Appendix 3

C 100.106.0

To: Cripple Creek & Victor Gold Mining Company P. O. Box 191 100 North Third Street Victor, Colorado 80860

Date: November 26, 1997

Subject: GROUND MOTION ATTENUATION STUDY CONSTRUCTION TEST SITE October 16, 1997

11460 W. 44th Ave., Suite Wheat Ridge, Co 8003 303-456-563 Fax 303-456-563

CRIPPLE CREEK AND VICTOR GOLD MINING COMPANY GROUND VIBRATION ATTENUATION STUDY CONSTRUCTION BLAST TESTING - COUNTY ROAD 14

October 16, 1997

Executive Summary

Matheson Mining Consultants (MMC) monitored seven test blasts at the construction blast test site located on Cripple Creek and Victor Gold Mining Company property west of the town of Victor, CO with five seismographs. All data and analyses are attached to this report.

The recommended scaled distance to not exceed the regulatory limit of 0.50 inches per second peak particle velocity for the construction site is 13.43. The analysis is comprised of thirty-one data points and has a correlation coefficient of 0.704.

Scaled distance is a relationship used in explosives engineering to interrelate blasts with different maximum charge weights per delay.

$$SD = \frac{D}{\sqrt{W}}$$

Where: SD is Scaled DistanceD is distance in feetW is maximum charge weight per 8 millisecond delay period.

Below is a table of distance and charge weight based on the regulatory limit of 0.50 inches per second and the site specific scaled distance determination of 13.43. The charge weight per delay is the maximum explosive that may be fired at the given distance to not exceed the 0.50 inch per second regulatory limit.

Table 1: Distance versus charge weight for SD=13.43

Distance (FT)	Charge Weight/Delay (Lbs/Delay)
100	55
200	222
300	499
400	887

1

Introduction

Matheson Mining Consultants (MMC) was retained by Cripple Creek and Victor Gold Mining Company to perform a ground motion attenuation study of ground vibrations created by blasting at the construction blasting test site located west of the town of Victor, Colorado. Appendix I contains a map showing the test blast and instrument locations. Five blasting seismographs were used to monitor each blast. Seismographs were positioned at varying distances from each test blast. The resulting data set were analyzed and used to determine distance and charge weight relationships required for ground vibration regulatory compliance. The distance study predict statistically safe distances for any given charge weight per delay period and peak particle velocity.

The procedure for the analyses performed on the test blasts is outlined in "Blasting Guidance Manual", March 1987, published by United States Department of the Interior Office of Surface Mining Reclamation and Enforcement.

The tests performed at the two sites were designed to be conservative in nature. The intent of these studies was to maximize ground motion. Typically in mine production blasting, explosive energy is consumed by fragmentation and displacement of the rock mass. The confined test blasts minimized fragmentation and displacement while maximizing ground motion.

Instrumentation

Vibration records were collected with two Blastmate III and three MiniMate Plus digital blasting seismographs. These seismographs measure three orthogonal planes of ground motion, transverse, longitudinal and vertical, and one channel of air overpressure. The frequency response is 1.5 to 250 Hertz. All instruments have a valid annual calibration. Copies of the calibration certificates are attached as Appendix II. Each vibration recording is printed on a single sheet of paper with: Date/Time, Trigger Source, Range, Record Time, instrument Serial Number, Battery Level, Calibration date and File Name in the title block. The instruments are seismically triggered and record each channel digitally at 1024 samples per second.

Fourier transforms of each of the three waveform components are calculated to determine frequency response. Frequency versus particle velocity plots of each wave trace are plotted on each record. The United States Bureau of Mines (USBM) and the Office of Surface Mining, Reclamation and Enforcement (OSMRE) regulatory criteria are plotted on each vibration record.

Attached as Appendix III is an excerpt from the Blastmate III User's Manual describing the specifications and function of the instrumentation and record processing.

Procedure

Seven 2-1/2 inch diameter drill holes were drilled to a depth of 20 feet on 10 foot centers at the test site. Attached as Appendix I is a map of the test areas. Each drill hole was loaded with 20 pounds of ANFO, primed with one cast booster, and detonated individually. The charge weight was selected to maximize the ground motion created by the explosive detonation while eliminating flyrock and permanent ground displacement. Seismographs were placed at varying distances between the blast site and the closest nonmine owned residence. Distances, ground motion amplitudes, statistical analysis, particle velocity versus distance tables, charge weight versus distance tables and the complete set of vibration records for the Ajax test site are attached as Appendix IV.

Ground vibrations were measured at distances varying from 50 to 260 feet from the test blasts. Scaled distances varied from 11 to 58. Least squares regression analysis was performed on each data set to determine the +95% confidence intervals as recommended by OSM and USBM regulatory guidelines. The statistical validity of the data is evaluated using the correlation coefficients calculated in the analyses. The equations for the +95% confidence interval are then used to calculate maximum charge weight per delay interval for any given particle velocity and distance. Recommendations are made based on regulatory criteria, accepted citizen tolerance levels and historic vibration monitoring from the existing mine production.

Results

The least squares regression analysis performed is in Appendix IV and contains the tables and seismograph recordings for the test site.

The +95% confidence equation and correlation coefficient calculated with the collected data is:

$$PPV = 11.0 * (SD)$$
 $r^2 = 0.704$

Given a not to exceed peak particle velocity and a known distance a maximum charge weight per delay may be calculated using the above equations. Tables are attached to the regression analyses in Appendices IV using the above equations to calculate maximum allowable charge weight per delay at given distances given a not to exceed peak particle velocity. Additional tables show peak particle velocities at given distances given a charge weight.

The equation is in the expected range for this site. The data set has a good correlation coefficient. A high degree of reliability may be placed on these results.

Conclusions

Colorado Mined Land Reclamation imposes a 0.50 inches per second peak particle velocity limit on ground motion created by Cripple Creek and Victor Gold Mining Company blasting operations. The Construction analysis recommends a scaled distance of 13.43 in order to not exceed 0.50 inches per second. Below is a table listing scaled distances for other not to exceed peak particle velocities.

Table 2: Peak Particle Velocity versus Scaled Distance for Construction site.

Peak Particle Velocity	Construction
(inches per second)	Scaled Distance
0.10	51.9
0.20	29.0
0.30	20.6
0.40	16.2
0.50	13.4

Attached in Appendices IV are tables listing maximum particle velocities at varying distances for given charge weights. Corresponding tables list maximum allowable charge weights per delay at varying distances given a peak particle velocity. Appendix V contains a summary sheet and the individual seismograph records measured and used in this study.

Sincerely,

Colin Matheson Mining Engineer

Appendix I

Мар

Appendix II

()

 \bigcirc

Calibration Certificates

Model: BlastMate III September 19, 1997 Date:

Unit S/N: BA5738

TEST REFERENCES*	Model	Serial No.
Bruel & Kjaer Accelerometer	4381	1160721
Bruel & Kjaer Charge Amplifier	2635	1423229
Hewlett Packard Signal Analyzer	3562A	2847A03947
Good Will Inst. Frequency Counter	GUC-2010G	5110825
Bruel & Kjaer HPMC	4221	745522
Bruel & Kjaer Mic Carrier System	2804	1904864
Bruel & Kjaer Microphone	4193	1863904

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECKTM feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service centre for regular calibration.

AUTHORIZED BY: 12. B. Shaver

*References are traceable to NRC, NIST or equivalent

© Instantel Inc. 1997

Model: Geophone September 19, 1997 Date:

Unit S/N: BG5586

TEST REFERENCES*	Model	Serial No.
		8
Bruel & Kjaer Accelerometer	4381	1160721
Bruel & Kjaer Charge Amplifier	2635	1423229
Hewlett Packard Signal Analyzer	3582A	1809A03540
Good Will Inst. Frequency Counter	GUC-2010G	5110825
Bruel & Kjaer HPMC	4221	745522
Bruel & Kjaer Mic Carrier System	2804	1904864
Bruel & Kjaer Microphone	4193	1863904

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECKTM feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service centre for regular calibration.

AUTHORIZED BY: W.B. Shaver

*References are traceable to NRC, NIST or equivalent

© Instantel Inc. 1997

Model:	BlastMate III
Date:	January 10, 1997
Unit S/N:	BA5552

	Model	Serial No.
	4381	1160721
	2635	1423229
	3582A	1809A03540
	GUC-2010G	5110825
	4221	745522
	2804	1904864
8	4193	1863904
		4381 2635 3582A GUC-2010G 4221 2804

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECKTM feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service centre for regular calibration.

AUTHORIZED BY:

STRAN

*References are traceable to NRC, NIST or equivalent

© Instantel Inc. 1996

Model: Geophone Date: January 10, 1997 Unit S/N: BG5412

VAR

TEST REFERENCES*		Model	Serial No.
Bruel & Kjaer Accelerometer		4381	1160721
Bruel & Kjaer Charge Amplifier		2635	1423229
Hewlett Packard Spectrum Analyzer		3582A	1809A03540
Good Will Inst. Frequency Counter		GUC-2010G	5110825
Bruel & Kjaer HPMC		4221	745522
Bruel & Kjaer Mic Carrier System		2804	1904864
Bruel & Kjaer Microphone	303	4193	1863904

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECKTM feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service centre for regular calibration.

AUTHORIZED BY: Upphaver

*References are traceable to NRC, NIST or equivalent

© Instantel Inc. 1996

Model:	MiniMate Plus
Date:	January 10, 1997
Unit S/N:	BC5534

TEST REFERENCES*	 Model	Serial No.
Bruel & Kjaer Accelerometer	4381	1160721
Bruel & Kjaer Charge Amplifier	2635	1423229
Hewlett Packard Spectrum Analyzer	3582A	1809A03540
Good Will Inst. Frequency Counter	GUC-2010G	5110825
Bruel & Kjaer HPMC	4221	745522
Bruel & Kjaer Mic Carrier System	2804	1904864
Bruel & Kjaer Microphone	4193	1863904

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECKTM feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service centre for regular calibration.

AUTHORIZED BY: aughaver

*References are traceable to NRC, NIST or equivalent

© Instantel Inc. 1996

Model:	MiniMate Plus
Date:	January 10, 1997
Unit S/N:	BC5536

TEST REFERENCES*	Model	Serial No.
Bruel & Kjaer Accelerometer	4381	1160721
Bruel & Kjaer Charge Amplifier	2635	1423229
Hewlett Packard Spectrum Analyzer	3582A	1809A03540
Good Will Inst. Frequency Counter	GUC-2010G	5110825
Bruel & Kjaer HPMC	4221	745522
Bruel & Kjaer Mic Carrier System	2804	1904864
Bruel & Kjaer Microphone	4193	1863904

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECKTM feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service centre for regular calibration.

AUTHORIZED BY: Uphower

*References are traceable to NRC, NIST or equivalent

© Instantel Inc. 1996

Appendix III

Instrument Specifications

3. COMPLIANCE MODULE

This chapter provides instructions to install and setup the BlastMate III.

3.1 What is Event Monitoring?

Event monitoring measures both ground vibrations and air pressure. The monitor measures transverse, vertical, and longitudinal ground vibrations. Transverse ground vibrations agitate particles in a side to side motion. Vertical ground vibrations agitate particles in an up and down motion. Longitudinal ground vibrations agitate particles in a forward and back motion progressing outward from the event site. Events also affect air pressure by creating what is commonly referred to as "air blast". By measuring air pressures, we can determine the effect of air blast energy on structures, measured on the Linear "L" scale, or as perceived by the human ear, measured on the "A" Weight scale.

Figure 3.1 How the BlastMate III Monitors Events.

BlastMate III Operator Manual

3–1

5-4

a. Geophone Operation

Functionally a geophone sensor is a coil of wire suspended around a magnet. The magnet is free to move in a field of magnetic flux lines. By Lenzs' Law, induced voltage is proportional to the speed at which flux lines are traversed. Induced coil voltage is therefore proportional to the relative velocity of the coil to the magnet. In practice, it does not matter whether the coil or the magnet moves. Only the motion and speed relative to each other are important.

Figure 5.5 Geophone Sensor Operation.

Geophone sensor specifications give a number known as the Intrinsic Voltage Sensitivity. It is the coil voltage induced for a given coil versus magnet speed with units of V/in/s. In seismic applications, the magnet is moved by the blast energy because it is coupled to the particles of the surrounding terrain. The coil, because of its inertia, does not move and the resulting magnet versus coil motion induces a voltage which is proportional to particle velocity.

b. Instantel Standard Transducer

Instantel offers a 2 to 300 Hz standard transducer in a round package. The transducer may be installed on a floor, wall, or ceiling using a variety of installation procedures including ground spikes, burying, mounting rod, or optional levelling plate with levelling feet and integrated bubble level. The figure below includes an Instantel Standard Transducer (a) and a Standard Transducer with levelling plate (b).

Figure 5.6 Instantel Standard Transducer (a) and Standard Transducer with Optional Levelling Plate (b).

c. Transducer Calibration Requirements

The geophone sensors inside Instantel's transducers must be calibrated annually by Instantel or an authorized Instantel service facility. Contact your dealer for further information.

5.2.2 Microphone

The microphone measures air pressure. Instantel offers two types, Linear "L" (standard) and "A" Weight (optional). Both come with a three foot (one meter) microphone mounting stand.

a. Measurement Scales

The BlastMate III supports two sound pressure measurement scales: Linear "L" and "A" Weight.

(1) Linear "L"

Linear measurement is generally used to measure the effect of low frequency air pressure on buildings. The linear scale records sound pressure without modification in the 2 to 300 Hz range. Measurement units may be in absolute. Pascal, or relative dB scales.

(2) "A" Weight

"A" Weight measures noise levels people may consider an annoyance. The incoming signal is filtered over a 20 Hz to 20,000 Hz range reflecting the hearing range of the human ear. The signal is then converted to root mean square (RMS). Units are measured using the decibel scale, dB(A).

b. Microphone Calibration Requirements

Instantel's microphone must be calibrated annually by Instantel or an authorized Instantel service facility. Contact your dealer for further information.

5.3 Sensorcheck[®]

Sensorcheck performs a two stage test on the BlastMate III and its sensors. In the first stage, the program displays the BlastMate III serial number, software version, the total amount of memory installed in the BlastMate III, the total amount of memory available to store events, and the number of events presently stored in memory. The second stage tests each geophone within Instantel's transducer and the microphone operation. The program also tests the operation of the BlastMate III itself and the sensor connecting cables. Pass or fail results appear on the display. See the Basic Reference chapter of this manual to choose when Sensorcheck operates automatically.

5.3.1 Checking the Transducer's Geophones

Sensorcheck measures a geophone's natural frequency and damping indicated by an Overswing Ratio (OR). Sensorcheck sends an electric pulse to the geophones and measures the response. If the geophone's response falls within a specified calibration range, the geophone is in calibration and monitoring operations can continue. If the geophone's response does not fall within a specified calibration range, the geophone is not calibrated. You cannot record events until you fix or replace the geophones. See the troubleshooting section of this manual for the appropriate procedures to follow.

a. Natural Frequency

Waveform measurements check the natural period (t) of a geophone's sensor coil assembly. Referring to the figure below, the distance from P₁ to P₂ represents 0.125 seconds. Since Frequency is the reciprocal of the period, F=1/t, the frequency is approximately 8 Hz. A calibrated sensor has a natural frequency between 6.5 and 9.5 Hertz. Calculations for all geophones appears with each recorded event. Chapter 5

Figure 5.7 Calculating a Geophone's Natural Frequency.

b. Damping – Overswing Ratio (OR)

The overswing ratio (OR) measures damping and is calculated by computing the ratio of the magnitude of adjacent waveform peaks according to the following formula:

$$OR = \frac{A}{A}$$

Acceptable overswing ratios range from 2.8 to 4.8. The figure below displays a graph of a geophone coil's "free fall" response. A_1 and A_2 are used for overswing calculations.

Figure 5.8 Calculating a Geophone's Overswing Ratio.

5.3.2 Checking the Microphone

Sensorcheck tests the microphone's operation by sending a signal to the microphone and measuring its frequency and amplitude response. If the results of the test fall within specified ranges, the microphone is within calibration.

5.3.3 Sensorcheck Report

The Sensorcheck report appears on the BlastMate III display. The message "All Channels Working, Press Print to Print" indicates the BlastMate III sensors have passed the Sensorcheck.

5.4 Antialias Filters

Aliasing occurs when a high-frequency signal appears as an erroneous low frequency because the waveform was sampled at too low a sampling rate. An antialiasing filter solves this problem by removing the high-frequencies.

5.5 Data Analysis Techniques

The following sections define the BlastMate III data analysis techniques. The first section, ground vibrations, discusses calculations applied to event data recorded by a transducer. The second section, sound pressure, describes the microphone event data calculations.

5.5.1 Ground Vibrations

The BlastMate III calculates the Peak Particle Velocity, Zero Crossing Frequency, Peak Acceleration, and Peak Displacement for each of the transverse, vertical, and longitudinal axes. The BlastMate III calculates Peak Vector Sum using data from all three axes.

a. Peak Particle Velocity (PPV)

Peak Particle Velocity indicates the maximum speed particles travel resulting from an event's ground vibrations. The BlastMate III calculates the PPV for each geophone.

Figure 5.9 Calculating Peak Particle Velocity.

b. Zero Crossing Frequency (ZC Freq)

The Zero Crossing Frequency calculates the event waveform's frequency at the largest peak.

(1) Calculating Zero Crossing Frequency

To calculate the Zero Crossing Frequency, we need to determine the period of oscillation of the waveform. Convenient waveform positions for measuring period, the time for one complete cycle, occur between two successive peaks, troughs, or zero crossings. The BlastMate III measures between zero crossings. Frequency is the number of periods that occur in one second calculated by the formula: Frequency = 1/period.

Figure 5.10 Calculating the Zero Crossing Frequency.

(2) Zero Crossing Frequency Limitation

The Zero Crossing Frequency calculation is limited because it assumes a single predominant frequency at the peak, typically represented by sinusoidal waveforms. In practice, the peak may be the result of two or more major frequency components representing compound waveforms as

illustrated in the figure below. It is therefore only an approximation of the frequency of the Peak Particle Velocity.

Waveforms may have the same Peak Particle Velocities but different Zero Crossing Frequencies depending on the shape of the waveforms involved. With reference to the figures above and below; both waveforms have the same Peak Particle Velocities however their Zero Crossing Frequencies differ. In the figure above, the zero crossing frequency uses the 1/2 period indicated by T_1 . In the figure below, the zero crossing frequency uses the 1/2 period indicated by T_2 . Notice that T_1 is less than T_2 because of the different waveform shapes, therefore the Zero Crossing Frequency in figure above is greater than the Zero Crossing Frequency in the figure below. It is for this reason, the Zero Crossing Frequency may differ for peaks having the same Peak Particle Velocity.

(3) Sample Rate Error

The Zero Crossing Frequency requires the period of a wavelength before it can calculate the wavelength's frequency using the formula 1/period. A sampling error occurs for higher frequencies when wavelength periods become relatively small and the sampling rate begins to miss zero crossing points. In other words, the wavelength periods occur much faster than a BlastMate III can sample and use in the calculation.

At higher frequencies there are fewer sample points per cycle and therefore greater error. The following table illustrates how error increases with frequency.

Zero Cross	sing Frequency Sample	Rate Error	
Frequency Range	Recording Rate		
	Standard (1024 Hz)	Fast (2048 Hz)	
0-30 Hz	negligible error	negligible error	
31 – 50 Hz	up to 5 Hz error	up to 2.5 Hz error	
51 – 70 Hz	up to 8 Hz error	up to 4 Hz error	
71–90 Hz	up to 18 Hz error	up to 9 Hz error	
91–150 Hz	up to 50 Hz error	up to 25 Hz error	

The BlastMate III does not calculate frequencies above 100 Hz because of the high error level at 1024 samples per second. The message ">100 Hz" displays. Furthermore if a waveform is very complex, or if it contains a large offset value, the zero crossings may lie outside an acceptable window. Whenever a frequency cannot be calculated the message "<1 Hz" displays. The message

N/A indicates an entire waveform was not captured and therefore no frequency could be calculated. More accurate analysis is available using the BlastWare III software.

c. Peak Acceleration

The BlastMate III calculates peak acceleration, the rate of change of velocity, by dividing the difference in velocity by the difference in time. To obtain the peak acceleration, the BlastMate III subtracts two velocity readings and divides the result by the elapsed time between them.

$$a = \frac{dV}{dT} \approx \frac{\Delta V}{\Delta T}$$

where:

 $\Delta t = a$ small interval

The BlastMate III calculates the peak acceleration at each point along the entire waveform and reports the peak value. Note that this is not necessarily at the peak velocity for an individual waveform.

d. Peak Displacement

The BlastMate III calculates peak displacement, or particle distance travelled, by multiplying speed by time. In the BlastMate III the interval velocity is multiplied by the time interval and the resulting displacement segments are summed.

$$s = \int V dt \approx \sum (V \Delta t)$$

where:

V = the velocity in each interval

To obtain the peak displacement, the BlastMate III integrates each wave segment of the entire waveform between zero crossings, selects the largest, then divides the value by half. Note that this is not necessarily at the peak velocity of the waveform.

e. Peak Vector Sum (PVS)

The figure below displays three event waveforms. The figure illustrates the procedure of graphically calculating peak vector sums. Measured magnitudes are tabulated for six different times and represent velocities in each of the three axes. The vector sum represents the resultant particle velocity magnitude and is calculated by squaring and adding the magnitudes and taking the square root.

$$PVS = \sqrt{T^2 + V^2 + L^2}$$

T = particle velocity along the transverse plane

V = particle velocity along the vertical plane

L = particle velocity along the longitudinal plane

The BlastMate III calculates the peak vector sum for each point of the sampled waveforms and displays the largest value. Note that this is not necessarily at the peak velocity for an individual waveform.

Chapter 5

EVENT WAVEFORMS			MAGNITUDE			PEAK
TRANSVERSE	VERTICAL	LONGITUDINAL	Т	V	L	VECTOR
5	-	4	-0.34	-0.33	0.14	0.494
~~			0.38	-0.47	0.38	0.714
			0.29	-0.31	0.51	0.663
			-0.53	0.23	-0.31	0.655
	~	2	0.24	0.07	0.36	0.44
4	3		-0.23	-0.16	-0.15	0.318
	~	Ś				
₹.	({				
{	Į		i i i i i i i i i i i i i i i i i i i			

Figure 5.12 Calculating the Peak Vector Sum.

5.5.2 Sound Pressure

The BlastMate III calculates two sound pressure indicators, peak sound pressure and zero crossing frequency.

a. Peak Sound Pressure (PSP)

The BlastMate III checks the entire event waveform and displays the largest sound pressure called the Peak Sound Pressure (PSP), also referred to as the Peak Air Over-Pressure. Results appear on the BlastMate III display and in the Event Summary Report.

b. Zero Crossing Frequency (ZC Freq)

The Zero Crossing Frequency calculation for sound pressure is the same calculation used for ground vibrations. Please see above for a complete discussion.

Note: The Zero Crossing Frequency calculation is performed for Linear microphones only. This calculation does not appear on the BlastMate III display or on Event Summary Reports when using an "A" Weight microphone.

5.6 Alternate Manual Waveform Calculations

The following sections discuss manual waveform analysis techniques. These have been included for reference purposes only. They do not represent the calculation techniques employed by the BlastMate III.

Graphical methods for calculating area and slope depend on the shape of the waveform being analyzed. A complete discussion of the procedures is beyond the scope of this manual. Two useful reference texts are G. A. BOLLIGER, *BLAST VIBRATION ANALYSIS*, Southern Illinois University Press and CHARLES H. DOWDING, *BLAST VIBRATION MONITORING AND CONTROL*, Prentice-Hall Inc.

In each of the subsequent examples some formulae appear with no attempt at derivation. The following definitions apply:

- A = amplitude in inches/second measured from the zero line
- $A_m =$ amplitude measured in millimetres/second
- T = period in seconds
- Y = absolute change in amplitude over time measured in inches/second
- Y_m = absolute change in amplitude over time measured in millimetres/second

5.6.1 Sinusoidal Waveforms

The motion is essentially sinusoidal with gradual amplitude and frequency changes.

Figure 5.13 Manual Waveform Calculations on Sinusoidal Waveforms.

a. Calculating Displacement:

Maximum Displacement (in.)

$$\frac{1}{2\pi} \times A$$

T

 2π

b.

Maximum Acceleration (in./s²) = $\frac{2\pi}{T} \times A$

Maximum Acceleration (mm/s²) = $\frac{2\pi}{T} \times A_{m}$

Chapter 5

5.6.2 Nearly Triangular Waveforms

Motion is irregular and has large amplitude.

Figure 5.14 Manual Waveform Calculations on Nearly Triangular Waveforms.

a. Calculating Displacement:

Maximum Displacement (in.) = $\frac{T}{8} \times A$

Maximum Displacement (mm)

b. Calculating Acceleration:

Maximum Acceleration (in./s²) = $\frac{1}{T} \times Y$

5.6.3 Compound Waveforms

If the record exhibits interference by two or more predominant frequencies then the maximum displacement will be the sum of the maximum of each individual frequency component.

 $= \frac{T}{8} \times A_m$

 $= \frac{1}{T} \times Y_m$

Figure 5.15 Manual Waveform Calculations on Compound Waveforms.

Reference

a. Calculating Displacement:

.

Maximum Displacement (in.) = $\frac{T_1}{2\pi} \times A_1 + \frac{T_2}{2\pi} \times A_2$ Maximum Displacement (mm) = $\frac{T_1}{2\pi} \times A_{1m} + \frac{T_2}{2\pi} \times A_{2m}$

b. Calculating Acceleration:

Maximum Acceleration (in./s

Maximum Acceleration (in./s²) =
$$\frac{2\pi}{T_1} \times A_1 + \frac{2\pi}{T_2} \times A_2$$

Maximum Acceleration (mm/s²) = $\frac{2\pi}{T_1} \times A_{1m} + \frac{2\pi}{T_2} \times A_{2m}$

5.6.4 Irregular Waveforms

a. Calculating Displacement:

Maximum Displacement = area under curve measured by a planimeter.

Appendix IV

Regression Analysis and Tables

The 95% Confidence Equation

PPV= 11.0 X (SD)^{^ -1.19}

The Correlation Coeficient r^2 is: 0.704

Matheson Mining Consultants

10/21/97

REGRESSION ANALYSIS

		RE	REGRESSION ANALYSIS	N ANALYS	SIS		
			Data Statisics	atisics			
Z	May	Max_PPV	Min_PPV	PPV		Max SD	Min SD
32.0		0.6	0.04	14		58	1
			Calculated Sums	ed Sums			
Sum_X	Su	Sum_Y	Sum_X2	R		Sum Y2	Sum XY
112.5	ä	-83.433	401.545	545		229.767	-300.5
			Sums Of Squares	Squares			
ss_x	Ó	SS_Y	SS_XY	XX		SumXSumY	(SumX) ²
6.08	1	12.23	-7.23	23		-9385.800	12655.022
		Calcula	Calculated Means & Calulated Coefficients	alulated Coef	ficients		
X_Bar	Y_Bar	ற	K50	K ₉₅	K90	К. 99	В 50
3.515	-2.607	1.58	4.8	11.0	15.5	1.5	-1.19
		Sample Stand	le Standard Deviation & Coefficient of Correlation	& Coefficient	of Correlation		
S	S _{e2}				5	~∟	
0.347	3.617				-0.839	0.704	
The 95% Confidence Level Equation	dence Level	Equation					
=/dd	11.0	X (SD)^	-1.19				

 \bigcirc

 \bigcirc

· · · · ·	PV=0.1	,	
Distance	Charge Weight	Distance	Charge Weight
(feet)	(pounds)	(feet)	(pounds)
100	3.7	4,000	5,932.1
200	14.8	4,100	6,232.4
300	33.4	4,200	6,540.1
400	59.3	4,300	6,855.3
500	92.7	4,400	7,177.8
600	133.5	4,500	7,507.8
700	181.7	4,600	7,845.2
800	237.3	4,700	8,190.0
900	300.3	4,800	8,542.2
1,000	370.8	4,900	8,901.8
1,100	448.6	5,000	9,268.9
1,200	533.9	5,100	9,643.4
1,300	626.6	5,200	10,025.2
1,400	726.7	5,300	10,414.5
1,500	834.2	5,400	10,811.2
1,600	949.1	5,500	11,215.4
1,700	1,071.5	5,600	11,626.9
1,800	1,201.2	5,700	12,045.9
1,900	1,338.4	5,800	12,472.2
2,000	1,483.0	5,900	12,906.0
2,100	1,635.0	6,000	13,347.2
2,200	1,794.5	6,100	13,795.8
2,300	1,961.3	6,200	14,251.9
2,400	2,135.6	6,300	14,715.3
2,500	2,317.2	6,400	15,186.2
2,600	2,506.3	6,500	15,664.4
2,700	2,702.8	6,600	16,150.1
2,800	2,906.7	6,700	16,643.2
2,900	3,118.1	6,800	17,143.7
3,000	3,336.8	6,900	17,651.7
3,100	3,563.0	7,000	18,167.0
3,200	3,796.5	7,100	18,689.8
3,300	4,037.5	7,200	19,220.0
3,400	4,285.9	7,300	19,757.6
3,500	4,541.8	7,400	20,302.6
3,600	4,805.0	7,500	20,855.0
3,700	5,075.6	7,600	21,414.9
3,800	5,353.7	7,700	21,982.1
3,900	5,639.2	7,800	22,556.8

	PV=0.2	2 ips	
Distance	Charge Weight	Distance	Charge Weight
(feet)	(pounds)	(feet)	(pounds)
100	11.9	4,000	19,016.9
200	47.5	4,100	19,979.7
300	107.0	4,200	20,966.2
400	190.2	4,300	21,976.5
500	297.1	4,400	23,010.5
600	427.9	4,500	24,068.3
700	582.4	4,600	25,149.9
800	760.7	4,700	26,255.3
900	962.7	4,800	27,384.4
1,000	1,188.6	4,900	28,537.3
1,100	1,438.2	5,000	29,714.0
1,200	1,711.5	5,100	30,914.4
1,300	2,008.7	5,200	32,138.6
1,400	2,329.6	5,300	33,386.6
1,500	2,674.3	5,400	34,658.4
1,600	3,042.7	5,500	35,953.9
1,700	3,434.9	5,600	37,273.2
1,800	3,850.9	5,700	38,616.3
1,900	4,290.7	5,800	39,983.1
2,000	4,754.2	5,900	41,373.7
2,100	5,241.5	6,000	42,788.1
2,200	5,752.6	6,100	44,226.3
2,300	6,287.5	6,200	45,688.2
2,400	6,846.1	6,300	47,173.9
2,500	7,428.5	6,400	48,683.4
2,600	8,034.7	6,500	50,216.6
2,700	8,664.6	6,600	51,773.6
2,800	9,318.3	6,700	53,354.4
2,900	9,995.8	6,800	54,959.0
3,000	10,697.0	6,900	56,587.3
3,100	11,422.1	7,000	58,239.4
3,200	12,170.8	7,100	59,915.3
3,300	12,943.4	7,200	61,614.9
3,400	13,739.7	7,300	63,338.3
3,500	14,559.8	7,400	65,085.5
3,600	15,403.7	7,500	66,856.4
3,700	16,271.4	7,600	68,651.2
3,800	17,162.8	7,700	70,469.7
3,900	18,078.0	7,800	72,311.9

	PV=0.3	ips	
Distance	Charge Weight	Distance	Charge Weight
(feet)	(pounds)	(feet)	(pounds)
100	23.5	4,000	37,591.7
200	94.0	4,100	39,494.8
300	211.5	4,200	41,444.9
400	375.9	4,300	43,441.9
500	587.4	4,400	45,486.0
600	845.8	4,500	47,577.0
700	1,151.2	4,600	49,715.1
800	1,503.7	4,700	51,900.1
900	1,903.1	4,800	54,132.1
1,000	2,349.5	4,900	56,411.1
1,100	2,842.9	5,000	58,737.1
1,200	3,383.3	5,100	61,110.1
1,300	3,970.6	5,200	63,530.0
1,400	4,605.0	5,300	65,997.0
1,500	5,286.3	5,400	68,510.9
1,600	6,014.7	5,500	71,071.9
1,700	6,790.0	5,600	73,679.8
1,800	7,612.3	5,700	76,334.7
1,900	8,481.6	5,800	79,036.6
2,000	9,397.9	5,900	81,785.5
2,100	10,361.2	6,000	84,581.4
2,200	11,371.5	6,100	87,424.3
2,300	12,428.8	6,200	90,314.1
2,400	13,533.0	6,300	93,251.0
2,500	14,684.3	6,400	96,234.8
2,600	15,882.5	6,500	99,265.7
2,700	17,127.7	6,600	102,343.5
2,800	18,420.0	6,700	105,468.3
2,900	19,759.2	6,800	108,640.1
3,000	21,145.4	6,900	111,858.9
3,100	22,578.5	7,000	115,124.7
3,200	24,058.7	7,100	118,437.5
3,300	25,585.9	7,200	121,797.2
3,400	27,160.0	7,300	125,204.0
3,500	28,781.2	7,400	128,657.7
3,600	30,449.3	7,500	132,158.4
3,700	32,164.4	7,600	135,706.2
3,800	33,926.5	7,700	139,300.9
3,900	35,735.6	7,800	142,942.6

	PV=11.0 (3	,	· · · · · · · · · · · · · · · · · · ·
Distance	Charge Weight	Distance	Charge Weight
(feet)	(pounds)	(feet)	(pounds)
100	38.1	4,000	60,964.0
200	152.4	4,100	64,050.3
300	342.9	4,200	67,212.8
400	609.6	4,300	70,451.5
500	952.6	4,400	73,766.4
600	1,371.7	4,500	77,157.6
700	1,867.0	4,600	80,624.9
800	2,438.6	4,700	84,168.4
900	3,086.3	4,800	87,788.2
1,000	3,810.2	4,900	91,484.1
1,100	4,610.4	5,000	95,256.2
1,200	5,486.8	5,100	99,104.6
1,300	6,439.3	5,200	103,029.2
1,400	7,468.1	5,300	107,029.9
1,500	8,573.1	5,400	111,106.9
1,600	9,754.2	5,500	115,260.1
1,700	11,011.6	5,600	119,489.4
1,800	12,345.2	5,700	123,795.0
1,900	13,755.0	5,800	128,176.8
2,000	15,241.0	5,900	132,634.8
2,100	16,803.2	6,000	137,169.0
2,200	18,441.6	6,100	141,779.4
2,300	20,156.2	6,200	146,466.0
2,400	21,947.0	6,300	151,228.8
2,500	23,814.1	6,400	156,067.8
2,600	25,757.3	6,500	160,983.1
2,700	27,776.7	6,600	165,974.5
2,800	29,872.4	6,700	171,042.1
2,900	32,044.2	6,800	176,186.0
3,000	34,292.2	6,900	181,406.0
3,100	36,616.5	7,000	186,702.2
3,200	39,017.0	7,100	192,074.7
3,300	41,493.6	7,200	197,523.4
3,400	44,046.5	7,300	203,048.2
3,500	46,675.6	7,400	208,649.3
3,600	49,380.8	7,500	214,326.6
3,700	52,162.3	7,600	220,080.0
3,800	55,020.0	7,700	225,909.7
3,900	57,953.9	7,800	231,815.6

	PV=0.5	ips	
Distance	Charge Weight	Distance	Charge Weight
(feet)	(pounds)	(feet)	(pounds)
100	55.4	4,000	88,704.9
200	221.8	4,100	93,195.5
300	499.0	4,200	97,797.1
400	887.0	4,300	102,509.6
500	1,386.0	4,400	107,332.9
600	1,995.9	4,500	112,267.1
700	2,716.6	4,600	117,312.2
800	3,548.2	4,700	122,468.1
900	4,490.7	4,800	127,735.0
1,000	5,544.1	4,900	133,112.7
1,100	6,708.3	5,000	138,601.3
1,200	7,983.4	5,100	144,200.8
1,300	9,369.5	5,200	149,911.2
1,400	10,866.3	5,300	155,732.5
1,500	12,474.1	5,400	161,664.6
1,600	14,192.8	5,500	167,707.6
1,700	16,022.3	5,600	173,861.5
1,800	17,962.7	5,700	180,126.3
1,900	20,014.0	5,800	186,502.0
2,000	22,176.2	5,900	192,988.5
2,100	24,449.3	6,000	199,585.9
2,200	26,833.2	6,100	206,294.2
2,300	29,328.0	6,200	213,113.4
2,400	31,933.7	6,300	220,043.5
2,500	34,650.3	6,400	227,084.4
2,600	37,477.8	6,500	234,236.3
2,700	40,416.2	6,600	241,499.0
2,800	43,465.4	6,700	248,872.6
2,900	46,625.5	6,800	256,357.0
3,000	49,896.5	6,900	263,952.4
3,100	53,278.4	7,000	271,658.6
3,200	56,771.1	7,100	279,475.7
3,300	60,374.7	7,200	287,403.7
3,400	64,089.3	7,300	295,442.6
3,500	67,914.7	7,400	303,592.4
3,600	71,850.9	7,500	311,853.0
3,700	75,898.1	7,600	320,224.5
3,800	80,056.1	7,700	328,706.9
3,900	84,325.1	7,800	337,300.2

Particle Velocity (+95%) calculated from given distance and charge weight PV =11.0*(SD)^-1.19 Charge Weight = 50 pounds

Distance	PV	Distance	PV
(feet)	(inches/second)	(feet)	(inches/second)
100	0.470	4000	0.006
200	0.206	4100	0.006
300	0.127	4200	0.006
400	0.090	4300	0.005
500	0.069	4400	0.005
600	0.056	4500	0.005
700	0.046	4600	0.005
800	0.040	4700	0.005
900	0.034	4800	0.005
1000	0.030	4900	0.005
1100	0.027	5000	0.004
1200	0.024	5100	0.004
1300	0.022	5200	0.004
1400	0.020	5300	0.004
1500	0.019	5400	0.004
1600	0.017	5500	0.004
1700	0.016	5600	0.004
1800	0.015	5700	0.004
1900	0.014	5800	0.004
2000	0.013	5900	0.004
2100	0.013	6000	0.004
2200	0.012	6100	0.004
2300	0.011	6200	0.003
2400	0.011	6300	0.003
2500	0.010	6400	0.003
2600	0.010	6500	0.003
2700	0.009	6600	0.003
2800	0.009	6700	0.003
2900	0.009	6800	0.003
3000	0.008	6900	0.003
3100	0.008	7000	0.003
3200	0.008	7100	0.003
3300	0.007	7200	0.003
3400	0.007	7300	0.003
3500	0.007	7400	0.003
3600	0.007	7500	0.003
3700	0.006	7600	0.003
3800	0.006	7700	0.003
3900	0.006	7800	0.003
Particle Velocity (+95%) calculated from given distance and charge weight PV =11.0*(SD)^-1.19 Charge Weight = 100 pounds

Distance	PV		PV
Distance		Distance	
(feet)	(inches/second)	(feet)	(inches/second)
100	0.710	4000	0.009
200	0.311	4100	0.009
300	0.192	4200	0.008
400	0.136	4300	0.008
500	0.105	4400	0.008
600	0.084	4500	0.008
700	0.070	4600	0.007
800	0.060	4700	0.007
900	0.052	4800	0.007
1000	0.046	4900	0.007
1100	0.041	5000	0.007
1200	0.037	5100	0.007
1300	0.034	5200	0.006
1400	0.031	5300	0.006
1500	0.028	5400	0.006
1600	0.026	5500	0.006
1700	0.024	5600	0.006
1800	0.023	5700	0.006
1900	0.021	5800	0.006
2000	0.020	5900	0.006
2100	0.019	6000	0.005
2200	0.018	6100	0.005
2300	0.017	6200	0.005
2400	0.016	6300	0.005
2500	0.015	6400	0.005
2600	0.015	6500	0.005
2700	0.014	6600	0.005
2800	0.013	6700	0.005
2900	0.013	6800	0.005
3000	0.012	6900	0.005
3100	0.012	7000	0.005
3200	0.011	7100	0.004
3300	0.011	7200	0.004
3400	0.011	7300	0.004
3500	0.010	7400	0.004
3600	0.010	7500	0.004
3700	0.010	7600	0.004
3800	0.009	7700	0.004
3900	0.009	7800	0.004

Particle Velocity (+95%) calculated from given distance and charge weight PV =11.0*(SD)^-1.19 Charge Weight = 200 pounds

Distance DV Distance DV				
Distance	PV_	Distance	PV	
(feet)	(inches/second)	(feet)	(inches/second) 0.013	
100	1.073	4000		
200	0.470	4100	0.013	
300	0.290	4200	0.013	
400	0.206	4300	0.012	
500	0.158	4400	0.012	
600	0.127	4500	0.012	
700	0.106	4600		
800	0.090	4700	0.011	
900	0.079	4800	0.011	
1000	0.069	4900	0.010	
1100	0.062	5000	0.010	
1200	0.056	5100	0.010	
1300	0.051	5200	0.010	
1400	0.046	5300	0.010	
1500	0.043	5400	0.009	
1600	0.040	5500	0.009	
1700	0.037	5600	0.009	
1800	0.034	5700	0.009	
1900	0.032	5800	0.009	
2000	0.030	5900	0.008	
2100	0.029	6000	0.008	
2200	0.027	6100	0.008	
2300	0.026	6200	0.008	
2400	0.024	6300	0.008	
2500	0.023	6400 6500	0.008	
2600		6600		
2700	0.021	1	0.007	
2800	0.020	6700 6800	0.007	
2900 3000	0.020	6900	0.007	
3100	0.019	7000	0.007	
	0.018	7000	0.007	
3200	0.017	7100	0.007	
3300	<u> </u>	7200	0.007	
3400	0.016	7300	0.007	
3500	0.016	7400	0.006	
3600		7500	0.006	
3700	0.015			
3800	0.014	7700	0.006	
3900	0.014	7800	0.006	

Particle Velocity (+95%) calculated from given distance and charge weight PV =11.0*(SD)^-1.19 Charge Weight = 500 pounds

Distance	PV	Distance	PV		
(feet)	(inches/second)	(feet)	(inches/second)		
100	1.850	4000	0.023		
200	0.811	4100	0.022		
300	0.501	4200	0.022		
400	0.355	4300	0.021		
500	0.273	4400	0.020		
600	0.219	4500	0.020		
700	0.183	4600	0.019		
800	0.156	4700	0.019		
900	0.135	4800	0.018		
1000	0.119	4900	0.018		
1100	0.107	5000	0.018		
1200	0.096	5100	0.017		
1300	0.087	5200	0.017		
1400	0.080	5300	0.016		
1500	0.074	5400	0.016		
1600	0.068	5500	0.016		
1700	0.064	5600	0.015		
1800	0.059	5700	0.015		
1900	0.056	5800	0.015		
2000	0.052	5900	0.014		
2100	0.049	6000	0.014		
2200	0.047	6100	0.014		
2300	0.044	6200	0.014		
2400	0.042	6300	0.013		
2500	0.040	6400	0.013		
2600	0.038	6500	0.013		
2700	0.037	6600	0.013		
2800	0.035	6700	0.012		
2900	0.034	6800	0.012		
3000	0.032	6900	0.012		
3100	0.031	7000	0.012		
3200	0.030	7100	0.012		
3300	0.029	7200	0.011		
3400	0.028	7300	0.011		
3500	0.027	7400	0.011		
3600	0.026	7500	0.011		
3700	0.025	7600	0.011		
3800	0.024	7700	0.011		
3900	0.024	7800	0.010		

Appendix V

()

Seismograph Records

Construction Test Site

#	Distance (feet)	Charge Weight (pounds)	Particle Velocity (inches/second)	Hole #	Instrument #	Time
1	50	20	0.600	1	BC5536	9:16:22
2	100	20	0.130	1	BA5738	9:13:11
3	150	20	0.070	1	BA5552	9:17:28
4	200	20	0.103	1	3184	9:15:50
5	60	20	0.325	2	BC5536	9:36:28
6	110	20	0.065	2	BA5738	9:33:17
7	160	20	0.055	2	BA5552	9:37:34
8	210	20	0.063	2	3184	9:35:56
9	70	20	0.190	3	BC5536	9:46:51
10	120	20	0.070	3	BA5738	9:43:40
11	170	20	0.055	3	BA5552	9:47:57
12	220	20	0.070	3	3184	9:46:19
13	190	20	0.125	3	BC5534	9:43:02
14	80	20	0.160	4	BC5536	9:54:51
15	130	20	0.055	4	BA5738	9:51:40
16	180	20	0.050	4	BA5552	9:55:57
17	200	20	0.040	4	BC5534	9:55:24
18	230	20	0.053	4	3184	9:54:19
19	90	20	0.080	5	BC5536	10:01:04
20	140	20	0.500	5	BA5738	9:57
21	190	20	0.055	5	BA5552	10:02:10
22	210	20	0.045	5	BC5534	10:01:37
23	240	20	0.058	5	3184	10:00:32
24	100	20	0.100	6	BC5536	10:07:54
25	150	20	0.060	6	BA5738	10:04:44
26	200	20	0.050	6	BA5552	10:09:00
27	220	20	0.040	6	BC5534	10:08:28
28	250	20	0.043	6	3184	10:07:22
29	110	20	0.100	7	BC5536	10:19:37
	160	20	No Trigger<0.05	7	BA5738	
30	210	20	0.050	7	BA5552	10:12:57
31	230	20	0.040	7	BC5534	10:12:24
32	260	20	0.040	7	3184	10:11:19

Printed: October 30, 1997 (V 3.42 - 3.41)

Printed: October 30, 1997 (V 3.42 - 3.41)

Printed: October 21, 1997 (V 3.42 - 3.41)

SEISMOGRAPH ANALYSIS REPORT

EVENT WAVEFORMS

SERIAL NO. 3184 V2.4-MSV E18460EF.2EV CODE TIME & DATE TRIGGER SOURCE RECORD TIME Long. at 09:15:50 Oct 17, 1997 Geo 0.020 in/sec 2 sec LOCATION CLIENT USER NOTES SCALED DISTANCE N/A PEAK VECTOR SUM 0.114 in/sec at 75 ms MICROPHONE LINEAR WEIGHTING PK AIR ZC FREQ <100 dB(L) at -249 ms N/A TRAN VERT LONG PPV ZC FREQ 0.103 0.030 0.070 in/sec 39 39 47 Hz FFT FREQ N/A N/A N/A Hz TIME(REL.TO TRIG) ACCEL 1/4 WAVE DISP 75 0.08 39 31 ms 0.02 0.05 g in 0.0004 0.0003 0.0001 DYNAMIC GEO CAL Passed Passed INTERNAL MIC CHANNEL TEST: Failed Passed Freq = 0 Amp = 0BATTERY LEVEL 6.3 volts CALIBRATED ON Jun 23, 1997 by VIBRA-TECH

(N/A) - not applicable

Vibra-Tech THE VIBRATION MONITORING EXPERTS

Printed: October 30, 1997 (V 3.42 - 3.41)

Printed: October 21, 1997 (V 3.42 - 3.41)

SEISMOGRAPH ANALYSIS REPORT

EVENT WAVEFORMS RANSVERSE VERTICAL LONGITUDINAL MICROPHONE Т ПП 11111111111 111111111 11 0.0 0.0 0.0 0.0 ...MPLITUDE SCALE:GEO: 0.020 in/sec/div MIC: 1.0000 psi(L)/div TIME SCALE: 50 msec/div 2.344 sec/page TRIGGER = ---

SERIAL NO. 3184 V2.4-MSV CODE E1846OEF.ZWV TIME & DATE TRIGGER SOURCE RECORD TIME Long. at 09:35:56 Oct 17, 1997 Geo 0.020 in/sec 2 sec LOCATION CLIENT USER NOTES SCALED DISTANCE N/A PEAK VECTOR SUM 0.073 in/sec at 33 ms MICROPHONE LINEAR WEIGHTING PK AIR ZC FREQ <100 dB(L) at -249 ms N/A TRAN VERT LONG PPV ZC FREQ FFT FREQ 0.063 0.020 0.058 in/sec 47 39 43 Ηz N/A N/A N/A Hz TIME(REL.TO TRIG) 34 29 70 ms 0.05 ACCEL 1/4 WAVE DISP 0.02 0.04 g in 0.0002 0.0001 0.0002 DYNAMIC GEO CAL Passed Passed INTERNAL MIC CHANNEL TEST: Failed Passed Freq = 0Amp = 0BATTERY LEVEL 6.3 volts CALIBRATED ON Jun 23, 1997 by VIBRA-TECH (N/A) - not applicable USBM RI8507 AND OSMRE ANALYSIS ERROR INFORMATION OPERATION = OPENING S:\APPS\MULTV\WAVE\TEMP\E1846OEF.ZWV ERROR = FILE ACCESS DENIED

Printed: October 30, 1997 (V 3.42 - 3.41)

FACILI VENAL

Printed: October 30, 1997 (V 3.42 - 3.41)

LYON IVONOIL

Printed: October 30, 1997 (V 3.42 - 3.41)

SEISMOGRAPH ANALYSIS REPORT

Long. at 09:46:19 Oct 17, 1997 Geo 0.020 in/sec TIME & DATE TRIGGER SOURCE RECORD TIME 2 sec LOCATION CLIENT USER NOTES SCALED DISTANCE N/A PEAK VECTOR SUM 0.076 in/sec at 72 ms LINEAR WEIGHTING <100 dB(L) at -249 ms MICROPHONE PK AIR ZC FREQ N/A TRAN VERT LONG PPV ZC FREQ 0.060 0.023 0.070 in/sec 43 32 N/A 43 Hz FFT FREQ N/A N/A Hz TIME(REL.TO TRIG) 93 66 71 ms ACCEL 1/4 WAVE DISP 0.05 0.01 0.05 g in 0.0002 0.0001 0.0003 DYNAMIC GEO CAL Passed Passed INTERNAL MIC CHANNEL TEST: Failed Passed Freq = 0Amp = 0BATTERY LEVEL 6.3 volts CALIBRATED ON Jun 23, 1997 by VIBRA-TECH

3184

E1846OEG.H7V

V2.4-MSV

(N/A) - not applicable

USBM RI8507 AND OSMRE ANALYSIS ERROR INFORMATION OPERATION = OPENING S:\APPS\MULTV\WAVE\TEMP\E1846OEG.H7V ERROR = FILE ACCESS DENIED

N/A: Not Applicable

Monitor Log

Oct 16 /97 09:43:02 Oct 16 /97 09:43:14 Event recorded. (Keyboard Exit)

Printed: October 16, 1997 (V 3.11 - 3.11)

Format Copyrighted 1996

суент керон

суещ керогі

Printed: October 30, 1997 (V 3.42 - 3.41)

Printed: October 30, 1997 (V 3.42 - 3.41)

Printed: October 16, 1997 (V 3.11 - 3.11)

Format Copyrighted 1996

Event Report

SEISMOGRAPH ANALYSIS REPORT

Printed: October 30, 1997 (V 3.42 - 3.41)

Printed: October 30, 1997 (V 3.42 - 3.41)

2

2

PPV	1.14	0.762	1.02	mm/s
ZC Freq	19	21	20	Hz
Time (Rel. to Trig)	0.074	0.057	0.000	sec
Peak Acceleration	0.0265	0.0265	0.0265	g
Peak Displacement	0.337	0.317	0.0451	mm
Sensorcheck ™	Passed	Passed	Passed	

1 < 1 eak Vector Sum 1.30 mm/s at 0.070 sec

Frequency (Hz) Tran: + Vert: x Long: ø

10

20

50

100 >

Trigger = _____

Printed: October 16, 1997 (V 3.11 - 3.11)

Format Copyrighted 1996

SEISMOGRAPH ANALYSIS REPORT

EVENT WAVEFORMS RANSVERSE LONGITUDINAL MICROPHONE VERTICAL SERIAL NO. 3184 V2.4-MSV CODE E1846OEH.4WV TIME & DATE Long. at 10:00:32 Oct 17, 1997 Geo 0.020 in/sec TRIGGER SOURCE RECORD TIME 2 sec LOCATION CLIENT NOTES SCALED DISTANCE N/A PEAK VECTOR SUM 0.062 in/sec at 94 ms MICROPHONE LINEAR WEIGHTING PK AIR ZC FREQ <100 dB(L) at -249 ms N/A TRAN VERT LONG PPV 0.058 0.028 0.048 in/sec ZC FREQ FFT FREQ 39 32 Hz 51 N/A N/A N/A Hz TIME(REL.TO TRIG) 95 62 0.04 69 ms ACCEL 1/4 WAVE DISP 0.04 0.01 g in 0.0002 0.0001 0.0002 DYNAMIC GEO CAL Passed Passed INTERNAL MIC CHANNEL TEST: Failed Passed Freq = 0Amp = 0BATTERY LEVEL 6.3 volts CALIBRATED ON Jun 23, 1997 by VIBRA-TECH (N/A) - not applicable USBM RI8507 AND OSMRE ANALYSIS ERROR INFORMATION OPERATION = OPENING S:\APPS\MULTV\WAVE\TEMP\E1846OEH.4WV ERROR = FILE ACCESS DENIED 1.1 1111111111 0.0 0.0 0.0 0.0 Vibra-Tech AMPLITUDE SCALE:GEO: 0.020 in/sec/div MIC: 1.0000 psi(L)/div THE VIBRATION MONITORING EXPERTS TIME SCALE: 50 msec/div 2.344 sec/page TRIGGER = --

Printed: October 30, 1997 (V 3.42 - 3.41)

Printed: October 30, 1997 (V 3.42 - 3.41)

Printed: October 30, 1997 (V 3.42 - 3.41)

Time Scale: 0.20 sec/div Amplitude Scale: Geo: 2.00 mm/s/div Mic: 10.00 pa.(L)/div Trigger = ______

Printed: October 16, 1997 (V 3.11 - 3.11)

Format Copyrighted 1996

Event Report

SEISMOGRAPH ANALYSIS REPORT

EVENT WAVEFORMS ANSVERSE VERTICAL LONGITUDINAL MICROPHONE ПТ TIT SERIAL NO. CODE TIME & DATE TRIGGER SOURCE RECORD TIME LOCATION CLIENT USER NOTES SCALED DISTANCE PEAK VECTOR SUM MICROPHONE PK AIR ZC FREQ PPV ZC FREQ FFT FREQ TIME(REL.TO TRIG) ACCEL 1/4 WAVE DISP DYNAMIC GEO CAL Passed Passed Passed INTERNAL MIC CHANNEL TEST: Failed Freq = 0 Amp = 0 BATTERY LEVEL CALIBRATED ON Jun 23, 1997 by VIBRA-TECH (N/A) - not applicable 11 1111111 0.0 0.0 0.0 0.0 AMPLITUDE SCALE:GEO: 0.010 in/sec/div MIC: 1.0000 psi(L)/div TIME SCALE: 50 msec/div 2.344 sec/page TRIGGER = ---

USBM RI8507 AND OSMRE ANALYSIS ERROR INFORMATION OPERATION = OPENING S:\APPS\MULTV\WAVE\TEMP\E1846OEH.GAV ERROR = FILE ACCESS DENIED

3184

2 sec

N/A

TRAN

0.043

37

94

0.03

0.0002

6.3 volts

N/A

0.051 in/sec at 94 ms

LINEAR WEIGHTING

<100 dB(L) at -249 ms N/A

VERT

0.025

32

70

0.01

0.0001

N/A

LONG

0.040

47

62

0.03

0.0001

N/A

in/sec

Hz

Hz

ms

g in

E1846OEH.GAV

V2.4-MSV

Long. at 10:07:22 Oct 17, 1997 Geo 0.020 in/sec

'ibra-Tech THE VIBRATION MONITORING EXPERTS

12

Printed: October 30, 1997 (V 3.42 - 3.41)

Printed: October 30, 1997 (V 3.42 - 3.41)

Printed: October 16, 1997 (V 3.11 - 3.11)

Format Copyrighted 1996

SEISMOGRAPH ANALYSIS REPORT

EVENT WAVEFORMS

TIME SCALE: 50 msec/div 2.344 sec/page TRIGGER = ---

Long. at 10:11:19 Oct 17, 1997 Geo 0.020 in/sec 2 sec SCALED DISTANCE N/A PEAK VECTOR SUM 0.051 in/sec at 52 ms LINEAR WEIGHTING <100 dB(L) at -249 ms N/A TRAN VERT LONG 0.040 0.020 0.040 in/sec 43 32 57 Hz N/A N/A N/A Hz 52 29 21 шs 0.01 0.03 0.03 g in 0.0001 0.0001 0.0001 DYNAMIC GEO CAL Passed Passed INTERNAL MIC CHANNEL TEST: Failed Passed Freq = 0Amp = 06.3 volts CALIBRATED ON Jun 23, 1997 by VIBRA-TECH

3184 V2.4-MSV E1846OEH.MVV

(N/A) - not applicable

USBM RI8507 AND OSMRE ANALYSIS ERROR INFORMATION OPERATION = OPENING S:\APPS\MULTV\WAVE\TEMP\E18460EH.MVV ERROR = FILE ACCESS DENIED

> Vibra-Tech THE VIBRATION MONITORING EXPERTS