

Appendix C.6.2

AGOSA Foundation Settlement Calculations

Project: CC&V Phase 5 VLF	Job No. 1125
Calculation Title: AGOSA Foundation Settlement	I
Prepared By: JFL	Date: March 3, 2008
Checked By: DTW	Date: March 14, 2008

OBJECTIVE:

Assess the settlement and potential strain of geomembrane along the AGOSA slope as the Phase 5 VLF is loaded to 10,320 ft elevation (590 ft).

METHOD:

Use PLAXIS, a two-dimensional finite element program to assess stress and strains under the 590 ft ore height.

Apply the model to a cross-section that cuts through the AGOSA slope, where the ore height reaches 590 feet. This section is to also include the relocated Carlton Mill tailings which are beneath the AGOSA (see Figure 1).

ASSUMPTIONS:

- Since the focus of the analysis is the strain and deformation of the AGOSA overburden slope.
- Given the scale of the model, the geomembrane liner on the AGOSA slope cannot be modeled explicitly; however the liner strains can be estimated using the strains along the slope surface of interest (e.g. the geomembrane liner does not contribute to the strength).
- The overburden was modeled as a strain-hardening material with a friction angle of 32 degrees with zero cohesion. The unit weight of the ore was set to 125 pcf, which considered typical for the overburden materials. The strain-hardening model used in Plaxis takes the form of:

$E = E^{ref} \left(\sigma / P^{ref} \right)^m$

Where E^{ref} is the initial (reference) elastic modulus, which was set at 824,000 psf. The reference pressure (P^{ref}) was set at 100 psf, and the power constant (m) was set to 0.50. The strain-hardening parameters were derived from an earlier deformation analysis conducted on the SGOSA. The modulus used agrees well with typical values for coarse-grained rockfill as presented in Hunter and Fell (2003) and Bowles (1982).

- The bedrock is modeled as a Mohr-Coulomb material with a friction angle of 40 degrees and zero cohesion. The unit weight of the bedrock is 140 pounds per cubic foot.
- The ore over the liner was modelled as a linear-elastic material with a density of 118 pcf (dry ore plus field capacity moisture content), a friction angle of 40 degrees, and no cohesion.

Project: CC&V Phase 5 VLF	Job No. 1125
Calculation Title:	
AGOSA Foundation Settlement	
Prepared By: JFL	Date: March 3, 2008
Checked By: DTW	Date:March 14, 2008

CALCULATIONS:

A finite element mesh was constructed for the section of interest. A medium-size mesh was used for the ore above the AGOSA and bedrock, since deformations of these materials are not critical to this analysis. The finite element mesh was refined for the AGOSA material to an maximum element size of approximately 20 feet.

The model was first used to calculate the initial conditions, with the current AGOSA, without ore. Then the ore height was sequentially increased until an elevation of 10,320 (e.g. 590 feet of ore) was reached. The model output report is attached, which includes the finite element mesh, material distribution, and basic results.

In order to assess the deformation and strain along the AGOSA slope, calculation points were placed within the model along the slope. These points were used to monitor the stresses and strains along the AGOSA slope boundary, where the VLF liner system will be located.

CONCLUSIONS:

The PLAXIS model results report is attached to this calculation sheet. In order to assess the potential strain and deformation in the VLF liner system, calculation points were added to the model along the AGOSA slope (see model output). Total displacements are used to determine the settlement of the AGOSA foundation under future loading conditions. Shear strains are used to assess movement along the AGOSA slope that may impact the liner system. Shear strains reflect extension of the geomembrane liner by settlement (in two dimensions).

Based on the model output, the total settlement of the AGOSA foundation is anticipated to settle approximately 1 feet due to the 590 ft ore loading. Data from the model and the calculation points show that after the VLF is loaded to 590 feet with ore, the global strain on the AGOSA liner system will be less than 5 %, which is acceptable for the VLF liner systems.

<u>References</u>

Bowles, J.E. 1982. Foundation Analysis and Design. Third Edition. New York: McGraw-Hill Book Company. 816 pp.

Hunter, G. and R. Fell, 2003. Rockfill Modulus and Settlement of Concrete Face Rockfill Dams, J. Geotech. And Geoenv. Vol. 129, No. 10. ASCE.

(

Project: CC&V Phase 5 VLF	Job No. 1125
Calculation Title:	
AGOSA Foundation Settlement	
Prepared By: JFL	Date: March 3, 2008
Checked By: DTW	Date: March 14, 2008

Figure 1 Plan

P

(

C

Project: CC&V Phase 5 VLF	Job No. 1125
Calculation Title: AGOSA Foundation Settlement	
Prepared By: JFL	Date: March 3, 2008
Checked By: DTW	Date: March 14, 2008

Figure 2 Section

Red – Regraded/Liner Surface White – Existing Ground Green – Ore Surface

 \bigcirc

0

 \bigcirc

Northeast Corner

(

Project: CC&V Phase 5 VLF	Job No. 1125
Calculation Title:	
AGOSA Foundation Settlement	
Prepared By: JFL	Date: March 3, 2008
Checked By: DTW	Date: March 14, 2008

Figure 3 Shear Strain Plot

()

Project: CC&V Phase 5 VLF	Job No. 1125
Calculation Title: AGOSA Foundation Settlement	
AGOSA Foundation Settlement	
Prepared By: JFL	
	Date: March 3, 2008
Checked By: DTW	Date: March 14, 2008

Plaxis Output

REPORT

03/03/2008

User: Smith Williams Consultants

Title: AGOSA Slope

 \bigcirc

Table of Contents

 \bigcirc

1. General Information	3
2. Geometry	4
3. Mesh data	5
4. Material data	5 6
5. Results for phase 1	0
5.1. Deformations	0
5.1.1. Plot of total displacements	0
5.1.2. Plot of horizontal displacements	10
5.1.3. Plot of vertical displacements	11
5.1.4. Plot of total strains	12
5.2. Stresses	10
5.2.5. Plot of effective stresses	12
6. Results for phase 2	1J 1A
6.3. Deformations	····· 17
6.3.6. Plot of total displacements.	
6.3.7. Plot of horizontal displacements	
6.3.8. Plot of vertical displacements	16
6.3.9. Plot of total strains	
6.4. Stresses	····· 17
6.4.10. Plot of effective stresses	····· 1 / 10
	10

1. General Information

Table [1] units

Туре	Unit
Length	ft
Force	lb
Time	day

Table [2] Model dimensions

	min.	max.
X	0.000	1700.000
Y	9560.951	10320.000

Table [3] Model

Model	Plane Strain
Element	15-Noded

2. Geometry

 \bigcirc

Fig. 1 Plot of geometry model with significant nodes

4

3. Mesh data

 \bigcirc

Fig. 2 Plot of the mesh with significant nodes

4. Material data

 \bigcirc

Fig. 3 Plot of	f geometry w	ith material	data sets
----------------	--------------	--------------	-----------

Table [4] Son data sets parameters		
Linear Elastic		5
	<u> </u>	stiff ore
Туре		Drained
Yunsat	[lb/ft³]	118.00
Ysat	[lb/ft³]	118.00
k _x	[ft/day]	3.281
k _y	[ft/day]	3.281
e _{init}	[-]	0.500
c _k	[-]	1E15
\mathbf{E}_{ref}	[lb/ft²]	600000.00
ν	[[-]	0.200
\mathbf{G}_{ref}	[lb/ft²]	250000.000
Eoed	[lb/ft²]	666666.667
Eincr	[lb/ft²/ft]	0.00
y _{ref}	[ft]	0.000
Rinter	[-]	0.670
Interfac	e	Neutral
permeability		

Table [4] Soil data sets parameters

PLAXIS 8.x Professional version

 \bigcirc

(

Mohr-Cou	lomb	2 Consolidated Tailings	3 Bedrock	4 Bedrock	
Туре		Drained	Drained	Drained	
Yunsat	[lb/ft³]	108.00	140.00	140.00	
Ysat	[lb/ft³]	130.00	140.00	140.00	
k _x	[ft/day]	1.640	1.640	1.640	
k _y	[ft/day]	1.640	1.640	1.640	
e _{init}	[-]	1.000	0.500	0.500	
ck	[-]	1E15	1E15	1E15	
Eref	[lb/ft²]	700000.000	200000000.000	200000000.000	
v	[-]	0.300	0.250	0.250	
Gref	[lb/ft²]	269230.769	80000000.000	80000000.000	
\mathbf{E}_{oed}	[lb/ft²]	942307.692	240000000.000	240000000.000	
Cref	[lb/ft²]	0.00	0.00	0.00	
φ	[°]	29.00	40.00	40.00	
Ψ	[°]	3.00	3.00	3.00	
Einc	[lb/ft²/ft]	0.00	0.00	0.00	
Yref	[ft]	0.000	0.000	0.000	
Cincrement	[lb/ft²/ft]	0.00	0.00	0.00	
T _{str.}	[lb/ft²]	0.00	0.00	0.00	
R _{inter.}	[-]	0.70	1.00	1.00	
Interfa permeab		Neutral	Neutral	Neutral	

Hardening Soil		1	6
		Overburden	rockfill
Туре		Drained	Drained
Yunsat	[lb/ft³]	125.00	118.00
Ysat	[lb/ft³]	125.00	118.00
k _x	[ft/day]	3.281	3.281
k _y	[ft/day]	3.281	3.281
einit	[-]	0.50	0.50
e _{min}	[-]	0.00	0.00
e _{max}	[-]	999.00	999.00
ck	[-]	1E15	1E15
E ₅₀ ref	[lb/ft²]	100000.00	130000.00
Eoed	[lb/ft²]	823745.91	130000.00
power (m)	[-]	0.50	0.32
C _{ref}	[lb/ft²]	0.00	0.00
φ	[°]	32.00	32.00
Ψ	[°]	2.00	2.00
Eur	[lb/ft²]	400000.00	461538.46
$V_{ur}^{(nu)}$	[-]	0.200	0.200
p ^{ref}	[lb/ft²]	100.00	100.00
Cincrement	[lb/ft²]	0.00	0.00
y ref	[ft]	0.00	0.00
R _f	[-]	0.90	0.90
T _{str.}	[lb/ft²]	0.00	0.00
Rinter	[-]	0.67	0.67
δ _{inter}	[ft]	0.00	0.00
Interface		Neutral	Neutral
permeability			

PLAXIS 8.x Professional version

 \bigcirc

 \bigcirc

5. Results for phase 1

5.1. Deformations

 \bigcirc

5.1.1. Plot of total displacements

Fig. 4 Plot of total displacements (shadings) - Step no: 11 - (Phase: 1)

5.1.2. Plot of horizontal displacements

Fig. 5 Plot of horizontal displacements (shadings) - Step no: 11 - (Phase: 1)

5.1.3. Plot of vertical displacements

Fig. 6 Plot of vertical displacements (shadings) - Step no: 11 - (Phase: 1)

5.1.4. Plot of total strains

Fig. 7 Plot of total strains (shear shadings) - Step no: 11 - (Phase: 1)

5.2. Stresses

5.2.5. Plot of effective stresses

Fig. 8 Plot of effective stresses (mean shadings) - Step no: 11 - (Phase: 1)

6. Results for phase 2

6.3. Deformations

 \bigcirc

6.3.6. Plot of total displacements

Fig. 9 Plot of total displacements (shadings) - Step no: 18 - (Phase: 2) ()

6.3.7. Plot of horizontal displacements

Fig. 10 Plot of horizontal displacements (shadings) - Step no: 18 - (Phase: 2)

6.3.8. Plot of vertical displacements

Fig. 11 Plot of vertical displacements (shadings) - Step no: 18 - (Phase: 2)

6.3.9. Plot of total strains

Fig. 12 Plot of total strains (shear shadings) - Step no: 18 - (Phase: 2)

6.4. Stresses

6.4.10. Plot of effective stresses

Fig. 13 Plot of effective stresses (mean shadings) - Step no: 18 - (Phase: 2)

Project: CC&V Phase 5 VLF	Job No. 1125	
Calculation Title:		
Phase Iv a Ore Slope Settlement		
Prepared By: JFL	Date: February 29 2008	

Ore Compressibility Curve

• The bedrock is modeled as a Mohr-Coulomb material with a friction angle of 40 degrees and zero cohesion. The unit weight of the bedrock is 140 pounds per cubic foot.

CALCULATIONS:

A finite element mesh was constructed for the section of interest. A medium-size mesh was used for the ore above the Phase IVa 9770 bench and bedrock, since deformations of these materials are not critical to this analysis. Within the Phase IVa ore, the finite element mesh was refined to an maximum element size of approximately 20 feet.

The model was first used to calculate the initial conditions, with the current Phase IVa ore slope. Then the ore height was sequentially increased until an elevation of 10,320 (e.g. 590 feet of ore) was reached. The model output report is attached, which includes the finite element mesh, material distribution, and basic results.