

Via Hand Delivery

March 3, 2017

Michael Cunningham Division of Reclamation and Mine Safety Department of Natural Resources 1313 Sherman Street, Room 2 Denver, CO 80203

RE: Schwartzwalder Mine; DRMS File No. M-1977-300; Technical Revision (TR-23)

Dear Mr. Cunningham:

By letter dated December 23, 2016, the Division of Reclamation and Mine Safety ("DRMS") issued its latest round of adequacy review comments for the Cotter Corporation (N.S.L.) ("Cotter") Technical Revision 23 ("TR-23"). Enclosed are Cotter's responses to the specific comments contained in DRMS' aforementioned adequacy review letter. Cotter's response includes a text document presenting our responses and revised Attachments C, F, and G.

Cotter appreciates your attention in this matter. If you have any questions, please contact me at (720)554-6207, or via email at ken.mushinski@cotterusa.com.

Sincerely,

A. The for

Ken Mushinski President

Enclosure

Cc: Tony Waldron, DRMS Stephen J. Cohen, Cotter

COTTER CORPORATION (N.S.L.) SCHWARTZWALDER MINE, GOLDEN, COLORADO PERMIT NO. M-1977-300 RESPONSE TO COMMENTS REGARDING TECHNICAL REVISION 23 (TR-23)

December 23, 2016 Comment Letter

1. The design drawings provided in Attachment C for the storm water diversion ditches are not stamped by a licensed professional engineer. As required by Rule 6.4.21(10)(a), please provide design drawings which have been certified by a licensed professional engineer for all Environmental Protection Facilities.

Attachment C has been updated to include drawings signed and sealed by a professional engineer of the diversion ditches. The revised Attachment C is dated February 24, 2017.

2. The Operator has indicated the storm water diversion ditches have been designed to accommodate a 100-year flood event with a peak discharge of 60 cfs. Appendix E (pg. 51) of the 1983 Amendment, states the estimated peak discharge above the east/south Waste Rock Pile (WRP) is 119 cfs for the 100-year flood event. The peak discharge for the west/north WRP was not analyzed. Please provide the Division with a hydrologic analysis which demonstrates 60 cfs is the appropriate peak discharge for the design of the storm water diversion ditches.

A Drainage Area Map (revised Attachment C, sheet 30) containing the hydrology calculations for both diversion ditches have been added to the plan set and permit submittal. The hydrology calculations were conducted with USACE's HEC-HMS program.

3. The design drawings show the storm water diversion ditches terminate several feet above the toe of slope of the WRP's. The design should include a means to safely convey the diverted flow from the base of the diversion ditches to Ralston Creek. Please describe how storm water will be safely conveyed to Ralston Creek so that erosion of the WRP's or the access roads does not occur.

The diversion ditches have been updated as shown on the revised Attachment C, sheets 22-27. The Southern WRP diversion ditch will end to the North of the cut off dam and will be protected with concrete riprap to allow the water to flow to the Ralston Creek. Surface water will not flow over the access road Cotter submitted a response to the Division's Adequacy Review #1, Comment # 18 on November 8, 2016 As a result of the update of the diversion ditch design, this response has been changed and is included in Attachment G, a February 23, 2017 report form Engineering Analytics, Inc. One of the primary changes is the

removal of benches from the WRP design, which has been analyzed by Engineering Analytics, Inc. in its report included as Appendix G.

4. The design drawings show weep drains will be placed vertically in the storm water diversion ditches. In the Division's experience, horizontal weep drains are less subject to plugging and sediment deposition. Please provide a technical justification for constructing vertical weep drains.

The initial weep drains were based on the weep drain details available from Colorado's Urban Drainage and Flood Control. The weep drain details have been updated to have the pipes drain horizontally.

5. The design drawings for the storm water diversion ditches do not address freeboard. Please indicate if the design of the storm water diversion ditches accounts for freeboard. If so, specify the freeboard. The Division recommends the design provide for one foot of freeboard or half the velocity head.

> The hydraulic calculations have been added to Sheet 3 of 3 of the Concrete Lined Ditch Miscellaneous Detail sheets, Sheet 31 in the plans. One foot of freeboard has been provided for both diversion ditches.

6. The Southern WRP Ditch Typical Section on Sheet No. 27 of the design drawings shows placement of fill adjacent to the storm water diversion ditch. Please specify the nature of the fill and describe how it will be compacted.

The Southern WRP Diversion Ditch has been revised and the additional fill has been removed.

7. The Division requests detail call-outs for all plan profiles for Sheets No. 22-28 of the design drawings. All features should be labeled on the detail call-outs and referenced on the plan and profile drawings.

Additional callouts have been added to Sheets 22-29 to clarify the link between the plan and profile sections and the diversion ditch typical sections and details.

8. Please specify if rebar will be used with the concrete lined storm water diversion ditches. If so, specify the rebar size, spacing, and clearance. In addition, provide specifications for the type of concrete to be used.

Cotter is utilizing steel reinforcing bar in the concrete ditch. The reinforcement and concrete requirements for the concrete lined ditches has been added to the appropriate detail on Sheet 29 of the plans, Concrete Lined Ditch Miscellaneous Details Sheet 2 of 2.

9. The construction schedule provided in Attachment A contains a task for disposing of waste in the Minnesota Adit. Please provide an inventory of all of the materials (with approximate volumes) to be placed in the Minnesota Adit. In addition, please clarify if the materials to be disposed of will be contained to the Minnesota Adit or if they will be placed in the glory hole.

Attachment F provides a preliminary estimate of the waste inventory planned for disposal in the Glory Hole (Minnesota Adit). It total estimate is currently approximately 5,000 cubic yards. A more precise inventory will be provided to the Division after project completion.

10. In regards to the construction schedule provided in Attachment A, the Division will conduct inspections during the following phases of the alluvial valley excavation:

- a. Prior to Site Clean Up
- b. Prior to Excavation of Alluvial Fill
- c. Prior to placement of temporary soil cap (if necessary)
- d. Prior to Construction of WRP Diversion Channels
- e. Post Project Completion

Please commit to notifying the Division in writing, at least two weeks prior to the commencement of each of the above listed construction phases so that inspections may be scheduled. The Division may schedule additional inspections as required.

Cotter commits to notifying Mr. Michael Cunningham, DRMS, by email, at least two weeks prior to the commencement of each of the above listed construction phases so that inspections may be scheduled. The Division may schedule additional inspections as required.

ATTACHMENT F

INVENTORY OF MATERIALS TO BE DISPOSED IN MINNESOTA ADIT

Attachment F – Minnesota Adit Disposal Inventory

			nary of aterial
Table	Item	Trucked Placement Volume (cu.ft.)	Trucked Placement Volume (cu.yd.)
Table 1	Boneyard	2,352	87
Table 2	Main WTP Area	88,061	3,262
Table 3	Hillside Adits	4,076	151
Table 4	Alexco WTP	19,822	734
Table 5	Valley Floor Sites	16,156	598
<u> </u>			-
	Total Facilities Disposal Volume	130,468	4,832

			Boneyard
	Item	Trucked Placement Volume (cu.ft.)	Description
1	Building, Domestic Well	128	Wood Frame with Metal Siding
2	Building, Domestic Well Vault	307	Concrete
3	Foundation, Domestic Well Vault	450	Concrete
4	Bridge	95	Steel
5	Stairs, Steel	68	Steel
6	Stairs (Wood, Old)	75	Wood
7	Water Heater	6	Steel
8	Rock Grizzly	48	Steel
9	Concrete, Wing Walls	972	Concrete
10	Culvert, 3ft dia	56	Steel
11	Culvert, 5ft dia	78	Steel
12	Planks, Timber	70	Steel
	Total	2,352	

			Original Waste Treatment Plant Area
	ltem	Trucked Placement Volume (cu.ft.)	Description
1	Building, WTP	18,900	Steel - structural + Siding + Interior equipment
2	Building Foundation, WTP	12,960	Concrete
3	Concrete Containment Ponds-	2,700	Concrete
4	Sides Concrete Containment Ponds - Floor	28,200	Concrete
5	Fencing	15,667	Steel
6	Pump House Foundation	384	Concrete
7	Pump Support + Electrical Panel	50	Steel
8	Monitor Well	0	Steel
9	Monitor Well Foundation	2	Concrete
10	Power Poles	26	Wood
11	Propane Tanks, 1000 Gals	85	Steel
12	Propane Tanks, 500 Gals	28	Steel
13	Concrete Box (Sides)	38	Concrete
14	Concrete Box (Bottom)	32	Concrete
15	Receiver Tank	23	Steel
16	Pipe, PVC to Alexco	175	PVC
17	60,000 Gal Tank (Creek Water)	641	Steel
18	Foundation, 60,000 Gal Tank	754	Concrete
19	(Creek) Pipe, PVC to WTP	3	PVC
20	Septic Tank	180	PVC
21	Power Poles	13	Steel
22	"Old" WTP Foundation	7,200	Concrete
	Total	88,061	

Item Trucked Placement Volume (cuft.) Description 1 Pipe, PVC, Misc. 963 PVC-Plastic 2 Steel, Misc. 1,650 Concrete 3 Portal Gate 75 Steel 4 Portal Steel 150 Steel 5 Portal Walls, Steel 23 Steel 6 Portal Walls, Timber 300 Wood CV Adit 47 Steel Steel 1 Vent Riser 47 Steel 2 Portal Steel 203 Steel 3 Telephone Poles 16 Steel 4 Power Cable 2 Steel 5 Portal Walls, Sheet Steel 25 Steel 6 Portal Walls, Timber 133 Wood 1 Telephone Poles 21 Wood 2 Power Cable 7 Copper + Ins 3 Steel, Misc. 38 Steel 4 Portal Steel 25 Steel 5 Portal Steel 27 Steel 6 Monitor Well 2 Steel 1 Portal Steel 27 Steel 2 Culvert 34				Hillside Adits
1Pipe, PVC, Misc.963PVC-Plastic2Steel, Misc.1,650Concrete3Portal Gate75Steel4Portal Steel150Steel5Portal Walls, Steel23Steel6Portal Walls, Steel23Steel7Portal Walls, Timber300Wood7Vent Riser47Steel9Portal Steel203Steel9Portal Steel203Steel3Telephone Poles16Steel4Power Cable2Steel5Power Cable2Steel6Portal Walls, Sheet Steel25Steel7Portal Walls, Sheet Steel25Steel9Portal Walls, Timber133Wood7Portal Steel27Steel1Portal Steel27Steel2Culvert34Steel3Steel2Steel4Monitor Well2Steel3Steel2Steel4Monitor Well Foundation2Concrete8Black Forest Adit111Gate183Steel2Pallets64Wood3Steel, Misc., Lift28Steel4Fence30Steel5East Portal Entrance - Culvert51Steel6Monitor Well2Steel7Moni		Item	Placement Volume	Description
2Steel, Misc.1,650Concrete3Portal Gate75Steel4Portal Steel150Steel5Portal Walls, Steel23Steel6Portal Walls, Steel23Steel7Vent Riser47Steel2Portal Steel203Steel3Telephone Poles16Steel4Power Cable2Steel5Portal Walls, Sheet Steel7Copper + Ins3Steel, Misc.38Steel4Portal Walls, Sheet Steel25Steel5Portal Walls, Sheet Steel25Steel6Portal Walls, Sheet Steel27Steel7Portal Walls, Sheet Steel27Steel9Portal Steel27Steel1Portal Steel27Steel2Culvert34Steel3Steel2Steel4Monitor Well2Steel2Portal Steel274Monitor Well Foundation25Pallets644Fence305East Portal Entrance - Culvert516Monitor Well Foundation27Monitor Well Foundation27Keel78Steel9East Portal Entrance - Culvert516Monitor Well Foundation27Keel28Ste		Minnesota Adit		
3 Portal Gate 75 Steel 4 Portal Steel 150 Steel 5 Portal Walls, Steel 23 Steel 6 Portal Walls, Steel 23 Steel 7 Steel 23 Steel 6 Portal Walls, Timber 300 Wood 1 Vent Riser 47 Steel 2 Portal Steel 203 Steel 3 Telephone Poles 16 Steel 4 Power Cable 2 Steel 5 Power Cable 7 Copper + Ins 3 Steel, Misc. 38 Steel 4 Portal Walls, Sheet Steel 25 Steel 5 Portal Walls, Timber 133 Wood 1 Portal Steel 27 Steel 2 Culvert 34 Steel 3 Monitor Well 2 Steel 4 Monitor Well Foundation 2 Concrete 1 Gate 183 Steel 2	1	Pipe, PVC, Misc.	963	PVC-Plastic
4Portal Steel150Steel5Portal Walls, Steel23Steel6Portal Walls, Timber300Wood1Vent Riser47Steel2Portal Steel203Steel3Telephone Poles16Steel4Power Cable2Steel5Power Cable2Steel6Power Cable7Copper + Ins7Steel, Misc.38Steel8Steel25Steel9Portal Steel27Steel9Portal Steel27Steel9Portal Steel27Steel9Portal Steel25Steel9Portal Steel27Steel1Portal Steel27Steel2Culvert34Steel3Steel2Steel5Portal Steel2Steel6Monitor Well Foundation2Concrete9Black Forest Adit1Steel1Gate183Steel2Pallets64Wood3Steel, Lift28Steel4Fence30Steel5East Portal Entrance - Culvert51Steel6Monitor Well2Steel7Monitor Well Foundation2Concrete	2	Steel, Misc.	1,650	Concrete
5 Portal Walls, Steel 23 Steel 6 Portal Walls, Timber 300 Wood 1 Vent Riser 47 Steel 2 Portal Steel 203 Steel 3 Telephone Poles 16 Steel 4 Power Cable 2 Steel 5 Sunshine Adit	3	Portal Gate	75	Steel
6 Portal Walls, Timber 300 Wood 1 Vent Riser 47 Steel 2 Portal Steel 203 Steel 3 Telephone Poles 16 Steel 4 Power Cable 2 Steel 5 Sunshine Adit	4	Portal Steel	150	Steel
CV Adit47Steel1Vent Riser47Steel2Portal Steel203Steel3Telephone Poles16Steel4Power Cable2Steel5Power Cable7Copper + Ins3Steel, Misc.38Steel4Portal Walls, Sheet Steel25Steel5Portal Walls, Sheet Steel25Steel6Portal Walls, Timber133Wood7Pierce Adit7Steel2Culvert34Steel3Monitor Well2Steel4Monitor Well Foundation2Concrete8Black Forest Adit1Gate1Gate183Steel2Pallets64Wood3Steel, Misc., Lift28Steel4Fence30Steel5East Portal Entrance - Culvert51Steel6Monitor Well Foundation2Concrete	5	Portal Walls, Steel	23	Steel
1Vent Riser47Steel2Portal Steel203Steel3Telephone Poles16Steel4Power Cable2Steel5Sunshine Adit-1Telephone Poles21Wood2Power Cable7Copper + Ins3Steel, Misc.38Steel4Portal Walls, Sheet Steel25Steel5Portal Walls, Timber133Wood1Portal Steel27Steel2Culvert34Steel3Monitor Well2Steel4Monitor Well Foundation2Concrete8Black Forest Adit-1Gate183Steel2Pallets64Wood3Steel, Misc., Lift28Steel4Fence30Steel5East Portal Entrance - Culvert51Steel6Monitor Well2Steel7Monitor Well Foundation2Concrete	6	Portal Walls, Timber	300	Wood
2Portal Steel203Steel3Telephone Poles16Steel4Power Cable2Steel1Telephone Poles21Wood2Power Cable7Copper + Ins3Steel, Misc.38Steel4Portal Walls, Sheet Steel25Steel5Portal Walls, Timber133Wood1Portal Steel27Steel5Portal Steel27Steel2Culvert34Steel3Monitor Well2Steel4Monitor Well Foundation2Concrete8Black Forest Adit1Gate1Gate183Steel2Pallets64Wood3Steel, Misc., Lift28Steel4Fence30Steel5East Portal Entrance - Culvert51Steel6Monitor Well2Steel7Monitor Well Foundation2Concrete		CV Adit		
3Telephone Poles16Steel4Power Cable2Steel5Sunshine Adit-1Telephone Poles21Wood2Power Cable7Copper + Ins3Steel, Misc.38Steel4Portal Walls, Sheet Steel25Steel5Portal Walls, Timber133Wood1Portal Steel27Steel2Culvert34Steel3Monitor Well2Steel4Monitor Well Foundation2Concrete8Black Forest Adit1Gate183Steel2Pallets64Wood3Steel, Misc., Lift28Steel4Fence30Steel5East Portal Entrance - Culvert51Steel6Monitor Well2Steel7Monitor Well Foundation2Concrete	1	Vent Riser	47	Steel
4Power Cable2Steel1Telephone Poles21Wood2Power Cable7Copper + Ins3Steel, Misc.38Steel4Portal Walls, Sheet Steel25Steel5Portal Walls, Timber133Wood1Portal Steel27Steel2Culvert34Steel3Monitor Well2Steel4Monitor Well Foundation2Concrete8Black Forest Adit1Gate1Gate183Steel2Pallets64Wood3Steel, Misc., Lift28Steel4Fence30Steel5East Portal Entrance - Culvert51Steel6Monitor Well Foundation2Concrete7Monitor Well Foundation2Steel	2	Portal Steel	203	Steel
4Power Cable2Steel1Telephone Poles21Wood2Power Cable7Copper + Ins3Steel, Misc.38Steel4Portal Walls, Sheet Steel25Steel5Portal Walls, Timber133Wood1Portal Steel27Steel2Culvert34Steel3Monitor Well2Steel4Monitor Well2Steel5Pallets64Wood3Steel, Misc., Lift28Steel4Fence30Steel5East Portal Entrance - Culvert51Steel6Monitor Well Foundation2Concrete	3	Telephone Poles	16	Steel
1Telephone Poles21Wood2Power Cable7Copper + Ins3Steel, Misc.38Steel4Portal Walls, Sheet Steel25Steel5Portal Walls, Timber133Wood1Portal Steel27Steel2Culvert34Steel3Monitor Well2Steel4Monitor Well Foundation2Concrete8Black Forest Adit1Gate1Gate183Steel2Pallets64Wood3Steel, Misc., Lift28Steel4Fence30Steel5East Portal Entrance - Culvert51Steel6Monitor Well2Steel7Monitor Well Foundation2Concrete	4	-	2	Steel
1Telephone Poles21Wood2Power Cable7Copper + Ins3Steel, Misc.38Steel4Portal Walls, Sheet Steel25Steel5Portal Walls, Timber133Wood1Portal Steel27Steel2Culvert34Steel3Monitor Well2Steel4Monitor Well Foundation2Concrete8Black Forest Adit1Gate1Gate183Steel2Pallets64Wood3Steel, Misc., Lift28Steel4Fence30Steel5East Portal Entrance - Culvert51Steel6Monitor Well2Steel7Monitor Well Foundation2Concrete		Sunshine Adit		
2Power Cable7Copper + Ins3Steel, Misc.38Steel4Portal Walls, Sheet Steel25Steel5Portal Walls, Timber133Wood1Portal Steel27Steel2Culvert34Steel3Monitor Well2Steel4Monitor Well Foundation2Concrete8Black Forest Adit1Gate1831Gate183Steel2Pallets64Wood3Steel, Misc., Lift28Steel4Fence30Steel5East Portal Entrance - Culvert51Steel6Monitor Well Foundation2Concrete7Monitor Well Foundation2Concrete	1		21	Wood
3Steel, Misc.38Steel4Portal Walls, Sheet Steel25Steel5Portal Walls, Timber133Wood1Portal Steel27Steel2Culvert34Steel3Monitor Well2Steel4Monitor Well Foundation2Concrete8Black Forest Adit	2	•	7	Copper + Ins
5Portal Walls, Timber133Wood1Pierce Adit1Portal Steel27Steel2Culvert34Steel3Monitor Well2Steel4Monitor Well Foundation2ConcreteBlack Forest Adit1Gate183Steel2Pallets64Wood3Steel, Misc., Lift28Steel4Fence30Steel5East Portal Entrance - Culvert51Steel6Monitor Well Foundation2Concrete	3	Steel, Misc.	38	
Pierce Adit27Steel1Portal Steel27Steel2Culvert34Steel3Monitor Well2Steel4Monitor Well Foundation2ConcreteBlack Forest Adit	4	Portal Walls, Sheet Steel	25	Steel
1Portal Steel27Steel2Culvert34Steel3Monitor Well2Steel4Monitor Well Foundation2Concrete8Black Forest Adit	5	Portal Walls, Timber	133	Wood
2Culvert34Steel3Monitor Well2Steel4Monitor Well Foundation2Concrete8Black Forest Adit1Gate183Steel2Pallets64Wood3Steel, Misc., Lift28Steel4Fence30Steel5East Portal Entrance - Culvert51Steel6Monitor Well2Steel7Monitor Well Foundation2Concrete		Pierce Adit		
3Monitor Well2Steel4Monitor Well Foundation2ConcreteBlack Forest Adit2Steel1Gate183Steel2Pallets64Wood3Steel, Misc., Lift28Steel4Fence30Steel5East Portal Entrance - Culvert51Steel6Monitor Well2Steel7Monitor Well Foundation2Concrete	1	Portal Steel	27	Steel
4Monitor Well Foundation2ConcreteBlack Forest Adit	2	Culvert	34	Steel
Black Forest Adit1Gate183Steel1Gate183Steel2Pallets64Wood3Steel, Misc., Lift28Steel4Fence30Steel5East Portal Entrance - Culvert51Steel6Monitor Well2Steel7Monitor Well Foundation2Concrete	3	Monitor Well	2	Steel
1Gate183Steel2Pallets64Wood3Steel, Misc., Lift28Steel4Fence30Steel5East Portal Entrance - Culvert51Steel6Monitor Well2Steel7Monitor Well Foundation2Concrete	4	Monitor Well Foundation	2	Concrete
1Gate183Steel2Pallets64Wood3Steel, Misc., Lift28Steel4Fence30Steel5East Portal Entrance - Culvert51Steel6Monitor Well2Steel7Monitor Well Foundation2Concrete		Black Forest Adit		
2Pallets64Wood3Steel, Misc., Lift28Steel4Fence30Steel5East Portal Entrance - Culvert51Steel6Monitor Well2Steel7Monitor Well Foundation2Concrete	1		183	Steel
4Fence30Steel5East Portal Entrance - Culvert51Steel6Monitor Well2Steel7Monitor Well Foundation2Concrete	2	Pallets		Wood
4Fence30Steel5East Portal Entrance - Culvert51Steel6Monitor Well2Steel7Monitor Well Foundation2Concrete	3	Steel, Misc., Lift	28	Steel
6 Monitor Well 2 Steel 7 Monitor Well Foundation 2 Concrete	4	Fence	30	Steel
7 Monitor Well Foundation 2 Concrete	5	East Portal Entrance - Culvert	51	Steel
	6	Monitor Well	2	Steel
Total 4.076	7	Monitor Well Foundation	2	Concrete
		Total	4 076	

Attachment F – Minnesota Adit Disposal Inventory

_			New Waste Treatment Plant
	Item	Trucked Placement Volume (cu.ft.)	Description
1	Building, Steel Frame	5,760	Steel - Structural + Siding
2	Building, Concrete Foundation	5,760	Concrete
3	Fan + Frame	180	Steel
4	Fan Duct	53	Steel
5	Liner, PVC	179	PVC-Plastic
6	Mix Tanks, Tall	848	Fiberglass
7	Mix Tanks, Short	157	Fiberglass
8	Pump Shed	160	Wood
9	Power Center (5 Poles)	26	Wood
10	Portal Timbers (incl. lagging)	300	Wood
11	Pipe, Misc.	40	PVC-Plastic
12	Power Box	7	Steel
13	RO Units	720	Steel + PVC
14	Clarifiers	1,008	Steel
15	Clarifier stairs	450	Steel
16	Tanks	2,651	Fiberglass
17	Tanks, Clear Water	353	Fiberglass
18	Tank, Plastic - Potable Water	79	Plastic
19	Rock, Dirt and Debris	1,089	Rock
20	Pipe, PVC	1	Plastic
	Total	19,822	

			Valley Floor Sites (1 of 2)
	Items	Trucked Placement Volume (cu.ft.)	Description
	Valley Creek Pipe		
1	Pipe, PVC	4,665	PVC
2	Electric Cable	58	Copper + Ins
3	Electrical Panel	7	Steel
4	Power Boxes	13	Steel
	Sump 4		
1	Power Panel	16	Steel
2	Sump	30	Steel
	Office Trailer		
1	Trailer	871	Steel Siding + Wood
	Substation		
1	Building	403	Steel + Wood
2	Foundation, Concrete	720	Concrete
3	Step, Concrete	7	Concrete
4	Transformer	432	Steel
5	Transformer Pad, Concrete	96	Concrete
6	Electrical Apparatus	216	Steel
7	Wall, Concrete	60	Concrete
8	Fence	363	Steel
	Ore Sorter Area		
1	Electrical Boxes	48	Steel + Wood
2	Electrical Boxes	16	Steel + Wood
3	Electrical Box Support	160	Steel + Wood
4	Scale Posts	2	Steel
5	Pipe, PVC	682	PVC
6	Culverts	424	Steel
7	Culvert Scrap	4,158	Steel
8	Elbow, Vent	79	Steel
	Subtotal (1 of 2)	13,526	

			Valley Floor Sites (2 of 2)
	Items	Trucked Placement Volume (cu.ft.)	Description
	Creek Head Gate		
1	Pipe, Creek Discharge Pipe	754	Steel
2	Gate, Creek Discharge Pipe	13	Steel
3	Gate Mounting, Creek Discharge Pipe	64	Steel
4	Control Panel	13	Wood + Steel
5	Control Panel Foundation	24	Concrete
6	Concrete, Dam Wall	900	Concrete
	Old Emergency Storage Pond		
1	Power Poles	105	Wood
2	Electrical Box	13	Steel
3	Electrical Cable	9	Copper + Ins
4	Monitor Well	2	Steel
5	Monitor Well Foundation	2	Concrete
6	Sump	15	Steel
	Entry Gate Area		
1	Gate	30	Steel
2	Gate Posts	8	Concrete
3	Stairs, Metal - BPL	54	Steel
4	Monitor Well	2	Steel
5	Monitor Well Foundation	2	Concrete
6	Monitor Well	1	Steel
7	Monitor Well Foundation	2	Concrete
8	Creek Sump	81	Steel
9	Old Sumps	151	Steel
10	Electric Panel Skids	192	Steel
11 12	Concrete Sump - Walls Concrete Sump - Floor	50 144	Concrete Concrete
12		144	
I	Subtotal (2 of 2)	2,630	
	Total	16,156	

ATTACHMENT G

ENGINEERING ANALYTICS, INC. DESIGN CALCULATIONS

February 23, 2017

Project No: 110385

Mr. Robert Noren, P.E. Cotter Corporation (N.S.L.) P.O. Box 1750 Cañon City, CO 81212

Subject: Responses to CDRMS Comments Schwartzwalder Mine DRMS File No. M-1977-300; Technical Revision (TR-23) Jefferson County, Colorado

Dear Mr. Noren:

Engineering Analytics was tasked to provide responses to comments 6 and 18 in the Colorado Division of Reclamation, Mining and Safety (CDRMS) letter dated July 20, 2016 (Adequacy Review #1) and comment 6 from CDRMS' August 2, 2016 letter (Adequacy Review #2). This work is being provided as a follow up to Engineering Analytics' (EA) submittal for Technical Revision 23 to Mining Permit M-1977-300 dated December 28, 2015. We offer the following comments.

1. Adequacy Review #1, Comment # 6: "Please describe how the Operator will place and compact 4 – 6 inches of topsoil on the tops and sides of the WRPs. In addition, clarify if the 4,300 cubic yard estimate of required topsoil accounts for compaction."

Response: The 4,300 cubic yard estimate was determined assuming 9 inches of topsoil would be placed and track walked to lightly compact it to a final thickness of about 6 inches. In addition to what was presented in TR-23 (EA, 2015), we recommend the following with regard to topsoil placement and revegetation procedures.

Topsoil Placement: The topsoil should be end-dumped on the crest of the slope and graded by dozers. Slopes should be graded to avoid concentrated water flow and subsequent erosion. The "Best Practices in Abandoned Mines Land Reclamation" by the Colorado Division of Minerals and Geology (CDMG, 2002) states that for covers "...that the surface of the final slope should be moderately roughened to help in establishing vegetation, but not so rough as to promote pooling of water.... The potential for erosion can be reduced by creating grooves across the slope (or perpendicular to the slope direction). This can be done easily on the last pass of the heavy equipment using a track vehicle running up and down the slope." They further state that "Ideally, the surface to be vegetated should consist of good uncontaminated soil, moderately roughened to allow the seeds to hold and some moisture to collect. Roughening can simply be the caterpillar tracks of heavy equipment that has been used at the site for regrading." Thus, we recommend track-walking the cover to provide a "dimpled" surface that allows for water infiltration and promotes root growth.

Seeding: The USDA (2005) states that "...*drill seeding is generally limited to slopes less than 3:1.*" Thus, we do not recommend drill seeding due this recommendation along with safety concerns related to placing seeding equipment on a 2H:1V slope. In addition, direct seeding requires a vertical alignment of the seeder for placement due to the steep nature of the slope and vertically aligning the vegetation can lead to increased surface water flow. We instead recommend broadcast seeding followed by hydromulching. Hydroseeding is not recommended as it is not typically successful in our arid climate.

Mulching: For 2H:1V and steeper slopes, mulch is necessary to keep the seed and topsoil in place. Mulch can also provide shade to the seedlings and help the soil to retain moisture. We recommend Hydromulching with addition of a tackifier. Tackifier is a botanical glue that can also be applied to the slope to prevent erosion. The hydromulch and tackifier should effectively stabilize the surface of the slope. For example, a publication by Munshower titled "Practical Handbook of Disturbed Land Revegetation", states that "...*the slopes were capped with oxidized rock, topsoiled, pitted with large depressions, broadcast seeded, and hydromulched with a tackifier. In the second growing season the slopes had remained stable and erosion was controlled.*"

<u>Soil Amendments:</u> Soil amendments may be required to improve the performance of the vegetation. This could include composted biosolids or manufactured amendments such as Biosol.

2. Adequacy Review #1, Comment # 18: "Appendix D addresses terracing of the WRPs. Cotter's response to Comment No. 4 is contained within Section 7.2 of Appendix E-4. The recommendations within Section 7.2 state a 10 foot wide terrace would be included in the WRP construction. Please clarify how many terraces will be constructed on the expanded WRPs. Also, provide the Division with cross sections showing the terraces on the WRPs or specify where these documents may be found in the permit file."

Response: Section 7.2 of Appendix E-4 (McDermid and Geo-Hydro, 1983) recommends a 10-foot wide terrace to provide an additional factor of safety against slope failure. However, the results of the slope stability analyses presented in the 1983 Cotter Corporation Mine Permit Revision (Cotter, 1983) showed that terraces were not required for stability purposes.

EA collected soil samples from the north and south waste rock piles (WRPs), additional alluvial waste rock source (new waste rock), topsoil source, and colluvium for strength testing to be used in stability analyses. The complete results of the field investigation and laboratory testing are provided in Attachment A. The locations of the test pits are presented on Figure A-1 and a summary of the laboratory testing is provided in Table A-1. Slope stability analyses were performed for the waste rock piles using the laboratory obtained strength values and published strength values for the underlying bedrock. The slope stability analyses are discussed in Attachment B. The stability analyses were used to confirm that benches are not needed for the south WRP. However, benching has been included for the north WRP in order to provide access to the reclaimed area and for utilization in surface water conveyance structures and erosion control. The configurations of the reclaimed waste rock piles are shown on Figures B-2 and B-3. The regrading proposed on Figure B-2 results in 103,700 cubic yards (cy) of additional storage capacity from the current waste rock pile

configurations. The south WRP has a reclaimed slope of 2H:1V. The reclaimed slope for the north WRP has a maximum interbench slope of 2H:1V. The results of the slope stability analyses are discussed in Attachment B and a summary of the factor of safety for the analyses is shown on Table B-2.

3. Adequacy Review #2, Comment # 6: "The Division views the waste rock piles as critical structures as they are designed to keep waste rock out of Ralston Creek. Plates 12 and 13 prepared by McDermid Engr. Assoc. Inc. in February 1983 summarize slope stability analyses results. It appears only the cover stability and the contact with the native ground were analyzed as potential failure surfaces. The various strength parameters used for bedrock, alluvial soils and colluvial soils were obtained from simple soil testing and/or literature data. It does not appear that slope failure surfaces thought (SIC) the waste rock itself were considered as is the current general practice for slope stability. As such it does not appear any strength parameters of the waste rock itself are discussed. Please revisit the slope stability of the waste rock piles and consider potential circular failures that may extend through the waste rock, using the Division's factors of safety in Table 1."

Type of Structure/Consequence of Failure	linimum Factors of Safety for Slope Generalized, Assumed, or Single Test Strength Measurements	Strength Measurements Resulting from Multiple Tests ⁽¹⁾
Non-Critical Structures (e.g., fences) / No imminent danger to human life, minor environmental impact, and minor repair costs if slope fails	1.3 (1.15) ^[2]	1.25 (1.1) ⁽²⁾
<u>Critical Structures</u> (e.g., residences, utilities) / Potential human safety risk, major environmental impact, and major repair costs if slope fails	1.5 (1.3) ^[2]	1.3 (1.15) ⁽²⁾
 (1) The number of tests required depends on the variability (2) Numbers without paren 	red to provide a high degree of confide of the material being tested and the theses apply for analyses using s yses using seismic acceleration condi	extent of the highwall disturbance. tatic conditions and those within

Note: 1) Table provided in Adequacy Review #2

Response: As discussed above, a field investigation and laboratory testing have been completed for use in slope stability analyses. EA has completed stability analyses for the future configurations of the waste rock piles. The results of these analyses are provided in Attachment B. Three failure surfaces are included for each cross-section through both the north and south waste rock piles. The cover stability and the contact with the native ground were analyzed as the surficial and deep failures. In addition, EA analyzed an optimized intermediate failure through the waste rock. The results indicate that the factor of safety meets the minimum 1.5 criteria for static analyses and the minimum 1.3 criteria for pseudo-static analyses.

Limitations

This report has been prepared based upon review of the field investigation, laboratory testing, and our experience. No warranty is made, express or implied. The conclusions presented represent our best judgment based on the information available. Should additional information become available we should be allowed to review that information and modify our conclusions accordingly.

References

- Colorado Division of Minerals and Geology (CDMG). (2002). "Best Practices in Abandoned Mine Land Reclamation: the remediation of past mining activities"
- Colorado Division of Reclamation, Mining, and Safety (CDRMS). (2016). "Schwartzwalder Mine; DRMS File No. M-1977-300; Technical Revision (TR-23)". July 20.
- Colorado Division of Reclamation, Mining, and Safety (CDRMS). (2016). "Schwartzwalder Mine; DRMS File No. M-1977-300; Technical Revision (TR-23)." August 2.
- Cotter Corporation (N.S.L.). (1983). "Mined Land Reclamation Division, Mine Permit, Amended February 1983, Approved by Division July 27, 1983."
- Engineering Analytics, Inc. (2015) "Disposal of Alluvial Fill Source Term Materials Schwartzwalder Mine Site; Technical Revision 23, Mining Permit M-1977-300, Schwartzwalder Mine, Jefferson County, CO." December 28.
- McDermid Engineering Associates, Inc. and Geo-Hydro Consulting, Inc. (1983). "Responses to the State of Colorado Mined Land Reclamation Division Comments on Waste Pile, Related Portions of Permit Amendment Application." July.
- Munshower, Fank F. (1994) "Practical Handbook of Disturbed Land Revegetation" Reclamation Research Unit, Montana State University. Bozeman, Montana. Lewis Publishers.
- U.S. Department of Agriculture (USDA). (2005) "Technical Notes, Natural Resources Conservation Service, Plant Materials -6. Seedbed Preparation and Seed Soil Contact." Spokane, Washington. Dated: February.

Very truly yours, Engineering Analytics, Inc.

Daniel D. Overton, P.E.

Attachments:

Attachment A Attachment B Field Investigation and Laboratory Testing Slope Stability Analyses

ATTACHMENT A FIELD INVESTIGAITON AND LABORATORY TESTING

TABLE OF CONTENTS

1.0	TEST PIT FIELD INVESTIGATION	1
2.0	LABORATORY TESTING	1

LIST OF TABLES AND FIGURES

Table A-1	Summary of Laboratory Test Results
	Summary of Laboratory Test Results

Figure A-1 Test Pit Locations

LIST OF APPENDICES

- Appendix A Test Pit Logs and Photographs
- Appendix B Laboratory Testing Results

1.0 TEST PIT FIELD INVESTIGATION

Engineering Analytics conducted a field investigation that included excavation of seven test pits at the Schwartzwalder Mine Site. The location of test pits is shown on Figure A-1. Test pit EA-TP1 was excavated in the alluvial material that will constitute the new waste rock to be placed on the existing piles. Test pits EA-TP2, EA-TP3, EA-TP5, and EA-TP6 were excavated in the existing waste rock piles. Test pit EA-TP4 was excavated in the colluvial material and EA-TP7 was excavated in the proposed topsoil material. Test pits EA-TP1 through EA-TP6 were excavated with a CAT 330C excavator operated by Kessler Reclamation personnel. Personnel from EA supervised the excavation and logged the materials encountered in the test pits. Test pit EA-TP7 was excavated with a shovel.

Test pits EA-TP1 through EA-TP6 were excavated to a depth of 3 feet where a bulk bucket sample was retrieved with a shovel, by EA, from the spoils pile. The test pits were then excavated to a depth of 5 feet where another bulk bucket sample was retrieved from the spoils pile. Laboratory testing was performed on the bulk samples to measure geotechnical engineering properties of the subsurface materials. The test pit logs and photographs of the test pit excavations are included in Appendix A to this attachment. Following excavation the test pits were backfilled with the spoils.

Test pit EA-TP7 was excavated in the topsoil material. This material was taken by EA, with a shovel, from ground surface in the location shown on Figure A-1. Another sample was taken by Cotter Corporation at a later date to obtain additional material for laboratory testing. The test pit log is included in Appendix A to this attachment.

2.0 LABORATORY TESTING

Laboratory testing was conducted on selected samples obtained from the test pits to determine geotechnical engineering properties of the materials. Laboratory testing included measurements of in-place water content, Atterberg limits, and grain size analyses. Large scale direct shear testing was also performed. The direct shear testing was performed by Advanced Terra Testing of Lakewood, Colorado. The remainder of the laboratory testing was performed by EA's lab in Fort Collins, Colorado. The laboratory test results are included in Appendix B to this attachment and are summarized in Table A-1.

<u>Water Content</u>: Measurements of water content were conducted on each bulk sample in accordance with ASTM test methods D2216. The values of water content ranged from 4.2 to 9.3 percent for the waste rock, alluvial, and colluvial material. The water content was 1.8 percent for the topsoil.

<u>Grain Size</u>: The particle size distribution was determined on each bulk sample in general accordance with ASTM D4318. The particle size distribution reports are included in Appendix B. The measured value of percent passing the #200 mesh sieve was 8.4 percent for the alluvial material, 15.2 percent for the colluvial material, ranged from 8.0 to 34.7 for the waste rock, and was 11.7 percent for the topsoil.

<u>Atterberg Limits</u>: Atterberg limits were determined on each bulk sample in accordance with ASTM test method D4318. Using the results of the grain size analyses and the Atterberg limits the samples can be classified according to the USCS classification. For the waste rock the top of south pile (EA-TP2) was classified as a clayey sand. The other waste rock samples were classified as silty/clayey gravel or poorly graded gravel with silt. The alluvial material was classified as poorly graded gravel with clay and the colluvial material was classified as clayey gravel. The topsoil was classified as poorly graded sand with clay.

Large Scale Direct Shear Testing: Large scale internal direct shear testing was completed on each of the bulk samples collected from the site. The direct shear testing was completed with a 12-inch square box in general accordance with ASTM D3080. The peak friction angle for the topsoil was 41.2 degrees, the colluvial material was 51.3 degrees, and the alluvial material was 51.6 degrees. The peak friction angles for the waste rock were measured to be 25.1, 50.9, 52.9, and 54.1 degrees. The peak friction angle of 25.1 degrees was measure on EA-TP2 and as shown with the other testing this sample had significantly more fines than the other samples.

TABLE AND FIGURE

Test Pit Number	Location	Moisture Content (%)	Atterberg Limits LL/PL/PI	% Passing #200 Sieve	USCS Classification	Peak Friction Angle	Peak Cohesion (psf)	Ultimate Friction Angle	Ultimate Cohesion (psf)
EA-TP1	New Waste Rock	5.3	24/19/5	8.4	GP-GC/GM	51.6	917.0	52.5	702.0
EA-TP2	Top of South Pile	7.9	31/18/13	34.7	SC	25.1	633.2	24.2	475.1
EA-TP3	Bottom of South Pile	4.2	26/22/4	15.1	GM	50.9	919.5	50.9	919.5
EA-TP4	Colluvium	9.3	30/22/8	15.2	GC/GM	51.3	(1)	51.4	(1)
EA-TP5	Bottom of North Pile	6.8	22/NP	8.0	GP-GM	52.9	89.5	53.5	(1)
EA-TP6	Top of North Pile	5.5	24/19/5	13.7	GC-GM	54.1	135.5	54.3	72.0
EA-TP7	Topsoil	1.8	28/21/7	11.7	SP-SC/SM	41.2	(1)	41.2	(1)

 Table A-1
 Summary of Laboratory Test Results

Note (1) Data suggest negative intercept therefore no value is reported

Project No. 110385

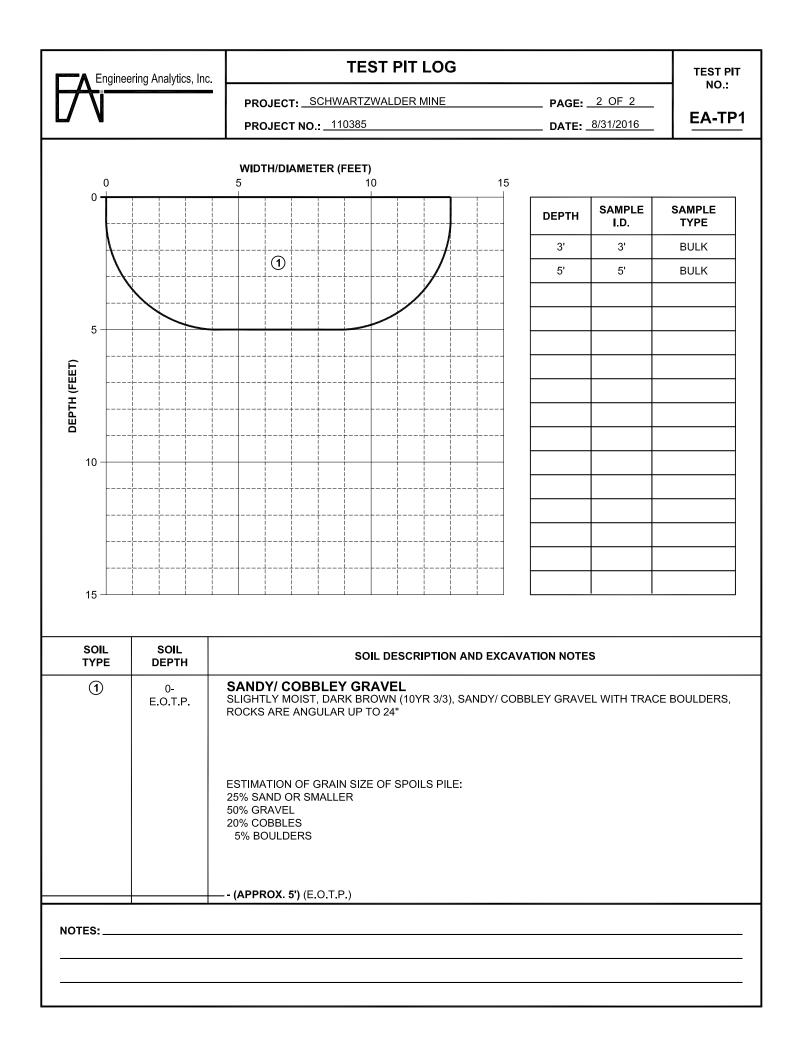


FIGURE A-1 TEST PIT LOCATIONS COTTER SCHWARTZWALDER MINE

APPENDIX A TEST PIT LOGS AND PHOTOGRAPHS

Engineering Analytics, Inc.	TEST PIT LOG				
		PAGE: _1 OF 2	NO.:		
		DATE: <u>8/31/2016</u>	EA-TP1		
PROJECT INFORMATION		TEST PIT LOCATION			
PROJECT: SCHWARTZWALDE	RMINE				
PROJECT NO.: 110385					
CLIENT: COTTER CORP					
OWNER: COTTER CORP					
LOCATION: NEW WASTE ROC	К				
		SEE FIGURE A-1			
FIELD INFORMATION					
DATE & TIME ARRIVED: <u>8/31/2</u>	016 9:20 AM				
TEST PIT LOGGED BY:					
VISITORS: <u>NONE</u>					
WEATHER: <u>SUNNY</u> , 60°s - 80°s					
EXCAVATION INFORMATI	ON				
EXCAVATION COMPANY: KES	SLER RECLAMATION				
START TIME: 9:20 AM					
TEST PIT DEPTH: <u>5'</u>		TEST PIT DIA.: <u>13'</u>			
EXCAVATION METHOD: CAT 3	30C EXCAVATOR				
SAMPLING METHOD:BULK					
TIME EXCAVATION COMPLETE:	9:40 AM				
TEST PIT COMPLETION /	ABANDONMENT INFORMATION	J			
		COMPLETE TIME: <u>9:42 AM</u>			
GROUNDWATER CONDIT	IONS				
NO GROUNDWATER ENCOUN	TERED				
	4				
		TIME LEFT SITE: _ 9:42 AM			
NOTES:					

IMG_2709

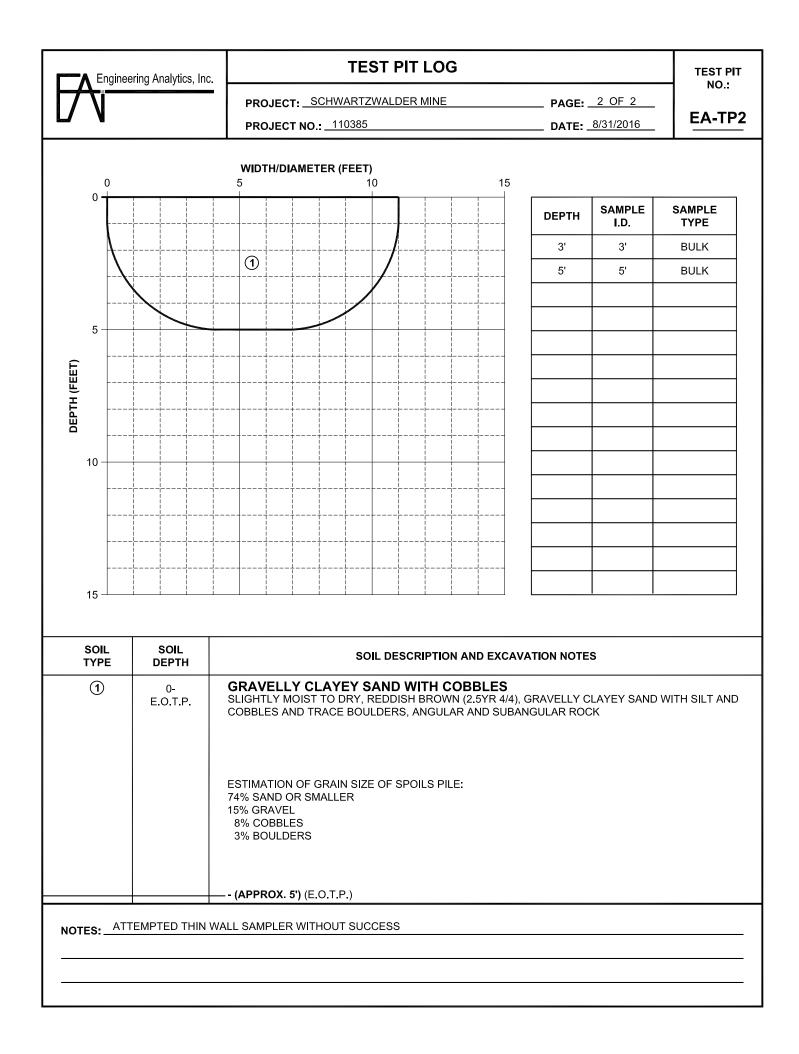
IMG_2710

IMG_2711

IMG_2712

IMG_2713

IMG_2714



IMG_2715

IMG_2716

Engineering Analytics, Inc.	TEST PIT LOG		TEST PIT NO.:
		PAGE: 1 OF 2	
		DATE: <u>8/31/2016</u>	EA-TP2
PROJECT INFORMATION		TEST PIT LOCATION	
PROJECT: SCHWARTZWALDER MINE			
PROJECT NO.:			
CLIENT: COTTER CORP			
OWNER: COTTER CORP			
LOCATION: SOUTH PILE TOP			
		SEE FIGURE A-1	
		1	
	016 10·00 AM		
DATE & TIME ARRIVED: <u>8/31/2016</u> 10:00 AM TEST PIT LOGGED BY: <u>DCG</u>			
VISITORS: <u>NONE</u> WEATHER: <u>SUNNY</u> , 60°s - 80°s			
WEATHER: SUNNY, 60°S - 80°S			
EXCAVATION INFORMATION			
EXCAVATION COMPANY: KESSLER RECLAMATION			
START TIME: 10:05 AM			
TEST PIT DEPTH: <u>5'</u>		TEST PIT DIA.:	
EXCAVATION METHOD: CAT 330C EXCAVATOR			
SAMPLING METHOD:			
TIME EXCAVATION COMPLETE: 10:20 AM			
TEST PIT COMPLETION / ABANDONMENT INFORMATION			
START TIME: 10:20 AM COMPLETE TIME: 10:22 AM			
GROUNDWATER CONDIT	IONS		
NO GROUNDWATER ENCOUN	TERED		
	<		
TIME OF CLEAN-UP COMPLETE:		TIME LEFT SITE: _ 10:22 AM	
NOTES:			

IMG_2717

IMG_2718

IMG_2719

IMG_2720

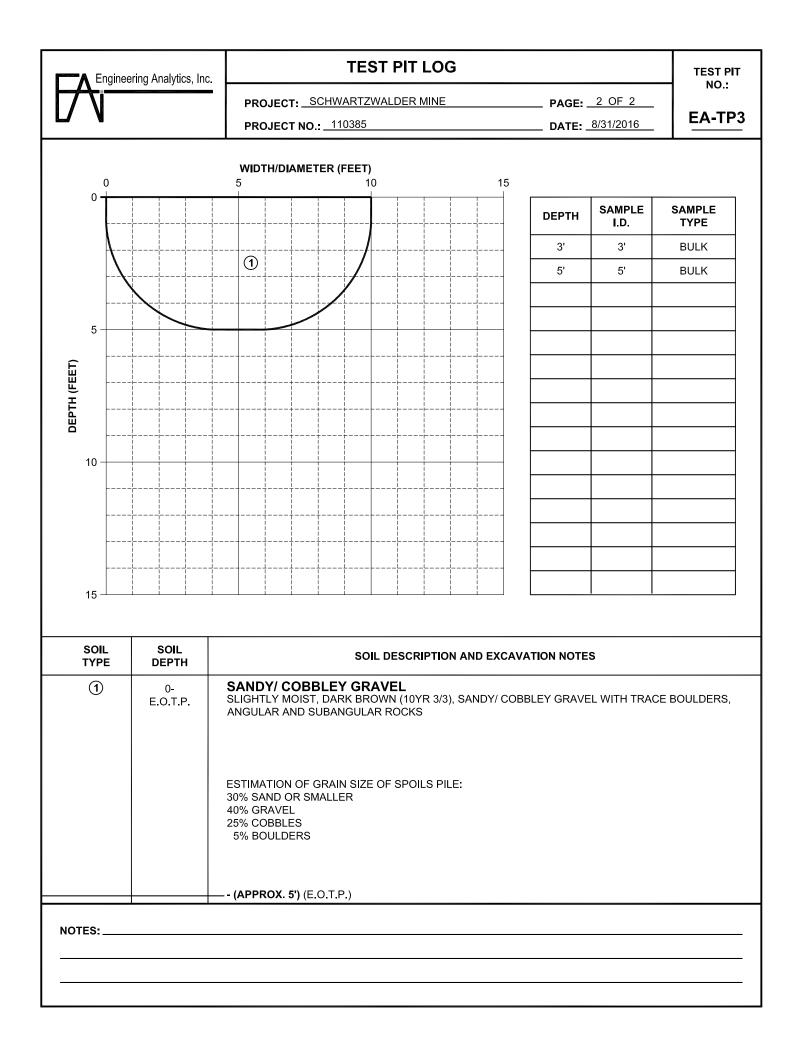
IMG_2721

IMG_2722

IMG_2723

IMG_2724

IMG_2725



IMG_2726

IMG_2734

Engineering Analytics, Inc.	TEST PIT	LOG	TEST PIT NO.:
		PAGE: 1 OF 2	
		DATE: <u>8/31/2016</u>	EA-TP3
PROJECT INFORMATION		TEST PIT LOCATION	
PROJECT:SCHWARTZWALDE	RMINE		
PROJECT NO.: 110385			
CLIENT: COTTER CORP			
OWNER: COTTER CORP			
LOCATION:SOUTH PILE BOTT	ОМ		
		SEE FIGURE A-1	
		1	
	016 10·00 AM		
DATE & TIME ARRIVED: <u>8/31/2</u>			
TEST PIT LOGGED BY:DCG			
VISITORS: NONE			
WEATHER: <u>SUNNY</u> , 60°s - 80°s	;		
EXCAVATION INFORMATI	ON		
EXCAVATION COMPANY: KES	SLER RECLAMATION		
START TIME: 10:30 AM			
TEST PIT DEPTH: <u>5'</u>		TEST PIT DIA.:	
EXCAVATION METHOD: CAT 330C EXCAVATOR			
SAMPLING METHOD:			
TIME EXCAVATION COMPLETE:	10:55 AM		
	ABANDONMENT INFORMATION	J	
		COMPLETE TIME: <u>11:00 AM</u>	
		BACKFILL: 3FOILS	
GROUNDWATER CONDIT	IONS		
NO GROUNDWATER ENCOUN	TERED		
	<		
TIME OF CLEAN-UP COMPLETE	: _ 11:00 AM	TIME LEFT SITE: <u>11:00 AM</u>	
NOTES			
NUTES:			

IMG_2736

IMG_2737

IMG_2738

IMG_2740

IMG_2741

IMG_2742

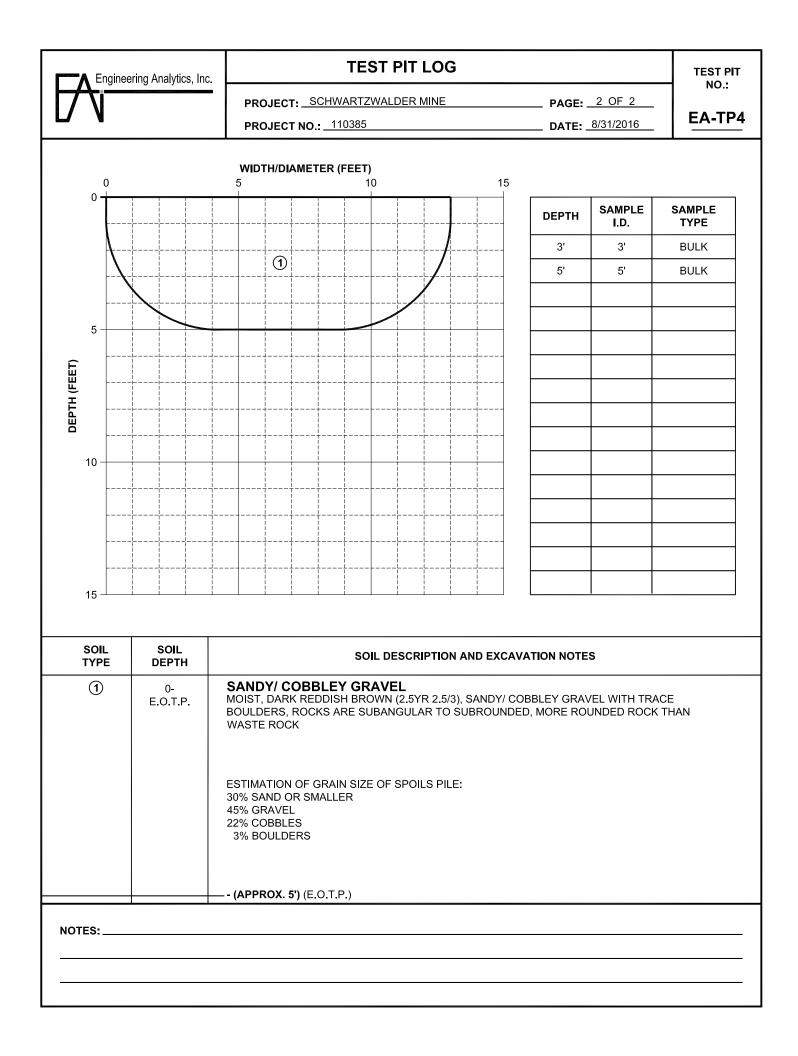
IMG_2743

IMG_2744

IMG_2745


```
IMG_2746
```


IMG_2747



IMG_2748

IMG_2749

Engineering Analytics, Inc.	TEST PIT	LOG	TEST PIT NO.:
		PAGE:1 OF 2	
		DATE: <u>8/31/2016</u>	EA-TP4
PROJECT INFORMATION		TEST PIT LOCATION	
PROJECT:SCHWARTZWALDE	RMINE		
PROJECT NO.: 110385			
CLIENT: COTTER CORP			
OWNER: COTTER CORP			
LOCATION: COLLUVIUM WEST	F OF SOUTH PILE NEAR DRAINAGE		
		SEE FIGURE A-1	
		-	
DATE & TIME ARRIVED: <u>8/31/2</u>			
TEST PIT LOGGED BY:DCG			
VISITORS: NONE			
WEATHER: <u>SUNNY</u> , 60°s - 80°s	<u>.</u>		
EXCAVATION COMPANY: KES			
TEST PIT DEPTH: 5' TEST PIT DIA.: 13' EXCAVATION METHOD: CAT 330C EXCAVATOR 13'			
	SUC EXCAVATOR		
SAMPLING METHOD: <u>BULK</u> TIME EXCAVATION COMPLETE:	11 · 25 ΔΜ		
TEST PIT COMPLETION /	ABANDONMENT INFORMATIO	Ν	
START TIME: <u>11:25 AM</u>		COMPLETE TIME: 11:30 AM	
INSTRUMENTATION: <u>N/A</u>		BACKFILL: SPOILS	
GROUNDWATER CONDIT	IONS		
NO GROUNDWATER ENCOUN	TERED		
	<		
TIME OF CLEAN-UP COMPLETE:		TIME LEFT SITE:11:30 AM	
NOTES:			

IMG_2750

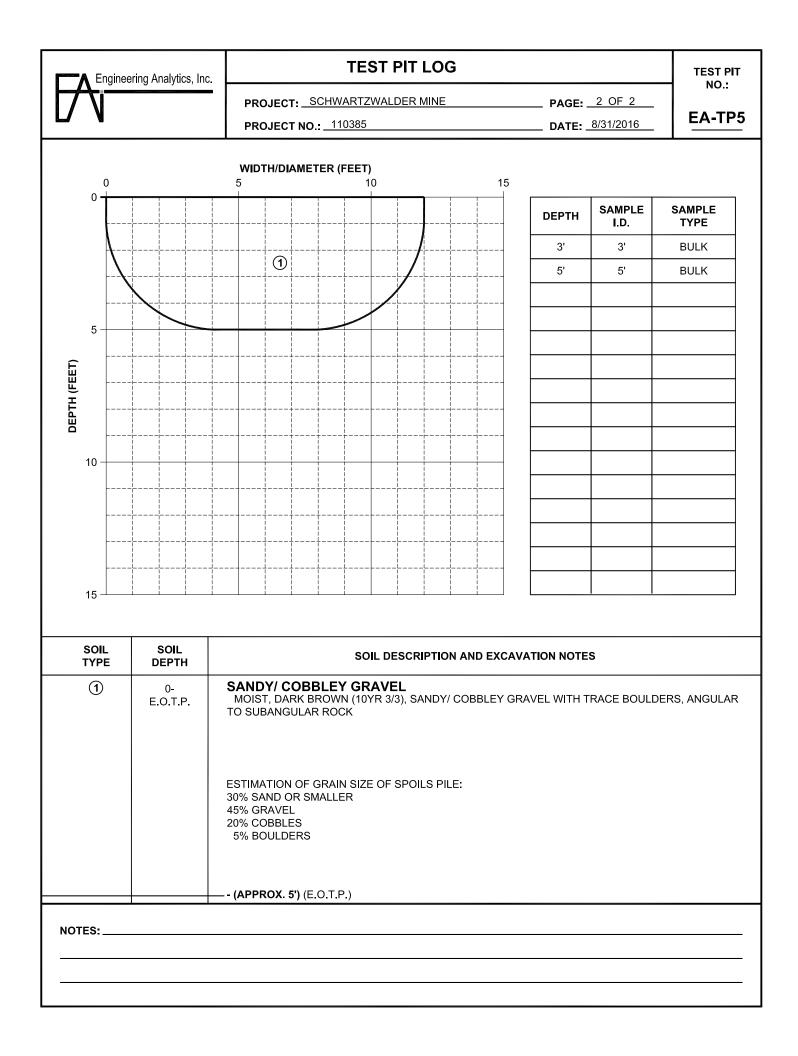
IMG_2751

IMG_2752

IMG_2753

IMG_2754

IMG_2755



IMG_2756

IMG_2757

PAGE: 1.0F.2_ DATE: 50312016 EA-TPS PROJECT INFORMATION PROJECT: SCHWARTZWALDER MINE TEST PIT LOCATION PROJECT: 001TER CORP OWNER: COTTER CORP LOCATION: NORTH-PILE BOTTOM SEE FIGURE A-1 FIELD INFORMATION DATE & TIME ARRIVED: 801/2016 11:30 AM SEE FIGURE A-1 FIELD INFORMATION DATE & TIME ARRIVED: 801/2016 11:30 AM SEE FIGURE A-1 FIELD INFORMATION DATE & TIME ARRIVED: 801/2016 11:30 AM SEE FIGURE A-1 FIELD INFORMATION DATE & TIME ARRIVED: 801/2016 11:30 AM SEE FIGURE A-1 FIELD INFORMATION DATE & TIME ARRIVED: 801/2016 11:30 AM SEE FIGURE A-1 FIELD INFORMATION DATE & TIME ARRIVED: 801/2016 11:30 AM SEE FIGURE A-1 FIELD INFORMATION DATE & TIME ARRIVED: 801/2016 11:30 AM SEE FIGURE A-1 EXCAVATION INFORMATION EXCAVATION INFORMATION EXCAVATION COMPLETE: 11:30 AM SEE FIGURE A-1 EXCAVATION INFORMATION EXCAVATION COMPLETE: 11:30 AM TEST PIT DATE: 11:30 AM TEST PIT COMPLETION / ABANDONMENT INFORMATION START TIME: 11:30 AM SEE FIGURE TIME: 11:30 AM ITME EXCAVATION COMPLETE: 11:45 AM COMPLETE TIME: 11:50 AM INSTRUMENTATION: MIA BACKFILL: SPOLS GROUNDWATER ENCOUNTERED SEE FIGURE TIME: 11:50 AM INO GROUNDWATER ENCONDITIONS INO GROUNDWATER ENCOUNTERED TIME LEFT SIT	Engineering Analytics, Inc.	TEST PIT	LOG	TEST PIT NO.:
PROJECT INFORMATION TEST PIT LOCATION PROJECT INFORMATION TEST PIT LOCATION PROJECT NO.:			PAGE: 1 OF 2	
PROJECT: SCHWARTZWALDER MINE OWNER: COTTER CORP LOCATION: NORTH PILE BOTTOM			DATE: <u>8/31/2016</u>	EA-TP5
PROJECT NO:110395	PROJECT INFORMATION		TEST PIT LOCATION	
CLIENT: COTTER CORP OWNER: COTTER CORP LOCATION: NORTH PILE BOTTOM	PROJECT:SCHWARTZWALDE	RMINE		
OWNER: _COTTER CORP	PROJECT NO.: 110385			
LOCATION: NORTH PILE BOTTOM SEE FIGURE A-1 FIELD INFORMATION DATE & TIME ARRIVED: 8/31/2016 11:30 AM SEE FIGURE A-1 TEST PIT LOGGED BY: DCG DCG VISITORS: NONE WEATHER: SUNNY, 60'S - 80'S WEATHER: SUNNY, 60'S - 80'S SEE FIGURE A-1 EXCAVATION INFORMATION START TIME: 11:30 AM EXCAVATION COMPANY: KESSLER RECLAMATION START TIME: 11:30 AM TEST PIT DEPTH: _5' TEST PIT DIA:: _12' EXCAVATION METHOD: GAT 330C EXCAVATOR SAMPLING METHOD: GAT 330C EXCAVATOR SAMPLING METHOD: BULK TIME EXCAVATION COMPLETE: _11:45 AM TEST PIT COMPLETION / ABANDONMENT INFORMATION START TIME: _11:45 AM INSTRUMENTATION: NA BACKFILL: _SPOILS GROUNDWATER CONDITIONS NO GROUNDWATER ENCOUNTERED NO GROUNDWATER ENCOUNTERED TIME LEFT SITE: _11:50 AM	CLIENT: COTTER CORP			
FIELD INFORMATION DATE & TIME ARRIVED:6/31/201611:30 AM TEST PIT LOGGED BY:DOG VISITORS:NONE WEATHER:SUNNY, 60°s - 80°s EXCAVATION INFORMATION EXCAVATION COMPANY: _KESSLER RECLAMATION START TIME:11:30 AM TEST PIT DEPTH:5'	OWNER: COTTER CORP			
FIELD INFORMATION DATE & TIME ARRIVED: 8/31/2016 11:30 AM TEST PIT LOGGED BY: DCG VISITORS: NONE WEATHER: SUNNY, 60°s - 80°s EXCAVATION INFORMATION EXCAVATION COMPANY: KESSLER RECLAMATION START TIME: 11:30 AM TEST PIT DEPTH: 5' EXCAVATION METHOD: CAT 330C EXCAVATOR SAMPLING METHOD: CAT 330C EXCAVATOR SAMPLING METHOD: BULK TIME EXCAVATION COMPLETE: 11:45 AM TEST PIT COMPLETION / ABANDONMENT INFORMATION START TIME: 11:45 AM INSTRUMENTATION: N/A BACKFILL: SPOILS GROUNDWATER CONDITIONS NO GROUNDWATER ENCOUNTERED FOLLOWING FIELD WORK TIME LEFT SITE: TIME OF CLEAN-UP COMPLETE: 11:50 AM	LOCATION:NORTH PILE BOTT	ОМ		
DATE & TIME ARRIVED:8/31/2016_11:30 AM			SEE FIGURE A-1	
DATE & TIME ARRIVED:8/31/2016_11:30 AM				
TEST PIT LOGGED BY:OCG VISITORS: _NONE WEATHER: _SUNNY, 60°S - 80°S EXCAVATION INFORMATION EXCAVATION COMPANY: _KESSLER RECLAMATION START TIME: _11:30 AM TEST PIT DEPTH: _5'		016 11·30 AM		
VISITORS: _NONE WEATHER: _SUNNY, 60°s - 80°s EXCAVATION INFORMATION EXCAVATION COMPANY: _KESSLER RECLAMATION START TIME: _11:30 AM TEST PIT DEPTH: _5' EXCAVATION METHOD: _CAT 330C EXCAVATOR SAMPLING METHOD: _BULK TIME EXCAVATION COMPLETE: _11:45 AM TEST PIT COMPLETE: _11:45 AM TEST PIT COMPLETE: _11:45 AM COMPLETE TIME: _11:50 AM START TIME: _11:45 AM COMPLETE TIME: _11:50 AM INSTRUMENTATION: _N/A BACKFILL: _SPOILS GROUNDWATER CONDITIONS _NO GROUNDWATER ENCOUNTERED FOLLOWING FIELD WORK TIME of CLEAN-UP COMPLETE: _11:50 AM				
WEATHER: _SUNNY, 60°s - 80°s EXCAVATION INFORMATION EXCAVATION COMPANY: _KESSLER RECLAMATION START TIME: 11:30 AM TEST PIT DEPTH: _5' TEST PIT DEPTH: _5' EXCAVATION METHOD: _CAT 330C EXCAVATOR SAMPLING METHOD: _BULK TIME EXCAVATION COMPLETE: _11:45 AM TEST PIT COMPLETION / ABANDONMENT INFORMATION START TIME: _11:45 AM COMPLETE TIME: _11:50 AM INSTRUMENTATION: _N/A BACKFILL: _SPOILS GROUNDWATER CONDITIONS NO GROUNDWATER ENCOUNTERED FOLLOWING FIELD WORK TIME OF CLEAN-UP COMPLETE: _11:50 AM				
EXCAVATION INFORMATION EXCAVATION COMPANY: KESSLER RECLAMATION START TIME: _11:30 AM TEST PIT DEPTH: _5' TEST PIT DEPTH: _5' EXCAVATION METHOD: _CAT 330C EXCAVATOR SAMPLING METHOD:DULK TIME EXCAVATION COMPLETE: _11:45 AM START TIME: _11:45 AM COMPLETE TIME: _11:50 AM START TIME: _11:45 AM START TIME: _11:45 AM START TIME: _11:45 AM INSTRUMENTATION / ABANDONMENT INFORMATION START TIME: _11:45 AM INSTRUMENTATION:N/A BACKFILL: _SPOILS GROUNDWATER CONDITIONS NO GROUNDWATER ENCOUNTERED FOLLOWING FIELD WORK TIME LEFT SITE: _11:50 AM				
EXCAVATION COMPANY: KESSLER RECLAMATION START TIME: 11:30 AM TEST PIT DEPTH: 5' EXCAVATION METHOD: CAT 330C EXCAVATOR SAMPLING METHOD: BULK TIME EXCAVATION COMPLETE: 11:45 AM TEST PIT COMPLETION / ABANDONMENT INFORMATION START TIME: 11:45 AM COMPLETE 11:45 AM INSTRUMENTATION: N/A BACKFILL: SPOILS GROUNDWATER CONDITIONS NO GROUNDWATER ENCOUNTERED FOLLOWING FIELD WORK TIME OF CLEAN-UP COMPLETE: TIME OF CLEAN-UP COMPLETE: 11:50 AM	WEATHER: SUNNY, 60°S - 80°S	<u> </u>		
START TIME: 11:30 AM TEST PIT DEPTH: _5'	EXCAVATION INFORMATI	ON		
TEST PIT DEPTH: 5' TEST PIT DIA: 12' EXCAVATION METHOD:	EXCAVATION COMPANY: KES	SLER RECLAMATION		
EXCAVATION METHOD: CAT 330C EXCAVATOR SAMPLING METHOD: BULK TIME EXCAVATION COMPLETE: 11:45 AM TEST PIT COMPLETION / ABANDONMENT INFORMATION START TIME: 11:45 AM COMPLETE TIME: 11:50 AM INSTRUMENTATION: N/A BACKFILL: SPOILS FOLLOWING FIELD WORK TIME OF CLEAN-UP COMPLETE: 11:50 AM TIME LEFT SITE:	START TIME: 11:30 AM			
SAMPLING METHOD: _BULK TIME EXCAVATION COMPLETE: _11:45 AM TEST PIT COMPLETION / ABANDONMENT INFORMATION START TIME: _11:45 AM COMPLETE TIME: _11:50 AM INSTRUMENTATION: _N/A BACKFILL: _SPOILS GROUNDWATER CONDITIONS NO GROUNDWATER ENCOUNTERED FOLLOWING FIELD WORK TIME OF CLEAN-UP COMPLETE: _11:50 AM	TEST PIT DEPTH: <u>5'</u>		TEST PIT DIA.: <u>12'</u>	
TIME EXCAVATION COMPLETE:				
TEST PIT COMPLETION / ABANDONMENT INFORMATION START TIME:11:45 AM COMPLETE TIME:11:50 AM INSTRUMENTATION:N/A BACKFILL:SPOILS GROUNDWATER CONDITIONS NO GROUNDWATER ENCOUNTERED FOLLOWING FIELD WORK TIME OF CLEAN-UP COMPLETE:11:50 AM	SAMPLING METHOD:			
START TIME: 11:45 AM INSTRUMENTATION: N/A BACKFILL: SPOILS	TIME EXCAVATION COMPLETE:	11:45 AM		
START TIME: 11:45 AM INSTRUMENTATION: N/A BACKFILL: SPOILS			1	
INSTRUMENTATION:N/A BACKFILL:SPOILS GROUNDWATER CONDITIONS				
GROUNDWATER CONDITIONS NO GROUNDWATER ENCOUNTERED FOLLOWING FIELD WORK TIME OF CLEAN-UP COMPLETE:11:50 AM				
NO GROUNDWATER ENCOUNTERED FOLLOWING FIELD WORK TIME OF CLEAN-UP COMPLETE: 11:50 AM				
FOLLOWING FIELD WORK TIME OF CLEAN-UP COMPLETE:	GROUNDWATER CONDIT	IONS		
TIME OF CLEAN-UP COMPLETE:11:50 AM TIME LEFT SITE:11:50 AM	NO GROUNDWATER ENCOUN	TERED		
TIME OF CLEAN-UP COMPLETE:11:50 AM TIME LEFT SITE:11:50 AM		<		
			TIME LEFT SITE: 11:50 AM	
NOTES:				
	NOTES:			

IMG_2759

IMG_2760

IMG_2761

IMG_2762

IMG_2763

IMG_2764

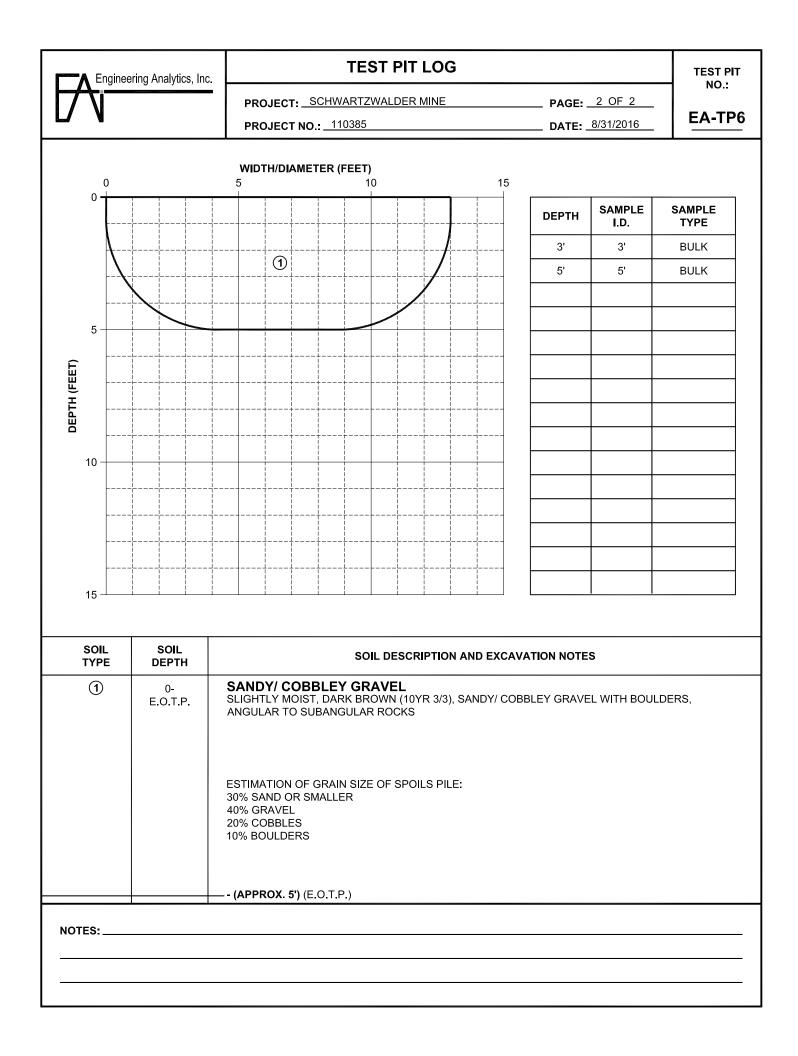
IMG_2765

IMG_2766

IMG_2767

IMG_2768

IMG_2769



IMG_2770

IMG_2784

Engineering Analytics, Inc.	TEST PIT	LOG	TEST PIT NO.:
		PAGE: 1 OF 2	
		DATE: <u>8/31/2016</u>	EA-TP6
PROJECT INFORMATION		TEST PIT LOCATION	
PROJECT: SCHWARTZWALDE	RMINE		
PROJECT NO.: 110385			
CLIENT: COTTER CORP			
OWNER: COTTER CORP			
LOCATION: NORTH PILE TOP			
		SEE FIGURE A-1	
		1	
FIELD INFORMATION DATE & TIME ARRIVED: <u>8/31/2</u>	016 12·00 PM		
TEST PIT LOGGED BY:DCG			
WEATHER:SUNNY, 60°s - 80°s			
EXCAVATION INFORMATI	ON		
EXCAVATION COMPANY: KES	SLER RECLAMATION		
START TIME: <u>12:00 PM</u>			
TEST PIT DEPTH: <u>5'</u>		TEST PIT DIA.:	
EXCAVATION METHOD: CAT 330C EXCAVATOR			
SAMPLING METHOD:			
TIME EXCAVATION COMPLETE:	12:15 PM		
	ABANDONMENT INFORMATION		
INSTRUMENTATION:		BACKFILL:	
GROUNDWATER CONDIT	IONS		
NO GROUNDWATER ENCOUN	TERED		
	(
	12:20 PM		
NOTES:			

IMG_2775

IMG_2776

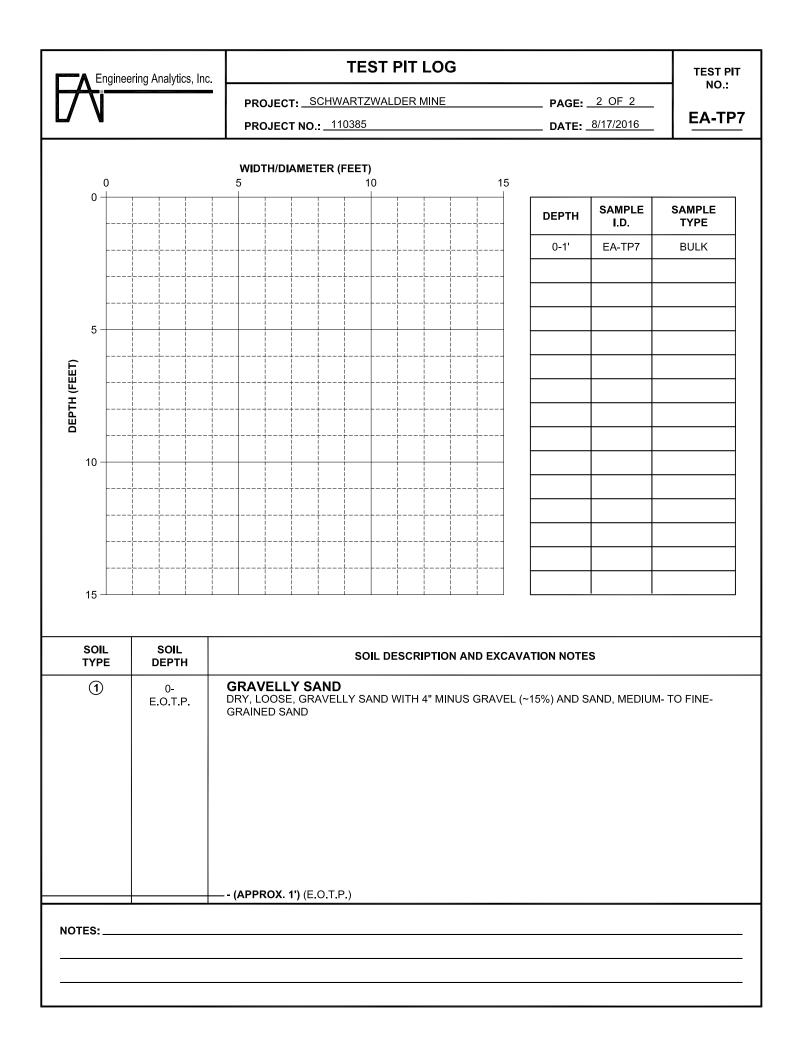
IMG_2777

IMG_2778

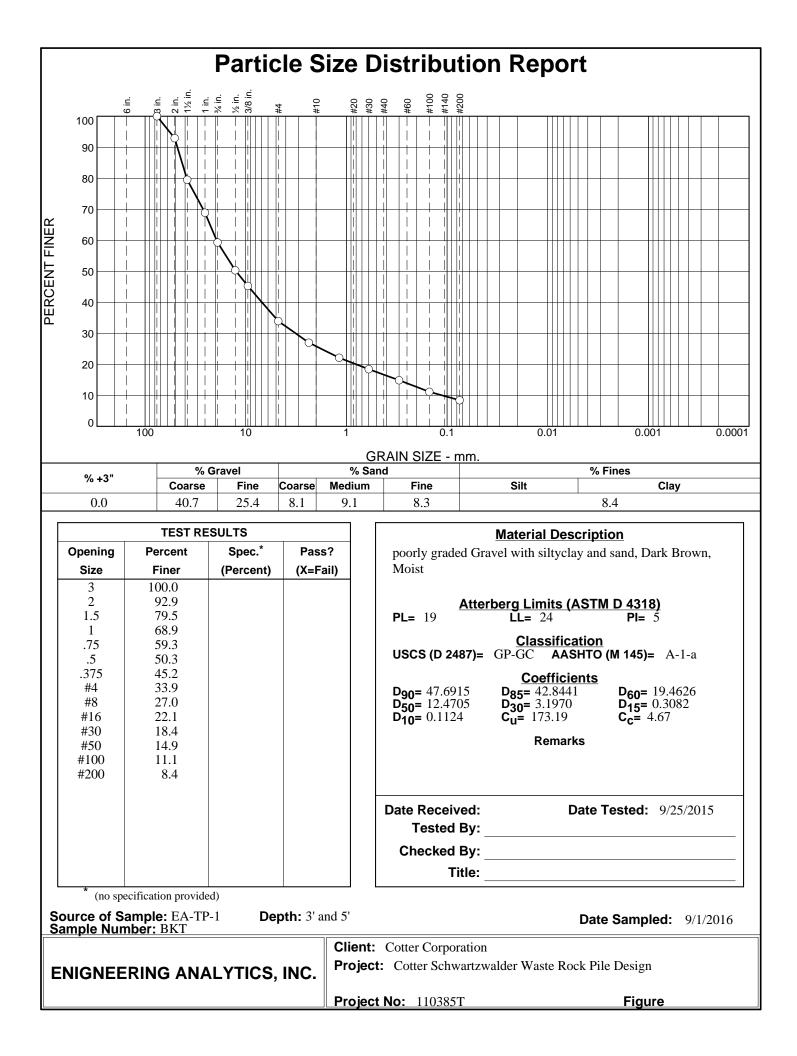
IMG_2779

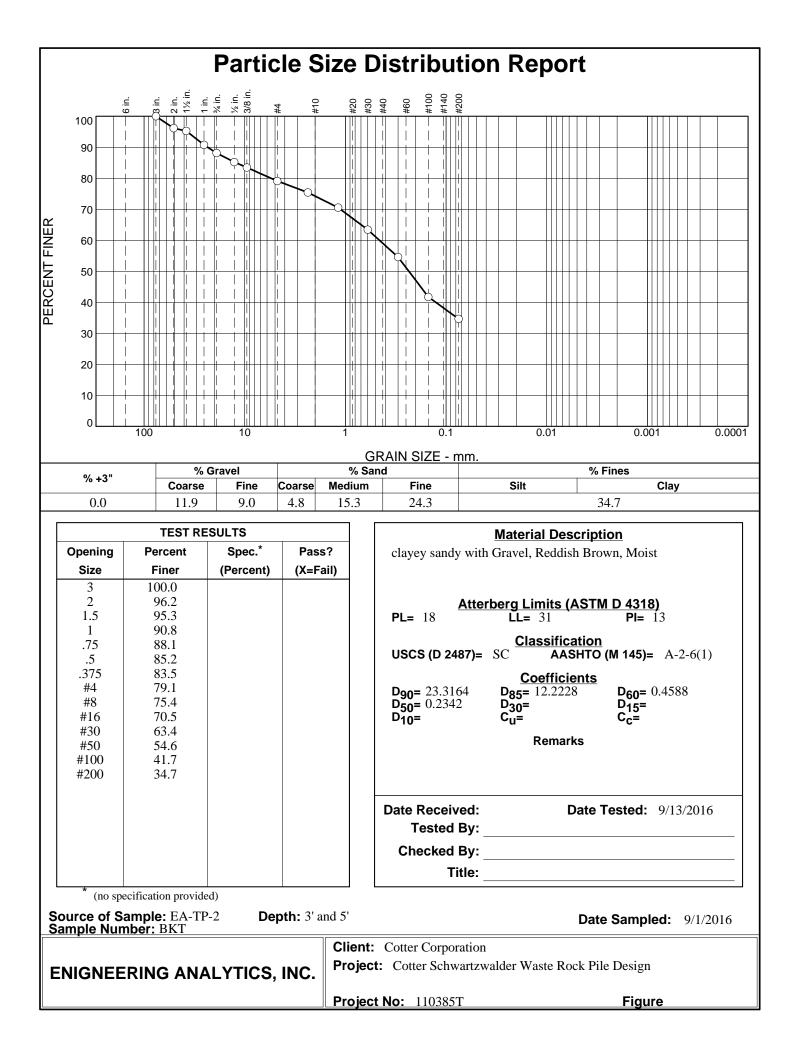
IMG_2780

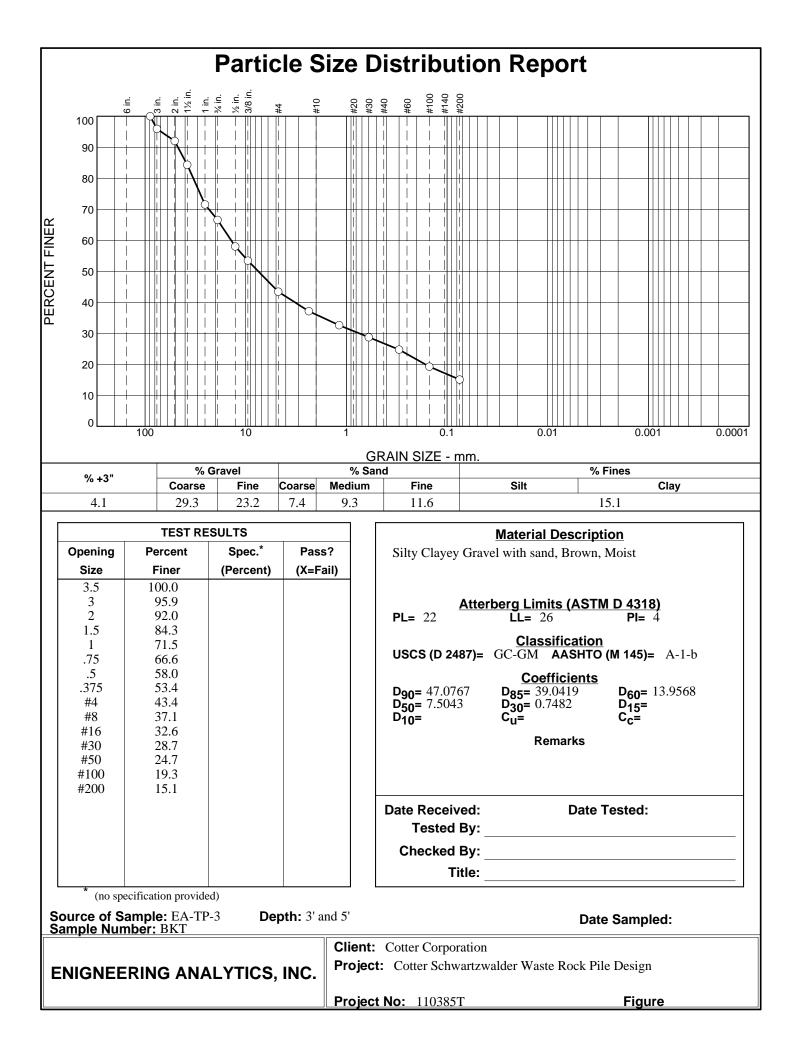
IMG_2781

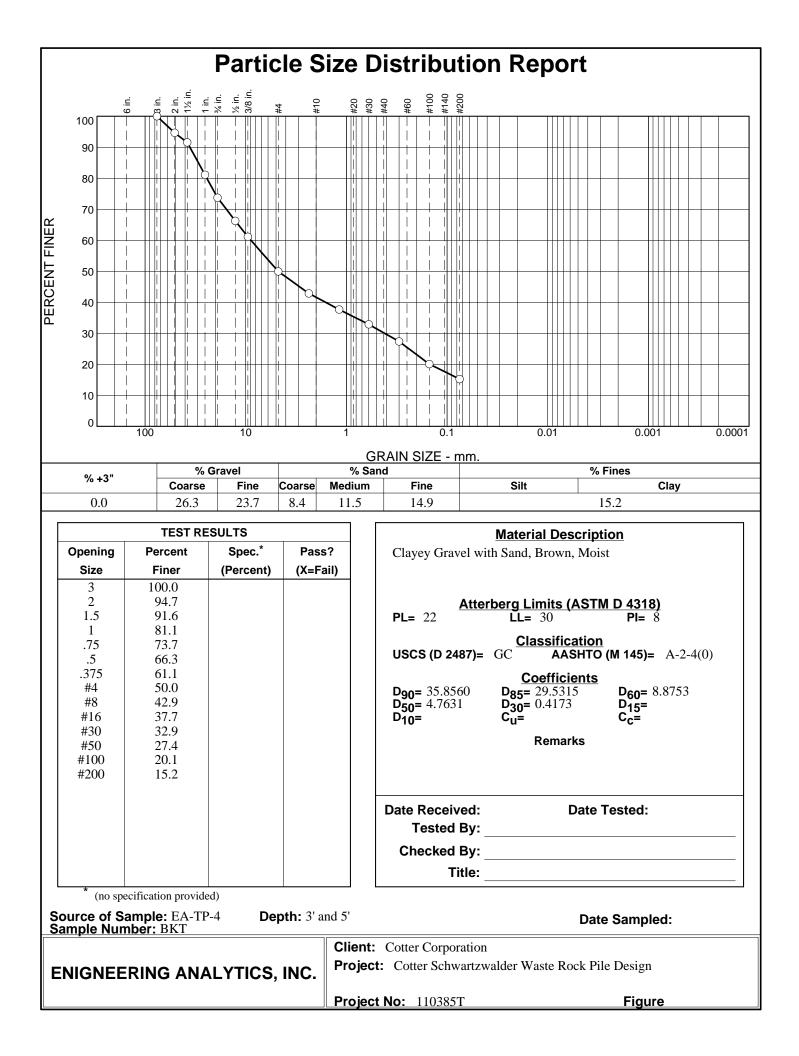


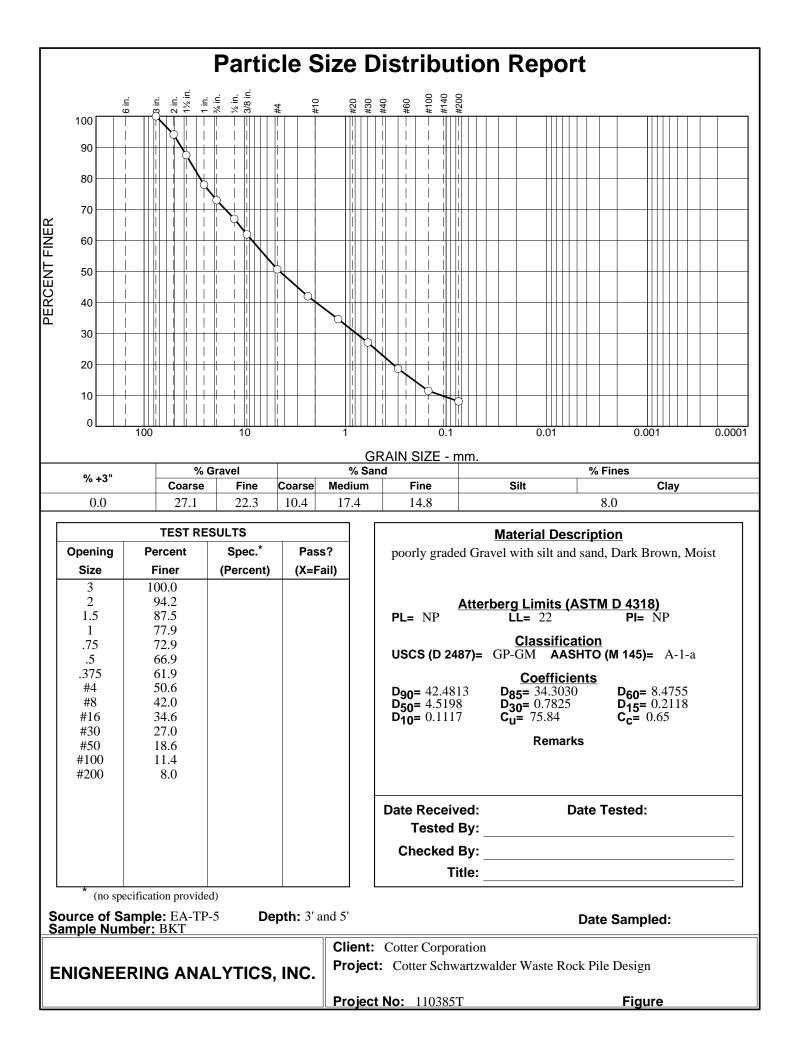
IMG_2782

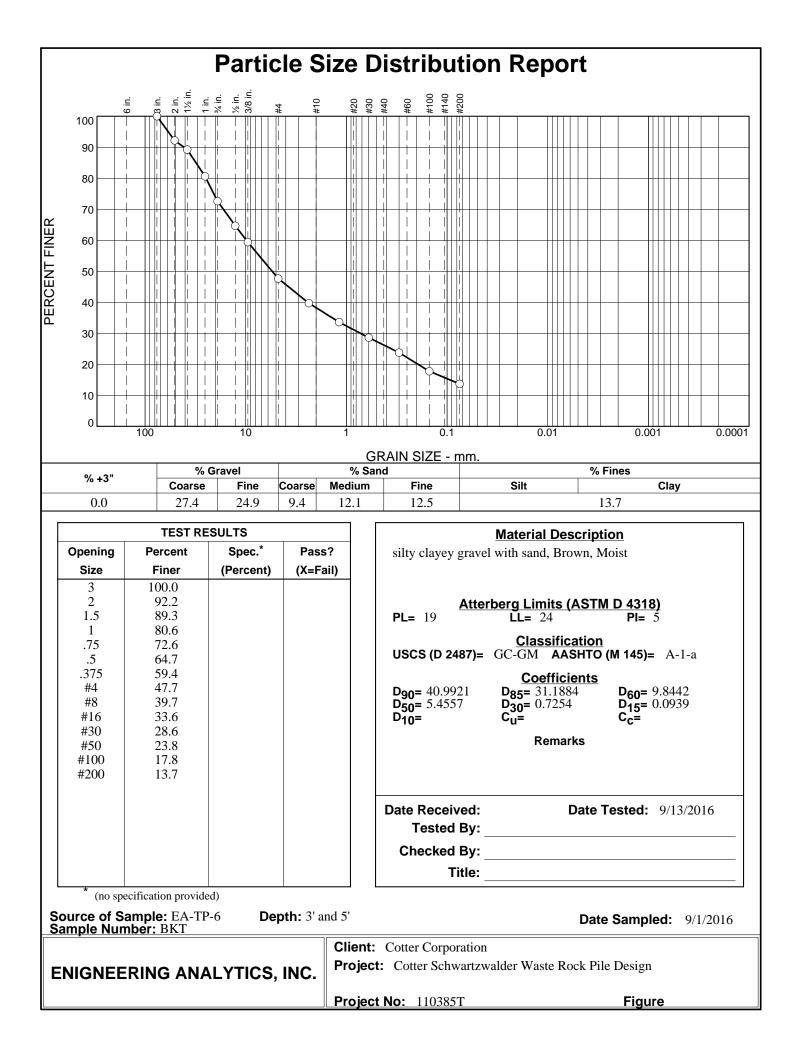

IMG_2783

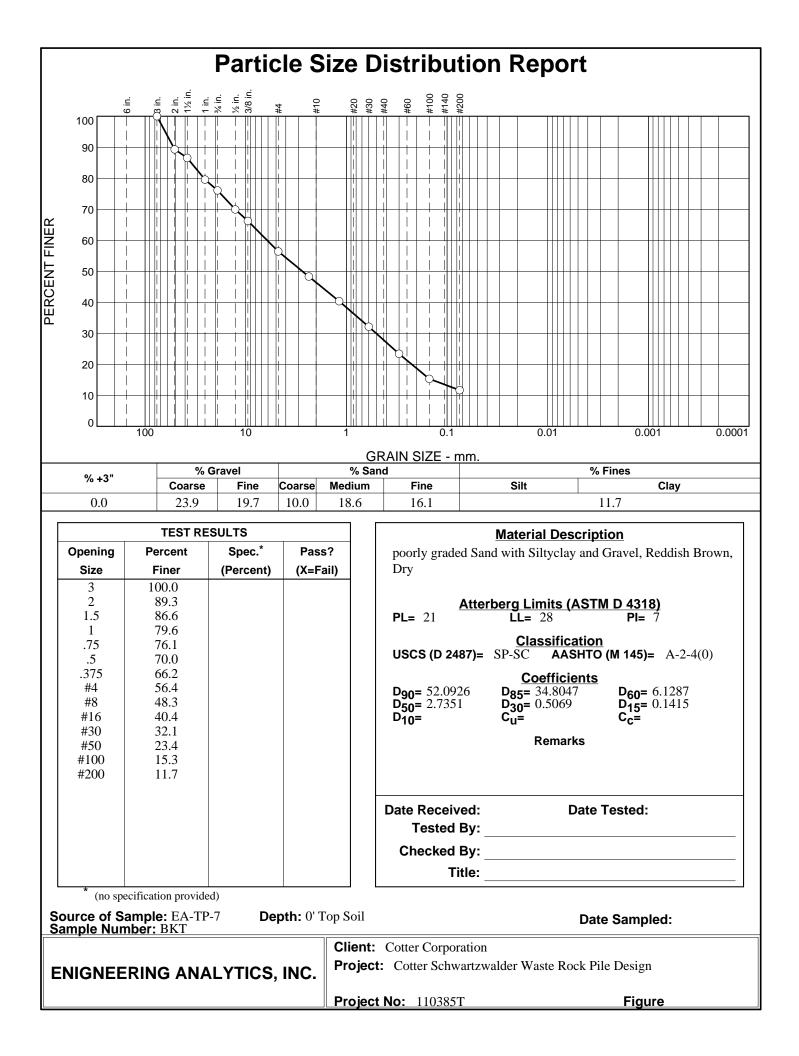

Engineering Analytics, Inc.	TEST PIT	LOG	TEST PIT NO.:
		PAGE: _1 OF 2	
		DATE: <u>8/17/2016</u>	EA-TP7
PROJECT INFORMATION		TEST PIT LOCATION	
PROJECT: SCHWARTZWALDE	RMINE		
PROJECT NO.: 110385			
CLIENT: COTTER CORP			
OWNER: COTTER CORP			
LOCATION:	H OF WATER TREATMENT PLANT		
		SEE FIGURE A-1	
		4	
DATE & TIME ARRIVED: <u>8/17/2</u>			
TEST PIT LOGGED BY:JSA			
VISITORS: BOB TENNANT (CO	TTER)		
WEATHER: <u>SUNNY</u> , 80°s			
EXCAVATION INFORMATI			
EXCAVATION METHOD: <u>HAND SHOVEL</u> SAMPLING METHOD: <u>BULK</u>			
TIME EXCAVATION COMPLETE:	11:00 AM		
TEST PIT COMPLETION / /	ABANDONMENT INFORMATION	Ν	
START TIME: 11:00 AM		COMPLETE TIME: <u>11:00 AM</u>	
INSTRUMENTATION: <u>N/A</u>		BACKFILL: N/A	
GROUNDWATER CONDIT			
NO GROUNDWATER ENCOUN	IERED		
FOLLOWING FIELD WORK	< c		
TIME OF CLEAN-UP COMPLETE: <u>11:00 AM</u>		TIME LEFT SITE: 11:00 AM	
NOTES:			




APPENDIX B LABORATORY TESTING RESULTS


	SUMMARY OF LABORATORY TEST RESULTS									
JOB NAME:	JOB NAME: Cotter Schwartzwalder Waste Rock Pile Design JOB NUMBER: 110385T Date: September-2016									
Depth (ft)	Sample Type	Moisture (%)	Dry Density (pcf)	Atterberg Limits LL / PL / PI *	% Passing #200 Sieve	Grain Size Analysis	Standard Proctor Max γ (pcf) /Opt. w (%	Swell Pressure (psf)	% Swell	Inundation Pressure (psf)
EA-TP1										
3 and 5	BKT	5.3		24 / 19 / 5	8.4	(1)				
EA-TP2										
3 and 5	BKT	7.9		31 / 18 / 13	34.7	(1)				
EA-TP3										
3 and 5	BKT	4.2		26 / 22 / 4	15.1	(1)				
EA-TP4										
3 and 5	BKT	9.3		30 / 22 / 8	15.2	(1)				
EA-TP5										
3 and 5	BKT	6.8		22 / NP / NP	8.0	(1)				
EA-TP6										
3 and 5	BKT	5.5		24 / 19 / 5	13.7	(1)				
EA-TP7										
3 and 5	BKT	1.8		28 / 21 / 7	11.7	(1)				
*LL = Liquid L	imit PL = Pla	astic Limit	PI = Plasticity	Index			(1) See Attached			





Large Scale Internal Direct Shear ASTM D3080 Modified

	Smith Geotechnical Engineering					
Client:	Consultants	Speed Rate (in/min):	0.02	Test Date:	9/15/2016	
Job Number.:	2406-73	Normal Stress 1 (psf):	1440	Technician:	BDF	
Project Number:	110385	Normal Stress 2 (psf):	2880	Data Entered By:	BDF	
Conditions:	Inundated	Normal Stress 3 (psf):	5760	Date:	9/29/2016	
Location:		File Name:	2406_73_largeScaleDire	ectShear-ASTMD3080m-53	21-6243-R0_0.xls	
Project:	Schwartzwalder Mine TR23 Responses	Data Files:	SGTP1DSC.TXT	SGTP1DSA.TXT,	SGTP1DSB.TX	Γ

Displacement (in)	Normal Stress 1 (psf):	Normal Stress 2 (psf):	Normal Stress 3 (psf):			
0.000	0	0	0	Samp	le Informat	ion
0.023	169	470	493		Boring: EA-TP1	
0.097	315	698	1291		Depth: 3-5'	
0.169	418	919	1715	Sample I	Number: Composi	ite
0.245	524	1110	2060		ity (pcf): 111.5	
0.314	614	1350	2319	% N	loisture: 5.3	
0.387	714	1546	2586			
0.457	828	1727	2882			
0.531	910	1878	3137			
0.601	1008	2067	3398			
0.671	1084	2164	3685			
0.739	1182	2365	3893			
0.809	1271	2547	4213			
0.876	1378	2740	4439			
0.945	1452	2927	4701			
1.012	1559	3120	5003			
1.079	1658	3379	5279			
1.144	1743	3553	5548			
1.210	1853	3646	5609			
1.275	1858	3857	5958			
1.339	1939	3962	6084			
1.402	2015	4093	6214			
1.466	2196	4247	6463			
1.530	2075	4413	6566			
1.593	2097	4608	6604			
1.654	2110	4518	6846			
1.715	2171	4692	7004			
1.775	2188	4870	7243		Peak	Ultimate
1.835	2205	5029	7318	Friction Angle	51.6	52.5
1.894	2210	5114	7388	Cohesion (psf)	917.0	702.0
1.953	2166	4994	7550			
2.011	2173	5071	7733		Peak Strength(psf)	Ultimate Strength(psf)
2.070	2146	5121	7869	Normal Stress 1	2210	1995
2.109	1995	5326	7912	Normal Stress 2	5326	5326
				the second s	0	and the second se

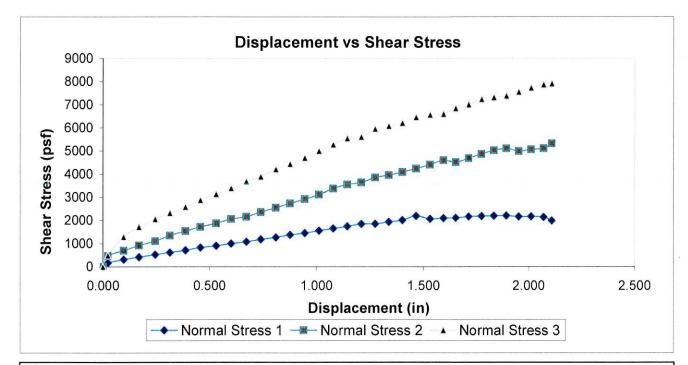
Data Checked By CKP

Date_<u>10/3/16</u>

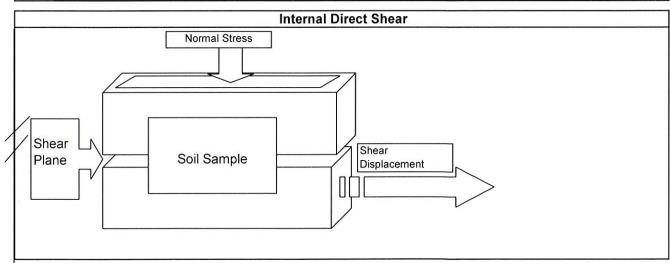
Normal Stress 3

7912

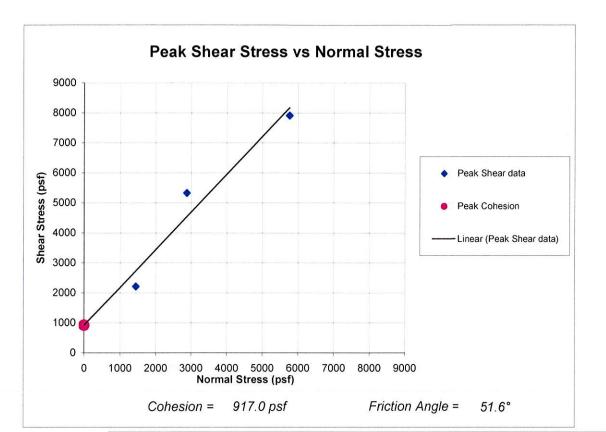
Sample Information

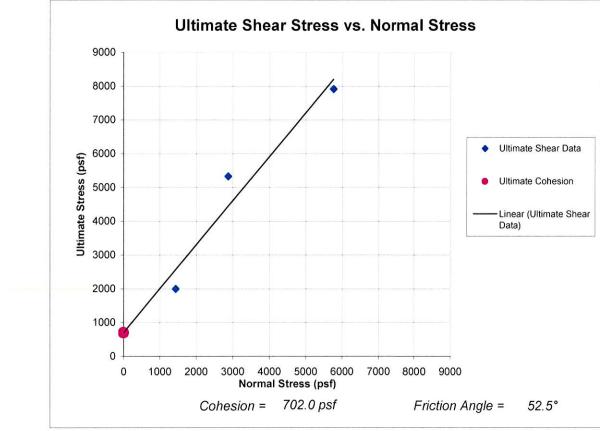

Boring: EA-TP1

Depth: 3-5'


Sample Number: Composite

Dry Density (pcf): 111.5


% Moisture: 5.3



Large Scale Internal Direct Shear ASTM D3080 Modified

	Smith Geotechnical Engineering				
Client:	Consultants	Speed Rate (in/min):	0.02	Test Date:	9/15/2016
Job Number.:	2406-73	Normal Stress 1 (psf):	1440	Technician:	BDF
Project Number:	110385	Normal Stress 2 (psf):	5760	Data Entered By:	BDF
Conditions:	Inundated	Normal Stress 3 (psf):	11520	Date:	9/29/2016
Location:		File Name:	2406_73_largeScaleDire	ectShear-ASTMD3080m-53	21-6243-R0_1.xls
Project:	Schwartzwalder Mine TR23 Responses	Data Files:	SGTP2DSC.TXT	,SGTP2DSB.TXT,	SGTP2DSA.TXT

Displacement (in)	Normal Stress 1 (psf):	Normal Stress 2 (psf):	Normal Stress 3 (psf):	
0.000	0	0	0	Sample Information
0.026	229	484	789	Boring: EA-TP2
0.103	373	1240	1798	Depth: 3-5'
0.180	463	1607	2429	Sample Number: Composite
0.259	529	1974	2972	Dry Density (pcf): 92.9
0.335	586	2276	3375	% Moisture: 7.9
0.411	631	2525	3684	
0.487	672	2702	3928	Note: Material exhibited a significant amount
0.563	710	2853	4164	of consolidation throughout the test.
0.636	747	2978	4355	
0.710	778	3096	4534	
0.784	808	3204	4673	
0.856	836	3315	4853	
0.929	870	3416	5017	
1.001	898	3521	5160	
1.073	919	3622	5299	
1.143	938	3720	5455	
1.213	961	3355	5593	
1.283	984	3283	5719	
1.352	999	3244	5852	
1.419	1017	3217	4046	
1.488	1031	3195	4891	
1.554	1049	3179	5112	
1.622	1059	3164	5248	
1.688	1064	3151	5396	
1.753	1071	3141	5520	
1.817	1082	3131	5618	

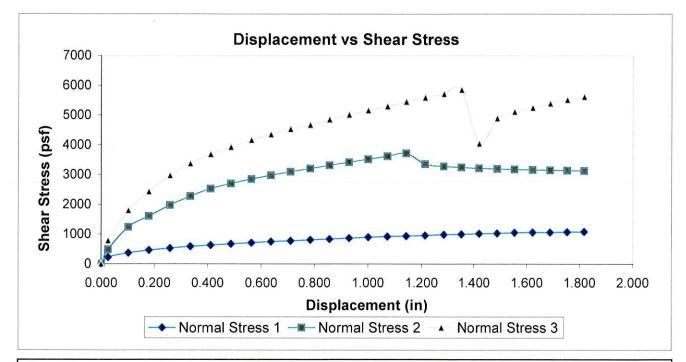
	Peak	Ultimate
Friction Angle	25.1	24.2
Cohesion (psf)	633.2	475.1

	Peak Strength(psf)	Ultimate Strength(psf)
Normal Stress 1	1082	1082
Normal Stress 2	3720	3131
Normal Stress 3	5852	5618

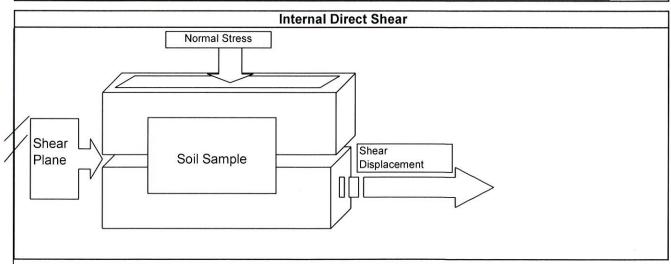
Data Checked By <u>KP</u>

Date<u>10|8/16</u>

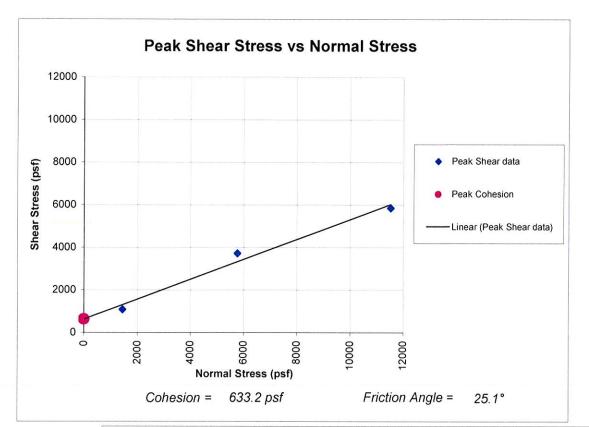
Sample Information

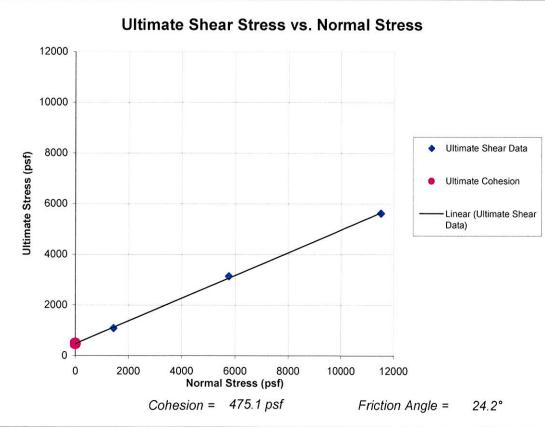

Boring: EA-TP2

Depth: 3-5'


Sample Number: Composite

Dry Density (pcf): 92.9


% Moisture: 7.9



Large Scale Internal Direct Shear ASTM D3080 Modified

	Smith Geotechnical Engineering				*
Client:	Consultants	Speed Rate (in/min):	0.02	Test Date:	9/16/2016
Job Number.:	2406-73	Normal Stress 1 (psf):	1440	Technician:	BDF
Project Number:	110385	Normal Stress 2 (psf):	2880	Data Entered By:	BDF
Conditions:	Inundated	Normal Stress 3 (psf):	5760	Date:	9/29/2016
Location:		File Name:	2406_73_largeScaleDire	ctShear-ASTMD3080m-53	21-6243-R0_2.xls
Project:	Schwartzwalder Mine TR23 Responses	Data Files:	SGTP3DSC.TXT	,SGTP3DSA.TXT,	SGTP3DSB.TXT

Displacement (in)	Normal Stress 1 (psf):	Normal Stress 2 (psf):	Normal Stress 3 (psf):			
0.000	0	0	0	Samp	le Informat	ion
0.017	257	367	734		Boring: EA-TP3	
0.086	473	633	1290		Depth: 3-5'	
0.155	634	832	1702	Sample N	umber: Composi	te
0.226	732	1026	2095	Dry Dens	ity (pcf): 120.3	
0.295	825	1189	2434	% N	loisture: 4.2	
0.365	953	1318	2653			
0.433	1058	1455	2939			
0.502	1154	1617	3242			
0.570	1252	1687	3569			
0.637	1351	1886	3882			
0.702	1446	2019	4136			
0.769	1536	2155	4368			
0.833	1665	2268	4640			
0.898	1806	2394	4904			
0.963	1886	2524	5175			
1.027	1966	2652	5492			
1.089	2075	2789	5804			
1.151	2167	2879	5857			
1.212	2241	2940	5998			
1.275	2363	3010	6159			
1.334	2434	3093	6405			
1.393	2543	3191	6726			
1.453	2573	3327	6918			
1.512	2635	3432	7160			
1.570	2610	3425	7280			
1.627	2774	3427	7456			
1.685	2854	3452	7680		Peak	Ultimate
1.742	2949	3475	7859	Friction Angle	50.9	50.9
1.796	2998	3541	7793	Cohesion (psf)	919.5	919.5
1.853	3018	3624	7928			
1.907	2944	3732	8015		Peak Strength(psf)	Ultimate Strength(psf)
1.964	2990	3815	8069	Normal Stress 1	3023	3023
2.019	3023	3955	8162	Normal Stress 2	3955	3955
				han manager asy	and the second se	A second s

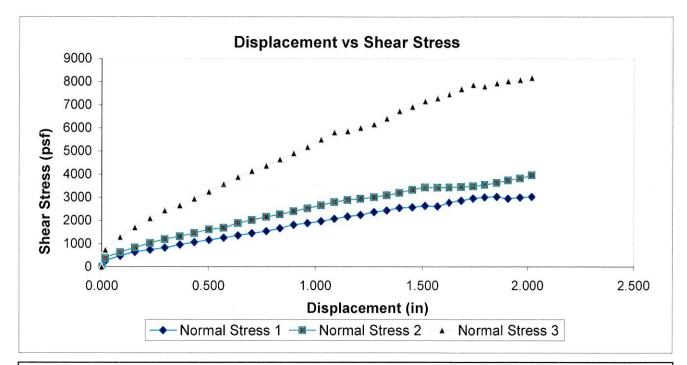
Data Checked By <u>CKP</u>

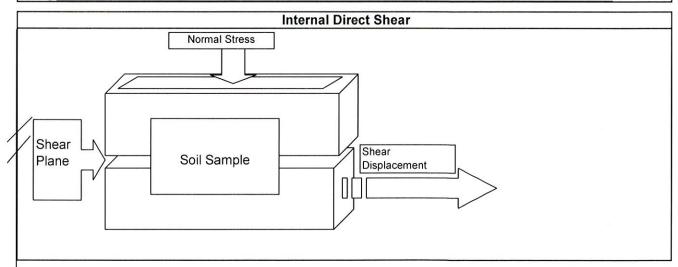
Date 10/3/16

Normal Stress 3

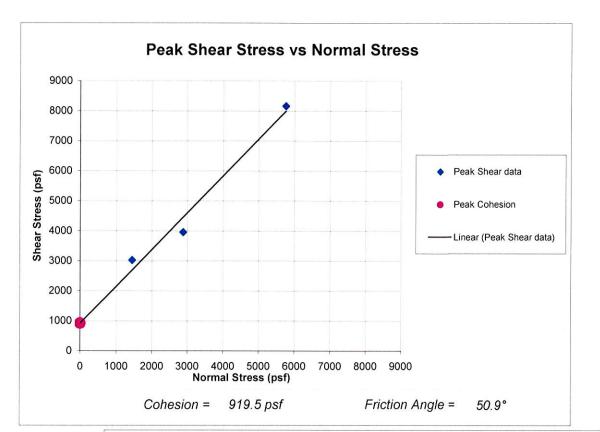
8162

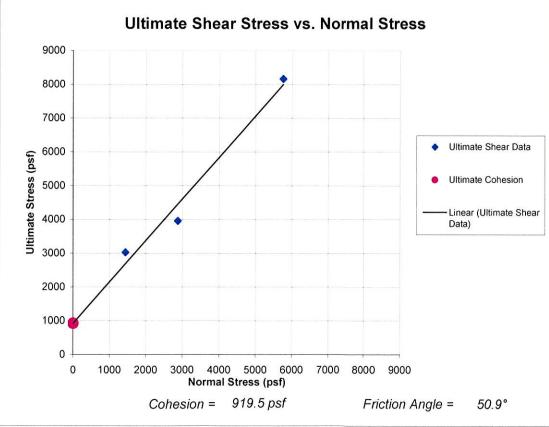
Sample Information


Boring: EA-TP3


Depth: 3-5'

Sample Number: Composite


Dry Density (pcf): 120.3


% Moisture: 4.2

Large Scale Internal Direct Shear ASTM D3080 Modified

	Smith Geotechnical Engineering				
Client:	Consultants	Speed Rate (in/min):	0.02	Test Date:	9/29/2016
Job Number.:	2406-73	Normal Stress 1 (psf):	1440	Technician:	BDF
Project Number:	110385	Normal Stress 2 (psf):	2880	Data Entered By:	BDF
Conditions:	Inundated	Normal Stress 3 (psf):	5760	Date:	10/11/2016
Location:		File Name:	2406_73_largeScaleDire	ctShear-ASTMD3080m-53	21-6243-R0_5 xls
Project:	Schwartzwalder Mine TR23 Responses	Data Files:	SGTP4DSC.TXT	,SGTP4DSB.TXT,	SGTP4DSA.TXT

Displacement (in)	Normal Stress 1 (psf):	Normal Stress 2 (psf):	Normal Stress 3 (psf):			
0.000	0	0	0	Samp	le Informati	on
0.021	176	478	611		Boring: EA-TP4	
0.083	289	709	1098		Depth: 3-5'	
0.149	386	893	1433	Sample N	lumber: Composit	e
0.214	449	1028	1650	Dry Densi	ty (pcf): 115.6	
0.276	547	1136	1919	% M	oisture: 9.3	
0.343	603	1255	2087			
0.405	666	1418	2251			
0.467	724	1521	2490			
0.531	764	1652	2739			
0.592	819	1775	2955			
0.652	864	1891	3233			
0.713	887	2004	3472			
0.773	935	2060	3727			
0.832	970	2250	3963			
0.892	990	2372	4199			
0.954	1038	2497	4526			
1.016	1065	2585	4728			
1.079	1143	2688	5006			
1.141	1201	2758	5241			
1.203	1236	2776	5454			
1.269	1284	2900	5716			
1.333	1353	2904	5965			
1.398	1408	2993	6140			
1.464	1435	3018	6304	Note: Data sugge	ests negative inter	cept No
1.531	1463	3075	6437	value is reported.	ioto nogutivo inter-	
1.598	1486	3208	6525			
1.668	1423	3168	6616		Peak	Ultimate
1.734	1520	3309	6751	Friction Angle	51.3	51.4
1.801	1568	3387	6858	Cohesion (psf)	N/A	N/A
1.867	1609	3472	6810			
1.933	1646	3481	6920	-	Peak Strength(psf)	Ultimate Strength(psf)
1.997	1682	3579	7029	Normal Stress 1	1682	1651
2.064	1651	3672	7106	Normal Stress 2	3672	3672
				A REAL PROPERTY AND A REAL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The second second second

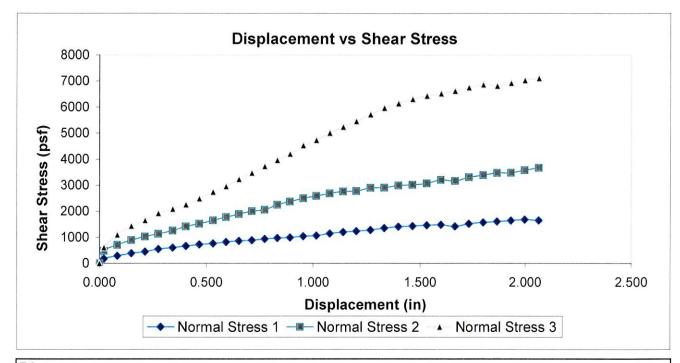
Data Checked By_ KR

Date 10 12 16

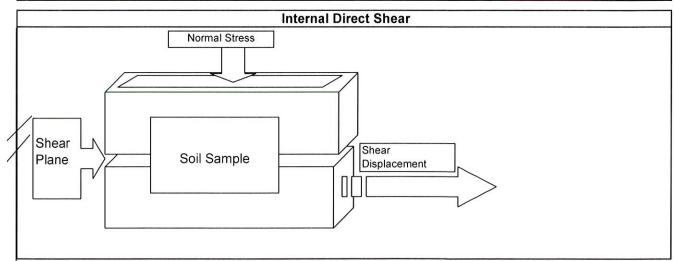
Normal Stress 3

7106

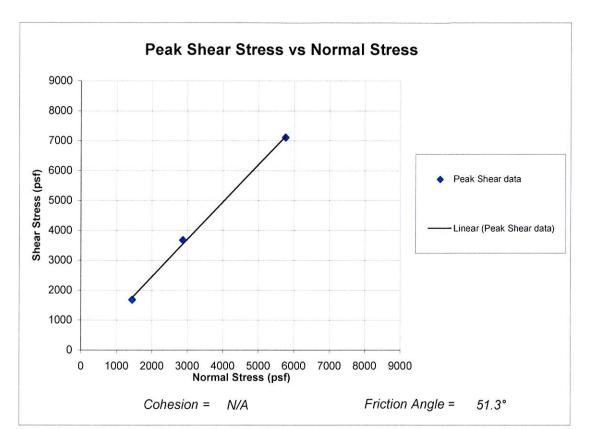
Sample Information

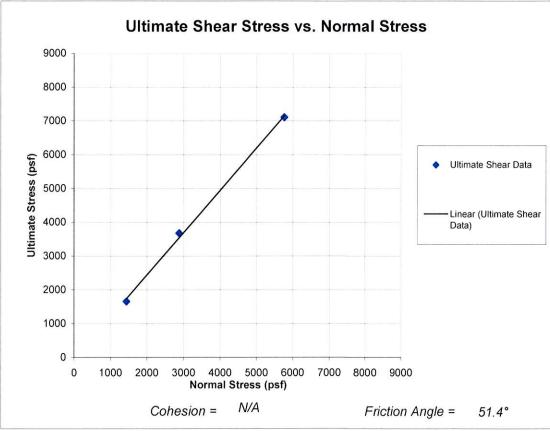

Boring: EA-TP4

Depth: 3-5'


Sample Number: Composite

Dry Density (pcf): 115.6


% Moisture: 9.3



Large Scale Internal Direct Shear **ASTM D3080 Modified**

	Smith Geotechnical Engineering				
Client:	Consultants	Speed Rate (in/min):	0.02	Test Date:	9/30/2016
Job Number.:	2406-73	Normal Stress 1 (psf):	1440	Technician:	BDF
Project Number:	110385	Normal Stress 2 (psf):	2880	Data Entered By:	BDF
Conditions:	Inundated	Normal Stress 3 (psf):	5760	Date:	10/10/2016
Location:		File Name:	2406_73_largeScaleDire	ctShear-ASTMD3080m-53	21-6243-R0_3.xls
Project:	Schwartzwalder Mine TR23 Responses	Data Files:	SGTP5DSC.TXT	,SGTP5DSB.TXT,	SGTP5DSA.TXT

Displacement (in)	Normal Stress 1 (psf):	Normal Stress 2 (psf):	Normal Stress 3 (psf):			
0.000	0	0	0	Samp	le Informati	on
0.028	241	370	700	-	Boring: EA-TP5	
0.101	391	654	1378		Depth: 3-5'	
0.175	490	853	1861	Sample N	lumber: Composi	te
0.250	587	1034	2326	Dry Densi	ty (pcf): 120.5	
0.322	681	1199	2774	% M	oisture: 6.8	
0.395	758	1355	3139			
0.467	826	1519	3488			
0.541	914	1662	3763			
0.611	998	1820	4012			
0.680	1075	1954	4286			
0.752	1146	2050	4569			
0.821	1214	2188	4804			
0.891	1279	2306	5045			
0.959	1324	2449	5279			
1.027	1377	2602	5465			
1.094	1445	2809	5701			
1.161	1490	3010	5845			
1.227	1530	3156	5948			
1.294	1549	3304	6142			
1.357	1596	3392	6295			
1.421	1629	3364	6458			
1.486	1687	3481	6546			
1.549	1697	3638	6662			
1.611	1732	3779	6788	Note: Ultimate co	phesion not reporte	ed: data
1.675	1757	3483	6946	suggests negative	and the second	
1.735	1807	3777	7114			
1.797	1837	3975	7187		Peak	Ultimate
1.857	1837	4061	7276	Friction Angle	52.9	53.5
1.918	1855	4021	7404	Cohesion (psf)	89.5	N/A
1.978	1762	4097	7522			
2.038	1749	3960	7603		Peak Strength(psf)	Ultimate Strength(psf)

	Peak Strength(psf)	Ultimate Strength(psf)
Normal Stress 1	1855	1749
Normal Stress 2	4097	3900
Normal Stress 3	7628	7628

Data Checked By

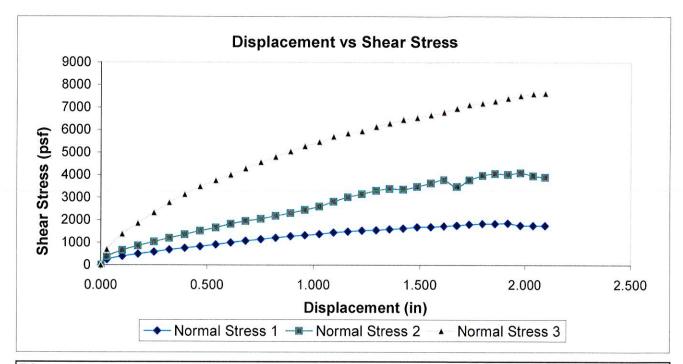
2.095

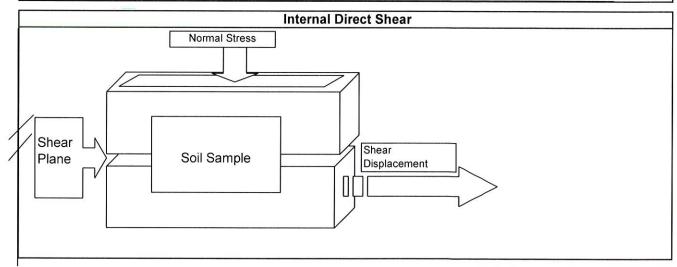
1749

3900

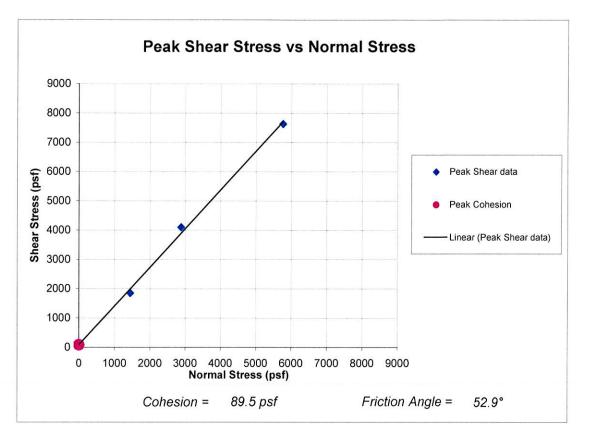
Date 10/10/16

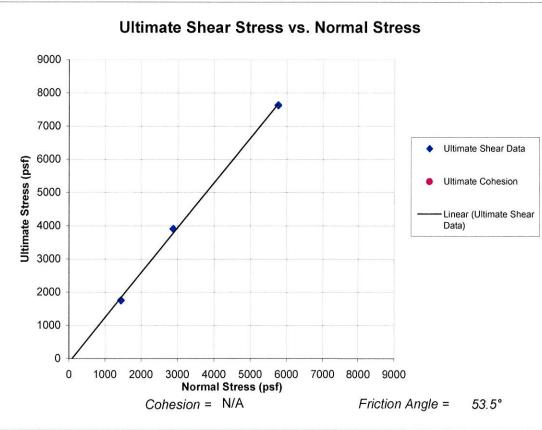
Sample Information


Boring: EA-TP5


Depth: 3-5'

Sample Number: Composite


Dry Density (pcf): 120.5


% Moisture: 6.8

Large Scale Internal Direct Shear **ASTM D3080 Modified** Smith Geotechnical Engineering

	Smith Geotechnical Engineering				
Client:	Consultants	Speed Rate (in/min):	0.02	Test Date: 9	/30/2016
Job Number.:	2406-73	Normal Stress 1 (psf):	1440	Technician: B	IDF
Project Number:	110385	Normal Stress 2 (psf):	2880	Data Entered By: B	DF
Conditions:	Inundated	Normal Stress 3 (psf):	5760	Date: 1	0/10/2016
Location:		File Name:	2406_73_largeScaleDire	ectShear-ASTMD3080m-5321	I-6243-R0_4 xls
Project:	Schwartzwalder Mine TR23 Responses	Data Files:	SGTP6DSC.TX1	,SGTP6DSB.TXT,S	GTP6DSA.TXT

Displacement (in)	Normal Stress 1 (psf):	Normal Stress 2 (psf):	Normal Stress 3 (psf):			
0.000	0	0	0	Samp	le Informati	on
0.023	210	419	754		Boring: EA-TP6	
0.089	351	696	1343		Depth: 3-5'	
0.155	459	922	1753	Sample N	umber: Composit	e
0.221	527	1129	2196	Dry Densi	ity (pcf): 121.8	
0.286	620	1325	2555	% N	loisture: 5.5	
0.354	709	1508	2947			
0.416	794	1682	3251			
0.481	889	1896	3661			
0.546	938	2041	4013			
0.609	1012	2243	4268			
0.671	1095	2369	4569			
0.734	1178	2545	4918			
0.795	1342	2710	5172			
0.856	1443	2804	5552			
0.916	1546	2882	5884			
0.976	1601	3002	6153			
1.034	1687	3067	6442			
1.095	1702	3170	6719			
1.151	1774	3253	6993			
1.210	1808	3339	6956			
1.269	1848	3443	7081			
1.329	1885	3513	7151			
1.388	1931	3573	7224			8
1.450	2006	3651	7298			
1.510	2081	3570	7398			
1.573	2104	3580	7444		<u></u>	
1.636	2109	3644	7602		Peak	Ultimate
1.701	2160	3669	7745	Friction Angle	54.1	54.3
1.763	2222	3761	7873	Cohesion (psf)	135.5	72.0
1.829	2277	3719	7934			
1.894	2292	3689	8092		Peak Strength(psf)	Ultimate Strength(psf)
1.961	2368	3634	8226	Normal Stress 1	2368	2368

Data Checked By

Date 10 10 16

Normal Stress 2

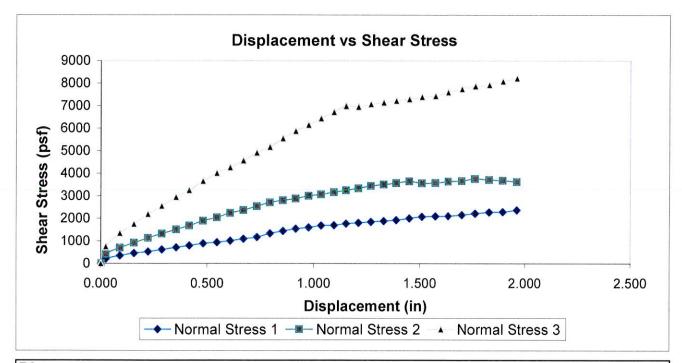
Normal Stress 3

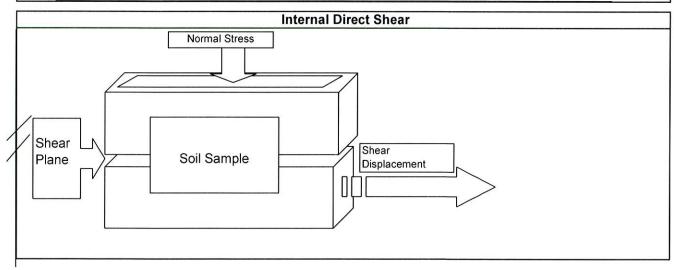
3761

8226

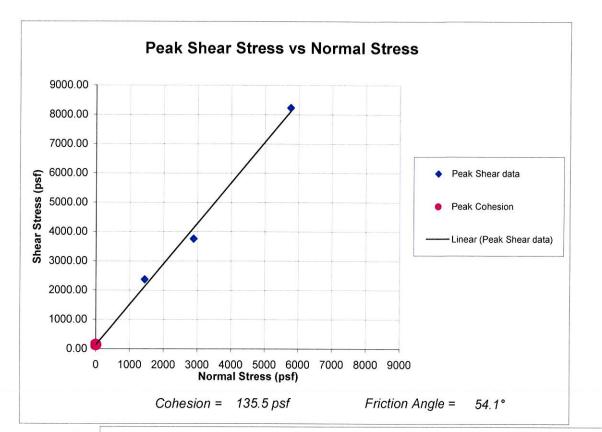
3634

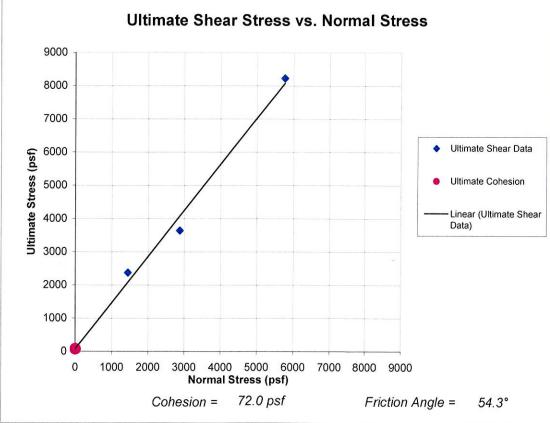
Sample Information


Boring: EA-TP6


Depth: 3-5'

Sample Number: Composite


Dry Density (pcf): 121.8


% Moisture: 5.5

Large Scale Internal Direct Shear ASTM D3080 Modified

	Smith Geotechnical Engineering				
Client:	Consultants	Speed Rate (in/min):	0.02	Test Date:	10/7/2016
Job Number.:	2406-73	Normal Stress 1 (psf):	720	Technician:	BDF
Project Number:	110385	Normal Stress 2 (psf):	1440	Data Entered By:	BDF
Conditions:	Inundated	Normal Stress 3 (psf):	2880	Date:	10/11/2016
Location:		File Name:	2406_73_largeScaleDire	ctShear-ASTMD3080m-53	21-6243-R0_6.xls
Project:	Schwartzwalder Mine TR23 Responses	Data Files:	SGTP7DSC.TXT	SGTP7DSB.TXT,	SGTP7DSA.TXT

Displacement (in)	Normal Stress 1 (psf):	Normal Stress 2 (psf):	Normal Stress 3 (psf):			
0.000	0	0	0	Samp	le Informati	on
0.024	125	218	218		Boring: EA-TP7	
0.084	195	354	387		Depth:	
0.147	239	433	546	Sample N	umber: Topsoil	
0.209	273	506	706	Dry Dens	ty (pcf): 100.7	
0.274	306	565	842	% N	loisture: 1.8	
0.338	331	616	985			
0.401	356	663	1119			
0.466	379	704	1239			
0.533	399	749	1360			
0.596	414	794	1426			
0.659	430	830	1501			
0.723	444	865	1577			
0.784	457	893	1649			
0.846	467	922	1710			
0.910	477	945	1780			
0.972	489	971	1840			
1.037	498	986	1903			
1.103	508	1005	1951			
1.167	517	1019	2001			
1.232	515	1028	2046			
1.297	515	1036	2087			
1.360	520	1043	2132			
1.425	528	1043	2173			
1.487	533	1066	2203		ests negative inter	cept. No
1.549	533	1073	2227	value is reported.		
1.614	535	1073	2265			
1.679	538	1076	2303	r	Peak	Ultimat
1.743	540	1083	2331	Friction Angle	41.2	41.2
1.809	553	1107	2364	Cohesion (psf)	N/A	N/A
1.874	557	1121	2398			
1.938	560	1131	2414		Peak Strength(psf)	Ultimate Stren
2.001	562	1144	2427	Normal Stress 1	563	563
2.066	563	1159	2447	Normal Stress 2	1159	1159

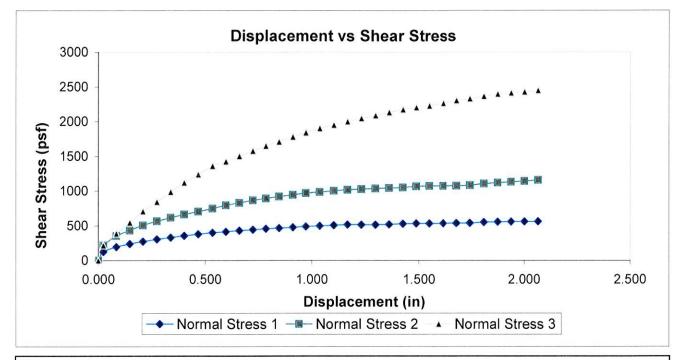
	Peak	Ultimate
Friction Angle	41.2	41.2
Cohesion (psf)	N/A	N/A

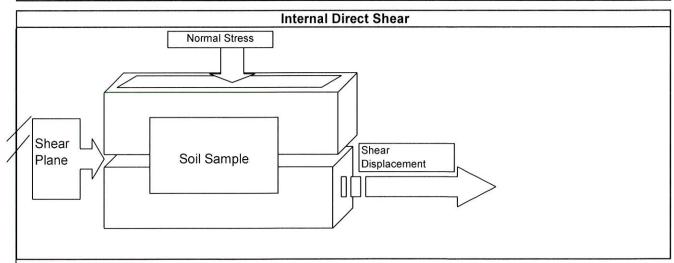
	Peak Strength(psf)	Ultimate Strength(psf)
Normal Stress 1	563	563
Normal Stress 2	1159	1159
Normal Stress 3	2447	2447

Data Checked By K

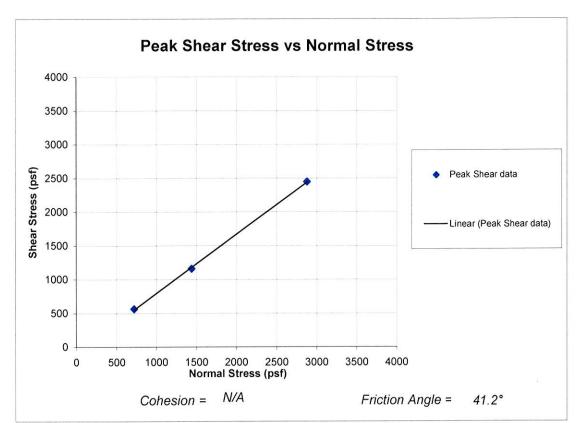
Date 10 16

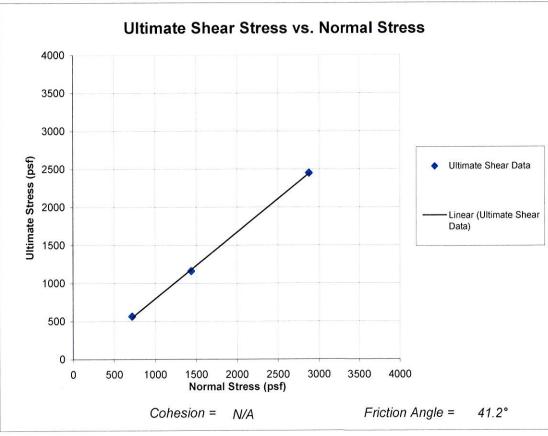
Sample Information


Boring: EA-TP7


Depth: 0.0

Sample Number: Topsoil


Dry Density (pcf): 100.7


% Moisture: 1.8

ATTACHMENT B SLOPE STABILITY ANALYSES

TABLE OF CONTENTS

1.0	GENERAL	.1
2.0	METHODS OF ANALYSES	.1
3.0	MATERIAL PROPERTIES USED IN THE ANALYSES	.1
4.0	DESCRIPTION AND RESULTS OF ANALYSES	.2
5.0	REFERENCES	.2

LIST OF TABLES

Table B-1	Material Shear Strength Parameters Used in Stability Analyses
Table B-2	Summary of Minimum Factors of Safety for Slope Stability Analyses

LIST OF FIGURES

Figure B-1	Peak Shear Stress v. Normal Stress for Waste Rock Material
Figure B-2	Locations of Cross Sections used in Slope Stability Analyses
Figure B-3	Slope Stability Cross-Sections
Figure B-4	USGS Seismic Hazard Analysis Results
Figure B-5	Static Slope Stability Results for XS-N1 Surficial Failure
Figure B-6	Static Slope Stability Results for XS-N1 Surficial Failure with Water
Figure B-7	Static Slope Stability Results for XS-N1 Intermediate Failure
Figure B-8	Static Slope Stability Results for XS-N1 Intermediate Failure with Water
Figure B-9	Static Slope Stability Results for XS-N1 Deep Failure
Figure B-10	Static Slope Stability Results for XS-N1 Deep Failure with Water
Figure B-11	Static Slope Stability Results for XS-S1Surficial Failure
Figure B-12	Static Slope Stability Results for XS-S1Surficial Failure with Water
Figure B-13	Static Slope Stability Results for XS-S1 Intermediate Failure
Figure B-14	Static Slope Stability Results for XS-S1 Intermediate Failure with Water
Figure B-15	Static Slope Stability Results for XS-S1Deep Failure

Figure B-16	Static Slope Stability Results for XS-S1Deep Failure with Water
Figure B-17	Pseudo-Static Slope Stability Results for XS-N1 Surficial Failure
Figure B-18	Pseudo-Static Slope Stability Results for XS-N1 Surficial Failure with Water
Figure B-19	Pseudo-Static Slope Stability Results for XS-N1 Intermediate Failure
Figure B-20	Pseudo-Static Slope Stability Results for XS-N1 Intermediate Failure with Water
Figure B-21	Pseudo-Static Slope Stability Results for XS-N1 Deep Failure
Figure B-22	Pseudo-Static Slope Stability Results for XS-N1 Deep Failure with Water
Figure B-23	Pseudo-Static Slope Stability Results for XS-S1Surficial Failure
Figure B-24	Pseudo-Static Slope Stability Results for XS-S1Surficial Failure with Water
Figure B-25	Pseudo-Static Slope Stability Results for XS-S1Intermediate Failure
Figure B-26	Pseudo-Static Slope Stability Results for XS-S1Intermediate Failure with Water
Figure B-27	Pseudo-Static Slope Stability Results for XS-S1Deep Failure
Figure B-28	Pseudo-Static Slope Stability Results for XS-S1Deep Failure with Water

1.0 GENERAL

The Schwartzwalder Mine is an inactive uranium mine in Jefferson County, Colorado historically operated by Cotter Corporation (N.S.L.) (Cotter) under Mining Permit M-1977-30 with amendments. Technical Revision 23 (TR-23) to the Schwartzwalder Mining Permit M-1977-30 was submitted to update Mine Permit Amendment 4. The reclamation plan submitted as part of Amendment 4 discusses the removal of Solid Source Term Material from the Schwartzwalder valley floor and transfer to a permanent disposal location in an existing mine void, the "CV Glory Hole" (Cotter, 2012). TR-23 was submitted to request additional approval to place the Solid Source Term Material in the existing Waste Rock Piles (WRP). The volume of the Solid Source Term Material that will be placed on the existing WRPs is estimated to be 32,000 cy to 54,000 cy. This attachment presents the results of geotechnical slope stability analyses that were performed to assist in design of the waste rock pile reconfigurations and to address comments on TR-23 provided by the Colorado Division of Reclamation, Mining and Safety (CDRMS).

2.0 METHODS OF ANALYSES

The stability analyses were performed utilizing the computer program SLOPE/W (GEO-SLOPE, 2012). SLOPE/W solves slope stability problems by any of the following methods: (1) Ordinary Fellenius, (2) Bishop Simplified, (3) Janbu's Simplified, (4) Spencer, (5) Morgenstern-Price, (6) U.S. Army Corps of Enigeers, (7) Lowe-Karafiath, and (8) Generalized Limit Equilibrium. The method chosen for use in the analyses was Spencer's method. Both static and pseudo-static analyses were performed.

3.0 MATERIAL PROPERTIES USED IN THE ANALYSES

Engineering Analytics collected bulk soil samples from the north and south waste rock piles, alluvial waste rock source (new waste rock), topsoil source, and colluvium for strength testing. Large scale internal direct shear testing was completed on each of the bulk samples collected from the site. The peak friction angles for the waste rock were measured to be 25.1, 50.9, 52.9, and 54.1 degrees. The peak friction angle of 25.1 degrees was measured on the sample from EA-TP2. It was shown with the other laboratory testing that this sample had significantly more fines than the other samples. In order to determine a peak friction angle for the waste rock, all of the values from the direct shear testing were plotted together and fitted with a best-fit line. This plot is shown on Figure B-1. Based on this analysis it was determined to use a peak friction angle of 42.5 degrees for the waste rock material. The strength parameter values for the bedrock are from West (1995). We used the lower bound of the provided strength values for the bedrock in our analysis. The total unit weight for each material type was taken from the laboratory results and a published value from West (1995) was used for the bedrock. Table B-1 summarizes the material shear strength parameters for all of the material types used in the stability analyses.

4.0 DESCRIPTION AND RESULTS OF ANALYSES

Three types of failures were analyzed. McDermid and Geo-Hydro (1983) analyzed cover stability and the contact with the native ground. EA analyzed these two failures and called them surficial and deep failures. In addition, EA analyzed an intermediate optimized failure surface. Based on the laboratory results described above, the strength of the waste rock material was analyzed as being lower than the colluvium, therefore the deep failure was run at the interface between the waste rock and the colluvium. The stability analyses were run for one cross-section through each of the waste rock piles. The locations of the cross-sections are shown on Figure B-2 and the cross-sections are shown on Figure B-3. For one case it was assumed that no water was present in the waste rock piles. The assumption of 5 feet of water above the colluvium at the base of the waste rock piles as presented in McDermid and Geo-Hydro (1983) was used for the second analyses.

EA also completed pseudo-static stability analyses. EA used the seismic hazard deaggregation tool provided by the USGS in order to obtain a peak ground acceleration (PGA) for use in the pseudo static stability analyses. The results of the seismic analysis are presented in Figure B-4. The analysis showed a PGA of 0.11g. Hynes-Griffin and Franklin (1984) report that one half of the PGA can be used in analyses, therefore, EA used 0.055g.

The results of the static stability analyses for these cross-sections are presented in Figures B-5 through B-16 and summarized in Table B-2. The results of the pseudo-static analyses are presented in Figures B-17 through B-28 and are summarized in Table B-2. The results of the analyses indicate that the factor of safety meets the minimum 1.5 criteria for static analysis and the minimum 1.3 criteria for pseudo-static analysis.

5.0 **REFERENCES**

Cotter Corporation (N.S.L.). (2012). "Application Amendment 4, Mine Permit M-1977-300, Schwartzwalder Mine." May 1.

GEO-SLOPE International (2012). Slope/W 2012 Slope Stability Analysis, http://www.geoslope. com/products/slopew.aspx.

- Hynes-Griffin, M.E. and A.G. Franklin (1984). "Rationalizing the seismic coefficient method" Miscellaneous Paper GL-84-13, U.S. Army Corps of Engineers Waterways Experiment Station, Vicksburg, Mississippi, 21 p.
- McDermid Engineering Associates, Inc. and Geo-Hydro Consulting, Inc. (1983). "Responses to the State of Colorado Mined Land Reclamation Division Comments on Waste Pile, Related Portions of Permit Amendment Application." July.
- West, T.R. (1995). "Geology Applied to Engineering." Prentice Hall, Englewood Cliffs, New Jersey.

TABLES

Material Type	Total Unit Weight (pcf)	Angle of Internal Friction (degrees)	Cohesion (psf)
Topsoil ⁽¹⁾	102.5	41.2	0
New Waste Rock ⁽²⁾	117	51.6	0
Existing Waste Rock ⁽³⁾	120.6	42.5	0
Colluvium ⁽⁴⁾	126	51.3	0
Bedrock ⁽⁵⁾	175	48.0	700

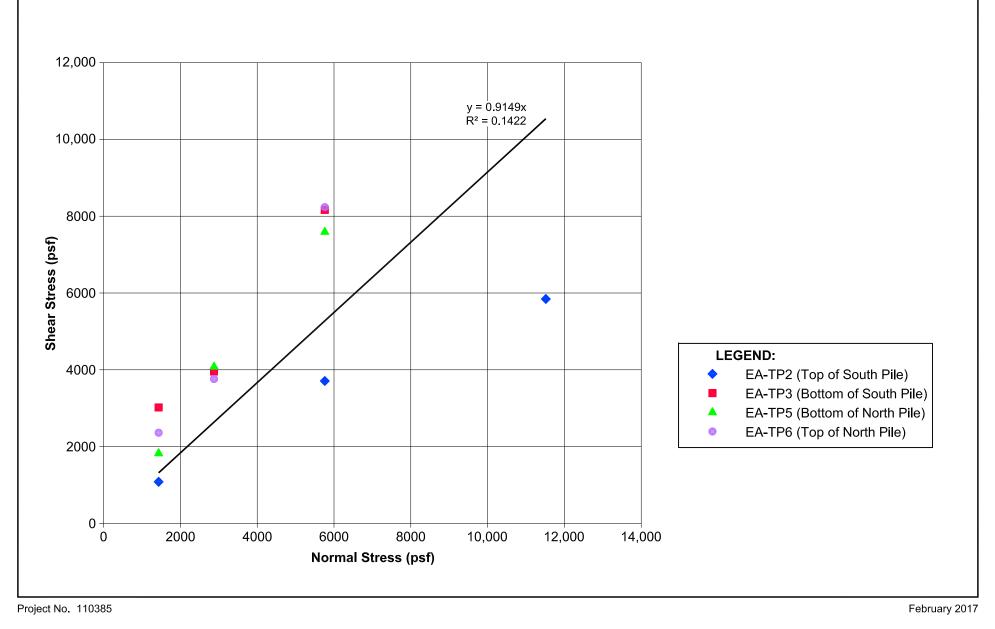
 Table B-1
 Material Shear Strength Parameters Used in Stability Analyses

Notes: 1) Results from EA-TP7

2) Results from EA-TP1

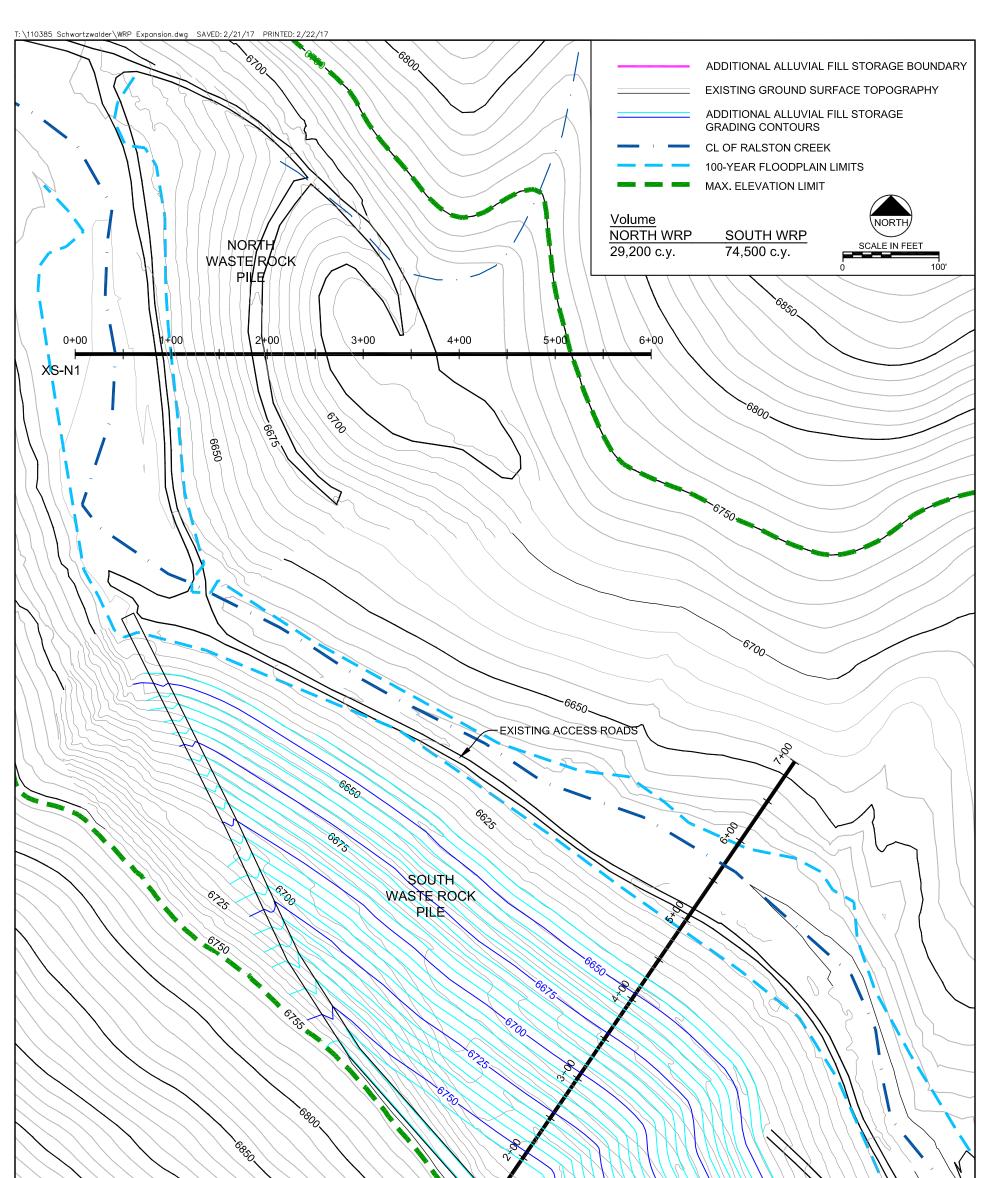
3) Best fit of strength results from EA-TP2, EA-TP3, EA-TP5, and EA-TP6. For total unit weight the average was used.

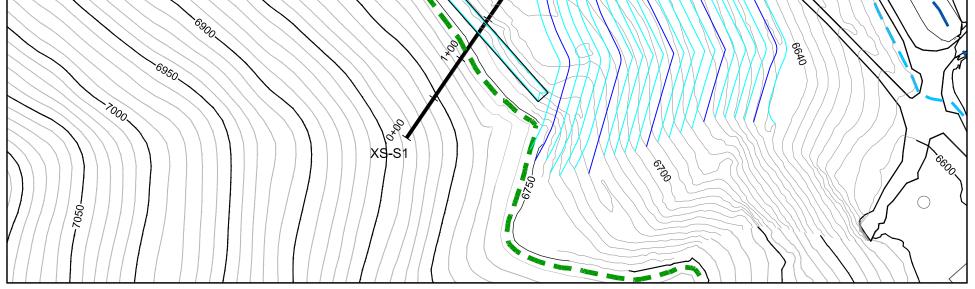
4) Results from EA-TP4


5) Lower bound published values from West (1995)

Loading Conditions	Cross- Section	Water Conditions	Surficial Failure FOS	Intermediate Failure FOS	Deep Failure FOS
Static	XS-N1	No Water	2.2 (B-5)	2.4 (B-7)	3.7 (B-9)
		Water at 5' above base	2.1 (B-6)	2.4 (B-8)	3.5 (B-10)
	XS-S1	No Water	2.1 (B-11)	2.2 (B-13)	2.6 (B-15)
		Water at 5' above base	2.1 (B-12)	2.1 (B-14)	2.5 (B-16)
Pseudo- Static	XS-N1	No Water	1.9 (B-17)	2.1 (B-19)	3.0 (B-21)
		Water at 5' above base	1.9 (B-18)	2.0 (B-20)	2.9 (B-22)
	XS-S1	No Water	1.8 (B-23)	1.9 (B-25)	2.3 (B-27)
		Water at 5' above base	1.8 (B-24)	1.9 (B-26)	2.2 (B-28)

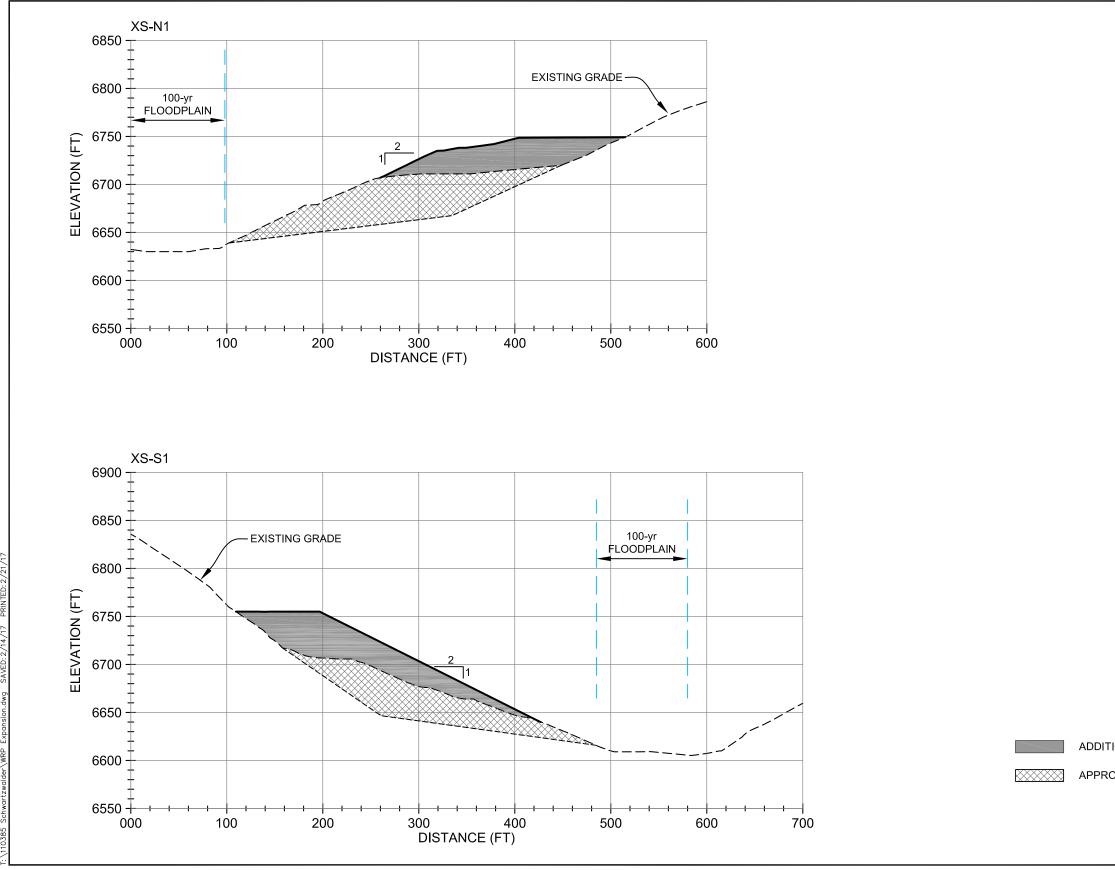
 Table B-2
 Summary of Minimum Factors of Safety for Slope Stability Analyses


Note: The citation in parentheses corresponds to the Figure number with the results


FIGURES

Engineering Analytics, Inc.

FIGURE B-1 PEAK SHEAR STRESS vs NORMAL STRESS FOR WASTE ROCK MATERIAL COTTER SCHWARTZWALDER MINE



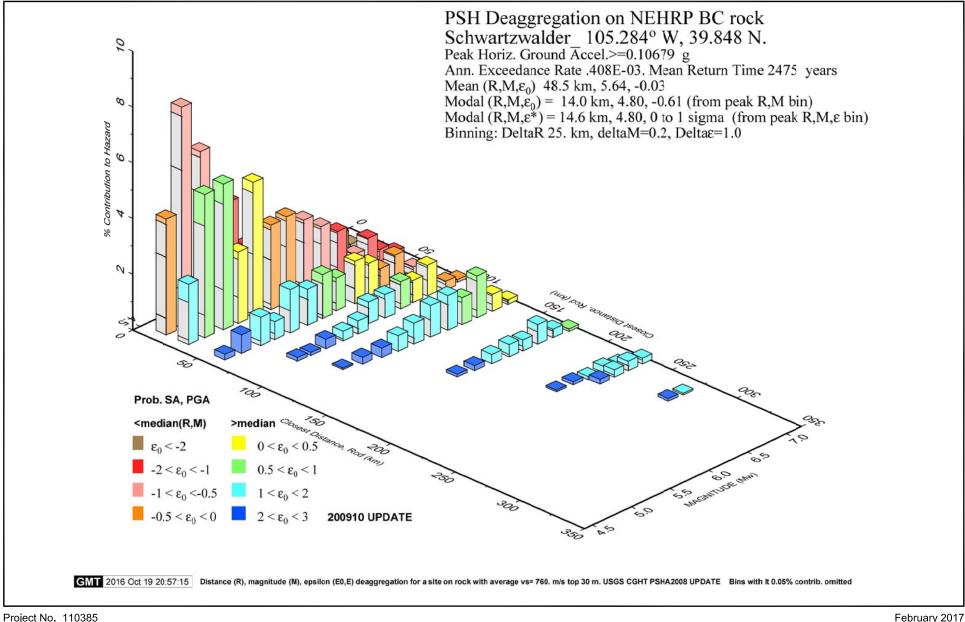
February 2017

Project No 110385

FIGURE B-2 LOCATION OF CROSS SECTION USED IN SLOPE STABILITY ANALYSES COTTER SCHWARTZWALDER MINE WASTE ROCK PILE DESIGN

Project No. 110385

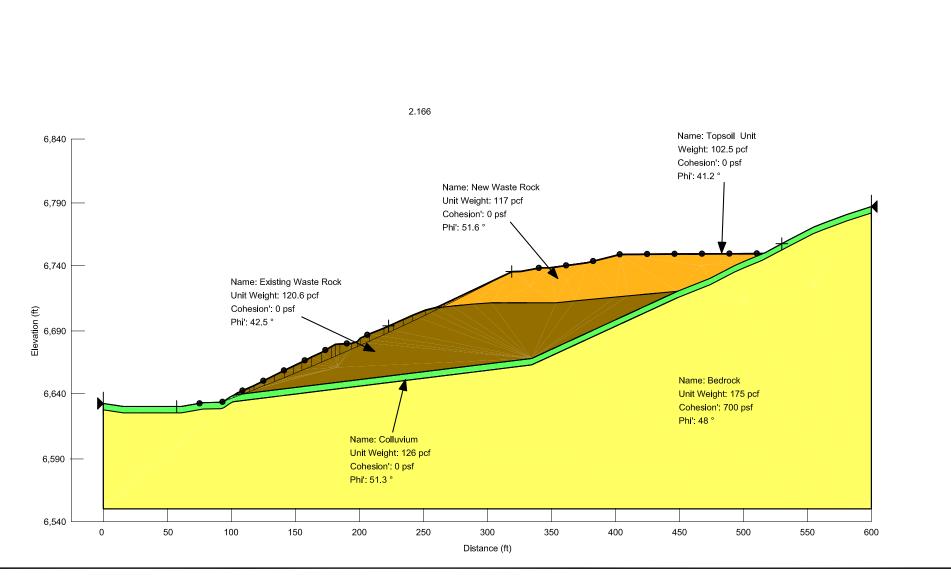
Engineering Analytics, Inc.


FIGURE B-3 SLOPE STABILITY CROSS SECTION COTTER SCHWARTZWALDER MINE WASTE ROCK PILE DESIGN

February 2017

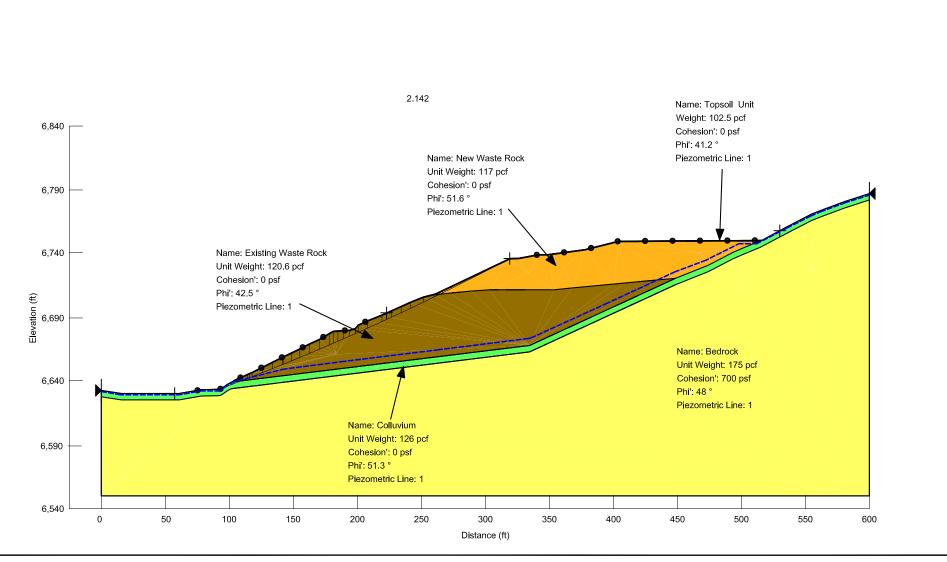
SCALE IN	FEET
0	100'

APPROXIMATE EXISTING WASTE ROCK PILE


ADDITIONAL ALLUVIAL FILL STORAGE

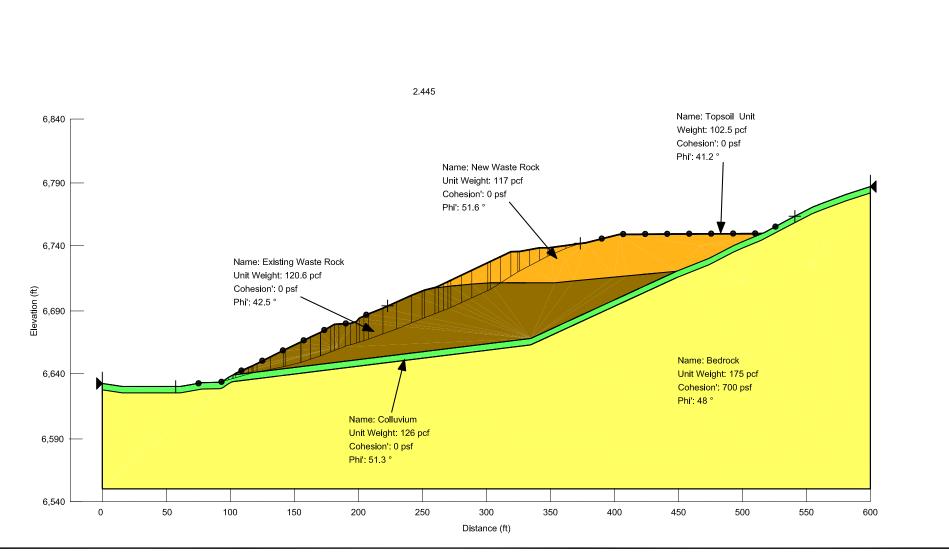
February 2017

Engineering Analytics, Inc.

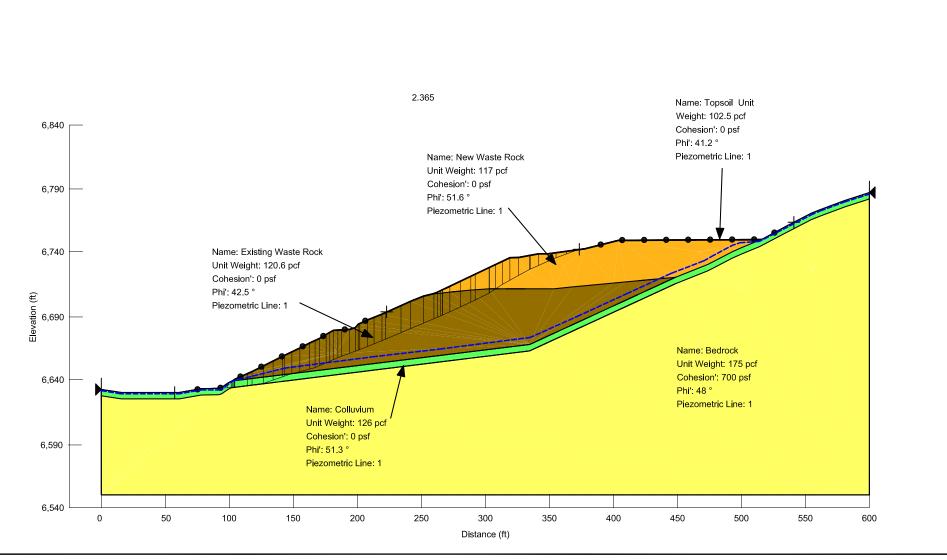

FIGURE B-4 USGS SEISMIC HAZARD ANALYSIS RESULTS **COTTER SCHWARTZWALDER MINE** WASTE ROCK PILE DESIGN

Engineering Analytics, Inc.

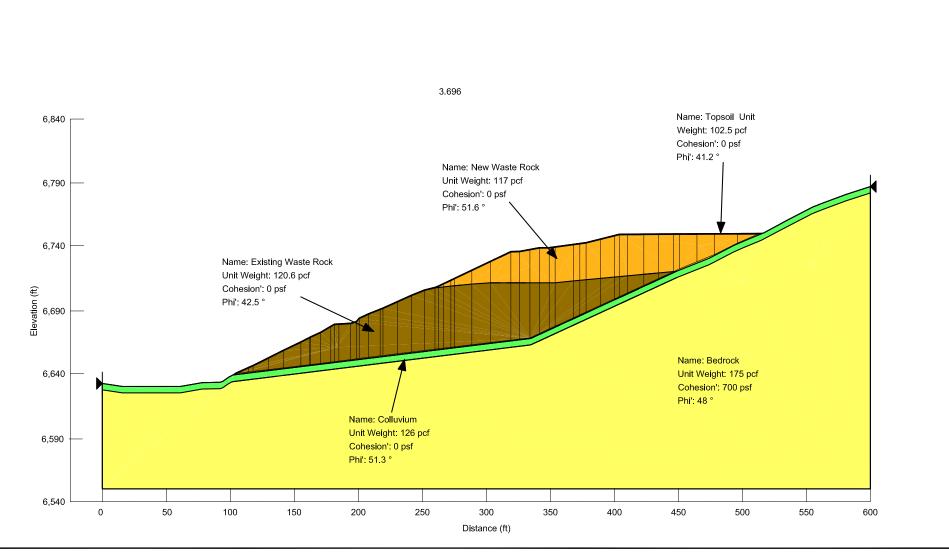
February 2017


FIGURE B-5 STATIC SLOPE STABILITY RESULTS XS-N1 SURFICIAL FAILURE COTTER SCHWARTZWALDER MINE WASTE ROCK PILE DESIGN

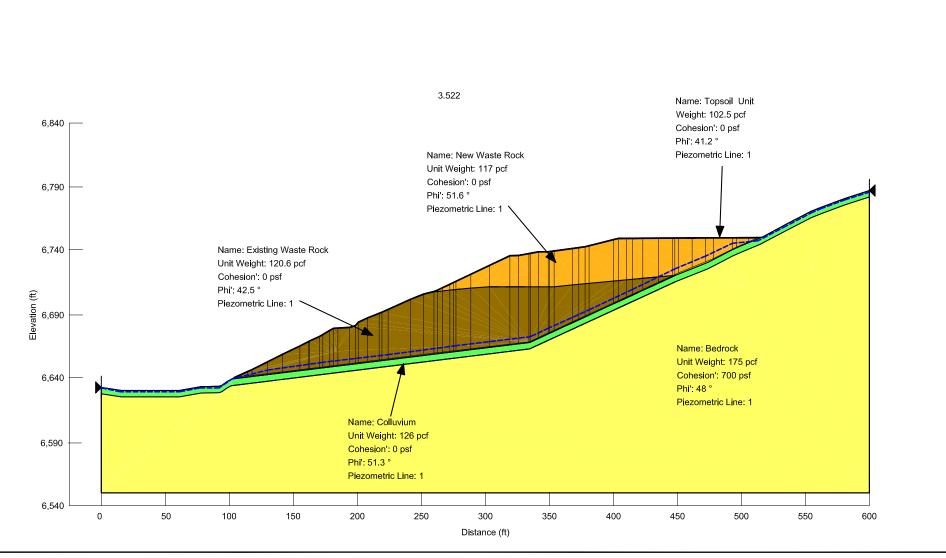
February 2017


FIGURE B-6 STATIC SLOPE STABILITY RESULTS XS-N1 SURFICIAL FAILURE WITH WATER COTTER SCHWARTZWALDER MINE WASTE ROCK PILE DESIGN

February 2017

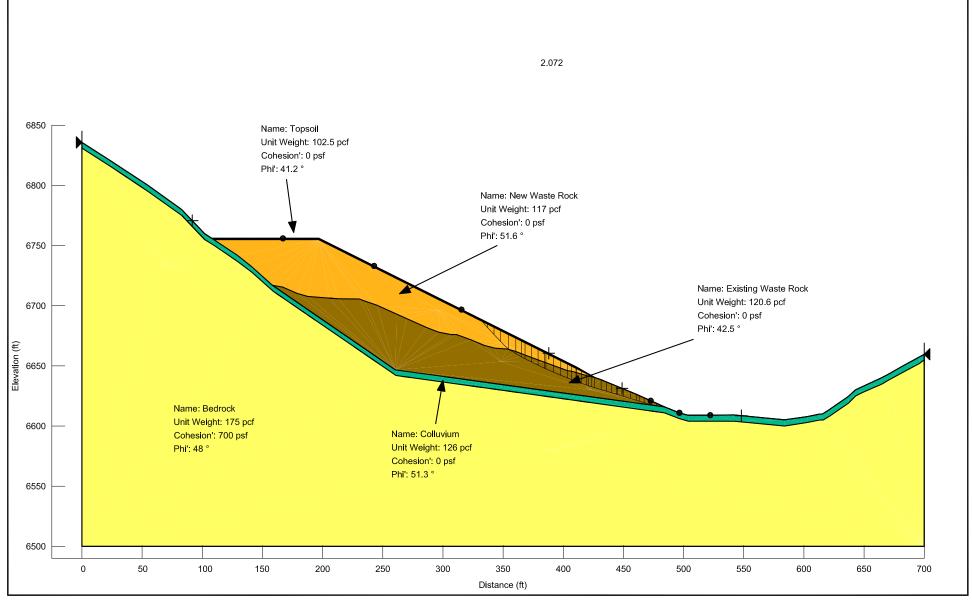

FIGURE B-7 STATIC SLOPE STABILITY RESULTS XS-N1 INTERMEDIATE FAILURE COTTER SCHWARTZWALDER MINE WASTE ROCK PILE DESIGN

February 2017

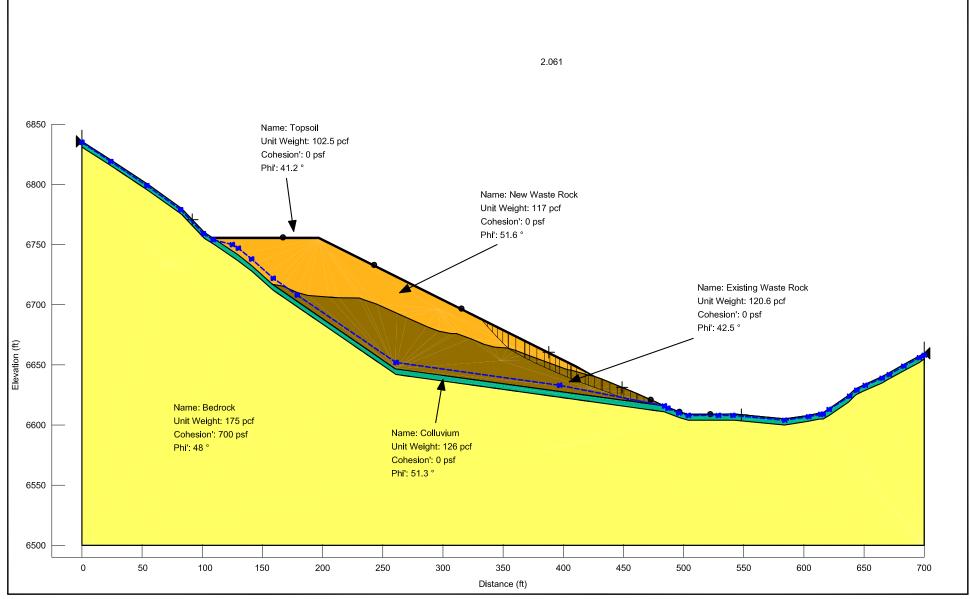

FIGURE B-8 STATIC SLOPE STABILITY RESULTS XS-N1 INTERMEDIATE FAILURE WITH WATER COTTER SCHWARTZWALDER MINE WASTE ROCK PILE DESIGN

February 2017

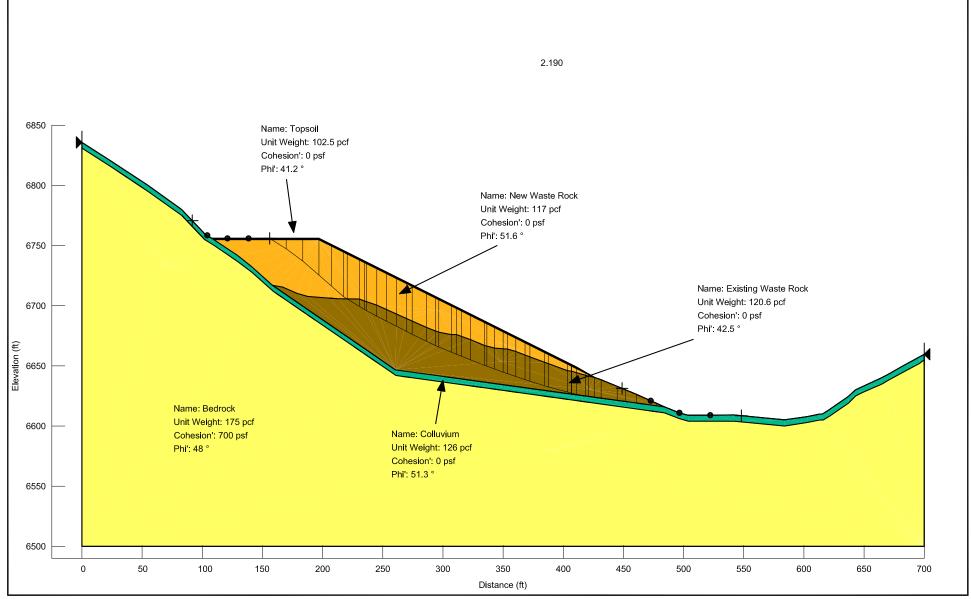
FIGURE B-9 STATIC SLOPE STABILITY RESULTS XS-N1 DEEP FAILURE COTTER SCHWARTZWALDER MINE WASTE ROCK PILE DESIGN




February 2017


FIGURE B-10 STATIC SLOPE STABILITY RESULTS XS-N1 DEEP FAILURE WITH WATER COTTER SCHWARTZWALDER MINE WASTE ROCK PILE DESIGN

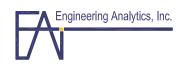
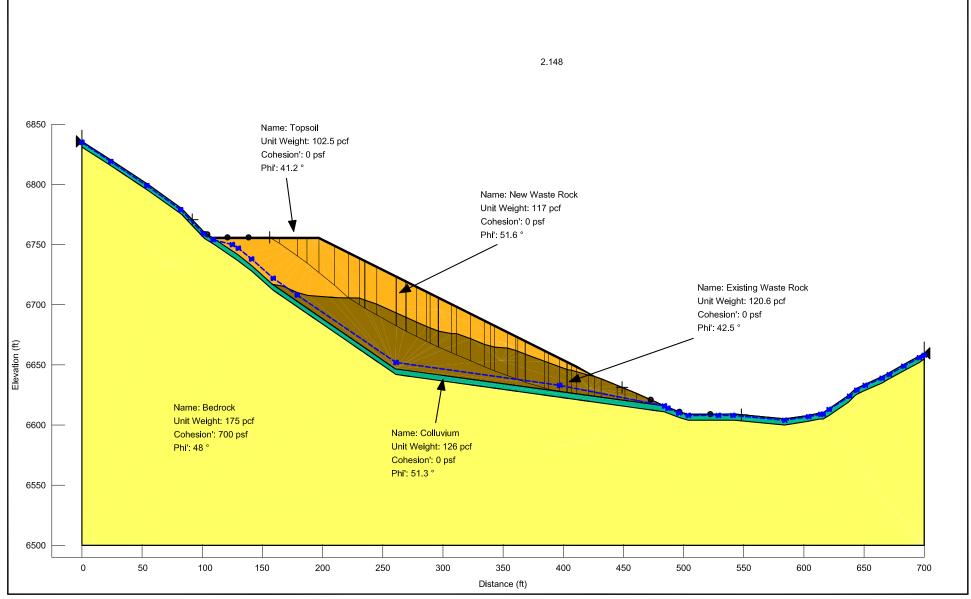
February 2017

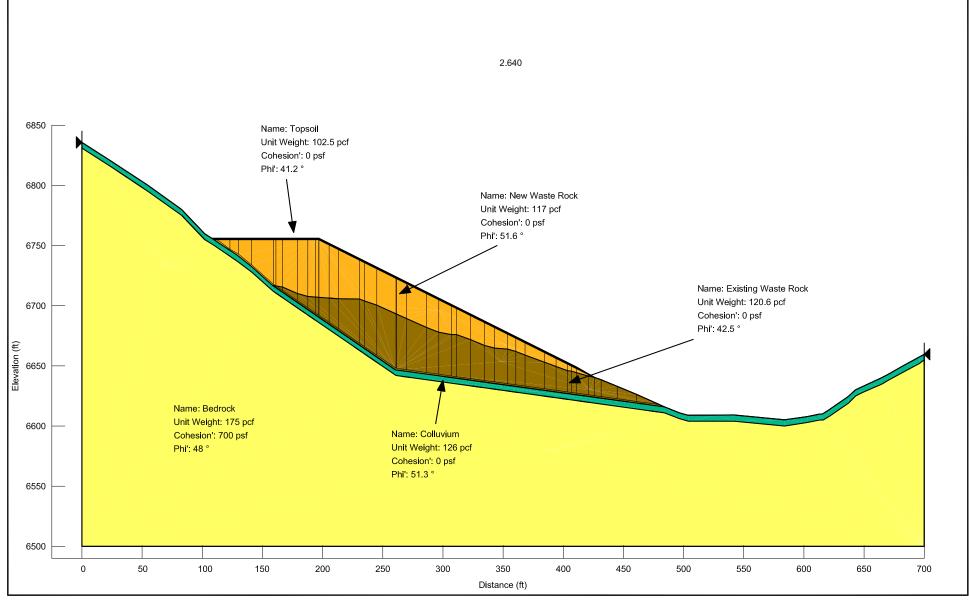

FIGURE B-11 STATIC SLOPE STABILITY RESULTS FOR XS-S1 SURFICIAL FAILURE COTTER SCHWARTZWALDER MINE WASTE ROCK PILE DESIGN

February 2017

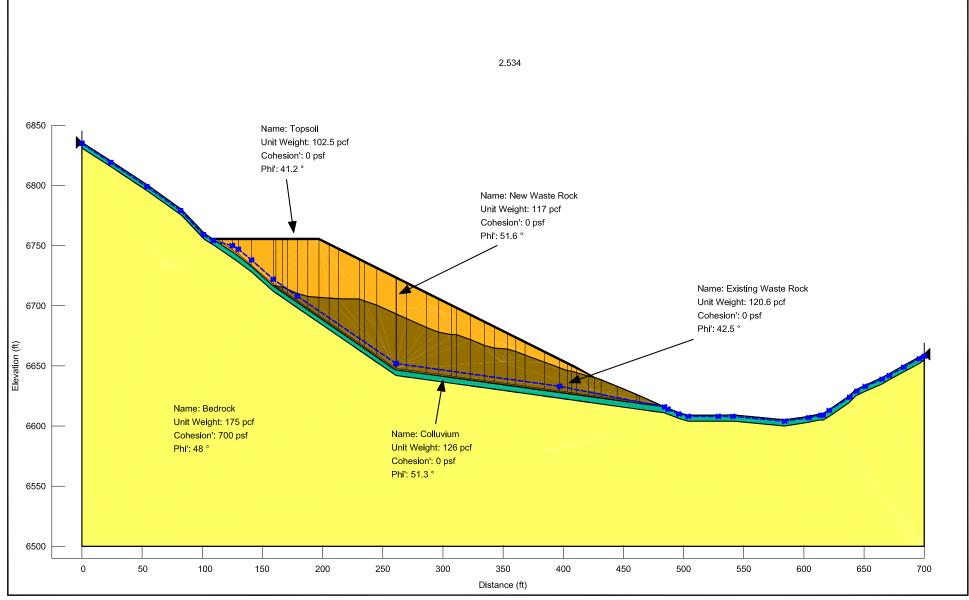
FIGURE B-12 STATIC SLOPE STABILITY RESULTS FOR XS-S1 SURFICIAL FAILURE WITH WATER COTTER SCHWARTZWALDER MINE WASTE ROCK PILE DESIGN

February 2017


FIGURE B-13 STATIC SLOPE STABILITY RESULTS FOR XS-S1 INTERMEDIATE FAILURE COTTER SCHWARTZWALDER MINE WASTE ROCK PILE DESIGN

February 2017


FIGURE B-14 STATIC SLOPE STABILITY RESULTS FOR XS-S1 INTERMEDIATE FAILURE WITH WATER COTTER SCHWARTZWALDER MINE WASTE ROCK PILE DESIGN

February 2017

FIGURE B-15 STATIC SLOPE STABILITY RESULTS FOR XS-S1 DEEP FAILURE COTTER SCHWARTZWALDER MINE WASTE ROCK PILE DESIGN

February 2017

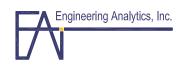
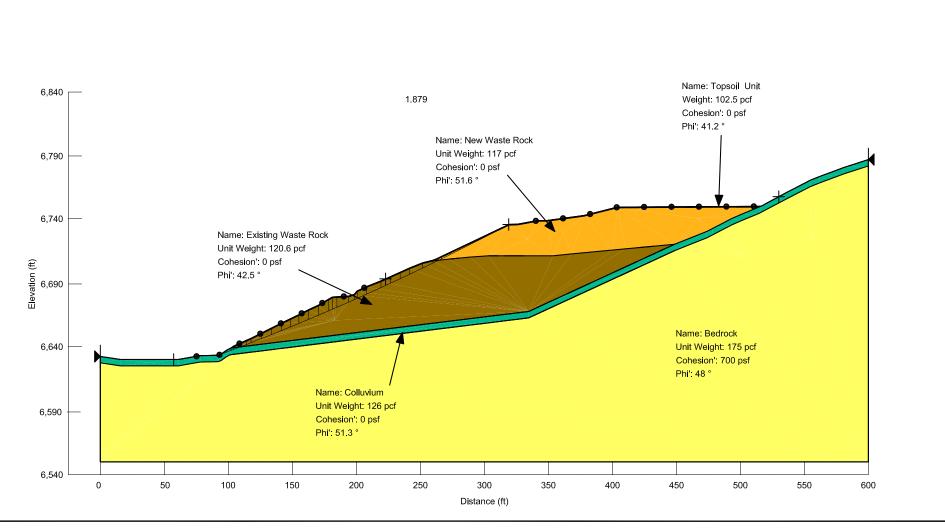
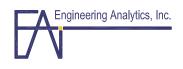
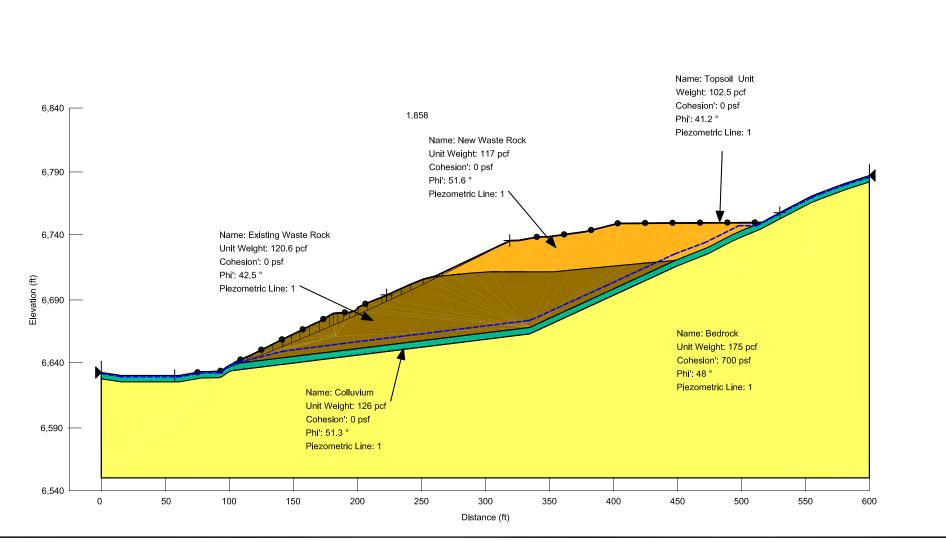
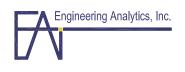
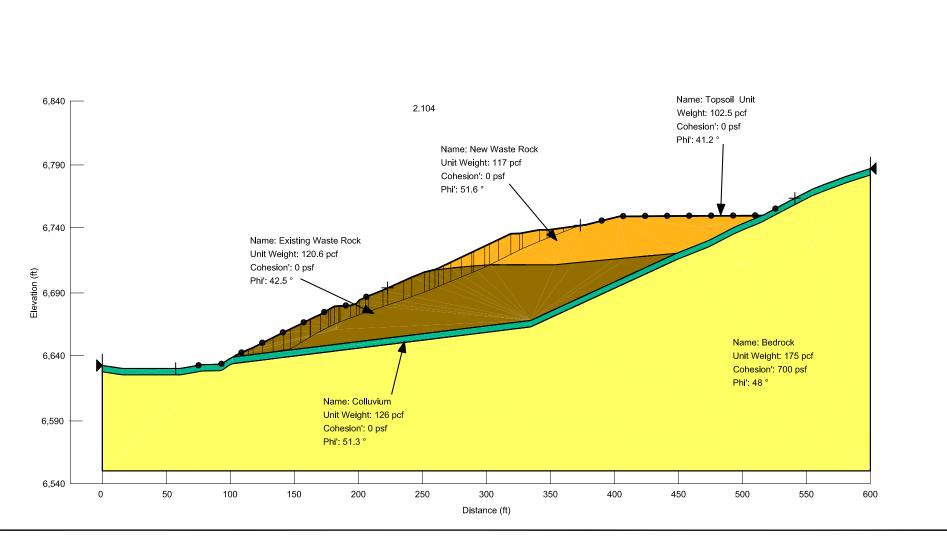



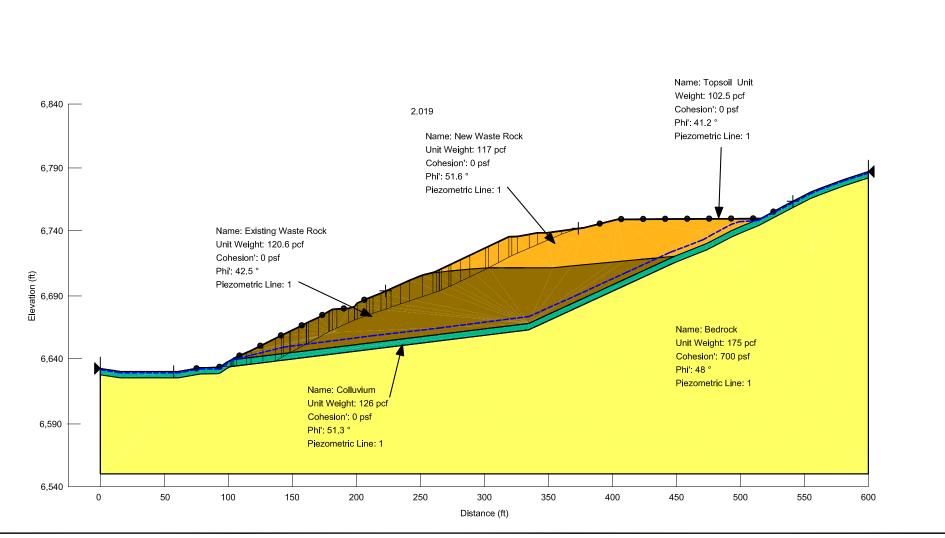
FIGURE B-16 STATIC SLOPE STABILITY RESULTS FOR XS-S1 DEEP FAILURE WITH WATER COTTER SCHWARTZWALDER MINE WASTE ROCK PILE DESIGN

February 2017

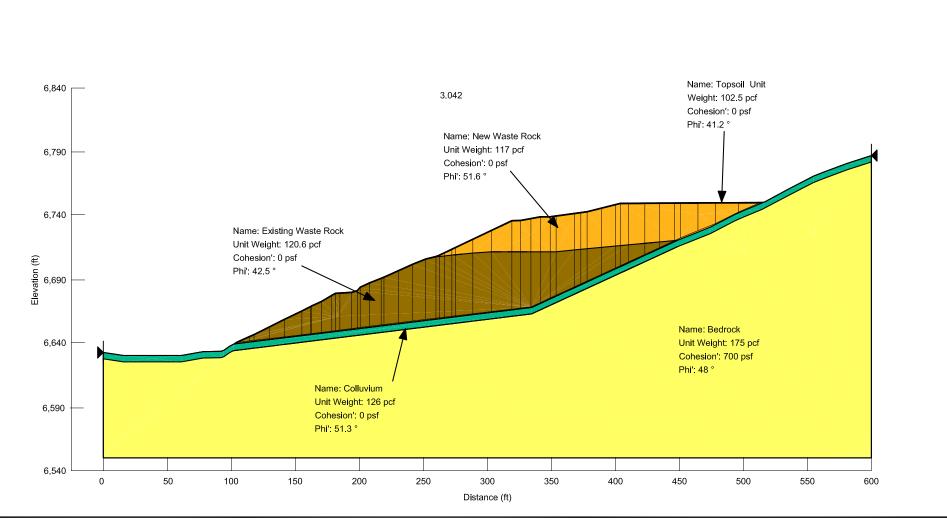





FIGURE B-17 PSEUDO-STATIC SLOPE STABILITY RESULTS XS-N1 SURFICIAL FAILURE COTTER SCHWARTZWALDER MINE WASTE ROCK PILE DESIGN

February 2017


FIGURE B-18 PSEUDO-STATIC SLOPE STABILITY RESULTS XS-N1 SURFICIAL FAILURE WITH WATER COTTER SCHWARTZWALDER MINE WASTE ROCK PILE DESIGN

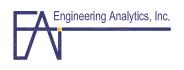
February 2017

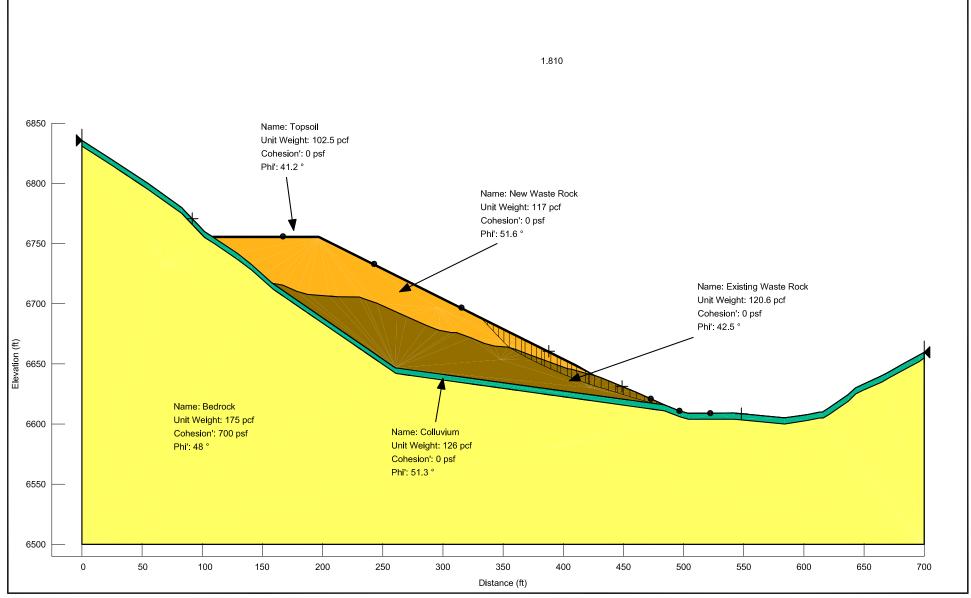

FIGURE B-19 PSEUDO-STATIC SLOPE STABILITY RESULTS XS-N1 INTERMEDIATE FAILURE COTTER SCHWARTZWALDER MINE WASTE ROCK PILE DESIGN

February 2017

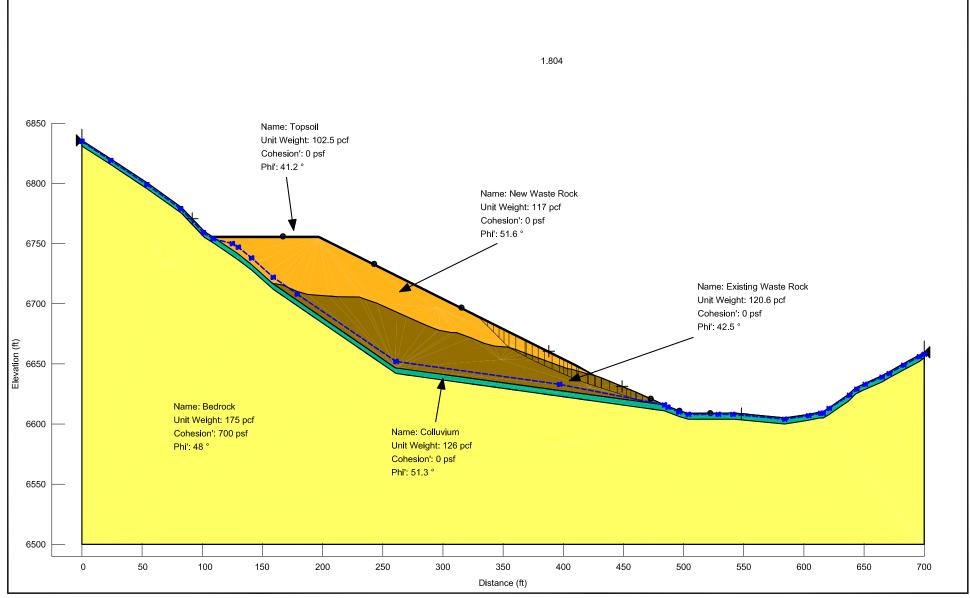
FIGURE B-20 PSEUDO-STATIC SLOPE STABILITY RESULTS XS-N1 INTERMEDIATE FAILURE WITH WATER COTTER SCHWARTZWALDER MINE WASTE ROCK PILE DESIGN

February 2017

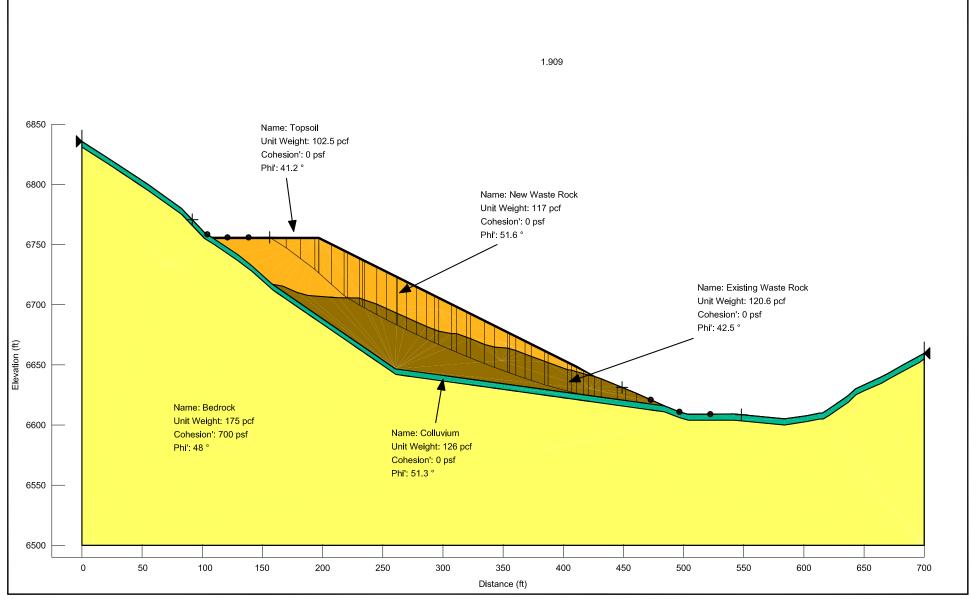


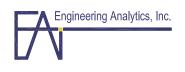


FIGURE B-21 PSEUDO-STATIC SLOPE STABILITY RESULTS XS-N1 DEEP FAILURE COTTER SCHWARTZWALDER MINE WASTE ROCK PILE DESIGN

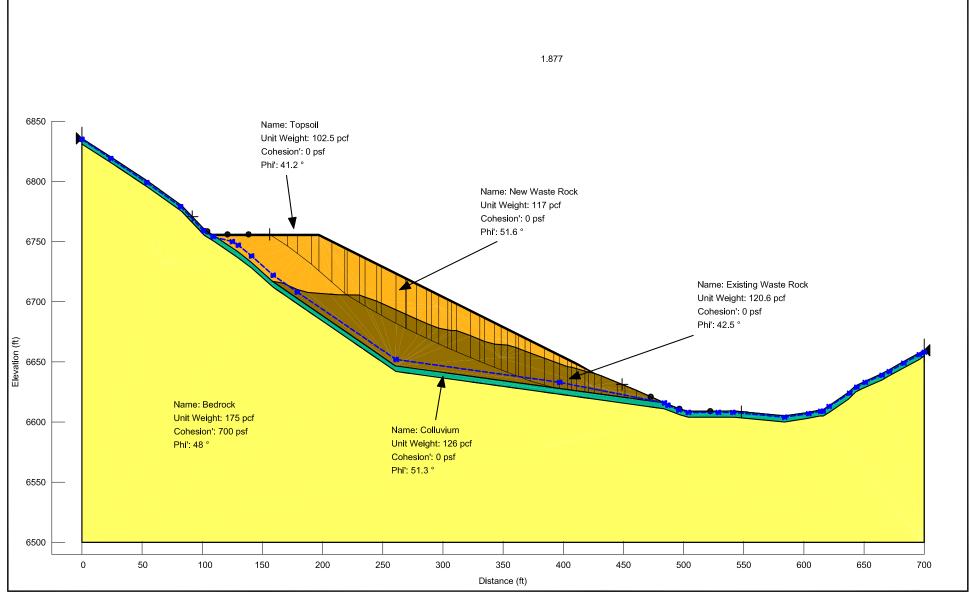
February 2017


FIGURE B-22 PSEUDO-STATIC SLOPE STABILITY RESULTS XS-N1 DEEP FAILURE WITH WATER COTTER SCHWARTZWALDER MINE WASTE ROCK PILE DESIGN

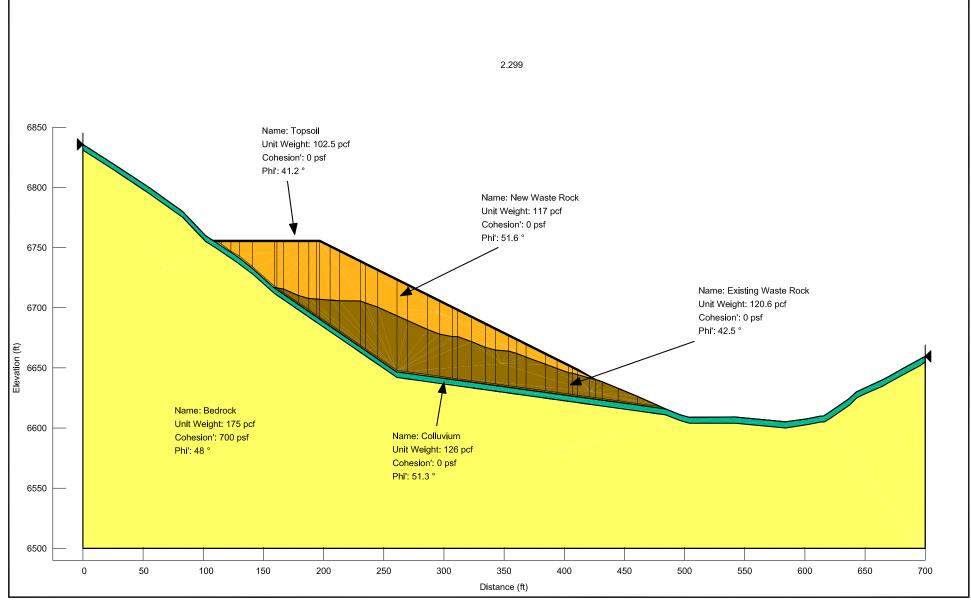
February 2017


FIGURE B-23 PSEUDO-STATIC SLOPE STABILITY RESULTS FOR XS-S1 SURFICIAL FAILURE COTTER SCHWARTZWALDER MINE WASTE ROCK PILE DESIGN

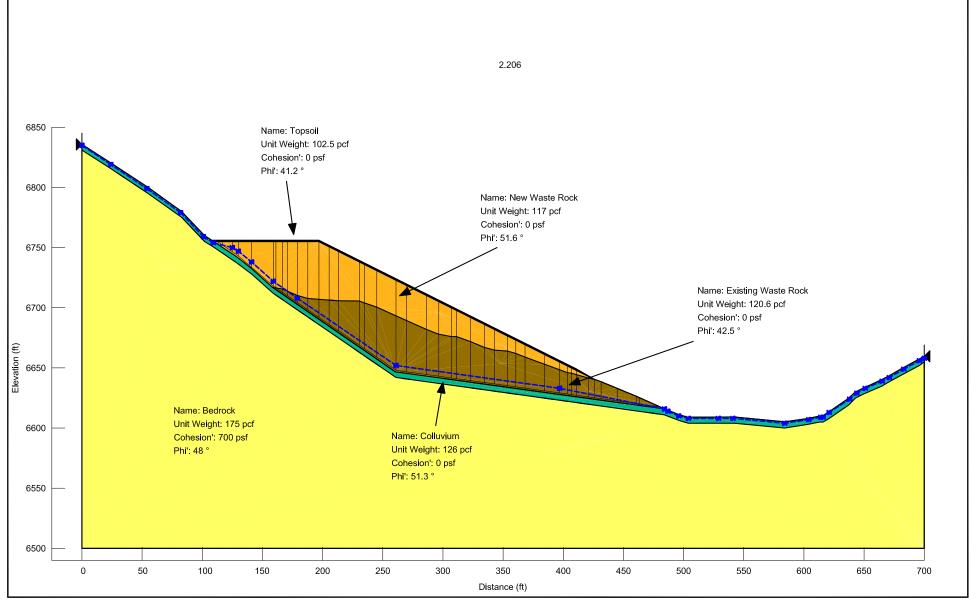

February 2017


FIGURE B-24 PSEUDO-STATIC SLOPE STABILITY RESULTS FOR XS-S1 SURFICIAL FAILURE WITH WATER COTTER SCHWARTZWALDER MINE WASTE ROCK PILE DESIGN

February 2017


FIGURE B-25 PSEUDO-STATIC SLOPE STABILITY RESULTS FOR XS-S1 INTERMEDIATE FAILURE COTTER SCHWARTZWALDER MINE WASTE ROCK PILE DESIGN

February 2017


FIGURE B-26 PSEUDO-STATIC SLOPE STABILITY RESULTS FOR XS-S1 INTERMEDIATE FAILURE WITH WATER COTTER SCHWARTZWALDER MINE WASTE ROCK PILE DESIGN

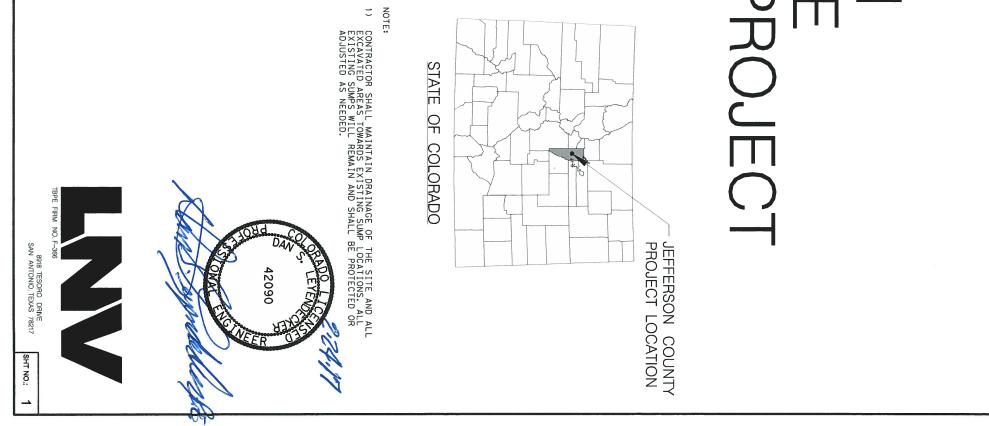
February 2017

FIGURE B-27 PSEUDO-STATIC SLOPE STABILITY RESULTS FOR XS-S1 DEEP FAILURE COTTER SCHWARTZWALDER MINE WASTE ROCK PILE DESIGN

February 2017


FIGURE B-28 PSEUDO-STATIC SLOPE STABILITY RESULTS FOR XS-S1 DEEP FAILURE WITH WATER COTTER SCHWARTZWALDER MINE WASTE ROCK PILE DESIGN

ATTACHMENT C


SIGNED PLANS AND SPECIFICATIONS

DVMS DE-EE		Ñ	30 DRAI	28-29 CONC	26-27 SOUT	23-25 NORT	22 SOUT	21 NORT	20 EXIS	19 RELO	18 REME	16-17 REME	14-15 REME	12-13 PROJ	10-11 REME	8-9 REME	6-7 REME	4-5 REME	3 GPS	2 GENE	1 TITL	SHEET NO.	
	SMAD SITE MAD	STORM WATER MANAGEMENT PLAN NARRATIVE	DRAINAGE AREA MAP	CONCRETE LINED DITCH MISCELLANEOUS DETAILS	SOUTHERN WRP CONCRETE LINED DITCH PLAN AND PROFILE	NORTHERN WRP CONCRETE LINED DITCH PLAN AND PROFILE	SOUTHERN WASTE ROCK PILE	NORTHERN WASTE ROCK PILE	EXIST AND TEMP ACCESS ROAD LAYOUT	RELOCATE AND DEMO PLAN	REMEDIATION AREA #1 AND #2 CROSS-SECTION	REMEDIATION AREA #1 AND REMEDIATION AREA #2 EXCAVATION CONTOUR	REMEDIATION AREA #1 AND REMEDIATION AREA #2 ELEVATION CONTOURS	PROJECT LAYOUT	REMEDIATION AREA #2 BOTTOM BOUNDARY ALIGNMENT DATA	REMEDIATION AREA #2 TOP BOUNDARY ALIGNMENT DATA	REMEDIATION AREA #1 BOTTOM BOUNDARY ALIGNMENT DATA	REMEDIATION AREA #1 TOP BOUNDARY ALIGNMENT DATA	GPS SURVEY AND LIDAR REPORT EXCERPTS	GENERAL NOTES AND QUANTITIES	TITLE SHEET AND INDEX	DESCRIPTION	SHEET INDEX

 THE PLANS, BUT NOT SHALL BE ALLOWED IN THE PLANS, THE PLANS, BUT NOT SHALL PRESERVE ALL CONSTRUCTIONED FOR INCIDENTIAL WORK WILL BE REQUIRED AND STARLING WORK THE CONTRACTOR OF NUMERACTOR SHALL BE REPLACED BE AND ARE DESTROYED OR REQUIRE REPLACED STARLING WORK THE CONTRACTOR OF SAME UP STARLING WORK THE CONTRACTOR SHALL BE REPLACED AND PROPERS. CONTRACTOR AGREES THAT HE SHALL ASSUME RESPONSIBILITY FOR JOB SITE CONDITIONS AND DENNERACTOR PRIOR TO CONSTRUCTION OF SAME UPANS. ACTIVAL LOCATION AND DEPTHS WAN CONTRACTOR AGREES THAT HE SHALL WORKING AND RESPONSIBILITY FOR JOB SITE CONDITIONS CONTRACTOR AGREES THAT HE SHALL WORKING CONSTRUCTION OF PRODECT INCLUDING SAME AND PROPERTY. THIS REQUIREMENT SHALL FREE EXISTING UTILITIES EVEN IF THEY ARE CONSTRUCTION OF PRODECT INCLUDING SAME AND NOT BE LIMITED TO NORMANE AND HILL HAMINE THE EXISTING UTILITY ARTICLES SUBMIT AND COMPONISIBILITY ARTICLES AND FOORERS. REPAIR OF DAMAGED MARKED OF SAME WHILE ON STRE. SUBMIT AND CONDITIONS ARE NOT THESE PLANS FOR REVIEW AND WATTER POLLUTION SARE NOT REASONS DO NOT BURN ANY MATERPONISIBLE FOR THE CONTRACTOR SUBJECT TO ENGLINEER REVIEW AND APPROXIMATE. SIGNIFICS VERTICAL AND NOT MEETING AND APPROXI- INFORMENT. CONTRACTOR SHALL EXECUTE ALL REQUIRED IN STABLISH FINAL GRADES TO ASSURE POSITI ON A THEN MATER POLLUTION PREVENTIONS AND ON A TIMENT MANNER. THE PLANS TO THE CONTAMINATED AREAS TO BECONTINUOUS. REPORTING ON A TIME DANNES WILL REMAIN AND WILL BE ADJUSTED AS NEEDED. CONFIRMING SUMPS WILL REMAIN AND WILL BE ADJUSTED AS NEEDED. CONFRACTOR SHALL FOR DUST CONTINUOUSLY TES CONTAMINATED AND WASTE ROCK WHILE TRANSPORT OR CONTAMINATED AND WASTER NOT. CONTINUOUSLY TES CONTAMINATED SOLL DURING TRANSPORT OR CONSTRUCTION AND WASTER ROCK FILL AREAS NOT CONTAMINATED AND WASTER ROCK FILL AREAS
CONTRACTOR SHALL PRESERVE ALL CONSTRUCTION FT. IF ANY ARE DESTROYED OR REMOVED B ETC. IF ANY ARE DESTROYED OR REPLACED SHALL BE REPLACED FLANS, ACTUAL LOCATION FOR THE ANITENANCE PLANS, ACTUAL LOCATION FOR THE ANITENANCE CONTRACTOR PRIOR TO CONSTRUCTION AND RESPONSIBLE INFORMATION FOR THE CONTRACTOR SHALL BE AND NOT BE LIMITED TO NORMAL WORKING H SCONTRACTOR PRIOR TO CONSTRUCTION AND RESPONSIBLE FOR PROTECT INCLUDING SAFE AND NOT BE LIMITED TO NORMAL WORKING H SCONTRACTOR SHELL CONDITION NEGLIGATED AND COORDINATE A CONSTRUCTION S SCONTRACTOR'S RESPONSIBLE FOR PRO- NECLIGATION WITH THE PERFORMACE WORKING H SCONTRACTOR'S RESPONSIBLE FOR PRO- SCONTRACTOR'S RESPONSIBLE FOR PRO- SCONTRACTOR SHALL SAFE NOT FREE PLANS AND TO REVIEW AND WRITTEN APPROVAL. ALL DIMENSIONS SHOWN ARE APPROVAL. SCONTRACTOR SHALL CRECUTE ALL REQUIRED SCONTAMINATED AND TO MEET FIELD CONDITIONS AND STATE CONTRACTOR SHALL EXECUTE ALL REQUIRED STORM WATER POLLUTION FREVENTION AND STATE CONTAMINATED AREAS TO BE CONTINUOUSLY TES SCONTAMINATED AREAS TO BE CONTINUOUSLY TES CONTAMINATED AND STATENCING SHILL TRANSPORTING SAMPS WILL ADJUSTED AS NEEDED. MAINTAIN DRAINAGE TO EXISTING SUMPS AT EXISTING SUMPS WILL REMAIN AND WILL BE ADJUSTED SOLL SHALL BE ANARE THAT SPIN CONTRACTOR SHALL BE AND THE FILL/DI APPLY WATER FOR DUST CONTROL CONTINUOUSLY TES CONTRACTOR SHALL BE ANARE THAT SPIN CONTRACTOR SHALL BE ALL RECOMENDING TRANSPORT ON ALL CONTRACTOR SHALL BE PLACED AT ANY HERE ELSE.
XISTINCE AND LOCATION OF UNDERGR VINSTENCE AND VERIFIED BY THE C VINSTING UNDERFIED BY THE C ACTUAL LOCATIONS AND DEPTHS MUT NACTOR AGREES THAT HE SHALL ASSUM MARTOR PRIOR TO CONSTRUCTION AND DEFEND, INDEMNIFY AND HOLD HARM INDEREND, INDEMNIFY AND HOLD HARM INDER FOR DUST COMPACING WORK IN A SALE INDEX IN THE FROM INTERVISED PLA EVENT TO ENGINE AND TO AND FOR INTERVISED PLA EVENT AND TO MEET FIELD CONDITION INTER FOLLITION FREVIEW AND APPROVAL. INTIMENSIONS, SHOWN ARE APPROXIMATE. INTIMENSIONS, AND TO THE LINES AND INTER FOLLITION FREUTION AND STAT INNING EXCAVATION, TRENCHING AND STAT INNINGER CONTINUOUSLY TE ANTON ANY MATERIALS AT OR FROM THAN INNINATION IS REMOVED. INTER ANNERS TO BE CONTINUOUSLY TE ANINATION IS REMOVED. INTER TO DUST CONTROL CONTINUOUSLY TE ANINATER FOR DUST CONTROL CONTINUOUSLY TE ANINATED SUBSIDIARY TO APPLICABLE I DERED SUBSIDIARY TO APPLICABLE I ONTRACTOR SHALL BE AWARE THAT SP ATTON AND WASTE ROCK PILE ARASPORT OR ATTON AND WASTE ROCK PILE AREAS OF AND PILE LOCATIONS SHOWN IN THE PLACED A PRICE LOCATIONS SHOWN IN THE PLACED A PRICE ACCATIONS SHOWN IN THE PLACED A PRICE AND AND HASTE ROCK PILE AREAS OF A ATTON AND WASTE ROCK PILE AREAS OF AND ANTAL SHALL BE ANARE THAT SP ANTON AND WASTE ROCK PILE AREAS OF AND ANTAL SHALL BE ANALE BE ANARE THAT SP ANTON AND WASTE ROCK PILE AREAS OF AND ANTAL SHALL BE ANALE BE ANALE AREAS OF AND ANTAL SHALL BE ANALL BE ANALE AREAS ON AND AND AND AND AND AND AND AND AND AN
CONTRACTOR AGREES THAT HE SHALL ASSUN CRESPONSTBULITY FOR JOE SITE CONDITION AND PROPERTY. THIS REQUIREMENT SHALL AND NOT BE LIMITED TO NORMAL WORKING THE CONTRACTOR SFROW ANY AND ALL LIABIL THE CONTRACTOR SFROW ANY AND ALL LIABIL IN CCONJUNCTION OF THE OWNER OR THE ENGINE SECURITY TO PROTECT HIS OWN AND FOLD HARM THE CONTRACTOR IS RESPONSIBLE FOR PROVAL. SECURITY TO PROTECT HIS OWN ARE A CONSTRUCTION ENGINEERS APPROVAL. SUBMIT REVISED PLANGED AND THE ENGINE SECURITY CHANGES OR REVISIONS TO THESE PLANGED AND HOLD HARM THE CONTRACTOR S RESPONSIBLLITY UNTIL ACI ANY CHANGES OR REVISIONS TO THESE PLANGED REVISIONS TO THESE PLANGED ENGINEERS APPROVAL. SUBMIT REVISED PLANGED IN THE A CONSTRUCTION ANY CHANGES OR REVISIONS TO THESE PLANGED TO ENGINEER REVISED PLANGED SIGNIFIES VERTICAL AND HORIZONTAL ALL ANY CHANGES OR REVISIONS TO THESE PLANGED TO ENGINEER REVISED PLANGED CONSERVING EXCAVATION ARE APPROVING ALL ANY CHANGES TO ASSURE POSI CONTERNING EXCAVATION, TRENCHING AND BARON STORM WATER POLLUTION SARE NOT REASON COMPLY WITH OSHA REGULATIONS AND STAT CONCERNING EXCAVATION, TRENCHING AND DO NOT BURN ANY MATERIALS AT OR FROM STORM WATER POLLUTION PREVENTION AND FIELD BEFORE COMMENCING ANY WORK. REDUCTION AND STORM WATER FOR DUST CONTINUOUSLY TE CONTAMINATION IS REMOVED. MAINTAIN DRAINAGE TO EXISTING SUMPS A EXCAVATION AND WASTE ROOK WHILE TRANSPORT THE ECONTRACTOR SHALL BE AWARE THAT SP CONSIDERED SUBSIDIARY TO APPLICABLE J THE CONTRACTOR SHALL BE AWARE THAT SP CONTAMINATED SUBSIDIARY TO APPLICABLE J THE CONTRACTOR SHALL BE AWARE THAT SP CONTAMINATED SUBSIDIARY TO APPLICABLE AREAS ALL CONTRACTOR SHALL BE AWARE THAT SP CONTAMINATED SUBLE AND WILL BRACATION AND WASTE ROCK PILE AREAS ALL CONTRACTOR SHALL BE AWARE THAT SP CONTAMINATED SUFFICIENT SHOWN IN THE PLANE
THE CONTRACTOR IS RESPONSIBLE FOR POPERTIN PROGRESS. REPAIR OF DAMAGED INPR CONTRACTOR'S RESPONSIBLITY UNTIL A ANY CHANGES OR REVISIONS TO THESE PI FOR REVIEW AND WRITTEN APPROVAL. SIGNIFIES VERTICAL AND HORIZONTAL ANY HORIZONTAL OR VERTICAL POSITION SUBJECT TO ENGINEER REVIEW AND APPR ESTABLISH FINAL GRADES TO ASSURE POS CONSTRUCT FACILITIES TO THE LINES AN THE PLANS AND TO MEET FIELD CONDITIONS ANY HORIZONTAL OR VERTICAL POSITION SUBJECT TO ENGINEER REVIEW AND APPR ESTABLISH FINAL GRADES TO ASSURE POS CONCERNING EXCAVATION, TRECHLING AND STA CONCERNING EXCAVATION, TRECHLING AND STA CONCERNING EXCAVATION, TRECHLING AND STATE PLANS AND TO MEET FIELD CONDITIONS ARE NOT REAS DO NOT BURN ANY MATERIALS AT OR FROM CONTRACTOR SHALL EXECUTE ALL REQUIRE STABLISH FILL DIMENSIONS, ELEVATIONS AN FIELD BEFORE COMMENCING ANY WORK. R DISREPANCIES WITHIN THE PLANS TO THE CONTAMINATION IS REMOVED. NAINTAIN DRAINAGE TO EXISTING SUMPS EXISTING SUMPS WILL REMAIN AND WILL ADJUSTED AS NEEDED. COVER ALL HAUL TRUCKS WHILE TRANSPOP THE EXCAVATION LOCATION TO THE FILL. APPLY WATER FOR DUST CONTROL CONTINU- CONSTRUCTION. THIS IS NOT PALD FOR S CONSIDERED SUBSIDIARY TO APPLICABLE THE CONTRACTOR SHALL BE AWARE THAT S CONTRACTOR SHALL BE AWARE THAT S CONTRACTED SOIL DURING TRANSPORT O ALL CONTRACTED SOIL SHALL BE PLACED ALL CONTRACTED SOIL SHALL BE PLACED ALL CONTRACTED SOIL SHALL BE PLACED ANYWHERE ELSE.
HANGES OF REVISIONS TO THESE PLEVIEW AND REVISIONS STO THESE PLEVIEW AND RAPFOVAL. SUBMIT REVISED FIEVENEW AND RAPFOVAL. SUBMIT REVIEW AND RAPFOVAL. AND FOR VERTICAL AND HORIZONTAL OF VERTICAL AND POSITION COT TO ENGINEER REVIEW AND APPROVED TO ASSURE POSITION FRECHELD CONDITIONS ARE NOT REASON. THE PLAL CONDITIONS ARE NOT REASON. THE POLLUTION FREVENTION AND STATEMENT POLLUTION FREVENTION AND BEFORE COMMENCING, ALL REQUIATION, TRENCHING AND TO THE POLLUTION PREVENTION AND BEFORE COMMENCING, ELEVATIONS AND TO MATERIALS AT OF FROM ANTER SUMPS WILL TREASON TO THE PLANS TO THE TIMELY MANNER. THE PLANS TO THE FILL. THE AS NEEDED. THE AND WILL TRUCKS WILL REMAIN AND WILL TRUCKS WILL REMAIN AND WILL TRUCKS WILL REMAIN AND WILL TRUCKS WILL TRUCKS WILL TRUCKS WILL TRUCKS WILL TRUCKS WILL TRUCKS TO APPLICABLE ONTRACTOR SHALL BE AWARE THAT SATION AND WASTE ROCK PILE AREAS ATION AND ASTE ROCK PILE AREAS ATION AND AT A PLANS AT A TON AND ASTE ROCK PILE AREAS ATION AND ATHE PLANS AT A TON AND ATTON AND AT A PLANS AT A T
ALL DIMENSIONS SHOWN ARE APPROXIMATE SIGNIFIES VERTICAL AND HORIZONTAL AN ANY HORIZONTAL OR VERTICAL POSITION SUBJECT TO ENGINEER REVIEW AND APPRO ESTABLISH FINAL GRADES TO ASSURE POS CONSTRUCT FACILITIES TO THE LINES AN THE PLANS AND TO MEET FIELD CONDITIONS ARE NOT BURN ANY MATERIALS AT OR FROM CONTRACTOR SHALL EXECUTE ALL REQUIRE STORM WATER POLLUTION PREVENTION, ANR VERTY ALL DIMENSIONS, ELEVATIONS AN FIELD BEFORE COMMENCING ANY WORK. R DISCREPANCIES WITHIN THE PLANS TO TH ON A TIMELY MANNER. EXCAVATED AREAS TO BE CONTINUOUSLY I CONTAMINATION IS REMOVED. MAINTAIN DRAINAGE TO EXISTING SUMPS EXISTING SUMPS WILL REMAIN AND WILL ADJUSTED AS NEEDED. COVER ALL HAUL TRUCKS WHILE TRANSPOR THE EXCAVATION LOCATION TO THE FILL/ APPLY WATER FOR DUST CONTROL CONTINU CONSTRUCTION. THIS IS NOT PALD FOR SI CONTRACTOR SHALL BE AWARE THAT S CONTRACTOR SHALL BE AWARE THAT S ALL CONTRACTOR SHALL BE AWARE THAT S ALL CONTRACTED SOIL DURING SHOWN IN THE PLACED ANYWHERE ELSE.
LISH FINAL GRADES TO ASSURE POSI RUCT FACILITIES TO THE LINES AND LANS AND TO MEET FIELD CONDITION FIELD CONDITIONS ARE NOT REASON IFIELD CONTINUOUS AND STAT RNING EXCAVATION, TRENCHING AND STAT RNING EXCAVATION, TRENCHING AND STAT IMATER POLLUTION PREVENTION AND DEFORE COMMENCING ANY WORK. REF ELEVATION ES WITHIN THE PLANS TO THE TIMELY MANUER. IN DRAINAGE TO EXISTING SUMPS A ING SUMPS WILL REMAIN AND WILL BI TED AS NEEDED. ALL HAUL TRUCKS WHILE TRANSPORT XCAVATION LOCATION TO THE FILL/D WATER FOR DUST CONTROL CONTINUO RUCTION. THIS IS NOT PAID FOR SEP DERED SUBSIDIARY TO APPLICABLE I ONTRACTOR SHALL BE AWARE THAT SP MINATED SOIL DURING TRANSPORT OR ATION AND WASTE ROCK PILE AREAS I ONTRACTED SOIL SHALL BE PLACED A PILE LOCATIONS SHOWN IN THE PLANE
Y WITH OSHA REGULATIONS AND STAT RNING EXCAVATION, TRENCHING AND STAT TRUING EXCAVATION, TRENCHING AND STAT TO BURN ANY MATERIALS AT OR FROM T ACTOR SHALL EXECUTE ALL REQUIRED I WATER POLLUTION PREVENTION AND PEPERANCIES WITHIN THE PLANS TO THE FIMELY MANNER. AIND DRAINAGE TO EXISTING SUMPS A TIMELY MANNER. AIND DRAINAGE TO EXISTING SUMPS A TING SUMPS WILL REMAIN AND WILL B TIMELY MANNER. AIND RAINAGE TO EXISTING SUMPS A TING SUMPS WILL REMAIN AND WILL B THED AS NEEDED. ALL HAUL TRUCKS WHILE TRANSPORT XCAVATION LOCATION TO THE FILL/D WATER FOR DUST CONTROL CONTINUO FRUCTION. THIS IS NOT PAID FOR SEP DERED SUBSIDIARY TO APPLICABLE I ONTRACTOR SHALL BE AWARE THAT SP MINATED SOIL SHALL BE AWARE THAT SP ATION AND WASTE ROCK FILE AREAS I ONTRACTED SOIL SHALL BE PLACED A PREE ELSE.
ACTOR SHALL EXECUTE ALL REQUIRED TWATER POLLUTION PREVENTION AND TY ALL DIMENSIONS, ELEVATIONS AND DEFORE WITHIN THE PLANS TO THE TIMELY MANNER. ATED AREAS TO BE CONTINUOUSLY TE MINATION IS REMOVED. THE AS NEEDED. THE AS NEEDED. TH
Y ALL DIMENSIONS, ELEVATIONS AND EPARCIES WITHIN THE PLANS TO THE TIMELY MANUER. ATED AREAS TO BE CONTINUOUSLY TE MINATION IS REMOVED. AIN DRAINAGE TO EXISTING SUMPS A ING SUMPS WILL REMAIN AND WILL BI TED AS NEEDED. ALL HAUL TRUCKS WHILE TRANSPORT XCAVATION LOCATION TO THE FILL/D WATER FOR DUST CONTROL CONTINUO RUCTION. THIS IS NOT PAID FOR SEP DERED SUBSIDIARY TO APPLICABLE I ONTRACTOR SHALL BE AWARE THAT SP MINATED SOIL DURING TRANSPORT OR ATION AND WASTE ROCK PILE AREAS I PILE LOCATIONS SHOWN IN THE PLACED A PILE LOCATIONS SHOWN IN THE PLANS ANDES
ATED AREAS TO BE CONTINUOUSLY TE MINATION IS REMOVED. AIN DRAINAGE TO EXISTING SUMPS A ING SUMPS WILL REMAIN AND WILL B TED AS NEEDED. ALL HAUL TRUCKS WHILE TRANSPORT XCAVATION LOCATION TO THE FILL/D PRUCTION. THIS IS NOT PAID FOR SEP DERED SUBSIDIARY TO APPLICABLE I ONTRACTOR SHALL BE AWARE THAT SP MINATED SOIL DURING TRANSPORT OR ATION AND WASTE ROCK PILE AREAS I PILE LOCATIONS SHOWN IN THE PLAN ERE ELSE.
AIN DRAINAGE TO EXISTING SUMPS A THE SUMPS WILL REMAIN AND WILL B THED AS NEEDED. ALL HAUL TRUCKS WHILE TRANSPORT XCAVATION LOCATION TO THE FILL/D WATER FOR DUST CONTROL CONTINUO RUCTION. THIS IS NOT PAID FOR SEF DERED SUBSIDIARY TO APPLICABLE I ONTRACTOR SHALL BE AWARE THAT SP MINATED SOIL DURING TRANSPORT OR ATION AND WASTE ROCK PILE AREAS I PILE LOCATIONS SHOWN IN THE PLAN ERE ELSE.
ING SUMPS WILL REMAIN AND WILL B TED AS NEEDED. ALL HAUL TRUCKS WHILE TRANSPORT XCAVATION LOCATION TO THE FILL/D WATER FOR DUST CONTROL CONTINUO DERED SUBSIDIARY TO APPLICABLE I DONTRACTOR SHALL BE AWARE THAT SP MINATED SOIL DURING TRANSPORT OR ATION AND WASTE ROCK PILE AREAS I ATION AND WASTE ROCK PILE AREAS PONTRACTED SOIL SHALL BE PLACED A PILE LOCATIONS SHOWN IN THE PLAN PRIE ELSE.
ALL HAUL TRUCKS WHILE TRANSPORT XCAVATION LOCATION TO THE FILL/D WATER FOR DUST CONTROL CONTINUO RUCTION. THIS IS NOT PAID FOR SEP DERED SUBSIDIARY TO APPLICABLE I ONTRACTOR SHALL BE AWARE THAT SP MINATED SOIL DURING TRANSPORT OR ATION AND WASTE ROCK PILE AREAS PILE LOCATIONS SHOWN IN THE PLAN ERE ELSE.
WATER FOR DUST CONTROL CONTINUO RUCTION. THIS IS NOT PAID FOR SEP DERED SUBSIDIARY TO APPLICABLE I ONTRACTOR SHALL BE AWARE THAT SP MINATED SOIL DURING TRANSPORT OR ATION AND WASTE ROCK PILE AREAS I PILE LOCATIONS SHOWN IN THE PLAN ERE ELSE.
ONTRACTOR SHALL BE AWARE THAT SP MINATED SOIL DURING TRANSPORT OF ATION AND WASTE ROCK PILE AREAS ONTRACTED SOIL SHALL BE PLACED A PILE LOCATIONS SHOWN IN THE PLAN ERE ELSE.
ALL CONTRACTED SOIL SHALL BE PLACED A ROCK PILE LOCATIONS SHOWN IN THE PLAN ANYWHERE ELSE. THMORK NOTES
THWORK NOTE

	***STF WESTEF	*USE T APPLIC	TOTAL	WHE	BI LITI YELLO	SEEDING PERMANE MUST BE ACRE.	9.	°.	7.	6.	თ •	4.	3. 2.		CON	۵ •	7.	ь .	J.	4.	ų.	
	REAMBANK RN WHEATG	HIS SEED	SWITCHGRASS BLU GRAMA	WESTERN	BIG BLUESTEM SIDEOATS GRAMA ITTLE BLUESTEM LOW INDIANGRAS	S TABL	CAP ENGI PILE DIT	EXCAVATE SPOILS I	RECONSTR	EXCAVATE SPOILS I	REMOVE S	EXCAVATE SPOILS I	YCAVAT POILS ECONST	CONSTRUC REMED I AT	STRUCTION	UNCONTAN SHALL BE REMEDIAT REQUIREN REMOVED	R	AFTER FI AND APPR ROCK PIL	COMPACTED STATE BULLDOZER OR ANY USED TO PULL A P SOIL LAYER MATER APPROPRIATELY HA COMPACTOR SUCH A COMPACTOR SUNIL/	OF THE N	IMUM TOF T TING OF	
1	WHEATGRAS RASS	ING RATE			ASS	CAST) S	NEERED WA	SOUTHE N LOCAT	RUCT ACCESS	E NORTHERN IN LOCATION	EDGE OF	N LOCATION	NORTHER N LOCATI UCT ACCE	T TEMP AC	LPHASING	INATED E STOCKPII ION AREA MENTS, AFT FROM THE	SOIL USING	PROVED, CON ILE CAP AND	ER OR ANY PULL A PY ER MATER IATELY HE OR SUCH A SIMILA	NEXT LIFT	MAXIM MAXIM WET OF CRITE DISTUR EST PE	
	SS (SODAR)	FOR BOTH	BRASKA 28 OVINGTON	ARRIBA	VAUGHN PASTURA HOLT	DED AT	ASTE ROCK	ION OF PRO	ROAD	N HALF OF	REMEDIAT	N HALF OF	HALF C OF PR ROAD	CCESS ROAD #2.		XCAVATIO LED AND C S OR USEC FER ALL C REMEDIAT	THE N TMAT	OF CONTA NTRACTOR D SALVAGE	TRACK-ML TRACK-ML AD-FOOTEC IAL LOOSE AVY, PROP AVY, PROP AVY, PROP AVY, PROP A TO A CA	LIFT SHALL BE	PACTION PTIMUM IA ESTAI 1000 LF	
	R) CAN BE	BRO	100%	10	20 20 10	이 규급	PILE AND	REMEDIA P ENGINE	BACK IN OF	P ENGINEE	STRUCT T ION AREA	P ENGINE	REMED] ENGIN	D ACROSS		UNCONTAMINATED EXCAVATION FROM THE DITCH E SHALL BE STOCKPILED AND COMPACTED BACK INTI REMEDIATION AREAS OR USED AS TOPSOL, IF SO REQUIREMENTS, AFTER ALL CONTAMINATED SOILS REMOVED FROM THE REMEDIATION AREAS.	COMPLETED, AIX BELOW AN TO PROTECT	IFT OF CONTAMINATED SOIL CONTRACTOR SHALL APPLY T AND SALVAGED TOPSOIL.	ANY TRACK-MOBILIZED EQUIPACIED WITH , ANY TRACK-MOBILIZED EQUIPMENT UNLESS A PAD-FOOTED ROLLER. COMPACTION OF CC TERIAL LOOSE LIFTS WILL BE PERFORMED (HEAVY, PROPERLY BALLASTED, PENETRATI 21 HAS A PAD FOOT, PRONG-FOOT, OR SHEEP MILAR TO A CAT 815 OR EQUIVALENT.	FOR COMP	CRITERIA FOR A CC ENSITY AT A MOISTU MOISTURE CONTENT, BLISHED DURING PRI Y TESTING WILL BE F OF 12" COMPACTED	
	SUBST I	ST AND	18			NDS PUR) CONSTRUC	TION AREA ERED WAST	ORIGINAL /	TION AREA ERED WAST	#1 ACCES	TION AREA ERED WAST	ATION AREA HEERED WAST ORIGINAL A	THE SOUT		BACK INT BACK INT OIL, IF S TED SOILS S.	D, CONTRACT AND APPLY CT THE SOIL	SOIL HAS BE	EQUIPMEN COMPACIN COMPACTI ILL BE PE IASTED, P IG-FOOT, O EQUIVALE	COMPACTION.	A MOISTU CONTENT, CONTENT, URING PRE WILL BE COMPACTED	
	TUDED FOR	YDROMULC	2 0.6 0.3 3.9 LBS/A	3.2	4.4 2.8 2	NOTED B LIVE SE	JCT WASTE	A #1 AND PI E ROCK PI	AL I GNMENT	E ROCK	SS ROAD A	#2 AND E ROCK P	#2 AND E ROCK P LIGNMEN	TH EDGE OF		XCAVAT D THE E HAVE E HAVE E	OR SHALL S A BIODEGR, _ FROM ERO	BEEN COMP NGINEERED	D WITH A T UNLESS I RFORMED WI ENETRATING ENETRATING DR SHEEPSFC	PRIOR TO PL	MPACTE RE CONI OR THE E-CONST CONDUCT SOIL.	
	THE		CRE				ROCK	ILE.	•	PLACE PILE.	CROSS	PLACE	ILE.	ור		ON AREAS CAVATED EN	SEED RADABLE OSION.	PACTED D WASTE	A S IT IS OMPACTED D WITH AN TING FOOT PSFOOT	-ACEMENT	D SOIL IS FENT AT 1% RUCTION FED AT A	

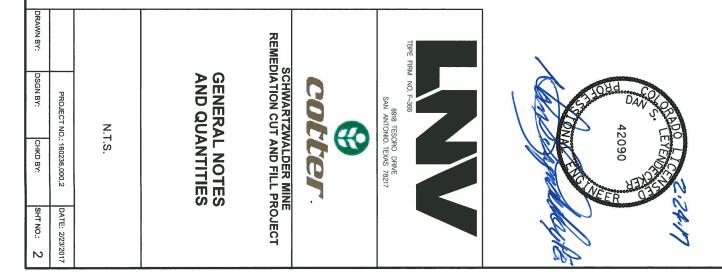
ITEM	DESCRIPTION
201	Clearing and Grubbing
202	Removal of Structures and Obstructions
203	Contaminated Excavation (Complete In Pla
203	Uncontaminated Excavation (Complete In F
203	Contaminated Embankment (Complete In Pic
204	Uncontaminated Embankment (Complete In F
208	Erosion Log
208	Erosion Bales
208	Vehicle Tracking Pad (Construction Entro
1000	Dewatering
	24" Grouted Rock Riprap
	Concrete Cloth
	Concrete Toe Down
	Turf Reinforcement Matting
	Hydromulch Seeding and 6 Inch Topsoil
	Engineered Waste Rock Pile Cap

- OF PILE: NT. PILE: PILE:

- ACROSS
-) PLACE PILE.

- D PLACE PILE.

18 0 BS/ACBE	100%		ΤΔΙ
 0.3	თ	LOVINGTON	BLU GRAMA
 0.6	თ	NEBRASKA 28	SWITCHGRASS
2	10	1	NEEDLEANDTHREAD
3.2	10	ARRIBA	WESTERN WHEATGRASS***
 2	10	HOLT	ELLOW INDIANGRASS
 2.8	20	PASTURA	LITTLE BLUESTEM
 3.6	20	VAUGHN	SIDEOATS GRAMA
4.4		KAW	BIG BLUESTEM
 BROADCAST* PLS/ACRE	% OF MIX	VARIETY	SPECIES


2/23/2017 S:\Projects\Cotter\160236 Schwartzwalder Mine_CutFill-SW3P\000\Drawings\Plans\Civil\COTTER_MINE_GEN_NOTES.dgn

TYPICAL SILT CONTROL IN CREEK

-))	SY 38,00	SY 38,00	CY 270.	SF 21,50	CY 120.	LS 1.0	rance) EA 4.0	LF 100.	LF 4,000	Place) CY 34,00	Iace) CY 143,96	Place) CY 26,00	Iace) CY 64,00	LS 1.0	ACRE 20.	UNIT TOTAL QL	
1.00	38,000.00	38,000.00	270.00	21,500.00	120.00	1.00	4.00	100.00	4,000.00	34,000.00	143,965.00	26,000.00	64,000.00	1.00	20.00	TOTAL QUANTITY	

A	Excerpts
erial	from
Surv	"GPS SUF
Aerial Surveys Internation	SURVEY OE ROAD
nterna	AD PRC
at i ona l	AND LIDAR PROJECT
LLC	REPORT"
	for

5 veys E 2 ۵

Pg. ω

2. NGS Survey Control and GPS Survey Based on the project location, available airport, available NGS survey and access to the survey control, access to the project site itself and our survey team selected to utilize deferson County Airport (Rocky Mountain Metropolitan) as our base of operations. In reviewing available NGS survey control we found (2) 1st order vertical and (1) 3 order vertical NGS survey control all with GPS derived horizontal positions all within 10 miles of the project area. The selected NGS control included JEFFCO AZ MK (f order vertical) located outside the secure area of the airport with easy access and good GPS sky, TT 24J (1st order vertical) located 7.5 miles from the airport & 4.5 miles north of the project area and F 411 Reset located 9 miles from the airport and 4 miles east of the project site.

Pgs. 7-8

E 411 RESET NAD83(2011) Latitude: 39 48 50.64706(N) NAD83(2011) Longitude: 105 13 19.46440 (W) Ellipsoid Height: 1797.980m Geoid Height: -15.71m NAVD88 Level Height: 1813.68m / 5950.38 ft NAVD88 GPS Height: 1813.69m / 5950.41 ft Adjusted Ellipsoid Height: 1797.97m Horizontal Order: GPS derived Vertical Order: Third Vertical Order: Third UTM Zone 13 Northing: 524,722.018 UTM Zone 13 Northing: 524,722.018 SPC CO C, SFT Northing: 1,721,525.48 SPC CO C, SFT Easting: 3,078,076.44 **JEFECO Z MK** NAD83 (2011) Latitude: 39 54 06.44979 (N) NAD83 (2011)Longitude: 105 05 44.13387(W) Ellipsoid Height: 1663.418m Geoid Height: -16.82m NAVD88 Level Height: 1680.260m / 5512.65 ft NAVD88 GPS Height: 1680.238m / 5512.58 ft Adjusted Ellipsoid Height: 1663.44m Horizontal Order: GPS derived Vertical Order: First Order, Class II UTM Zone 13 Northing: 4,416,861.513 UTM Zone 14 Easting: 491,828.554 SPC CO C, SFT Northing: 1,753,614.82 SPC CO C, SFT Easting: 3,113,465.53 **II 25 J4** NAD83(2011) Latitude: 39 53 25.66695(N) NAD83(2011) Longitude: 105 14 27.42941(W) Ellipsoid Height: 1875.756 Geoid Height: -15.71 NAVD88 Level Height: 1891.502m / 6205.70 f1 NAVD88 GPS Height: 1891.466m / 6205.58 ft NAVD88 GPS Height: 1891.466m / 6205.792m Horizontal Order: GPS derived Vertical Order: First(Class II) UTM Zone 13 Northing: 533,199.597 UTM Zone 13 Easting: 936,558.843 SPC CO C, sFT Northing: 1,749,339.01 SPC CO C, sFT Easting: 3,072,693.47 *Ellipsoid Height was adjusted to assure Computed orthometric height matched the p NAD88 orthomtetric height using Geoid12A *Ellipsoid Height was adjusted to assure the final Computed orthometric height matched the published NAD88 orthomtetric height using Geoid12A *Published Values by National Geodetic Survey ,70 ft (W) published -5 +

	Glen1 3070708.570 1716744.186 6132.874 Glen2 30683242.710 1720085.266 6327.199 Glen4 3068682.1.785 1721103.281 6280.942 30688321.586 1721181.502 6270.342 3061288.067 1732729.790 6601.834 1732706.768 6557.597 6587.116	LC urvey & Processing ch day of GPS collection, the GPS dat- ned 3-d network adjustment performed accuracy of the primary NGS survey of accuracy of the primary NGS survey of accuracy of the project area, we theight for ished elevations and elipsoid height for ished elevations for TT 24 J, F 411 RE own for GLEN1. JEFFCO AZ MK, TT 24 accuracy the computed positions and foun- ished elevations for TT 24 J, F 411 RE own for GLEN1. JEFFCO AZ MK and (2) CORS and heights. The results indicate the dger of 3m (0.098'). RE RN RH m) 0000 -0.0000 0.0000 RH 00 0.0000 0.0000
DRAWN BY:	REMEDIA GPS RE	TBPE FIRM
PROJECT NO		Z A Charleman C
N.T.S. PROJECT NO.: 160236.000.2 NBY: CHKD BY:	SCHWARTZWALDER MINE REMEDIATION CUT AND FILL PROJECT	F-GSE BIBI TESOPO DIPUE SAN ANTONIO, TEXAS 78217
DATE: 2/23/2017 SHT NO.: 3	NE PROJECT	

2/23/2017 S:\Projects\Cotter\160236_Schwartzwalder_Mine_CutFill-SW3P\000\Drawings\Plans\Civil\COTTER_MINE_PCI.dgn

*Ellipsoid Height was adjusted to assure the final Computed orthometric height matched the published NAD88 orthomtetric height using Geoido12A.

+ +

2/23/2017 S:\Projects\Cotter\160236 Schwartzwalder Mine CutFill-SW3P\000\Drawings\Plans\Civil\COTTER_MINE_ALIGN_DATA-1.dgn

	3" W Dist 162.42	to PC 20 S 81° 21' 38.2	se from PT			
3,061,702.76 3,061,686.90 3,061,683.90	1,732,853,89 1,732,840.78 1,732,860.55	20.58 20.58 11+22.58 11+72.30 N 19° 26' 53.71" W 50° 24' 138.23" W 50° 24' 138.23" W	Ahead Bear = S			
3,061,698.76	* 1,732,842.58 E	4.0 M				
	1" W Dist 37.02	8 to PC 19 S 19° 26' 53.	Course from PT 1		7' 55.36" E Dist 36.97	Course from PT 13 to PC 14 S 64° 07
3,061,665.17 3,061,715.08 3,061,620.79	1,733,011. 1,732,888. 1,732,922.	100.00 132.62 132.65 132.65 132.65 132.65 132.65 132.65 132.65 132.65 132.65 132.65 132.65 132.65 14 N 19.65 11.45 28 N 22° 06.64" K	Bear ::	3,061,205.36 3,061,225.04 3,061,225.67	N 1,733,417. N 1,733,417. N 1,733,494.	addus = 100.00 xternal = 24.64 ind. Ord = 3+57.59 i.c. Station 3+82.30 .c. = 58' 40.54" E .c. = 57" 03' 17.95" E head = 57" 03' 17.95" E
3,061,744.59	1,732,972.37 E	Curve * Cur	th ====================================	3,061,214.87	Currye Data Currye	re 13 re 13 re 57° 14° 09′ 14.82° re 57° 17′ 44.81° thn = 27° 14′ 44.81° 24.70
3,061,576.49 3,061,644.14 3,061,866.05	8" F Dist 23	7 8.810 7 8.81 8 + 8 - 87 9 + 66. 77 54° 36° 40.22" E 59° 07' 53.60" E 59° 07' 53.60" E 7 + 0 PC 18 5 63° 30° 05 9	ong Chord = i.i.d. Ord. = .C. Station .C. Station .C. Station .C. = S hord Bear = S hord Bear = S	3,061,112.81 3,061,135.95 3,061,071.64	N 1,733,490.68 E N 1,733,476.13 E 1,733,399.55 E	טעטרט טעצצס החח נ
3,061,608.72	Data 1,733,039.66 E	9° 02' 26' 76" (LT) 11° 27' 32' 96' (LT) 11° 27' 32' 96' (LT) 50' 50'	17 17 Station Station	3,061,125.38	 	12 10 10 10 14 15° 42' 2+53.33 15° 17' 42' 35.98" 11 17' 13.80 13.40 11 12' 12' 12' 11 13.00 100.06 0.96
3,061,439.58 3,061,457.55 3,061,747.11	1,733,160,42 1,733,147,05 1,733,554,67	500.00 0.13 22.39 22.39 22.39 11.058 7+19.58 7+19.58 54° 02' 41.81" E 54° 02' 41.81" E 54° 10' 41.02" E 7+0 50' 17 0 54' 10' 10' 10' 10' 10' 10' 10' 10' 10' 10	xternal = iong Chord = iong Cho	3,061,039,31 3,061,068.14 3,061,109,31	N N N N N N N N N N N N N N N N N N N	Ind Chord = 1,56 Chord = 1,56 Station 1+55.41 Station 1+90.52 = 5 45° 34' 25.47" E d Bear = 5 55° 37' 50.99" E d Bear = 5 55° 37' 50.99" E
3,061,448.42	11" E Dist 93.37 Data * 1,733,153.54 E	C 16 S 52° 02' 41.8 CUrve 33' 7:30.78 N 27' 32.96 27' 32.96 12.0 22.39	se from PT 1 e 16 Station e e e e e e e e inth	3,061,051.98	4, 25.47, E Dist 51.79 Curve Data * N 1,733,518.16 E (LT)	rse from PI 10 to PC 11 S 45° 3 ve 11 to Station 20° 06' 51.05° te 20° 17' 44.81° gent 20° 17' 44.81° 17.74 gent 25.11
3,061,332.79 3,061,365.97 3,061,427.47	1,733,264.5 1,733,217.8 1,733,296.7	1000.00 1000.00 14.37 5.26 6.119 5.46,21.44 6.26.21 85,26.21 85,24 35,245,24 35,24,24 35,24,24,24 35,24,24,24,24,24,24,24,24,24,24,24,24,24,	hoord Bear # S	3,060,930,63 3,061,002.32 3,060,967.32	N 1, 733, 565. 0 N 1, 733, 566. 0 1, 733, 531. 1	adius = 50.00 adius = 21.72 ong Chord = 71.72 id. Ord = 71.72
3,061,342.41	1,733,236.23 E	Curve * N (LT)	Curve 15 P.I. Station Defra Tangent	3,060,965.58	CUrve Data ** N 1,733,602.85 E (RT)	urve 10 .I. Station 91° 38 0+75. elta = 91° 38 35.29. egree = 114° 35 29.5 songent = 51.20
	8" E Dist 69.70	64° 07' 55.36" E 18° 46' 25.68" E 41° 26' 10.52" E 14 to PC 15 S 18° 46' 25.6	Abead = S Chorad Bear = S Course from PT 1	0 • 00 • 00	====== 547.73 8.97" E	
3,061,259.31 3,061,310.36 3,061,715.68	1,733,388.31 1,733,330.51 1,733,238.33		Length = Radius External = Long Chard = Mid. Ord. = P.C. Station P.T. Station C.C.		22 CUR 23 CUR 24 CUR 25 CU 177,361.48 Sq ft = 0.00 Sq ft = 177,361.48 Sq ft =	CUR 19 CUR 20 CUR 21 CUP otal parent tract area = otal taken area = emaining area = escription of parce1: RA1_TOP eginning parent tract description
3,061,296.91	Data * 1,733,370.08 E	Curve * (RT)	Curve 14 P.I. Station Deta		TOP BOUNDARY	ATION AREA #1 DESCRIBE PARCEL RA1_1 TOP : 1 CUR 10 CUB 11

Curve 20 Degree Tangent Length Raternal Course from PT 20 Delta Station P.C. Station P.C. Station Delta Station P.C. Station Delta Degree Course from PT 20 Delta Degree Course from PT 20 Delta Station P.C. Station Course from PT 21 Curve 21 Delta Station P.C. Station P.C. Station P.C. Station C.C. Station C.C.

						to PC 22 N 0°	39, 12 15+52.45 15+62.45 0° 08, 45.22." W 23° 15, 34.14" W	Curve * 46° 48′ 40.12″ (RT) 114° 35′ 29.61″ 21.64 50.85 50.85 4.48	39° ZZZ 54.2	Curve * 13+80.70 N 114* 35' 29.57" (RT) 114* 35' 29.51 24.53 50.00 50.00
DRAWN BY: DSGN BY:		REMEDIA TOP B ALIGNI (SHE	REMEDIATI	TBPE FIRM NO.	Old Code	" E Dist 48.41	1,732,912.32 1,732,948.82 1,732,948.69	1,732,927.1	1,732,816.38 E 1,732,822.44 E 1,732,865.81 E	Data 1,732,812.72 E
PROJECT NO.: 160236.000.2 V BY: CHKD BY:	N.T.S.	EDIATION ARE, OP BOUNDARY LIGNMENT DAT SHEET 1 OF 2)	COLLER MINE SCHWARTZWALDER MINE REMEDIATION CUT AND FILL PROJECT	F-366 B918 TESORO DRIVE SAN ANTONIO, TEXAS 78217	42090		3,061,396.66 3,061,380.98 3,061,430.98	3,061,380.92	3,061,526.33 3,061,484.51 3,061,518.82	3,061,502.23
DATE: 2/23/2017 SHT NO.: 4		- A +1	יאפטובכד		ER GA	2417				

2/23/2017		
S:\Projects\Cotter\160236	chwartzwalder_Mine_CutFill-SW3P\000\Drawings\Plans\Civil\COTTER_MINE_ALIGN	_DATA-1.dgn

Course from PT 27 Point 1 End of parcel RA1	icd. Static . C. Static . C. Static . C. Static . C. Static	urve 27 • I.• Station egita eggent angent anguns	nal Station St	urve 26 . I. Statio elta egree egree engent engent adjus	0.0 71	urve 25 • I. Statio elta egree ength ength	Radiu = Radiu = External Long Chord = P.C. Station P.T. Station Back = N Ahead Bear = N N.C. Notes = N	rve 24 I. Statio Ita gree ngent ngent	d Beor	Curve 23 P.I. Station Depite Tangent = Length =	oral Chord Statio Statio Bear Bear	
- to 1 N 42° 46' 5 N 1,733, -TOP description	-75 422560	82° 27' 34-32' 114° 35' 23' 43.82' 71.82' 71.96 50.09	115.40 55.01 91.8.33 91.93 92.1.40 93.5.1.40 94.5.1.40 9	70° 25,453.59 70° 25,47.18 57° 17,44.81 70.58 122.92 100.00	404-W 89	40VC	200.00 200.00 166.92 17+69.05 19+41.23 12* 54* 23.21" W 62* 14* 03.38" W 637* 34* 13.29" W	60.8 0.17 2.40 91.8 72.1	23.96 17+44.85 17+69.05 40° 37' 58.04" W 12° 54' 23.21" W 26° 46' 10.63" W	0.42.641 0.2614	20° 14' 36.06' 20° 14' 36.06' 20° 14' 36.06' 20° 14' 36.06'	ວຫຜ່ໍ່ດ
8.97" E D; 547.73 E	ZZZ	RT)	0、 ZZZ 35. 35:	RT)	ZZZ	Curve Da: * N (LT)		"	,	* Da N (RT)	57° ZZZ 58.04°	Curve Do * (LT)
st 23.65 3,060,914	1,733,464.49 1,733,530.38 1,733,496.42	,733,498.22	1,733,260.35 1,733,290.41 1,733,354.26 W Dist 226.1	ta * 1,733,236.09	1,733,257.64 1,733,260.35 1,733,213.40	+a ∗ 1,733,267.98	1,733,125.34 1,733,257.64 1,733,080.67	* 1,733,214.86		to * 1,733,113.31	1,732,997.22 1,733,029.91 1,732,997.35 W Dist 97.56	1,733,015.81
.57 Sta	נהו נהו נהו	ΓΊ	נים ובין רים סי	m	ניז ניז ניז	т	נהן נהן נהן	m	נהו נהו נהו	m	ששחש	m
24+27,72	3,060,896.72 3,060,898.50 3,060,935.20	3,060,868.74	3,061,152.47 3,661,041.12 3,061,118.09	3,061,086,19	3,061,192.95 3,061,152.47 3,061,169.65	3,061,173.31	3,061,294,72 3,061,192,95 3,061,099,78	3,061,274.21	3,061,305.51 3,061,294.72 3,061,343.46	3,061,297.48	3,061,381.10 3,061,369.04 3,061,331.10	3,061,381.15

DRAWN BY:			R	REME		TBPE FI	
DSGN BY: CHKD	PROJECT NO .: 160	N.T.S.	REMEDIATION TOP BOUN ALIGNMENT (SHEET 2 (SCHWARTZWAL REMEDIATION CUT AN	catt	FIRM NO. F-366 B918 TESOPO DRIVE SAN ANTONIO, TEXAS 78217	A20090
BY: SHT	NO.: 160236.000.2 DATE		N AREA #1 NDARY T DATA OF 2)	ALDER MINE	er	DRIVE XMS 78217	
No.: 5	DATE: 2/23/2017			ECT			7

2/23/2017 S:\Projects\Cotter\160236 Schwartzwalder Mine CutFill-SW3P\000\Drawings\Plans\Civil\COTTER_MINE_ALIGN_DATA-2.dgn

$ \begin{array}{c} 1.2 \\ 1.10 \\ 1.$	Course from PT 10:	rid. Ord. = .C. Station .T. Station .C. Station .C. = S head = S		ourse from PT 10	Length Readth External External Mid. Orda P.T. Station P.T. Station P.T. Station B.C. Station B.C. Station B.C. Station B.C. Station B.C. Station B.C. Station B.C. Station B.C. Station Stati	urve 102 • I. Statio elta egree	ourse from PT 10	Long Chord Long Chord P. T. Station P. T. Station Beeck Ahead Bear # S	urve 101 .I. Statio elta egree	Course from PT 10	hord Bear = X	urve 100 .I. Station elta = egree = engent = engent = engent = engent =		Point 2 Course from 2 to	<pre>Beginning parent =================================</pre>	otal parent tr otal taken are emaining area	Parcel RA1 BOTTOM CUR CUR
loo CUR 117 CUR 118 CUR 119 CUR 119 CUR 117 78,043.21 sq ft = 1. 78,043.21 sq ft = 1. 78,043.21 sq ft = 1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	-o PC 104 S 1	15 243 448 7. 2 4+847. 2 4 4+847. 2 4 4+847. 2 4 4+847. 2 4 4+847. 2 4 4+847. 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	8° 51' 4+63.8 8° 51' 22.15 7° 17' 44.81 16.6 32.9 100 1.3 32.7	-o PC 103 S 3		23° 50′ 3+90.1 14° 35′ 29.61	OPC 102 S 5	0844 1455 1555 1009 141-355 1009 1009 1009 1009 1009 1009 1009 10	7° 17° 2+59.8 7° 17° 14.46 ° 17° 44.81	PC 101 S 6	• • • 48 • • • 651 • • • 651 • • • 651 • • • 651 • • • • 651 • • • • • • • • • • • • • • • • • • •	31° 03° 34.65.5 64° 47° 20.31 4.5 4.5 2.0		N 1,733, 100 N 19° 48*	ract descriptio	area =	2 CUR 100 CU 107 CUR 108 CUR 114 CUR 115 CUR CUR 121 2
CUR 112 CUR 104 CUR 119 CUR 120 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 1. 0. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	9′43.48″E Dis	1,733,31 1,733,28 1,733,25	T) 1,733,29	1' 05.63" E Dis Jurve Data	1,733,36 1,733,36 1,733,35		1' 41.36" E Dis	1,733,42 1,733,42 1,733,342	* T) 1,733,43	4° 55.82" E Dis Jurve Data	1, 733, 49 1, 733, 50 1, 733, 50	T) ¹ ,733,50	Curve Data	41.81 E 3,060 0.44" W Dist 61.1		8,043.21 sq ft 0.00 sq ft 8,043.21 sq ft	101 CUR 102 CUR 1 09 CUR 110 CUR 111 16 CUR 117 CUR 118
	б	-0~7 mmm 3,3,4	ۍ ۳	6.8	ن ۲۰ م سسس پونون	55 E 3,	10.0	902- MMM	55 E 3,	84.2		.49 E 3,		73.73 St			3 CUR 104 CUR 10 CUR 112 CUR 113 CUR 119 CUR 120

Course from PT 108 to PC 109 S 1	P.I. Station Delta 286° 28' 44.03 Tangent 286° 28' 44.03 Langent 265 External 200 External 200 External 200 P.C. Station 9+61.7 P.T. Station 9+61.7 Back 25° 51' 03.60"	ourse f	I.I. Station 16° 06' 59.0 engreet 28° 38' 52.4 engrett 28° 38' 52.4 engrett 28° 38' 52.4 engrett 28° 38' 52.4 sangeht 56. cong Chard 56. ong Chard 56. id. 0.1 id. 54.10 54.10 54.10 54.10 54.10 55° 48' 52, 23.65 head 8 55° 48' 54, 12°	urve 107	1. station 3. 32, 7+07.1 1. station 2.8 38, 52.40 ngent 2.8 38, 52.40 ngent 2.8 38, 52.40 1.2.3 1.3.93 1.2.6 1.3.93 1.2.6 1.2.5 1.3.93 1.2.6 1.2.5 1.3.9 1.2.6 1.2.5 1.3.9 1.2.5 1.3.9 1.3.9 1.4.5 1.3.9 1.4.5 1.5.4 1.5	ourse f	1.1. Station 10° 30° 52.2 angent 28° 38° 51° angent 28° 38° 51° angent 28° 38° 51° angent 28° 38° 51° angent 28° 51° 18° angent 51° 51° 51° angent 51° 18° 51° angent 51° 18° 13.33° angent 546° 02° 59°	ourse from PT 104 to PC 105 S urve 105	adius = 102. xternal = 44. ind. 0rd = 44. i.d. Station 5+31. .C. Station 5+31. .C. = 14°. 49′. .C. = 5 40°. 47. .A. = 5 40°. 44.65°. .A. = S 27°. 48°. 44.06°.	urve 104 .I. Station 5+08. elta = 25° 58′ 01.1 egree = 57° 17′ 44.8 egreet = 23.8 engent = 45.8
2° 10′ 16.45″ W Dis+ 76.98	E E E E E E E E E E	3° 52′ 23.65″ E Dist 98.06 Curve Data *	(LT) 1,733,052.48 N 1,733,071.52 N 1,733,071.52 N 1,733,219.58	Curve Data	1, 733, 121.14 1, 733, 125.01 1, 733, 125.01 1, 733, 116.97 1, 732, 968.91	1° 18' 13.93" E Dist 94.76 Curve Data **	(LT) 1, 733, 195. 75 N N 1, 733, 209. 67 N 1, 733, 340. 35	• 47, 44.65" E Dist 38.40 Curve Data **	N 1,733,278.48 N 1,733,238.74 N 1,733,304.08	Curve Data ** 4 N 1,733,256.20 E (LT) 6
	3,061,647.56 3,061,633.52 3,061,624.71		3,061,520.05 3,061,499.09 3,061,545.48 3,061,633.55		3,061,444.45 3,061,439.62 3,061,449.04 3,061,314.58		3,061,351.31 3,061,339.29 3,061,339.29 3,061,365.66 3,061,490.70		3,061,293.24 3,061,314.21 3,061,389.91	3,061,299.14

Curve 109 P.I. Station Delto Tanggene Tanggene Tanggene Radius External Course from PT 109 Course from PT 109 Course from PT 109 Delta Degree Tanggent Radius External Ex

						10 to PC 111 N 32°	11:42. 11:42. 11:462. 11:479. 82° 24' 57.48' 32° 11: 23.44' 57° 18' 10.46'	50° 13' 34.04" 286° 28' 44.03" 17.53 20.00 2.00	109 to PC 110 N 82°	27:22 27:22 27:22 27:22 27:22 27:22 10:38.78 10:468.59 12:10'16.48" W 82:24'57.48" W 82:7.49" W	85° 24' 10+57.24 286° 28' 44.03" 18.46 29.81 29.81 29.81
DRAWN BY:		œ R	REME	19PE FI		111 23.44" W Dist 42.1	1,732,896.16 1,732,905.33 1,732,915.99	RT,	24' 57.48" W Dist 93.6 Curve Data **	N 1, 732, 899.41 N 1, 732, 883.80 1, 732, 903.62	Curve Data ** N 1,732,881.36 (RT)
DSGN BY: CHKD BY:	N.T.S. PROJECT NO.: 160236.000.2	MEDIATION AR OTTOM BOUND ALIGNMENT D/ (SHEET 1 OF	COLLER SCHWARTZWALDER MINE REMEDIATION CUT AND FILL PROJECT	FIRM NO. F-366 B918 TESORO DRIVE SAN ANTONIO, TEXAS 78217	42090	A CALLER LEVEL	E 3,061,513.00 E 3,061,498.71 3,061,515.64	E 3,061,503.70	56	EE 3,061,628.03 EE 3,061,605.84 3,061,608.48	E 3,061,624.14
SHT NO.: 6	DATE: 2/23/2017	2)	IINE PROJECT		KAN	04417					

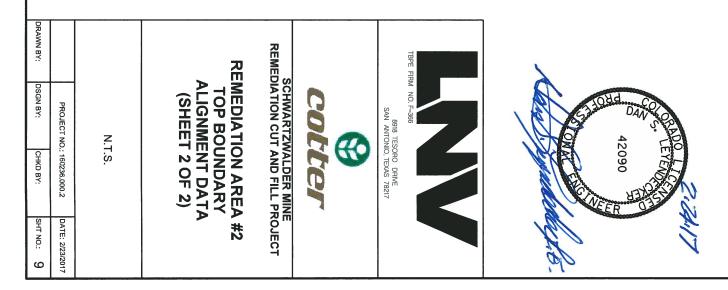
2/23/2017 S:\Projects\Cotter\160236 Schwartzwalder Mine CutFill-SW3P\000\Drawings\Plans\Civil\COTTER_MINE_ALIGN_DATA-2.dgn

chord = Ord. = Station Station Station Station & d Bear = N d Bear = N d Bear = N	ourse from PT 11 urve 116 1. Station elta egree angent ength	chord Chord Station Station Station R Station R Station R Station R Station R S S S S S S S S S S S S S S S S S S	ourse from Pi ii 	in a chort in a chort in a chort in a chort in a chort ordat Be a tion in a chort ordat Be a tion in a chort ordat Be a tion in a chort in a chort	urve 114 .I. Station elta egree angent ength	Char Char Orderd Station Station Station Har Bear R R R R R R R R R R R R R R R R R R R	urve 113 L. Station elto egree engent engent	Chord = Ord. = Station Station Station d Bear = N d Bear = N	urve 112 .I. Station elta egree egree angent = angth = adjus xternal	nal Chord = Station Station Bear = N Bear = N N Bear = N	
Z 004 400-100	C 116 N 3 16+05.7 35, 29.61 8.84 17.5 50.6	200,00 30,58 15+35,57 15+66,18 41° 05, 38,48 W 32° 19, 30,64" W 36° 42, 34,56" W	03-275 05-00000000	0.23 19.11 19.11 15.06.23 15.06.25 15.05 15.06.25 15.06.25 15.06.2	328,14	28.7 28.7 13+65.0 13+92.1 13+92.1 13+92.1 2° 18' 42.91" 2° 18' 42.91"	33° 23′ 22.99 114° 35′ 22.99 114° 35′ 29.61 50.0	000-4	49° 41 20.06 114° 35' 29.06 114° 35' 29.1 43.3 50.1		40.
N 1,733,240.43 N 1,733,253.33 N 1,733,213.70 25' 47.48" W Dist 39.45	19' 30.64" W Dist 30.75 Curve Data * N 1,733,247.92 E (LT)	N 1,733,189.94 E N 1,733,214.45 E N 1,733,321.40 E	05' 38.48" W Dist 29.34 Curve Data ** NN 1,733,201.49 E (RT)	1, 733, 152. 84 1, 733, 167. 82 1, 733, 036. 36	CUrve Data * 1,733,160.61 E (LT)	1, 733, 058. 11 1, 733, 105. 67 1, 733, 104. 79	T) 1,733,063.48	N 1,733,025.97 E N 1,733,025.97 E 1,733,009.43 E	Lurve Data * 1,733,047.82 T)	N 1,732,941.01 E N 1,732,981.39 E N 1,733,047.55 E	Curve Data ** N 1,732,960.10 E (RT)
3,061,262,79 3,061,251.02 3,061,220.54	3,061,258.05	3,061,297.51 3,061,279.23 3,061,448.23	3,061,287.43	3,061,328.65 3,061,316.79 3,061,166.07	3,061,323.08	3,061,406,66 3,061,383.93 3,061,424,58	3,061,392.66	3,061,441.14 3,061,411.87 3,061,393.96	3,061,433.48	3,061,476.25 3,061,456.77 3,061,645.51	3,061,464.23

			End of parcel RA1_BUIIOM descript
19+80.34	E 3,060,973.73 Sta	-4	oint 2 N 1,73
	W Dist 55.99	30. 44"	nead = N 19, 48 hord Bear = N 30° 38 ourse from PT 121 to 2
3,061,002.28 3,060,992.71 3,061,039.75	1,733,372,97 1,733,389,13 1,733,406.08	ZZZ	Station Station Station Station Station Station Station N 41° 28 03.26
3,060,995.95	1,733,380.13 E	(RT)	urve 121 .I. Station 21° 39' 32.83 elta 114° 35' 29.61 angent 114° 35' 29.61 9.5 ength 100
	26	° 28	Course from PT 120 to PC 121 N 41
3,061,039.86 3,061,028.90 3,061,028.90 3,061,066.36	1,733,333.56 1,733,342.85 1,733,375.96	ZZZ	Bear = N 49° 43' 50.61"
3,061,033.70	1,733,337.41 E	(RT) * Curve	urve 120 • I. Station 18+58.0 elta = 116° 31′ 34.70 egree = 114° 35′ 29.61 r.2 angent = 1.4° r.2 elta = 1.4°
	Q	ō	Course from PT 119 to PC 120 N 57
,061,117.9	,733,308.32		.C. ack = S 81° 07' 34.76" head = N 57° 59' 37.96" hord Bear = N 78° 26' 01.60"
061,121	733, 288	ZZ	ong Chord = 13.9 id. Ord. = 17+56.9 .C. Station 17+71.2
3,061,113.71	1,733,287.41 E	075 = 9 (RT)	047083
	Data *	Curve *	
	.76" W Dist 41.47	1° 07° 34	Course from PT 118 to PC 119 S 81
3,061,188.31 3,061,162.04 3,061,169.75	1,733,291.98 E 1,733,294.95 E 1,733,245.55 E	ZZZ	-C. Station -T. Station -C. Station -T. Station -C. = N 68° 12′ 48.88° -C. = N 68° 12′ 48.88° -C. = S 81° 07′ 34.76° hord Bear = N 83° 32′ 37.06°
3,061,175.58	1,733,297.07 E	(LZ LZ LZ LZ LZ LZ LZ LZ LZ LZ	tation 30° 30' 36.29.61 114° 35' 29.61 114° 35' 29.61 13.7 13.7 1.8 20.4 1.8 20.4
	Data *	Curve *	110
	.88" W Dist 21.01	8° 12′ 48	ourse from PT 117 to PC 118 N 6
3,061,219.75 3,061,207.82 3,061,189.26	1,733,277.38 1,733,284.18 1,733,237.75	ZZZ	Station = N 52° 25' 47.488" = N 62° 12' 48.88" Beor = N 60° 19' 18.18"
, UD , U	,	280773 = 0 (LT)	etto 3 (1.40) edfae = 115° 477 (010,40) edgree = 114° 35' 29,61 engent = 6.9 engent = 135' 50.0 datus = 50.0 adtus = 50.0 adtus = 13,7
	-*		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

DRAWN BY:		₽ R	REME		Твре я	
PROJECT N DSGN BY:	z	MEDIAT OTTOM ALIGNM (SHEE	SCHWARTZWALDER REMEDIATION CUT AND FIL		FIRM NO. F-366 BBIB TE SAN ANTC	Contraction of the second seco
4 BY: CHKD BY:	N.T.S.		- z 🔍	€	E-366 BBIR TESORO DRIVE SAN ANTONIO, TEXAS 78217	42090 HEALER
SHT NO.: 7		PARY	INE PROJECT	,		the state

2/23/2017 S:\Projects\Cotter\160236 Schwartzwalder Mine CutFill-SW3P\000\Drawings\Plans\Civil\COTTER_MINE_ALIGN_DATA-3.dgn


	S2 =	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ius 200.00 ernal 200.00 0.38 20.72 0.74 24.72 0.75 24.72 0.76 1.732.776.07 0.75 1.732.776.07 0.74 24.72 0.75 1.732.776.07 0.76 1.732.776.07 0.76 1.732.756.14 0.75 1.732.756.24 0.75 2.12.30 0.76 1.732.756.14 0.76 2.12.30 0.76 1.732.756.14 0.76 2.12.30 1.732.756.24 2.3,062,085. 1.732.75642.02 2.3,061,917. 2.71 8 1.732.75642.02 2.3,061,917. 2.71 8.75 1.732.757.642.02 2.3,061,917. 2.71 8.75 2.71 8.75 2.71 8.77 2.71 9.77 2.71 9.77 2.71 9.77 2.71 9.77 2.71 9.77 2.71 9.77 </th <th>nord = 45.6 d. = 45.6 station 0+64.30 bear = 5 69° 14′ 11.69° from PT 50 to PC 51 S 42° istation 7° 05′ 1+99.9 istation 7° 05′ 1+99.9</th> <th>se from 3 to PC 50 N 83° 36' se from 3 to PC 50 N 83° 36' station 54° 18' 042.5 se 114° 35' 29.62 sht = 114° 35' 25.61 sht = 47.2</th> <th>REMEDIATION AREA #2 TOP BOUNDARY * 1 DESCRIBE PARCEL RAZ_TOP Parcel RA2_TOP: 3 CUR 50 CUR 51 CUR 52 CUR 53 CUR 54 CUR 55 CUR 56 CUR 57 CUR 50 CUR 60 CUR 60 CUR 62 CUR 63 CUR 64 CUR 65 CUR 66 3 Total parent tract area = 76,034.52 sq ff = 1.75 ac Total taken area = 76,034.52 sq ff = 1.75 ac Description of parcel: RA2_TOP Beginning parent tract description</th>	nord = 45.6 d. = 45.6 station 0+64.30 bear = 5 69° 14′ 11.69° from PT 50 to PC 51 S 42° istation 7° 05′ 1+99.9 istation 7° 05′ 1+99.9	se from 3 to PC 50 N 83° 36' se from 3 to PC 50 N 83° 36' station 54° 18' 042.5 se 114° 35' 29.62 sht = 114° 35' 25.61 sht = 47.2	REMEDIATION AREA #2 TOP BOUNDARY * 1 DESCRIBE PARCEL RAZ_TOP Parcel RA2_TOP: 3 CUR 50 CUR 51 CUR 52 CUR 53 CUR 54 CUR 55 CUR 56 CUR 57 CUR 50 CUR 60 CUR 60 CUR 62 CUR 63 CUR 64 CUR 65 CUR 66 3 Total parent tract area = 76,034.52 sq ff = 1.75 ac Total taken area = 76,034.52 sq ff = 1.75 ac Description of parcel: RA2_TOP Beginning parent tract description
Curve 59 I. Station Gree Gr	Curve 58 P.1. Station Delta Delta 114° 35′ 29.61° Length Radius Externol Long Chord = 114° 35′ 29.61° Long Chord = 114° 35′ 29.61° Long Chord = 12.5 Nid. Ord. = 114° 35′ 29.61° Long Chord = 12.5 Nid. Ord. = 114° 35′ 29.61° I.32.62 Nid. Ord. = 114° 35′ 29.61° I.53 Long Chord = 114° 35′ 29.61° I.53 Long Chord = 114° 35′ 29.61° I.53 Long Chord = 114° 35′ 29.61° I.73 Long Chord = 114° 35° 00′ 42.54° Course from PT 58 to PC 59 N 85° 42′ 23.17° W Dist 3.74	e from PT 57 to PC 58 N 56° 00' 42.54" W Curve Data	gifting 20:00 station 9:14:22 gifting 9:14:22 station 9:14:22 gifting 9:46:02 gifting 1,732,259:46 gifting 23:062,528.4 gifting 23:062,528 gifting 23:062,528 gifting 3:062,558 gifting 3:062,558 gifting 3:062,558 gifting 3:062,558 gifting 23:06.55 gifting 23:05.02 gifting 23:06.2 gifting 23:06.2 gifting 23:06.2 gifting 23:06.2 gifting 23:06.2 gifting 23:06.2	Chord = 24.6 Ord. = 24.6 Station = 24.6 Station = 4.2.9 Station = 8.37° 11' 49.03 = 5.5 1° 08' 53.55" se from PT 55 to PC 56 S 39° e 56 Station = 286° 28' 44.08 Station = 286° 28' 44.08 See = 286° 28' 44.08	or = 5 43° 26' 17.18" rom PT 54 to PC 55 5 37° ation 76° 41' 25.16 = 286° 28' 41.25. = 286° 28' 41.5. = 15.2 = 26.1	Curve Data Curve Data Curve Data P.I. Station Delra Degree 28° 56.22° (RT) Length 28° 38' 52.40° Tangent 28° 38' 52.40° Long Chord 21.87 Long Chord 21.87 Note 21.87 Long Chord 21.19 Nic. Ord 21.19 Nic. Station 8+5.82 N C.C. Station 8+5.82 N C.C. Station 8+5.82 N Degree 28° 37° 11' 49.32° F Abad 25 37° 11' 49.32° F

Curve 60 Pe.I. Station Delta Station External External External External Course from PT 60 Delta Station Course from PT 60 Course from PT 60 Course from PT 61 Course from PT 61

								24° 09′ 22.04″ 114° 35′ 22.04″ 21.08 21.08 21.08 1.13 1.13 20.92	60 to PC 61 N 61° 2	28.23 1.000 13+58.64 13+86.96 13+86.96 13+86.96 13+58.64 13+86.96 13+85.86 13+86.96 13+86.96 13+85.86 13+86.96 13+85.86 13+86.96 13+85.86 13+85.86 13+85.86 13+85.86 13+85.96 13+85.96 13+85.96 13+85.96 13+85.96 13+85.96 13+85.96 13+85.96 13+85.96 13+85.96 13+85.96 13+85.96 13+85.96 13+85.96 13+85.96 13+85.96 13+85.96 13+85.96 14+85.9614 14+85.96 14+85.96 14+85.9614 14+85.96 14+85.96 14+85.96 14+85.9614 14+85.96 14+85.96 14+85.9614 14+85.96 14+95.96 14+95.9614 14+95.96 14+95.96 14+95.9614 14+95.96 14+95.9614 14+95.96 14+95.9614 14+95.96 14+95.9614 14+95.96 14+95.9614 14+95.96 14+95.9614 14+95.96 14+95.9614 14+95.96 14+95.9614 14+95.96 14+95.9614 14+95.96 14+95.9614 14+95.96 14+95.9614 14+95.96 14+95.9614 14+95.96 14+95.9614 14+95.9614 14+95.96 14+95.9614 14+95.9614 14+95.9614 14+95.9614 14+95.96 14+95.9614 14+95.9614 14+95.9614 14+95.96 14+95.9614 14+95.9614 14+95.9614 14+95.96 14+95.9614 14+95.9614 14+95.9614 14+95.96 14+95.9614 14+95.9614 14+95.9614 14+95.96 14+95.9614	16° 13'72.89 57° 17' 44.81" 57° 14.28 14.26 10.00 10.00
							9° ZZZ 45.91	(RT)	9' 07.96" Curve Dat *	ZZZ	Curve Da * N (LT)
DRAWN BY:		22	REME	TBAE H			1,732,540.08 1,732,553.70 1,732,584.02 W Dist 116.84	1,732,545.19	W Dist 52.84 +a *	,732,498.0 ,732,514.8	+* * 1,732,508.05
DSGN BY:	PROJECT	REMEDIAT TOP BC ALIGNM (SHEE	SCHWARTZWALD REMEDIATION CUT AND	FIRM NO. F-366 8918 SAN AN		ALOUND DAW SPE	ששח	m		۳۳ ۳	m
CHKD BY:	N.T.S.	BOUNDARE, NMENT DAT HEET 1 OF 2)	TELET TELET	E-396 E-396 SAN ANTONIO, TEXAS 73217		42090 H	3,062,133.30 3,062,114.41 3,062,154.17	3, 062, 123. 90		3,062,199.38 3,062,176.73 3,062,176.73	3,062,189.25
SHT NO.: 8	DATE: 2/23/2017	A #2	DER MINE DELL PROJECT		h de	17					

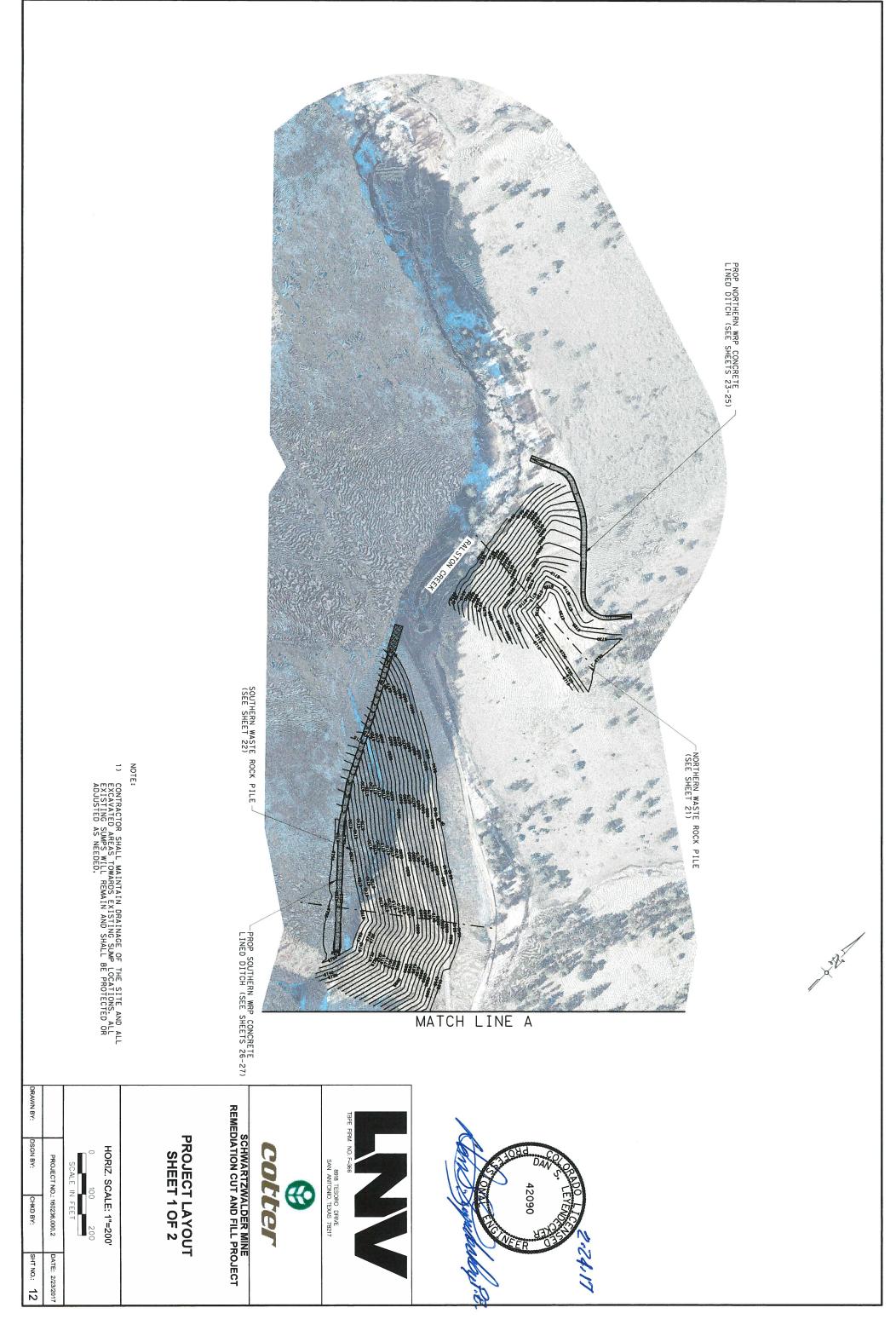
2/23/2017 <u>S:\Projects\Cotter\160236_Schwartzwalder_Mine_CutFill-SW3P\000\Drawings\Plans\Civil\COTTER_MINE_ALIGN_DATA-3.dgn</u>

nd of parcel RA	id. Ord. .C. Stati .C. Stati .C. ack ack head hord Bear hord Bear	Curve 66 P.I. Station Degree = Tangent = Length = External = External =		Curve 65 P.I. Station Degree = Tangent = Radius = Radius = External = External =	Course from PT 64	Action . C. Station . C. Station . C. = N Action . C. = N head Bear = N			Anead head hord B				
_TOP description	4° 42° 13.85" W 83° 36° 44.30" E 39° 27° 15.22" E	88° 18'83.93 88° 18'58.14" 143° 14' 22.02" 38.02 61.66 61.66 40.00 15.76 55.73	17+80.8 18+28.5 59° 23' 07.95" 4° 42' 13.85" 32° 02' 40.90" to PC 66 N 4°	114° 35′ 29.61″ 114° 35′ 29.61″ 25.000 47.72 50.00 6.29 45.93	4 to PC 65 N 59° 2	17+20.81 17+36.35 07.95" W 3.07.95" W	4°27'05.27" 28°38'52.40" 15.54 15.54 0.15 15.55		30° 42' 59.58 54° 56' 52.68 42° 49' 31.13 42° PC 64 N 54°	n 0 + 1 40+	יר דט דר שט א טט א	20.33 15+7.71 16+00.80 37° 19' 45.91" W 34° 01' 22.75" W	28° 38′ 52.40° 11.55 28° 38′ 52.40° 11.55 200.00 200.00 200.33 23.03
81.84 E	4 ZZZ 30" E	(RT)	2ZZ		"3" 07.95" Curve Do	ZZZ	(LT)	Curve	6 ZZ: 02.69"	N LUN	*		(RT) (RT)
3,06	1,732,836.93 1,732,879.96 1,732,840.21	* 1,732,875.64	. 2		W Dist 44.51	32,750. 32,758. 32,586.	1,732,754.93	+ 0 *	W Dist 45.16	,732,712.1 732 693 7	w Dist 32.39	,732,646.6 ,732,665.7 ,732,767.8	* 1,732,655.79
67 Sta	נען נען נען	m	היו היו היו	m		נהן נהן נהן	гл		ן נידן נידן	ניז ויי		נהן נהן נהן	m
19+23,66	3,061,871.44 3,061,906.86 3,061,911.31	3,061,868.26	3,061,897.17 3,061,872.80 3,061,922.63	3,061,874.92		3,061,948.52 3,061,935.47 3,061,833.62	3,061,942.16		3,061,985.48 3,061,928.03	,062,003.0		3,062,043.56 3,062,030.65 3,062,202.59	3,062,036.55

2/23/2017 <u>S:\Projects\Cotter\160236_Schwartzwalder_Mine_CutFill-SW3P\000\Drawings\Plans\Civil\COTTER_MINE_ALIGN_DATA-4.dgn</u>

	1			
3,062,546.39 3,062,542.95 3,062,544.57	1,732,281.64 1,732,278.03 1,732,279.93	Ord. = 8+90. Station 8+98. = S 43° 12′ 17.66″ = N 49° 30′ 52.10″ d Beor = S 43° 30′ 52.10″		
3,062,577.45	N 1,732,248.58 E	ation 173° 41′ 9+36.06 25.25 2291° 49′ 52.25 45.36 7.58 7.58 2.59 45.36		
	12" 17.66" E Dist 51.19 Curve Data **	inve 50		se from PT 503 to PC 504 S 4
3,062,498.56 3,062,511.35 3,062,365.57	1,732,331,40 1,733,318,95 1,732,182.03	1700 Ord. Station Station 8+21 10 8+39 10 11 10 11 12 13 14 15 16 17 17 10 11 12 12 13 14 15 15 16 17 16 17 17 10 11 12 13 14 15 15 16 17 17 18 19 11 19 11 10 11 12 13 14 15 16 17 <td< td=""><td>3,061,975.63 3,062,001.86 3,061,932.60</td><td>External = 11.30 Long Chard = 11.28 P.C. Station = 1+10.11 N = 1,732,811.98 P.T. Station = 1+42.14 N = 1,732,793.85 Back = 5 46* 31' 03.98" E = 1,732,721.71 E Back = 5 55° 20' 34.90" E</td></td<>	3,061,975.63 3,062,001.86 3,061,932.60	External = 11.30 Long Chard = 11.28 P.C. Station = 1+10.11 N = 1,732,811.98 P.T. Station = 1+42.14 N = 1,732,793.85 Back = 5 46* 31' 03.98" E = 1,732,721.71 E Back = 5 55° 20' 34.90" E
3,062,505.23	urve Data 	rve 508 1. Station 5° 06' 54.24" gree = 28° 38' 52.40" ngent = 17.85 ngth = 17.85 dus = 200.20	3,061,990.21	Course from PT 502 to PC 503 S 64° 31′ 03.98″ E Dist 12.30 Curve 503 P.I. Station Delta = 18° 20′ 58.15″ (RT) Tangent = 57° 17′ 44.81″ Length = 100.00
3,062,387.38 3,062,414.32 3,061,749.35	N 1,732,429.55 E N 1,731,406.41 E N 1,731,659.54 E	xternal =	3,061,938.14 3,061,964.52 3,062,007.54	us rnal Chord = 100.000 ord. = 1.30 station 0+65.58 N station 0+97.81 N d Bear = 5 64° 02' 58.95" E d Bear = 5 55° 17' 01.47" E
3,062,401.05	1,732,418.	9 507 Station 2° 02, 6+91, 11 9 8 8 4 66 9 9 9 7 7 7 6 4 6 6 9 9 9 9 7 7 7 6 4 6 4 8 9 17, 76 9 1 1 000, 00	3,061,949.85	se from PT 501 to PC 502 S 4 502 54dtion 18° 28' 05.05 54dtion 57° 17' 44.81 54dtion 18° 28' 05.05 54dtion 18
3,062,283.06 3,662,308.34 3,062,946.37	1, 732, 516. 71 1, 733, 495. 04 1, 733, 265. 05	Chord = Chord = Chord = Chord = Chord = Station = Statio	3,061,907.94 3,061,921.06 3,061,914.12	Rodfus 10.000 External 3.26 Long Chard 13.14 Mid. Ord. 2.46 P.1. Station 0+27.52 C.C. 0+41.85 Back 1,732,852.69 Ahead \$ 46° 02' 58.85" Chord Bear \$ 87° 06' 16.05"
3,062,295.52	26' 48.26" E Dist 141.82 Curve Data ** N 1,732,505.67 E (LT)	from PT 505 to PC 506 S 48° 506 5101 1° 54' 28.33" 5° 43' 43' 28.33" t = 5° 43' 43' 48.48" 1.6.65 1.000 00	3,061,914.79	se from PT 500 to PC 501 N 5 5 501 500 to PC 501 N 5 5 700 500 to PC
062, 138. 1 062, 178. 9 062, 508. 5	32, 649, 12 32, 610, 12 32, 610, 78	6° 15' 03' 03' 06'' 11° 27' 30'' 27' 30'' 540'' 540'' 500'' 500'' 500'' 500'' 500'' 500'' 500'' 500'' 500'' 500'' 500''' 500''' 500''' 500''' 500'''' 500'''' 500''''''''	3,061,898.80 3,061,901.70 3,061,901.76 3,061,910.94	
	44.30" E Dis "Ve Data	from PT 504 to PC 505 S 42°	+ a 0 + 00. 00	oint 4 ourse f
3,062,036,10 3,062,045,76 3,061,897,59	N 1,732,760.98 E N 1,732,751.04 E N 1,732,616.70 E	engree = 28° 38′ 52.40° angent = 6.94 ength = 0.13.87 cong Chord = 0.12 cong Chord = 0.12 i.a. Ord. = 1.88 i.d. Ord. = 1.89.60 i.c. Station 2+03.47 i.c. Station 2+03.47 i.c. Station 2+03.47 i.c. Station 2+03.47 i.c. Station 2+03.47 i.c. Station 2+03.60 i.c. Station 2+03.60		I RAZ_BUTIOM : 4 CUR 500 CUR 501 CUR 502 CUR 502 CUR 502 CUR 512 CUR 512 CUR 516 CUR 517 CUR 518 CUR 519 parent tract area : 21,163.64 sq ft : taken area : 21,163.64 sq ft : ing area : 21,163.64 sq ft : iption of parcel: RA2_BOTTOM ning parent tract description
3,062,041.10	Curve Data * N 1,732,756.18 E (RT)	e 504 Station 3° 58' 21.52"	Ľ	REMEDIATION AREA #2 BOTTOM BOUNDA

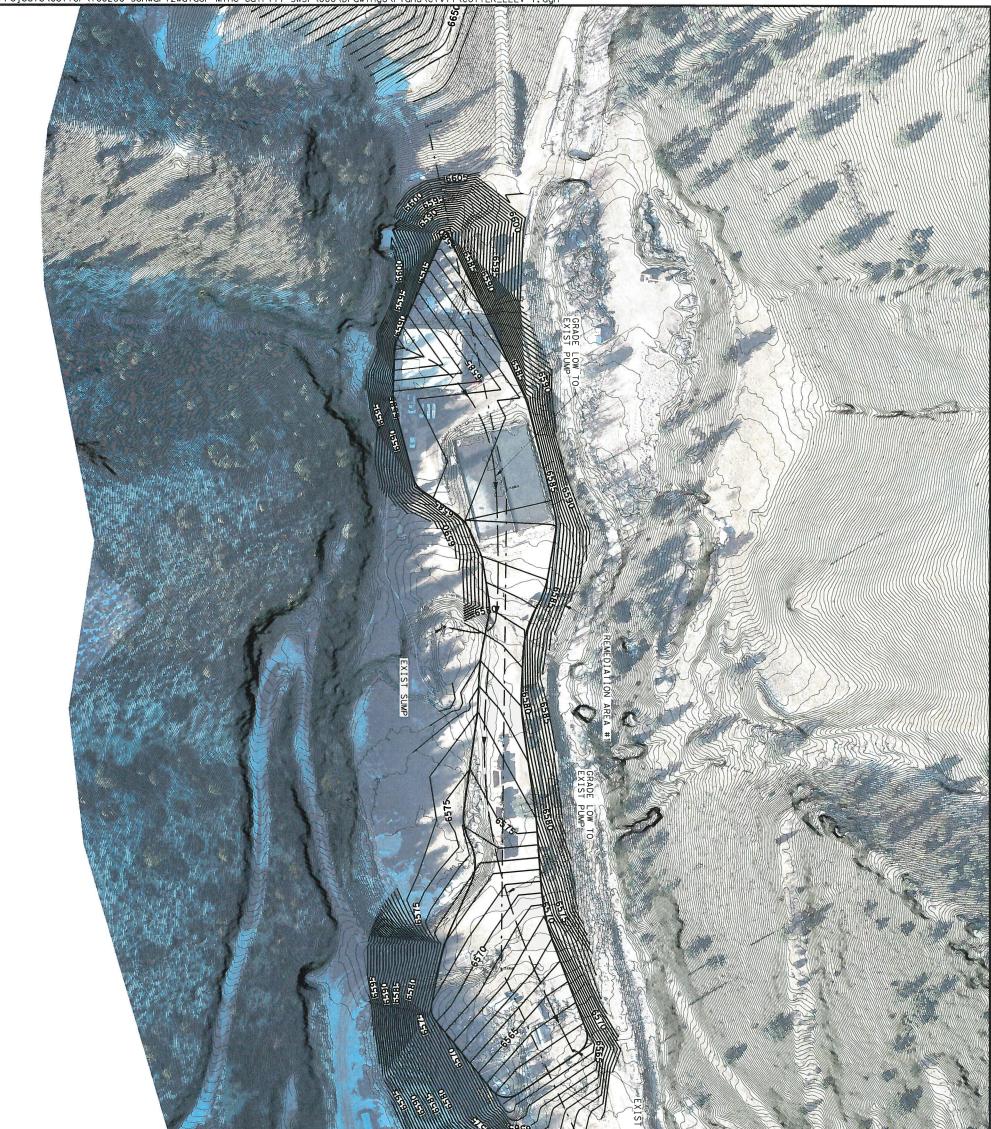

Curve 511 Delta Station Degree Tangent Length External External Long Chord C.C. Station Station C.C. Station Station C.C. Station Station C.C. Station Statio Curve 510 Delta Station Degree Tangent Length External Long Chord Mid. Ord. C. C. Station C.C. Station Station C.C. Station Station

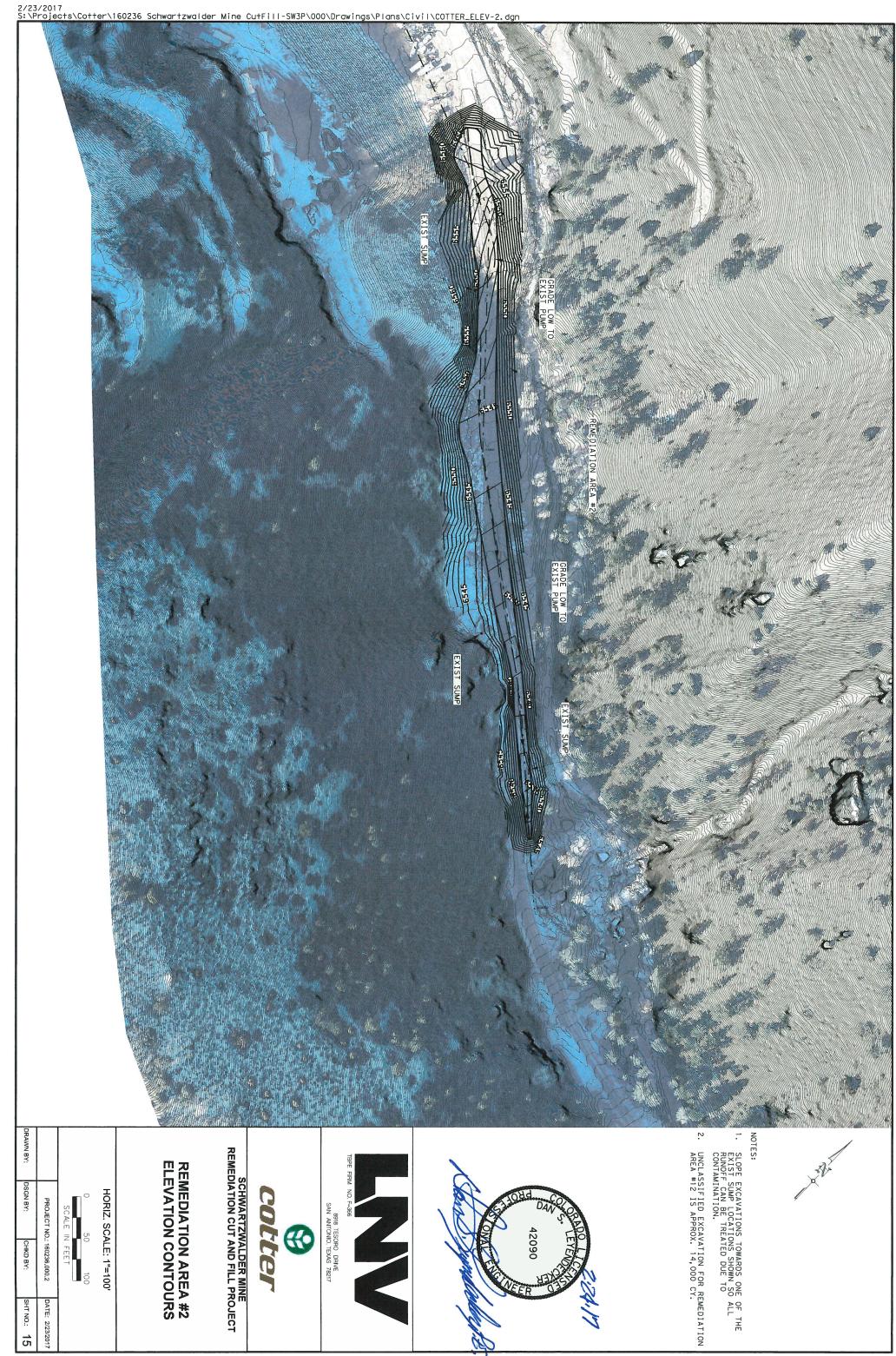

								45° 38° 37. 51° 59° 49. 51° 59° 43.	0	510 TO PC 511 N 45		3° 52' 14.45 3° 52' 14.45 28° 38' 52.67 6.76 13.51
DRAWN BY:		REM A	REMEDI		TBPE FIRM			1,732,417,73 1,732,247,48	T) 1,732,406.05	38° 37.69° W Dist 18.68 Curve Data **	1, 732, 368. 31 1, 732, 377. 42 1, 732, 520. 42	Curve Data ** N 1,732,372.70 E (RT)
DSGN BY: CHKD BY: SHT NO.: 10	v.T.S.	REMEDIATION AREA #2 BOTTOM BOUNDARY ALIGNMENT DATA (SHEET 1 OF 2)	SCHWARTZWALDER MINE DIATION CUT AND FILL PROJECT	SAN ANTONIO, TEXAS 78217	NO. T	AND	42090	3,0662,1378,099 3,0662,1378,999 3,0662,1378,999 3,0662,1378,999	3,062,397		E 3,062,437.18 E 3,062,427.21 3,062,567.04	E 3,062,432.04

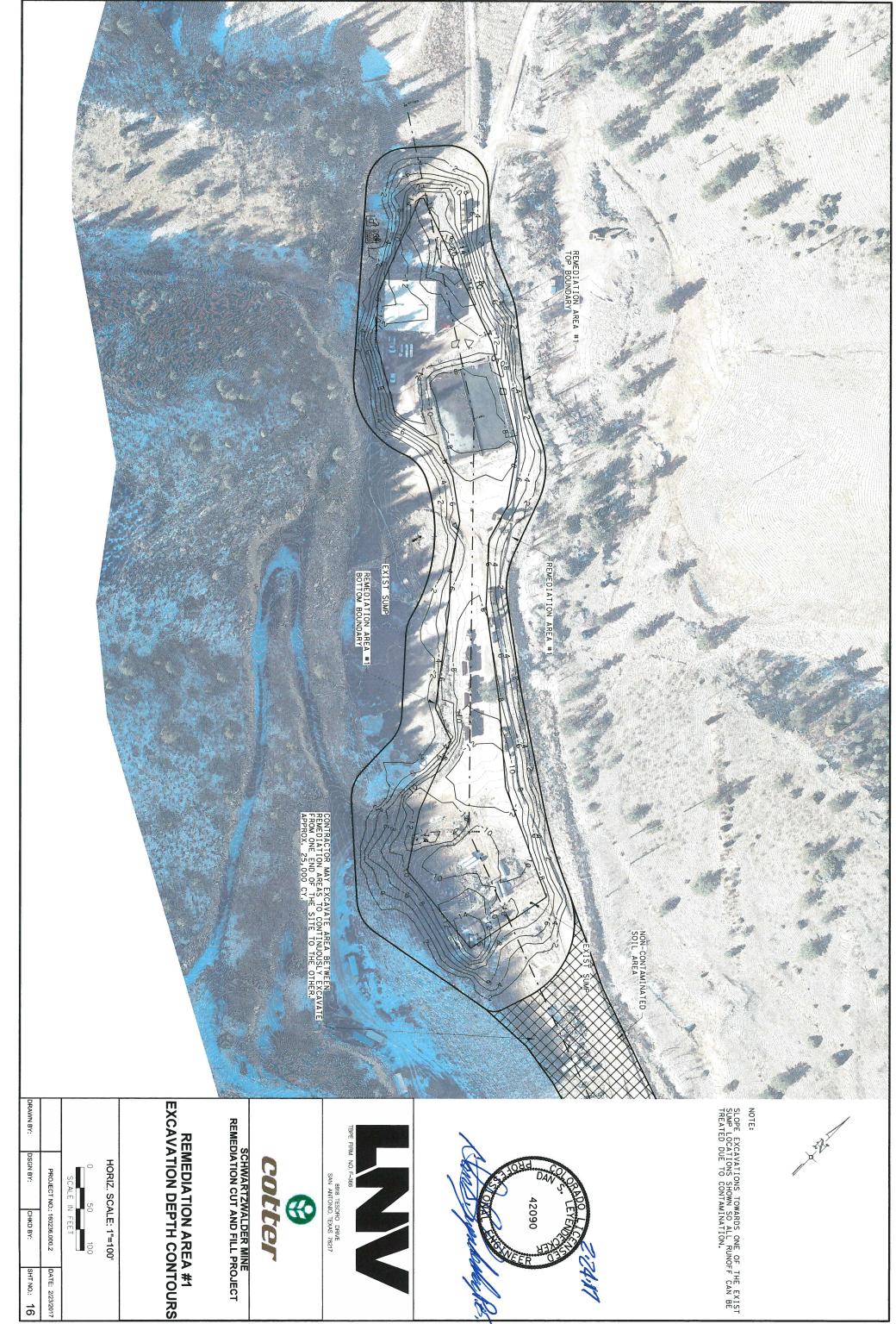
2/23/2017 S:\Projects\Cotter\160236 Schwartzwalder Mine CutFill-SW3P\000\Drawings\Plans\Civil\COTTER_MINE_ALIGN_DATA-4.dgn

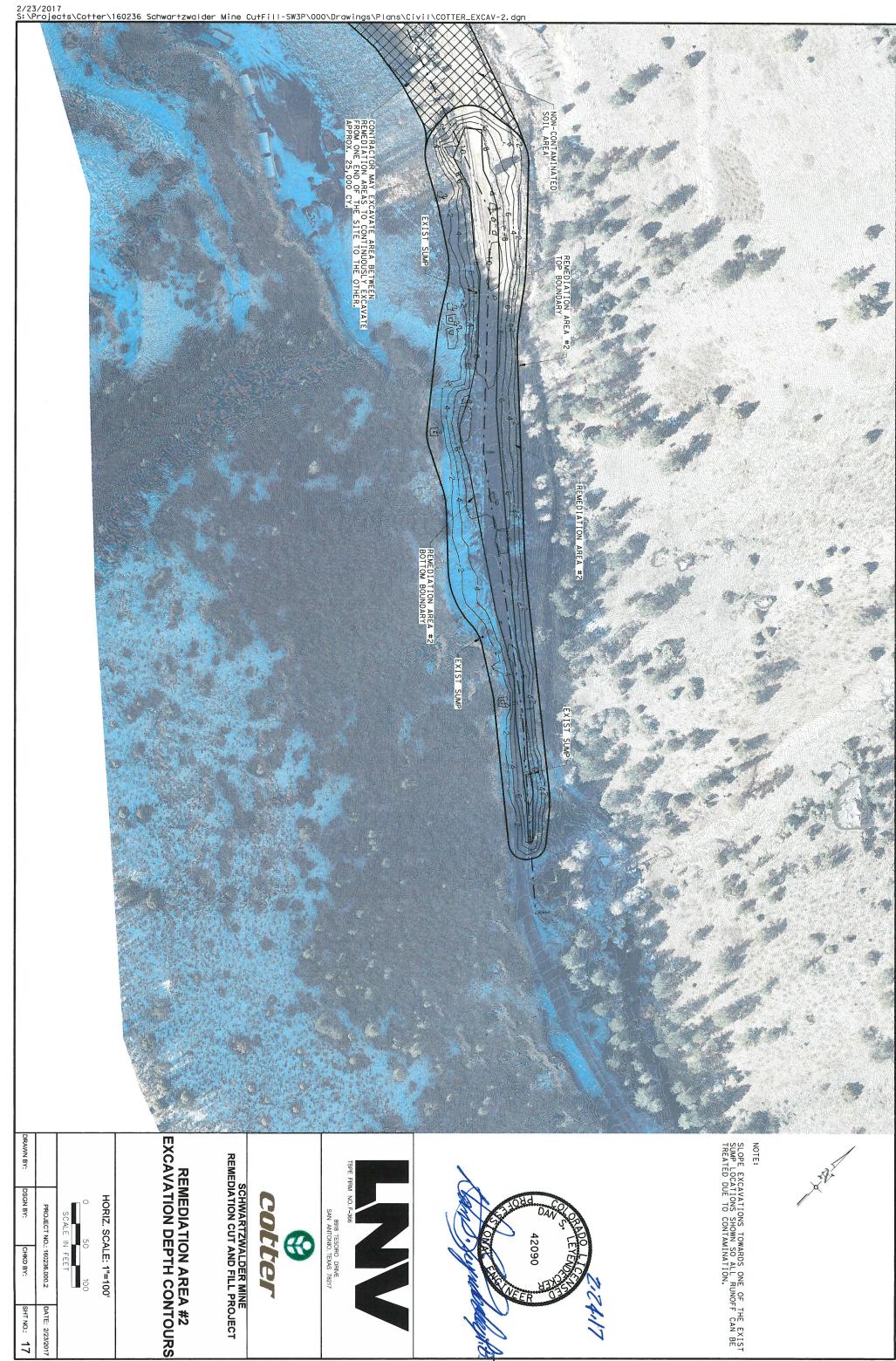
	52′ 47.89" W Dist 46.75	ourse from PT 517 to PC 518 N 47°	
3,062,015.14 3,062,002.30 3,062,069.36	N 1,732,742,39 E N 1,733,752,24 E N 1,732,826,41 E	rnal = 0.33 Ord. = 0.33 Station = 16.19 Station = 16+09.61 Station = 16+25.81 = N 57° 09' 54.91" W d = N 57° 09' 54.91" W d = N 57° 11' 21.40" W	
3,062,008.32	N 1,732,746.79 E RT)	.I. Station 16+17.73 * elta 9° 17' 07.02" () egree 57° 17' 44.81" 8.12 angent 16,17.73 16,17.73 16,17.73 16,17.02" ()	
	9' 54.91	Course from PT 516 to PC 517 N 57° i	
3,062,041,35 3,062,021.24 3,061,967.02	N 1,732,721.32 E N 1,732,738.45 E N 1,732,654.43 E	ong Chord = 26.42 id. 0rd = 0.88 . C. Station 15+75.85 16+02.35 . C. = N 41° 58° 52.56° W W . C. = N 57° 09° 54.91° W W . head = N 49° 34° 23.74° W 16	
3,062,032.44	Τ)	urve 516 15-89.18 * elta = 15*11' 02.35* 6 egree = 57*17' 44.81* 13.3 endent = 26.50 100.00 edius = 100.00 00.00	
	58° 52.56° W Dist 74.14 Curve Data	ourse from PT 515 to PC 516 N 41°	
3,062,104.10 3,062,090.95 3,062,016.61	1, 732, 647. 75 1, 732, 666. 20 1, 732, 599. 31	22.66 0.7d. = 14+79.00 C. Station 15+01.71 C. Station 15+01.71 C. station 28° 58' 08.51" W C. a N 28° 58' 08.51" W C. a N 35° 28° 30.54" W C. a N 35° 28° 30.54" W	
3,062,098.57	N _N 1,732,657.72 E	curve \$15 elta 13°00'44.05° egree 57°17'44.81° engent 11.40 engent 11.40 addus 22.71 addus 100.00 xternal 0.65	
	Curve Data	*	
	58' 08.51" W Dist 68.42	ourse from PT 514 to PC 515 N 28°	
3,062,137.24 3,062,187.24 3,062,180.98	N 1,732,587.89 E N 1,732,612.10 E	.T. Station 14+10.58 .C	
	T) 1,722,568,01	114° 32° 53′ 40.62° 62° 114° 35′ 29.61° 14.76 114° 28.71 28.71 1000 28.71 28.31 1000 28.31 28.31 1000 28.31 28.31 1000 28.31 28.31 1000 28.31 28.31 1000 28.31 28.31	
2 NN1 C30	1 733 574 67	I CHARTER 13106 63	
	1° 49.14	ourse from PT 513 to PC 514 N 61°	
3,062,185.93 3,062,174.40 3,062,127.25	N 1,732,551.71 E N 1,732,558.92 E N 1,732,470.74 E	.C. Station 13+62.59 .C. Station 13+62.59 .C. = N 54° 04' 17.34° W ock = N 61° 51' 49.14° W head = N 57° 58' 03.24° W	
3,062,180.41	N 1,732,555.71 E	tation 57° 17′ 41,180° (57° 17′ 44,180° (13.681 13.60 100.00 100.02 13.59 13.59 13.59	
	Curve Data		
	04' 17.34" W Dist 152.20	ourse from PT 512 to PC 513 N 54°	
3,062,340.17 3,062,309.17 3,062,602.56	N 1,732,441.66 E N 1,732,462.40 E N 1,732,867.28 E	Chord = 0.35 Ord. = 11+59.48 Station 11+59.48 Station 11+36.79 = N 58° 20° 49.23" W d Bear = N 58° 12° 33.29" W	
3,062,324.28	RT) 1,732,451.45 E	1.1. Station 4* 16', 31.89* (elra 16', 31.89* (eogree 11* (8.18)* (eogree 11* (8.18)* (eogree 11* (8.18)* (eogree 37.3 eoglth 37.3 addus 37.3 solo:00 0.35	
	Curve Data	urve 512	

End of parcel RA2_BOTTOM description





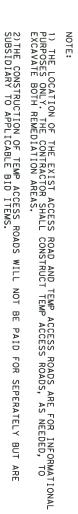


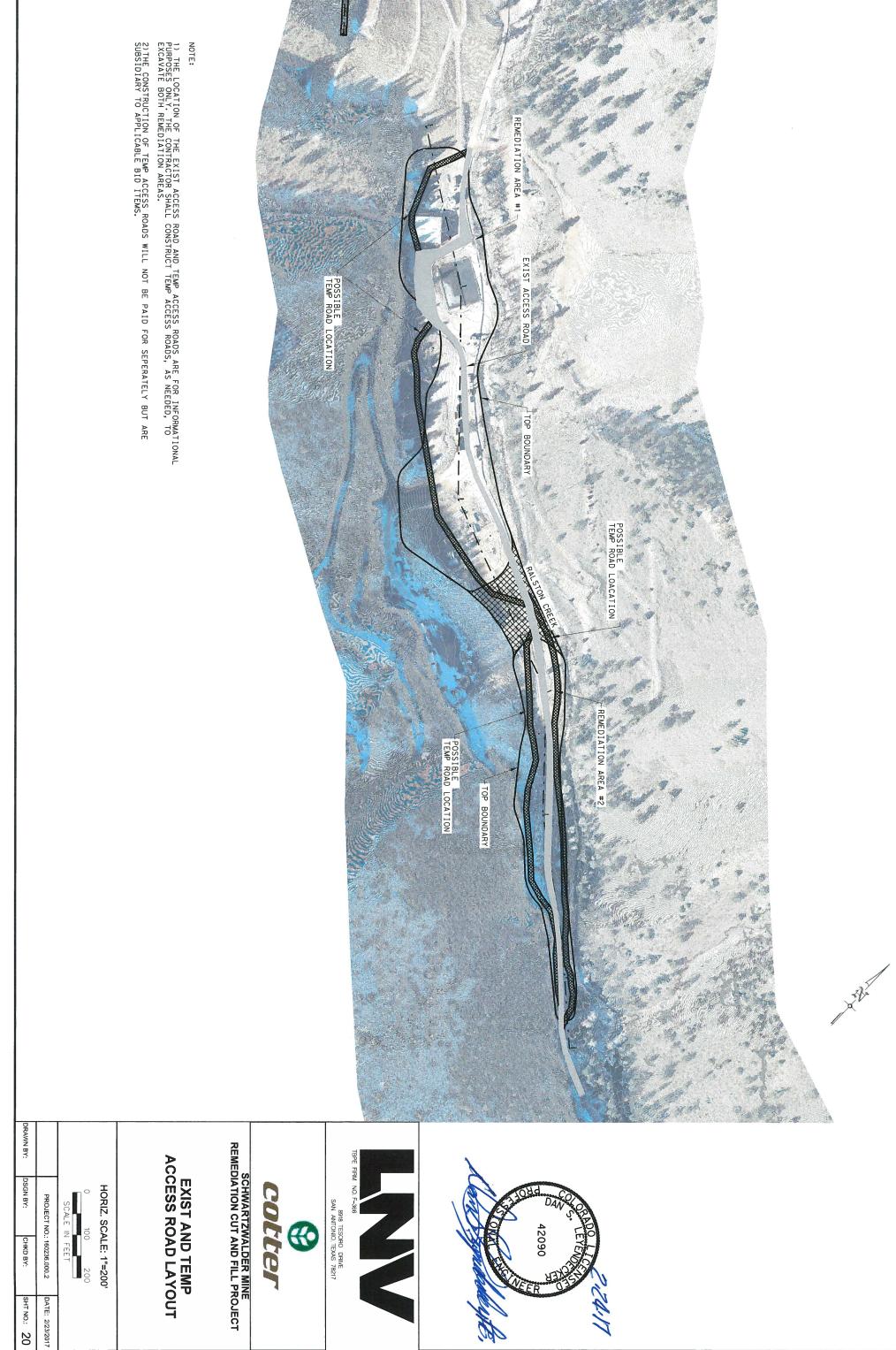

2/23/2017 S:\Projects\Cotter\160236 Schwartzwalder Mine CutFill-SW3P\000\Drawings\Plans\Civil\COTTER_ELEV-1.dgr

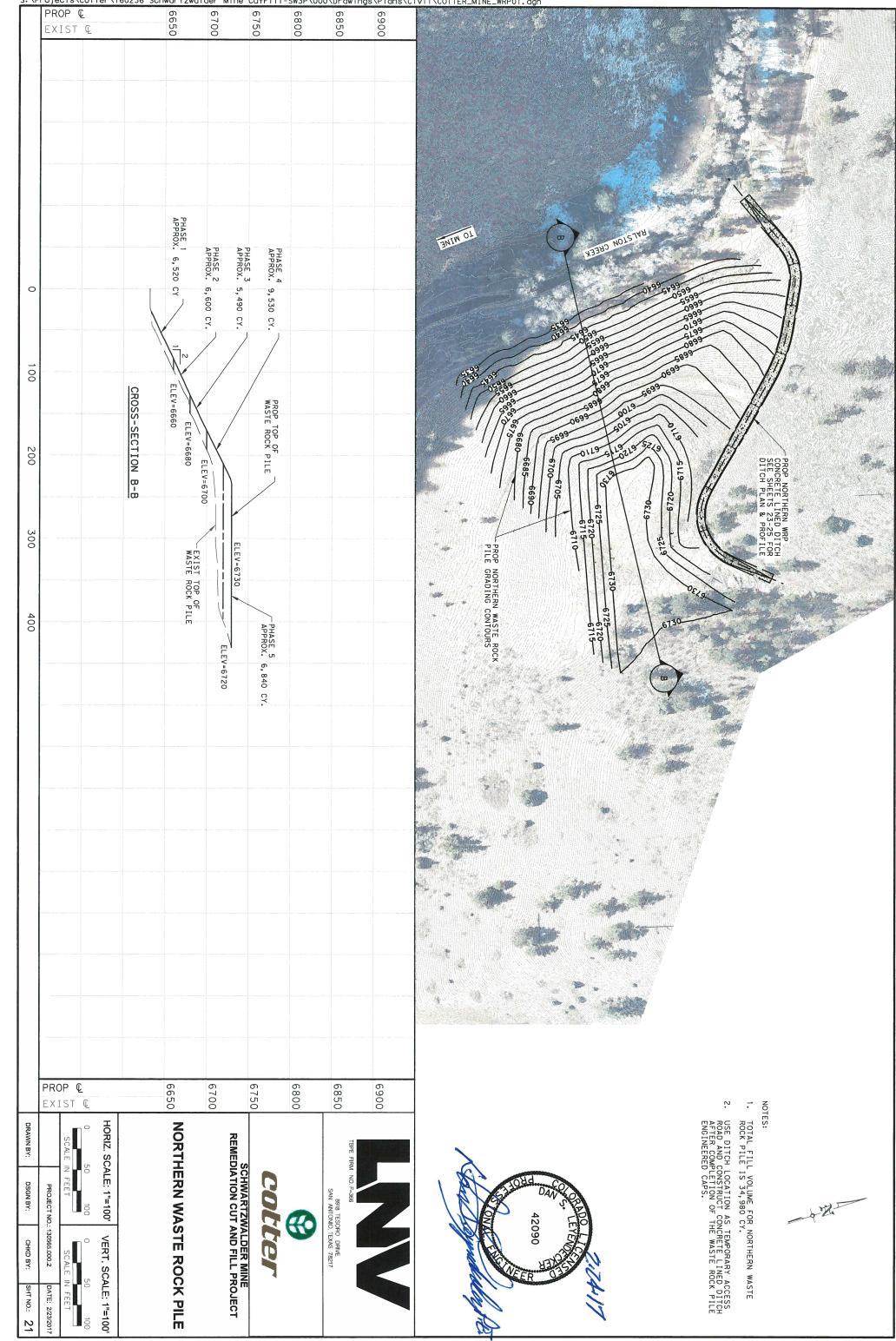

2/23/2017 S:\Projects\Cotter\160236 Schwartzwalder Mine CutFill-SW3P\000\Drawings\Plans\Civil\COTTER_MINE_LAYOUT-XSEC.dgn

6550	6500	6550	6600	6650	6700	6750	6800
			/				
			/				
PR	E T	- PRI	EXIST GROUND				
JP BOTTON	EXCAVATION PROFILE	OP BOTTON	 UND PROFILE				
1 OF	PROFILE		ILE				
			REMEDIATION AREA				
			#				
			NON-CO SOIL A				
			NON-CONTAMINATED SOIL AREA				
			0				ile ar mar formulation and the second s
6550	6500	6550	 6600	6650	6700	6750	6800
	5						
	H 100						

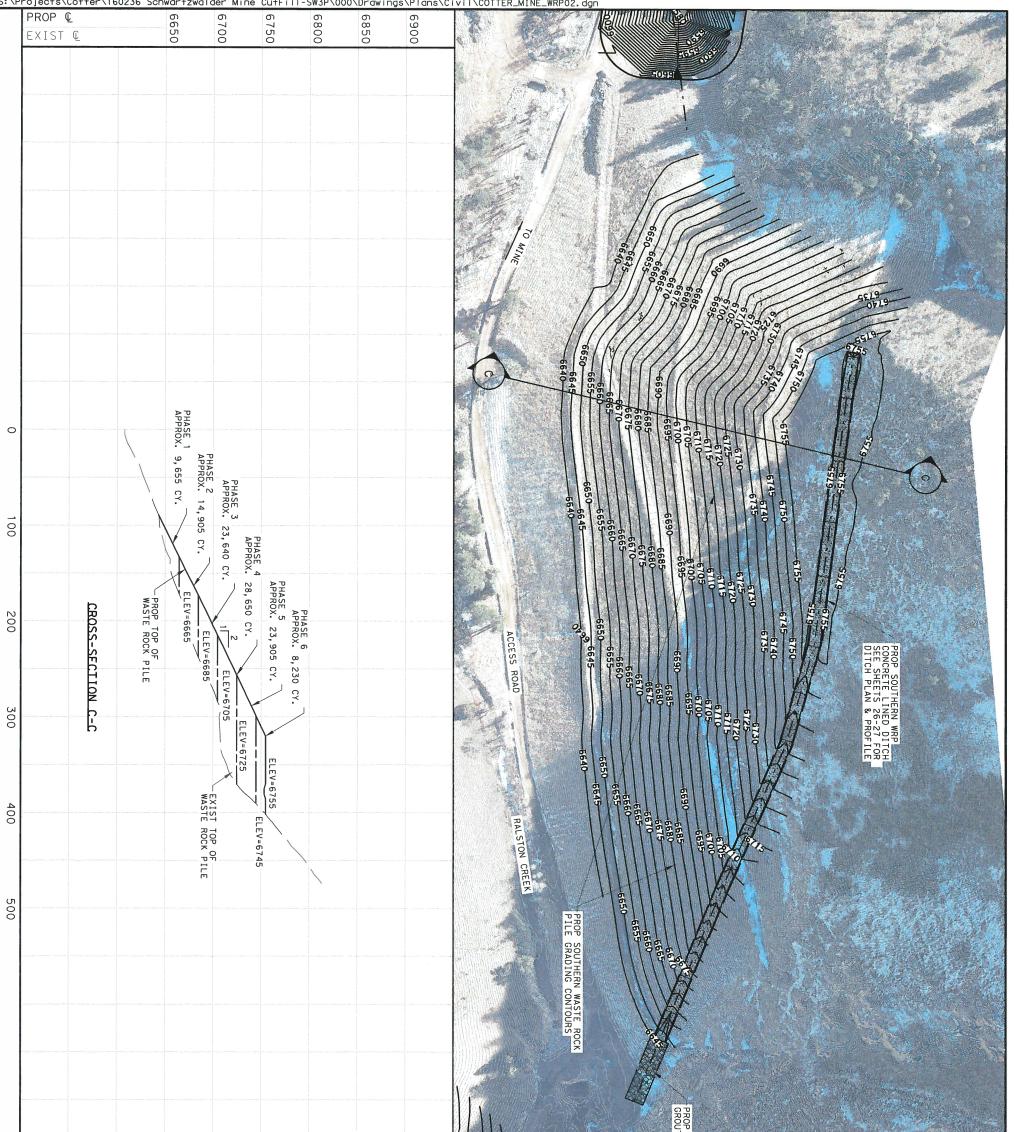
2/23/2017 S:\Projects\Cotter\160236 Schwartzwalder Mine CutFill-SW3P\000\Drawings\Plans\Civil\COTTER_RELOCATE_AND_DEMO_PLAN.dgn



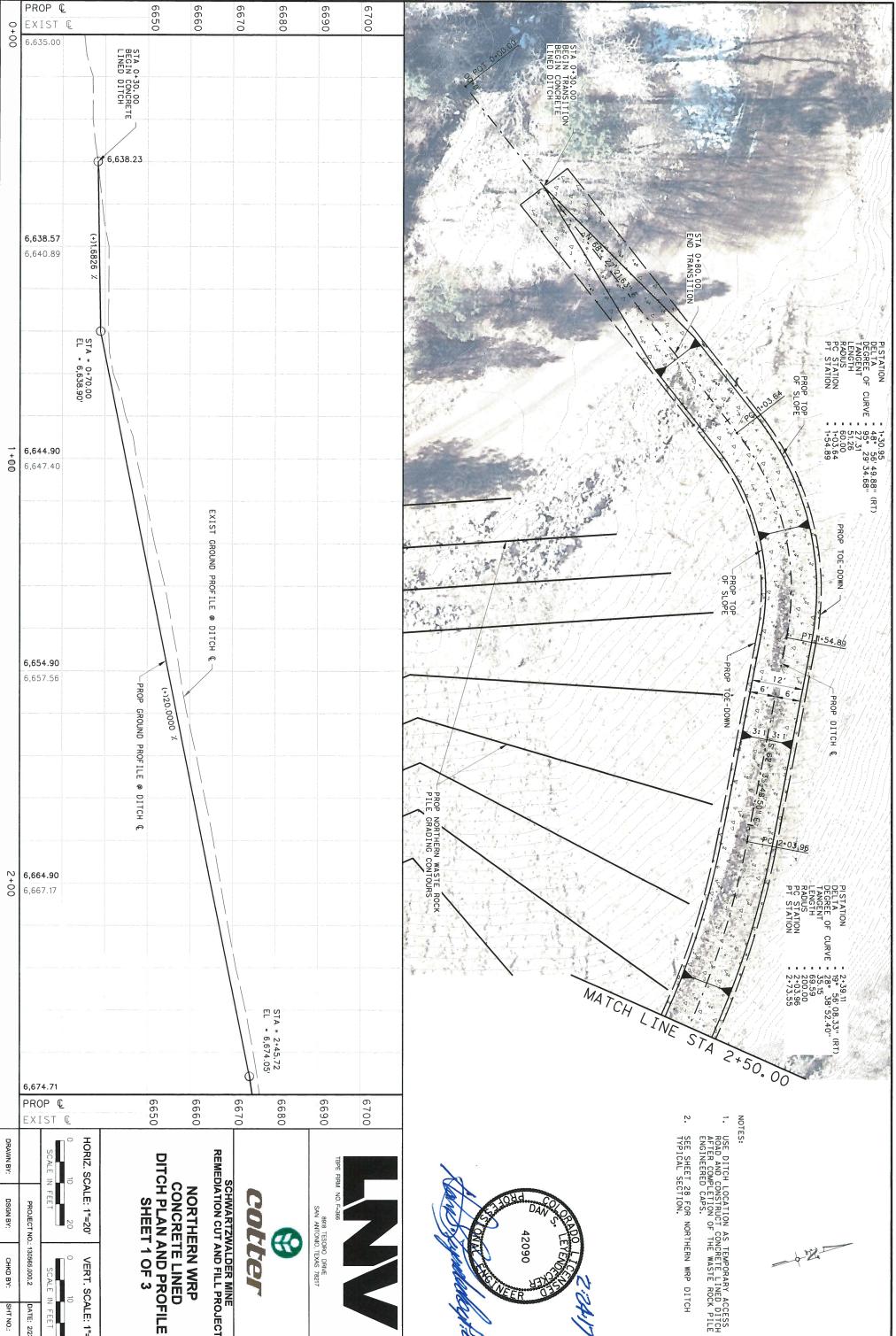

NOTES:
PIPELINES AND STRUCTURES SHOWN ARE FOR INFORMATIONAL PURPOSES ONLY AND MAY NOT SHOW ALL PIPELINES AND STRUCTURES TO BE RELOCATED OR DEMOED.
THE RELOCATION AND/OR DEMOLITION OF ALL STRUCTURES AND PIPELINES WILL BE PAID FOR UNDER "REMOVAL OF STRUCTURES AND OBSTRUCTIONS" AS A LUMP SUM.
3) ALL EXIST SUMPS SHALL REMAIN.



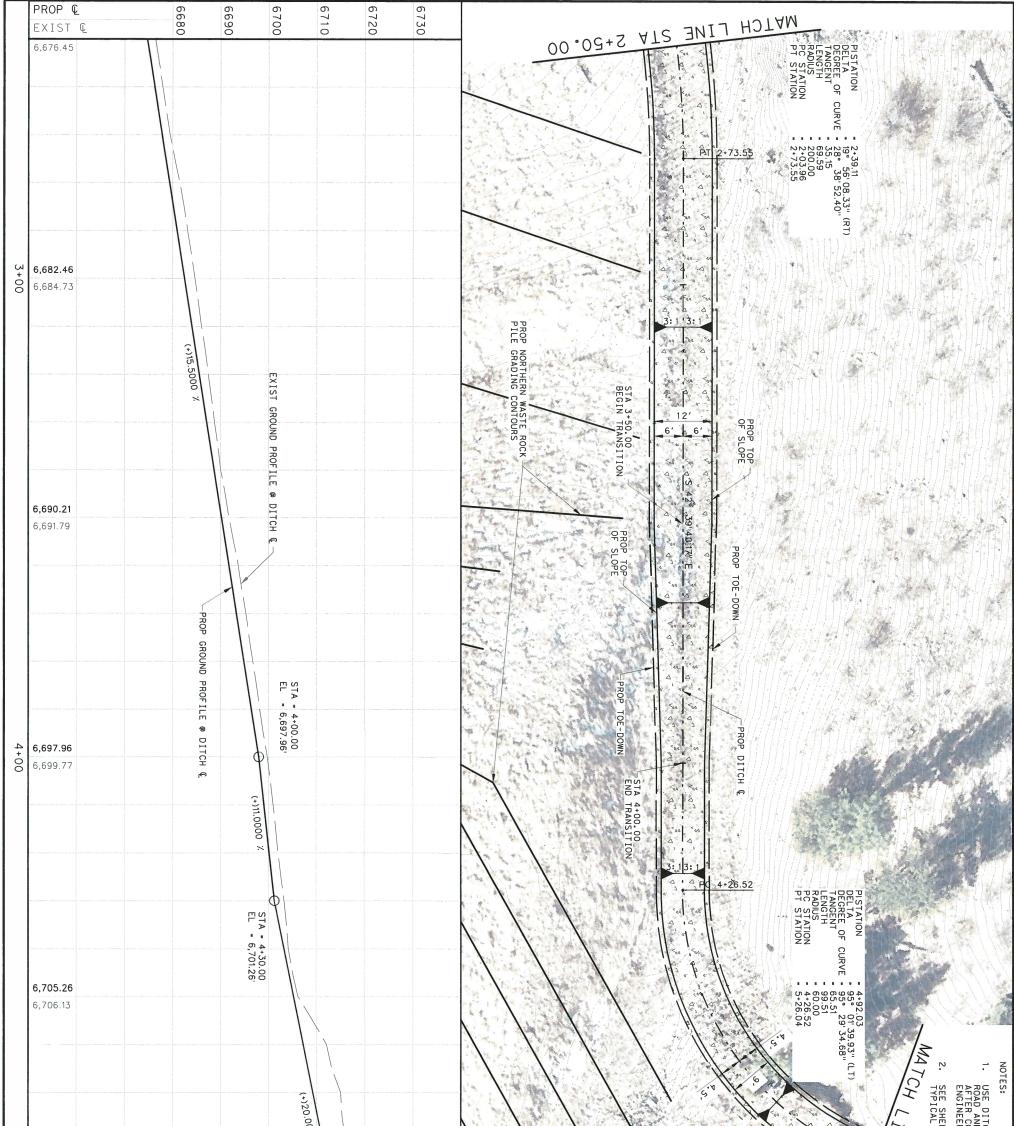
ERE



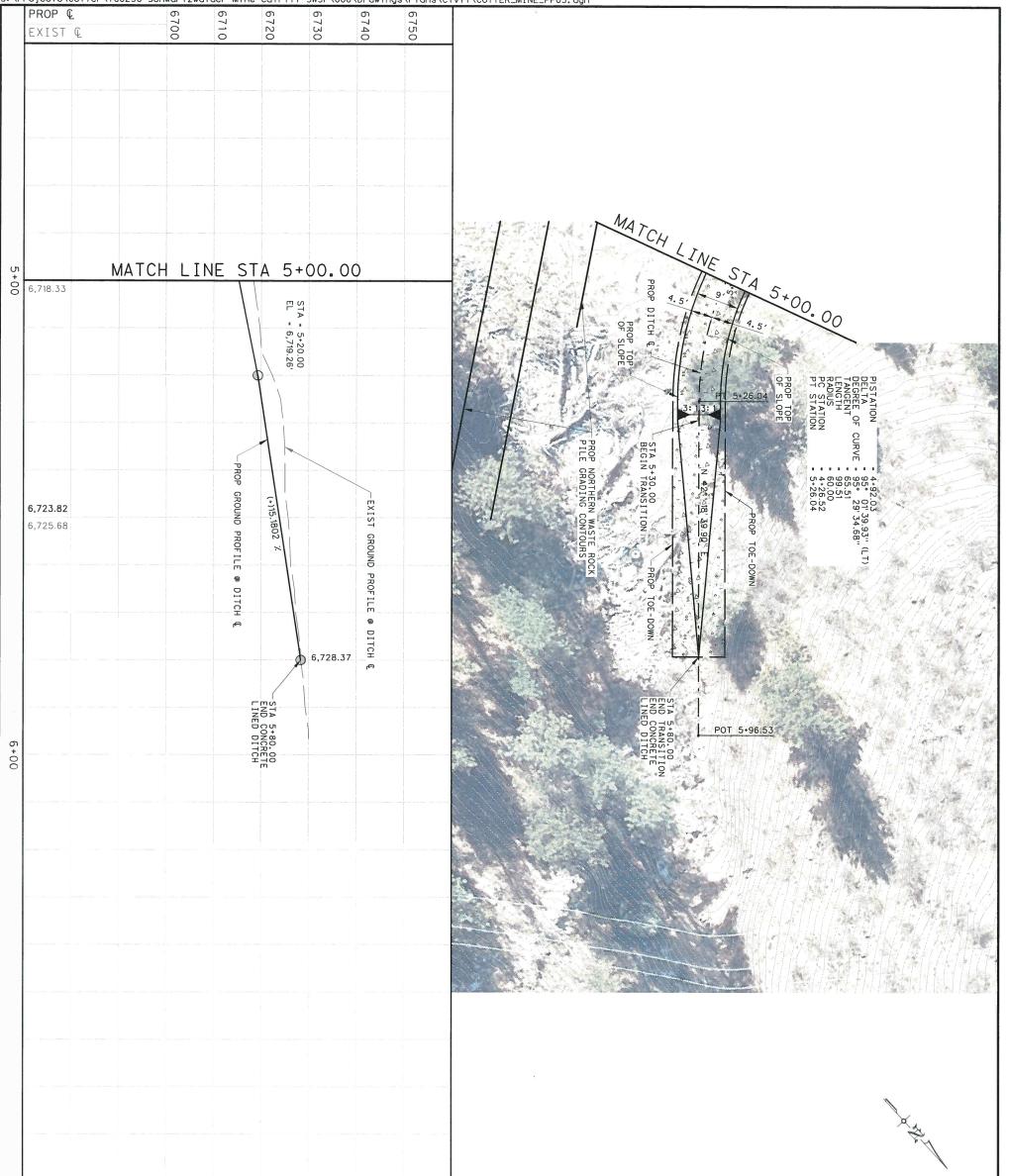
2/23/2017 S:\Projects\Cotter\160236 Schwartzwalder Mine CutFill-SW3P\000\Drawings\Plans\Civil\COTTER_MINE_WRP01.dgn



								20-FOOT WIDE 24" TED ROCK RIP-RAP
	PROP (L Exist (L	6650	6700	6800	6850	0069		
DRAWN BY: DS	HORIZ. SCALE: 1"=100" 0 50 100 SCALE IN FEET PROJECT NO	SOUTHERN WASTE	SCHV REMEDIATIO	0	TBPE FIRM NO. F-366 88		CONSTRUCTION OF THE OWNER	
DSGN BY:	1"=100' 100 ROJECT NO	N WA	JARTZV		8918 TES			
CHKD BY:	100 VERT. SCA 100 0 5 EET SCALE I PROJECT NO.: 130565.000.2		SCHWARTZWALDER MINE REMEDIATION CUT AND FILL PROJECT	er	366 8918 TESORO DRIVE SAN ANTONIO, TEXAS 78217		42090	l
SHT NO.: 22	SCALE: 1"=100' 50 100 ALE IN FEET ALE IN FEET 2 DATE: 2/23/2017	ROCK PILE	ROJECT					2


NOTE: 1. TOTAL FILL VOLUME FOR SOUTHERN WASTE ROCK PILE IS 108,985 CY.

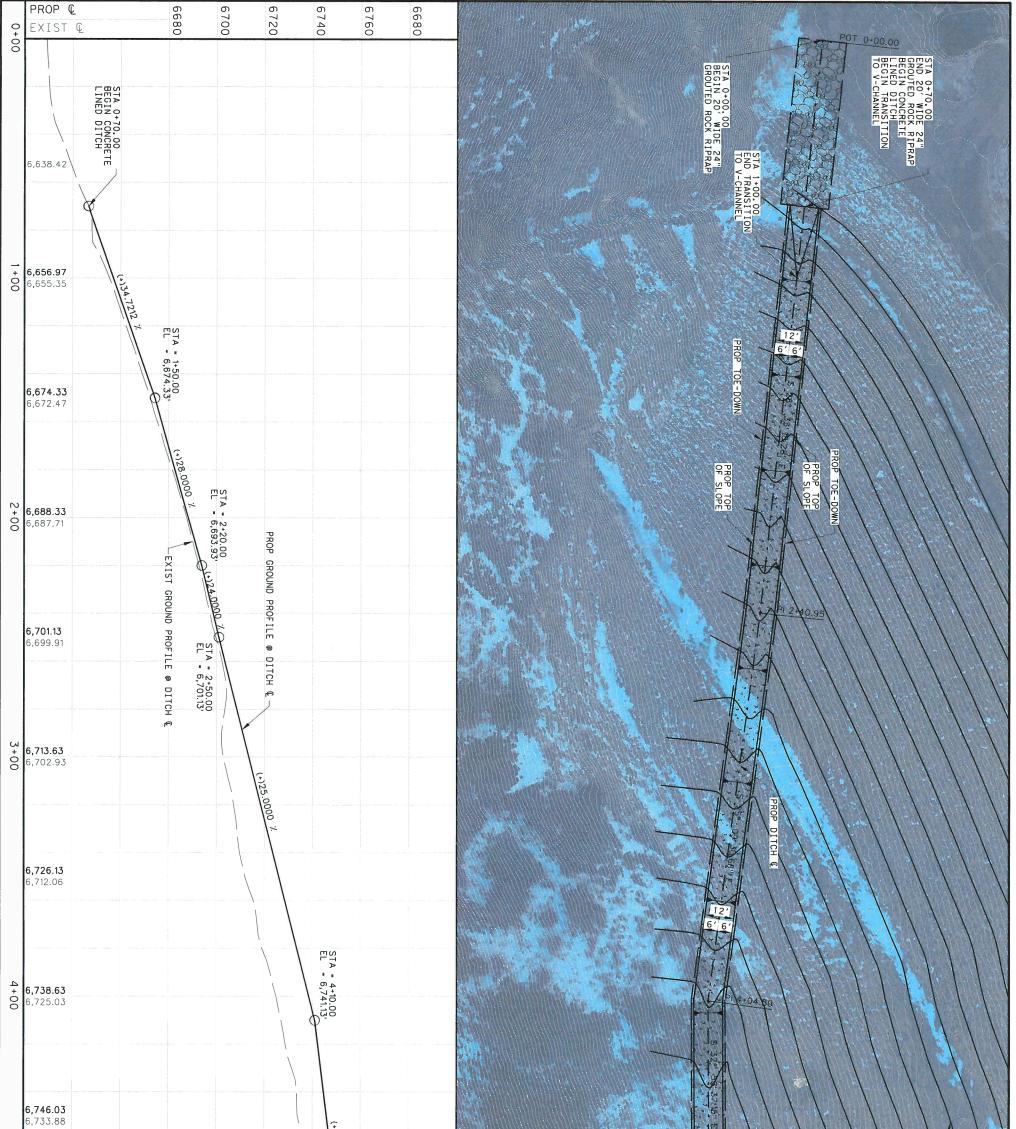
2/23/2017 S:\Projects\Cotter\160236_Schwartzwalder_Mine_CutFill-SW3P\000\Drawings\Plans\Civil\COTTER_MINE_PP01.dgn


	6,67	74.71						STA = 2+45.72 FL = 6.674.05			
	PRC EXI				6650	6660	6670	6680	0699	6700	
DRAWN BY:		0 10 SCALE IN	HORIZ. SC		DITCH	REMED			Ţ		
DSGN BY:	PROJECT NO.: 130565.000.2	20 I FEET	HORIZ. SCALE: 1"=20'	SHEET		NORTHERN WRP	COLLER SCHWARTZWAI DER MINE	6	8918 TES		A CONTRACT
CHKD BY:	: 130565.000.2	O 10 SCALE IN	VERT. SC	1 OF 3		CUT AND FILL PR			8918 TESORO DRIVE SAN ANTONIO, TEXAS 78217		42090
SHT NO.: 23	DATE: 2/23/2017	10 20 IN FEET	VERT. SCALE: 1"=20'		NED	ROJECT	Π				in it

2/23/2017 S:\Projects\Cotter\160236 Schwartzwalder Mine CutFill-SW3P\000\Drawings\Plans\Civil\COTTER_MINE_PP02.dgn

5+00	011 10:20	66 80 66 90	5.0000 % 6710	6730		ITCH LOCATION AS TEMPORARY ACCESS AND CONSTRUCT CONCRETE LINED DITCH DERED CAPS. HEET 28 FOR NORTHERN WRP DITCH AL SECTION.
DRAWN BY: DSGN BY: CHKD BY: SHT NO.: 24	HORIZ. SCALE: 1"=20' VERT. SCALE: 1"=20' 0 10 20 0 10 20 SCALE IN FEET SCALE IN FEET SCALE IN FEET SCALE IN FEET SCALE IN FEET	NORTHERN WRP CONCRETE LINED DITCH PLAN AND PROFILE SHEET 2 OF 3		TBPE FIRM NO. F-366 B918 TESORO DRIVE SAN ANTONIO, TEXAS 78217	Contraction of the second seco	CR PILE

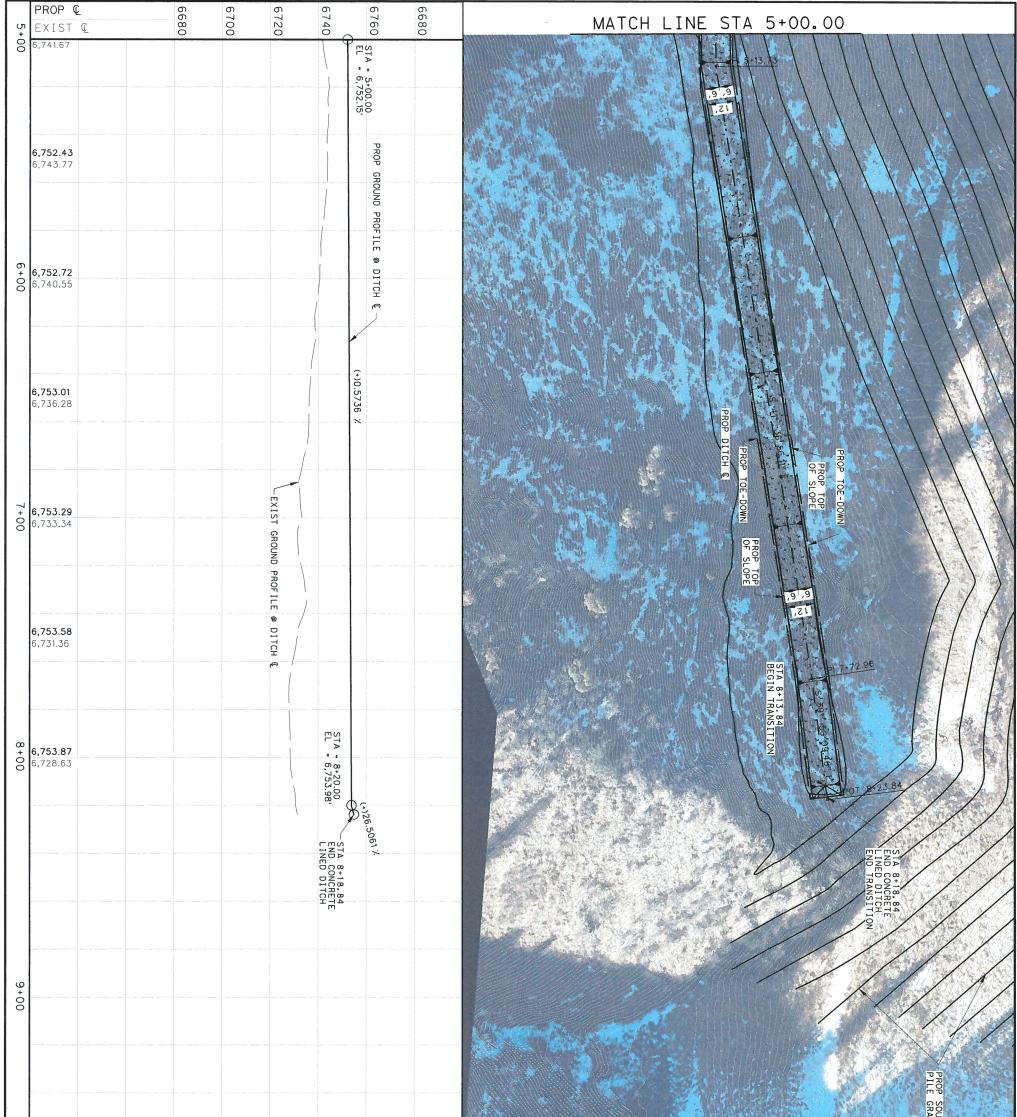
2/23/2017 S:\Projects\Cotter\160236 Schwartzwalder Mine CutFill-SW3P\000\Drawings\Plans\Civil\COTTER_MINE_PP03.dgn


	PRC EXI	D P (IST (<u></u>	6700	6710		6720	6730	6740	6750	
DRAWN BY:		SCALE	HORIZ. SC	DITC	_	REMED			TBPE FIR		
DSGN BY:	PROJECT NO	FEET	SCALE: 1"=20'	SHEET	NORTHERN WRP	SCHWARTZWALDER MINE REMEDIATION CUT AND FILL PROJECT	cot		TBPE FIRM NO. F-366 8918 TES SAN ANTON		GI TOHU DAVE DAVE
CHKD BY:	PROJECT NO.: 130565.000.2	SCALE	° ∪		RN WRI	AND FILL F	ter	€	=-366 8918 TESORO DRIVE SAN ANTONIO, TEXAS 78217		42090 42090
SHT NO.: 25	DATE: 2/23/2017	FEET	SCALE: 1"=20'	PROFILE	, 0	ROJECT					

1. USE DITCH LOCATION AS TEMPORARY ACCESS ROAD AND CONSTRUCT CONCRETE LINED DITCH AFTER COMPLETION OF THE WASTE ROCK PILE ENGINEERED CAPS.

NOTES:

- 2.
- SEE SHEET 28 FOR NORTHERN WRP DITCH TYPICAL SECTION.

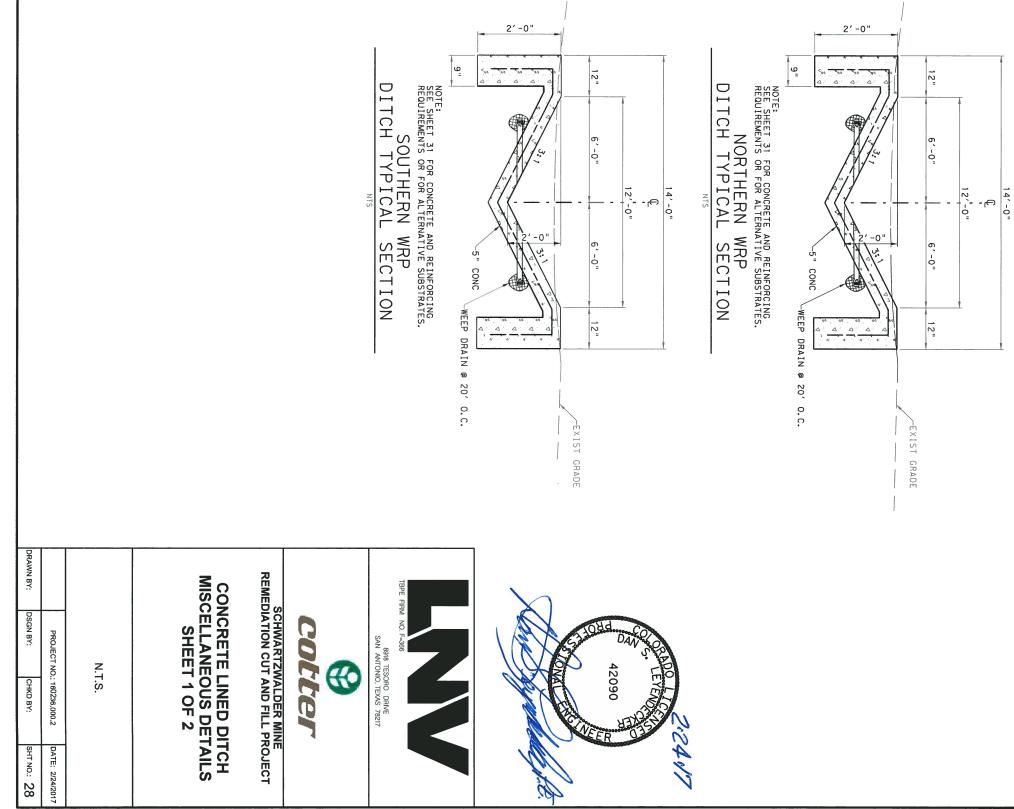

თ	6,752.15			(*)12.2386 X				
\cap	PROP © Exist ©	6680 6680	6700	6740	6760	6680	MATCH LINE STA 5	00+00 ∾
DRAWN BY:	O SCAL	DITC			TBPE FIRM		$\mathbf{\lambda}$	AFIER COMPLEIION ENGINEERED CAPS. SEE SHEET 28 FOR TYPICAL SECTION.
DSGN BY:	SCALE: 1"=40' VERT. 20 40 0 21 40 0 22 40 0 23 40 0 24 5 5 20 40 0 20 40 0 20 5 5 20 40 5 20 40 5 20 40 5 20 5 5 20 5 5	SOUTHE CONCRET H PLAN / SHEET	HWARTZW	cot	NO. 7	7	1 Contraction of the second seco	
CHKD BY:			ALDER MIN AND FILL PR	er ber	386 8918 TESORO DRIVE SAN ANTONIO, TEXAS 78217		42090 HERE	SOUTHERN WRP DITCH
SHT NO.: 26	SCALE: 1"=40 20 40 E IN FEET E ATE: 2/29/2017	PROFILE	E ROJECT				the second secon	DITCH

-PROP SOUTHERN WASTE ROCK PILE GRADING CONTOURS AN

NOTES:

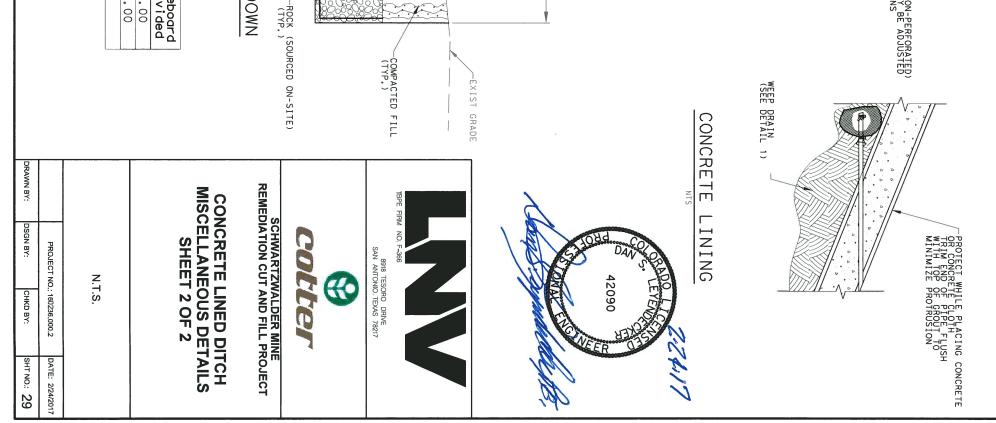
NUTED
 NOTED AND CONSTRUCT CONCRETE LINED DITCH ROAD AND CONSTRUCT CONCRETE LINED DITCH
 ACTED COMPLETION OF THE WASTE ROCK PILE

2/23/2017 S:\Projects\Cotter\160236 Schwartzwalder Mine CutFill-SW3P\000\Drawings\Plans\Civil\COTTER_MINE_PP05.dgn


													G
	PR(DP C Ist C			ט ת - ת ט כס	6700	6720	6740	6760	6680			
DRAWN BY:		0 20 SCALE IN	HORIZ. SC.		DITC	REMEDI				TRPE FIRM	2		
DSGN BY:	PROJECT NO.: 130565.000.2	40 FEET	SCALE: 1"=40'	SHEET	SOUTHERN CONCRETE		cot		8918 TESC SAN ANTONIC	THEFE FIRM NO E-366		5310Hd D,	W SS LEBO
CHKD BY:	130565.000.2	0 20 SCALE IN	VERT. SC	2 OF 2		AND FILL PF	ter		8918 TESORO DRIVE SAN ANTONIO, TEXAS 78217		nondest.	42090	
SHI NO: 27		0 40	SCALE: 1"=40'		NED PROFILE	ROJECT					wre.	2	4.17

NOTES:

- 1. USE DITCH LOCATION AS TEMPORARY ACCESS ROAD AND CONSTRUCT CONCRETE LINED DITCH AFTER COMPLETION OF THE WASTE ROCK PILE ENGINEERED CAPS.
- 2. SEE SHEET 28 FOR SOUTHERN WRP DITCH TYPICAL SECTION.


HERN WASTE ROCK

2/24/2017

MRP V-CHANNEL CAPACITY CALCULATIONS Area # Depth, D Side Slope, North WRP 1.00 3.00 South WRP 1.00 3.00 South WRP 1.00 3.00	CONC. CLOTH W/ GROUTED TOE-DOWN	5" CONC RIP-RAP 5" CONC RIP-RAP
Slope, S Manning's Area, A Wetted Hydraulic Flow, CFS Freebo (ft/ft) Coefficien (sq. ft) Perimeter, Radius, R Flow, CFS Provi 0.14 0.013 3.00 6.32 0.47 78.25 1.0 0.11 0.013 3.00 6.32 0.47 69.36 1.0 0.11 0.013 AR ^{12/9} S ^{17/21} 69.36 1.0 0.11 0.11 0.013 CALCULATIONS	EXIST GRADE 	GRETE

2/24/2017 \\SASTORAGE\share\Projects\Cotter\160236 Schwartzwalder Mine CutFill-SW3P\000\Drawings\Plans\Civil\COTTER_MINE_MISC DET B.dgn

2/23/2017		
S: \Projects\Cotter\160236	Schwartzwalder Mine	<pre>cutFill-SW3P\000\Drawings\Plans\Civil\COTTER_MINE_DAM-1.dgn</pre>

WRP V-Channel Capacity Calculations Area * Depth, D Side Slope, Slop	To PARH To PAR
Freeboard ProvidedHydrologic Soll rypePercentage of Soll viewCurve Number Soll of D1.00A13.32320C0.02720D77.4279Data from NRCS Web Soil Survey Table for Good (>702 ground cover)Note: All three areas have the same approximate soil distribution, land coverage, and land type.	SOLTHERN WER DITCH
South WRP Curve Num Hydrologic Percentage Soil Type 0.0% C 0.0% D 77.8% Weighted Curve Numbo Data from NRCS Web Soil S Table for Good (770% group Note: All three areas hav approximate soil distribut coverage, and land type.	T200 DRAINAGE AREA 7400

In AREAS USED FOR STOCKTUNG AND STOCKFLLING OF MATERIALS, STAGING AREAS (field trailer, fueling, etc.) and BATCH PLANTS Shown on SWMP Site Map SWMP ADMINSTRATOR FOR DESIGN: Dan Leyendecker, P.E. – Principal of LNV, Inc.	S USED FOR STORING AND STOCKPILING OF MATERIALS.	. PROTECTION OF TRE	F. SPRINGS, STREAMS, WETLANDS AND OTHER SURFACE WATER Shown on SWMP Site Map	E. LOCATION OF NON-STRUCTURAL BMPS AS APPLICABLE IN THE SWMP Shown on SWMP Site Map	D. LOCATION OF ALL STRUCTURAL BMPS IDENTIFIED IN THE SWMP Shown on SWMP Site Map	C. AREAS OF CUT AND FILL Shown on SWMP Site Map	B. ALL AREAS OF GROUND SURFACE DISTURBANCE Shown on SWMP Site Map	A. PROJECT CONSTRUCTION POTENTIAL SITE BOUNDARIES Shown on SWMP Site Map	uction	SITE MAP COMPONENTS:	 I. Wetand Impacts: VES <u>NO</u> Stream Impacts: <u>VES</u> NO Stream Impacts: <u>VES</u> NO Threatened and Endangered Species: <u>N/A</u> 		Contaminated groundwater requiring coverage under a separate permit may include groundwater contaminated with pollutants from a landfill, mining activities, industrial pollutant plumes, underground storage tank, etc.	If discharges do not meet the above criteria a separate permit from the Department of Health will be required.	 a. the source is groundwater and/or groundwater combined with stormwater that does not contain pollutants b. the source and BMPs are identified in the SWMP c. discharges do not leave the site as surface runoff or to surface waters. 	 <u>ALLOWABLE NON-STORMWATER DISCHARGES</u>: Groundwater and stormwater dewatering: Discharges to the ground of water from construction dewatering activities may be authorized provided that: 	 Names of receiving water(s) on site and the ultimate receiving water: Raiston Creek and Raiston Reservoir Distance ultimate receiving water is from project: 10,000 feet 		G. RECEIVING WATER:	F. <u>POTENTIAL POLLUTANTS SOURCES</u> : See First Construction Activities under Potential Pollutant Sources. The ECS -shall prepare a list of all potential pollutants and their locations in accordance with subsection 107.25.	areas of disturbance and approximately 15% for the entire construction site	E. EXISTING VEGETATION, INCLUDING PERCENT COVER: General ground cover is Evergreen Trees with small brush	D. <u>EXISTING SOIL DATA</u> : Majority or soil is rock: Argiustolls Rock outcrop, Ratake-Cathedral Rock outcrop, Allens Park variant of Ratake Rock outcrop, Cryofluvents, and Curecanti very stony sandy loam. These soil areas generally consist of 0.5-3.0 feet of gravelly to stony sandy loam over bedrock.	 C. <u>ACRES OF DISTURBANCE:</u> 1. Total area of construction site: 30 acres 2. Total area of disturbance: 20 acres 3. Acreage of seeding: 4.24 acres 	The engineered waste rock piles will be constructed in phases as shown on the plan sheets. Once all the contaminated soil has been placed and compacted, the engineered rock cap will be placed and then topsoil, seeding and turf reinforcement matting applied to protect against erosion.	The two contaminated sites will be excavated in phases. The eastern contaminated site, Remediation Site #2, will be excavated first. The excavation will occur in phases, if possible, to provide continual access from Glencoe Valley Road to the mine site. Once the contaminated soil has been removed for each section of Remediation Site #2, the location will be refilled and/or regraded with uncontaminated or new soil to re-establish the access road to the mine site. The western contaminated site, Remediation Site #1, will then be excavated in phases similar to Remediation Site #2.	airect water around the northern and southern waste rock piles, and re-estabilishment or the access road to the mine site after the contaminated soils under the roadway have been removed.	B. PROPOSED SEQUENCING FOR MAJOR ACTIVITIES: Construction should last approximately six (6) months and will include excavation of contaminated material at two locations at the Schwartzwalder Mine site, placement of the contaminated materials under a engineered waste rock plies at the mine site, construction of a concrete lined ditches to	engineered waste rock piles on site. The location and approximate depths of contamination have been outlined in a report developed by Cotter Corporation (N.S.L.) titled "Characterization, Remedial Criteria and Disposal Options for Alluvial Fill Source Term Materials at the Schwartzwalder Mine Site."	A. <u>PROJECT SITE DESCRIPTION</u> : The project site is located the Schwartzwalder Mine at the end of Glencoe Valley Road and along Ralston Creek. The project consists of the removal of the radiologically contaminated alluvial fill soil due to past uranium mining activities at two locations at the mine site and to place the contaminated materials within two	1. SITE DESCRATION For Information Only to fulfill the CDPS-SCP (Colorado Discharge Permit System - Stormwater Construction Permit) Update to reflect current project site conditions.
DEWATERING Any dewatering conducted within facility.	so the contaminated runoff will be	EARTH BERM/DIVERSION During excavation of the contamin	replace the erosion control	Place erosion control logs along the		NARRATIVES	BMP locations are indicate	Sediment control devices are desig Construction control are BMPs relat	Erosion control devices are used to		Protection of Trees Preservation of Mature Vegetation *Check dams may be rock	Soil Binder	Surface Roughening/Grading	RMD		NON-STRUCTURAL BMPs that may include, but are not limited to:	Clean water diversion Other	Dewatering Temporary Stream Crossing	Vehicle Tracking Pad	Concrete Washouts	Inlet Protection	Embankment Protector	Earth Berm/Diversion *Check Dams	ВМР	include, but are not limited to:	During Design: "BMP as Designed update the "In use on site" boxes t between the phases of construction	PHASED BMP IMPLEMENTATION	C. BEST MANAGEMENT PRACTICE	B. POTENTIAL POLLUTANT SOURC Evaluate, identify and describe all polynomia the County part heads.	information. The activities and resp Name/Title:	A. <u>DESIGNA</u> designate the

CONTROLS FIRST CONSTRUCTION ACTIVITIES FOLLOWING:

<u>STRATOR/EROSION CONTROL SUPERVISOR</u> (To be filled out at time of construction; nsible for implementing, maintaining and revising SWMP, including the title and contact asponsibilities of the administrator shall address all aspects of the projects SWMP.)

Contact information:

<u>.CES</u> I potential sources of pollutants at the site in accordance with subsection 107.25 and BMPs related to potential pollutants shall be shown on the SWMP site map by the

ES (BMPs) FOR STORMWATER POLLUTION PREVENTION

'd" boxes are marked when used in the SWMP. During construction: the ECS shall s to match which BMPs are currently in use on site. Clearly describe the relationship ion and the implementation of BMP controls.

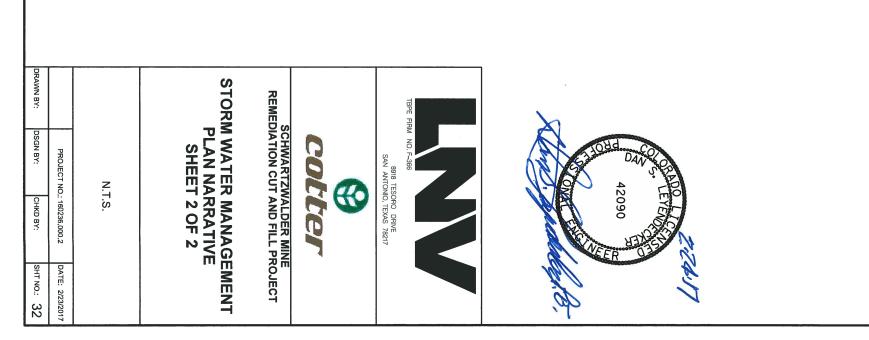
otentially used on the project for erosion and sediment control; practices may

			In use	FIRST		
0	TYPE OF CONTROL Designed site	BMP as Designed	on site	TRUCTION ITIES	UCTION	INTERIM/F
h Berm/Diversion	erosion	×		x	×	
eck Dams	sediment				×	
sion Logs	sediment	×		×	×	
pankment Protector	erosion					
t Protection	erosion					
let Protection	erosion					
crete Washouts	construction				×	
icle Tracking Pad	construction			×	×	
ratering	sediment	×			×	
porary Stream Crossing	erosion					
in water diversion					×	
er	-					

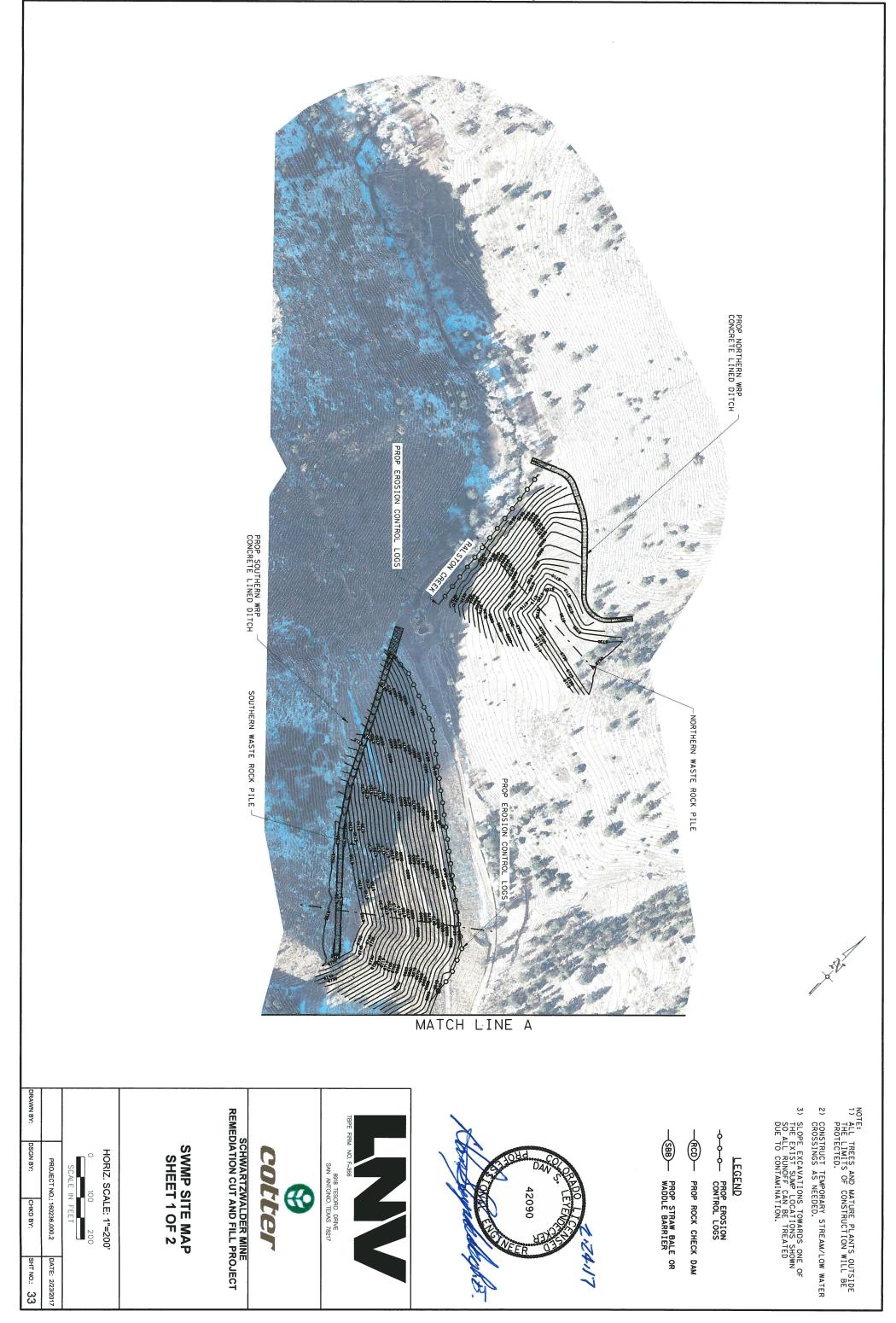
/ be potentially used on the project for erosion and sediment control; practices may

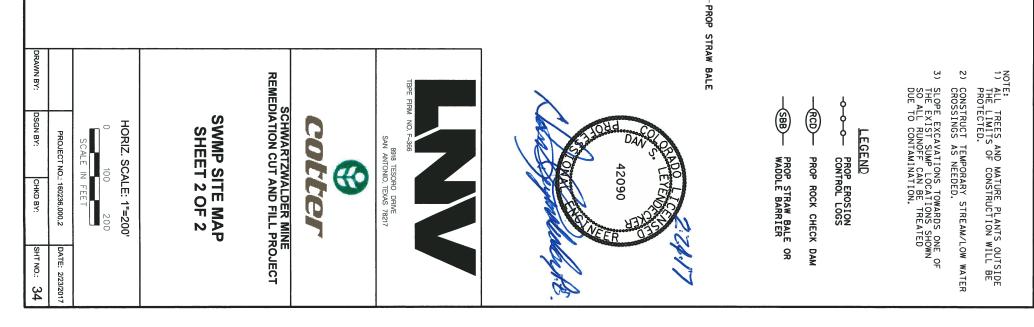
erosion		ation of Mature	on of Trees erosion	der erosion	ues erosion	Roughening/Grading	TYPE OF			
s silt dike							CONTROL			
silt herm	×						Designed	BMP as		
etc.							site	9	use	5
dams may be rock, erosion logs, silt dike, silt berm, etc. as indicated in the narratives and SWMP site m	×		×				TYPE OF CONTROL Designed site ACTIVITIES	CONSTRUCTION DURING	FIRST	
narratives and SV	×		×	×	×		CONSTRUCTION STABILIZA	DURING		
NMP site m	×						STABILIZA	INTERIM/F		

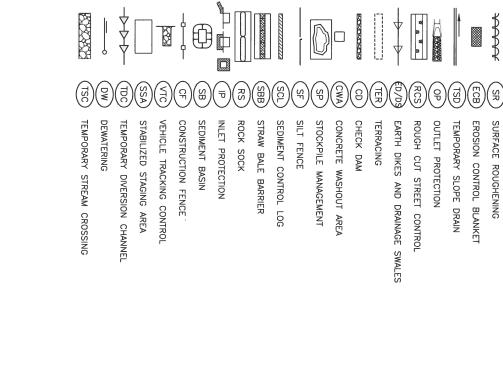
to limit the amount of soil loss on site. igned to capture sediment on the project site. lated to construction access and staging. e SWMP site map.

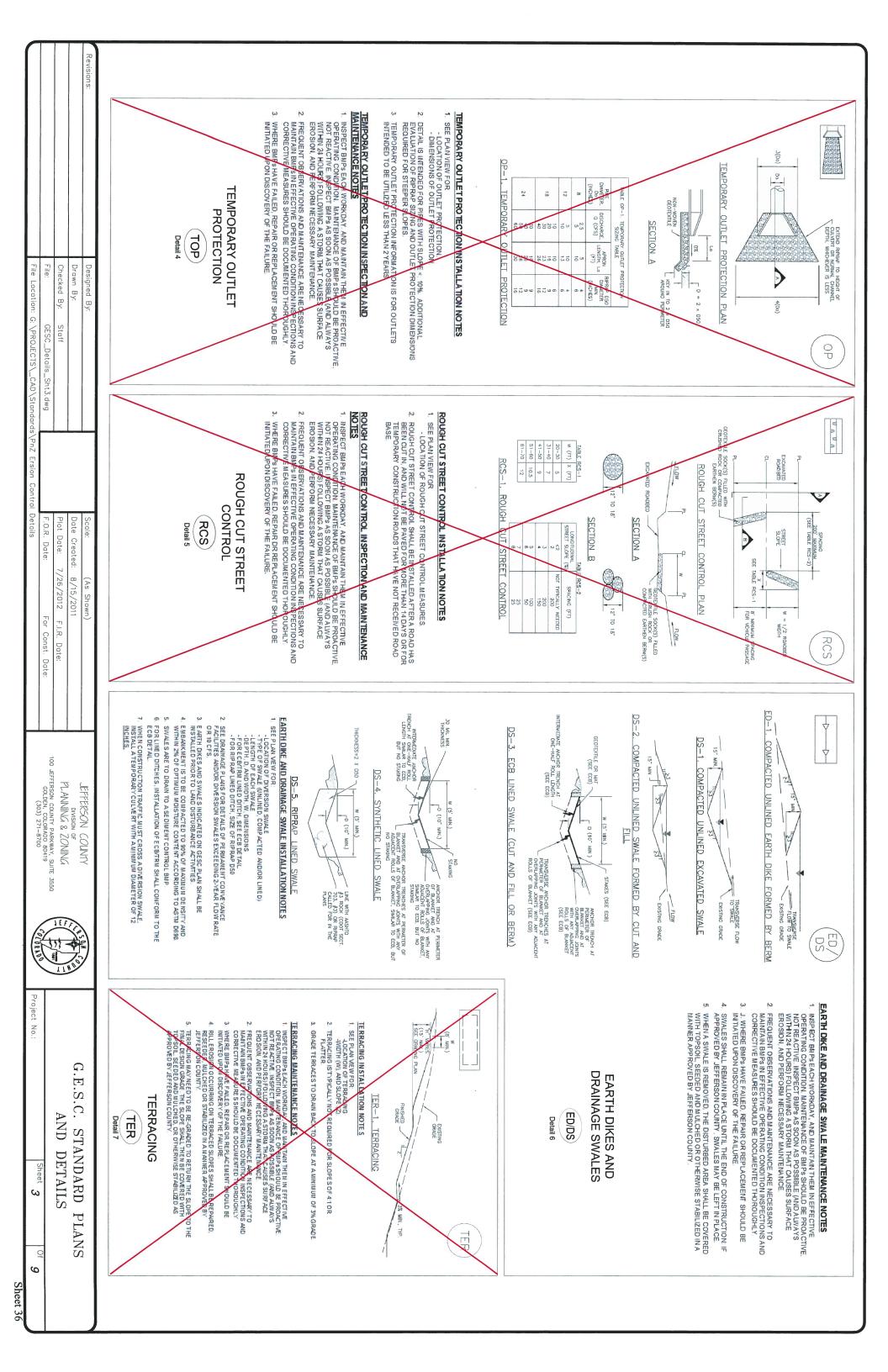

he top of slopes towards Ralston Creek per the plans or as directed. Maintain and s needed.

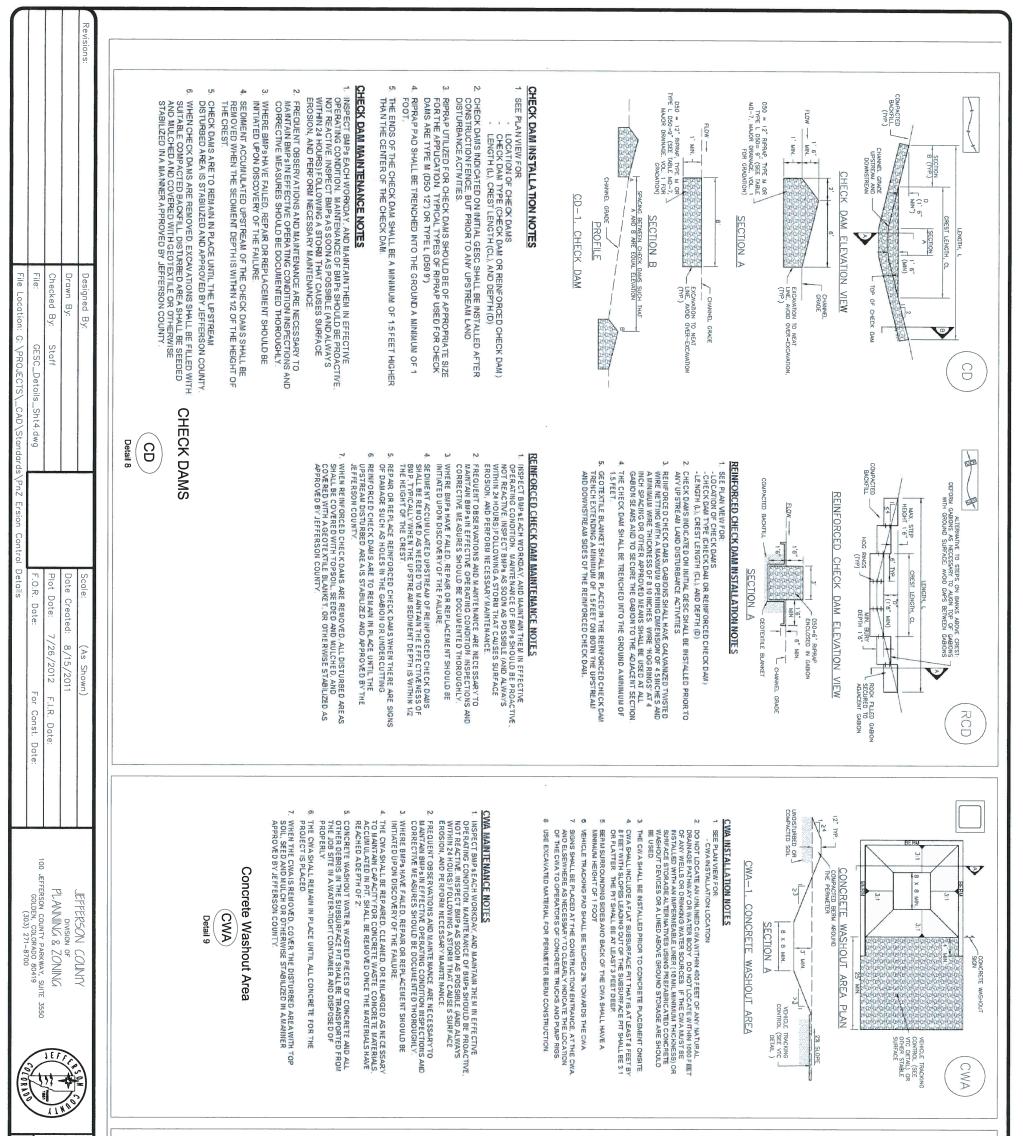
nated area, divert all runoff within the excavated areas to the closest sump e pumped to the on-site water treatment facility.


the areas of excavation shall discharge the water to the on-site water treatment

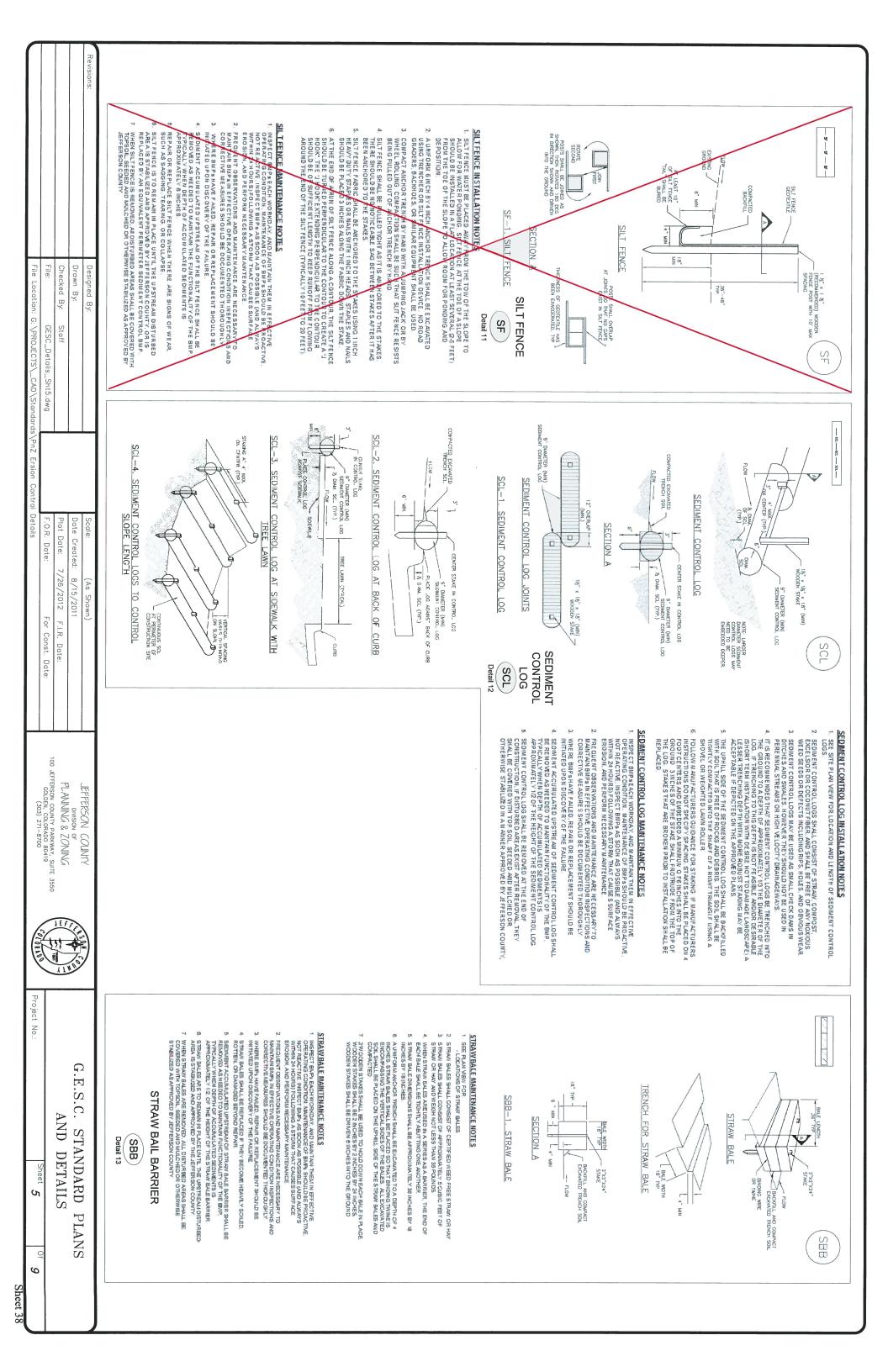

the SWMP or Standard Plan M-208-1 shall be added to the SWMP notebook		
	Pay Item Description	Pay Unit *Quantit
D. OFFSITE DRAINAGE (RUN ON WATER)		
1. Describe and record BMPs on the SWMP site map that has been implemented to address off site run-on water in accordance with subsection 208.03.		EA 4
E. VEHICLE TRACKING PAD/VEHICLE TRACKING CONTROL	Turf Reinforcement Matting	LS 1 SY 38000
	Hydromulch Seeding and 6 Inch Topsoil *It is anticipated that additional BMPs and BMP quantities not shown on t	SY 38000
 Final and a construction of the established as the first item on the SWMP to prevent the potential for pollutants leaving the construction site boundaries, entering the stormwater drainage system, or discharging to state 	required on the project for unforeseen conditions and replacement of Items that are beyond their useful service life, see subsection 208.03 and 208.04 (e). Quantities for all BMPs shown above are estimated, and have been increased for unforeseen Project conditions.	ns that are beyond their useful s shown above are estimated,
waters. 2. Perimeter control may consist of vegetation buffers, berms, silt fence, erosion logs, existing landforms, or other BMPs as approved. 3. Perimeter control shall be in accordance with subsection 208.04.		
5. DURING CONSTRUCTION		
<u>RESPONSIBILITIES OF THE SWMP ADMINISTRATOR/EROSION CONTROL SUPERVISOR DURING CONSTRUCTION</u> The SWMP should be considered a "living document" that is continuously reviewed and modified. During construction, the following items shall be added, updated, or amended as needed by the SWMP Administrator/Erosion Control Supervisor (ECS) in accordance with Section 208.		
During construction, indicate how items that have not been addressed during design are being handled in construction. If items are covered in the template or other sections of the SWMP notebook indicate below what section the discussion takes place.		
A. STOCKPILE MANAGEMENT - shall be done in accordance with subsection 107.25 and 208.07		
B. <u>CONCRETE WASHOUT</u> - Concrete wash out water or waste from field laboratories and paving equipment shall be contained in accordance with subsection 208.05.		
C. SAW CUTTING - shall be done in accordance with subsection 107.25, 208.04, 208.05 D. STREET CLEANING - shall be done in accordance with subsection 208.04		
ECTIONS		
A. Inspections shall be in accordance with subsection 208.03 (c).		
7. BMP MAINTENANCE		
A. Maintenance shall be in accordance with subsection 208.04 (f). <u>8. RECORD KEEPING</u>		
A. Records shall be kept in accordance with subsection 208.03 (c).		
9. INTERIM AND FINAL STABILIZATON A. SEEDING PLAN		
Soil preparation, soil conditioning or topsoil, seeding (native), mulching (weed free) and mulch tackifier will be required for an estimated 4.24 acres over the top cap of the engineered waste rock piles. Native soils are mainly 0.5-3.0 feet of gravelly to stony sandy loam over bedrock. The proposed ditch grading will be rock riprap armored in place of vegetation.		
SpeciesVariety% of MixBroadcast* lbs/acreBig BluestemKaw204.4Sideoats GrammaVaughn203.6Little BluestemPastura202.8Yellow IndiangrassHolt102Western Wheatgrass***Arriba103.2Needleandthread-102SwitchgrassNebraska 2850.6Blue GrammaLovington50.3 <i>TOTAL</i> V100%18.9 lbs/acre		
* Use this seeding rate for both broadcast and hydromulch applications. *** Streambank Wheatgrass (Sodar) can be substituted for the Western Wheatgrass.		
<u>10. PRIOR TO FINAL ACCEPTANCE</u> A. Final Acceptance shall be in accordance with subsection 208.10.		

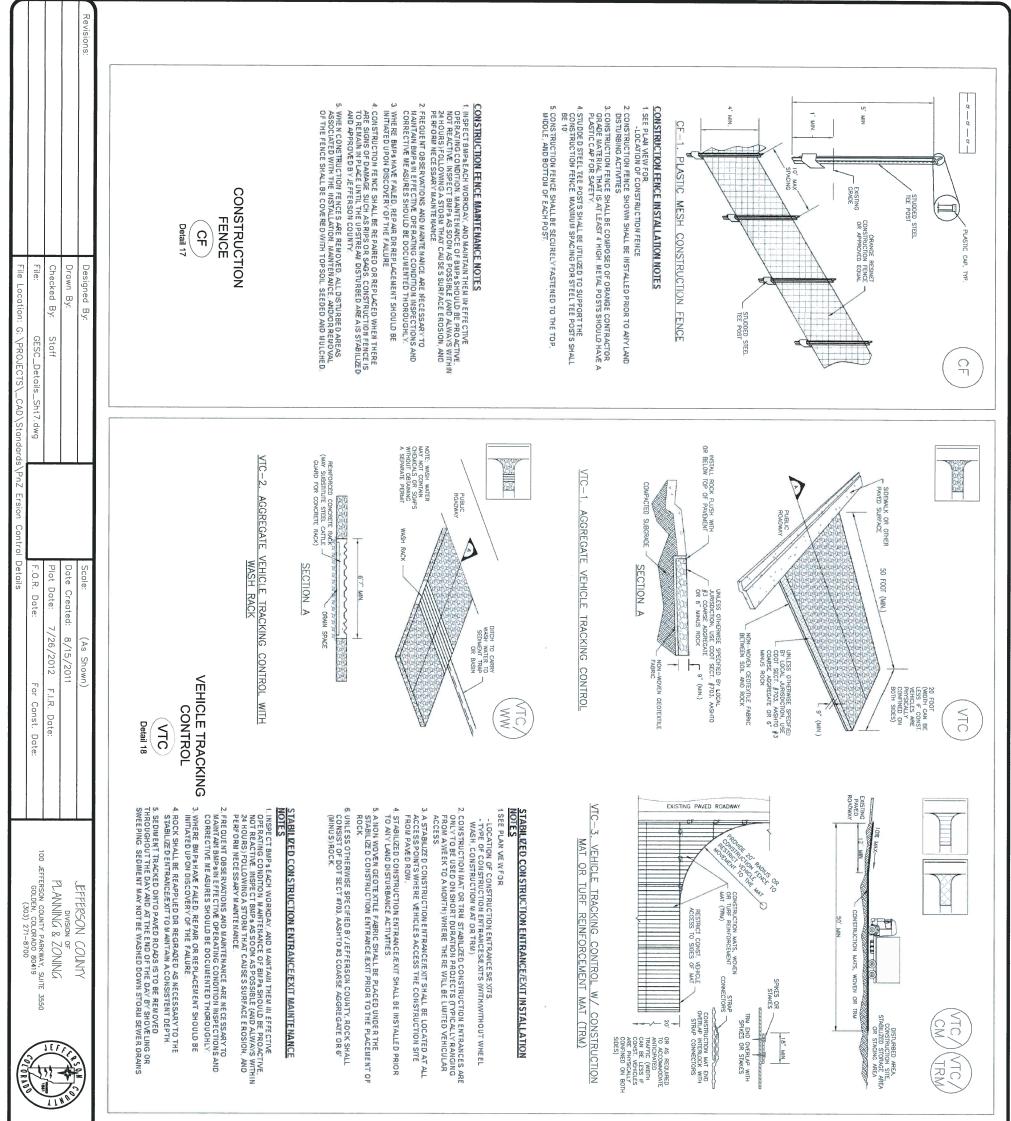


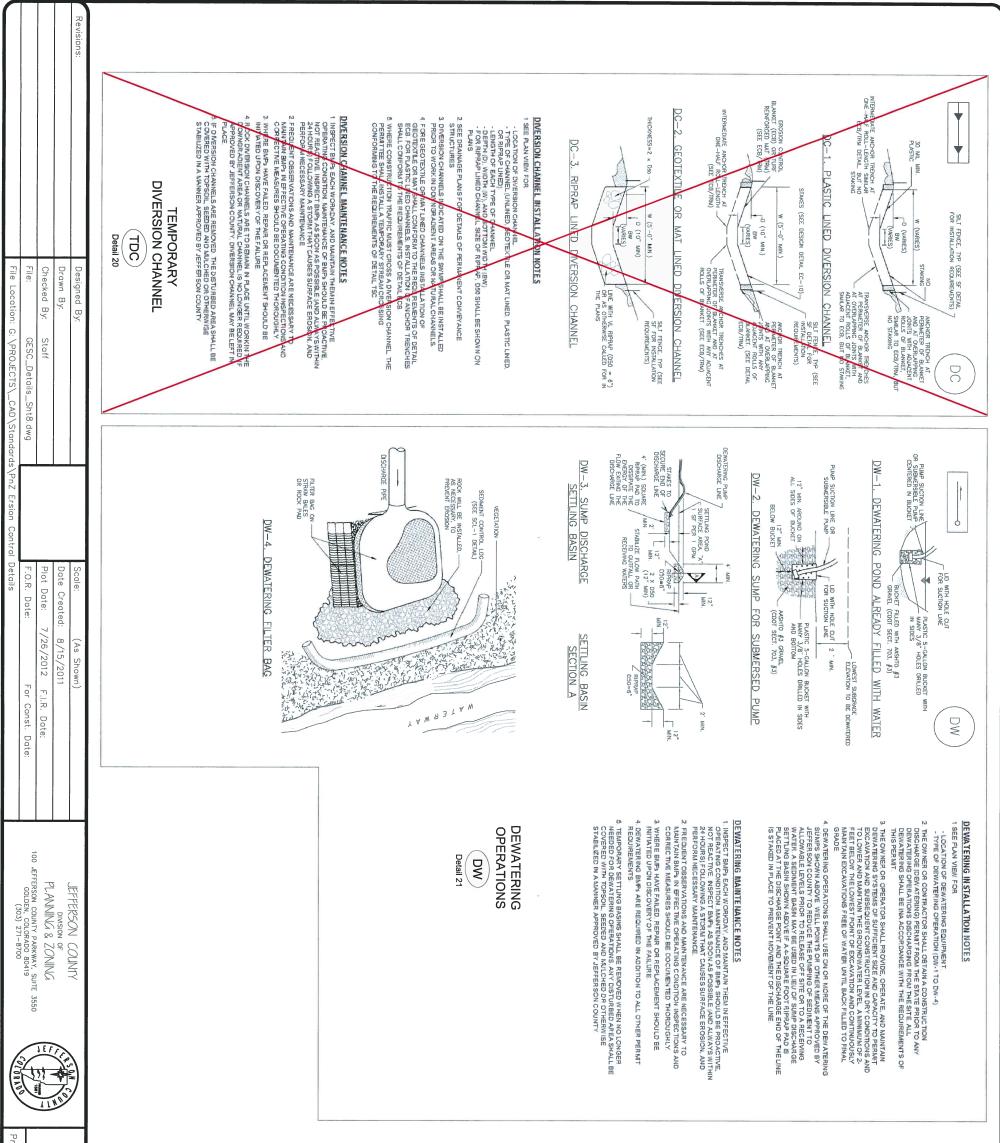



	ails from UDFCD - November, 2010.	visions:							.1	10.	9	9	20		:	7.			б .	ن				4.	į				!	2	.	م
cked By:	Drawn By:	Designed By:	<u>Species Variety</u> Z of Mix <u>Min. Ibs. PLS/Acre</u>	î	g of (species/varie	depth of inches below grade at cubic yards per 1,000 square feet.	Soil amendments consisting of (specify type) must be incorporated into the soil to a	Mulch consisting of, applied at a rate of tons per and rotimized must be used to etablize the exposed surface	If applicable, the following note shall be completed: Temporary vegetative cover consisting of (species/var (drill) (hydro_)(broadcast) seeded at	Soil stabilization measures shall be applied within 30 days to disturbed areas, which may not be at final grade, but will be left dormant for longer than 60 days.	The landowner and/or contractor must immediately take all necessary steps to control sediment discharge.	within fourteen (14) days of stockpile construction.	sedimentation of receiving waters.	planted. Runoff from the stockpiled area must be controlled to prevent erosion and	overburden. Topsoil and overburden must be redistributed within the graded area offer reach area in a to provide a suitable boo for another that must be predistributed within the graded area.	All topsoil must be salvaged, segregated, and stockpiled separately from the	Accumulated sediment and construction debris shall be removed and properly disposed.	contractor shall inspect all BMPs in accordance with the approved plans. All	Approved erosion and sediment control BMPs shall be maintained and kept in good repair for the duration of the project. At a minimum, the property owner or	Erosion control BMPs must be installed prior to grading activities.	kept current throughout the construction process.	activities for land disturbance areas of one acre or greater. The permit must be	Discharges Associated with Construction Activity from the Colorado Department of Public Health and Environment, at least 10 days prior the start of construction	The landowner and/or contractor is responsible for obtaining a permit for Stormwate	The approved plans are valid for two (2) years from the date of approval from Jefferson County.		affect the site hydrology may be approved by Jefferson County Transportation and	measures are not permitted without prior approval from the Jefferson County Planning and Zoning Division. Field modifications to an equivalent BMP that does no	Revisions to land disturbance areas, slopes, and/or erosion and sediment control	All aradina, erosion, and sediment control must conform to approved plans.	The contractor must notify the Jenerson county unistion of Transportation and Engineering (303.271.8495) at least three days prior to starting construction.	STANDARD EROSION AND SEDIMENT CONTROL NOTES:
Plot Date: 7/26/2012	Date Created: 07/25/2012	Scale: (As Shown)									19. The Jefferson County Planning and Zoning Division, or it may modify the erosion and sediment control plan as f		ç		controlled using the best available control technology, a Department of Public Health and Environment, at the ti	17. Fugitive dust emissions resulting from grading activities	concrete washout areas, and trash receptacles must be Littering is defined and enforced by CRS 18—4—511.	ste, and fuel r	16. The landowner and/or contractor is responsible for con- discarded building materials, concrete truck washout, ch	immediately remove such materials if this occurs.	vehicles do not track or spill earth materials on to stra	15. The landowner and/or contractor must take reasonable	entire construction process.	14.	operation.	off-site property. If the material is moved to a prope jurisdiction, evidence is required that the local governm			DMMT :	of county staff, shall be protected with an erosion con	12. All disturbed slopes (unless in a competent rock cut) c (H:V), flow lines of swales, autter downspouts, or addit	
100 REFERENCE COUNTY EASEMAX SUITE TEED											is authorized representative, ield conditions warrant.		is are clearly located on the		ine of aradina.	and/or wind shall be	clearly shown on the plans.	Locations	trolling litter such as remicals, and sanitary waste,		eets/roads and must	precautions to ensure that		n up and removal of all d public facilities during the		rty located within another ent has approved the grading	tent (NOI) is necessary for the	ubic yards and/or in excess		trol blanket or equivalent	jreater than or equal to 3:1 ional areas at the discretion	
JEF		A S Q.N										21 (9)																				
	By: Staff Plot Date: 7/26/2012	Drawn By: Checked By: Staff Plot Date: 7/26/2012	DFCD - November, 2010. Drawn By: Staff Date Created: 07/25/2012 DFCD - November, 2010. Checked By: Staff Plot Date: 7/26/2012	Species Variety % of Mix Min. Ibs. PLS/Acre Dirache Designed By: Scale: (As Shown) DFCD - November, 2010. Drawn By: Date Created: 07/25/2012 DFCD - November, 2010. Checked By: Staff Plot Date: 7/26/2012	acre. (Temporary)(Permanent) Seed Mix Species Variety Z of Mix Min. Ibs. PLS/Acre Designed By: DFCD - November, 2010. Drawn By: Drawn By: Drawn By: Drawn By:	Permanent vegetative cover consisting of (species/variety)(mix noted below) must be (drill) (hydro_)(broadcast) seeded at pounds pure live seed per acre. (Temporary)(Permanent) Seed Mix Species Variety Z of Mix Min_lbs_PLS/Acre DFCD - November, 2010. Drown By: Drown By: Checked By: Staff	depth of inches below grade at cubic yards per 1,000 square feet. Permanent vegetative cover consisting of (species/variety)(mix noted below) must be (drill) (hydro_)(broadcast) seeded at pounds pure live seed per acre. (Temporary)(Permanent) Seed Mix Species Variety Z of Mix Min. Ibs. PLS/Acre DFCD-November, 2010. Designed By: Drawn By: Scale: Checked By: Staff	Soil amendments consisting of (specify type) must be incorporated into the soil to a depth of inches below grade at cubic yards per 1,000 square feet. Permanent vegetative cover consisting of (species/variety)(mix noted below) must be (drill) (hydro_)(broadcast) seeded at pounds pure live seed per acre. (Temporary)(Permanent) Seed Mix Species Variety Z of Mix Min. Ibs. PLS/Acre. DECD-November, 2010. Designed By: Checked By: Staff	Mulch consisting of applied at a rate of tons per acre and crimped must be used to stabilize the exposed surface. Soil amendments consisting of (specify type) must be incorporated into the soil to a depth of inches below grade at cubic yards per 1,000 square feet. Permanent vegetative cover consisting of (species/variety)(mix noted below) must be (drill) (hydro_)(broadcast) seeded at pounds pure live seed per acre. (Temporary)(Permanent) Seed Mix Species Variety Z of Mix Min. Ibs. PLS/Acre Designed By: Drawn By: Drawn By: Drave By: Checked By: Staff	11. If applicable, the following note shall be completed: Temporary vegetative cover consisting of (species/variety)(mix noted below) must be (drill) (hydro_)(broadcast) seeded at opplied at a rate of tons per acre Mulch consisting of (specify type) must be incorporated into the soil to a depth of inches below grade at cubic yards per 1,000 square feet. Permonent vegetative cover consisting of (species/variety)(mix noted below) must be (drill) (hydro_)(broadcast) seeded at pounds pure live seed per acre. (Temporary)(Permanent) Seed Mix Species Variety X of Mix Min_Ibs_PLS/Acre Species Variety X of Mix Min_Ibs_PLS/Acre Species Variety X of Mix Min_BS: Decloed By: Ordown By: Drawn By: Drawn By: Pot Date: 7/26/2012	10. Soil stabilization measures shall be applied within 30 days to disturbed areas, which may not be at final grade, but will be left dormant for langer than 60 days. 11. If applicable, the following note shall be completed: Temporary vegetative cover consisting of (species/voriety)(mix noted below) must be (drill) (hydro_)(broadcast) seeded at pounds pure live seed per acre. Soil amendments consisting of (species/voriety)(mix noted below) must be acquire feet. Soil amendments consisting of (species/voriety)(mix noted below) must be (drill) (hydro_)(broadcast) seeded at cubic yards per 1,000 square feet. Permanet vegetative cover consisting of (species/voriety)(mix noted below) must be (drill) (hydro_)(broadcast) seeded at pounds pure live seed per acre. (Temporary)(Permanent) Seed Mix Species Variety Z of Mix Win. Ibs. PLS/Acre Deco-twommeer.2010. Designed By: Deco-twommeer.2010. Drawn By: Deco-texted by: Staff	9. The landowner and/or contractor must immediately take all necessary steps to control sediment discharge. 19. The Jefferson County Planning and Zaning Division, or its auth may modify the erosion and sediment control plan as field constitution on on the at final grade, but will be left domant for longer than 60 days. 10. Soil stabilization measures shall be applied within 30 days to disturbed areas, which may not be at final grade, but will be left domant for longer than 60 days. 11. If applicable, the following note shall be completed: Temporary vegetative cover consisting of species/variety)(mix noted below) must be (drill) (hydro_)(broadcast) seeded at pounds pure live seed per acre. Soil amendments consisting of (species/variety)(mix noted below) must be (drill) (hydro_)(broadcast) seeded at cubic yards per 1,000 grade feet. Permonent vegetative cover consisting of (species/variety)(mix noted below) must be (drill) (hydro_)(broadcast) seeded at pounds pure live seed per acre. (Temporary)(Permanent) Seed Mix Species Variety X of Mix Min. Ibs. PLS/Acres Cheven By. Date: (As Shown) Date: (As Shown) Date: 7/26/2012 	21 pice <	assumption of reasons assumption of rea	100 The decidence of receiving vectors. 10 2 Sale thet use stockpilled for mere then thirty (20) dogs abed be seeded and mulcie with truttere (x) dogs of stockping construction. 10 <	activities Total and a view larger must be controlled to provent around the sended or an analytic control the most provide to provent around the sended or an analytic controlled to provent around the sended or an analytic controlled to provent around the sended or an analytic controlled to provent around the sended or an analytic controlled to provent around the sended or an analytic controlled to provent around the sended or an analytic controlled to provent around the sended or an analytic controlled to provent around the sended or an analytic controlled to provent around the sended or an analytic controlled to provent around the sended or an analytic controlled are calculated around the larger and the sended or an analytic controlled are calculated around the larger and the sended or an analytic controlled are calculated around the larger and the sender and trans and trans calculated are and around the larger and the sender and trans and trans calculation are around the larger and the sender and trans around the larger and the sender and the sender around the larger and tharound tharound the larger and tharound the larger and the sender	1. Nulseed muit be selenged, engregeted, ond stockpled separately from the order-carb. Togeth and bondener muit be orderford with the graded and sementation of reading volum. 11. Fighte dual environment, the fragment ensuine sementation of reading volum. 11. Fighte dual environment, the fight environment, and the file of orderford by the Course partner. Togeth and the torolable control carb. Togeth and the seeded and muiting within futures (14) days of stockplan and the seeded and muiting within futures (14) days of stockplan and the seeded and muiting within futures (14) days of stockplan and the seeded and muiting order of seeding volume. 11. Fighte dual environment within and days the futures (14) days of stockplan and the seeded and muiting order of seeding volume and the seeded and muiting (14) (type). (byte). (byte). (byte). (byte) and the seeded and carb. (with) (type). (byte). (byt	1 All topold and it is an unput, any output any o	11 constructs and inspresed plate, for construction and second property general. 11 construction of structure property to protect outproved property to protect outproved protect outproved protect outproved protect outproved protect outprotect outproved protect outproved protect outproved protect outproved protect outproved protect outproved protect outprotect outproved protect outproved protect outprote	1. A particular control and wateries in any party parts of the property parts, any party parts, and any parts, and any parts, and any parts, any parts, any parts, and parts, and parts, and parts, and parts, and parts,	1. Each and data and a walkel prior by prioring and a shared and and the prioring. Prioring and a shared the analysis of the prioring and a shared and and a shared and and a shared an	1 Tanka cancer leave and all par uniform provide. and par uniform provide par uniform provide. and p		Subpred standing from the Cardina Gargement of Subpred standing from the Cardina Gargement of Subpred standing from the Version Subpred Subpr	• In the densement, the present the strend and present the s	 A substrate and the fuel (b) giver in the B state of giver (b) giver	1. Support particle 1: Transmitter to the field of t	approved particle with symbolized particles of a stranged particles of approved in a stranged particle of approved in a stranged particles of a stranged particles of approved in a stranged particles of a stranged particles of approved in a stranged particles of approved in a stranged particles of approved in a stranged particles of approved partic	1 (1) A investory in the product of the backback and product of the product of t	Marcine In the standard sector location of a standard sectore location of a standard s	1 Opportunity of a statistic statistic strategies and statistic strategies and statistic strategies and strate	1 Subset Control of Subset

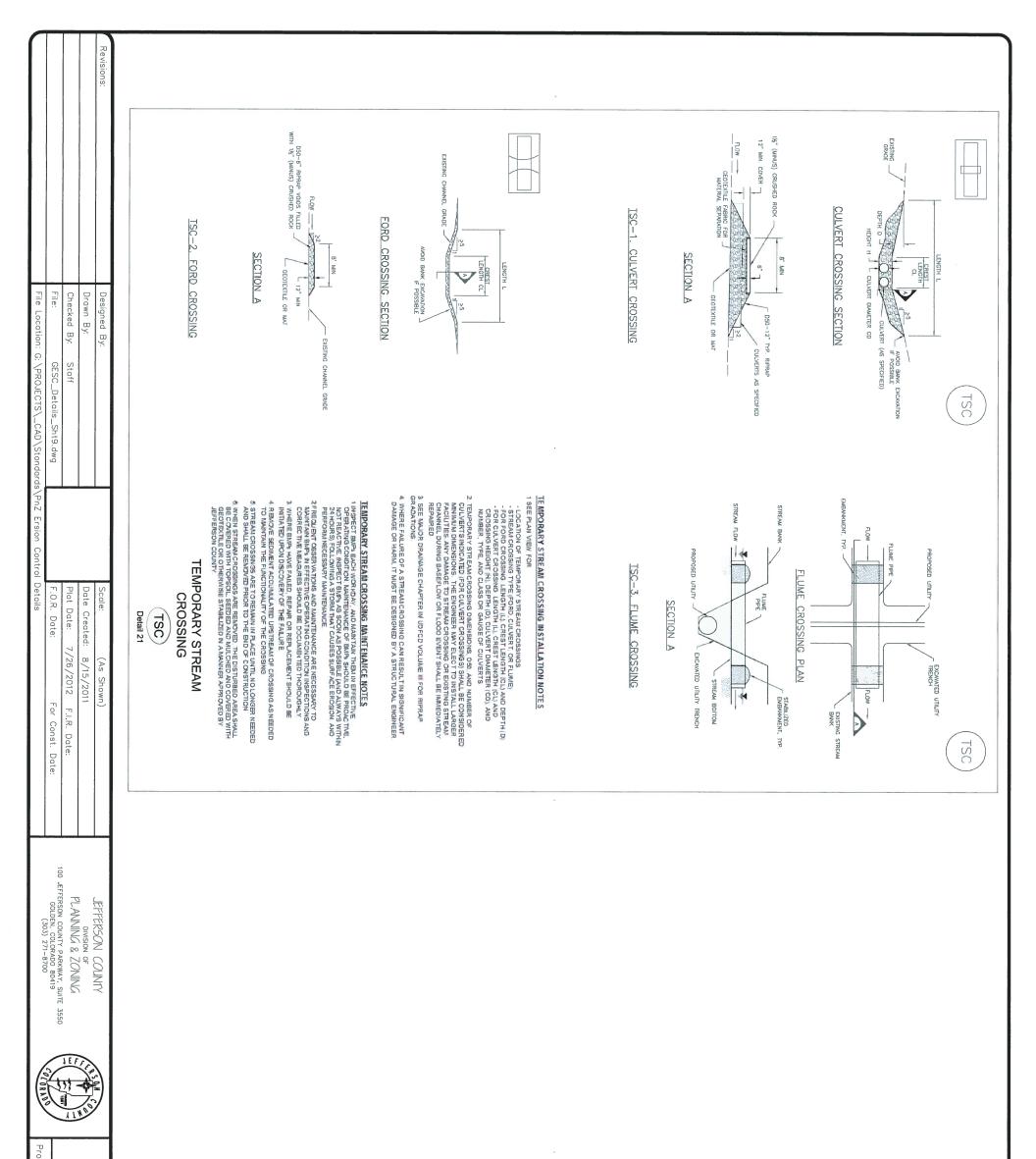
BMP LEGEND

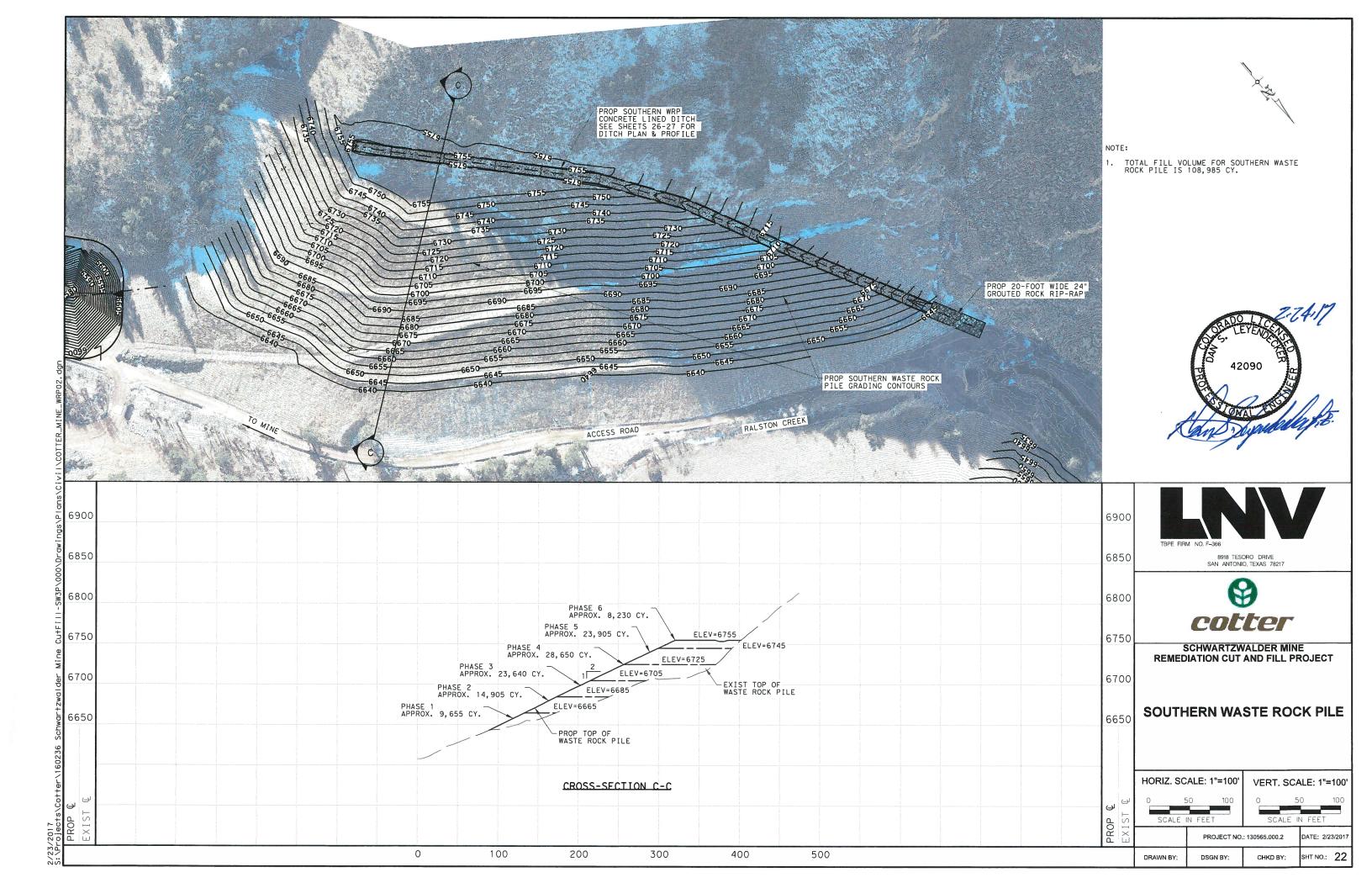

Sheet 35

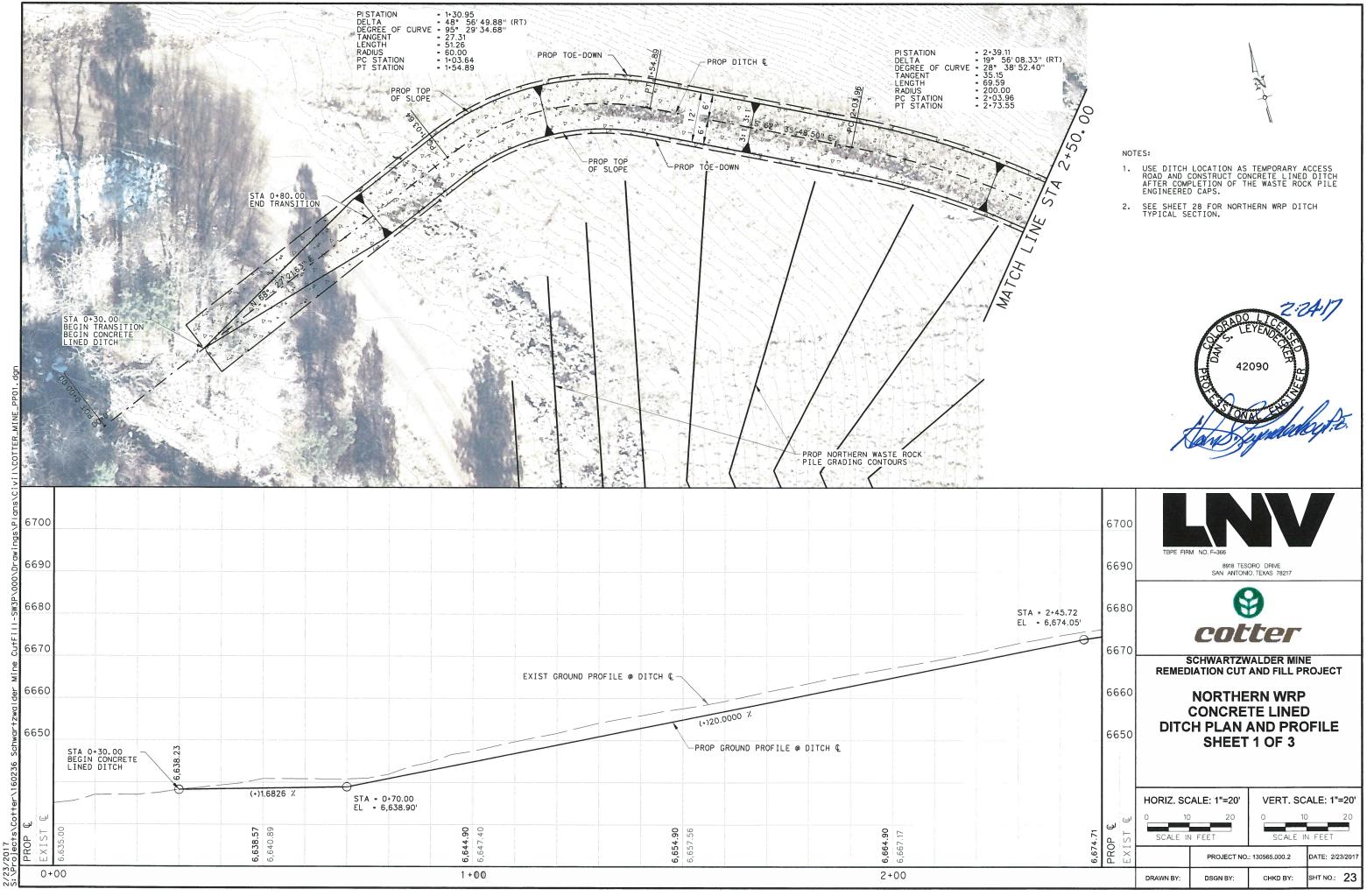



Sheet 3

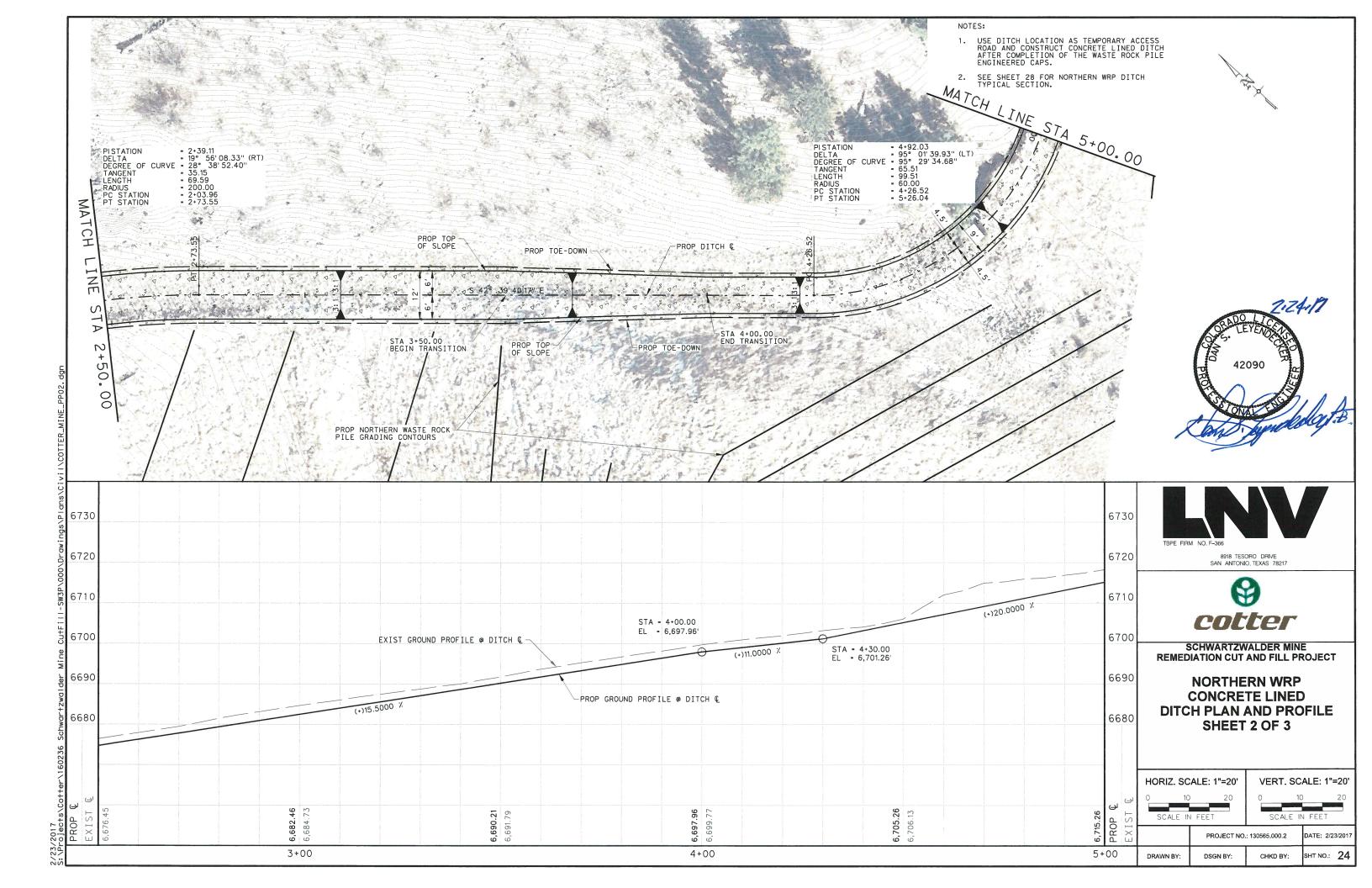
 STOCKPLE PROJECTIONAL MISTERIAL ALTIMON MOTES En ELAN, VERY DE 200 THE DE ANTONIO DE LA CONTROL A LA CONTROL A DE CONTROL AND CONTROL AD CONTROL AD	SP-1. STOCKPILE PROTECTION
---	----------------------------

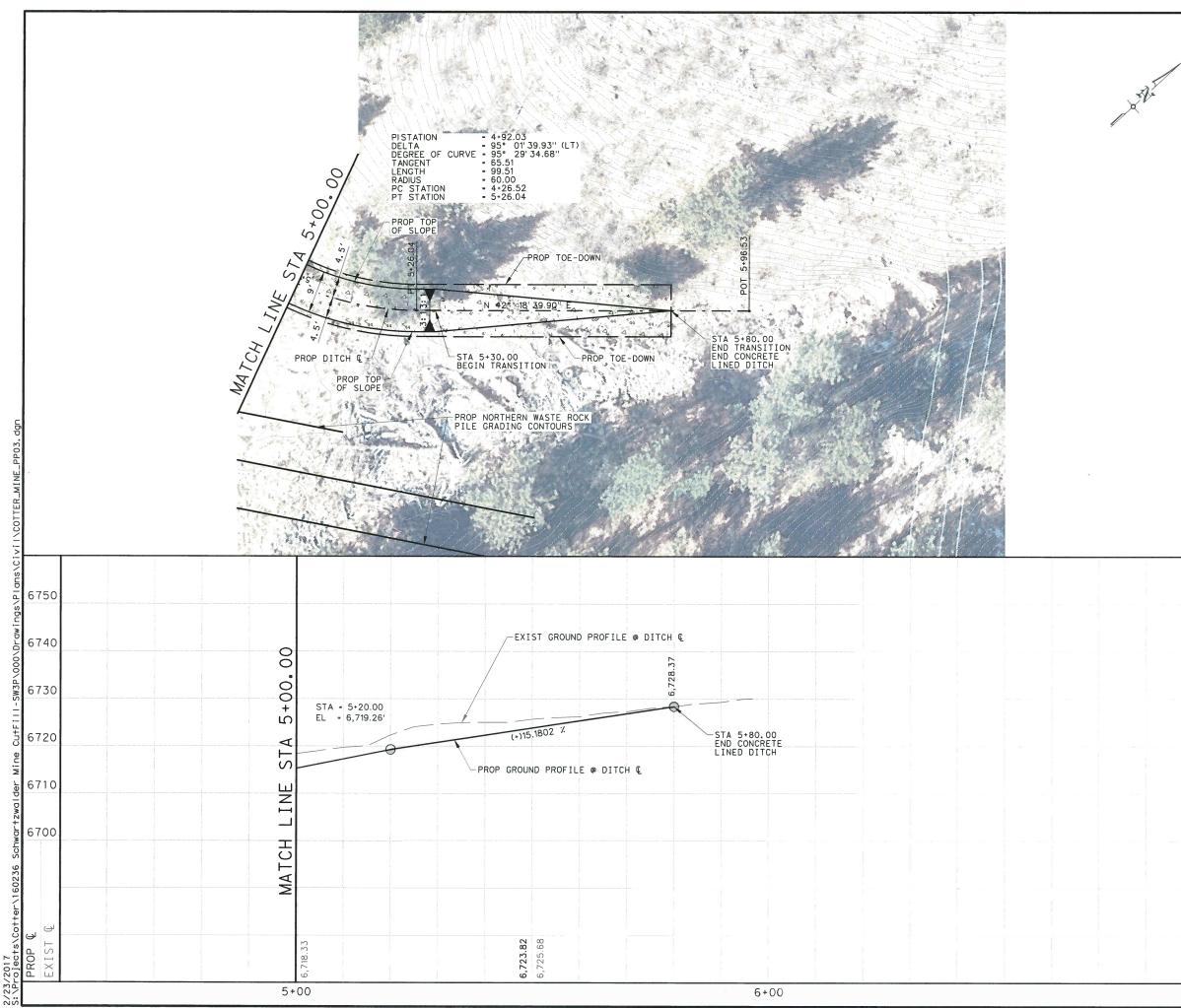


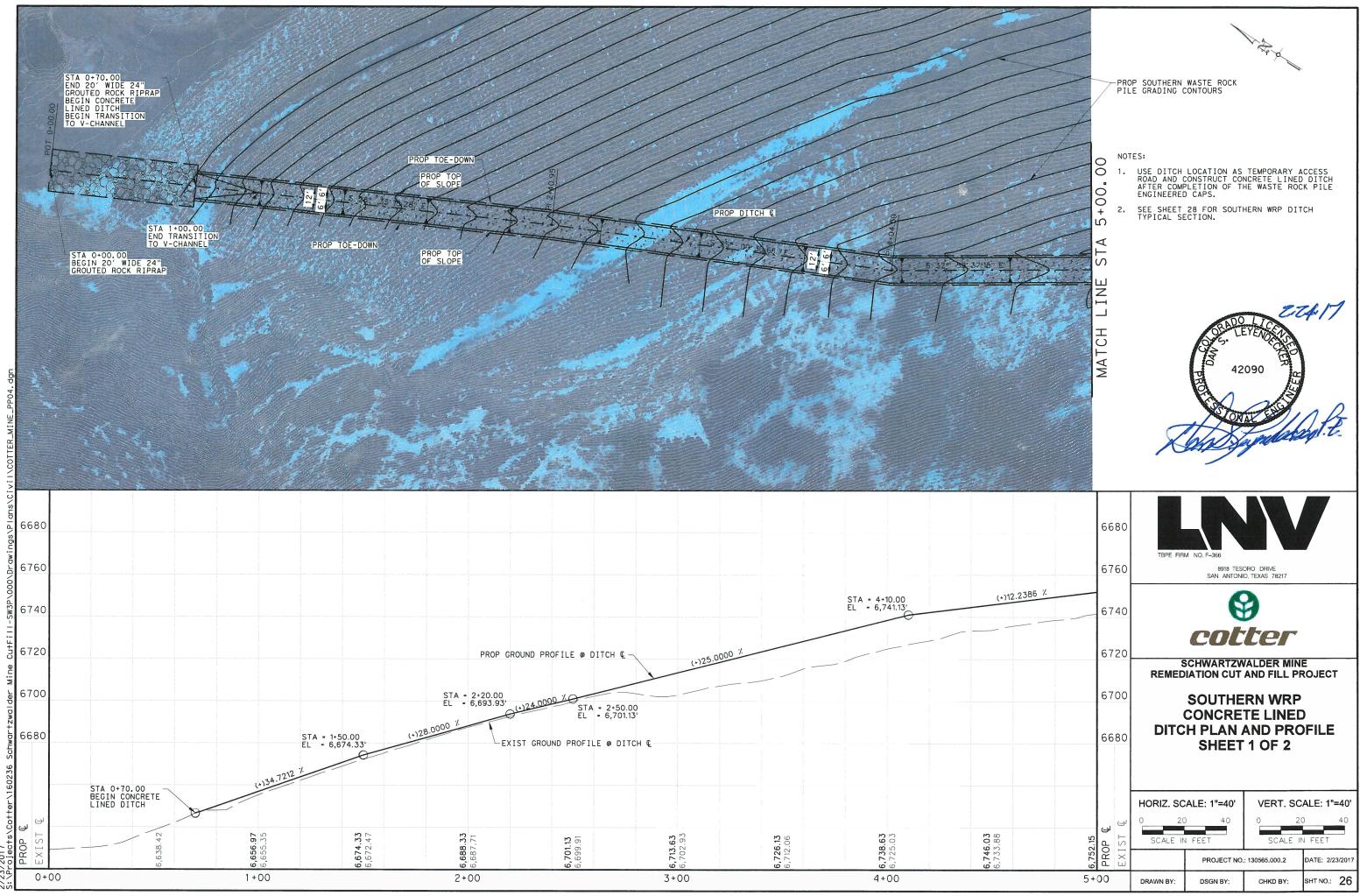

oject No.:	RD NOTE:	Detail 19	STABILIZED STAGING AREA	 STABILIZED STAGING AREA MAINTENANCE NOTES 1. INSPECT BMP SEACH WORKDAY, AND MAINTAIN THE MI REFECTIVE OPERATING CONDITION MAINTENANCE OF BMP SSHOULD BE PROACTIVE, NOT REACTIVE, INSPECT BMP ASS SOOR AS DOSSIBLE (AND ANNARS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE. 2. FREQUEND OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMP IN EFFECTIVE OPERATING CONDITION INSPECTIONS AND CORRECTIVE ME ASURES SHOULD BE DOCUMENTED THOROUGHLY. 3. WHERE BMP SHAVE FALLED, REPAR OR RE PLACE MENT SHOULD BE INITIATED UPON DISCOVERY OF THE FALURE. 4. ROCK SHALL BE REAPPLED OR REGRADED IF NECESSARY IF RUTTING OCCURS OR UNDERLYING SUBGRADE BE COME SEXPOSED. 5. STABILIZED STAGING AREA SHALL BE ENLARGED IF NECESSARY TO CONTAIN PARKING, STORAGE, AND UNLOADIGUIDADING OPERATIONS. 6. THE STABILIZED STAGING AREA SHALL BE ENLARGED IF NECESSARY OF CONSTRUCTION THE GRANULAR MATERIAL SHALL BE REMOVED AT THE END OF CONSTRUCTION THE GRANULAR MATERIAL SHALL BE REMOVED AT THE END OF CONSTRUCTION THE GRANULAR MATERIAL SHALL BE REMOVED AT THE END OF STABILIZED STAGING AREA SHALL BE REMOVED AT THE END OF CONSTRUCTION THE GRANULAR MATERIAL SHALL BE REMOVED AT THE AREA APPROVED BY JEFFERSON COUNTY, USED ON STEL AND THE AREA STABILIZED MANNER APPROVED BY JEFFERSON COUNTY. 	 STABILIZED STAGING AREA IN STALLATION NOTES 1 SEE PLAW VIEW FOR LOCATION OF STAGING AREAGS. CONTRACTOR MAYA DUIST LOCATION AND SIZE OF STAGING AREAWITH APPROVAL FROW JEFFERSON COUNTY. 2 STAGING TO NAYA DUIST LOCATION AND SIZE OF STAGING AREAWITH FOR THE NEEDS OF THE STE. OVERSIZING RESULTS IN A LARGER AREA TO STABILIZE FOLLOWING CONSTRUCTION. 3 STAGING AREA SHALL BE STABILIZED PRIOR TO OTHER OPERATIONS ON THE STE. 4 THE STE. 5 ROCK SHALL CONSIST OF A MINIMUM 3" THICK GRANULAR MATERIAL OF A CONTY CONTY. 5 ROCK SHALL CONSIST OF A MINIMUM 3" THICK GRANULAR MATERIAL OF A CONTONAL PERIMETER BM P& MAY BE RE QUIRED INCLUDING BUT NOT LIMITED TO SILT FENCE AND CONSTRUCTION FENCING. 	CONSTRUCTION STIE ACCESS STABILIZED CONSTRUCTION STIE ACCESS STABILIZED CONSTRUCTION STIE ACCESS STABILIZED STABILIZED STABILIZED STAGING AREA STABILIZED STAGING AREA
9 Sheet 39	*					



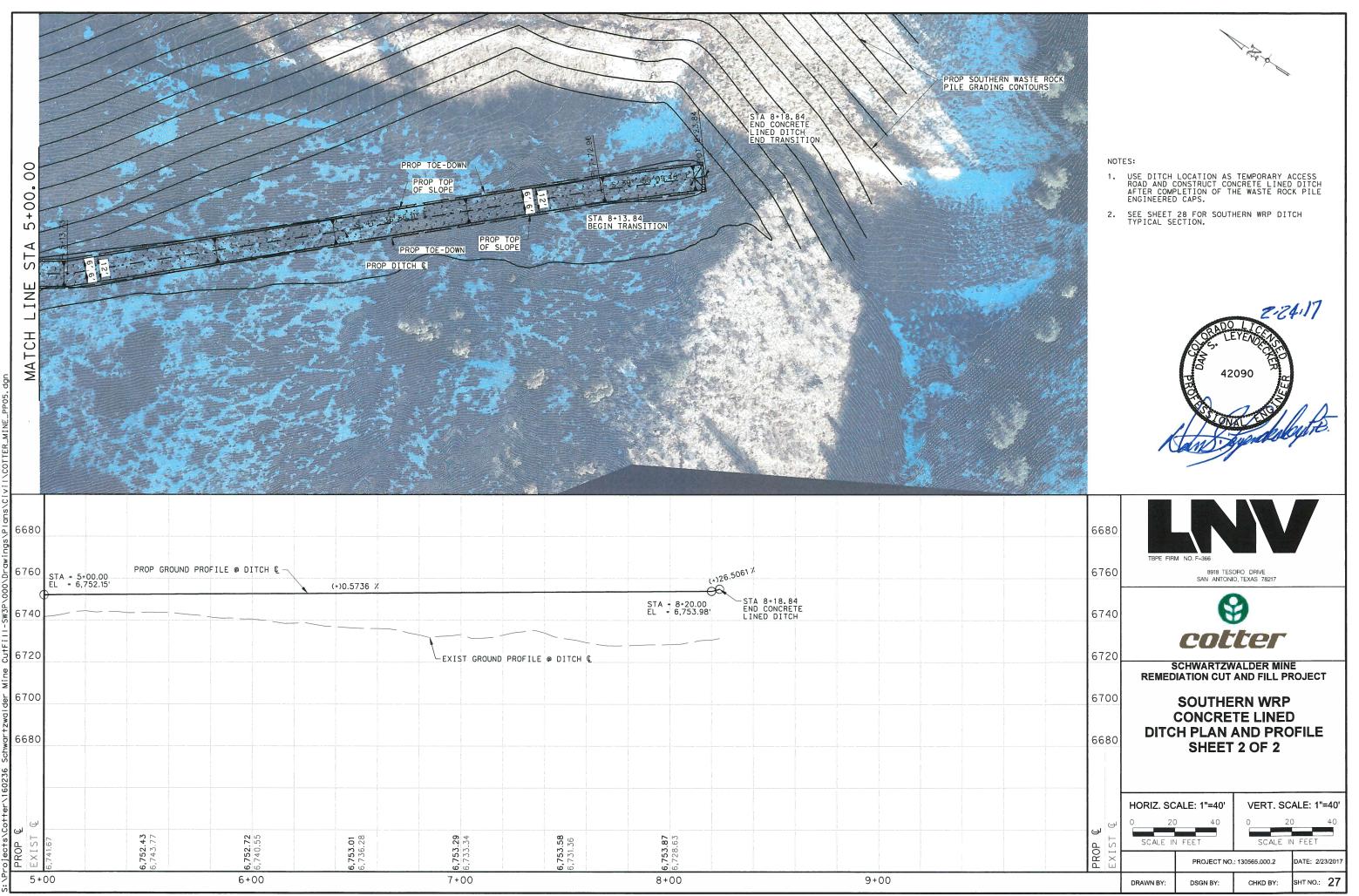
oject No.:				
Sheet \mathcal{B} Of \mathcal{G} Sheet 40	RD PLAN ILS			


ject No.:					
	G.E.S.C. Al				
Sheet <i>9</i>	2. STANDARD PLANS AND DETAILS				
) PLAN S				
^{Of} <i>9</i> She	$^{ m Sl}$				
Sheet 41			 		

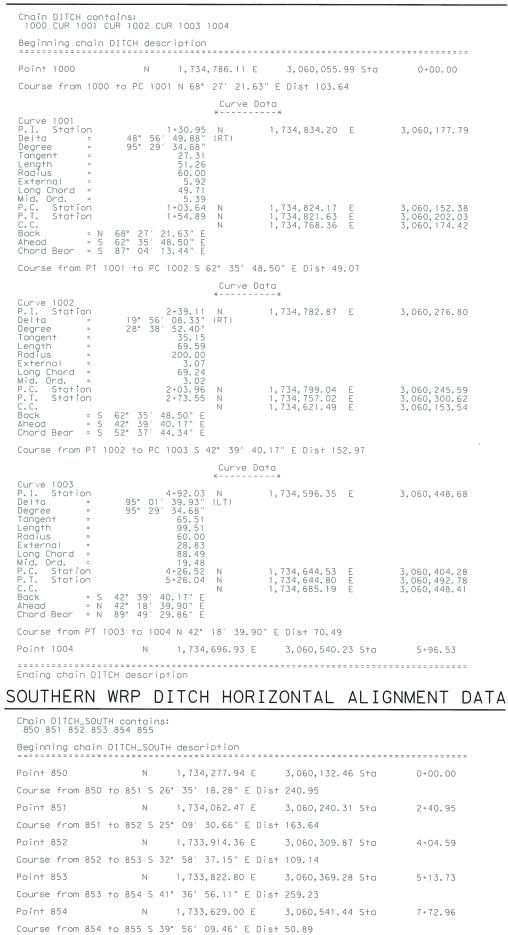




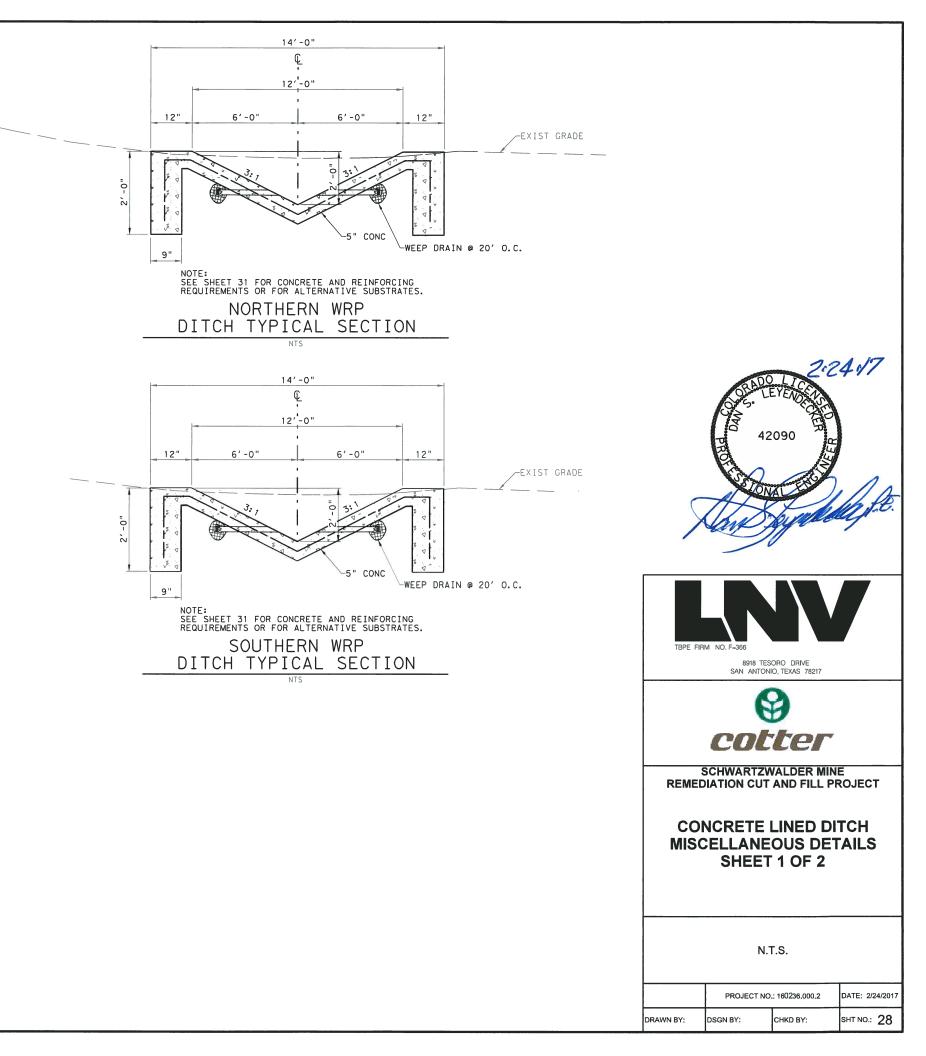
NOTES:


- USE DITCH LOCATION AS TEMPORARY ACCESS ROAD AND CONSTRUCT CONCRETE LINED DITCH AFTER COMPLETION OF THE WASTE ROCK PILE ENGINEERED CAPS.
- 2. SEE SHEET 28 FOR NORTHERN WRP DITCH TYPICAL SECTION.

6750 6740	TBPE FIRE		ORO DRIVE O, TEXAS 78217	/		
6730		cot) ter			
6720	S	CHWARTZW	ALDER MIN	E		
	REMED	IATION CUT	AND FILL PF	ROJECT		
6710		NORTHE	RN WRP			
6700	CONCRETE LINED DITCH PLAN AND PROFILE SHEET 3 OF 3					
	HORIZ. SC	ALE: 1"=20'	VERT. SC	ALE: 1"=20'		
الله الله الله الله الله الله الله الله	0 10 SCALE IN		0 10 Scale II			
PROP		PROJECT NO.	: 130565.000.2	DATE: 2/23/2017		
•	DRAWN BY:	DSGN BY:	CHKD BY:	sht no.: 25		

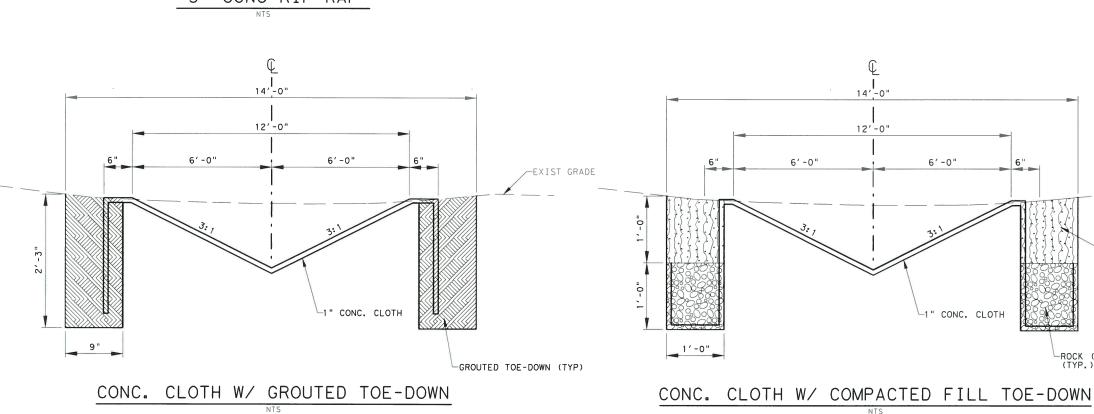


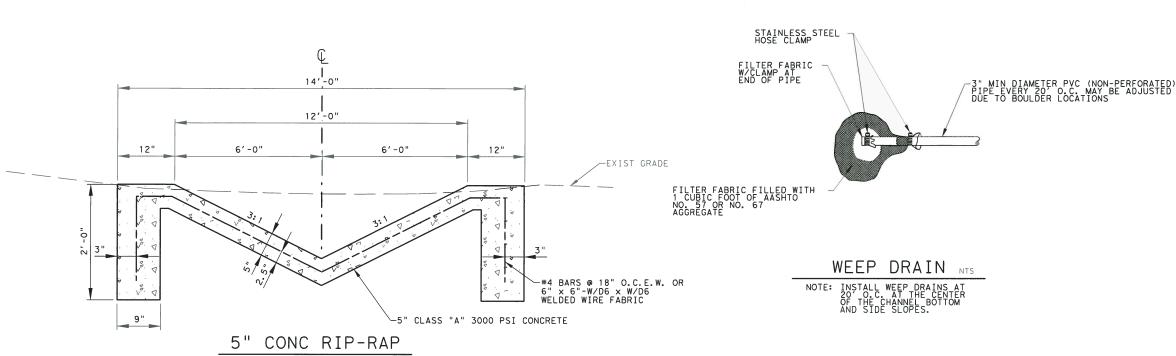
201 2/23/

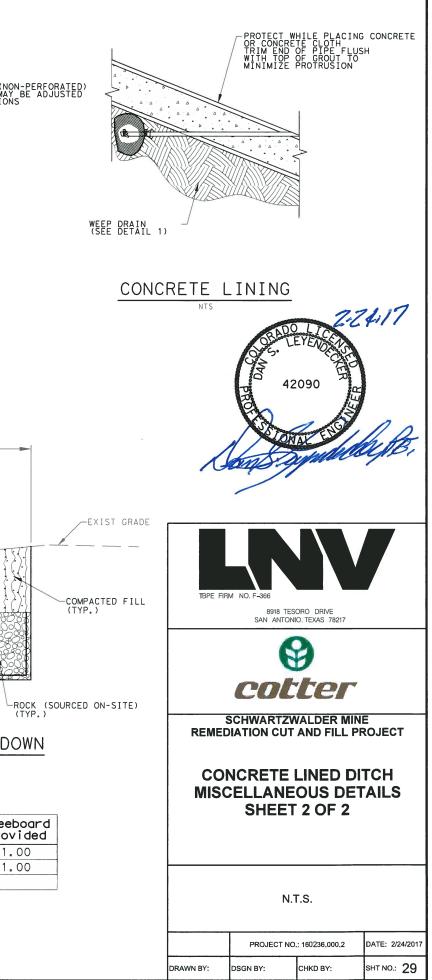

N

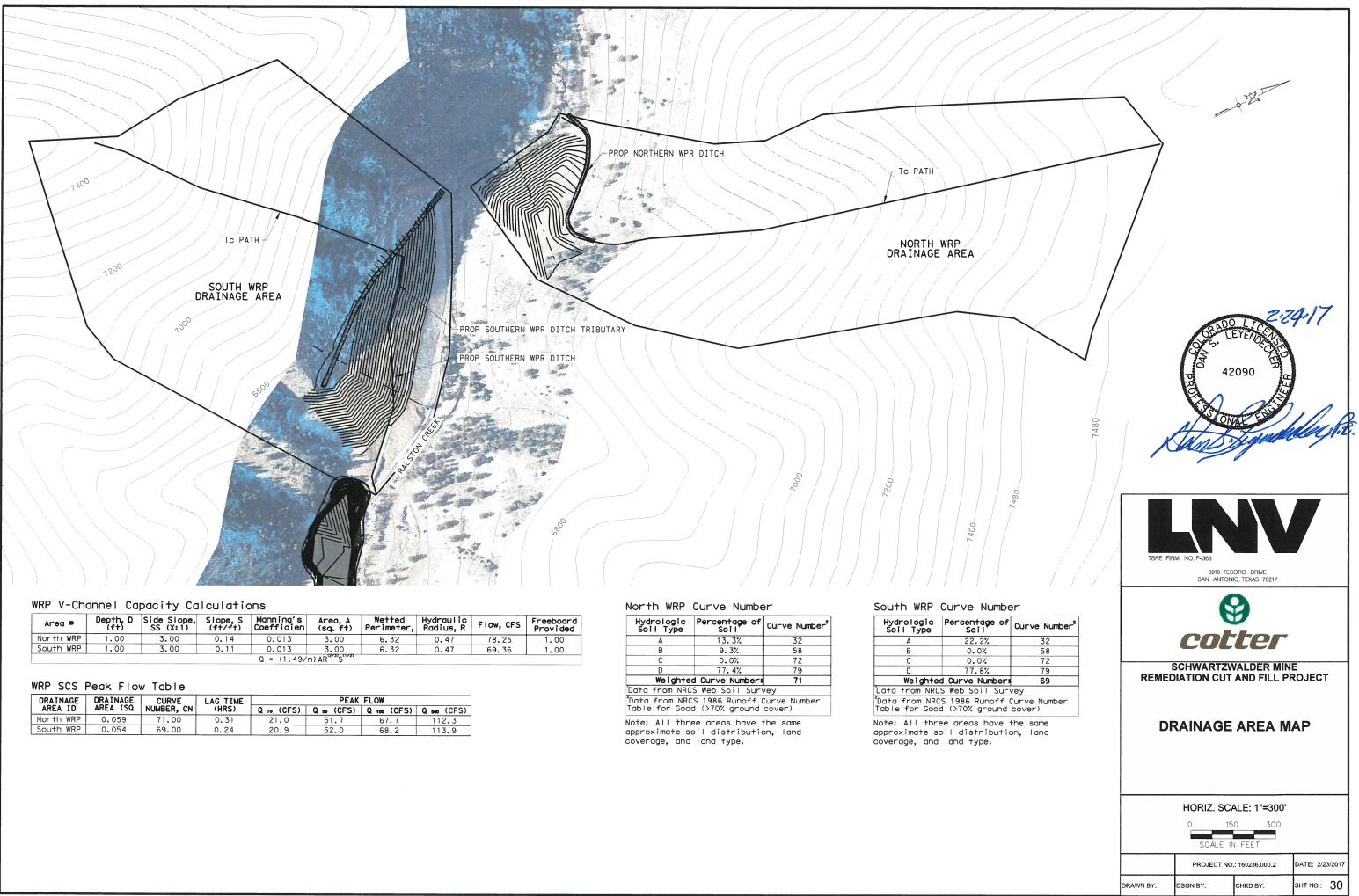
N 1,733,589.98 E 3,060,574.11 Sta

8+23.84


Point 855


Ending chain DITCH_SOUTH description




Depth, D (ft)	Side Slope, SS (X:1)	Slope,S (ft/ft)	Manning's Coefficien	Area, A (sq. ft)	Wetted Perimeter,	Hydraulic Radius, R	Flow, CFS	Free Prov
1.00	3.00	0.14	0.013	3.00	6.32	0.47	78.25	1,
1.00	3.00	0.11	0.013	3.00	6.32	0.47	69.36	1.
	(f+) 1.00	(f+) SS (X:1) 1.00 3.00	(f+) SS (X:1) (f+/f+) 1.00 3.00 0.14 1.00 3.00 0.11	(f+) SS (X:1) (f+/f+) Coefficien 1.00 3.00 0.14 0.013 1.00 3.00 0.11 0.013	(f+) SS (X:1) (f+/f+) Coefficien (sq. f+) 1.00 3.00 0.14 0.013 3.00 1.00 3.00 0.11 0.013 3.00	(f+) SS (X:1) (f+/f+) Coefficien (sq. f+) Perimeter, 1.00 3.00 0.14 0.013 3.00 6.32	(ft) SS (X:1) (ft/ft) Coefficien (sq. ft) Perimeter, Radius, R 1.00 3.00 0.14 0.013 3.00 6.32 0.47 1.00 3.00 0.11 0.013 3.00 6.32 0.47	(ft) SS (X:1) (ft/ft) Coefficien (sq. ft) Perimeter, Radius, R Flow, CFS 1.00 3.00 0.14 0.013 3.00 6.32 0.47 78.25 1.00 3.00 0.11 0.013 3.00 6.32 0.47 69.36

WRP V-CHANNEL CAPACITY CALCULATIONS

Area #	Depth, D (ft)	Side Slope, SS (X:1)	Slope, S (ft/ft)	Manning's Coefficien	Area, A (sq. ft)	Wetted Perimeter,	Hydraulic Radius, R	Flow, CFS	Freeboard Provided
North WRP	1.00	3.00	0.14	0.013	3.00	6.32	0.47	78.25	1.00
South WRP	1.00	3.00	0.11	0.013	3.00	6.32	0.47	69.36	1.00
$Q = (1.49/n) A R^{123} S^{11/23}$									

DRAINAGE	DRAINAGE	CURVE	LAG TIME		PEAK	FLOW	
AREA ID	AREA (SQ	NUMBER, CN	(HRS)	Q 10 (CFS)	Q 50 (CFS)	Q 100 (CFS)	Q 500 (CFS)
North WRP	0.059	71.00	0.31	21.0	51.7	67.7	112.3
South WRP	0.054	69.00	0.24	20.9	52.0	68.2	113.9

Hydrologic Soil Type	Percentage of Soil	Curve Number
Α	13.3%	32
B	9.3%	58
С	0.0%	72
D	77.4%	79
Weighted	d Curve Number:	71
'Data from NRC	S Web Soil Surv	vey
² Data from NRC	S 1096 Dupoff	CURVE Number

Hydrologic Soil Type	Percentag Soi I
Α	22.2%
В	0.0%
С	0.0%
D	77.8%
Weighted	l Curve Num
Data from NDCS	Web Seil

20

SWMP TEMPLATE TEXT WITHOUT BMP NARRATIVES FOR PROJECTS WITH 1 ACRE OR MORE OF DISTURBANCE

SITE DESCRIPTION

For Information Only to fulfill the CDPS-SCP (Colorado Discharge Permit System - Stormwater Construction Permit) Update to reflect current project site conditions.

A. PROJECT SITE DESCRIPTION: The project site is located the Schwartzwalder Mine at the end of Glencoe Valley Road and along Ralston Creek. The project consists of the removal of the radiologically contaminated alluvial fill soil due to past uranium mining activities at two locations at the mine site and to place the contaminated materials within two engineered waste rock piles on site. The location and approximate depths of contamination have been outlined in a report developed by Cotter Corporation (N.S.L.) titled "Characterization, Remedial Criteria and Disposal Options for Alluvial Fill Source Term Materials at the Schwartzwalder Mine Site."

B. PROPOSED SEQUENCING FOR MAJOR ACTIVITIES: Construction should last approximately six (6) months and will include excavation of contaminated material at two locations at the Schwartzwalder Mine site, placement of the contaminated materials under a engineered waste rock piles at the mine site, construction of a concrete lined ditches to direct water around the northern and southern waste rock piles, and re-establishment of the access road to the mine site after the contaminated soils under the roadway have been removed.

The two contaminated sites will be excavated in phases. The eastern contaminated site, Remediation Site #2, will be excavated first. The excavation will occur in phases, if possible, to provide continual access from Glencoe Valley Road to the mine site. Once the contaminated soil has been removed for each section of Remediation Site #2, the location will be refilled and/or regraded with uncontaminated or new soil to re-establish the access road to the mine site. The western contaminated site, Remediation Site #1, will then be excavated in phases similar to Remediation Site #2.

The engineered waste rock piles will be constructed in phases as shown on the plan sheets. Once all the contaminated soil has been placed and compacted, the engineered rock cap will be placed and then topsoil, seeding and turf reinforcement matting applied to protect against erosion.

C. ACRES OF DISTURBANCE:

- 1. Total area of construction site: 30 acres
- 2. Total area of disturbance: 20 acres
- 3. Acreage of seeding: 4.24 acres

D. EXISTING SOIL DATA: Majority or soil is rock: Argiustolls Rock outcrop, Ratake-Cathedral Rock outcrop, Allens Park variant of Ratake Rock outcrop, Cryofluvents, and Curecanti very stony sandy loam. These soil areas generally consist of 0.5-3.0 feet of gravelly to stony sandy loam over bedrock.

E. EXISTING VEGETATION, INCLUDING PERCENT COVER: General ground cover is Evergreen Trees with small brush understory and areas of grass in between within the overall project area. Percent groundcover is <5% within the areas of disturbance and approximately 15% for the entire construction site

F. POTENTIAL POLLUTANTS SOURCES: See First Construction Activities under Potential Pollutant Sources. The ECS shall prepare a list of all potential pollutants and their locations in accordance with subsection 107.25.

G. RECEIVING WATER:

1. Outfall locations: The entire Schwartzwalder Mine site drains to Ralston Creek. The excavated areas will be directed to sump locations to be pumped to a treatment location before being released into Ralston Creek. 2. Names of receiving water(s) on site and the ultimate receiving water: Ralston Creek and Ralston Reservoir 3. Distance ultimate receiving water is from project: 10,000 feet

H. ALLOWABLE NON-STORMWATER DISCHARGES:

1. Groundwater and stormwater dewatering: Discharges to the ground of water from construction dewatering activities may be authorized provided that:

- a. the source is groundwater and/or groundwater combined with stormwater that does not contain pollutants
- b. the source and BMPs are identified in the SWMP
- c. discharges do not leave the site as surface runoff or to surface waters.

2. If discharges do not meet the above criteria a separate permit from the Department of Health will be required. Contaminated groundwater requiring coverage under a separate permit may include groundwater contaminated with pollutants from a landfill, mining activities, industrial pollutant plumes, underground storage tank, etc.

3. Existing water treatment plant discharge for the water treatment plan on Cotter Corporation's property.

I. ENVIRONMENTAL IMPACTS:

- 1. Wetland Impacts: YES NO
- 2. Stream Impacts: YES NO
- 3. Threatened and Endangered Species: N/A

2. SITE MAP COMPONENTS:

Pre-construction

- A. PROJECT CONSTRUCTION POTENTIAL SITE BOUNDARIES Shown on SWMP Site Map
- B. ALL AREAS OF GROUND SURFACE DISTURBANCE Shown on SWMP Site Map
- C. AREAS OF CUT AND FILL Shown on SWMP Site Map
- D. LOCATION OF ALL STRUCTURAL BMPs IDENTIFIED IN THE SWMP Shown on SWMP Site Map
- E. LOCATION OF NON-STRUCTURAL BMPs AS APPLICABLE IN THE SWMP Shown on SWMP Site Map
- F. SPRINGS, STREAMS, WETLANDS AND OTHER SURFACE WATER Shown on SWMP Site Map
- G. PROTECTION OF TREES, SHRUBS, CULTURAL RESOURCES AND MATURE VEGETATION Shown on SWMP Site Map
- H. AREAS USED FOR STORING AND STOCKPILING OF MATERIALS, STAGING AREAS (field trailer,fueling,etc) and BATCH PLANTS Shown on SWMP Site Map

3. SWMP ADMINSTRATOR FOR DESIGN: Dan Leyendecker, P.E. - Principal of LNV, Inc.

4. STORMWATER MANAGEMENT CONTROLS FIRST CONSTRUCTION ACTIVITIES

THE CONTRACTOR SHALL PERFORM THE FOLLOWING:

A. DESIGNATE A SWMP ADMINISTRATOR/EROSION CONTROL SUPERVISOR (To be filled out at time of construction; designate the individual(s) responsible for implementing, maintaining and revising SWMP, including the title and contact information. The activities and responsibilities of the administrator shall address all aspects of the projects SWMP.)

Name/Title: Contact information:

B. POTENTIAL POLLUTANT SOURCES

Evaluate, identify and describe all potential sources of pollutants at the site in accordance with subsection 107.25 and place in the SWMP notebook. All BMPs related to potential pollutants shall be shown on the SWMP site map by the contractor's ECS.

C. BEST MANAGEMENT PRACTICES (BMPs) FOR STORMWATER POLLUTION PREVENTION

PHASED BMP IMPLEMENTATION

During Design: "BMP as Designed" boxes are marked when used in the SWMP. During construction: the ECS shall update the "In use on site" boxes to match which BMPs are currently in use on site. Clearly describe the relationship between the phases of construction and the implementation of BMP controls.

STRUCTURAL BMPs that may be potentially used on the project for erosion and sediment control; practices may include, but are not limited to:

ВМР	TYPE OF CONTROL	BMP as Designed	In use on site	FIRST CONSTRUCTION ACTIVITIES	DURING CONSTRUCTION	INTERIM STABILI
Earth Berm/Diversion	erosion	х	ļ	x	x	
*Check Dams	sediment				x	
Erosion Logs	sediment	x		x	x	
Embankment Protector	erosion					
Inlet Protection	erosion					
Outlet Protection	erosion					
Concrete Washouts	construction				x	
Vehicle Tracking Pad	construction			x	×	
Dewatering	sediment	x			x	
Temporary Stream Crossing	erosion					
Clean water diversion					x	
Other						

NON-STRUCTURAL BMPs that may be potentially used on the project for erosion and sediment control; practices may include, but are not limited to:

вмр	TYPE OF CONTROL	BMP as Designed	FIRST CONSTRUCTION ACTIVITIES	DURING CONSTRUCTION	INTERIM/ STABILIZ
Surface Roughening/Grading Techniques	erosion			x	
Soil Binder	erosion			x	
Protection of Trees	erosion		x	x	
Preservation of Mature Vegetation	erosion	x	x	x	x

*Check dams may be rock, erosion logs, silt dike, silt berm, etc. as indicated in the narratives and SWMP site map.

Erosion control devices are used to limit the amount of soil loss on site. Sediment control devices are designed to capture sediment on the project site. Construction control are BMPs related to construction access and staging. BMP locations are indicated on the SWMP site map.

NARRATIVES

EROSION CONTROL LOGS

Place erosion control logs along the top of slopes towards Ralston Creek per the plans or as directed. Maintain and replace the erosion control logs as needed

EARTH BERM/DIVERSION

During excavation of the contaminated area, divert all runoff within the excavated areas to the closest sump location, so the contaminated runoff will be pumped to the on-site water treatment facility.

DEWATERING

Any dewatering conducted within the areas of excavation shall discharge the water to the on-site water treatment

PRESERVATION OF MATURE VEGETATION Protect trees and mature vegetation outside the limits of construction.

/FINAL ZATION	
	L
	1
	1
	1
	1
	1
	1

/FINAL ZATION	
	ĺ

BMP details and narratives not covered by the SWMP or Standard Plan M-208-1 shall be added to the SWMP notebook by the ECS.

D. OFFSITE DRAINAGE (RUN ON WATER)

1. Describe and record BMPs on the SWMP site map that has been implemented to address off site run-on water in accordance with subsection 208.03.

E. VEHICLE TRACKING PAD/VEHICLE TRACKING CONTROL

1. BMPs shall be implemented in accordance with subsection 208.04.

F. PERIMETER CONTROL

1. Perimeter control shall be established as the first item on the SWMP to prevent the potential for pollutants leaving the construction site boundaries, entering the stormwater drainage system, or discharging to state waters.

2. Perimeter control may consist of vegetation buffers, berms, silt fence, erosion logs, existing landforms, or other BMPs as approved.

3. Perimeter control shall be in accordance with subsection 208.04.

5. DURING CONSTRUCTION

<u>RESPONSIBILITIES OF THE SWMP ADMINISTRATOR/EROSION CONTROL SUPERVISOR DURING CONSTRUCTION</u> The SWMP should be considered a "living document" that is continuously reviewed and modified. During construction, the following items shall be added, updated, or amended as needed by the SWMP Administrator/Erosion Control Supervisor (ECS) in accordance with Section 208.

During construction, indicate how items that have not been addressed during design are being handled in construction. If items are covered in the template or other sections of the SWMP notebook indicate below what section the discussion takes place.

A. STOCKPILE MANAGEMENT - shall be done in accordance with subsection 107.25 and 208.07

B. <u>CONCRETE WASHOUT</u> - Concrete wash out water or waste from field laboratories and paving equipment shall be contained in accordance with subsection 208.05.

- C. SAW CUTTING shall be done in accordance with subsection 107.25, 208.04, 208.05
- D. STREET CLEANING shall be done in accordance with subsection 208.04

6. INSPECTIONS

A. Inspections shall be in accordance with subsection 208.03 (c).

7. BMP MAINTENANCE

A. Maintenance shall be in accordance with subsection 208.04 (f).

8. RECORD KEEPING

A. Records shall be kept in accordance with subsection 208.03 (c).

9. INTERIM AND FINAL STABILIZATON

A. SEEDING PLAN

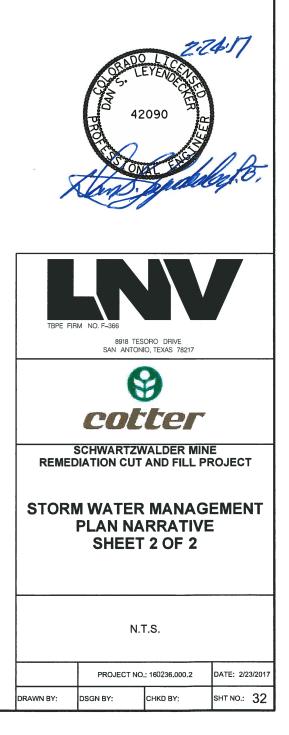
Soil preparation, soil conditioning or topsoil, seeding (native), mulching (weed free) and mulch tackifier will be required for an estimated 4.24 acres over the top cap of the engineered waste rock piles. Native soils are mainly 0.5-3.0 feet of gravelly to stony sandy loam over bedrock. The proposed ditch grading will be rock riprap armored in place of vegetation.

Species	Variety	% of Mix	Broadcast* lbs/acre
Big Bluestem	Kaw	20	4.4
Sideoats Gramma	Vaughn	20	3.6
Little Bluestem	Pastura	20	2.8
Yellow Indiangrass	Holt	10	2
Western Wheatgrass***	Arriba	10	3.2
Needleandthread	-	10	2
Switchgrass	Nebraska 28	5	0.6
Blue Gramma	Lovington	5	0.3
TOTAL		100%	18.9 lbs/acre

* Use this seeding rate for both broadcast and hydromulch applications.

*** Streambank Wheatgrass (Sodar) can be substituted for the Western Wheatgrass.

10. PRIOR TO FINAL ACCEPTANCE

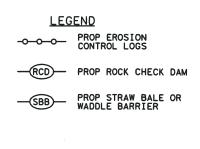

A. Final Acceptance shall be in accordance with subsection 208.10.


11. TABULATION OF STORMWATER QUANTITIES

Pay Item	Description	Pay Unit	*Quantity
208	Erosion Log	LF	4000
208	Erosion Bales	LF	100
208	Vehicle Tracking Pad (Construction Entrance)	EA	4
1000	Dewatering	LS	1
	Turf Reinforcement Matting	SY	38000
	Hydromulch Seeding and 6 Inch Topsoil	SY	38000

*It is anticipated that additional BMPs and BMP quantities not shown on the SWMP Site Maps shall be required on the project for unforeseen conditions and replacement of items that are beyond their useful service life, see subsection 208.03 and 208.04 (e). Quantities for all BMPs shown above are estimated, and have been increased for unforeseen Project conditions.

	_
:y	
	-



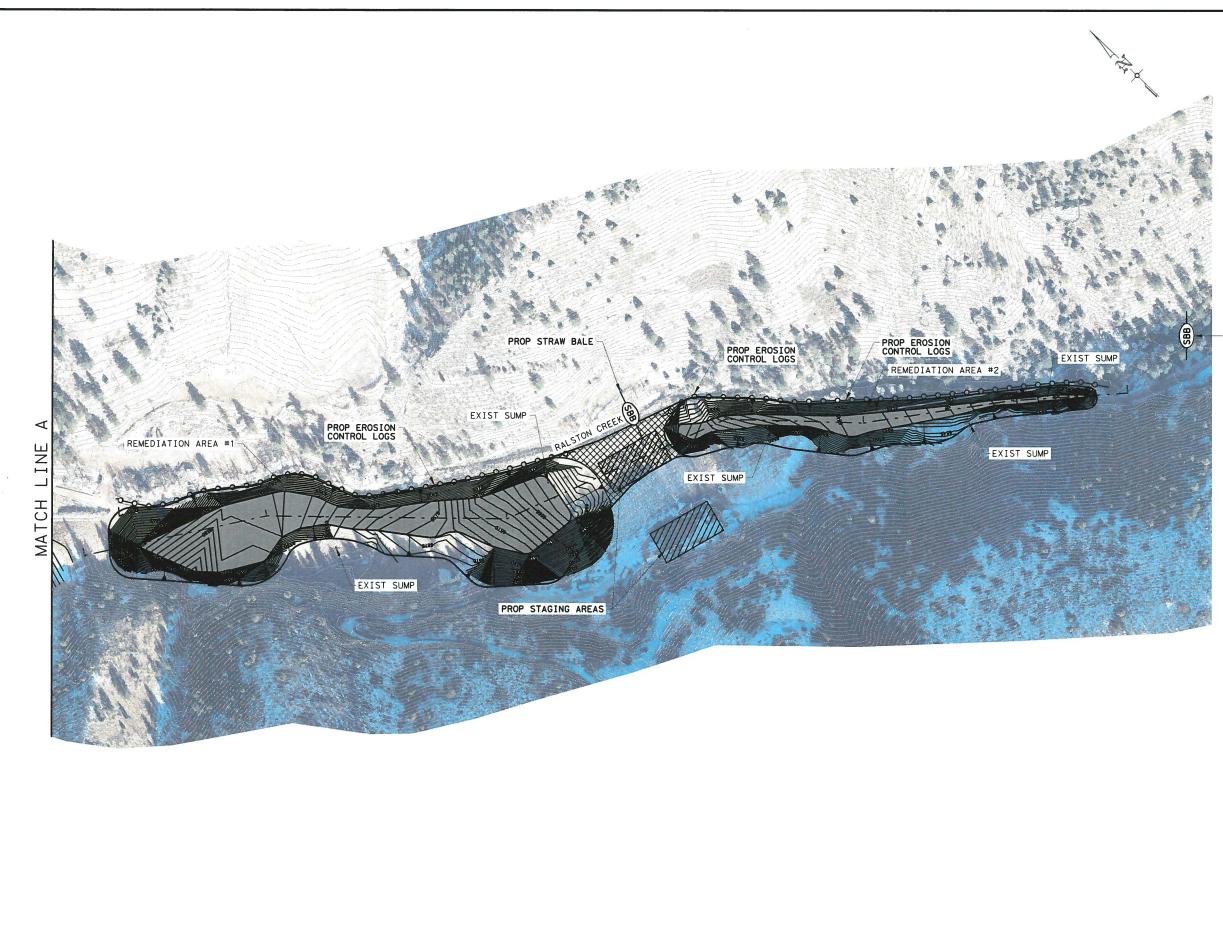
PROP SOUTHERN WRP CONCRETE LINED DITCH

SOUTHERN WASTE ROCK PILE -

- NOTE: 1) ALL TREES AND MATURE PLANTS OUTSIDE THE LIMITS OF CONSTRUCTION WILL BE PROTECTED.
- CONSTRUCT TEMPORARY STREAM/LOW WATER CROSSINGS AS NEEDED.
- 3) SLOPE EXCAVATIONS TOWARDS ONE OF THE EXIST SUMP LOCATIONS SHOWN SO ALL RUNOFF CAN BE TREATED DUE TO CONTAMINATION.

8918 TESORO DRIVE SAN ANTONIO, TEXAS 78217

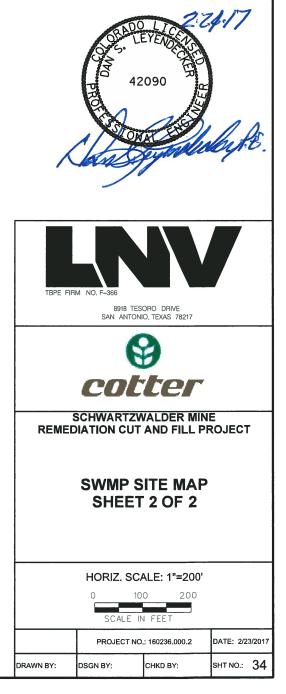
SCHWARTZWALDER MINE REMEDIATION CUT AND FILL PROJECT


	·				
HORIZ. SCALE: 1"=200'					
0	100	200			
SC	ale in fei	E T			

 SCALE IN FEET

 PROJECT NO.: 160236.000.2
 DATE: 2/23/2017

 DRAWN BY:
 DSGN BY:
 CHKD BY:
 SHT NO.: 33


MATCH LINE A

- NOTE: 1) ALL TREES AND MATURE PLANTS OUTSIDE THE LIMITS OF CONSTRUCTION WILL BE PROTECTED.
- CONSTRUCT TEMPORARY STREAM/LOW WATER CROSSINGS AS NEEDED.
- 3) SLOPE EXCAVATIONS TOWARDS ONE OF THE EXIST SUMP LOCATIONS SHOWN SO ALL RUNOFF CAN BE TREATED DUE TO CONTAMINATION.

LEGEND			
-00	PROP EROSION CONTROL LOGS		
-RCD-	PROP ROCK CHEC	K DAM	
-SBB-	PROP STRAW BAL WADDLE BARRIER	EOR	

-PROP STRAW BALE

STANDARD EROSION AND SEDIMENT CONTROL NOTES:

- 1. The contractor must notify the Jefferson County Division of Transportation and Engineering (303.271.8495) at least three days prior to starting construction.
- 2. All grading, erosion, and sediment control must conform to approved plans. Revisions to land disturbance areas, slopes, and/or erosion and sediment control measures are not permitted without prior approval from the Jefferson County Planning and Zoning Division. Field modifications to an equivalent BMP that does not affect the site hydrology may be approved by Jefferson County Transportation and Engineering staff.
- 3. The approved plans are valid for two (2) years from the date of approval from Jefferson County.
- 4. The landowner and/or contractor is responsible for obtaining a permit for Stormwater Discharges Associated with Construction Activity from the Colorado Department of Public Health and Environment, at least 10 days prior the start of construction activities for land disturbance areas of one acre or greater. The permit must be kept current throughout the construction process.
- 5. Erosion control BMPs must be installed prior to grading activities.
- 6. Approved erosion and sediment control BMPs shall be maintained and kept in good repair for the duration of the project. At a minimum, the property owner or contractor shall inspect all BMPs in accordance with the approved plans. All necessary maintenance and repair activities shall be completed immediately. Accumulated sediment and construction debris shall be removed and properly disposed.
- 7. All topsoil must be salvaged, segregated, and stockpiled separately from the overburden. Topsoil and overburden must be redistributed within the graded area after rough grading to provide a suitable base for areas that must be seeded and planted. Runoff from the stockpiled area must be controlled to prevent erosion and sedimentation of receiving waters.
- 8. Soils that are stockpiled for more than thirty (30) days shall be seeded and mulched within fourteen (14) days of stockpile construction.
- 9. The landowner and/or contractor must immediately take all necessary steps to control sediment discharge
- 10. Soil stabilization measures shall be applied within 30 days to disturbed areas, which may not be at final grade, but will be left dormant for longer than 60 days.

11. If applicable, the following note shall be completed:

Temporary vegetative cover consisting of (species/variety)(mix noted below) must be (drill) (hydro_)(broadcast) seeded at _____ pounds pure live seed per acre. Mulch consisting of _____, applied at a rate of _____ tons per acre and crimped must be used to stabilize the exposed surface. Soil amendments consisting of (specify type) must be incorporated into the soil to a

depth of _____ inches below grade at _____ cubic yards per 1,000 sauare feet.

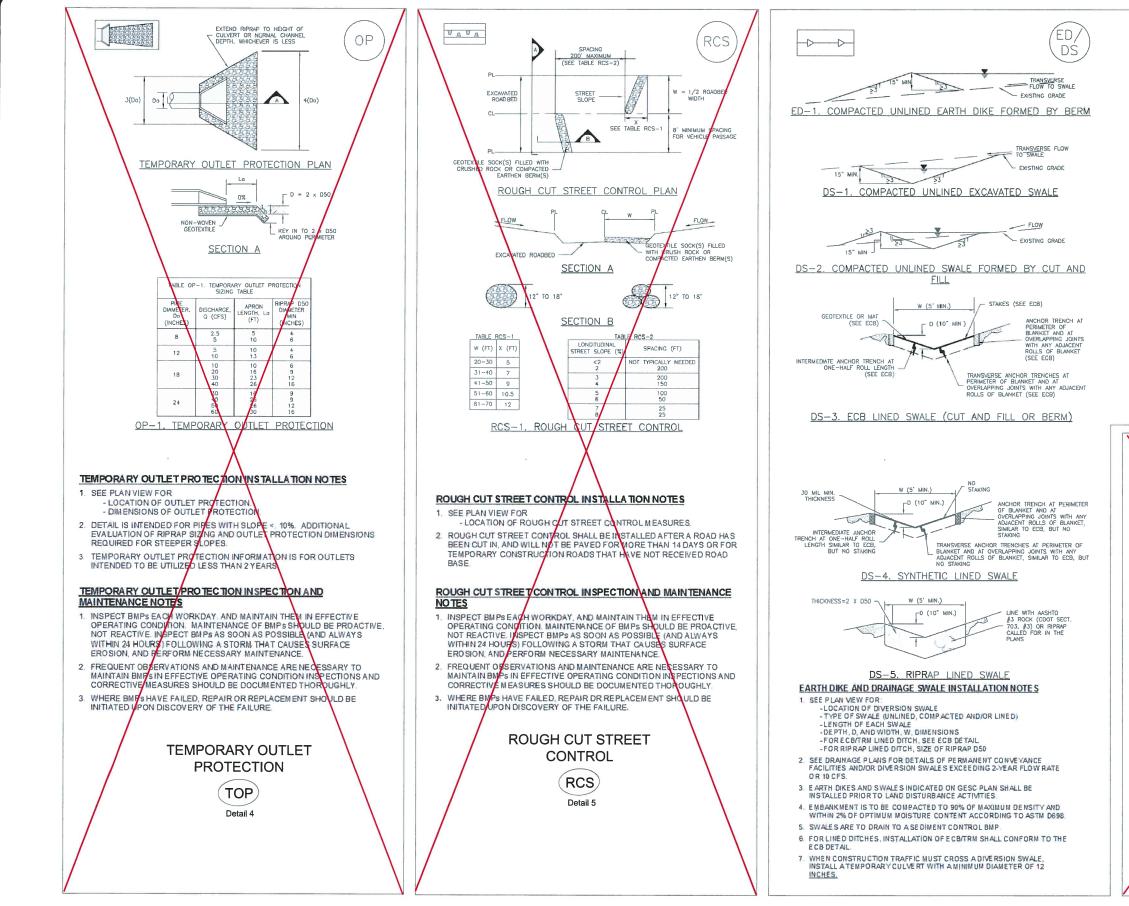
Permanent vegetative cover consisting of (species/variety)(mix noted below) must be (drill) (hydro_)(broadcast) seeded at _____ pounds pure live seed per acre.

(Temporary)(Permanent) Seed Mix

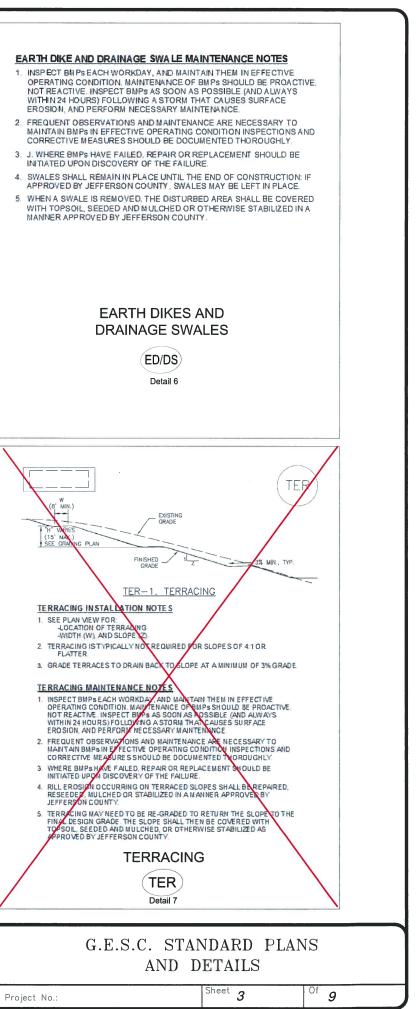
Species Variety % of Mix Min. Ibs. PLS/Acre

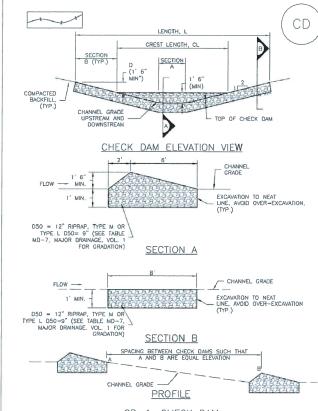
- 12. All disturbed slopes (unless in a competent rock cut) greater than or equal to 3:1 (H:V), flow lines of swales, gutter downspouts, or additional areas at the discretion of county staff, shall be protected with an erosion control blanket or equivalent BMP.
- 13. If it is necessary to move material in excess of 300 cubic yards and/or in excess of 10,000 square feet of land disturbance area to or from another unincorporated Jefferson County site, a grading permit or Notice of Intent (NOI) is necessary for the off-site property. If the material is moved to a property located within another jurisdiction, evidence is required that the local government has approved the grading operation.
- 14. The landowner and/or contractor is responsible for clean up and removal of all sediment and debris from all drainage infrastructure and public facilities during the entire construction process.
- 15. The landowner and/or contractor must take reasonable precautions to ensure that vehicles do not track or spill earth materials on to streets/roads and must immediately remove such materials if this occurs.
- 16. The landowner and/or contractor is responsible for controlling litter such as discarded building materials, concrete truck washout, chemicals, and sanitary waste. as applicable. In addition, spill prevention and containment BMPs for construction materials, waste, and fuel must be provided, as applicable. Locations of stockpiles. concrete washout areas, and trash receptacles must be clearly shown on the plans. Littering is defined and enforced by CRS 18-4-511.
- 17. Fugitive dust emissions resulting from grading activities and/or wind shall be controlled using the best available control technology, as defined by the Colorado Department of Public Health and Environment, at the time of aradina.
- 18. Earth materials and construction supplies are to be stored on a construction site staging area, and are not to be stored on the street or sidewalk. Locations of stockpiles, concrete washout areas and trash receptacles are clearly located on the plans.
- 19. The Jefferson County Planning and Zoning Division, or its authorized representative, may modify the erosion and sediment control plan as field conditions warrant.

Revisions:	Designed By:	Scale: (As Shown)	JEFFERSON COUNTY
Details from UDFCD - November, 2010.	Drawn By:	Date Created: 07/25/2012 Division of	DIVISION OF
	Checked By: Staff	Plot Date: 7/26/2012	PLANNING & ZONING
	File: GESC_Details_Sht1.dwg		100 JEFFERSON COUNTY PARKWAY, SUITE 3550 GOLDEN, COLORADO 80419
	File Location: G: \PROJECTS_CAD\Standards\PnZ E	Ersion Control Details	(303) 271-8700


BMP LEGEND

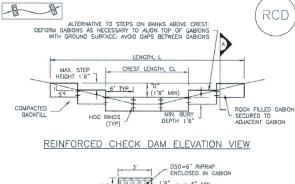
$\rightarrow \rightarrow $	SR
	ECB
	TSD
	OP
<u> </u>	RCS
\longrightarrow	ED/D9
[]	TER
KONONONAN	CD
	CWA
	SP
	SF
	SCL
*****	SBB
	RS
	(IP)
Æ	(SB)
	CF
R325	(VTC)
	(SSA)
	TDC
0	(DW)
66666	(TSC)
	\bigcirc

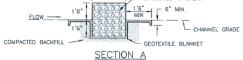

SURFACE ROUGHENING EROSION CONTROL BLANKET TEMPORARY SLOPE DRAIN OUTLET PROTECTION ROUGH CUT STREET CONTROL EARTH DIKES AND DRAINAGE SWALES TERRACING CHECK DAM CONCRETE WASHOUT AREA STOCKPILE MANAGEMENT SILT FENCE SEDIMENT CONTROL LOG STRAW BALE BARRIER ROCK SOCK INLET PROTECTION SEDIMENT BASIN CONSTRUCTION FENCE VEHICLE TRACKING CONTROL STABILIZED STAGING AREA TEMPORARY DIVERSION CHANNEL DEWATERING TEMPORARY STREAM CROSSING


G.E.S.C. STANDARD NOTES AND DETAILS

Project No.:	Sheet 1	^{Of} 9
		Sheet 35

Revisions:	Designed By:	Scale: (As Shown)	JEFFERSON COUNTY	
	Drawn By:	Date Created: 8/15/2011	DIVISION OF	
	Checked By: Staff	Plot Date: 7/26/2012 F.I.R. Date:		
	File: GESC_Details_Sht3.dwg	F.O.R. Date: For Const. Date:	TOU JEFFERSON COUNTY PARKWAY, SUITE 3550	
	File Location: G: \PROJECTS_CAD\Standards\PnZ	Ersion Control Details	(303) 271-8700	TORNE

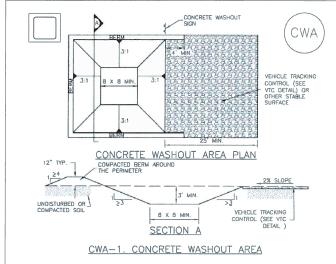

CD-1. CHECK DAM


CHECK DAM INSTALLATION NOTES

- 1. SEE PLANVIEW FOR:
 - LOCATION OF CHECK DAMS
 - CHECK DAM TYPE (CHECK DAM OR REINFORCED CHECK DAM)
 LENGTH (L), CREST LENGTH (CL), AND DEPTH (D)
- CHECK DAMS INDICATED ON INITIAL GESC SHALL BE INSTALLED AFTER CONSTRUCTION FENCE, BUT PRIOR TO ANY UPSTREAM LAND DISTURBANCE ACTIVITIES.
- RIPRAP UTILIZED FOR CHECK DAMS SHOULD BE OF APPROPRIATE SIZE FOR THE APPLICATION. TYPICAL TYPES OF RIPRAP USED FOR CHECK DAMS ARE TYPE M (D50 12') OR TYPE L (D50 9')
- RIPRAP PAD SHALL BE TRENCHED INTO THE GROUND A MINIMUM OF 1 FOOT.
- THE ENDS OF THE CHECK DAM SHALL BE A MINIMUM OF 1.5 FEET HIGHER THAN THE CENTER OF THE CHECK DAM.

CHECK DAM MAINTENANCE NOTES

- INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.
- 2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPS IN EFFECTIVE OPERATING CONDITION INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.
- WHERE BMPs HAVE FAILED, REPAIR DR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.
- SEDIMENT ACCUMULATED UPSTREAM OF THE CHECK DAMS SHALL BE REMOVED WHEN THE SEDIMENT DEPTH IS WITHIN 1/2 OF THE HEIGHT OF THE CREST.
- CHECK DAMS ARE TO REMAIN IN PLACE UNTIL THE UPSTREAM DISTURBED AREA IS STABILIZED AND APPROVED BY JEFFERSON COUNTY.
- WHEN CHECK DAMS ARE REMOVED, EXCAVATIONS SHALL BE FILLED WITH SUITABLE COMPACTED BACKFILL DISTURBED AREA SHALL BE SEEDED AND MULCHED AND COVERED WITH GEOTEXTILE OR OTHERWISE STABILIZED INA MANNER APPROVED BY JEFFERSON COUNTY.



REINFORCED CHECK DAM IN STALLATION NOTE S

- 1. SEE PLAN VIEW FOR:
- -LOCATION OF CHECK DAMS -CHECK DAM TYPE (CHECK DAM OR REINFORCED CHECK DAM) -LENGTH (L), CREST LENGTH (CL), AND DEPTH (D)
- CHECK DAMS INDICATED ON INITIAL GESC SHALL BE INSTALLED PRIOR TO ANY UP STREAM LAND DISTURBANCE ACTIVITIES.
- 3. REINFORCE D CHECK DAMS, GABIONS SHALL HAVE GALVANIZED TWISTED WIRE NETTING WITH A MAXIMUM OPENING DIMENSION OF 4 SINCHES AND A MINIMUM WIRE THICKNESS OF 0.10 INCHES. WIRE 'HOG RINGS' AT 4 INCH SPACING OR OTHER APPROVED MEANS SHALL BE USED AT ALL GABION SE AMS AND TO SECURE THE GABION TO THE ADJACENT SECTION.
- 4. THE CHECK DAM SHALL BE TRENCHED INTO THE GROUND A MINIMUM OF $1.5\ \text{FEET}.$
- GEOTEXTILE BLANKET SHALL BE PLACED IN THE REINFORCED CHECK DAM TRENCH EXTENDING A MINIMUM OF LSFEET ON BOTH THE UPSTREAM AND DOWNSTREAM SIDES OF THE REINFORCED CHECK DAM.

REINFORCED CHECK DAM MAINTENANCE NOTES

- INSPECT BMPSEACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPS SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPS AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.
- 2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAN BMP SIN EFFECTIVE OPERATING CONDITION.INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.
- 3. WHERE BMPs HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.
- 4. SEDIMENT ACCUMULATED UPSTREAM OF REINFORCED CHECK DAMS SHALL BE REMOVED AS NEEDED TO MAINTAIN THE EFFECTIVENESS OF BMP, TYPICALLY WHEN THE UPSTREAM SEDIMENT DEPTH IS WITHIN 1/2 THE HEIGHT OF THE CREST.
- 5. REPAIR OR REPLACE REINFORCED CHECK DAM'S WHEN THERE ARE SIGNS OF DAMAGE SUCH AS HOLES IN THE GABION OR UNDERCUTTING.
- REINFORCED CHECK DAMS ARE TO REMAIN IN PLACE UNTIL THE UPSTREAM DISTURBED AREA IS STABILIZED AND APPROVED BY THE JEFFERSON COUNTY.
- WHEN REINFORCED CHECK DAMS ARE REMOVED, ALL DISTURBED AREAS SHALL BE COVERED WITH TOPSOIL, SEEDED AND MULCHED, AND COVERED WITH A GEOTE XTILE BLANKET, OR OTHERWISE STABILIZED AS APPROVED BY JEFFERSON COUNTY.

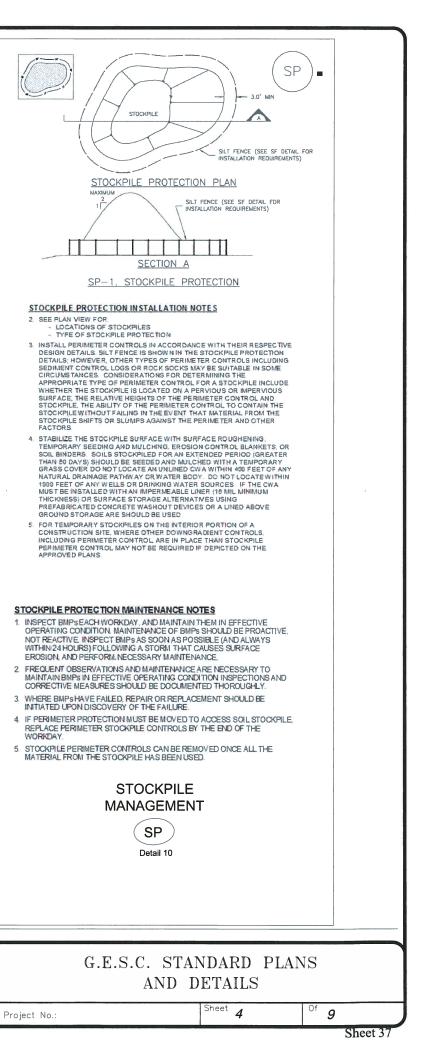
CWA INSTALLATION NOTES

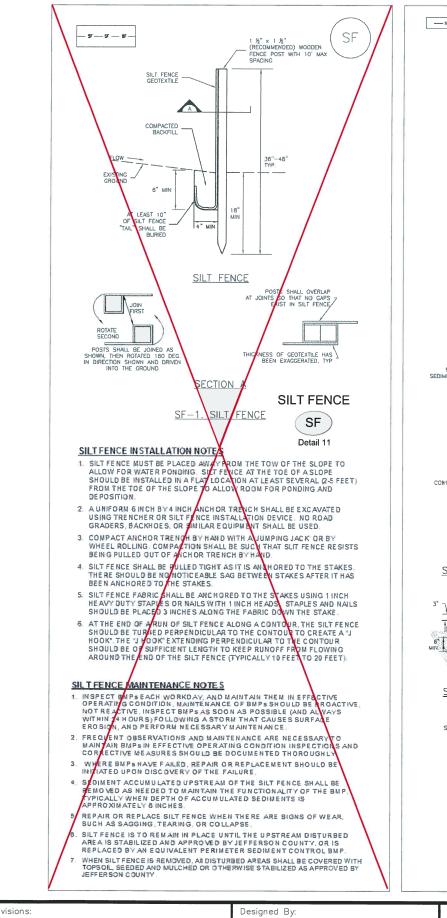
- 1. SEE PLAN VIEW FOR: - CWA INSTALLATION LOCATION
- 2 DO NOT LOCATE AN UNLINED CWA WITHIN 400 FEET OF ANY NATURAL DRAINAGE PATHWAY OR WATER BODY. DO NOT LOCATE WITHIN 1000 FEET OF ANY WELLS OR DRINKING WATER SOURCES. IF THE CWA MUST BE INSTALLED WITH AN IMPERIMEABLE LINER (16 MIL MINIMUM THICKNESS) OR SURFACE STORAGE ALTERNATIVES USING PREFABRICATED CONCRETE WASHOUT DEVICES OR A LINED ABOVE GROUND STORAGE ARE SHOULD BE USED.
- 3. THE CWA SHALL BE INSTALLED PRIOR TO CONCRETE PLACEMENT ONSITE. 4. CWA SHALL INCLUDE A FLAT SUBSURFACE PIT THAT IS AT LEAST & FEET BY
- 8 FEET WITH SLOPES LEADING OUT OF THE SUBSURFACE PIT SHALL BE 3.1 OR FLATTER. THE PIT SHALL BE AT LEAST 3 FEET DEEP.
- 5. BERM SURROUNDING SIDES AND BACK OF THE CWA SHALL HAVE A MINIMUM HEIGHT OF 1 FOOT
- 6. VEHICLE TRACKING PAD SHALL BE SLOPED 2% TOW ARDS THE CWA.
- 7 SIGNS SHALL BE PLACED AT THE CONSTRUCTION ENTRANCE, AT THE CWA, AND ELSEWHERE AS NECESSARY TO CLEARLY INDICATE THE LOCATION OF THE CWA TO OPERATORS OF CONCRETE TRUCKS AND PUMP RIGS.
- 8 USE EXCAVATED MATERIAL FOR PERIMETER BERN CONSTRUCTION.

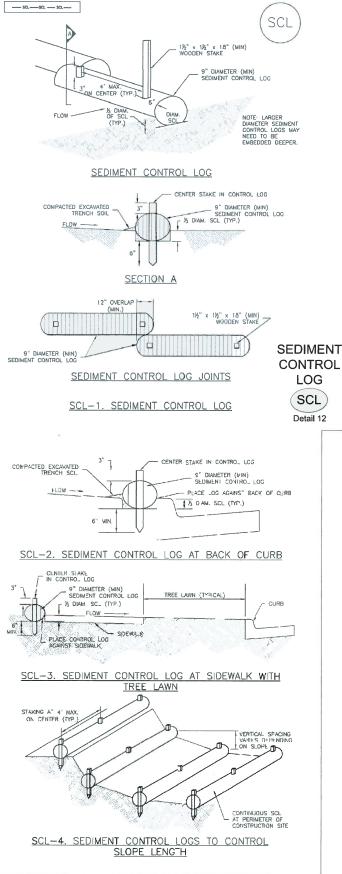
CWA MAINTENANCE NOTES

- INSPECT BMP & EACH WORKDAY, AND MAINTAIN THE MIN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMP & SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMP & AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.
- 2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAN BMPS IN EFFECTIVE OPERATING CONDITION INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.
- 3. WHERE BMPs HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.
- 4. THE CWA SHALL BE REPAIRED, CLEANED, OR ENLARGED AS NECESSARY TO MAINTAIN CAPACITY FOR CONCRETE WASTE. CONCRETE MATERIALS, ACCUMULATED IN PIT, SHALL BE REMOVED ONCE THE MATERIALS HAVE REACHED ADEPTH OF 2'.
- 5. CONCRETE WASHOUT WATER, WASTED PIECES OF CONCRETE AND ALL OTHER DEBRIS IN THE SUBSURFACE PIT SHALL BE TRANSPORTED FROM THE JOB SITE IN AWATER-TIGHT CONTAINER AND DISPOSED OF PROPERLY.
- THE CWA SHALL REMAIN IN PLACE UNTIL ALL CONCRETE FOR THE PROJECT IS PLACED.
- 7. WHEN THE CWAIS REMOVED, COVER THE DISTURBED AREA WITH TOP SOIL, SEED AND MULCH OR OTHERWISE STABILIZED IN A MANNER APPROVED BY JEFFERSON COUNTY.

Concrete Washout Area

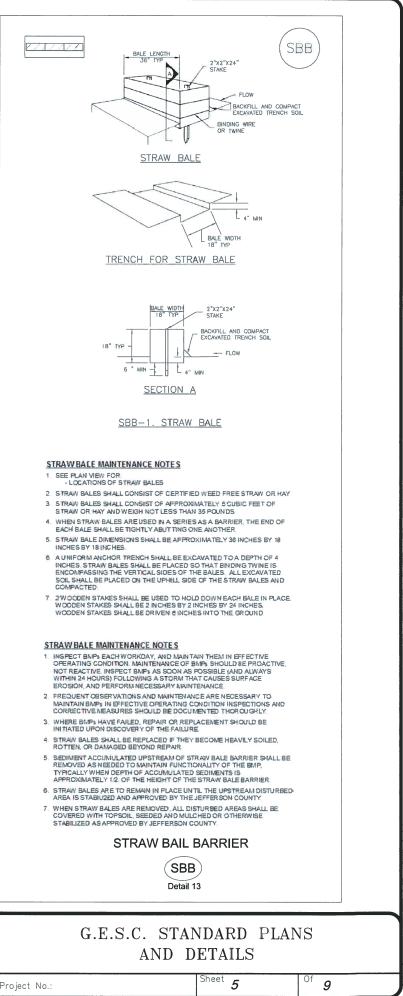



Revisions:	Designed By: Drawn By:	Scale: (As Shown) Date Created: 8/15/2011	JEFFERSON COUNTY DIVISION OF PLANNING & ZONING
	Checked By: Staff File: GESC_Details_Sht4.dwg File Location: G: \PROJECTS_CAD\Standards\PnZ Ersion Control	Plot Date: 7/26/2012 F.I.R. Date: F.O.R. Date: For Const. Date: D Details	100 JEFFERSON COUNTY PARKWAY, SUITE 3550 GOLDEN, COLORADO 80419 (303) 271-8700

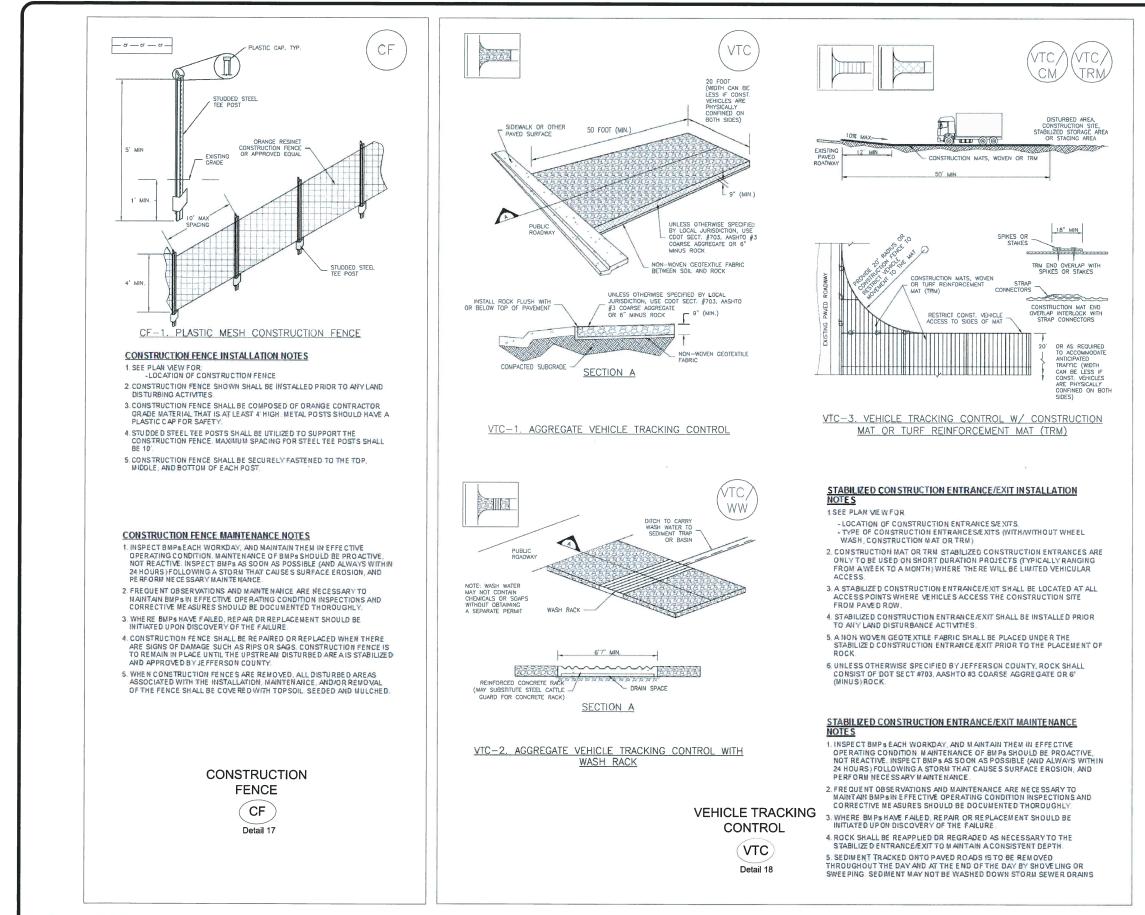


Detail 8

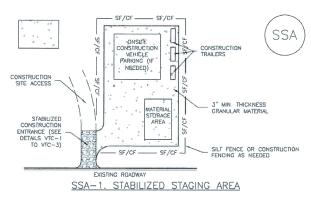
SEDIMENT CONTROL LOG INSTALLATION NOTES


- 1. SEE SITE PLAN VIEW FOR LOCATION AND LENGTH OF SEDIMENT CONTROL
- 2. SEDIMENT CONTROL LOGS SHALL CONSIST OF STRAW, COMPOST, EXCELSIOR OR COCONUT FIBER, AND SHALL BE FREE OF ANY NOXIOUS WEED SEEDS OR DEFECTS INCLUDING RIPS, HOLES, AND OBVIOUS WEAR
- SEDIMENT CONTROL LOGS MAY BE USED AS SMALL CHECK DAMS IN DITCHES AND SWALES. HOWEVER THEY SHOULD NOT BE USED IN PERENNIAL STREAMS OR HIGH VELOCITY DRAINAGEWAYS.
- 4. IT IS RECOMMENDED THAT SEDIMENT CONTROL LOGS BE TRENCHED INTO THE GROUND TO A DEPTH OF APPROXIMATELY 1/3 THE DIAMETER OF THE LOG. IF TRENCHING TO THIS DEPTH IS NOT FEASIBLE AND/OR DE SIRABLE USE TERM INSTALLATION WITH DESIRE NOT TO DAMAGE LANDSCAPE) A LESSER TRENCHING DEPTH WITH MORE ROBUST STAKING MAY BE ACCEPTABLE IF DEPICTED ON THE APPROVED PLANS.
- 5. THE UPHILL SIDE OF THE SEDIMENT CONTROL LOG SHALL BE BACKFILLED WITH SOIL THAT IS FREE OF ROCKS AND DEBRIS. THE SOIL SHALL BE TIGHTLY COMPACTED INTO THE SHAPE OF A RIGHT TRIANGLE USING A SHOVEL OR WEIGHTED LAWN ROLLER
- FOLLOW MANUFACTURERS GUIDANCE FOR STAKING IF MANUFACTURERS INSTRUCTIONS DO NOT SPECIFY SPACING, STAKES SHALL BE PLACED ON 4 FOOT CENTERS AND EMBEDDED A MINIMUM O FEINCHES INTO THE GROUND SINCHES OF THE STAKE SHALL FROTRUDE FROM THE TOP OF THE LOG. STAKES THAT ARE BROKEN PRIOR TO INSTALLATION SHALL BE REPLACED.

SEDIMENT CONTROL LOG MAINTENANCE NOTES


- 1. INSPECT BMP SEACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMP SHOULD BE PROACTIVE, NOT REACTIVE, INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORN THAT CAUSE S SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.
- 2. FREQUENT OBSERVATIONS AND MAINTENAMCE ARE NECESSARY TO MAINTAIN BMPS IN EFFECTIVE OPERATING CONDITION INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.
- 3. WHERE BMPSHAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.
- 4. SEDIMENT ACCUMULATED UPSTREAM OF SEDIMENT CONTROL LOG SHALL BE REMOVED AS NEEDED TO MAINTAIN FUNCTIONALITY OF THE BMP. TYPICALLY WHEN DEPTH OF ACCUMULATED SEDIMENTS IS APPROXIMATELY 1/2 OF THE HEIGHT OF THE SEDIMENT CONTROL LOG.
- SEDIMENT CONTROL LOG SHALL BE REMOVED AT THE END OF CONSTRUCTION, IF DISTURBED AREAS EXIST AFTER REMOVAL, THEY SHALL BE COVERED WITH TOP SOIL. SEEDED AND MULCHED OR OTHERWISE STABILIZED IN A MANNER APPROVED BY JEFFERSON COUNTY.

Revisions:	Designed By:	Scale: (As Shown)	JEFFERSON COUNTY
	Drawn By: Date Created: 8/15/2011	DIVISION OF	
	Checked By: Staff	Plot Date: 7/26/2012 F.I.R. Date:	PLANNING & ZONING
	File: GESC_Details_Sht5.dwg	F.O.R. Date: For Const. Date:	100 JEFFERSON COUNTY PARKWAY, SUITE 3550
	File Location: G: \PROJECTS_CAD\Standards\PnZ E	rsion Control Details	(303) 271-8700



Sheet 38

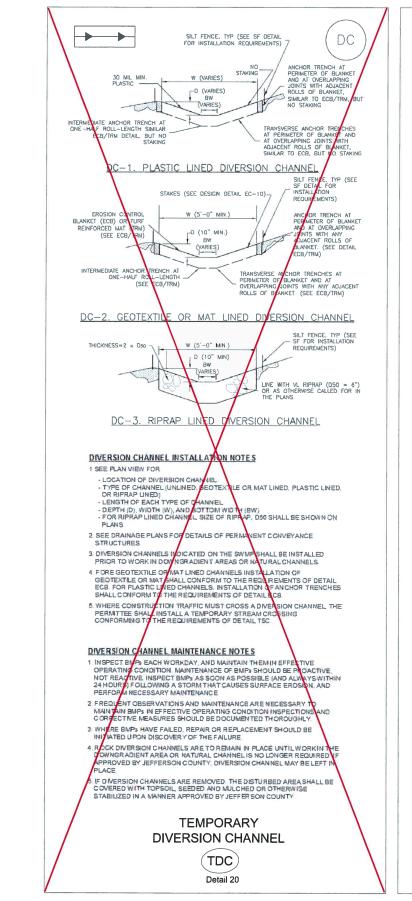
Revisions:	Designed By:	Scale: (As Shown)	JEFFERSON COUNTY	
	Drawn By:	Date Created: 8/15/2011	DIVISION OF	
	Checked By: Staff	Plot Date: 7/26/2012 F.I.R. Date:	PLANNING & ZONING	
	File: GESC_Details_Sht7.dwg	File: GESC_Details_Sht7.dwg F.O.R. Date: For Const. Date:	100 JEFFERSON COUNTY PARKWAY, SUITE 3550 GOLDEN, COLORADO 80419	
	File Location: G: \PROJECTS_CAD\Standards\PnZ Er	sion Control Details	(303) 271-8700	COLORADO Proje

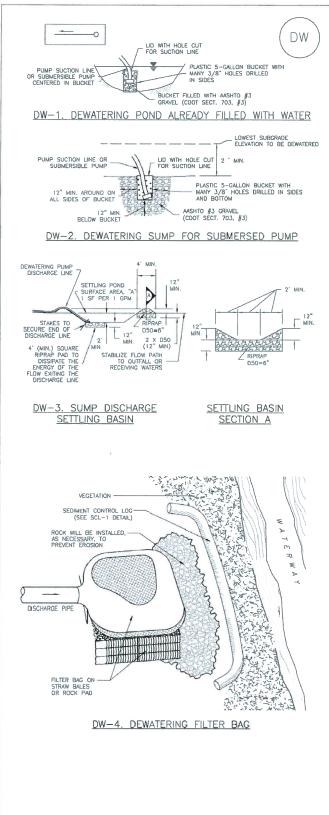
STABILIZED STAGING AREA IN STALLATION NOTES

1 SEE PLAN VIEW FOR

- LOCATION OF STAGING AREA(S). CONTRACTOR MAY ADJUST LOCATION AND SIZE OF STAGING AREA WITH APPROVAL FROM JEFFERSON COUNTY.
- 2. STABILIZED STAGING AREA SHOULD BE APPROPRIATE FOR THE NEEDS OF THE SITE. OVERSIZING RESULTS IN A LARGER AREA TO STABILIZE FOLLOWING CONSTRUCTION.
- 3. STAGING AREA SHALL BE STABILIZED PRIOR TO OTHER OPERATIONS ON THE SITE .
- 4. THE STABILIZED STAGING AREA SHALL CONSIST OF A MINIMUM 3" THICK GRANULAR MATERIAL UNLESS OTHERWISE SPECIFIED BY JEFFERSON COUNTY.
- 5. ROCK SHALL CONSIST OF A MINIMUM 3" THICK GRANULAR MATERIAL or DOT SECT. #703, AASHTO #3 COARSE AGGREGATE OR 6" (MINUS) ROCK.
- 6. ADDITIONAL PERIMETER BMPs MAY BE REQUIRED INCLUDING BUT NOT LIMITED TO SILT FENCE AND CONSTRUCTION FENCING

STABILIZED STAGING AREA MAINTENANCE NOTES


- 1. INSPECT BMPSEACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPsSHOULD BE PROACTIVE. NOT REACTIVE, INSPECT BMPAAS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.
- 2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY
- 3. WHERE BMPS HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE IN ITIATED UPON DISCOVERY OF THE FAILURE.
- 4. ROCK SHALL BE REAPPLIED OR REGRADED IF NECESSARY IF RUTTING OCCURS OR UNDERLYING SUBGRADE BECOMESEXPOSED
- 5. STABILIZED STAGING AREA SHALL BE ENLARGED IF NECESSARY TO CONTAIN PARKING, STORAGE, AND UNLOADING/LOADING OPERATIONS.
- 6. THE STABILIZED STAGING AREA SHALL BE REMOVED AT THE END OF CONSTRUCTION THE GRANULAR MATERIAL SHALL BE REMOVED OR, IF APPROVED BY JEFFERSON COUNTY, USED ON SITE, AND THE AREA COVERED WITH TOP SOIL, SEEDED AND MULCHED OR OTHERWISE STABILIZED IN A MANNER APPROVED BY JEFFERSON COUNTY.


STABILIZED STAGING AREA

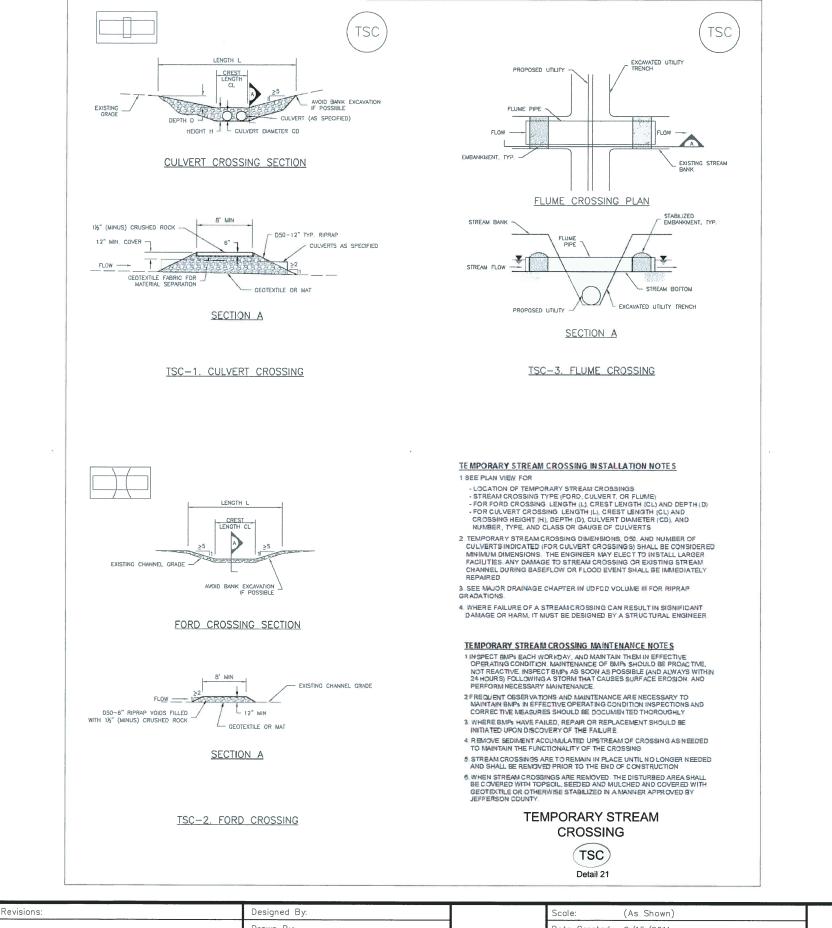
G.E.S.C STANDARD NOTES AND DETAILS

ject No.:	Sheet 7	^{Of} 9	
		Sh	eet 39

DEWATERING IN STALLATION NOTES

1 SEE PLAN VIEW FOR

- LOCATION OF DEWATERING EQUIPMENT - TYPE OF DEWATERING OPERATION (DW-1 TO DW-4)
- 2. THE OWNER OR CONTRACTOR SHALL OBTAIN A CONSTRUCTION DISCHARGE (DEW ATERING) PERMIT FROM THE STATE PRIOR TO ANY DEWATERING OPERATIONS DISCHARGING FROM THE SITE. ALL DEWATERING SHALL BE INA ACCORDANCE WITH THE REQUIREMENTS OF THIS PERMIT.
- 3 THE OWNER OR OPERATOR SHALL PROVIDE, OPERATE, AND MAINTAIN DEWATERING SYSTEMS OF SUFFICIENT SIZE AND CAPACITY TO PERMIT EXCAVATION AND SUBSEQUENT CONSTRUCTION IN DRY CONDITIONS AND TO LOWER AND MAINTAIN THE GROUNDWATER LEVEL A MINIMUM OF 2-FEET BELOW THE LOWEST POINT OF EXCAVATION AND CONTINUOUSLY MAINTAIN EXCAVATIONS FREE OF WATER UNTIL BACK FILLED TO FINAL GRADE.
- 4. DEWATERING OPERATIONS SHALL USE ON OR MORE OF THE DEWATERING SUMPS SHOWN ABOVE WELL POINTS OR OTHER MEANS APPROVED BY JEFFERSON COUNTY TO REDUCE THE PUMPING OF SEDIMENT TO ALLOWABLE LEVELS PRIOR TO RELEASE OFF SITE OR TO A RECEIVING WATER. A SEDIMENT BASIN MAY BE USED IN LIEU OF SUMP DISCHARGE SETTING BASIN SHOWN ABOVE IF A4-SQUARE FOOT RIPRAP PAD IS PLACED AT THE DISCHARGE POINT AND THE DISCHARGE END OF THE LINE IS STAKED IN FLACE TO PREVENT MOVEMENT OF THE LINE.


DEWATERING MAINTENANCE NOTES

- 1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION, MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE, INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.
- 2 FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.
- 3 WHERE BMPS HAVE FAILED, REPAR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.
- 4. DEWATER ING BMPs ARE REQUIRED IN ADDITION TO ALL OTHER PERMIT REQUIREMENTS.
- 5. TEMPORARY SETTLING BASINS SHALL BE REMOVED WHEN NO LONGER NEEDED FOR DEWATERING OPERATIONS, ANY DISTURBED AREA SHALL BE COVERED WITH TOPSOL, SEEDED AND MULCHED DR OTHERWISE STABILIZED IN A MANNER APPROVED BY JEFFERSON COUNTY.

Revisions:	Designed By:	Scale: (As Shown)	JEFFERSON COUNTY	ELE ELE
	Drawn By:	Date Created: 8/15/2011	DIVISION OF	
	Checked By: Staff	Plot Date: 7/26/2012 F.I.R. Date:	PLANNING & ZONING)E)
	File: GESC_Details_Sht8.dwg	F.O.R. Date: For Const. Date:	100 JEFFERSON COUNTY PARKWAY, SUITE 3550 GOLDEN, COLORADO 80419	
	File Location: G: \PROJECTS_CAD\Standards\PnZ Ers	ion Control Details	(303) 271-8700	/

	G.E.S.C. ST AND	CANDARD P DETAILS	LANS	
Project No.:		Sheet 8	^{Óf} 9	
				Sheet 40

Revisions:	Designed By:	So	cale:	(As Shown)	JEFFERSON COUNTY	
	Drawn By:	Do	ate Created:	8/15/2011	DIVISION OF	
	Checked By: Staff	PI	lot Date: 7,	/26/2012 F.I.R. Date:	PLANNING & ZONING	
	File: GESC_Details_Sht9.dwg	F.	.O.R. Date:	For Const. Date:	100 JEFFERSON COUNTY PARKWAY, SUITE 3550 GOLDEN, COLORADO 80419	COLORNUS -
	File Location: G: \PROJECTS_CAD\Standards\	\PnZ Ersion Control De	tails		(303) 271–8700	OTORNOS

G.E.S.C. STANDARD PLANS AND DETAILS						
oject No.:		^{Sheet} 9	^{Of} 9			
			Sheet 41			