Laserfiche WebLink
<br />i <br />;:.. ;.v.aes-ss2 <br /> <br />s G ~n,ere~r+, r .. sC-:,,w; ' ~. - - ^. ^CC' of CiAV Snp~ <br />assn-..;. ;,. U. iJr: GOILns, Ui,.~ ,Pd3; '/~, .. ,p i 1-d8. <br />(21 Duoooroll, Peter, Tozlcity to Fish of CyenYfes end Rehtee CDm• <br />Do'JeC9. A P.nvie'n~. EPA~4aa /'_~90J 7, 1978. <br />13) riYPnltleS In Water. I9d7 Ann,:a( goat o/ ASTM S»ndarW, A$TM: <br />Phila0010h1a, PA, 1997; Vol. 7 t.i. x•2036-82. 01282-83. pp 119-t29. <br />(4) OWIi)y Cnferle lav Warsr r8a91C+ora 8nok 1: U.S. EPA O111De D1 Water <br />R(Ipl,at%J ~s ectl S'9rtlartlS: Ylashnplon, D.C.. 1886: EPA-440!5-86. <br />001. <br />161 Tereeenkar. Pfll; 45has, t3enpuly; DNpa, S, Malty. Anal. Glam. <br />1989, 9d, 1584-1588. _ <br />(8) RaY• Rem @. Am, Leb. 1989, TD, 104-112. <br />(71 Sekerka, 1.: Lochner, J. F, WAter Arra, 7979. 10. 179-489. <br />I9) Ponbnol. Chrletel. S. Alt. J. Chem. 1984. 77. 133-137. <br />(BI Nonomura, MekOto. Anal. Chem, 1e67, Sp. ?073-2078. <br />(101 Pohlantlt ChrL!el S Ak. J. 6.nam„ 1985. ?d, :10-"~ <br />(tt7 JunpreiS, E. (srnnl ,; ,-ate. ~ e9 7.553-Se+ <br />(121 Jungrel9, ENIn; Am, Fanny, A r. coon. acre x971. do, t8r-ro?. <br />113) L30ugen, D. Peter; Arpnan, gatlar: Brook sb8nk, Polar, A29I. Chem. <br />1973, 59, 1845-1819. <br />114) Kelatla, P. Nablh. /. Warsr POlWr, Confrd FeC. 19x9. 61, 358-358. <br />(16) Plhler, B.; K0719. L. AnA/. Grim, Aeta 1990. 8d. 781-?81. <br />(18) Zald, S. A,; Carey, J• Cyenkle ~rrd the Envhonmenr-Procee0:nps of <br />a Cpnlerence; Beolechnlul Englnearln9 Proprem, Dept, 01 CwN EnpL <br />nearkp, CSIh Fort Calllne. CO. 1985: V01, 2, pp 383-377. <br />(17) O11no, S. Bue. Chem- Soc. JRn. 1987, 40, 1765-1175. <br />(19) Mlriatt. J. L. GyenMe arq rho EnMronmenr-Procoodlnpa a/ a Confer- <br />ence; CkaleGhnlCal Enginaerlnp Prrgrem, DODi. 01 Clvii Enpinoering. <br />CSU: Fort CoIW1a, CO, 1995; Vol. 1, pp 85-81. <br />RecervEn fnr review August 10, 1990. Accopred .January 4. <br />1981. <br />Kinetic Titration Method To Determine the Excited-State <br />Concentration of a Photochemical Sensitizer <br />I'. E. Poston and J. M. $errie' <br />Department of Chemistry, University a( Utah, Salt Lake City, Utah 84112 <br /> <br />A noncomperatlve method to determine the excltad-trlplel- <br />stata concentrallon of a photosenaltlcer fa described. TM <br />method le based on the klnatlcs o} reactbn or quenching of <br />the exched slate end avolda many o} the Umhatlana of eurraM <br />techniques. Since the Illellmes of excltad lrlplat etalas of <br />molecules In fluid aolullon era generally mlcroaeeonds ar <br />longer, a dlMuslon-controlled quanchar In less than ml8lmaler <br />concentrations can elgnlllcanlly Inlluenee the decay rats of <br />the trljNet poputatlon. II Lhls small concentrellon of quencher <br />la comparable to the Inltlal conoantratlon of excltad states, <br />Then the klnatlca of Cho frlplsl-stela decay are na Wngar <br />pseudo flrat order. Tlrls klnstlc behavior k exploited to pro- <br />vlde a atmple, nonCOmperetlve tRrallon method for dstsrmlNrp <br />exclted•trlplel-state concentrations. The rata conatanl for <br />quenching need not be known In advance, and any method <br />of monltoring the quenching klnellu can be used. The <br />-echnlque Is evalualad In the present study la delermlltlrtg the <br />excltad-lrlplat-slate concentration of ben:ophsnone by <br />measuring the decay klnellcs o} phasphareaeence qusnehed <br />by blacalyl. <br />In order to accurately determine the quantum yields of <br />phatoinitialed ronCtions or meter properties of excited stales, <br />it i5 necesssry W know the concentration of phoWexcited <br />molecules. Concentrations of excited states can be estimated <br />from the absurptintt doss section. excited state lifetime, and <br />gmuud-slate concentration oC a apecias together wile the <br />excitation c,ptii~nl power, beam spot size, end autos cluratinn. <br />These escirnates can he inaccurate, however, due to spatial <br />inhomogeneily of the excitation beset or deplelier. -r t'::' <br />gruund•scat.e population, neither oC which are ee_+;; •.::;a:r. <br />teri2ed. llelenniuing excitad•lriplet•stote cunrr::r. ~. ,. ~~ . <br />particularly diffmult, because yields of inter=gater~ ..: ~~.- r. <br />ate gear:rally not kuuwn with accuracy. <br />Techulyurs fnr Ohtsmiug antcentratim:. <br />tivities. nr quantun yields of fnrmatmn :,f :, :: ., . <br />I'sIl generally into two classes, u~mpnrati',, ..... <br />rativo methods. Comparative metlhods w estimate triplePatate <br />molar absorj>tivities (1) are typically based on triplet-triplet <br />energy teanafcr from a stsndard excited triplet donor; the <br />decreosa ire the optical absorption by the donor (having e <br />Itnown Tt -1'n absorptivity) is Correlated with the increase <br />in absorption by the acceptoriq obtain the acceptor motor <br />absorptivity (2)- The method asaUmee that all of the at:etrpt.or <br />population arier9 from energy Lrnhsfer from the donor, which <br />may ba dlf(icult to assure. Unceftaintics also arise from the <br />molar absorptivity of the donor of iLg photoproducl and from <br />any yield of donor (dhoWprnduct that ie not quenched by the <br />acceptor (1). $y use of the values of T••T molar absorptivity <br />thus obtained, comparative methods cart also be used to de- <br />termine intersystem crossing yields (3). Hero, the triplet <br />concentration oC Lhe unknown is Cstimatod from its'1='T ab• <br />sorption and compared to that of a Standard b9ving known <br />triplet yield a»d absorptivity. For the results tp be valid, the <br />triplet states must not absorb thk exciting light (4) and dc- <br />pletion of the ground state must ho negligible (5). <br />Tn ovoid some of the uncertnlrlties and assumptions of <br />comparative motho<ls, noncompt}rative methods fot deter- <br />mining triplet•atale populations etYd molar ab9orptivitiea have <br />been davaloped (6). These methods do not rely on intermo- <br />lecular intamctions such as allergy jransfcr nor do they require <br />knowledge of the molar absorptivity or triplet yield of a <br />standazd. For example, triplet•stato concentrations attd molar <br />absorpi.ivities con be determined Eby direct photolysis of an <br />unknown while simultaneously trloosuring the triplot•state <br />ab9urptinn and the loss of ground-ptate absorption- In order <br />to obtain excited•statr cunrentratiuns, Cho method requires <br />either a spectrsl region whore ihe.ground state absorbs free <br />of nnv triplet-state absorption qr an isnheFtlC Auint where the <br />;tc„rpti~'ilirs ~tf 5',e ground mrri excited states ore equal <br />t: ,. ~ t .ar nonuomparative methods are hosed i,tt the pho• <br />:: .;nto-~tc=_ tr.r .ascot+.~ t•~.Crted triplet states (G, H). <br />- - - :: f!:at :..:;..r -~mii-~ trio? knowledge of the triplet <br />.- ~ ~ .. ~~•.I ri;her nn flee intensi c; <br />.. . _..-`I ~:~n pulsrc roar are innget <br />__ ... ..,:t~~ .'~:..; ..n the lime dependence of <br />' •~ :~ _ , ,i;~ppod [mttiuuous excitation <br />