Laserfiche WebLink
SCHNABEL ENGINEERING <br /> BY...RLC....DATE...........3/15/22....... SHEET NO...........OF............ <br /> CHECKED BY...CMG....DATE............ JOB NO.................................. <br /> SUBJECT......TIMES MINE BULKHEAD............................................................................................................................................... <br /> CALCULATION - CONCRETE DEEP BEAM DESIGN <br /> Verify Deep Beam: wb/Lt<4 Lb =0.6 <br /> t <br /> F ' <br /> Uniform Static Fluid Load on f'S:= 5 =8998.1 Psf <br /> Face (f's) (hb-wb) <br /> ' w z <br /> Maximum Nominal Bending M71:= f S• b •ft=28119 ft•lbf <br /> Moment (Mn) 8 <br /> M <br /> Factored Nominal Bending M',�:='° =43260 ft•lbf <br /> Moment (M'u) opc <br /> Concrete Flexural (tensile) f,1:=3• f,•Psi 2 =164.3 psi <br /> Design Stress (fcl) <br /> �6•n1 <br /> Plain Concrete Beam LSt:= � =1.5 ft <br /> Bulkhead Length (Lst) b• (ft <br /> Considering Water Hammer(based on Lang 1999) <br /> Factored Earthquake Load on Face (U'a) U'a:=Fs'+P'H=350023.9 lbf <br /> U' <br /> Uniform Static Fluid Load on Face (u's) U/S:= (( a ll =11667.5 psf <br /> \hb•wb/ <br /> Maximum Nominal Bending Moment (Mnwh) MnWH'— 8`u s•wbZ •ft=36460.8 ft•lbf <br /> M <br /> Factored Nominal Bending Moment (M'uwh) M'714-H:= ,�u H =56093.6 ft•lbf <br /> /opc <br /> Plain Concrete Beam Bulkhead Length LstwW= (6•M,,,wH) =1.7 ft <br /> (Lstwh) (b•fcl) <br /> Considering Earthquake (Abel Method) <br /> Factored Earthquake Accelerated Static EfP:=FS•Of,=202456.8 lbf <br /> Fluid Load (Efe) <br /> Factored Earthquake Accelerated E f„L:=Sls•Pw•ht•wt•PGA•�Pa=137473.6 lbf <br /> Line-of-Sight Fluid Load (Efm) <br />