

Figures

SCHEMATIC OF UNTESTED SPECIMEN

a. FTB = FILM TEAR BOND

-	— DIRECTION C	OF INITIAL PEEL				
	TYPES	OF BREAKS	LOCUS BREAK	S-OF CODE	BREAK DESCRIPTION	CLASSIFICATION
				AD	ADHESION FAILURE	NON-FTB
				BRK	BREAK IN SHEETING. BREAK C EITHER TOP OR BOTTOM SHEET	AN BE IN FTB
				SE1	BREAK IN OUTER EDGE OF SEA CAN BE IN EITHER TOP OR BO SHEET.	M. BREAK FTB
				SE2	BREAK AT INNER EDGE OF SEA BOTH SHEETS.	M THROUGH ${f FTB}$
			Al	D-BRK	BREAK IN FIRST SEAM AFTER S ADHESION FAILURE. BREAK CA EITHER THE TOP OR BOTTOM S	N BE IN FID

NOT TO SCALE

CRIPPLE CREEK & VICTOR GOLD MINING COMPANY							
PROJECT SQUAW GULCH VLF PREGN	IANT SOL	UTIO	N STOR	AGE /	AREA		
DESTRUCTIVE SAMPLE TEST CODES FOR DUAL HOT WEDGE FUSION WELDS							
	DESIGNED BY	-	CHECKED BY	JNM	DATE		
	DRAWN BY	ACW	APPROVED B	Y JNM	12/3/12		
	FILENAME			FIGURE N	. REV		

FIGURE 3

0

SCHEMATIC OF UNTESTED SPECIMEN

- α . FTB = FILM TEAR BOND
- b. ACCEPTANCE OF AD—WLD BREAKS MAY DEPEND ON WHETHER TEST VALUES MEET A MINIMUM SPECIFICATION VALUE AND NOT ON CLASSIFICATION AS A FTB OR NON—FTB BREAK.

TYPES OF BREAKS	LOCUS-OF BREAK CODE	BREAK DESCRIPTION	CLASSIFICATIONa
	AD1	FAILURE IN ADHESION. SPECIMENS M. ALSO DELAMINATE UNDER THE BEAD A BREAK THROUGH THE THIN EXTRUDED MATERIAL IN THE OUTER AREA.	NON-FTB
	□ AD2	FAILURE IN ADHESION.	NON-FTB
OFF-CENTER BEAD	AD−WLD	BREAK THROUGH THE FILLET. BREAK: THROUGH THE FILLET RANGE FROM BREAKS STARTING AT THE EDGE OF TI TOP SHEET TO BREAKS THROUGH THE FILLET AFTER SOME ADHESION FAILURE BETWEEN THE FILLET AND THE BOTTON SHEET.	NON-FTBb
	SE1	BREAKS AT SEAM EDGE IN THE BOTTC SHEET. SPECIMENS MAY BREAK ANYWHERE FROM THE BEAD/OUTER AF EDGE TO THE OUTER AREA/BUFFED AI EDGE. (APPLICABLE TO SHEAR ONLY)	REA REA
	□ SE2	BREAKS AT SEAM EDGE IN THE TOP SHEET. SPECIMENS MAY BREAK ANYWHERE FROM THE BEAD/OUTER AF EDGE TO THE OUTER AREA/BUFFED AI EDGE.	
	□ SE3	BREAKS AT SEAM EDGE IN THE BOTTO SHEET. (APPLICABLE TO PEEL ONLY)	FTB
	□ BRK1	BREAKS IN THE BOTTOM SHEETING. A IN PARENTHESES FOLLOWING THE COD MEANS THE SPECIMEN BROKE IN THE BUFFED AREA. (APPLICABLE TO SHEA ONLY)	E F.L.B
	□ BRK2	BREAKS IN THE TOP SHEETING. A "B PARENTHESES FOLLOWING THE CODE MEANS THE SPECIMEN BROKE IN THE BUFFED AREA.	" IN FTB
	□ AD-BRK	BREAKS IN THE BOTTOM SHEETING AF SOME ADHESION FAILURE BETWEEN TH FILLET AND THE BOTTOM SHEET. (APPLICABLE TO PEEL ONLY)	TER E FTB
	□ НТ	BREAK AT THE EDGE OF THE HOT TAC FOR SPECIMENS WHICH COULD NOT B DELAMINATED IN THE HOT TACK.	NO TEST

NOT TO SCALE

CLIENT	CRIPPLE CREEK & VICTOR					
GOLD MINING COMPANY						
PROJECT	GULCH VLF PREGNANT SOLUTION SORAGE AREA					
SQUAW	GULCH VLF FREGNANT SOLUTION SORAGE AREA					
TITLE						
DES	TRUCTIVE SAMPLE TEST CODES FOR					
EXTRUS	SION WELDS WITH LEISTER HEAT SEAMS					

DESIGNED BY	-	CHECKED BY		JNM	DATE	
DRAWN BY	ACW	APPROVED BY		JNM	12/3/12	
FILENAME				GURE N	REV	
FIGURE 4				l 4		lο

Figure 5 Cripple Creek & Victor Mining Company Squaw Gulch VLF-Process Solution Storage Area Design PSSA Stage Storage Curve

- Elevation 9,445' at 35% ore porosity is 175.5 million gallons.
- 80% of maximum pregnant solution storage capacity is estimated to be 140.5 million gallons assuming an ore porosity of 35%. This corresponds to a solution elevation of 9433.2'.
- Maximum anticipated pregnant solution storage volume (including all contingency flows) is approximately 92 million gallons.

Figure 6 Cripple Creek & Victor Mining Company Squaw Gulch VLF-Process Solution Storage Area As-built PSSA Stage Storage Curve

- Elevation 9,445' at 35% ore porosity is 170.6 million gallons.
- 80% of maximum pregnant solution storage capacity is estimated to be 136.5 million gallons assuming an ore porosity of 35%. This corresponds to a solution elevation of 9434.2'
- Maximum anticipated pregnant solution storage volume (including all contingency flows) is approximately 92 million gallons.