Appendix 6

Cresson Project East Cresson Overburden Storage Area Design

## RECEIVED

APR 1 5 2008

Division of Reclamation, Mining and Safety

Prepared for:

Cripple Creek & Victor Gold Mining Company Victor, Colorado 80860

Date: April 7, 2008

Project No. 1385L



Innovative Environmental Solutions

130 West Fourth Avenue Denver, Colorado 80223 303.698-9080 Fax 303.698-9241 www.abch2o.com

## Tableof**Contents**

### Adrian Brown

| 1. | INTE | RODUCTION1                   |
|----|------|------------------------------|
| 2. | DES  | SIGN OBJECTIVES1             |
| 3. |      | T CRESSON OVERBURDEN STORAGE |
|    | 3.1  | Location1                    |
|    | 3.2  | Geology2                     |
|    | 3.3  | Hydrology2                   |
|    |      | 3.3.1 Climate2               |
|    |      | 3.3.2 Runoff2                |
|    |      | 3.3.3 Infiltration2          |
|    |      | 3.3.4 Fate of Infiltration2  |
| 4. | DES  | IGN3                         |
|    | 4.1  | Design3                      |
|    | 4.2  | Quantities3                  |
|    | 4.3  | Infiltration3                |
|    | 4.4  | Sulfide Oxidation4           |
|    | 4.5  | Pyrite Availability5         |
|    | 4.6  | Carbonate Neutralization5    |
|    | 4.7  | Neutralization Products6     |
| 5. | CON  | STRUCTION6                   |
|    | 5.1  | Base Construction6           |
|    | 5.2  | Overburden Placement6        |
|    |      | 5.2.1 Lift Construction6     |

-

| REFE | RENCE                   |         | 7 |
|------|-------------------------|---------|---|
| 5.4  | Revegetation            | ्र<br>ह | 7 |
| 5.3  | Cover Construction      |         | 7 |
|      | 5.2.2 Face Construction | 0       | 7 |

### Listof Tables

6.

| Table 1 - Cresson Mine Precipitation          | 9 |
|-----------------------------------------------|---|
| Table 2 – Cresson Mine Area Evaporation       |   |
| Table 3 - Surface Water Flow in Grassy Valley |   |
| Table 4 - ECOSA Quantities                    |   |
| Table 5 - Oxygen Availability in ECOSA        |   |
| Table 6 - Neutralization Test Results         |   |
|                                               |   |

#### List of Plates

Plate 1 – ECOSA Location in Cripple Creek Mining District

#### ListofFigures

Figure 1 – ECOSA Location Plan Figure 2 – ECOSA Geology Figure 3 – Base Preparation Plan Figure 4 – Overburden Storage Plan Figure 5 – Slope and Bench Detail

#### Listof Attachments

Attachment One – Design Computations Attachment Two – Borrow Soil Testing Data

### 1. INTRODUCTION

The Cripple Creek Mining District ("District") is located in a seven square mile volcanic diatreme structure and contiguous rocks that have been altered by the diatremal volcanic activity in the central Colorado Rocky Mountains near the cities of Cripple Creek and Victor. Gold has been produced from this District for more than a century, primarily from underground mines operated between 1890 and 1940. To facilitate underground mining, the entire Mining District was dewatered by a series of tunnels constructed between the late 1800s and 1942. In 1993 large-scale mining was restarted in the District using surface mining methods, with overburden storage near the mines, and ore processing in a valley leach facility ("VLF") at the south end of the district (the "Cresson Project").

Cripple Creek & Victor Gold Mining Company (CC&V) is proposing a mine life expansion ("MLE"), by mining an additional 360 million tons of rock in the district, of which approximately 110 million tons would be processed as ore in a phased expansion of the VLF, and approximately 250 million tons of overburden would be used for mine backfill or placed in constructed overburden storage facilities.

The expansion proposes creation of the East Cresson Overburden Storage Area (ECOSA). This facility will store up to 66 million tons of overburden, and is located within Grassy Valley, at the northern edge of the diatreme. This report presents the design of that facility to be protective of the environment in Grassy Valley.

### 2. DESIGN OBJECTIVES

The objective of the ECOSA is to provide a location to store up to 66 million tons of project overburden.

The physical constraints of the design are:

- Honor property boundaries
- Remain clear of existing or future surface mines

The environmental objectives of the design are:

- Minimize infiltration through the facility
- Minimize air entry to overburden
- Minimize flow of infilitrated water from the facility to Grassy Valley
- Minimize water quality impact to Grassy Valley

### 3. EAST CRESSON OVERBURDEN STORAGE AREA

#### 3.1 Location

The ECOSA is proposed to be located on the northern edge of the Cripple Creek Mining District, to the north of the backfilled East Cresson Mine (Plate 1). This location is on the southern flank of Grassy Valley, and terminates at the northern edge of the backfill of the East Cresson Mine (Figure 1).

### 3.2 Geology

The geology of the ECOSA is as follows:

| 0.5-1 foot | Growth medium/Soil                                                            |
|------------|-------------------------------------------------------------------------------|
| 30-60 feet | Colluvium (silt and clay with gravel and boulders)                            |
| >1000 feet | Bedrock (Tertiary volcanic breccia and phonolite of Cripple Creek diatreme to |
|            | southeast, and Precambrian granite and gneiss to the north)                   |

The geology in the vicinity of the ECOSA is shown on Figure 2. The ECOSA falls almost entirely within the Cripple Creek diatreme.

### 3.3 Hydrology

### 3.3.1 <u>Climate</u>

The ECOSA area receives an average of 19.58 inches per year of total precipitation (Table 1), one quarter falls in the winter and spring (mostly as snow), and three quarters falls in spring and summer.

The potential evaporation for the area is 44.29 inches per year (Table 2).

#### 3.3.2 <u>Runoff</u>

Surface water flow in the vicinity of the ECOSA is limited. Surface water flow in Grassy Valley has been monitored in the period 1997-present. The flow is highly variable. The annual average flow is 40 gpm (ABC, 2008) at GV-3 (Figure 1). This comprises a yield of approximately 0.6 inches per year on the 2 square mile catchment of Grassy Valley above GV-3.

### 3.3.3 Infiltration

Infiltration to the natural ground surface in the area has been determined to be  $5 \pm 1$  inches per year (ABC, 2008).

### 3.3.4 Fate of Infiltration

The ECOSA is substantially within the Cripple Creek diatreme, and is entirely within the ground water catchment area of the diatreme (ABC, 2008). Plate 1 shows the location of the ECOSA, the diatremal boundary, and the ground water catchment limit of the diatreme.

Infiltration in the vicinity of the ECOSA passes through the soil and colluvium into the underlying diatremal bedrock. The water likely then passes into the main diatreme and becomes part of the regional ground water eventually flowing into Four Mile Creek through the Carlton Tunnel. It is possible that some component of the infiltrating flow emerges into the alluvium of Grassy Valley, but flow data from Grassy Creek suggests that little, if any, ground water baseflow enters the creek.

### 4. DESIGN

Design of the ECOSA to meet the design objectives set forth in Section 2 above is presented in detail in Attachment 1. This section sets out the general design, and summarizes the performance anticipated for the facility.

### 4.1 Design

The design of the ECOSA is as follows:

- Lift height 50 ft (end dumped, with upper surface sloped 1% to south)
- Inter-bench slope 2.5:1 (to allow material placement, proof-rolling, and compaction)
- Bench width 10 ft (benches sloped to remove surface runoff from slope)
- Clay base course 24" (15% plasticity index ["PI"], -24", clayey gravel, proof rolled)
- Compacted clay
   12" (15% PI, -2", clayey gravel, compacted to 95% of optimum)
   Growth Medium
   6" (native soil recovered from pile featurint)
  - Growth Medium 6" (native soil, recovered from pile footprint)

### 4.2 Quantities

Quantities of materials in the ECOSA are as follows (Table 4):

- Overburden stored 66 million tons
- Base course clay cover 906,000 tons
- Compacted clay cover 453,000 tons
- Growth medium 226,000 tons

### 4.3 Infiltration

During construction of the ECOSA, the infiltration that will occur is evaluated as follows:

- 1. <u>End-dumped slopes.</u> Infiltration to exposed end-dumped slopes during construction will be high (estimated at 10" year, twice the revegetated infiltration). The exposed end-dumped area will be maintained at a minimum, and will average approximately 9.1 acres at any time. The infiltration to this face will comprise an average of approximately 4.7 gallons per minute ("gpm") infiltration for the construction period of the ECOSA. This infiltrating water will be retained in the overburden material, and will provide approximately 2% of the water required for the overburden to reach field capacity (7.5% by volume).
- 2. <u>Wheel-compacted surface.</u> The upper surface of each lift will be wheel compacted, and will retain, shed, and evaporate precipitation in a manner similar to reclaimed surfaces. Infiltration is therefore expected to be approximately 5" per year, the same as the reclaimed infiltration. The average exposed upper surface during the construction of the ECOSA is computed to be approximately 63 acres. The infiltration to this surface will comprise an average of approximately 16 gpm for the construction period of the ECOSA. This infiltrating water will also be retained in the overburden, and will contribute approximately 7% of the water required for the overburden to reach field capacity.

3. <u>Reclaimed surface</u>. All surfaces are to be progressively reclaimed after placement of overburden and completion of the cover. The material that is replaced on the surface is the more plastic of the material that was borrowed from beneath the footprint of the ECOSA, and compacted to approximately 95% of optimum density. Accordingly it is expected to exhibit no more infiltration than occurred through the surface material before it was borrowed, processed, and compacted to form the cover for the overburden. Soil testing (Attachment 2) indicates that the material with a PI of >15% exhibits a hydraulic conductivity when compacted of approximately  $<5x10^{-7}$  cm/sec (<0.5 ft/yr). Infiltration through this material would be limited as follows (assuming that the surface were saturated for the entire year):

Infiltration = K I < 0.5 ft/yr \*  $1 \sim 5$ "/yr

where: K = hydraulic conductivity of the material (0.5 ft/yr)

I = hydraulic gradient (assumed to be unity, representing vertical gravitational flow)

As the ground surface is frozen for a significant portion of the year, and is not saturated for a significant portion of the rest of the year, the infiltration through this material cannot be greater than approximately 2.5" per year, half the average infiltration of 5" for the Cripple Creek Mining District in general (ABC, 2008), and half the maximum infiltration rate restricted by the low permeability of the reclaimed cover.

During the 6 years of construction of the ECOSA (currently estimated to be approximately 2011-2016), the average reclaimed area is approximately 71 acres, and the average infiltration through the reclaimed area is approximately 9 gpm. This infiltration during construction contributes approximately 4% of the water required for the overburden to reach field capacity.

After reclamation of the ECOSA (estimated to be complete in approximately 2016) the moisture content of the overburden will be approximately 14% of field capacity. The infiltration that will enter the reclaimed facility after reclamation is computed to be approximately 22.6 gpm. This infiltration will take approximately 50 years to satisfy the remaining 80 million cubic feet of field capacity. After this time, flow from the base of the ECOSA is anticipated begin at a rate of up to 22.6 gpm.

### 4.4 Sulfide Oxidation

Sulfide within the ECOSA will react with available oxygen and other oxidants, locally producing acid and mobilized metals. The amount of sulfide oxidation that could occur in the ECOSA is controlled by the limited access of oxygen to the overburden due to the low permeability clay cover.

Oxygen can enter the overburden pile by up to four routes (Table 5):

- 1. <u>Emplacement.</u> Oxygen is contained in the atmosphere of the ECOSA at emplacement. The total oxygen mass that is emplaced is approximately 3,624 tons, which can oxidize a like mass of pyrite.
- 2. <u>Airflow through Dry Cover</u>. In the event that the ECOSA cover was to desiccate, airflow through the permeable cover materials would be the principal method of oxygen passage from the atmosphere to the overburden. Based on "breathing" of the pile under varying barometric

conditions and consumption of oxygen within the pile by sulfide oxidation, it is conservatively estimated that an equivalent airflow through the reclaimed ECOSA cover would occur at a rate of approximately 130 tons per year, and would oxidize a like mass of pyrite.

- 3. <u>Diffusion through Wet Cover.</u> In the event that the ECOSA cover were to remain at or close to saturation (which is expected), the principal method of oxygen passage from the atmosphere to the overburden would be by gaseous diffusion. The mass flux of oxygen through the cover by diffusion, assuming no airflow through the cover, is approximately 175 tons per year. This oxygen would oxidize a like mass of pyrite.
- 4. <u>Oxygen Transport by Infiltrating Water</u>. After reclamation it is anticipated that approximately 22.6 gpm of water will infiltrate through the ECOSA cover materials. This water has the potential to have up to approximately 10 mg/L of oxygen dissolved in it. The maximum oxygen flux that can be transported to the overburden by this means is approximately 0.5 tons/year, which is a negligible component of the total.

The total average oxygen flux through the cover is computed to be approximately 295 tons/year.

### 4.5 Pyrite Availability

The reactive pyrite content of the ECOSA overburden is expected to be approximately 1.33% (ABC, 2008). In the approximate 66 million tons of overburden this computes to a total of approximately 878,000 tons of pyrite. At the rate of consumption of pyrite of approximately 177 tons per year (Table 5), it will take approximately 5,000 years for all the reactive pyrite in the ECOSA to be consumed.

### 4.6 Carbonate Neutralization

The acid and metals liberated by sulfide oxidation in the ECOSA overburden are bought into immediate contact with carbonates in the overburden, which are present at a concentration of approximately 1.43% CaCO<sub>3</sub>. In the 66 million tons of overburden, this computes to a total of approximately 943,800 tons of calcium carbonate. At the rate of consumption of calcium carbonate of approximately 295 tons per year (Table 5), this carbonate will provide neutralization for approximately 3,200 years.

In the event that this entire inventory within the ECOSA were to be consumed, the ECOSA is located over approximately 1,000 ft of diatremal material, with a minimum of approximately 1.43% CaCO<sub>3</sub>. This inventory of neutralization provides additional neutralization protection for approximately 20,000 years at the sulfide generation rate of the ECOSA. This is more than enough to neutralize the remaining approximate 1,800 years of sulfide oxidation products that may not be internally neutralized within the ECOSA.

In the unlikely event that despite this large excess of neutralization, acidic water was to emerge from the base of the ECOSA, it would be at a very low flux rate (equivalent to approximately 2.5 inches per year). Accordingly, this acidic water would be expected to move vertically downward and then south to the main Cripple Creek Diatreme, from wich it would ultimately flow through the Carlton Tunnel to Four Mile Creek. The water from the ECOSA would be bought into contact with an overwhelmingly

large quantity of neutralizing rock over that approximately 9 mile journey (ABC, 2008). Neutralization of any acidic products from the ECOSA is therefore assured by the geochemistry of the rock that comprises the potential flowpath.

### 4.7 Neutralization Products

Contact and neutralization of water containing the products of pyrite oxidation with natural calcite has been tested (ABC, 2008), and causes the following (Table 9):

- Increases the pH of the water from ~3 units to ~8 units
- Increases alkalinity from essentially zero to >100 mg/L
- Eliminates acidity
- Increases total dissolved solids concentration to ~3,000 mg/L
- Decreases Al, As, Cd, Cr, Fe, Mn, Ni, and Zn, most to close to detection
- Leaves Cu, Pb, Hg, and Se essentially unchanged, but generally at low levels
- Increases Mo, Sb, Sr and U due to the presence of these constituents in the natural calcite

The water quality resulting from neutralization of the products of oxidation of overburden material is substantially the same as the quality of water emerging from the Carlton Tunnel (Table 6). Accordingly, no impact is anticipated as a result of neutralized pyrite oxidation water generated within the ECOSA.

### 5. CONSTRUCTION

### 5.1 Base Construction

The base of the ECOSA will be prepared as follows (Figure 3):

- 1. Remove approximately 0.5 to 1 ft of soil from entire footprint to stockpile for reclamation (estimated quantity 290,000 cubic yards Table 4).
- 2. Excavate clayey gravel material from identified borrow area for use as underliner for the VLF Phase 5 Extension (approximately 1.5 million tons) and for use in construction of the cover for the ECOSA facility (approximately 1.9 million tons). Place material in a clay stockpile off the ECOSA footprint.

The material that will form the base of the ECOSA will be left in an ungraded and roughened state, to maximize the holding capacity of the surface for meteoric water that will infiltrate through the overburden. This will maximize the extent to which this water will enter the diatremal rock beneath the ECOSA, and will prevent direct flow from the toe of the overburden.

### 5.2 Overburden Placement

#### 5.2.1 Lift Construction

Following preparation of the base of the pile, overburden will be placed as follows (Figure 4):

1. Placement by end dumping in 50 foot lifts.

- 2. Upper surface of each lift grading to the south at a minimum of 1%.
- 3. Upper surface of pile wheel compacted by traffic during placement.

### 5.2.2 Face Construction

At the completion of each overburden lift, the face will be constructed as follows (Figure 5):

- 1. Face inter-bench slope flattened to 2.5:1 to allow cover placement and erosion control.
- 2. Construct 10' drainage benches located on contour at the toe of each 50' lift.
- 3. Slope drainage benches to each side of facility at  $1\% \pm 0.5\%$  grade, to facilitate drainage of water off face of overburden storage area.
- 4. Provide rip-rap lined end-drain, to conduct water from slope drains to Grassy Valley (Figure 4).

### 5.3 Cover Construction

Following completion of the placement and shaping of the overburden, a cover will be constructed on the upper surface of the overburden storage area, as follows:

- 1. Place 24" thick layer of clayey sand and gravel in a single lift. Material is to be borrowed from clay borrow area, and selected to have PI not less than 15%. Remove boulders >24" diameter, and proof roll surface to provide a base for placement of compacted clay layer.
- 2. Place 12" thick layer of clayey sand and gravel in a single lift. Material to be borrowed from clay borrow area, selected to have PI not less than 15%, and screened to remove all material >2" nominal diameter. Compaction shall be to 95% of optimum.
- 3. Place 6" layer to act as growth medium.

### 5.4 Revegetation

Following placement of the growth medium, the overburden storage area will be progressively revegetated as follows:

- 1. Seed cover material with CC&V standard reclamation seed mix.
- 2. Plant tree seedlings per CC&V standard tree planting protocol.
- 3. Fertilize and if necessary water seeded areas to initiate growth.

### 6. REFERENCE

ABC, 2008. Cresson Project Hydrogeochemical Evaluation. Report prepared for Cripple Creek & Victor Gold Mining Company by Adrian Brown Consultants, Inc., in support of Amendment No. 9, Office of Mined Land Reclamation Permit M-80-244. Dated April 4, 2008.

# TABLES

1385L.20080411

8

| YEAR  | JAN  | FEB  | MAR  | APR  | MAY  | JUN  | JUL   | AUG  | SEP  | ОСТ  | NOV  | DEC  | TOT   |
|-------|------|------|------|------|------|------|-------|------|------|------|------|------|-------|
| 1992  | 0.04 | 0.12 | 1.67 | 0.31 | 3.28 | 3.84 | 2.10  | 3.13 | 0.17 | 0.31 | 0.80 | 0.41 | 16.18 |
| 1993  | 0.24 | 0.47 | 0.97 | 0.48 | 2.11 | 1.07 | 1.38  | 2.21 | 2.78 | 2.11 | 1.23 | 0.14 | 15.19 |
| 1994  | 0.71 | 0.00 | 1.20 | 2.49 | 5.17 | 1.63 | 1.88  | 6.32 | 2.18 | 2.15 | 0.78 | 3.06 | 27.57 |
| 1995  | 1.36 | 0.85 | 2.69 | 2.62 | 4.03 | 3.72 | 2.92  | 4.36 | 2.72 | 0.23 | 0.30 | 0.16 | 25.96 |
| 1996  | 1.98 | 0.15 | 0.60 | 1.30 | 1.99 | 1.85 | 3.23  | 2.97 | 1.43 | 0.70 | 0.30 | 0.28 | 16.78 |
| 1997  | 0.17 | 0.80 | 0.50 | 1.03 | 2.01 | 3.78 | 2.45  | 3.60 | 1.59 | 0.21 | 0.71 | 0.31 | 17.16 |
| 1998  | 0.31 | 0.79 | 0.85 | 0.16 | 0.09 | 0.06 | 10.47 | 5.40 | 0.88 | 0.12 | 0.00 | 0.00 | 19.13 |
| 1999  | 0.00 | 0.86 | 0.15 | 5.44 | 2.81 | 1.97 | 5.95  | 4.10 | 0.91 | 1.39 | 0.28 | 0.12 | 23.98 |
| 2000  | 0.74 | 0.53 | 2.25 | 1.02 | 1.83 | 2.04 | 2.92  | 5.26 | 0.50 | 0.91 | 0.40 | 0.47 | 18.87 |
| 2001  | 0.41 | 0.64 | 1.50 | 1.21 | 2.53 | 1.68 | 4.06  | 6.68 | 0.52 | 0.07 | 0.98 | 0.20 | 20.48 |
| 2002  | 0.45 | 0.80 | 0.74 | 0.23 | 1.50 | 0.73 | 3.76  | 1.20 | 1.48 | 1.65 | 0.28 | 0.05 | 12.87 |
| 2003  | 0.20 | 1.49 | 2.43 | 1.01 | 1.83 | 3.18 | 2.71  | 3.60 | 1.25 | 0.64 | 0.36 | 0.26 | 18.96 |
| 2004  | 0.78 | 0.62 | 0.75 | 3.03 | 0.49 | 4.02 | 4.08  | 3.40 | 0.91 | 0.70 | 0.43 | 0.17 | 19.34 |
| 2005  | 0.80 | 0.73 | 1.19 | 1.52 | 0.71 | 1.53 | 2.29  | 4.50 | 1.48 | 0.41 | 0.58 | 0.52 | 16.26 |
| 2006  | 0.46 | 0.33 | 1.57 | 1.19 | 1.16 | 1.17 | 5.40  | 5.11 | 1.35 | 2.21 | 0.38 | 0.67 | 21.00 |
| 2007  | 1.94 | 0.90 | 2.33 | 2.08 | 4.06 | 1.58 | 4.01  | 3.91 | 1.54 | 0.46 | 0.23 | 0.45 | 23.49 |
| Avg   | 0.66 | 0.63 | 1.34 | 1.57 | 2.22 | 2.12 | 3.73  | 4.11 | 1.36 | 0.89 | 0.50 | 0.45 | 19.58 |
| % Tot | 3%   | 3%   | 7%   | 8%   | 11%  | 11%  | 19%   | 21%  | 7%   | 5%   | 3%   | 2%   | 100%  |

#### Table 1 - Cresson Mine Precipitation

Notes: 1. Data taken from Bateman Station at the mine office unless noted below.

2. DMR data from Guffey, CO station used for 1/92 through 6/94; Florissant Fossil Beds used for 2/92.

3. Hunter's Data used for 5/98 and during power outage at Bateman in 4/99 and 5/99.

- 4. 11/00 data from Carlton Security, 12/00 through 5/01 data from Security Office ("Rigi")
- 5. Guffey station data used for 10/95, 11/95, 12/95, 2/96, 3/96, 4/96, 5/96
- 6. NOAA data used for 3/97
- 7. Belfort rain gauge at Bateman Stations used for 6/98.
- 8. Storm water sampler (Sigma 900 Max) gauge used for 7/98 and 8/98.

9. 2000 data are average of Rigi and Bateman, except Nov and Dec 2000 are only Rigi

10. 2001 data are average of Rigi and Bateman (Pad), except June-September based on Bateman

11. 2002 and 2003 data are from Bateman

12. 2004 data are average of Bateman and Rigi

13. 2005 and later data are from Rigi

14. Data in italics are fill for the year based on monthly average.

| Jan  | Feb                                          | Mar                                              | Apr                                                                      | May                                                                                              | Jun                                                                                                                                                                                                                                                                                                                                                                                                     | Jul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Aug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sep                                                   | Oct                                                   | Nov                                                   | Dec                                                                                                                                                                                                                                                                                       | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------|----------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.23 | 2.30                                         | 3.01                                             | 3.35                                                                     | 4.43                                                                                             | 6.54                                                                                                                                                                                                                                                                                                                                                                                                    | 6.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.27                                                  | <u> </u>                                              | 2.29                                                  |                                                                                                                                                                                                                                                                                           | 44.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.96 | 2.58                                         | 2.78                                             | 2.90                                                                     | 3.30                                                                                             | 5.12                                                                                                                                                                                                                                                                                                                                                                                                    | 6.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.63                                                  |                                                       |                                                       |                                                                                                                                                                                                                                                                                           | 43.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.29 | 2.72                                         | 2.97                                             | 4.12                                                                     | 6.12                                                                                             | 5.32                                                                                                                                                                                                                                                                                                                                                                                                    | 5.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.33                                                  |                                                       |                                                       |                                                                                                                                                                                                                                                                                           | 46.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.23 | 1.57                                         | 3.01                                             | 2.71                                                                     | 3.90                                                                                             | 5.20                                                                                                                                                                                                                                                                                                                                                                                                    | 5.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.96                                                  |                                                       |                                                       |                                                                                                                                                                                                                                                                                           | 39.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.29 | 1.54                                         | 2.66                                             | 3.56                                                                     | 3.85                                                                                             | 10.45                                                                                                                                                                                                                                                                                                                                                                                                   | 6.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.58                                                  |                                                       |                                                       |                                                                                                                                                                                                                                                                                           | 43.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.38 | 3.09                                         | 3.62                                             | 3.47                                                                     | 5.00                                                                                             | 6.59                                                                                                                                                                                                                                                                                                                                                                                                    | 5.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.78 <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |                                                       |                                                       |                                                                                                                                                                                                                                                                                           | 48.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.23 | 2.30                                         | 3.01                                             | 3.35                                                                     | 4.43                                                                                             | 6.54                                                                                                                                                                                                                                                                                                                                                                                                    | 6.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       |                                                       |                                                       |                                                                                                                                                                                                                                                                                           | 44.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | 2.23<br>1.96<br>2.29<br>2.23<br>2.29<br>2.38 | 2.232.301.962.582.292.722.231.572.291.542.383.09 | 2.232.303.011.962.582.782.292.722.972.231.573.012.291.542.662.383.093.62 | 2.232.303.013.351.962.582.782.902.292.722.974.122.231.573.012.712.291.542.663.562.383.093.623.47 | 2.23         2.30         3.01         3.35         4.43           1.96         2.58         2.78         2.90         3.30           2.29         2.72         2.97         4.12         6.12           2.23         1.57         3.01         2.71         3.90           2.29         1.54         2.66         3.56         3.85           2.38         3.09         3.62         3.47         5.00 | 2.23         2.30         3.01         3.35         4.43         6.54           1.96         2.58         2.78         2.90         3.30         5.12           2.29         2.72         2.97         4.12         6.12         5.32           2.23         1.57         3.01         2.71         3.90         5.20           2.29         1.54         2.66         3.56         3.85         10.45           2.38         3.09         3.62         3.47         5.00         6.59 | 2.23         2.30         3.01         3.35         4.43         6.54         6.00           1.96         2.58         2.78         2.90         3.30         5.12         6.32           2.29         2.72         2.97         4.12         6.12         5.32         5.57           2.23         1.57         3.01         2.71         3.90         5.20         5.48           2.29         1.54         2.66         3.56         3.85         10.45         6.85           2.38         3.09         3.62         3.47         5.00         6.59         5.79 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 2.232.303.013.354.436.546.004.584.273.012.291.962.582.782.903.305.126.325.683.634.373.092.292.722.974.126.125.325.575.093.333.613.072.231.573.012.713.905.205.484.143.963.572.202.291.542.663.563.8510.456.854.402.582.240.552.383.093.623.475.006.595.794.78 <sup>(1)</sup> 4.583.903.18 | 2.23         2.30         3.01         3.35         4.43         6.54         6.00         4.58         4.27         3.01         2.29         2.13           1.96         2.58         2.78         2.90         3.30         5.12         6.32         5.68         3.63         4.37         3.09         2.11           2.29         2.72         2.97         4.12         6.12         5.32         5.57         5.09         3.33         3.61         3.07         2.08           2.23         1.57         3.01         2.71         3.90         5.20         5.48         4.14         3.96         3.57         2.20         1.71           2.29         1.54         2.66         3.56         3.85         10.45         6.85         4.40         2.58         2.24         0.55         2.37           2.38         3.09         3.62         3.47         5.00         6.59         5.79         4.78 <sup>(1)</sup> 4.58         3.90         3.18         2.08 |

### Table 2 – Cresson Mine Area Evaporation

The reported evaporation in August 1999 was 18.88"; this value is omitted, and the average August value used for tabulation
 Source: Amendment No. 8, Office of Mined Land Reclamation Permit M-80-244. CC&V, March 2000.

-

| Month   | GV-1  | GV-2  | GV-3  |
|---------|-------|-------|-------|
|         | (gpm) | (gpm) | (gpm) |
| Jan     | 0.0   | 0.0   | 0.0   |
| Feb     | 0.0   | 0.0   | 0.0   |
| Mar     | 13.4  | 13.8  | 17.0  |
| Apr     | 53.7  | 20.3  | 1.0   |
| May     | 17.8  | 61.9  | 78.9  |
| Jun     | 49.1  | 54.2  | 143.4 |
| Jul     | 0.3   | 11.5  | 8.2   |
| Aug     | 20.8  | 37.9  | 92.9  |
| Sep     | 1.6   | 15.8  | 11.2  |
| Oct     | 0.0   | 3.9   | 11.1  |
| Nov     | 0.0   | 1.6   | 0.0   |
| Dec     | 0.0   | 0.0   | 0.0   |
| Average | 13.1  | 18.4  | 30.3  |

Table 3 - Surface Water Flow in Grassy Valley

Notes:

Values in italics are table fillers; no data are available in these months
 A single reading at GV-2 of 10 gpm in December is considered unreliable; flow has been set to zero
 The averages are on a monthly, rather than a reading, basis.

...

#### Table 4 - ECOSA Quantities

#### **BASIC INFORMATION FROM PLAN**

| Area               | Square Feet   | Acres       |  |  |
|--------------------|---------------|-------------|--|--|
| Planar Area        | 7,658,402     | 176         |  |  |
| Upper Surface Area | 8,148,673     | 187         |  |  |
| Lower Surface Area | 7,820,621     | 180         |  |  |
| Volume             | Cubic Feet    | Cubic Yards |  |  |
| Volume Contained   | 1,192,875,943 | 44,180,590  |  |  |

#### **GROWTH MEDIUM RECOVERY**

| Material                     | Volume<br>(cu.yd.) | Weight<br>(ton) |  |
|------------------------------|--------------------|-----------------|--|
| Growth Medium recovered (6") | 151,000            | 226,500         |  |

#### **QUANTITIES PLACED**

| Material                           | Volume<br>(cu.yd.) | Weight<br>(ton) |
|------------------------------------|--------------------|-----------------|
| Overburden stored                  | 44,000,000         | 66,000,000      |
| Base Cover (2', proof rolled)      | 604,000            | 906,000         |
| Compacted Cover (12")              | 302,000            | 453,000         |
| Growth Medium (6",<br>revegetated) | 151,000            | 226,500         |

#### **CLAY COVER QUANTITIES REQUIRED**

| Material                    | Volume<br>(cu.yd.) | Weight<br>(ton) |
|-----------------------------|--------------------|-----------------|
| Base cover                  | 604,000            | 906,000         |
| Material >2' to waste (10%) | 67,000             | 101,000         |
| Compacted cover             | 302,000            | 453,000         |
| Material >2" to waste (50%) | 302,000            | 453,000         |
| Total requirement           | 1,275,000          | 1,913,000       |

| Mechanism                              | Oxygen<br>Flux<br>(ton/yr) | Pyrite<br>Oxidized<br>(ton/yr) | CaCO <sub>3</sub> to<br>Neutralize<br>(ton/yr) |
|----------------------------------------|----------------------------|--------------------------------|------------------------------------------------|
| Emplacement (1)                        | 1                          | 1                              | 2                                              |
| Airflow through dry cover (2)(4)       | 130                        | 130                            | 218                                            |
| Diffusion through wet cover (3)(4)     | 175                        | 175                            | 293                                            |
| Oxygen with Infiltration through cover | 0.5                        | 0.5                            | 1                                              |
| Total System (5)                       | 177                        | 177                            | 295                                            |

Table 5 - Oxygen Availability in ECOSA

Notes:

(1) Oxygen assumed to be consumed in approximately 3,600 years (aggregate burn-out time)

(2) Airflow is dominant mechanism for cover that desiccates.

(3) Diffusion is dominant mechanism for cover that retains moisture.

(4) Diffusion and airflow are alternatives; if airflow occurs, diffusion is prevented by concentration equalization (5) Conservatively assumes that diffusion dominates, which can only

occur if airflow through the cover is minimal.

| Species              | Unit                         | HCT<br>Test<br>Water <sup>(1)</sup> | Calcite-<br>Neutralized<br>HCT Water <sup>(2)</sup> | Cariton<br>Tunnel<br>Water <sup>(3)</sup> |
|----------------------|------------------------------|-------------------------------------|-----------------------------------------------------|-------------------------------------------|
| рН                   |                              | 3.10                                | 8.04                                                | 7.83                                      |
| SO4                  | mg/L                         | 435                                 | 1685                                                | 1250                                      |
| Acidity              | mg CaCO <sub>3</sub> /L      | 507                                 | 5.4                                                 | <25                                       |
| Alkalinity           | mg CaCO <sub>3</sub> /L      | 1.0                                 | 136                                                 | 260                                       |
| TDS                  | mg/L                         | 608                                 | 2805                                                | 2220                                      |
| Al                   | mg/L                         | 9.8                                 | 0.011                                               | <0.1                                      |
| Sb                   | mg/L                         | 0.001                               | 0.014                                               | n/a                                       |
| As                   | mg/L                         | 0.172                               | 0.001                                               | < 0.005                                   |
| Cd                   | mg/L                         | 0.029                               | 0.000                                               | < 0.001                                   |
| Cr                   | mg/L                         | 0.002                               | 0.001                                               | < 0.001                                   |
| Cu                   | mg/L                         | 0.123                               | 0.172                                               | <0.005                                    |
| Fe                   | mg/L                         | 117                                 | 0.050                                               | < 0.05                                    |
| Pb                   | mg/L                         | 0.002                               | 0.002                                               | < 0.001                                   |
| Mn                   | mg/L                         | 4.544                               | 1.025                                               | 0.51                                      |
| Hg                   | mg/L                         | 0.00002                             | 0.00007                                             | < 0.0001                                  |
| Mo                   | mg/L                         | 0.001                               | 0.156                                               | < 0.02                                    |
| Ni                   | mg/L                         | 0.073                               | 0.016                                               | < 0.01                                    |
| Se                   | mg/L                         | 0.001                               | 0.005                                               | < 0.005                                   |
| Sr                   | mg/L                         | 0.1                                 | 14.9                                                | 12                                        |
| U                    | mg/L                         | 0.054                               | 0.211                                               | n/a                                       |
| Zn<br>es: (1) Averac | mg/L<br>e of leachate sample | 0.854                               | 0.024                                               | 0.052                                     |

Table 6 - Neutralization Test Results

(1) Average of leachate samples from four different HCT tests
(2) Calcite from samples taken from depth in Main Cresson and Globe Hill areas
(3) Data represents median value of approximately 200 water samples taken 1988-2007
(4) n/a indicates "not analyzed"

# PLATE







Adrian Brown

# **FIGURES**

# Adrian Brown

| 2         2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | 1             |                               |             | 1          | Г           | 1             | Т                       | 1                | 1                    | r                   |                         | 1     | T                 | 1                                           | 1                                            |                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------|-------------------------------|-------------|------------|-------------|---------------|-------------------------|------------------|----------------------|---------------------|-------------------------|-------|-------------------|---------------------------------------------|----------------------------------------------|----------------------------------------------|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample (SWTP-) | Depth<br>(ft) | Description                   | Cobbles (%) | Gravel (%) | Sand<br>(%) | Silt/Clay (%) | D <sub>10</sub><br>(mm) | K (Hazen) (cm/s) | Plastic Limit<br>(%) | Liquid Limit<br>(%) | Plasticity Index<br>(%) | ucs   | Optimum MC<br>(%) | Hydraulic<br>Conductivity<br>(5 psi) (cm/s) | Hydraulic<br>Conductivity<br>(20 psl) (cm/s) | Hydraulic<br>Conductivity<br>(40 psl) (cm/s) |
| 3         Brown sity SADD with gravel         0         Bios         1         2         0.01         2         2         0.01         2         0.01         2         0.01         2         0.01         2         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01 </td <td>2</td> <td>2</td> <td>Brown clayey SAND with gravel</td> <td>0</td> <td>34.2</td> <td>43.2</td> <td>22.6</td> <td>0.003</td> <td>9.0E-06</td> <td>20</td> <td>33</td> <td>13</td> <td>SC</td> <td></td> <td></td> <td></td> <td>╂────</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2              | 2             | Brown clayey SAND with gravel | 0           | 34.2       | 43.2        | 22.6          | 0.003                   | 9.0E-06          | 20                   | 33                  | 13                      | SC    |                   |                                             |                                              | ╂────                                        |
| 3       9       Beyon poor grades SAAO with gravel       0       35.8       50.2       14.2       0.40       16.60.3       26.4       10       00       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.60.4       10.70.4       10.60.4       10.60.4       10.70.4       10.70.4       10.60.4       10.70.4       10.70.4       10.70.4       10.70.4       10.70.4       10.70.4       10.70.4       10.70.4       10.70.4       10.70.4       10.70.4       10.70.4       10.70.4       10.70.4       10.70.4       10.70.4       10.70.4       10.70.4       10.70.4       10.70.4       10.70.4       10.70.4       10.70.4       10.70.4       10.70.4       10.70.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       |                   |                                             |                                              | <u> </u>                                     |
| 4         8         Brown elsy, GAVEL whit and         0         33.8         22.4         13.8         0.02         4.6E         30         10         6.C         1           6         6.5         8.5         Brown clays, GAVEL with sand         31         452         22.7         50         0.00         9.6E         20         10         6.C         1         1           6         8         Brown clays, GAVEL with sand         0         46.2         23.3         0.00         3.6E         1         1         6.C         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3              |               | Brown silty SAND with gravel  | 0           | 35.6       |             |               |                         |                  |                      |                     |                         |       | <u> </u>          |                                             |                                              |                                              |
| 5       5.5       Brown chyry GANCL who nam and 31       9       92       92       92       92       92       92       92       92       92       92       92       92       92       92       92       92       92       92       92       92       92       92       92       92       92       92       92       92       92       92       92       92       92       92       92       92       93       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |               |                               |             |            |             |               |                         |                  | NP                   | NP                  | NP                      | SP-SM |                   |                                             |                                              |                                              |
| 6         8         Brown claysy GAVEL whit sand         31         492         227         5         0.00         30         10         GC         Image           8         3.5         Dark forom lays, GAVEL with sand         0         14.4         8.3         7.3         0.000         17.6         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       |                   |                                             |                                              |                                              |
| 7       10       Brown claysy SAVD with garvel       0       24.8       53.2       21       20.007 $\overline{R}$ : $\overline{C}$ : $\overline{R}$ 10       9       8       50       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       | $\vdash$          | ļ                                           | ļ                                            | <u> </u>                                     |
| 8         3.5         Dark Downi faen CLAY wing gravel         0         14.4         9.3         76.3         D.0007         7.075.07         167.05         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07         167.07 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td>ļ</td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       | <u> </u>          | ļ                                           |                                              |                                              |
| 8         3.5         Brown sily GAVEL with and         0         46.7         25.3         0.006         3.62:05         18         24         6         GC         CM           10         10         Brown sily GAVEL with and         0         37.3         44         28.7         0.0025         6.35:06         12         48         6         GC         M           12         A         Brown diaye GAVEL with and         0         43.8         37.4         17.7         0.315         2.35:0.01         18         30         11         GC         M         M         M         M         M         M         M         M         30.7         10.0015         2.35:0.007         M         80.01         11         GC         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       |                   |                                             |                                              |                                              |
| B         12         Brown slay daysy GRAVEL with sand         0         64.2         23.7         0.005         6.26.66         61.22         62.7         0.005         6.26.66         61.22         62.7         0.005         6.26.66         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.26         61.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       |                   |                                             |                                              | ┫━━━━┥                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       |                   |                                             |                                              | <u>├</u> ───┤                                |
| 12       4.6       Brown dawys GANDE with sand       0       348       32.7       17.7       0.0022       5.25.64       19       30       11       GC       Image: Constraint of the same constraint         |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       |                   |                                             |                                              | <u> </u>                                     |
| 15       4.5       Brown clayey GRAVEL, with sand       0       4.4       9.7       0.075       2.32-04       15       2.0       11       GC       C         18       4       Brown clayey GRAVEL, with sand       0       53.3       33.0       16.6       0.013       17.6       4       8       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       7       7       7       10       6       6       6       7       11       6       7       11       6       7       11       6       7       11       6       7       11       6       7       11       6       7       11       6       7       11       6       7       11       6       11       11       11       11 <t< td=""><td>12</td><td>8</td><td></td><td>Ō</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12             | 8             |                               | Ō           |            |             |               |                         |                  |                      |                     |                         |       |                   |                                             |                                              | <u> </u>                                     |
| 18       4       Brown clayery GRAVEL, with sand       0       53.2       90.2       16.6       0.013       17.2       18       86       8       CC       Image: CC         23       3       Brown clayery GRAVEL, with sand       0       53.5       0.007       496-06       18       25       7       SC-SM       Image: CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |               |                               | 0           |            |             |               | 0.015                   | 2.3E-04          | 19                   | 30                  | 11                      | ĠC    |                   |                                             |                                              |                                              |
| 23       3       Brown digveg GRAVEL with sand       0       55.5       0.3       16.2       0.02       46.20       18       26       7       5C-SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       |                   |                                             |                                              |                                              |
| 25       6       Brown sity of kaye, SAND with gravel       0       36.9       40       23.1       0.007       40.66.0       18       29       11       SC SM       9         27       14       Brown dayey, SAND with gravel       0       32.6       35.7       10.002       40.66.0       16       22       11       SC       -       -         28       6.5       Brown dayey, SAND with gravel       0       31.6       13.1       1       SC       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       |                   |                                             |                                              |                                              |
| 27       4       Bown days GRAVEL with sand       0       54.3       24       21.7       0.002       0.00265       18       29       11       GC       Image: Constraint of the sand         28       6.5       Brown days GRAVEL with gravel       0       32.6       35.7       31.7       0.003       9.00240       18       22       4       5C-SM       Image: Constraint of the sand       0       31.4       42.4       16.3       0.033       9.00240       18       22       4       SC-SM       Image: Constraint of the sand       0       30.5       51.8       17.7       0.035       11.4       GC       Image: Constraint of the sand       0       30.4       25.0       0.009       81.64.03       23       31       11       GC       Image: Constraint of the sand       14.4       24.5       0.005       25.64.5       14       36       22       GC       Image: Constraint of the sand       14.4       24.5       0.002       7.86.64       13       37       24       GC       Image: Constraint of the sand       16.64.5       37       22.6       14       36       22.6       14       16.6       32.3       26.6       16.65.6       17.3       37       24       GC       Image: Constraint of the sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       |                   |                                             | L                                            | $\square$                                    |
| 27       11       Brown dayey SAND with gravel       0       32.6       56.7       31.7       0.002       0.0045       2.06.60       16       27       11       SC          28       6.5       Brown slavy GRAVEL with sand       0       31.4       16.3       0.0045       2.06.60       18       22       4       SC-SM          30       6       Brown slavy GRAVEL with sand       0       40.8       34.2       25       0.003       1.126.03       NH       NH       NH       SNH       SNH        NH       NH       SNH       SNH       NH       NH       SNH       SNH       NH       NH       SNH       SNH       NH       NH       SNH       SNH       NH       NH       SNH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       | <u> </u>          | ļ                                           |                                              | <u> </u>                                     |
| 28         6.5         Brown clarge GRAVEL with sand         0         37.6         36.3         26.1         0.03         9.65-4         18         24         4         Sc. main           30         6         Brown ally SANO with gravel         0         30.5         51.8         17.7         0.035         17.8         0.005         8.1E-03         NP         NP         NP         SM             36         3.5         Brown clarge GRAVEL with and         0         30.8         3.2         2.87-05         14         36         2.2         GC             36         3.5         3.5         3.5         0.0027         7.35-06         16         39         2.3         GC             36         56         18         36         5.0         0.0027         7.35-06         16         39         2.3         GC            30.5         1.1         0.002         15         2.3         6         SC           NM         NM </td <td></td> <td><b>├</b>──┤</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       |                   |                                             |                                              | <b>├</b> ──┤                                 |
| 29         4         Brown silly dayey SAND with gravel         0         413         424         16.3         0.03         16.2         4         62.2         4         62.2         M         P         M         M         M         M         M         SM         M         M         SM         M         SM         M         SM         M         SM         M         SM         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       | <u> </u>          |                                             |                                              | ┝───┤                                        |
| 30         6         Brown sity SAND with gravel         0         305         51.8         17.7         0.003         1.725.0         NP         NP         NP         SM         P           36         4.8         Brown clayy GRAVEL, with sand         0         38.8         33         28.7         0.005         8.15.2         20.3         11         GC         P           47         3         Brown clayy GRAVEL, with sand         0.4         24.5         0.5         0.0027         7.37.60         15         23         6.5         P         P         P         P         P         44         5         Brown clayy GRAVEL, with sand         0         24.65         31.5         0.007         4.97.69         15         23         6         CC         P         P         P         P         9         10.6         CC         P         P         P         P         P         10.6         S         10.7         0.003         17.25         A         SC         P         10.6         CC         P         P         11.1         0.7         10.5         SE         10.7         10.5         10.6         0.0007         1.97         1.92.6         0.0000         1.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       |                   |                                             |                                              |                                              |
| 36       4       Brown clayey GRAVEL with sand       0       38.3       33       28.7       0.002       7.56.6       14       35       23       GC          48       5       Brown clayey GRAVEL with sand       0       50.8       50.5       0.0027       7.36.6       16       33       7.2       4       GC           53       6       Brown clayey GRAVEL with sand       0       50.8       25.5       23.7       0.007       4.26.6       15       23       8       SC              6.6       Brown clayey SAND with gravel       0       24.6       3.7       2.7       0.0075       5.66       17       2.7       8       SC           6.8       3.1       3.5       0.0007       4.96.76       18       24       6       SC.5       1.7       9.06.6       18       24       6       SC.5       1.7       9.06.6       18       24       6       SC.5       1.7       9.06.6       18       24       6       SC.5       1.7       9.06.7       10.001       1.00.01       1.00.01       1.00.01       1.00.01       1.00.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | 6             |                               |             |            |             |               |                         |                  |                      |                     |                         |       |                   |                                             |                                              |                                              |
| 47       3       Brown daywy GRAVEL with sand       0.34       416       24.5       0.0027       7.26.06       16       39       22       GC           48       5       Brown daywy GRAVEL with and       0       22       46.5       31.5       0.007       4.86.05       15       23       8       SC           56       6       Brown daywy GRAVEL with and       0       42.3       28.6       7.1       0.0007       4.86.05       15       23       8       SC              56       6       Brown daywy GRAVEL with and       0       28.6       18.9       7.0007       4.86.06       18       57       7.5       8       SC          57       7.5       6       8.5       1.3       SC       17.9       1.95.06       4.05.07         2.28.67        7.5       4       Brown daywy GRAVEL with sand       0       23.2       2.42       4.33       0.007       4.85.69       18       2.6       8       SC       1.3.8.5C       17.9       1.95.06       4.05.07        7.7       1.95.06       7.0       7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |               |                               | 0           |            | 34.2        |               | 0.009                   | 8.1E-05          | 20                   | 31                  | 11                      | GĆ    |                   |                                             |                                              |                                              |
| 48.       5       Brown daywy GAVEL with sand       0       50.       52.       62.       10.       10.       12.       16.5       11.       10.0065       12.8       16.5       11.0       10.0       66.0       10.0       66.0       10.0       66.0       10.0       66.0       10.0       66.0       10.0       66.0       10.0       66.0       10.0       66.0       10.0       66.0       10.0       66.0       10.0       66.0       10.0       66.0       10.0       66.0       10.0       66.0       10.0       66.0       10.0       66.0       10.0       66.0       10.0       66.0       10.0       66.0       10.0       66.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       |                   |                                             |                                              |                                              |
| 53       6       Brown dayw SAND with gravel       0       22       46.5       31.5       0.007       4.82.65       15       23       8       SC          65       6.6       Brown dayw GANL< with gravel       0       28.6       37.1       0.0067       4.82.65       19       10       GC           65       4.5       Brown dayw GANL with gravel       0       28.6       31.6       39.7       0.0027       5.86.66       17       25       8       SC          70       5       Brown dayw GANL with gravel       0       28.6       39.5       0.0007       4.86.09       18       31       13.5       17.8       1.9E.06       4.0E.07         71       2       Brown sandy fat CLAY       0       13.6       8.95.7       0.0007       1.82.06       18       24       6       SC       1.5E.07         78       4       Brown sandy fat CLAY       0       13.6       18.8       67.6       0.0007       1.82.69       14       14.0       14       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       |                   |                                             |                                              |                                              |
| 56         6         Brown clays (SAVEL with sand         0         443         28.6         27.1         0.0065         442.63         19         29         10         CC         D           65         4.5         Brown clays (SAND with gravel         0         28.6         38.7         32.7         0.007         465.66         18         35         17         SC         17.9         1.98.266         4.06.07           70         5         Brown clays (SAND with gravel         0         24.6         35.9         37.3         0.002         4.05.66         18         24.6         SC - SM         2.26.47           71         2         Brown clays (SAND with gravel         0         13.6         16.6         6.0007         1.02.06         18         24.6         SC - SM         2.26.47           75         4         Brown clays (SAND with gravel         0         13.6         16.6         6.0007         1.06.66         18         24.6         SC - SK         1.85.47         1.85.6         1.8         6.7         1.8         18.6         1.6         6.0007         1.06.66         1.8         2.4         4.3         0.001         1.06.66         1.7         7.8         0.0001         1.6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       |                   |                                             |                                              |                                              |
| 65       4.5       Brown clayey SAND with gravel       0       28.6       38.7       32.7       0.0075       5.6.6.05       17       25       6       5C       0       0         70       5       Brown clayey SAND with gravel       0       28.5       31.8       39.7       0.0007       4.9E-06       18       35       17       SC       17.9       1.9E-06       4.0E-07         71       2       Brown clayey SAND with gravel       0       18.6       4.3.9       37.3       0.003       0.0E-06       18       24       6       SC-SM       2.2E-07         75       4       Brown clayey SAND with gravel       0       13.6       18.6       67.6       0.0007       1.0E-06       18       26       8       SC       1.15E-07       7         78       4       Brown clayey GRAVEL with and       0       34.2       28.8       37       0.007       1.0E-06       18       32       14       GC       1.5E-07       7       8       6       6.6       1.0E-06       18       32       14       GC       1.5E-07       7       7       8       6       6.6       1.0E-06       18       32       14.4       0.0001       1.0E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |               |                               | _           |            |             |               |                         |                  |                      |                     |                         |       |                   |                                             |                                              |                                              |
| 66         8         Brown clayey SAND with gravel         0         28.5         31.8         39.7         0.002         4.9E-06         18         35         17         SC         r         sc         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       |                   |                                             |                                              | ┝───┤                                        |
| 70       5       Brown clayey SAND with gravel       0       24.6       35.5       0.0007       4.9E-09       23       36       13       SC       17.9       1.9E-06       4.0E-07         71       2       Brown silly clayey SAND with gravel       0       18.8       4.39       37.3       0.003       9.0E-06       18       24       6       SC-3M       2.2E-07       2.2E-07         75       4       Brown sandy fal CLAY       0       13.6       18.8       6.7.6       0.0007       1.0E-08       15       56       41       CH       E       2.2E-07       7         78       4       Brown clayey GRAVEL with sand       0       34.2       2.42.       43.3       0.0007       1.0E-06       18       32       14       GC       1.3       7       2.E-07       7         85       2       Brown clayey GRAVEL with sand       0       33.5       36.3       30.2       0.0024       0.7.E-06       18       32       14       GC       13.7       7.2E-07       7         86       7       Brown clayey GRAVEL with sand       0       1.1.9       61       27.1       0.009       8.1E-05       2.7       40       13.5       SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       |                   |                                             |                                              | ┝───┤                                        |
| 1       2       Brown silty clayey SAND with gravel       0       18.8       4.33       7.3       0.0014       20.66       18       24       6       SC-SM       2.22E-07         75       4       Brown clayey SAND with gravel       0       13.6       18.8       67.6       0.0001       1.0E-08       15       56       41       CH          79       8       Brown clayey GRAVEL with sand       0       32.5       24.2       43.3       0.0001       1.0E-06       15       56       41       CH          85       7       Brown clayey GRAVEL with sand       0       34.2       28.8       37       0.001       1.0E-06       18       32       14       6C       13.7       7.2E-07         85       7       Brown clayey GRAVEL with sand       0       40.2       216       38.4       0.001       1.0E-06       19       27       8       SC          6.4E-07       8       8       6.4       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0 <td></td> <td>17.9</td> <td>19E-06</td> <td>4 0E-07</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       | 17.9              | 19E-06                                      | 4 0E-07                                      |                                              |
| 75       4       Brown clayey SAND with gravel       0       21.9       37       41.1       0.0074       2.02-06       18       26       8       SC       1.5E-07         78       4       Brown clayey GRAVEL with sand       0       32.5       24.2       43.3       0.0002       4.02-08       17       40       23       GC       -       -         85       2       Brown clayey GRAVEL with sand       0       34.2       28.6       37       0.001       1.02-06       18       32       14.4       GC       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 71             | 2             |                               |             |            |             |               |                         |                  |                      |                     |                         |       |                   |                                             | 1.02 01                                      |                                              |
| 79         8         Brown clayay GRAVEL with sand         0         32.5         24.2         43.3         0.0002         4.0E-08         17         40         23         GC         1           85         2         Brown clayay GRAVEL with sand         0         34.2         28.6         37         0.007         1.0E-06         18         32         14         GC         13.7         7.2E-07           86         7         Brown clayay GRAVEL with sand         0         33.5         33.3         2.00085         7.2E-05         19         27         8         SC         1          66         7         Brown clayay GRAVEL with sand         0         33.5         36.5         0.017         1.0E-06         16         27.1         0.01         1.0E-06         16         25         9         GM         1.0E-06         6.4E-07         1.0E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | 4             |                               | 0           |            |             |               |                         |                  |                      |                     |                         |       |                   |                                             |                                              |                                              |
| 85       2       Brown clayey GRAVEL with sand       0       34.2       28.8       37       0.007       1.0E-06       18       32       14       GC         85       7       Brown clayey GRAVEL with sand       0       40       21.6       38.4       0.001       1.0E-06       21       29       8       GC       13.7       7.2E-07         86       7       Brown slay SAND with gravel       0       33.5       35.3       30.2       0.002       8.7E-05       27       40       13       SM       1.6E-06       6.4E-07         87       10       Brown sandy SILT       0       1.7       38.8       55       0.01       1.0E-04       18       NP       NP       NP       ML       1.8E-06       6.4E-07         88       10       Brown slay SAND with gravel       0       0       2.1       97.9       0.0001       1.0E-04       18       45       27       SC       2.4E-07         94       8       Brown clayey SAND with gravel       0       32.7       40.1       15.012.2       0.002       4.0E-06       21       29       8       SC       11       1.0E-05       3.3E-06         94       8       Brown clayey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |               |                               |             |            |             |               |                         |                  | 15                   |                     |                         |       |                   |                                             |                                              |                                              |
| 85         7         Brown clayey GRAVEL with sand         0         40         21.6         38.4         0.001         1.0E-06         21         29         8         GC         13.7         7.2E-07           86         7         Brown clayey SAND with gravel         0         33.5         33.2         0.0025         7.2E-05         19         27         8         SC         1         57         10         Brown sity SAND         1.6E-06         6.4E-07         10         Brown sity SAND         1.6E-06         6.4E-07         1.0E-06         1.7         3.88         55.5         0.01         1.0E-06         1.8         55         9         GM         1         1.8         1.0         1.0E-04         NP         NP         NL         1.3.9         1.8         1.4         1.4         1.8         1.0         0.022         3.3         1.2         CL         1.8         1.4         1.4         1.8         1.0         0.025         6.3E-04         26         32         6         SM         1.4         1.8         1.0         1.0         2.1         9.1         1.4         36         22         SC         1.8         45         2.4         6         SM         1.1         1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       |                   |                                             |                                              |                                              |
| 86         7         Brown clayey SAND with gravel         0         33.5         36.3         30.2         0.0085         7.22-05         19         27         8         SC         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th=""> <th1< th=""> <th1< th=""> <!--</td--><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th1<></th1<></th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       |                   |                                             |                                              |                                              |
| 87       10       Brown silty SAND       0       11.9       61       27.1       0.009       8.7E-05       27       40       13       SM       1.6E-06       6.4E-07         88       4       Brown salty SILT       0       1.7       38.8       59.5       0.01       1.0E-04       NP       NP       NL       13.9       SM       1.6E-06       6.4E-07         88       10       Brown laye GRAVEL with sand       0       40.1       27.5       32.4       0.0002       7.0E-06       16       25       9       GM                        0.0007       1.0E-08       18       45       27       SC       2.4E-07              1.6E-06       6.4E-07          3.8       5.40.5       0.0021       1.0E-08       1.8       2.2       SC           3.8       5.0007       1.6.30       3.22       SC       11       1.0E-05       3.3E-06       2.4E-07        3.8       5.0132       5.017 </td <td></td> <td>13.7</td> <td>7.2E-07</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       | 13.7              | 7.2E-07                                     |                                              |                                              |
| B8         4         Brown sardy SILT         0         1.7         38.8         59.5         0.01         1.0E-04         NP         NP         ML         13.9           88         10         Brown laan CLAY         0         0.21         17.5         32.4         0.0028         7.8E-06         16         25         9         GM         9           91         5         Brown silty SAND with gravel         0         0         2.1         97.9         0.0001         1.0E-08         23         35         12         CL         9           94         8         Brown silty SAND with gravel         0         23         35         4.42         6         32         6         SM         9           96         10         Brown clayey SAND with gravel         0         23         36.5         40.5         0.0001         1.0E-06         21         29         8         SC         11         1.0E-05         3.3E-06           98         3         Brown clayey SAND with gravel         0         32.7         40.1         15.0/12.2         0.002         4.0E-06         21         29         8         SC         11         1.0E-05         3.3E-06         29 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.65.06</td><td>R 4F 07</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       |                   | 1.65.06                                     | R 4F 07                                      |                                              |
| B8         10         Brown clayey GRAVEL with sand         0         40.1         27.5         32.4         0.0028         7.8E-06         16         25         9         GM         0           89         4         Brown sily SAND with gravel         0         0         2.1         97.9         0.0001         1.0E-08         23         35         12         CL             94         8         Brown sily SAND with gravel         0         23.9         45.1         4.4/26.6         0.0001         1.0E-08         23         35         12         CL             94         8         Brown clayey SAND with gravel         0         23.9         45.1         4.4/26.6         0.0001         1.0E-06         18         45         27         SC         2.4E-07           96         10         Brown clayey SAND with gravel         0         32.7         40.1         15.0/12.2         0.0002         4.0E-06         21         45         CL         15.6         1.2E-05         2.4E-07           103         14         Brown clayey SAND with gravel         0         25.7         52         22.3         0.014         20.64         18         26         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       | 13.0              | 1.0E-00                                     | 0.4E-07                                      |                                              |
| 89       4       Brown lean CLAY       0       0       2.1       97.9       0.0007       1.0E-08       23       35       12       CL       Image: Classical stress in the stress         |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       | 13.3              |                                             |                                              | $\vdash$                                     |
| 91       5       Brown silty SAND with gravel       0       40.8       41.1       18.1       10.225       6.3E-04       26       32       6       SM       Image: SMM       SMM <td>89</td> <td></td> <td>  </td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 89             |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       |                   |                                             |                                              |                                              |
| 96         10         Brown clayey SAND with gravel         0         23         36.5         44.05         0.003         9.02-06         14         36         22         SC         11           98         3         Brown clayey SAND with gravel         0         32.7         40.1         15.0/12.2         0.002         4.0E-06         21         29         8         SC         11         1.0E-05         3.3E-06           99         12         Brown sandy lean CLAY with gravel         7.3         21.9         23.8         17.1/29.9         0.0002         4.0E-06         21         45         2.4         CL         15.6         1.2E-05         2.4E-07           103         14         Brown clayey SAND         0         12.3         64.5         6.8/16.4         0.0006         3.6E-07         25         40         15         SC         16.9         3.7E-06         2.3E-06           107         9         Brown clayey SAND with gravel         0         25.6         39         11.7/23.7         0.006         3.6E-07         17         36         19         SC         13.6         2.1E-08         1.1E-08           113         8         Brown clayey GRAVEL with sand         0         45.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | 5             | Brown silty SAND with gravel  | 0           | 40.8       | 41.1        | 18.1          |                         |                  | 26                   | 32                  |                         |       |                   |                                             |                                              |                                              |
| 98         3         Brown clayey SAND with gravel         0         32.7         40.1         15.0/12.2         0.002         4.0E-06         21         29         8         SC         11         1.0E-05         3.3E-06           99         12         Brown sandy lean CLAY with gravel         7.3         21.9         23.8         17.1/29.9         0.0002         4.0E-06         21         45         24         CL         15.6         1.2E-05         2.4E-07           103         14         Brown clayey SAND         0         12.3         64.5         6.8/16.4         0.0006         3.6E-07         25         40         15         SC         16.9         3.7E-06         2.3E-06           107         15         Brown clayey SAND with gravel         0         25.6         39         11.7/4         3.0E+02         14         23         9         GP          11.1         1.0E-08         11.1         1.0E-08         11.1         1.0E-08         11.1         1.0E-05         3.3E-06         2.3E-06         2.3E-06 <td></td> <td>SC</td> <td></td> <td>2.4E-07</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         | SC    |                   | 2.4E-07                                     |                                              |                                              |
| 99       12       Brown sandy laan CLAY with gravel       7.3       21.9       23.8       17.1/29.9       0.0002       4.0E-06       21       45       24       CL       15.6       1.2E-05       2.4E-07         103       14       Brown clayey SAND       0       12.3       64.5       6.8/16.4       0.0006       3.8E-07       25       40       15       SC       16.9       3.7E-06       2.3E-06         107       9       Brown clayey SAND with gravel       0       25.7       52       22.3       0.014       2.0E-04       18       26       8       SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       |                   |                                             |                                              |                                              |
| 103       14       Brown clayey SAND       0       12.3       64.5       6.8/16.4       0.0006       3.6E-07       25       40       15       SC       16.9       3.7E-06       2.8-06         107       9       Brown clayey SAND with gravel       0       25.7       52       22.3       0.014       2.0E-04       18       26       8       SC       16.9       3.7E-06       2.8-06         107       15       Brown clayey SAND with gravel       0       25.7       52       22.3       0.014       2.0E-04       18       26       8       SC       16.9       3.7E-06       1.8-06         113       8       Brown clayey SAND with gravel       0       25.6       39       11.7/23.7       0.0005       2.5E-07       17       36       19       SC       1.6       3.7E-08       1.1E-08         118       0-10       Brown clayey GRAVEL with sand       0       55.3       30.1       14.6       0.025       6.3E-04       18       34       16       GC       16       12       16       GRAVEL with sand       0       55.4       30.4       14.2       0.025       6.3E-04       18       34       16       GP-GC       12       12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       |                   |                                             |                                              |                                              |
| 107         9         Brown clayey SAND with gravel         0         25.7         52         22.3         0.014         2.0E-04         18         26         8         SC         International constraints           107         15         Brown poorty graded GRAVEL         25.4         68.3         5         1.3         17.4         3.0E+02         14         23         9         GP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       |                   |                                             |                                              |                                              |
| 107       15       Brown poorly graded GRAVEL       25.4       68.3       5       1.3       17.4       3.0E+02       14       23       9       GP       111         113       8       Brown clayey SAND with gravel       0       25.6       39       11.7.4       3.0E+02       14       23       9       GP       111         118       0-10       Brown clayey GRAVEL with sand       0       25.6       39       11.7.4       3.0E+02       14       23       9       GP       114         119       0-10       Brown clayey GRAVEL with sand       0       54.8       32.9       12.3       0.04       1.6E+03       19       35       16       GC       119       10       GC       112       0-6       Brown clayey GRAVEL with sand       0       55.3       30.1       14.6       0.025       6.3E+04       18       34       16       GC       112       0-6       Brown poorly graded GRAVEL with clay and sand       0       55.4       30.4       14.2       0.025       6.3E+04       20       53       33       MM       112       0.02       Brown clayey GRAVEL with sand       0       55.4       30.4       14.2       0.025       6.3E+04       20       53<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       | 16.9              | 3.7E-06                                     | 2.3E-06                                      | <u> </u>                                     |
| 113       8       Brown clayey SAND with gravel       0       25.6       39       11.7/23.7       0.0005       2.5E-07       17       36       19       SC       13.6       2.1E-08       1.1E-08         118       0-10       Brown clayey GRAVEL with sand       0       41.5       40       18.5       0.017       2.9E-04       18       29       11       GC       118       119       0-10       Brown clayey GRAVEL with sand       0       54.8       32.9       12.3       0.04       1.6E-03       19       35       16       GC       119       10       Drown clayey GRAVEL with sand       0       54.8       32.9       12.3       0.04       1.6E-03       19       35       16       GC       119       10       Brown clayey GRAVEL with sand       0       55.3       30.1       14.6       0.025       6.3E-04       18       34       16       GC       120       120       0-6       Brown poorly graded GRAVEL with clay and sand       0       63.7       26.8       9.5       0.0902       6.3E-04       20       53       33       GM       1123       0-10       Brown clayey SAND with gravel       0       27.7       54.9       17.4       0.014       2.0E-04       22 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>⊨]</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       | -                 |                                             |                                              | ⊨]                                           |
| 118       0-10       Brown clayey GRAVEL with sand       0       41.5       40       18.5       0.017       2.9E-04       18       29       11       GC       Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       | 13.6              | 2.1E-08                                     | 1.1E-08                                      |                                              |
| 119       0-10       Brown clayey GRAVEL with sand       0       54.8       32.9       12.3       0.04       1.6E-03       19       35       16       GC       Image: Constraint of the cons         |                | 0-10          | Brown clayey GRAVEL with sand |             |            |             |               |                         |                  |                      |                     |                         |       |                   | 2.12-00                                     |                                              |                                              |
| 120       0-10       Brown clayey GRAVEL with sand       0       55.3       30.1       14.6       0.025       6.3E-04       18       34       16       GC       Image: Constraint of the con         |                |               |                               | 0           | 54.8       | 32.9        | 12.3          |                         |                  |                      | 35                  |                         |       | -                 |                                             |                                              |                                              |
| 122         0-10         Brown silty GRAVEL with sand         0         55.4         30.4         14.2         0.025         6.3E-04         20         53         33         GM         123           123         0-10         Brown poorly graded GRAVEL with clay and sand         0         63.7         26.8         9.5         0.0902         8.1E-03         20         40         20         GP-GC         123           BH-1         10         Brown clayey SAND with gravel         0         27.7         54.9         17.4         0.014         2.0E-04         22         34         12         SC         123         12         SC         123         12         SC         123         12         SC         12         SC         12         SC         142         142         SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |               |                               |             |            |             |               |                         |                  |                      | 34                  | 16                      | GC    |                   |                                             |                                              |                                              |
| 123         0-10         Brown poorly graded GRAVEL with clay and sand         0         63.7         26.8         9.5         0.0902         8.1E-03         20         40         20         GP-GC           BH-1         10         Brown clayey SAND with gravel         0         27.7         54.9         17.4         0.014         2.0E-04         22         34         12         SC         5           BH-1         10.5         Brown sity SAND with gravel         0         17.4         65.5         16.7         0.027         7.3E-04         22         34         12         SC         5           BH-2         5         Brown sity SAND         0         13.4         42.9         43.7         0.004         7.8E-05         25         33         8         SM           BH-2         5.5         Brown well-graded sand with sitt and gravel         0         13.4         42.9         43.7         0.004         7.8E-05         25         33         8         SM           BH-2         5.5         Brown well-graded sand with sitt and gravel         0         36.1         35.9         28         0.0008         6.4E-07         15         34         19         GC         8.9         2.7E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       |                   |                                             |                                              |                                              |
| BH-1         10         Brown clayey SAND with gravel         0         27.7         54.9         17.4         0.014         2.0E-04         22         34         12         SC         Image: SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       |                   |                                             |                                              |                                              |
| BH-1         10.5         Brown silty SAND with gravel         0         17.8         65.5         16.7         0.027         7.3E-04         26         34         8         SM         Image: SM and |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       |                   |                                             |                                              |                                              |
| BH-2         5         Brown silty SAND         0         13.4         42.9         43.7         0.004         1.6E-05         25         33         8         SM           BH-2         5.5         Brown well-graded sand with silt and gravel         0         40.5         50         9.5         0.0881         7.8E-03         NP         NP         NP         SW-SM           N.Mine Stpl         Brown clayey GRAVEL with sand         0         36.1         35.9         28         0.0007         4.9E-07         15         34         19         GC         8.9         2.7E-06         1.9E-07           S.Mine.Stpl         Brown clayey GRAVEL with sand         0         33.1         33.6         0.0007         4.9E-07         17         30         13         GC         10.5         6.9E-05         3.9E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       |                   |                                             |                                              |                                              |
| BH-2         5.5         Brown well-graded sand with silt and gravel         0         40.5         50         9.5         0.0881         7.8E-03         NP         NP         NP         SW-SM           N.Mine Stpl         Brown clayey GRAVEL with sand         0         36.1         35.9         28         0.0008         6.4E-07         15         34         19         GC         8.9         2.7E-06         1.9E-07           S.Mine.Stpl         Brown clayey GRAVEL with sand         0         33.3         33.1         33.6         0.0007         4.9E-07         17         30         13         GC         10.5         6.9E-05         3.9E-05         3.8E-05         2.8E-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       |                   |                                             |                                              |                                              |
| N.Mine Stpl         Brown clayey GRAVEL with sand         0         36.1         35.9         28         0.0008         6.4E-07         15         34         19         GC         8.9         2.7E-06         1.9E-07           S.Mine.Stpl         Brown clayey GRAVEL with sand         0         33.3         33.1         33.6         0.0007         4.9E-07         17         30         13         GC         10.5         6.9E-05         3.9E-05         3.9E-05         2.8E-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       |                   |                                             |                                              | <u> </u>                                     |
| S.Mine.Stpl Brown clayey GRAVEL with sand 0 33.3 33.1 33.6 0.0007 4.9E-07 17 30 13 GC 10.5 6.9E-05 3.9E-05 2.8E-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N.Mine Stpl    |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       | 8.9               | 2.7E-06                                     | 1.9E-07                                      |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S.Mine.Stpl    |               |                               |             |            |             |               |                         |                  |                      |                     |                         |       |                   |                                             |                                              | 2.8E-05                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AVERAGE        |               |                               | 0.6         |            |             | 28.7          | 0.3                     | 4.7              |                      |                     | 13.7                    |       |                   |                                             |                                              |                                              |











# ATTACHMENT ONE

# **DESIGN COMPUTATIONS**

1385L.20080411

| .0 OBJECT                    | Ouerburden Sterrene Arree                                             |                  |                  |                  |   |
|------------------------------|-----------------------------------------------------------------------|------------------|------------------|------------------|---|
| lesign the East Cressor      | overburden Storage Area.                                              |                  |                  |                  | _ |
|                              |                                                                       |                  |                  |                  |   |
| UQUANTITIES FOR CL           | DNSTRUCTION OF ECOSA                                                  |                  |                  |                  |   |
|                              |                                                                       |                  |                  |                  | _ |
|                              | BASIC INFORMA                                                         |                  |                  |                  |   |
|                              | Area                                                                  | Square Feet      | Acres            |                  |   |
|                              | Planar Area                                                           | 7,658,402        | 176              |                  |   |
|                              | Upper Surface Area                                                    | 8,148,673        | 187              |                  |   |
|                              | Lower Surface Area                                                    | 7,820,621        | 180              |                  |   |
|                              | Volume                                                                | Cubic Feet       | Cubic Yards      |                  |   |
|                              | Volume Contained                                                      | 1.193E+09        | 44,180,590       |                  |   |
|                              | GROWTH MED                                                            | UM RECOVER       | RY               | ·<br>· · · · · · |   |
|                              | Material                                                              | Volume           | Weight           |                  |   |
|                              | Wateria                                                               | (cuyd)           | (ton)            |                  |   |
|                              | Growth Medium (6")                                                    | 145,000          | 217,500          |                  |   |
|                              | QUANTITI                                                              | ES PLACED        |                  |                  |   |
|                              | hile to stall                                                         | Volume           | Weight           |                  |   |
|                              | Material                                                              | (cuyd)           | (ton)            |                  |   |
|                              | Overburden stored                                                     | 44,000,000       | 66,000,000       |                  |   |
|                              | Base Cover (2', proof rolled)                                         | 604,000          | 906,000          |                  |   |
|                              | Compacted Cover (12")                                                 | 302,000          | 453,000          |                  | _ |
|                              | Growth Medium (6")                                                    | 151,000          | 226,500          |                  |   |
|                              |                                                                       | S REQUIRED       |                  |                  |   |
|                              |                                                                       | Volume           | Weight           |                  |   |
|                              | Material                                                              | (cuyd)           | (ton)            |                  |   |
|                              | Base cover                                                            | 604,000          | 906,000          |                  | _ |
|                              | Material >2' to waste (10%)                                           | 67,000           | 101,000          |                  |   |
|                              | Compacted cover                                                       | 302,000          | 453,000          |                  |   |
|                              | Material >2" to waste (50%)                                           | 302,000          | 453,000          |                  |   |
|                              | Total requirement                                                     | 1,275,000        | 1,913,000        |                  |   |
|                              |                                                                       | 1,275,000        | 1,913,000        |                  |   |
|                              |                                                                       |                  |                  |                  |   |
| 0.0 EVALUATION OF INF        | ILTRATION TO ECOSA                                                    |                  |                  |                  |   |
|                              |                                                                       |                  |                  |                  |   |
| 3.1 INFILTRATION DURIN       |                                                                       | 1:55             | 4                |                  | _ |
|                              | n construction occurs through three                                   |                  | ace types:       |                  |   |
|                              | hrough the reclaimed face of eac                                      |                  |                  |                  |   |
|                              | hrough the upper bench surface of                                     |                  |                  |                  |   |
|                              | hrough the end-dumped front fac                                       |                  |                  |                  |   |
| Each is considered separa    | tely, and the construction infiltrat                                  | ion computed a   | s a combination  | 1.               |   |
|                              |                                                                       |                  |                  |                  |   |
| 8.1.1 Infiltration Through   |                                                                       |                  |                  |                  |   |
|                              | onent cover with the following co                                     | nponents:        |                  | 27               |   |
|                              | dium (6" thick)                                                       |                  |                  |                  |   |
|                              | l clay layer (12" thick, -2", PI>15%                                  |                  | 95% optimum)     |                  |   |
| 3 Proof-rolled               | l clay base layer (24" thick, -24",                                   | proof rolled)    |                  |                  |   |
|                              |                                                                       |                  |                  |                  |   |
| nfiltration rate through the | cover is controlled by the hydrau                                     | lic conductivity | of the compact   | ed clay layer.   |   |
|                              |                                                                       |                  |                  |                  |   |
|                              | of the clay material (<2") has been                                   | en laboratory te | sted, as follows | •                |   |
|                              | of the clay material (<2") has been been been been been been been bee | en laboratory te | sted, as follows |                  |   |

| 1                                                                                  | Hydraulic Cor                                                                                                                                                                                                                                                                                                | nductivity: Cla                                                                                                                                                                                                                              | y Borrow Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                 |                                                                                                                                        |                            |                                       |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------|
|                                                                                    |                                                                                                                                                                                                                                                                                                              | Moisture                                                                                                                                                                                                                                     | Plasticity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Confining                                                                                                                                         | Hydraulic                                                                                                                              |                            |                                       |
|                                                                                    | Sample                                                                                                                                                                                                                                                                                                       | Content                                                                                                                                                                                                                                      | Index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pressure                                                                                                                                          | Conduct-                                                                                                                               |                            |                                       |
|                                                                                    | SWTP-                                                                                                                                                                                                                                                                                                        | (%)                                                                                                                                                                                                                                          | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (psi)                                                                                                                                             | ivity                                                                                                                                  |                            |                                       |
|                                                                                    |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                              | (70)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (hai)                                                                                                                                             | (cm/sec)                                                                                                                               |                            |                                       |
|                                                                                    | 71-2'                                                                                                                                                                                                                                                                                                        | 14.5                                                                                                                                                                                                                                         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                 | 2.2E-07                                                                                                                                |                            |                                       |
|                                                                                    | 75-4'                                                                                                                                                                                                                                                                                                        | 14.6                                                                                                                                                                                                                                         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                 | 1.5E-07                                                                                                                                |                            |                                       |
|                                                                                    | 85-7'                                                                                                                                                                                                                                                                                                        | 14.7                                                                                                                                                                                                                                         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                 | 7.2E-07                                                                                                                                |                            |                                       |
|                                                                                    | 98-3'                                                                                                                                                                                                                                                                                                        | 11.0                                                                                                                                                                                                                                         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                 | 1.0E-05                                                                                                                                |                            |                                       |
|                                                                                    | 70-5'                                                                                                                                                                                                                                                                                                        | 18.3                                                                                                                                                                                                                                         | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                 | 1.9E-06                                                                                                                                |                            |                                       |
|                                                                                    | 87-10'                                                                                                                                                                                                                                                                                                       | 16.0                                                                                                                                                                                                                                         | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                 | 1.6E-06                                                                                                                                |                            |                                       |
|                                                                                    | 103-14'                                                                                                                                                                                                                                                                                                      | 16.9                                                                                                                                                                                                                                         | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                 | 3.7E-06                                                                                                                                |                            |                                       |
|                                                                                    | 113-8'                                                                                                                                                                                                                                                                                                       | 13.6                                                                                                                                                                                                                                         | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                 | 2.1E-08                                                                                                                                |                            |                                       |
|                                                                                    | 99-12'                                                                                                                                                                                                                                                                                                       | 15.6                                                                                                                                                                                                                                         | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                 | 1.2E-05                                                                                                                                |                            | · · · · · · · · · · · · · · · · · · · |
|                                                                                    | 94-8'                                                                                                                                                                                                                                                                                                        | 13.9                                                                                                                                                                                                                                         | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                 | 2.4E-07                                                                                                                                |                            |                                       |
|                                                                                    | 98-3'                                                                                                                                                                                                                                                                                                        | 11.0                                                                                                                                                                                                                                         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                                                                                                                                                | 3.3E-06                                                                                                                                |                            |                                       |
|                                                                                    | 70-5'                                                                                                                                                                                                                                                                                                        | 18.3                                                                                                                                                                                                                                         | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                                                                                                                                                | 4.0E-07                                                                                                                                |                            |                                       |
|                                                                                    | 87-10'                                                                                                                                                                                                                                                                                                       | 16.0                                                                                                                                                                                                                                         | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                                                                                                                                                | 6.4E-07                                                                                                                                |                            |                                       |
|                                                                                    | 103-14'                                                                                                                                                                                                                                                                                                      | 16.9                                                                                                                                                                                                                                         | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                                                                                                                                                | 2.3E-06                                                                                                                                |                            |                                       |
|                                                                                    | 113-8'                                                                                                                                                                                                                                                                                                       | 13.6                                                                                                                                                                                                                                         | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                                                                                                                                                | 2.3E-06<br>1.1E-08                                                                                                                     |                            |                                       |
|                                                                                    | 99-12'                                                                                                                                                                                                                                                                                                       | 15.6                                                                                                                                                                                                                                         | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                                                                                                                                                |                                                                                                                                        |                            |                                       |
|                                                                                    | GeoMeans                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                                                                                                                                | 2.4E-07                                                                                                                                |                            |                                       |
|                                                                                    |                                                                                                                                                                                                                                                                                                              | 14.9                                                                                                                                                                                                                                         | 13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                   | 6.4E-07                                                                                                                                |                            |                                       |
|                                                                                    | PI>15%                                                                                                                                                                                                                                                                                                       | 15.1                                                                                                                                                                                                                                         | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                   | 3.9E-07                                                                                                                                |                            |                                       |
|                                                                                    | n through the con<br>Hydraulic cond                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                              | is compute from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 Darcy's Law:<br>4.0E-07                                                                                                                         |                                                                                                                                        |                            |                                       |
|                                                                                    |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0E+00                                                                                                                                           |                                                                                                                                        |                            | ···                                   |
|                                                                                    | Head gradient =                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.04+00                                                                                                                                           |                                                                                                                                        |                            |                                       |
|                                                                                    |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                              | ated=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                   |                                                                                                                                        | 5.0                        | in/vr                                 |
| <u>_</u>                                                                           | Specific discha                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                              | ated=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.1E-01                                                                                                                                           | cuft/sqft/yr=                                                                                                                          | 5.0                        | in/yr                                 |
|                                                                                    | Specific discha                                                                                                                                                                                                                                                                                              | rge when satur                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   | cuft/sqft/yr=<br>sqft                                                                                                                  |                            | in/yr<br>gpm                          |
| The compact                                                                        | Specific discha<br>Area =<br>Maximum infiltr                                                                                                                                                                                                                                                                 | rge when satur<br>ation flow rate                                                                                                                                                                                                            | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.1E-01<br>7.7E+06<br>3.2E+06                                                                                                                     | cuft/sqft/yr=<br>sqft<br>cuft/yr =                                                                                                     |                            |                                       |
| The compact<br>Based on this                                                       | Specific discha<br>Area =<br>Maximum infiltr<br>ed cover is frozer                                                                                                                                                                                                                                           | rge when satur<br>ation flow rate<br>n or dry for app                                                                                                                                                                                        | =<br>roximately 5 mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.1E-01<br>7.7E+06<br>3.2E+06<br>onths of the ye                                                                                                  | cuft/sqft/yr=<br>sqft<br>cuft/yr =<br>ar.                                                                                              |                            |                                       |
| Based on this                                                                      | Specific dischar<br>Area =<br>Maximum infiltr<br>ed cover is frozer<br>flow limitation, th                                                                                                                                                                                                                   | rge when satur<br>ation flow rate<br>n or dry for app<br>ne infiltration th                                                                                                                                                                  | =<br>roximately 5 mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.1E-01<br>7.7E+06<br>3.2E+06<br>onths of the year is estimated a                                                                                 | cuft/sqft/yr=<br>sqft<br>cuft/yr =<br>ar.<br>as follows:                                                                               |                            |                                       |
| Based on this                                                                      | Specific discha<br>Area =<br>Maximum infiltr<br>ed cover is frozer<br>s flow limitation, th<br>Hydraulic condu                                                                                                                                                                                               | rge when satur<br>ation flow rate<br>n or dry for app<br>ne infiltration th<br>uctivity =                                                                                                                                                    | =<br>roximately 5 mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.1E-01<br>7.7E+06<br>3.2E+06<br>onths of the year<br>r is estimated a<br>4.0E-07                                                                 | cuft/sqft/yr=<br>sqft<br>cuft/yr =<br>ar.<br>as follows:<br>cm/sec                                                                     |                            |                                       |
| Based on this                                                                      | Specific dischar<br>Area =<br>Maximum infiltr<br>ed cover is frozer<br>flow limitation, th<br>Hydraulic condu<br>Head gradient =                                                                                                                                                                             | rge when satur<br>ation flow rate<br>n or dry for app<br>ne infiltration th<br>uctivity =<br>=                                                                                                                                               | =<br>roximately 5 mo<br>rough the cove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.1E-01<br>7.7E+06<br>3.2E+06<br>onths of the year<br>r is estimated a<br>4.0E-07<br>1.00                                                         | cuft/sqft/yr=<br>sqft<br>cuft/yr =<br>ar.<br>as follows:<br>cm/sec                                                                     | 45.1                       | gpm                                   |
| Based on this                                                                      | Specific dischar<br>Area =<br>Maximum infiltr<br>ed cover is frozer<br>flow limitation, th<br>Hydraulic condu<br>Head gradient =<br>Specific dischar                                                                                                                                                         | rge when satur<br>ation flow rate<br>n or dry for app<br>ne infiltration th<br>uctivity =<br>=<br>rge when satur                                                                                                                             | =<br>roximately 5 mo<br>rough the cove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.1E-01<br>7.7E+06<br>3.2E+06<br>onths of the year<br>is estimated a<br>4.0E-07<br>1.00<br>0.41                                                   | cuft/sqft/yr=<br>sqft<br>cuft/yr =<br>ar.<br>as follows:<br>cm/sec                                                                     | 45.1                       |                                       |
| Based on this                                                                      | Specific dischar<br>Area =<br>Maximum infiltr<br>ed cover is frozer<br>s flow limitation, th<br>Hydraulic condu<br>Head gradient =<br>Specific dischar<br>Time frozen/un                                                                                                                                     | rge when satur<br>ation flow rate<br>n or dry for app<br>ne infiltration th<br>uctivity =<br>=<br>rge when satur<br>saturated =                                                                                                              | =<br>roximately 5 mo<br>rough the cove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.1E-01<br>7.7E+06<br>3.2E+06<br>onths of the year<br>is estimated a<br>4.0E-07<br>1.00<br>0.41<br>1/2                                            | cuft/sqft/yr=<br>sqft<br>cuft/yr =<br>ar.<br>as follows:<br>cm/sec<br>cuft/sqft/yr=                                                    | 45.1                       | gpm<br>in/yr                          |
| Based on this                                                                      | Specific dischar<br>Area =<br>Maximum infiltr<br>ed cover is frozer<br>s flow limitation, th<br>Hydraulic condu<br>Head gradient =<br>Specific dischar<br>Time frozen/uns<br>Average specifi                                                                                                                 | rge when satur<br>ation flow rate<br>n or dry for app<br>ne infiltration th<br>uctivity =<br>=<br>rge when satur<br>saturated =                                                                                                              | =<br>roximately 5 mo<br>rough the cove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.1E-01<br>7.7E+06<br>3.2E+06<br>onths of the year<br>is estimated a<br>4.0E-07<br>1.00<br>0.41<br>1/2<br>0.21                                    | cuft/sqft/yr=<br>sqft<br>cuft/yr =<br>ar.<br>as follows:<br>cm/sec<br>cuft/sqft/yr=<br>cuft/sqft/yr=                                   | 45.1                       | gpm                                   |
| Based on this                                                                      | Specific dischar<br>Area =<br>Maximum infiltr<br>ed cover is frozer<br>flow limitation, th<br>Hydraulic condu<br>Head gradient =<br>Specific dischar<br>Time frozen/uns<br>Average specifi<br>Area =                                                                                                         | rge when satur<br>ation flow rate<br>n or dry for app<br>ne infiltration th<br>uctivity =<br>=<br>rge when satur<br>saturated =<br>c discharge =                                                                                             | =<br>roximately 5 mo<br>rough the cove<br>ated=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.1E-01<br>7.7E+06<br>3.2E+06<br>0 nths of the year<br>r is estimated a<br>4.0E-07<br>1.00<br>0.41<br>1/2<br>0.21<br>7.7E+06                      | cuft/sqft/yr=<br>sqft<br>cuft/yr =<br>ar.<br>as follows:<br>cm/sec<br>cuft/sqft/yr=<br>cuft/sqft/yr=<br>sqft                           | 45.1<br>5.0<br>2.5         | gpm<br>in/yr<br>in/yr                 |
| Based on this                                                                      | Specific dischar<br>Area =<br>Maximum infiltr<br>ed cover is frozer<br>s flow limitation, th<br>Hydraulic condu<br>Head gradient =<br>Specific dischar<br>Time frozen/uns<br>Average specifi                                                                                                                 | rge when satur<br>ation flow rate<br>n or dry for app<br>ne infiltration th<br>uctivity =<br>=<br>rge when satur<br>saturated =<br>c discharge =                                                                                             | =<br>roximately 5 mo<br>rough the cove<br>ated=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.1E-01<br>7.7E+06<br>3.2E+06<br>onths of the year<br>is estimated a<br>4.0E-07<br>1.00<br>0.41<br>1/2<br>0.21                                    | cuft/sqft/yr=<br>sqft<br>cuft/yr =<br>ar.<br>as follows:<br>cm/sec<br>cuft/sqft/yr=<br>cuft/sqft/yr=<br>sqft                           | 45.1                       | gpm<br>in/yr<br>in/yr                 |
| Based on this                                                                      | Specific dischar<br>Area =<br>Maximum infiltr<br>ed cover is frozer<br>flow limitation, th<br>Hydraulic condu<br>Head gradient =<br>Specific dischar<br>Time frozen/uns<br>Average specifi<br>Area =<br>Maximum infiltr<br>ion Through Up                                                                    | rge when satur<br>ation flow rate<br>n or dry for app<br>ne infiltration th<br>uctivity =<br>=<br>rge when satur<br>saturated =<br>c discharge =<br>ation flow rate                                                                          | =<br>roximately 5 mo<br>rough the cove<br>ated=<br>=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.1E-01<br>7.7E+06<br>3.2E+06<br>onths of the year<br>is estimated a<br>4.0E-07<br>1.00<br>0.41<br>1/2<br>0.21<br>7.7E+06<br>1.6E+06              | cuft/sqft/yr=<br>sqft<br>cuft/yr =<br>ar.<br>as follows:<br>cm/sec<br>cuft/sqft/yr=<br>cuft/sqft/yr=<br>sqft<br>cuft/yr =              | 45.1<br>5.0<br>2.5         | gpm<br>in/yr<br>in/yr                 |
| Based on this<br>B.1.2 Infiltrat                                                   | Specific dischar<br>Area =<br>Maximum infiltr<br>ed cover is frozer<br>s flow limitation, th<br>Hydraulic condu<br>Head gradient =<br>Specific dischar<br>Time frozen/uns<br>Average specifi<br>Area =<br>Maximum infiltr<br>ion Through Upp<br>nch surface is wh                                            | rge when satur<br>ation flow rate<br>n or dry for app<br>ne infiltration th<br>uctivity =<br>=<br>rge when satur<br>saturated =<br>c discharge =<br>ation flow rate<br>per Bench Sun<br>neel-compacted                                       | = roximately 5 mo rough the cove ated=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.1E-01<br>7.7E+06<br>3.2E+06<br>onths of the year<br>is estimated a<br>4.0E-07<br>1.00<br>0.41<br>1/2<br>0.21<br>7.7E+06<br>1.6E+06              | cuft/sqft/yr=<br>sqft<br>cuft/yr =<br>ar.<br>as follows:<br>cm/sec<br>cuft/sqft/yr=<br>cuft/sqft/yr=<br>sqft<br>cuft/yr =              | 45.1<br>5.0<br>2.5         | gpm<br>in/yr<br>in/yr                 |
| Based on this<br>B.1.2 Infiltrat<br>The upper be<br>The surface h                  | Specific dischar<br>Area =<br>Maximum infiltr<br>ed cover is frozer<br>flow limitation, th<br>Hydraulic condu<br>Head gradient =<br>Specific dischar<br>Time frozen/uns<br>Average specifi<br>Area =<br>Maximum infiltra<br>ion Through Upp<br>nch surface is wh<br>mas significant hol                      | rge when satur<br>ation flow rate<br>n or dry for app<br>ne infiltration th<br>uctivity =<br>=<br>rge when satur<br>saturated =<br>c discharge =<br>ation flow rate<br>per Bench Sur<br>neel-compacted<br>ding capacity,                     | = roximately 5 mo rough the cove ated=  face by truck and e and significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.1E-01<br>7.7E+06<br>3.2E+06<br>2000 the set<br>r is estimated a<br>4.0E-07<br>1.00<br>0.41<br>1/2<br>0.21<br>7.7E+06<br>1.6E+06<br>0.41<br>0.21 | cuft/sqft/yr=<br>sqft<br>cuft/yr =<br>ar.<br>as follows:<br>cm/sec<br>cuft/sqft/yr=<br>cuft/sqft/yr=<br>sqft<br>cuft/yr =<br>cuft/yr = | 45.1<br>5.0<br>2.5         | gpm<br>in/yr<br>in/yr                 |
| Based on this<br>B.1.2 Infiltrat<br>The upper be<br>The surface h                  | Specific dischar<br>Area =<br>Maximum infiltr<br>ed cover is frozer<br>flow limitation, th<br>Hydraulic condu<br>Head gradient =<br>Specific dischar<br>Time frozen/uns<br>Average specifi<br>Area =<br>Maximum infiltra<br>ion Through Upp<br>nch surface is wh<br>mas significant hol                      | rge when satur<br>ation flow rate<br>n or dry for app<br>ne infiltration th<br>uctivity =<br>=<br>rge when satur<br>saturated =<br>c discharge =<br>ation flow rate<br>per Bench Sur<br>neel-compacted<br>ding capacity,                     | = roximately 5 mo rough the cove ated=  face by truck and e and significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.1E-01<br>7.7E+06<br>3.2E+06<br>2000 the set<br>r is estimated a<br>4.0E-07<br>1.00<br>0.41<br>1/2<br>0.21<br>7.7E+06<br>1.6E+06<br>0.41<br>0.21 | cuft/sqft/yr=<br>sqft<br>cuft/yr =<br>ar.<br>as follows:<br>cm/sec<br>cuft/sqft/yr=<br>cuft/sqft/yr=<br>sqft<br>cuft/yr =<br>cuft/yr = | 45.1<br>5.0<br>2.5         | gpm<br>in/yr<br>in/yr                 |
| Based on this<br>B.1.2 Infiltrat<br>The upper be<br>The surface h<br>t is expected | Specific dischar<br>Area =<br>Maximum infiltr<br>ed cover is frozer<br>flow limitation, th<br>Hydraulic condu<br>Head gradient =<br>Specific dischar<br>Time frozen/uns<br>Average specifi<br>Area =<br>Maximum infiltra<br>ion Through Upp<br>nch surface is wh<br>has significant hol<br>that this surface | rge when satur<br>ation flow rate<br>n or dry for app<br>ne infiltration th<br>uctivity =<br>=<br>rge when satur<br>saturated =<br>c discharge =<br>ation flow rate<br>per Bench Sur<br>heel-compacted<br>ding capacity,<br>will have simila | = roximately 5 mo rough the cove ated= ate | 4.1E-01<br>7.7E+06<br>3.2E+06<br>2000 the set<br>r is estimated a<br>4.0E-07<br>1.00<br>0.41<br>1/2<br>0.21<br>7.7E+06<br>1.6E+06<br>1.6E+06      | cuft/sqft/yr=<br>sqft<br>cuft/yr =<br>ar.<br>as follows:<br>cm/sec<br>cuft/sqft/yr=<br>cuft/sqft/yr=<br>sqft<br>cuft/yr =<br>c.        | 45.1<br>5.0<br>2.5<br>22.6 | gpm<br>in/yr<br>in/yr                 |
| Based on this<br>B.1.2 Infiltrat<br>The upper be<br>The surface h<br>t is expected | Specific dischar<br>Area =<br>Maximum infiltr<br>ed cover is frozer<br>flow limitation, th<br>Hydraulic condu<br>Head gradient =<br>Specific dischar<br>Time frozen/uns<br>Average specifi<br>Area =<br>Maximum infiltra<br>ion Through Upp<br>nch surface is wh<br>mas significant hol                      | rge when satur<br>ation flow rate<br>n or dry for app<br>ne infiltration th<br>uctivity =<br>=<br>rge when satur<br>saturated =<br>c discharge =<br>ation flow rate<br>per Bench Sur<br>heel-compacted<br>ding capacity,<br>will have simila | = roximately 5 mo rough the cove ated= ate | 4.1E-01<br>7.7E+06<br>3.2E+06<br>2000 the set<br>r is estimated a<br>4.0E-07<br>1.00<br>0.41<br>1/2<br>0.21<br>7.7E+06<br>1.6E+06<br>1.6E+06      | cuft/sqft/yr=<br>sqft<br>cuft/yr =<br>ar.<br>as follows:<br>cm/sec<br>cuft/sqft/yr=<br>cuft/sqft/yr=<br>sqft<br>cuft/yr =<br>c.        | 45.1<br>5.0<br>2.5<br>22.6 | gpm<br>in/yr<br>in/yr                 |

٠

### **Project: East Cresson Overburden Storage Design** Author: Adrian Brown, P.E.

| 3.1.3 Infiltrati                      | on Through Er     | nd Dumped Fa    | ce             |                   |                 |                |          |
|---------------------------------------|-------------------|-----------------|----------------|-------------------|-----------------|----------------|----------|
|                                       |                   |                 |                | precipitation th  | at falls on it. |                |          |
|                                       |                   |                 |                | ater back to the  |                 | neriods        |          |
|                                       |                   |                 |                | the regional av   |                 |                |          |
|                                       |                   |                 |                |                   | cruge, or rong  |                |          |
| 314 Summa                             | ry Of Infiltratio | n Rates         |                |                   |                 |                |          |
| Infiltration:                         | End dumped f      |                 | 10             | inches/year       |                 |                |          |
| initia datori.                        | Upper bench s     |                 |                | inches/year       |                 |                |          |
|                                       | Revegetated c     |                 |                | inches/year       |                 |                |          |
|                                       | The vegetated o   |                 | 2.0            | inches/year       |                 |                |          |
| 3.1.5 Infiltration                    |                   |                 |                |                   |                 |                |          |
|                                       |                   | is being constr | ucted is compu | ited in the table | helow           |                |          |
|                                       | re considered:    |                 | ucted is compo |                   |                 |                |          |
|                                       |                   | le advancing en | d dumped face  | a of each lift    |                 |                |          |
|                                       |                   | ne expanding up |                |                   |                 |                |          |
|                                       |                   | ie expanding up |                |                   |                 |                |          |
|                                       |                   |                 |                |                   |                 |                |          |
|                                       |                   | by summing the  | unree lactors. |                   |                 |                |          |
| Overburden C                          | Construction b    |                 |                |                   |                 |                |          |
| Overburden C                          |                   |                 | 1 :54          | Discod            | Cumul           |                | 1.164    |
|                                       | Lift              | Face Length     | Lift           | Placed            | Cumul.          | Lift Filled by | Lift     |
| Elevation                             | Area              | (ft)            | Volume         | Mass              | Mass            | (year)         | Fill Tim |
|                                       | (sf)              | (               | <u>(cf)</u>    | (ton)             | (ton)           | (3)            | (year)   |
| 10050                                 | 4.0405.05         | 1400            | 0.5045.00      |                   | 2.0505.05       | 0.000          |          |
| 10050                                 | 1.316E+05         |                 | 6.581E+06      |                   | 3.656E+05       | 0.032          | 0.0      |
| 10100                                 | 1.274E+06         |                 | 6.372E+07      | 3.540E+06         | 3.905E+06       | 0.345          | 0.       |
| 10150                                 | 2.171E+06         |                 | 1.085E+08      |                   | 9.935E+06       | 0.877          | 0.       |
| 10200                                 | 2.939E+06         |                 | 1.469E+08      |                   | 1.810E+07       | 1.597          | 0.       |
| 10250                                 | 3.337E+06         |                 | 1.669E+08      | 1 1               | 2.737E+07       | 2.415          | 0.       |
| 10300                                 | 3.371E+06         |                 | 1.685E+08      |                   | 3.673E+07       | 3.241          | 0.       |
| 10350                                 | 3.268E+06         |                 | 1.634E+08      |                   | 4.581E+07       | 4.042          | 0.8      |
| 10400                                 | 3.232E+06         |                 | 1.616E+08      |                   | 5.478E+07       | 4.834          | 0.       |
| 10450                                 | 2.517E+06         |                 | 1.258E+08      |                   | 6.178E+07       | 5.450          | 0.0      |
| 10500                                 | 1.338E+06         |                 | 6.688E+07      | 3.715E+06         | 6.549E+07       | 5.778          | 0.3      |
| 10550                                 | 6.719E+05         |                 | 3.359E+07      | 1.866E+06         | 6.736E+07       | 5.943          | 0.1      |
| 10600                                 | 2.285E+05         |                 | 1.142E+07      | 6.347E+05         | 6.799E+07       | 5.999          | 0.0      |
| 10650                                 | 4.687E+03         | 480             | 2.344E+05      | 1.302E+04         | 6.800E+07       | 6.000          | 0.0      |
| TOTALS                                | 2.448E+07         | 58893           | 1.224E+09      | 6.800E+07         |                 |                | 6.       |
|                                       |                   | 2               |                |                   |                 | 5              |          |
|                                       |                   |                 |                |                   |                 |                |          |
|                                       |                   |                 |                |                   |                 |                |          |
|                                       |                   |                 |                |                   |                 |                |          |
|                                       |                   |                 |                |                   |                 |                |          |
|                                       |                   |                 |                |                   |                 |                |          |
|                                       |                   |                 |                |                   | 0               |                |          |
|                                       |                   |                 |                |                   |                 |                | · · · ·  |
|                                       |                   |                 | 7.             |                   |                 |                |          |
|                                       |                   |                 |                |                   |                 |                |          |
|                                       |                   |                 |                |                   |                 |                |          |
|                                       |                   |                 |                |                   |                 |                |          |
|                                       | <u> </u>          |                 |                |                   |                 |                |          |
| ×                                     |                   |                 |                |                   |                 |                |          |
| · · · · · · · · · · · · · · · · · · · |                   |                 |                |                   |                 |                |          |

| Elevation                             | Face<br>area        | Face<br>Infiltration | Surface<br>Area                       | Surface<br>Infiltration | Reclaimed<br>Area | Reclaimed<br>Infiltration | Total<br>Infiltration |
|---------------------------------------|---------------------|----------------------|---------------------------------------|-------------------------|-------------------|---------------------------|-----------------------|
|                                       | <u>(sf)</u>         | (cf)                 | (sf)                                  | (cf)                    | (sf)              | (cf)                      | (cf)                  |
| 40050                                 | 100000              |                      |                                       |                         |                   |                           |                       |
| 10050                                 | 106828              | 1                    |                                       | 1769                    | 201965            |                           | 2557                  |
| 10100                                 | 260737              | 67861                |                                       | 165835                  | 492939            |                           | 8144                  |
| 10150                                 | 309205              |                      |                                       | 481169                  | 584572            |                           | 12422                 |
| 10200                                 | 413201              | 247995               |                                       | 881870                  | 781182            |                           | 18464                 |
| 10250                                 | 428123              | 291792               |                                       | 1137231                 | 809393            |                           | 20335                 |
| 10300                                 | 405915              | 279435               |                                       | 1160199                 | 767408            |                           | 18807                 |
| 10350                                 | 411167              | 274389               |                                       | 1090276                 | 777335            |                           | 16818                 |
| 10400                                 | 433450              | 286084               |                                       | 1066472                 | 819464            |                           | 15516                 |
| 10450                                 | 471230              | 242209               |                                       | 646778                  | 890888            |                           | 9909                  |
| 10500                                 | 450678              | 123114               |                                       | 182694                  | 852034            |                           | 3451                  |
| 10550                                 | 300794              | 41276                | 1                                     | 46100                   | 568669            |                           | 941                   |
| 10600                                 | 179810              | 8390                 | I                                     | 5331                    | 339942            | 81                        | 138                   |
| 10650                                 | 34269               | 33                   |                                       | 2                       | 64788             |                           |                       |
| TOTALS                                | 4205407             | 2002531              | 24481626                              | 6865724                 | 7950577           | 3882687                   | 127509                |
|                                       |                     |                      |                                       |                         |                   |                           |                       |
| ummary Of                             | Infiltration Duri   | ing Construct        | ion Of Ecosa                          |                         |                   |                           |                       |
|                                       |                     |                      | End-Dumped                            | Upper                   | Reclaimed         | Total                     |                       |
|                                       | Infiltration        | Location             | Face                                  | Bench                   |                   |                           |                       |
|                                       |                     |                      | Гасе                                  | Surface                 | Surface           | ECOSA                     |                       |
|                                       | Average Area (      | acre)                | 9.2                                   | 63.0                    | 0.0               | 0.0                       |                       |
|                                       | Flow rate (gpm      |                      | 4.7                                   | 16                      | 9                 | 30                        |                       |
|                                       | Volume (% of t      | otal)                | 1.636E-03                             | 5.609E-03               | 3.172E-03         | 1.042E-02                 |                       |
|                                       | % of field capa     | city                 | 2.18%                                 | 7.48%                   | 4.23%             | 13.89%                    |                       |
|                                       |                     |                      |                                       |                         |                   |                           |                       |
|                                       | TION AFTER C        |                      |                                       |                         |                   |                           |                       |
|                                       | r construction w    |                      |                                       |                         |                   |                           |                       |
| he rate of infi                       | iltration and the   | total infiltration   | flow will be as o                     | computed abov           | e for the comp    | acted layer:              |                       |
|                                       |                     |                      |                                       |                         |                   |                           |                       |
| ong Term In                           | filtration          |                      |                                       |                         |                   |                           |                       |
|                                       | Total surface a     | rea of ECOSA         |                                       |                         | 7,658,402         | sq.ft.                    |                       |
|                                       | Infiltration rate   | after Remediat       | ion                                   |                         | 2.5               | in/yr                     |                       |
|                                       | Total infiltration  | flow after rem       | ediation                              |                         | 22.7              |                           |                       |
|                                       |                     |                      |                                       |                         |                   |                           |                       |
| <b>3 SATISFAC</b>                     | TION OF FIELI       | D CAPACITY I         | N ECOSA                               |                         |                   |                           |                       |
| ne infiltration                       | that occurs duri    | ng construction      | n serves to satis                     | fy some of the          | field capacity of | of the pile.              |                       |
|                                       |                     |                      |                                       | -                       |                   |                           |                       |
| atisfaction o                         | of Field Capacit    | у                    |                                       |                         |                   |                           |                       |
|                                       | Total surface a     |                      | ÷.                                    | İ                       | 7,658,402         | sq.ft.                    |                       |
|                                       | Infiltration rate a |                      | ion                                   |                         |                   | in/yr                     |                       |
|                                       | Total infiltration  |                      |                                       |                         | 22.7              |                           | ·                     |
|                                       | Volume represe      |                      |                                       |                         | 91,806,098        | cuft                      |                       |
| ····                                  | Volume satisfie     |                      |                                       |                         | 12,750,942        |                           |                       |
|                                       | Volume remain       |                      |                                       |                         | 79,055,156        |                           |                       |
| · · · · · · · · · · · · · · · · · · · |                     |                      |                                       |                         | 10,000,100        | ouit l                    |                       |
| •••••••                               |                     |                      | · · · · · · · · · · · · · · · · · · · |                         |                   |                           |                       |
|                                       | Reclaimed infilt    | ration rate          | ining field capad                     | bity                    | 1,595,500<br>50   | cuft/yr                   |                       |

| 4 SULFIDE OXIDATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                     | T                     | 1                                     |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|---------------------------------------|------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -f 15 t               | Let a the Co          | · · · · · · · · · · · · · · · · · · · |      |
| Materials placed in the ECOSA contain low concentrations of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of suifide, main      | ily in the form of    | f pyrite.                             |      |
| These materials react with any available oxygen or other ox<br>Acid and metals may be released by this process.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | duizer in the pro     | esence of water       | ſ.                                    |      |
| The ECOSA materials also contain low concentrations of ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rhonoto which         | noutroline these      |                                       |      |
| The ECOCA materials also contain low concentrations of ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | albonate, which       |                       | se acidic produ                       | CIS. |
| 4.1 PYRITE OXIDATION AND NEUTRALIZATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                       |                                       |      |
| Pyrite oxidation involves the following overall reaction (if pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <4.5) (Brown :        | and Logsdon 1         | 990).                                 |      |
| $FeS_2 + 7/2 O_2 + H_2 O = Fe^{2+} + 2 SO_4^{2-} + 2 H^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                       | 330).                                 |      |
| $CaCO_3 + 2H^+ = Ca^{2+} + H_20 + CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                       |                                       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                       |                                       |      |
| Neutralized overall equation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                     |                       |                                       |      |
| $FeS_2 + 7/2 O_2 + CaCO_3 = Fe^{2+} + Ca^{2+} + 2 SC_2 + CaCO_3 = Fe^{2+} + Ca^{2+} + 2 SC_2 + CaCO_3 = Fe^{2+} + Ca^{2+} + Ca^{2+} + Ca^{$ |                       |                       |                                       |      |
| Moles of pyrite oxidized by one mole of oxyg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | 0.286                 |                                       |      |
| Grams of pyrite oxidized by 1 gram of oxyger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | 1.071                 |                                       |      |
| For oxidized conditions (which we expect overall, by the time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e the water exit      | ts to the stream      | or diatreme)                          |      |
| $FeS_2 + 15/4 O_2 + 7/2 H_2 0 = Fe(OH)_3 + 2 SO_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ∠- + 4 H <sup>+</sup> |                       |                                       |      |
| Neutralized overall equation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                       |                                       |      |
| $FeS_2 + 15/4 O_2 + 3/2 H_20 + 2CaCO3 = 2Ca^{2+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | + CO2 + Fe(C          | $(H)_3 + 2 SO_4^{2-}$ |                                       |      |
| The stoichiometry of the pyrite oxidation and neutralization r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |                       |                                       |      |
| Moles of pyrite oxidized by one mole of oxyge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       | 0.267                 |                                       |      |
| Grams of pyrite oxidized by 1 gram of oxyger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | 1.000                 |                                       |      |
| Moles of calcite to neutralize acid from 1 mole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 2                     |                                       |      |
| Grams of calcite to neutralize acid from 1 gra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       | 1.668                 |                                       |      |
| Grams of water consumed per gram of pyrite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | 0.225                 |                                       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                       |                                       |      |
| 4.2 OXYGEN SUPPLY TO PYRITE OXIDATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                       |                                       |      |
| Oxygen is required to support pyrite oxidation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                       |                                       |      |
| With the cover in position, the ECOSA overburden is protect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                       |                                       |      |
| This section evaluates the oxygen supply to the overburden,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | by a number o         | of mechanisms.        |                                       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                       | · · · · · · · · · · · · · · · · · · · |      |
| Moles of pyrite oxidized by one mole of oxygen =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.267                 |                       |                                       |      |
| Grams of pyrite oxidized by 1 gram of oxygen =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.000                 |                       |                                       |      |
| Moles of calcite to neutralize acid from 1 mole of pyrite =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                     |                       |                                       |      |
| Grams of calcite to neutralize acid from 1 gram pyrite =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.668                 |                       |                                       |      |
| Grams of water consumed per gram of pyrite =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.225                 |                       |                                       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                       |                                       |      |
| 4.2.1 Oxidation By Emplaced Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                       |                                       |      |
| At emplacement, the overburden has air contained within it.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                       |                                       |      |
| The oxygen is available to react with the pyrite in the overbuilt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rden.                 |                       |                                       |      |
| The quantity of acid generated, and of carbonate consumed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | neutralizing it,      | is computed be        | low:                                  |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                       | -                                     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                       |                                       |      |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                       |                                       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                       |                                       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                       |                                       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                       |                                       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                       |                                       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                       |                                       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                       |                                       |      |

| Emplaced                                                                                                                                           | Air Pyrite Oxida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ition                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                     |                                                |               |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------|
|                                                                                                                                                    | Emplaced po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                | 40%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                       | -                                              |               |
| [                                                                                                                                                  | Volume of ov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                | 1.193E+09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                       |                                                |               |
|                                                                                                                                                    | Volume of en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                | 477,150,377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                       |                                                |               |
|                                                                                                                                                    | Density of air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                | 0.0653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                       |                                                |               |
|                                                                                                                                                    | Mass of air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                | 15589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                       |                                                |               |
|                                                                                                                                                    | Oxygen conte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ent of air                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                | 20.95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                       |                                                |               |
|                                                                                                                                                    | Oxygen conte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                | 23.25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                       | _                                              |               |
|                                                                                                                                                    | Mass of oxyg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                | 3,624                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                       |                                                |               |
|                                                                                                                                                    | Mass of pyrite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                 | <u> </u>                                                                                                                                                                                                                       | 3,624                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                       |                                                |               |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | O3 to neutralize                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                | 6,046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                       |                                                |               |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e concentration                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (ABC, 2008)                                                                                                                                           |                                                |               |
|                                                                                                                                                    | Carbonate in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                       |                                                |               |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | utralization used                                                                                                                                                                                                                                                                                                               | <u>.</u>                                                                                                                                                                                                                       | 947,674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                       |                                                |               |
|                                                                                                                                                    | Mass of water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                       |                                                |               |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ing construction                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tons                                                                                                                                                  |                                                | _             |
| ·····                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | f infiltration used                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                | 397,829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                       |                                                |               |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 | L                                                                                                                                                                                                                              | 0.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                       |                                                | _             |
| Based on #                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | he employed =                                                                                                                                                                                                                                                                                                                   | L                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                       |                                                |               |
| The overbu                                                                                                                                         | nis computation, t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ne emplaced all                                                                                                                                                                                                                                                                                                                 | contains suffic                                                                                                                                                                                                                | cient oxygen to c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | oxidize 3,624 t                                                                                                                                       | ons of pyrite.                                 |               |
| The reaction                                                                                                                                       | rden contains a g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | reat excess of c                                                                                                                                                                                                                                                                                                                | arbonate to ne                                                                                                                                                                                                                 | utralize expecte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d oxidation pro                                                                                                                                       | oducts.                                        |               |
|                                                                                                                                                    | n takes up a minn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | imal amount of                                                                                                                                                                                                                                                                                                                  | Infiltrating wate                                                                                                                                                                                                              | er.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ····                                                                                                                                                  |                                                |               |
| vo significa                                                                                                                                       | int impact is expe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | cted as a result                                                                                                                                                                                                                                                                                                                | of the emplace                                                                                                                                                                                                                 | nent oxygen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                       |                                                | 37            |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                       |                                                |               |
| ( 0 0 A: E                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                       |                                                |               |
| 4.2.2 Air Er                                                                                                                                       | ntry To Cap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                       |                                                |               |
| The cover n                                                                                                                                        | naterial constitute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s a saturated, lo                                                                                                                                                                                                                                                                                                               | ow permeabilty                                                                                                                                                                                                                 | material overlyi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ng the highly p                                                                                                                                       | orous overbu                                   | den material. |
| The cover n<br>The cover w                                                                                                                         | naterial constitute<br>vould be expected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | d to limit "breath                                                                                                                                                                                                                                                                                                              | ing" of the pile                                                                                                                                                                                                               | due to atmosph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eric pressure (                                                                                                                                       | changes.                                       |               |
| The cover n<br>The cover w<br>The limiting                                                                                                         | naterial constitute<br>vould be expected<br>mechanism woul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d to limit "breath                                                                                                                                                                                                                                                                                                              | ing" of the pile                                                                                                                                                                                                               | due to atmosphores of the mater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | eric pressure (                                                                                                                                       | changes.                                       |               |
| The cover n<br>The cover w<br>The limiting                                                                                                         | naterial constitute<br>vould be expected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | d to limit "breath                                                                                                                                                                                                                                                                                                              | ing" of the pile                                                                                                                                                                                                               | due to atmosphores of the mater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | eric pressure (                                                                                                                                       | changes.                                       |               |
| The cover n<br>The cover w<br>The limiting<br>This section                                                                                         | material constitute<br>vould be expected<br>mechanism woul<br>n evaluates the air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d to limit "breath<br>d be capillary te<br>r entry limitation                                                                                                                                                                                                                                                                   | ing" of the pile<br>ension in the po<br>of the clay ma                                                                                                                                                                         | due to atmosph<br>pres of the mater<br>terial.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eric pressure of<br>ial preventing                                                                                                                    | changes.<br>air entry to the                   |               |
| The cover n<br>The cover w<br>The limiting<br>This section<br>The permea                                                                           | naterial constitute<br>vould be expected<br>mechanism woul<br>evaluates the air<br>ability of the soil m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | d to limit "breath<br>d be capillary te<br>r entry limitation<br>naterial is contro                                                                                                                                                                                                                                             | ing" of the pile<br>ension in the po<br>of the clay ma<br>led by the diar                                                                                                                                                      | due to atmosph<br>pres of the mater<br>terial.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eric pressure of<br>ial preventing                                                                                                                    | changes.<br>air entry to the                   |               |
| The cover n<br>The cover w<br>The limiting<br>This section<br>The permea                                                                           | naterial constitute<br>vould be expected<br>mechanism woul<br>evaluates the air<br>ability of the soil m<br>samples of clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d to limit "breath<br>d be capillary te<br>r entry limitation<br>naterial is contro                                                                                                                                                                                                                                             | ing" of the pile<br>ension in the po<br>of the clay ma<br>led by the diar                                                                                                                                                      | due to atmosph<br>pres of the mater<br>terial.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eric pressure of<br>ial preventing                                                                                                                    | changes.<br>air entry to the                   |               |
| The cover n<br>The cover w<br>The limiting<br>This section<br>The permea                                                                           | naterial constitute<br>vould be expected<br>mechanism woul<br>evaluates the air<br>ability of the soil m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | d to limit "breath<br>d be capillary te<br>r entry limitation<br>naterial is contro                                                                                                                                                                                                                                             | ing" of the pile<br>ension in the po<br>of the clay ma<br>illed by the diar<br>sted for grainsiz                                                                                                                               | due to atmosph<br>pres of the mater<br>terial.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eric pressure of<br>rial preventing<br>of the sample<br>wing result:                                                                                  | changes.<br>air entry to the                   |               |
| The cover n<br>The cover w<br>The limiting<br>This section<br>The permea<br>A total of 63                                                          | naterial constitute<br>would be expected<br>mechanism woul<br>evaluates the air<br>ability of the soil m<br>samples of clay<br>Average D <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d to limit "breath<br>d be capillary te<br>r entry limitation<br>naterial is contro<br>borrow were tes                                                                                                                                                                                                                          | ing" of the pile<br>ension in the po<br>of the clay ma<br>illed by the diar<br>sted for grainsiz                                                                                                                               | due to atmosph<br>pres of the mater<br>terial.<br>meter that 10% of<br>ze, with the follow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | eric pressure of<br>rial preventing<br>of the sample<br>wing result:                                                                                  | changes.<br>air entry to the                   |               |
| The cover n<br>The cover w<br>The limiting<br>This section<br>The permea<br>A total of 63                                                          | naterial constitute<br>vould be expected<br>mechanism woul<br>n evaluates the air<br>ability of the soil m<br>samples of clay<br>Average D <sub>10</sub><br>y equation is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d to limit "breath<br>d be capillary te<br>r entry limitation<br>naterial is contro<br>borrow were tes                                                                                                                                                                                                                          | ing" of the pile<br>ension in the po<br>of the clay ma<br>illed by the diar<br>sted for grainsiz                                                                                                                               | due to atmosph<br>pres of the mater<br>terial.<br>meter that 10% of<br>ze, with the follow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | eric pressure of<br>rial preventing<br>of the sample<br>wing result:                                                                                  | changes.<br>air entry to the                   |               |
| The cover n<br>The cover w<br>The limiting<br>This section<br>The permea<br>A total of 63<br>The capillar                                          | material constitute<br>vould be expected<br>mechanism woul<br>a evaluates the air<br>ability of the soil m<br>a samples of clay<br>Average $D_{10}$<br>y equation is:<br>p = 2  phi / r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d to limit "breath<br>d be capillary te<br>r entry limitation<br>naterial is contro<br>borrow were tes<br>0.285                                                                                                                                                                                                                 | ing" of the pile<br>ension in the po<br>of the clay ma<br>illed by the diar<br>sted for grainsiz                                                                                                                               | due to atmosph<br>pres of the mater<br>terial.<br>meter that 10% of<br>ze, with the follow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | eric pressure of<br>rial preventing<br>of the sample<br>wing result:                                                                                  | changes.<br>air entry to the                   |               |
| The cover n<br>The cover w<br>The limiting<br>This section<br>The permea<br>A total of 63<br>The capillar                                          | material constitute<br>would be expected<br>mechanism woul<br>n evaluates the air<br>ability of the soil m<br>samples of clay<br>Average $D_{10}$<br>y equation is:<br>p = 2  phi / r<br>p = capillary  p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | to limit "breath<br>d be capillary te<br>r entry limitation<br>naterial is contro<br>borrow were tes<br>0.285<br>ressure (lb/ft <sup>2</sup> )                                                                                                                                                                                  | ing" of the pile<br>ension in the po<br>of the clay ma<br>illed by the diar<br>sted for grainsiz<br>mm =                                                                                                                       | due to atmosph<br>pres of the mater<br>terial.<br>meter that 10% of<br>ze, with the follow<br>0.000936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eric pressure of<br>rial preventing<br>of the sample<br>wing result:<br>ft                                                                            | changes.<br>air entry to the                   |               |
| The cover n<br>The cover w<br>The limiting<br>This section<br>The permea<br>A total of 63<br>The capillar                                          | material constitute<br>vould be expected<br>mechanism would<br>n evaluates the air<br>ability of the soil m<br>samples of clay<br>Average $D_{10}$<br>y equation is:<br>p = 2  phi / r<br>p = capillary p<br>phi = surface t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | to limit "breath<br>d be capillary te<br>r entry limitation<br>naterial is contro<br>borrow were tes<br>0.285<br>ressure (lb/ft <sup>2</sup> )<br>tension of water                                                                                                                                                              | ing" of the pile<br>ension in the po<br>of the clay ma<br>illed by the diar<br>sted for grainsiz<br>mm =                                                                                                                       | due to atmosph<br>pres of the mater<br>terial.<br>meter that 10% of<br>ze, with the follow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | eric pressure of<br>rial preventing<br>of the sample<br>wing result:<br>ft                                                                            | changes.<br>air entry to the                   |               |
| The cover n<br>The cover w<br>The limiting<br>This section<br>The permea<br>A total of 63<br>The capillar<br>where:                                | material constitute<br>vould be expected<br>mechanism would<br>n evaluates the air<br>ability of the soil m<br>samples of clay<br>Average $D_{10}$<br>y equation is:<br>p = 2  phi / r<br>p = capillary p<br>phi = surface t<br>r = radius (0.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | to limit "breath<br>d be capillary te<br>r entry limitation<br>naterial is contro<br>borrow were tes<br>0.285<br>ressure (lb/ft <sup>2</sup> )<br>tension of water                                                                                                                                                              | ing" of the pile<br>ension in the po<br>of the clay ma<br>illed by the diar<br>sted for grainsiz<br>mm =                                                                                                                       | due to atmosph<br>pres of the mater<br>terial.<br>meter that 10% of<br>ze, with the follow<br>0.000936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eric pressure of<br>rial preventing<br>of the sample<br>wing result:<br>ft                                                                            | changes.<br>air entry to the                   |               |
| The cover n<br>The cover w<br>The limiting<br>This section<br>The permea<br>A total of 63<br>The capillar<br>where:                                | material constitute<br>vould be expected<br>mechanism woul<br>a evaluates the air<br>ability of the soil m<br>ability of th | to limit "breath<br>d be capillary te<br>r entry limitation<br>haterial is contro<br>borrow were tes<br>0.285<br>ressure (lb/ft <sup>2</sup> )<br>ension of water<br>0047 ft)                                                                                                                                                   | ing" of the pile<br>ension in the po<br>of the clay ma<br>illed by the diar<br>sted for grainsiz<br>mm =                                                                                                                       | due to atmosph<br>pres of the mater<br>terial.<br>meter that 10% of<br>ze, with the follow<br>0.000936<br>air (0.00498 lb/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | eric pressure of<br>ial preventing<br>of the sample<br>wing result:<br>ft                                                                             | changes.<br>air entry to the                   |               |
| The cover n<br>The cover w<br>The limiting<br>This section<br>The permea<br>A total of 63<br>The capillar<br>where:                                | material constitute<br>vould be expected<br>mechanism woul<br>a evaluates the air<br>ability of the soil m<br>ability of the soil m<br>ability of the soil m<br>ability of the soil m<br>b samples of clay<br>Average $D_{10}$<br>y equation is:<br>p = 2  phi / r<br>p = capillary p<br>phi = surface t<br>r = radius (0.0)<br>e equation:<br>p = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a to limit "breath<br>d be capillary te<br>r entry limitation<br>borrow were tes<br>0.285<br>ressure (lb/ft <sup>2</sup> )<br>cension of water<br>0047 ft)<br>2 * 0.00498 / 0                                                                                                                                                   | ing" of the pile<br>ension in the po<br>of the clay ma<br>illed by the diar<br>ted for grainsiz<br>mm =<br>in contact with<br>.00047 =                                                                                         | due to atmosph<br>pres of the mater<br>terial.<br>meter that 10% of<br>ze, with the follow<br>0.000936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eric pressure of<br>ial preventing<br>of the sample<br>wing result:<br>ft                                                                             | changes.<br>air entry to the                   |               |
| The cover n<br>The cover w<br>The limiting<br>This section<br>The permea<br>A total of 63<br>The capillar<br>where:                                | material constitute<br>vould be expected<br>mechanism would<br>n evaluates the air<br>ability of the soil m<br>ability of the soil m<br>ability of the soil m<br>ability of the soil m<br>b samples of clay<br>Average $D_{10}$<br>y equation is:<br>p = 2  phi / r<br>p = capillary p<br>phi = surface t<br>r = radius (0.0)<br>equation:<br>p =<br>p =<br>p =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | to limit "breath<br>d be capillary te<br>r entry limitation<br>borrow were tes<br>0.285<br>ressure (lb/ft <sup>2</sup> )<br>tension of water<br>0047 ft)<br>2 * 0.00498 / 0<br>0.15                                                                                                                                             | ing" of the pile<br>ension in the po<br>of the clay ma<br>illed by the diar<br>sted for grainsiz<br>mm =<br>in contact with<br>.00047 =<br>psi                                                                                 | due to atmosph<br>pres of the mater<br>terial.<br>meter that 10% of<br>ze, with the follow<br>0.000936<br>air (0.00498 lb/<br>21.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | eric pressure of<br>ial preventing<br>of the sample<br>wing result:<br>ft<br>ft<br>lb/ft <sup>2</sup>                                                 | changes.<br>air entry to the<br>is finer than. |               |
| The cover n<br>The cover w<br>The limiting<br>This section<br>The permea<br>A total of 63<br>The capillar<br>where:                                | material constitute<br>vould be expected<br>mechanism would<br>n evaluates the air<br>ability of the soil m<br>ability of the soil m<br>ability of the soil m<br>ability of the soil m<br>b samples of clay<br>Average $D_{10}$<br>y equation is:<br>p = 2  phi / r<br>p =  capillary p<br>phi =  surface t<br>r =  radius (0.00)<br>p =  p<br>p =  p<br>heric pressure in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | to limit "breath<br>d be capillary te<br>r entry limitation<br>naterial is contro<br>borrow were tes<br>0.285<br>cension of water<br>0047 ft)<br>2 * 0.00498 / 0<br>0.15<br>Cripple Creek is                                                                                                                                    | ing" of the pile<br>ension in the po<br>of the clay ma<br>illed by the dian<br>sted for grainsiz<br>mm =<br>in contact with<br>.00047 =<br>psi<br>s computed from                                                              | due to atmosph<br>pres of the mater<br>terial.<br>meter that 10% of<br>ze, with the follow<br>0.000936<br>air (0.00498 lb/<br>21.2<br>m the standard p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eric pressure of<br>ial preventing<br>of the sample<br>wing result:<br>ft<br>ft)<br>lb/ft <sup>2</sup>                                                | changes.<br>air entry to the<br>is finer than. |               |
| The cover n<br>The cover w<br>The limiting<br>This section<br>The permea<br>A total of 63<br>The capillar<br>where:                                | material constitute<br>vould be expected<br>mechanism would<br>n evaluates the air<br>ability of the soil m<br>ability of the soil m<br>ability of the soil m<br>ability of the soil m<br>b samples of clay<br>Average $D_{10}$<br>y equation is:<br>p = 2  phi / r<br>p =  capillary p<br>phi =  surface t<br>r =  radius (0.00)<br>p =  p<br>p =  p<br>heric pressure in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | to limit "breath<br>d be capillary te<br>r entry limitation<br>haterial is contro<br>borrow were tes<br>0.285<br>0.285<br>ressure (lb/ft <sup>2</sup> )<br>rension of water<br>0047 ft)<br>2 * 0.00498 / 0<br>0.15<br>Cripple Creek is<br>dg) = 29.921* (1                                                                      | ing" of the pile<br>ension in the pc<br>of the clay ma<br>illed by the diar<br>sted for grainsiz<br>mm =<br>in contact with<br>.00047 =<br>psi<br>s computed from<br>-6.8753*0.000                                             | due to atmosph<br>pres of the mater<br>terial.<br>meter that 10% of<br>ze, with the follow<br>0.000936<br>air (0.00498 lb/<br>21.2<br>m the standard p<br>001 * altitude, ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eric pressure of<br>ial preventing<br>of the sample<br>wing result:<br>ft<br>ft)<br>lb/ft <sup>2</sup><br>pressure-altitut<br>)^5.2559                | changes.<br>air entry to the<br>is finer than. |               |
| The cover n<br>The cover w<br>The limiting<br>This section<br>The permea<br>A total of 63<br>The capillar<br>where:                                | material constitute<br>vould be expected<br>mechanism woul<br>n evaluates the air<br>ability of the soil m<br>samples of clay<br>Average $D_{10}$<br>y equation is:<br>p = 2  phi / r<br>p =  capillary  p<br>phi =  surface t<br>r =  radius (0.0)<br>e equation:<br>p =<br>p =<br>p =<br>heric pressure in<br>Pressure (in. H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | to limit "breath<br>d be capillary te<br>r entry limitation<br>borrow were tes<br>0.285<br>0.285<br>ressure (lb/ft <sup>2</sup> )<br>ension of water<br>0047 ft)<br>2 * 0.00498 / 0<br>0.15<br>Cripple Creek is<br>dg) = 29.921* (1<br>http://www.hi-tr                                                                         | ing" of the pile<br>ension in the pc<br>of the clay ma<br>illed by the diar<br>sted for grainsiz<br>mm =<br>in contact with<br>.00047 =<br>psi<br>s computed from<br>-6.8753*0.000<br>m.com/Docume                             | due to atmosph<br>pres of the mater<br>terial.<br>meter that 10% of<br>ze, with the follow<br>0.000936<br>air (0.00498 lb/<br>21.2<br>m the standard p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eric pressure of<br>ial preventing<br>of the sample<br>wing result:<br>ft<br>ft)<br>lb/ft <sup>2</sup><br>pressure-altitut<br>)^5.2559                | changes.<br>air entry to the<br>is finer than. |               |
| The cover n<br>The cover w<br>The limiting<br>This section<br>The permea<br>A total of 63<br>The capillar<br>where:                                | material constitute<br>vould be expected<br>mechanism would<br>n evaluates the air<br>ability of the soil m<br>samples of clay<br>Average $D_{10}$<br>y equation is:<br>p = 2 phi / r<br>p = capillary p<br>phi = surface t<br>r = radius (0.0)<br>e equation:<br>p =<br>p =<br>p =<br>heric pressure in<br>Pressure (in. Here)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | to limit "breath<br>d be capillary te<br>r entry limitation<br>borrow were tes<br>0.285<br>cressure (lb/ft <sup>2</sup> )<br>tension of water<br>0047 ft)<br>2 * 0.00498 / 0<br>0.15<br>Cripple Creek is<br>1g) = 29.921* (1<br>http://www.hi-tr<br>on of 10,000 fee                                                            | ing" of the pile<br>ension in the pc<br>of the clay ma<br>of the clay ma<br>elled by the diar<br>sted for grainsiz<br>mm =<br>.00047 =<br>psi<br>s computed from<br>-6.8753*0.000<br>m.com/Docume<br>tt:                       | due to atmosph<br>pres of the mater<br>terial.<br>meter that 10% of<br>ze, with the follow<br>0.000936<br>air (0.00498 lb/<br>21.2<br>m the standard p<br>001 * altitude, ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eric pressure of<br>ial preventing<br>of the sample<br>wing result:<br>ft<br>ft)<br>lb/ft <sup>2</sup><br>pressure-altitut<br>)^5.2559                | changes.<br>air entry to the<br>is finer than. |               |
| The cover n<br>The cover w<br>The limiting<br>This section<br>The permea<br>A total of 63<br>The capillar<br>where:                                | material constitute<br>vould be expected<br>mechanism would<br>n evaluates the air<br>ability of the soil m<br>ability of the soil m<br>ability of the soil m<br>ability of the soil m<br>b samples of clay<br>Average $D_{10}$<br>y equation is:<br>p = 2  phi / r<br>p = capillary p<br>phi = surface t<br>r = radius (0.0)<br>p = capillary p<br>phi = surface t<br>r = radius (0.0)<br>p = capillary p<br>phi = surface t<br>r = radius (0.0)<br>p = capillary p<br>phi = surface t<br>r = radius (0.0)<br>p = capillary p<br>phi = surface t<br>r = radius (0.0)<br>p = capillary p<br>phi = surface t<br>r = radius (0.0)<br>p = capillary p<br>p = capi                                                                                                                                                                 | to limit "breath<br>d be capillary te<br>r entry limitation<br>borrow were tes<br>0.285<br>ressure (lb/ft <sup>2</sup> )<br>rension of water<br>0047 ft)<br>2 * 0.00498 / 0<br>0.15<br>Cripple Creek is<br>lg) = 29.921* (1<br>http://www.hi-tr<br>on of 10,000 fee<br>20.58                                                    | ing" of the pile<br>ension in the pc<br>of the clay ma<br>illed by the diar<br>sted for grainsiz<br>mm =<br>in contact with<br>.00047 =<br>psi<br>s computed from<br>-6.8753*0.000<br>m.com/Docume                             | due to atmosph<br>pres of the mater<br>terial.<br>meter that 10% of<br>ze, with the follow<br>0.000936<br>air (0.00498 lb/<br>21.2<br>m the standard p<br>001 * altitude, ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eric pressure of<br>ial preventing<br>of the sample<br>wing result:<br>ft<br>ft)<br>lb/ft <sup>2</sup><br>pressure-altitut<br>)^5.2559                | changes.<br>air entry to the<br>is finer than. |               |
| The cover n<br>The cover w<br>The limiting<br>This section<br>The permea<br>A total of 63<br>The capillar<br>where:                                | material constitute<br>vould be expected<br>mechanism would<br>n evaluates the air<br>ability of the soil m<br>samples of clay<br>Average $D_{10}$<br>y equation is:<br>p = 2  phi / r<br>p = capillary p<br>phi = surface t<br>r = radius (0.00)<br>e equation:<br>p =<br>p =<br>heric pressure in<br>Pressure =<br>Im sustained pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | to limit "breath<br>d be capillary te<br>r entry limitation<br>haterial is contro<br>borrow were tes<br>0.285<br>0.285<br>cressure (lb/ft <sup>2</sup> )<br>cension of water<br>0047 ft)<br>2 * 0.00498 / 0<br>0.15<br>Cripple Creek is<br>dg) = 29.921* (1<br>http://www.hi-tr<br>on of 10,000 fee<br>20.58<br>sure change     | ing" of the pile<br>ension in the pc<br>of the clay ma<br>of the clay ma<br>elled by the diar<br>sted for grainsiz<br>mm =<br>.00047 =<br>psi<br>s computed from<br>-6.8753*0.000<br>m.com/Docume<br>tt:                       | due to atmosph<br>pres of the mater<br>terial.<br>meter that 10% of<br>ze, with the follow<br>0.000936<br>air (0.00498 lb/<br>21.2<br>m the standard p<br>001 * altitude, ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eric pressure of<br>ial preventing<br>of the sample<br>wing result:<br>ft<br>ft)<br>lb/ft <sup>2</sup><br>pressure-altitut<br>)^5.2559                | changes.<br>air entry to the<br>is finer than. |               |
| The cover n<br>The cover w<br>The limiting<br>This section<br>The permea<br>A total of 63<br>The capillar<br>where:<br>Applying the<br>The atmospl | material constitute<br>vould be expected<br>mechanism would<br>n evaluates the air<br>ability of the soil m<br>ability of the soil m<br>ability of the soil m<br>ability of the soil m<br>b samples of clay<br>Average $D_{10}$<br>y equation is:<br>p = 2  phi / r<br>p = capillary p<br>phi = surface t<br>r = radius (0.0)<br>p = capillary p<br>phi = surface t<br>r = radius (0.0)<br>p = capillary p<br>phi = surface t<br>r = radius (0.0)<br>p = capillary p<br>phi = surface t<br>r = radius (0.0)<br>p = capillary p<br>phi = surface t<br>r = radius (0.0)<br>p = capillary p<br>phi = surface t<br>r = radius (0.0)<br>p = capillary p<br>p = capi                                                                                                                                                                 | to limit "breath<br>d be capillary te<br>r entry limitation<br>haterial is contro<br>borrow were tes<br>0.285<br>0.285<br>cressure (lb/ft <sup>2</sup> )<br>cension of water<br>0047 ft)<br>2 * 0.00498 / 0<br>0.15<br>Cripple Creek is<br>dg) = 29.921* (1<br>http://www.hi-tr<br>on of 10,000 fee<br>20.58<br>sure change     | ing" of the pile<br>ension in the po<br>of the clay ma<br>illed by the diar<br>sted for grainsiz<br>mm =<br>in contact with<br>.00047 =<br>psi<br>s computed froi<br>-6.8753*0.000<br>m.com/Docume<br>t:<br>inches Hg          | due to atmosph<br>pres of the mater<br>terial.<br>meter that 10% of<br>ze, with the follow<br>0.000936<br>air (0.00498 lb/<br>21.2<br>m the standard p<br>001 * altitude, ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eric pressure of<br>ial preventing<br>of the sample<br>wing result:<br>ft<br>ft)<br>hb/ft <sup>2</sup><br>pressure-altitue<br>)^5.2559<br>tml         | changes.<br>air entry to the<br>s finer than.  |               |
| The cover n<br>The cover w<br>The limiting<br>This section<br>The permea<br>A total of 63<br>The capillar<br>where:                                | material constitute<br>vould be expected<br>mechanism would<br>n evaluates the air<br>ability of the soil m<br>samples of clay<br>Average $D_{10}$<br>y equation is:<br>p = 2  phi / r<br>p = capillary p<br>phi = surface t<br>r = radius (0.00)<br>e equation:<br>p =<br>p =<br>heric pressure in<br>Pressure =<br>Im sustained pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | to limit "breath<br>d be capillary te<br>r entry limitation<br>haterial is contro<br>borrow were tes<br>0.285<br>0.285<br>cressure (lb/ft <sup>2</sup> )<br>cension of water<br>0047 ft)<br>2 * 0.00498 / 0<br>0.15<br>Cripple Creek is<br>dg) = 29.921* (1<br>http://www.hi-tr<br>on of 10,000 fee<br>20.58<br>sure change     | ing" of the pile<br>ension in the pc<br>of the clay ma<br>illed by the diar<br>sted for grainsiz<br>mm =<br>in contact with<br>.00047 =<br>psi<br>s computed from<br>-6.8753*0.000<br>n.com/Docume<br>t:<br>inches Hg<br>2.50% | due to atmosphores of the material.<br>meter that 10% of the constraints of the material.<br>meter that 10% of the constraints of the constraints of the constraints of the constraints of the constraint of the const | eric pressure of<br>ial preventing<br>of the sample<br>wing result:<br>ft<br>ft)<br>lb/ft <sup>2</sup><br>pressure-altitue<br>)^5.2559<br>tml<br>0.51 | in Hg                                          |               |
| The cover n<br>The cover w<br>The limiting<br>This section<br>The permea<br>A total of 63<br>The capillar<br>where:<br>Applying the<br>The atmospl | material constitute<br>vould be expected<br>mechanism would<br>n evaluates the air<br>ability of the soil m<br>samples of clay<br>Average $D_{10}$<br>y equation is:<br>p = 2  phi / r<br>p = capillary p<br>phi = surface t<br>r = radius (0.00)<br>e equation:<br>p =<br>p =<br>heric pressure in<br>Pressure =<br>Im sustained pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | to limit "breath<br>d be capillary te<br>r entry limitation<br>borrow were tes<br>0.285<br>0.285<br>ressure (lb/ft <sup>2</sup> )<br>tension of water<br>0047 ft)<br>2 * 0.00498 / 0<br>0.15<br>Cripple Creek is<br>dg) = 29.921* (1<br>http://www.hi-tr<br>on of 10,000 fee<br>20.58<br>sure change<br>change =<br>Conversion: | ing" of the pile<br>ension in the pc<br>of the clay ma<br>of the clay ma<br>illed by the diar<br>sted for grainsiz<br>mm =<br>                                                                                                 | due to atmosphores of the material.<br>meter that 10% of the follow of the   | eric pressure of<br>ial preventing<br>of the sample<br>wing result:<br>ft<br>ft)<br>hb/ft <sup>2</sup><br>pressure-altitue<br>)^5.2559<br>tml         | in Hg<br>psi                                   |               |

.

a,

### Project: East Cresson Overburden Storage Design Author: Adrian Brown, P.E.

| Thus it ap   | proximately 1.7 tim       | es the air entry   | value, so on p    | eak days, air v    | vill betin to ente | er the soil.          |   |
|--------------|---------------------------|--------------------|-------------------|--------------------|--------------------|-----------------------|---|
| Howover      | pears that capilary       | tension will not   | or itself preve   | nt all air entry i | nto the cap due    | e to breathing.       |   |
| And the ei   | for the majority of       | the time, the pro- | essure differen   | tial across the    | cap is insufficie  | ent to cause air entr | ý |
| The "breat   | r-entry process rec       | uires movemei      | nt of water awa   | ly from the poin   | nt of entry, so th | his is a slow process | S |
| According    | hing" process is cy       | clic, typically d  | iurnal, but also  | with longer pe     | eriod variations   | due to storms.        |   |
| According    | y, elevated air pre       | ssure condition    | s exist an insu   | fficient period o  | of time to cause   | breakthrough.         |   |
| 4.0.0.4.     |                           |                    |                   |                    |                    |                       |   |
| 4.Z.3 AIF P  | Permeability of Ca        | р                  |                   | _                  |                    |                       |   |
| The clay m   | naterial in the cove      | r is of low perm   | eability.         |                    |                    |                       |   |
| This sectio  | n evaluates wheth         | er the permeat     | pility is low eno | ugh to prevent     | air movement       | through the cover.    |   |
| Intringio De |                           |                    |                   |                    |                    |                       |   |
| The intrine  | ermeability of the C      | hay Cover          |                   |                    |                    |                       |   |
| THE ITUMIS   | ic permeability of t      | ne clay cover is   | computed from     |                    |                    | f the clay material.  |   |
|              | K <sub>cap</sub> =        | 5.0E-07            |                   | 5.0E-0             | 9 m/s              |                       |   |
| The equation | on for computation        | of the intrinsic   | permeability is   |                    |                    |                       |   |
|              | <b>k</b> = (Κ μ) / (ρ g   |                    |                   |                    |                    |                       |   |
| where:       | k = intrinsic pe          |                    |                   |                    |                    |                       |   |
|              | K = hydraulic             |                    | 5.0E-09           | m/s                |                    |                       |   |
|              | μ = viscosity o           | f water            | 1.00E-03          |                    |                    |                       |   |
|              | ρ = density               |                    | 1.0E+03           | kg m-3             |                    |                       |   |
|              | $\gamma$ = specific we    | eight =            | 9.8E+03           |                    |                    |                       |   |
|              | g = gravitation           | al acceleration    | 9.80665           |                    |                    |                       |   |
| Thus:        |                           |                    |                   |                    |                    |                       |   |
|              | k <sub>cap</sub> =        | 5.1E-16            | m2                |                    |                    |                       |   |
|              |                           |                    |                   |                    |                    |                       |   |
| Air Density  | / in Cripple Creek        | [                  |                   |                    |                    |                       |   |
|              | Parameter                 |                    | al Units          |                    | Units              | -                     |   |
|              | Temperature               | F                  | 77                | C                  | 25                 |                       |   |
|              | Elevation                 | ft                 | 10000             |                    | 3048               |                       |   |
|              | Air Density               | lb/ft3             | 0.0506            | kg/m3              | 0.8105             | -                     |   |
|              |                           |                    | 0.0000            | - Ng/110           | 0.0103             |                       |   |
| lead Drivin  | a Air Flow through        | n Cap              |                   |                    |                    |                       |   |
|              | $P = \rho g h$            |                    |                   |                    |                    |                       |   |
|              | $h = p / (\rho g)$        |                    |                   |                    |                    |                       |   |
| vhere:       | P = pressure =            |                    | 0.147             | nei                |                    |                       |   |
|              | Note:                     | 1 psi =            |                   | N m-2              |                    |                       |   |
|              | P = pressure =            |                    |                   | N m-2              |                    |                       |   |
|              | $\rho = \text{density} =$ |                    |                   | kg m-3             |                    |                       |   |
|              | g = gravitationa          | al accel =         |                   | кg m-3<br>m s-2    |                    |                       |   |
| hus:         | 9 gravitationa            |                    | 9.0007            | 111 5-2            |                    | +                     |   |
|              | $h = p / (\rho g) =$      | 107 =              | meters of air     |                    |                    |                       |   |
|              | <u> </u>                  | G. 121             | meters of all     |                    |                    |                       |   |
|              | -                         |                    |                   |                    |                    |                       |   |
|              |                           |                    |                   |                    |                    |                       |   |
|              |                           |                    |                   |                    |                    |                       |   |
|              |                           |                    |                   |                    |                    |                       |   |
|              |                           |                    |                   |                    |                    |                       |   |
|              |                           |                    |                   |                    |                    |                       |   |
|              |                           |                    |                   |                    |                    |                       |   |
|              |                           |                    |                   |                    |                    |                       |   |
|              |                           |                    |                   |                    | 1                  |                       |   |

# Project: East Cresson Overburden Storage Design Author: Adrian Brown, P.E.

-

| Airflow Throu    | igh Cap                            | 1                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                |                |                   |      |
|------------------|------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|-------------------|------|
| Darcy's Law:     |                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                |                   |      |
| Darcy S Law.     | v = (k ρ g / μ)                    | dh/dl                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                |                   |      |
| where:           |                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                |                   |      |
| where.           |                                    | lume of airflow                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                |                   |      |
|                  | $\mu = viscosity =$                |                                       | 1.85E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                |                   |      |
|                  | k = permeabili                     | ty =                                  | 5.11E-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                |                   |      |
|                  | $\rho$ = density =                 |                                       | 0.81053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                |                   |      |
|                  | g = gravitation                    |                                       | 9.8067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                |                   |      |
|                  | dh = head cha                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | meters of air    |                |                   |      |
|                  | dl = airflow dis                   | tance =                               | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | meter            |                |                   |      |
| Thus:            |                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                |                   |      |
|                  | v =                                | 2.798E-08                             | cubic meters/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | quare meter/se   | econd          |                   |      |
| Maga Elimetha    |                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                |                   |      |
| Mass Flux thr    |                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                |                   |      |
| The compute      | d mass flux of o                   |                                       | he cap is comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | uted as follows  | S:             |                   |      |
| u de e e - i     | M = mass flux                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                |                   |      |
| where:           |                                    | of oxygen throu                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                |                   |      |
|                  | A = cap area =                     |                                       | 711,489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                |                   |      |
|                  | v = air flux rate                  | 9 =                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m3 m-2 s-1       |                |                   |      |
|                  | $\rho$ = density =                 |                                       | 0.81053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                |                   |      |
|                  | Oxygen conter                      | nt =                                  | 23.25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | w/w              |                |                   |      |
| Thus:            |                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                |                   |      |
|                  | M =                                | 118                                   | tonne/yr =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 130              | ton/yr         |                   |      |
|                  |                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                |                   |      |
| Conclusion       |                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                |                   |      |
|                  | dry soil, with ai                  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                |                   |      |
|                  | e soil is saturate                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                |                   |      |
|                  | ot directly apply                  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                |                   |      |
|                  | es set a limit for                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                | ent that it dried | out. |
| This limit is th | at the maximum                     | airflow through                       | the cover is 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18 tonne/yr (13  | 0 ton/yr)      |                   |      |
|                  |                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                |                   |      |
| 4.2.4 Diffusio   | on Of Air                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                |                   |      |
| Equation         |                                    |                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                |                   |      |
|                  | is used in stead                   |                                       | n of a gas thro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ugh a solid.     |                |                   |      |
| In one (spatia   | <ol> <li>dimension, thi</li> </ol> | s is                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                |                   |      |
|                  | $J = -D d\phi/dx$                  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                |                   | -    |
| where            |                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                |                   |      |
|                  |                                    | on flux in dimen                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                | -1]               |      |
|                  |                                    | on coefficient o                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                |                   |      |
|                  | phi (for ideal m                   | nixtures) is the c                    | concentration in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dimensions of    | [(amount of su | bstance) length   | -3]  |
|                  |                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                |                   |      |
| Diffusion Coe    |                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                |                   |      |
| The diffusion    | coefficient in a s                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                |                   |      |
|                  |                                    | oefficient (m2/s                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                |                   |      |
|                  | 1 .                                | ventures.com/u                        | and the second se |                  |                | ient              |      |
| For a moisture   | e content of 30%                   | 6, typical for a c                    | lay (not measu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | red in this clay | )              |                   |      |
|                  | D =                                | 3.765E-08                             | m2 s-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                |                   |      |
|                  |                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                |                   |      |
|                  |                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                |                   |      |
|                  |                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                |                   |      |
| )                |                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ·····            |                |                   |      |
|                  |                                    | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                |                   |      |

### Project: East Cresson Overburden Storage Design Author: Adrian Brown, P.E.

| <b>Air Density</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | in Cripple Creek     |                    |                  |                  |                                       |        |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------|------------------|------------------|---------------------------------------|--------|-------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Parameter            | Imperi             | al Units         | SI               | Units                                 |        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Temperature          | <br>F              | 77               | С                | 25                                    | -      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Elevation            | ft                 | 10000            | m                | 3048                                  |        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Air Density          | lb/ft3             | 0.0506           | kg/m3            | 0.8105                                |        |       |
| Concentrati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | on of oxygen =       | 21.0%              | by volume        |                  |                                       |        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | on of oxygen =       |                    | by mass          |                  |                                       |        |       |
| Thus, for ox                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | 23.270             | by mass          |                  |                                       |        |       |
| 11103, 101 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | φ =                  | 0 1884             | kg m-3           |                  |                                       |        |       |
| If all the oxy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | gen is consumed in   |                    |                  |                  |                                       |        |       |
| in all the oxy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | gen is consumed in   | i ille plie, illei | Τάφ – φ          |                  |                                       |        |       |
| Diffusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                    |                  |                  |                                       |        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | oxygen through the   | e overlving ca     | o is aiven by F  | ick's Law:       |                                       |        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $J = -D d\phi/dx$    | ,                  | <u> </u>         |                  |                                       |        |       |
| where                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                    |                  |                  |                                       |        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | J is the diffusior   | n flux in dimen    | sions of I(amo   | ount of substand | e) length-2 tim                       | e-1]   |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D is the diffusion   |                    |                  |                  |                                       | ·- · J |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | phi (for ideal mix   |                    |                  |                  |                                       |        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dx = thickness c     |                    | 1.0              | m                |                                       |        |       |
| Thus:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                    |                  |                  |                                       |        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | J =                  | 7.09E-09           | kg m-2 s-1       |                  |                                       |        |       |
| or the entir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e cover:             |                    |                  |                  |                                       |        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Area =               | 711,489            | m2               |                  | -                                     |        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Flux =               | 5.05E-03           |                  |                  |                                       |        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | 159,159            |                  | -                |                                       |        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                    | tons/yr =        | 175              | ton/yr                                | -      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | 100                |                  | 110              | Coro yr                               |        | 0.00  |
| Diffusion of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | oxygen through pile  | )                  |                  |                  |                                       |        |       |
| and the second se | al) dimension, this  |                    |                  |                  |                                       |        |       |
| (opun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $J = -D d\phi/dx$    |                    |                  |                  | · · · · · · · · · · · · · · · · · · · | -      |       |
| where                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | •                  |                  |                  |                                       |        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | J is the diffusion   | flux in dimen      | sions of l(amo   | unt of substanc  | e) length-2 tim                       | e-11   |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D is the diffusion   |                    |                  |                  |                                       |        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | phi (for ideal mix   |                    |                  |                  |                                       |        | th-31 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                    |                  |                  |                                       |        |       |
| For oxyaen a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | diffusing through a  | nitrogen atmo      | sphere:          |                  |                                       |        |       |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D =                  |                    | cm2 s-1 =        | 2.19E-05         | m2 s-1                                |        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <br>dφ =             | 0.1884             |                  |                  |                                       | 1      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dx =                 | 23.7               |                  | (void volume/a   | area)                                 |        |       |
| Thus:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 20.1               |                  |                  |                                       |        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | J =                  | 1.74F-03           | kg m-2 s-1       |                  |                                       |        |       |
| For the entire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                    |                  |                  |                                       |        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Area =               | 711,489            | m2               |                  |                                       |        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Flux =               | 1.24E+03           |                  |                  |                                       |        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | 3.90E+10           |                  |                  |                                       |        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | 39,004,702         |                  |                  |                                       |        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                    | COTTIC/ YI       | 1                | 1                                     | 1      |       |
| 'his is so m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | uch greater diffusio |                    | / significant ro | eletanoo ooouro  | in the cover                          | +      | 1     |

| Conclusion            |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                          |                                                                                                                                        |                                                                                                                          |                                                  |                      |           |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------|-----------|
|                       | ver provides signi                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                          |                                                                                                                                        |                                                                                                                          |                                                  |                      | erburden. |
| The maximu            | m diffusion that o                                                                                                                                                                                                                                                                                                                               | an occur trans                                                                                                                                                                                           | ports 175 tons/                                                                                                                        | year of oxygen                                                                                                           | to the overburg                                  | den.                 |           |
|                       |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                          |                                                                                                                                        | -                                                                                                                        |                                                  |                      |           |
| 4.2.5 Evalua          | ation of Infiltration                                                                                                                                                                                                                                                                                                                            | on Transport o                                                                                                                                                                                           | of Oxygen to E                                                                                                                         | COSA                                                                                                                     |                                                  |                      |           |
| Infiltration to       | the ECOSA occu                                                                                                                                                                                                                                                                                                                                   | urs due to preci                                                                                                                                                                                         | ipitation.                                                                                                                             |                                                                                                                          |                                                  |                      |           |
| This infiltration     | on can transport                                                                                                                                                                                                                                                                                                                                 | oxygen to the c                                                                                                                                                                                          | verburden diss                                                                                                                         | olved in the wa                                                                                                          | ter.                                             |                      |           |
| Law of Mass           | Action:                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                        |                                                                                                                          |                                                  |                      |           |
|                       | $M = C * \rho * Q$                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                          |                                                                                                                                        |                                                                                                                          |                                                  |                      |           |
| where:                | M = mass of m                                                                                                                                                                                                                                                                                                                                    | naterial transpo                                                                                                                                                                                         | rted                                                                                                                                   |                                                                                                                          |                                                  |                      |           |
|                       |                                                                                                                                                                                                                                                                                                                                                  | ncentration in v                                                                                                                                                                                         |                                                                                                                                        | 10                                                                                                                       | mg/L                                             |                      |           |
|                       | Q = volumetric                                                                                                                                                                                                                                                                                                                                   | flow rate of wa                                                                                                                                                                                          | ater =                                                                                                                                 |                                                                                                                          | gpm                                              |                      |           |
|                       | $\rho$ = density of                                                                                                                                                                                                                                                                                                                              | water =                                                                                                                                                                                                  |                                                                                                                                        |                                                                                                                          | kg m-3                                           |                      |           |
| Thus:                 |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                          |                                                                                                                                        |                                                                                                                          |                                                  |                      |           |
|                       | M =                                                                                                                                                                                                                                                                                                                                              | 0.45                                                                                                                                                                                                     | tonne/yr =                                                                                                                             | 0.49                                                                                                                     | ton/yr                                           |                      |           |
| 4                     |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                          |                                                                                                                                        |                                                                                                                          |                                                  |                      |           |
| Based on thi          | s evaluation, the                                                                                                                                                                                                                                                                                                                                | infiltration of wa                                                                                                                                                                                       | ater transports                                                                                                                        | approximately (                                                                                                          | 0.5 tons/year o                                  | foxygen to EC        | ÓSA.      |
| This is neglig        | jible as an oxyge                                                                                                                                                                                                                                                                                                                                | n input to ECO                                                                                                                                                                                           | SA.                                                                                                                                    |                                                                                                                          | -                                                |                      |           |
|                       |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                          |                                                                                                                                        |                                                                                                                          |                                                  |                      |           |
| 4.2.6 Oxyge           | n Availability                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                          |                                                                                                                                        |                                                                                                                          |                                                  |                      | 1         |
| Oxygen avail          | lability for the EC                                                                                                                                                                                                                                                                                                                              | OSA is as follo                                                                                                                                                                                          | WS:                                                                                                                                    |                                                                                                                          |                                                  |                      |           |
|                       |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                          |                                                                                                                                        |                                                                                                                          |                                                  |                      |           |
|                       | 90 <b>9</b>                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                          |                                                                                                                                        | Oxygen                                                                                                                   | Pyrite                                           | CaCO <sub>3</sub> to |           |
|                       |                                                                                                                                                                                                                                                                                                                                                  | Mechanism                                                                                                                                                                                                | a,                                                                                                                                     | Flux                                                                                                                     | Oxidized                                         | Neutralize           |           |
|                       |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                          |                                                                                                                                        | (ton/yr)                                                                                                                 | (ton/yr)                                         | (ton/yr)             |           |
|                       | Emplacement                                                                                                                                                                                                                                                                                                                                      | (1)                                                                                                                                                                                                      |                                                                                                                                        | 1                                                                                                                        | 1                                                | 2                    |           |
|                       |                                                                                                                                                                                                                                                                                                                                                  | dry cover (2)(4                                                                                                                                                                                          | 4)                                                                                                                                     | 130                                                                                                                      | 130                                              | 218                  |           |
|                       |                                                                                                                                                                                                                                                                                                                                                  | gh wet cover (3                                                                                                                                                                                          |                                                                                                                                        | 175                                                                                                                      | 175                                              | 293                  |           |
|                       |                                                                                                                                                                                                                                                                                                                                                  | filtration throug                                                                                                                                                                                        |                                                                                                                                        | 0.5                                                                                                                      | 0.5                                              | 1                    |           |
|                       |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                          |                                                                                                                                        |                                                                                                                          | 177                                              |                      |           |
|                       |                                                                                                                                                                                                                                                                                                                                                  | (3)                                                                                                                                                                                                      |                                                                                                                                        | 177                                                                                                                      |                                                  | 1 295                |           |
|                       | Total System                                                                                                                                                                                                                                                                                                                                     | (5)                                                                                                                                                                                                      |                                                                                                                                        | 177                                                                                                                      | 177                                              | 295                  |           |
|                       | Total System<br>Notes:                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                          | d in 3200 years (ar                                                                                                                    |                                                                                                                          |                                                  | 295                  |           |
|                       | Total System<br>Notes:<br>(1) Oxygen assum                                                                                                                                                                                                                                                                                                       | ed to be consume                                                                                                                                                                                         |                                                                                                                                        | gregate burn-out ti                                                                                                      |                                                  | 295                  |           |
|                       | Total System<br>Notes:<br>(1) Oxygen assum<br>(2) Airflow is domin                                                                                                                                                                                                                                                                               | ed to be consume<br>nant mechanism fo                                                                                                                                                                    | or cover that dessic                                                                                                                   | ggregate burn-out ti<br>ates.                                                                                            |                                                  | 295                  |           |
|                       | Total System<br>Notes:<br>(1) Oxygen assum<br>(2) Airflow is domin<br>(3) Diffusion is dor                                                                                                                                                                                                                                                       | ed to be consume<br>nant mechanism fo<br>ninant mechanism                                                                                                                                                | or cover that dession<br>for cover that retain                                                                                         | ggregate burn-out ti<br>ates.<br>ns moisture.                                                                            | me)                                              |                      | ation     |
|                       | Total System<br>Notes:<br>(1) Oxygen assum<br>(2) Airflow is domin<br>(3) Diffusion is dor<br>(4) Diffusion and a                                                                                                                                                                                                                                | ed to be consume<br>nant mechanism fo<br>ninant mechanism<br>irflow are alternati                                                                                                                        | or cover that dessic<br>for cover that retain<br>ves; if airflow occur                                                                 | ggregate burn-out ti<br>ates.                                                                                            | me)                                              |                      | ation     |
|                       | Total System<br>Notes:<br>(1) Oxygen assum<br>(2) Airflow is domin<br>(3) Diffusion is dor                                                                                                                                                                                                                                                       | ed to be consume<br>nant mechanism fo<br>ninant mechanism<br>irflow are alternati                                                                                                                        | or cover that dessic<br>for cover that retain<br>ves; if airflow occur                                                                 | ggregate burn-out ti<br>ates.<br>ns moisture.                                                                            | me)                                              |                      | ation     |
| 4.2.7 Pvrite /        | Total System<br>Notes:<br>(1) Oxygen assum<br>(2) Airflow is domin<br>(3) Diffusion is dom<br>(4) Diffusion and a<br>(5) Assumes that o                                                                                                                                                                                                          | ed to be consume<br>nant mechanism fo<br>ninant mechanism<br>irflow are alternati                                                                                                                        | or cover that dessic<br>for cover that retain<br>ves; if airflow occur                                                                 | ggregate burn-out ti<br>ates.<br>ns moisture.                                                                            | me)                                              |                      | ation     |
| <b>4.2.7 Pyrite</b> / | Total System<br>Notes:<br>(1) Oxygen assum<br>(2) Airflow is domin<br>(3) Diffusion is domin<br>(4) Diffusion and a<br>(5) Assumes that of<br>Availability                                                                                                                                                                                       | ed to be consume<br>nant mechanism fo<br>ninant mechanism<br>irflow are alternativ<br>diffusion dominates                                                                                                | or cover that dessic<br>for cover that retain<br>ves; if airflow occur<br>s (conservative).                                            | ggregate burn-out ti<br>ates.<br>ns moisture.                                                                            | me)                                              |                      | ation     |
|                       | Total System         Notes:         (1) Oxygen assum         (2) Airflow is domination         (3) Diffusion is domination         (4) Diffusion and a         (5) Assumes that a         Availability         Dility for oxidation                                                                                                              | ed to be consume<br>nant mechanism fo<br>ninant mechanism<br>irflow are alternativ<br>diffusion dominates<br>in the ECOSA                                                                                | or cover that dessic<br>for cover that retain<br>ves; if airflow occur<br>s (conservative).                                            | ggregate burn-out ti<br>ates.<br>ns moisture.<br>rs, diffusion is preve                                                  | ime)<br>ented due to equa                        |                      | ation     |
|                       | Total System         Notes:         (1) Oxygen assum         (2) Airflow is domin         (3) Diffusion is dom         (4) Diffusion and a         (5) Assumes that o         Availability         pility for oxidation         Mass of overbut                                                                                                  | ed to be consume<br>nant mechanism fo<br>ninant mechanism<br>irflow are alternativ<br>diffusion dominates<br>in the ECOSA<br>urden in ECOS                                                               | or cover that dessic<br>for cover that retai<br>ves; if airflow occur<br>s (conservative).<br>is as follows:<br>A                      | gregate burn-out ti<br>ates.<br>ns moisture.<br>'s, diffusion is preve<br>66,000,000                                     | ime)<br>ented due to equa                        |                      | ation     |
|                       | Total System         Notes:         (1) Oxygen assum         (2) Airflow is domination         (3) Diffusion is domination         (4) Diffusion and a         (5) Assumes that of         Availability         bility for oxidation         Mass of overbuilt         Reactive pyrite                                                           | ed to be consume<br>nant mechanism for<br>ninant mechanism<br>irflow are alternativ<br>diffusion dominates<br>in the ECOSA<br>urden in ECOS<br>content of ove                                            | or cover that dessic<br>for cover that retai<br>ves; if airflow occur<br>s (conservative).<br>is as follows:<br>A                      | gregate burn-out ti<br>ates.<br>ns moisture.<br>s, diffusion is preve<br>66,000,000<br>1.33%                             | ime)<br>ented due to equa<br>tons<br>(ABC, 2008) |                      | ation     |
|                       | Total System Notes: (1) Oxygen assum (2) Airflow is domi (3) Diffusion is dor (4) Diffusion and a (5) Assumes that o Availability Dility for oxidation Mass of overbu Reactive pyrite Pyrite in ECOS                                                                                                                                             | ed to be consume<br>nant mechanism fo<br>ninant mechanism<br>inflow are alternativ<br>diffusion dominates<br>in the ECOSA<br>urden in ECOS<br>content of ove<br>SA                                       | or cover that dessic<br>for cover that retain<br>ves; if airflow occur<br>s (conservative).<br>is as follows:<br>A<br>rburden          | ggregate burn-out ti<br>ates.<br>ns moisture.<br>s, diffusion is preve<br>66,000,000<br>1.33%<br>877,800                 | tons<br>(ABC, 2008)<br>tons                      |                      | ation     |
|                       | Total System         Notes:         (1) Oxygen assum         (2) Airflow is domination         (3) Diffusion is domination         (4) Diffusion and a         (5) Assumes that of         Availability         Dility for oxidation         Mass of overbuilt         Reactive pyrite         Pyrite in ECOS         Rate of consur             | ed to be consume<br>nant mechanism for<br>ninant mechanism<br>inflow are alternativ<br>diffusion dominates<br>in the ECOSA<br>urden in ECOS<br>content of ove<br>SA<br>nption of pyrite                  | or cover that dessic<br>for cover that retai<br>ves; if airflow occur<br>s (conservative).<br>is as follows:<br>A<br>rburden           | ggregate burn-out ti<br>ates.<br>ns moisture.<br>s, diffusion is preve<br>66,000,000<br>1.33%<br>877,800<br>177          | tons<br>(ABC, 2008)<br>tons<br>tons              |                      | ation     |
| Pyrite availat        | Total System         Notes:         (1) Oxygen assum         (2) Airflow is domid         (3) Diffusion is domid         (4) Diffusion and a         (5) Assumes that of         Availability         Dility for oxidation         Mass of overbulk         Reactive pyrite         Pyrite in ECOS         Rate of consum         Time to consum | ed to be consume<br>nant mechanism for<br>ninant mechanism<br>inflow are alternativ<br>diffusion dominates<br>in the ECOSA<br>urden in ECOSA<br>content of ove<br>SA<br>nption of pyrite<br>me ECOSA car | or cover that dessic<br>for cover that retai<br>ves; if airflow occur<br>s (conservative).<br>is as follows:<br>A<br>rburden<br>bonate | ggregate burn-out ti<br>ates.<br>ns moisture.<br>s, diffusion is preve<br>66,000,000<br>1.33%<br>877,800<br>177<br>4,957 | tons<br>(ABC, 2008)<br>tons<br>ton/yr<br>years   | ization of concentr  |           |
| Pyrite availat        | Total System         Notes:         (1) Oxygen assum         (2) Airflow is domination         (3) Diffusion is domination         (4) Diffusion and a         (5) Assumes that of         Availability         Dility for oxidation         Mass of overbuilt         Reactive pyrite         Pyrite in ECOS         Rate of consur             | ed to be consume<br>nant mechanism for<br>ninant mechanism<br>inflow are alternativ<br>diffusion dominates<br>in the ECOSA<br>urden in ECOSA<br>content of ove<br>SA<br>nption of pyrite<br>me ECOSA car | or cover that dessic<br>for cover that retai<br>ves; if airflow occur<br>s (conservative).<br>is as follows:<br>A<br>rburden<br>bonate | ggregate burn-out ti<br>ates.<br>ns moisture.<br>s, diffusion is preve<br>66,000,000<br>1.33%<br>877,800<br>177<br>4,957 | tons<br>(ABC, 2008)<br>tons<br>ton/yr<br>years   | ization of concentr  |           |
| Pyrite availat        | Total System         Notes:         (1) Oxygen assum         (2) Airflow is domid         (3) Diffusion is domid         (4) Diffusion and a         (5) Assumes that of         Availability         Dility for oxidation         Mass of overbulk         Reactive pyrite         Pyrite in ECOS         Rate of consum         Time to consum | ed to be consume<br>nant mechanism for<br>ninant mechanism<br>inflow are alternativ<br>diffusion dominates<br>in the ECOSA<br>urden in ECOSA<br>content of ove<br>SA<br>nption of pyrite<br>me ECOSA car | or cover that dessic<br>for cover that retai<br>ves; if airflow occur<br>s (conservative).<br>is as follows:<br>A<br>rburden<br>bonate | ggregate burn-out ti<br>ates.<br>ns moisture.<br>s, diffusion is preve<br>66,000,000<br>1.33%<br>877,800<br>177<br>4,957 | tons<br>(ABC, 2008)<br>tons<br>ton/yr<br>years   | ization of concentr  |           |
| Pyrite availat        | Total System         Notes:         (1) Oxygen assum         (2) Airflow is domid         (3) Diffusion is domid         (4) Diffusion and a         (5) Assumes that of         Availability         Dility for oxidation         Mass of overbulk         Reactive pyrite         Pyrite in ECOS         Rate of consum         Time to consum | ed to be consume<br>nant mechanism for<br>ninant mechanism<br>inflow are alternativ<br>diffusion dominates<br>in the ECOSA<br>urden in ECOSA<br>content of ove<br>SA<br>nption of pyrite<br>me ECOSA car | or cover that dessic<br>for cover that retai<br>ves; if airflow occur<br>s (conservative).<br>is as follows:<br>A<br>rburden<br>bonate | ggregate burn-out ti<br>ates.<br>ns moisture.<br>s, diffusion is preve<br>66,000,000<br>1.33%<br>877,800<br>177<br>4,957 | tons<br>(ABC, 2008)<br>tons<br>ton/yr<br>years   | ization of concentr  |           |
| Pyrite availat        | Total System         Notes:         (1) Oxygen assum         (2) Airflow is domid         (3) Diffusion is domid         (4) Diffusion and a         (5) Assumes that of         Availability         Dility for oxidation         Mass of overbulk         Reactive pyrite         Pyrite in ECOS         Rate of consum         Time to consum | ed to be consume<br>nant mechanism for<br>ninant mechanism<br>inflow are alternativ<br>diffusion dominates<br>in the ECOSA<br>urden in ECOSA<br>content of ove<br>SA<br>nption of pyrite<br>me ECOSA car | or cover that dessic<br>for cover that retai<br>ves; if airflow occur<br>s (conservative).<br>is as follows:<br>A<br>rburden<br>bonate | ggregate burn-out ti<br>ates.<br>ns moisture.<br>s, diffusion is preve<br>66,000,000<br>1.33%<br>877,800<br>177<br>4,957 | tons<br>(ABC, 2008)<br>tons<br>ton/yr<br>years   | ization of concentr  |           |
| Pyrite availat        | Total System         Notes:         (1) Oxygen assum         (2) Airflow is domid         (3) Diffusion is domid         (4) Diffusion and a         (5) Assumes that of         Availability         Dility for oxidation         Mass of overbulk         Reactive pyrite         Pyrite in ECOS         Rate of consum         Time to consum | ed to be consume<br>nant mechanism for<br>ninant mechanism<br>inflow are alternativ<br>diffusion dominates<br>in the ECOSA<br>urden in ECOSA<br>content of ove<br>SA<br>nption of pyrite<br>me ECOSA car | or cover that dessic<br>for cover that retai<br>ves; if airflow occur<br>s (conservative).<br>is as follows:<br>A<br>rburden<br>bonate | ggregate burn-out ti<br>ates.<br>ns moisture.<br>s, diffusion is preve<br>66,000,000<br>1.33%<br>877,800<br>177<br>4,957 | tons<br>(ABC, 2008)<br>tons<br>ton/yr<br>years   | ization of concentr  |           |

.

r.

# Project: East Cresson Overburden Storage Design Author: Adrian Brown, P.E.

| 4.2.8 Neutr                                                                 |                                                                                                                                                                                            | La a state of the Alexand                                              | -0004                                              |                                                      |                                                       | -                              |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|--------------------------------|
| Neutralizati                                                                | on is available in the overburden                                                                                                                                                          |                                                                        |                                                    |                                                      |                                                       |                                |
|                                                                             | Mass of overburden in ECOS                                                                                                                                                                 |                                                                        | 66,000,000                                         | 1                                                    |                                                       |                                |
|                                                                             | Carbonate content of overbur                                                                                                                                                               | den                                                                    | 1.43%                                              |                                                      |                                                       |                                |
|                                                                             | Carbonate in ECOSA                                                                                                                                                                         |                                                                        | 943,800                                            |                                                      |                                                       |                                |
|                                                                             | Rate of consumption of carbo                                                                                                                                                               |                                                                        |                                                    | ton/yr                                               |                                                       |                                |
|                                                                             | Time to consume ECOSA car                                                                                                                                                                  |                                                                        |                                                    | years                                                |                                                       |                                |
|                                                                             | is assessment, the ECOSA has s                                                                                                                                                             |                                                                        | alization capaci                                   | ty to provide ne                                     | utralization for                                      |                                |
| sulfide oxid                                                                | ation products for approximately 3                                                                                                                                                         | 3,600 years.                                                           |                                                    |                                                      |                                                       |                                |
|                                                                             |                                                                                                                                                                                            |                                                                        |                                                    |                                                      |                                                       |                                |
| In the event                                                                | that this entire inventory were to                                                                                                                                                         | be consumed,                                                           | the ECOSA is                                       | located over ap                                      | proximately 10                                        | 00 ft of                       |
|                                                                             | aterial, with an average of 1.43%                                                                                                                                                          |                                                                        |                                                    |                                                      |                                                       |                                |
|                                                                             | ditional neutralization protection:                                                                                                                                                        |                                                                        |                                                    |                                                      |                                                       |                                |
|                                                                             | Area of ECOSA                                                                                                                                                                              |                                                                        | 7,658,402                                          | sa.ft.                                               |                                                       |                                |
|                                                                             | Depth of diatreme beneath EC                                                                                                                                                               | COSA                                                                   | 1000                                               |                                                      |                                                       |                                |
|                                                                             | Volume of diatremal rock ben                                                                                                                                                               |                                                                        | 7.66.E+09                                          |                                                      |                                                       | 1                              |
|                                                                             | Mass of diatremal rock benea                                                                                                                                                               |                                                                        | 425,466,789                                        |                                                      |                                                       |                                |
|                                                                             | Carbonate content of overburg                                                                                                                                                              |                                                                        | 1.43%                                              |                                                      |                                                       |                                |
|                                                                             | Carbonate in ECOSA                                                                                                                                                                         |                                                                        | 6,084,175                                          |                                                      |                                                       |                                |
|                                                                             | Rate of consumption of carbo                                                                                                                                                               | nate                                                                   | +                                                  | ton/yr                                               |                                                       |                                |
|                                                                             | Time to consume ECOSA car                                                                                                                                                                  |                                                                        | 295                                                |                                                      |                                                       |                                |
| This addition                                                               | nal neutralizing potential far exce                                                                                                                                                        |                                                                        |                                                    |                                                      | tom of much int                                       |                                |
|                                                                             |                                                                                                                                                                                            |                                                                        |                                                    |                                                      | lory of product                                       | sresulling                     |
| rom the oxi                                                                 |                                                                                                                                                                                            |                                                                        |                                                    | 1                                                    |                                                       |                                |
| n the event<br>vater flux fro<br>downward a                                 | dation of all reactive pyrite in the<br>that this acidic water were to em-<br>om the ECOSA that results from the<br>nd then south to the main Cripple<br>approximately 9 mile journey, the | erge from the I<br>the low conduc<br>e Creek Diatrer                   | tivity, high evap<br>ne, and thence                | ootranspiration via Carlton Tur                      | cover, will mov<br>nnel to Four Mil                   | e vertically<br>le Creek.      |
| n the event<br>water flux fro<br>downward a<br>During this a                | that this acidic water were to emotion the ECOSA that results from the                                                                                                                     | erge from the E<br>the low conduc<br>e Creek Diatrer<br>water from the | tivity, high evap<br>me, and thence<br>ECOSA would | ootranspiration<br>via Carlton Tur<br>be bought into | cover, will mov<br>nnel to Four Mil<br>contact with a | e vertically<br>le Creek.<br>n |
| n the event<br>water flux fro<br>downward a<br>During this a<br>overwhelmir | that this acidic water were to emo<br>om the ECOSA that results from t<br>nd then south to the main Cripple<br>approximately 9 mile journey, the<br>ngly large quantity of neutralizing    | erge from the E<br>the low conduc<br>e Creek Diatrer<br>water from the | tivity, high evap<br>me, and thence<br>ECOSA would | ootranspiration<br>via Carlton Tur<br>be bought into | cover, will mov<br>nnel to Four Mil<br>contact with a | e vertically<br>le Creek.<br>n |
| n the event<br>water flux fro<br>downward a<br>During this a<br>overwhelmir | that this acidic water were to emo<br>om the ECOSA that results from t<br>nd then south to the main Cripple<br>approximately 9 mile journey, the<br>ngly large quantity of neutralizing    | erge from the E<br>the low conduc<br>e Creek Diatrer<br>water from the | tivity, high evap<br>me, and thence<br>ECOSA would | ootranspiration<br>via Carlton Tur<br>be bought into | cover, will mov<br>nnel to Four Mil<br>contact with a | e vertically<br>le Creek.<br>n |
| n the event<br>vater flux fro<br>downward a<br>During this a<br>overwhelmir | that this acidic water were to emo<br>om the ECOSA that results from t<br>nd then south to the main Cripple<br>approximately 9 mile journey, the<br>ngly large quantity of neutralizing    | erge from the E<br>the low conduc<br>e Creek Diatrer<br>water from the | tivity, high evap<br>me, and thence<br>ECOSA would | ootranspiration<br>via Carlton Tur<br>be bought into | cover, will mov<br>nnel to Four Mil<br>contact with a | e vertically<br>le Creek.<br>n |
| n the event<br>vater flux fro<br>downward a<br>During this a<br>overwhelmir | that this acidic water were to emo<br>om the ECOSA that results from t<br>nd then south to the main Cripple<br>approximately 9 mile journey, the<br>ngly large quantity of neutralizing    | erge from the E<br>the low conduc<br>e Creek Diatrer<br>water from the | tivity, high evap<br>me, and thence<br>ECOSA would | ootranspiration<br>via Carlton Tur<br>be bought into | cover, will mov<br>nnel to Four Mil<br>contact with a | e vertically<br>le Creek.<br>n |
| n the event<br>vater flux fro<br>downward a<br>During this a<br>overwhelmir | that this acidic water were to emo<br>om the ECOSA that results from t<br>nd then south to the main Cripple<br>approximately 9 mile journey, the<br>ngly large quantity of neutralizing    | erge from the E<br>the low conduc<br>e Creek Diatrer<br>water from the | tivity, high evap<br>me, and thence<br>ECOSA would | ootranspiration<br>via Carlton Tur<br>be bought into | cover, will mov<br>nnel to Four Mil<br>contact with a | e vertically<br>le Creek.<br>n |
| n the event<br>vater flux fro<br>downward a<br>During this a<br>overwhelmir | that this acidic water were to emo<br>om the ECOSA that results from t<br>nd then south to the main Cripple<br>approximately 9 mile journey, the<br>ngly large quantity of neutralizing    | erge from the E<br>the low conduc<br>e Creek Diatrer<br>water from the | tivity, high evap<br>me, and thence<br>ECOSA would | ootranspiration<br>via Carlton Tur<br>be bought into | cover, will mov<br>nnel to Four Mil<br>contact with a | e vertically<br>le Creek.<br>n |
| n the event<br>vater flux fro<br>downward a<br>During this a<br>overwhelmir | that this acidic water were to emo<br>om the ECOSA that results from t<br>nd then south to the main Cripple<br>approximately 9 mile journey, the<br>ngly large quantity of neutralizing    | erge from the E<br>the low conduc<br>e Creek Diatrer<br>water from the | tivity, high evap<br>me, and thence<br>ECOSA would | ootranspiration<br>via Carlton Tur<br>be bought into | cover, will mov<br>nnel to Four Mil<br>contact with a | e vertically<br>le Creek.<br>n |
| n the event<br>vater flux fro<br>downward a<br>During this a<br>overwhelmir | that this acidic water were to emo<br>om the ECOSA that results from t<br>nd then south to the main Cripple<br>approximately 9 mile journey, the<br>ngly large quantity of neutralizing    | erge from the E<br>the low conduc<br>e Creek Diatrer<br>water from the | tivity, high evap<br>me, and thence<br>ECOSA would | ootranspiration<br>via Carlton Tur<br>be bought into | cover, will mov<br>nnel to Four Mil<br>contact with a | e vertically<br>le Creek.<br>n |
| n the event<br>vater flux fro<br>downward a<br>During this a<br>overwhelmir | that this acidic water were to emo<br>om the ECOSA that results from t<br>nd then south to the main Cripple<br>approximately 9 mile journey, the<br>ngly large quantity of neutralizing    | erge from the E<br>the low conduc<br>e Creek Diatrer<br>water from the | tivity, high evap<br>me, and thence<br>ECOSA would | ootranspiration<br>via Carlton Tur<br>be bought into | cover, will mov<br>nnel to Four Mil<br>contact with a | e vertically<br>le Creek.<br>n |
| n the event<br>vater flux fro<br>downward a<br>During this a<br>overwhelmir | that this acidic water were to emo<br>om the ECOSA that results from t<br>nd then south to the main Cripple<br>approximately 9 mile journey, the<br>ngly large quantity of neutralizing    | erge from the E<br>the low conduc<br>e Creek Diatrer<br>water from the | tivity, high evap<br>me, and thence<br>ECOSA would | ootranspiration<br>via Carlton Tur<br>be bought into | cover, will mov<br>nnel to Four Mil<br>contact with a | e vertically<br>le Creek.<br>n |
| n the event<br>vater flux fro<br>downward a<br>During this a<br>overwhelmir | that this acidic water were to emo<br>om the ECOSA that results from t<br>nd then south to the main Cripple<br>approximately 9 mile journey, the<br>ngly large quantity of neutralizing    | erge from the E<br>the low conduc<br>e Creek Diatrer<br>water from the | tivity, high evap<br>me, and thence<br>ECOSA would | ootranspiration<br>via Carlton Tur<br>be bought into | cover, will mov<br>nnel to Four Mil<br>contact with a | e vertically<br>le Creek.<br>n |
| n the event<br>vater flux fro<br>downward a<br>During this a<br>overwhelmir | that this acidic water were to emo<br>om the ECOSA that results from t<br>nd then south to the main Cripple<br>approximately 9 mile journey, the<br>ngly large quantity of neutralizing    | erge from the E<br>the low conduc<br>e Creek Diatrer<br>water from the | tivity, high evap<br>me, and thence<br>ECOSA would | ootranspiration<br>via Carlton Tur<br>be bought into | cover, will mov<br>nnel to Four Mil<br>contact with a | e vertically<br>le Creek.<br>n |
| n the event<br>vater flux fro<br>downward a<br>During this a<br>overwhelmir | that this acidic water were to emo<br>om the ECOSA that results from t<br>nd then south to the main Cripple<br>approximately 9 mile journey, the<br>ngly large quantity of neutralizing    | erge from the E<br>the low conduc<br>e Creek Diatrer<br>water from the | tivity, high evap<br>me, and thence<br>ECOSA would | ootranspiration<br>via Carlton Tur<br>be bought into | cover, will mov<br>nnel to Four Mil<br>contact with a | e vertically<br>le Creek.<br>n |
| n the event<br>vater flux fro<br>downward a<br>During this a<br>overwhelmir | that this acidic water were to emo<br>om the ECOSA that results from t<br>nd then south to the main Cripple<br>approximately 9 mile journey, the<br>ngly large quantity of neutralizing    | erge from the E<br>the low conduc<br>e Creek Diatrer<br>water from the | tivity, high evap<br>me, and thence<br>ECOSA would | ootranspiration<br>via Carlton Tur<br>be bought into | cover, will mov<br>nnel to Four Mil<br>contact with a | e vertically<br>le Creek.<br>n |
| n the event<br>vater flux fro<br>downward a<br>During this a<br>overwhelmir | that this acidic water were to emo<br>om the ECOSA that results from t<br>nd then south to the main Cripple<br>approximately 9 mile journey, the<br>ngly large quantity of neutralizing    | erge from the E<br>the low conduc<br>e Creek Diatrer<br>water from the | tivity, high evap<br>me, and thence<br>ECOSA would | ootranspiration<br>via Carlton Tur<br>be bought into | cover, will mov<br>nnel to Four Mil<br>contact with a | e vertically<br>le Creek.<br>n |
| n the event<br>vater flux fro<br>downward a<br>During this a<br>overwhelmir | that this acidic water were to emo<br>om the ECOSA that results from t<br>nd then south to the main Cripple<br>approximately 9 mile journey, the<br>ngly large quantity of neutralizing    | erge from the E<br>the low conduc<br>e Creek Diatrer<br>water from the | tivity, high evap<br>me, and thence<br>ECOSA would | ootranspiration<br>via Carlton Tur<br>be bought into | cover, will mov<br>nnel to Four Mil<br>contact with a | e vertically<br>le Creek.<br>n |
| n the event<br>vater flux fro<br>downward a<br>During this a<br>overwhelmir | that this acidic water were to emo<br>om the ECOSA that results from t<br>nd then south to the main Cripple<br>approximately 9 mile journey, the<br>ngly large quantity of neutralizing    | erge from the E<br>the low conduc<br>e Creek Diatrer<br>water from the | tivity, high evap<br>me, and thence<br>ECOSA would | ootranspiration<br>via Carlton Tur<br>be bought into | cover, will mov<br>nnel to Four Mil<br>contact with a | e vertically<br>le Creek.<br>n |
| n the event<br>vater flux fro<br>downward a<br>During this a<br>overwhelmir | that this acidic water were to emo<br>om the ECOSA that results from t<br>nd then south to the main Cripple<br>approximately 9 mile journey, the<br>ngly large quantity of neutralizing    | erge from the E<br>the low conduc<br>e Creek Diatrer<br>water from the | tivity, high evap<br>me, and thence<br>ECOSA would | ootranspiration<br>via Carlton Tur<br>be bought into | cover, will mov<br>nnel to Four Mil<br>contact with a | e vertically<br>le Creek.<br>n |
| n the event<br>water flux fro<br>downward a<br>During this a                | that this acidic water were to emo<br>om the ECOSA that results from t<br>nd then south to the main Cripple<br>approximately 9 mile journey, the<br>ngly large quantity of neutralizing    | erge from the E<br>the low conduc<br>e Creek Diatrer<br>water from the | tivity, high evap<br>me, and thence<br>ECOSA would | ootranspiration<br>via Carlton Tur<br>be bought into | cover, will mov<br>nnel to Four Mil<br>contact with a | e vertically<br>le Creek.<br>n |
| n the event<br>water flux fro<br>downward a<br>During this a<br>overwhelmir | that this acidic water were to emo<br>om the ECOSA that results from t<br>nd then south to the main Cripple<br>approximately 9 mile journey, the<br>ngly large quantity of neutralizing    | erge from the E<br>the low conduc<br>e Creek Diatrer<br>water from the | tivity, high evap<br>me, and thence<br>ECOSA would | ootranspiration<br>via Carlton Tur<br>be bought into | cover, will mov<br>nnel to Four Mil<br>contact with a | e vertically<br>le Creek.<br>n |
| n the event<br>water flux fro<br>downward a<br>During this a<br>overwhelmir | that this acidic water were to emo<br>om the ECOSA that results from t<br>nd then south to the main Cripple<br>approximately 9 mile journey, the<br>ngly large quantity of neutralizing    | erge from the E<br>the low conduc<br>e Creek Diatrer<br>water from the | tivity, high evap<br>me, and thence<br>ECOSA would | ootranspiration<br>via Carlton Tur<br>be bought into | cover, will mov<br>nnel to Four Mil<br>contact with a | e vertically<br>le Creek.<br>n |