Laserfiche WebLink
<br />Fg. 3 <br />Vertical stress ~ - . <br />• = _ <br />a <br /> <br />I E -39K+G f1) <br /> <br /> R'= 1.34x7010 (dP~a ~ '- .. .. (3)', <br /> <br /> R,-K <br />a <br />(6) <br /> tang <br />IOCIty a. =tan P .. - I6) <br /> Nom enclature . - <br />~ <br />~ <br />~ <br />~ <br />lsured , .. <br />. <br />,, <br />~. ~ <br />~ ~ <br />. a = Ploned vertical stress Irom o=0 psi to the Intersection of the , <br />wave horizontal axis antl either the Straight-line Mohr-Coulomb ' <br />'ferent '. .strength plot or the G plot, psi <br />wide ~ E <br />~ = Younq's modulus, psi ~ ~ -' <br /> <br />'65e5.r G <br />•~ K =Shear modulus, psi <br />=Bulk modulus, psi ~ ~ . <br />~ <br />.vas to R =Combined dynamic modulus, psi , . <br />. ~ - <br />~ <br />~ <br />~ <br /> .Po' ~ =Combined dynamic modulus at o=0, psi : ~ <br />' <br />, ~ <br />acou5- R, . =Combined dynamic modulus at terminal stress, psi ~~ ~ -' <br />~ dafa = ~ P <br />' =_Ar51e o! the straight-line MohrCoulomb strengN plot, psi ::.,.; <br />' <br /> <br />Jty of ; dt,,,, compressional acoustic wave <br />_= The average navel lime of a <br />l <br />~ "' <br />' <br />~' <br />~ ~ ~ <br />'-~ <br />~~' <br /> ~ .. through limestone (47.5 µserJ <br />t) <br />~ <br />~ <br />. <br />. <br />~ <br />by a .; <br />~tl:.. ~=The average crave( time al a compressional acoustic wave ~; <br />' <br />' <br /> _ - .r <br />~. Ihrauggh bdne (189 pseUlt) ._~ ., .. 's~-. <br />>' <br />~ <br />• <br /> .~~'dlr' ='Travel time at a compressional <br />9cou5tic wdve through lime-;=- <br />hme- , ~ alone al terminal stress, lueUlt ~,'+::~ . `~,:y-`~. ~.: ~:. l~r~ 'r~ <".~ <br />vhich -':$e :=.POrosiry fraction:,t :...............t;:=.~:i=.;::~;+---'~' <br />"` <br />`F' <br />~ <br />~ <br />r" <br />•: .. , <br />:urate .p ;. <br />.~ c:: • <br />` <br />1 . . <br />. =. Bulk densi c"-~ .i._; . <br />,; <br />-: <br />tY.glu:::F <br />Veniwl sVess, Psl •-~5+`~:''~3_;,~;i,:&;~~?,::: <br />.iciest ? o,"' ~= Terminal (vemcal) stress, Psi ~.'; <br />, _: r^f"!;`;, ~°=-: :`" +' <br />= <br />' <br />rock ~ ..r ~. <br />:; , <br />=Shear stress, PSI-'..'-." ..: ,. ,, :.~,, .,'_' <br />'-~'.! <br />= <br /> <br />I ;TO . <br />% <br />~ , =Shear strength of the Mohr-Coulomb sVehgth plot at a <br />0, psi .;; <br />i <br />h4li <br />t <br />re <br />s :~: <br />~ ;. = <br />~ <br />~ <br />•° <br />A <br />l <br />f <br />h <br />V <br />R <br />d <br />l <br />: <br />r-con- ::$.~: g <br />, <br />, <br />,. <br />; <br />. <br />ng <br />e o <br />e s <br />a <br />ne <br />vs. o p <br />o <br />eg <br />e <br />t <br />: = <br />: <br />;ailed <br />g <br />i <br />rriti tl relatively rapid rise in velod- level velocity values are ter- <br /> ry val ues tt'ith increasing mina) velocities, and the <br />Rg 2 tr str s value where the level <br />s ess. <br />The velocity values be- <br />come level at high stresses <br />for the stronger rock. The <br />es <br />velocity values begin is the <br />terminal stress. <br />Because high stress levels <br />,. ;7,000 - - att.:.:' <br />`:+~c;;: <br />-, 6,OOD _ <br />I :. <br />- - ~ ~~6.000 - <br />V ° 4,000 <br />a <br />rn '3.000 ;~::ti <br />' 2,000 <br />X1,000 - <br />~ , <br />Fiq. 4 <br /> ~~: ' (: <' ,~~. ~_::: TartP~hrom_ the Mohr-Coulomb ~strenglh Ploq r -~ <br /> 'Oecreosrs wilA incrtuinp rpck slrenplA ~ ~' - ~ ~ ~ -~•^~ ~ - "per <br />were required to close flaws used for a series of tests in <br />or fractures in the samples «~hich vertical stress 1. as in- <br />fested, an approximate safe creased until the rock sam- <br />level of 6,000 psi was used. pies failed. Each test was <br />Terminal velodty was not conducted at a different lev- <br />reached in triable material el of lateral stress. <br />because the rock grains In Fig. ?, the slope of the <br />crushed when stress leas in- straight line portion of each <br />creased.' test plot is defined as the <br />YVzll log data were used to modulus for that lateral <br />calculate the terminal stress stress condition. <br />Eor a friable sand= That anal- Dobrin reported that an- <br />ysis indicated that a theoreli- other way to calculate mod- <br />cal stress of 6,300 psi was ulus values is with acoustical <br />required to reach terminal ~+'ave velocity data. There is <br />velodty and to apply the a relationship between <br />time-average equation to cal- acoustical wave velodty and <br />enlace a valid porosity vat- slope of the straight-line <br />ue.r ~ portion in a plot of snength <br /> test data. <br />Velocity plots <br />The original velodty plots <br />may reflect the matrix prop- <br />erties of the rock samples <br />and not the Flaws or frac- <br />tures.' <br />The following model de- <br />scription may explain these <br />results, which are based on <br />rock behavior in a series of <br />failure tests. .. - <br />7riaxia] equipment :was <br />Table 1 <br />:..~ . ;.- <br />~ _:;,~...,.... :. :.. ;. ., <br />4+-`.Mohr-Cori <br />°% <br />'Sample.~~~~ <br />'. '~, '~ ': Porosity ~~ <br />~ <br />^ -. <br />~~Bulk denslry,'~~~: <br />~: r-c <br />: <br />[j <br />~ <br />, <br />":~ no. '~.+;;~. :. <br />... t <br />=fraction. ":' ~ , <br />. <br />., <br />:~ 2 g/cc ~ .... .: :: :.:.::.. •.~. <br />: an <br />..1 s.. .~.:.. <br />~ ..:,:~. ::: ;::`0.034.: ~ .. 2.71 .. ~~~~. ~.{:-~ :: 7.6: <br />~ <br />_.:~2 . - :.:0.139` ~ <br />~.. ~,~..-' <br />.2.43; ` <br />-'1.1,; <br />' <br />: <br />3 ... <br />' °.0.054 <br />• <br />: _ <br />. <br />~ 2.60 ,..,.. <br />,; ;; 1.5:,; <br />.: a .. .: :. <br />::::: o.oa7 -... .- .~. , 0.7 , <br />2.66 <br />.:' 6 .' `., `. : :': ,' :.:~.-:,`0.039 ~~ . <br />~..' 2.73 . ;... i. ;a.: .>.`?::. 1.7_.p <br />'Cab°laled Irom aCOUSOraI wave velocity Eata al a bw atresa level'. ~?::': . <br />~.I <br />3,1972 Dec. 28. 1992.OJ8Gps Journal <br />9T <br />i <br />ind <br />las, <br />to <br />rg. <br />ew <br />lne5 <br />Cn- <br />e <br />6. <br />ion <br />~le <br />ell <br />u- <br />Ta~ <br />~F <br />am <br />Jo. <br />T. <br />yin <br />sti- <br />r.I <br />1 <br />ed <br />,lt• <br />- tr, <br />Ir- <br />:: h, <br />es <br /> <br />Table 2 <br />