--~'- - - -- ~ --- :~.}:, ;EAU .- '-1~ c~','. P1,~ ~l r,
<br />. = ~m. :hem 1381, 53. 832-u;3 •
<br />~_ . ~:2.,~, . R., ~: Pill
<br />t 1) ,;yrk. L. C. In S.E >ansors: funGemenra/s an0 Applkaaons; Turner,
<br />A. P. F.. Naruba, L. WI!lOn, G. 6.. Eos.; Osfom llnNareny Raga; New
<br />i orK. 1987; CNOter 1.
<br />r1) Clerk, L. C.; LYOne, C. Ann. N. Y. AGO. Stl. 1992, 102. 29-45.
<br />(~! Jcnsscn, G.; Gorton, L. Anal. Len. 5997, 20, 839-866.
<br />(d) Helder, G. H : 6esso.:. V.; Huen9. K.-m.; Vacynyoh, A. M.; WNCk, H.
<br />J. Anal. Chem. 1899. e2. 1 :08-1110.
<br />(61 Ceres. A. E. 0.; Devl^, G.; Franca. 0. D.: HiO. H. A. 0.; Arton, W. J.;
<br />Hlpplna. 1. J.; Plotkin. E. V.; $COtt. L. D. L.: Tumor, A. P. F. Ana/,
<br />Chem, 1984, 58, 887-871,
<br />(el Lanpe, M. A.; Chambare, J. O. Anal. Chan. ACM 1995. 175, 80-07,
<br />(7) Iwakure. D.; Kepya, Y.; Yoneyama, H. J. Grin. Sot„ Chem. Com-
<br />mw. 1998, 1019-1020.
<br />(81 JCneeon, 0.; Owtan, L.; Patterson, L. F/ecmxneysla 1999, /, 49-55.
<br />(91 Ikeaa. T', Haman, H.; 8e++0a, M. Aprk. Bid. Chem, 1988. 50,
<br />889-B8C.
<br />(101 Ikeoe, T; SNbete. T.; $enne, S. J. ElacrnAlnal. Chem. 1989. 181.
<br />36t-382.
<br />1171 Kulys, J. J.: ~8na^, N. K. BlCrJilm. 8gphys. Ac1a 1983, rH, 67-05.
<br />(121 Kulye, J. J.; Setnatlua. A. $.: $vkmIlN,Bt, G..1. 6. FEBS Len. 1988,
<br />7-10.
<br />(131 Kuyt, J. J. Bklen9P'J 1988. 2, 3-13.
<br />(ld) Albery, W. J: Banlen, P. N.; Creston, D. H, J. ElachpeGl. Clrerri.
<br />1988, lBt, 223-235.
<br />(161 McKenna, K.; draper-Toth. A. AIMI. Chain. 1997, 88. 86+-988.
<br />(191 Haler. P. D.; wghrman. R. M. era. Crysr, lJO. Cry^r. 1999, loo,
<br />2e9-z7s,
<br />(17) Hale, P. 0.: Skoa+elm, T. A. Synth. Abr. 1919, P8, 853-858,
<br />(181 Depenl, V.; Heller. A. J. Pnye. Chem. 1987, 91. 7285-1289.
<br />(19` O-~anl, Y ; H911ar, .L J. Tm. Cq?m 8K 1969 :.., _5 •5_ %.??p
<br />(201 4q;lor. :. ACC Chain ,7n9. 19JC. :: ~ '-rat
<br />(211 fouks. N. G.; Lower, C. R. Anal, Gnvm, 1LJa, Su. ?~; ~-2•• 3.
<br />1221 Dep^nl. V.; Heller. A. J. Am. Cllem. SCC. 1808, l; 7, 236:-27.3.
<br />(231 CreB9• B. A.; Heller, A. Anal. Chym. 1900, 62, 258-2a3.
<br />(24) PlyJCO. M. V.: Katekfa. 1 ; Llnaoulsl, 5.42.; Yo. L.: Creep, B. A.; Haller.
<br />A. Artpsw. Grin., lnl. E0. Enp!'. 1990, 29, 82-84.
<br />(25) Hale, P, D.; Inepakl, T.; IUran, H. t., Okambty. Y,; 9kott1ekrl, T. J.
<br />Am. G/Om, SOC. 1990, 171, 3482-3484.
<br />(28) Inap^kl, T.; Lee. H. S.; H91a. P. D.: Skolhelm, T. A.; qurtgto. V.
<br />a19aNn0letules 1999. 22, 4041-4943.
<br />(271 IlNpekl, T.; Lee. H. S.; $kothekn, T. A.; Okamow, Y. J. GhBrn. SCC.,
<br />Chem. (•i0mmlpr. 1999, 1187-1183.
<br />l28) Hala, P. D.; lna9akl, T.; Lee. H. $.: Koren, K 1.; Okamoto, Y,; $ko•
<br />thelm, T, A. Mal. Chlm. Acu 1990, 528, 31-37.
<br />(29) (sorton, L.: Karon. H, I :Hale, P, D.; Inapekl, T.; Okamoto, Y.; Sko•
<br />Ihalm, T. A. Anal. ChYn. ACM 1990. 128, 23x0.
<br />(301 Anoerwn, R.; Arkys. B.; Lesson, Q L SYkm Carporrde Ravbw and
<br />Repisrer, Perarch Systsme: BrialoL PA. 1997; p 25D.
<br />(311 Wenp, J.; Wu, L: H.; Lu. Z.: D, R.; $anchei, J. AM/. Gtsf1. ACM
<br />1990, 119, 291-257.
<br />(32) Crtemoers, J• A.: Wa4on, H. J. J. EMeea^ne/. Chem. 1999, 250,
<br />417-025.
<br />(33) KemM, R. A.; Wilson, G. S. Ma/. (Chem. 1990, S5, 1198-1205.
<br />(341 Harrl9on, D. J.; Turner, R. F. 8.; 8e^, H. P. Anal. Grin. 1999. So,
<br />20D2-2007.
<br />RECE1v1iD for review August 13, 1990. Accepted January 2,
<br />1991. This work wag supported iby the U.S. Department of
<br />Energy, lliviaion of Materials Scikllce, Office of AasiC Energy
<br />Science (DE•AC02-76C1i00016).
<br />Trace Determination and Speciation of Cyanide tan by Atomic
<br />Absorption Spectroscopy ,
<br />Jeffrey J. Roeontreter••t and Rodney K. Skogorboe
<br />Chemistry Department, Colorado State University, Fort Collins, Colorado 80523
<br />By utl9:lnp a high aelectlva reaction fwtween Wver metal and
<br />cyanide Iona, an apparatus and procedure for the analytical
<br />determinatlon of aqueous cyanlda apaeiea hero boon dsrsl-
<br />oped. The rapid enelyala of free cyanide has bean aehlavsd
<br />tluough the use o1 pure illver flNers as the rsaetlon medium
<br />anA atomic pbsorpllon epadrowpy as the dslsellon method.
<br />This methodology bee stowed for the quantltatlra dateotlon
<br />of cyanide lone down to the sub-patYS•par•bllllon tarot. By
<br />Incorporatlnp selective oxtdatlon, kinetic aqulllbHa, and pho-
<br />todlssoelatton teehnlques, rho silver-eyenlge reatltlon tech-
<br />nique has bean adapted to provide a mesrre of cata{)orlcalty
<br />epeclallnq aquaoua cyanide compounds. The complete aye
<br />tam has been shown to De free from common ehemlcal In•
<br />tarlerences, Including lhlocyanale. Thla detecflon system
<br />provldas hleh•apeed cyanlda delarminatlona with little 1o no
<br />sample preparallon or Instrument 9uparvlslon.
<br />INTRODUCTION
<br />Cyanidee are used and produced is ::.a,::: indr.~c:,'. ,:n,-
<br />Ccases and can he found in the rfauen:F „i mminq r,n. rH~ i~~n:.
<br />roctal plating ahnp8, and steel m~i'- -,~ - - -
<br />hy far the largest con6umer of C:•nr'
<br />t?O r><7!) tuns of sodium cya;lid= ; -: -
<br />~!, 'Yrosent address: (:hemislr; L'er..:
<br />Poratellu. ID 83.09.
<br />~~
<br />ueo and produce mainly inorgatl cyanide compounds, in-
<br />ciudingionic and moleculartyani~o and metal cyanide com-
<br />plexes of varying stability. The ve~iuus forma of cyanide have
<br />profoundly differing toxicological effocte (2). A5 a result, it
<br />is important to bo able to differen~iats between these various
<br />Forma of cyanide.
<br />Must cyanide determillationp, including the ASTM
<br />Standard Methods (3), consist of p preparative and a deter-
<br />mination step. Tha primary object(1•es of the preparative step
<br />include the removal of interferengea and lire differentiation
<br />of cyanide species. Generally, at1 ~cid distillation is used la
<br />fulfill both objectives. Species dit(erentintion is achieved by
<br />varying the distillation conditions. ''tt~'hhe various cyanide species
<br />can bo grouped wdthin widely used end accepted cla4sifieations
<br />(3). The first classification ie for free or available cyanide,
<br />refersillg to species that may exist updor normal environmenml
<br />conditions, as the moloculat acid HCN) or the cyanide ion
<br />(CNy. A second category consi6ts r metal cyanide complexes.
<br />Thi9 cate;or: i further subditlded (nw strong and weak metal
<br />complexes. U: this paper, the eltonp~ complexes will be referred
<br />toss ccan;;e3 sot ,nncnable to ch[prinatiun (CNATC). This
<br />imp~,rtant. class includes cyanides that arc nut affected by
<br />c:..er r:o=,~, c:nrrr puriticatinn. Strong (CNATC) and weak
<br />'::ec.i! •:•anidea :;rn roughly divided by their formation ttm-
<br />. ~: - ~ ~:ecing a Pi~~ uC aPProximsteic 30 or
<br />..-..::.d most wirlai_v used, class is tiu ~r,au
<br />. r..__ -...__..._'r:on, which ie the sum total of the carious
<br />%:es ~._. shown by ey 1. This ie Che cyanide etas-
<br />LLC3-. ,'~^, a ....,_ .. c,. __.__. ~ ~, 1'Jkl AmetlC9a Chnmiral Gnfbly
<br />
|