

Appendix F.2

Surface Water Hydrology Design

CALCULATION TITLE PAGE

	reek & Victor Gold Company	JOB NO. 1125	TASK NO. A100	PAGE	1 OF 2
PROJECT Arequa VL		CALCULATION No.	REV. No. 1	·	
SUBJECT/ Friangular	/ TITLE r Diversion Channel Design		······································		
REV. NO.	PREPARER/ DATE	REVIEWER/ DATE	QA REVIEW	ER/ DATE	CONFIRMATIO REQUIRED (Y/
1	Amanda L. Dolezal 2/8/08	Derek T. Wittwer 2/8/08	Jolupo	2/8/08	
	ATION OBJECTIVE	annel to keep mucht from flowing	anto the South and a	Calcologate and	
Design a	a surface water diversion ch	annel to keep runoff from flowing	onto the South end o	f the leach pad.	•
	ATION METHODOLOGY/ LIST	of ASSUMPTIONS			
	The size of the surface wat	er diversion channel is based on a		be II storm.	
•	The watershed to the South	n impacting the leach pad consists of	of undisturbed ground	d, curve numbe	er (CN) = 71.
•	The watershed to the South	n impacting the leach pad consists of	of undisturbed ground	d, curve numbe	er (CN) = 71.
٠	The watershed to the South	n impacting the leach pad consists o	of undisturbed ground	d, curve numbe	er (CN) = 71.
•	The watershed to the South	n impacting the leach pad consists o	of undisturbed ground	d, curve numbe	er (CN) = 71.
•	The watershed to the South	n impacting the leach pad consists o	of undisturbed ground	d, curve numbe	er (CN) = 71.
•	The watershed to the South	n impacting the leach pad consists o	of undisturbed ground	d, curve numbe	er (CN) = 71.
•	The watershed to the South	n impacting the leach pad consists o	of undisturbed ground	d, curve numbe	er (CN) = 71.
•	The watershed to the South	n impacting the leach pad consists o	of undisturbed ground	d, curve numbe	er (CN) = 71.
•	The watershed to the South	n impacting the leach pad consists o	of undisturbed ground	d, curve numbe	er (CN) = 71.
		n impacting the leach pad consists o	of undisturbed ground	d, curve numbe	er (CN) = 71.
		n impacting the leach pad consists o	of undisturbed ground	d, curve numbe	er (CN) = 71.
		n impacting the leach pad consists o	of undisturbed ground	d, curve numbe	er (CN) = 71.
		n impacting the leach pad consists o	of undisturbed ground	d, curve numbe	er (CN) = 71.
		n impacting the leach pad consists o	of undisturbed ground	d, curve numbe	er (CN) = 71.
		n impacting the leach pad consists o	of undisturbed ground	d, curve numbe	er (CN) = 71.
		n impacting the leach pad consists o	of undisturbed ground	d, curve numbe	er (CN) = 71.
		n impacting the leach pad consists o	of undisturbed ground	d, curve numbe	er (CN) = 71.
EFERE	NCES	n impacting the leach pad consists o	of undisturbed ground	d, curve numbe	er (CN) = 71.
EFERE	NCES	n impacting the leach pad consists o	of undisturbed ground	d, curve numbe	er (CN) = 71.
REFERE	NCES				er (CN) = 71.
EFERE	NCES SIONS A triangular diversion char	n impacting the leach pad consists of			er (CN) = 71.
ONCLU •	NCES ISIONS A triangular diversion char Total depth = 2 feet				er (CN) = 71.
EFERE ONCLU	NCES SIONS A triangular diversion char Total depth = 2 feet Sides slopes = 2H:1V				er (CN) = 71.
CONCLU •	NCES VSIONS A triangular diversion char Total depth = 2 feet Sides slopes = $2H:1V$ Area = $8 ft^2$	nel with the following dimensions			er (CN) = 71.
EFERE ONCLU •	NCES SIONS A triangular diversion char Total depth = 2 feet Sides slopes = 2H:1V	nel with the following dimensions			er (CN) = 71.

AMC.

MITH WILLIAMS CONSULTANTS, INC. PROJECT: JOB NO: SHEET 2 OF 2 Aregua VLF 1125 FEATURE: BY: DATE: **Triangular Diverion Channel** ALD 2/8/08 DETAILS: CHKD BY: DATE: Channel Sizing DTW 2/8/08 1) Size of surface water diversion channel is based on precipitation equal to a 100 year 24 hour Type II • Criteria: storm event. • Analysis: Total Area of Watershed = 586,434 ft² = 0.0210 mi² = 13.46 acres CN = 71 Sheet Flow = 300 feet Average Sheet Slope = 37% Shallow Flow = 204 feet Average Shallow Slope = 47% Channel Flow = 926 feet Average Channel Slope = 25% Peak Flow = 29.3 cfs Precipitation Volume = 1.61 inches = 0.13 feet Total volume from storm = precipitation volume * total are of watershed = 0.13 ft * 586,434 ft² = 76,236 ft³ = 570,288 gallons A triangular diversion channel with the following dimensions can handle the expected runoff. Triangular diversion channel dimensions: Total depth = 2 feet Sides slopes = 2H:1V Area = 8ft² Wetted Perimeter = 8.94 ft ROCK CUTSLOPE 1L_____ 1.5 20' PHASE 5 DIVERSION DITCH INCISED INTO BEDROCK PHASE 5 VLF ACCESS ROAD

Triangular Diversion Trench

Project Description			目的に対象になったというないないないない。
Friction Method	Manning Formula		
Solve For	Discharge		
Input Data	的行政的行为方式		
Roughness Coefficient	•	0.035	
Channel Slope		0.25000	ft/ft
Normal Depth		2.00	ft
Left Side Slope		2.00	ft/ft (H:V)
Right Side Slope		2.00	ft∕ft (H:V)
Results			
Discharge		157.65	ft³/s
Flow Area		8.00	ft²
Wetted Perimeter		8.94	ft
Top Width		8.00	ft
Critical Depth		3.29	ft
Critical Slope		0.01754	ft/ft
Velocity		19.71	ft/s
Velocity Head		6.03	ft
Specific Energy		8.03	ft
Froude Number		3.47	
Flow Type	Supercritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data		16 6 A 19 1	
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		2.00	ft
Critical Depth		3.29	ft
Channel Slope		0.25000	ft/ft
Critical Slope		0.01754	ft/ft

Project: CC&V Upper Watershed Simulation Run: Run 3

Start of Run:	01Jan2008, 00:00	Basin Model:	CC&V Upper
End of Run:	02Jan2008, 00:05	Meteorologic Model:	100 year 24 hour storm
Compute Time:	12Mar2008, 16:51:50	Control Specifications	: 24 hour event

Volume Units: IN

Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Element	(MI2)	(CFS)		(IN)
Subbasin-1	0.021	29.3	01Jan2008, 12:00	1.61

```
CC_V_Upper.basin
Basin: CC&V Upper
Last Modified Date: 12 March 2008
Last Modified Time: 22:51:49
       Version: 3.1.0
       Unit System: English
Missing Flow To Zero: No
Enable Flow Ratio: No
Allow Blending: No
       Compute Local Flow At Junctions: No
End:
Subbasin: Subbasin-1
Canvas X: -1675.7493188010903
Canvas Y: 3569.482288828337
       Area: 0.021
       Canopy: None
                           1
       Surface: None
       LossRate: SCS
       Percent Impervious Area: 0.0
Curve Number: 71
       Initial Abstraction: 0 '
       Transform: SCS
       Lag: 6.29
       Baseflow: None
                             1
                              1
       Erosion: None
End:
Basin Schematic Properties:
       Last View N: 5000.0
      Last View S: -5000.0 /
Last View W: -5000.0
                                     1
       Last View E: 5000.0
      Maximum View N: 5000.0
Maximum View S: -5000.0
       Maximum View W: -5000.0 '
      Maximum View E: 5000.0
       Extent Method: Elements /
       Buffer: 0
      Draw Icons: Yes
      Draw Icon Labels: Yes
      Draw Gridlines: Yes
      Draw Flow Direction: No
End:
```

100_year_24_hour_storm.met Meteorology: 100 year 24 hour storm Last Modified Date: 15 January 2008 Last Modified Time: 23:37:23 Version: 3.1.0 Unit System: English Precipitation Method: SCS Storm Snowmelt Method: None Basin Model List: CC&V Upper End: Precip Method Parameters: SCS Storm Storm Depth: 3.5 Storm Type: Type II End: Subbasin: Subbasin-1 End: 24_hour_event.control Control: 24 hour event Last Modified Date: 15 January 2008 Last Modified Time: 23:37:16 Start Date: 1 January 2008 Start Time: 00:00 End Date: 2 January 2008 End Time: 00:05 Time Interval: 1 End:

Cripple Creek and Victor Arequa VLF Lag Time Calculation Using Natural Resources Conservation Service TR-55 Small Southern Watershed

Watershed Contribution Area Sheet Flow

Mannings n (table 3-1) =	0.15
Flow Length (ft, max 300 ft) =	300
24 hr Rainfall, P_2 (in) =	1.8
Land Slope, s (ft/ft) =	0.370
Tt (hr) =	0.163
Tt (min) =	9.8

Shallow Concentrated Flow

Flow Length, L (ft) =	204
Watercourse Slope (ft/ft) =	0.470
Average Velocity, V (ft/sec, fig 3-1) =	11
Tt (hr) =	0.005
Tt (min) =	0.3

Channel Flow

Cross Sectional Flow Area, a (ft ²) =	8
Wetted Perimiter, p_w (ft) =	3
Hydraulic Radius, $r = a/p_w$ (ft) =	2.67
Channel Slope, s (ft/ft) =	0.25
Manning's n =	0.035
V (ft/sec) =	40.93
Flow Length, L (ft) =	926
Tt (hr) =	0.006
Tt (min) =	0.4
Watershed or subarea Tc =	0.175

- Lag time (hr) = Lag time (min) = 0.105
 - 6.29

$$T_t = \frac{0.007(nl)^{0.8}}{P_2^{0.5} s^{0.4}}$$

$$T_t = \frac{L}{3600 V}$$

$$V = \frac{1.49 r^{2/3} s^{1/2}}{n}$$
$$T_t = \frac{L}{3600 V}$$

Chapter 3

Time of Concentration and Travel Time

Technical Release 55 Urban Hydrology for Small Watershedt

Figure 3-1 Average velocities for estimating travel time for shallow concentrated flow

Average velocity (ft/sec)

(210-VI-TR-65, Second Ed., June 1986)

3-2

Chapter 3

Time of Concentration and Travel Time

Technical Release 55 Urban Hydrology for Small Watersheds

Sheet flow

Sheet flow is flow over plane surfaces. It usually occurs in the headwater of streams. With sheet flow, the friction value (Manning's n) is an effective roughness coefficient that includes the effect of raindrop impact; drag over the plane surface; obstacles such as litter, crop ridges, and rocks; and erosion and transportation of sediment. These n values are for very shallow flow depths of about 0.1 foot or so. Table 3-1 gives Manning's n values for sheet flow for various surface conditions.

Table 3-1	Roughness coefficients (Manning's n) (lor
	about flow	

Surface description n ¥ Smooth surfaces (concrete, asphalt, gravel, or bare soil) 0.011 Pallow (no residue) 0.05 Cultivated soils: Residue cover ≤20% 0.06 Residue cover >20% 0.17 Grass Short grass prairie 0.15 Dense grasses 2' 0.24 Bernudagrass. 0.41 Range (natural) 0.13 Woods;≇ Light underbrush 0.40 Dense underbrush 0.80 1

 The n values are a composite of information compiled by Engman (1986).
 Induces species such as meaning languages blues are built.

Includes species such as weeping lovegrass, bluegrass, but grass, blue grans grass, and native grass mixtures.
 When selecting n , consider cover to a height of about 0.1 ft. This

When selecting n, consider cover to a height of about 0.1 ft. This is the only part of the plant cover that will obstruct sheet flow. For sheet flow of less than 300 feet, use Manning's kinematic solution (Overtop and Meadows 1976) to compute T_i:

$$T_{t} = \frac{0.007(nL)^{0.0}}{(P_{2})^{0.0} s^{0.4}}$$
 [eq. 3-3]

where:

$$\Gamma_{t} = travel time (hr),$$

- n = Manning's roughness coefficient (table 3-1)
- L = flow length (ft)
- $P_2 = 2$ -year, 24-hour rainfail (in)
- s = slope of hydraulic grade line (land slope, ft/ft)

This simplified form of the Manning's kinematic solution is based on the following: (1) shallow steady uniform flow, (2) constant intensity of rainfall excess (that part of a rain available for runoff), (3) rainfall duration of 24 hours, and (4) minor effect of infiltration on travel time. Rainfall depth can be obtained from appendix B.

Shallow concentrated flow

After a maximum of 300 feet, sheet flow usually becomes shallow concentrated flow. The average velocity for this flow can be determined from figure 3-1, in which average velocity is a function of watercourse slope and type of channel. For slopes less than 0.005 ft/ft, use equations given in appendix F for figure 3-1. Tillage can affect the direction of shallow concentrated flow. Flow may not always be directly down the watershed slope if tillage runs across the slope.

After determining average velocity in figure 3-1, use equation 3-1 to estimate travel time for the shallow concentrated flow segment.

Open channels

Cripple Creek and Victor Arequa VLF Lag Time Calculation Using Natural Resources Conservation Service TR-55 Sediment Pond - Runoff from North

/	
$\int T -$	$0.007(nl)^{0.8}$
	$P_2^{0.5}s^{0.4}$

Mannings n (table 3-1) =	0.15	
Flow Length (ft, max 300 ft) =	300	1
24 hr Rainfall, P_2 (in) =	1.8	
Land Slope, s (ft/ft) =	0.280	
Tt (hr) =	0.182	
Tt (min) =	10.9	

Shallow Concentrated Flow

Watershed Contribution Area Sheet Flow

 $T_t = \frac{L}{3600 V}$

Flow Length, L (ft) =	2752
Watercourse Slope (ft/ft) =	0.090
Average Velocity, V (ft/sec, fig 3-1) =	4.8
Tt (hr) =	0.159
Tt (min) =	9.6

Watershed or subarea Tc =	0.342
Lag time (hr) =	0.205
Lag time (min) =	12.30

CALCULATION TITLE PAGE

CLIENT Cripple C	reek & Victor Gold Company	JOB NO. 1125	TASK NO. A100	PAGE	1 (OF 2	
PROJECT		CALCULATION No.	REV. No.				
Arequa VI		1	1				
SUBJECT Sediment	Collection Pond Design						
REV.	PREPARER/ DATE	REVIEWER/ DATE	QA REVIEWER/	DATE	CONFI	RMATI	ON
NO.				· · · · · · · · · · · · · · · · · · ·	REQUI	RED (Y	/N)
1	Amanda L. Dolezal 2/1/08	Derek T. Wittwer 2/8/08	JELuper 21	8/08			
							_
					<u> </u>		
	ATION OBJECTIVE						
)esign a	a sediment collection pond to	handle the runoff from the water	shed to the North of the l	anah nad			
csign a	a sediment conection pond to	s handle the runoff from the water	rshed to the North of the l	each pad.			
ALCUL	ATION METHODOLOGY/ LIST						
•	The size of the sediment co	llection pond is based on 2 x a 10	year 24 hour Type II stor	m.			
•		that may impact the leach pad con					
_			isisis of both disturbed a	na unaistu	rbed land	i.	
•	Curve Number (CN) for dis	turbed land $= 90$					
•	Curve Number (CN) for un	disturbed land $= 71$					
	(01) 10 01						
REFERE	NCES						-
		cs", 7 th ed., 1996, McGraw-Hill C	omponies Inc				
		cs, / cd., 1990, McGlaw-IIII C	ompanies, me.				
ONCLU	SIONS						
JIGLU							
•	A trapezoidal shaped pond	with a total volume of 290,000 ft ³	will provide protection for	or the lead	1 pad from	m the	
	runoff from the watershed to	the North.					
	Total depth = 11 feet						
٠	Side slopes = $2H:1V$						
	•						

SVVC

C

PROJECT:		JOB NO:	SHEET_2_OF_2
Arequa VLF		1125	
EATURE: Sediment Collection	n Pond	BY: ALD	DATE: 2/1/08
etails: ond Sizing		CHKD BY: DTW	DATE: 2/8/08
• Criteria:	1) Size of pond based on precipita 2) Allow for 1 foot of freeboard i		our Type II storm event.
Analysis:			
	Total Area of Watershed = 2,661		es
	Area of disturbed land = 359,079	ft ²	
	CN = 90	Pag. 4.7	
	Area of undisturbed land = 2,302, CN = 71	,923 ft ⁻	
	Average CN = [(359,079ft ² * 90)	+ (2 302 523f+ ² * 71)] / (2 661 /	502 f+ ²)
	Average CN = 73.6 ≈ 7		552 11)
	Sheet Flow = 300 feet		
	Average Sheet Slope = 28%		
	Shallow Flow = 2752 feet		
	Average Shallow Slope = 9%		
	Lag Time = 12.30 minutes		
	Peak Flow = 33.3 cfs		
	Precipitation Volume = 0.55 inches	:= 0.0458 feet	
	Total volume from storm = precipi = 0.0458	tation volume * total are of wat 3 ft * 2,661,602 ft ² = 121,901 ft	
	Therefore required pond storage	= 911,886 gallons x 2 = 243,802	gallons
			1 ×
Trapezodia	ıl pond:	134'	XX
	Total depth = 11feet	134	\mathcal{A}
	Side slopes = 2H:1V		
	Total volume = 290,000 ft ³	TR	
	10101 volume = 290,000 ff		248'
		206'	
			258'
		,	

Chapter 3

Time of Concentration and Travel Time

Technical Release 55 Urban Hydrology for Small Watersheds

Figure 3-1 Average velocities for estimating travel time for shallow concentrated flow

Average velocity (ft/sec)

(210-VI-TR-65, Second Ed., June 1986)

3-2

Chapter 3

Time of Concentration and Travel Time

Technical Release 55 Urban Hydrology for Small Watersheds

Sheet flow

Sheet flow is flow over plane surfaces. It usually occurs in the headwater of streams. With sheet flow, the friction value (Manning's n) is an effective roughness coefficient that includes the effect of raindrop impact; drag over the plane surface; obstacles such as litter, crop ridges, and rocks; and erosion and transportation of sediment. These n values are for very shallow flow depths of about 0.1 foot or so. Table 3-1 gives Manning's n values for sheet flow for various surface conditions.

Table 3-1	Roughness coefficients	(Manning's n) for
	sheet flow	

Surface description	n ¥
	2
Smooth surfaces (concrete, asphalt,	
gravel, or bare soil)	0.011
Fallow (no residue)	0.05
Cultivated soils:	
Residue cover ≤20%	0.06
Residue cover >20%	0.17
Grasse	
Short grass prairie	0.15
Dense grasses 2'	0.24
Bernudagrass .	0.41
Range (natural)	0.13
Woods:	
Light underbrush	0.40
Dense underbrush	0.80

¹ The n values are a composite of information compiled by Engman (1986).

Includes species such as weeping lovegrass, bluegrass, buffido grass, blue grans grass, and native grass mixtures.
 When selecting n , consider cover to a height of about 0.1 ft. This

When selecting n, consider cover to a height of about 0.1 ft. This is the only part of the plant cover that will obstruct sheet flow. For sheet flow of less than 300 feet, use Manning's kinematic solution (Overtop and Meadows 1976) to compute T_{e^2}

$$T_{t} = \frac{0.007(nL)^{0.8}}{(P_{2})^{9.5} s^{0.4}}$$
 [eq. 3-3]

where:

- $T_t = travel time (hr),$
- n = Manning's roughness coefficient (table 3-1)
- L = flow length (ft)
- P2 = 2-year, 24-hour rainfall (in)
- s = slope of hydraulic grade line (land slope, ft/ft)

This simplified form of the Manning's kinematic solution is based on the following: (1) shallow steady uniform flow, (2) constant intensity of rainfall excess (that part of a rain available for runoff), (3) rainfall duration of 24 hours, and (4) minor effect of infiltration on travel time. Rainfall depth can be obtained from appendix B.

Shallow concentrated flow

After a maximum of 300 feet, sheet flow usually becomes shallow concentrated flow. The average velocity for this flow can be determined from figure 3-1, in which average velocity is a function of watercourse slope and type of channel. For slopes less than 0.005 ft/ft, use equations given in appendix F for figure 3-1. Tillage can affect the direction of shallow concentrated flow. Flow may not always be directly down the watershed slope if tillage runs across the slope.

After determining average velocity in figure 3-1, use equation 3-1 to estimate travel time for the shallow concentrated flow segment.

Open channels

Project: Runoff near Pad Simulation Run: Run 4

Start of Run:	01Jan2007, 00:00	Basin Model:	Basin 1
End of Run:	02Jan2007, 00:05	Meteorologic Model:	Met 1
Compute Time:	13Mar2008, 14:06:33	Control Specifications:	Control 1

Volume Units: IN

1	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
Runoff Watershed	0.0955	33.3	01Jan2007, 12:07	0.55

Basin_1.basin Basin: Basin 1 Last Modified Date: 13 March 2008 Last Modified Time: 20:06:32 Version: 3.1.0 Unit System: English Missing Flow To Zero: No Enable Flow Ratio: No Allow Blending: No Compute Local Flow At Junctions: No End: Subbasin: Runoff Watershed Canvas X: -1497.6958525345617 Canvas Y: 2388.6328725038406 Area: 0.0955 Canopy: None Surface: None LossRate: SCS Percent Impervious Area: 0.0 Curve Number: 74 Transform: SCS Lag: 12.3 Baseflow: None **Erosion:** None End: Basin Schematic Properties: Last View N: 5000.0 Last View S: -5000.0 Last View W: -5000.0 Last View E: 5000.0 Maximum View N: 5000.0 Maximum View S: -5000.0 Maximum View W: -5000.0 Maximum View E: 5000.0 Extent Method: Elements Buffer: 0 Draw Icons: Yes Draw Icon Labels: Yes Draw Gridlines: Yes Draw Flow Direction: No

End:

Met_1.met Meteorology: Met 1 Description: 10yr 24 hr Event Last Modified Date: 8 February 2008 Last Modified Time: 01:21:58 Version: 3.1.0 Unit System: English Precipitation Method: SCS Storm Snowmelt Method: None Basin Model List: Basin 1 End: Precip Method Parameters: SCS Storm Storm Depth: 2.4 Storm Type: Type II End: Subbasin: Runoff Watershed End:

Control_1.control Control: Control 1 Description: 24 Event Last Modified Date: 22 January 2008 Last Modified Time: 18:40:48 Start Date: 1 January 2007 Start Time: 00:00 End Date: 2 January 2007 End Time: 00:05 Time Interval: 1 End:

End:

Culvert Calculator Report Worksheet-1

Solve For: Headwater Elevation

Culvert Summary					
Allowable HW Elevation	9,739.00	ft	Headwater Depth/Heigh	nt 0.75	
Computed Headwater Elev	/៖ 9,737.63	ft	Discharge	33.30	cfs
Inlet Control HW Elev.	9,737.51	ft	Tailwater Elevation	0.00	ft
Outlet Control HW Elev.	9,737.63	ft	Control Type E	Entrance Control	
Grades					
Upstream Invert	9,735.00	ft	Downstream Invert	9,733.80	ft
Length	235.00	ft	Constructed Slope	0.005106	
Hydraulic Profile					
Profile	S2		Depth, Downstream	1.60	ft
Slope Type	Steep		Normal Depth	1.60	
Flow Regime	Supercritical		Critical Depth	1.79	
Velocity Downstream	. 7.78	ft/s	Critical Slope	0.003478	
Section	· · · · · · · · · · · · · · · · · · ·				
Section Shape	Circular		Mannings Coefficient	0.012	
SectorrygeteriaHDPE (Sm			Span	3.50	ft
Section Size	42 inch		Rise	3.50	
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	9,737.63	ft	Upstream Velocity Head	l 0.71	ft
Ке	0.20		Entrance Loss	0.14	ft
Inlet Control Properties					
Inlet Control HW Elev.	9,737.51	ft	Flow Control	Unsubmerged	
Inlet Type Beveled ring,		••	Area Full	9.6	fi2
K	0.00180		HDS 5 Chart	3.0	
M	2.50000		HDS 5 Scale	B	
С	0.02430		Equation Form	1	
×	0.92000			•	

0.83000

Y

CALCULATION TITLE PAGE

CLIENT Cripple Creek & Victor Gold Company		JOB NO. 1125	TASK NO. A100	PAGE	1	OF	2
PROJECT		CALCULATION No.	REV. No.				
Arequa VL		1	1				
SUBJECT/ LOB Haul	TITLE Road Diversion Channel						
REV.	PREPARER/ DATE	REVIEWER/ DATE	QA REVIEWER/	DATE		IRMA	
NO.					REQU	JIRED	(T/N)
1	Derek T. Wittwer 11/25/07	Amanda L. Dolezai 3/10/0	8 / Lyn 3/	0/18			
CALCUL	ATION OBJECTIVE			1			
		B Haul Road, determine con	tribution from the watershe	d and design	n surfa	ice w	ater
	to accommodate the runoff.	DB Haul Koad, determine con	inducion from the watershee	u, and design	li Sulla	ice wa	ater
controis	to accommodate the runoff.						
CALCUL	ATION METHODOLOGY/ LIST of						
•	The size of the surface water	diversion channel is based or	n a 100 year 24 hour Type I	I storm.			
•	The watershed impacting the	LOB Haul Road consists of	undisturbed ground, curve n	umber (CN)) = 71.		
			0				
REFERE	NCES						
-							
CONCLU	SION5						
•	A triangular diversion chann	el with the following dimens	ions can handle the expecte	d runoff:			
	Total depth = 1.5 feet						
	Sides slopes = 2.5H:1V						
	Sides slopes = $2.5H:1V$ Area = 5.63 ft^2						
	Area = 5.03 ft Wetted Perimeter = 8.08 ft						
'	welled Perinciel - 8.08 It						

1 B	1 200
S.A. II	1.32
1011	1.44
100 010	20 400

 \bigcirc

PROJECT:		JOB NO:	SHEET 2 OF 2
Arequa VLF		1125	
	ingular Diversion Channel	ву: DTW	DATE: 11/25/07
DETAILS:		CHKD BY:	DATE:
Channel Sizing		ALD	3/10/08
• Criteria:	 Size of surface water diversion ch storm event. 	nan <mark>nel is based on precipitatio</mark>	n equal to a 100 year 24 hour Type II
Analysis:			
	Total Area of Watershed = 2,294,80)4 ft² = 0.0823 mi² = 52.7acre	3
	<i>C</i> N = 71		
	Sheet Flow = 300 feet		
	Average Sheet Slope = 20%		
	Shallow Flow = 790 feet		
	Average Shallow Slope = 34%		
	Channel Flow = 2944feet		
	Average Channel Slope = 10%		
	Lag Time = 11.13 minutes		
	Peak Flow = 62.8 cfs		
	Precipitation Volume = 1.06 inches = ().09 feet	
	Total volume from storm = precipitat	ion volume * total are of wate	rshed
	= 0.09 ft *	2,294,804 ft ² = 206,532 ft ³	= 1,544,970 gallons
	A triangular diversion channel with th	e following dimensions can ha	ndle the expected runoff.
	Triangular diversion channel dimensio	ns:	
	Total depth = 1.5 feet		
	Sides slopes = 2.5H:1V		
	Area = 5.63ft ²		
	Wetted Perimeter = 8.08 ft		
	80'	TRAVEL WIDTH	
BERM	35"		
		45'	
<u>)</u>	0.05	1 11	2.5'
			THICKNESS = 12°

Cripple Creek and Victor Phase 5 VLF Lag Time Calculation Using Natural Resources Conservation Service TR-55 Phase A

Watershed Contribution Area 4 Sheet Flow

Mannings n (table 3-1) =	0.15
Flow Length (ft, max 300 ft) =	300
24 hr Rainfall, P_2 (in) =	1.8
Land Slope, s (ft/ft) =	0.200
Tt (hr) =	0.209
Tt (min) =	12.5

$T_t = \frac{0.007 (nl)^{0.8}}{P_2^{0.5} s^{0.4}}$

Shallow Concentrated Flow

Flow Length, L (ft) =	790
Watercourse Slope (ft/ft) =	0.240
Average Velocity, V (ft/sec, fig 3-1) =	9.5
	0.023
Tt (min) =	1.4

Channel Flow

Cross Sectional Flow Area, a (ft ²) =	5.63
Wetted Perimiter, p_w (ft) =	8.08
Hydraulic Radius, $r = a/p_w$ (ft) =	0.70
Channel Slope, s (ft/ft) =	0.1
Manning's n =	0.035
V (ft/sec) =	10.58
Flow Length, L (ft) =	2944
Tt (hr) =	0.077
Tt (min) =	4.6
Watershed or subarea Tc =	0.309
Lag time (hr) =	0.195

Lag time (hr) = 0.185 Lag time (min) = 11.13

Note: Figure 3-1 and table 3-1 are on sheet 2

$$T_t = \frac{L}{3600 V}$$

7

$$V = \frac{1.49 r^{2/3} s^{1/2}}{n}$$
$$T_{t} = \frac{L}{3600 V}$$

Chapter 3

Technical Release 65 Urban Hydrology for Small Watershi

(210-VI-TR-65, Second Ed., June 1086)

12

Technical Release 55 Urban Hydrology for Small Watersheds

Sheet flow

Sheet flow is flow over plane surfaces. It usually occurs in the headwater of streams. With sheet flow, the friction value (Manning's n) is an effective roughness coefficient that includes the effect of raindrop impact; drag over the plane surface; obstacles such as litter, crop ridges, and rocks: and erosion and transportation of sediment. These n values are for very shallow flow depths of about 0.1 foot or so. Table 8-1 gives Manning's n values for sheet flow for various surface conditions.

Table 3-1	Roughness coefficients (Manning's n) for
	sheet flow

Surface description	n F
Smooth surfaces (concrete, asphalt,	
gravel, or bare soil)	0.011
Fallow (no residue)	0.05
Cultivated soils:	
Residue cover ≤20%	0.03
Residue cover >20%	0.17
Grass:	
Short grass prairie	0.15
Dense grasses 2	0.24
Bernuidagrassi.	0.41
Range (natural)	0.13
Woods	
Light underbrush	0.40
Dense underbrush	0.80

¹ The n values are a composite of information compiled by Engman (1986).

Includes species such as weeping lovegrass, bluegrass, builhlo grass, blue granu grass, and native grass mixtures.

```
2 When selecting n, consider cover to a height of about 0.1 ft. This
is the only part of the plant cover that will obstruct sheet flow.
```

For sheet flow of less than 300 feet, use Manning's kinematic solution (Overtop and Meadows 1976) to compute $T_{\rm el}$

$$T_{t} = \frac{0.007(nL)^{0.8}}{(P_{2})^{0.5} s^{0.4}}$$
 [eq. 3-3]

where:

$$T_{t} = travel time (hr),$$

L = flow length (ft)

 $P_2 = 2$ -year, 24-hour rainfall (in)

 slope of hydraulic grade line (land slope, ft/ft)

This simplified form of the Manning's kinematic solution is based on the following: (1) shallow steady uniform flow, (2) constant intensity of rainfall excess (that part of a rain available for runoff), (3) rainfall duration of 24 hours, and (4) minor effect of infiltration on travel time. Rainfall depth can be obtained from appendix B.

Shallow concentrated flow

After a maximum of 300 feet, sheet flow usually becomes shallow concentrated flow. The average velocity for this flow can be determined from figure 3-1, in which average velocity is a function of watercourse slope and type of channel. For slopes less than 0.005 ft/ft, use equations given in appendix F for figure 3-1. Tillage can affect the direction of shallow concentrated flow. Flow may not always be directly down the watershed slope if tillage runs across the slope.

After determining average velocity in figure 3-1, use equation 3-1 to estimate travel time for the shallow concentrated flow segment.

Open channels

Project: CC&V LOB Simulation Run: Run 3

Start of Run:	01Jan2008, 00:00	Basin Model:	Basin 1
End of Run:	02Jan2008, 00:01	Meteorologic Model:	100 year 24 hour
Compute Time:	13Mar2008, 16:38:48	Control Specifications	-

Volume Units: IN

- I	Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
	Subbasin-1	0.0823	62.8	01Jan2008, 12:05	1.06

Basin_1.basin Basin: Basin 1 Last Modified Date: 13 March 2008 Last Modified Time: 22:38:47 Version: 3.1.0 Unit System: English Missing Flow To Zero: No Enable Flow Ratio: No Allow Blending: No Compute Local Flow At Junctions: No End: Subbasin: Subbasin-1 Canvas X: -806.4516129032254 Canvas Y: 1221.1981566820277 Area: 0.0823 Canopy: None Surface: None LossRate: SCS Percent Impervious Area: 0.0 Curve Number: 71 Transform: SCS Lag: 11.13 **Baseflow:** None Erosion: None End: Basin Schematic Properties: Last View N: 5000.0 Last View S: -5000.0 Last View W: -5000.0 Last View E: 5000.0 Maximum View N: 5000.0 Maximum View S: -5000.0 Maximum View W: -5000.0 Maximum View E: 5000.0 Extent Method: Elements Buffer: 0 Draw Icons: Yes Draw Icon Labels: Yes Draw Gridlines: Yes Draw Flow Direction: No

End:

100_year_24_hour.met Meteorology: 100 year 24 hour Last Modified Date: 10 March 2008 Last Modified Time: 20:18:40 Version: 3.1.0 Unit System: English Precipitation Method: SCS Storm Snowmelt Method: None Basin Model List: Basin 1 End: Precip Method Parameters: SCS Storm Storm Depth: 3.5 Storm Type: Type II End: Subbasin: Subbasin-1 End:

Control_1.control Control: Control 1 Last Modified Date: 10 March 2008 Last Modified Time: 20:19:59 Start Date: 1 January 2008 Start Time: 00:00 End Date: 2 January 2008 End Time: 00:01 Time Interval: 1 Fnd: End:

LOB Triangular Diversion Channel

Project Description			出口,如此现在自己的现象。1993年1993年
Friction Method	Manning Formula		
Solve For	Discharge		
Input Data			
Roughness Coefficient		0.035	
Channel Slope		0.10000	ft/ft
Normal Depth		1.50	ft
Left Side Slope		2.50	ft/ft (H:V)
Right Side Slope		2.50	ft/ft (H:V)
Results			
Discharge		59.33	ft³/s
Flow Area		5.63	ft²
Wetted Perimeter		8.08	ft
Top Width		7.50	ft
Critical Depth		2.04	ft
Critical Slope		0.01959	ft/ft
Velocity		10.55	ft/s
Velocity Head		1.73	ft
Specific Energy		3.23	ft
Froude Number		2.15	
Flow Type	Supercritical		
GVF Input Data		Star South	
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data		- 	
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		1.50	ft
Critical Depth		2.04	ft
Channel Slope		0.10000	ft/ft
Critical Slope		0.01959	ît/ît

Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.066.00] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1

Culvert Calculator Report Worksheet-2

Solve For: Headwater Elevation

Y

Culvert Summary					
Allowable HW Elevation	9,886.59	ft	Headwater Depth/Heigh	t 0.94	6
Computed Headwater Eleva	£ 9,884.80	ft	Discharge	63.00	cfs
Inlet Control HW Elev.	9,884.19	ft	Tailwater Elevation	9,880.13	
Outlet Control HW Elev.	9,884.80	ft	Control Type	Outlet Control	
Grades					
Upstream Invert	9.881.50	ft	Downstream Invert	9.880.13	A
Length	137.30	ft	Constructed Slope	0.000000	
Hydraulic Profile					
Profile	H2		Depth, Downstream	1.74	ft
Slope Type	Horizontal		Normal Depth	N/A	
Flow Regime	Subcritical		Critical Depth	1.74	
Velocity Downstream	6.62	ft/s	Critical Slope	0.013738	
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	3.50	A
Section Size	42 inch		Rise	3.50	
Number Sections	2			0.00	Ň
Outlet Control Properties					
Outlet Control HW Elev.	9,884.80	ft	Upstream Velocity Head	0.21	ft
Ке	0.90		Entrance Loss	0.19	ft
Inlet Control Properties					_
Inlet Control HW Elev.	9,884.19	ft	Flow Control	Unsubmerged	
Inlet Type	Projecting		Area Full	19.2	A2
K	0.03400		HDS 5 Chart	19.2	1 1 -
М	1.50000		HDS 5 Scale	2	
С	0.05530		Equation Form	1	
V					

0.54000

CALCULATION TITLE PAGE

CLIENT Cripple Creek & Victor Gold Company		JOB NO. 1125	TASK NO. A100	PAGE 1	OF	5
PROJECT Arequa VL	F	CALCULATION No.	REV. No.			
SUBJECT/	TITLE					<u>_</u>
	re Watersheds and Diversion Cha					
REV. NO.	PREPARER/ DATE	REVIEWER/ DATE	QA REVIEWER/ DA		CONFIRM. REQUIRED	
1	Amanda L. Dolezal 2/26/08	Derek T. Wittwer 3/1/08	JE Lyn 3/11	1.1		
	ATION OBJECTIVE					
Delineat	e watershed impacting the po	ost closure design, determine contr	ribution from each watersh	hed, and des	sign surfa	ice
water co	ntrols to accommodate the ru	inoff.				
	inters to accommodute the re					
CALCUL	TION METHODOLOGY/ LIST	of ASSUMPTIONS			-	
			00	4		
		diversion channel is based on a 1		torm.		
		areas can be broken into 6 separat				
		s 1 and 2 are grouped together to				
•	• Watershed contribution areas 3A, 3B, 4 and 5 are grouped together to form the North watershed.					
•	• All of the watersheds consist of disturbed ground, curve number (CN) = 50.					
REFEREN	ICES		·····			
NEFEREN						
CONCLUS	SIONS					
JUNULU	CONCLUSIONS					
•	• Two trapezoidal diversion channels, one in the North Watershed and one in the South Watershed with the					
	following dimensions can handle the expected runoff:					
	T ())					
	Total depth = 2.5 feet					
• Sides slopes = $4H:1V$						
	Area = 37.5 ft^2					
•	Wetted Perimeter = 25.6 ft					
l						
1						

SVVC

l

SANC SMITH WILLIAMS CONSULTANTS, INC

6

project: Aregua VLF	јов но: 1125	SHEET_3_OF_5	
FEATURE:			
Post Closure Watersheds and Diversion Channels	BY: ALD	DATE: 2/26/08	
DETAILS:	CHKD BY:	DATE:	_
Runoff Contributions and Channel Sizing	DTW	3/1/08	
Analysis:			
Total Area of Each Watershed:			
Watershed 3A: Area = 2,234,655 ft ² = 0.0802 mi ²	2		
Total length of flow path = 1275 ft			
Sheet Flow = 300 feet			
Average Sheet Slope = 8%			
Shallow Flow = 975 feet			
Average Shallow Slope = 31%			
Peak Flow = 2.6 cfs			
Lag Time = 11.93 minutes			
CN = 50			
Watershed 3B: Area = 1,055,432 ft ² = 0.0379 mi ²			
Total length of flow path = 2532 ft			
Sheet Flow = 300 feet			
Average Sheet Slope = 8%			
Shallow Flow = 2232 feet			
Average Shallow Slope = 23%			
Peak Flow = 13.82 cfs			
Lag Time = 13.82minutes			
<i>C</i> N = 50			
Watershed 4: Area = 3,543,826 ft ² = 0.1271mi ²			
Total length of flow path = 1317 ft			
Sheet Flow = 300 feet			
Average Sheet Slope = 1%			
Shallow Flow = 1017 feet			
Average Shallow Slope = 15%			
Peak Flow = 3.2 cfs			
Lag Time = 26.53 minutes			
CN = 50			

SAAC SMITH WILLIAMS CONSULTANTS, INC.

PROJECT: Arequa VLF		јов no: 1125	SHEET_4_OF_5	
FEATURE:		BY:	DATE.	
	rsheds and Diversion Channels	ALD	DATE: 2/26/08	
details: Runoff Contributio	ns and Channel Sizing	снко ву: DTW	DATE: 3/1/08	
Analysis:				
Total Are	a of Each Watershed:			
Watershe	d 5: Area = 3,945,885 ft ² = 0.1415 mi ²			
	Total length of flow path = 2259 ft			
	Sheet Flow = 300 feet			
	Average Sheet Slope = 1%			
	Shallow Flow = 1959 feet			
	Average Shallow Slope = 17%			
	Peak Flow = 3.5 cfs			
	Lag Time = 28.29 minutes CN = 50			
North Div	ersion Channel: (Watersheds 3A, 3B, 4 &	5)		
	Total length of flow path = 3445 ft (Cl	nannel Flow)		
	Section 1 = 2022 feet @ 11% (NW)			
	Peak Flow = 5.4 cfs			
	Lag Time = 1.06 minutes CN = 50			
	Section 2 = 1423 feet @ 1% (NE)			
	Peak Flow = 10.1cfs			
	Lag Time = 2.59 minutes CN = 50			
South Div	ersion Channel: (Watersheds 1 & 2)			
	Total length of flow path = 1614 ft (Ch	annel Flow)		
	Section 1 = 1614 feet @ 20%			
	Peak Flow = 1.5 cfs			
	Lag Time = 0.66 minutes CN = 50			
5				

SANC SMITH WILLIAMS CONSULTANTS, INC.

	PROJECT: Arequa VLF	јов no: 1125	SHEET <u>5</u> OF <u>5</u>	
· 8	FEATURE: Post Closure Watersheds and Diversion Channels	BY: ALD	DATE: 2/26/08	
	DETAILS: Runoff Contributions and Channel Sizing	CHKD BY: DTW	DATE: 3/1/08	·

• Analysis:

Two trapezoidal diversion channels, one in the North Watershed and one in the South Watershed, with the following dimensions can handle the expected runoff.

Trapezoidal diversion channels dimensions:

Total depth = 2.5 feet Sides slopes = 4H:1V Area = 37.5 ft² Wetted Perimeter = 25.6 ft

North Watershed Total Length = 3445 feet

South Watershed Total Length = 1614 feet

Project: CC&V Simulation Run: South

Start of Run:	01Jan2008, 00:00	Basin Model:	South Watershed
End of Run:	02Jan2008, 00:05	Meteorologic Model:	100 yr 24 hr
Compute Time:	27Feb2008, 16:10:33	Control Specifications:	Control 1

Volume Units: IN

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
Diversion Channel	0.0378	1.5	01Jan2008, 12:06	0.19
WS #1	0.0118	0.4	01Jan2008, 12:12	0.19
WS #2	0.0260	1.3	01Jan2008, 12:05	0.20

South_Watershed.basin Basin: South Watershed Description: Watersheds 1 & 2 Last Modified Date: 27 February 2008 Last Modified Time: 23:10:03 Version: 3.1.0 Unit System: English Missing Flow To Zero: No Enable Flow Ratio: No Allow Blending: No Compute Local Flow At Junctions: No End: Subbasin: WS #1 Description: Watershed #1 Canvas X: 115.20737327188999 Canvas Y: -1036.8663594470045 Area: 0.0118 Downstream: Diversion Channel Canopy: None Surface: None LossRate: SCS Percent Impervious Area: 0.0 Curve Number: 50 Transform: SCS Lag: 11.05 Baseflow: None Erosion: None End: Reach: Diversion Channel Canvas X: -529.9539170506914 Canvas Y: -4539.170506912442 From Canvas X: 115.20737327188999 From Canvas Y: -3402.4577572964645 Label X: -6.0 Label Y: -10.0 Route: Lag Lag: 0.66 Channel Loss: None End: Subbasin: WS #2 Description: Watershed #2 Canvas X: 2281.1059907834106 Canvas Y: -2188.940092165898 From Canvas X: 1134.5659636463688 From Canvas Y: 97.35570159258259 Area: 0.026 Downstream: Diversion Channel Canopy: None Surface: None LossRate: SCS Percent Impervious Area: 0.0

Page 1

South_Watershed.basin Curve Number: 50 Transform: SCS Lag: 6.3 Baseflow: None Erosion: None End: Basin Schematic Properties: Last View N: 5000.0 Last View S: -5000.0 Last View W: -5000.0 Last View W: -5000.0 Maximum View S: -5000.0 Maximum View S: -5000.0 Maximum View S: -5000.0 Maximum View S: 5000.0 Maximum View S: 5000.0 Extent Method: Elements Buffer: 0 Draw Icons: Yes Draw Icon Labels: Yes Draw Flow Direction: No

End:

100_yr_24_hr.met Meteorology: 100 yr 24 hr Last Modified Date: 15 February 2008 Last Modified Time: 18:40:12 Version: 3.1.0 Unit System: English Precipitation Method: SCS Storm Snowmelt Method: None Basin Model List: South Watershed, North Watershed End: Precip Method Parameters: SCS Storm Storm Depth: 3.5 Storm Type: Type II End: Subbasin: WS #2 End: Subbasin: WS #1 End: Subbasin: WS #3A End: Subbasin: WS #4 End: Subbasin: WS #5 End: Subbasin: WS #3B End:

Control_1.control Control: Control 1 Description: 24 hour Last Modified Date: 15 February 2008 Last Modified Time: 01:19:39 Start Date: 1 January 2008 Start Time: 00:00 End Date: 2 January 2008 End Time: 00:05 Time Interval: 1 End:

End:

Chapter 3

Time of Concentration and Travel Time

Technical Release 55 Urban Hydrology for Small Watersheds

(210-VI-TR-65, Second Ed., June 1986)

3-2

Cripple Creek and Victor Arequa VLF Lag Time Calculation Using Natural Resources Conservation Service TR-55 Post Closure Watershed #1

Watershed Contribution Area Sheet Flow

Mannings n (table 3-1) = Flow Length (ft, max 300 ft) =	0.15 300
24 hr Rainfall, P_2 (in) =	1.8
Land Slope, s (ft/ft) =	0.080
Tt (hr) =	0.301
Tt (min) =	18.1

$T_t = \frac{0.007(nl)^{0.8}}{P_2^{0.5}s^{0.4}}$

Shallow Con	centrated	Flow
-------------	-----------	------

Flow Length, L (ft) =	142
Watercourse Slope (ft/ft) =	0.180
Average Velocity, V (ft/sec, fig 3-1) =	6.75
Tt (hr) =	0.006
Tt (min) =	0.4

Channel Flow

Cross Section 15	
Cross Sectional Flow Area, a (ft ²) =	37.5
Wetted Perimiter, p_w (ft) =	25.6
Hydraulic Radius, $r = a/p_w$ (ft) =	1.46
Channel Slope, s (ft/ft) =	0.26
Manning's n =	0.035
V (ft/sec) =	28.00
Flow Length, L (ft) =	0
Tt (hr) =	_
Tt (min) =	-
Watershed or subarea Tc =	0.307
Lag time (hr) =	0.184
Lag time (min) =	11.05

$$T_t = \frac{L}{3600 V}$$

$$V = \frac{1.49 r^{2/3} s^{1/2}}{n}$$
$$T_t = \frac{L}{3600 V}$$

Cripple Creek and Victor Arequa VLF Lag Time Calculation Using Natural Resources Conservation Service TR-55 Post Closure Watershed #2

Watershed Contribution Area Sheet Flow

Mannings n (table 3-1) =	0.15
Flow Length (ft, max 300 ft) =	300
24 hr Rainfall, P_2 (in) =	1.8
Land Slope, s (ft/ft) =	0.330
Tt (hr) =	0.171
Tt (min) =	10.3

Shallow Concentrated Flow

Flow Length, L (ft) =	160
Watercourse Slope (ft/ft) =	0.470
Average Velocity, V (ft/sec, fig 3-1) =	11
Tt (hr) =	0.004
Tt (min) =	0.2

Channel Flow

Cross D. It	
Cross Sectional Flow Area, a (ft ²) =	37.5
Wetted Perimiter, $p_w(ft) =$	25.6
Hydroulie D - II	20.0
Hydraulic Radius, $r = a/p_w$ (ft) =	1.46
Channel Slope, s (ft/ft) =	0.26
Manning's n =	0.035
V (ft/sec) =	28.00
Flow Length, L (ft) =	0
Tt (hr) =	-
Tt (min) =	-
Watershed or subarea Tc =	0.175
Lag time (hr) =	0.105
Lag time (min) =	
	6.30

Note: Figure 3-1 and table 3-1 are on sheet 2

$$T_t = \frac{L}{3600 V}$$

 $T_t = \frac{0.007(nl)^{0.8}}{P_2^{0.5} s^{0.4}}$

$$V = \frac{1.49 r^{2/3} s^{1/2}}{n}$$
$$T_t = \frac{L}{3600 V}$$

Cripple Creek and Victor Arequa VLF Lag Time Calculation Using Natural Resources Conservation Service TR-55 **South Diversion Channel**

Watershed Contribution Area **Sheet Flow**

Mannings n (table 3-1) =	0.15
Flow Length (ft, max 300 ft) =	0
24 hr Rainfall, P_2 (in) =	1.8
Land Slope, s (ft/ft) =	0.080
'Tt (hr) =	-
Tt (min) =	-

$T_t = \frac{0.007(nl)^{0.8}}{P_2^{0.5} s^{0.4}}$

Flow Length, L (ft) = Watercourse Slope (ft/ft) =	0.180
Average Velocity, V (ft/sec, fig 3-1) =	6.75
Tt (hr) =	-
Tt (min) =	1.000

Channel Flow

Shallow Concentrated Flow

Cross Sectional Flow Area, a (ft ²) =	37.5
Wetted Perimiter, p_w (ft) =	25.6
Hydraulic Radius, r = a/p _w (ft) =	1.46
Channel Slope, s (ft/ft) =	0.2
Manning's n =	0.035
V (ft/sec) =	24.56
Flow Length, L (ft) =	1614
Tt (hr) =	0.018
Tt (min) =	1,1
Watershed or subarea Tc =	0.018
Lag time (hr) =	0.011
Lag time (min) =	0.66

$$T_t = \frac{L}{3600 V}$$

$$V = \frac{1.49 r^{2/3} s^{1/2}}{n}$$
$$T_t = \frac{L}{3600 V}$$

South Diversion Channel

Project Description

Friction Method Solve For	Manning Formula Discharge		
Input Data			
Roughness Coefficient		0.450	
Channel Slope		0.150 0.20000	0 /2
Normal Depth		2.50	ft/ft
Left Side Slope		4.00	
Right Side Slope		4.00	ft/ft (H:V)
Bottom Width		5.00	ît/ft (H:∨) ft
Results			
Discharge		214.19	ft ⁻ /s
Flow Area		37.50	ft²
Wetted Perimeter		25.62	ft
Top Width		25.00	ft
Critical Depth		2.28	ft
Critical Slope		0.30377	ft/ft
Velocity		5.71	ft/s
Velocity Head		0.51	ft
Specific Energy		3.01	ft
Froude Number		0.82	
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		2.50	ft
Critical Depth		2.28	ft
Channel Slope		0.20000	ft/ft
Critical Slope		0.30377	ft/ft

3/10/2008 11:42:08 AM

Bentley FlowMaster [08.01.066.00] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1

Project: CC&V Simulation Run: North

Start of Run:	01Jan2008, 00:00	Basin Model:	North Watershed
End of Run:	02Jan2008, 00:05	Meteorologic Model:	100 yr 24 hr
Compute Time:	20Mar2008, 10:49:15	Control Specifications	: Control 1

Volume Units: IN

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
Reach NE	0.3867	9.7	01Jan2008, 12:39	0.19
Reach NW	0.2073	5.3	01Jan2008, 12:35	0.19
WS #3A	0.0802	2.6	01Jan2008, 12:13	0.19
WS #3B	0.0379	1.2	01Jan2008, 12:17	0.19
WS #4	0.1271	3.2	01Jan2008, 12:39	0.19
WS #5	0.1415	3.5	01Jan2008, 12:41	0.19

Q

North_Watershed.basin **Basin: North Watershed** Description: Watersheds 3A, 3B, 4 & 5 Last Modified Date: 20 March 2008 Last Modified Time: 16:49:15 Version: 3.1.0 Unit System: English Missing Flow To Zero: No Enable Flow Ratio: No Allow Blending: No Compute Local Flow At Junctions: No End: Subbasin: WS #3A Description: Watershed #3A Canvas X: -2173.5791090629796 Canvas Y: 2296.466973886329 Area: 0.0802 Downstream: Reach NW Canopy: None Surface: None LossRate: SCS Percent Impervious Area: 0.0 Curve Number: 50 Transform: SCS Lag: 11.93 Baseflow: None Erosion: None End: Subbasin: WS #4 Description: Watershed #4 Canvas X: -2649.7695852534557 Canvas Y: 775.7296466973894 From Canvas X: -153.6098310291859 From Canvas Y: -2350.230414746544 Area: 0.1271 Downstream: Reach NW Canopy: None Surface: None LossRate: SCS Percent Impervious Area: 0.0 Curve Number: 50 Transform: SCS Lag: 26.53 Baseflow: None Erosion: None End: Subbasin: WS #5 Description: Watershed #5 Canvas X: 1774.1935483870966

North_Watershed.basin Canvas Y: 545.3149001536103 From Canvas X: -153.60983102918544 From Canvas Y: -1920.1228878648235 Area: 0.1415 Downstream: Reach NE Canopy: None Surface: None LossRate: SCS Percent Impervious Area: 0.0 Curve Number: 50 Transform: SCS Lag: 28.29 Baseflow: None Erosion: None End: Subbasin: WS #3B Description: Watershed #3B Canvas X: 1850.9984639016902 Canvas Y: 2050.6912442396315 Label X: -2.0 Label Y: -1.0 Area: 0.0379 Downstream: Reach NE Canopy: None Surface: None LossRate: SCS Percent Impervious Area: 0.0 Curve Number: 50 Transform: SCS Lag: 13.82 Baseflow: None Erosion: None End: Reach: Reach NW Description: #1 Canvas X: -314.9001536098308 Canvas Y: 1205.8371735791093 From Canvas X: -1298.0030721966214 From Canvas Y: 1559.1397849462364 Label X: -69.0 Label Y: -16.0 Downstream: Reach NE Route: Lag Lag: 1.06 Channel Loss: None End: Reach: Reach NE

Page 2

North_Watershed.basin Description: #2 Description: #2 Canvas X: 1589.8617511520742 Canvas Y: 1466.9738863287253 From Canvas X: -314.9001536098308 From Canvas Y: 1205.8371735791093 Label X: 2.0 Label Y: -17.0 Route: Lag Lag: 2.59 Channel Loss: None End: Basin Schematic Properties: Last View N: 5000.0 Last View S: -5000.0 Last View W: -5000.0 Last View E: 5000.0 Maximum View N: 5000.0 Maximum View S: -5000.0 Maximum View W: -5000.0 Maximum View E: 5000.0 Extent Method: Elements Buffer: 0 Draw Icons: Yes Draw Icon Labels: Yes Draw Gridlines: Yes Draw Flow Direction: No

End:

100_yr_24_hr.met Meteorology: 100 yr 24 hr Last Modified Date: 15 February 2008 Last Modified Time: 18:40:12 Version: 3.1.0 Unit System: English Precipitation Method: SCS Storm Snowmelt Method: None Basin Model List: South Watershed, North Watershed End: Precip Method Parameters: SCS Storm Storm Depth: 3.5 Storm Type: Type II End: Subbasin: WS #2 End: Subbasin: WS #1 End: Subbasin: WS #3A End: Subbasin: WS #4 End: Subbasin: WS #5 End: Subbasin: WS #3B End:

Control_1.control Control: Control 1 Description: 24 hour Last Modified Date: 15 February 2008 Last Modified Time: 01:19:39 Start Date: 1 January 2008 Start Time: 00:00 End Date: 2 January 2008 End Time: 00:05 Time Interval: 1 End:

End:

Chapter 3

Time of Concentration and Travel Time

Technical Release 65 Urban Hydrology for Small Watersheds

Figure 3-1 Average velocities for estimating travel time for shallow concentrated flow

Average velocity (ft/sec)

(210-VI-TR-65, Second Ed., June 1986)

3-2

Chapter 3

Time of Concentration and Travel Time

Technical Release 55 Urban Hydrology for Small Watersheds

. . .

(210-VI-TR-65, Second Ed., June 1986)

3-2

Cripple Creek and Victor Arequa VLF Lag Time Calculation Using Natural Resources Conservation Service TR-55 Post Closure Watershed #3A

Watershed Contribution Area **Sheet Flow**

Mannings n (table 3-1) = 0.15 Flow Length (ft, max 300 ft) = 300 24 hr Rainfall, P_2 (in) = 1.8 Land Slope, s (ft/ft) = 0.080 Tt (hr) = 0.301 Tt(min) =18.1

Shallow Concentrated Flow

Flow Length, L (ft) =	975
Watercourse Slope (ft/ft) =	0.310
Average Velocity, V (ft/sec, fig 3-1) =	9
Tt (hr) =	0.030
Tt (min) =	1.8

Channel Flow

11.93

Cross Sectional Flow Area, a (ft ²) =	37.5
Wetted Perimiter, p_w (ft) =	25.6
Hydraulic Radius, $r = a/p_w$ (ft) =	1.46
Channel Slope, s (ft/ft) =	0.26
Manning's n =	0.035
V (ft/sec) =	28.00
Flow Length, L (ft) =	0
Tt (hr) =	_
Tt (min) =	-
Watershed or subarea Tc =	0.331
Lag time (hr) =	0.199

Lag time (min) =

$$T_t = \frac{0.007(nl)^{0.8}}{P_2^{0.5} s^{0.4}}$$

$$T_t = \frac{L}{3600 V}$$

$$V = \frac{1.49 r^{2/3} s^{1/2}}{n}$$
$$T_t = \frac{L}{3600 V}$$

Cripple Creek and Victor Arequa VLF Lag Time Calculation Using Natural Resources Conservation Service TR-55 Post Closure Watershed #3B

Watershed Contribution Area Sheet Flow

Mannings n (table 3-1) =	0.15
Flow Length (ft, max 300 ft) =	300
24 hr Rainfall, P_2 (in) =	1.8
Land Slope, s (ft/ft) = 🦰	0.080
Tt (hr) =	0.301
Tt (min) =	18.1

Shallow Concentrated Flow

Flow Length, L (ft) = Watercourse Slope (ft/ft) = Average Velocity, V (ft/sec, fig 3-1) =	0 230
Tt (hr) =	0.083
Tt (min) =	5.0

Channel Flow

Cross Sectional Flow Area, a $(ft^2) =$	37.5
Wetted Perimiter, p_w (ft) =	25.6
Hydraulic Radius, $r = a/p_w$ (ft) =	1.46
Channel Slope, s (ft/ft) =	0.26
Manning's n =	0.035
V (ft/sec) =	28.00
Flow Length, L (ft) =	0
Tt (hr) =	-
Tt (min) =	-
Watershed or subarea Tc =	0.384

stershed of subarea IC =	0.384
Lag time (hr) =	0.230
Lag time (min) =	13.82

$$T_t = \frac{0.007(nl)^{0.8}}{P_2^{0.5} s^{0.4}}$$

$$T_t = \frac{L}{3600 V}$$

$$V = \frac{1.49 r^{2/3} s^{1/2}}{n}$$
$$T_t = \frac{L}{3600 V}$$

Cripple Creek and Victor Arequa VLF Lag Time Calculation Using Natural Resources Conservation Service TR-55 Post Closure Watershed #4

Watershed Contribution Area Sheet Flow

Mannings n (table 3-1) =	0.15
Flow Length (ft, max 300 ft) =	300
24 hr Rainfall, P_2 (in) =	1.8
Land Slope, s (ft/ft) =	0.010
Tt (hr) =	0.692
Tt (min) =	41.5

Shallow Concentrated Flow

Flow Length, L (ft) =	1017
Watercourse Slope (ft/ft) =	0.150
Average Velocity, V (ft/sec, fig 3-1) =	6.25
Tt (hr) =	0.045
Tt (min) =	2.7

Channel Flow

Cross Sectional Flow Area, a (ft ²) =	37.5
Wetted Perimiter, p_w (ft) =	25.6
Hydraulic Radius, r = a/p _w (ft) =	1.46
Channel Slope, s (ft/ft) =	0.26
Manning's n =	0.035
V (ft/sec) =	28.00
Flow Length, L (ft) =	0
Tt (hr) =	_
Tt (min) =	-
Watershed or subarea Tc =	0.737
Lag time (hr) =	0.442

Lag time (min) = 26.53

$$T_t = \frac{0.007(nl)^{0.8}}{P_2^{0.5} s^{0.4}}$$

$$T_t = \frac{L}{3600 V}$$

$$V = \frac{1.49 r^{2/3} s^{1/2}}{n}$$
$$T_t = \frac{L}{3600 V}$$

Cripple Creek and Victor Arequa VLF Lag Time Calculation Using Natural Resources Conservation Service TR-55 Post Closure Watershed #5

Watershed Contribution Area Sheet Flow

Mannings n (table 3-1) =	0.15
Flow Length (ft, max 300 ft) =	300
24 hr Rainfall, P_2 (in) =	1.8
Land Slope, s (ft/ft) = 🦰	0.010
Tt (hr) =	0.692
Tt (min) =	41.5

Shallow Concentrated Flow

Flow Length, L (ft) = Watercourse Slope (ft/ft) =	0 170
Average Velocity, V (ft/sec, fig 3-1) =	6.75
Tt (hr) =	0.094
Tt (min) =	5.6

Channel Flow

Cross Sectional Flow Area, a (ft ²) =	7 50
	37.5
Wetted Perimiter, p_w (ft) =	25.6
Hydraulic Radius, r = a/p _w (ft) =	1.46
Channel Slope, s (ft/ft) =	0.26
Manning's n =	0.035
V (ft/sec) =	28.00
Flow Length, L (ft) =	0
Tt (hr) ≈	-
Tt (min) =	-
Watershed or subarea Tc =	0.786
Lag time (hr) =	0 472

Lag time (hr) = 0.472 Lag time (min) = 28.29

$$T_t = \frac{0.007(nl)^{0.8}}{P_2^{0.5} s^{0.4}}$$

$$T_t = \frac{L}{3600 V}$$

$$V = \frac{1.49 r^{2/3} s^{1/2}}{n}$$
$$T_t = \frac{L}{3600 V}$$

Cripple Creek and Victor Arequa VLF Lag Time Calculation Using Natural Resources Conservation Service TR-55 North Diversion Channel - NW Reach

Watershed Contribution Area Sheet Flow

Mannings n (table 3-1) =	0.15
Flow Length (ft, max 300 ft) =	0
24 hr Rainfall, P_2 (in) =	1.8
Land Slope, s (ft/ft) =	0.080
Tt (hr) =	-
Tt (min) =	-

Shallow Concentrated Flow

Flow Length, L (ft) =	
Watercourse Slope (ft/ft) = Average Velocity, V (ft/sec, fig 3-1) =	0.180
Tt (hr) =	-
Tt (min) =	-

Channel Flow

Cross Sectional Flow Area, a (ft ²) =	37.5
Wetted Perimiter, $p_w(ft) =$	25.6
Hydraulic Radius, r = a/p _w (ft) =	1.46
Channel Slope, s (ft/ft) =	0.12
Manning's n =	0.035
V (ft/sec) =	19.02
Flow Length, L (ft) =	2022
Tt (hr) =	0.030
Tt (min) =	1.8
Watershed or subarea Tc =	0.030
Lag time (hr) =	0.018
Lag time (min) =	1.06

$$T_t = \frac{0.007 (nl)^{0.8}}{P_2^{0.5} s^{0.4}}$$

$$T_t = \frac{L}{3600 V}$$

$$V = \frac{1.49 r^{2/3} s^{1/2}}{n}$$
$$T_t = \frac{L}{3600 V}$$

North Diversion Channel - NW Reach

	Stat Diversion	Ghanne	- NW Keach
Project Description			
Friction Method	Manning Formula		
Solve For	Discharge		
land D. (Discharge		
Input Data			
Roughness Coefficient		0.150	1
Channel Slope		0.12000	
Normal Depth		2.50	
Left Side Slope		4.00	
Right Side Slope		4.00	
Bottom Width		5.00	
Results		0.00	ii.
Discharge			
Flow Area		165.91	ft³/s
Wetted Perimeter		37.50	ft²
Top Width		25.62	ft
Critical Depth		25.00	ft
Critical Slope		2.01	ft
Velocity		0.31445	ft/ft
Velocity Head		4.42	ft/s
Specific Energy		0.30	ft
Froude Number		2.80	ft
Flow Type	• • • •	0.64	
	Subcritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	•
Profile Description		0.00	ft
Profile Headloss			
Downstream Velocity		0.00	ft
Upstream Velocity		Infinity	ft/s
Normal Depth			ft/s
Critical Depth			ft
Channel Slope			ft
Critical Slope			ft/ft
-		0.31445	ft/ft

Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.066.00] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1

Cripple Creek and Victor Arequa VLF Lag Time Calculation Using Natural Resources Conservation Service TR-55 North Diversion Channel - NE Reach

Watershed Contribution Area **Sheet Flow**

Mannings n (table 3-1) =	0.15
Flow Length (ft, max 300 ft) =	0
24 hr Rainfall, P_2 (in) =	1.8
Land Slope, s (ft/ft) =	0.080
Tt (hr) =	-
Tt (min) =	-

Shallow Concentrated Flow

Flow Length, L (ft) =	0
Watercourse Slope (ft/ft) =	0.180
Average Velocity, V (ft/sec, fig 3-1) =	6.75
Tt (hr) =	-
Tt (min) =	-

Channel Flow

Cross Sectional Flow Area, a (ft ²) =	37.5
Wetted Perimiter, p_w (ft) =	25.6
Hydraulic Radius, $r = a/p_w$ (ft) =	1.46
Channel Slope, s (ft/ft) =	0.01
Manning's n =	0.035
V (ft/sec) =	5.49
Flow Length, L (ft) =	1423
Tt (hr) =	0.072
Tt (min) =	4.3
Watershed or subarea Tc =	0.072
antimo (br) –	0.040

Lag time (nr) =	0.043
Lag time (min) =	2.59

$$T_t = \frac{0.007(nl)^{0.8}}{P_2^{0.5} s^{0.4}}$$

$$T_t = \frac{L}{3600 V}$$

$$V = \frac{1.49 r^{2/3} s^{1/2}}{n}$$
$$T_t = \frac{L}{3600 V}$$

North Diversion Channel - NE Reach Project Description Friction Method Manning Formula Discharge Input Data **Roughness Coefficient** 0.150 Channel Slope 0.01000 ft/ft Normal Depth 2.50 ft Left Side Slope 4.00 ft/ft (H:V) **Right Side Slope** 4.00 ft/ft (H:V) Bottom Width 5.00 ft

Discharge		
Flow Area		47.89 ft³/s
Wetted Perimeter		37.50 ft ²
Top Width		25.62 ft
Critical Depth		25.00 ft
Critical Slope		1.07 ft
Velocity		0.37354 ft/ft
Velocity Head		1.28 ft/s
Specific Energy		0.03 ft
Froude Number		2.53 ft
Flow Type	Subcritical	0.18
	Subchildal	
GVF Input Data		
Downstream Depth		
Length		0.00 ft
Number Of Steps		0.00 ft
		0
GVF Output Data		
Upstream Depth		0.00
Profile Description		0.00 ft
Profile Headloss		0.00
Downstream Velocity		0.00 ft
Upstream Velocity		Infinity ft/s
Normal Depth		Infinity ft/s
Critical Depth		2.50 ft
Channel Slope		1.07 ft
Critical Slope		0.01000 ft/ft
		0.37354 ft/ft

3/10/2008 11:56:04 AM

Solve For

Results

Bentley Systems, inc. Haestad Methods Solution Center 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley FlowMaster [08.01.066.00] Page 1 of 1

Technical Release 65 Urban Hydrology for Small Watersheds

Sheet flow

Sheet flow is flow over plane surfaces. It usually occurs in the headwater of streams. With sheet flow, the friction value (Manning's it) is an effective roughness coefficient that includes the effect of raindrop impact; drag over the plane surface; obstacles such as litter, crop ridges, and rocks; and erosion and transportation of sediment. These it values are for very shallow flow depths of about 0.1 foot or so. Table 3-1 gives Manning's a values for sheet flow for various surface conditions.

Table 3-1

Roughness coefficients (Manning's n) for sheet flow

Surface description	n P
Smooth surfaces (concente, asphalt,	
gravel, or bare soil)	0.011
Fallow (no residue)	0.65
Cultivated soils:	22.223
Residue cover <20%	0.65
Residue cover >20%	0.17
Grass:	
Short grass prairie	<u>9</u> .17
L'ense grasses 2'	024
Bermudagrass	0.41
Range (natural)	9.1N
Light underbrush	6.40
Dense underbrush	0.90

¹ The n values are a composite of information completely Bigman (1985).

Finductes species such as weeping lovegraza bluegrass, builde grass, blue grama grass, and native grass mixtures. When selecting n , consider cover to a height of about 0.1 ft. This

3 is the only part of the plant cover that will obstruct sheet flow. For sheet flow of less than 300 feet, use Manning's kinematic solution (Overtop and Meadows 1976) to compute T_i:

0.0

$$T_{t} = \frac{0.007(nL)^{0.5}}{(P_{2})^{0.5} s^{0.4}}$$
 [eq. 3-3]

where:

- = travel time (hr). $T_{\rm r}$
- = Manning's roughness coefficient (table 3-1) n.

L = flow length (ft)

- $P_2 = 2$ -year, 24-hour rainfall (in)
- s = slope of hydraulic grade line (land slope, fl/ft)

This simplified form of the Manning's kinematic solution is based on the following: (1) shallow steady uniform flow, (2) constant intensity of rainfall excess (that part of a rain available for runoff), (3) rainfall duration of 24 hours, and (4) minor effect of infiltration on travel time. Rainfall depth can be obtained from appendix B.

Shallow concentrated flow

After a maximum of 300 fect, sheet flow usually becomes shallow concentrated flow. The average velocity for this flow can be determined from figure 3-1, in which average velocity is a function of watercourse slope and type of channel. For slopes less than 0.005 ft/ft, use equations given in appendix F for figure 3-1. Tillage can affect the direction of shallow concentrated flow. Flow may not always be directly down the watershed slope if tillage runs across the slope.

After determining average velocity in figure 3-1, use equation 3-1 to estimate travel time for the shallow concentrated flow segment.

Open channels