 2.0000 ( 2.0000 ( 2.0000 ( 2.0000 ( 2.0000 ( 2.0000 ( 2.0000 ( 2.0000 ( 2.0000 ( 2.0000 ( 2.0000 ( 3.0000 ( 3.0000 ( 3.0000 ( 3.0000 ( 3.0000 ( 3.0000 ( 3.0000 ( 3.0000 ( 3.0000 ( 3.0000 ( 3.0000 ( 3.0000 ( 3.0000 ( 3.0000 ( 3.0000 ( 3.0000 ( 3.0000 ( 3.0000 ( 3.0000 ( 3.0000 ( 3.0000 ( 3.0000 ( 3.0000 ( 3.0000 ( 3.0000 ( 3.0000 ( 3.0000 ( 3.0000 ( 3.0000 ( 3.0000 ( 3.0000 ( 3.0000 ( 3.0000 ( 3.0000 ( 3.0000 ( 3.0000) ( 3.00000 ( 3.0000) ( 3.00000) ( 3.000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B 6.0000<br>< 2.0000<br>< -2.6000<br>1.4000                                    |
| Units      | S.U.<br>C<br>UMHOS/CM<br>CFS                                                                  | ######################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MG/L<br>MG/L<br>PERCENT<br>RAIIO<br>MG/L                                       |
| Parameters | Field Parameters         Field Ph         Temperature         Field Conductivity         Flow | Alk, Bicarb As Cac03, Ph 4.5 Alk, Bicarb As Cac03 Alk, Carb As Cac03 Alk, Exprox As Cac03 Alk, Eydrox As Cac03 Boron, Dissolved Cadmium, Dissolved Calcium, Dissolved Chromium, Dissolved Copper, Dissolved Hardness As Cac03 Lead, Dissolved Magnesium, Dissolved Magnesium, Dissolved Magnesium, Dissolved Magnesium, Dissolved Mitrate Nitrogen N Nitrate Nitrogen N Nitrate Nitrogen N Nitrate Nitrogen N Sh At 25 Deg. Cent. Potassium, Dissolved Selenium, Dissolved Sodium, Dissolved Sodium, Dissolved Solids, Suspended Solids, Dissolved Sol                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Carbonate As CO3 Hydroxide As OH Cation_Anion Balance Sar Solids, Diss. (Calo) |

"B" -- Between MDL and PQL, "<" -- Less than detection limit


# Extended Water Quality Report YSG5 10/01/2015-00:00 to 09/30/2016-23:59

| 09/06/2016<br>12:00 |                                         |                       | 48.0000       | 48.0000        | B 1.1000            | 0.3700           | 1.3000               | 1.0900    |
|---------------------|-----------------------------------------|-----------------------|---------------|----------------|---------------------|------------------|----------------------|-----------|
| 06/20/2016<br>13:20 | 1                                       |                       | 38.0000       | 34.0000        | 1.3000              | 1.0700           | 2.1000               | 1.1000    |
| 04/20/2016<br>13:25 | 111111111111111111111111111111111111111 |                       | 20.0000       | 19.0000        | 1.5000              | 2.5300           | 4.0000               | 1.0500    |
| Units               | <br> -<br> -<br> -<br> -<br> -          |                       | MEQ/L         | MEQ/L          | T/SD                | MG/L             | T/9D                 | ANAL/CALC |
| Parameters          |                                         | Laboratory Parameters | Sum Of Anions | Sum Of Cations | Arsenic, Total Rec. | Iron, Total Rec. | Selenium, Total Rec. | Tds Ratio |

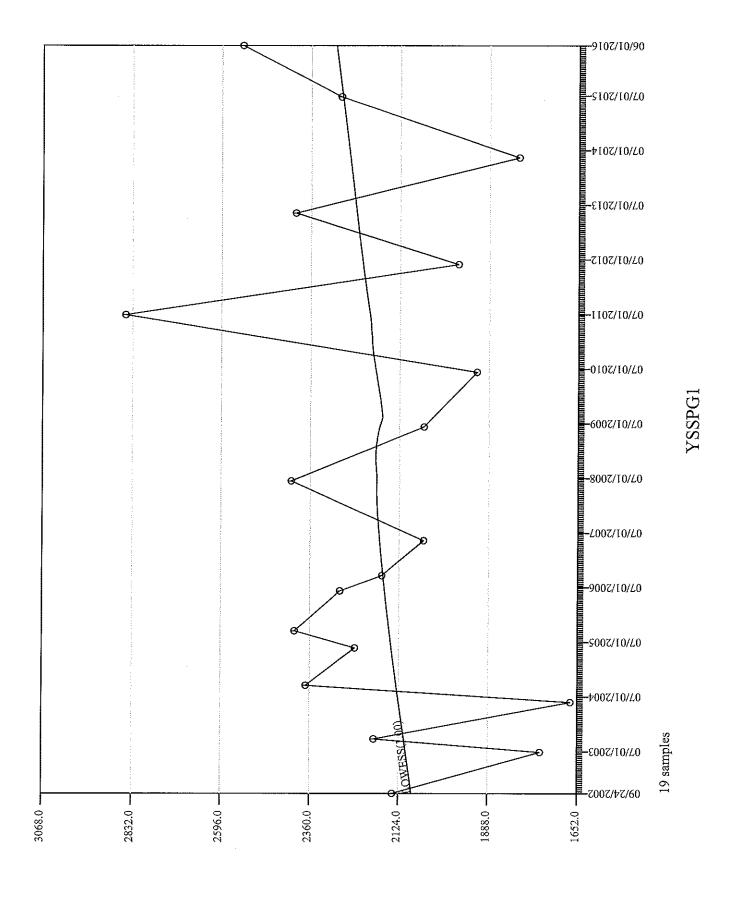
"B" -- Between MDL and PQL, "<" -- Less than detection limit

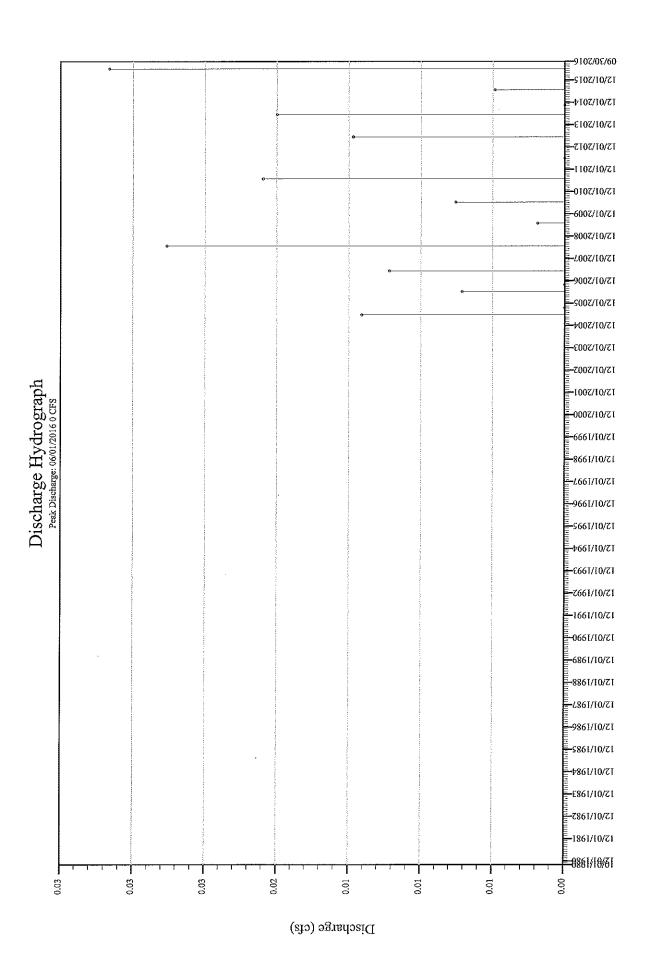
## Instantaneous Flow Measurements Report YSG5 10/01/2015-00:00 to 09/30/2016-23:59

| Date       | Time     | Instrument | Type | Flag | Begin/End | Stage | CFS   | GPM     | MGD  |
|------------|----------|------------|------|------|-----------|-------|-------|---------|------|
|            |          |            |      |      |           |       |       |         |      |
| 04/20/2016 | 13:25:00 | MANE       | INS  |      |           |       | 11.79 | 5292,00 | 7.62 |
| 06/20/2016 | 13:20:00 | MANF       | INS  |      |           |       | 4.59  | 2059,00 | 2.96 |
| 09/06/2016 | 12:00:00 | MANF       | INS  |      |           |       | 0.86  | 384.40  | 0.55 |



YSSPG1


Extended Water Quality Report YSSPG1 - SPOIL SPRING 1 10/01/2015-00:00 to 09/30/2016-23:59

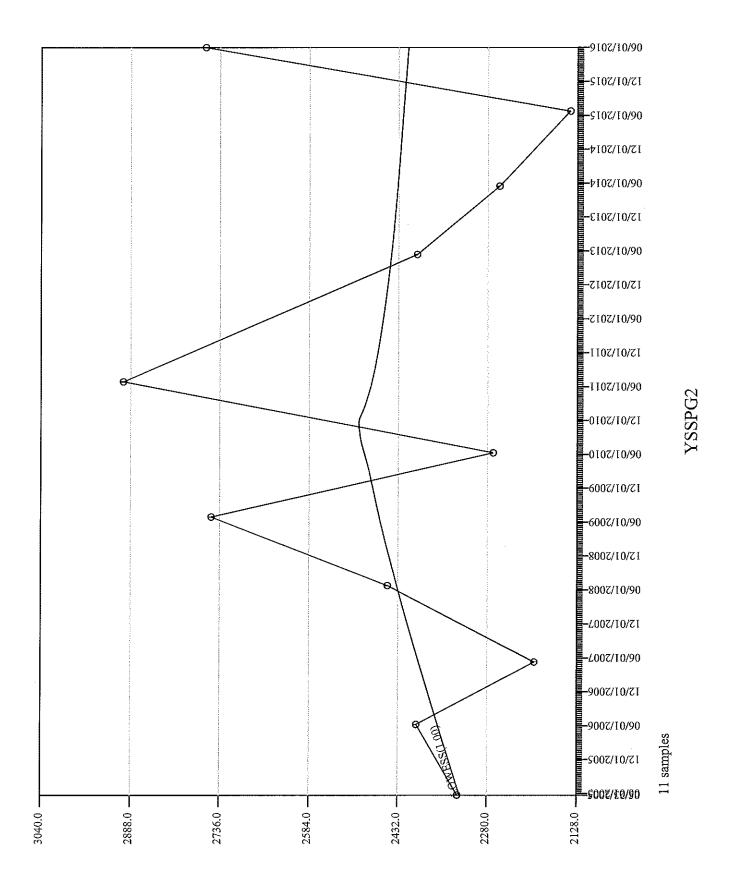

| Units 07:40  | /CM 2860.0000<br>GPM 213.0000           | UG/L < 0.2000                           | MG/L 0.1500 | MG/L < 0.0100 | MG/L 0.1500                | G/L < 0.2000        | G/L 2540.0000     | G/L < 5.0000      | G/L 1130.0000 | MG/L < 0.0200 | MG/L B 0.0700    | ជា                   | MG/L 0.3230           | UG/L B 0.3000        |
|--------------|-----------------------------------------|-----------------------------------------|-------------|---------------|----------------------------|---------------------|-------------------|-------------------|---------------|---------------|------------------|----------------------|-----------------------|----------------------|
| Parameters U | Field Conductivity UMBOS/CM<br>Flow GPM | Laboratory Parameters<br>Mercury, Total |             |               | Nitrate/Nitrite Nitrogen_N | Selenium, Dissolved | Solids, Dissolved | Solids, Suspended | Sulfate       | Sulfide       | Iron, Total Rec. | Selenium, Total Rec. | Manganese, Pot. Diss. | Selenium, Pot. Diss. |

"B" -- Between MDL and PQL, "<" -- Less than detection limit

## Instantaneous Flow Measurements Report YSSPG1 - SPOIL SPRING 1 10/01/2015-00:00 to 09/30/2016-23:59

| Date       | Time     | Instrument | Type | Flag | Begin/End | Stage | CFS  | GPM    | MGD  |
|------------|----------|------------|------|------|-----------|-------|------|--------|------|
|            |          |            |      |      |           |       |      |        |      |
| 06/01/2016 | 07:40:00 | MANE       | INS  |      |           |       | 0.47 | 213.00 | 0.31 |





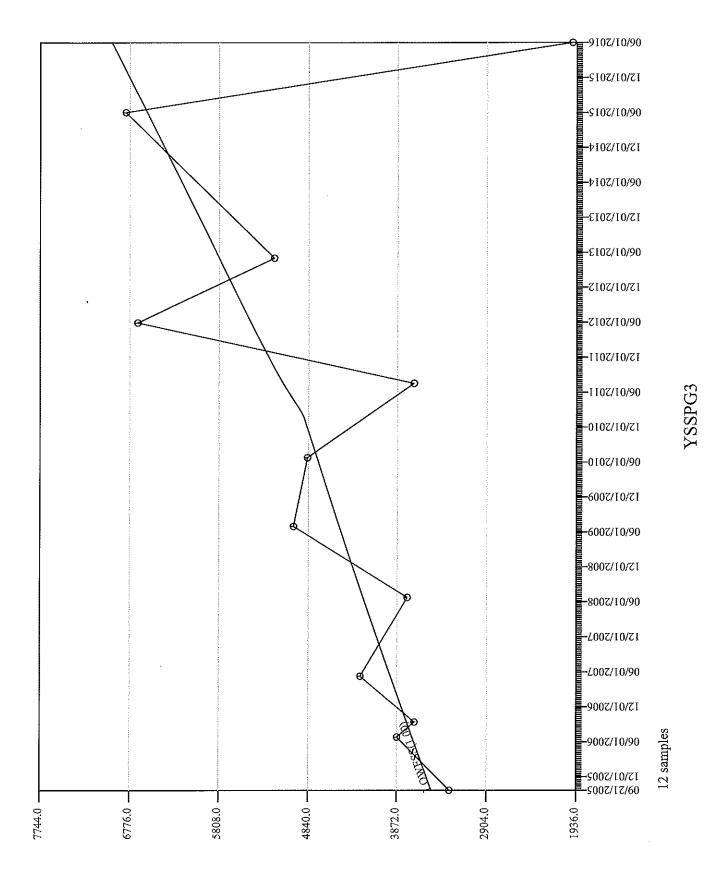

Extended Water Quality Report YSSPG2 - SPOIL SPRING 2 10/01/2015-00:00 to 09/30/2016-23:59

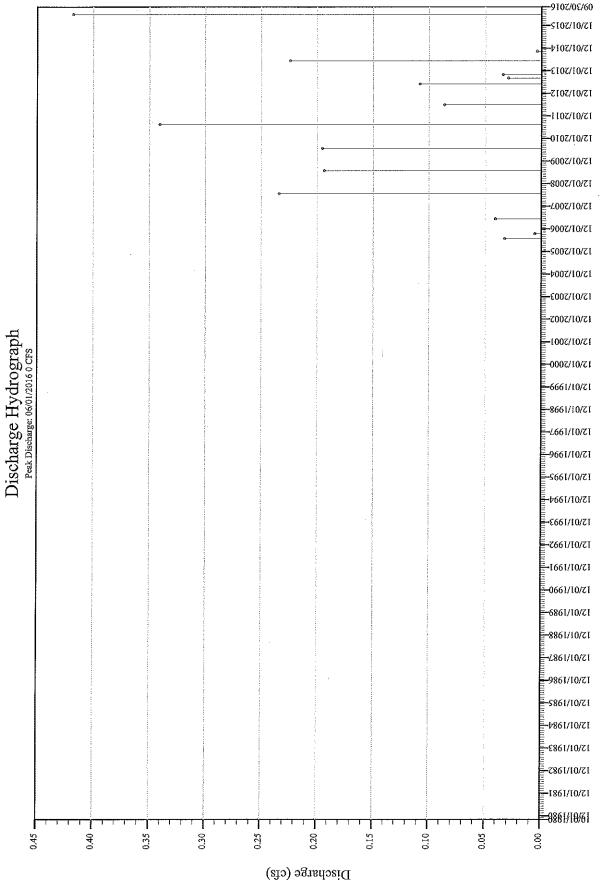
| 06/01/2016<br>12:15 |             |                  | 6.9600   | 14.2000     | 2990.0000          | 14.2000 |                       | < 0.2000            | 2760.0000         | < 5.0000          | < 0.0400         | B 0.2000             | 1.3200                | < 0.2000             |
|---------------------|-------------|------------------|----------|-------------|--------------------|---------|-----------------------|---------------------|-------------------|-------------------|------------------|----------------------|-----------------------|----------------------|
|                     | 1 1         |                  |          | 1           |                    |         |                       |                     |                   |                   |                  |                      |                       |                      |
| Units               |             |                  | s.u.     | U           | TOMBOS/CM          | GPM     |                       | TG/L                | MG/L              | MG/I              | MG/L             | T/90                 | MG/L                  | T/9D                 |
| Parameters          | 11111111111 | Field Parameters | Field Ph | Temperature | Field Conductivity | Flow    | Laboratory Parameters | Selenium, Dissolved | Solids, Dissolved | Solids, Suspended | Iron, Total Rec. | Selenium, Total Rec. | Manganese, Pot. Diss. | Selenium, Pot. Diss. |

## Instantaneous Flow Measurements Report YSSPG2 - SPOIL SPRING 2 10/01/2015-00:00 to 09/30/2016-23:59

| Date       | Time     | Instrument | Type | Flag | Begin/End | Stage | CFS  | GPM   | MGD  |
|------------|----------|------------|------|------|-----------|-------|------|-------|------|
|            |          |            |      |      |           |       | ·    |       |      |
| 06/01/2016 | 12:15:00 | MANF       | INS  |      |           |       | 0.03 | 14.20 | 0.02 |




YSSPG3

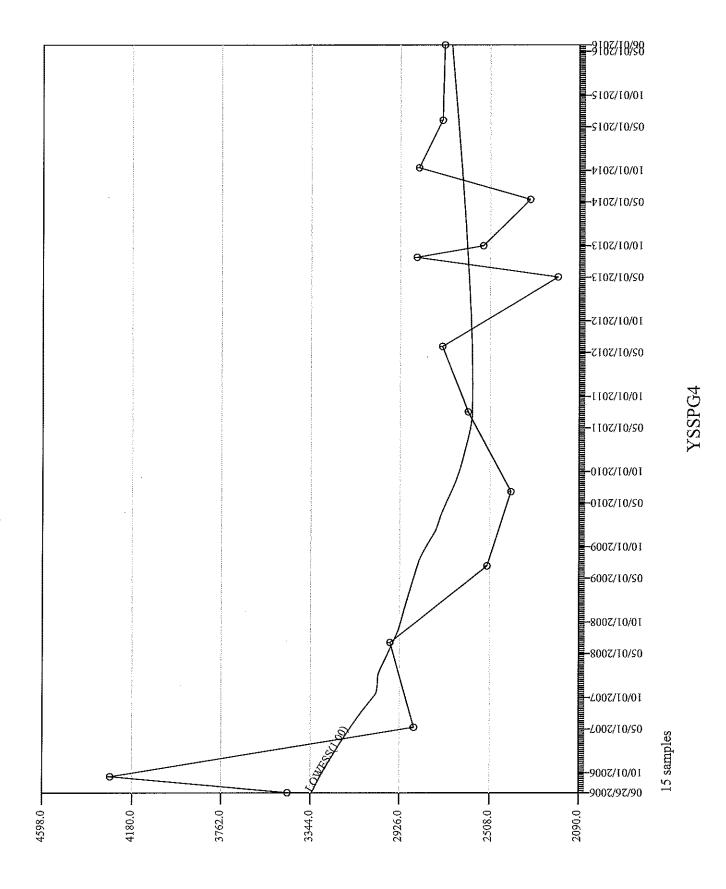

## Extended Water Quality Report YSSPG3 - SPOIL SPRING 3 10/01/2015-00:00 to 09/30/2016-23:59

| 06/01/2016<br>09:15 |                  | 7.1000   | 10.8000     | 3000,0000          | 2.3000 |                       | 1.6000              | 1980.0000         | < 5.0000          | < 0.0200         | 1.6000               | 0.0072                | 1.7000               |
|---------------------|------------------|----------|-------------|--------------------|--------|-----------------------|---------------------|-------------------|-------------------|------------------|----------------------|-----------------------|----------------------|
| Units               |                  | s.u.     | ပ           | UMBOS/CM           | GPM    |                       | T/50                | MG/I              | MG/L              | MG/L             | UG/L                 | MG/L                  | UG/II                |
| Parameters          | Field Farameters | Field Ph | Temperature | Field Conductivity | Flow   | Laboratory Parameters | Selenium, Dissolved | Solids, Dissolved | Solids, Suspended | Iron, Total Rec. | Selenium, Total Rec. | Manganese, Pot. Diss. | Selenium, Pot. Diss. |

## Instantaneous Flow Measurements Report YSSPG3 - SPOIL SPRING 3 10/01/2015-00:00 to 09/30/2016-23:59

| Date       | Time     | Instrument | Туре | Flag | Begin/End | Stage | CFS  | GPM  | MGD  |
|------------|----------|------------|------|------|-----------|-------|------|------|------|
|            |          |            |      |      |           |       |      |      |      |
| 06/01/2016 | 09:15:00 | MANF       | INS  |      |           |       | 0.01 | 2.30 | 0.00 |






Extended Water Quality Report YSSPG4 - SPOIL SPRING 4 10/01/2015-00:00 to 09/30/2016-23:59

| 06/01/2016<br>09:00 |             |                  | 7.7500   | 14.9000     | 2340.0000          | 187.5000 |                                          | 1.0000              | 2720.0000         | < 5.0000          | < 0.0400         | 1.2000               | 1.5800                | 1.3000               |
|---------------------|-------------|------------------|----------|-------------|--------------------|----------|------------------------------------------|---------------------|-------------------|-------------------|------------------|----------------------|-----------------------|----------------------|
| Units               |             |                  | S.U.     | O           | UMBOS/CM           | GPM      |                                          | T/SD                | MG/L              | MG/1              | MG/L             | T/50                 | MG/L                  | UG/I                 |
| Parameters          | 11117555511 | Field Barameters | Field Ph | Temperature | Field Conductivity | Flow     | <br>なけれていまなまなようなようのなってなってなってなってなってなっている。 | Selenium, Dissolved | Solids, Dissolved | Solids, Suspended | Iron, Total Rec. | Selenium, Total Rec. | Manganese, Pot. Diss. | Selenium, Pot. Diss. |

## Instantaneous Flow Measurements Report YSSPG4 - SPOIL SPRING 4 10/01/2015-00:00 to 09/30/2016-23:59

| Date       | Time     | Instrument | Туре | Flag | Begin/End | Stage | CFS  | GPM    | MGD  |
|------------|----------|------------|------|------|-----------|-------|------|--------|------|
|            |          |            |      |      | ~~~~~~    |       |      | ****   |      |
| 06/01/2016 | 09:00:00 | MANE       | INS  |      |           |       | 0.42 | 187.50 | 0.27 |

