

TSTool
– Time Series Tool –

Command Reference

Version 10.21.00, 2013-04-21

1

This page is intentionally blank.

This document is formatted for double-sided printing.

2

Table of Contents

TSTool

– Time Series Tool –

Blank Page

TSTool Syntax Guide

Commands – Basic Syntax

Commands – Referring to Parameters

Commands – Comments

Commands – Time Series Identifiers

Processor – Properties

Time Series – Properties

Time Series – Data Flags

Date/Time

Regular Expression – Notation

Template – Syntax

Configuration File – TSTool Configuration File

Configuration File – Datastore Properties

Configuration File – Time Series Product Files

1

1

16

17

17

17

18

18

18

19

19

20

21

21

21

21

22

3

Table of Contents

Command Glossary

Command Reference: #

Command Reference: /*

Command Reference: */

Command Reference: Time Series Identifier (TSID)

Command Reference: Add()

Command Reference: AddConstant()

Command Reference: AdjustExtremes()

Command Reference: AnalyzePattern()

Command Reference: AnalyzeNetworkPointFlow()

Command Reference: AppendFile()

Command Reference: AppendTable()

Command Reference: ARMA()

Command Reference: Blend()

Command Reference: CalculateTimeSeriesStatistic()

Command Reference: ChangeInterval()

Irregular Time Series to Regular Time Series

23

33

35

37

39

41

43

45

47

51

63

65

67

73

75

81

81

4

Table of Contents

Regular Time Series to Regular Time Series

ACCM (Accumulation) to ACCM (Accumulation)

ACCM (Accumulation) to INST (Instantaneous)

ACCM (Accumulation) to MEAN

INST (Instantaneous) to INST (Instantaneous)

INST (Instantaneous) to ACCM (Accumulation)

INST (Instantaneous) to MEAN

 MEAN to MEAN

MEAN to ACCM (Accumulation)

MEAN to INST (Instantaneous)

Command Reference: ChangePeriod()

60_Command_CheckTimeSeries.pdf

Command Reference: CheckTimeSeriesStatistic()

60_Command_CompareFiles.pdf

60_Command_CompareTables.pdf

Command Reference: CompareTimeSeries()

Command Reference: ComputeErrorTimeSeries()

83

83

84

84

85

86

86

88

88

88

97

99

103

107

109

111

115

5

Table of Contents

Command Reference: ConvertDataUnits()

Command Reference: Copy()

Command Reference: CopyEnsemble()

Command Reference: CopyTable()

Command Reference: CreateEnsembleFromOneTimeSeries()

Command Reference: CreateFromList()

Command Reference: CreateRegressionTestCommandFile()

Command Reference: Cumulate()

Command Reference: Delta()

Command Reference: DeselectTimeSeries()

Command Reference: Disaggregate()

Command Reference: Divide()

Command Reference: Exit()

Command Reference: ExpandTemplateFile()

Example Using Simple Variable Assignment

Example of Passing Time Series Processor Properties to Templates

Example of Protecting TSTool Properties in Template with a Literal FreeMarker String

117

119

121

123

125

129

133

137

141

145

147

151

153

155

157

157

157

6

Table of Contents

Example of Using a Comment in the Template, which is Omitted from Expanded Output

Example Using Variable Assignment and Loop Using List

Example Using a One-Column Table for a List for Looping

Example Using a Multiple-Column Table to Loop Through Two Lists

Example of Expanding a Template to a Processor Property

Example of Using ExpandTemplateFile() in a Loop to Expand Multiple Files

Command Reference: FillConstant()

Command Reference: FillDayTSFrom2MonthTSAnd1DayTS()

60_Command_FillFromTS.pdf

Command Reference: FillHistMonthAverage()

Command Reference: FillHistYearAverage()

Command Reference: FillInterpolate()

Command Reference: FillMixedStation()

Implementation in Colorado’s Decision Support Systems

Command Reference: fillMOVE1()

Command Reference: FillMOVE2()

Command Reference: FillPattern()

158

158

159

160

161

161

167

169

173

175

177

179

181

182

187

189

193

7

Table of Contents

60_Command_FillPrincipalComponentAnalysis.pdf

Command Reference: FillProrate()

Command Reference: FillRegression()

Command Reference: FillRepeat()

Command Reference: FillUsingDiversionComments()

Diversion Comment Not Used Flag

Structure Currently in Use Flag

Command Reference: FormatDateTimeProperty()

Command Reference: FormatTableString()

Command Reference: Free()

Command Reference: FreeTable()

60_Command_FTPGet.pdf

Command Reference: InsertTimeSeriesIntoEnsemble ()

Command Reference: LagK()

60_Command_LookupTimeSeriesFromTable.pdf

Command Reference: ManipulateTableString()

Command Reference: Multiply()

195

197

201

211

213

213

213

219

221

223

225

227

229

231

235

239

241

8

Table of Contents

Command Reference: NewDayTSFromMonthAndDayTS()

Command Reference: NewEndOfMonthTSFromDayTS()

Command Reference: NewEnsemble ()

Examples

Command Reference: NewStatisticTimeSeries()

Examples

Command Reference: NewStatisticTimeSeriesFromEnsemble()

Examples

Command Reference: NewStatisticYearTS()

Example

Command Reference: NewTable ()

Command Reference: NewTimeSeries()

Command Reference: NewTreeView()

Command Reference: Normalize()

Command Reference: OpenHydroBase()

Command Reference: PrintTextFile()

Command Reference: ProcessTSProduct()

243

247

251

254

255

257

259

262

265

270

271

273

275

277

279

281

285

9

Table of Contents

Command Reference: ProfileCommands()

Command Reference: ReadDateValue()

Command Reference: ReadDelimitedFile()

Command Reference: ReadHecDss()

Command Reference: ReadHydroBase()

Command Reference: ReadMODSIM()

Command Reference: ReadNrcsAwdb()

Command Reference: ReadPatternFile()

Command Reference: ReadPropertiesFromFile()

Command Reference: ReadRccAcis()

Command Reference: ReadReclamationHDB()

60_Command_ReadRiversideDB.pdf

Command Reference: ReadRiverWare()

Command Reference: ReadStateCU()

Command Reference: ReadStateCUB()

Command Reference: ReadStateMod()

Command Reference: ReadStateModB()

289

293

295

301

303

309

311

313

315

317

321

329

331

333

335

337

339

10

Table of Contents

Command Reference: ReadTableFromDataStore()

Command Reference: ReadTableFromDBF()

60_Command_ReadTableFromDelimitedFile.pdf

Command Reference: ReadTableFromExcel()

Command Reference: ReadTimeSeries()

Command Reference: ReadTimeSeriesList()

Command Reference: ReadUsgsNwisDaily()

Command Reference: ReadUsgsNwisGroundwater()

Command Reference: ReadUsgsNwisInstantaneous()

60_Command_ReadUsgsNwisRdb.pdf

Command Reference: ReadWaterML()

60_Command_ReadWaterOneFlow.pdf

Command Reference: RelativeDiff()

Command Reference: RemoveFile()

Command Reference: RemoveTableRowsFromDataStore()

60_Command_ReplaceValue.pdf

Command Reference: ResequenceTimeSeriesData()

341

345

347

351

355

357

361

365

369

373

375

377

379

383

385

387

391

11

Table of Contents

Command Reference: RunCommands()

Command Reference: RunDSSUTL()

Command Reference: RunningAverage()

Command Reference: RunningStatisticTimeSeries()

Command Reference: RunProgram()

60_Command_RunPython.pdf

Command Reference: Scale()

Command Reference: SelectTimeSeries()

Command Reference: SetAutoExtendPeriod()

Command Reference: SetAveragePeriod()

Command Reference: SetConstant()

Command Reference: SetDataValue()

Command Reference: SetDebugLevel()

Command Reference: SetFromTS()

Command Reference: SetIgnoreLEZero()

Command Reference: SetIncludeMissingTS()

Command Reference: SetInputPeriod()

395

397

401

405

411

415

419

421

423

425

427

429

431

433

437

439

441

12

Table of Contents

Command Reference: SetOutputPeriod()

Command Reference: SetOutputYearType()

Command Reference: SetPatternFile()

60_Command_SetProperty.pdf

Command Reference: SetTimeSeriesPropertiesFromTable()

Command Reference: SetTimeSeriesProperty()

Command Reference: SetToMax()

Command Reference: SetToMin()

Command Reference: SetWarningLevel()

Command Reference: SetWorkingDir()

Command Reference: ShiftTimeByInterval()

Command Reference: SortTimeSeries()

Command Reference: StartLog()

Command Reference: StartRegressionTestResultsReport()

Command Reference: StateModMax()

Command Reference: Subtract()

Command Reference: TableMath()

443

445

447

449

451

453

455

457

459

461

463

465

467

469

471

473

475

13

Table of Contents

60_Command_TableTimeSeriesMath.pdf

Command Reference: TableToTimeSeries()

Command Reference: TimeSeriesToTable()

Command Reference: VariableLagK()

60_Command_WebGet.pdf

Command Reference: WeightTraces()

Command Reference: WriteCheckFile()

60_Command_WriteDateValue.pdf

Command Reference: WriteHecDss()

Command Reference: WritePropertiesToFile()

Command Reference: WriteProperty()

Command Reference: WriteReclamationHDB()

Command Reference: WriteRiversideDB()

Command Reference: WriteRiverWare()

Command Reference: WriteStateCU()

Command Reference: WriteStateMod()

Command Reference: WriteSummary()

477

479

487

493

499

501

505

507

509

513

515

517

525

531

533

535

537

14

Table of Contents

Command Reference: WriteTableToDataStore()

60_Command_WriteTableToDelimitedFile.pdf

Command Reference: WriteTableToHTML()

Command Reference: WriteTimeSeriesProperty()

Command Reference: WriteTimeSeriesToDataStore()

Command Reference: WriteTimeSeriesToJson()

Command Reference: WriteTimeSeriesToKml()

60_Command_WriteWaterML.pdf

99_TSTool_Spine_CDSS_CommandReference.pdf

539

543

545

547

549

553

557

559

561

15

Blank Page

This page is intentionally blank.

 16

 TSTool Syntax Guide - 1

TSTool Syntax Guide
Version 10.13.00, 2012-10-23

TSTool commands use a number of syntax (notation) conventions that have been implemented over time
in response to functionality requirements. This appendix provides a summary of the syntax as a guide for
users and future software development. Syntax standards listed here should be used where possible to
ensure consistency in software features.

Where appropriate, notation has been selected based on other efforts. For example, date/time formatting
is patterned after the C language strftime() function, which has been available for over 30 years. In
cases where notation is specific to TSTool, an attempt has been made to consider common notation
standards that can be adapted for TSTool. In cases where one or more existing standards are in place, the
most common or relevant standard for TSTool has been selected, with an option to implement additional
standards in the future.

Although standard notation is utilized into the software design, support for notation in commands may be
incomplete because some commands use older code. For example, the ability to use properties to specify
command parameters is implemented only for commands that have specifically required such
functionality. Future software enhancements will continue to update code to universally provide standard
features.

The following sections are ordered roughly in the order that topics are likely to be encountered, with
headings grouped according to major TSTool design elements.

Commands – Basic Syntax

The syntax for commands adheres to the following syntax:

CommandName(Parameter1=Value1,Parameter2=Value2)

The CommandName matches a command from the TSTool Commands menu and as documented in the
Command Reference documentation, which describes command parameters. Any parameter value can
be surrounded by double quotes to protect whitespace and other characters (such as characters used in the
command itself including equal sign, comma, and parenthesis). However, double quotes typically are
used only for parameter values that are text, dates, filenames, etc., and not simple data such as numbers.

Commands currently cannot be indented, although this may be enabled in the future.

Command names and parameters generally are case-insensitive. However, “camel” notation (mixed
upper and lower-case letters) is used to improve readability. In some cases this results in an acronym
being converted from uppercase to missed-case (e.g., “USGS” becomes “Usgs”).

Commands – Referring to Parameters

In some cases it is necessary to set one command parameter using the value of another command
parameter. This capability has been implemented for a small number of commands, for example
NewStatisticEnsemble(). To reference a command parameter in another parameter, use the
notation:

 CommandName(Parameter1=Value1,Parameter2=”${C:Parameter1}…etc”)

17

Syntax Guide TSTool Documentation

TSTool Syntax Guide - 2

This notation uses C: to provide a “command scope”, similar to how the TS: notation provides a scope
for time series properties (discussed below).

Commands – Comments

Command files use comments to disable commands without deleting them. A # character at the start of a
line indicates a one-line comment. A group of lines that start with /* and end with */ indicate a block of
comments and all intervening commands will be ignored in processing.

Commands – Time Series Identifiers

Time series identifiers (TDIDs) uniquely identify time series and are discussed in detail in the
Introduction chapter. TSID commands, which match the syntax discussed below, are created when using
the data browsing features of the TSTool main interface, are specified by some commands, and can be
edited manually if the user edits a command file with a text editor. These commands are essentially
“read” commands that use default parameters (e.g., the global input period and do not assign an alias).

There are two main forms of TSIDs:

Location.DataSource.DataType.Interval[.Scenario]~DataStore[~FileName]

Location.DataSource.DataType.Interval[.Scenario]

The first form of the TSID is a unique identifier for a time series, similar to a Universal Resource
Indicator (URI) for a web page, and allows software to locate the data for reading. The datastore (or
“input type” and corresponding filename) allow the software to find the source of the data.

The second form of the TSID is a unique identifier for a time series within TSTool and is used after
reading the data. In cases where more than one time series will have the same TSID after reading, an
alias can be assigned (see the Introduction chapter and the Time Series – Properties section below).

TSIDs may be more complex if, for example, the data type requires the use of multiple parts for
uniqueness. In this case, a dash may be used (e.g., Streamflow-Max). The datastore appendices
describe how time series properties from the original source are mapped into TSID notation.

Processor – Properties

TSTool commands are processed, and data managed, by a time series “processor”. The processor
interacts with all commands and is controlled with properties that initially have internal defaults (e.g., the
default is to read all available data rather than a specified input period). Properties that control the
processor are set with specific commands (e.g., SetInputPeriod()) and user-supplied properties can
be set with the SetProperty() command (e.g., it is common to manage file locations and dates used
in processing). The ReadPropertiesFromFile() and WritePropertiesToFile()
commands can be used to save and manage properties outside of TSTool.

Processor properties can be used to specify parameters for commands using the following notation:

${PropertyName}

18

TSTool Documentation Syntax Guide

 TSTool Syntax Guide - 3

For example, some commands that operate on files allow the property ${WorkingDir} to be used for
the current working directory. Refer to command documentation to determine if properties are supported.
Additional support is being phased in as resources allow and to satisfy requirements.

Properties internally have a specific data type. For example the input start and end use a “DateTime”
object type supported by TSTool. All properties will convert to strings, for example when saved to a
properties file. Some care may need to be taken to use properties of an appropriate type but a general rule
is that properties used in file names or similar can simply be handled as strings.

Time Series – Properties

Time series properties are specific to individual time series. Some internal properties are handled as
specific data values (e.g., data units are a string associated with a time series) whereas user-assigned
properties are assigned to the time series as a list (see the SetTimeSeriesProperty() command).
Time series properties are used by some commands to control the command functionality and output. For
example, many commands that create time series allow the alias to be assigned using time series
properties. The following notation is used when dealing with time series properties:

• % formatting – Many commands that create time series allow the Alias or other parameters to
be assigned using % formatters. For example, Alias=”%L” indicates that the time series alias
should be assigned to the location part of the time series identifier, which for a read command is
controlled by the rules of the command. Format specifiers are provided for fundamental time
series data properties that are required for each time series (units, location, data type, etc.).

• TS:Property reference – Some command parameters need to specify a time series property by
reference but the above formatting notation is inappropriate. In this case, the following design is
being phased in (under development):

o TS:PropertyName
o ${TS:PropertyName}

The latter notation allows a time series property to be specified using a notation similar to
processor properties, but the TS: prefix differentiates the property from the more generic
processor notation.

Note that using time series properties in commands in some cases must be limited because TSTool uses a
“discovery mode” to partially read/create time series so that they can be listed in “downstream”
commands. Too much reliance on internal time series data might require reading more time series data,
which can greatly decrease software performance in discovery mode.

Time Series – Data Flags

Time series data values (measurements, observations, etc.) are managed internally as lists of date/time,
value, and flag data. A data flag is a string that is assigned a value based on one of the following cases:

• missing data value with a flag
• non-missing data value and no data flag
• non-missing data value with a flag

Data flags are useful for indicating the quality of a data value (e.g., E might indicate estimated) and for
tracking how specific data values are manipulated (e.g., append to the data flag as specific actions are
taken). TSTool generally does not implement a standard for data flags because flags used in input data
may vary. However, some commands allow setting flags based on simple rules. For example fill

19

Syntax Guide TSTool Documentation

TSTool Syntax Guide - 4

commands generally have a FillFlag parameter to set the data flag for filled values. The following
table lists notation that is used to provide flexibility in setting data flags. The first notation option is used
by most commands and the other options are being phased in (refer to command documentation to
confirm available data flag functionality).

Command Parameter Notation Used When Setting Data Flag

Notation Description
x Set the data flag to x regardless of whether it has already been set.
+x If the flag has not been set, set to x.

If the flag has been set, append x.
This notation is useful when there are no concerns about the order of characters in
multi-character flags.

+,x If the flag has not been set, set to x.
If the flag has been set, append ,x.
This notation is useful when flags are set for each step in a process.

Auto Some commands allow Auto or another string as the flag. In this case, the
command will decide the flag value that is assigned, based on some condition. For
example, the flag may be assigned based on which time series was used to fill the
value.

Data points in graphs can be labeled in various ways to facilitate interpretation of the data. For example,
each data point can be labeled with the data value, flag, or other information. Similar to time series
property formatting, the notation %q in graph data point labels indicates that the points should be labeled
with the data flag.

Date/Time

Date/time notation is ubiquitous when dealing with time series, and includes use for the following:

• date/time associated with specific data values
• date/time pair that indicates data period or subset of the full data period
• date/time pair indicating a window within each year

In most cases TSTool will default to displaying date/time using the ISO 8601 specification, which is
essentially YYYY-MM-DD hh:mm:ss. Not only does this implement a global standard, but it also
ensures that date/times are formatted in a way that allows sequential sorting. The precision of formatted
date/times is generally consistent with the time series data interval (e.g., monthly time series will have
dates that are by default formatted as YYYY-MM).

It may be desirable or necessary to specify the format of date/times, for example to indicate the format for
output or parsing. When this is necessary, the notation utilizes an optional format type prefix and the
format itself, as follows:

• The default is to parse the date/time string by matching ISO or other common formats (this works
most of the time). The default output format is the ISO format.

• C:%m%d%y – Indicates that a C-style format is being used, where the formats match the UNIX
strftime() function syntax. See the FormatDateTimeProperty() command
documentation.

20

TSTool Documentation Syntax Guide

 TSTool Syntax Guide - 5

• In the future support for Microsoft Excel or other notation may be added (e.g., MM-YYYY).

Regular Expression – Notation

Regular expressions are strings that indicate how to match patterns, for example to match file names or
time series identifiers (see: http://en.wikipedia.org/wiki/Regular_expression). Many software tools and
programming languages implement regular expressions to facilitate efficient data processing; however,
the notation can be confusing, especially if not used on a regular basis. Within TSTool the following
regular expression notations are used:

• “globbing” – This notation was popularized by UNIX and in simple terms relies on the *
character to indicate “match zero or more characters”. For example, it can be used to match a list
of comma-separated-value files using the expression *.csv.

• Regular expression syntax – True regular expression syntax provides much more power than
globbing notation, but also introduces complexity in notation. TSTool is written in Java and
internally relies on Java’s regular expression syntax.

In most cases, TSTool commands and configuration files use the simpler globbing notation because it is
easier to use and explain. However, in some cases the more powerful regular expression syntax is
needed. Where confusion may result, the command documentation clearly indicates the syntax that is
supported, and commands may accept the notation glob:xxxx or regex:xxxx to indicate the type of
regular expression that is being specified.

Template – Syntax

Template files are used when processing is automated to iterate over one or more lists of input data. For
example, the same 10 commands may be executed for each of 100 time series. TSTool uses the
FreeMarker template library to process templates. See the ExpandTemplateFile() command
documentation for an explanation of syntax.

Configuration File – TSTool Configuration File

The TSTool configuration file uses a simple notation to assign properties:

[Section]

Property = Value

The [Section] notation is internally used as a prefix on the property name (e.g.,
Section.Property = Value). Comments are lines that start with #. Property values can be
surrounded by double quotes.

Configuration File – Datastore Properties

Datastore property files use the simple notation:

Property = Value

Comments are lines that start with #. Property values can be surrounded by double quotes. The specific
property values are described in TSTool datastore appendices.

21

Syntax Guide TSTool Documentation

TSTool Syntax Guide - 6

Configuration File – Time Series Product Files

Time series product configuration file uses a simple notation to assign properties:

[Section]

Property = Value

The [Section] notation is internally used as a prefix on the property name (e.g.,
Section.Property = Value). Comments are lines that start with #. Property values can be
surrounded by double quotes. See also the TSView Time Series Viewing Tools appendix.

22

Command Glossary
Version 07.01.00, 2007-03-02, Acrobat Distiller

The following parameter names and terms are used throughout TSTool commands. A term indicated in
bold font is a definition. A term indicated in bold courier font is a parameter name. Parameters that
are infrequently used are listed with the corresponding commands. Common parameters are defined but
long lists of corresponding commands are not provided.

a1,… – Used with the ARMA() command.

b1,… – Used with the ARMA() command.

Alias – A (generally) short identifier for a time series, used in place of the TSID, which simplifies

commands. The Alias and TSID values are interchangeable when used as parameters to
commands and may both be referred to as TSID in command editors. See also TSID.

Alias – A (generally) short identifier for a time series, used in place of the TSID, which simplifies

commands. When used to create/read a time series, the syntax of a command is typically similar
to: TS Alias = command(…). See also TSID.

AddTSID – Time series identifiers for time series to add. See the add() command.

AddValue – A numerical value to be added to a time series. See the addConstant() command.

AdjustMethod – Indicates the method used when adjusting a time series. See the

adjustExtremes() command.

AllowMissingCount – Indicate how many missing data values are allowed in an interval, in order to

allow processing. See the changeInterval() and newStatisticYearTS() commands.

AnalysisEnd – A DateTime that indicates the end of an analysis.

AnalysisMonth – One or more months indicating which months should be processed in the analysis.

See the fillRegression() command.

AnalysisStart – A DateTime that indicates the start of an analysis.

ARMAInterval – The data interval used in an ARMA analysis. See the ARMA() command.

AutoExtendPeriod – Indicate whether to autoextend the period of all time series to be the output

period. See the setAutoExtendPeriod()command.

AverageEnd – A DateTime that indicates the end of an averaging analysis. See the

setAveragePeriod() command.

AverageMethod – Indicate the method to use when averaging data. See the runningAverage()

command.

 Command Glossary - 1 23

Command Glossary TSTool Documentation

AverageStart – A DateTime that indicates the start of an averaging analysis. See the
setAveragePeriod() command.

BlendMethod – The method to use when blending time series. See the blend() command.

BlendTSID – Time series identifiers for time series to blend into main time series. See the blend()

command.

Bracket – The number of days to search forward and back for a non-missing value. See the

newEndOfMonthTSFromDayTS() and runningAverage() commands.

CalculateFactorHow – Indicate how to calculate the factor used when prorating values. See the

fillProrate() command.

CommandLine – The command line for a program to run. See the runProgram() command.

ConstantValue – A numerical value used for filling, etc. See the fillConstant(),

setConstant() and setConstantBefore() command.

DatabaseName – The name of a database, when making a database connection. See the

openHydroBase() command.

DatabaseServer – The name of a database server, when making a database connection. See the

openHydroBase() command.

DataSource – The data source to use when forming a TSID. See the createFromList()

command.

DataType – The data source to use when forming a TSID. See the createFromList() command.

DateTime – A date/time value, typically represented as a string, which indicates a point in time.

Date/time strings have a precision that is interpreted by the software. For example, the date/time
string 1990 has a precision of year, whereas the string 1990-01-12 has a precision of day.

DateTime – A specific date/time associated with time series data. See the setDataValue()

command.

DayTSID – Time series identifier for a daily time series. See the

newDayTSFromMonthAndDayTS() command.

DefaultFlow – Indicate a default flow value to be used if observations or filled values cannot be

found. See the lagK() command.

Delim – The delimiter character(s) used when processing delimited files. See the

createFromList() command.

DependentAnalysisEnd – A DateTime that indicates the end of an analysis of dependent time

series. See the fillMOVE2() command.

Command Glossary - 2 24

TSTool Documentation Command Glossary

DependentAnalysisStart – A DateTime that indicates the start of an analysis of dependent time
series. See the fillMOVE2() command.

Description – The description (name) for a time series. See the newTimeSeries() command.

DeselectAllFirst – Indicate whether to deselect all time series before processing the command.

See the selectTimeSeries()command.

DiffFlag – A character flag used to indicate when time series values are different. See the

compareTimeSeries() command.

Divisor – Indicate which time series is the divisor. See the relativeDiff() command.

DivisorTSID – Time series identifier for time series to divide another time series. See the divide()

command.

ExtremeToAdjust – Indicates whether the maximum or minimum value in a time series should be

adjusted. See the adjustExtremes() command.

ExtremeValue – The threshold value when adjusting extreme values. See the adjustExtremes()

command.

FillDirection – Indicate which direction (Foreward or Backward) filling should occur. See the

fillProrate() and fillRepeat() commands.

FillEnd – A DateTime that indicates the end of a fill process.

FillFlag – A character flag used to indicate when time series values are filled. See the

fillhistMonthAverage(), fillHistYearAverage(), fillMOVE2(),
fillProrate(), and fillRegression() commands.

FillNearest – Indicate whether missing data values should be filled with the nearest non-missing

value. See the lagK() command.

FillStart – A DateTime that indicates the start of fill process.

FillUsingCIU – Indicate whether missing data values should be filled using “currently in use” (CIU)

data from HydroBase. Additional zeros will be included in data. See the
fillUsingDiversionComments() command.

FillUsingCIUFlag – A character flag used to indicate when time series values are filled with CIU

information (see FillUsingCIU). See the fillUsingDiversionComments()
command.

FillUsingDivComments – Indicate whether missing data values should be filled using diversion

comments from HydroBase. Additional zeros will be included in data. See the
readHydroBase() and TS Alias = readHydroBase() commands. Also see the
fillUsingDiversionComments() command.

 Command Glossary - 3 25

Command Glossary TSTool Documentation

FillUsingDivCommentsFlag – A character flag used to indicate when time series values are filled.
See the readHydroBase(), and TS Alias = readHydroBase() commands.

HandleMissingHow – Indicate how to handle missing data values when processing time series. For

example, when adding time series, missing values can be ignored or can result in a missing value
in the result. See the add(), cumulate(), and subtract() commands.

HandleMissingTSHow – Indicate how to handle missing time series during processing. See the

createFromList() command.

ID – The identifier to match in a file. See the createFromList() command.

IDCol – The column number (or name) to be read from a delimited file. See the createFromList()

command.

IgnoreLEZero – Indicate whether values less than or equal to zero should be ignored when computing

historical averages for time series. See the setIgnoreLEZero() command.

IncludeMissingTS – Indicate whether missing time series (e.g., from a query or read) should

automatically be included using default information. See the setIncludeMissingTS()
command.

IndependentTSID – Time series identifier for the independent time series being processed. See the

fillFromTS(), fillMOVE2(), fillProrate(), fillRegression(),
setFromTS(), and setMax() commands.

InflowStates – The inflow states (initial states) when routing a flow time series. See the lagK()

command.

InitialValue – Indicate an initial value needed for computations. See the fillProrate() and

newTimeSeries() commands.

InputEnd – A DateTime that indicates the end of a file read or a database query.

InputFile, InputFile1, InputFile2 – The name of an input file to read, used by many

commands.

InputName – The input name to use when forming a TSID. See the createFromList() command.

InputStart – A DateTime that indicates the start of file read or a database query.

InputType – The input type to use when forming a TSID. See the createFromList() command.

Intercept – The intercept to be enforced when determining a line of best fit. See the

fillRegression() command.

Interval – The data interval to use when forming a TSID. See the createFromList(),

readHydroBase(), and shiftTimeByInterval() commands.

Command Glossary - 4 26

TSTool Documentation Command Glossary

K – The attenuation factor used when routing a flow time series. See the lagK() command.

Lag – The lag term for routing a flow time series. See the lagK() command.

Length – The length of a time series trace. See the createTraces() command.

ListFile – The name of an input or output list (delimited) file to be written or read, specified using a

relative or absolute path. See the createFromList() command.

LogFile – The name of the log file, specified using a relative or absolute path. See the

setLogFile() command.

LogFileLevel – The level for messages printed to the log file. See the setDebugLevel() and

setWarningLevel() commands.

MatchDataType – Indicate whether the data type part of a TSID should be matched when comparing

time series identifiers. See the compareTimeSeries() command.

MatchLocation – Indicate whether the location part of a TSID (Alias) should be matched when

comparing time series identifiers. See the compareTimeSeries() command.

MaxIntervals – The maximum number of intervals to process, typically used to limit a fill or analysis

procedure. See the adjustExtremes(), fillInterpolate(), and fillRepeat()
commands.

MaxValue – The maximum value in an analysis. See the normalize() and replaceValue()

commands.

Method – A method used when processing data, used to more specifically control how a command

functions. See the analyzePattern() and disaggregate() commands.

MinValue – The minimum value in an analysis. See the normalize() and replaceValue()

commands.

MinValueHow – Indicate how to determine the minimum value in an analysis. See the normalize()

command.

MissingValue – A numerical value used for missing data in time series. See the

writeStateMod() command.

MonthTSID – Time series identifier for a monthly time series. See the

newDayTSFromMonthAndDayTS() command.

MonthValues – Monthly values used for filling, etc. See the setConstant() command.

MultiplierTSID – Time series identifier for the time series to multiply the main time series. See the

multiply() command.

 Command Glossary - 5 27

Command Glossary TSTool Documentation

Multiplier – Value(s) to multiply time series value(s) by when processing. See the
shiftTimeByInterval() command.

NewDataType – The data type for a new time series, typically used where the data type must be

explicitly defined and is not determined from a TSID. See also NewTSID. See the
changeInterval() command.

NewInterval – The data interval for a new time series, typically used where the interval must be

explicitly defined and is not determined from a TSID. See also NewTSID. See the
changeInterval() command.

NewTimeScale – The new time scale (ACCM for accumulated data, INST for instantaneous data, MEAN

for mean data) for a time series. See the changeInterval() command.

NewTSID – The new time series identifier for a time series, used with commands that create new time

series. See the copy() and newDayTSFromMonthAndDayTS() commands.

NewUnits – The new data units for a time series. See the converDataUnits(), TS Alias =

readDateValue(), TS Alias = readMODSIM(), TS Alias = readNWSCard(),
and TS Alias = readRiverWare() commands.

NewValue – The new value in an analysis. See the replaceValue() and setDataValue()

commands.

NumEquations – Number of equations to use when analyzing data (typically one or monthly

equations). See the fillMOVE2() and fillRegression() commands.

ObsTSID – The time series identifier for an observed time series. See the lagK() command.

OdbcDSN – The Open Database Connectivity (ODBC) Data Source Name (DNS) for a database

connection. See the openHydroBase() command.

OldTimeScale – The old time scale (ACCM for accumulated data, INST for instantaneous data, MEAN

for mean data) for a time series. See the changeInterval() command.

OutflowStates – The outflow states (initial states) when routing a flow time series. See the lagK()

command.

OutputEnd – A DateTime that indicates the end of output.

OutputFile – The name of an output file to be written, specified using a relative or absolute path.

OutputStart – A DateTime that indicates the start of output.

OutputYearType – Indicate the type of year (e.g., calendar year, water year) for output. See the

setOutputYearType() command.

PatternFile – The file name for a pattern file. See setPatternFile() command.

Command Glossary - 6 28

TSTool Documentation Command Glossary

PatternID – An identifier for a pattern (e.g., WET, DRY, AVG). See the analyzePattern() and
fillPattern() commands.

Percentile – Percentile value(s) used when analyzing time series. See the analyzePattern()

command.

Pos – The position in the time series list. See the deselectTimeSeries() and

selectTimeSeries() commands.

pP – Used with the ARMA() command.

Precision – The precision (number of digits after the decimal point) used when comparing values or

formatting values for output. See the compareTimeSeries(), writeRiverWare(), and
writeStateMod() commands.

QueryEnd – A DateTime that indicates the end of a database query. The InputEnd parameter is

preferred and is used in new commands.

QueryStart – A DateTime that indicates the start of database query. The InputStart parameter is

preferred and is used in new commands.

qQ – Used with the ARMA() command.

Read24HourAsDay – Indicate that a time series with data interval 24Hour should be automatically

read as Day. See the readNwsCard() and TS Alias = readNwsCard() commands.

ReadEnd – A DateTime that indicates the end of a file read. See the readNWSCard() command. The

InputEnd parameter is preferred.

ReadStart – A DateTime that indicates the start of file read. See the readNWSCard() command.

The InputStart parameter is preferred.

RecalcLimits – Recalculate the data limits for a time series, usually when supplemental raw data are

being supplied after an initial read. See the fillUsingDiversionComments() command
(used with the State of Colorado’s HydroBase input type).

ReferenceDate – The starting date for a time series trace. See the createTraces() command.

Reset – A DateTime field that indicates when to reset data values in a manipulation. For example, a

time series may be set to zero at the start of each year when used with the cumulate()
command. See the cumulate() command.

RunMode – Typically used to indicate whether the command should be processed in batch mode, via the

GUI, or both. See the openHydroBase(), processTSProduct(), and
setWorkingDir() commands.

Scale – A scale factor to be applied to data. See the writeRiverWare() command.

ScaleValue – A numerical value used for scaling time series. See the scale() command.

 Command Glossary - 7 29

Command Glossary TSTool Documentation

Scenario – The scenario to use when forming a TSID. See the createFromList() command.

ScreenLevel – The level for messages printed to the screen (console). See the setDebugLevel()

and setWarningLevel() commands.

SelectAllFirst – Indicate whether to select all time series before processing the command. See the

deselectTimeSeries()command.

SearchStart – A DateTime that indicates the search start date/time in an analysis. See the

newStatisticYearTS() command.

SetEnd – A DateTime that indicates the end of a set process.

Set_scale – See the writeRiverWare() command.

SetStart – A DateTime that indicates the start of set process.

Set_units – See the writeRiverWare() command.

ShiftDataHow – Indicate how to shift time series traces. See the createTraces() command.

SpecifyWeightsHow – Indicate how to specify weights when processing time series. See the TS

Alias = weighTimeSeries() command.

Statistic – A statistic to evaluate. See the newStatisticYearTS() command.

SubtractTSID – Time series identifiers for time series to subtract. See the subtract() command.

Suffix – The suffix to be automatically applied to the name of a file. See the setLogFile()

command.

TestValue – A test value used in an analysis. See the newStatisticYearTS() command.

Timeout – The timeout when running an external program, after which processing will continue. See

the runProgram() command.

Tolerance – A value (or values) used to indicate an allowable error/difference. See the

compareTimeSeries() command.

TransferHow – Indicate how to transfer data during processing, either according to the date/time or

sequentially. The latter can be used when time series do not align on date/time (e.g., due to a
shift, leap year, etc.). See the setFromTS() command.

Transformation – Indicate whether the time series data should be transformed before processing.

See the fillInterpolate(), fillMOVE2() , and fillRegression() commands.

TSID – Time series identifier, which is used to uniquely identify a time series. In full notation, this

consists of a string similar to the following:
Location.DataSource.DataType.Interval.Scenario~InputType~InputName. In abbreviated form,
the InputType and InputName are often omitted. The InputType and InputName are typically
used only by read and write commands. Because a TSID may be long (especially when file

Command Glossary - 8 30

TSTool Documentation Command Glossary

names are used for the InputName), an Alias may be assigned to the time series. The TSID
parameter is typically used in commands for the time series that is being processed. See also
Alias.

TSID – When used as a command parameter the time series identifier indicates the time series to be

processed. The TSID or alias can typically be specified. See also Alias.

TSID1 – Time series identifier for the first daily time series in a command. See the

fillDayTSFrom2MonthTSAnd1DayTS() command.

TSID2 – Time series identifier for the first daily time series in a command. See the

fillDayTSFrom2MonthTSAnd1DayTS() command.

TSID_D1 – Time series identifier for the first time series in a command. See the TS Alias =

relativeDiff() command.

TSID_D2 – Time series identifier for the second daily time series in a command. See the

fillDayTSFrom2MonthTSAnd1DayTS() command.

TSID_M1 – Time series identifier for the first monthly time series in a command. See the

fillDayTSFrom2MonthTSAnd1DayTS() command.

TSID_M2 – Time series identifier for the second monthly time series in a command. See the

fillDayTSFrom2MonthTSAnd1DayTS() command.

TSList – Indicates how the list of time series is determined. Typical values are AllTS (process all

time series), AllMatchingTSID (process all time series having identifiers that match the TSID
parameter), SelectedTS (process all time series that have been selected with the
selectTimeSeries() and deselectTimeSeries() commands). This parameter is
being phased in to allow more flexibility when processing time series.

TSProductFile – The name of a time series product (TSProduct) file. See the

processTSProduct() command.

Units – The data units for a time series. See the newTimeSeries(), TS Alias =

readNWSRFSFS5Files(), and writeRiverWare() commands.

Version – Indicates the file version, to allow the software to handle different data formats. See the

readStateModB() command.

View – Indicate whether a product should be graphically previewed (as opposed to simply writing an

output file). See the processTSProduct() command.

UseStoredProcedures – Indicates whether stored procedures should be used (versus straight SQL

calls). This is being used to transition HydroBase queries to stored procedures. See the
openHydroBase() command.

 Command Glossary - 9 31

Command Glossary TSTool Documentation

WarnIfDifferent – Indicates whether a warning should be generated if data differences are detected.
See the compareTimeSeries() and compareFiles() commands.

WarnIfSame – Indicates whether a warning should be generated if data differences are NOT detected.

See the compareTimeSeries() and compareFiles() commands.

Weight –Weight(s) used when processing time series. See the TS Alias =

weighTimeSeries() command.

Where1, Where2 – Input filter information used when reading/querying data. See the

readHydroBase() command.

Year – Specify year(s) of interest. See the TS Alias = weighTimeSeries() command.

Command Glossary - 10 32

 Command Reference – # - 1

Command Reference: #
Comment line
Version 10.12.00, 2012-09-10

The # command indicates single-line comments. Commands can be converted to and from # comments
by right-clicking on a command in TSTool and selecting from the popup menu. See also the /* and */
comment block commands, which are used to comment multiple commands.

The following table lists annotation tags that can be placed in comments to provide additional information
to software that processes the commands, using notation similar to the following:

#@expectedStatus Failure

Command # Comment Tags

Parameter Command that Uses Description
@expectedStatus
Failure

@expectedStatus
Warning

RunCommands() Used to help the test framework know if an
error or warning is expected, in which case a
passing test can occur even if the command
status is not “success”.

@os Windows
@os UNIX

CreateRegressionTest
CommandFile()

Used to filter out test command files that are
not appropriate for the operating system.
Linux is included in UNIX.

@readOnly TSTool main interface and
command editors

Indicates that the command file should not be
edited. TSTool will update old command
syntax to current syntax when a command file
is loaded. However, this tag will cause the
software to warn the user when saving the
command file, so that they can cancel. This
tag is often used with templates to protect the
template from mistakenly being edited and
saved in TSTool (TSTool does not currently
allow editing templates within the interface).

@testSuite ABC CreateRegressionTest
CommandFile()

Used to filter out test command files that are
not appropriate for the operating system.

33

Command TSTool Documentation

Command Reference – # - 2

The following dialog is used to edit the command and illustrates the command syntax:

Comment

Command Editor

The command syntax is as follows:

Some text

A sample command file is as follows:

Some comments…

34

 Command Reference – /* - 1

Command Reference: /*
Comment block start

Version 10.12.00, 2011-09-10

The /* command starts a multi-line comment block and is useful for inserting long comments or
temporarily commenting out blocks of commands. See also the */ and # commands. Commands
between the /* and */ are not converted to comments but are skipped during processing. See also the #
comment documentation for information about comment @ annotations.

The following dialog is used to edit the command and illustrates the command syntax:

CommentBlockStart

/* Command Editor

The command syntax is as follows:

/*

A sample command file is as follows:

/*
SomeCommentedOutCommands()…
*/

35

/* Command TSTool Documentation

Command Reference – /* - 2

This page is intentionally blank.

36

Command Reference: */
Comment block end

Version 08.17.00, 2008-10-01

The */ command ends a multi-line comment block and is useful for inserting long comments or
temporarily commenting out blocks of commands. See also the /* and # commands. Commands
between the /* and */ are not converted to comments but are skipped during processing.

The following dialog is used to edit the command and illustrates the command syntax:

CommentBlockEnd

*/ Command Editor

The command syntax is as follows:

*/

A sample command file is as follows:

/*
SomeCommentedOutCommands()…
*/

 Command Reference – */ - 1 37

*/ Command TSTool Documentation

This page is intentionally blank.

Command Reference – */ - 2 38

Command Reference: Time Series Identifier
(TSID)

Read a single time series given the time series identifier
Version 09.00.03, 2009-01-15

A time series identifier (TSID) command reads a single time series. In order to read the time series from
a persistent format (database, file, or web site), the TSID must contain the input type, and if necessary, the
input name. For example, a TSID command for the State of Colorado’s StateMod model file format is of
the form:

LocationID…Interval~StateMod~Filename

Refer to the StateMod Input Type appendix for a full description of the file format. Appendices are
available for all input types. A TSID command for a StateMod file is generated as follows:

1. Select the StateMod input type and appropriate time step in the main TSTool window.
2. Press the Get Time Series List button to list time series. A dialog will prompt for the StateMod

file and after selection the first year of data from the file will be read to get a list of identifiers.
The interval that is specified (Month or Day) indicates whether the file is a monthly or daily
format. The time series will be listed in the time series list in TSTool.

3. Select one or more time series from the list and copy to commands.

The following dialog is used to edit the command and illustrates the syntax of the command. Limited
checks are done while editing the command. However, once committed, TSTool will attempt to read the
time series metadata and will issue a warning if unable to read the data. Time series identifiers that
include filenames should typically be adjusted to a relative path to allow the files to be moved to another
location and run without errors. Use the Remove Working Directory button to remove the working
directory (or Add Working Directory) to add it.

TSID_StateMod

TSID Command Editor for a Time Series Read From a StateMod File

 Command Reference – TSID - 1 39

TSID Command TSTool Documentation

The following example is for a TSID for the State of Colorado’s HydroBase database. In this case there
is no filename in the identifier and therefore no need to adjust to a relative path.

TSID

TSID Command Editor for a Time Series Read From the HydroBase Database

After executing the command, the time series will have the identifier as originally requested, with no alias
being assigned. Use the TS Alias = ReadTimeSeries() command to assign an alias to the time
series, or use one of the specific read commands.

A sample command file to read time series from a StateMod file is as follows. In this case the absolute
paths have been adjusted to relative paths using the command editor dialog. Note also that the data
source and data type are not required because this information is not stored in the StateMod file.

09303000...MONTH~StateMod~whiteT.rih
09303400...MONTH~StateMod~whiteT.rih

A sample command file to read time series from the State of Colorado’s HydroBase database is as
follows:

06754000 - SOUTH PLATTE RIVER NEAR KERSEY
06754000.DWR.Streamflow.Month~HydroBase
06758500 - SOUTH PLATTE RIVER NEAR WELDONA
06758500.DWR.Streamflow.Month~HydroBase

Command Reference – TSID - 2 40

Command Reference: Add()
Add one or more time series to a time series (or ensemble)

Version 09.09.01, 2010-10-18

The Add() command adds regular interval time series. The receiving time series will be set to the sum
of itself and all indicated time series. See also the NewTimeSeries() command, which can create an
empty time series to receive a sum. If an ensemble is being processed, another ensemble can be added, a
single time series can be added to all time series in the ensemble, or a list of time series can be added to
the ensemble (the number in the list must match the number of time series in the ensemble).

This command will generate an error if the time series do not have compatible units. If the units are
compatible but are not the same (e.g., IN and FT), then the units of the part will be converted to the units
of the sum before addition. Missing data in the parts can be ignored (do not set the sum to missing) or
can result in missing values in the sum. The user should consider the implications of ignoring missing
data. Time series being added must have the same data interval.

The following dialog is used to edit the command and illustrates the syntax of the command.

Add

Add() Command Editor

The command syntax is as follows:

Add(Parameter=Value,…)

 Command Reference – Add() - 1 41

Add() Command TSTool Documentation

Command Parameters

Parameter Description Default
TSID The time series identifier or alias for the time series to receive the

sum.
TSID or
EnsembleID must
be specified.

EnsembleID The ensemble to receive the sum, if processing an ensemble. TSID or
EnsembleID must
be specified.

AddTSList Indicates how the list of time series is specified, one of:
• AllTS – all time series before the command.
• AllMatchingTSID – all time series that match the

AddTSID (single TSID or TSID with wildcards) will be
added.

• EnsembleID – the time series from ensemble will be added.
• LastMatchingTSID – the last time series that matches the

TSID (single TSID or TSID with wildcards) will be added.
• SelectedTS – the time series are those selected with the

SelectTimeSeries() command.
• SpecifiedTSID – the specified list of time series given by

the AddTSID parameter.

AllTS (the time
series receiving the
sum will not be
added to itself)

AddTSID If the AddTSList parameter is SpecifiedTSID, provide the
list of time series identifiers (or alias) to add, separated by
commas. If the AddTSList parameter is AllMatchingTSID,
FirstMatchingTSID, or LastMatchingTSID, specify a
single TSID or a TSID with wildcards.

Must be specified if
TSList=
SpecifiedTSID,
ignored otherwise.

AddEnsembleID If the EnsembleID parameter is specified, providing an
ensemble ID will add the ensembles.

Use if an ensemble
is being added to
another ensemble.

Handle
MissingHow

Indicates how to handle missing data in a time series, one of:
• IgnoreMissing – create a result even if missing data are

encountered in one or more time series – this option is not as
rigorous as the others

• SetMissingIfOtherMissing – set the result missing if
any of the other time series values is missing

• SetMissingIfAnyMissing – set the result missing if
any time series value involved is missing

IgnoreMissing

IfTSListToAdd
IsEmpty

Action if time series list to add is empty. Fail

A sample command file to add two time series from the State of Colorado’s HydroBase is as follows:

0100501 - EMPIRE DITCH
0100501.DWR.DivTotal.Month~HydroBase
0100503 - RIVERSIDE CANAL
0100503.DWR.DivTotal.Month~HydroBase
Add(TSID="0100501.DWR.DivTotal.Month",TSList="SpecifiedTSID",
AddTSID="0100503.DWR.DivTotal.Month",HandleMissingHow=IgnoreMissing)

Command Reference – Add() - 2 42

Command Reference: AddConstant()
Add a constant value to all data values in a time series (or ensemble)

Version 09.10.01, 2010-11-18

The AddConstant() command adds a constant value to each data value in a time series (or ensemble
of time series) within the specified period. This command is useful, for example, when a time series
needs to be adjusted for a constant bias. Another example is to adjust a reservoir total volume time series
by the dead pool storage in order to compute the active storage (or inverse). Missing data values will
remain missing in the result.

The following dialog is used to edit the command and illustrates the syntax of the command.

AddConstant

AddConstant() Command Editor

 Command Reference – AddConstant() - 1 43

AddConstant() Command TSTool Documentation

The command syntax is as follows:

AddConstant(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be

processed, one of:
• AllMatchingTSID – all time

series that match the TSID (single
TSID or TSID with wildcards) will
be modified.

• AllTS – all time series before the
command.

• EnsembleID – all time series in
the ensemble will be modified.

• LastMatchingTSID – the last
time series that matches the TSID
(single TSID or TSID with
wildcards) will be modified.

• SelectedTS – the time series are
those selected with the
SelectTimeSeries()
command.

AllTS

TSID The time series identifier or alias for the
time series to be modified.

TSID or EnsembleID must be
specified.

EnsembleID The ensemble to be modified, if
processing an ensemble.

TSID or EnsembleID must be
specified.

ConstantValue The data value to add to the time series. None – must be specified.
AnalysisStart The date/time to start analyzing data. Full period.
AnalysisEnd The date/time to end analyzing data. Full period.

A sample commands file to process data from the State of Colorado’s HydroBase is as follows:

2003536 - CONTINENTAL RES
2003536.DWR.ResMeasStorage.Day~HydroBase
AddConstant(TSList=AllMatchingTSID,TSID="2003536.DWR.ResMeasStorage.Day",
 ConstantValue=5000)

CommandReference/AddConstant/Example_AddConstant_HydroBase.TSTool

Command Reference – AddConstant() - 2 44

Command Reference: AdjustExtremes()
Adjust the extreme values in time series data

Version 09.10.01, 2010-11-18

The AdjustExtremes()command adjusts extreme values in time series (e.g., to remove negative
values from a time series that can only have values greater than or equal to zero), while preserving
“mass”.

The following dialog is used to edit the command and illustrates the syntax of the command.

AdjustExtremes

AdjustExtremes() Command Editor

The command syntax is as follows:

AdjustExtremes(Parameter=Value,…)

 Command Reference – AdjustExtremes() - 1 45

AdjustExtremes() Command TSTool Documentation

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed, one of:

• AllMatchingTSID – all time series that match the TSID
(single TSID or TSID with wildcards) will be modified.

• AllTS – all time series before the command.
• EnsembleID – all time series in the ensemble will be modified.
• FirstMatchingTSID – the first time series that matches the

TSID (single TSID or TSID with wildcards) will be modified.
• LastMatchingTSID – the last time series that matches the

TSID (single TSID or TSID with wildcards) will be modified.
• SelectedTS – the time series are those selected with the

SelectTimeSeries() command.

AllTS

TSID The time series identifier or alias for the time series to be modified,
using the * wildcard character to match multiple time series.

Required if
TSList=
*TSID.

EnsembleID The ensemble to be modified, if processing an ensemble. Required if
TSList=
EnsembleID.

AdjustMethod Only the Average adjust method is implemented, in which adjusted
data values are set to the average over the adjusted period, necessary
to maintain the total/mass of the original values. This method adjusts
extreme values by considering neighboring values equally on each
side of the point in question. When adjusting minimum values,
neighboring values are added until the average is above the allowed
extreme value, and all values that make up the sum are then set to the
average value. Missing values remain missing and therefore this
command should only be applied to filled data. If a satisfactory
result cannot be reached within this limit, then the original values are
not changed. Changed values are listed in the time series history,
which is viewed with the time series properties. Applying the
command will result in the time series having periods of constant
value, with the length of the period being controlled by the
magnitude of the extreme value.

None – must be
specified.

Extreme
ToAdjust

Indicate whether minimum (AdjustMinimum) or maximum
(AdjustMaximum) values to be adjusted.

None – must be
specified.

ExtremeValue The extreme value that is the limit of acceptable values. None – must be
specified.

MaxIntervals Indicates how many values on each side of a point are allowed to be
examined.

0, indicating no
limit.

AnalysisStart The date/time to start analyzing data. Full period.
AnalysisEnd The date/time to end analyzing data. Full period.

A sample command file using data from the State of Colorado’s HydroBase is as follows:

06759000 - BIJOU CREEK NEAR WIGGINS, CO.
06759000.USGS.Streamflow.Day~HydroBase
AdjustExtremes(TSList=AllMatchingTSID,TSID="06759000.USGS.Streamflow.Day",
AdjustMethod=Average,ExtremeToAdjust=AdjustMinimum,ExtremeValue=0,MaxIntervals=0)

Command Reference – AdjustExtremes() - 2 46

Command Reference: AnalyzePattern()
Determine historical average patterns for monthly time series

Version 09.05.01, 2009-10-28

The AnalyzePattern() command creates the pattern file for use with the FillPattern()
command (see also SetPatternFile()). Each time series to be processed is analyzed as follows:

1. Create a time series to contain the pattern identifiers for each month (e.g., DRY, AVG, WET).
2. For each month, determine the monthly values for the time series being analyzed (e.g., find all of

the January values).
3. Rank the values in ascending order.
4. Evaluate the percentile rank information for non-missing values and assign in the pattern time

series an appropriate pattern identifier. For example, if the percentile values are .25 and .75,
assign the first pattern identifier to values < 25% of the non-missing count, assign the second
pattern identifier to non-missing values >= 25% and < 75%, and assign the third identifier to the
non-missing values >= 75%.

The resulting pattern time series is then written to a file. This command is enabled for monthly data
only. See below for an example of a fill pattern file. One or more patterns can be included in each
pattern file, similar to StateMod time series files (see the StateMod Input Type Appendix), and multiple
pattern files can be used, if appropriate.

Years Shown = Water Years
Missing monthly data filled by the Mixed Station Method, USGS 1989
Time series identifier = 09034500.CRDSS_USGS.QME.MONTH.1
Description = COLORADO RIVER AT HOT SULPHUR SPRINGS, CO.
-e-b----------eb------eb------eb------eb------eb------eb------eb------eb------eb------eb------eb------eb------eb--------e
 10/1908 - 9/1996 ACFT WYR
1909 09034500 AVG AVG AVG WET WET AVG AVG AVG WET WET WET WET
1910 09034500 WET WET WET WET WET WET AVG AVG AVG AVG AVG AVG
1911 09034500 AVG AVG WET AVG AVG AVG AVG WET WET WET AVG WET
1912 09034500 WET WET WET WET WET AVG AVG WET WET WET WET WET
...ommitted...

The pattern file will by default contain all available data for the overlapping period and will be written in
calendar year. The output period can be set with the SetOutputPeriod() command and the output
year type can be set with the SetOutputYearType() command.

 Command Reference – AnalyzePattern() - 1 47

AnalyzePattern() Command TSTool Documentation

The following dialog is used to edit the AnalyzePattern() command and illustrates the syntax of the
command.

AnalyzePattern

AnalyzePattern() Command Editor

The command syntax is as follows:

AnalyzePattern(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be

processed, one of:
• AllMatchingTSID – all time

series that match the TSID (single
TSID or TSID with wildcards).

• AllTS – all time series before the
command.

• EnsembleID – all time series in
the ensemble.

• FirstMatchingTSID – the first
time series that matches the TSID
(single TSID or TSID with
wildcards).

• LastMatchingTSID – the last
time series that matches the TSID
(single TSID or TSID with
wildcards).

None – must be specified.

Command Reference – AnalyzePattern() - 2 48

TSTool Documentation AnalyzePattern() Command

 SelectedTS – the time series
selected with the
SelectTimeSeries()
command.

TSID The time series identifier or alias for the
time series to be processed, using the *
wildcard character to match multiple
time series.

Required if TSList=*TSID.

EnsembleID The ensemble to be processed, if
processing an ensemble.

Required if
TSList=EnsembleID.

Method Method used to determine the patterns.
Currently only Percentile is
recognized.

Percentile

Percentile A comma-separated list of percentiles for
cutoffs, used when
Method=Percentile. Values should
be 0 to 1 (e.g., .25, .75)

None – must be specified.

PatternID The pattern identifiers to use,
corresponding to the percentiles. Specify
one more than the number of percentiles
(e.g., DRY,AVG,WET).

None – must be specified.

OutputFile Output file to write, which will contain
the pattern information. Currently only
the StateMod pattern file format is
supported.

None – must be specified.

TableID The identifier for a new table to be
created, containing the sample values for
each month adjoining the percentile
positions. Each time series will be listed
in the first column as per the DataRow
parameter. For N percentile values, the
first N-1 values in the table will
correspond to the last value below a
percentile cutoff and the Nth value will
be the first value above the Nth
percentile value.

Optional – table will not be
created by default.

DataRow The contents of the first column,
indicating the time series.

Location, data type, and units, if
available.

Legacy Indicates whether to duplicate legacy
behavior (True) or use current behavior
(default, False). A bug was fixed in
TSTool 9.05.02 to correct a bug where
the last value in each bin sometimes
should have been in the larger cutoff bin.

False – use current behavior.

 Command Reference – AnalyzePattern() - 3 49

AnalyzePattern() Command TSTool Documentation

A sample command file to analyze streamflow data from the State of Colorado’s HydroBase and save
statistics in a table is as follows:

06720500 - SOUTH PLATTE RIVER AT HENDERSON
06720500.DWR.Streamflow.Month~HydroBase
06754000 - SOUTH PLATTE RIVER NEAR KERSEY
06754000.DWR.Streamflow.Month~HydroBase
AnalyzePattern(TSList=AllTS,Method=Percentile,
 Percentile="0.25,0.75",PatternID="DRY,AVG,WET",OutputFile="Div1.pat",
 TableID=”Statistics”,DataRow=”%L, %U”)

The following figure illustrates the resulting statistics:

AnalyzePatter_Table

Command Reference – AnalyzePattern() - 4 50

 Command Reference – AnalyzeNetworkPointFlow () - 1

Command Reference:
AnalyzeNetworkPointFlow()

Analyze a node/link network to calculate “point flow” for nodes
Version 10.21.00, 2013-07-13

The AnalyzeNetworkPointFlow() command takes as input information to define a “flow
network”, associates input time series with each node in the network, and computes mass balance time
series at each node. Although the network is intended to represent a physical network such as a stream
system, it also can represent other flow networks such as transportation or other mass/energy conservation
systems.

This command differs from the functionality of other network analysis tools as follows:

• Daily administration tools, such as the State of Colorado’s Colorado Water Rights Administration
Tool (CWRAT) perform a point flow analysis for a single day, which only requires knowing one
day’s input values, whereas AnalyzeNetworkPointFlow()analyzes time series for a
specified period.

• More sophisticated models, such as the State of Colorado’s StateMod water allocation model,
perform allocation decisions within each time step for the full period, whereas
AnalyzeNetworkPointFlow()performs a sequence of basic time series manipulations that
can be quickly configured.

It may be possible to utilize the network data from tools such as those mentioned above with the
AnalyzeNetworkPointFlow() command.

51

AnalyzeNetworkPointFlow() Command TSTool Documentation

Command Reference – AnalyzeNetworkPointFlow () - 2

The following figure illustrates the network connectivity and mass balance that is performed at each node.
Currently “on-channel” reservoirs with storage are not supported and gain/loss can only be computed in
non-branching networks – these features and others necessary to model more complex networks will be
added in the future; however, this command is not intended to replace more complex models.
Consequently the command currently is suitable for analysis of a main stem river with no on-channel
reservoirs.

AnalyzeNetworkPointFLow

AnalyzeNetworkPointFlow() Network and Node Mass Balance

52

TSTool Documentation AnalyzeNetworkPointFlow() Command

 Command Reference – AnalyzeNetworkPointFlow () - 3

The network is defined as a table containing a list of node identifiers with associated properties, as
illustrated in the following figure.

AnalyzeNetworkPointFLow

AnalyzeNetworkPointFlow() Network Input Table

In this example the network is defined in an Excel file, the ReadTableFromExcel() command is
used to read the table, and the table is used as input to the AnalyzeNetworkPointFlow() command
The network definition table columns from the above figure are as follows (note, however, that the
column names are user defined and are specified as parameters to the
AnalyzeNetworkPointFlow() command:

AnalyzeNetworkPointFlow() Network Input Table Column Description

Network Table
Column

Description

NodeID The location ID for the network node, typically corresponding to the
location ID in time series identifiers. The column is indicated to the
command using the NodeIDColumn parameter.

NodeName The node name, useful because NodeID is generally terse and non-
descriptive, used in messages. The column is indicated to the command
using the NodeNameColumn parameter.

NodeType The node type, needed to define node behavior (e.g., whether time series
values get added, subtracted, reset at node). The node types are user-
defined, although types often are defined by modeling conventions. The
column is indicated to the command using the NodeTypeColumn
parameter. The behavior corresponding to node types is defined by using
command parameters (NodeAddTypes, NodeSubtractTypes,
NodeOutflowTypes, NodeFlowThroughTypes).

NodeDist The node distance along the flow path. Typically the distance is measured
relative to the lowest point on the network. The distance is used to estimate
gain/loss when GainMethod=Distance is specified as a command

53

AnalyzeNetworkPointFlow() Command TSTool Documentation

Command Reference – AnalyzeNetworkPointFlow () - 4

Network Table
Column

Description

parameter.
NodeWeight Used when GainMethod=Weight. The weights indicate the relative

weight of the reach gain/loss to be distributed between nodes on the reach.
For example, specify a best estimate of the percentage of reach loss that
occurs above each node. Or, specify as a rate of gain/loss when used with
GainMethod=DistanceWeight (but in this case the distance*weight
product will be normalized to ensure that the reach gain/loss is equalized
between known point flows).

DownstreamNodeID The location ID for the downstream node, needed to define network
connectivity.

The AnalyzeNetworkPointFlow() command creates output time series with the data types
indicated in the following table.

AnalyzeNetworkPointFlow() Network Input Table Column Description

Column Description
NodeInflow Sum of outflows from upstream nodes, which are consequently inflows

to the current node (lagged routing currently is not implemented).
NodeAdd Time series added at the node (for example immediately off-channel

reservoir release or measured return flow).
NodeSubtract Time series subtracted at the node (for example diversion).
NodeUpstreamGain Gain (positive) or loss (negative) between immediate upstream node(s)

and the current node (missing if gain/loss is not computed).
NodeOutflow Outflow from the node, which takes into account inflow and any

additions and subtractions at the node.
NodeUpstreamReachGain Gain (positive) or loss (negative) between upstream known flow

node(s) and the current node (missing if gain/loss is not computed).
NodeInflowWithGain NodeInflow + NodeUpstreamReachGain (missing if gain/loss

are not computed).
NodeOutflowWithGain NodeOutflow + NodeUpstreamReachGain (missing if gain/loss

are not computed).
NodeStorage Storage at the node after additions and subtractions (currently always

zero, will enhance in the future to handle on-channel reservoirs).

54

TSTool Documentation AnalyzeNetworkPointFlow() Command

 Command Reference – AnalyzeNetworkPointFlow () - 5

The following figure illustrates the output time series corresponding to the data types listed in the above
table:

AnalyzeNetworkPointFLow_OutputTS

AnalyzeNetworkPointFlow() Output Time Series Table

The following logic is used to analyze the network. Currently this logic is performed by navigating the
network from most upstream to downstream and processing all timesteps for a node before moving to the
next node.

1. The network is navigated from top to bottom. When a confluence is found (a node with more
than one upstream node), each confluence is processed from the top down to the confluence
point. Of particular importance is the concept of a “stream reach”, which is the reach between
known flow points, because mass balance is enforced at known flow points and gain/loss can be
estimated between the known flow points.

a. The data type for the node (see *DataType command parameters) is used to retrieve the
relevant time series for the node. The first time series that matches the location ID, data
type, and interval is used as input for the node. The time series must have been read prior
to the AnalyzeNetworkPointFlow() command. For example, use the
CopyTable() command to copy a subset of the network table’s NodeID values and
then use the ReadTimeSeriesList() command with the list of identifiers.

b. Calculate the node’s inflow:
i. Node types that set outflow, indicated by the NodeOutflowDataTypes

parameter (e.g., StreamGage):
• NodeInflow = input time series for node

ii. All other node types:
• NodeInflow = sum of upstream node outflows

c. Calculate the node’s outflow:
i. Node types that add, indicated by the NodeAddDataTypes parameter (e.g.,

Return, Import):
• NodeOutflow = NodeInflow + added time series

ii. Node types that subtract, indicated by the NodeSubtractDataTypes
parameter (e.g., Diversion):

• NodeOutflow = NodeInflow - subtracted time series

55

AnalyzeNetworkPointFlow() Command TSTool Documentation

Command Reference – AnalyzeNetworkPointFlow () - 6

iii. Node types that set outflow, indicated by the NodeOutflowDataTypes
parameter (e.g., StreamGage):

• NodeOutflow = NodeInflow
iv. Node types that let flow through, indicated by the

NodeFlowThroughDataTypes parameter (e.g., InstreamFlow):
• NodeOutflow = NodeInflow.

d. For known flow points (e.g., StreamGage node type), set the reach gain/loss:
i. NodeUpstreamReachGain = difference between upstream node outflow and

known flow at downstream node in reach
e. If gain/loss is being estimated and a known flow node encountered (e.g., StreamGage),

gain/loss between this node and the nearest upstream node(s) is compute. This has only
been implemented for the case where all intervening nodes are in a non-branching
reach.

i. First calculate the distribution factor by which the reach gain (see previous step)
will be distributed to each node in the reach:

• If the GainMethod=None, no adjustment to flows is made and the
gain/loss upstream of the know flow node will result in a discontinuous
jump because no gain/loss adjustment is made.

• If the GainMethod=Distance, use the node distance data from the
network table to prorate the gain/loss in the stream reach. The difference
in distance between the upstream node and the current node is set to
weight for prorating the reach gain/loss. Use this method if the gain/loss
rate is the same throughout the reach and therefore only the distance
between nodes controls the gain/loss.

• If the GainMethod=Weight, the gain/loss is prorated by the weights
specified by the NodeWeightColumn parameter (or weight equally if
the weights are not specified in the network table). The weight of the
upstream known flow node is not used. Use this method if the relative
gain/loss for each node within the reach can be specified.

• If the GainMethod=DistanceWeight, the gain/loss is prorated by
the product of the weights specified by the NodeWeightColumn
parameter (or weight equally if the weights are not specified in the
network table) and by the values from the NodeDistanceColumn.
The weight of the upstream known flow node is not used. Use this
method if the relative rate of gain/loss for each node can be specified, but
overall gain/loss is also a function of the distance. Even though a rate is
specified, the calculated gain/loss may be slightly different because the
overall reach gain/loss must be balanced at known flow points for each
time step.

• Multiply NodeUpstreamReachGain by the gain/loss distribution factor to
calculate NodeReadGain for each node.

• Compute the cumulative gain/loss for the node by summing
NodeUpstreamNodeGain for each upstream node and set to
NodeUpstreamReachGain for the current node.

2. Analysis statistics optionally are written to an output table, which contains a row for each
network node. Statistics include information such as the number of missing values in the input
time series. This information can be used to evaluate the quality of the analysis. This feature
has not yet been implemented.

56

TSTool Documentation AnalyzeNetworkPointFlow() Command

 Command Reference – AnalyzeNetworkPointFlow () - 7

Issues that need to be considered include:

1. Missing data in input result in missing data in calculated values. Use TSTool features to fill
missing data in time series before using as input to the analysis. Because this may be a major
effort, especially for a long analysis period, it may be appropriate to read time series from model
data sets. It is envisioned that the output table will provide feedback on how much missing data
there is and how it impacts the analysis.

2. TSTool’s graphing tool currently does not allow graphing lines as a step function in the case
where no gain/loss is computed. Instead, the line connects the data points. An enhancement to
the graphing tool is needed.

3. TSTool does not provide a way to graph a stream reach where the graph values are pulled from
each time series for a point in time. Ideally a visualization tool would allow “scrolling” through
dates and showing the river reach with flow on the Y axis and node distance on the X axis,
although it would be tedious to have to scroll through the period.

4. There may be cases where a subtraction at the node takes all of the flow resulting in a zero or
negative value, essentially causing the node to be a known zero point flow. For example, in
Colorado, a river call may result in a river drying up during the call. It is possible to estimate
when this occurs, but the data quality may be low. Currently TSTool allows negative flows in
this case, which indicates that input time series or the simple gain method calculations do not
accurately represent the system. One option in this case is to use the TSTool
AdjustExtremes() command, which maintains mass balance around the extreme values.

It is important to understand that such a point flow analysis represents a snapshot of the system at any
point in time, but does not route flows through the network. Known flows at stream gages are used as
fixed values from which other data are estimated. Gains and losses are representative of the network
system, essentially interpolating over time and distance. This type of analysis introduces errors in cases
where the lag time between nodes would result in significant differences if lagging were considered. In
the physical system, changing an upstream flow would result in lagged impacts due to routing; however,
the point flow analysis shows the impacts to downstream nodes in the same time step. A more
sophisticated model with routing would be needed to represent actual conditions. However, the point
flow analysis will be reasonably accurate if gains and losses are occurring because of fairly static
phenomena (e.g., groundwater interactions that do not change rapidly within the network travel time).
One way to work around these limitations is to use a longer interval, for example monthly instead of
daily, in input time series or convert the point flow analysis results.

57

AnalyzeNetworkPointFlow() Command TSTool Documentation

Command Reference – AnalyzeNetworkPointFlow () - 8

The following dialog is used to edit the command and illustrates the syntax of the command:

AnalyzeNetworkPointFLow

AnalyzeNetworkPointFlow() Command Editor

58

TSTool Documentation AnalyzeNetworkPointFlow() Command

 Command Reference – AnalyzeNetworkPointFlow () - 9

The command syntax is as follows:

AnalyzeNetworkPointFlow(Parameter=Value,…)

Command Parameters

Parameter Description Default
TableID The identifier for the table defining the

network.
None – must be specified.

NodeIDColumn The name of the column in the network
table containing node identifiers. Node
identifiers will be used for the location
ID part of time series identifiers.

None – must be specified.

NodeNameColumn The name of the column in the network
table containing node names.

NodeTypeColumn The name of the column in the network
table containing node types. The node
type is used to specify what
calculations will occur for the node.

None – must be specified.

NodeDistanceColumn The name of the column in the network
table containing node distance. The
distance is the measure from the most
downstream node and is used when
GainMethod=Distance or
GainMethod=
DistanceWeight.

Must be specified when
GainMethod=
Distance or
GainMethod=
DistanceWeight.

NodeWeightColumn The name of the column in the network
table containing node weights, which is
used to distribute gain/loss when
GainMethod=Weight or
GainMethod=
DistanceWeight (in the latter case
the weight is the rate to use).

If not specified when
GainMethod=Weight,
gain/loss will be
distributed evenly for the
nodes. Must be specified
when GainMethod=
DistanceWeight.

DownstreamNodeIDColumn The name of the column in the network
table containing downstream node
identifiers. This information defines
the connectivity of the network.

None – must be specified.

NodeAddTypes Node types for which time series are
added to the node’s inflow to compute
outflow, for example the Return
node type in the above table example.
The NodeTypeColumn table column
is checked to determine the type for
each node in the network.

No additions will occur.

NodeAddDataType The time series data type to match for
the node. The data type is used with
the NodeID as the location ID to
match available time series to use as
input. This may be enhanced to allow
a TSID pattern like %L-DivTotal, to

No additions will occur.

59

AnalyzeNetworkPointFlow() Command TSTool Documentation

Command Reference – AnalyzeNetworkPointFlow () - 10

Parameter Description Default
allow more flexibility in matching time
series.

NodeSubtractTypes Node types for which time series are
subtracted from the node’s inflow, for
example the Diversion node type in
the above table example. The
NodeTypeColumn table column is
checked to determine the type for each
node in the network.

No subtractions will
occur.

NodeSubtractDataType The time series data type to match for
the node. The data type is used with
the NodeID as the location ID to
match available time series to use as
input. This may be enhanced to allow
to a TSID pattern like %L-DivTotal,
to allow more flexibility in matching
time series.

No subtractions will
occur.

NodeOutflowTypes Node types for which time series
outflows are set to the node’s time
input time series, for example the
Streamflow node type in the above
table example. The
NodeTypeColumn table column is
checked to determine the type for each
node in the network.

No known flows will be
set – gain/loss cannot be
computed.

NodeOutflowDataType The time series data type to match for
the node. The data type is used with
the NodeID as the location ID to
match available time series to use as
input. This may be enhanced to allow
a TSID pattern like %L-
Streamflow, to allow more
flexibility in matching time series.

No subtractions will
occur.

NodeFlowThroughTypes Node types for which time series
outflows are set to the node’s inflow,
for example the InstreamFlow
node type in the above table example.
The NodeTypeColumn table column
is checked to determine the type for
each node in the network.

No known flows will be
set – gain/loss cannot be
computed.

Interval The time series interval to process.
The interval is used with the node
identifier and data type to match input
time series.

None – must be specified.

AnalysisStart The analysis start, which defines the
period for output time series. Specify
to a precision consistent with Specify
to a precision consistent with Interval.

Global output period.

60

TSTool Documentation AnalyzeNetworkPointFlow() Command

 Command Reference – AnalyzeNetworkPointFlow () - 11

Parameter Description Default
AnalysisEnd The analysis end, which defines the

period for output time series. Specify
to a precision consistent with
Interval.

Global output period.

Units Units for output time series. Warnings
will be generated if input time series
for the analysis are not consistent with
these units.

GainMethod The method used to prorate the
gain/loss between known point flow
nodes to other nodes in the reach.
Currently this can be used only on non-
branching networks.
• Distance – prorate the gain/loss

using distance between nodes (as a
portion of the total distance). Use
this method if a constant gain/loss
rate applies over each reach in the
network.

• None – no gain/loss is estimated,
resulting in a discontinuity in an
outflow jump above each known
point flow.

• DistanceWeight – prorate the
gain/loss using distance*weight as
the weight for each node, where
the rate is specified in the weight
network table column. Use this
method when the gain/loss rate
varies by location and should be
represented as a rate.

• Weight – prorate the gain/loss
using the weights specified for
each node. Use this method if the
gain/loss fraction in a reach is
explicitly specified.

None

OutputTable The identifier for the output table to
receive analysis results statistics.

No output table will be
created.

The following command files illustrate how to implement a point flow analysis. In this case the first
command file prepares daily time series using the network as input. The time series could similarly be
provided by other processing procedures, or read from other model input files.

Read time series needed to perform the AnalyzeNetworkPointFlow() tests.
Use data from HydroBase to provide realistic input.
First read the network table
ReadTableFromExcel(TableID="Network1",InputFile="Network1.xlsx",ExcelColumnNames=FirstRowInRange)
Get the list of streamflow gages and associated time series
Free()
CopyTable(TableID="Network1",NewTableID="StreamflowStationList",IncludeColumns="NodeID",

61

AnalyzeNetworkPointFlow() Command TSTool Documentation

Command Reference – AnalyzeNetworkPointFlow () - 12

 ColumnMap="NodeID:StreamGageID",ColumnFilters="NodeType:StreamGage")
ReadTimeSeriesList(TableID="StreamflowStationList",LocationColumn="StreamGageID",DataSource="DWR,USGS",
 DataType="Streamflow",Interval="Day",DataStore="HydroBase",IfNotFound=Warn)
WriteDateValue(OutputFile="Network1-StreamGage-Streamflow.dv",MissingValue=NaN,TSList=AllMatchingTSID,
 TSID="*.*.Streamflow.Day.*")
Get the list of diversion stations and associated time series
Free()
CopyTable(TableID="Network1",NewTableID="DiversionStationList",IncludeColumns="NodeID",
 ColumnMap="NodeID:DiversionID",ColumnFilters="NodeType:Diversion")
ReadTimeSeriesList(TableID="DiversionStationList",LocationColumn="DiversionID",DataSource="DWR",
 DataType="DivTotal",Interval="Day",DataStore="HydroBase",IfNotFound=Warn)
WriteDateValue(OutputFile="Network1-Diversion-DivTotal.dv",MissingValue=NaN,TSList=AllMatchingTSID,
 TSID="*.*.DivTotal.Day.*")
Get the list of diversion return stations and associated time series
Free()
CopyTable(TableID="Network1",NewTableID="DiversionReturnStationList",IncludeColumns="NodeID",
 ColumnMap="NodeID:DiversionID",ColumnFilters="NodeType:Return")
ReadTimeSeriesList(TableID="DiversionReturnStationList",LocationColumn="DiversionID",DataSource="DWR",
 DataType="DivTotal",Interval="Day",DataStore="HydroBase",IfNotFound=Warn)
WriteDateValue(OutputFile="Network1-Return-
DivTotal.dv",MissingValue=NaN,TSList=AllMatchingTSID,TSID="*.*.DivTotal.Day.*")

The second command file performs the point flow analysis. This example is from a TSTool test and fills
missing data with a simple approach in order to ensure that no missing values are included in the analysis.
A single command file that combines the two command file examples also could be used.

Test analyzing a simple network for point flows
StartLog(LogFile="Results/Test_AnalyzeNetworkPointFlow.TSTool.log")
Read the network
ReadTableFromExcel(TableID="Network1",InputFile="Data\Network1.xlsx",Worksheet="Network1",
 ExcelColumnNames=FirstRowInRange)
Read the time series associated with network nodes (pregenerated)
Fill diversion time series with zeros so there is something to analyze
Fill stream gage time series with repeat forward and backward
SetInputPeriod(InputStart="1950-01-01",InputEnd="2013-12-31")
ReadDateValue(InputFile="Data\Network1-Diversion-DivTotal.dv")
ReadDateValue(InputFile="Data\Network1-Return-DivTotal.dv")
FillConstant(TSList=AllMatchingTSID,TSID="*.*.DivTotal.*.*",ConstantValue=0)
ReadDateValue(InputFile="Data\Network1-StreamGage-Streamflow.dv")
FillRepeat(TSList=AllMatchingTSID,TSID="*.*.Streamflow.*.*",FillDirection=Backward)
FillRepeat(TSList=AllMatchingTSID,TSID="*.*.Streamflow.*.*",FillDirection=Forward)
CheckTimeSeries(CheckCriteria="Missing")
Analyze the network point flow.
AnalyzeNetworkPointFlow(TableID="Network1",NodeIDColumn="NodeID",NodeNameColumn="NodeName",
 NodeTypeColumn="NodeType",NodeDistanceColumn="NodeDist",NodeWeightColumn="NodeWeight",
 DownstreamNodeIDColumn="DownstreamNodeID",NodeAddTypes="Return",NodeAddDataTypes="DivTotal",
 NodeSubtractTypes="Diversion",NodeSubtractDataTypes="DivTotal",NodeOutflowTypes="StreamGage",
 NodeOutflowDataTypes="Streamflow",NodeFlowThroughTypes="InstreamFlow",Interval=Day,
 AnalysisStart="1950-01-01",AnalysisEnd="2012-12-31",Units="CFS",GainMethod="Distance",
 OutputTableID="Results")

62

 Command Reference – AppendFile() - 1

Command Reference: AppendFile()
Append 1+ files to another file

Version 10.12.00, 2012-10-12

The AppendFile() command appends one or more files to another file. All or only matching lines
from input files can be transferred. This command is useful for appending multiple data files into a single
file that can be read by TSTool.

The following dialog is used to edit the command and illustrates the syntax for the command.

AppendFile

AppendFile() Command Editor

63

AppendFile() Command TSTool Documentation

Command Reference – AppendFile() - 2

The command syntax is as follows:

AppendFile(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of one or more files to delete, using the

following conventions:
• No * in name – match one file.
• Filename of *– match all files in input

directory (working directory by default).
• Filename of *.ext – match all files with

extension
More options may be supported in the future
when TSTool is updated to use Java 1.7+.

None – must be specified.

OutputFile The output file that will be appended to. The file
is created if it does not exist. Use the
RemoveFile() command to remove the old
file.

None – must be specified.

IncludeText A regular expression pattern to include text. This
uses the Java regular expressions syntax (see
http://en.wikipedia.org/wiki/Regular_expression).

Transfer all lines.

IfNotFound Indicate action if the file is not found, one of:
• Ignore – ignore the missing file (do not

warn).
• Warn – generate a warning (use this if the

file truly is expected and a missing file is a
cause for concern).

• Fail – generate a failure (use this if the file
truly is expected and a missing file is a cause
for concern).

Warn

The following table lists regular expression examples:

InputText
Regular
Expression

Description

.*\Q-\E.* Match lines that start with any character, end with any character, and contain a dash.
The \Q and \E characters are special characters to start and end a quoted character,
and are necessary because the dash has special meaning in a regular expression.

64

http://en.wikipedia.org/wiki/Regular_expression

 Command Reference – AppendTable () - 1

Command Reference: AppendTable()
Append one table to another table

Version 10.21.00, 2013-06-28

The AppendTable() command appends rows from one table to another table. For appended rows:

• values in columns that are not matched are set to null in the receiving table
• values in columns where the data types do not match are set to null in the receiving table

The following dialog is used to edit the command and illustrates the syntax of the command.

AppendTable

AppendTable() Command Editor

The command syntax is as follows:

AppendTable(Parameter=Value,…)

Command Parameters

Parameter Description Default
TableID The identifier for the original table, to which records

will be appended.
None – must be
specified.

AppendTableID The identifier for the table from which to append. None – must be
specified.

IncludeColumns The names of columns to append from
AppendTableID, separated by commas. See also
ColumnMap to indicate how to map column names in
the append table to the first table (necessary if the
column names don’t match).

Append all of the
columns from
AppendTableID
that match columns in
TableID.

ColumnMap The map of the append table columns to the first
table’s columns, necessary when column names are not

If no map, append
table column names in

65

AppendTable() Command TSTool Documentation

Command Reference – AppendTable() - 2

Parameter Description Default
the same:
AppendColumn1:OriginalColumn1,
AppendColumn2:OriginalColumn2

IncludeColumns
must have the same
name in the first table.

ColumnFilters Filters that limit the number of rows being appended
from the append table, using the syntax:
FilterColumn1:FilterPattern1,
FilterColumn2:FilterPattern2
Patterns can use * to indicate wildcards for matches.
Only string values can be checked (other data types are
converted to strings for comparison). Comparisons are
case-independent. All patterns must be matched in
order to append the row. In the future a command may
be added to perform queries on tables, similar to SQL
for databases.

No filtering.

The following figures show the input tables and results (modified first table) corresponding to the
parameters shown in the editor dialog figure above. Note that the column names for “Table2” have a “2”.

AppendTable_Table1

Table Corresponding to TableID in Command
Editor

AppendTable_Table2

Table Corresponding to AppendTableID in
Command Editor

AppendTable_Table1

Table Corresponding to Results from Parameters in Command Editor

66

 Command Reference – ARMA() - 1

Command Reference: ARMA()
Lag and attenuate a time series using AutoRegressive Moving Average

Version 10.13.00, 2012-10-25

The ARMA() command lags and attenuates a time series (e.g., to route a streamflow time series
downstream). This approach preserves the “mass” of the data. The general equation for ARMA is:

O a O a O a O b I b I b It t t p t p t t q t q= ∗ + ∗ + + ∗ + ∗ + ∗ + + ∗− − − − −1 1 2 2 0 1 1... ...

Where:

t = time step

Ot = output value at time t

It = input value at time t

a, b = ARMA coefficients

and the p and q values indicate the degree of the equation: ARMA(p,q).

The ARMA coefficients are determined by analyzing historical data and may be developed using a data
interval that is different than the data interval of the time series that is being manipulated. The
coefficients are typically computed by an external analysis program (TSTool does not perform this
function).

The time series to process can have any interval. The a and b coefficients are listed in the dialog from
left-most to right-most in the equation. Note that there are p a-coefficients and (q + 1) b-coefficients
(because there is a b-coefficient at time t0). The interval used to compute the ARMA coefficients can be
different from the data interval but the data and ARMA intervals must be divisible by a common interval.
The ARMA algorithm is executed as follows:

1. The data and ARMA intervals are checked and if they not the same, the data are expanded by

duplicating each value into a temporary array. For example, if the data interval is 6Hour and the
ARMA interval is 2Hour, each data value is expanded to three data values (2Hour values). If the data
interval is 6Hour and the ARMA interval is 10Hour, each data value is expanded to three data values
(2Hour values).

2. The ARMA equation is applied at each point in the expanded data array. However, because the
ARMA coefficients were developed using a specific interval, only the data values at the ARMA
interval are used in the equation. For example, if the expanded data array has 2Hour data and the
ARMA interval is 10Hour, then every fifth value will be used (e.g., t corresponds to the “current”
value and t – 1 corresponds to the fifth value before the current value). Because the ARMA algorithm
depends on a number of previous terms in both the input and output, there will be missing terms at the
beginning of the data array and in cases where missing data periods are encountered. Ideally ARMA
will be applied to filled data and only the initial conditions will be an issue. In this case the output
period should ideally be less than the total period so that the initial part of the routed time series can
be ignored. In cases where O values are missing, the algorithm first tries to use the I values. If any
values needed for the result are missing, the result is set to missing.

3. The final results are converted to a data interval that matches the original input, if necessary. If the
original data interval and the ARMA interval are the same, no conversion is necessary. For example,
if the original data interval is 6Hour and the ARMA interval is 10Hour, then the expanded data

67

ARMA() Command TSTool Documentation

Command Reference – ARMA() - 2

interval will be 2Hour. Consequently, three sequential expanded values are averaged to obtain the
final 6Hour time series.

The following dialog is used to edit the command and illustrates the command syntax.

ARMA

ARMA() Command Editor

The command syntax is as follows:

ARMA(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed, one of:

• AllMatchingTSID – all time series that match the TSID
(single TSID or TSID with wildcards) will be modified.

• AllTS – all time series before the command.
• EnsembleID – all time series in the ensemble will be

modified.
• FirstMatchingTSID – the first time series that matches the

AllTS

68

TSTool Documentation ARMA() Command

 Command Reference – ARMA() - 3

Parameter Description Default
TSID (single TSID or TSID with wildcards) will be modified.

• LastMatchingTSID – the last time series that matches the
TSID (single TSID or TSID with wildcards) will be modified.

• SelectedTS – the time series are those selected with the
SelectTimeSeries() command.

TSID The time series identifier or alias for the time series to be modified,
using the * wildcard character to match multiple time series.

Required if
TSList=*TSID.

EnsembleID The ensemble to be modified, if processing an ensemble. Required if
TSList=
EnsembleID.

ARMA
Interval

The ARMA interval to use in the analysis None – must be
specified.

a a coefficients. Optional.
b b coefficients. None – must be

specified.

A sample command file to process streamflow data from the USGS is as follows:

SetOutputPeriod(OutputStart="1936-01-01",OutputEnd="1936-03-31")
ReadUsgsNwisRdb(InputFile="Data/G03596000.rdb",Alias=Original)
Copy(TSID="Original",NewTSID="03596000.USGS.Streamflow.Day.Routed",Alias=Routed)
ARMA(TSList=AllMatchingTSID,TSID="Routed",ARMAInterval=2Hour,a="0.7325,
-0.3613,0.1345,0.5221,-0.2500,0.1381,-0.2643,0.0558",b="0.0263,0.0116,
-0.0146,-0.0081,0.0127,0.0798,0.0727,0.0523,0.0599")

69

ARMA() Command TSTool Documentation

Command Reference – ARMA() - 4

The following figure shows the original and routed time series.

ARMA_graph

Example Graph Showing Original and ARMA-Routed Time Series

70

TSTool Documentation ARMA() Command

 Command Reference – ARMA() - 5

The Cumulate() command can be used to verify mass balance of the original and routed time series
(see the Cumulate() command discussion below). For example, insert a Cumulate() command
near the end of a command file.

The following figure shows the time series from the previous graph, this time as cumulative time series.

ARMA_graph_cumulative

Example Graph Showing Original and ARMA-Routed Time Series as Cumulative Values

71

ARMA() Command TSTool Documentation

Command Reference – ARMA() - 6

This page is intentionally blank.

72

Command Reference: Blend()
Append a Time Series to the End of Another Time Series

Version 08.15.00, 2008-05-01

The Blend()command blends one time series into another, extending the first time series period if
necessary. This is typically used for combining time series for a station that has been renamed or to blend
historic and real-time data. The second (independent time series) will ALWAYS override the first time
series. See also the SetFromTS() and Add() commands. The Blend() command ensures that
single data values are used whereas Add() will add values if more than one value is available at the same
date/time. The SetFromTS() does not extend the period.

The following dialog is used to edit the command and illustrates the syntax of the command.

Blend

Blend() Command Editor

 Command Reference – Blend() - 1 73

Blend() Command TSTool Documentation

The command syntax is as follows:

Blend(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSID The time series identifier or alias for the

time series to be modified.
None – must be specified.

IndependentTSID The time series identifier or alias for the
time series to be blended to the first time
series.

None – must be specified.

BlendMethod The method used to blend the data, one
of:
• BlendAtEnd, resulting in the main

time series having the other time
series attached to the end of its
period.

None – must be specified.
Currently only BlendAtEnd is
recognized.

A sample command file to blend two time series from the State of Colorado’s HydroBase database is as
follows:

08236000 - ALAMOSA RIVER ABOVE TERRACE RESERVOIR
08236000.DWR.Streamflow.Month~HydroBase
08236500 - ALAMOSA RIVER BELOW TERRACE RESERVOIR
08236500.DWR.Streamflow.Month~HydroBase
Blend(TSID=”08236000.DWR.Streamflow.Month”,
 IndependentTSID=”08236500.DWR.Streamflow.Month”,
 BlendMethod=”BlendAtEnd”)

Command Reference – Blend() - 2 74

 Command Reference – CalculateTimeSeriesStatistic () - 1

Command Reference:
CalculateTimeSeriesStatistic()

Calculate time series statistic
Version 10.18.00, 2013-02-21

The CalculateTimeSeriesStatistic() command calculates a statistic for a time series
(typically a single value, but may have multiple output values) and optionally adds the result to a table.
Multiple time series can be processed. The sample from each time series consists of data values for the
full period or a shorter analysis period if specified for the command. Missing values typically are ignored
unless significant for the statistic (e.g., Statistic=MissingCount).

The following dialog is used to edit the command and illustrates the command syntax. Most statistics do
not require additional input; however, those that do utilize the Value* parameters to specify additional
information.

CalculateTimeSeriesStatiistic

CalculateTimeSeriesStatistic() Command Editor

75

CalculateTimeSeriesStatistic() Command TSTool Documentation

Command Reference – CalculateTimeSeriesStatistic () - 2

The command syntax is as follows:

CalculateTimeSeriesStatistic(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed, one

of:
• AllMatchingTSID – all time series that

match the TSID (single TSID or TSID with
wildcards).

• AllTS – all time series before the command.
• EnsembleID – all time series in the ensemble.
• FirstMatchingTSID – the first time series

that matches the TSID (single TSID or TSID
with wildcards).

• LastMatchingTSID – the last time series
that matches the TSID (single TSID or TSID
with wildcards).

• SelectedTS – the time series selected with
the SelectTimeSeries() command.

AllTS

TSID The time series identifier or alias for the time series
to be processed, using the * wildcard character to
match multiple time series.

Required if
TSList=*TSID.

EnsembleID The ensemble to be processed, if processing an
ensemble.

Required if
TSList=EnsembleID.

Statistic Statistic to compute as shown in the Statistic
Details table below.

None – must be specified.

Value1 Input data required by the statistic. Currently the
dialog does not check the value for correctness – it
is checked when the statistic is computed.

See Statistic Details
table below.

Value2 Input data required by the statistic. Currently the
dialog does not check the value for correctness – it
is checked when the statistic is computed.

See Statistic Details
table below.

Value3 Input data required by the statistic. Currently the
dialog does not check the value for correctness – it
is checked when the statistic is computed.

See Statistic Details
table below.

AnalysisStart The date/time to start analyzing data. Full period is analyzed.
AnalysisEnd The date/time to end analyzing data. Full period is analyzed.
Analysis
WindowStart

The calendar date/time for the analysis start within
each year. Specify using the format MM, MM-DD,
MM-DD hh, or MM-DD hh:mm, consistent with the
time series interval precision. A year of 2000 will
be used internally to parse the date/time. Use this
parameter to limit data processing within the year,
for example to analyze only a season. The analysis
window has only been enabled for Count,
GECount, GTCount, LECount, LTCount, Max,

Analyze the full year.

76

TSTool Documentation CalculateTimeSeriesStatistic () Command

 Command Reference – CalculateTimeSeriesStatistic () - 3

Parameter Description Default
Min, MissingCount, MissingPercent,
NonmissingCount, and
NonmissingPercent statistics.

Analysis
WindowEnd

Specify date/time for the analysis end within each
year. See AnalysisWindowStart for details.

Analyze the full year.

TableID Identifier for table that receives the statistic. An
existing table can be specified. If not found, a new
table will be created.

Optional – table output is
not required.

TableTSIDColumn Table column name that is used to look up the time
series. If a matching TSID is not found, a row will
be added to the table. If a TSID is found, the
statistic cell value for the time series is modified.

Optional – table output is
not required.

TableTSIDFormat The specification to format the time series identifier
to insert into the TSID column. Use the format
choices and other characters to define a unique
identifier.

Time series alias if
available, or the time
series identifier.

TableStatistic
Column

Table column name to receive the statistic value. If
not found in the table, a new column is added
automatically.

Optional – table output is
not required.

The following table provides additional information about specific statistics, in particular to describe how
the statistic is computed and whether additional input needs to be provided with Value command
parameters.

Statistic Details

Statistic Description Required

Values
Count Number of data values total, including missing and

non-missing.

DeficitMax Maximum deficit value (where deficit is mean minus
value).

DeficitMean Mean deficit value (where deficit is mean minus
value).

DeficitMin Minimum deficit value (where deficit is mean minus
value).

DeficitSeqLengthMax Maximum number of sequential intervals where each
value is less than the mean (for example maximum
drought length).

DeficitSeqLengthMean Mean number of sequential intervals where each value
is less than the mean (for example mean drought
length).

DeficitSeqLengthMin Minimum number of sequential intervals where each
value is less than the mean (for example minimum
drought length).

DeficitSeqMin Maximum sum of sequential values where each value
is less than the mean (for example maximum drought
water volume).

DeficitSeqMean Mean of the sum of sequential values where each

77

CalculateTimeSeriesStatistic() Command TSTool Documentation

Command Reference – CalculateTimeSeriesStatistic () - 4

Statistic Description Required
Values

value is less than the mean (for example mean drought
water volume).

DeficitSeqMin Minimum sum of sequential values where each value
is less than the mean (for example minimum drought
water volume).

GECount Count of values greater than or equal to Value1.

Value1 –
criteria to check

GTCount Count of values greater than Value1.

Value1 –
criteria to check

Lag-1AutoCorrelation Autocorrelation between values and the those that
follow in the next time step, given by:

rk = Σi=1
N-k(Yi - Ymean)(Yi + k - Ymean)

 Σi=1
N(Yi - Ymean)2

Last Last non-missing value.

LECount Count of values less than or equal to Value1.

Value1 –
criteria to check

LTCount Count of values less than Value1.

Value1 –
criteria to check

Max Maximum value.
Mean Mean value.
Min Minimum value.
MissingCount Number of missing values.
MissingPercent Percent of values that are missing.
MissingSeqLengthMax Maximum number of sequential values that are

missing.

NonmissingCount Number of non-missing values.
NonmissingPercent Percent of values that are not missing.
NqYY This statistic is typically used to evaluate the return

period of low flows and is implemented only for daily
data. The N indicates the number of daily values to be
averaged and YY indicates the return interval. For
example, 7q10 indicates the flow corresponding to
the 10-year recurrence interval for minimum average
daily flow (for 7 days) in a year. This statistic is
computed as follows, using 7q10 as an example:
1. Determine the number of years to be analyzed

(from analysis period command parameters or
time series data).

2. For each year, loop through each day from
January 1 to December 31. Compute an average
flow by averaging 7 days, in this case with 3
values on each side of the current day and
including the current day. If at the end of the
year, use 3 values from adjoining years. The
number of missing data allowed is controlled by
the Value3 command parameter.

Value1 –
specify the
number of daily
values to be
averaged.
Currently this
must be an odd
number to allow
bracketing the
current day.

Value2 –
specify the
return interval
(e.g., 10).

Value3 –
specify the
number of

78

TSTool Documentation CalculateTimeSeriesStatistic () Command

 Command Reference – CalculateTimeSeriesStatistic () - 5

Statistic Description Required
Values

3. For the year, save the minimum 7-day average.
4. Utilize the minimum values for all years, with log-

Pearson Type III distribution, to determine the
value for the 10-year recurrence interval. See
http://pubs.usgs.gov/sir/2008/5126/section3.html
for a description of NqYY and “Hydrology for
Engineers, 3rd Edition,” Linsley, Kohler, Paulhus
for a description of log-Pearson Type III
distribution.

missing values
allowed in the
average (e.g., 0
for most
rigorous
analysis). It
may be useful
to set this value
if, for example,
a single daily
value is
available in the
time series, for
example entered
on the first day
of the month.

Skew Skew coefficient, as follows:
Cs = N Σi=1

N(Yi - Ymean)3

 (n – 1)(n – 2)s3

where s = standard deviation

StdDev Standard deviation.
SurplusMin Maximum surplus value (where surplus is value minus

mean).

SurplusMean Mean surplus value (where surplus is value minus
mean).

SurplusMin Minimum surplus value (where surplus is value minus
mean).

SurplusSeqLengthMax Maximum number of sequential intervals where each
value is greater than the mean (for example maximum
water surplus length).

SurplusSeqLengthMean Mean number of sequential intervals where each value
is greater than the mean (for example mean water
surplus length).

SurplusSeqLengthMin Minimum number of sequential intervals where each
value is greater than the mean (for example minimum
water surplus length).

SurplusSeqMin Maximum sum of sequential values where each value
is greater than the mean (for example maximum water
surplus volume).

SurplusSeqMean Mean of the sum of sequential values where each
value is greater than the mean (for example mean
water surplus volume).

SurplusSeqMin Minimum sum of sequential values where each value
is greater than the mean (for example minimum water
surplus volume).

Total Total of values.
TrendOLS Ordinary least squares analysis is used to compute

results that are named TableStatisticColumn

79

http://pubs.usgs.gov/sir/2008/5126/section3.html

CalculateTimeSeriesStatistic() Command TSTool Documentation

Command Reference – CalculateTimeSeriesStatistic () - 6

Statistic Description Required
Values

with appended _Intercept, _Slope, and _R2.
Variance Variance.

The following example illustrates how to use the command to compute the 7q10 statistic for daily flow:

ReadDateValue(Alias=”linsley”,InputFile="Data\linsley.dv")
 NewTable(TableID="Table1",Columns="TSID,string;7q10,double")
CalculateTimeSeriesStatistic(Statistic="NqYY",Value1=7,Value2=10,Value3=6,
 TableID="Table1",TableTSIDColumn="TSID",TableStatisticColumn="7q10")
WriteTableToDelimitedFile(TableID="Table1",
 OutputFile="Results/Test_CalculateTimeSeriesStatistic_7q10_linsley_out.csv")

80

Command Reference: ChangeInterval()
Create new time series by changing the input time series data interval

Version 10.10.01, 2011-04-18

The ChangeInterval() command creates new time series by changing the data interval of each input
time series. A list of one or more time series or an ensemble of time series can be processed. The
majority of the original header data (e.g., description, units) are copied to the new time series; however,
the new interval will be used for data management and in the new time series identifier. Time series data
values have a time scale of instantaneous, accumulated (e.g., volume), or mean. Changing the interval
also can result in a change in the time scale (e.g., converting instantaneous values to a mean value).
Currently, the time scale for input and output time series is NOT automatically determined from the data
type and interval and must be specified as ACCM, MEAN, or INST. Instantaneous values are recorded at
the date/time of the value and typically apply to small intervals (e.g. minute and hour). For mean and
accumulated time series, the date/time for each value is at the end of the interval for which the value
applies.

Irregular time series have a date/time precision and a scale appropriate for the data. For example,
irregular minute time series may be used for instantaneous temperature or accumulated precipitation.
Irregular day time series may be used for “instantaneous” reservoir level. For regular time series, the data
intervals must align so that each larger interval aligns with the end-points of the corresponding smaller
intervals (e.g., the ends of 6-hour intervals align with the daily interval).

The following conversions are currently supported, with a description of the conversion process. Refer to
the command parameter reference for an explanation of parameters. The conversion from daily and
monthly interval to yearly interval (for ACCM and MEAN) utilizes a simpler algorithm.

Irregular Time Series to Regular Time Series

An irregular time series can be converted to a regular time series. The ability to change from an irregular
or regular time series to an irregular time series currently is not implemented. Missing data is handled in
different ways depending on the old and new time scales. Each of the follow examples demonstrates how
missing data is interpreted.

The following conversion combinations are allowed.

Small Interval ACCM to Large Interval ACCM

When converting from small interval accumulated data to large interval accumulated data, values from
the old time series are summed for the new interval-ending date/time from the values in the old intervals
prior to this date/time.

The following illustrates the conversion from NHour to NHour (1Hour to 3Hour example):

Day 1,
Hour 0
(A)

Day 1,
Hour 1
(B)

Day 1,
Hour 2
(Missing)

Day 1,
Hour 3
(C)

Day 1,
Hour 4
(Missing)

Day 1,
Hour 5
(Missing)

Day 1,
Hour 6
(Missing)

Day 1,
Hour 0
=A

Day 1, Hour 3
=B+C

Day 1, Hour 6
= Missing

 Command Reference – ChangeInterval() - 1 81

ChangeInterval() Command TSTool Documentation

Large Interval ACCM to Small Interval ACCM

When converting from large interval accumulated data to small interval accumulated data, values from
the old time series are equally divided by the number of intervals prior to this date/time in the new time
series since the previous non-missing data.

The following illustrates the conversion from NHour to NHour (3Hour to 1Hour example):

Day 1,
Hour 0
(A)

Day 1, Hour 3
(B)

Day 1, Hour 6
(Missing)

Day 1, Hour 9
(C)

Day 1,
Hour 0
=A

Day 1,
Hour 1
=B/3

Day 1,
Hour 2
=B/3

Day 1,
Hour 3
=B/3

Day 1,
Hour 4
=C/6

Day 1,
Hour 5
=C/6

Day 1,
Hour 6
=C/6

Day 1,
Hour 7
=C/6

Day 1,
Hour 8
=C/6

Day 1,
Hour 9
=C/6

Small Interval MEAN or INST to Large Interval MEAN

When converting from instantaneous or mean data to mean data, mean values are calculated for the new
interval-ending date/time from the values in the old intervals prior to this date/time.

The following illustrates the conversion from NHour to NHour (1Hour to 3Hour example):

Day 1,
Hour 0
(A)

Day 1,
Hour 1
(B)

Day 1,
Hour 2
(Missing)

Day 1,
Hour 3
(C)

Day 1,
Hour 4
(Missing)

Day 1,
Hour 5
(Missing)

Day 1,
Hour 6
(Missing)

Day 1,
Hour 0
=A

Day 1, Hour 3
=(B+C)/2

Day 2, Hour 6
= Missing

Large Interval MEAN or INST to Small Interval MEAN

When converting from large interval mean or instantaneous data to small interval mean data, values from
the old time series are copied to the new interval-ending date/time time series.

The following illustrates the conversion from NHour to NHour (3Hour to 1Hour example):

Day 1,
Hour 0
(A)

Day 1, Hour 3
(B)

Day 1, Hour 6
(Missing)

Day 1, Hour 9
(C)

Day 1,
Hour 0
=A

Day 1,
Hour 1
=B

Day 1,
Hour 2
=B

Day 1,
Hour 3
=B

Day 1,
Hour 4
=C

Day 1,
Hour 5
=C

Day 1,
Hour 6
=C

Day 1,
Hour 7
=C

Day 1,
Hour 8
=C

Day 1,
Hour 9
=C

Small Interval INST to Large Interval INST

When converting from small interval instantaneous data to large interval instantaneous data, the data is
copied directly from the old time series when available. If the data is missing, the most recent previous
valid data is used.

The following illustrates the conversion from NHour to NHour (1Hour to 3Hour example):

Command Reference – ChangeInterval() - 2 82

TSTool Documentation ChangeInterval() Command

Day 1,
Hour 0
(A)

Day 1,
Hour 1
(B)

Day 1,
Hour 2
(Missing)

Day 1,
Hour 3
(C)

Day 1,
Hour 4
(Missing)

Day 1,
Hour 5
(D)

Day 1,
Hour 6
(Missing)

Day 1,
Hour 7
(E)

Day 1,
Hour 8
(F)

Day 1, Hour 0
=A

Day 1, Hour 3
=C

Day 1, Hour 6
=D

Large Interval INST to Small Interval INST

When converting from large interval instantaneous data to small interval instantaneous data, values from
the old time series are linearly interpolated to calculate values for the new time series.

The following illustrates the conversion from NHour to NHour (3Hour to 1Hour example):

Day 1,
Hour 0
(A)

Day 1, Hour 3
(B)

Day 1, Hour 6
(Missing)

Day 1, Hour 9
(C)

Day 1,
Hour 0
=A

Day 1,
Hour 1
=A+
(B-A)*
(1/3)

Day 1,
Hour 2
=A+
(B-A)*
(2/3)

Day 1,
Hour 3
=B

Day 1,
Hour 4
=B+
(C-B)*
(1/6)

Day 1,
Hour 5
= B+
(C-B)*
(2/6)

Day 1,
Hour 6
= B+
(C-B)*
(3/6)

Day 1,
Hour 7
= B+
(C-B)*
(4/6)

Day 1,
Hour 8
= B+
(C-B)*
(5/6)

Day 1,
Hour 9
=C

Regular Time Series to Regular Time Series

ACCM (Accumulation) to ACCM (Accumulation)

Small Interval ACCM (Accumulation) to Large Interval ACCM (Accumulation)

Changing the interval for small interval accumulated data to large interval accumulated data involves
summing the small interval data values for the period that overlaps the large interval.

Accumulated data have a timestamp corresponding to the interval-end for the accumulation. Conversions
involving time intervals that have zero values (e.g., Hour 0, Minute 0) result in a perceived shift in time
because the zero occurs on the boundary between larger intervals. The following examples illustrate the
accumulation for common cases. In cases where an accumulation jumps over two or more interval
categories (e.g., minute to day), the accumulation occurs as if the two intermediate accumulations
occurred in succession. In the following examples, the general representation is shown first, followed by
an example where appropriate.

The following illustrates the conversion from NHour to Day (6Hour to Day example, i equals the hour
multiplier):

Day 1,
Hour 0

Day 1,
Hour i

Day 1,
Hour 2i

Day 1,
Hour 3i

Day 2,
Hour 0

Day 1,
Hour 0

Day 1,
Hour 6 (A)

Day 1,
Hour 12 (B)

Day 1,
Hour 18 (C)

Day 2,
Hour 0 (D)

 Day 1 accumulation (A+B+C+D)

 Command Reference – ChangeInterval() - 3 83

ChangeInterval() Command TSTool Documentation

The following illustrates the conversion from NDay to Month (example for a month with 30 days):

Month 1,
Day 1 (A1)

…

… Month 1, Day
30 (A30)

Month 1 accumulation (A1 + … + A30)

Large Interval ACCM (Accumulation) to Small Interval ACCM (Accumulation)

Changing from large interval accumulation data to small interval mean data involves dividing each
accumulated value by the number of new values for that same period of record.

The following illustrates the conversion from Day to 6Hour (Day to 6Hour example, i equals the hour
multiplier):

Day 1 accumulate (A)
Day 1,
Hour 0

Day 1,
Hour i

Day 1,
Hour 2i

Day 1,
Hour 3i

Day 1,
Hour 0
= A/4

Day 1,
Hour 6
= A/4

Day 1,
Hour 12
= A/4

Day 1,
Hour 18
= A/4

ACCM (Accumulation) to INST (Instantaneous)

Accumulated to instantaneous is not currently supported.

ACCM (Accumulation) to MEAN

Small Interval ACCM to Large Interval MEAN

See Small Interval INST (Instantaneous) to Large Interval MEAN.

Interval ACCM to Same Interval MEAN

Changing the interval from accumulation data to the same interval mean data involves copying the data
from the old time series to the new time series (no changes to date values occur).

The following illustrates the conversion from 6Hour to 6Hour (6Hour to 6Hour example, i equals the hour
multiplier):

Day 1,
Hour 0

Day 1,
Hour i

Day 1,
Hour 2i

Day 1,
Hour 3i

Day 1,
Hour 0
(A)

Day 1,
Hour 6
(B)

Day 1,
Hour 12
(C)

Day 1,
Hour 18
(D)

Day 1,
Hour 0
=A

Day 1,
Hour 6
=B

Day 1,
Hour 12
=C

Day 1,
Hour 18
=D

Command Reference – ChangeInterval() - 4 84

TSTool Documentation ChangeInterval() Command

Large Interval ACCM to Small Interval MEAN

See Large Interval ACCM to Small Interval ACCM.

INST (Instantaneous) to INST (Instantaneous)

Small Interval INST (Instantaneous) to Large Interval INST (Instantaneous)

Changing the interval for small interval instantaneous data to large interval instantaneous data involves
assigning each date in the new time series a value from the corresponding date in the old time series. The
HandleMissingInputHow parameter indicates how to interpret a missing value in the old time
series. HandleMissingInputHow=KeepMissing will simply assign a missing value for that
date/time. HandleMissingInputHow=SetToZero will set the value to 0. Repeat fills the date
with data from the last non-missing value. Interpolation and using a non-missing future value may be
added in the future.

A special case is the ability to compute a statistic from the sample of values from the input time series,
using the Statistic parameter. For example, instantaneous 5 minute temperature data can be
converted to 1 day maximum values. In this case, each 1 day sample of values from the input time series
is used to compute the statistic. The initial handling of missing data described above is supported and
additionally the AllowMissingCount parameter is recognized to control computation of the statistic.

The following illustrates the conversion from NHour to Day (6Hour to Day example where
HandleMissingInputHow = Repeat, i equals the hour multiplier):

Day 1,
Hour 0

Day 1,
Hour i

Day 1,
Hour 2i

Day 1,
Hour 3i

Day 1,
Hour 0

Day 1,
Hour i

Day 1,
Hour 2i

Day 1,
Hour 3i

Day 1,
Hour 0
(A)

Day 1,
Hour 6
(B)

Day 1,
Hour 12
(C)

Day 1,
Hour 18
(D)

Missing
data

Day 1,
Hour 6
(E)

Day 1,
Hour 12
(F)

Day 1,
Hour 18
(G)

Day 1 instantaneous = A Day 2 instantaneous = D

Large Interval INST (Instantaneous) to Small Interval INST (Instantaneous)

Small interval instantaneous data is created from larger interval instantaneous data by linearly
interpolating between the previous and current large interval data to fill each value in the new time series
during that same period of time. If the value in the old time series is missing, the method specified by the
user in the HandleMissingInputHow parameter is used.

 Command Reference – ChangeInterval() - 5 85

ChangeInterval() Command TSTool Documentation

The following illustrates the conversion from Day to NHour (Day to 6Hour example, i equals the hour
multiplier):

Day 1 instantaneous (A) Day 2 instantaneous (B) Day 3 …
Day 1,
Hour 0

Day 1,
Hour i

Day 1,
Hour 2i

Day 1,
Hour 3i

Day 2,
Hour 0

Day 2,
Hour i

Day 2,
Hour 2i

Day 2,
Hour 3i

Day 1,
Hour 0
=A

Day 1,
Hour 6
=A+
(B-A)*
(6/24)

Day 1,
Hour 12
=A+
(B-A)*
(12/24)

Day 1,
Hour 18
=A+
(B-A)*
(18/24)

Day 2,
Hour 0
=B

Day 2,
Hour 6
…

Day 2,
Hour 12
…

Day 2,
Hour 18
…

These values are an interpolated value between
the Day 1 instantaneous value and the Day 2
instantaneous value using a time of 24 hours.

These values are an interpolated value
between the Day 2 instantaneous value
and the Day 3 instantaneous value using
a time of 24 hours.

In the future, the ability to repeat input values may be added.

INST (Instantaneous) to ACCM (Accumulation)

Instantaneous to accumulated is not currently supported.

INST (Instantaneous) to MEAN

Small Interval INST (Instantaneous) to Large Interval MEAN

Changing from small interval instantaneous data to large interval mean data involves adding together all
the values from the small interval time series over the larger interval for the corresponding time period
and then dividing by the number of data values used within this calculation. As in other conversions,
HandleMissingInputHow is first used to interpret missing data. If HandleEndpointHow =
AverageEndpoints, the values at each end of the interval are averaged for minute and hour inputs
(the parameter does not apply to day, month or year input).

The following illustrates the conversion from NHour to Day (6Hour to Day example with
HandleEndpointHow = IncludeFirstOnly, i equals the hour multiplier):

Day 1,
Hour 0

Day 1,
Hour i

Day 1,
Hour 2i

Day 1,
Hour 3i

Day 2,
Hour 0

Day 2,
Hour i

Day 2,
Hour 2i

Day 2,
Hour 3i

Day 1,
Hour 0

Day 1,
Hour 6

Day 1,
Hour 12

Day 1,
Hour 18

Day 2,
Hour 0

Day 2,
Hour 6

Day 2,
Hour 12

Day 2,
Hour 18

Value A B C D E F G H

Day 1 mean= (A+B+C+D)/4 Day 2 mean=(E+F+G+H)/4

Command Reference – ChangeInterval() - 6 86

TSTool Documentation ChangeInterval() Command

The following illustrates the conversion from NHour to Day (6Hour to Day example with
HandleEndpointHow = AverageEndpoints, i equals the hour multiplier):

Day 1,
Hour 0

Day 1,
Hour i

Day 1,
Hour 2i

Day 1,
Hour 3i

Day 2,
Hour 0

Day 2,
Hour i

Day 2,
Hour 2i

Day 2,
Hour 3i

Day 1,
Hour 0

Day 1,
Hour 6

Day 1,
Hour 12

Day 1,
Hour 18

Day 2,
Hour 0

Day 2,
Hour 6

Day 2,
Hour 12

Day 2,
Hour 18

Value A B C D E F G H I

Day 1 mean= ((A+E)/2 +B+C+D) / 4 Day 2 mean=((E+I)/2+F+G+H) / 4

Interval INST (Instantaneous) to Same Interval MEAN

If OutputFillMethod = Interpolate, see Large Interval INST (Instantaneous) to Small
Interval INST (Instantaneous). Otherwise, the values are duplicated from the old time series directly to
the new time series.

The following illustrates the conversion from 6Hour to 6Hour (6Hour to 6Hour example with
OutputFillMethod = Repeat, i equals the hour multiplier):

Day 1,
Hour 0

Day 1,
Hour i

Day 1,
Hour 2i

Day 1,
Hour 3i

Day 2,
Hour 0

Day 1,
Hour 0
(A)

Day 1,
Hour 6
(B)

Day 1,
Hour 12
(Missing)

Day 1,
Hour 18
(D)

Day 2,
Hour 0
(E)

Day 1,
Hour 0
=A

Day 1,
Hour 6
=B

Day 1,
Hour 12
=B

Day 1
Hour 18
=D

Day 2,
Hour 0
=E

Large Interval INST (Instantaneous) to Small Interval MEAN

If the OutputFillMethod = Interpolate, see Large Interval INST (Instantaneous) to Small
Interval INST (Instantaneous). The time series are handled in the same way. Otherwise, the values are
duplicated from the old time series directly to the new time series.

The following illustrates the conversion from Day to 6Hour (Day to 6Hour example with
OutputFillMethod = Repeat, i equals the hour multiplier):

Day 1 instantaneous = A
Day 1,
Hour 0

Day 1,
Hour i

Day 1,
Hour 2i

Day 1,
Hour 3i

Day 1,
Hour 0
=A

Day 1,
Hour 6
=A

Day 1,
Hour 12
=A

Day 1,
Hour 18
=A

Each of these values is equal to the
instantaneous value for that day.

 Command Reference – ChangeInterval() - 7 87

ChangeInterval() Command TSTool Documentation

MEAN to MEAN

Small Interval MEAN to Large Interval MEAN

See Small Interval INST (Instantaneous) to Large Interval MEAN.

Large Interval MEAN to Small Interval MEAN

Changing from large interval mean data to small interval mean data involves copying values from the old
time series into the new time series for that same period of record.

The following illustrates the conversion from Month to Day (Example for a month with 30):

Month Mean (A)
Day 1
=A

Day 2
=A

… Day 30
=A

MEAN to ACCM (Accumulation)

Small Interval MEAN to Large Interval ACCM (Accumulation)

See Small Interval INST (Instantaneous) to Large Interval MEAN.

Interval MEAN to Same Interval ACCM (Accumulation)

See Interval ACCM to Same Interval MEAN.

Large Interval MEAN to Small Interval ACCM (Accumulation)

See Large Interval ACCM to Small Interval ACCM.

MEAN to INST (Instantaneous)

Small Interval MEAN to Large Interval INST (Instantaneous)

Not currently supported.

Interval MEAN to Same Interval INST (Instantaneous)

Not currently supported. The data can be treated equivalently by most commands.

Large Interval MEAN to Small Interval INST (Instantaneous)

Changing the interval for large interval mean to small interval instantaneous data involves calculating a
value for each new interval based on trends found in the mean data. This approach has been adapted
from the NWSRFS CHANGE-T operation (see
http://www.nws.noaa.gov/oh/hrl/nwsrfs/users_manual/part5/_pdf/533changet.pdf). The following
example demonstrates how the data is converted from the old interval to the new interval. A general
representation is shown first followed by an example.

Command Reference – ChangeInterval() - 8 88

http://www.nws.noaa.gov/oh/hrl/nwsrfs/users_manual/part5/_pdf/533changet.pdf

TSTool Documentation ChangeInterval() Command

The following illustrates the conversion from Day to NHour (Day to 6Hour example, i equals the hour
multiplier):

Day 1 mean Day 2 mean

Day 1 Day 1 Day 1 Day 1 Day 1 Ending endpoint
Starting Int i Int 2i Int 3i Day 2 Starting endpoint
endpoint

Day 1 Day 1 Day 1 Day 1 Day 2
Hour 0 Hour 6 Hour 12 Hour 18 Hour 0
 A B C D E

In computing instantaneous values, the volume of the original mean time series needs to be maintained.
However, the value of the instantaneous endpoints affects the calculated mean value for the previous and
subsequent long intervals, since the mean over a longer interval uses both endpoints in its calculation. In
the above example, Averagenew Day 1 = ((A+E)/2 +B+C+D) / 4

As a result, an iterative technique is required to adjust the initially computed instantaneous values to
produce a time series with a volume that is within a specified tolerance of the input mean volume for each
time step. The following paragraphs describe how the initial instantaneous time series values are
computed, followed by a description of the volume adjustment.

Initial Instantaneous Time Series Calculations

Prior to converting from a large interval mean to small interval instantaneous, special cases are handled
associated with missing data:

• Missing data is initially converted using the method specified by the user in the

HandleMissingInputHow parameter.
• If the current input value is still missing, the instantaneous time series is also filled with missing data

for each interval that falls in the larger interval.
• If the previous or next mean values are missing, the current mean value for that interval is copied

directly to the instantaneous time series.

The output instantaneous values for each input interval are computed using the current, next, and previous
mean values. All three values are useful because together they indicate whether the current value is part
of a continuous rise or fall, a peak or trough or simply a continuation of a steady value. These conditions
are illustrated in the following figure.

 Command Reference – ChangeInterval() - 9 89

ChangeInterval() Command TSTool Documentation

ChangeInterval_SQMEPic

Mean data illustration

• The first condition that may exist is a peak or trough. A peak exists when the current value is
greater than the previous and next values. A trough is when the current value is less than the next and
previous values.

1. In this case, an instantaneous peak (or trough) is calculated. Referring to the above
illustration, the magnitude of the peak is calculated by adding (or subtracting for a
trough) ¼ (a+b)/2 to the current mean.

2. The time of the instantaneous peak is initially set to the start date/time of the current
interval then shifted forward in time using the following calculation. The number of
instantaneous intervals per larger interval is multiplied by b/(a+b). That result is added
to the start date/time. The time of the instantaneous peak will not necessarily correspond
to the output interval.

3. The value for the starting endpoint of the interval is set to the current value minus ¼ a.
4. The value for the ending endpoint of the interval is set to the current value minus ¼ b.
5. The remaining intermediate instantaneous values for the interval are linearly interpolated

between the peak (or trough) and both endpoints.
• The second condition that may exist is a continuous rise or fall. A continuous rise or fall exists

when the current value is between the previous and next values.
1. In the case of a continuous rise, the starting endpoint of the interval is set to the current

value minus ¼ c (again using the above illustration). In the case of a continuous fall, ¼c
is added to the current value.

Command Reference – ChangeInterval() - 10 90

TSTool Documentation ChangeInterval() Command

2. The ending endpoint of the interval of a continuous rise is set to the current value plus¼ c
(minus ¼ c for a continuous fall)

3. The remaining intermediate instantaneous values are calculated based on the following.
a. The difference between the starting and ending endpoints is computed.
b. The values c and a are calculated. The ratio of mean differences is computed: If

c > a, the mean ratio = c / a. If a > c, the mean ratio = a / c.
c. If c is less than a, then the intermediate instantaneous values are computed by

adding small but increasing increments to the starting endpoint until the last point
of the interval is reached. If a is less than c then the output values are computed
by subtracting small but increasing increments to the last endpoint until the first
point of the interval is reached. For intermediate interval n from the appropriate
endpoint:

Incrementn = (1/([number intervals] – n) * [endpoint difference] * [mean ratio])

Instantaneous Time Series Volume Adjustment

After the instantaneous values are estimated using the above set of rules, they are adjusted so that the
volume over each interval is within a specified tolerance of the input mean volume for each time step.
This tolerance is specified with the Tolerance parameter. The volume calculation for each interval
uses the average of the first and last endpoint.

For each time step of the original mean time series, the error of each original interval is computed as:

([mean of current instantaneous values] – [original mean]) / [original mean]

If this volume error is within the tolerance, no adjustment is made for that time interval. If the error is
larger than the tolerance, the ratio: [original mean] / [mean of current instantaneous values] is computed.
For the intermediate instantaneous values, the instantaneous values are adjusted by multiplying each value
by this ratio. For the instantaneous endpoint values, since these values affect the mean value of the current
and the previous or following time intervals, the endpoint values are not adjusted to the above calculated
ratio. Instead, the new endpoint value is computed as the average of the original endpoint value and the
original endpoint value multiplied by the above ratio.

The volume error is checked for each original time step. If any adjustments were made, the process is
repeated, up to 15 iterations. If the adjustment technique cannot adjust the instantaneous time series such
that the corresponding mean volume is within the specified tolerance of the input mean volume within 15
iterations, a warning will be written to the log file.

The following dialog is used to edit the command and illustrates the syntax for the command. This
example is converting a monthly volume time series to annual water year (October to September)
volumes.

 Command Reference – ChangeInterval() - 11 91

ChangeInterval() Command TSTool Documentation

ChangeInterval

ChangeInterval() Command Editor

The command syntax is as follows:

ChangeInterval(Parameter=Value,…)

The following older command syntax is updated to the above syntax when a command file is read:

TS Alias = ChangeInterval(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed, one

of:
• AllMatchingTSID – all time series that match

the TSID (single TSID or TSID with wildcards)
• AllTS – all time series generated before the

command

AllTS

Command Reference – ChangeInterval() - 12 92

TSTool Documentation ChangeInterval() Command

Parameter Description Default
• EnsembleID – all time series in the ensemble
• FirstMatchingTSID – the first time series

that matches the TSID (single TSID or TSID
with wildcards)

• LastMatchingTSID – the last time series that
matches the TSID (single TSID or TSID with
wildcards)

• SelectedTS – the time series selected with the
SelectTimeSeries() command

TSID The time series identifier or alias for the time series to
be processed, using the * wildcard character to match
multiple time series.

Required if
TSList=*TSID.

EnsembleID The ensemble to be processed, if processing an
ensemble.

Required if TSList=
EnsembleID.

Alias The alias to assign to the time series, as a literal string
or using the special formatting characters listed by the
command editor. The alias is a short identifier used
by other commands to locate time series for
processing, as an alternative to the time series
identifier (TSID).

None – must be specified.

NewInterval The data interval for the new time series, from the
provided choices. For example: 6Hour, Day,
Month, Year.

None – must be specified.

OldTimeScale The time scale for the original time series, one of:

ACCM – accumulated data
INST – instantaneous data
MEAN – mean data

In the future, this parameter may be made optional if
the time scale can be determined from the data type.

None – must be specified.

NewTimeScale The time scale for the new time series (see
OldTimeScale for possible values). In the future,
this parameter may be made optional if the time scale
can be determined from the data type.

None – must be specified.

Statistic Used in the case where INST (small interval) to
INST (large interval) conversion is occurring. A
sample of values from the input time series,
corresponding to the output interval, is determined
and used to compute a statistic instead of a simple
value transfer. Statistics that are currently supported
are MAX and MIN. The
HandleMissingInputHow parameter is initially
used to adjust missing data and then the
AllowMissingCount parameter is used to check
whether the statistic can be computed.

The statistic is
determined from the old
and new time scales.

OutputYearType The output year type if the output time series has an
interval of Year. The output year type can only be
specified for input time series having an interval of

Calendar

 Command Reference – ChangeInterval() - 13 93

ChangeInterval() Command TSTool Documentation

Parameter Description Default
Day or Month and the output can have a time scale
of ACCM (sum the input values) or MEAN (average the
input values). The AllowMissingCount and
AllowMissingConsecutive parameters are
recognized.

NewDataType The data type for the new time series. This will be set
in the identifier of the new time series.

Use the data type from
the original time series.

NewUnits The units for the new time series. This will be set in
the identifier of the new time series.

Use the units from the
original time series.

Tolerance Currently used when converting large interval MEAN
data to small interval INST data. After the new time
series is created, the volume of the new time series
over each old interval is compared to the old time
series for that same interval. If the difference
between the two is outside the specified tolerance
percentage, then each value in the new time series is
adjusted so the totals will match. The endpoints are
averaged for this comparison. Additionally, when the
adjustment is made, the new starting value is
averaged with the ending value of the previous
interval so that the previous interval is not overly
affected by this calculation.

0.01

Handle
EndpointsHow

Indicates how endpoints should be handled when
changing from INST to MEAN, small interval to
larger interval (daily output or finer), one of:

AverageEndpoints – use both endpoint values
for new single value
IncludeFirstOnly – only use earlier endpoint

Average Endpoints

AllowMissing
Count

The number of missing values allowed in the input
interval in order to produce a result. For example, if
converting daily data to monthly, a value of 5 would
allow <= 5 missing daily values and still compute the
result. This capability should be used with care
because it may result in data that are not
representative of actual conditions. This parameter is
considered after the HandleMissingHow
parameter.

0 – do not allow any
missing data in the source
data when computing a
result.

AllowMissing
Consecutive

The number of consecutive missing values allowed in
the input interval in order to produce a result. For
example, if converting daily data to monthly, a value
of 3 would allow <= 3 consecutive missing daily
values and still compute the result. The value must
be less than or equal to AllowMissingCount.
This parameter is considered after the
HandleMissingHow parameter.

If not specified, the
default for the number of
allowed consecutive
missing values is set to
AllowMissingCount.

OutputFill
Method

Use to fill output when converting from INST to
MEAN, large interval time series to small interval
time series, one of:

Repeat

Command Reference – ChangeInterval() - 14 94

TSTool Documentation ChangeInterval() Command

Parameter Description Default

Interpolate – linearly interpolate
Repeat – repeat values for the output

HandleMissing
InputHow

Indicate how to handle missing values in input, one
of:

KeepMissing – leave data missing
Repeat – repeat last non-missing value
SetToZero – set values to 0

The missing data is handled on input and the
replacement value, if any, is applied to input and used
for calculations just as if it was the actual value. The
following cases do not use this parameter:

• Irregular data
• Day and Month input converted to ACCM and

MEAN.

KeepMissing

Several example command files follow. The following commands creates a Day ACCM time series from
a Month ACCM time series:

0109.NOAA.Precip.Day~HydroBase
ChangeInterval(Alias=”0109Month”,TSList=AllMatchingTSID,
 TSID="0109.NOAA.Precip.Day",NewInterval=Month,OldTimeScale=ACCM,NewTimeScale=ACCM)

The following commands create a 6Hour INST time series from a Day MEAN time series:

NewPatternTimeSeries(Alias=”DayMEAN”,NewTSID="ts1..SQME.Day",Description="Test data",
 SetStart="2006-12-01",SetEnd="2007-01-31",
 Units="CMSD",PatternValues="20,30,55,40,30,40,50,45,45,80,80,80,80")
ChangeInterval(Alias=”6HourINST”,TSID="DayMEAN",NewInterval=6Hour,OldTimeScale=MEAN,
 NewTimeScale=INST,NewDataType=CMS)

The following commands create a Day MEAN time series from a 6Hour INST time series:

NewPatternTimeSeries(Alias=”6HourInst”,NewTSID="ts2..Flow.6Hour",IrregularInterval=6Hour,
 Description="Test data",SetStart="2006-12-15 12",SetEnd="2007-01-29 00",
 Units="CFS",PatternValues="20,23,56,62,35,42")
ChangeInterval(Alias=”DayMean2”,TSID="6HourInst",NewInterval=Day,OldTimeScale=INST,
 NewTimeScale=MEAN,HandleEndpointsHow=IncludeFirstOnly)

The following commands create a 3Hour INST time series from an Irregular (1Hour) INST time series:

NewPatternTimeSeries(Alias=”IrregularINST”,NewTSID="ts1..Temp.Irregular",IrregularInterval=1Hour,
 Description="Test data",SetStart="2006-12-15 00",SetEnd="2007-01-31 23",Units="DEGF",
 PatternValues="20,23,-999,45,-999,-999,56,62,0,-3")
ChangeInterval(Alias=”3HourINST”,TSID="IrregularINST",NewInterval=3Hour,OldTimeScale=INST,
 NewTimeScale=INST)

 Command Reference – ChangeInterval() - 15 95

ChangeInterval() Command TSTool Documentation

This page is intentionally blank.

Command Reference – ChangeInterval() - 16 96

Command Reference: ChangePeriod()
Change period of record for time series

Version 09.10.01, 2010-11-18

The ChangePeriod() command changes the period for the given time series, for example to extend
the time series. A longer period will be filled with missing values.

The following dialog is used to edit the command and illustrates the syntax of the command.

ChangePeriod

ChangePeriod() Command Editor

 Command Reference – ChangePeriod() - 1 97

ChangePeriod() Command TSTool Documentation

The command syntax is as follows:

ChangePeriod(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be

processed, one of:
• AllMatchingTSID – all time

series that match the TSID (single
TSID or TSID with wildcards) will
be modified.

• AllTS – all time series before the
command.

• EnsembleID – all time series in
the ensemble will be modified.

• FirstMatchingTSID – the first
time series that matches the TSID
(single TSID or TSID with
wildcards) will be modified.

• LastMatchingTSID – the last
time series that matches the TSID
(single TSID or TSID with
wildcards) will be modified.

• SelectedTS – the time series are
those selected with the
SelectTimeSeries()
command.

AllTS

TSID The time series identifier or alias for the
time series to be modified, using the *
wildcard character to match multiple
time series.

Required if TSList=*TSID.

EnsembleID The ensemble to be modified, if
processing an ensemble.

Required if
TSList=EnsembleID.

NewStart The new period start, specified to
precision that matches the time series
data interval.

Start will remain the same.

NewEnd The new period end, specified to
precision that matches the time series
data interval.

End will remain the same.

A sample command file to change the period of a time series from the State of Colorado’s HydroBase is
as follows:

08236000 - ALAMOSA RIVER ABOVE TERRACE RESERVOIR
08236000.DWR.Streamflow.Month~HydroBase
ChangePeriod(TSList=AllTS,NewStart="1900-01")

Command Reference – ChangePeriod() - 2 98

 Command Reference – CheckTimeSeries () - 1

Command Reference: CheckTimeSeries()
Check time series data values against criteria and optionally take action

Version 10.03.00, 2011-12-19

The CheckTimeSeries() command checks time series data values against criteria, for example to
identify missing, erroneous, or extreme data values. A warning is generated for each match and time
series values optionally can be flagged, which allows annotation on graphs and reports. Values that meet
the check criteria also can be removed (if irregular interval), or set to missing. The
WriteCheckFile() command can be used to write a summary of the warnings. The
CheckTimeSeriesStatistic() command checks a statistic for the entire time series (e.g., missing
value count). See also the Delta() command, which creates new time series as the change between
each value – this command may be necessary in cases where data periodically reset to a starting value,
prior to using a performing a Change> check, for example.

The following dialog is used to edit the command and illustrates the command syntax.

CheckTimeSeries

CheckTimeSeries() Command Editor

99

CheckTimeSeries() Command TSTool Documentation

Command Reference – CheckTimeSeries () - 2

The command syntax is as follows:

CheckTimeSeries(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed, one of:

• AllMatchingTSID – all time series that match
the TSID (single TSID or TSID with wildcards)
will be processed.

• AllTS – all time series before the command will be
processed.

• EnsembleID – all time series in the ensemble will
be processed.

• FirstMatchingTSID – the first time series that
matches the TSID (single TSID or TSID with
wildcards) will be processed.

• LastMatchingTSID – the last time series that
matches the TSID (single TSID or TSID with
wildcards) will be processed.

• SelectedTS – the time series selected with the
SelectTimeSeries() command will be
processed.

AllTS

TSID The time series identifier or alias for the time series to
be processed, using the * wildcard character to match
multiple time series.

Required if
TSList=*TSID.

EnsembleID The ensemble to be modified, if processing an ensemble. Required if
TSList=
EnsembleID.

CheckCriteria The criteria that is checked, one of the following.
Missing values are skipped except for cases where the
statistic is specific to missing values.
• AbsChange> – check for absolute change from

one value to the next value > Value1
• AbsChangePercent> – check for absolute

change in percent from one value to the next value >
Value1.

• Change> – check for change > Value1.
• Change< – check for change < Value1.
• InRange – check for value >= Value1 and <=

Value2.
• OutOfRange – check for value < Value1 or >

Value2.
• Missing – check for missing values.
• Repeat – check for Value1 repeating values (i.e.,

if Value1=2, then the check will detect 2 adjacent
values that are the same). If the flag or action are

None – must be
specified.

100

TSTool Documentation CheckTimeSeries() Command

 Command Reference – CheckTimeSeries() - 3

Parameter Description Default
specified, values Value1+ in the sequence are
modified (i.e., if Value1=2, the 2nd and subsequent
repeating values will be modified by the action).

• < – check for values < Value1.
• <= – check for values <= Value1.
• > – check for values > Value1.
• >= – check for values >= Value1.
• == – check for values equal to Value1.

Value1 A parameter that is used for specific CheckCriteria
values.

Value2 A parameter that is used for specific CheckCriteria
values.

AnalysisStart The date/time to start analyzing data. Analyze full period.
AnalysisEnd The date/time to end analyzing data. Analyze full period.
ProblemType The problem type that will be shown in warning

messages.
CheckCriteria

MaxWarnings The maximum number of warnings to list for each time
series, useful if analysis results in many warnings.

List all warnings.

Flag A string to use for a flag on values that are detected
during the check, which will be shown in the HTML
summary report.

No flag.

FlagDesc Description for the flag. No description.
Action Action to take for matched values, in addition to

generating warnings:
• Remove – remove the values. For irregular interval

time series the values will be removed. For regular
interval time series the values will be set to missing.

• SetMissing – set the values to missing.

No action is taken.

101

CheckTimeSeries() Command TSTool Documentation

Command Reference – CheckTimeSeries () - 4

This page is intentionally blank.

102

Command Reference:
CheckTimeSeriesStatistic()

Check time series statistic against criteria
Version 10.00.01, 2011-04-26

The CheckTimeSeriesStatistic() command checks a time series statistic against criteria, for
example to perform quality control using full-period statistics. This command is essentially a
combination of the CalculateTimeSeriesStatistic() command with features similar to the
CheckTimeSeries() command; however, the latter checks individual data values and this command
checks a statistic computed from the entire time series. The WriteCheckFile() command can be
used to write a summary of the warnings.

The following dialog is used to edit the command and illustrates the command syntax.

 Command Reference – CheckTimeSeriesStatistic () - 1 103

CheckTimeSeriesStatistic() Command TSTool Documentation

CheckTimeSeriesStatistic

CheckTimeSeriesStatistic() Command Editor

The command syntax is as follows:

CheckTimeSeriesStatistic(Parameter=Value,…)

Command Reference – CheckTimeSeriesStatistic () - 2 104

TSTool Documentation CheckTimeSeriesStatistic() Command

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed, one

of:
• AllMatchingTSID – all time series that match

the TSID (single TSID or TSID with wildcards)
will be processed.

• AllTS – all time series before the command will
be processed.

• EnsembleID – all time series in the ensemble
will be processed.

• FirstMatchingTSID – the first time series
that matches the TSID (single TSID or TSID
with wildcards) will be processed.

• LastMatchingTSID – the last time series that
matches the TSID (single TSID or TSID with
wildcards) will be processed.

• SelectedTS – the time series selected with the
SelectTimeSeries() command will be
processed.

AllTS

TSID The time series identifier or alias for the time series to
be processed, using the * wildcard character to match
multiple time series.

Required if
TSList=*TSID.

EnsembleID The ensemble to be modified, if processing an
ensemble.

Required if
TSList=
EnsembleID.

Statistic Statistic to compute. Refer to the
CalculateTimeSeriesStatistic()
command documentation.

None – must be
specified.

StatisticValue1 Input data required by the statistic. Currently the
dialog does not check the value for correctness – it is
checked when the statistic is computed.

See the Calculate
TimeSeries
Statistic()
command
documentation.

StatisticValue2 Input data required by the statistic. Currently the
dialog does not check the value for correctness – it is
checked when the statistic is computed.

to the Calculate
TimeSeries
Statistic()
command
documentation.

StatisticValue3 Input data required by the statistic. Currently the
dialog does not check the value for correctness – it is
checked when the statistic is computed.

to the Calculate
TimeSeries
Statistic()
command
documentation.

AnalysisStart The date/time to start analyzing data. Full period is
analyzed.

AnalysisEnd The date/time to end analyzing data. Full period is
analyzed.

TableID Identifier for table that receives the statistic. Optional – table
output is not

 Command Reference – CheckTimeSeriesStatistic() - 3 105

CheckTimeSeriesStatistic() Command TSTool Documentation

Parameter Description Default
required.

TableTSIDColumn Table column name that is used to look up the time
series. If a matching TSID is not found, a row will be
added to the table. If a TSID is found, the statistic
cell value for the time series is modified.

Optional – table
output is not
required.

TableTSIDFormat The specification to format the time series identifier
to insert into the TSID column. Use the format
choices and other characters to define a unique
identifier.

Time series alias if
available, or the time
series identifier.

TableStatistic
Column

Table column name to receive the statistic value. If
not found in the table, a new column is added
automatically.

Optional – table
output is not
required.

CheckCriteria The criteria that is checked, one of:
• InRange – check for value >= Value1 and <=

Value2.
• OutOfRange – check for value < Value1 or >

Value2.
• < – check for values < CheckValue1.
• <= – check for values <= CheckValue1.
• > – check for values > CheckValue1.
• >= – check for values >= CheckValue1.
• == – check for values equal to CheckValue1.

None – must be
specified.

CheckValue1 A parameter that is used for specific
CheckCriteria values.

CheckValue2 A parameter that is used for specific
CheckCriteria values, currently only needed for
InRange and OutOfRange criteria.

ProblemType The problem type that will be shown in warning
messages.

Statistic-
CheckCriteria

IfCriteriaMet Indicate whether to set the command status if the
statistic meets the criteria, one of:
• Ignore – do not set the command status
• Warn – set the command status to Warning
• Fail – set the command status to Failure

The command status
will not be changed.

PropertyName If the statistic meets the criteria, set the property
identified by PropertyName to
PropertyValue.

No property is set.

PropertyValue If the statistic meets the criteria, set the property
identified by PropertyName to
PropertyValue.

No property is set.

Command Reference – CheckTimeSeriesStatistic () - 4 106

 Command Reference – CompareFiles() - 1

Command Reference: CompareFiles()
Compare text files to determine whether they are different

Version 10.01.00, 2011-11-15

The CompareFiles() command compares text files to determine differences. For example, the
command can be used to compare old and new files produced by a software process. This command is
suitable for comparing files that are similar, but is not suitable for comparing files that are very different,
although it may be enhanced in the future to provide more sophisticated comparison features.

Each line in the file is compared. By default, lines beginning with # are treated as comment lines and are
ignored (see CommentLineChar to specify the comment indicator). Therefore, only non-comment
lines are compared. Comment lines in the middle of the file are simply discarded. Differences and
simple statistics are printed to the log file. A warning can be generated if a difference is detected or if no
differences are detected (see also the CompareTimeSeries()and CompareTables()
commands).

The following dialog is used to edit the command and illustrates the syntax for the command.

CompareFiles

CompareFiles() Command Editor

107

CompareFiles() Command TSTool Documentation

Command Reference – CompareFiles() - 2

The command syntax is as follows:

CompareFiles(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile1 The name of the first file to read. Enclose the name in

double quotes to protect whitespace and special
characters. Global properties can be used with the
${Property} syntax.

None – the file name
is required.

InputFile2 The name of the second file to read. Enclose the name
in double quotes to protect whitespace and special
characters. Global properties can be used with the
${Property} syntax.

None – the file name
is required.

CommentLineChar The character(s) that if found at the start of a line
indicate comment lines. Comment lines are ignored in
the comparison because they typically may include
information such as date/time that changes even if the
remainder of the file contents is the same.

IgnoreWhitespace If True, then each line is trimmed to remove leading
and trailing whitespace characters (spaces and tabs)
before doing the comparison. If False, then
whitespace is retained for the comparison.

False

AllowedDiff The number of lines allowed to be different, when
checking for differences. This is useful, for example,
when a non-comment line contains the date/time when
the file was generated.

0

IfDifferent Indicates the action to be taken if the files are different:
• Ignore – do not generate warning
• Warn – generate a warning message
• Fail – generate a failure message

Do not generate a
warning if the files
are different.
Differences are
printed to the log
file.

IfSame Indicates the action to be taken if the files are the same:
• Ignore – do not generate warning
• Warn – generate a warning message
• Fail – generate a failure message

Do not generate a
warning if the files
are the same.

The following example illustrates how two files can be compared. For example, use similar commands to
compare results from two model runs, two database queries, or when testing software:

CompareFiles(InputFile1="Data/A1.txt",InputFile2="Data/B1.txt",
 WarnIfDifferent=True)

108

 Command Reference – CompareTables () - 1

Command Reference: CompareTables()
Compare tables

Version 10.03.00, 2012-01-07

The CompareTables() command compares columns from two tables, saving the results in a new
table. Comparisons are made using the data values formatted as strings based on the precision shown in
tables. If the table was read with ReadFromDelimitedFile(), the precision for floating point
numbers is set based on the largest number of digits after the decimal encountered in the input.
Optionally, a precision and tolerance can be specified to control the comparison of floating point values.
Values that are the same are shown in the new table without modification. Values that are different result
in both table values being shown (as strings) to allow comparison. The command also allows the
comparison table to be output to an HTML file, in which case different values are shown as red.

The following dialog is used to edit the command and illustrates the syntax of the command.

CompareTables

CompareTables() Command Editor

The command syntax is as follows:

CompareTables(Parameter=Value,…)

109

CompareTables() Command TSTool Documentation

Command Reference – CompareTables() - 2

Command Parameters

Parameter Description Default
TableID1 The identifier for the first table to be compared. None – must be

specified.
TableID2 The identifier for the second table to be compared. None – must be

specified.
CompareColumns1 The names of columns to be compared from the first

table, separated by columns.
All columns will be
compared.

CompareColumns2 The names of columns to be compared from the second
table, separated by columns.

All columns will be
compared.

Precision The number of digits after the decimal to consider
when comparing floating point values. If values are
different to the specified (or default) precision, both
values are shown in the comparison table.

Format floating point
numbers as strings for
comparison according
to the table column
precision.

Tolerance A value indicating the allowed difference between
floating point values. The tolerance should be
consistent with the precision (i.e., don’t specify a
coarse precision and fine tolerance). If the difference is
less than the tolerance, the values will not be marked as
different.

Floating point values
must exactly match,
according to the
precision.

AllowedDiff The allowed number of differences before triggering a
Warn/Fail message (see IfDifferent). A value >=
0 indicates that the number of differences must be the
same as the specified value. A negative value indicates
that the number of differences can be less than or equal
to the specified value. This parameter is useful for
constructing tests where a specified number of
differences is expected.

0

NewTableID The identifier for the new comparison table. Table1ID-
Table2ID-
comparison

OutputFile If specified, an HTML table will be created for the
comparison table, in which different values are
highlighted in red.

No HTML output file
will be created.

IfDifferent Indicates the action to be taken if the tables are
different:
• Ignore – do not generate warning
• Warn – generate a warning message
• Fail – generate a failure message

Do not generate a
warning if the tables
are different.

IfSame Indicates the action to be taken if the tables are the
same:
• Ignore – do not generate warning
• Warn – generate a warning message
• Fail – generate a failure message

Do not generate a
warning if the tables
are the same.

110

Command Reference: CompareTimeSeries()
Compare time series to find data value differences

Version 08.15.00, 2008-05-04

The CompareTimeSeries() command compares time series to determine data differences. Currently
time series header information is NOT compared – only data values are compared. It is designed to
process many time series in bulk fashion. For example, read commands can be used to read time series
from two different versions of a database, or from two files. Time series to compare are determined by
trying to match each available time series with another time series in the list (ignoring itself);
consequently, the list of time series should contain only pairs of time series.

Time series that are matched by TSID location and/or data type are compared value by value, with the
differences computed as the value from the second time series minus the value from the first time series.
The values can be rounded based on a specified precision. It may be important to read each set of time
series from files to ensure that final round off is consistent. The checks occur by comparing the
difference to one or more specified tolerances. Differences and simple statistics are printed to the log file.
Values that are different can optionally be tagged with a character flag, for use with the graphing package.
Time series of the differences can optionally be created. A warning can be generated if a difference is
detected, or if no differences are detected (see also the CompareFiles() and CompareTables()
commands).

The following dialog is used to edit the command and illustrates the syntax for the command.

CompareTimeSeries

CompareTimeSeries() Command Editor

 Command Reference – CompareTimeSeries() - 1 111

CompareTimeSeries() Command TSTool Documentation

The command syntax is as follows:

CompareTimeSeries(Parameter=Value,…)

Command Parameters

Parameter Description Default
MatchLocation Match the location part of time series identifiers when

matching time series to compare.
True

MatchDataType Match the data type part of time series identifiers when
matching time series to compare.

False

Precision When comparing data values, round the values to the
given precision. For example, a precision of 2 will round
to the hundredths place. This can be used to do
comparisons on the lowest precision of the available time
series.

Compare the
available values
without rounding.

Tolerance Specify a comma-separated list of values. The difference
in the time series values will be compared to the
tolerances and messages printed to the log file.

A tolerance of zero
will be used to detect
differences.

AnalysisStart The starting date/time to analyze for differences. Specify
a date/time of appropriate precision for the time series or
OutputStart to use the output start.

Analyze all available
data.

AnalysisEnd The ending date/time to analyze for differences. Specify
a date/time of appropriate precision for the time series or
OutputEnd to use the output end.

Analyze all available
data.

DiffFlag Specify as a single character to append a flag to the data
flags for the time series. Each value that is different is
flagged in both time series that are compared. The flag
can be displayed by the graphing package. This is useful
for verification processes. New time series will be
created with the original identifier preceded by Diff_.

Do not flag data.

CreateDiffTS Indicate whether a time series should be created
containing the differences between time series. This is
useful to visually evaluate the differences and process
the results with other commands.

False

WarnIfDifferent If True and at least one difference is detected, a warning
will be generated by the command, which will result in
software like TSTool displaying a warning. If False,
only status messages are written to the log file. The
warning is useful if it is critical to detect any change in
the time series.

Do not generate a
warning if time
series are different.
Differences are
printed to the log
file.

WarnIfSame If True and no differences are detected, a warning will
be generated by the command, which will result in
software like TSTool displaying a warning. If False,
only status messages are written to the log file. The
warning is useful if it is critical to detect that time series
are the same.

Do not generate a
warning if time
series are the same.

Command Reference – CompareTimeSeries() - 2 112

TSTool Documentation CompareTimeSeries() Command

The following example illustrates how time series from two files can be compared. For example, use
similar commands to compare results from two model runs or two database queries:

Example to compare files. Since they are different, a warning will be generated.
ReadDateValue(InputFile="RawData1.dv")
ReadDateValue(InputFile="RawData1Scaled.dv")
CompareTimeSeries(Precision=2,WarnIfDifferent=True)

The following example compares matching time series for the full available period, doing checks for
several tolerances:

CompareTimeSeries(Precision=2,Tolerance="0,.1,.5,1",DiffFlag="x")

The following example compares data only within the output period, as specified by the
SetOutputPeriod() command:

CompareTimeSeries(Precision=2,Tolerance="0,.1,.5,1",
AnalysisStart="OutputStart",AnalysisEnd="OutputEnd",DiffFlag="x")

 Command Reference – CompareTimeSeries() - 3 113

CompareTimeSeries() Command TSTool Documentation

This page is intentionally blank.

Command Reference – CompareTimeSeries() - 4 114

Command Reference:
ComputeErrorTimeSeries()

Compute the error between time series and create new time series for the results
Version 10.00.01, 2011-05-12

The ComputeErrorTimeSeries() command computes the error between two time series as
absolute value or percent, creating a new time series for each pair of time series that is compared. This is
useful for comparing observed and simulated time series. The time series that are created have the
simulated time series’ metadata but an alias can be assigned. The command can be used to process
multiple pairs of time series, each determined using the appropriate *TSList parameter.

The following dialog is used to edit the command and illustrates the command syntax.

ComputeErrorTimeSeries

ComputeErrorTimeSeries() Command Editor

The command syntax is as follows:

ComputeErrorTimeSeries(Parameter=Value,…)

Command Parameters

Parameter Description Default
Observed
TSList

Indicates the list of observed time series to be processed,
one of:
• AllMatchingTSID – all time series that match the

TSID (single TSID or TSID with wildcards).
• AllTS – all time series before the command.
• EnsembleID – all time series in the ensemble.
• FirstMatchingTSID – the first time series that

matches the TSID (single TSID or TSID with
wildcards).

AllTS

 Command Reference – ComputeErrorTimeSeries() - 1 115

ComputeErrorTimeSeries() Command TSTool Documentation

Parameter Description Default
• LastMatchingTSID – the last time series that

matches the TSID (single TSID or TSID with
wildcards).

• SelectedTS – the time series are those selected with
the SelectTimeSeries() command.

Observed
TSID

The time series identifier or alias for the observed time
series, using the * wildcard character to match multiple time
series.

Use when
ObservedTSList=
*MatchingTSID.

Observed
EnsembleID

The observed ensemble to be compared, if processing an
ensemble.

Use when
ObservedTSList=
EnsembleID.

Simulated
TSList

Indicates how to determine the list of simulated time series
(see the explanation of ObservedTSList).

AllTS

Simulated
TSID

The time series identifier or alias for the simulated time
series (see the explanation of ObservedTSID).

Use when
SimulatedTSList=
*MatchingTSID.

Simulated
EnsembleID

The ensemble identifier for the simulated time series (see
the explanation of SimulatedEnsembleID).

Use when
SimulateddTSList=
EnsembleID

ErrorMeasure The error measure to compute, one of:
• PercentError – Simulated minus observed, divided

by observed.
• AbsoluteError – not yet implemented.

Alias The alias to assign to the time series, as a literal string or
using the special formatting characters listed by the
command editor. The alias is a short identifier used by other
commands to locate time series for processing, as an
alternative to the time series identifier (TSID).

Alias will not be assigned.

A sample command file is as follows (in this case using contrived data):

RemoveFile(InputFile="Results\Test_ComputeErrorTimeSeries_1_out.dv",WarnIfMissing=False)
NewPatternTimeSeries(Alias=”ts1”,NewTSID="ts1..test.Day",Description="Test data",
 SetStart="1950-01-01",SetEnd="1951-03-12",Units="CFS",PatternValues="5,10,12,13,75")
NewPatternTimeSeries(Alias=”ts2”,NewTSID="ts2..test.Day",Description="Test data",
 SetStart="1950-01-01",SetEnd="1951-03-12",Units="CFS",PatternValues="6,12,14,11.5,80")
ComputeErrorTimeSeries(ObservedTSList=AllMatchingTSID,ObservedTSID="ts1",
 SimulatedTSList=AllMatchingTSID,SimulatedTSID="ts2",ErrorMeasure=PercentError)
Uncomment the following command to regenerate the expected results file.
WriteDateValue(OutputFile="ExpectedResults\Test_ComputeErrorTimeSeries_1_out.dv")
WriteDateValue(OutputFile="Results\Test_ComputeErrorTimeSeries_1_out.dv")
CompareFiles(InputFile1="Results\Test_ComputeErrorTimeSeries_1_out.dv",
 InputFile2="ExpectedResults\Test_ComputeErrorTimeSeries_1_out.dv",WarnIfDifferent=True)

Command Reference – ComputeErrorTimeSeries() - 2 116

Command Reference: ConvertDataUnits()
Convert time series data units

Version 09.10.01, 2010-11-18

The ConvertDataUnits() command converts the data units for a time series (e.g., before output to
a file). Some read and write commands also may allow units to be converted.

The following dialog is used to edit the command and illustrates the syntax of the command.

ConvertDataUnits

ConvertDataUnits() Command Editor

The Dimension choice should be selected to narrow the list of available units to the appropriate
dimension. Next, select the New Data Units for the time series. The list of available data units is taken
from the information described in the TSTool DATAUNIT file (see the TSTool Installation and
Configuration Appendix for more information). If desired units are not available, contact the TSTool
developers to suggest adding units to the DATAUNIT file or edit the command manually after initial
creation. See also the TSTool View… Data Units menu to view the current data units.

The dialog cannot display the current units for the time series because the units are not available until
time series are actually processed – commands are edited before processing.

 Command Reference – ConvertDataUnits() - 1 117

ConvertDataUnits() Command TSTool Documentation

The command syntax is as follows:

ConvertDataUnits(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be

processed, one of:
• AllMatchingTSID – all time

series that match the TSID (single
TSID or TSID with wildcards) will
be modified.

• AllTS – all time series before the
command.

• EnsembleID – all time series in
the ensemble will be modified.

• LastMatchingTSID – the last
time series that matches the TSID
(single TSID or TSID with
wildcards) will be modified.

• SelectedTS – the time series are
those selected with the
SelectTimeSeries()
command.

AllTS

TSID The time series identifier or alias for the
time series to be modified, using the *
wildcard character to match multiple
time series.

TSID or EnsembleID must be
specified if identifiers are being
matched.

EnsembleID The ensemble to be modified, if
processing an ensemble.

TSID or EnsembleID must be
specified if identifiers are being
matched.

NewUnits The new data units. None – must be specified.

A sample commands file to convert the units of a time series from the State of Colorado’s HydroBase is
as follows:

08236000 - ALAMOSA RIVER ABOVE TERRACE RESERVOIR
08236000.DWR.Streamflow.Month~HydroBase
ConvertDataUnits(TSList=AllMatchingTSID,
 TSID="08236000.DWR.Streamflow.Month",NewUnits="CFSD")

Command Reference – ConvertDataUnits() - 2 118

Command Reference: Copy()
Create a new time series as a copy of an existing time series

Version 10.00.00, 2011-03-27

The Copy() command creates a copy of an existing time series, assigning an alias to the result. The
copy is an exact copy except that the alias is different (the TSID must also specified and should be
defined to be unique). The alias can then be used for further time series manipulation. A copy of a time
series is useful when data filling or other manipulation will occur and time series that is unique from the
original is needed. For example, if adding two time series, a copy of one time series can be made, and the
second time series added to the copy – this ensures that there is not confusion with the original time
series. Parameters are available to control how much of the original data are copied.

The following dialog is used to edit the command and illustrates the syntax for the command.

Copy

Copy() Command Editor

 Command Reference – Copy() - 1 119

Copy() Command TSTool Documentation

The command syntax is as follows:

TS Alias = Copy(Parameter=Value,…)

The following older command syntax is updated to the above syntax when a command file is read:

TS Alias = Copy(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSID The time series identifier or alias of the

time series to copy. The time series will
be found by searching backwards from
the copy command.

None – must be specified.

NewTSID A new time series identifier to assign to
the copy. This is useful to avoid
confusion with the original time series.
Use the Edit button to edit the time series
identifier parts. The data interval must
match that of the original time series.

Copy the original time series
TSID. If NewTSID is specified
but does not have a valid interval,
copy the interval from TSID.
The default cannot be determined
if an alias is used for the input
time series.

Alias The alias to assign to the time series, as a
literal string or using the special
formatting characters listed by the
command editor. The alias is a short
identifier used by other commands to
locate time series for processing, as an
alternative to the time series identifier
(TSID).

None – must be specified.

CopyDataFlags Indicates whether data flags are copied.
Specify as False or True.

True

CopyHistory Indicates whether the time series
manipulation history is copied. Specify
as False or True.

True

A sample command file to read a time series and make a copy is as follows:

08223000 - RIO GRANDE RIVER AT ALAMOSA
08223000.DWR.Streamflow.Month~HydroBase
Copy(Alias=”Filled”,TSID="08223000.DWR.Streamflow.Month",
 NewTSID="08223000.DWR.Streamflow.Month.Filled")

Command Reference – Copy() - 2 120

Command Reference: CopyEnsemble()
Create a new ensemble as a copy of an ensemble

Version 08.15.00, 2008-05-04

The CopyEnsemble() command creates a copy of an ensemble, copying all time series in the
ensemble and assigning a new identifier to the result. The copy is an exact copy except that the ensemble
identifier is different (the TSIDs for each ensemble time series should also specified to be unique).

The following dialog is used to edit the command and illustrates the syntax for the command.

CopyEnsemble

CopyEnsemble() Command Editor

 Command Reference – CopyEnsemble() - 1 121

CopyEnsemble() Command TSTool Documentation

The command syntax is as follows:

CopyEnsemble(Parameter=Value,…)

Command Parameters

Parameter Description Default
EnsembleID The ensemble to copy. None – must be specified.
NewEnsembleID The ensemble identifier for the new

ensemble
None – must be specified.

NewEnsembleName The name for the new ensemble. Blank.
NewTSID A new time series identifier to assign to

time series in the new ensemble. This is
useful to avoid confusion with the
original time series. Use the Edit button
to edit the time series identifier parts.
The data interval and sequence number
will be determined from the original time
series.

Copy the original time series
TSID.

A sample commands file to read a time series from the State of Colorado’s HydroBase, create an
ensemble from the time series, and make a copy is as follows:

09019500 - COLORADO RIVER NEAR GRANBY
09019500.USGS.Streamflow.Day~HydroBase
CreateEnsemble(TSID="09019500.USGS.Streamflow.Day",
 TraceLength=1Year,EnsembleID="Ensemble_1",EnsembleName="Test
Ensemble",ReferenceDate="2008-01-01",ShiftDataHow=ShiftToReference)
CopyEnsemble(NewEnsembleID="Ensemble_2",
 NewEnsembleName="Test ensemble 2",
 NewTSID="09019500.USGS.Streamflow..copy",EnsembleID="Ensemble_1")

Command Reference –CopyEnsemble() - 2 122

 Command Reference – CopyTable () - 1

Command Reference: CopyTable()
Create a table as a (partial) copy of a table

Version 10.21.00, 2013-05-17

The CopyTable() command copies all or a subset of the columns from one table to create a new table.
For example, this is useful to create one-column lists that can be used to expand template files with the
ExpandTemplateFile() command, or to create a subset of columns to output to a file or write to a
database.

The following dialog is used to edit the command and illustrates the syntax of the command (in this case
illustrating how values in a column named LocationID are copied to a new table).

CopyTable

CopyTable() Command Editor

123

CopyTable() Command TSTool Documentation

Command Reference – CopyTable() - 2

The command syntax is as follows:

CopyTable(Parameter=Value,…)

Command Parameters

Parameter Description Default
TableID The identifier for the original table. None – must be

specified.
NewTableID The identifier for the new table. None – must be

specified.
IncludeColumns The names of columns to copy, separated by commas. Copy all of the

columns.
DistinctColumns The names of columns to copy, separated by commas.

Only distinct values from the specified column will be
copied. For example, if column A contains strings X, Y,
Z, Y, C, the resulting distinct value column will have
rows with X, Y, Z, C. Currently only one column name
can be specified but in the future more than one column
may be allowed.

This parameter overrides IncludeColumns.

Don’t do a distinct
comparison.

ColumnMap The new names for the output columns, using syntax:
OriginalColumn1:NewColumn1,
OriginalColumn2:NewColumn2

The column names in
the copy will be the
same as in the original
table.

ColumnFilters Filters that limit the number of rows being copied,
using the syntax:
FilterColumn1:FilterPattern1,
FilterColumn2:FilterPattern2
Patterns can use * to indicate wildcards for matches.
Only string values can be checked (other data types are
converted to strings for comparison). Comparisons are
case-independent. All patterns must be matched in
order to copy the row. In the future a command may be
added to perform queries on tables, similar to SQL for
databases.

No filtering.

124

 Command Reference – CreateEnsembleFromOneTimeSeries() - 1

Command Reference:
CreateEnsembleFromOneTimeSeries()

Create a new ensemble from a single time series
Version 10.14.00, 2012-12-12

The CreateEnsembleFromOneTimeSeries() command creates an ensemble by splitting up a
single time series into traces. For example, a historical time series can be split into 1-year overlapping
traces that are shifted to start in the current year. The sequence number part of the time series identifier
for each trace is set to the input starting year and will be shown as [Year] at the end of the time series
identifier.

The following dialog is used to edit the command and illustrates the syntax for the command.

CreateEnsembleFromOneTimeSeries

CreateEnsembleFromOneTimeSeries() Command Editor

The command syntax is as follows:

CreateEnsembleFromOneTimeSeries(Parameter=Value,…)

125

CreateEnsembleFromOneTimeSeries() Command TSTool Documentation

Command Reference – CreateEnsembleFromOneTimeSeries() - 2

Command Parameters

Parameter Description Default
TSID The time series identifier or alias for the time series used to

create the ensemble.
None – must
be specified.

InputStart The date/time to start transferring data from the time series. Use all data.
InputEnd The date/time to end transferring data from the time series. Use all data.
EnsembleID The new ensemble identifier. None – must

be specified.
Ensemble
Name

The name for the new ensemble. Blank.

Alias The alias to assign to the time series, as a literal string or using
the special formatting characters listed by the command editor.
The alias is a short identifier used by other commands to locate
time series for processing, as an alternative to the time series
identifier (TSID).

%L_%z
(location_
sequence
Number)

TraceLength An interval for the trace length (e.g., 1Year, #Month or,
#Day).

1Year

ReferenceDate The reference date indicates the starting date for each trace.
Each trace optionally can be shifted (see ShiftDataHow), in
which case the year in the ReferenceDate is used for the
common starting date. The reference date can be one of:
• Blank, indicating that January 1 of the current year will be

used.
• A date/time string (use the format 01/01/YYYY or YYYY-

MM-DD).
• CurrentToYear, CurrentToMonth,

CurrentToDay, CurrentToHour,
CurrentToMinute, indicating the current date/time to
the specified precision.

• A Current* value +- an interval, for example:
CurrentToMinute – 7Day

January 1 of
the first year in
the source time
series.

OutputYearType The output year type for the ensemble traces. The only impact
from this parameter is that sequence number for the time series
will be set to the start of the output year. This is useful because
legends on graphs that use the sequence number (%z format
specifier) will use the appropriate year type. The
ReferenceDate should normally be specified as the first day
of the output year (e.g., ReferenceDate=2012-10-01 for
OutputYearType=Water).

Calendar

ShiftDataHow Indicates whether the traces should be shifted. Possible values
are:
• ShiftToReference – each trace will be shifted to the

reference date, resulting in overlapping time series.
• NoShift – plotting the traces will result in a total line that

matches the original time series, except that each trace can
be manipulated individually.

NoShift

126

TSTool Documentation CreateEnsembleFromOneTimeSeries() Command

 Command Reference – CreateEnsembleFromOneTimeSeries() - 3

A sample command file to read a time series from the State of Colorado’s HydroBase and create an
ensemble from the time series is as follows:

09019500 - COLORADO RIVER NEAR GRANBY
09019500.USGS.Streamflow.Day~HydroBase
CreateEnsembleFromOneTimeSeries(TSID="09019500.USGS.Streamflow.Day",
 TraceLength=1Year,EnsembleID="Ensemble_1",EnsembleName="Test
Ensemble",ReferenceDate="2008-01-01",ShiftDataHow=ShiftToReference)

The following figure illustrates a graph of the resulting ensemble:

CreateEnsembleFromOneTimeSeries_Graph

CreateEnsembleFromOneTimeSeries() Example Graph

127

CreateEnsembleFromOneTimeSeries() Command TSTool Documentation

Command Reference – CreateEnsembleFromOneTimeSeries() - 4

This page is intentionally blank.

128

 Command Reference – CreateFromlist() - 1

Command Reference: CreateFromList()
Create one or more time series from a file containing a list of identifiers

Version 10.21.00, 2013-05-17

See also the ReadTimeSeriesFromTable() command, which may replace this command in the
future. The CreateFromList() command creates one or more time series using identifiers from a list
file, an example of which is shown below:

Example list file. Comments start with the # character.
Column headings can be specified in the first non-comment row using quotes.
“Structure ID”,”Structure Name”
500501,Ditch 501
500502,Ditch 502
Invalid ID (see IfNotFound parameter)
509999,Ditch 9999

The command is typically used when reading time series from a database or binary file and can streamline
processing in the following situations:

• A list of identifiers may have been generated from a database query and saved to a file.
• A list of identifiers may have been extracted from a model data set.

TSTool reads the list file and internally creates a list of time series identifiers. The time series are of the
standard form:

 Location.DataSource.DataType.Interval[.Scenario]~InputType[~InputName]

where the brackets indicate optional information. TSTool then queries each time series, which can be
processed further.

Although it is possible to specify an input type that reads from files by also using the InputName, this is
not generally recommended because the CreateFromList() command can only specify one input file
name and the file will be reopened for each read. Instead, read commands for specific file formats should
be used because these commands are typically optimized to read multiple time series from the files. In
summary, the CreateFromList() command is useful with databases but performance may suffer
when used with file input types.

129

CreateFromList() Command TSTool Documentation

Command Reference – CreateFromList() - 2

The following dialog is used to edit the command and illustrates the syntax of the command.

CreateFromList

CreateFromList() Command Editor

The command syntax is as follows:

CreateFromList(Parameter=Value, …)

Command Parameters

Parameter Description Default
ListFile The name of the list file to read, surrounded

by double quotes.
None – must be specified.

IDCol The column (1+) in the list file containing
the location identifiers to use in time series
identifiers.

1

Delim The delimiter characters that separate
columns in the list file. If a space is used as
the delimiter, surround with another
delimiter characters or a character that is
unlikely to be found so that the space is not
discarded as white space (e.g., “~ ~”).

Comma

ID Indicate a pattern to filter the identifiers in
the list file. For example, use A* to only

Process all identifiers.

130

TSTool Documentation CreateFromList() Command

 Command Reference – CreateFromList() - 3

Parameter Description Default
process identifiers in the list file that start
with A.

DataSource The data source in the time series identifier,
appropriate for InputType. For example,
if using the State of Colorado’s HydroBase,
USGS indicates that data are from the United
States Geological Survey. See the input type
appendices for more information on
available data types.

May or may not be required,
depending on the input type. Refer
to the input type appendices.

DataType The data type in the time series identifier, as
appropriate for InputType. For example,
if using the State of Colorado’s HydroBase,
DivTotal is used for diversion totals. See
the input type appendices for more
information on available data types.

Usually required for an input type.
Refer to the input type appendices.

Interval Data interval in the time series identifier,
using standard values such as 15Minute,
6Hour, Day, Month, Year.

None – must be specified.

Scenario Scenario in the time series identifier. Usually not required.
InputType The input type in the time series identifier.

For example, use HydroBase for the State of
Colorado’s HydroBase database. Refer to
the input type appendices or the TSTool
main GUI for options.

None – must be specified.

InputName The input name in the time series identifier. Typically only required if the input
type requires a file name.

IfNotFound Indicates how to handle missing time series,
one of:
• Warn – generate fatal warnings and do

not include in output.
• Ignore – generate non-fatal warnings

and do not include in output.
• Default – generate non-fatal warnings

and create empty time series for those
that could not be found. This requires
that a SetOutputPeriod()
command be used before the command
to define the period for default time
series.

Warn

DefaultUnits Default units when
IfNotFound=Default.

Blank – no units.

131

CreateFromList() Command TSTool Documentation

Command Reference – CreateFromList() - 4

A sample command file to process monthly diversion data from the State of Colorado’s HydroBase
database is as follows:

Read monthly diversion total from HydroBase for the structures in the list
file. The data source is set to DWR because data source is saved in
HydroBase.
CreateFromList(ListFile="Data\Diversions.txt",IDCol=1,DataSource=DWR,
DataType=DivTotal,Interval=Month,InputType=HydroBase,IfNotFound=Default)

132

 Command Reference – CreateRegressionTestCommandFile() - 1

Command Reference:
CreateRegressionTestCommandFile()

Create a command file to run software regression tests
Version 10.20.00, 2013-04-20

The CreateRegressionTestCommandFile() command is used for software testing and
certification of processes used in operations. The command creates a command file that includes a
StartRegressionTestResultsReport() and multiple RunCommands() commands. A
starting search folder is provided and all files that match the given pattern (by convention Test_*.TSTool)
are assumed to be command files that can be run to test the software. The resulting command file is a test
suite comprised of all the individual tests and can be used to verify software before release. The goal is to
have all tests pass before software release.

The following table lists tags (annotations) that can be placed in # comments in command files to provide
information for testing, for example:

#@expectedStatus Failure

Command # Comment Tags

Comment Tag Description
@enabled False The RunCommands() command will by default run the command

file that is provided. However, if the @enabled False tag is
specified in a comment in the command file, RunCommands()
will skip the command file. This is useful to disable a test that
needs additional work.

@expectedStatus Failure

@expectedStatus Warning

The RunCommands() command ExpectedStatus parameter
is by default Success. However, a different status can be
specified if it is expected that a command file will result in
Warning or Failure and still be a successful test. For example,
if a command is obsolete and should generate a failure, the expected
status can be specified as Failure and the test will pass. Another
example is to test that the software properly treats a missing file as a
failure.

@os Windows
@os UNIX

The test is designed to work only on the specified platform and will
be included in the test suite only if the IncludeOS parameter
includes the corresponding operating system (OS) type. This is
primarily used to test specific features of the OS and similar but
separate test cases should be implemented for both OS types. If the
OS type is not specified as a tag in a command file, the test is
always included (see also the handling of included test suites).

@readOnly Indicates that the command file should not be edited. TSTool will
update old command syntax to current syntax when a command file
is loaded. However, this tag will cause the software to warn the
user when saving the command file, so that they can cancel.

@testSuite ABC Indicate that the command file should be considered part of the
specified test suite, as specified with the IncludeTestSuite

133

CreateRegressionTestCommandFile() Command TSTool Documentation

Command Reference – CreateRegressionTestCommandFile() - 2

Comment Tag Description
parameter. The test is included in all test collections if the tag is not
specified; therefore, for general tests, do not specify a test suite.
This tag is useful if a group of tests require special setup, for
example connecting to a database. The suite names should be
decided upon by the test developer.

The following dialog is used to edit the command and illustrates the syntax for the command.

CreateRegressionTestCommandFile

CreateRegressionTestCommandFile() Command Editor

The command syntax is as follows:

CreateRegressionTestCommandFile(Parameter=Value,…)

Command Parameters

Parameter Description Default
SearchFolder The folder to search for regression test command files.

All subfolders will also be searched.
None – must be
specified.

OutputFile The name of the command file to create, enclosed in
double quotes if the file contains spaces or other special
characters. A path relative to the command file
containing this command can be specified.

None – must be
specified.

SetupCommandFile The name of a TSTool command file that supplies setup
commands, and which will be prepended to output. Use
such a file to open database connections and set other
global settings that apply to the entire test run.

Do not include setup
commands.

FilenamePattern Pattern for TSTool command files, using wildcards. Test_*.TStool
Append Indicate whether to append to the output file (True) or

overwrite (False). This allows multiple directory
trees to be searched for tests, where the first command

True

134

TSTool Documentation CreateRegressionTestCommandFile() Command

 Command Reference – CreateRegressionTestCommandFile() - 3

Parameter Description Default
typically specifies False and additional commands
specify True.

IncludeTestSuite If *, all tests that match FilenamePattern and
IncludeOS are included. If a test suite is specified,
only include tests that have @testSuite tag values
that match a value in IncludeTestSuite. One or
more tags can be specified, separated by commas.

* – include all test
cases.

IncludeOS If *, all tests that match FilenamePattern and
IncludeTestSuite are included. If an OS is
specified, only include tests that have @os tag values
that match a value in IncludeTestSuite. This tag
is typically specified once or not at all.

* – include all test
cases.

See the Quality Control chapter of the TSTool documentation for how to set up a regression test. The
following command file illustrates how to create a regression test suite.

CreateRegressionTestCommandFile(SearchFolder="..\..\..\commands\general",
 OutputFile="..\run\RunRegressionTest_commands_general.TSTool",Append=False)

An example of the output file from running the tests is:

File generated by...
program: TSTool 10.20.00 (2013-04-10)
user: sam
date: Sat Apr 20 13:36:05 MDT 2013
host: AMAZON
directory: C:\Develop\TSTool_SourceBuild\TSTool\test\regression\TestSuites\commands_general\run
command line: TSTool
-home test/operational/CDSS

Command file regression test report from StartRegressionTestResultsReport() and RunCommands()

Explanation of columns:

Num: count of the tests
Enabled: blank if test enabled or FALSE if "#@enabled false" in command file
Run Time: run time in milliseconds
Test Pass/Fail:
The test status below may be PASS or FAIL (or blank if disabled).
A test will pass if the command file actual status matches the expected status.
Disabled tests are not run and do not count as PASS or FAIL.
Search for *FAIL* to find failed tests.
Commands Expected Status:
Default is assumed to be SUCCESS.
"#@expectedStatus Warning|Failure" comment in command file overrides default.
Commands Actual Status:
The most severe status (Success|Warning|Failure) for each command file.

| | |Test |Commands |Commands |
| |Run |Pass/ |Expected |Actual |
Num|Enabled|Time |Fail |Status |Status |Command File
#----+-------+-------+------+----------+-----------+--
 1| | 141| PASS |SUCCESS |SUCCESS |C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\ARMA\Test_ARMA_Day.TSTool
 2| | 31| PASS |SUCCESS |SUCCESS |C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\ARMA\Test_ARMA_Legacy.TSTool
 3| | 31| PASS |SUCCESS |SUCCESS |C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\ARMA\Test_ARMA_Legacy_Ast.TSTool
 4| | 15| PASS |SUCCESS |SUCCESS |C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\ARMA\Test_ARMA_Legacy…
…
…
…
 17|FALSE | 0| |SUCCESS |UNKNOWN
|C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\WriteReclamationHDB\Test_WriteReclamationHDB_...
#----+-------+-------+------+----------+-----------+--
FAIL count = 0, 0.000%
PASS count = 17, 100.000%
Disabled count = 1
#--------------------------------
Total = 18

135

CreateRegressionTestCommandFile() Command TSTool Documentation

Command Reference – CreateRegressionTestCommandFile() - 4

This page is intentionally blank.

136

 Command Reference – Cumulate() - 1

Command Reference: Cumulate()
Convert time series data values to cumulative values

Version 10.12.00, 2012-07-25

The Cumulate()command converts a time series into cumulative values, which is useful for:

• comparing the cumulative trends of related time series (e.g., nearby gages or precipitation gages)
and can serve as a substitute for the double-mass graph, which has difficulty handling missing
data

• checking mass balance when routing time series (the cumulative values before and after routine
will track closely)

• computing year-to-date totals such as cumulative precipitation

The following dialog is used to edit the command and illustrates the syntax of the command.

Cumulate

Cumulate() Command Editor

The command syntax is as follows:

Cumulate(Parameter=Value,…)

137

Cumulate() Command TSTool Documentation

Command Reference – Cumulate() - 2

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed,

one of:
• AllMatchingTSID – all time series that

match the TSID (single TSID or TSID
with wildcards) will be modified.

• AllTS – all time series before the
command.

• EnsembleID – all time series in the
ensemble will be modified.

• LastMatchingTSID – the last time
series that matches the TSID (single TSID
or TSID with wildcards) will be modified.

• SelectedTS – the time series are those
selected with the
SelectTimeSeries() command.

AllTS

TSID The time series identifier or alias for the time
series to be modified, using the * wildcard
character to match multiple time series.

Required for
TSList=*TSID.

EnsembleID The ensemble to be modified, if processing an
ensemble.

Required for
TSList=EnsembleID.

HandleMissingHow Indicate how to handle missing data, one of:

• CarryForwardIfMissing –carry
forward the last non-missing value

• SetMissingIfMissing – set the
result to missing if the original value is
missing.

The only difference in output is that the period
of missing data will either be blank or a
horizontal line in graphs.

SetMissingIfMissing

Reset A date to the precision of the time series (e.g.,
01-01 for January 1 in a daily time series) that
indicates when to reset the cumulative value to
the initial value, before beginning to cumulate
again. Specifying the reset effectively defines
the first timestep in a new year, whether
calendar or some other year is being used for
the cumulative values. Use the format MM-DD,
MM-DD hh, or MM-DD hh:ss.

Do not reset.

ResetValue When Reset is specified: the value to
initialize the total at the Reset date/time, one
of:
• DataValue – the data value from the

original time series
• Number – a number to use for the reset

0 (zero)

138

TSTool Documentation Cumulate() Command

 Command Reference – Cumulate() - 3

Parameter Description Default
AllowMissingCount When Reset is specified: the number of

values allowed to be missing in a year. If more
values are missing, the entire year is set to
missing. The missing value count for the first
year includes the period from analysis start to
Reset. A partial year at the end of the
analysis period will not count as missing
beyond the analysis end.

No limit on the number of
missing values.

MinimumSampleSize When Reset is specified: the minimum
number of non-missing values required in a
year to perform the computation. If fewer
values are in the sample, the entire year is set
to missing. The missing value count for the
first year includes the period from analysis
start to Reset. A partial year at the end of the
analysis period will result in the sample size
being less than the full year.

No minimum sample size is
required.

A sample command file to cumulate times from the State of Colorado’s HydroBase is as follows:

1458 - CENTER 4 SSW
1458.NOAA.Precip.Month~HydroBase
2184 - DEL NORTE 2 E
2184.NOAA.Precip.Month~HydroBase
Cumulate(TSList=AllTS,HandleMissingHow=CarryForwardIfMissing)

The following graph illustrates cumulative data for two precipitation gages in the same region, where
missing data results in carrying forward the last known value.

cumulate_graph

Example Graph Showing Results of cumulate() Command

139

Cumulate() Command TSTool Documentation

Command Reference – Cumulate() - 4

This page is intentionally blank.

140

Command Reference: Delta()
Create new time series where values are the difference between each value in

original time series
Version 9.07.00, 2010-08-05

The Delta() command creates a new time series from an input time series. The resulting values are
computed as the difference between each value and the previous value. Consequently, the delta result is
the change from the previous value. The CheckTimeSeries() command can be used to check time
series for changes that exceed a threshold; however, the Delta() command handles the complexity of
time series that reset to a new starting value – the output can be used in conjunction with
CheckTimeSeries(). The Delta() command will create as many output time series as there are
input time series.

The output value is simply the current value minus the previous value. The result is set to missing if this
value cannot be computed due to missing values, or in cases where a transition across a reset has errors.

If the data do reset, then the expected trend should be specified to allow the ResetMin and ResetMax
parameters to be properly interpreted. For example, if Trend=Increasing and a decrease is detected,
it is assumed that the values have circled past the reset values. In this case the command will attempt to
compute the change across the reset values. If this is not possible, then warnings will be generated and
the result will be set to missing. Specific cases that are handled are:

• The previous value is out of range – in this case the contribution from the out of range previous
value is added to the delta and default flag value is assigned (see Flag parameter description). A
warning will be generated.

• The current value is out of range – in this case the difference will be decreased because the reset
value has not be achieved. A warning will be generated.

The above special cases result in somewhat arbitrary difference values because the inputs do not
conform to expected values. Out of range values indicate erroneous data that should be corrected
before being used in further analysis.

Irregular-interval time series that result in differences not being computed will have missing values
inserted at appropriate locations to maintain consistent data point spacing with the original data.

 Command Reference – Delta () - 1 141

Delta() Command TSTool Documentation

The following dialog is used to edit the command and illustrates the command syntax.

Delta

Delta() Command Editor

The command syntax is as follows:

Delta(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed, one of:

• AllMatchingTSID – all time series that match the
TSID (single TSID or TSID with wildcards).

• AllTS – all time series before the command.
• EnsembleID – all time series in the ensemble

specified by TSID.
• FirstMatchingTSID – the first time series that

matches the TSID (single TSID or TSID with
wildcards).

• LastMatchingTSID – the last time series that
matches the TSID (single TSID or TSID with
wildcards).

• SelectedTS – the time series are those selected with
the SelectTimeSeries() command.

AllTS

TSID The time series identifier or alias for the time series to be
modified, using the * wildcard character to match multiple
time series.

Must be specified
if
TSList=*TSID.

EnsembleID The ensemble to be modified, if processing an ensemble. Must be specified

Command Reference – Delta () - 2 142

TSTool Documentation Delta() Command

Parameter Description Default
if TSList=
EnsembleID.

ResetMin The minimum expected data value, used when data are
expected to increase (or decrease) to a threshold and then
reset, for example raw precipitation values that reset to zero
when a container fills.

Data are not
expected to reset.

ResetMax The maximum expected data value, used when data are
expected to increase (or decrease) to a threshold and then
reset, for example raw precipitation values that reset to zero
when a container fills.

Data are not
expected to reset.

ExpectedTrend Indicates trend of data, used when values can reset:
• Decreasing – values should decrease and then reset
• Increasing – values should increase and then reset

Data are variable
and don’t reset at
fixed thresholds.

AnalysisStart The date/time to start analyzing data. Full period is
analyzed.

AnalysisEnd The date/time to end analyzing data. Full period is
analyzed.

Flag A string to flag problem values, or Auto for default flags:
• R – indicates reset transition out of range > ResetMax
• r – indicates reset transition out of range < ResetMin
• V – indicates value out of range > ResetMax
• v – indicates value out of range < ResetMin

Do not flag
problem values.

Alias Alias to assign to created time series. A literal string can be
specified or use %-specifiers to set the alias dynamically
(e.g., %L) to use the location part of the identifier.

None (but is
highly
recommended).

 Command Reference – Delta() - 3 143

Delta() Command TSTool Documentation

This page is intentionally blank.

Command Reference – Delta () - 4 144

 Command Reference – DeselectTimeSeries() - 1

Command Reference: DeselectTimeSeries()
Deselect time series

Version 10.13.00, 2012-10-25

The DeselectTimeSeries() command deselects output time series, as if done interactively, to
indicate which time series SHOULD NOT be operated on by following commands. The command
minimizes the need for the free() command when used in conjunction with other commands that use a
time series list based on selected time series (TSList=SelectedTS). See also the
SelectTimeSeries() command.

The following dialog is used to edit the command and illustrates the command syntax.

DeselectTimeSeries

DeselectTimeSeries() Command Editor

145

DeselectTimeSeries() Command TSTool Documentation

Command Reference – DeselectTimeSeries() - 2

The command syntax is as follows:

DeselectTimeSeries(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be

processed, one of:
• AllMatchingTSID – all time

series that match the TSID (single
TSID or TSID with wildcards) will
be modified.

• AllTS – all time series before the
command.

• EnsembleID – all time series in
the ensemble will be modified.

• LastMatchingTSID – the last
time series that matches the TSID
(single TSID or TSID with
wildcards) will be modified.

• TSPosition – time series
specified by position in the results
list (see TSPosition parameter
below).

AllTS

TSID The time series identifier or alias for the
time series to be modified, using the *
wildcard character to match multiple
time series.

TSID or EnsembleID must be
specified if identifiers are being
matched.

EnsembleID The ensemble to be modified, if
processing an ensemble.

TSID or EnsembleID must be
specified if identifiers are being
matched.

TSPosition A list of time series positions in output
(1+), separated by commas.

Required if
TSList=TSPosition.

SelectAllFirst Indicates whether all time series should
be selected before deselecting the
specified time series: True or False.

False

A sample command file is as follows:

NewPatternTimeSeries(Alias="401234",NewTSID="401234..Precip.Day",
Description="Example data",SetStart="2000-01-01",SetEnd="2000-12-31",
 Units="IN",PatternValues="0,1,3,0,0,0")
DeselectTimeSeries(TSList=AllMatchingTSID,TSID="40*",SelectAllFirst=True)

146

Command Reference: Disaggregate()
Create a new time series with shorter interval

Version 10.00.01, 2011-05-12

The Disaggregate() command creates a new time series by disaggregating a time series with a
longer data interval into a time series with a shorter data interval. The resulting time series will have the
same metadata and identifier as the original time series, with a different data interval. See also the
general ChangeInterval() command.

Converting longer-interval data may cause a perceived shift in the time. For example, 1Day data shifted
to 24Hour data will result in the daily values being set at hour zero of the following day. This shift is
necessary to generically represent different time precision. Plots will also reflect the shift because hours
are not considered when computing plot positions for daily data. It is important to understand how
disaggregated data is treated with respect to time when using with other applications. If necessary, use
the ShiftTimeByInterval() command to manipulate the resulting output time series.

The following dialog is used to edit the command and illustrates the syntax for the command.

Disaggregate_Alias

Disaggregate() Command Editor

The command syntax is as follows:

Disaggregate(Parameter=Value,…)

The following older command syntax is updated to the above syntax when a command file is read:

 Command Reference – Disaggregate() - 1 147

Disaggregate() Command TSTool Documentation

TS Alias = Disaggregate(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSID The time series identifier or alias for the time series to be

disaggregated.
None – must be
specified.

Alias The alias to assign to the time series, as a literal string or
using the special formatting characters listed by the
command editor. The alias is a short identifier used by
other commands to locate time series for processing, as an
alternative to the time series identifier (TSID).

None – must be
specified.

Method The method used to perform the disaggregation, one of
the following:

Orsmbee – this method was presented in “Rainfall
Disaggregation Model for Continuous Hydrologic
Modeling,” Ormsbee, Lindell E., Journal of Hydraulic
Engineering, ASCE, April, 1989. Currently the method
has only been enabled for disaggregating 1Day (not
24Hour) data to 6Hour data.

SameValue – this simple method causes the resulting
time series to have the same value as the original. For
example, a monthly time series that is disaggregated to a
daily time series will result in each daily value being the
same as for the corresponding value in the original
monthly time series. Currently the following
disaggregations are supported:

• Year to Month
• Month to Day
• Day to NHour (including 24Hour)
• Hour to NMinute (including 60Minute)

None – must be
specified.

NewInterval The data interval for the disaggregated time series
(NHour, NDay, etc.).

None – must be
specified.

NewDataType The data type for the disaggregated time series, if
different from the original.

Same data type
as the original
time series.

NewUnits The units for the disaggregated time series, if different
from the original.

Same units as
the original time
series.

An example command file to process data from the State of Colorado’s HydroBase is as follows:

08223000 - RIO GRANDE RIVER AT ALAMOSA
ReadTimeSeries(TSID="08223000.DWR.Streamflow.Day~HydroBase",Alias=”DayTS”)
Disaggregate(TSID="DayTS",Alias=”HourTS”,Method=Ormsbee,NewInterval=6Hour)

Command Reference – Disaggregate() - 2 148

TSTool Documentation Disaggregate() Command

Examples of graphs for the original and disaggregated data are shown below, for the two disaggregation
methods:

disaggregate_SameValue_Graph

Daily Input Time Series and 6-Hour Disaggregated Time Series using SameValue Method

disaggregate_SameValue_Graph

Daily Input Time Series and 6-Hour Disaggregated Time Series using Ormsbee Method

 Command Reference – Disaggregate() - 3 149

Disaggregate() Command TSTool Documentation

This page is intentionally blank.

Command Reference – Disaggregate() - 4 150

Command Reference: Divide()
Divide the data values in one time series by data values in another time series

Version 08.16.04, 2008-09-24

The Divide()command divides one time series by another. This is useful for comparing the relative
size of time series values (see also RelativeDiff()). If the divisor is zero or missing, the result is set
to missing. Use the Scale() command to divide by a numerical value.

The following dialog is used to edit the command and illustrates the syntax of the command.

Divide

Divide() Command Editor

The command syntax is as follows:

Divide(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSID The time series identifier or alias for the time series to be

modified.
None – must be
specified.

DivisorTSID The time series identifier or alias for the time series that is the
divisor.

None – must be
specified.

 Command Reference – Divide() - 1 151

Divide() Command TSTool Documentation

A sample command file to process data from the State of Colorado’s HydroBase database is as follows:

2184 - DEL NORTE 2 E
2184.NOAA.TempMean.Month~HydroBase
5706 - MONTE VISTA 2 W
5706.NOAA.TempMean.Month~HydroBase
Divide(TSID="2184.NOAA.TempMean.Month",
 DivisorTSID="5706.NOAA.TempMean.Month")

The resulting graph is as follows:

divide_graph

Results from Divide() Command

Command Reference – Divide() - 2 152

Command Reference: Exit()
Stop processing commands

Version 08.16.04, 2008-09-25

The Exit() command can be inserted anywhere in a command file and causes the processing of
commands to stop at that line. This is useful for temporarily processing a subset of a long list of
commands. Multi-line comments (/* */) can also be used to temporarily disable one or more
commands. It may also useful to add an Exit() command at the end of the file so that it is easy to
insert commands above this command when the end line is selected (rather than having to deselect all
commands when editing).

In the future the command may be enhanced to have parameters that more explicitly control processing
shut-down.

The following dialog is used to edit the command and illustrates the command syntax:

Exit

Exit() Command Editor

The command syntax is as follows:

Exit(Parameter=Value,…)

Command Parameters

Parameter Description Default
 There are currently no command parameters.

A sample command file is as follows:

Exit()

 Command Reference – Exit() - 1 153

Exit() Command TSTool Documentation

This page is intentionally blank.

Command Reference – Exit() - 2 154

 Command Reference – ExpandTemplateFile() - 1

Command Reference: ExpandTemplateFile()
Process a template file to create a fully-expanded file

Version 10.21.00, 2013-06-21

The ExpandTemplateFile() command processes a template file (such as a command file, time
series product file, or HTML but can be any text file) to create a fully-expanded file and/or processor
property. Templates facilitate utilizing conditional logic, loops, and other dynamic processing
functionality that is not provided directly by TSTool. For example, a template can be used to repeat
commands for multiple location identifiers. One advantage of using the template approach is that
problems in the expanded file are clearly indicated, whereas a problem in logic that is represented as a
loop might be difficult to diagnose.

The FreeMarker software (http://freemarker.org) is used to implement templates (support for other
templating engines such as Apache Velocity could be added if needed). Refer to the online Freemarker
documentation for information about the markup language used to create templates. Because TSTool
checks commands for errors and does not itself understand FreeMarker syntax, template files must be
edited with a text editor outside the normal TSTool editing. Attempts to edit a template command file in
TSTool may result in error indicators and some command editors may not allow changes to be saved,
such as when template notation is used for a filename and the command expects a parent folder name to
exist. TSTool may be enhanced in the future to provide template editing features. Examples below
illustrate how to use common FreeMarker features.

The FreeMarker built-in normalizeNewlines user directive is automatically used to ensure that
expanded files use newline characters appropriate for the operating system. Otherwise the results may
have all lines merged together (not an issue for HTML used by web browsers but a big issue with
TSTool). The normalizeNewlines directive leads to temporary extra first and last lines in the
template during processing, which need to be accounted for when interpreting FreeMarker warning
messages. For example, a FreeMarker warning about line 21 would actually be line 20 in the original
template file. FreeMarker messages may be difficult to interpret. In general errors are because variable
names are not spelled correctly or there is an error specifying FreeMarker syntax.

The following information is automatically passed from TSTool to the ExpandTemplateFile()
command:

• Properties set with the SetProperty() command are passed to the template processor.
Consequently, the property names can be referenced with ${Property} in the template without
using a FreeMarker assign command.

• One-column tables are passed as FreeMarker lists, using the table identifier (TableID) as the list
property name. Null values in the table are passed as an empty string so that list have the correct
number of items for iteration. Use the CopyTable() command to create a one-column table
that can be used as a list for template expansion. The UseTables command parameter can be
used to turn off this transfer, for example in cases where an ExpandTemplateFile()
command is being repeated many times, does not use the tables, and is slowed down by
converting the tables to FreeMarker lists.

155

http://freemarker.org/

ExpandTemplateFile() Command TSTool Documentation

Command Reference – ExpandTemplateFile() - 2

The following dialog is used to edit the command and illustrates the syntax for the command.

ExpandTemplateFile

ExpandTemplateFile() Command Editor

The command syntax is as follows:

ExpandTemplateFile(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the template file to process. It is

recommended that the filename include “template”
and that a comment in the file include @readOnly,
which will cause TSTool to warn users when saving
the expanded result.

None – must be
specified.

OutputFile The name of the expanded output file. None – must be
specified.

OutputProperty The name of a property to receive the results of the
template expansion. This is appropriate when
templates are used to expand single-line text, for
example.

No property value
will be set.

UseTables Indicate whether 1-column tables should be passed to
the template expander. Doing so is a performance hit
and should be avoided if tables are not used in the
template.

True

ListInResults Indicate whether the results of the expansion should
be listed in the TSTool results area. This may be
undesirable for “worker” files that users will
normally not view.

True

156

TSTool Documentation ExpandTemplateFile() Command

 Command Reference – ExpandTemplateFile() - 3

Example Using Simple Variable Assignment

The following example illustrates a simple template command file and expanded result.

Simple test to expand a text file using FreeMarker
#@readOnly
<#assign message="Hello World">
${message}

Simple test to expand a text file using FreeMarker
#@readOnly
Hello World

Example of Passing Time Series Processor Properties to Templates

TSTool uses the ${Property} notation to dynamically replace the string with the corresponding
property value (as a string). FreeMarker uses the ${Variable} notation to dynamically replace the
string with the corresponding variable (as a string). Because the same notation is used by both software
components, care must be taken to ensure that values are properly interpreted.

TSTool automatically passes all TSTool properties to the ExpandTemplateFile() command.
Consequently, one of the main ways to avoid conflicts is to ensure that template command files do not use
any of the properties defined in TSTool. One way to check property names is to insert a
WritePropertyToFile() command at the appropriate line in a command file and review the list of
properties that are shown when editing the command.

To utilize TSTool processor properties in a template, do not use the FreeMarker assign command and
instead reference the property directly. The following TSTool command file illustrates how to define a
property that is used by the ExpandTemplateFile() command:

Simple test to expand a text file using FreeMarker
SetProperty(PropertyName="HelloWorldProp",PropertyType=String,
 PropertyValue="Hello World")
ExpandTemplateFile(InputFile="Data\ProcessorStringProperty.txt",
 OutputFile="Results/Test_ExpandTemplateFile_HelloWorld_out.txt")

The corresponding template command file is as follows:

Simple test to expand a text file using FreeMarker
${HelloWorldProp}

The variables also can be used in assignment, similar to the following:

Simple test to expand a text file using FreeMarker
<#assign message="${HelloWordProp}">
${message}

Example of Protecting TSTool Properties in Template with a Literal FreeMarker String

It is possible to use TSTool property notation in a template and cause FreeMarker to ignore the property.
This will ensure that the property notation is present in the output, for TSTool to interpret at run-time.

157

ExpandTemplateFile() Command TSTool Documentation

Command Reference – ExpandTemplateFile() - 4

The following example illustrates an input file that uses the FreeMarker ${r"…"} raw literal string
notation:

Simple test to expand a text file using FreeMarker
and also escape text so that it passes through to the expanded file
@readOnly
<#assign message="Hello World">
${r"SomeCommand($SomeProperty)"}

The corresponding output file is as follows:

Simple test to expand a text file using FreeMarker
and also escape text so that it passes through to the expanded file
@readOnly
Hello World
SomeCommand($SomeProperty)

Example of Using a Comment in the Template, which is Omitted from Expanded Output

It often is desirable to have comments in the template file to explain the template, but not have the
comments propagated to the expanded output. The following example illustrates an input file that uses
the FreeMarker $<#-- … --> notation for comments:

Simple test to expand a text file using FreeMarker
There should be no comment in the expanded output below this line
<#-- This is a comment in the template -->
<#assign message="Hello World">
${message}

The corresponding output file is as follows:

Simple test to expand a text file using FreeMarker
There should be no comment in the expanded output below this line
Hello World

Example Using Variable Assignment and Loop Using List

The following example illustrates a template command file repeat a command for a list of location
identifiers. A block of multiple commands can be repeated, as appropriate. Long lines are indented for
illustration but would exist on a single line without indentation in the template file. Note that the
loc_index FreeMarker syntax allows the loop counter to be used.

Simple template to illustrate how to repeat commands with a list of
location identifiers
Create a time series for each location
The following ensures that the created template is read-only, so users
modify the template instead:
#@readOnly
<#assign setStart = "2000-01-01">
<#assign setEnd = "2000-03-15">
<#assign units = "CFS">
<#assign locList = ["loc1", "loc2", "loc3", "loc4"]>
<#list locList as loc>

158

TSTool Documentation ExpandTemplateFile() Command

 Command Reference – ExpandTemplateFile() - 5

NewPatternTimeSeries(Alias="${loc}",NewTSID="${loc}..Streamflow.Day",
 SetStart="${setStart}",SetEnd="${setEnd}",Units="${units}",
 PatternValues="${loc_index + 1},0")
</#list>

The expanded command file is as follows:

Simple template to illustrate how to repeat commands with a list of
location identifiers
Create a time series for each location
The following ensures that the created template is read-only, so users
modify the template instead:
#@readOnly
NewPatternTimeSeries(Alias="loc1",NewTSID="loc1..Streamflow.Day",
 SetStart="2000-01-01",SetEnd="2000-03-15",Units="CFS",PatternValues="1,0")
NewPatternTimeSeries(Alias="loc2",NewTSID="loc2..Streamflow.Day",
 SetStart="2000-01-01",SetEnd="2000-03-15",Units="CFS",PatternValues="2,0")
NewPatternTimeSeries(Alias="loc3",NewTSID="loc3..Streamflow.Day",
 SetStart="2000-01-01",SetEnd="2000-03-15",Units="CFS",PatternValues="3,0")
NewPatternTimeSeries(Alias="loc4",NewTSID="loc4..Streamflow.Day",
 SetStart="2000-01-01",SetEnd="2000-03-15",Units="CFS",PatternValues="4,0")

Example Using a One-Column Table for a List for Looping

The following example illustrates a template command file that reads the location list from a table. Note
that the list must be a one-column table. If the original table has more than one column, read the original
file and then use the CopyTable() command to create a new one-column table. A comma-separated-
value (CSV) file is used for the list:

Simple list to use during template expansion
"Location"
loc1
loc2
loc3
loc4

The template file is similar to the previous example; however, the list of locations is now provided via the
table (no <#assign> element for the list) rather than having to hard-code in the template, which
separates data from the processing logic:

Simple template to illustrate how to repeat commands with a list of
location identifiers
Create a time series for each location
The following ensures that the created template is read-only,
so users modify the template instead:
The list is provided by the processor as a one-column table with ID
matching the list name
#@readOnly
<#assign setStart = "2000-01-01">
<#assign setEnd = "2000-03-15">
<#assign units = "CFS">
<#list locList as loc>
NewPatternTimeSeries(Alias="${loc}",NewTSID="${loc}..Streamflow.Day",
 SetStart="${setStart}",SetEnd="${setEnd}",Units="${units}",
 PatternValues="${loc_index + 1},0")
</#list>

159

ExpandTemplateFile() Command TSTool Documentation

Command Reference – ExpandTemplateFile() - 6

The following command file reads the list of locations from the table and then expands the template file.
Note that the TableID must match the list name in the <#list…> element in the template.

Test expanding a FreeMarker template for a list of time series, using a
one-column table as the list
Read a one-column table that will be passed to the template as a list
ReadTableFromDelimitedFile(TableID="locList",InputFile="Data\loclist.csv")
ExpandTemplateFile(InputFile="Data\ProcessorTable.txt",
 OutputFile="Results/Test_ExpandTemplateFile_ProcessorTable_out.txt")

Example Using a Multiple-Column Table to Loop Through Two Lists

The previous example illustrated how a one-column table can be used to loop over a list. However, often
it is necessary to loop over one list and access the corresponding items from another list. The following
example illustrates how a template command file can perform this task. Note that each list must be a one-
column table in TSTool. If the original table has more than one column, use the CopyTable()
command to create as many one-column tables as are necessary. In this example, a comma-separated-
value (CSV) file is used for the table:

Simple list to use during template expansion
"Location","Value"
loc1,1.0
loc2,2.0
loc3,3.0
loc4,4.0

The template file to expand is similar to the one-column example; however, the second list is also used to
provide information when expanding the commands (see bold text below):

Simple template to illustrate how to repeat commands with a list of
location identifiers
Create a time series for each location
The following ensures that the created template is read-only,
so users modify the template instead:
The location list is provided by the processor as a one-column table
with ID matching the list name
The value list is provided by the processor as a corresponding one-column
table with ID "valueList"
#@readOnly
<#assign setStart = "2000-01-01">
<#assign setEnd = "2000-03-15">
<#assign units = "CFS">
The loc_index is referenced to zero
<#list locList as loc>
<#assign value = valueList[loc_index]>
NewPatternTimeSeries(Alias="${loc}",NewTSID="${loc}..Streamflow.Day",
 SetStart="${setStart}",SetEnd="${setEnd}",Units="${units}",
 PatternValues="${value}")
NewPatternTimeSeries(Alias="${loc}",NewTSID="${loc}..Streamflow.Day",
 SetStart="${setStart}",SetEnd="${setEnd}",Units="${units}",
 PatternValues="${valueList[loc_index]}")
</#list>

160

TSTool Documentation ExpandTemplateFile() Command

 Command Reference – ExpandTemplateFile() - 7

The following command file reads the list of locations from the table and then expands the template file.
Note that the TableID must match the list name in the <#list…> element and corresponding arrays in
the template.

Test expanding a FreeMarker template for a list of time series, using a
two-column table as the list
Read a one-column table that will be passed to the template as a list
ReadTableFromDelimitedFile(TableID="locList2",
 InputFile="Data\2column-table.csv")
CopyTable(TableID="locList2",NewTableID="locList",
 IncludeColumns="Location")
CopyTable(TableID="locList2",NewTableID="valueList",
 IncludeColumns="Value")
ExpandTemplateFile(InputFile="Data\ProcessorTable.txt",
 OutputFile="Results/Test_ExpandTemplateFile_ProcessorTable_out.txt")

Example of Expanding a Template to a Processor Property

The following example illustrates how to expand a list into a SQL “in” clause, which is used to query
specific matching records. A one-column table with identifier locList must have been created to
supply the list of identifiers. The property set with the OutputProperty command parameter can then
be used in the SQL statement for the ReadTableFromDataStore() command.

IN (<#list locList as loc><#if (loc_index > 0)>,</#if>'${loc}'</#list>)

Example of Using ExpandTemplateFile() in a Loop to Expand Multiple Files

A template file cannot be expanded to multiple files using the approach illustrated above. However, by
placing an ExpandTemplateFile() command inside a template that uses a loop (a list), it is possible
to expand a template to multiple files. One example of this is the automated generation of time series
product files used with TSTool graphs, where a graph is created for each location being processed.
Graphs that are formatted with time series product files allow a certain amount of dynamic information to
be considered. However, because the products are organized into product (page), sub-product (graph on
page), and data (time series in graph), dynamic data may not be configurable at the desired level. For
example, time series legend text can be configured to automatically use the time series identifier;
however, this information is not appropriate for the page title because the software cannot automatically
decide which time series to use for the main title.

A solution is to use a template time series product (TSP) file that has a place-holder variable for the title
and then expand the TSP file as the command file is processed. For troubleshooting and data
management purposes, it is recommended that the TSP files are saved in a folder separate from final
output. The same TSP filename could be reused; however, the files are small and saving distinct files
allows them to be used individually if necessary.

The following TSP file illustrates a simple graph:

Template product file for graphs

[Product]

ProductType = "Graph"
TotalWidth = "600"

161

ExpandTemplateFile() Command TSTool Documentation

Command Reference – ExpandTemplateFile() - 8

TotalHeight = "400"
MainTitleString = "${loc} Streamflow"

[SubProduct 1]

GraphType = "Line"

[Data 1.1]

TSID = "${loc}..Streamflow.Day"
TSAlias = "${loc}"

The following template command file illustrates how a property is set to control expansion of a template
time series product file (note that templates are stored in a Data folder and final output in a Results folder
for testing purposes but data management will vary by application):

Simple template to illustrate how to repeat commands
with a list of location identifiers, and produce individual graphs.
The list is provided by the processor as a one-column table
with ID matching the list name
The @readOnly comment ensures that the created template is read-only,
so users modify the template instead.
#@readOnly
<#assign setStart = "2000-01-01">
<#assign setEnd = "2000-03-15">
<#assign units = "CFS">
<#list locList as loc>
Set the loc variable for the processor so that it can pass
to the ExpandTemplateFile command below
SetProperty(PropertyName="loc",PropertyType="String",PropertyValue="${loc}")
Create the time series
NewPatternTimeSeries(Alias="${loc}",NewTSID="${loc}..Streamflow.Day",
 SetStart="${setStart}",SetEnd="${setEnd}",Units="${units}",
 PatternValues="${loc_index + 1},0")
Expand the time series product file (graph) for the time series
ExpandTemplateFile(InputFile="..\Data\ProcessorTable_TSP_template.tsp",
 OutputFile="${loc}.tsp")
Process the graph
ProcessTSProduct(TSProductFile="${loc}.tsp",OutputFile="${loc}.tsp)
</#list>

The following expanded command file creates time series and graphs. Although blocks of commands are
repeated, the location identifier is different in each block of commands. Any errors in processing can be
pinpointed when the expanded command file is loaded and generally are due to logic errors in the original
template (errors repeated throughout the expanded command file) or data availability issues in specific
time series (errors in one part of the expanded command file).

Simple template to illustrate how to repeat commands
with a list of location identifiers, and produce individual graphs.
The list is provided by the processor as a one-column table
with ID matching the list name
The @readOnly comment ensures that the created template is read-only,
so users modify the template instead.
#@readOnly
Set the loc variable for the processor so that it can pass

162

TSTool Documentation ExpandTemplateFile() Command

 Command Reference – ExpandTemplateFile() - 9

to the ExpandTemplateFile command below
SetProperty(PropertyName="loc",PropertyType="String",PropertyValue="loc1")
Create the time series
NewPatternTimeSeries(Alias="loc1",NewTSID="loc1..Streamflow.Day",
 SetStart="2000-01-01",SetEnd="2000-03-
15",Units="CFS",PatternValues="1,0")
Expand the time series product file (graph) for the time series
ExpandTemplateFile(InputFile="..\Data\ProcessorTable_TSP_template.tsp",
 OutputFile="loc1.tsp")
Process the graph
ProcessTSProduct(TSProductFile="loc1.tsp",OutputFile="loc1.tsp)
Set the loc variable for the processor so that it can pass
to the ExpandTemplateFile command below
SetProperty(PropertyName="loc",PropertyType="String",PropertyValue="loc2")
Create the time series
NewPatternTimeSeries(Alias="loc2",NewTSID="loc2..Streamflow.Day",
 SetStart="2000-01-01",SetEnd="2000-03-
15",Units="CFS",PatternValues="2,0")
Expand the time series product file (graph) for the time series
ExpandTemplateFile(InputFile="..\Data\ProcessorTable_TSP_template.tsp",
 OutputFile="loc2.tsp")
Process the graph
ProcessTSProduct(TSProductFile="loc2.tsp",OutputFile="loc2.tsp)
Set the loc variable for the processor so that it can pass
to the ExpandTemplateFile command below
SetProperty(PropertyName="loc",PropertyType="String",PropertyValue="loc3")
Create the time series
NewPatternTimeSeries(Alias="loc3",NewTSID="loc3..Streamflow.Day",
 SetStart="2000-01-01",SetEnd="2000-03-
15",Units="CFS",PatternValues="3,0")
Expand the time series product file (graph) for the time series
ExpandTemplateFile(InputFile="..\Data\ProcessorTable_TSP_template.tsp",
 OutputFile="loc3.tsp")
Process the graph
ProcessTSProduct(TSProductFile="loc3.tsp",OutputFile="loc3.tsp)
Set the loc variable for the processor so that it can pass
to the ExpandTemplateFile command below
SetProperty(PropertyName="loc",PropertyType="String",PropertyValue="loc4")
Create the time series
NewPatternTimeSeries(Alias="loc4",NewTSID="loc4..Streamflow.Day",
 SetStart="2000-01-01",SetEnd="2000-03-
15",Units="CFS",PatternValues="4,0")
Expand the time series product file (graph) for the time series
ExpandTemplateFile(InputFile="..\Data\ProcessorTable_TSP_template.tsp",
 OutputFile="loc4.tsp")
Process the graph
ProcessTSProduct(TSProductFile="loc4.tsp",OutputFile="loc4.tsp)

Also note that when the expanded command file is first opened in TSTool the ProcessTSProduct()
commands will have a failure indicated. This is because the TSP file being used by the command has not
yet been created (it is created as the commands are run). After the commands are run one time, the files
will exist and subsequent loads of the command file will not show the warnings. This illustrates a
potential issue, which is that templates can result in large numbers of files and the files should be cleared
at appropriate times to ensure that old files are not used by mistake.

163

ExpandTemplateFile() Command TSTool Documentation

Command Reference – ExpandTemplateFile() - 10

The FreeMarker language provides many features beyond those illustrated in these examples, including
conditional (“if”) statements. However, the more complex the templates become, the more difficult they
are to implement, troubleshoot, and maintain. Enhancements to TSTool may help with a solution that
otherwise might require undesirable complexity.

164

TSTool Documentation ExpandTemplateFile() Command

 Command Reference – ExpandTemplateFile() - 11

This page is intentionally blank.

165

ExpandTemplateFile() Command TSTool Documentation

Command Reference – ExpandTemplateFile() - 12

This page is intentionally blank.

166

Command Reference: FillConstant()
Fill missing time series data using a constant value

Version 09.07.02, 2010-08-20

The FillConstant() command fills the missing data in a time series with the specified value. This
fill technique is useful for filling missing data with zeros, perhaps as the last step in a sequence of filling
commands.

The following dialog is used to edit the command and illustrates the command syntax.

FillConstant

FillConstant() Command Editor

 Command Reference – FillConstant() - 1 167

FillConstant() Command TSTool Documentation

The command syntax is as follows:

FillConstant(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed, one

of:
• AllMatchingTSID – all time series that

match the TSID (single TSID or TSID with
wildcards) will be modified.

• AllTS – all time series before the command.
• EnsembleID – all time series in the ensemble

will be modified.
• FirstMatchingTSID – the first time series

that matches the TSID (single TSID or TSID
with wildcards) will be modified.

• LastMatchingTSID – the last time series
that matches the TSID (single TSID or TSID
with wildcards) will be modified.

• SelectedTS – the time series are those
selected with the SelectTimeSeries()
command.

AllTS

TSID The time series identifier or alias for the time series
to be modified, using the * wildcard character to
match multiple time series.

Required for
TSList=*TSID.

EnsembleID The ensemble to be modified, if processing an
ensemble.

Required for
TSList=EnsembleID.

ConstantValue Constant value to use when filling missing data. None – must be specified.
FillStart Date/time indicating the start of filling, using a

precision appropriate for the time series, or
OutputStart.

Fill the entire time series.

FillEnd Date/time indicating the end of filling, using a
precision appropriate for the time series, or
OutputEnd.

Fill the entire time series.

FillFlag If specified, data flags will be enabled for the time
series and each filled value will be tagged with the
specified string. The flag can then be used later to
label graphs, etc. The flag will be appended to
existing flags if necessary.

No flag is assigned.

A sample command file to fill a time series from the State of Colorado’s HydroBase is as follows:

08236500 - ALAMOSA RIVER BELOW TERRACE RESERVOIR
08236500.DWR.Streamflow.Month~HydroBase
FillConstant(TSList=AllMatchingTSID,TSID="08236500.DWR.Streamflow.Month",
ConstantValue=500,FillStart="1970-02",FillEnd="1970-10",FillFlag="C")

Command Reference – FillConstant() - 2 168

Command Reference:
FillDayTSFrom2MonthTSAnd1DayTS()

Fill a daily time series from monthly volumes and daily pattern
Version 08.16.04, 2008-09-19

The FillDayTSFrom2MonthTSAnd1DayTS() command fills a daily time series using the following
relationship:

D1i = D2i*(M1i/M2i)

where:

i = day
D1 is the daily data at location 1
M1 is the monthly data at location 1 (for the month corresponding to the day)
D2 is the daily data at location 2
M2 is the monthly data at location 2 (for the month corresponding to the day)

This fill method assumes the monthly time series are filled and reasonably correlated and that the daily
pattern D2 can be applied at D1. For example, use this command to fill daily streamflow where filled
monthly data are available at nearby locations and filled daily data is available at the independent (D2)
station.

 Command Reference – FillDayTSFrom2MonthTSAnd1DayTS() - 1 169

FillDayTSFrom2MonthTSAnd1DayTS() Command TSTool Documentation

The following dialog is used to edit the command and illustrates the syntax of the command. For all the
time series identifiers, the last matching identifier before the command will be matched for processing.
Currently there is no way to fill multiple time series with one command.

FillDayTSFrom2MonthTSAnd1DayTS

FillDayTSFrom2MonthTSAnd1DayTS() Command Editor

The command syntax is as follows:

FillDayTSFrom2MonthTSAnd1DayTS(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSID_D1 The time series identifier or alias for the daily time

series to be filled.
None – must be
specified.

TSID_M1 The time series identifier or alias for the monthly
time series, corresponding to TSID_D1, to supply
the monthly values to be distributed to daily.

None – must be
specified.

TSID_M2 The time series identifier or alias for the independent
monthly time series.

None – must be
specified.

TSID_D2 The time series identifier or alias for the independent
daily time series, corresponding to TSID_M2.

None – must be
specified.

FillStart Date/time indicating the start of filling, using a
precision appropriate for the time series, or
OutputStart.

Fill the entire time
series.

FillEnd Date/time indicating the end of filling, using a
precision appropriate for the time series, or
OutputEnd.

Fill the entire time
series.

Command Reference – FillMonthTSFrom2MonthTSAnd1DayTS() - 2 170

TSTool Documentation FillDayTSFrom2MonthTSAnd1DayTS() Command

An example command file to process data from the State of Colorado’s HydroBase is shown below with
the resulting graph of daily time series.

The following is D1:
(1995-1998) ALAMOSA RIVER ABOVE JASPER, CO USGS Streamflow Daily
08235350.USGS.Streamflow.Day~HydroBase
The following is M1:
(1995-1998) ALAMOSA RIVER ABOVE JASPER, CO USGS Streamflow Monthly
08235350.USGS.Streamflow.Month~HydroBase
The following is D2:
(1914-1998) ALAMOSA RIVER ABOVE TERRACE RESERVOIR, CO. DWR Streamflow Daily
08236000.DWR.Streamflow.Day~HydroBase
The following is M2:
(1914-1998) ALAMOSA RIVER ABOVE TERRACE RESERVOIR, CO. DWR Streamflow Monthly
08236000.DWR.Streamflow.Month~HydroBase
FillRegression(TSID="08235350.USGS.Streamflow.Month",
 IndependentTSID="08236000.DWR.Streamflow.Month",
 NumberOfEquations=OneEquation,Transformation=Linear)
FillDayTSFrom2MonthTSAnd1DayTS(TSID_D1="08235350.USGS.Streamflow.Day",
 TSID_M1="08235350.USGS.Streamflow.Month",
 TSID_M2="08236000.DWR.Streamflow.Month",TSID_D2="08236000.DWR.Streamflow.Day")

 Command Reference – FillDayTSFrom2MonthTSAnd1DayTS() - 3 171

FillDayTSFrom2MonthTSAnd1DayTS() Command TSTool Documentation

The following graph shows the two daily time series used in the command (zoomed in). Note that the
shape of the filled time series is similar to the other time series.

fillDayTSFrom2MonthTSAnd1DayTS_Graph

Example of Filled Data

Command Reference – FillMonthTSFrom2MonthTSAnd1DayTS() - 4 172

 Command Reference – FillFromTS() - 1

Command Reference: FillFromTS()
Fill missing time series data using data from another time series (or ensemble)

Version 10.03.00, 2011-12-19

The FillFromTS() command fills missing data in a time series (or ensemble) by transferring non-
missing values from another time series (or ensemble). This is useful when two time series typically have
very similar values. The filled time series is not automatically extended. A period can be specified to
limit the period that is checked for missing data. See also the SetFromTS() command, which will
transfer all values. If multiple time series or an ensemble is being processed, the number of independent
time series must be one or the same number as the time series being filled. Data transfer occurs by
date/time, not sequentially. This may be a problem if trying to fill from a time series that has been shifted
and leap years have caused an offset – an enhancement may be made in the future to address this issue.
The following dialog is used to edit the command and illustrates the command syntax.

FillFromTS

FillFromTS() Command Editor

The command syntax is as follows:

FillFromTS(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed, one of:

• AllMatchingTSID – all time series that match
AllTS

173

FillFromTS() Command TSTool Documentation

Command Reference – FillFromTS() - 2

Parameter Description Default
the TSID (single TSID or TSID with wildcards)
will be modified.

• AllTS – all time series before the command.
• EnsembleID – all time series in the ensemble will

be modified.
• FirstMatchingTSID – the first time series that

matches the TSID (single TSID or TSID with
wildcards) will be modified.

• LastMatchingTSID – the last time series that
matches the TSID (single TSID or TSID with
wildcards) will be modified.

• SelectedTS – the time series are those selected
with the SelectTimeSeries() command.

TSID The time series identifier or alias for the time series to
be modified, using the * wildcard character to match
multiple time series.

Required when a
TSList=*TSID

EnsembleID The ensemble to be modified, if processing an
ensemble.

Required when
TSList=EnsembleID.

Independent
TSList

Indicates how to determine the list of independent time
series (see the explanation of TSList).

AllTS

Independent
TSID

The time series identifier or alias for the independent
time series (see the explanation of TSID).

Required when a
IndependentTSList=
*TSID

Independent
EnsembleID

The ensemble identifier for the independent time series
(see the explanation of EnsembleID).

Required when
IndependentTSList=
EnsembleID.

FillStart The date/time to start filling. Fill the entire period.
FillEnd The date/time to end filling. Fill the entire period.
FillFlag If specified, data flags will be enabled for the time

series and each filled value will be tagged with the
specified string. The flag can then be used later to label
graphs, etc. Prefix with + to append the flag.

No flag is assigned.

FillFlagDesc Description for the fill flag, used in reports. Automatically generated.
Recalc
Limits

Available only for monthly time series. Indicate
whether the original data limits for the time series
should be recalculated after the filling the time series.
Setting to True is appropriate if the independent time
series provides additional data values.

False (only the values in
the initial time series will
be used for historical
data).

A sample command file to fill data from the State of Colorado’s HydroBase is as follows:

08241000 - TRINCHERA CREEK ABOVE MOUNTAIN HOME RESERVOIR
08241000.DWR.Streamflow.Month~HydroBase
08240500 - TRINCHERA CREEK ABOVE TURNER'S RANCH
08240500.DWR.Streamflow.Month~HydroBase
FillFromTS(TSList=AllMatchingTSID,TSID="08241000.DWR.Streamflow.Month",
 IndependentTSList=AllMatchingTSID,
 IndependentTSID="08240500.DWR.Streamflow.Month")

174

Command Reference: FillHistMonthAverage()
Fill missing time series data using historical monthly average data

Version 09.07.00, 2010-06-14

The FillHistMonthAverage() command fills missing data in monthly time series with the average
monthly values. The average values are computed using the available data period (or specified averaging
period – see the SetAveragePeriod() command) immediately after the time series is read and are
then applied when this command is encountered.

The following dialog is used to edit the command and illustrates the syntax of the command.

FillHistMonthAverage

FillHistMonthAverage() Command Editor

The command syntax is as follows:

FillHistMonthAverage(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicate how to determine the list of time series to process,

one of:

 AllMatchingTSID – process time series that have

identifiers matching the TSID parameter.
 AllTS – process all the time series.
 FirstMatchingTSID – process the first time series

that has an identifier matching the TSID parameter.

None – must be specified.

 Command Reference – FillHistMonthAverage() - 1 175

FillHistMonthAverage() Command TSTool Documentation

Parameter Description Default
 LastMatchingTSID – process the last time series that

has an identifier matching the TSID parameter.
 SelectedTS – process the time series that are selected

(see SelectTimeSeries()).
TSID Used if TSList=AllMatchingTSID to indicate the time

series identifier or alias for the time series to be filled.
Specify * to match all time series or use a wildcard for one or
more identifier parts.

Required if
TSList=AllMatchin
gTSID.

FillStart Date/time indicating the start of filling, using a precision
appropriate for the time series, or OutputStart.

Fill the entire time series.

FillEnd Date/time indicating the end of filling, using a precision
appropriate for the time series, or OutputEnd.

Fill the entire time series.

FillFlag If specified, data flags will be enabled for the time series and
each filled value will be tagged with the specified string. The
flag can then be used later to label graphs, etc. The flag will
be appended to existing flags if necessary. Use Auto to use
a flag with the month abbreviation + Avg.

No flag is assigned.

FillFlag
Desc

Description for the fill flag, used in reports. Automatically generated.

The following command files fill a time series from the State of Colorado’s HydroBase:

0125 - ALAMOSA
0125.NOAA.Precip.Month~HydroBase
FillHistMonthAverage(TSList=AllMatchingTSID,TSID=”0125.NOAA.Precip.Month”,
FillFlag=”H”)

0125.NOAA.Precip.Month~HydroBase
FillHistMonthAverage(TSList=AllMatchingTSID,TSID=”019*”,FillFlag=”H”)

Time series data limits for the averages are printed to the log file, similar to the following examples (note
that the period for averaging is always shown and may be different than the output period).

Status: Historic averages for time series follow...
Time series: 0125.NOAA.Precip.Month (IN)
Monthly limits for period 1948-08 to 1949-12 are:
 # % # Not % Not
Month Min MinDate Max MaxDate Sum Miss. Miss. Miss. Miss. Mean
--
Jan 0.2 1949-01 0.2 1949-01 0.2 0 0.00 1 100.00 0.2
Feb 0.1 1949-02 0.1 1949-02 0.1 0 0.00 1 100.00 0.1
Mar 0.1 1949-03 0.1 1949-03 0.1 0 0.00 1 100.00 0.1
Apr -999.0 -999.0 -999.0 1 100.00 0 0.00 -999.0
May -999.0 -999.0 -999.0 1 100.00 0 0.00 -999.0
Jun 0.7 1949-06 0.7 1949-06 0.7 0 0.00 1 100.00 0.7
Jul 1.5 1949-07 1.5 1949-07 1.5 0 0.00 1 100.00 1.5
Aug 0.7 1949-08 0.8 1948-08 1.5 0 0.00 2 100.00 0.8
Sep 0.1 1948-09 1.1 1949-09 1.2 0 0.00 2 100.00 0.6
Oct 0.1 1949-10 0.5 1948-10 0.7 0 0.00 2 100.00 0.3
Nov 0.0 1949-11 0.8 1948-11 0.8 0 0.00 2 100.00 0.4
Dec 0.0 1949-12 0.2 1948-12 0.2 0 0.00 2 100.00 0.1
--
Period 0.0 1949-11 1.5 1949-07 6.9 2 11.76 15 88.24 0.5
--

Command Reference – FillHistMonthAverage() - 2 176

Command Reference: FillHistYearAverage()
Fill missing time series data using historical yearly average data

Version 10.00.01, 2011-05-12

The FillHistYearAverage() command fills missing data in yearly time series with the average
annual value. The average values are computed using the available data period (or specified averaging
period – see the SetAveragePeriod()command) immediately after the time series is read and are
then applied when this command is encountered.

The following dialog is used to edit the command and illustrates the syntax of the command.

FillHistYearAverage

FillHistYearAverage() Command Editor

The command syntax is as follows:

FillHistYearAverage(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicate how to determine the list of time

series to process, one of:

 AllMatchingTSID – process time

series that have identifiers matching
the TSID parameter.

 AllTS – process all the time series.

None – must be specified.

 Command Reference – FillHistYearAverage() - 1 177

FillHistYearAverage() Command TSTool Documentation

Parameter Description Default
 SelectedTS – process the time

series that are selected (see
selectTimeSeries()).

TSID Used if TSList=AllMatchingTSID
to indicate the time series identifier or
alias for the time series to be filled.
Specify * to match all time series or use
a wildcard for one or more identifier
parts.

Required if
TSList=AllMatchingTSID.

FillStart Date/time indicating the start of filling,
using a precision appropriate for the time
series, or OutputStart.

Fill the entire time series.

FillEnd Date/time indicating the end of filling,
using a precision appropriate for the time
series, or OutputEnd.

Fill the entire time series.

FillFlag If specified as a single character, data
flags will be enabled for the time series
and each filled value will be tagged with
the specified character. The flag can
then be used later to label graphs, etc.
The flag will be appended to existing
flags if necessary.

No flag is assigned.

A sample command file to fill data from the State of Colorado’s HydroBase is as follows:

LARIMER.NASS.CropArea-Vegetables, Harvested.Year~HydroBase
FillHistYearAverage(TSList=AllMatchingTSID,
TSID="LARIMER.NASS.CropArea-Vegetables, Harvested.Year")

Time series data limits for the averages are printed to the log file, similar to the following example (note
that the period for averaging is always shown and may be different than the output period).

Min: 95.0000 ACRE on 1954
Max: 2684.0000 ACRE on 1959
Sum: 11090.0000 ACRE
Mean: 1008.1818 ACRE
Number Missing: 42 (79.25%)
Number Not Missing: 11 (20.75%)
Total period: 1945 to 1997
Non-missing data period: 1945 to 1997

Command Reference – FillHistYearAverage() - 2 178

Command Reference: FillInterpolate()
Fill missing time series data by interpolating between known values

Version 09.07.02, 2010-08-20

The FillInterpolate() command fills missing data in a time series by interpolating between
known values within the same time series. The command currently will not extrapolate past end points.

The following dialog is used to edit the command and illustrates the syntax of the command.

FillInterpolate

FillInterpolate() Command Editor

The command syntax is as follows:

FillInterpolate(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be

processed, one of:
• AllMatchingTSID – all time

series that match the TSID (single
TSID or TSID with wildcards) will
be modified.

• AllTS – all time series before the

AllTS

 Command Reference – FillInterpolate() - 1 179

FillInterpolate() Command TSTool Documentation

Parameter Description Default
command.

• EnsembleID – all time series in
the ensemble will be modified.

• FirstMatchingTSID – the first
time series that matches the TSID
(single TSID or TSID with
wildcards) will be modified.

• LastMatchingTSID – the last
time series that matches the TSID
(single TSID or TSID with
wildcards) will be modified.

• SelectedTS – the time series are
those selected with the
SelectTimeSeries()
command.

TSID The time series identifier or alias for the
time series to be modified, using the *
wildcard character to match multiple
time series.

Required when
TSList=*TSID

EnsembleID The ensemble to be modified, if
processing an ensemble.

Required when
TSList=EnsembleID.

FillStart The starting date/time for the fill. Available period.
FillEnd The ending date/time for the fill. Available period.
MaxIntervals The maximum number of consecutive

intervals to fill (0 indicates no limits on
the number of consecutive intervals that
can be filled).

0

Transformation Indicate the data transformation to occur
for interpolation. Currently, None is the
only option and is the default. Earlier
versions used Linear.

None (no transformation).

FillFlag A string to flag data values that are filled. None – do not flag filled data.

A sample command file using data from the State of Colorado’s HydroBase is as follows:

06707500 - SOUTH PLATTE RIVER AT SOUTH PLATTE
06707500.DWR.Streamflow.Month~HydroBase
FillInterpolate(TSList=AllMatchingTSID,TSID="06707500.DWR.Streamflow.Month",
MaxIntervals=3,Transformation=None)

Command Reference – FillInterpolate() - 2 180

 Command Reference – FillMixedStation() - 1

Command Reference: FillMixedStation()
Fill missing data in dependent time series using the best fit from 1+ independent

time series, using OLS regression or MOVE2, data transforms, one/monthly
equations

Version 10.20.00, 2013-04-21

This command is under development. It is envisioned that the FillRegression() command
enhancements will be completed first. Then the FillMixedStation() analysis command will utilize
much of the same logic, using the output statistics table to eliminate candidate relationships and use
the remaining relationships to calculate estimated values to check against standard error of
prediction, etc.

The FillMixedStation() command fills missing data in a time series where one or more
independent time series is used to sequentially fill missing data. This approach has been developed to
automate analysis of regression filling (see Mixed Station Analysis Tool below) and to facilitate batch
filling of many related time series. This implementation is based on the Mixed Station Model
implemented for Colorado’s Decision Support Systems (Ayres Associates, 2000), which was based on the
similarly named approach implemented by the USGS (Alley and Burns, 1981).

The time series involved in the analysis are typically related, such as being from nearby locations in a
region. The main uses of the command are:

1. To automatically fill every time series in a data set, using other time series in the data set. For
example, for hydrologic modeling natural flow time series may have been estimated by
processing measured streamflow, diversion, and reservoir time series. The natural flow time
series can be filled for use in modeling.

2. To generate a report on relationships, so that the user can configure individual
FillRegression() and FillMOVE2() commands in TSTool. This may be appropriate
when using FillMixedStation() on a list of time series is inappropriate.

Important: TSTool does not automatically exclude time series that have been filled in previous
steps. Consequently, care must be taken when specifying the list of independent time series to NOT
use time series that were filled in a previous step.

For each dependent time series being filled, the Mixed Station Analysis (MSA) selects the independent
time series and parameters that result in the best filling results, considering combinations of the
following:

• The list of independent time series being considered can be constrained to a subset of available
time series.

• Filling methods include ordinary least squares (OLS) regression (see the FillRegression()
command for details) and MOVE2 (see the FillMOVE2() command for details).

• One equation or monthly equations can be used. However, both options cannot be evaluated
together due to the complexity of ranking and reporting results.

• The data can be transformed using log10, or no transformation can be applied.
• A minimum number of overlapping data points (sample size N1) can be specified to indicate a

valid relationship.
• A minimum correlation coefficient r can be specified to indicate a valid relationship.

181

FillMixedStation() Command TSTool Documentation

Command Reference – FillMixedStation() - 2

• A minimum confidence level for the slope of the regression line can be specified (see T-Test
discussion below).

• The best fit indicator can be the correlation coefficient (R), or the standard error of prediction
(SEP, described below).

Because extensive analysis may be necessary to evaluate all the combinations of parameters, the
FillMixedStation() command will be slower than other commands that specifically indicate how
to perform the filling. The number of combinations can also be limited by reducing the number of
parameter options and using stricter limitations on the number of overlapping points and correlation
coefficients that are required for a good regression result.

The full MSA process is as follows:

1. For each dependent time series, perform a regression analysis using a unique combination of
parameters (e.g., use an independent time series, OLS regression with one equation, no data
transform). This results in 1+ regression results for each dependent time series.

2. Qualifying results (those that meet the requirements of minimum number of overlapping points
and correlation coefficient) are retained in a list for the dependent time series, for processing in
the next step.

3. The qualifying results are used to estimate each missing value. Typically, the SEP is used to
select the relationship to use (the one that has lowest SEP).

4. Missing data in the dependent time series are filled using the regression results for he selected
relationship. If missing values remain, the next highest ranking regression result is used until all
missing values are filled (or no additional qualifying regression results are available). Monthly
filling occurs on each of the 12 months. This approach may use different stations because of the
goodness of fit of the relationship and because different stations may or may not have data that
overlap the period to be filled.

Implementation in Colorado’s Decision Support Systems

The Mixed Station Model implemented for the State of Colorado typically used the following input:

• Log transform
• Monthly relationships
• Rank on SEP
• Ordinary lease squares regression
• Minimum concurrent values = 5
• Confidence level = 95%
• Fill all time series in data set

182

TSTool Documentation FillMixedStation() Command

 Command Reference – FillMixedStation() - 3

The following dialog is used to edit the FillMixedStation() command and illustrates the syntax of
the command. Note that this interface will be updated to be similar to that of the
FillRegression() command.

FillMixedStation

FillMixedStation() Command Editor

The command syntax is as follows:

FillMixedStation(Parameter=value,…)

Command Parameters

Parameter Description Default
DependentTSList Indicates the list of independent time series to be

processed, one of:
• AllMatchingTSID – all time series that

match the TSID (single TSID or TSID with
wildcards) will be processed.

• AllTS – all time series before the
command will be processed.

• EnsembleID – all time series in the
ensemble will be processed.

• FirstMatchingTSID – the first time
series that matches the TSID (single TSID
or TSID with wildcards) will be processed.

None – must be specified.

183

FillMixedStation() Command TSTool Documentation

Command Reference – FillMixedStation() - 4

Parameter Description Default
• LastMatchingTSID – the last time

series that matches the TSID (single TSID
or TSID with wildcards) will be processed.

 SelectedTS – the time series selected
with the SelectTimeSeries()
command will be processed.

DependentTSID The time series identifier or alias for the
dependent time series to be processed, using the
* wildcard character to match multiple time
series.

Required if
DependentTSList=
*TSID.

IndependentTSList Indicates the list of independent time series to be
considered for each dependent time series, one
of:
• AllMatchingTSID – all time series that

match the TSID (single TSID or TSID with
wildcards) will be processed.

• AllTS – all time series before the
command will be processed.

• EnsembleID – all time series in the
ensemble will be processed.

• FirstMatchingTSID – the first time
series that matches the TSID (single TSID
or TSID with wildcards) will be processed.

• LastMatchingTSID – the last time
series that matches the TSID (single TSID
or TSID with wildcards) will be processed.

• SelectedTS – the time series selected
with the SelectTimeSeries()
command will be processed.

None – must be specified.

IndependentTSID The time series identifier or alias for the
independent time series to be compared, using
the * wildcard character to match multiple time
series.

Required if
IndependentTSList=
*TSID.

184

TSTool Documentation FillMixedStation() Command

 Command Reference – FillMixedStation() - 5

Parameter Description Default
BestFitIndicator Specifies the indicator to use when determining

the best fit, one of:
 R – correlation coefficient
 SEP – Standard Error of Prediction, defined

as the square root of the sum of differences
between the known dependent value, and
the value determined from the equation of
best fit at the same point.

 SEPTransformedpoin – same as SEP;
however the data values have first been
transformed as per the Transformation
parameter.

 SEPTotal, when used with one equation,
it is the same as SEP. When used with
monthly equations, it is the SEP considering
all months.

 SEPTransformedTotal, when used
with one equation, it is the same as
SEPTransformed. When used with
monthly equations, it is the
SEPTransformed considering all
months.

SEP

AnalysisMethod Specify the method(s) to analyze the data, in
order to determine the best fit, including
OLSRegression and/or MOVE2. If multiple
methods are specified, separate with commas
and surround with double quotes.

OLSRegression

NumberOfEquations The number of equations to use for the analysis:
OneEquation or MonthlyEquations.
Only one may be chosen. If necessary, use
more than one command to use different
parameter combinations for different groups of
time series.

None – must be specified.

Transformation Indicates how to transform the data before
analyzing. Specify as None (no transformation)
or Log (for Log10). If the Log option is used,
zero and negative values in data are set to
.001. Missing data are ignored. If multiple
values are selected, separate with a comma and
surround with double quotes.

None (no transformation)

Intercept Specify as 0 to force the intercept of the best-fit
line through the origin. This is made available
only for OLS regression analysis on
untransformed data, to be consistent with the
FillRegression() command.

Do not force the intercept
through zero.

ConfidenceLevel Required confidence level for the T-Test on the
regression slope. Relationships not passing the
test are not allowed for filling.

No limit on confidence
level.

185

FillMixedStation() Command TSTool Documentation

Command Reference – FillMixedStation() - 6

Parameter Description Default
AnalysisStart The date/time to start the analysis, to focus on a

period appropriate for analysis. For example,
specify the unregulated period for streamflow.

If blank, analyze the full
period.

AnalysisEnd The date/time to end the analysis. If blank, analyze the full
period.

FillStart The date/time to start filling, if other than the
full time series period.

If blank, fill the full
period.

FillEnd The date/time to end filling, if other than the full
time series period.

If blank, fill the full
period.

MinimumDataCount The minimum number of overlapping data
points that are required for a valid analysis (N1
in FillRegression() and FillMOVE2()
documentation). If the minimum count is not
met, then the independent time series is ignored
for the specific combination of parameters. For
example, if monthly equations are used, the
independent time series may be ignored for the
specific month; however, it may still be
analyzed for other months.

10

MinimumR The minimum correlation coefficient required
for a best fit. If the minimum is not met, then
the results are not considered in the best fit
ranking or filling.

0.5

OutputFile Output file for the results, either as a file name
to be written to the working directory, or a full
path.

If not specified, partial
results of the analysis may
be available in the log file.

The following example command file fills natural flow time series from a StaeMod file using one
equation (not monthly):

Test filling the gunnison monthly baseflow time series with
Mixed Station Analysis (all combinations for one equation)
StartLog(LogFile="fill-baseflow.log")
ReadStateMod(InputFile="gunnv.xbg")
FillMixedStation(BestFitIndicator=SEP,AnalysisMethod="MOVE2,OLSRegression",
NumberOfEquations=OneEquation,
Transformation="Log,None",OutputFile="Results.txt")
Check for missing data - all should be filled
CheckTimeSeries(CheckCriteria="Missing",MaxWarnings=10)
Check for negative flows - should not be any
CheckTimeSeries(CheckCriteria="<",Value1=0,MaxWarnings=10)

186

Command Reference: fillMOVE1()
Fill Missing Time Series Data Using MOVE1 Procedure

Version 06.08.02, 2004-08-02, Color, Acrobat Distiller

The fillMOVE1() command has not been enabled. This documentation serves as a reference for
the MOVE1 procedure. Refer to the fillMOVE2() command.

The fillMOVE1() command is more sophisticated than the fillRegression() command.

Maintenance of variance extension (MOVE) procedures are methods of fitting straight lines to data. The
slope and intercept of the MOVE equations are computed differently than in ordinary least squares (OLS)
regression (see the fillRegression() command for a discussion of OLS regression). As shown
below, an area of a triangle is minimized in the MOVE procedures rather than a vertical distance as in
OLS regression. The MOVE procedures do not provide the minimum-variance estimate of a single value
but an ensemble of points estimated by the MOVE procedures will have the same variability as the true
values.

MOVE procedures are useful in extending record at gaging stations where the extended record will be
subsequently used in another analysis such as frequency analysis. MOVE procedures will provide about
the same estimates as OLS regression near the mean of the data but will provide smaller and larger
estimates at the extremes of the data set. The slope of the MOVE relation is steeper than OLS regression.
The MOVE procedures are based on only one independent variable and the assumption is that there is a
linear relation between the dependent and independent variables. If the untransformed data are not
linearly related, then it is common to transform the data using a logarithmic transformation.

The MOVE.1 procedure uses just the data from the N1 years of concurrent data. The MOVE.2 procedure
(see the fillMOVE2() command) uses the Two-Station Comparison procedure described in Appendix
7 of Bulletin 17B, Guidelines for Determining Flood Flow Frequency, USGS, to compute improved
estimates of the mean and variance for the dependent time series and uses all the data at the dependent
time series to estimate the mean and variance of the dependent time series. The MOVE.2 procedure has
been shown to be marginally better than MOVE.1.

 Command Reference – fillMOVE1() - 1 187

fillMOVE1() Command TSTool Documentation

Maintenance of Variance Extension (MOVE)

(Xi, Yi)

Minimize area
of triangle

Y

X

The MOVE.1 equation is used to estimate values for the dependent time series from the independent time
series:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+= 11

1

1

XXYY iS
S

i
x

y

or

ii bXaY +=

where

=1N concurrent or overlapping period of record
=1X mean for independent variable for years 1N

=1Y mean for dependent variable for years 1N
=1yS standard deviation for years 1N
=1xS standard deviation for years 1N

1

1

x

y

S
S

b =

11 - XbYa =

Note that the slope of the line does not include the correlation coefficient. This is the only difference
between OLS regression and MOVE.1.

Command Reference – fillMOVE1() - 2 188

Command Reference: FillMOVE2()
Fill missing data in time series using the Maintenance of Variance Extension

(MOVE.2) procedure
Version 08.15.00, 2008-05-04

The FillMOVE2() command fills missing data in a time series using the MOVE.2 procedure (see the
FillMOVE1() command for background information). The MOVE.2 procedure uses the Two-Station
Comparison procedure described in Appendix 7 of Bulletin 17B, Guidelines for Determining Flood
Flow Frequency, USGS, to compute improved estimates of the mean and variance at the dependent or
short-term station and uses all the data at the dependent time series to estimate the mean and variance of
the dependent time series. The MOVE.2 procedure has been shown to be marginally better than
MOVE.1. The following MOVE.2 equation is used to estimate values for the dependent time series from
the independent time series:

⎥
⎦

⎤
⎢
⎣

⎡
−+= XXYY iS

S

i x

y

where

=iY discharge for dependent time series
=iX discharge for independent time series

=X mean for independent time series for 21 NN + years (N 2 is the additional years in the long-
term time series)

=xS standard deviation for independent time series for 21 NN + years

()[]12
21

2
1 XXb

NN
N

YY −
+

+= (Equation 7-5a for Two-Station Comparison in Appendix 7
of Bulletin 17B)

[]2
12

2

21

212
y1

2

11

1122
x2

2
2

2
y11

21

2
y)XX(b

NN
NN

)Sr(1
2)3)(N(N

1)4)(N(NN
Sb1)(N1)S(N

1)N(N
1S −

+
+−

−−
−−

+−+−
−+

=

(Equation 7-10 for Two-Station Comparison in Appendix 7 of Bulletin 17B)
where

== r
S
S

rb
x

y ,
1

1 correlation coefficient (Note that b is the slope of the ordinary least squares regression

line.)
=1N concurrent or overlapping period of record
=2N additional years available at long-term site
=1X mean of independent time series for years 1N
=2X mean of independent time series for years 2N
=1yS standard deviation of dependent time series for years 1N
=1xS standard deviation of independent time series for years 1N

 Command Reference – FillMOVE2() - 1 189

FillMOVE2 () Command TSTool Documentation

The following dialog is used to edit the command and illustrates the command syntax.

FillMOVE2

FillMOVE2() Command Editor

Command Reference – FillMOVE2() - 2 190

TSTool Documentation FillMOVE2() Command

The command syntax is as follows:

FillMOVE2(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSID The time series identifier or alias for the

time series to be filled (dependent time
series).

None – must be specified.

IndependentTSID The time series identifier or alias for the
independent time series, to supply data.

None – must be specified.

NumberOf
Equations

OneEquation or
MonthlyEquations, indicating how
many relationships are to be determined.

OneEquation

Transformation Log or None, indicating the type of data
transformation. If the Log option is
used, zero and negative values are set to
.001 (-999 values are treated as
missing data and are ignored), and the
data values are transformed using log10.

None

Dependent
Analysis
Start/End

The period for N1 (overlapping data) that
is used to analyze the dependent time
series. For example, this may be the
unregulated period for streamflow data.
Typically, this is longer than the
independent analysis period.

Analyze the full period.

Independent
Analysis
Start/End

The period for N2 (non-overlapping data)
that is used to analyze the independent
time series. For example, this may be the
unregulated period for streamflow data.

Analyze the full period.

FillStart The date/time to start filling. Fill the full period.
FillEnd The date/time to end filling. Fill the full period.
FillFlag A single character to be used to flag

filled points on graphs and other output.
Do not flag filled data.

 Command Reference – FillMOVE2() - 3 191

FillMOVE2 () Command TSTool Documentation

A sample command file illustrating how to fill time series from the State of Colorado’s HydroBase is as
follows (MOVE2 and ordinary least squares regression are used to allow comparing the results):

StartLog(LogFile="Results/commands.TSTool.log",Suffix="Date")
SetOutputPeriod(OutputStart="1901-01",OutputEnd="2004-12")
06758500 - SOUTH PLATTE RIVER NEAR WELDONA
06758500.DWR.Streamflow.Month~HydroBase
06754000 - SOUTH PLATTE RIVER NEAR KERSEY
06754000.DWR.Streamflow.Month~HydroBase
FillMOVE2(TSID="06758500.DWR.Streamflow.Month",
 IndependentTSID="06754000.DWR.Streamflow.Month",
 NumberOfEquations=MonthlyEquations,DependentAnalysisStart="1952-10",
 DependentAnalysisEnd="2004-09",IndependentAnalysisStart="1901-01",
 IndependentAnalysisEnd="1950-12",FillStart="1930-01",
 FillEnd="1940-12",FillFlag="m")
06758500 - SOUTH PLATTE RIVER NEAR WELDONA
06758500.DWR.Streamflow.Month~HydroBase
06754000 - SOUTH PLATTE RIVER NEAR KERSEY
06754000.DWR.Streamflow.Month~HydroBase
FillRegression(TSID="06758500.DWR.Streamflow.Month",
IndependentTSID="06754000.DWR.Streamflow.Month")

Command Reference – FillMOVE2() - 4 192

Command Reference: FillPattern()
Fill missing time series data using historical average patterns

Version 08.16.04, 2008-09-19

The FillPattern()command fills missing data in a time series using historic averages based on a
pattern file. For example, if May 1910 is missing and the pattern indicates that May 1910 is a WET month,
then the average of all WET Mays is used to fill the time series. The pattern file indicates the
WET/DRY/AVG patterns and the time series to be filled supplies data to compute averages, for use in
filling. This feature is enabled for monthly data only. Averages are computed as described for the
FillHistMonthAverage() command. There is currently no way to limit the fill operation to a
period (the entire time series is filled). The pattern file is created with the AnalyzePattern()
command and a saved file must be read with a ReadPatternFile() command. See below for an
example of a fill pattern file. One or more patterns can be included in each pattern file, similar to
StateMod time series files (see the StateMod Input Type appendix), and multiple pattern files can be
used, if appropriate.

Years Shown = Water Years
Missing monthly data filled by the Mixed Station Method, USGS 1989
Time series identifier = 09034500.CRDSS_USGS.QME.MONTH.1
Description = COLORADO RIVER AT HOT SULPHUR SPRINGS, CO.
-e-b----------eb------eb------eb------eb------eb------eb------eb------eb------eb------eb------eb------eb------eb--------e
 10/1908 - 9/1996 ACFT WYR
1909 09034500 AVG AVG AVG WET WET AVG AVG AVG WET WET WET WET
1910 09034500 WET WET WET WET WET WET AVG AVG AVG AVG AVG AVG
1911 09034500 AVG AVG WET AVG AVG AVG AVG WET WET WET AVG WET
1912 09034500 WET WET WET WET WET AVG AVG WET WET WET WET WET
...ommitted...

The following dialog is used to edit the FillPattern() command and illustrates the syntax of the
command.

FillPattern

FillPattern() Command Editor

 Command Reference – FillPattern() - 1 193

FillPattern() Command TSTool Documentation

The command syntax is as follows:

FillPattern(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed, one

of:
• AllMatchingTSID – all time series that

match the TSID (single TSID or TSID with
wildcards) will be modified.

• AllTS – all time series before the command.
• EnsembleID – all time series in the ensemble

will be modified.
• FirstMatchingTSID – the first time series

that matches the TSID (single TSID or TSID
with wildcards) will be modified.

• LastMatchingTSID – the last time series
that matches the TSID (single TSID or TSID
with wildcards) will be modified.

• SelectedTS – the time series are those
selected with the SelectTimeSeries()
command.

AllTS

TSID The time series identifier or alias for the time series
to be modified, using the * wildcard character to
match multiple time series.

Required for
TSList=*TSID.

EnsembleID The ensemble to be modified, if processing an
ensemble.

Required for
TSList=EnsembleID.

PatternID The pattern identifier, matching a pattern read with
ReadPatternFile() commands.

None – must be specified.

A sample command file to process data from the State of Colorado’s StateMod model is as follows:

Read StateMod time series to fill
ReadStateMod(InputFile="..\StateMod\sjm_prelim.ddh")
Read the file containing the patterns
ReadPatternFile(PatternFile="fill.pat")
Fill time series having identifiers that start with "30"
FillPattern(TSList=AllMatchingTSID,TSID="30*",PatternID="09034500")
Write the results
WriteStateMod(TSList=AllTS,OutputFile="..\StateMod\sjm.ddh")

The above example fills all diversion time series with identifier starting with 30, using the pattern
09034500 (a stream gage for the region).

Command Reference – FillPattern() - 2 194

Command Reference: FillPrincipalComponent
Analysis()

Fill missing time series data using principal component analysis (PCA)
Version 09.04.00, 2009-06-11

This command is under development.

 Command Reference – FillPrincipalComponentAnalysis() - 1 195

FillPrincipalComponentAnalysis() Command TSTool Documentation

This page is intentionally blank.

Command Reference – FillPrincipalComponentAnalysis() - 2 196

Command Reference: FillProrate()
Fill missing time series data by prorating values in another time series

Version 08.16.04, 2008-09-30

The FillProrate() command fills missing data in time series by prorating values from another time
series. This fill technique is useful, for example, where two time series are likely to have the same
general trend and ratio of data values. The ratio can be computed two ways, as specified by the
FactorMethod parameter:

• NearestPoint – causes the ratio to be recomputed each time that a non-missing value is
found in both time series. The ratio computed from the nearest points in each time series is used
for filling until another value can be computed.

• AnalyzeAverage – computes the ratio as the average ratio of the time series (numerator) and
the independent time series (divisor). This was implemented to match an existing fill procedure
but can lead to some bias in the results. A different overall average will be obtained depending
on whether ratios are computed first and then averaged than if the sum of the numerators are
added and divided by the sum of the denominators. In the former, the choice of which time
series is in the denominator could impact results. More parameters may need to be added in the
future to implement an analysis different from the current defaults.

The initial computation of the ratio may require specifying an initial value due to missing data on the end-
points of the time series (see the InitialValue parameter). Alternatively, the time series can be filled
in one direction first and then filled in the other direction with a second command.

 Command Reference – FillProrate() - 1 197

FillProrate() Command TSTool Documentation

The following dialog is used to edit the command and illustrates the syntax of the command:

FillProrate

FillProrate() Command Editor

Command Reference – FillProrate() - 2 198

TSTool Documentation FillProrate() Command

The command syntax is as follows:

FillProrate(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be

processed, one of:
• AllMatchingTSID – all time

series that match the TSID (single
TSID or TSID with wildcards) will be
modified.

• AllTS – all time series before the
command.

• EnsembleID – all time series in the
ensemble will be modified.

• FirstMatchingTSID – the first
time series that matches the TSID
(single TSID or TSID with wildcards)
will be modified.

• LastMatchingTSID – the last
time series that matches the TSID
(single TSID or TSID with wildcards)
will be modified.

• SelectedTS – the time series are
those selected with the
SelectTimeSeries() command.

AllTS

TSID The time series identifier or alias for the
time series to be modified. Use the *
wildcard character to match multiple time
series.

Required for TSList=*TSID.

EnsembleID The ensemble to be modified, if
processing an ensemble.

Required for
TSList=EnsembleID.

IndependentTSID The time series identifier or alias for the
independent time series.

None – must be specified.

FillStart The starting date/time for the fill. Available period.
FillEnd The ending date/time for the fill. Available period.
FillFlag A one-character flag to tag data values

that are filled.
None – do not flag filled data.

FillDirection Specify the direction of the fill as
Forward or Backward.

Forward

FactorMethod Specify how to calculate the factor to use
in proration, one of:
• AnalyzeAverage – calculate the

factor of the average of the time series
divided by the independent time
series, using the analysis period.

• NearestPoint – calculate the
factor at the nearest point where both

NearestPoint

 Command Reference – FillProrate() - 3 199

FillProrate() Command TSTool Documentation

Parameter Description Default
time series have non-missing values.

AnalysisStart The starting date/time for the analysis,
used when FactorMethod
=AnalyzeAverage.

Analyze the full period.

AnalysisEnd The ending date/time for the analysis,
used when
FactorMethod=AnalyzeAverage.

Analyze the full period.

InitialValue The initial value to use for the filled time
series, for cases where a value may not be
available on the ends of the fill period,
one of:
• NearestBackward – search the

time series backward for the nearest
non-missing value.

• NearestForward – search the
time series forward for the nearest
non-missing value.

• Specify a number to use for the initial
value.

None – filling will not occur at
the end.

A sample command file to fill data from the State of Colorado’s HydroBase database is as follows:

06754000 - SOUTH PLATTE RIVER NEAR KERSEY
06754000.DWR.Streamflow.Month~HydroBase
06694700 - FOURMILE CREEK NEAR FAIRPLAY, CO.
06694700.USGS.Streamflow.Month~HydroBase
FillProrate(TSList=AllMatchingTSID,TSID="06754000.DWR.Streamflow.Month",
 IndependentTSID="06694700.USGS.Streamflow.Month",FillDirection=Forward,
 InitialValue=0)
06754000.DWR.Streamflow.Month~HydroBase

Command Reference – FillProrate() - 4 200

 Command Reference – FillRegression() - 1

Command Reference: FillRegression()
Fill missing time series data using ordinary least squares regression

Version 10.21.00, 2013-07-14

The FillRegression() command fills missing data in a time series using ordinary least squares
(OLS) regression and provides a variety of options for transforming the data and controlling the analysis.
In OLS regression, the vertical distance from the data point to the regression line is minimized. OLS
regression provides the minimum-variance estimate for a single value or observation. However, if an
ensemble of points is estimated from OLS regression, the estimated values will have lesser variability
than the true values.

Ordinary Least Squares (OLS)

(Xi, Yi)

Minimize
vertical

deviation

Y

X

See also the FillMOVE2()command, which utilizes additional variance from independent time series to
determine the regression relationship, and the FillMixedStation() command, which automates the
analysis of many time series to determine a “best estimate” filling approach. Regression can be applied
only to regular interval time series. The dependent time series will be filled using the independent time
series. The periods of record and output period for the time series should be verified to make sure that the
time series periods overlap sufficiently. Regression relationships are developed using the analysis period
for the time series and are applied to the fill period. Refer to the output statistics table, log file, and time
series properties for analysis details. Several parameters are available to ensure that filling uses
reasonable relationships. This command has functionality that may not be needed for simple analysis but
which is useful for software testing and comparison with the FillMixedStation() command.

201

FillRegression() Command TSTool Documentation

Command Reference – FillRegression() - 2

Important: TSTool does allow filled values to be flagged. However, other commands do not exclude
these values from computations when determining relationships for subsequent fill steps. Therefore, it is
important to perform regression data filling as early in data processing as possible so that data
manipulation does not introduce derived values and bias.

The following OLS equation is used to estimate values for the dependent time series from the independent
time series:

−+= 11

_ _

1

1
_ _ _

XXYY iS
S

ri
x

y

or

iXY bai +=
where

N1 = concurrent or overlapping period of record (the notation N1 is used because the MOVE2 fill
technique refers to N2, which is the number of additional points outside of N1 in the independent time
series)

=1X mean for independent variable for N1 years =
1

1

N
X

i∑

=1Y mean for dependent variable for N1 years =
1

1

N
Y

i∑

=1yS standard deviation for N1 years = ()211
1 1
1 ∑ −
−

YY
N i

=1xS standard deviation for N1 years = ()211
1 1
1 ∑ −
−

XX
N i

r = R = correlation coefficient = ()[] ()[]∑ ∑∑ ∑
∑ ∑ ∑

−⋅−

−
2

1
2

11
2

1
2

11

11111

iii
YYNXXN

YXYXN

i

iiii

1

1

x

y

S
S

rb =

a = 11 - XbY

The correlation coefficient, r, is used to compute the slope, b, of the line.

A number of statistics are computed and are available for output to a table, as described below (see the
TableID and related command parameters for how to specify the table output). Creating a statistics
table and then writing the table to a file is useful for checking the analysis and software. For example, the
CompareTables() command can be used to compare this statistics table with a verification data set
that is calculated by another tool. In the following descriptions, the statistic for one equation has a name
like Mean and monthly statistics correspondingly have a name like Mean_1, where 1 corresponds to
January and 12 to December.

202

TSTool Documentation FillRegression() Command

 Command Reference – FillRegression() - 3

In some cases, statistics are relevant in units of the raw values, in some cases statistics are relevant in
transformed (log10) units, and in some cases both are relevant. For example, if the log10 transform is
used to compute the relationship, then a and b are in transformed units. However, error computations
between the original data values and values that would be computed by the relationship are in the raw
units (regardless of whether the data were transformed) – this allows errors to be compared between
relationships using raw and transformed values (the FillMixedStation() command uses this
information to compare relationships). Consequently, the third column of the following table indicates
whether statistics are provided in raw (column name uses statistic only) or transformed units (additional
_trans added to statistic for column name). Therefore, if the statistic is unitless, it will never have the
_trans addition. If the analysis does not use a transformation, then _trans will be omitted from
column headings.

Statistics From Regression Analysis

Statistic
(Table
Column
Name)

Involves
Dependent,
Independent,
or Both

Statistics
Output in Raw
or Transformed
units

Description

N1 Both N/A - unitless The number (count) of non-missing data values
overlapping in the dependent and independent time
series.

MeanX1 Independent raw, transformed The mean of the independent N1 data values.
SX1 Independent raw, transformed The standard deviation of the independent N1

values.

N2 Independent N/A - unitless The number (count) of non-missing independent

values outside of N1.
MeanX2 Independent raw, transformed The mean of the independent N2 values.
SX2 Independent raw, transformed The standard deviation of the independent N2

values.

MeanY1 Dependent raw, transformed The mean of the dependent N1 values.
SY1 Dependent raw, transformed The standard deviation of the dependent N1 values.
NY Dependent N/A - unitless The total number of non-missing dependent values.
MeanY Dependent raw, transformed The mean of the dependent NY values.
SY Dependent raw, transformed The standard deviation of the dependent NY values.
SkewY Dependent raw, transformed The skew, or non-symmetry, of the dependent NY

values.

a Both transformed The intercept for the relationship equation.
b Both transformed The slope of the relationship equation.
R Both transformed The correlation coefficient for N1 values.
R2 Both transformed R-squared, coefficient of determination for N1

values.

MeanY1est Dependent raw, transformed The mean for N1 values computed from the

relationship (estimate the dependent values where
values were previously known).

SY1est Dependent raw, transformed The standard deviation for N1 values computed

203

FillRegression() Command TSTool Documentation

Command Reference – FillRegression() - 4

Statistic
(Table
Column
Name)

Involves
Dependent,
Independent,
or Both

Statistics
Output in Raw
or Transformed
units

Description
from the relationship (estimate the dependent at
locations where values are known).

RMSE Dependent raw, transformed The “room mean squared error” for N1
overlapping values, which is a measure of the
overall error of using the regression equation to
estimate values, is calculated as:

RMSE =
()

1

2
11 '

N
YY

ii∑ −

where i

Y1 is the original dependent value and '1i
Y

is the value estimated with the regression
relationship.

SEE Dependent raw, transformed The standard error of estimate for N1 overlapping
values, which is a measure of the overall error of
using the regression equation to estimate values,
calculated as:

SEE =
()

2
'

1

2
11

−

−∑
N

YY
ii

where i
Y1 is the original dependent value and '1i

Y
is the value estimated with the regression
relationship.

SEP Both raw The standard error of prediction for each estimated
value, calculated as:

S
XX

XX
N

S E P
i

i *
)(

)(11 2
11

2
11

1 ∑ −

−
++=

where i
X 1 is the original independent value and

1X is the mean of the N1 independent values.
Note when using the mixed station analysis in the
FillMixedStation() command, this value
may be used to determine the relationship. The
SEP is not actually output in the statistics table but
may be added as an optional output time series in
the future.

SESlope Both N/A - unitless The standard error (SE) of the slope (b) for N1
overlapping values, calculated as:

204

TSTool Documentation FillRegression() Command

 Command Reference – FillRegression() - 5

Statistic
(Table
Column
Name)

Involves
Dependent,
Independent,
or Both

Statistics
Output in Raw
or Transformed
units

Description

∑

∑

−

−

−

=
2

11

1

2
11

)(

2
)'(

XX

N
YY

S E
i

ii

where i
X 1 is the original independent value and

1X is the mean of the N1 independent values;

i
Y1 is the original dependent value and '1i

Y is the
value estimated with the regression relationship.

TestScore Both N/A - unitless b/SESlope
Test
Quantile

Both N/A - unitless The value at which the confidence interval is
satisfied. Comes from the Student’s T-test, which
is a function of the confidence interval and degrees
of freedom (DF), where DF is the degrees of
freedom equal to N1 – 2 (corresponding to the
intercept and the slope of the regression equation).

Test OK Both N/A - unitless Will be No if TestScore >=
TestQuantile, indicating that the b ≠ 0 data
are related, and Yes if TestScore <
TestQuantile, indicating that the data are not
related. If the data are not related, then the
relationship between the dependent and
independent time series will not be used for filling.

Sample
SizeOK

Both N/A – unitless Will be No if N1 < MinimumSampleSize
and Yes if N1 >= MinimumSampleSize,
indicating whether or not the number of
overlapping points is greater than or equal to the
number of overlapping points necessary.

R OK Both N/A – unitless Will be No if R < MinimumR, indicating that the
correlation is below the minimum threshold, and
Yes if R >= MinimumR, indicating that the
correlation is above the minimum threshold.

NYfilled Dependent N/A – unitless The total number of missing points in the
dependent time series that were filled through the
regression.

MeanY
filled

Dependent Raw The mean of the values that were used to fill
missing points

SYfilled Dependent Raw The standard deviation of the values that were used
to fill missing points

SkewY
filled

Dependent Raw The skew, or non-symmetry, of the values that
were used to fill missing points

Student’s T-distribution (http://en.wikipedia.org/wiki/Student's_t-distribution) is similar to a standard
distribution, but has a higher probability of producing outliers. Using the Apache Math library

205

http://en.wikipedia.org/wiki/Student's_t-distribution
http://commons.apache.org/proper/commons-math/javadocs/api-3.2/index.html

FillRegression() Command TSTool Documentation

Command Reference – FillRegression() - 6

(http://commons.apache.org/proper/commons-math/javadocs/api-3.2/index.html), the appropriate
distribution for the size of the dataset is generated, and the value at which the desired confidence level is
satisfied is calculated. For example, if the desired confidence level is .8 and the size of the dataset is
seven, then following this graph of the Student’s T-distribution, values above approximately one would
satisfy the confidence level.

FillRegression_StudentTTest

Student’s T-Test Example

206

TSTool Documentation FillRegression() Command

 Command Reference – FillRegression() - 7

The following dialog is used to edit the command and illustrates the syntax of the command:

FillRegression

FillRegression() Command Editor

The command syntax is as follows:

FillRegression(Parameter=Value,…)

207

FillRegression() Command TSTool Documentation

Command Reference – FillRegression() - 8

Command Parameters

Parameter Description Default
TSID The time series identifier or alias for the time series

to be filled.
None – must be
specified.

Independent
TSID

The time series identifier or alias for the independent
time series.

None – must be
specified.

NumberOf
Equations

The number of equations to use for the analysis:
OneEquation or MonthlyEquations.

OneEquation

AnalysisMonth Indicate the month to process when using monthly
equations. Currently only a single month can be
specified.

Process all months.

Transformation Indicates how to transform the data before analyzing.
Specify as None (previously Linear) or Log (for
Log10). If the Log option is used, zero and negative
values are replaced with the value specified by the
LEZeroLogValue parameter value for analysis
(missing data values are ignored in the analysis).

None (no
transformation).

LEZeroLogValue Value to use for data values less than or equal to zero
when using a log transformation. The Log10 of this
value will be used in calculations.

.0010

Intercept Specify as 0 to force the intercept of the best-fit line
through the origin (not available for log
transformation).

Parameter is optional and
if specified the default is
to not force the intercept
through zero.

AnalysisStart The date/time to start the analysis – use to focus on
only a period appropriate from analysis. For
example specify the unregulated period for
streamflow.

Analyze the full period.

AnalysisEnd The date/time to end the analysis – use to focus on
only a period appropriate from analysis.

Analyze the full period.

Minimum
SampleSize

The minimum number of overlapping values
required to use a relationship for filling.

2, due to requirements in
calculating the statistics

MinimumR The minimum correlation coefficient required to use
a relationship for filling.

No check is performed.

Confidence
Interval

A confidence interval in percent (e.g., 95) required
for the slope of the relationship. The T-test is
performed to ensure that the independent and
dependent time series are related.

The T-test is not
performed to evaluate the
confidence interval.

Fill Indicate whether fill should occur (True) or just
analyze to compute statistics (False). The latter is
useful for testing combinations of fill parameters
prior to actually performing filling.

True

FillStart The date/time to start filling, if other than the full
time series period.

Fill the full period.

FillEnd The date/time to end filling, if other than the full
time series period.

Fill the full period.

FillFlag A single character that will be used to flag filled
data.

Filled values will not be
flagged.

FillFlagDesc Description for the fill flag, used in reports. Automatically generated.

208

TSTool Documentation FillRegression() Command

 Command Reference – FillRegression() - 9

Parameter Description Default
TableID A table identifier for a table to receive output of the

regression analysis (statistics are described above).
Statistics are not written
to the table. Refer to the
log file for information.

TableTSIDColumn The name of the column in the table that contains
time series identifier information. This is used to
match the table with time series being analyzed so
that statistics can be written to the correct row.

Required if TableID is
specified.

TableTSIDFormat The specifier used to format the time series identifier
in the TableTSIDColumn. The location part of the
TSID, or the time series alias is typically used.

The alias will be used if
available, or otherwise
the full TSID will be
used.

SEPTSID The time series identifier of the SEP time series,
calculated for ALL values in the analysis period.
This parameter is not enabled but is envisioned to
help evaluate filling and test
FillMixedStation().

If not specified, no SEP
time series will be
generated.

SEPTSAlias The alias to be assigned to the SEP time series. This
parameter is not yet enabled.

No alias is assigned to
the SEP time series.

FlagToWarn A parameter is envisioned to warn the user if any
values in the time series are flagged with a specific
flag value. This will allow checks to ensure that
FillRegression() is not used with data that
have been filled in a previous step.

The command logic is as follows, with reference to command parameters that control the process:

1. The dependent (TSID) and independent time series (IndependentTSID) are retrieved using the

time series identifiers or aliases.
2. Data arrays of overlapping non-missing values are extracted from time series to be used as the

samples for analysis, as specified by command parameters (analysis period specified by
AnalysisStart and AnalysisEnd; transformation specified by Transformation,
LEZeroLogValue, and Intercept; number of equations specified by NumberOfEquations
and AnalysisMonth).

3. The independent and dependent statistics and relationships are calculated, computing as many of the
statistics as possible (some are skipped if the sample size results in division by zero). Computing the
statistics allows them to be saved in the output table for review, and is controlled by the TableID,
TableTSIDColumn, and TableTSIDFormat parameters.

4. The statistics are analyzed to determine if the relationships are acceptable for filling by checking the
minimum sample size (MinimumSampleSize), minimum correlation coefficient (MinimumR),
and that the relationship meets the confidence interval (ConfidenceInterval). If monthly
equations are used, then it is possible that some months can be filled but not others.

5. If Fill=True (the default), then the relationships that are acceptable from step 4 are used to fill the
dependent time series for the period specified by the FillStart and FillEnd parameters, with
FillFlag and FillFlagDesc optionally being used to indicate filled values.

209

FillRegression() Command TSTool Documentation

Command Reference – FillRegression() - 10

This page is intentionally blank.

210

Command Reference: FillRepeat()
Fill missing time series data by repeating known data values

Version 09.09.00, 2010-09-23

The FillRepeat() command fills missing data in time series by repeating observations until another
observation is found. This fill technique is useful, for example, where time series are likely to be step-
wise or nearly constant, such as some reservoir and diversion time series.

The following dialog is used to edit the command and illustrates the syntax of the command.

FillRepeat

FillRepeat() Command Editor

 Command Reference – FillRepeat() - 1 211

FillRepeat() Command TSTool Documentation

The command syntax is as follows:

FillRepeat(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be

processed, one of:
• AllMatchingTSID – all time

series that match the TSID (single
TSID or TSID with wildcards) will
be modified.

• AllTS – all time series before the
command.

• EnsembleID – all time series in
the ensemble will be modified.

• LastMatchingTSID – the last
time series that matches the TSID
(single TSID or TSID with
wildcards) will be modified.

• SelectedTS – the time series are
those selected with the
SelectTimeSeries()
command.

AllTS

FillStart The starting date/time for the fill. Available period.
FillEnd The ending date/time for the fill. Available period.
FillDirection Specify the direction of the fill as

Forward or Backward.
Forward

MaxIntervals The maximum number of intervals to fill
in a data gap.

Fill all gaps.

Flag String to flag filled values. Prefix with +
to append the string to existing flag
values.

Do not flag filled values.

A sample command file to fill a time series from the State of Colorado’s HydroBase is as follows:

08236500 - ALAMOSA RIVER BELOW TERRACE RESERVOIR
08236500.DWR.Streamflow.Month~HydroBase
FillRepeat(TSList=AllMatchingTSID,TSID="08236500.DWR.Streamflow.Month",
 FillDirection=Forward)

Command Reference – FillRepeat() - 2 212

Command Reference:
FillUsingDiversionComments()

Fill missing time series data using HydroBase diversion comments and structure
CIU information

Version 09.07.02, 2010-08-20

This command is only appropriate for use with diversion (e.g., DivTotal, DivClass data types) and
reservoir release (e.g., RelTotal, RelClass data types) time series for the HydroBase input type.

The FillUsingDiversionComments() command fills missing data in time series by using
diversion comment and structure “currently in use” (CIU) information in HydroBase. This information is
used, for example, in cases where Water Commissioners have entered annual data values rather than daily
or monthly records.

Diversion Comment Not Used Flag

HydroBase contains diversion comment data with a not_used field. If the not_used value matches one of
the values shown in the following table for an irrigation year (November of the previous year to October
of the irrigation year), the diversion (or reservoir release) data for the specified irrigation year can be
interpreted as zero (see the State of Colorado’s Water Commissioner Manual for more information):

Diversion Comment not_used Flag Resulting in Additional Zero Values

not_used Meaning (reason why diversion is zero)
A Structure is not usable
B No water is available
C Water available, but not taken
D Water taken in another structure

Structure Currently in Use Flag

The HydroBase structure data contains a “currently in use” (CIU) field. Unlike diversion comments, this
is a single value that is consistent with the current status of a structure (it is not a time series). The
following CIU values are used.

Structure CIU Flag Values and Meaning

CIU Meaning
A Active structure with contemporary diversion records
B Structure abandoned by the court
C Conditional structure
D Duplicate; ID no longer used
F Structure used as FROM number; located in another water district
H Historical structure only-no longer exists or has records, but has historical data
I Inactive structure which physically exists but no diversion records are kept
N Non-existent structure with no contemporary or historical records
U Active structure but diversion records are not maintained

 Command Reference – FillUsingDiversionComments() - 1 213

FillUsingDiversionComments() Command TSTool Documentation

If UseCIU=True is specified for this command, the following logic will be used to fill missing time
series values:

1. If the HydroBase CIU value is H or I for the structure associated with the time series:
a. Fill using the diversion comments (see above for interpretation of comments).
b. The limits of the time series are recomputed based on diversion data and comments.
c. Missing data at the end of the period are filled with zeros, reflecting the fact that the

structure is off-line. In this case, the limits are always recomputed, regardless of the
value of the RecalcLimits command parameter. These values are not included in
historical averages because they do not occur in the active life of the structure.

d. Missing data within the data period remain missing, and can be filled with other
commands such as fillHistMonthAverage().

e. Missing data prior to the first diversion values or comments remain missing, and can be
filled with other commands as appropriate, perhaps specific to each location.

2. If in HydroBase CIU=N:
a. Fill using the diversion comments (see above for interpretation of comments).
b. The limits of the time series are recomputed based on diversion data and comments.
c. Missing data at the beginning of the period are filled with zeros. In this case, the limits

are always recomputed, regardless of the value of the RecalcLimits command
parameter.

d. The remaining missing data in the active data period or at the end of the period remain
missing and can be filled with other commands.

The output period for filled time series is handled as follows:

• If a global output period has been specified (e.g., with the setOutputPeriod() command)
then the time series will NOT be extended to include diversion comments and CIU codes beyond
the output period.

• If NO output period has been specified, the time series WILL be extended to include the longer
period from diversion comments. CIU information does not cause the time series to be extended.

After setting additional zero values using this command, the limits of the time series can be recomputed,
if appropriate, for use with the fillHistMonthAverage() command (see the
RecalcLimits=True parameter). If FillUsingCIU=true is specified, it overrides the
RecalcLimits parameter as per the logic described above.

See also the ReadHydroBase() and TS Alias = ReadHydroBase() commands, which allow
filling with diversion comments after reading data. Refer to the HydroBase Input Type Appendix for
more information about diversion time series.

Command Reference – FillUsingDiversionComments() - 2 214

TSTool Documentation FillUsingDiversionComments() Command

The following dialog is used to edit the command and illustrates the syntax of the command.

FillUsingDiversionComments

FillUsingDiversionComments() Command Editor

The command syntax is as follows:

FillUsingDiversionComments(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSID The time series identifier or alias for the

time series to be filled. Specify as * to
fill all time series.

None – must be specified.

FillStart The starting date/time for the fill. Available period.
FillEnd The ending date/time for the fill. Available period.

 Command Reference – FillUsingDiversionComments() - 3 215

FillUsingDiversionComments() Command TSTool Documentation

Parameter Description Default
FillFlag For each value that is filled using the

diversion comment not_used
information, tag the filled value as
follows:
• If FillFlag is specified as a single

character, tag filled values with the
specified character.

• If FillFlag=Auto is specified,
the diversion comment not_used
value (A, B, C, or D) from
HydroBase is used for the flag.

The flag can then be used later to label
graphs, etc. The flag will be appended to
existing flags if necessary.

No flag is assigned.

FillUsingCIU Indicates whether the “currently in use”
(CIU) information is used to fill missing
data. This will result in additional zeros
at the beginning or end of the time series,
depending on CIU value. See the
description of the logic above. Note that
this will cause the time series data limits
to be automatically recomputed,
regardless of the value of the
RecalcLimits parameter.

False (CIU information is not
used to fill missing data).

FillUsingCIUFlag For each missing data value that is filled
using the CIU information, tag the filled
value as follows:
• If FillUsingCIUFlag=Auto is

specified, the CIU value (H, I, or N)
from HydroBase is used for the flag.

• Else if FillUsingCIUFlag is
specified, tag filled values with the
specified character.

The flag can then be used later to label
graphs, etc. The flag will be appended to
existing flags if necessary.

No flag is assigned.

RecalcLimits Indicate whether the original data limits
for the time series should be recalculated
after the zero values are set. Zero values
are included in the monthly and annual
averages.

See the discussion above related to CIU –
time series that are impacted by CIU
always have their limits recalculated.

False (additional zeros are not
considered in the original data
averages).

Command Reference – FillUsingDiversionComments() - 4 216

TSTool Documentation FillUsingDiversionComments() Command

A sample commands file to fill diversion time series from the State of Colorado’s HydroBase is as
follows:

0100506 - PUTNAM DITCH
0100506.DWR.DivTotal.Month~HydroBase
0100503 - RIVERSIDE CANAL
0100503.DWR.DivTotal.Month~HydroBase
0100501 - EMPIRE DITCH
0100501.DWR.DivTotal.Month~HydroBase
FillUsingDiversionComments(TSID="*",RecalcLimits=True)

The following example fills one time series and labels the values with the flag.

Set the date to cause comments NOT to automatically extend the period.
setOutputPeriod(1950-01,1989-06)
0100713 - PIONEER DITCH
0100713.DWR.DivTotal.Month~HydroBase
FillUsingDiversionComments(TSID="*",FillFlag="Auto",RecalcLimits=False)

The corresponding graph created with data flags as labels is shown below (note the D symbols on the
right). It may be necessary to change the graph properties to display the data labels above the point in
order to see labels at the bottom of the graph.

fillUsingDiversionComment_Graph

Example Graph Showing Fill Flag (D labels indicate additional zero values)

 Command Reference – FillUsingDiversionComments() - 5 217

FillUsingDiversionComments() Command TSTool Documentation

This page is intentionally blank.

Command Reference – FillUsingDiversionComments() - 6 218

 Command Reference – FormatDateTimeProperty() - 1

Command Reference:
FormatDateTimeProperty()

Format a date/time property as a new string property
Version 10.16.00, 2013-01-15

The FormatDateTimeProperty() command creates a new global string property by formatting an
existing date/time property. These properties are accessible to commands using ${Property}
notation. A formatted date/time string is useful when specifying filenames more dynamically. Date/time
properties will by default be formatted using the ISO 8061 format (e.g., YYYY-MM-DD hh:mm:ss).
Support for properties varies by command and command documentation should be consulted. This
command should not be confused with the SetTimeSeriesProperty() command, which sets a
property on specific time series.

The following dialog is used to edit this command and illustrates the syntax of the command.

FormatDateTimeProperty

FormatDateTimeProperty() Command Editor

The command syntax is as follows:

FormatDateTimeProperty(Parameter=Value,…)

Command Parameters

Parameter Description Default
PropertyName The name of the string property to be created. None – must be

specified.
DateTimePropertyName The name of the existing date/time property

to be formatted.
None – must be
specified.

FormatterType The date/time formatter type, which defines
the format specifiers, one of:
• C – the C programming language

strftime() function, which has been
widely copied (described below).

• MS – Microsoft convention (currently not
supported but may be added in the
future).

C

219

FormatDateTimeProperty() Command TSTool Documentation

Command Reference – FormatDateTimeProperty() - 2

Parameter Description Default
Format The format string for the formatter, which

defines how date/time data parts are formatted
into the new string property. The string is
interpreted by the formatter as follows:
• Formatter=Strftime – The string

can contain literal characters and format
specifiers that start with the % character.

None – must be
specified.

The following table lists the supported formatting strings for FormatterType=C:

Supported C (Strftime) Formatting Specifiers

Format
Specifier

Description

%a Weekday abbreviation (e.g., Sun)
%A Weekday (e.g., Sunday).
%b Month abbreviation (e.g., Jan).
%B Month (e.g., January).
%d Day (01-31).
%H Hour (00-23).
%I Hour (01-12).
%j Day of year (001-366).
%m Month (01-12).
%M Minute (00-59).
%p AM, PM (noon=PM, midnight=AM).
%S Second (00-59).
%y Year (00-99).
%Y Year (0000-9999).
%Z Time zone (e.g., MST).

A sample command file is as follows:

SetProperty(PropertyName="DateTimeProp",PropertyType=DateTime,
 PropertyValue="CurrentToSecond")
FormatDateTimeProperty(PropertyName="DateTimePropString",
 DateTimePropertyName="DateTimeProp",Format="%Y-%m-%dT%H:%M:%S")

220

 Command Reference – FormatTableString () - 1

Command Reference: FormatTableString()
Format a string column in a table, using other columns as input

Version 10.21.00, 2013-06-26

The FormatTableString() used zero or more table columns as input and formats an output table
column. For example, it may be necessary to concatenate information from several columns to create an
identifier. It can also be used to assign a literal string to a column. See also the
ManipulateTableString() command. Formatting occurs as follows:

• The data types for input columns control the type of formatting that can be done. For example,
columns containing floating-point numbers must use the format specifiers for floating-point
numbers.

• Format specifiers are consistent with the C programming language.
• Missing values in input will result in blanks in output.

The following dialog is used to edit the command and illustrates the syntax of the command.

FormatTableString

FormatTableString() Command Editor

221

FormatTableString() Command TSTool Documentation

Command Reference – FormatTableString() - 2

The command syntax is as follows:

FormatTableString(Parameter=Value,…)

Command Parameters

Parameter Description Default
TableID The identifier for the table to process. None – must be

specified.
InputColumns The names of one or more input columns. Values from

the columns will be formatted according to the Format
parameter. Input columns can be omitted if the format
string is a literal value.

Required if format
specifiers are given.

Format The format specifier string used to format the data
values. See the editor dialog for examples and refer to
“sprintf” documentation on the internet for further
explanation. Specify as many format specifiers as input
columns. All other characters will be transferred to the
output string.

None – must be
specified.

OutputColumn The name of the column to receive the output. None – must be
specified.

222

Command Reference: Free()
Free (remove) time series from memory

Version 09.10.01, 2010-11-18

The Free() command frees (removes) the selected time series from memory. The time series will
therefore not be available for use after that line in the command file. This command is useful for
discarding temporary time series needed for data manipulation (e.g., so that they are not written in output
and are not available for interactive plots). Freed time series are also removed from any ensembles that
reference the time series.

Rather than freeing time series, it may be more appropriate to use the SelectTimeSeries()
command, which can be used in conjunction with some commands to select time series and then operate
on the selected time series. This approach allows selective use of time series and minimized the need for
Free() commands. Many commands also use a TSList parameter to indicate which time series
should be operated on by a command.

The following dialog is used for editing the command and illustrates the command syntax.

Free

Free() Command Editor

 Command Reference – Free () - 1 223

Free() Command TSTool Documentation

The command syntax is as follows:

Free(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be

processed, one of:
• AllMatchingTSID – all time

series that match the TSID (single
TSID or TSID with wildcards) will
be modified.

• AllTS – all time series before the
command.

• EnsembleID – all time series in
the ensemble will be modified (see
the EnsembleID parameter).

• LastMatchingTSID – the last
time series that matches the TSID
(single TSID or TSID with
wildcards) will be modified.

• TSPosition – time series
specified by position in the results
list (see TSPosition parameter
below).

AllTS

TSID The time series identifier or alias for
the time series to be modified, using the
* wildcard character to match multiple
time series.

Required if TSList=*TSID

EnsembleID The ensemble to be modified, if
processing an ensemble.

Required if
TSList=EnsembleID

TSPosition A list of time series positions (1+) in
output, separated by commas. Ranges
can be specified as Start-End.

Required if
TSList=TSPosition

FreeEnsembleIfEmpty Indicate whether to free the ensemble
from which time series were removed,
if the ensemble is empty (has no time
series remaining after the Free()
command).

True

A sample command file is as follows:

Free(TSList=AllMatchingTSID,TSID="40*")

Command Reference – Free () - 2 224

 Command Reference – FreeTable () - 1

Command Reference: FreeTable()
Free a table

Version 10.16.01, 2013-02-14

The FreeTable() command frees a table. The table will not be available for subsequent commands,
although a new table with the same name can be created and used with subsequent commands. This
command is useful, for example, when looping through blocks of commands where logic is repeated and
the table contents are recreated.

The following dialog is used to edit the command and illustrates the syntax of the command.

FreeTable

FreeTable() Command Editor

The command syntax is as follows:

FreeTable(Parameter=Value,…)

Command Parameters

Parameter Description Default
TableID The identifier for the original table. None – must be

specified.

225

FreeTable() Command TSTool Documentation

Command Reference – FreeTable() - 2

This page is intentionally blank.

226

 Command Reference – FTPGet() - 1

Command Reference: FTPGet()
Retrieve file(s) from a remote system using file transfer protocol (FTP)

Version 10.01.00, 2011-11-15

The FTPGet() command retrieves one or more files from a remote system using file transfer protocol
(FTP). The retrieval is not recursive to child folders.

The following dialog is used to edit the command and illustrates the syntax for the command.

FTPGet

FTPGet() Command Editor

227

FTPGet() Command TSTool Documentation

Command Reference – FTPGet() - 2

The command syntax is as follows:

FTPGet(Parameter=Value,…)

Command Parameters

Parameter Description Default
RemoteSite The address of the remote site, for

example: ftp.acme.com
Global properties can be used with the
${Property} syntax.

None – must be specified.

Login The FTP login to use. anonymous
Password The FTP password to use. anonymous
RemoteFolder The folder on the remote site, for

example: /outgoing/data
Global properties can be used with the
${Property} syntax.

Root folder (/).

FilePattern The pattern to use to determine which
files should be transferred. Simple
patterns are used, where * is a wildcard.
Global properties can be used with the
${Property} syntax.

Retrieve all files in the
RemoteFolder.

DestinationFolder The folder to receive the files, can be
relative to the working directory. Global
properties can be used with the
${Property} syntax.

None – must be specified.

TransferMode The transfer mode:
• ASCII – for text files
• Binary – for binary files

Binary

RetryCount The number of times to retry the login if
it fails (e.g., due to busy site).

3

RetryWait The amount of time to wait between
retries, seconds.

3

228

ftp://ftp.acme.com/

 Command Reference – InsertTimeSeriesIntoEnsemble () - 1

Command Reference:
InsertTimeSeriesIntoEnsemble ()

Insert 1+ time series into an existing ensemble
Version 10.13.00, 2012-10-25

The InsertTimeSeriesIntoEnsemble() command inserts 1+ time series into an ensemble. The
time series must have the same interval and data units as the time series in the ensemble. For example,
use the command to insert scenario time series into an ensemble.

The following dialog is used to edit the command and illustrates the syntax for the command.

InsertTimeSeriesIntoEnsemble

InsertTimeSeriesIntoEnsemble () Command Editor

229

InsertTimeSeriesIntoEnsemble () Command TSTool Documentation

Command Reference – InsertTimeSeriesIntoEnsemble() - 2

The command syntax is as follows:

InsertTimeSeriesIntoEnsemble (Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be added to the

ensemble, one of:
• AllMatchingTSID – all time series that

match the TSID (single TSID or TSID with
wildcards).

• AllTS – all time series before the command.
• EnsembleID – all time series in the

ensemble.
• FirstMatchingTSID – the first time

series that matches the TSID (single TSID or
TSID with wildcards).

• LastMatchingTSID – the last time series
that matches the TSID (single TSID or TSID
with wildcards).

• SelectedTS – the time series are those
selected with the SelectTimeSeries()
command.

AllTS

TSID The time series identifier or alias for the time
series to be processed, using the * wildcard
character to match multiple time series.

Required when
TSList=*TSID

EnsembleID The ensemble from which to retrieve time series,
if inserting time series from an ensemble.

Required when
TSList=EnsembleID.

EnsembleID2 The identifier for the ensemble that is receiving
the time series.

None – must be specified.

A sample command file to create an ensemble from user-defined time series is as follows:

Test inserting time series into an ensemble from year interval time series
NewPatternTimeSeries(Alias="ts1",NewTSID="ts1..Flow.Year",
 SetStart="1960",SetEnd="2000",Units="ACFT",
 PatternValues="1,2,5,8,,20")
NewPatternTimeSeries(Alias="ts2",NewTSID="ts2..Flow.Year",
 SetStart="1950",SetEnd="2005",Units="ACFT",
 PatternValues="2,4,10,16,,40")
NewEnsemble(TSList=AllTS,
 NewEnsembleID="TestEnsemble",NewEnsembleName="Test Ensemble")
InsertTimeSeriesIntoEnsemble(Ensemble2=”TestEnsemble”)

230

Command Reference: LagK()
Lag and attenuate (route) a time series

Version 10.00.00, 2011-03-28

The LagK() command can be used to lag and attenuate an input time series, resulting in a new time
series. The time series identifier for the new time series is the same as the original time series with
“routed” appended to the scenario. The command is commonly used to route an instantaneous flow time
series through a stretch of river (reach). Lag and K routing is a common routing method that combines
the concepts of:

1. Lagging the inflow to simulate travel time in a reach and,
2. Attenuating the wave to simulate the storage-outflow relationship for the reach (see Figure 1).

Inflows Lagged Inflows

Outflows
(lagged and attenuated)

Q

Time

Inflows Lagged Inflows

Outflows
(lagged and attenuated)

Q

Time
Figure 1: Lag and K Routing

At its fundamental level, the method solves the continuity equation using an approach similar to
Muskingum routing (assuming that the Muskingum parameter representing wave storage is negligible).
The governing equation for this routing method is given as:

t
SQQ outin Δ

Δ
=−

where:

Qin = instantaneous inflow [rate] lagged appropriately,
Qout = instantaneous outflow [rate] lagged appropriately,
ΔS = change in storage in the reach [volume],
Δt = time difference.

 Command Reference – LagK() - 1 231

LagK() Command TSTool Documentation

The relationship assumes an outflow-storage relationship of the form:

 S = k ⋅ Qout,

where:

k = attenuation for the outflow [time].

To ensure accurate results, k should be larger or equal to Δt/2. For discrete time steps these relationships
translate into:

2

,
12

2
1

1
21

2
tk

t
k

O
t

SII
O Δ

≥
+

Δ

−
Δ

++
=

where: I1 and I2 are the lagged inflows into the reach at the previous and current time step,
respectively,

 O1 and O2 are the outflows out of the reach at the previous and current time step, respectively,
S1 is the storage within the reach at the previous time step, defined as S1 = k⋅O1, and
Δt is the time difference between the two time steps.

In the case that either I1 , I2 or O1 are missing, these values will be set in the following order:

1. Use data from an observed time series (see ObsTSID parameter below).
2. Use the nearest value in the input time series (see FillNearest parameter below).
3. Use the nearest value in the observed time series (see FillNearest parameter and the

ObsTSID parameter below).
4. Use a defined default flow value (see DefaultFlow parameter below).

By default, the identifier of the resulting time series is the same as the original input time series, with the
data subtype set to “routed” (e.g., Streamflow becomes Streamflow-routed)

Command Reference – LagK() - 2 232

TSTool Documentation LagK() Command

The following dialog is used to edit the command and illustrates the syntax for the command:

LagK

LagK() Command Editor

Values for Lag and K can usually be established by comparing routed flows to downstream observations.
Alternatively, the Lag can be estimated using the reach length and wave speed in the reach. Without any
other information, K can be set to Lag/2.

The command syntax is as follows:

LagK(Parameter=Value,…)

The following older command syntax is updated to the above syntax when a command file is read:

TS Alias = LagK(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSID Identifier or alias for the time series to be routed. It is assumed that

this series describes an instantaneous flow. Due to the lagging, the
first data values required for the computation of O2 are not available
within this time series and are therefore set to values set in the
InflowStates parameter. See also the ObsTSID time series, and
the FillNearest and DefaultFlow parameters.

None –
must be
specified.

ObsTSID Identifier or alias for an observed time series. If specified, the None

 Command Reference – LagK() - 3 233

LagK() Command TSTool Documentation

Parameter Description Default
missing values in the TSID time series will be taken from the
observed time series if non-missing. ObsTSID can be used in
conjunction with FillNearest to substitute a missing value in the
TSID time series with the nearest non-missing value in ObsTSID.

Alias The alias to assign to the time series, as a literal string or using the
special formatting characters listed by the command editor. The alias
is a short identifier used by other commands to locate time series for
processing, as an alternative to the time series identifier (TSID).

None –
must be
specified.

FillNearest If set to True, then when a missing data value is found anywhere in
the lagged period, a replacement value will be determined by
searching forward and back in time in the input time series to find the
nearest non-missing value. The maximum search window depends
on the interval of the TSID time series:

• <= Seconds: 1000 intervals
• Minute, Hour: 1 day
• Day: 1 Week
• > Day: 1 interval only

The assumption is that a flow value close in time will be
representative of the missing value and will not result in significant
errors.
This option has lower precedence than specifying the ObsTSID data.
It can also find non-missing data in the ObsTSID if ObsTSID is
defined (lower precedence). Both options have a higher precedence
than DefaultFlow.

False

DefaultFlow A flow value in the units of the input time series that is substituted for
missing values in the input time series. This has the lowest
precedence of all missing data substitutions. It will be applied at any
time in the lagged period.

0

Lag Lag time for the modeled reach in the units of the TSID time series
base interval. For example, if the input time series is 10 minutes, the
units of Lag are assumed to be minutes. The Lag value is not
required to be evenly divisible by the time step interval; values in the
time series between time steps will be linearly interpolated.

Required

K Attenuation factor to be applied to the wave. The units of K are time,
and like the Lag value, it is assumed to have the same units as the
input time series.

Required

InflowStates Comma-delimited list of default inflow values prior to the start of the
time series. The order of the values is earliest to latest. The array
must specify (Lag/multiplier) + 1 values; i.e., a 10 minute interval
with a LAG of 30 must be provided with 30/10 + 1 = 4 inflow
carryover values. Note: Specifying values that are not consistent
with the Lag and K parameters will result in oscillation!

0 for each
value

OutflowStates Comma-delimited list of default outflow values prior to the start of
the time series. See InflowStates for details.

0 for each
value

A sample command file is as follows (commands to read time series are omitted):

LagK(Alias=”LKPN6routed”,TSID=LKPN6.USGS.QIN.1HOUR,Lag=3,K=2,FillNearest=true)

Command Reference – LagK() - 4 234

 Command Reference – LookupTimeSeriesFromTable() - 1

Command Reference:
LookupTimeSeriesFromTable()

Crate new time series by using an input time series and a lookup table
Version 10.05.00, 2012-02-12

The LookupTimeSeriesFromTable() command uses an input time series and lookup table to
create the output time series. Examples of using this command include:

• Converting reservoir elevation to storage, surface area, seepage, or other values
• Converting river stage to discharge
• Converting a time series to category values

In many cases the lookup table will apply throughout the analysis period. However, it is possible that the
table will change over time (e.g., as a stream channel changes or a reservoir fills with silt). In these cases,
the command allows for an effective date to be specified – the table then is applicable on and after the
specified date/time, until another effective date is encountered. The values in the table should be sorted in
ascending order prior to lookup. This command currently does not handle rating table shifts; however,
this capability may be added in the future. The following dialog is used to edit the command and
illustrates the syntax of the command:

LookupTimeSeriesFromTable

LookupTimeSeriesFromTable() Command Editor

235

LookupTimeSeriesFromTable() Command TSTool Documentation

Command Reference – LookupTimeSeriesFromTable() - 2

The command syntax is as follows:

LookupTimeSeriesFromTable(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSID The time series identifier or alias for the time series used as

input.
None – must be
specified.

NewTSID The time series identifier for the time series being created.
Use the Edit button to edit the time series identifier parts.

None – must be
specified.

Alias The alias to assign to the time series, as a literal string or
using the special formatting characters listed by the command
editor. The alias is a short identifier used by other commands
to locate time series for processing, as an alternative to the
time series identifier (TSID).

No alias.

TableID The lookup table identifier. None – must be
specified.

Table
TSIDColumn

Table column name that is used to match the time series
identifier for processing. This parameter currently is not
supported but will be enabled in the future.

If not specified,
it is assumed
that the entire
lookup table
applies.

Table
TSIDFormat

The specification to format the time series identifier to match
the TableTSIDColumn column. This parameter
currently is not supported but will be enabled in the
future.

Time series
alias if
available, or
otherwise the
time series
identifier.

Table
Value1Column

Table column name for data values that correspond to the
input time series (TSID).

None – must be
specified.

Table
Value2Column

Table column name for data values that correspond to the
output (new) time series identifier (NewTSID).

None – must be
specified.

Units The data units to assign to the new time series. No data units
will be
assigned.

Effective
DateColumn

Table column name for the effective date. This parameter
currently is not supported but will be enabled in the
future.

The lookup data
apply to the
entire period.

LookupMethod Indicate how to select the value to use for output:
• Interpolate – interpolate between points if input

values do not exactly align with table values; if
Transformation=Log, then interpolation will use the
transformed values

• PreviousValue – pick the previous (lower) value in
the table (exact matches use the lookup table value)

• NextValue – pick the next (higher) value in the table
(exact matches use the lookup table value)

Interpolate

OutOfRange
LookupMethod

Indicate the value to use when estimating values that are
outside the range of the rating table:

SetMissing

236

TSTool Documentation LookupTimeSeriesFromTable() Command

 Command Reference – LookupTimeSeriesFromTable() - 3

Parameter Description Default
• Extrapolate – use the two known values at the end of

the table to extrapolate; if Transformation=Log,
then extrapolation will use the transformed values

• SetMissing – set output to missing
• UseEndValue – use the data value on the end

OutOfRange
Notification

Indicate the notification to generate when a value is outside
the range of the lookup table:
• Ignore – do not generate warning or failure message
• Warn – generate a warning message
• Fail – generate a failure message

Ignore

Transformation Indicates how to transform the data before interpolation, used
when LookupMethod=Interpolate and
OutOfRangeMethod=Extrapolate). Specify as None
to compare raw values or Log (for log10) to transform values
before interpolation and extrapolation. If the Log option is
used, zero and negative values are replaced with the value
specified by the LEZeroLogValue parameter value for
analysis (missing data values are ignored in the analysis).

None (no
transformation).

LEZero
LogValue

Value to use for data values less than or equal to zero when
using a log transformation.

.0010

AnalysisStart The date/time to start the analysis. Analyze the full
period.

AnalysisEnd The date/time to end the analysis. Analyze the full
period.

237

LookupTimeSeriesFromTable() Command TSTool Documentation

Command Reference – LookupTimeSeriesFromTable() - 4

This page is intentionally blank.

238

 Command Reference – ManipulateTableString () - 1

Command Reference: ManipulateTableString()
Manipulate string a string column in a table

Version 10.21.00, 2013-06-14

The ManipulateTableString() command manipulates a string column in a table. For example, it
may be necessary to manipulate strings in a table in order to match time series identifier parts, so that
lookups can occur.

The input is specified by:

• a table column name (InputColumn1)
• either a second input column name (InputColumn2) or a constant string value

(InputValue2)
• optionally, some operators require an additional input value (InputValue3)

The result is placed in the output column (OutputColumn). Missing/blank input will be considered as
empty strings when formatting the output. The output column can be the same as an existing table
column.

The following dialog is used to edit the command and illustrates the syntax of the command (in this case
illustrating how the contents of column String2 are prepended to the contents of a column named
String1 and placed in the output column String3).

ManipulateTableString

ManipulateTableString() Command Editor

239

ManipulateTableString() Command TSTool Documentation

Command Reference – ManipulateTableString() - 2

The command syntax is as follows:

ManipulateTableString(Parameter=Value,…)

Command Parameters

Parameter Description Default
TableID The identifier for the table to process. None – must be

specified.
InputColumn1 The name of a column containing strings, as the first

input.
None – must be
specified.

Operator The operation to perform on the input strings:
• Append – append the second input to the first input
• Prepend – prepend the second input before the

first input
• Replace – replace in the second input in the first

input, with the third input
• ToDate – convert the first input to a DateTime

object with date precision
• ToDateTime – convert the first input to a

DateTime object
• ToDouble – convert the first input to a double

precision object
• ToInteger – convert the first input to an integer

object

None – must be
specified.

InputColumn2 The name of a column containing strings, as the second
input.

Required if a second
input value is needed
and InputValue2 is
not specified.

InputValue2 A string constant, as the second input. Required if a second
input value is needed
and InputColumn2
is not specified.

InputValue3 A string constant, as the third input. Required if a third
input value is needed.

OutputColumn The name of a column to receive the output. None – must be
specified.

240

Command Reference: Multiply()
Multiply the data values in a time series by data values in another time series

Version 08.16.04, 2008-09-24

The Multiply()command multiplies one time series by another. Missing data in either time series
causes the result to be missing. See also the Scale() command, which multiplies time series by a
numerical value.

The following dialog is used to edit the command and illustrates the syntax of the command.

Multiply

Multiply() Command Editor

 Command Reference – Multiply() - 1 241

Multiply() Command TSTool Documentation

The command syntax is as follows:

Multiply(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSID The time series identifier or alias for the time series to be

modified.
None – must be
specified.

MultiplierTSID The time series identifier or alias for the time series that is the
multiplier.

None – must be
specified.

A sample command file is as follows (this example does not necessarily make sense but illustrates how
the Multiply() command can be used for numerical calculations in an analysis):

2184 - DEL NORTE 2 E
2184.NOAA.TempMean.Month~HydroBase
5706 - MONTE VISTA 2 W
5706.NOAA.TempMean.Month~HydroBase
Multiply(TSID="2184.NOAA.TempMean.Month",
 MultiplierTSID="5706.NOAA.TempMean.Month")

Command Reference – Multiply() - 2 242

Command Reference:
NewDayTSFromMonthAndDayTS()

Create a new daily time series from monthly total and daily pattern
Version 10.00.01, 2011-05-12

The NewDayTSFromMonthAndDayTS() command creates a new daily time series by distributing a
monthly time series “volume” according to the pattern of the independent daily time series. This
command currently only handles processing monthly ACFT and daily CFS time series. This command is
useful where a monthly flow time series is known at a location, and a daily pattern is known at a related
gage. The new time series is assigned the given identifier and alias. The following calculations are
performed:

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

∗⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛∗=

∑
=

=

MonthNdayi

i
i

i
i

DayTS

DayTS
AC

FT
s

DAY
NDAYS
ACFTMonthTSDayTS sin

1

2

1

1
1

43560
86400
122

where, for days in a month:

DayTS2i = the daily value being estimated in daily time series 2
MonthTS2 = the monthly value being used for volumes for time series 2, shown in units of
ACFT/NDAYS (equivalent to ACFT/Month)
NDAYS = the number of days in the month
DayTS1i = the daily value for indicator daily time series 1
ΣDayTS1i = the sum of the daily values for indicator time series for the a month

In summary, the monthly volume in ACFT/NDAYS is first converted to an average monthly CFS rate by
multiplying by 43560/86400 (or 1/1.9835), and finally the average CFS value is prorated by the ratio of
the indicator daily time series daily value divided by the total daily flows for the month, to give a daily
CFS value for each day of the month. In this case, the last term is simply a ratio (converting daily
average CFS to daily ACFT and calculating the ratio would result in the same value).

Days with missing data are excluded from the summation and the estimated values. The output period is
the global output period from SetOutputPeriod(), or if not set the period from the daily time series
is used.

 Command Reference – NewDayTSFromMonthAndDayTS() - 1 243

NewDayTSFromMonthAndDayTS() Command TSTool Documentation

For example, consider May a may total for MonthTS2 = 1001.7 ACFT and daily values (CFS) as follows:

 Day 1 = 14
14
13
13
14
14
15
15
15
16
17
17
16
18
18
17
18
18
18
18
17
17
17
17
16
16
17
18
18
17

 Day 31 = 17

The total is 505 CFS. The estimated value for day 1 of the second daily time series would then be:

1001.7 * (1/1.9835) * (14/505) = 14 CFS

In this case, the indicator time series was the same as the time series being estimated and therefore the
estimated value should be the same as the indicator.

Command Reference – NewDayTSFromMonthAndDayTS() - 2 244

TSTool Documentation NewDayTSFromMonthAndDayTS() Command

The following dialog is used to edit the command and illustrates the syntax for the command.

NewDayTSFromMonthAndDayTS_Alias

NewDayTSFromMonthAndDayTS() Command Editor

The command syntax is as follows:

NewDayTSFromMonthAndDayTS(Parameter=Value,…)

The following older command syntax is updated to the above syntax when a command file is read:

TS Alias = NewDayTSFromMonthAndDayTS(Parameter=Value,…)

Command Parameters

Parameter Description Default
MonthTSID The time series identifier or alias for a

monthly time series supplying monthly
ACFT values.

None – must be specified.

DayTSID The time series identifier or alias for a
daily time series supplying daily flow
values (only the pattern is used).

None – must be specified.

NewTSID The time series identifier of the new time
series. The interval must be Day.

None – must be specified.

Alias The alias to assign to the time series, as a
literal string or using the special
formatting characters listed by the
command editor. The alias is a short
identifier used by other commands to
locate time series for processing, as an
alternative to the time series identifier
(TSID).

None – must be specified.

 Command Reference – NewDayTSFromMonthAndDayTS() - 3 245

NewDayTSFromMonthAndDayTS() Command TSTool Documentation

A sample command file to process data from the State of Colorado’s HydroBase is as follows:

SetOutputPeriod(OutputStart="1950-01",OutputEnd="2002-12")
08236500 - ALAMOSA RIVER BELOW TERRACE RESERVOIR
08236500.DWR.Streamflow.Day~HydroBase
08236000 - ALAMOSA RIVER ABOVE TERRACE RESERVOIR
08236000.DWR.Streamflow.Month~HydroBase
NewDayTSFromMonthAndDayTS(
 NewTSID="08236000.DWR.Streamflow.Day",
 MonthTSID="08236000.DWR.Streamflow.Month",
 DayTSID="08236500.DWR.Streamflow.Day",Alias=”DayTS”)

A graph of data resulting from this command may look similar to the following. Note that the each time
series has a similar pattern, but at different levels.

NewDayTSFromMonthAndDayTS_Graph

Result of NewDayTSFromMonthAndDayTS() Command

Command Reference – NewDayTSFromMonthAndDayTS() - 4 246

Command Reference:
NewEndOfMonthTSFromDayTS()

Use a daily time series to create an end of month time series
Version 10.00.00, 2011-03-27

The NewEndOfMonthTSFromDayTS() command is typically used to convert a daily reservoir storage
time series to an end of month reservoir storage time series. The command can also be applied to other
data types (e.g., measured well levels).

Changing from a daily to an end of month monthly time series is accomplished by starting on the month
ending day and searching in both directions (backward then forward by expanding until the bracket is
reached) for a daily measurement. The number of days to search in each direction (the bracket) should
not be so large as to produce unrealistic results. It is possible that no value will be found for a particular
month, with the given restraints. In this case, other fill commands (e.g., FillInterpolate()) can be
applied to estimate the remaining missing data.

The following dialog is used to edit the command and illustrates the syntax of the command.

NewEndOfMonthTSFromDayTS_Alias

NewEndOfMonthTSFromDayTS() Command Editor

 Command Reference – NewEndOfMonthTSFromDayTS() - 1 247

NewEndOfMonthTSFromDayTS() Command TSTool Documentation

The command syntax is as follows:

NewEndOfMonthTSFromDayTS(Parameter=Value,…)

The following older command syntax is updated to the above syntax when a command file is read:

TS Alias = NewEndOfMonthTSFromDayTS (Parameter=Value,…)

Command Parameters

Parameter Description Default
DayTSID The time series identifier or alias of the

daily time series to be searched for data.
None – must be specified.

Alias The alias to assign to the time series, as a
literal string or using the special
formatting characters listed by the
command editor. The alias is a short
identifier used by other commands to
locate time series for processing, as an
alternative to the time series identifier
(TSID).

None – must be specified.

Bracket The number of days to search from the
end of the month, in order to find a daily
value to transfer to the end of the month.

None – must be specified.

A sample command file for estimating reservoir contents, using data from the State of Colorado’s
HydroBase database is:

2003536 - CONTINENTAL RES
2003536.DWR.ResMeasStorage.Day~HydroBase
NewEndOfMonthTSFromDayTS(Alias=”Continental”,
 DayTSID="2003536.DWR.ResMeasStorage.Day",Bracket=15)

A sample command file for estimating well levels is:

384549104445101 - SCO1506611ABC
384549104445101.USGS.WellLevel.Day~HydroBase
NewEndOfMonthTSFromDayTS(Alias=”WellMonth”,
 DayTSID="384549104445101.USGS.WellLevel.Day",Bracket=30)
 FillInterpolate(TSList=AllMatchingTSID,TSID="WellMonth",
 MaxIntervals=0,Transformation=None)

Command Reference – NewEndOfMonthTSFromDayTS() - 2 248

TSTool Documentation NewEndOfMonthTSFromDayTS() Command

To evaluate the results of this command, it is useful to graph both the input and results, changing the
graph properties to add symbols to see the individual measurements, as shown in the following figure.

NewEndOfMonthTSFromDayTS_Graph

Results of NewEndOfMonthTSFromDayTS() Command

 Command Reference – NewEndOfMonthTSFromDayTS() - 3 249

NewEndOfMonthTSFromDayTS() Command TSTool Documentation

This page is intentionally blank.

Command Reference – NewEndOfMonthTSFromDayTS() - 4 250

 Command Reference – NewEnsemble () - 1

Command Reference: NewEnsemble ()
Create a new ensemble and optionally include 1+ time series

Version 10.11.00, 2012-07-18

The NewEnsemble() command creates a new ensemble and optionally inserts 1+ existing time series.
For example, use the command to create an ensemble that includes multiple scenarios. Although it is
typical that an ensemble contains time series at the same location, it is also possible to use ensembles to
group time series at different locations (e.g., to group all time series for stations in a county).

It is envisioned that time series added to the ensemble can optionally be copied and the period changed, in
order to isolate the data from the original time series. However, currently the time series from the main
processor list are simply associated with the ensemble. Consequently, if other commands change the time
series (for example free the time series), the ensemble will reflect the changes. Overcoming this issue
will require design changes that need to be evaluated.

The following dialog is used to edit the command and illustrates the syntax for the command.

NewEnsemble

NewEnsemble () Command Editor

The command syntax is as follows:

NewEnsemble (Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed, one

of:
AllTS

251

NewEnsemble () Command TSTool Documentation

Command Reference – NewEnsemble() - 2

Parameter Description Default
• AllMatchingTSID – all time series that

match the TSID (single TSID or TSID with
wildcards).

• AllTS – all time series before the command.
• EnsembleID – all time series in the

ensemble.
• FirstMatchingTSID – the first time series

that matches the TSID (single TSID or TSID
with wildcards).

• LastMatchingTSID – the last time series
that matches the TSID (single TSID or TSID
with wildcards).

• SelectedTS – the time series are those
selected with the SelectTimeSeries()
command.

TSID The time series identifier or alias for the time series
to be processed, using the * wildcard character to
match multiple time series.

Required when
TSList=*TSID

EnsembleID The ensemble to be processed, if processing an
ensemble.

Required when
TSList=EnsembleID.

NewEnsembleID The new ensemble identifier. None – must be specified.
NewEnsembleName The name for the new ensemble. Blank.
InputStart The date/time to start transferring data from the

time series. Envisioned as future enhancement.
Use all data.

InputEnd The date/time to end transferring data from the
time series. Envisioned as future enhancement.

Use all data.

CopyTimeSeries Copy the time series to the ensemble rather than
using time series in the main time series list. This
protects the data in the ensemble from general
processing commands. Envisioned as future
enhancement.

Associate time series in
the main time series list
with the new ensemble.

A sample command file to create an ensemble from user-defined time series is as follows:

Test creating an ensemble from year interval time series
NewPatternTimeSeries(Alias=”ts1”,NewTSID="ts1..Flow.Year",
 SetStart="1960",SetEnd="2000",Units="ACFT",
 PatternValues="1,2,5,8,,20")
NewPatternTimeSeries(Alias=”ts2”,NewTSID="ts2..Flow.Year",
 SetStart="1950",SetEnd="2005",Units="ACFT",
 PatternValues="2,4,10,16,,40")
NewEnsemble(TSList=AllTS,
 NewEnsembleID="TestEnsemble",NewEnsembleName="Test Ensemble")

252

 Command Reference – NewPatternTimeSeries() - 1

Command Reference: NewPatternTimeSeries()
Create a new time series containing a pattern of repeating values

Version 10.06.00, 2012-04-01

The NewPatternTimeSeries() command creates a new time series containing a repeating pattern
of numbers. This command is useful for generating data to test other commands.

The following dialog is used to edit the command and illustrates the syntax for the command.

NewPatternTimeSeries

NewPatternTimeSeries() Command Editor

The command syntax is as follows:

NewPatternTimeSeries(Parameter=Value,…)

The following older command syntax is updated to the above syntax when a command file is read:

TS Alias = NewPatternTimeSeries(Parameter=Value,…)

253

NewPatternTimeSeries() Command TSTool Documentation

Command Reference – NewPatternTimeSeries() - 2

Command Parameters

Parameter Description Default
Alias The alias to assign to the time series, as a literal string

or using the special formatting characters listed by the
command editor. The alias is a short identifier used
by other commands to locate time series for
processing, as an alternative to the time series
identifier (TSID).

None – must be
specified.

NewTSID The time series identifier to be assigned to the new
time series, which is useful to avoid confusion with
the original time series.

None – must be
specified.

IrregularInterval Interval to use to populate irregular time series (e.g.,
1Hour, Month), necessary because data need to be
assigned somehow.

None – must be
specified for
irregular time series.

Description Description for the time series. None.
SetStart Start date/time to set data. None – must be

specified.
SetEnd End date/time to set data. None – must be

specified.
Units Units for the data values. None.
MissingValue Value to use to indicate missing data values. -999 is

the default for historical reasons; however, NaN (not a
number) is being phased in and should be specified if
possible. Time series can be missing and be flagged.

-999

PatternValues Data values, separated by commas. Missing values
can be omitted (e.g., indicate with adjacent commas).

None – must be
specified.

PatternFlags Short strings to assign to the values (used to annotate
graphs and other output) separated by commas.
Missing flags can be omitted (e.g., indicate with
adjacent commas).

No flags are
assigned.

Examples

The following example command file illustrates how to create a pattern time series for testing:

NewPatternTimeSeries(Alias=”ts1”,NewTSID="ts1..Streamflow.Day",
 Description="Test data",SetStart="1950-01-01",
 SetEnd="1951-03-12",Units="CFS",PatternValues="5,10,12,13,75")
WriteDateValue(OutputFile=",Example_NewPatternTimeSeries_out.dv")

254

 Command Reference – NewStatisticTimeSeries() - 1

Command Reference: NewStatisticTimeSeries()
Create a time series containing a repeating year of statistics determined from a

time series
Version 10.11.00, 2012-07-03

The NewStatisticTimeSeries() command uses data from a time series to calculate a statistic for
each interval in the year, and assigns the statistic value to each corresponding interval for the full period.
For example, for a statistic of Mean calculated from a daily time series, all January 1 values are averaged
and the resulting January 1 values for the entire time series are set to the mean value. Similarly, if
monthly data are analyzed, all January values in the result will be set to the mean of the January values in
the original time series. This command is useful for superimposing the long-term historical statistic on
the original time series or real-time conditions. Leap year statistics are computed from Feb 29 values and
are visible only in leap years of the output time series. Missing data in the original time series will by
default still result in the statistic being computed, but the AllowMissingCount and
MinimumSampleSize parameters control the impacts of missing values.

The following dialog is used to edit the command and illustrates the syntax for the command.

NewStatisticTimeSeries

NewStatisticTimeSeries() Command Editor

255

NewStatisticTimeSeries() Command TSTool Documentation

Command Reference – NewStatisticTimeSeries() - 2

The command syntax is as follows:

NewStatisticTimeSeries(Parameter=value,…)

The following older command syntax is updated to the above syntax when a command file is read:

TS Alias = NewStatisticTimeSeries(Parameter=value,…)

Command Parameters

Parameter Description Default
TSID The time series identifier (or alias) of the time series

to analyze.
None – must be
specified.

Alias The alias to assign to the time series, as a literal string
or using the special formatting characters listed by the
command editor. The alias is a short identifier used
by other commands to locate time series for
processing, as an alternative to the time series
identifier (TSID).

None – must be
specified.

NewTSID The time series identifier to be assigned to the new
time series, which is needed to avoid confusion with
the original time series.

Use the same
identifier as the
original time series
with the statistic
appended to the
scenario.

Statistic See the Available Statistics table below. None – must be
specified.

Allow
Missing
Count

The number of missing values allowed in the source
interval(s) in order to produce a result. This capability
should be used with care because it may result in data
that are not representative of actual conditions.

Allow any number
of missing values.

MinimumSampleSize The minimum number of values required in the
sample to compute the statistic. If the minimum
sample size is not available, the result will be set to
missing.

Minimum sample
size is defined by
the statistic.

AnalysisStart The date/time for the analysis start, using a precision
that matches the original time series. This controls the
sample size.

Analyze the full
period.

AnalysisEnd The date/time for the analysis start, using a precision
that matches the original time series. This controls
the sample size.

Analyze the full
period.

OutputStart The date/time for the output start, using a precision
that matches the original time series. The repeating
statistic will fill this period.

Output the full
period.

OutputEnd The date/time for the analysis start, using a precision
that matches the original time series. The repeating
statistic will fill this period.

Output the full
period.

256

TSTool Documentation NewStatisticTimeSeries() Command

 Command Reference – NewStatisticTimeSeries() - 3

Available Statistics
Statistic Description Limitations
GeometricMean Geometric mean of all values in the sample. All values must be >= 0.
Max Maximum of all values in the sample. None.
Mean Arithmetic mean of all values in the sample. None.
Median Median of all values in the sample. None.
Min Minimum of all values in the sample. None.

Examples

The following example command file illustrates how to generate test data and a corresponding statistics
time series:

Test of computing a statistic time series for monthly data,
Assign 2 months of data so that the mean is different from any month
NewPatternTimeSeries(Alias=”ts1”,NewTSID="ts1..Streamflow.Month",
 Description="Test data",SetStart="1950-01",SetEnd="1951-12",Units="CFS",
 PatternValues=".5,1.5,,3.5,4.5,5.5,6.5,7.5,8.5,9.5,10.5,11.5,1.5,2.5,3.5,
 4.5,5.5,6.5,7.5,8.5,9.5,10.5,11.5,12.5")
Double the above
NewPatternTimeSeries(Alias=”ts2”,NewTSID="ts2..Streamflow.Month",
 Description="Test data",SetStart="1951-01",SetEnd="1952-12",Units="CFS",
 PatternValues="1.5,3.5,,7.5,9.5,11.5,13.5,15.5,17.5,19.5,
 21.5,23.5,2.5,4.5,6.5,8.5,10.5,12.5,14.5,16.5,18.5,20.5,22.5,24.5")
NewStatisticTimeSeries(TSID="ts1",Alias=”ts1_mean”,
 NewTSID="ts1..Streamflow.Month.Mean",Statistic=Mean)
NewStatisticTimeSeries(TSID="ts2",Alias=”ts2_mean”,
 NewTSID="ts2..Streamflow.Month.Mean",Statistic=Mean)
WriteDateValue(OutputFile="Results\Test_NewStatisticTimeSeries_Month_Mean_out.dv")

257

NewStatisticTimeSeries() Command TSTool Documentation

Command Reference – NewStatisticTimeSeries() - 4

The following figure illustrates the results. Note that by default the statistic is computed even if missing
values exist in the sample. This can be controlled by the AllowMissingCount and
MinimumSampleSize parameters.

258

 Command Reference – NewStatisticTimeSeriesFromEnsemble() - 1

Command Reference:
NewStatisticTimeSeriesFromEnsemble()

Create a time series containing a statistic determined from a time series
ensemble

Version 10.18.00, 2013-02-21

The NewStatisticTimeSeriesFromEnsemble() command uses data from time series in an
ensemble to calculate a statistic for each interval in the ensemble, and assigns the statistic value to the
corresponding interval in the result. For example, for a statistic of Mean applied to a daily time series, all
January 1, 1970 values will be used for the sample and the mean value will be assigned to January 1, 1970
in the output time series. Leap year values will be included if they are included in the period of the
ensemble.

The following dialog is used to edit the command and illustrates the syntax for the command.

NewStatisticTimeSeriesFromEnsemble

NewStatisticTimeSeriesFromEnsemble() Command Editor

The command syntax is as follows:

NewStatisticTimeSeriesFromEnsemble(Parameter=Value,…)

The following older command syntax is updated to the above syntax when a command file is read:

TS Alias = NewStatisticTimeSeriesFromEnsemble(Parameter=Value,…)

259

NewStatisticTimeSeriesFromEnsemble() Command TSTool Documentation

Command Reference – NewStatisticTimeSeriesFromEnsemble() - 2

Command Parameters

Parameter Description Default
EnsembleID The identifier for the ensemble to analyze. None – must be

specified.
NewTSID The time series identifier to be assigned to the new time

series, which is useful to avoid confusion with the original
time series. This parameter may be required in the
future.

None – use the same
identifier as the
original time series.

Alias The alias to assign to the time series, as a literal string or
using the special formatting characters listed by the
command editor. The alias is a short identifier used by
other commands to locate time series for processing, as an
alternative to the time series identifier (TSID).

None – must be
specified.

Statistic The statistic to compute. See the Available Statistics
table below.

None – must be
specified.

Allow
Missing
Count

The number of missing values allowed in the sample of
values in order to produce a result. This capability should
be used with care because it may result in data that are not
representative of actual conditions.

Missing values are
ignored in the sample
used to compute the
statistic.

MinimumSample
Size

The minimum number of values in the sample that are
required to compute the statistic.

Use the sample with
no restrictions,
although some
statistics may have
requirements.

AnalysisStart The date/time for the analysis start, using a precision that
matches the original time series.

Analyze the full
period.

AnalysisEnd The date/time for the analysis start, using a precision that
matches the original time series.

Analyze the full
period.

OutputStart The date/time for the output start, using a precision that
matches the original time series. An output period longer
than the analysis period will result in missing values in
output.

Output the full
period.

OutputEnd The date/time for the output start, using a precision that
matches the original time series. An output period longer
than the analysis period will result in missing values in
output.

Output the full
period.

Available Statistics

Statistic Description Limitations
Exceedance
Probability10

The data value corresponding to a 10%
chance of value being exceeded.

Small sample size will skew –
see statistic details.

Exceedance
Probability30

The data value corresponding to a 30%
chance of value being exceeded.

Small sample size will skew –
see statistic details.

Exceedance
Probability50

The data value corresponding to a 50%
chance of value being exceeded.

Small sample size will skew –
see statistic details.

Exceedance
Probability70

The data value corresponding to a 70%
chance of value being exceeded.

Small sample size will skew –
see statistic details.

Exceedance The data value corresponding to a 90% Small sample size will skew –

260

TSTool Documentation NewStatisticTimeSeriesFromEnsemble() Command

 Command Reference – NewStatisticTimeSeriesFromEnsemble() - 3

Statistic Description Limitations
Probability90 chance of value being exceeded. see statistic details.
GeometricMean Geometric mean of all values in the sample. All values must be >= 0.
Max Maximum of all values in the sample. None.
Mean Arithmetic mean of all values in the sample. None.
Median Median of all values in the sample. None.
Min Minimum of all values in the sample. None.
Missing
Count

The count of values that are missing. This statistic will be computed
regardless of
AllowMissingCount and
MinimumSampleSize.

Missing
Percent

The percent of values that are missing. See above.

Nonmissing
Count

The count of values that are not missing. See above.

Nonmissing
Percent

The percent of values that are not missing. See above.

Total Total of values in the sample. None.

Statistic Details

Statistic Description
Exceedance
Probability*

The statistic for each time step in the analysis period is computed as follows:
1. The data values are extracted for each trace with missing values being ignored.

The sample size is n.
2. The data values are sorted into ascending order.
3. Exceedance probabilities are computed for the number of sample values

according to Weibull plotting positions as follows (for i=1,…,n):
a. If n = 1, the exceedance probability Pi=1.0. This is an extreme case

due to small sample size.
b. Otherwise, Pi=(n –(i – 1))/(n + 1). Therefore, when i=1, Pi=n/(n+1)

and when i=n, Pi=1/(n+1). The probabilities will be listed from high
to low value (the opposite order of the sorted data values).

4. The data value corresponding to the requested probability is calculated by
iterating over the probabilities until the calculated probability for a value is
less than the requested probability:

a. If the first probability satisfies the condition, the computed value is set
to the minimum value in the sample (no extrapolating past the end).

b. Otherwise, the value is interpolated from the previous and current
sample values.

If no calculated probability is less than the requested probability, the computed
value is set to the maximum value in the sample (no extrapolating past the
end).

To create an exceedance probability plot, use several commands with different
exceedance probability levels (listed low to high). Graphing the time series in a
bar graph with BarOverlap=True will draw the bars on top of each other to
give the desired appearance. The edges of the colors will represent the specific
exceedance probabilities and the colored areas will represent ranges of exceedance
probabilities.

261

NewStatisticTimeSeriesFromEnsemble() Command TSTool Documentation

Command Reference – NewStatisticTimeSeriesFromEnsemble() - 4

Examples

The following example command file illustrates how to compute the mean statistic for one monthly data:

Test computing a statistic time series for Month data where Statistic=Mean
StartLog(LogFile="Results/Test_NewStatisticTimeSeriesFromEnsemble_Month_Mean.TSTool.log")
Define 2 years of data that when averaged equal even numbers
The 2nd time series is shifted by 1 from the first.
Include missing values in the first time series but not the second.
NewPatternTimeSeries(Alias=”ts1”,NewTSID="ts1..Streamflow.Month",
 Description="test data 1",SetStart="2000-01",SetEnd="2001-12",Units="CFS",
 PatternValues=".5,1.5,,3.5,4.5,5.5,6.5,7.5,8.5,9.5,10.5,11.5,
 1.5,2.5,3.5,4.5,5.5,6.5,7.5,8.5,9.5,10.5,11.5,12.5")
NewPatternTimeSeries(Alias=”ts2”,NewTSID="ts2..Streamflow.Month",
 Description="test data 2",SetStart="2000-01",SetEnd="2001-12",Units="CFS",
 PatternValues="1.5,2.5,3.5,4.5,5.5,6.5,7.5,8.5,9.5,10.5,11.5,12.5,
 2.5,3.5,4.5,5.5,6.5,7.5,8.5,9.5,10.5,11.5,12.5,13.5")
Create an ensemble to hold the above time series
NewEnsemble(TSList=AllTS,NewEnsembleID="TestEnsemble",NewEnsembleName="Test Ensemble")
Compute the statistic
NewStatisticTimeSeriesFromEnsemble(Alias=”Mean”,EnsembleID="TestEnsemble",
 NewTSID="Test..Streamflow.Month.Mean",Statistic=Mean)

The following figure illustrates the results:

262

TSTool Documentation NewStatisticTimeSeriesFromEnsemble() Command

 Command Reference – NewStatisticTimeSeriesFromEnsemble() - 5

NewStatisticTimeSeriesFromEnsemble_Table

NewStatisticTimeSeriesFromEnsemble() Command Results

263

NewStatisticTimeSeriesFromEnsemble() Command TSTool Documentation

Command Reference – NewStatisticTimeSeriesFromEnsemble() - 6

This page is intentionally blank.

264

 Command Reference – NewStatisticYearTS() - 1

Command Reference: NewStatisticYearTS()
Create a new yearly time series containing a statistic determined from each year

of the input time series
Version 10.12.00, 2012-07-16

The NewStatisticYearTS() command creates a new yearly time series, where each yearly value in
the resulting time series contains a statistic determined from the sample of points from the corresponding
year in the original time series. For example, if the original time series has a daily time step, then the
sample that is analyzed will contain 365 or 366 values (depending on leap year). Calendar years are used
by default; however, the OutputYearType parameter can be used to specify that different year types
are analyzed. Other commands (e.g., ChangeInterval()) can produce a similar result for a limited
number of statistics, for example converting a monthly time series to an annual total or mean. See also
the NewStatisticTimeSeries(), NewStatisticTimeSeriesFromEnsemble(),
CalculateTimeSeriesStatistic(), and CheckTimeSeries() commands.

For hourly and finer interval, values are considered to be in a year when the year in the date/time matches
the year of interested. This may lead to some issues if the last value in a year is actually recorded at hour
0 or later of the following year.

The following dialog is used to edit the command and illustrates the syntax for the command.

NewStatisticYearTS

NewStatisticYearTS() Command Editor

265

NewStatisticYearTS() Command TSTool Documentation

Command Reference – NewStatisticYearTS() - 2

The command syntax is as follows:

NewStatisticYearTS(Parameter=value,…)

The following older command syntax is updated to the above syntax when a command file is read:

TS Alias = NewStatisticYearTS (Parameter=value,…)

Command Parameters

Parameter Description Default
TSID The time series identifier (or alias) of the time series to

analyze.
None – must be
specified.

Alias The alias to assign to the time series, as a literal string or
using the special formatting characters listed by the
command editor. The alias is a short identifier used by
other commands to locate time series for processing, as
an alternative to the time series identifier (TSID).

None – must be
specified.

NewTSID The time series identifier to be assigned to the new time
series, which is useful to avoid confusion with the
original time series.

Use the same
identifier as the
original time series,
with an interval of
Year and a scenario
matching the statistic.

Statistic See the Available Statistics table below. None – must be
specified.

TestValue A test value used when analyzing the statistic. This parameter is
required for some
statistics and not used
for others. See the
statistics table below.

AllowMissing
Count

The number of missing values allowed in the source
interval(s) in order to produce a result. If an analysis
window is specified (default is to analyze full years),
then missing values outside of the analysis window are
not considered as missing. Gaps at the end of the time
series will be considered missing if within the analysis
window.

Allow any number of
missing values.

Minimum
SampleSize

The minimum sample size in order to compute the
statistic.

No minimum,
although the statistic
may have
requirements.

OutputYearType The output year type. For example, an output year type
of NovToOct spans November of the previous calendar
year to October of the current calendar year. All other
parameters should still be specified in calendar year and
the AnalysisWindowStart can have a month that is
prior to the AnalysisWindowEnd month.

Calendar

AnalysisStart The starting date/time for the analysis using calendar
dates (e.g., 2001-01-01), with precision consistent with

Analyze the full
period, extending the

266

TSTool Documentation NewStatisticYearTS() Command

 Command Reference – NewStatisticYearTS() - 3

Parameter Description Default
the time series interval. This will limit the data being
analyzed at the ends of the time series and controls the
length of the output time series. The analysis period is
typically set to align with years consistent with the
output year type.

period to include full
years.

AnalysisEnd The ending date/time for the analysis using calendar
dates (e.g., 2001-01-01) , with precision consistent with
the time series interval. This will limit the data being
analyzed at the ends of the time series and controls the
length of the output time series. The analysis period is
typically set to align with years consistent with the
output year type.

Analyze the full
period, extending the
period to include full
years.

Analysis
WindowStart

The calendar date/time for the analysis start within each
year. Specify using the format MM, MM-DD, MM-DD hh,
or MM-DD hh:mm, consistent with the time series
interval precision. A year of 2000 will be used
internally to parse the date/time. Use this parameter to
limit data processing within the year, for example to
analyze only a season. Data will be considered missing
only if missing within this analysis window. If
specifying for other than calendar year, the analysis
window start month may be greater than the analysis
window end month.

Analyze the full year.

Analysis
WindowEnd

Specify date/time for the analysis end within each year.
See AnalysisWindowStart for details.

Analyze the full year.

SearchStart Within the analysis window, this indicates the starting
date/time for the search. Specify using the format MM,
MM-DD, MM-DD hh, or MM-DD hh:mm, consistent with
the time series interval precision. A year of 2000 will
be used internally to parse the date/time. This parameter
is useful in cases where the processing considers
seasonal aspects of the analysis window; for example,
use when determining frost dates (when temperature is
less than or equal to freezing) to ensure that the search
starts from the middle of the normal growing season.
Searches move forward in time except for the following
statistics, in which case SearchStart will be the start
of the search window, but will be the last value checked:
DayOfLast*, MonthOfLast*.

Use the analysis
window start and
end. Search forward
for most statistics.
Search backward for
DayOfLast* and
MonthOfLast*
statistics.

Available Statistics

The following statistics are computed from a sample determined using the analysis window. If no
analysis window is specified, then the default is to analyze complete years, where the years correspond to
the OutputYearType. For example, for OutputYearType=NovToDec, November 1, 2000 to
October 31, 2001 from the input corresponds to output year 2001.

Statistic Description Limitations
DayOfCentroid The day of the year (1-366) that is the centroid Input time series must be

267

NewStatisticYearTS() Command TSTool Documentation

Command Reference – NewStatisticYearTS() - 4

Statistic Description Limitations
of the values, computed as
sum(DayOfYear*value)/sum(values).

daily or smaller interval.

DayOfFirstGE Julian day of the year (1-366, relative to the
start of the OutputYearType) for the first
data value >= TestValue. Searches start at
the start of the analysis window and move
forward.

Input time series must be
daily or smaller interval.

DayOfFirstGT Similar to DayOfFirstGE, for values >
TestValue.

Input time series must be
daily or smaller interval.

DayOfFirstLE Similar to DayOfFirstGE, for values <=
TestValue.

Input time series must be
daily or smaller interval.

DayOfFirstLT Similar to DayOfFirstGE, for values <
TestValue.

Input time series must be
daily or smaller interval.

DayOfLastGE Julian day of the year (1-366, relative to the
start of the OutputYearType) for the last
data value >= TestValue. Searches start at
the start of the analysis window and move
backward.

Input time series must be
daily or smaller interval.

DayOfLastGT Similar to DayOfLastGE, for values >
TestValue.

Input time series must be
daily or smaller interval.

DayOfLastLE Similar to DayOfLastGE, for values <=
TestValue.

Input time series must be
daily or smaller interval.

DayOfLastLT Similar to DayOfLastGE, for values <
TestValue.

Input time series must be
daily or smaller interval.

DayOfMax Julian day of the year (1-366, relative to the
start of the OutputYearType) for the first
maximum value in the time series.

Input time series must be
daily or smaller interval.

DayOfMin Julian day of the year (1-366, relative to the
start of the OutputYearType) for the first
minimum value in the time series.

Input time series must be
daily or smaller interval.

GECount Count of values in a year >= TestValue.
GEPercent Percent of values in a year >= TestValue,

based on the total number of points in the year.

GTCount Count of values in a year > TestValue.
GTPercent Percent of values in a year > TestValue,

based on the total number of points in the year.

LECount Count of values in a year <= TestValue.
LEPercent Percent of values in a year <= TestValue,

based on the total number of points in the year.

LTCount Count of values in a year < TestValue.
LTPercent Percent of values in a year < TestValue,

based on the total number of points in the year.

Max Maximum value in a year.
Mean Mean of values in a year.
Min Minimum value in a year.
MissingCount Number of missing values in a year.
MissingPercent Percent of missing values in a year.

268

TSTool Documentation NewStatisticYearTS() Command

 Command Reference – NewStatisticYearTS() - 5

Statistic Description Limitations
MonthOfCentroid The month of the year (1-12) that is the centroid

of the values, computed as
sum(MonthOfYear*value)/sum(values).

Input time series must be
monthly or smaller
interval.

MonthOfFirstGE Month the year (1-12, relative to the start of the
OutputYearType) for the first data value >=
TestValue. Searches start at the start of the
analysis window and move forward.

Input time series must be
monthly or smaller
interval.

MonthOfFirstGT Similar to DayOfFirstGE, for values >
TestValue.

Input time series must be
monthly or smaller
interval.

MonthOfFirstLE Similar to DayOfFirstGE, for values <=
TestValue.

Input time series must be
monthly or smaller
interval.

MonthOfFirstLT Similar to DayOfFirstGE, for values <
TestValue.

Input time series must be
monthly or smaller
interval.

MonthOfLastGE Month of the year (1-12, relative to the start of
the OutputYearType) for the last data value
>= TestValue. Searches start at the end of
the analysis window and move backward.

Input time series must be
monthly or smaller
interval.

MonthOfLastGT Similar to DayOfLastGE, for values >
TestValue.

Input time series must be
monthly or smaller
interval.

MonthOfLastLE Similar to DayOfLastGE, for values <=
TestValue.

Input time series must be
monthly or smaller
interval.

MonthOfLastLT Similar to DayOfLastGE, for values <
TestValue.

Input time series must be
monthly or smaller
interval.

MonthOfMax Month of the year (1-12, relative to the start of
the OutputYearType) for the first maximum
value in the time series.

Input time series must be
monthly or smaller
interval.

MonthOfMin Month of the year (1-12, relative to the start of
the OutputYearType) for the first minimum
value in the time series.

Input time series must be
monthly or smaller
interval.

NonMissingCount Number of non-missing values in a year.
NonMissingPercent Percent of non-missing values in a year.
Total Total of values in a year.

269

NewStatisticYearTS() Command TSTool Documentation

Command Reference – NewStatisticYearTS() - 6

Example

The following example commands file computes the last spring frost date for 28 degrees and 32 degrees,
searching backwards from June 30 each year, and the first fall frost date for 32 and 28 degrees, searching
forwards from July 1 each year:

StartLog(LogFile="FrostDates_HydroBase.log")
SetOutputPeriod(OutputStart="1950-01",OutputEnd="2004-12")
3553 - GREELEY UNC
3553.NOAA.TempMin.Day~HydroBase
NewStatisticYearTS(TSID="3553.NOAA.TempMin.Day",Alias=”3553_FrostDateL28S”,
 NewTSID="3553.NOAA.FrostDateL28S.Year",
 Statistic=DayOfLastLE,TestValue=28,SearchStart="06/30")
NewStatisticYearTS(TSID="3553.NOAA.TempMin.Day",Alias=” FrostDateL32S”,
 NewTSID="3553.NOAA.FrostDateL32S.Year",
 Statistic=DayOfLastLE,TestValue=32,SearchStart="06/30")
NewStatisticYearTS(TSID="3553.NOAA.TempMin.Day",Alias=”3553_FrostDateF32F”,
 NewTSID="3553.NOAA.FrostDateF32F.Year",
 Statistic=DayOfFirstLE,TestValue=32,SearchStart="07/01")
NewStatisticYearTS(TSID="3553.NOAA.TempMin.Day",Alias=”3553_FrostDateF28F”,
 NewTSID="3553.NOAA.FrostDateF28F.Year",
 Statistic=DayOfFirstLE,TestValue=28,SearchStart="07/01")
Free(TSID="*.*.TempMin.*")
WriteStateCU(OutputFile="Results/Test.FrostDates")

270

Command Reference: NewTable ()
Create a new table

Version 09.04.02, 2009-07-28

The NewTable() command creates a table with named columns, each of which is a specified data type.
Tables are used to hold information about data objects, such as statistics for time series. Commands like
CalculateTimeSeriesStatistic() can add information to tables. Tables can be written as final
data products or artifacts of processing. Characteristics of the table are as follows:

• Each column can only contain a single data type
• The default precision for numbers for display and output is 2 digits after the decimal – additional

formatting features may be available in write commands and may be added later
• Tables are referenced using the TableID
• Cells in tables are referenced using the column name and cell values that identify rows (such as

time series identifiers)

The following dialog is used to edit the command and illustrates the syntax for the command.

NewTable

NewTable () Command Editor

 Command Reference – NewTable () - 1 271

NewTable () Command TSTool Documentation

The command syntax is as follows:

NewTable (Parameter=Value,…)

Command Parameters

Parameter Description Default
TableID Identifier for the table – should be unique

among tables that are defined.
None – must be specified.

Columns The column names and data types are
defined using the format
ColumnName,DataType;
ColumnName,DataType. Column
names can contain spaces; however,
simple short names are generally handled
better by display features and minimize
errors in referencing the columns. Data
types are specified using the following
strings:
• datetime – date and time
• double – double precision number
• float – single precision number
• integer – integer (-2147483648 to

2147483647)
• short – short integer (-32768 to

32767)
• string – Unicode string

No columns will be defined.

Command Reference – NewTable() - 2 272

 Command Reference – NewTimeSeries() - 1

Command Reference: NewTimeSeries()
Create a new time series

Version 10.21.00, 2013-06-10

The NewTimeSeries() command creates a new time series and assigns it an alias. This time series
then can be manipulated with other commands. The command is useful, for example, to create a new
time series to receive the results of a series of manipulations, rather than having the results accumulate in
the first time series. See also the NewPatternTimeSeries()command, which initializes a time
series with a repeating pattern of values. Subsequent manipulation of the time series may require use of
the SetTimeSeriesProperty() and other commands to ensure that the new time series properties
are as desired.

The following dialog is used to edit the command and illustrates the syntax for the command. The new
time series identifier, which provides critical information including the data interval, is edited by pressing
the Edit button.

NewTimeSeries

NewTimeSeries() Command Editor

The command syntax is as follows:

NewTimeSeries(Parameter=Value,…)

The following older command syntax is updated to the above syntax when a command file is read:

273

NewTimeSeries() Command TSTool Documentation

Command Reference – NewTimeSeries() - 2

TS Alias = NewTimeSeries(Parameter=Value,…)

Command Parameters

Parameter Description Default
Alias The alias to assign to the time series, as a literal string

or using the special formatting characters listed by the
command editor. The alias is a short identifier used by
other commands to locate time series for processing, as
an alternative to the time series identifier (TSID).

None – must be specified.

NewTSID The time series identifier of the new time series. The
editor dialog formats the identifier from its parts.

None – must be specified
with at least minimal
information (location,
data type, and interval).

Description The description for the time series, used in output. Blank.
SetStart The start of the time series data period. Use the start from

SetOutputPeriod().
SetEnd The end of the time series data period. Use the end from

SetOutputPeriod().
Units Data units for the time series. Blank.
MissingValue Value for missing data values. -999 is the default for

historical reasons; however, NaN (not a number) is
being phased in and should be specified if possible.

-999

InitialValue The value to initialize the time series. Initialize the time series
to missing data.

InitialFunction The function to use to initialize time series data values.
This parameter can be used to generate data for testing
to simplify visual inspection of results.
• DATE_YYYY – 4-digit year
• DATE_YYYYMM – and month
• DATE_YYYYMMDD – year, month, and day
• DATE_YYYYMMDD_hh – year, month, and day,

with decimal as hour
• DATE_YYYYMMDD_hhmm – year, month, and day,

with decimal as hour and minute
• RANDOM_0_1 – random number >= 0 and < 1
• RANDOM_0_1000 – random number >= 0 and <

1000

Initialize the time series
to missing data.

The example command file shown below creates a new time series and initializes it to a constant of 20
CFS. Uncommenting the first command would allow the SetStart and SetEnd parameters to be
removed from the NewTimeSeries() command. The interval (Month below) must match a
recognized type but the other parts of the identifier such as data type are user-defined.

#SetOutputPeriod(OutputStart="1950-01",OutputEnd="2002-12")
NewTimeSeries(Alias=”station1”,NewTSID="Station1.MyModel.Streamflow.Month",
 Description="Example Description",SetStart="1950-01",
 SetEnd="2002-12",Units="CFS",InitialValue=20)

274

Command Reference: NewTreeView()
Create a new tree view using a definition file

Version 09.07.00, 2010-07-20

The NewTreeView() command creates a tree view, which is a hierarchical listing of time series. The
resulting view is dispayed in the Views section of the TSTool Results area and provides interactive
access to data. The view is defined using a simple text file, as shown in the following example:

Test data for displaying a tree view of time series results
Label: Top-level label
 TS: ts1*
 Label: Second-level label
 TS: ts2*
 Label: Another second-level label
 TS: ts3*

Tree view definition files have the following characteristics:

• Comments are indicated by lines starting with #.
• Indentations indicate the level (branch) in the tree:

o Use the tab character to indicate indentation
o The indentation on one row cannot be more than 1 greater than the previous row

• The content for the tree is indicated by keywords:
o Label: indicates that the string following the colon will be used to label a branch.

 A single top-level label is required
o TS: indicates that a time series identifier pattern will be used to identify time series in the

tree. Wildcard conventions follow rules consistent with the
TSList=AllMatchingTSID ,TSID=… command parameters.

The following figure illustrates the resulting view that is displayed in TSTool for the above example,
using contrived data. The time series in the tree view can be selected and a pop-up menu can be used to
generate graphs. Consequently, the view allows the results of processing to be presented in a way that is
more customized than a simple list. It is envisioned that additional functionality will be implemented, for
example to output the view as HTML with navigation links.

NewTreeView_Results

Example of Tree View in TSTool Results

 Command Reference – NewTreeView() - 1 275

NewTreeView() Command TSTool Documentation

The following dialog is used to edit the command and illustrates the syntax of the command.

NewTreeView

NewTreeView() Command Editor

The command syntax is as follows:

NewTreeView(Parameter=Value,…)

Command Parameters

Parameter Description Default
ViewID Identifier to assign to the view, which

allows the view to be used with other
commands.

None – must be specified.

InputFile The name of the view definition file to
read, as an absolute path or relative to the
command file location.

None – must be specified.

Command Reference – NewTreeView () - 2 276

Command Reference: Normalize()
Create a normalized time series

Version 10.00.01, 2011-05-15

The Normalize() command creates a new normalized time series from an existing time series,
assigning an alias to the result. Normalized time series are useful for analyzing trends and relationships
and for allowing time series with different units to be plotted or analyzed together. For example, the
range of data values can be normalized to the range 0 to 1. The alias that is assigned to the time series can
be referenced by other commands.

The following dialog is used to edit the command and illustrates the syntax of the command.

Normalize

Normalize() Command Editor

The command syntax is as follows:

Normalize(Parameter=Value,…)

The following older command syntax is updated to the above syntax when a command file is read:

TS Alias = Normalize(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSID The time series identifier or alias for the time series to

be normalized.
None – must be specified.

Alias The alias to assign to the time series, as a literal string or
using the special formatting characters listed by the
command editor. The alias is a short identifier used by
other commands to locate time series for processing, as

None – must be specified.

 Command Reference – Normalize() - 1 277

Normalize() Command TSTool Documentation

Parameter Description Default
an alternative to the time series identifier (TSID).

MinValue
Method

Indicates how to determine the minimum data value to
process, one of:
• MinFromTS – get the minimum value from the

time series (typical)
• MinZero – use zero (e.g., if negative values are to

be ignored)

None – must be specified.

MinValue The minimum normalized value (e.g., 0). None – must be specified.
MaxValue The maximum normalized value (e.g., 1). None – must be specified.

A sample command file to process data from the State of Colorado’s HydroBase database is as follows:

06730500 - BOULDER CREEK AT MOUTH, NEAR LONGMONT, CO.
06730500.USGS.Streamflow.Month~HydroBase
Normalize(TSID="06730500.USGS.Streamflow.Month",Alias=”NormalizedTS”,
 MinValueMethod=MinFromTS,MinValue=0.0,MaxValue=1.0)

The results are as follows:

Normalize_Graph

Results of Normalize() Command

Command Reference – Normalize() - 2 278

 Command Reference – OpenHydroBase() - 1

Command Reference: OpenHydroBase()
Open a connection to a HydroBase database

Version 10.13.00, 2012-09-13

This command will be phased out in the future. Instead, define HydroBase datastores (see the
HydroBase Datastore appendix), where the datastore name is equivalent to the InputName parameter.
The OpenHydroBase() command opens a connection to a HydroBase database, allowing data to be
read from the database (e.g., with ReadHydroBase() commands and time series identifiers that have
~HydroBase input types). This command is not typically used for interactive sessions but may be
inserted to run in batch only mode to allow a specific database and commands files to be distributed. It
may also be used in cases where time series are read from different HydroBase databases, perhaps to
compare the contents of the databases – in this case two OpenHydroBase() commands would be used.
When connecting to a SQL Server database, a connection will be tried for SQL Server (Express) and
older MSDE databases. If both fail, a warning will be shown.

The following dialog is used to edit this command and illustrates the command syntax. The Database
type is used to control settings for parameters and is not itself a parameter.

OpenHydroBase

OpenHydroBase() Command Editor

The command syntax is as follows:

OpenHydroBase(Parameter=Value,…)

Command Parameters

Parameter Description Default
Database
Server

Used with a SQL Server HydroBase. Specify the SQL
Server database machine name. A list of choices will be
shown, corresponding to properties in the CDSS.cfg

Required if a SQL
Server database is used.

279

OpenHydroBase() Command TSTool Documentation

Command Reference – OpenHydroBase() - 2

configuration file. The generic value
DatabaseServer=local will automatically be
translated to the name of the local computer.

Database
Name

Used with a SQL Server HydroBase. The name of the
database typically follows a pattern similar to:
HydroBase_CO_YYYYMMDD. A list of choices will be
shown, corresponding to properties in the CDSS.cfg
configuration file.

HydroBase

OdbcDsn The ODBC DSN to use for the connection, used only when
working with a Microsoft Access database.

Required if a Microsoft
Access database is used.

InputName The input name corresponding to the
~InputType~InputName information in time series
identifiers. This is used when more than one HydroBase
connection is used in the same commands file.

Blank (no input name).

UseStored
Procedures

Used with SQL Server, indicating whether stored
procedures are used. Stored procedures are the default and
should be used except when testing software.

True (used stored
procedures).

RunMode Indicates when the command should be run, one of:
• BatchOnly – run the command only in batch mode.
• GUIOnly – run the command only in GUI mode.
• GUIAndBatch – run the command in batch and GUI

mode.

GUIAndBatch

The following example command file illustrates how to connect to a SQL Server database running on a
machine named “sopris”:

StartLog(LogFile="Results/Example_OpenHydroBase_DatabaseName.TSTool.log")
OpenHydroBase(DatabaseServer="sopris",DatabaseName="HydroBase_CO_20060816")
ReadHydroBase(TSID="BOXHUDCO.DWR.Streamflow.Month",Alias="ts")

Example_OpenHydroBase_DatabaseName

The following example command file illustrates how to make two HydroBase database connections, in
this case to test whether the stored procedure and SQL queries return the same results (the InputName
parameter is used to tell TSTool which connection to use when reading data based on time series
identifiers):

OpenHydroBase(DatabaseServer="hbserver",RunMode=GUIAndBatch,
 UseStoredProcedures=True,InputName="SP")
OpenHydroBase(DatabaseServer="hbserver",RunMode=GUIAndBatch,
 UseStoredProcedures=False,InputName="NoSP")
ReadHydroBase(TSID="BOXHUDCO.DWR.Streamflow.Month~HydroBase~SP",Alias="ts_sp")
ReadHydroBase(TSID="BOXHUDCO.DWR.Streamflow.Month~HydroBase~NoSP",Alias="ts_nosp")

Example_OpenHydroBase_TwoConnections.TSTool

The following example commands file illustrates how to connect to a Microsoft Access database
(although Microsoft Access databases are no longer supported):

OpenHydroBase(RunMode=GUIAndBatch,OdbcDsn="HydroBase_DIV1_20030701")

280

Command Reference: PrintTextFile()
Print a text file
Version 10.00.03, 2011-07-01

The PrintTextFile() command prints a text file to a physical or virtual (e.g., PDF file) printer. This
command is used in testing to verify print features but also can be used in production to automate
printing. Printing is highly dependent on the features available from a printer. The command attempts to
list printer options to configure command parameters. However, some options are listed based on what a
printer can do, but this may require physically changing/selecting paper trays, using manual feed, etc.
The command will be enhanced in the future to specify features including tray selection but currently it is
intended for use with common printer settings. If advanced settings are needed beyond the properties
available in the command, use ShowDialog=True (displaying the dialog will pause command
execution).

The following dialog is used to edit the command and illustrates the syntax for the command (in this case
printing to a Microsoft XPS file).

PrintTextFile

PrintTextFile() Command Editor

 Command Reference – PrintTextFile() - 1 281

PrintTextFile() Command TSTool Documentation

The command syntax is as follows:

PrintTextFile(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the text file to print. None – must be

specified.
PrinterName The name of the printer to use (e.g.,

\\MyComputer\MyPrinter or Adobe PDF)
The default printer
will be used.

PaperSize The paper size to print. Because there are a number of
standards for paper, the size is specified as standard-
sizename (e.g., na-letter for North American Lettter).
For information on paper sizes, see:
http://en.wikipedia.org/wiki/Paper_size.

The default for the
printer will be used.

PaperSource The tray for the paper – currently not enabled. Use
ShowDialog=True to select.

The PaperSize is
used.

Orientation The paper orientation. The default for the
printer and paper size
will be used.

MarginLeft The left margin for the orientation, inches. See above.
MarginRight The right margin for the orientation, inches. See above.
MarginTop The top margin for the orientation, inches. See above.
MarginBottom The bottom margin for the orientation, inches. See above.
LinesPerPage The number of lines per page to print. The font size is

chosen accordingly.
An even number is
chosen with font size
between 7 and 12
points.

Header String included in the top left of every page. No header is shown.
Footer String included in the bottom left of every page. No footer is shown.
ShowLineCount Indicate whether the line count should be shown to the left

of each line.
False

ShowPageCount Indicate whether the page count should be shown in the
center of the footer.

True

DoubleSided Indicate whether printing should be double-sided, currently
not enabled. Use ShowDialog=True to select.

False

OutputFile Specify an output file, in cases where the printer name
corresponds to a file formatter (such as Adobe PDF).

Content is sent to
printer device, not a
file.

ShowDialog Indicate whether to show the printer dialog, which allows
review and editing of printer parameters. This is useful for
testing and for selecting advanced printer features not
handled in batch mode by this command.

False

IfNotFound Indicate action if the file is not found, one of:
• Ignore – ignore the missing file (do not warn).
• Warn – generate a warning (use this if the file truly is

expected and a missing file is a cause for concern).
• Fail – generate a failure (use this if the file truly is

expected and a missing file is a cause for concern).

Ignore

Command Reference – PrintTextFile() - 2 282

TSTool Documentation PrintTextFile() Command

This command can be used to test print features. For example, use a printer that outputs to a PDF, XPS,
or other format file rather than a physical printer. If ShowDialog=True and printing to a file is
indicated by specifying the OutputFile parameter (such as with Adobe PDF), the General tab on the
print dialog will be similar to the following:

PrintTextFile_DialogGeneral

Print Job Dialog General Properties

Note that Print to File is checked; however, the name of the file may not be displayed. Instead, the
output file is specified by pressing Print, which displays the following dialog, with the initial choice
matching the value of the OutputFile parameter:

 Command Reference – PrintTextFile() - 3 283

PrintTextFile() Command TSTool Documentation

PrintTextFile_PrintToFile

Print To File Dialog

If running a command to write a PDF file, the following may be displayed:

PrintTextFile_DistillerFontError

Adobe PDF Error

Unfortunately, there does not seem to be any way to change the printer setting from the print dialog and
consequently PDF cannot be used. An alternate approach such as iText may be implemented for PDF.

If a Microsoft XPS file is printed, the following software may need to be installed, in particular for
Windows XP: http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=11816

Command Reference – PrintTextFile() - 4 284

 Command Reference – ProcessTSProduct() - 1

Command Reference: ProcessTSProduct()
Process a time series product file to produce output

Version 10.16.00, 2013-01-28

The ProcessTSProduct() command automates creation of time series data products. Products are
described in time series product description (*.tsp) files, which are typically created by using the
Save…Time Series Product choice in graph windows (a future enhancements may allow creation of text
products from summary or table views). See the TSView Time Series Viewing Tools appendix for more
information about time series products. For example, the following sequence of actions can be used to
define and use time series product description files:

1. Use TSTool and interactively select time series using the main window. The time series identifiers

and/or aliases will be referenced in the time series product.
2. Interactively view a graph (e.g., Results…Graph – Line) and edit its properties by right clicking on

the graph and selecting the Properties choice (e.g., set titles and legend properties).
3. Save the graph as a time series product from the graph window using the Save…Time Series

Product choice. Typically the product is saved in a location close to the command file. An example
time series product file is as follows:

[Product]

ProductType = "Graph"

[SubProduct 1]

GraphType = "Line"
MainTitleString = "Streamflow (Monthly Total)"

[Data 1.1]

TSID = "08223000.DWR.Streamflow.Month~HydroBase"

[Data 1.2]

TSID = "08220500.DWR.Streamflow.Month~HydroBase"

4. Add a ProcessTSProduct() command to the original commands to allow the product to be

created automatically. Select the time series product file created in the previous step.
5. Save the commands in a file (e.g., named stations.TSTool) so that they can be run again. The

command file and time series product definition files must be used consistently (e.g., the time series
identifiers and directory paths must be consistent).

If the product does not appear as intended, especially for complicated products, it may be necessary to
edit the file and make the following corrections:

• Specify Color or other properties so that they are explicitly set and not defaulted.
• Verify that file paths in TSID properties are valid for the machine (may need to convert absolute

paths to relative paths).

285

ProcessTSProduct() Command TSTool Documentation

Command Reference – ProcessTSProduct() - 2

Time series identifiers in the product file are used as follows:

• If the time series are in TSTool’s Results area, the time series will be used without rereading.
• Otherwise, the TSID is used to read the time series and must therefore contain enough

information to locate and read the time series, such as the ~InputType~InputName
information on at the end of the TSID.

If the TSAlias property is found in the product file, then the time series corresponding to the alias must
be processed by a command file and be available in TSTool’s Results area.

It is also possible to create a template time series product file and use the ExpandTemplateFile()
command to automate creation of large numbers of graphs, for example to create images for a website.

The following dialog is used to edit the ProcessTSProduct() command and illustrates the command
syntax. The path to the file can be absolute or relative to the working directory. The Browse button can
be used to select the time series product description file (if a relative path is desired, delete the leading
path after the select or use the Remove Working Directory from TSP button).

ProcessTSProduct

ProcessTSProduct() Command Editor

286

TSTool Documentation ProcessTSProduct() Command

 Command Reference – ProcessTSProduct() - 3

The command syntax is as follows:

ProcessTSProduct(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSProductFile The time series product file to process.

The path to the file can be absolute or
relative to the working directory. The
Browse button can be used to select the
file to write (if a relative path is desired,
delete the leading path after the select).

None – must be specified.

RunMode Indicate the run mode to process the
product, one of:

• BatchOnly – indicates that the

product should only be processed in
batch mode.

• GUIOnly – indicates that the
product should only be processed
when the TSTool GUI is used (useful
when Preview is set to Preview).

• GUIAndBatch – indicates that the
product should be processed in batch
and GUI mode.

None – must be specified.

View Indicates whether the output should be
previewed interactively, one of:

• True – display the graph.
• False – do not display the graph

(specify the output file instead to
automate image creation).

None – must be specified.

OutputFile The absolute or relative path to an output
file. Use this parameter with
View=False to automate image
processing. If the filename ends in
“jpg”, a JPEG image file will be
produced. If the filename ends in “png”,
a PNG file will be produced
(recommended).

Graph file will not be created.

DefaultSaveFile Used with experimental feature to
enabling editing in the time series table
that corresponds to a graph view.
Specify the default DateValue filename
to save edits.

Editing is disabled.

VisibleStart The starting date/time to zoom for the
initial (and image file) graph.

Full period is visible.

VisibleEnd The ending date/time to zoom for the
initial (and image file) graph.

Full period is visible.

287

ProcessTSProduct() Command TSTool Documentation

Command Reference – ProcessTSProduct() - 4

A sample command file to process a data product using State of Colorado HydroBase data is as follows:

08235350 - ALAMOSA RIVER ABOVE JASPER
08235350.USGS.Streamflow.Day~HydroBase
08236000 - ALAMOSA RIVER ABOVE TERRACE RESERVOIR
08236000.DWR.Streamflow.Day~HydroBase
7337 - SAGUACHE
7337.NOAA.Precip.Month~HydroBase
ProcessTSProduct(TSProductFile="Example_ProcessTSProduct.tsp")

After using the above dialog to edit the command, the time series product can be processed from TSTool
as follows:

1. Interactively load and run the command file:
a. Open the command file, in this case containing the above commands file.
b. Process the commands using Run All Commands. The graph will be displayed for

review.

2. Load and run the command file in one step:

Use the Run…Process TSProduct File menus to select and process the product file. The time
series must be in the Results area or must be specified with enough information in the product file
to read the time series.

3. Run TSTool in batch mode by specifying an output file (and optionally changing the RunMode

parameter to BatchOnly) using:

 tstool –commands commands.TSTool

The working directory will be set to the directory for the commands file and output will be
relative to that directory.

288

 Command Reference – ProfileCommands () - 1

Command Reference: ProfileCommands()
Profile the commands that have executed, to evaluate performance

Version 10.17.00, 2013-02-18

The ProfileCommands() command summarizes run times and memory use for each command in the
command list, and outputs the information to detail (row for each command) and summary (one row for
each command name) tables. This command is useful for evaluating which commands are slow or use
more memory in a command workflow, so that software and command file logic improvements can
occur. The command is usually placed at the end of a command file. The following apply to command
profiling:

• Because the command is processed at the time it is encountered in the command list, the
command itself and any subsequent commands are not included in the analysis. This generally is
not an issue because the command will be used near the end of a workflow or at a strategic
location where previous commands need to be examined.

• Currently the memory statistics are rough because the heap size is determined at the start and end
of each command’s execution and the Java runtime environment may allocate heap memory in
blocks. In the future profiling data may be expanded to the estimated memory footprint of each
command.

• There is a slight performance and memory hit to collect profiling information. In the future
processor property commands may be implemented to control how much profiling data are
collected (specifically if memory for each command object is estimated).

• If a command file is causing out of memory exceptions, then placing a ProfileCommands()
command at the end of the command file likely will not be helpful. Instead, use a subset of the
full command list so the ProfileCommands() command will be executed. Then evaluate the
performance of the commands and determine if the command list logic can be optimized. If
performance issues appear to be in the software itself, contact the developers to evaluate the
software code. Also consider using the Free() and FreeTable() commands to free
resources, especially if the results do not need to be available to users via the user interface.

• The runtime percent for each command is calculated as a percentage of the total runtime
(ignoring the ProfileCommands() command and subsequent commands).

• The heap memory percentage delta for each command is calculated using the heap memory at the
end of the command execution (not the heap memory at the end of the full run). Consequently,
the delta reflects the memory use up to that point in time.

• Command profiling currently only applies to run mode. Commands are executed in discovery
mode when a command file is loaded. For example, a subset of time series data is retrieved so
that time series identifiers can be created and passed to following commands, which allows
choices to be populated in command editors. Profiling discover mode is not support but should
use a fraction of full runtime resources. For large command files (e.g., those generated by
templates), it may be appropriate or necessary to load the commands without running discovery
(see the –nodiscovery command line parameter and the File…Open…Command File (no
discovery) menu item.

• Commands that generate many warning and failure messages will use more memory. Refer to the
NumLogRecords column in the detail table to determine if this could be causing memory
issues.

• The command currently does not allow sorting output tables by a column. This feature may be
added in the future. Use the interactive table view to sort by column (this is how the tables were
sorted for the figures below).

289

ProfileCommands() Command TSTool Documentation

Command Reference – ProfileCommands() - 2

If loading or running commands are slow, the following actions might help:

• Use the Free() and FreeTable() commands to free resources. The command will still take
up some resources because it has a place in the command list, but data resources used by the
command will be freed.

• Review the profiling results to determine if certain commands are major resource users. Evaluate
whether changes in the command logic can be implemented. Comment out blocks of commands
(# commands will take fewer resources than /* */ blocks) and try to isolate problems. It may
be necessary to run smaller subsets of commands, for example by splitting up lists of input time
series.

• On Windows, use the Task Manager (run taskmgr) to review memory use by the javaw.exe
program. If the memory use approaches the maximum, then the Java Runtime Environment
likely will be spending time dealing with short memory and runtimes will increase until memory
runs out. If necessary, change the –Xmx parameter in the TSTool.l4j.ini file located in the system
folder under the software install. This parameter indicates the maximum heap memory that can
be used by the software. For a typical 32-bit Windows computer with at least 4GB of memory,
the –Xmx parameter may be set to as high as 1700mb; however, a number that is too high may
not be possible due to memory being used by other applications on the computer.

The following dialog is used to edit the command and illustrates the syntax of the command.

ProfilkeCommands

ProfileCommands() Command Editor

290

TSTool Documentation ProfileCommands () Command

 Command Reference – ProfileCommands () - 3

The following figure illustrates the output summary table. Because command execution may be very fast,
times are shown in milliseconds (1-1000th of a second). The table can be output to a file with other
commands.

ProfilkeCommands_Summary

ProfileCommands() Command Summary Output Table

The following figure illustrates the output detail table. Note that the heap memory is increased in blocks
by the Java Runtime Environment so only large memory footprint commands trigger immediate heap
memory increases.

ProfilkeCommands_Detail

ProfileCommands() Command Detail Output Table

291

ProfileCommands() Command TSTool Documentation

Command Reference – ProfileCommands() - 4

The command syntax is as follows:

ProfileCommand(Parameter=Value,…)

Command Parameters

Parameter Description Default
SummaryTableID The identifier for the summary table. Summary table will

not be created.
DetailTableID The identifier for the detail table. Detail table will not be

created.

292

Command Reference: ReadDateValue()
Read all time series from a DateValue File

Version 10.00.01, 2011-05-15

The ReadDateValue() command reads all the time series in a DateValue file into memory. See the
DateValue Input Type Appendix for information about the file format.

The following dialog is used to edit the command and illustrates the command syntax. The path to the
file can be absolute or relative to the working directory. DateValue files allow each time series to have an
alias in addition to the time series identifier (TSID); however, the Alias parameter can be used to assign
a new alias as the file is read.

ReadDateValue

ReadDateValue() Command Editor

 Command Reference – ReadDateValue() - 1 293

ReadDateValue() Command TSTool Documentation

The command syntax is as follows:

ReadDateValue(Parameter=Value,…)

The following older command syntax is updated to the above syntax when a command file is read:

TS Alias = ReadDateValue(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the DateValue input file to

read, surrounded by double quotes to
protect whitespace and special
characters. Global property values can
be used with the syntax
${PropertyName} (see also the
SetProperty() command).

None – must be specified.

Alias The alias to assign to the time series, as a
literal string or using the special
formatting characters listed by the
command editor. The alias is a short
identifier used by other commands to
locate time series for processing, as an
alternative to the time series identifier
(TSID).

The alias in the file will be used
if present.

NewUnits Units to convert data to (must be in the
system/DATAUNIT configuration file
under the TSTool installation folder).

Use the data units from the file.

InputStart Starting date/time to read data, in
precision consistent with data.

Read all data.

InputEnd Ending date/time to read data, in
precision consistent with data.

Read all data.

A sample command file is as follows:

ReadDateValue(InputFile="Data\08251500.DWR.Streamflow.IRREGULAR.dv")

Command Reference – ReadDateValue() - 2 294

 Command Reference – ReadDelimitedFile() - 1

Command Reference: ReadDelimitedFile()
Read time series from a delimited file

Version 10.08.00, 2012-04-23

The ReadDelimitedFile() command reads one or more time series from a column-oriented
delimited file, where columns contain date/time and values. This command is useful for processing
comma-separated-value (CSV) files exported from spreadsheets and mining data from the web (see also
the WebGet() and FTPGet() commands). The command processes files that include the following
types of information:

1. Comments in the header (before data) and embedded in data records (e.g., because bad data values

were commented out).
2. Column headers as non-commented line at the top of the file.
3. Data records, in column format, containing date/time strings, data values, and other information.
4. Metadata, such as station identifiers, data types, units, and interval may be read from the file or

specified with command parameters.

The mapping of data in the file to data in the time series occurs first by assigning column names, using
one of the following methods:

1. Read column names from a line in the file, suitable when the column headings are simple strings and

agree closely with the contents of the data columns.
2. Assign column names with command parameters. The file being read may include metadata within

column headings and data records; however, the information can be difficult to extract because of
formatting. For example, column headings may include the data type as “Precipitation\n(in)” (where
\n indicates a newline). Consequently, the command supports assigning column names via command
parameters in order to ensure robust data handling.

In any case, rather than trying to automatically determine other metadata like data type and units from the
column heading, the values can be assigned with the DataType and Units parameters. Additional
functionality may be added in the future automate metadata discovery. Examples of use for the two cases
are shown in the examples below.

The command syntax is as follows:

ReadDelimitedFile(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the delimited input file to read, surrounded by

double quotes to protect whitespace and special characters.
Global property values can be used with the syntax
${PropertyName} (see also the SetProperty()
command).

None – must be
specified.

Delimiter The delimiter character(s) that separate columns. None – must be
specified.

Treat
Consecutive
Delimiters

Indicate whether consecutive delimiter characters should be
treated as a single delimiter, for example, when multiple
spaces are used to line up columns.

False (columns
are separated by a
single delimiter

295

ReadDelimitedFile () Command TSTool Documentation

Command Reference – ReadDelimitedFile () - 2

AsOne character)
Comment Character(s) that if found at the start of lines in the file,

indicate that the line is a comment. The characters are
interpreted individually (e.g., #$ indicates that lines starting
with # or $ will be treated as comments).

SkipRows Indicate absolute rows (1+) in the file to skip, using single
numbers and ranges a-b, separated by commas. Rows are
skipped prior to other processing.

No rows will be
skipped.

SkipRowsAfter
Comments

Indicate the number of rows to skip after header comments.
Use this parameter to skip column headers prior to the data
lines. This parameter is typically not used if column names
are read from the file.

No rows will be
skipped.

ColumnNames The user-specified names for columns in the file, used to
ensure that column headings in files are properly
interpreted. These names are used in other parameters to
specify columns in the file. Separate column names with
commas. Column names can be specified as literal strings
or as FC[start:stop] to read columns from the file
header (assumed to be the first row after leading comments),
where start is 1+ and stop is blank to read all columns
or a negative number to indicate the offset from the end
column.

None – must be
specified.

DateTime
Column

The column matching a value in ColumnNames, which
indicates the date/time column in the file. Date and time are
in one column with no separating delimiter characters.

Required if
DateColumn is
not specified.

DateTime
Format

The format for date/time strings in the date/time column. If
blank, common formats such as ISO YYYY-MM-DD
hh:mm and MM/DD/YYYY will automatically be detected.
However, it may be necessary to specify the format to
ensure proper parsing. This format will be used to parse
date/times from the DateTimeColumn or the merged
string from the DateColumn and TimeColumn (if
specified). The format string will depend on the formatter
type. Currently, only the “C” formatter is available, which
uses C programming language specifiers. The resulting
format includes the formatter and specifiers (e.g.,
C:%m%d%y).

Will automatically
be determined by
examining date/time
strings.

DateColumn The column matching a string in ColumnNames, which
indicates the date column in the file.

Required if
DateTimeColumn
is not specified.

TimeColumn The column matching a string in ColumnNames, which
indicates the time column in the file. Specify this parameter
when DateColumn is specified and time is specified in a
separate column. The DateColumn and TimeColumn
contents are merged with a joining colon character and are
then treated as if DateTimeColumn had been specified.

A time column is
required only when
DateColumn is
specified and the
interval requires
time.

ValueColumn The column(s) matching a string in ColumnNames, which
indicate the data value columns. Separate column names
with commas. The FC[start:stop] notation discussed

None – must be
specified.

296

TSTool Documentation ReadDelimitedFile () Command

 Command Reference – ReadDelimitedFile () - 3

for ColumnNames can also be used.
FlagColumn The column(s) matching a string in ColumnNames, which

indicate the data flag columns. Separate column names with
commas. The FC[start:stop] notation discussed for
ColumnNames can also be used. If specified, the number
of columns must match the ValueColumn parameter,
although blanks are allowed. Double-quotes around flags
are not considered part of the flag.

Flags are not read.

LocationID The location identifier(s) to assign to time series for each of
the value columns (or specify one value to apply to all
columns). The FC[start:stop] notation discussed for
ColumnNames can also be used.

None – must be
specified.

Provider The data provider identifier to assign to time series for each
of the value columns (or specify one value to apply to all
columns).

No provider will be
assigned.

DataType The data type to assign to time series for each of the value
columns (or specify one value to apply to all columns).

Use the value
column names for
the data types.

Interval The interval for the time series. Only one interval is
recognized for all the time series in the file. Interval choices
are provided when editing the command. If it is possible
that the date/times are not evenly spaced, then use the
IRREGULAR interval.

None – must be
specified.

Scenario The scenario to assign to time series for each of the value
columns (or specify one value to apply to all columns).

No scenario will be
assigned.

Units The data units to assign to time series for each of the value
columns (or specify one value to apply to all columns).

No units will be
assigned.

Missing Strings that indicate missing data in the file (e.g., “m”). Interpret empty
column values as
missing data.

Alias The alias to assign to time series, as a literal string or using
the special formatting characters listed by the command
editor. The alias is a short identifier used by other
commands to locate time series for processing.

No alias will be
assigned.

InputStart The date/time to start reading data. All data or global
input start.

InputEnd The date/time to end reading data. All data or global
input end.

Example of Column Names Assigned with Command Parameter

The following example for two time series (gate height and discharge) illustrates a format where column
headings are complex enough to require assignment of column names using a command parameter:

#...
#Data is returned in TAB delimited format. Data miners may find help on automating
#queries and formatting parameters at http://www.dwr.state.co.us/help

#Gaging Station: ALVA B. ADAMS TUNNEL AT EAST PORTAL NEAR ESTES PARK (ADATUNCO)
#Retrieved: 3/30/2010 03:04

297

ReadDelimitedFile () Command TSTool Documentation

Command Reference – ReadDelimitedFile () - 4

#---
Station Date/Time GAGE_HT (ft) DISCHRG (cfs)
ADATUNCO 2006-10-01 00:00 2.34 225
ADATUNCO 2006-10-01 00:15 2.34 225
…etc…

The following dialog is used to edit the command and illustrates the syntax for the command. The
column headings are skipped because they are assigned with a command parameter. Because the
delimiter is a tab, the space between date and time columns is NOT used as a delimiter and the date/time
information is treated as one column.

ReadDelimitedFile

ReadDelimitedFile() Command Editor when Literally Specifying Column Names

The following example command file retrieves real-time time series data from the State of Colorado’s
website and reads the data:

WebGet(URI="http://www.dwr.state.co.us/SurfaceWater/data/export_tabular.aspx?
 IDADATUNCO&MTYPEGAGE_HT,DISCHRG&INTERVAL1&START10/1/06&END10/6/06",
 LocalFile="Data\CO-DWR-ADATUNCO-tab.txt")
ReadDelimitedFile(InputFile="Data\CO-DWR-ADATUNCO-tab.txt",

298

TSTool Documentation ReadDelimitedFile () Command

 Command Reference – ReadDelimitedFile () - 5

 Delimiter="\t",ColumnNames="ID,DateTime,GAGE_HT,DISCHRG",
 DateTimeColumn="DateTime",ValueColumn="GAGE_HT,DISCHRG",
 SkipRowsAfterComments="1",LocationID="ADATUNCO",Provider="DWR",
 DataType="GAGE_HT,DISCHRG",Interval=15Minute,Units="ft,cfs",Alias="%L%T")

Example of Column Names Read from the File

The following simple example of annual county population data illustrates a format that allows reading
column names from the file. In this case, the rows and columns have been transposed from the original
format to be compatible with this command and in the command example shown in the figure below the
“County” heading is replaced with “Year” to more clearly indicate the contents.

County,COLORADO,Adams,Alamosa,Arapahoe,Archuleta,Baca,Bent,Boulder,Broomfield,Chaffee,…
2000,4338793,366660,15132,491134,10027,4514,5991,296018,0,16294,2229,9386,…
2001,4456408,360389,15314,502567,10532,4486,5911,282794,41529,16382,2195,9479,…
…etc..

The following dialog is used to edit the command and illustrates the syntax for the command.

ReadDelimitedFile2

ReadDelimitedFile() Command Editor when Reading Column Names from the File

299

ReadDelimitedFile () Command TSTool Documentation

Command Reference – ReadDelimitedFile () - 6

The following example command file retrieves population forecast data from the State of Colorado’s
website, transposes the rows and columns using a Python script, and reads the time series data. The
Python script is not provided with this example but generates output as shown in the above data file
example.

StartLog(LogFile="DOLA-county-pop.TSTool.log")
This command file retrieves population data from the Colorado State Demographer
website and processes the data into time series for use in analysis.

First retrieve the data from the DOLA web site.
WebGet(URI="http://www.dola.state.co.us/dlg/demog/population/forecasts/counties1yr.csv",
 LocalFile="DOLA-counties1yr.csv")

Transpose the rows/columns to match TSTool time series notation with dates in the
first column.
SetProperty(PropertyName="ScriptDir",PropertyType=String,
RunPython(InputFile="${InstallDir}\python\table\transpose-csv.py",
 Arguments="\"${WorkingDir}\DOLA-counties1yr.csv\"
 \"${WorkingDir}\DOLA-counties1yr-trans.csv\"",Interpreter="Python")

Read into time series from the delimited CSV file.
Define column names dynamically based on the first non-comment line in the file
ReadDelimitedFile(InputFile="DOLA-counties1yr-trans.csv",Delimiter=",",
 ColumnNames="Year,FC[2:]",DateTimeColumn="Year",ValueColumn="FC[2:]",
 LocationID="FC[2:]",Provider="DOLA",DataType="Population",Interval=Year,Units="Persons",
 Alias="%L-pop")

300

Command Reference: ReadHecDss()
Read time series from a HEC-DSS File

Version1 0.00.01, 2011-05-15

The ReadHecDss() command reads time series from a HEC-DSS file. See the HEC-DSS Input Type
Appendix for information about how time series properties are assigned using HEC-DSS file data.
Current limitations for the command include:

• Irregular time series cannot be read.
• HEC-DSS uses times through 2400. However, TSTool will convert this to 0000 of the next day.

Year, month, and day data are not impacted.

The following dialog is used to edit the command and illustrates the syntax for the command. In the
future, it is envisioned that choices for A – F parts will be made available using data from the file.

ReadHecDss

ReadHecDss() Command Editor

 Command Reference – ReadHecDss() - 1 301

ReadHecDss() Command TSTool Documentation

The command syntax is as follows:

ReadHecDss(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the HEC-DSS input file to read,

surrounded by double quotes to protect whitespace and
special characters.

None – must be specified.

A The A part (basin name) to match, using * as a
wildcard. The location part of the TSTool time series
identifier is set to A:B.

Match all.

B The B part (location) to match, using * as a wildcard.
The location part of the TSTool time series identifier is
set to A:B.

Match all.

C The C part (parameter) to match, using * as a wildcard.
The TSTool data type is set to this value.

Match all.

E The E part (interval) to match, using * as a wildcard. Match all.
F The F part (scenario) to match, using * as a wildcard. Match all.
Pathname The HEC-DSS pathname for a time series, as specified

in the HEC-DSS documentation. Currently wildcards
are not allowed. If specified, this will be used instead
of the A-F parameters.

Use the A-F parameters.

InputStart Starting date/time to read data, in precision consistent
with data.

Read all data.

InputEnd Ending date/time to read data, in precision consistent
with data.

Read all data.

Location The location to assign for the time series identifier. Use
%A … %F to indicate the Apart … Fpart (D part is not
available). The assignment will impact the Alias
assignment. This is useful when only Bpart is desired
as the location identifier.

Apart:Bpart (%A:%B).

Alias Alias to assign to the output time series. See the
LegendFormat property described in the TSView
Time Series Viewing Tools appendix. For example,
%L is full location, %T is data type (parameter in HEC-
DSS notation), %I is interval, and %Z is scenario.

None is assigned.
However, if the location
contains periods that are in
conflict with time series
identifier conventions, the
alias is set to the identifier
with periods, and the
periods are replaced with
spaces in the full time
series identifier.

A sample command file is as follows:

ReadHecDss(InputFile="sample.dss",InputStart="1992-01-01",
 InputEnd="1992-12-31",Alias="%L_%T_%Z")

Command Reference – ReadHecDss() - 2 302

 Command Reference – ReadHydroBase() - 1

Command Reference: ReadHydroBase()
Read time series from a HydroBase database

Version 10.12.00, 2012-09-28

The ReadHydroBase() command reads one or more time series from the HydroBase database (see the
HydroBase Datastore Appendix). It is designed to utilize query criteria to process large numbers of
time series, for example for a specific water district and data type.

The Data type, Data interval, and Where command parameters and input fields are similar to those from
the main TSTool interface. However, whereas the main TSTool interface first requires a query to find the
matching time series list and then an interactive select for specific time series identifiers, the
ReadHydroBase() command reads the time series list and the corresponding data for the time series.
This can greatly shorten command files and simplify command logic, especially when processing many
time series.

The command supports the old-style input name selection (which corresponds to selecting HydroBase via
the TSTool login dialog) and the new-style datastore convention (which corresponds to datastore
configuration files). In the future, support for the input name may be phased out; however, this will
require resolving how the HydroBase selection dialog is migrated to support datastores. Consequently,
both approaches are currently supported during the transition.

Data for the location (station, structure, well, etc.) and time series metadata, as shown in the main TSTool
interface, are set as time series properties. For example, the latdecdeg and longdecdeg values
from the HydroBase vw_CDSS_StationMeasType view are available as time series properties of the
same name. These properties can be transferred to a table with the
CopyTimeSeriesPropertiesToTable() command and processed further with other table
commands.

Time series corresponding to diversion records, which also include observations for reservoirs and wells,
are handled as follows:

1. Daily diversion (DivTotal and DivClass) and reservoir release (RelTotal and RelClass)

time series have their values automatically carried forward to fill data within irrigation years
(November to October). HydroBase only stores full months of daily diversion record data when non-
zero observations or non-zero filled values occur in a month. Therefore, this filling action should
only provide additional zero values in an irrigation year where a diversion or release was recorded.
Irrigation years with no observations remain as missing after the read.

2. Daily, monthly, and yearly diversion and reservoir release time series optionally can be filled by the
ReadHydroBase() command using diversion comments, which indicate when irritation years
should be treated as missing. See the FillUsingDivComments parameter below. Note that
diversion comments should not conflict with more detailed records and provide additional
information. The separate FillUsingDivComments() command also is available for filling but
may be phased out in the future.

3. It also may be appropriate to use infrequent data types (IDivTotal, IDivClass, IRelTotal,
and IRelClass) to supply data; however, because such values typically are annual values,
additional decisions must be made for how to distribute the values to monthly and daily time series.
These data, if available, are not automatically folded into the diversion records by TSTool.

303

ReadHydroBase() Command TSTool Documentation

Command Reference – ReadHydroBase() - 2

4. See the FillHistMonthAverage(), FillPattern(), and other commands, which can be
used to fill (estimate) values in data gaps after the initial time series are read.

The following dialog is used to edit the command and illustrates the syntax for the command. Two
options are available for matching time series, based on historical software requirements. The following
example illustrates how to read a single time series by specifying the time series identifier. This approach
is essentially equivalent to using the ReadTimeSeries() command but offers HydroBase-specific
parameters such as FillUsingDivComments, which are not available in the more general
ReadTimeSeries() command.

ReadHydroBase_TSID

ReadHydroBase() Command Editor to Read a Single Time Series

304

TSTool Documentation ReadHydroBase() Command

 Command Reference – ReadHydroBase() - 3

The following figure illustrates how to query multiple time series.

ReadHydroBase_Multiple

ReadHydroBase() Command Editor to Read Multiple Time Series

The command syntax is as follows:

ReadHydroBase(Parameter=Value,…)

The following older command syntax is updated to the above syntax when a command file is read:

TS Alias = ReadHydroBase(Parameter=Value,…)

305

ReadHydroBase() Command TSTool Documentation

Command Reference – ReadHydroBase() - 4

Command Parameters

Parameter Description Default
InputName The HydroBase database connection input name to use for the

database connection, as initialized by the
OpenHydroBase()command or the HydroBase login dialog
shown when TSTool starts. When using this approach the TSID will
end in ~HydroBase~InputName. The input name approach for
specifying a HydroBase database connection may be phased out in
the future in favor of the datastore approach.

Use the default
HydroBase
connection.

DataStore The HydroBase datastore name to use for the database connection, as
per datastore configuration files (see HydroBase Datastore
appendix). When using this approach the TSID will end in
~DataStore. The datastore approach is being phased in as a more
flexible design. Configuring a datastore with name HydroBase will
take precedence over InputName=HydroBase.

Use the default
(legacy
InputName)
HydroBase
connection, if
available.

DataType The data type to be queried, as documented in the HydroBase
Datastore appendix.

None – must be
specified.

Interval The data interval for the time series, as documented in the
HydroBase Datastore appendix (e.g. Day, Month, Year),
consistent with the DataType selection.

None – must be
specified.

TSID When reading a single time series, the time series identifier to read.
If specified, this parameter will override the WhereN parameters.

Use WhereN
parameters to
read multiple
time series.

WhereN When reading 1+ time series, the “where” clauses to be applied. The
filters matche the values in the Where fields in the command editor
dialog and the TSTool main interface. The parameters should be
named Where1, Where2, etc., with a gap resulting in the remaining
items being ignored. The format of each value is:

“Item;Operator;Value”

Where Item indicates a data field to be filtered on, Operator is
the type of constraint, and Value is the value to be checked when
querying.

If not specified,
the query will
not be limited
and very large
numbers of time
series may be
queried.

Alias The alias to assign to the time series, as a literal string or using the
special formatting characters listed by the command editor. The alias
is a short identifier used by other commands to locate time series for
processing, as an alternative to the time series identifier (TSID).

None – must be
specified.

InputStart Start of the period to query, specified as a date/time with a precision
that matches the requested data interval.

Read all
available data.

InputEnd End of the period to query, specified as a date/time with a precision
that matches the requested data interval.

Read all
available data.

FillUsing
DivComments

Indicate whether to fill diversion and reservoir release time series
using diversion comments.

False

FillUsing
DivComments
Flag

If specified as a single character, data flags will be enabled for the
time series and each filled value will be tagged with the specified
character. The flag can then be used later to label graphs, etc. The
flag will be appended to existing flags if necessary.

No flag is
assigned.

306

TSTool Documentation ReadHydroBase() Command

 Command Reference – ReadHydroBase() - 5

Parameter Description Default
IfMissing Indicate the action to be taken if the requested time series is missing,

one of:
• Ignore – ignore the time series (do not warn and the time series

will not be available)
• Warn – generate a failure for the command

Warn

A sample command file is as follows (read all reservoir releases to structure 0300905):

ReadHydroBase(DataType="DivClass",Interval="Day",
 Where1="District;Equals;3",
 Where2="Structure ID;Equals;905",Where3="SFUT;Contains;s:2")

307

ReadHydroBase() Command TSTool Documentation

Command Reference – ReadHydroBase() - 6

This page is intentionally blank.

308

Command Reference: ReadMODSIM()
Read time series from a MODSIM output file

Version 10.00.00, 2011-03-28

The ReadMODSIM() command reads one or more time series from a MODSIM file. MODSIM is a
node/link model used to simulate river basins (see the MODSIM Input Type Appendix). Specify a
node/link name and data type to read a single time series – if not specified all time series from the file will
be read. An alias can be assigned to each time series.

The following dialog is used to edit the command and illustrates the syntax. When a file is selected, the
available data types are listed, based on the file extension (the types are not read from the file).

ReadMODSIM

ReadMODSIM() Command Editor

 Command Reference – ReadMODSIM() - 1 309

ReadMODSIM() Command TSTool Documentation

The command syntax is as follows:

ReadMODSIM(Parameter=Value,…)

The following older command syntax is updated to the above syntax when a command file is read:

TS Alias = ReadMODSIM(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the MODSIM file to read,

surrounded by double quotes. The path
to the file can be absolute or relative to
the working directory.

None – must be specified.

TSID A time series identifier pattern to filter
the read – this is constructed in the editor
dialog from individual identifier parts –
the location and data type are specified
and used in the time series identifier.

None – must be specified to
match a single time series.

Alias The alias to assign to the time series, as a
literal string or using the special
formatting characters listed by the
command editor. The alias is a short
identifier used by other commands to
locate time series for processing, as an
alternative to the time series identifier
(TSID).

None – must be specified.

InputStart The start of the period to read data –
specify if the period should be different
from the global query period.

Use the global query period.

InputEnd The end of the period to read data –
specify if the period should be different
from the global query period.

Use the global query period.

A sample command file is as follows:

ReadMODSIM(Alias=”BIGTOM”,
 InputFile="BIGTOM17.RES",TSID="GREELEYCBT..STOR_TRG..")

Command Reference – ReadMODSIM() - 2 310

 Command Reference – ReadNrcsAwdb() - 1

Command Reference: ReadNrcsAwdb()
Read 1+ time series from the NRCS AWDB web service

Version 10.13.00, 2012-11-07

The ReadNrcsAwdb() command reads one or more time series from the Natural Resources
Conservation Service (NRCS) Air and Water Database (AWDB) web service (see the NRCS AWDB
Datastore Appendix), including SNOTEL and Snow Course data.

The NRCS AWDB web service allows station lists to be filtered, both as a convenience and to ensure
reasonable web service performance. Many of the choices that are available for limiting queries allow 0+
values to be provided. For example, specifying no requested element (data type) will return all available
elements for a location. Specifying a list of elements (separated by commas) will return only stations and
time series that have data for the requested elements.

The following dialog is used to edit the command and illustrates the syntax. Some choices are provided
as a convenience. However, full listing of choices (such as all the thousands of HUCs) is not provided
due to performance issues. Additional query features will be enabled as web service integration is
enhanced.

ReadNrcsAwdb

ReadNrcsAwdb() Command Editor

311

ReadNrcsAwdb() Command TSTool Documentation

Command Reference – ReadNrcsAwdb() - 2

The command syntax is as follows:

ReadNrcsAwdb(Parameter=Value,…)

Command Parameters

Parameter Description Default
DataStore The NRCS AWDB datastore to use for queries. None – must be

specified.
Interval The data interval (“duration” in NRCS AWDB

terms) to query. The Irregular interval is used
for instantaneous data.

None – must be
specified.

Stations A list of station identifiers to read, separated by
commas.

Do not limit the query
to a station list.

States A list of state codes (e.g., AL), separated by
commas.

Do not limit the query
to a state list.

Networks A list of data network codes (e.g., SNTL), separated
by commas.

Do not limit the query
to a network list.

HUCs A list of 8-digit hydrologic unit codes, separated by
commas.

Do not limit the query
to a HUC list.

BoundingBox A bounding box consisting of west longitude, south
latitude, east longitude, and north latitude, separated
by spaces. Longitudes in the western hemisphere
are negative. This feature is not finalized, pending
resolution of a web service issue.

Do not limit the query
to a bounding box.

Counties A list of county names, separated by commas. The
state must be specified.

Do not limit the query
to a county list.

Elements Data element codes for the stations (e.g., WTEQ for
snow water equivalent), separated by commas.

All available elements
are returned.

ElevationMin Minimum station elevation, feet. Do not limit the query
based on elevation
minimum.

ElevationMax Maximum station elevation, feet. Do not limit the query
based on elevation
maximum.

InputStart The start of the period to read data – specify if the
period should be different from the global query
period. Specify to the precision of the data using
the format YYYY-MM-DD hh:mm.

Use the global query
period.

InputEnd The end of the period to read data – specify if the
period should be different from the global query
period. Specify to the precision of the data using
the format YYYY-MM-DD hh:mm.

Use the global query
period.

Alias The alias to assign to the time series, as a literal
string or using the special formatting characters
listed by the command editor. The alias is a short
identifier used by other commands to locate time
series for processing, as an alternative to the time
series identifier (TSID).

None – must be
specified.

312

Command Reference: ReadPatternFile()
Read the pattern file to be used with FillPattern() commands

Version 08.16.04, 2008-09-19

The ReadPatternFile() command reads pattern time series to be used with FillPattern()
commands (see the FillPattern() command for more information). The patterns indicate whether a
month is wet, dry, or average, although any number of characterizations can be used. One or more
patterns can be included in each pattern file, similar to StateMod time series files (see the StateMod Input
Type appendix), and multiple pattern files can be used, if appropriate. The following example illustrates
the file format. See also the AnalyzePattern() command, which can be used to generate the file.

Years Shown = Water Years
Missing monthly data filled by the Mixed Station Method, USGS 1989
Time series identifier = 09034500.CRDSS_USGS.QME.MONTH.1
Description = COLORADO RIVER AT HOT SULPHUR SPRINGS, CO.
-e-b----------eb------eb------eb------eb------eb------eb------eb------eb------eb------eb------eb------eb------eb--------e
 10/1908 - 9/1996 ACFT WYR
1909 09034500 AVG AVG AVG WET WET AVG AVG AVG WET WET WET WET
1910 09034500 WET WET WET WET WET WET AVG AVG AVG AVG AVG AVG
1911 09034500 AVG AVG WET AVG AVG AVG AVG WET WET WET AVG WET
1912 09034500 WET WET WET WET WET AVG AVG WET WET WET WET WET
...ommitted...

The following dialog is used to edit the command and illustrates the command syntax.

ReadPatternFile

ReadPatternFile() Command Editor

The command syntax is as follows:

ReadPatternFile(Parameter=Value,…)

Command Parameters

Parameter Description Default
PatternFile The path to the pattern file, which can be

absolute or relative to the working
directory.

None – must be specified.

A sample command file is as follows:

ReadPatternFile(PatternFile="fill.pat")

 Command Reference – ReadPatternFile() - 1 313

ReadPatternFile() Command TSTool Documentation

This page is intentionally blank.

Command Reference – ReadPatternFile() - 2 314

 Command Reference – ReadPropertiesFromFile - 1

Command Reference: ReadPropertiesFromFile()
Read one or more time series processor properties from a file

Version 10.12.00, 2012-08-02

The ReadPropertiesToFile() command reads the values of one or more time series processor
properties from a file. The corresponding WritePropertiesToFile() command can be used to
write properties to a file. Processor properties include global defaults such as InputStart,
InputEnd, OutputStart, OutputEnd, OutputYearType, WorkingDir, and also user-defined
properties set with the SetProperty() command. Internally, properties have a name and a value,
which is of a certain type (string, integer, date/time, etc.). Examples of using the command include:

• creating tests to verify that properties are being set
• passing information from another program, such as a Python script, to TSTool
• reading persistent information from a previous use, such as the date/time that data were last

downloaded from a web service

 A number of property formats are supported as listed in the following table.

Property File Formats

Format Description
NameValue Simple format, all properties handled as text:

 PropertyName=PropertyValue
 PropertyName=”Property value, quoted if necessary”

NameTypeValue Same as NameValue format, with non-primitive objects treated as simple
constructors:
 PropertyName=PropertyValue
 DateTimeProperty=DateTime(“2010-10-01 12:30”)

NameTypeValue
Python

Similar to the NameTypeValue format, however, objects are represented
using “Pythonic” notation, to allow the file to be used directly by Python
scripts:
 PropertyName=”PropertyValue”
 DateTimeProperty=DateTime(2010,10,1,12,30)

The format of the file currently is not required when reading the file because the command detects the
format for each property and creates an appropriate object type. If this becomes an issue, the command
may be enhanced to add a parameter to specify the format (similar to the
WritePropertiesToFile() command).

315

ReadPropertiesFromFile() Command TSTool Documentation

Command Reference – ReadPropertiesFromFile() - 2

The following dialog is used to edit this command and illustrates the syntax of the command.

ReadPropertiesFromFile

ReadPropertiesFromFile() Command Editor

The command syntax is as follows:

ReadPropertiesFromFile(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The property file to read, as an absolute path or

relative to the command file.
None – must be specified.

IncludeProperty The names of properties to read, separated by
commas.

If not specified, all
processor properties will
be written.

316

 Command Reference – ReadRccAcis() - 1

Command Reference: ReadRccAcis()
Read time series from the RCC ACIS web services

Version 10.11.00, 2012-06-28

The ReadRccAcis() command reads one or more time series from the Regional Climate Center
(RCC) Applied Climate Information System (ACIS) web services, in particular to provide access to daily
historical and real-time values from the National Climatic Data Center (NCDC). Features and limitations
of ACIS are described in the RCC ACIS Data Store appendix. Because web services are used to access a
remote database, there may be some delay in retrieving data. For data intensive processes, it may be
advisable to mine the data, save to a local file or database, and then perform additional processing using
the local data.

The following dialog is used to edit the command and illustrates the syntax for the command when
reading a single time series. This is appropriate when a specific site is being processed.

ReadRccAcis_Single

ReadRccAcis() Command Editor for Reading Single Time Series

317

ReadRccAcis() Command TSTool Documentation

Command Reference – ReadRccAcis() - 2

The following dialog is used to edit the command and illustrates the syntax for the command when
reading multiple time series. This is appropriate when performing bulk processing. Mouse over the
Where data entry fields to see information about choices.

ReadRccAcis

ReadRccAcis() Command Editor for Reading Multiple Time Series

The command syntax is as follows:

ReadRccAcis(Parameter=Value,…)

Command Parameters

Parameter Description Default
DataStore The name of the RCC ACIS data store from which to read. None – must be

specified.
DataType The data type to be queried, as documented in the RCC ACIS Data

Store appendix. For example, use pcpn to request precipitation data
(for the older version 1 ACIS, the “Variable Major” number is used,
for example 4 for precipitation).

None – must be
specified.

Interval The data interval for the time series. Currently only daily time series
can be requested.

None – must be
specified.

SiteID Used when reading a single time series. The site ID should be
specified using the station type and site identifier (e.g.,
COOP:052454). The station type can be determined by first
querying the time series using the TSTool main interface or using the
WhereN parameter and reviewing the resulting time series identifiers
in returned time series. Omitting the station type will assume the

If not specified,
the WhereN
filters are used.

318

TSTool Documentation ReadRccAcis() Command

 Command Reference – ReadRccAcis() - 3

Parameter Description Default
ACIS identifier, which is internal to the ACIS system and not
typically used by users. Specifying the SiteID will override the
WhereN parameter.

WhereN Used when reading 1+ time series. The “where” clauses to be
applied to filter the list of stations, matching the values in the Where
fields in the command editor dialog and the TSTool main interface.
The parameters should be named Where1, Where2, etc., and a gap
in numbering will result in the remaining items being ignored. The
format of each value is:

“Item;Operator;Value”

Where Item indicates a data field to be filtered on, Operator is
the type of constraint, and Value is the value to be checked when
querying.

If not specified,
the query will
not be limited
and very large
numbers of time
series may be
queried.

InputStart Start of the period to query, specified as a date/time with a precision
that matches the requested data interval.

Read all
available data.

InputEnd End of the period to query, specified as a date/time with a precision
that matches the requested data interval.

Read all
available data.

Alias The alias to assign to the time series, as a literal string or using the
special formatting characters listed by the command editor. The alias
is a short identifier used by other commands to locate time series for
processing, as an alternative to the time series identifier (TSID).

None – must be
specified.

319

ReadRccAcis() Command TSTool Documentation

Command Reference – ReadRccAcis() - 4

This page is intentionally blank.

320

 Command Reference – ReadReclamationHDB() - 1

Command Reference: ReadReclamationHDB()
Read time series from a Reclamation HDB database

Version 10.20.00, 2013-04-21

The ReadReclamationHDB() command reads one or more time series from a Reclamation HDB
database:

• a single time series (which can be part of an ensemble), indicated by the individual time series
identifier:

o a “real” time series (observations)
o a “model” time series (output from a model)

• all time series in an ensemble, indicated by the ensemble identifier:
o ensemble trace time series are stored as “model” time series – individual ensemble trace

time series can be queried by specifying the appropriate “hydrologic indicator” (which is
set to the ensemble time series sequence number from TSTool time series)

See the WriteReclamationHDB() command documentation for information about writing the time
series that are read by this command. See the Reclamation HDB Data Store Appendix for more
information about the database features and limitations.

When reading a single time series or ensemble, the choices presented to the user cascade to allow only
valid choices.

321

ReadReclamationHDB() Command TSTool Documentation

Command Reference – ReadReclamationHDB() - 2

The following dialog is used to edit the command and illustrates the syntax of the command when reading
“real” or “model” data using filters. This approach can be used when reading one or more time series in
bulk. Where criteria should be specified in sequential order without intervening blank specifiers.

ReadReclamationHDB

ReadReclamationHDB() Command Editor When Using Filters to Read 1+ Time Series

322

TSTool Documentation ReadReclamationHDB() Command

 Command Reference – ReadReclamationHDB() - 3

The following figure illustrates reading a single “real” time series (note that the model parameters are not
specified).

ReadReclamationHDB_Real

ReadReclamationHDB() Command Editor to Read a Single Real Time Series

323

ReadReclamationHDB() Command TSTool Documentation

Command Reference – ReadReclamationHDB() - 4

The following figure illustrates reading a single “model” time series, in which case model parameters are
specified in addition to the site and data type parameters.

ReadReclamationHDB_Model

ReadReclamationHDB() Command Editor to Read a Single Model Time Series

324

TSTool Documentation ReadReclamationHDB() Command

 Command Reference – ReadReclamationHDB() - 5

The following figure illustrates reading n ensemble of “model” time series, in which case ensemble/model
parameters are specified in addition to the site and data type parameters.

ReadReclamationHDB_Ensemble

ReadReclamationHDB() Command Editor to Read an Ensemble of Model Time Series

The command syntax is as follows:

ReadReclamationHDB(Parameter=Value,…)

Command Parameters

Parameter Description Default
DataStore Reclamation HDB data store name indicating

database from which to read time series.
None – must be
specified.

Interval The data interval to read (Hour, Day, Month,
Year, Irregular). Irregular is used for
instantaneous data and internally results in data
with date/times to minute precision. 2Hour, 3Hour,
4Hour, 6Hour, 12Hour, and 24Hour can also be
included, but how can HDB be queried to limit
choices to these intervals? This interval is
important because it tells TSTool how to allocate

None – must be
specified.

325

ReadReclamationHDB() Command TSTool Documentation

Command Reference – ReadReclamationHDB() - 6

Parameter Description Default
memory for data values, and iterate through data.

 Use the following parameter when reading 1+ time
series using filters

DataType The data type to read as ObjectType –
DataTypeCommonName. The object type is
shown to help with selections. * can be specified
to read all data types.

None – must be
specified.

WhereN The “where” clauses to be applied when querying
data, which match the values in the Where fields in
the TSTool main interface. The parameters should
be specified as Where1, Where2, etc., with no
intervening gaps in numbering. All clauses are
joined as “and” and are therefore cumulative in
limiting the query. The format of each parameter
value is:

“Item;Operator;Value”

Where Item indicates a data field to be filtered on,
Operator is the type of constraint, and Value is
the value to be checked when querying.

If not specified, the
query will not be
limited and very large
numbers of time series
may result from the
query (which may
require a long time to
perform the query).

 Use the following parameters when reading a single
time series or an ensemble of time series.

Site
CommonName

The site common name for the time series location;
used with the data type common name to determine
the site_datatype_id in the database.

None – must be
specified unless
SiteDataTypeID is
specified.

DataType
CommonName

The data type common name for the time series;
used with the site common name to determine the
site_datatype_id in the database.

None – must be
specified unless
SiteDataTypeID is
specified.

SiteDataTypeID The site_datatype_id value to match the time series.
If specified, the value will be used instead of the
site_datatype_id determined from
SiteCommonName and
DataTypeCommonName.

 Use the following parameters when reading a single
model time series.

ModelName The model name for the time series; used with the
model run name, hydrologic indicator(s), and model
run date to determine the model_run_id in the
database.

None – must be
specified unless
ModelRunID is
specified.

ModelRunName The model run name for the time series; used with
the model name, hydrologic indicator(s), and model
run date to determine the model_run_id in the
database.

None – must be
specified unless
ModelRunID is
specified.

ModelRunDate The model run date (timestamp) to use for the time
series; used with the model name, model run name,

None – must be
specified unless

326

TSTool Documentation ReadReclamationHDB() Command

 Command Reference – ReadReclamationHDB() - 7

Parameter Description Default
and hydrologic indicator(s) to determine the
model_run_id in the database. The run date should
be specified using the format YYYY-MM-DD
hh:mm (zero-padded with hour 0-23, minute 0-59,
seconds and hundredths of seconds will default to
0). Need to implement tests to make sure this is
properly handled, including formatting and
listing existing values.

ModelRunID is
specified.

Hydrologic
Indicator

The hydrologic indicator(s) to use for the time
series; used with the model name, model run name,
and model run date to determine the model_run_id
in the database.

None – must be
specified unless
ModelRunID is
specified.

ModelRunID The model_run_id value to match the time series.
If specified, the value will be used instead of the
model_run_id determined from ModelName ,
ModelRunName, ModelRunDate, and
HydrologicIndicator.

 Use the following parameters when reading an
ensemble of model time series.

EnsembleName The name of the ensemble to write. The
TSList=EnsembleID and EnsembleID
parameters also should be specified.

Must be specified if
writing an ensemble.

EnsembleTraceID Indicate how to identify time series trace identifiers.
This parameter may be implemented in the future.

The HDB trace number
is used for the TSTool
ensemble trace
sequence number.

EnsembleModelName The model name corresponding to the ensemble. Must be specified if
writing an ensemble.

EnsembleModel
RunDate

When writing an ensemble, the model run date for
the ensemble, specified using format:
• YYYY-MM-DD hh:mm (zero-padded with

hour 0-23)
• ${TS:property} – use a run date from a

time series property, truncated to minute
Need to implement tests to make sure this is
properly handled, including formatting and
listing existing values.

If not specified, the
ensemble identifier in
HDB will not include
the model run date.

 The following parameters are always appropriate.
InputStart Start of the period to query, specified in format

YYYY-MM-DD HH, with a precision appropriate
for the interval.

Read all available data.

InputEnd End of the period to query, specified in format
YYYY-MM-DD HH, with a precision appropriate
for the interval.

Read all available data.

Alias Indicate an alias to assign to time series, which can
result in shorter identifiers for time series when
referenced with other commands.

No alias is assigned.

327

ReadReclamationHDB() Command TSTool Documentation

Command Reference – ReadReclamationHDB() - 8

This page is intentionally blank.

328

 Command Reference – ReadRiversideDB() - 1

Command Reference: ReadRiversideDB()
Read time series from a RiversideDB database

Version 10.06.00, 2012-04-04

The ReadRiversideDB() command reads one or more time series from a RiversideDB database (see
the Riverside Data Store Appendix for more information). It is designed to utilize query criteria to
process large numbers of time series. The RiversideDB design is highly consistent with TSTool
conventions and therefore time series properties in RiversideDB, including time series identifier
information, map closely to TSTool internal data representations.

The following dialog is used to edit the command and illustrates the syntax for the command.

ReadRiversideDB

ReadRiversideDB() Command Editor

The Data type, Data interval, and Where input fields are similar to those from the main TSTool
interface. However, whereas the interactive interface first requires a query to find the matching time
series list and then an interactive select for specific time series identifiers, the ReadRiversideDB()
command reads all matching time series in one step. This can greatly shorten command files and simplify
command logic, especially when processing large amounts of data. It may be necessary to specify more
criteria where a single time series is needed.

329

ReadRiversideDB() Command TSTool Documentation

Command Reference – ReadRiversideDB() - 2

The command syntax is as follows:

ReadRiversideDB(Parameter=Value,…)

Command Parameters

Parameter Description Default
DataStore The data store name, indicating the RiversideDB database to query. None – must be

specified.
DataType The data type to be queried, determined from time series that are

available in the database.
None – must be
specified.

Interval The data interval for the time series, determined from time series
that are available in the database matching the DataType.

None – must be
specified.

WhereN The “where” clauses to be applied when querying data, matching
the values in the Where fields in the command editor dialog and
the TSTool main interface. The parameters should be named
Where1, Where2, etc., with a gap resulting in the remaining
items being ignored. The format of each value is:

“Item;Operator;Value”

Where Item indicates a data field to be filtered on, Operator is the
type of constraint, and Value is the value to be checked when
querying.

If not specified,
the query will not
be limited and
very large
numbers of time
series may be
queried.

InputStart Start of the period to query, specified as a date/time with a
precision that matches the requested data interval.

Read all available
data.

InputEnd End of the period to query, specified as a date/time with a precision
that matches the requested data interval.

Read all available
data.

Alias The alias to assign to the time series, as a literal string or using the
special formatting characters listed by the command editor. The
alias is a short identifier used by other commands to locate time
series for processing, as an alternative to the time series identifier
(TSID).

MissingValue Value to use to indicate missing data values within the time series.
-999 is the default for historical reasons; however, NaN (not a
number) is being phased in and should be specified if possible.
Null values in the database will be converted to the missing data
value.

-999

330

Command Reference: ReadRiverWare()
Read a single time series from a RiverWare file

Version 10.00.00, 2011-03-28

The ReadRiverWare() command reads a single time series from a RiverWare file (see the RiverWare
Input Type Appendix) and assigns an alias to the result.

The following dialog is used to edit the command and illustrates the command syntax.

ReadRiverWare

ReadRiverWare() Command Editor

 Command Reference – ReadRiverWare() - 1 331

ReadRiverWare() Command TSTool Documentation

The command syntax is as follows:

ReadRiverWare(Parameter=Value,…)

The following older command syntax is updated to the above syntax when a command file is read:

TS Alias = ReadRiverWare(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the RiverWare file to read,

surrounded by double quotes. The path
to the file can be absolute or relative to
the working directory.

None – must be specified.

Alias The alias to assign to the time series, as a
literal string or using the special
formatting characters listed by the
command editor. The alias is a short
identifier used by other commands to
locate time series for processing, as an
alternative to the time series identifier
(TSID).

None – must be specified.

Units The units for the time series. The data
values will be converted to these units.
TSTool by default understands certain
units abbreviations and attempting to
convert to or from unknown units may
not be possible. The ability to handle
user-defined units is being evaluated.
See the Scale() and
ConvertDataUnits() commands.

Use the units read from the file.
This parameter is not yet
enabled.

InputStart The start of the period to read data –
specify if the period should be different
from the global query period.

Use the global query period.

InputEnd The end of the period to read data –
specify if the period should be different
from the global query period.

Use the global query period.

A sample command file is as follows:

ReadRiverWare(Alias=”ts1”,InputFile="SouthHolstonData.SOGPoolElevation")

Command Reference – ReadRiverWare() - 2 332

Command Reference: ReadStateCU()
Read time series from a StateCU time series or report File

Version 09.07.02, 2010-08-20

The ReadStateCU() command reads all the time series in a StateCU time series file (e.g., frost dates)
or report file (e.g., IWR, WSL) (see the StateCU Input Type Appendix).

The following dialog is used to edit the command and illustrates the syntax for the command.

ReadStateCU

ReadStateCU() Command Editor

 Command Reference – ReadStateCU() - 1 333

ReadStateCU() Command TSTool Documentation

The command syntax is as follows:

ReadStateCU(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the StateCU time series or

report file to read, surrounded by double
quotes.

None – must be specified.

InputStart The starting date/time to read, specified
to a precision (month or year) that
matches the data file.

Read all the data.

InputEnd The ending date/time to read, specified to
a precision (month or year) that matches
the data file.

Read all the data.

TSID A time series identifier pattern that will
be used to filter the list of time series that
are read. See the figure above for
examples.

Read all time series.

NewScenario A new scenario to use for the TSID.
This is useful when reading data from
multiple model runs that otherwise
would have the same TSIDs.

No scenario.

AutoAdjust Indicate whether to automatically adjust
time series identifiers to use a dash “-”
instead of period “.” in the data type,
necessary because StateCU data types
(e.g., crop types that include CU method)
have a period that interferes with the
normal TSID convention.

True

CheckData Indicate whether to check the data for
integrity after reading. Currently only
the irrigation practice time series can be
checked, to verify that the acreage totals
are the sum of the parts.

True

A sample commands file is as follows:

ReadStateCU(InputFile="Data\ym2004.iwr")

Command Reference – ReadStateCU() - 2 334

Command Reference: ReadStateCUB()
Read time series from a StateCU binary output time series file

Version 08.17.00, 2008-10-02

The ReadStateCUB() command reads time series from a StateCU binary output time series file (see
the StateCUB Input Type Appendix). The actual reading occurs as the commands are being processed.
For this reason and because the number of time series in the binary file is usually large, if any other
commands reference the StateCU binary file time series, the time series identifiers must be specified
manually or use wildcards in identifiers (identifiers are not available to list in dialogs). Only data types
that contain floating point numbers will be read.

The following dialog is used to edit the command and illustrates the syntax for the command.

ReadStateCUB

ReadStateCUB() Command Editor

 Command Reference – ReadStateCUB() - 1 335

ReadStateCUB() Command TSTool Documentation

The command syntax is as follows:

ReadStateCUB(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the StateCU binary time

series file to read, surrounded by double
quotes. The path to the file can be
absolute or relative to the working
directory.

None – must be specified.

TSID Time series identifier pattern to filter the
read.

Read all time series.

InputStart The starting date/time to read data,
specified to Month precision.

Read all data.

InputEnd The ending date/time to read data,
specified to Month precision.

Read all data.

The following example command file illustrates how to read all CU Shortage time series:

ReadStateCUB(InputFile="Data\farmers.BD1",TSID="*.*.CU Shortage.*.*")

The following example illustrates how to read all time series from a binary file with debug turned on to
echo all information that is read.

StartLog(LogFile="commands.TSTool.log")
SetDebugLevel(LogFileLevel=1)
ReadStateCUB(InputFile="Data\farmers.BD1")

Command Reference – ReadStateCUB() - 2 336

Command Reference: ReadStateMod()
Read all the time series from a StateMod time series file

Version 09.05.03, 2009-11-17

The ReadStateMod() command reads all the time series in a StateMod time series file (see the
StateMod Input Type Appendix). Single time series can be read by using time series identifier (TSID)
commands.

Water rights files also can be read and converted to time series – this is useful for visualization, water
supply analysis, and is used to test well right processing. Considering all water rights for a location based
on the administration number results in a step function of decree over time. Monthly and yearly time
series use calendar year and a right is active if it is turned on anywhere in the month or year. Free water
rights (e.g., those having administration numbers > 90000.00000 are treated like other rights and therefore
may not impact the results in the current period because the corresponding appropriation date is in the
future (additional parameters may be added in the future to allow more ways to process these rights). If
processing well rights and multiple years of parcel data are processed, this command executes the same
logic as the StateDMI MergeWellRights() command.

The following dialog is used to edit the command and illustrates the syntax for the command.

ReadStateMod

ReadStateMod() Command Editor

 Command Reference – ReadStateMod() - 1 337

ReadStateMod() Command TSTool Documentation

The command syntax is as follows:

ReadStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the StateMod time series file to read,

surrounded by double quotes. The path to the file can be
absolute or relative to the working directory. Global
property values can be inserted using the syntax
${PropertyName} (see also the SetProperty()
command).

None – must be specified.

InputStart The start of the period to read data – specify if the period
should be different from the global query period.
Specify to a precision that matches the data. If reading
water rights, the output time series will start on this date.

Use the global query
period or if not specified
read all data.

The default for water
rights is the date of the
first right.

InputEnd The end of the period to read data – specify if the period
should be different from the global query period.
Specify to a precision that matches the data. If reading
water rights, the output time series will end on this date.

Use the global query
period or if not specified
read all data.

The default for water
rights is the date of the
last right.

Alias The alias to assign to the time series that are read. Use
the format choices and other characters to define a
unique alias.

No alias is assigned.

Interval When reading a water right file, specify the interval for
the resulting time series, one of Day, Month, or Year.

Year

Spatial
Aggregation

When reading a water right file, indicate how time series
are to be aggregated spatially, one of:
• Location – aggregate by the station identifier.
• Parcel – (only used with well rights) aggregate

based on the parcel number and parcel year.
• None – do not aggregate spatially, which will result

in constant value time series for each water right.

Location

ParcelYear When processing a well water right file, indicate the year
of parcel data to process. Parcel configurations change
from year to year, and a single year of parcel data can be
processed if desired.

Process all parcel years.

A sample command file is as follows:

ReadStateMod(InputFile="ym2004.ddh")

Command Reference – ReadStateMod() - 2 338

Command Reference: ReadStateModB()
Read time series from a StateMod binary output time series file

Version 09.06.00, 2010-01-05

The ReadStateModB() command reads time series from a StateMod binary output time series file
(see the StateModB Input Type Appendix). The identifiers (or aliases) from the time series will be
available as choices when editing other commands. If this causes performance issues due to the large
number of time series that may be read, limit the time series that are read using the TSID parameter.

The following dialog is used to edit the command and illustrates the syntax for the command.

ReadStateModB

ReadStateModB() Command Editor

 Command Reference – ReadStateModB() - 1 339

ReadStateModB() Command TSTool Documentation

The command syntax is as follows:

ReadStateModB(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the StateMod binary time series file

to read, surrounded by double quotes. The path to
the file can be absolute or relative to the working
directory. Global property values can be inserted
using the syntax ${PropertyName} (see also
the SetProperty() command).

None – must be
specified.

TSID Time series identifier pattern to filter the read.
Use periods to indicate separate TSID parts and
use * to match patterns within the parts.

Read all time series.

InputStart The starting date/time to read data, specified to
Day or Month precision based on whether a
daily or monthly model run.

Read all data.

InputEnd The ending date/time to read data, specified to
Day or Month precision based on whether a
daily or monthly model run.

Read all data.

Version StateMod version number using the form NN.NN
(padded with leading zero for version 9)
corresponding to the file, necessary because the
file version number (and consequently
parameters) cannot be automatically detected in
older versions. Changes in binary file format
occurred with version 9.01 and 9.69, mainly to
add new data types. The StateMod file version
for version 11+ is automatically detected.

Detect from the file if
possible.

Alias The alias to assign to the time series that are read.
Use the format choices and other characters to
define a unique alias.

No alias is assigned.

The following example command file illustrates how to read all Available_Flow time series for
identifiers starting with 44 (e.g., to extract all such time series for a water district):

ReadStateModB(InputFile="..\StateMod\ym2002b.b43",TSID="44*.*.Available_Flow.*")

The following example illustrates how to read all time series from a binary file that was created with
StateMod version 9.53. As shown in the example, debug can be turned on for the log file to evaluate
issues with the file format.

StartLog(LogFile="commands.TSTool.log")
SetDebugLevel(0,1)
ReadStateModB(InputFile="COLOFB.B43",Version="09.53")

Command Reference – ReadStateModB() - 2 340

 Command Reference – ReadTableFromDataStore() - 1

Command Reference:
ReadTableFromDataStore()

Read a table from a datastore
Version 10.21.00, 2013-06-21

The ReadTableFromDataStore() command executes a database query for a datastore that is
associated with a database, and places the result in a TSTool table, which can subsequently be processed
with other TSTool commands. This command cannot be used with web service datastores because the
underlying software relies on a database to perform the query. If database datastore support is not
specifically provided by TSTool, a generic datastore can be used (see the Generic Database DataStore
appendix). This command is useful when the database can provide results with a simple query and tight
integration with TSTool is not required or has not been implemented. The query can be specified in the
following ways:

• Specify a single table/view to query:
o the list of tables is filtered to remove internal database tables; however, this capability

varies by database product and in some cases internal tables will be listed
o the query is constructed from the provided database table/view name and column names
o the output can be sorted by specifying column names
o “where” clauses currently are not supported but may be added in the future
o the top N rows of the result can be returned to allow “peeking” at tables (may not be

available for all database software)
• Specify a SQL select statement:

o SQL must be valid for the database (syntax may vary based on database software)
o Use ${Property} notation to insert processor property values set with

SetPropety().
o SQL syntax is not checked for validity and therefore error messages from the database

may be more difficult to interpret
• Specify an SQL select statement in a file:

o Similar to the above option; however, the SQL statement is read from a file
o Useful if the SQL statement is also used by other tools

• Specify a procedure to run:
o Available procedures are listed and can be selected
o Currently, only procedures that do not require parameters can be run

General constraints on the query are as follows:

• the table, views, and procedures being queried must be readable (some databases restrict direct
access to data and require using stored procedures)

• the resulting table in TSTool will have columns with names that match the database query results
• data types for columns will closely match the database results:

o data will be treated as strings if unable to match the database column type
o the precision of floating point numbers for displays is defaulted to 6 digits
o null values in the database will transfer to null values in the TSTool table and will display

as blank table cells
o date/time columns in the database will be represented as such in the TSTool table;

however, it may not be possible to limit the precision of the date/time (i.e., hours,
minutes, and seconds may be shown with default zero values in output)

341

ReadTableFromDataStore() Command TSTool Documentation

Command Reference – ReadTableFromDataStore() - 2

Future enhancements will add additional features to intelligently map database results to TSTool tables.

The following dialog is used to edit the command and illustrates the syntax for the command, in this case
reading a small table from the State of Colorado’s HydroBase.

ReadTableFromDataStore_Table

ReadTableFromDataStore() Command Editor When Querying a Single Table

The corresponding output table is as shown below:

ReadTableFromDataStore_Results

Example ReadTableFromDataStore() Command Output Table

342

TSTool Documentation ReadTableFromDataStore() Command

 Command Reference – ReadTableFromDataStore() - 3

The following example illustrates using an SQL query string, in this case to read diversion records for a
specific structure in HydroBase:

ReadTableFromDataStore_SQL

ReadTableFromDataStore() Command Editor When Specifying a SQL Query String

343

ReadTableFromDataStore() Command TSTool Documentation

Command Reference – ReadTableFromDataStore() - 4

The command syntax is as follows:

ReadTableFromDataStore(Parameter=Value,…)

Command Parameters
Parameter Description Default
DataStore The name of a database datastore to read. None – must be specified.
DataStoreTable The name of the database table or view to

read when querying a single table or view.
If specified, do not specify Sql or
SqlFile.

None.

DataStoreColumns When reading a single table/view, the
names of the columns to read, separated
by commas.

All columns from
DataStoreTable are
read.

OrderBy When reading a single table/view, a list of
column names separated by commas to
control the order of output.

Default database sort order
will be used.

Top Indicate that Top rows should be returned.
This functionality may not be
implemented for all databases (SQL is not
fully standardized for this feature). This
parameter is useful to determine the
columns for a table prior to using the Sql
or SqlFile parameters.

Return all rows.

Sql The SQL string that will be used to query
the database, optionally using
${Property} notation to insert
processor property values. If specified, do
not specify DataStoreTable or
SqlFile.

None.

SqlFile The name of the file containing an SQL
string to execute, optionally using
${Property} notation in the SQL file
contents to insert processor property
values. If specified, do not specify
DataStoreTable or Sql.

None.

DataStoreProcedure The name of the database procedure to
run. Currently, only procedures that do
not require parameters can be run.

None.

TableID Identifier to assign to the output table in
TSTool, which allows the table data to be
used with other commands. A new table
will be created.

None – must be specified.

344

Command Reference: ReadTableFromDBF()
Read a table from a dBASE file

Version 09.09.00, 2010-09-23

The ReadTableFromDBF() command reads a table from a dBASE file, such as the files used with
ESRI GIS shapefiles. dBASE files are self-contained binary database files.

Handling of dBASE files is limited and support for newer features may not be included.

The following dialog is used to edit the command and illustrates the syntax for the command.

ReadTableFromDBF

ReadTableFromDBF() Command Editor

 Command Reference – ReadTableFromDBF() - 1 345

ReadTableFromDBF() Command TSTool Documentation

The command syntax is as follows:

ReadTableFromDBF(Parameter=Value,…)

Command Parameters

Parameter Description Default
TableID Identifier to assign to the table that is

read, which allows the table data to be
used with other commands.

None – must be specified.

InputFile The name of the file to read, as an
absolute path or relative to the command
file location.

None – must be specified.

Command Reference – ReadTableFromDBF() - 2 346

 Command Reference – ReadTableFromDelimitedFile() - 1

Command Reference:
ReadTableFromDelimitedFile()

Read a table from a delimited file
Version 10.03.00, 2012-01-09

The ReadTableFromDelimitedFile() command reads a table from a comma-delimited file.
Tables are used by other commands when performing lookups of information or generating summary
information from processing. Table files have the following characteristics:

• Comments indicated by lines starting with # are stripped during the read.
• Extraneous lines in the file can be skipped during the read using the SkipLines parameter.
• Column headings indicated by “quoted” values in the first non-comment line will be used to assign

string names to the columns. If no quoted values are present, columns will not have headings.
• Data in columns are assumed to be of consistent type (i.e., all numerical data or all text), based on

rows after the header. The data type for the column will be determined automatically.
• Missing values can be indicated by blanks. However, a line ending with the delimiter may cause

warnings because blank is not assumed at the end of the line (this is a software limitation that may be
addressed in the future) – work around by adding an extra delimiter or ensure that the last column is
not blank.

• Strings containing the delimiter should be surrounded by double quotes. This command currently
does not deal with ”””text””” notation although support may be added in the future (see
information about comma-separated-value [CSV] standards: http://en.wikipedia.org/wiki/Comma-
separated_values).

The following dialog is used to edit the command and illustrates the syntax for the command.

347

ReadTableFromDelimitedFile() Command TSTool Documentation

Command Reference – ReadTableFromDelimitedFile() - 2

ReadTableFromDelimitedFile

ReadTableFromDelimitedFile() Command Editor

The command syntax is as follows:

ReadTableFromDelimitedFile(Parameter=Value,…)

Command Parameters

Parameter Description Default
TableID Identifier to assign to the table that is read,

which allows the table data to be used with
other commands.

None – must be specified.

InputFile The name of the file to read, as an absolute
path or relative to the command file location.

None – must be specified.

SkipLines Indicates the number of lines in the file to
skip, which otherwise would interfere with
reading row data. Individual row numbers
and ranges can be specified, for example:
1,5-6,17

No lines are skipped.

HeaderLines Indicate the rows that include header
information, which should be used for
column names. Currently this should only be
one row, although a range may be fully
supported in the future.

If the first non-comment line
contains quoted field names,
they are assumed to be
headers. Otherwise, no
headers are read.

348

TSTool Documentation ReadTableFromDelimitedFile() Command

 Command Reference – ReadTableFromDelimitedFile() - 3

The following example command file illustrates how to read a table from a delimited file:

ReadTableFromDelimitedFile(TableID="Table1",
 InputFile="Sample.csv",SkipRows="2")

An excerpt from a simple delimited file is:

A comment
some junk to be skipped
“Header1”,”Header2”,”Header3”
1,1.0,1.0
2,2.0,1.5
3,3.0,2.0

349

ReadTableFromDelimitedFile() Command TSTool Documentation

Command Reference – ReadTableFromDelimitedFile() - 4

This page is intentionally blank.

350

 Command Reference – ReadTableFromExcel() - 1

Command Reference: ReadTableFromExcel()
Read a cell range from a Microsoft Excel file and create a new Table

Version 10.18.00, 2012-02-25

The ReadTableFromExcelFile() command reads a table from a Microsoft Excel file, more
specifically from a worksheet in an Excel workbook file. A contiguous block of cells (rectangle) must be
specified in one of the following ways:

• Specify a range of cells using Excel address notation (e.g., A1:D10) (TODO – figure out if

worksheet can be specified in this address, in which case the Worksheet parameter is not required).
• Specify the name of an Excel named range.
• Specify a table name (essentially a named range).

Table column types (number, text, etc.) are determined from the cells in the first data row being read
(NOT the column name row) – data types must be consistent for all cells in a column, although blanks are
allowed. Table column names are determined according to the ExcelColumnNames command
parameter.

TSTool uses the Apache POI software, version 3.9 (http://poi.apache.org) to read the Excel file and
consequently functionality is constrained by the features of that software package. The software reads
and writes Excel files. It does not communicate with a running Excel program, as does other software
tools (for example IronPython using Excel interoperability libraries). POI does not fully implement Excel
functionality and consequently some formula capabilities are not available, which will generate errors
getting values for some cells. One solution, for example to create test data in Excel, is to copy cells with
“paste special” and then paste the values. It is expected that updates to POI will continue to add more
formula support.

Table columns must contain consistent data types (all strings, all numeric, etc.). The following table
describes how column types are determined and data values are transferred to the table. Column type
determination uses the first data row in the specified address range. If a column is determined to be a
type and then cell values in the column are different, conversions are made to maintain the intent of the
values if possible. For example, a Boolean value stored in a cell will get converted to 1.0 if the table
column has been determined to be for double precision numbers. Errors in processing cells may result in
empty cell values in the output table.

Excel Data Type Conversion to Table

Excel Cell Format
(“Number Category”

Conversion from Excel to TSTool Table

Number:
• General
• Number
• Currency
• Accounting
• Percentage
• Fraction
• Scientific
• Special
• Custom

• If Excel cell is internally a “numeric”, convert to a double-precision
number, where the format “Decimal places” is used in the TSTool table
for formatting. The number of decimal places in Excel is fixed for some
of the number categories shown on the left (e.g., Special=Zip Code).
Excel internally stores integers as numbers with zero decimals. Need to
figure out how to get the Excel cell formatting number of decimals to
similarly set in the output table – but DO NOT assume zero decimals
should convert to an integer.

• See the ExcelIntegerColumns parameter, which specifies the
output table to use integers.

• If Excel cell is internally a “Boolean”, convert to an integer having

351

ReadTableFromExcel() Command TSTool Documentation

Command Reference – ReadTableFromExcel() - 2

Excel Cell Format
(“Number Category”

Conversion from Excel to TSTool Table

values 0 or 1. Need to evaluate having a parameter
ExcelBooleanColumns to transfer to a Boolean column in the
output table. Excel seems to handle Booleans as text with values True
or False.

Date:
• Date
• Time

TSTool does not generally deal with only time and therefore implementation
is limited. The POI library does not seem to have all date/time functions
implemented.

Text:
• Text

Converts to a string.

Blank • Treated as Text (may in the future scan down the column to determine
data type from first non-blank cell).

• Blank cells found once the column type is determined are set to empty
strings in text columns, and null in number and date columns.

Error • Treated as Text (may in the future scan down the column to determine
data type from first non-error cell).

• Blank cells found once the column type is determined are set to empty
strings in text columns, and null in number and date columns.

Formula Expanded internally and the resulting cell value is set in the output table.
POI does not support all formulas and errors may be generated, which result
in empty output table cells.

Consider the following Excel worksheet example, which is equivalent to a comma-separated-value (CSV)
file that has comments at the top and four columns:

ReadTableFromExcel_SheetComments

Example Excel Workshet With Comments, Column Names, and Text and Integer Columns

Although it is possible to use comments in Excel (annotation on cells), these comments cannot be saved
in simple text files like CSV files. Consequently, for transparency and automation of a full process,
embedding comments in the worksheet may make sense. Note also that the numeric cells are formatted as
type “Number” with 0 decimals in Excel. Internally, Excel does not have an integer data type and
consequently it is difficult for the ReadTableFromExcel() command to know when to convert a
zero-decimal number in Excel to a floating point or integer number in the output table (it therefore
defaults to a floating point number in output). To make this conversion more explicit, use the
ExcelIntegerColumns command parameter. The comment lines in the above example will be
ignored in determining the headings, and any data rows that have a first cell value starting with the
comment character will be ignored.

352

TSTool Documentation ReadTableFromExcelFile() Command

 Command Reference – ReadTableFromExcelFile() - 3

The following dialog is used to edit the command and illustrates the syntax for the command when
reading the above Excel worksheet.

ReadTableFromExcel

ReadTableFromExcel() Command Editor

The command syntax is as follows:

ReadTableFromExcelFile(Parameter=Value,…)

Command Parameters

Parameter Description Default
TableID Identifier to assign to the table that is read,

which allows the table data to be used with
other commands.

None – must be specified.

InputFile The name of the Excel workbook file
(*.xls or *.xlsx) to read, as an absolute path
or relative to the command file location.

None – must be specified.

Worksheet The name of the worksheet in the
workbook to read. Currently this is
required if a specific sheet is read but in
the future it may be made optional because

Read the first worksheet. If
no address parameter is
specified, read the entire
worksheet.

353

ReadTableFromExcel() Command TSTool Documentation

Command Reference – ReadTableFromExcel() - 4

Parameter Description Default
the sheet can be determined from named
range and table names (global resources in
the workbook) and absolute Excel
addresses that include the sheet name.

ExcelAddress Indicates the block of cells to read into the
table, using Excel address notation (e.g.,
A1:D10).

Must specify address using
one of available address
parameters.

ExcelNamedRange Indicates the block of cells to read into the
table, using an Excel named range.

Must specify address using
one of available address
parameters.

ExcelTableName Indicates the block of cells to read into the
table, using an Excel named range.

Must specify address using
one of available address
parameters.

ExcelColumnNames Indicate how to determine the column
names for the table, one of:
• ColumnN – column name will be

Column1, Column2, etc.
• FirstRowInRange – column

names are taken from the first non-
comment row in the address range

• RowBeforeRange – column names
are taken from the first non-comment
row before the address range

ColumnN, or
FirstRowInRange when
ExcelTableName is
specified?

Comment Specify the character that if found at the
start of the first column in a row (not just
the specified address range) indicates that
the row is a comment and can be ignored
in transferring data to the output table.
Comments are particularly useful when
processing entire data sheets.

No comments are used.

ExcelIntegerColumns Indicate the names of columns (separated
by commas) that should be treated as
integer columns in the output table.

Numeric columns are treated
as double-precision values in
the output table.

ReadAllAsText Indicate with True or False whether all
columns in the Excel address block should
be treated as text columns.

False – set table column
types using the first data row

354

 Command Reference – ReadTimeSeries() - 1

Command Reference: ReadTimeSeries()
Read a single time series using a full time series identifier

Version 10.21.00, 2013-05-17

The ReadTimeSeries()reads a single time series using the time series identifier to uniquely identify
the time series. This generalized command is useful for converting time series identifiers from the
TSTool interface into read commands that assign an alias to a time series. Because the command is
generic, it does not offer specific parameters that may be found in read commands for specific input
types. Use the specific read commands where available for additional functionality and more specific
error handling. See also the ReadTimeSeriesList() command.

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadTimeSeies

ReadTimeSeries() Command Editor

355

ReadTimeSeries() Command TSTool Documentation

Command Reference – ReadTimeSeries() - 2

The command syntax is as follows:

ReadTimeSeries(Parameter=Value,…)

The following older command syntax is updated to the above syntax when a command file is read:

TS Alias = ReadTimeSeries (Parameter=Value,…)

Command Parameters

Parameter Description Default
TSID The time series identifier of the time

series to read. The identifier should
include the input type (and input name, if
required). See the input type appendices
for examples of time series identifiers for
various input types.

None – must be specified.

Alias The alias to assign to the time series, as a
literal string or using the special
formatting characters listed by the
command editor. The alias is a short
identifier used by other commands to
locate time series for processing, as an
alternative to the time series identifier
(TSID).

None – must be specified.

IfNotFound Indicates how to handle missing time
series, one of:
• Warn – generate fatal warnings and

do not include in output.
• Ignore – generate non-fatal

warnings and do not include in
output.

• Default – generate non-fatal
warnings and create empty time
series for those that could not be
found. This requires that a
SetOutputPeriod() command
be used before the command to
define the period for default time
series.

Warn

DefaultUnits Default units when
IfNotFound=Default.

Blank – no units.

A sample command file to read data from the State of Colorado’s HydroBase is as follows:

ReadTimeSeries(TSID="08235350.USGS.Streamflow.Day~HydroBase",Alias=TS1)

356

 Command Reference – ReadTimeSeriesList() - 1

Command Reference: ReadTimeSeriesList()
Read one or more time series using location identifiers from a table

Version 10.21.00, 2013-05-17

The ReadTimeSeriesList() command reads one or more time series using location identifiers from
a table, an example of which is shown below as a comma-separated value file:

Example list file. Comments start with the # character.
Column headings can be specified in the first non-comment row using quotes.
“Structure ID”,”Structure Name”
500501,Ditch 501
500502,Ditch 502
Invalid ID (see IfNotFound parameter)
509999,Ditch 9999

The command typically is used when reading time series from a single source and can streamline
processing in the following situations:

• A list of identifiers may have been generated from a database query
• A list of identifiers may have been extracted from a model data set

TSTool uses the location identifiers in the table with the command parameters and internally creates a list
of time series identifiers. The time series are of the standard form:

 Location.DataSource.DataType.Interval[.Scenario]~DataStore[~InputName]

where the brackets indicate optional information. TSTool then queries each time series, which can be
processed further by other commands. See also the ReadTimeSeries() command, which performs
essentially the same functionality but only reads one time series.

Although it is possible to specify a datastore (or “input type”) that reads from files by also using the
InputName, this is not generally recommended because the ReadTimeSeriesList() command
can only specify one input file name and the file will be reopened for each time series read. Instead, read
commands for specific file formats should be used because these commands are typically optimized to
read multiple time series from the files. Use the SetInputPeriod() command to set the period to
read.

357

ReadTimeSeriesList() Command TSTool Documentation

Command Reference – ReadTimeSeriesList() - 2

The following dialog is used to edit the command and illustrates the syntax of the command.

ReadTimeSeriesList

ReadTimeSeriesList() Command Editor

The command syntax is as follows:

ReadTimeSeriesList(Parameter=Value, …)

Command Parameters

Parameter Description Default
TableID The identifier for the table that provides the

list of location identifiers.
None – must be specified.

LocationColumn The column in the table containing the
location identifiers to use in time series
identifiers.

None – must be specified.

DataSource The data source in the time series identifier.
For example, if using the State of
Colorado’s HydroBase, USGS indicates that
data are from the United States Geological
Survey. See the datastore and input type
appendices for more information on
available data types.

May or may not be required,
depending on the datastore or input
type. Refer to the input type
appendices.

DataType The data type in the time series identifier. Usually required. Refer to the

358

TSTool Documentation ReadTimeSeriesList() Command

 Command Reference – ReadTimeSeriesList() - 3

Parameter Description Default
For example, if using the State of
Colorado’s HydroBase, DivTotal is used
for diversion totals. See the input type
appendices for more information on
available data types.

datastore and input type
appendices.

Interval Data interval in the time series identifier,
using standard values such as 15Minute,
6Hour, Day, Month, Year.

None – must be specified.

Scenario Scenario in the time series identifier. Usually not required.
DataStore The data store (or input type) in the time

series identifier. Refer to the datastore and
input type appendices or the TSTool main
GUI for options.

None – must be specified.

InputName The input name in the time series identifier,
when a file name is required.

IfNotFound Indicates how to handle missing time series,
one of:
• Warn – generate fatal warnings and do

not include in output.
• Ignore – generate non-fatal warnings

and do not include in output.
• Default – generate non-fatal

warnings and create empty time series
for those that could not be found. This
requires that a SetOutputPeriod()
command be used before the
command to define the period for
default time series.

Warn

DefaultUnits Default units when
IfNotFound=Default.

Blank – no units.

359

ReadTimeSeriesList() Command TSTool Documentation

Command Reference – ReadTimeSeriesList() - 4

A sample command file to process monthly diversion data from the State of Colorado’s HydroBase
database is as follows:

Read monthly diversion total from HydroBase for the structures in the list
file. The data source is set to DWR because data source is saved in
HydroBase.
ReadTimeSeriesList(TableID=”Diversions.csv",LocationColumn=”WDID”,
 DataSource=DWR,DataType=DivTotal,Interval=Month,InputType=HydroBase,
 IfNotFound=Default)

360

 Command Reference – ReadUsgsNwisDaily() - 1

Command Reference: ReadUsgsNwisDaily()
Read 1+ time series from the USGS NWIS Daily Value web service

Version 10.12.00, 2012-08-06

The ReadUsgsNwisDaily() command reads one or more time series from the United States
Geological Survey (USGS) National Water Information System (NWIS) Daily Value web service (see the
UsgsNwisDaily Data Store Appendix). The command provides parameters to constrain the web service
query and also allows the result to be saved as an output file. For example, if WaterML is chosen as the
time series format, a WaterML file can be saved and can be read later using the ReadWaterML()
command. See also the WebGet() command, which also can be used to retrieve data files from the
USGS website.

The USGS NWIS web service allows station and time series data type information to be filtered, both as a
convenience and to maintain reasonable web service performance. Many of the choices that are available
for limiting queries allow 0+ values to be provided. For example, specifying no requested parameter will
return all available parameters for a location. Specifying a list of parameters (separated by commas) will
return only the requested parameters.

USGS codes are used in order to generate a unique time series identifier (TSID). For example, the TSID
data type is formed from the parameter code, a dash, and the statistic code. The numerical codes
currently are used to ensure uniqueness but in the future the string name may be allowed as an option. In
order to have more human-friendly identifiers for time series, one strategy is to request only a specific
parameter and statistic and then use the alias to specify a text equivalent to the numeric codes. For
example, specify Parameters=00060 (for streamflow discharge) and Statistics=00003 and
assign the alias with Alias=%L.Streamflow-Mean.

361

ReadUsgsNwisDaily() Command TSTool Documentation

Command Reference – ReadUsgsNwisDaily() - 2

The following dialog is used to edit the command and illustrates the syntax. Note that some choices are
provided as a convenience. However, full listing of choices (such as all the thousands of streamflow
stations that are available) is not provided due to performance issues. Additional query features will be
enabled as web service integration is enhanced.

ReadUsgsNwisDaily

ReadUsgsNwisDaily() Command Editor

362

TSTool Documentation ReadUsgsNwisDaily() Command

 Command Reference – ReadUsgsNwisDaily() - 3

The command syntax is as follows:

ReadUsgsNwisDaily(Parameter=Value,…)

Command Parameters

Parameter Description Default
Sites A list of site numbers to read, separated

by commas.
None – one of the locational
parameters must be provided to
constrain the query.

States A list of state codes (e.g., AL), separated
by commas.

None – see above.

HUCs A list of hydrologic unit codes, separated
by commas. See the limitations on the
NWIS site for more information.

None – see above.

BoundingBox A bounding box consisting of west
longitude, south latitude, east longitude,
and north latitude, separated by spaces.
Longitudes in the western hemisphere
are negative.

None – see above.

Counties A list of Federal Information Processing
Standards (FIPS) county codes, separated
by commas.

None – see above.

Parameters Data parameter codes for the stations
(e.g., 00060 for stream discharge),
separated by commas.

All available parameters are
returned.

Statistics Statistic codes (e.g., 00003 for mean),
separated by commas.

All available statistics are
returned.

SiteStatus Filter for stations, one of:
• All – all stations are returned
• Active – only active stations are

returned
• Inactive – only inactive stations

are returned

All

SiteTypes Site types to return, separated by
commas.

All available site types are
returned.

Agency Agency code to return (e.g., USGS). All available agencies are
returned.

InputStart The start of the period to read data –
specify if the period should be different
from the global query period.

Use the global query period.

InputEnd The end of the period to read data –
specify if the period should be different
from the global query period.

Use the global query period.

Alias The alias to assign to the time series, as a
literal string or using the special
formatting characters listed by the
command editor. The alias is a short
identifier used by other commands to
locate time series for processing, as an

None – must be specified.

363

ReadUsgsNwisDaily() Command TSTool Documentation

Command Reference – ReadUsgsNwisDaily() - 4

Parameter Description Default
alternative to the time series identifier
(TSID).

Format The data format for output, one of:
• JSON – JavaScript Object Notation

(currently used only for downloads
but will not result in time series in
TSTool)

• RDB – tab-delimited format (also see
ReadUsgsNwisRDB() command;
currently used only for downloads
but will not result in time series in
TSTool).

• WaterML – XML format (also see
the ReadWaterML() command).

WaterML

OutputFile The name of the output file to create.
The path to the file can be absolute or
relative to the working directory.

No output file will be created.

364

 Command Reference – ReadUsgsNwisGroundwater() - 1

Command Reference:
ReadUsgsNwisGroundwater()

Read 1+ time series from the USGS NWIS groundwater web service
Version 10.12.00, 2012-10-17

The ReadUsgsNwisGroundwater() command reads one or more time series from the United States
Geological Survey (USGS) National Water Information System (NWIS) groundwater web service (see
the UsgsNwisGroundwater Datastore Appendix). The USGS data are historical manually recorded
values and data may be sparse over the full period. The command provides parameters to constrain the
web service query and also allows the result to be saved as an output file. For example, if WaterML is
chosen as the time series format, a WaterML file can be saved and can be read later using the
ReadWaterML() command. See also the WebGet() command, which can be used to retrieve data
files from the USGS website.

The USGS NWIS web service allows well and time series data type information to be filtered, both as a
convenience and to ensure reasonable web service performance. Many of the choices that are available
for limiting queries allow 0+ values to be provided. For example, specifying no requested parameter will
return all available parameters for a location. Specifying a list of parameters (separated by commas) will
return only the requested parameters.

USGS codes are used in order to generate a unique time series identifier (TSID). For example, the TSID
data type is formed from the parameter code. The numerical codes currently are used to ensure
uniqueness but in the future the string name may be allowed as an option. In order to have more human-
friendly identifiers for time series, one strategy is to request only a specific parameter and then use the
alias to specify a text equivalent to the numeric codes. For example, specify Parameters=72019 (for
depth to water level) and assign the alias with Alias=%L.WaterLevel.

Although the NWIS groundwater web service may return date/times with precision to minute, this
command treats all data as daily values and returns a daily time series. The daily interval time series
therefore may have many missing values, but often is easier to process with other TSTool commands. In
the future, the command may be updated to allow the option of returning other data intervals, including
irregular (which would have only non-missing values but typically must be converted to a regular interval
to use with other commands).

365

ReadUsgsNwisGroundwater() Command TSTool Documentation

Command Reference – ReadUsgsNwisGroundwater() - 2

The following dialog is used to edit the command and illustrates the syntax. Some choices are provided
as a convenience. However, full listing of choices (such as all the thousands of wells that are available) is
not provided due to performance issues. Additional query features will be enabled as web service
integration is enhanced.

ReadUsgsNwisGroundwater

ReadUsgsNwisGroundwater() Command Editor

366

TSTool Documentation ReadUsgsNwisGroundwater() Command

 Command Reference – ReadUsgsNwisGroundwater() - 3

The command syntax is as follows:

ReadUsgsNwisGroundwater(Parameter=Value,…)

Command Parameters

Parameter Description Default
Sites A list of site numbers to read, separated

by commas.
None – one of the locational
parameters must be provided to
constrain the query.

States A list of state codes (e.g., AL), separated
by commas.

None – see above.

HUCs A list of hydrologic unit codes, separated
by commas. See the limitations on the
NWIS site for more information.

None – see above.

BoundingBox A bounding box consisting of west
longitude, south latitude, east longitude,
and north latitude, separated by spaces.
Longitudes in the western hemisphere
are negative.

None – see above.

Counties A list of Federal Information Processing
Standards (FIPS) county codes, separated
by commas.

None – see above.

Parameters Data parameter codes for the stations
(e.g., 72019 for depth to water level),
separated by commas.

All available parameters are
returned.

SiteStatus Filter for stations, one of:
• All – all stations are returned
• Active – only active stations are

returned
• Inactive – only inactive stations

are returned

All

SiteTypes Site types to return, separated by
commas.

All available site types are
returned.

Agency Agency code to return (e.g., USGS). All available agencies are
returned.

Interval The interval to use for the created time
series. Groundwater measurements in
NWIS may be recorded for the day or
may have more precise date/time. Using
an interval of Day results in a regular
interval time series that is easier to
process by other commands, but may not
be suitable when values change
significantly within a day.

None – must be specified.

InputStart The start of the period to read data –
specify if the period should be different
from the global query period.

Use the global query period.

InputEnd The end of the period to read data –
specify if the period should be different

Use the global query period.

367

ReadUsgsNwisGroundwater() Command TSTool Documentation

Command Reference – ReadUsgsNwisGroundwater() - 4

Parameter Description Default
from the global query period.

Alias The alias to assign to the time series, as a
literal string or using the special
formatting characters listed by the
command editor. The alias is a short
identifier used by other commands to
locate time series for processing, as an
alternative to the time series identifier
(TSID).

None – must be specified.

Format The data format for output, one of:
• JSON – JavaScript Object Notation

(currently used only for downloads
but will not result in time series in
TSTool)

• RDB – tab-delimited format (also see
ReadUsgsNwisRDB() command;
currently used only for downloads
but will not result in time series in
TSTool).

• WaterML – XML format (also see
the ReadWaterML() command).

WaterML

OutputFile The name of the output file to create.
The path to the file can be absolute or
relative to the working directory.

No output file will be created.

368

 Command Reference – ReadUsgsNwisInstantaneous() - 1

Command Reference:
ReadUsgsNwisInstantaneous()

Read 1+ time series from the USGS NWIS Instantaneous Values web service
Version 10.13.00, 2012-10-30

The ReadUsgsNwisInstantaneous() command reads one or more time series from the United
States Geological Survey (USGS) National Water Information System (NWIS) Instantaneous Values web
service (see the UsgsNwisInstantaneous Datastore Appendix). The command provides parameters to
constrain the web service query and also allows the result to be saved as an output file. For example, if
WaterML is chosen as the time series format, a WaterML file can be saved and can be read later using the
ReadWaterML() command. See also the WebGet() command, which also can be used to retrieve
data files from the USGS website.

The USGS NWIS web service allows station and time series data type information to be filtered, both as a
convenience and to maintain reasonable web service performance. Many of the choices that are available
for limiting queries allow 0+ values to be provided. For example, specifying no requested parameter will
return all available parameters for a location. Specifying a list of parameters (separated by commas) will
return only the requested parameters.

The data interval for returned time series is set to 15Min. A check is performed to ensure that data line
up with this interval. If the data do not line up, values are set by rounding time and warnings will be
generated. Another option is to save the time series as a WaterML file and then use ReadWaterML()
command, which allows the time series interval to be specified.

USGS codes are used in order to generate a unique time series identifier (TSID). For example, the TSID
data type is formed from the parameter code. The numerical codes currently are used to ensure
uniqueness but in the future the string name may be allowed as an option. In order to have more human-
friendly identifiers for time series, one strategy is to request only a specific parameter and then use the
alias to specify a text equivalent to the numeric codes. For example, specify Parameters=00060 (for
streamflow discharge) and and assign the alias with Alias=%L.Streamflow.

369

ReadUsgsNwisInstantaneous() Command TSTool Documentation

Command Reference – ReadUsgsNwisInstantaneous () - 2

The following dialog is used to edit the command and illustrates the syntax. Note that some choices are
provided as a convenience. However, full listing of choices (such as all the thousands of streamflow
stations that are available) is not provided due to performance issues. Additional query features will be
enabled as web service integration is enhanced.

ReadUsgsNwisInstantaneous

ReadUsgsNwisInstantaneous() Command Editor

370

TSTool Documentation ReadUsgsNwisInstantaneous() Command

 Command Reference – ReadUsgsNwisInstantaneous () - 3

The command syntax is as follows:

ReadUsgsNwisInstantaneous(Parameter=Value,…)

Command Parameters

Parameter Description Default
Sites A list of site numbers to read, separated

by commas.
None – one of the locational
parameters must be provided to
constrain the query.

States A list of state codes (e.g., AL), separated
by commas.

None – see above.

HUCs A list of hydrologic unit codes, separated
by commas. See the limitations on the
NWIS site for more information.

None – see above.

BoundingBox A bounding box consisting of west
longitude, south latitude, east longitude,
and north latitude, separated by spaces.
Longitudes in the western hemisphere
are negative.

None – see above.

Counties A list of Federal Information Processing
Standards (FIPS) county codes, separated
by commas.

None – see above.

Parameters Data parameter codes for the stations
(e.g., 00060 for stream discharge),
separated by commas.

All available parameters for the
sites are returned.

SiteStatus Filter for stations, one of:
• All – all stations are returned
• Active – only active stations are

returned
• Inactive – only inactive stations

are returned

All

SiteTypes Site types to return, separated by
commas.

All available site types are
returned.

Agency Agency code to return (e.g., USGS). All available agencies are
returned.

InputStart The start of the period to read data to 15-
minute precision – specify if the period
should be different from the global query
period.

Use the global query period.

InputEnd The end of the period to read data to 15-
minute precision – specify if the period
should be different from the global query
period.

Use the global query period.

Alias The alias to assign to the time series, as a
literal string or using the special
formatting characters listed by the
command editor. The alias is a short
identifier used by other commands to
locate time series for processing, as an

None – must be specified.

371

ReadUsgsNwisInstantaneous() Command TSTool Documentation

Command Reference – ReadUsgsNwisInstantaneous () - 4

Parameter Description Default
alternative to the time series identifier
(TSID).

Format The data format for output, one of:
• JSON – JavaScript Object Notation

(currently used only for downloads
but will not result in time series in
TSTool)

• RDB – tab-delimited format (also see
ReadUsgsNwisRDB() command;
currently used only for downloads
but will not result in time series in
TSTool).

• WaterML – XML format (also see
the ReadWaterML() command).

WaterML

OutputFile The name of the output file to create.
The path to the file can be absolute or
relative to the working directory.

No output file will be created.

372

 Command Reference – ReadUsgsNwisRdb() - 1

Command Reference: ReadUsgsNwisRdb()
Read a single time series from a USGS NWIS RDB file

Version 10.05.00, 2012-02-27

The ReadUsgsNwisRdb() command reads a single time series from a USGS NWIS RDB file (see the
UsgsNwisRdb Input Type Appendix) and assigns an alias to the result. This command replaces the older
ReadUsgsNwis() command – legacy ReadUsgsNwis() commands are automatically translated to
ReadUsgsNwisRdb() commands. Currently only the daily streamflow format is supported and the
file being read must contain only one time series. The data type is assigned as Streamflow, with
units CFS. See also the WebGet() command, which can be used to retrieve data files from the USGS
website. See also the ReadUsgsNwisDaily() and ReadWaterML() commands.

The following dialog is used to edit the command and illustrates the syntax.

ReadUsgsNwisRdb

ReadUsgsNwisRdb() Command Editor

373

ReadUsgsNwisRdb() Command TSTool Documentation

Command Reference – ReadUsgsNwisRdb() - 2

The command syntax is as follows:

ReadUsgsNwisRdb(Parameter=Value,…)

The following legacy command syntax is updated to the above syntax when a command file is read:

TS Alias = ReadUsgsNwis (Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the USGS NWIS RDB file

to read, surrounded by double quotes.
The path to the file can be absolute or
relative to the working directory.

None – must be specified.

Alias The alias to assign to the time series, as a
literal string or using the special
formatting characters listed by the
command editor. The alias is a short
identifier used by other commands to
locate time series for processing, as an
alternative to the time series identifier
(TSID).

None – must be specified.

InputStart The start of the period to read data –
specify if the period should be different
from the global query period.

Use the global query period.

InputEnd The end of the period to read data –
specify if the period should be different
from the global query period.

Use the global query period.

A sample command file is as follows:

ReadUsgsNwisRdb(Alias=”ts1”,InputFile="G03451500.txt")

374

 Command Reference – ReadWaterML() - 1

Command Reference: ReadWaterML()
Read 1+ time series from a WaterML file

Version 10.13.00, 2012-10-31

The ReadWaterML() command reads one or more time series from a WaterML XML time series file
(see the WaterML Input Type Appendix). WaterML version 1.1 is supported. WaterML files can be
created using the ReadUsgsNwisDaily(), ReadWaterOneFlow(), and WriteWaterML()
commands, and can be saved from web sites that provide WaterML using the WebGet() command.
This command may be enhanced in the future to read a subset of the time series in the WatermL file
(currently all time series in the file are read), and additional WaterML versions may be supported.

The following dialog is used to edit the command and illustrates the syntax.

ReadWaterML

ReadWaterML() Command Editor

375

ReadWaterML() Command TSTool Documentation

Command Reference – ReadWaterML() - 2

The command syntax is as follows:

ReadWaterML(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the WaterML file to read.

The path to the file can be absolute or
relative to the working directory.

None – must be specified.

Alias The alias to assign to the time series, as a
literal string or using the special
formatting characters listed by the
command editor. The alias is a short
identifier used by other commands to
locate time series for processing, as an
alternative to the time series identifier
(TSID).

No alias is assigned.

Interval The data interval for the file, necessary
because WaterML 1.1 does not have a
data element indicating the interval (time
step for the data) and using irregular by
default would be inefficient for data
management. This issue is being further
evaluated.

None – must be specified.

RequireData
ToMatchInterval

Indicate whether the date/time for each
data value must align with the interval:
• True – For example, if

Interval=15Min for USGS
instantaneous data, then values a
warning will be generated.

• False – Date/times that do not
align result in time series values
being assigned using a truncated
date/time. For example, USGS
groundwater web service values read
with Interval=Day will be
assigned to the nearest day (by
ignoring more precise time
information).

This parameter and the Interval
parameter will continue to be evaluated.

True

Parameter is not used for
irregular data.

InputStart The start of the period to read data –
specify if the period should be different
from the global query period.

Use the global query period.

InputEnd The end of the period to read data –
specify if the period should be different
from the global query period.

Use the global query period.

376

 Command Reference – ReadWaterOneFlow() - 1

Command Reference: ReadWaterOneFlow()
Read 1+ time series from a WaterOneFlow web service

Version 10.06.00, 2012-03-29

This command is under development.

The ReadWaterOneFlow() command reads one or more time series from WaterOneFlow web service
(see the WaterOneFlow Data Store Appendix) and optionally assigns an alias to the time series.
WaterML version 1.0 is supported for time series transfer; however, the WaterML response currently
cannot be saved to a file (and therefore output cannot be used with the ReadWaterML() command).

The following dialog is used to edit the command and illustrates the syntax.

Need to generate screen shot.
ReadWtaerOneFlow

ReadWaterOneFlow() Command Editor

377

ReadWaterOneFlow() Command TSTool Documentation

Command Reference – ReadWaterOneFlow() - 2

The command syntax is as follows:

ReadWaterOneFlow(Parameter=Value,…)

Command Parameters

Parameter Description Default

Alias The alias to assign to the time series, as a

literal string or using the special
formatting characters listed by the
command editor. The alias is a short
identifier used by other commands to
locate time series for processing, as an
alternative to the time series identifier
(TSID).

No alias is assigned.

InputStart The start of the period to read data –

specify if the period should be different
from the global query period.

Use the global query period.

InputEnd The end of the period to read data –
specify if the period should be different
from the global query period.

Use the global query period.

378

Command Reference: RelativeDiff()
Create a relative difference time series

Version 10.00.01, 2011-05-15

A RelativeDiff() command creates a new relative difference time series, computed by subtracting
the time series and then dividing by one of the time series. This is useful when analyzing the relative
magnitudes of two time series over time. Most of the properties for the new time series are the same as
the first time series. The alias for the result can be referenced by other commands. The divisor can be
either of the time series. The result is set to missing if either time series value is missing or the divisor is
zero.

The following dialog is used to edit the command and illustrates its syntax.

RelativeDiff

RelativeDiff() Command Editor

 Command Reference – RelativeDiff() - 1 379

RelativeDiff() Command TSTool Documentation

The command syntax is as follows:

RelativeDiff(Parameter=Value,…)

The following older command syntax is updated to the above syntax when a command file is read:

TS Alias = RelativeDiff(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSID1 The time series identifier or alias for the first time series. None – must be

specified.
TSID2 The time series identifier or alias for the second time series

(subtracted from the first).
None – must be
specified.

Divisor Indicates whether the first time series is the divisor
(DivideByTS1) or the second time series is the divisor
(DivideByTS2).

None – must be
specified.

Alias The alias to assign to the time series, as a literal string or using
the special formatting characters listed by the command editor.
The alias is a short identifier used by other commands to
locate time series for processing, as an alternative to the time
series identifier (TSID).

None – must be
specified.

A sample command file to process data from the State of Colorado’s HydroBase database is as follows:

StartLog(LogFile="Example_RelativeDiff.log")
SetOutputPeriod(OutputStart="01/1912",OutputEnd="12/1998")
(1912-1998) RIO GRANDE AT ALAMOSA, CO. DWR Streamflow Monthly
ReadTimeSeries(Alias=”Alamosa”,"08223000.DWR.Streamflow.Month~HydroBase")
(1890-1998) RIO GRANDE NEAR DEL NORTE, CO. DWR Streamflow Monthly
ReadTimeSeries(TSID="08220000.USGS.Streamflow.Month~HydroBase",
 Alias=”DelNorte”)
RelativeDiff(TSID1="DelNorte",TSID2="Alamosa",
 Divisor=DivideByTS1,Alias=”RelativeDiff”)

Command Reference – RelativeDiff() - 2 380

TSTool Documentation RelativeDiff() Command

The input time series for the command are shown in the following figure:

relativeDiff_GraphData

Data for the RelativeDiff() Command

 Command Reference – RelativeDiff() - 3 381

RelativeDiff() Command TSTool Documentation

The results of processing the commands are shown in the following figure:

relativeDiff_Graph

Results of the RelativeDiff() Command

Command Reference – RelativeDiff() - 4 382

Command Reference: RemoveFile()
Remove a file

Version 09.02.00, 2009-04-03

The RemoveFile() command removes a file from the file system. This command is used in testing
software to remove results files before attempting to regenerate the results.

A failure will be generated if the file exists and cannot be removed (e.g., due to file permissions or being
locked by another process).

Even read-only files may be removed by this command, depending on how the operating system and
computer environment handle access permissions.

The following dialog is used to edit the command and illustrates the syntax for the command.

RemoveFile

RemoveFile() Command Editor

 Command Reference – RemoveFile() - 1 383

RemoveFile() Command TSTool Documentation

The command syntax is as follows:

RemoveFile(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the file to delete. None – must be specified.
IfNotFound Indicate action if the file is not found,

one of:
• Ignore – ignore the missing file

(do not warn).
• Warn – generate a warning (use this

if the file truly is expected and a
missing file is a cause for concern).

• Fail – generate a failure (use this if
the file truly is expected and a
missing file is a cause for concern).

Ignore

The following example command file illustrates how to remove a file:

RemoveFile(InputFile="Results/output.dv")

Command Reference – RemoveFile() - 2 384

 Command Reference – RemoveTableRowsFromDataStore() - 1

Command Reference:
RemoveTableRowsFromDataStore()

Remove rows from a datastore table
Version 10.18.00, 2013-02-26

The RemoveTableRowsFromDataStore() removes rows from a database datastore table by
executing an SQL DELETE statement. If database datastore support is not specifically provided by
TSTool, a generic datastore can be used (see the Generic Database DataStore appendix). This
command cannot be used with web service datastores and use with Excel datastores has not been tested.
This command is useful in particular for bulk data processing such as to remove records in a table before
(re)loading in bulk (see WriteTableToDataStore() command).

General constraints are as follows:

• the table or views being processed must be writeable by the user specified for the database
connection (some databases restrict direct access to data and/or require using stored procedures)

• currently, only the ability to delete all rows is supported (see RemoveAllRows command
parameter); in the future functionality will be implemented to delete rows matching rows in a
TSTool table

The following dialog is used to edit the command and illustrates the syntax for the command.

RemoveTableRowsFromDataStore

RemoveTableRowsFromDataStore() Command

385

RemoveTableRowsFromDataStore() Command TSTool Documentation

Command Reference – RemoveTableRowsFromDataStore() - 2

The command syntax is as follows:

RemoveTableRowsFromDataStore(Parameter=Value,…)

Command Parameters
Parameter Description Default
DataStore The name of a database datastore to process. None – must be specified.
DataStoreTable The name of the database table or view

being processed.
None – must be specified.

RemoveAllRows Indicate whether all rows should be removed
(True) or only a subset (False). False
is the default as a safeguard and future
enhancements will enable removing only
rows that match TSTool table rows or a
constraint.

False – only rows
matching TSTool table are
removed.

386

 Command Reference – ReplaceValue() - 1

Command Reference: ReplaceValue()
Replace time series data value(s)

Version 10.06.00, 2012-03-22

The ReplaceValue() command replaces a range of values in a time series with a constant value, sets
the values to missing, or removes the values (if an irregular time series). If the missing value indicator is
a number in the range, missing values also will be replaced. The time series data flag can be checked in
place of or addition to checking the numerical values. This command is useful for filtering out erroneous
data values. See also the CheckTimeSeries() command, which provides for a variety of checks and
also allows values to be set to missing or removed.

The following dialog is used to edit the command and illustrates the syntax of the command:

ReplaceValue

ReplaceValue() Command Editor

387

ReplaceValue() Command TSTool Documentation

Command Reference – ReplaceValue() - 2

The command syntax is as follows:

ReplaceValue(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed,

one of:
• AllMatchingTSID – all time series that

match the TSID (single TSID or TSID with
wildcards) will be processed.

• AllTS – all time series before the command.
• EnsembleID – all time series in the

ensemble will be processed.
• FirstMatchingTSID – the first time

series that matches the TSID (single TSID or
TSID with wildcards) will be processed.

• LastMatchingTSID – the last time series
that matches the TSID (single TSID or TSID
with wildcards) will be processed.

• SelectedTS – the time series are those
selected with the SelectTimeSeries()
command.

AllTS

TSID The time series identifier or alias for the time
series to be processed, using the * wildcard
character to match multiple time series.

Required if
TSList=*TSID.

EnsembleID The ensemble to be processed, if processing an
ensemble.

Required if
TSList=EnsembleID.

MinValue The minimum value to replace. The minimum value
and/or MatchFlag must
be specified.

MaxValue The maximum value to replace. If not specified, only data
values that exactly match
the minimum value will be
replaced.

MatchFlag The flag to match. If specified in addition to
MinValue, then the value and flag must be
matched in order to perform the replacement. A
case-sensitive comparison is made and the data
value flag must exactly match MatchFlag. In
the future additional flexibility may be added to
match a substring, etc.

If Action=SetMissing, the original data flag
value will remain. Specifying SetFlag will
result in the original data flag being modified.

The minimum value
and/or MatchFlag must
be specified.

NewValue The new data value. Required, unless the
Action parameter is

388

TSTool Documentation ReplaceValue() Command

 Command Reference – ReplaceValue() - 3

Parameter Description Default
specified.

Action An additional action to take with values that are
matched:
• Remove – remove the data points. This can

only be specified for irregular interval time
series and will be interpreted as
SetMissing for regular interval time
series.

• SetMissing – set values to missing.

No additional action is
taken and the NewValue
parameter must be
specified.

SetStart The date/time to start filling, if other than the full
time series period.

Check the full period.

SetEnd The date/time to end filling, if other than the full
time series period.

Check the full period.

AnalysisWindow
Start

The starting date/time within the calendar year to
replace data. The window CANNOT cross
calendar year boundaries (this may be allowed in
the future). Use multiple commands if necessary.

Process each full year.

AnalysisWindow
End

The ending date/time within the calendar year to
replace data.

Process each full year.

SetFlag A string to assign to data values that are replaced. Do not assign a string flag.

A sample command file to process from the State of Colorado’s HydroBase database is as follows:

08235700 - ALAMOSA RIVER BELOW CASTLEMAN GULCH NEAR JASPER
08235700.DWR.Streamflow.Month~HydroBase
ReplaceValue(TSList=AllTS,MinValue=-100000,MaxValue=0,NewValue=0)

389

ReplaceValue() Command TSTool Documentation

Command Reference – ReplaceValue() - 4

This page is intentionally blank.

390

Command Reference:
ResequenceTimeSeriesData()

Resequence time series data (shuffle years of data)
Version 10.00.01, 2011-05-15

The ResequenceTimeSeriesData() command resequences data in time series by
shifting/shuffling/repeating values from one year to another, creating new time series for each time series.
For example, January 1950 might be shifted to January 1990. This command is useful for generating
synthetic time series by resequencing historical data. The following constraints apply to the command as
currently implemented:

1. Processing by default occurs by calendar year, with the sequence specified as calendar years. If
an alternate output year type is used (see the OutputYearType parameter). The
OutputStart year is considered to be consistent with the output year type.

2. The sequence of years must currently be supplied as a column of years in a table (rows of years
may be added in a future enhancement).

3. Full start and end years are required, matching the output year type.
4. Currently the command can only be applied to month interval data. For a daily data interval,

several technical issues must be resolved before the feature can be implemented:
a. If a short year (i.e., non-leap year with 365 days) is transferred to a long year (i.e., a leap

year with 366 days), the first day after the short year is used for the 366th day during the
transfer. What to do if the year being transferred is the last in the data set and no more
years are available for the 366th day – repeat the last day?

b. If a long year (i.e., leap year with 366 days) is transferred to a short year (i.e., a non-leap
year with 365 days), the 366th day in the leap year is not transferred.

5. The original period is by default retained in the output time series. For example, if the original
data are 1937 to 1997, the resequenced data will also be in a time series with a period 1937 to
1997. The OutputStart parameter can be used to shift the start year of output.

The command is designed to work with a table that provides sequence information. For example, see the
ReadTableFromDelimitedFile() command and the example shown below.

 Command Reference – ResequenceTimeSeriesData() - 1 391

ResequenceTimeSeriesData() Command TSTool Documentation

The following dialog is used to edit the command and illustrates the syntax of the command.

ResequenceTimeSeriesData

ResequenceTimeSeriesData() Command Editor

The command syntax is as follows:

ResequenceTimeSeriesData(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed, one of:

• AllMatchingTSID – all time series that match
the TSID (single TSID or TSID with wildcards)
will be processed.

• AllTS – all time series before the command will
be processed.

• EnsembleID – all time series in the ensemble
will be processed.

• FirstMatchingTSID – the first time series
that matches the TSID will be processed.

• LastMatchingTSID – the last time series that
matches the TSID (single TSID or TSID with
wildcards) will be processed.

• SelectedTS – the time series selected with the
SelectTimeSeries() command will be
processed.

AllTS

TSID The time series identifier or alias for the time series to
be modified, using the * wildcard character to match
multiple time series.

Required when
TSList=*TSID.

EnsembleID The ensemble to be modified, if processing an
ensemble.

Required when
TSList=

Command Reference – ResequenceTimeSeriesData () - 2 392

TSTool Documentation ResequenceTimeSeriesData() Command

Parameter Description Default
EnsembleID.

TableID The identifier for the sequence table to use, which
indicates the dates to use when resequencing data (e.g.,
list of years for data sequence). For example, see the
ReadTableFromDelimitedFile() command.
The years should be consistent with the
OutputYearType.

None – must be
specified.

TableColumn The column name containing the sequence
information. Note that the input table must have
column names in a header record.

None – must be
specified.

TableRowStart The first data row number (1+) containing the first year
in the new sequence.

Use all rows.

TableRowEnd The last data row number (1+) containing the first year
in the new sequence.

Use all rows.

OutputYearType The output year type, indicating the year extent for the
resequencing, one of:
• Calendar – January to December
• NovToDec – November of previous calendar year

to October of current year.
• Water – October of previous calendar year to

September of current year.

Calendar

OutputStart The output start as a four-digit year that is consistent
with OutputYearType. For example, if processing
water years, the OutputStart would be the first
water year in the output (and start in October of the
previous calendar year). The output end is relative to
the output start and includes the number of years in the
sequence.

Same as the original
input data or use the
global output start if
specified. The output
months will be
adjusted for the
output year type.

NewScenario The new scenario to assign to the created time series,
resulting in a unique TSID.

Not specified, but a
new scenario and/or
alias must be
specified.

Alias Alias to assign to the output time series. See the
LegendFormat property described in the TSView
Time Series Viewing Tools appendix. For example,
%L is full location, %T is data type, %I is interval, and
%Z is scenario.

Not specified, but a
new scenario and/or
alias must be
specified.

 Command Reference – ResequenceTimeSeriesData() - 3 393

ResequenceTimeSeriesData() Command TSTool Documentation

The following example:

1. Reads a list of time series from a StateMod model file.
2. Reads a sequence of years from a delimited file.
3. Resequences the StateMod time series data.
4. Writes the resequenced file to a new StateMod file.

Read all demand time series…
ReadStateMod(InputFile=”..\StateMod\gunnC2005.xbm”)
Read the sequence of years to use…
Table 0001HK0101 = ReadTableFromDelimitedFile(InputFile=”0001HK0101.csv”)
Resequence the StateMod time series…
ResequenceTimeSeriesData(TSList=AllTS,TableID=”0001HK0101”,
TableColumn=”Trace1”,NewScenario=”KNN0101”,Alias=”%L-KNN0101”)
Write the resequenced data for StateMod
WriteStateMod(TSList=AllMatchingTSID,TSID=”*KNN*”,
 OutputFile=”..\StateMod0101\gunnC2005.xbm”)

The year sequence is specified in a file similar to the following.

Some comments
“Trace1”,”Trace2”,…
1905,1967,…
1920,1943,…
etc.

Variations on the example can be implemented, for example, to process output products after the run.

Command Reference – ResequenceTimeSeriesData () - 4 394

 Command Reference – RunCommands() - 1

Command Reference: RunCommands()
Run a command file

Version 10.20.00, 2013-04-20

The RunCommands() command runs a command file using a separate command processor as a “child”
of the main processor. This command can be used to manage workflow where multiple commands files
are run, and is also used extensively for testing, where a test suite consists of running separate test case
command files.

Command files that are run can themselves include RunCommands() commands. Each command file
that is run has knowledge if its initial working directory and relative paths referenced in the command file
are relative to this directory. This allows a master command file to reside in a different location than the
individual command files that are being run. The current working directory is reset to that of the
command file being run.

Data stores from the parent command processor are by default passed to the child command processor.
Consequently, database connections can be opened once and shared between command files.

Currently the properties from the parent command file are NOT applied to the initial conditions
when running the command file. Therefore, global properties like input and output period are reset to
defaults before running the command file. A future enhancement may implement a command parameter
to indicate whether to share the properties with the parent processor. The output from the command is
also not added to the parent processor. Again, a future enhancement may be to append output so that one
final set of output is generated.

There is currently no special handling of log files; consequently, if the main command file opens a log file
and then a command file is run that opens a new log file, the main log file will be closed. This behavior is
being evaluated.

The following dialog is used to edit the command and illustrates the syntax for the command.

RunCommands

RunCommands() Command Editor

395

RunCommands() Command TSTool Documentation

Command Reference – RunCommands() - 2

The command syntax is as follows:

RunCommands(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile The name of the command file to run, enclosed in double

quotes if the file contains spaces or other special
characters. A path relative to the master command file
can be specified.

None – must be
specified.

ExpectedStatus Used for testing – indicates the expected status from the
command, one of:
• Unknown
• Success
• Warning
• Failure

Success

ShareDataStores Indicate whether data stores in the parent should be
shared with the child command processor. Normally this
should be done so that databases can be opened once.
Note that opening data stores in the child command file
will not make the data stores available in the parent.

Share

The following example illustrates how the RunCommands() command can be used to test TSTool
software (or any implementation of commands). First, individual command files are implemented to test
specific functionality, which will result in warnings if a test fails:

StartLog(LogFile="Results/Test_ReadStateMod_1.TSTool.log")
NewPatternTimeSeries(NewTSID="MyLoc..MyData.Day",Alias=”TS”,
 Description="Test data",SetStart="1950-01-01",
 SetEnd="1951-03-12",Units="CFS",PatternValues="5,10,12,13,75")
Uncomment the following command to regenerate the expected results file.
WriteStateMod(TSList=AllTS,
OutputFile="ExpectedResults\Test_ReadStateMod_1_out.stm")
ReadStateMod(InputFile="ExpectedResults\Test_ReadStateMod_1_out.stm")
CompareTimeSeries(Precision=3,Tolerance=".001",DiffFlag="X",
 WarnIfDifferent=True)

Next, use the RunCommands() command to run one or more tests:

StartRegressionTestResultsReport(
 OutputFile="RunRegressionTest_commands_general.TSTool.out.txt")
…
RunCommands(InputFile="..\..\..\commands\general\ReadStateMod\Test_ReadStateMod_1.TSTool")
…

Each of the above command files should produce expected results, without warnings. If any command
file unexpectedly produces a warning, a warning will also be visible in TSTool. The issue can then be
evaluated to determine whether a software or configuration change is necessary. See the
StartRegressionTestResultsReport() command documentation for an explanation of how to
disable a command file with #@enabled False or indicate its expected status for testing (e.g.,
@#expected Status Warning).

396

Command Reference: RunDSSUTL()
Run the DSSUTL and other utility programs from the US Army Corps of Engineers

Version 09.03.00, 2009-04-10

The RunDSSUTL() command runs the Army Corps of Engineers’ DSSUTL program and other utility
programs, which are used with HEC-DSS files. See also the HEC-DSS Input Type appendix. This
command formats the command line for the program, runs the program, and checks the exit value. A
non-zero exit value will result in a failure status for the command.

TSTool internally maintains a working directory that is used to convert relative paths to absolute paths in
order to locate files. The working directory is by default the location of the last command file that was
opened. The location of the program being run (e.g., DSSUTL.EXE) is determined by the operating
system using the PATH environment variable; therefore, use the ${WorkingDir} property in the
command line if the program location is not in PATH. Use \” in the command line or arguments to
surround whitespace.

It is not clear whether DSSUTL and other program have limits on path or filename length, but if
this appears to be the case, use shorter names. If a program is not provided with correct input, it
may go into interactive mode, in which case TSTool may appear to stop when running the
command. Currently there is no way to kill the process and TSTool must be stopped and restarted.

The following table summarizes how the command treats input for various utility programs. Required
arguments are for the RunDSSUTL() command but may be optional if the program is run on the
command line.

RunDSSUTL() Command Handling of HEC-DSS Utility Program Input

Progam Description DSSFILE=

Argument
INPUT=
Argument

OUTPUT=
Argument

DSSUTL Data Storage System Utility Program Required Required Optional
DSPLAY Data Storage System Graphics Utility Required Required Optional
DSSMATH Utility Program for Mathematical

Manipulation of HEC-DSS Data
Not used – use
OPEN()
command.

Required Optional

REPGEN Report Generator – not fully
supported due to different
command line argument
conventions.

DSSTS Regular Interval Time-Series Data
Entry Program

Required Required Optional

DSSITS Irregular Interval Time-Series Data
Entry Program

Required Required Optional

DSSPD Paired Data Entry Program Required Required Optional
DSSTXT Text Data Entry Program Required Required Optional
DWINDO Interactive Data Entry and Editing This interactive program is not supported by

RunDSSUTL() command.
WATDSS Watstore to DSS Data Entry Program

– not fully supported due to
different command line argument

Required Required Optional

 Command Reference – RunDSSUTL() - 1 397

RunDSSUTL() Command TSTool Documentation

Progam Description DSSFILE=
Argument

INPUT= OUTPUT=
Argument Argument

conventions.
NWSDSS National Weather Service to Data

Storage System Conversion Utility –
not fully supported due to different
command line argument
conventions.

Required

Required Optional

PREAD Functions, Macros, and Screens – not
fully supported due to interactive
prompts.

The following dialog is used to edit the command and illustrates the command syntax. Note that the
DSSUTL.EXE location is in this case not included in the PATH environment variable and is specified with
the DssutlProgram parameter, using ${WorkingDir}. The HEC-DSS and input files are relative
to the working directory.

RunDSSUTL

RunDSSUTL() Command Editor when Specifying Command Line

Command Reference – RunDSSUTL() - 2 398

TSTool Documentation RunDSSUTL() Command

The command syntax is as follows:

RunDSSUTL(Parameter=Value…)

Command Parameters

Parameter Description Default
DssFile The HEC-DSS filename as an absolute path or

relative to the working directory. The file must
exist because TSTool does not interface with the
program interactive mode prompts. The
parameter is passed to the program using the
DSSFILE= command line argument.

None – must be
specified for most
programs.

InputFile The DSS utility program command file to run.
The file must exist because TSTool does not
interface with the utility program interactive mode
prompts. The input file name is passed to the
program using the INPUT= command line
argument.

None – must be
specified.

OutputFile The DSS utility program output file, which
contains logging information. This is passed to
the program using the OUTPUT= command line
argument. Specifying the argument will cause
output to be printed to the file and not the screen.
Note that some utility program commands write to
other output files (controlled by the command file
or other command line arguments), which should
not be confused with the output file for this
argument.

Not required – output
will be to screen if
command shell window
is shown.

DssutlProgram The DSS utility program to run. The PATH
environment variable is used to locate the
executable if a full path is not specified. Specify
the specific DSS utility program to run if the
default value is not appropriate.

If not specified,
DSSUTL.EXE will be
used and must be
located in a directory
listed in the PATH
environment variable.

 Command Reference – RunDSSUTL() - 3 399

RunDSSUTL() Command TSTool Documentation

This page is intentionally blank.

Command Reference – RunDSSUTL() - 4 400

 Command Reference – RunningAverage() - 1

Command Reference: RunningAverage()
Convert time series data to running average values

Version 10.13.00, 2012-10-25

The RunningAverage() command converts a time series’ raw data values to a running average,
resulting in data that are smoothed. New time series are NOT created (note that the newer
RunningStatisticTimeSeries() command has more flexibility and the
RunningAverage() command may be phased out in the future). There are several approaches to
computing the running average (as specified by the AverageMethod command parameter):

• The centered running average requires that the number intervals on each site of a point be
specified (e.g., specifying 1 will average 3 values at each point).

• The previous/future running average requires that the number of intervals prior to or after the
current point be specified.

• The N-year running average is computed by averaging the current year and N - 1 values from
previous years, for a specific date. An average value is produced only if N non-missing values
are available. Currently N-year running average values for Feb 29 for daily or finer data will
always be missing because a sufficient number of values will not be found – an option may be
added in the future to allow Feb 29 values to be computed based on fewer than N values.

• A special case of the N-year running average (NAllYear) is to use all previous years’ and the
current value.

The following dialog is used to edit the command and illustrates the centered running average command
syntax.

RunningAverage_centered

RunningAverage() Command Editor for Centered Running Average

401

RunningAverage() Command TSTool Documentation

Command Reference – RunningAverage() - 2

The following dialog illustrates the N-year running average command syntax.

RunningAverage_nyear

RunningAverage() Command Editor for N-Year Running Average

402

TSTool Documentation RunningAverage() Command

 Command Reference – RunningAverage() - 3

The command syntax is as follows:

RunningAverage(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed, one of:

• AllMatchingTSID – all time series that match
the TSID (single TSID or TSID with wildcards)
will be modified.

• AllTS – all time series before the command.
• EnsembleID – all time series in the ensemble will

be modified.
• LastMatchingTSID – the last time series that

matches the TSID (single TSID or TSID with
wildcards) will be modified.

• SelectedTS – the time series are those selected
with the SelectTimeSeries() command.

AllTS

TSID The time series identifier or alias for the time series to
be modified, using the * wildcard character to match
multiple time series.

Required if
TSList=*TSID.

EnsembleID The ensemble to be modified, if processing an
ensemble.

Required if
TSList=
EnsembleID.

AverageMethod The method used to create the running average, one of:

• Centered – values on each side of a date/time are

averaged.
• Future – average the next N (bracket) values but

do not include the current value.
• FutureInclusive – average the next N

(bracket) values and also include the current value.
• NYear – values for the current year and (N – 1)

preceding years, for the same date/time, are
averaged.

• NAllYear – values for the current year and all
preceding years, for the same date/time, are
averaged (missing values are allowed)

• Previous – average the previous N (bracket)
values but do not include the current value.

• PreviousInclusive – average the previous N
(bracket) values and also include the current value.

None – must be
specified.

Bracket For centered running average, the bracket is the number
of points on each side of the current point (therefore a
value of 1 will average 3 data values). For N-year
running average, the bracket is the total number of years
to average, including the current year.

None – must be
specified.

403

RunningAverage() Command TSTool Documentation

Command Reference – RunningAverage() - 4

A sample command file to convert State of Colorado HydroBase diversion time series to running
averages is as follows:

0100501 - EMPIRE DITCH
ReadTimeSeries(Alias="Center","0100501.DWR.DivTotal.Month~HydroBase")
RunningAverage(TSList=AllMatchingTSID,TSID="Center",
 AverageMethod=Centered,Bracket=3)
ReadTimeSeries(Alias="NYear","0100501.DWR.DivTotal.Month~HydroBase")
RunningAverage(TSList=AllMatchingTSID,TSID="NYear",
 AverageMethod=NYear,Bracket=5)
0100501.DWR.DivTotal.Month~HydroBase

The resulting graph is as follows:

RunningAverage_graph

Results from RunningAverage() Commands

404

 Command Reference – RunningStatisticTimeSeries() - 1

Command Reference:
RunningStatisticTimeSeries()

Create a new time series containing running statistics computed from input
Version 10.12.00, 2012-07-18

The RunningStatisticTimeSeries() command uses a sample of values from a time series to
compute a running statistic, resulting in new time series. The two main purposes of the command are:

1. Compute a running statistic around a moving point, in order to smooth the time series, for
example to focus on underlying short-term forcings rather than variability or noise

2. Compute a statistic by using values from the historical period, for example to illustrate how a
daily value compares to historical values for the same day

The sample is computed relative to a date/time in the time series and consequently the resulting statistic
may vary at each date/time in the time series. The resulting time series will have a time series identifier
(TSID) that is the same as the original, with “-Running-” and the statistic appended to the data type (an
alias can be assigned to customize the identifier that is used for processing). There are several approaches
to determining the sample for the running statistic (as specified by the SampleMethod command
parameter):

• The centered running statistic requires that the number intervals on each site of a point be
specified (e.g., specifying 1 will use 3 values at each point).

• The previous/future running statistic requires that the number of intervals prior to or after the
current point be specified.

• The N-year running statistic is computed by processing the current year and N - 1 values from
previous years, for a specific date. A resulting value is produced only if N non-missing values
are available. Currently N-year running statistic values for Feb 29 for daily or finer data will
always be missing because a sufficient number of values will not be found – an option may be
added in the future to allow Feb 29 values to be computed based on fewer than N values.

• A special case of the N-year running statistic (NAllYear) is to use all previous years’ and the
current value.

Statistics may be calculated directly from the sample or may be derived from an additional calculation.
For example, the Mean statistic is computed by computing the mean of the values in the sample, and is
assigned as the output time series value for the date/time that defines the sample. However, the
PercentOfMean statistic is computed first by computing the Mean statistic and then dividing the
original time series value by the mean, for each date/time in the time series. Derived statistics could be
computed for many statistics but are provided only for cases that have common use.

405

RunningStatisticTimeSeries() Command TSTool Documentation

Command Reference – RunningStatisticTimeSeries() - 2

The following dialog is used to edit the command and illustrates the centered running average command
syntax.

RunningStatisticTimeSeries

RunningStatisticTimeSeries() Command Editor for Centered Running Average

The command syntax is as follows:

RunningStatisticTimeSeries(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed, one of:

1. AllMatchingTSID – all time series that match
the TSID (single TSID or TSID with wildcards)

2. AllTS – all time series generated before the
command

3. EnsembleID – all time series in the ensemble
4. FirstMatchingTSID – the first time series that

matches the TSID (single TSID or TSID with
wildcards)

5. LastMatchingTSID – the last time series that
matches the TSID (single TSID or TSID with
wildcards)

6. SelectedTS – the time series selected with the
SelectTimeSeries() command

AllTS

TSID The time series identifier or alias for the time series to
be processed, using the * wildcard character to match

Required if
TSList=*TSID.

406

TSTool Documentation RunningStatisticTimeSeries() Command

 Command Reference – RunningStatisticTimeSeries() - 3

Parameter Description Default
multiple time series.

EnsembleID The ensemble to be processed, if processing an
ensemble.

Required if
TSList=
EnsembleID.

Statistic The statistic to compute for each point in the created
time series, one of:

• ExceedanceProbability – the probability

that the value will be exceeded, best-suited for the
N* sample methods (see discussion below about
how statistics are computed)

• GeometricMean – geometric mean value
• Lag-1AutoCorrelation – the autocorrelation

between values and the those that follow in the next
time step, given by:
rk = Σi=1

N-k(Yi - Ymean)(Yi + k - Ymean)
 Σi=1

N(Yi - Ymean)2
• Max – maximum value
• Mean – arithmetic mean value
• Median – median value
• Min – minimum value
• NonexceedanceProbability – the

probability that the value will not be exceeded, 1-
ExceedanceProbability, best-suited for the
N* sample methods (see discussion below about
how statistics are computed)

• PercentOfMax – percent of the Max statistic
output

• PercentOfMean – percent of the Mean statistic
output

• PercentOfMedian – percent of the Median
statistic output

• PercentOfMin – percent of the Min statistic
output

• Skew – skew coefficient, as follows:
Cs = N Σi=1

N(Yi - Ymean)3

 (n – 1)(n – 2)s3

where s = standard deviation
• StdDev – standard deviation
• Total – sum of values
• Variance – variance

None – must be
specified.

SampleMethod The method used to determine the data sample for each
statistic calculation, one of:
• Centered – N (bracket) values on each side of a

date/time and the center value
• Future – average the next N (bracket) values but

do not include the current value

None – must be
specified.

407

RunningStatisticTimeSeries() Command TSTool Documentation

Command Reference – RunningStatisticTimeSeries() - 4

Parameter Description Default
• FutureInclusive – average the next N

(bracket) values and also include the current value
• NYear – values for the current year and (N – 1)

preceding years, for the same date/time in each year
• NAllYear – values for the current year and all

preceding years, for the same date/time in each year
(missing values are allowed)

• Previous – the previous N (bracket) values but
do not include the current value

• PreviousInclusive – the previous N (bracket)
values and also include the current value

If a sample method such as NAllYear is desired, but
including previous, current, and future values, then the
NewStatisticTimeSeries() command can be
used.

Bracket For centered SampleMethod, the bracket is the
number of points on each side of the current point
(therefore a value of 1 will average 3 data values). For
future and previous SampleMethod, the bracket is the
number of previous or future values. For N-year
SampleMethod, the bracket is the total number of
years to process, including the current year.

None – must be
specified.

AllowMissing
Count

The number of values allowed to be missing in the
sample and still compute the statistic. Care should be
taken to specify a value that is relatively small for the
sample size.

0 – no missing
values are allowed
in the sample

Alias The alias to assign to the time series, as a literal string
or using the special formatting characters listed by the
command editor. The alias is a short identifier used by
other commands to locate time series for processing, as
an alternative to the time series identifier (TSID).

None – must be
specified.

ProbabilityUnits Units to use for calculated probability statistics. Fraction (0 –
1).

The following table provides additional information about how some statistics are computed.

Statistic Computation Details

Statistic Computation Details
Exceedance
Probability

1. Rank the values in the sample from highest to lowest. Duplicate values are
retained in the sample

2. Search the list of ranked values, starting from the largest:
a. If the value exactly matches a value in the sample:

i. The matched value has a position i (where the largest value is in
position i=1).

ii. The exceedance probability is calculated as i/(n + 1), where n is
the sample size.

b. If the value is outside any values in the sample (e.g., for Future and

408

TSTool Documentation RunningStatisticTimeSeries() Command

 Command Reference – RunningStatisticTimeSeries() - 5

Statistic Computation Details
Previous sample methods), then the exceedance value is not
calculated and warnings are generated. In this case a different sample
method should be used.

c. If the value does not exactly match a value in the sample (e.g., for
Future and Previous sample methods):

i. Find the ranked values that bound the value.
ii. The exceedance probability for each bounding value is

calculated as i/(n + 1), where i is the list position (1 for the
largest value) and n is the sample size.

iii. The exceedance probability for the specific value is interpolated
from the bounding values. Note that the exceedance probability
is not recomputed by adding the value to the sample. If this is
desired, use the FutureInclusive or
PreviousInclusive sample methods.

Duplicate values are handled by using the first value found in the sequence of
duplicates.

A sample command file to convert State of Colorado HydroBase diversion time series to running
averages is as follows:

SetInputPeriod(InputStart="1993-01",InputEnd="2000-12")
0100501 - EMPIRE DITCH
0100501.DWR.DivTotal.Month~HydroBase
RunningStatisticTimeSeries(TSList=AllMatchingTSID,
 TSID="0100501.DWR.DivTotal.Month",Statistic=Mean,SampleMethod=Centered,
 Bracket=3,Alias="Centered")
RunningStatisticTimeSeries(TSList=AllMatchingTSID,
 TSID="0100501.DWR.DivTotal.Month",Statistic=Mean,SampleMethod=NYear,
 Bracket=5,Alias="NYear")
ProcessTSProduct(TSProductFile="Test_RunningStatisticTimeSeries_Example.tsp")

409

RunningStatisticTimeSeries() Command TSTool Documentation

Command Reference – RunningStatisticTimeSeries() - 6

The resulting graph is as follows:

RunningStatisticTimeSeries_graph

Results from RunningStatisticTimeSeries() Commands

410

Command Reference: RunProgram()
Run an external program

Version 09.03.00, 2009-04-08

The RunProgram() command runs an external program, given the full command line or individual
command line parts, and waits until the program is finished before processing additional commands. The
TSTool command will indicate a failure if the exit status from the program being run is non-zero. It is
therefore possible to call an external program that reads and/or writes recognized time series formats to
perform processing that TSTool cannot. One use of this command is to create a calibration environment
where a model is run and then the results are read and displayed using TSTool. It is also useful to use
TSTool’s testing features to implement quality control checks for other software tools.

TSTool internally maintains a working directory that is used to convert relative paths to absolute paths to
locate files. The working directory is by default the location of the last command file that was opened.
The external program may assume that the working directory is the location from which TSTool software
was started (or the installation location if started from a menu). Therefore, it may be necessary to run
TSTool in batch mode from the directory where the external software’s data files exist, use absolute paths
to files, or use the ${WorkingDir} property in the command line. Use \” in the command line or
arguments to surround whitespace. Some operating systems may have limitations on command line
length. The following dialog is used to edit the command and illustrates the command syntax.

RunProgram

RunProgram() Command Editor when Specifying Command Line

 Command Reference – RunProgram() - 1 411

RunProgram() Command TSTool Documentation

The command syntax is as follows:

RunProgram(Parameter=Value…)

Command Parameters

Parameter Description Default
CommandLine The full program command line, with arguments.

If the program executable is found in the PATH
environment variable, then only the program name
needs to be specified. Otherwise, specify an
absolute path to the program or run TSTool from a
command shell the same directory.

The ${WorkingDir} property can be used in
the command line to indicate the working
directory (command file location) when
specifying file names.

For Windows, it may be necessary to place a \”
at the start and end of the command line, if a full
command line is specified.

Must be specified if the
Program parameter is
not specified.

The Program
parameter will be used
if both are specified.

Program The name of the program to run. Program
arguments are specified using the ProgramArg#
parameter(s). See the CommandLine parameter
for more information about parameter formatting
and locating the executable.

Must be specified if the
CommandLine
parameter is not
specified.

ProgramArg1,
ProgramArg2,
etc.

Command like arguments used with Program. If
necessary, use ${WorkingDir} to specify the
working directory to locate files.

No arguments will be
used with Program.

UseCommandShell If specified as False, the program will be run
without using a command shell. A command shell
is needed if the program is a script (batch file), a
shell command, or uses >, |, etc.

True, using cmd.exe
/C on Windows and
/bin/sh –c on
UNIX/Linux.

Timeout The timeout in seconds – if the program has not
yet returned, the process will be ended. Zero
indicates no timeout. This behavior varies and
is being enhanced.

No timeout.

ExitStatus
Indicator

By default, the program exit status is determined
from the process that is run. Normally 0 means
success and non-zero indicates an error.
However, the program may not exit with a non-
zero exit status when an error occurs. If the
program instead uses an output string like STOP
3 to indicate the status, use this parameter to
indicate the leading string, which is followed by
the exit status (e.g., STOP).

Determine the exit
status from the process
exit value.

Command Reference – RunProgram() - 2 412

TSTool Documentation RunProgram() Command

The following figure illustrates how a command would be entered using the program name and parts, and
use the command shell to run. Note that the output redirection character “>” is entered as a program
argument. The echo program on Windows is actually internal to the cmd.exe command shell and
therefore must be run using the command shell (the default behavior).

RunProgram_Program

RunProgram() Command Editor when Specifying Program and Arguments

 Command Reference – RunProgram() - 3 413

RunProgram() Command TSTool Documentation

The following figure illustrates how a command can be run without a command shell and using the
program output to determine the exit status. The testecho.exe program is a compiled executable and can
therefore be run without a command shell. Because the standard output is being evaluated for the exit
value, the output cannot be redirected to a file with > (this would result in no output being available to
TSTool to evaluate), and > is only recognized if running with a command shell in any case.

The following approach is suitable, for example, when running a compiled model or data analysis tool.
However, if the tool is run using a script or batch file, then a command shell must be used.

RunProgram_Program_ExitStatusIndicator

RunProgram() Command Editor when Specifying Program, Arguments, and Exit Status Indicator

Command Reference – RunProgram() - 4 414

 Command Reference – RunPython() - 1

Command Reference: RunPython()
Run a Python script

Version 10.12.00, 2012-07-19

The RunPython() command runs a Python script, waiting until execution is finished before processing
additional commands. Python is a powerful scripting language that is widely used (see
http://www.python.org). This command allows Python scripts to be run using a variety of Python
interpreters, as shown in the following table. It is assumed that Python is installed in the standard
directory for the distribution. New versions of Python will reside in similar locations to those shown
below.

RunPython() Supported Python Interpreters

Interpreter
(Website)

Language, Program Name
(Example Install Home)

Comments

IronPython
(ironpython.net)

.NET, ipy
(C:\Program Files\IronPython 2.6)

Useful for integrating with .NET
applications, in particular to manipulate
Microsoft Office software data files. Can
use .NET assembly code (but this code in
a Python script is only recognized by
IronPython). Integration can occur within
a running .NET application (essentially
extending the functionality of the .NET
application). Version 2.6 requires .NET
2.0. Version 2.6.1 requires .NET 4.0.

Jython
(www.jython.org)

Java, jython
(C:\jython2.5.1)

Useful for integrating with Java
applications, such as TSTool. Can use
Java code (but this code in a Python script
is only recognized by Jython).

Jython embedded
(www.jython.org)

Java
(C:\jython2.5.1, but must use the
installer option to create a JAR file in
order to embed – this is the file that is
distributed with TSTool).

Useful for integrating with Java
applications, such as TSTool. Can use
Java code (but this code in a Python script
is only recognized by Jython). Integration
can occur within a running Java
application (essentially extending the
functionality of the Java application).

Python
(www.python.org)

C, python
(C:\Python25)

The original Python interpreter, which
defines the Python language specification.

Python implementations have similar file organization, with the main executable (or batch file) residing in
the main install folder. Core functionality is typically completely handled within the interpreter code
and/or Python code included in the Lib folder under the main installation folder. Extended capabilities
such as third-party add-ons are made available as module libraries that are installed in the Lib\site-
packages folder. These folders are typically automatically included in the Python path and will be found
when import statements are used in Python scripts. The folder for the main Python script that is run to
start an execution is also typically included in the Python path by the interpreter at runtime. If any
additional Python modules needed to be found, they can be added to the Python path at runtime (see the
PythonPath command parameter below).

415

http://www.python.org/

RunPython() Command TSTool Documentation

Command Reference – RunPython() - 2

If the embedded Jython is used, then there may be no reliance on any other software if the core Python
capabilities can be used. However, if third-party packages are used, it may be best to install them with the
Jython distribution (e.g., in Lib\site-packages) so that the packages can be used for independent testing
prior to use in the embedded interpreter. For example, perform a typical Jython install (e.g., into
C:\Jython2.5.1), install the third-party packages into this location (using the installer for the package or
directly copying into the Lib\site-packages folder), and then specify the
PythonPath=C:\Jython2.5.1\Lib\site-packages) command parameter.

If a non-embedded approach is used, then IronPython, Jython, or Python must be installed on the
computer for the appropriate Interpreter command parameter value. The interpreter program will be
found if the installation folder is defined in the PATH environment variable, or use the Program
command parameter to specify the full path to the interpreter program to run. The script is then run by
running the following (see full parameter descriptions below):

Program InputFile Arguments

The following dialog is used to edit the command and illustrates the command syntax.

RunPython

RunPython() Command Editor

416

TSTool Documentation RunPython() Command

 Command Reference – RunPython() - 3

The command syntax is as follows:

RunPython(Parameter=Value,…)

Command Parameters

Parameter Description Default
Interpreter The Python interpreter to run, one of:

• IronPython
• Jython
• JythonEmbedded
• Python
Global properties can be used with the ${Property}
syntax.

None – must be
specified.

Program The Python interpreter program to run. Specify as a
full path to the installed program, or only the program
name (in which case the path to the program must be
included in the PATH environment variable). Global
properties can be used with the ${Property}
syntax.

Determined based on
the Interpreter
parameter:
• IronPython: ipy
• Jython: jython
• Python: python

PythonPath Additional locations for modules, to be added to the
Python path. Specify paths separated by ; or :. For
embedded Jython, the sys.path is updated prior to
running the script. For non-embedded interpreters, the
JYTHONPATH environment variable is updated for the
interpreter, which results in sys.path being updated.
Global properties can be used with the ${Property}
syntax.

None – the core Python
capabilities are
available.

InputFile The Python script to run, specified as an absolute path
or relative to the command file. See the Arguments
parameter for information about using properties to
specify the location. Global properties can be used
with the ${Property} syntax.

None – must be
specified.

Arguments Arguments to pass to the script, such as the names of
files to process. Use the ${WorkingDir} property
to specify the location of the command file. Use
${InstallDir} for the TSTool install folder. Use
\” to surround arguments that include spaces.
Separate arguments by a space. Global properties can
be used with the ${Property} syntax.

None – arguments are
optional.

The following command example illustrates how to run a Python script.

RunPython(InputFile="Data/readwritefile.py",
Interpreter="JythonEmbedded",Arguments="${WorkingDir}/Data/readwritefile.txt
${WorkingDir}/Results/Test_RunPython_Interpreter=JythonEmbedded_out.txt")

417

RunPython() Command TSTool Documentation

Command Reference – RunPython() - 4

The corresponding Python script is as follows:

Test command for running Python script from TSTool

import sys
import os
print "start of script"
print 'os.getcwd()="' + os.getcwd() + '"'
infile = None
outfile = None
if (len(sys.argv) < 3):
 print "Error. Expecting input file name as first command line argument,
output file name as second."
 sys.exit(1)
else:
 infile = sys.argv[1]
 outfile = sys.argv[2]
 print 'Input file to process is "' + infile + '"'
 print 'Output file to create is "' + outfile + '"'

inf=open(infile,'r')
outf=open(outfile,'w')
for line in inf:
 outf.write("out: " + line)
inf.close()
outf.close()
print "end of script"

The data file is as follows:

Line 1 (first line)
Line 2
Line 3
Line 4
Line 5 (last line)

The output file is as follows:

out: Line 1 (first line)
out: Line 2
out: Line 3
out: Line 4
out: Line 5 (last line)

The following example illustrates the use of double quotes to surround Python script command-line
arguments, to ensure that spaces and equal sign characters are properly handled:

Retrieve the MEI (ENSO) index
WebGet(URI="http://www.esrl.noaa.gov/psd/data/correlation/mei.data",LocalFile="mei.data")
Convert the MEI data file to a CSV file that can be read by TSTool
RunPython(Interpreter="Python",InputFile="mei2csv.py",Arguments="\"InputFile=${WorkingDir}/mei.data\"
 \"OutputFile=${WorkingDir}/mei.csv\" \"LogFile=${WorkingDir}/mei2csv.log\"")

418

 Command Reference – Scale () - 1

Command Reference: Scale()
Scale time series data values by a constant value

Version 10.12.00, 2012-08-13

The Scale() command scales each non-missing value in the specified time series. The value to use for
scaling can be specified as a constant, monthly values, or special values that indicate to scale by the
number of days in the month.

The following dialog is used to edit the command and illustrates the command syntax.

Scale

Scale() Command Editor

The command syntax is as follows:

Scale(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be

processed, one of:
• AllMatchingTSID – all time series

that match the TSID (single TSID or
TSID with wildcards) will be modified.

• AllTS – all time series before the
command.

• EnsembleID – all time series in the
ensemble will be modified.

• FirstMatchingTSID – the first time
series that matches the TSID (single
TSID or TSID with wildcards) will be

AllTS

419

Scale() Command TSTool Documentation

Command Reference – Scale () - 2

Parameter Description Default
modified.

• LastMatchingTSID – the last time
series that matches the TSID (single
TSID or TSID with wildcards) will be
modified.

• SelectedTS – the time series are those
selected with the
SelectTimeSeries() command.

TSID The time series identifier or alias for the time
series to be modified, using the * wildcard
character to match multiple time series.

Required if
TSList=*TSID

EnsembleID The ensemble to be modified, if processing an
ensemble.

Required if
TSList=EnsembleID

ScaleValue One of the following:
• The numerical value to scale to the time

series.
• DaysInMonth to indicate a scale of the

number of days in the month.
• DaysInMonthInverse to indicate a

scale of the inverse of the number of days
in the month.

None – must be specified.

MonthValues Monthly scale values, the fist being for
January.

Use ScaleValue.

AnalysisStart The date/time to start analyzing data. Full period is analyzed.
AnalysisEnd The date/time to end analyzing data. Full period is analyzed.
NewUnits New data units for the resulting time series. Do not change the units.

The following example scales a precipitation time series from the State of Colorado’s HydroBase by a
factor of 3.5:

1458 - CENTER 4 SSW
1458.NOAA.Precip.Month~HydroBase
Scale(TSList=AllMatchingTSID,TSID="1458.NOAA.Precip.Month",ScaleValue=3.5)

The following example scales a monthly streamflow time series with units of ACFT (volume per month)
in order to convert the data to average CFS flow values (note that two scale commands are required
because the DaysInMonthInverse value cannot currently be combined with a numerical value in one
command). See also the ConvertDataUnits() command for simple units conversions.

06754000 - SOUTH PLATTE RIVER NEAR KERSEY
06754000.DWR.Streamflow.Month~HydroBase
Scale(TSList=AllMatchingTSID,TSID="06754000.DWR.Streamflow.Month",
 ScaleValue=.5042)
Scale(TSList=AllMatchingTSID,TSID="06754000.DWR.Streamflow.Month",
 ScaleValue=DaysInMonthInverse,NewUnits="CFS")
06754000.DWR.Streamflow.Month~HydroBase

420

 Command Reference – SelectTimeSeries() - 1

Command Reference: SelectTimeSeries()
Select time series for additional processing

Version 10.12.00, 2012-10-25

The SelectTimeSeries() command selects output time series, as if done interactively, to indicate
which time series should be operated on by following commands. The command minimizes the need for
the Free() command, when used in conjunction with other commands that use a time series list based
on selected time series (TSList=SelectedTS). See also the DeselectTimeSeries() command.

The following dialog is used to edit the command and illustrates the command syntax.

SelectTimeSeries

SelectTimeSeries() Command Editor

The command syntax is as follows:

SelectTimeSeries(Parameter=Value,…)

421

SelectTimeSeries() Command TSTool Documentation

Command Reference – SelectTimeSeries() - 2

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be

processed, one of:
• AllMatchingTSID – all time

series that match the TSID (single
TSID or TSID with wildcards) will
be modified.

• AllTS – all time series before the
command.

• EnsembleID – all time series in
the ensemble will be modified (see
the EnsembleID parameter).

• LastMatchingTSID – the last
time series that matches the TSID
(single TSID or TSID with
wildcards) will be modified.

• TSPosition – time series
specified by position in the results
list (see TSPosition parameter
below).

AllTS

TSID The time series identifier or alias for the
time series to be modified, using the *
wildcard character to match multiple
time series.

Required if TSList=*TSID

EnsembleID The ensemble to be modified, if
processing an ensemble.

Required if
TSList=EnsembleID

TSPosition A list of time series positions (1+) in
output, separated by commas. Ranges
can be specified as Start-End.

Required if
TSList=TSPosition

DeselectAllFirst Indicates whether all time series should
be deselected before selecting the
specified time series: True or False.

False

PropertyName Name of user-defined property to check.
PropertyCriterion Criterion to evaluate to determine which

properties match.
Required if PropertyName is
specified.

PropertyValue Value to check against the property
value, using criterion.

Required if PropertyName is
specified.

A sample command file is as follows:

NewPatternTimeSeries(Alias="401234",NewTSID="401234..Precip.Day",
Description="Example data",SetStart="2000-01-01",SetEnd="2000-12-31",
 Units="IN",PatternValues="0,1,3,0,0,0")
SelectTimeSeries(TSList=AllMatchingTSID,TSID="40*",DeselectAllFirst=True)

422

Command Reference: SetAutoExtendPeriod()
Set whether time series periods should automatically be extended to the output

period
Version 08.16.03, 2008-07-29

By default, the time series period is extended to include the output period, if specified, when a time series
is read. See also the SetOutputPeriod() command. If the extended period subsequently contains
missing data, it can be filled with other commands. The SetAutoExtendPeriod() command can be
used to change this setting if it is not desirable (e.g., for performance reasons).

The following dialog is used to edit the command and illustrates the command syntax.

SetAutoExtendPeriod

SetAutoExtendPeriod() Command Editor

The command syntax is as follows:

SetAutoExtendPeriod(Parameter=Value,…)

Command Parameters

Parameter Description Default
AutoExtendPeriod Indicate whether the period of time series

should automatically be extended to the
output period when time series are read,
True or False.

None – must be specified. The
default is True if this command
is not used.

A sample command file is as follows:

SetAutoExtendPeriod(AutoExtendPeriod=False)

 Command Reference – SetAutoExtendPeriod() - 1 423

SetAutoExtendPeriod() Command TSTool Documentation

This page is intentionally blank.

Command Reference – SetAutoExtendPeriod() - 2 424

Command Reference: SetAveragePeriod()
Set the period used to compute historical averages

Version 08.16.03, 2008-07-29

The SetAveragePeriod() command sets the period that is used to compute historic averages used
with the FillHistMonthAverage() and FillHistYearAverage() commands. If the
averaging period is not specified, the available period is used. Use a SetAveragePeriod() command
if a subset of the data should be used to compute averages.

The following dialog is used to edit this command and illustrates the command syntax.

SetAveragePeriod

SetAveragePeriod() Command Editor

 Command Reference – SetAveragePeriod() - 1 425

SetAveragePeriod() Command TSTool Documentation

The command syntax is as follows:

SetAveragePeriod(Parameter=Value,…)

Command Parameters

Parameter Description Default
AverageStart The date for the start of the averaging

period. The precision of the date should
agree with that of time series to be
processed, and is limited to monthly and
yearly precision.

None – must be specified.

AverageEnd The date for the end of the averaging
period. The precision of the date should
agree with that of time series to be
processed, and is limited to monthly and
yearly precision.

None – must be specified.

A sample command file is as follows:

SetAveragePeriod(1950-01,2002-12)

Command Reference – SetAveragePeriod() - 2 426

Command Reference: SetConstant()
Set time series data to a single or monthly constant values

Version 08.15.00, 2008-05-11

The SetConstant() command sets the values of a time series to a single or monthly constant values.

The following dialog is used to edit the command and illustrates the command syntax:

SetConstant

SetConstant() Command Editor

 Command Reference – SetConstant() - 1 427

SetConstant() Command TSTool Documentation

The command syntax is as follows:

SetConstant(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be

processed, one of:
• AllMatchingTSID – all time

series that match the TSID (single
TSID or TSID with wildcards) will
be modified.

• AllTS – all time series before the
command.

• EnsembleID – all time series in
the ensemble will be modified.

• LastMatchingTSID – the last
time series that matches the TSID
(single TSID or TSID with
wildcards) will be modified.

• SelectedTS – the time series are
those selected with the
SelectTimeSeries()
command.

AllTS

TSID The time series identifier or alias for the
time series to be modified, using the *
wildcard character to match multiple
time series.

Required if TSList=*TSID.

EnsembleID The ensemble to be modified, if
processing an ensemble.

Required if
TSList=EnsembleID.

ConstantValue The constant value to use as the data
value.

None – must be specified, or
specify monthly values.

MonthValues Monthly values to use as the data values.
Twelve values can be specified,
separated by commas. If the time series
data interval is less than monthly, each
date/time will be set for a specific month.

None – must be specified, or
specify a constant value.

SetStart The starting date/time for the data set. Set data for the full period.
SetEnd The ending date/time for the data set. Set data for the full period.

A sample command file to process a time series from the State of Colorado’s HydroBase is as follows
(only the early period is set to zero):

08235700 - ALAMOSA RIVER BELOW CASTLEMAN GULCH NEAR JASPER
08235700.DWR.Streamflow.Month~HydroBase
SetConstant(TSList=AllMatchingTSID,TSID="08235700.DWR.Streamflow.Month",
 ConstantValue=0,SetEnd="1950-01")

Command Reference – SetConstant() - 2 428

Command Reference: SetDataValue()
Set a data value at a single date/time

Version 08.16.04, 2008-09-12

The SetDataValue() command sets a single data value in a time series. Consequently, it can be used
to condition a value for subsequent filling (e.g., with FillRepeat()) or to "hard-code" data that may
not be available in files or databases. It is good practice to insert comments when editing data to
explain the edits. See also the SetConstant() command.

The following dialog is used to edit the command and illustrates the syntax of the command.

SetDataValue

SetDataValue() Command Editor

 Command Reference – SetDataValue() - 1 429

SetDataValue() Command TSTool Documentation

The command syntax is as follows:

SetDataValue(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be

processed, one of:
• AllMatchingTSID – all time

series that match the TSID (single
TSID or TSID with wildcards) will
be modified.

• AllTS – all time series before the
command.

• EnsembleID – all time series in
the ensemble will be modified.

• FirstMatchingTSID – the first
time series that matches the TSID
(single TSID or TSID with
wildcards) will be modified.

• LastMatchingTSID – the last
time series that matches the TSID
(single TSID or TSID with
wildcards) will be modified.

• SelectedTS – the time series are
those selected with the
SelectTimeSeries()
command.

AllTS

TSID The time series identifier or alias for the
time series to be modified, using the *
wildcard character to match multiple
time series.

Required if TSList=*TSID.

EnsembleID The ensemble to be modified, if
processing an ensemble.

Required if
TSList=EnsembleID.

SetDateTime The date/time at which the data value
should be set. Specify the date/time
precision according to the time series that
is being manipulated.

None – must be specified.

NewValue The new data value. None – must be specified.

A sample command file to process data from the State of Colorado’s HydroBase database is as follows:

08235700 - ALAMOSA RIVER BELOW CASTLEMAN GULCH NEAR JASPER
08235700.DWR.Streamflow.Month~HydroBase
SetDataValue(TSList=AllMatchingTSID,TSID=”08235700.DWR.Streamflow.Month”,
 SetDateTime=”1950-01”,NewValue=550)

Command Reference – SetDataValue() - 2 430

Command Reference: SetDebugLevel()
Set level for debug messages

Version 08.16.00, 2008-07-08

The setDebugLevel() command sets the debug levels for screen and log file diagnostic messages.
This command can be used multiple times with different debug level (e.g., to isolate a problem).
Currently the debug level applies to all components. In the future logging control may be grouped by
component. Levels are not completely consistent but the following guidelines can be followed:

0 = no messages
1 = important messages generated in applications
2 = important messages generated in commands
3+ = messages generated in commands that may explain other problems
10+ = messages in processing code that may still be useful to end users
30+ = low-level messages, for example generated while reading from files or databases

The following dialog is used to edit this command and illustrates the command syntax.

SetDebugLevel

SetDebugLevel() Command Editor

 Command Reference – SetDebugLevel() - 1 431

SetDebugLevel() Command TSTool Documentation

The command syntax is as follows:

SetDebugLevel(Parameter=Value,…)

Command Parameters

Parameter Description Default
ScreenLevel The debug level for the screen (0+). Keep previous setting.
LogFileLevel The debug level for the log file (0+). Keep previous setting.

A sample command file is as follows:

SetDebugLevel(ScreenLevel=0,LogFileLevel=10)

.

Command Reference – SetDebugLevel() - 2 432

Command Reference: SetFromTS()
Set time series data using another time series

Version 10.00.01, 2011-05-11

The SetFromTS() command sets data in a dependent time series by transferring values from an
independent time series. A period can be specified to limit the period that is processed. See also the
FillFromTS() command, which will transfer values only when the dependent time series has missing
data. Only data values are transferred – time series header information (e.g., data type, alias) will not be
modified. If multiple time series or an ensemble is being processed, the number of independent time
series must be one or the same number as the time series being filled.

The following dialog is used to edit the command and illustrates the command syntax.

SetFromTS

SetFromTS() Command Editor

 Command Reference – SetFromTS() - 1 433

SetFromTS() Command TSTool Documentation

The command syntax is as follows:

SetFromTS(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed,

one of:
• AllMatchingTSID – all time series that

match the TSID (single TSID or TSID with
wildcards) will be modified.

• AllTS – all time series before the command.
• EnsembleID – all time series in the

ensemble will be modified.
• FirstMatchingTSID – the first time

series that matches the TSID (single TSID or
TSID with wildcards) will be modified.

• LastMatchingTSID – the last time series
that matches the TSID (single TSID or TSID
with wildcards) will be modified.

• SelectedTS – the time series are those
selected with the SelectTimeSeries()
command.

AllTS

TSID The time series identifier or alias for the time
series to be modified, using the * wildcard
character to match multiple time series.

Required when
TSList=*TSID

EnsembleID The ensemble to be modified, if processing an
ensemble.

Required when
TSList=EnsembleID.

Independent
TSList

Indicates how to determine the list of independent
time series (see the explanation of TSList).

AllTS

Independent
TSID

The time series identifier or alias for the
independent time series (see the explanation of
TSID).

Required when a
IndependentTSList=
*TSID

Independent
EnsembleID

The ensemble identifier for the independent time
series (see the explanation of EnsembleID).

Required when
IndepndentTSList=
EnsembleID.

SetStart The date/time to start setting data, if other than
the full time series period.

Full period if * is
specified.

SetEnd The date/time to end setting data, if other than the
full time series period.

Full period if * is
specified.

TransferHow Indicates how to transfer data:
• ByDateTime – a date/time in one time

series will be lined up with the other time
series.

• Sequentially – data from the
independent will be transferred sequentially,
even if the date/time does not align (used
when transferring continuous data over Feb
28/29, without gaps).

None – must be specified.

Command Reference – SetFromTS() - 2 434

TSTool Documentation SetFromTS() Command

Parameter Description Default
HandleMissingHow Indicates how to handle missing data in the

independent time series:
• IgnoreMissing – missing values in the

independent time series WILL NOT be
transferred to the dependent time series.

• SetMissing – missing values in the
independent time series WILL be transferred
to the dependent time series.

• SetOnlyMissingValues – only the
missing values in the independent time series
will be transferred, useful when a separate
time series has been used to insert additional
missing values.

SetMissing

SetDataFlags Indicates if data flags should also be transferred. True
RecalcLimits Available only for monthly time series. Indicate

whether the original data limits for the time series
should be recalculated after the setting the time
series values. Setting to True is appropriate if
the independent time series provides observations
consistent with the original data.

False (only the values in
the initial time series will
be used for historical
data).

A sample command file to process data from the State of Colorado’s HydroBase is as follows:

08241000 - TRINCHERA CREEK ABOVE MOUNTAIN HOME RESERVOIR
08241000.DWR.Streamflow.Month~HydroBase
08240500 - TRINCHERA CREEK ABOVE TURNER'S RANCH
08240500.DWR.Streamflow.Month~HydroBase
SetFromTS(TSList=AllMatchingTSID,TSID="08241000.DWR.Streamflow.Month",
 IndependentTSList=AllMatchingTSID,
 IndependentTSID="08240500.DWR.Streamflow.Month",
 TransferHow=ByDateTime)

 Command Reference – SetFromTS() - 3 435

SetFromTS() Command TSTool Documentation

This page is intentionally blank.

Command Reference – SetFromTS() - 4 436

Command Reference: SetIgnoreLEZero()
Indicate whether time series data values <= zero should be ignored in historical

averages
Version 08.16.00, 2008-07-09

The SetIgnoreLEZero() command sets the global property that indicates whether the computation
of historical averages for time series should ignore values less than or equal to zero. By default, all values
(other than the missing data placeholder) are used to compute averages. This command is useful when it
is appropriate to ignore zero and negative values in averages, for example in cases where zero is assigned
as an observation but may influence averages inappropriately. Commands that are concerned with this
issue also typically provide a parameter and therefore using this global command may not be appropriate.

The following dialog is used to edit this command and illustrates the syntax of the command.

SetIgnoreLEZero

SetIgnoreLEZero() Command Editor

The command syntax is as follows:

SetIgnoreLEZero(Parameter=Value,…)

Command Parameters

Parameter Description Default
IgnoreLEZero Indicates whether the computation of

historical averages should ignore values
less than or equal to zero, True or
False.

If this command is not used, the
default is False.

A sample command file is as follows:

SetIgnoreLEZero(IgnoreLEZero=True)

 Command Reference – SetIgnoreLEZero() - 1 437

SetIgnoreLEZero() Command TSTool Documentation

This page is intentionally blank.

Command Reference – SetIgnoreLEZero() - 2 438

Command Reference: SetIncludeMissingTS()
Indicate whether missing time series should automatically be added as blank time

series
Version 08.16.00, 2008-07-16

The SetIncludeMissingTS() command sets the global property that indicates whether time series
that cannot be found should automatically be added as a time series with missing data. By default, time
series that cannot be found generate a warning. This command is useful when processing large amounts
of data, to guarantee a placeholder time series even if time series are not found. For example, use the
command in the early stages of work to evaluate command sequence logic without addressing every data
issue, and then remove the command when focusing on data.

The following dialog is used to edit this command and illustrates the syntax of the command.

SetIncludeMissingTS

SetIncludeMissingTS() Command Editor

The command syntax is as follows:

SetIncludeMissingTS(Parameter=Value,…)

Command Parameters

Parameter Description Default
IncludeMissingTS Indicates whether time series that are not

found with read commands should
automatically be added with missing
data.

If this command is not used, the
default is False.

A sample command file is as follows:

SetIncludeMissingTS(IncludeMissingTS=True)

 Command Reference – SetIncludeMissingTS() - 1 439

SetIncludeMissingTS() Command TSTool Documentation

This page is intentionally blank.

Command Reference –SetIncludeMissingTS() - 2 440

Command Reference: SetInputPeriod()
Set the period for reading time series from files and querying from databases

Version 08.15.00, 2008-05-11

The SetInputPeriod() command sets the period used for reading time series data from files and
querying data from databases. The default is to read/query all available data so that all data are available
for analysis and data filling. However, a shorter period may be desirable to increase performance (e.g.,
when processing real-time data) or to force matching a historical period. This command replaces the
SetQueryPeriod() command. See also the SetOutputPeriod() command.

The following dialog is used to edit the command and illustrates the command syntax.

SetInputPeriod

SetInputPeriod() Command Editor

 Command Reference – SetInputPeriod() - 1 441

SetInputPeriod() Command TSTool Documentation

The command syntax is as follows:

SetInputPeriod(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputStart The date/time to start reading/querying time

series data, one of:
• A date/time string (see dialog above for

examples).
• CurrentToYear, CurrentToMonth,

CurrentToDay, CurrentToHour,
CurrentToMinute, indicating the
current date/time to the specified
precision.

• A Current* value +- an interval, for
example: CurrentToMinute –
7Day

None – must be specified.

InputEnd The date/time to end reading/querying time
series data, one of:
• A date/time string (see dialog above for

examples).
• CurrentToYear, CurrentToMonth,

CurrentToDay, CurrentToHour,
CurrentToMinute, indicating the
current date/time to the specified
precision.

• A Current* value +- an interval, for
example: CurrentToMinute –
7Day

• An expression involving InputStart,
used similar to the Current* values.

None – must be specified.

A sample commands file for historical data from the State of Colorado’s HydroBase is as follows:

SetInputPeriod(InputStart="1950-01",InputEnd="2000-09")
06754000 - SOUTH PLATTE RIVER NEAR KERSEY
06754000.DWR.Streamflow.Month~HydroBase

A sample commands file for real-time data is as follows:

SetInputPeriod(InputStart="CurrentToMinute - 14Day",
 InputEnd="CurrentToMinute + 1Hour")
06754000 - SOUTH PLATTE RIVER NEAR KERSEY
06754000.DWR.Streamflow-DISCHRG.Irregular~HydroBase

Command Reference – SetInputPeriod() - 2 442

Command Reference: SetOutputPeriod()
Set the output period for time series

Version 09.08.01, 2010-09-14

The SetOutputPeriod() command sets the output period for time series. See also the
SetInputPeriod() command. The period for a time series when read or created will be set to the
maximum of the following periods, in order to satisfy output and data filling requirements:

• available data,
• output period (if specified),
• input period (if specified).

Specifying the output period is necessary when creating model files or filling an extended period (time
series will not automatically be extended by fill commands).

The following dialog is used to edit this command and illustrates the syntax of the command. Note that
the output period should always use calendar month and year, even if other than calendar year are used
for output (see SetOutputYearType()).

 Command Reference – SetOutputPeriod() - 1 443

SetOutputPeriod() Command TSTool Documentation

SetOutputPeriod

SetOutputPeriod() Command Editor

The command syntax is as follows:

SetOutputPeriod(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputStart The date/time to start output. None – must be specified.
OutputEnd The date/time to end output. None – must be specified.

A sample commands file is as follows:

SetOutputPeriod(OutputStart="1950-01",OutputEnd="2002-12")

Command Reference – SetOutputPeriod() - 2 444

Command Reference: SetOutputYearType()
Set the output year type for time series

Version 10.00.01, 2011-04-18

The SetOutputYearType() command sets the global output year type for output reports and files.
The default for most operations is calendar year (January through December); however, alternate year
definitions may be useful. The global output year type is recognized by some common tools and
commands that create output. Many write commands also allow the year type to be specified for the
command. Internally, all data are managed using calendar years and are converted to different year types
during output or display. The ChangeInterval() command also allows time series to be converted
to annual values where the value corresponds to a year type.

The year type for output and analysis theoretically can be defined in many ways. Internally, TSTool
allows the start and end year to have offsets from the calendar year. This allows the output year type to
have a starting year previous to the calendar year or the same as the calendar year. A convention that is
being implemented over time is to prepend Year to the year types where the start of the output year
agrees with the calendar year number, and append Year to the year types where the end of the output
year agrees with the calendar year number. For example, YearMayToApr would indicate that the
output year is May of the calendar year to Apr of the next calendar year.

The following dialog is used to edit the command and illustrates the command syntax.

SetOutputYearType

SetOutputYearType() Command Editor

 Command Reference – SetOutputYearType() - 1 445

SetOutputYearType() Command TSTool Documentation

The command syntax is as follows:

SetOutputYearType(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputYearType The output year type, one of:

• Calendar – January through

December.
• NovToOct – November of the

previous calendar year to October of
the current calendar year. For
example, year 1970 spans Nov 1969
to Oct 1970.

• Water – October of the previous
calendar year through September of
the current calendar year (and water
year). For example, water year 1970
spans Oct 1969 to Sep 1970.

In the future, more generic types like
NovToOct may be implemented.

If this command is not specified,
Calendar is the default.

A sample commands file is as follows:

SetOutputYearType(OutputYearType=Calendar)

Command Reference – SetOutputYearType() - 2 446

Command Reference: SetPatternFile()
Set the pattern file to be used with FillPattern() commands

Version 08.16.04, 2008-09-19

This command has been replaced with ReadPatternFile() – TSTool will automatically convert
the command.

The SetPatternFile() command specifies a pattern file to be used with FillPattern()
commands (see the FillPattern() command for more information).

The following dialog is used to edit the command and illustrates the command syntax.

SetPatternFile

SetPatternFile() Command Editor

The command syntax is as follows:

SetPatternFile(PatternFile)

Command Parameters

Parameter Description Default
PatternFile The path to the pattern file, which can be

absolute or relative to the working
directory. The Browse button can be
used to select the pattern file (if a relative
path is desired, remove the leading path
after the select).

None – must be specified.

A sample commands file is as follows:

SetPatternFile("fill.pat")

 Command Reference – SetPatternFile() - 1 447

SetPatternFile() Command TSTool Documentation

This page is intentionally blank.

Command Reference – SetPatternFile() - 2 448

 Command Reference – SetProperty() - 1

Command Reference: SetProperty()
Set a property for the time series processor

Version 10.01.00, 2011-11-15

The SetProperty() command sets the value of a property used by the time series processor. The
property will be available to subsequent commands that support using ${Property} notation in
parameters, for example to specify filenames more dynamically. This command should not be confused
with the SetTimeSeriesProperty() command, which sets a property on specific time series.

The following dialog is used to edit this command and illustrates the syntax of the command.

SetProperty

SetProperty() Command Editor

449

SetProperty() Command TSTool Documentation

Command Reference – SetProperty() - 2

The command syntax is as follows:

SetProperty(Parameter=Value,…)

Command Parameters

Parameter Description Default
PropertyName The property name. None – must be specified.
PropertyType The property type, used for validation, one of:

• DateTime – a date/time.
• Double – a floating point number
• Integer – an integer
• String – a string

None – must be specified.

PropertyValue The value of the property, adhering to property
type constraints. Date/time properties should be
specified using standard formats such as
“YYYY-MM-DD hh:mm:ss”, to an appropriate
precision. Special date/time syntax is
recognized, as shown in the above figure.
Global properties can be used with the
${Property} syntax.

None – must be specified.

A sample commands file is as follows:

SetProperty(PropertyName="Scenario",PropertyType=String,PropertyValue="Likely")

450

 Command Reference – SetTimeSeriesPropertiesFromTable() - 1

Command Reference:
SetTimeSeriesPropertiesFromTable()

Set time series properties using values in a table
Version 10.07.00, 2012-04-18

The SetTimeSeriesPropertiesFromTable() command sets user-defined time series properties
using values in a table. This is useful, for example, when additional attributes are available for locations
associated with time series. The time series can then be selected for processing by matching properties
with the SelectTimeSeries() command.

The following dialog is used to edit the command and illustrates the command syntax (in this case the
location part of the time series identifier is used to match the contents of the “loc” column in the table).

SetTimeSeriesPropertiesFromTable

SetTimeSeriesPropertiesFromTable() Command Editor

The command syntax is as follows:

SetTimeSeriesPropertiesFromTable(Parameter=Value,…)

451

SetTimeSeriesPropertiesFromTable() Command TSTool Documentation

Command Reference – SetTimeSeriesPropertiesFromTable() - 2

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be

processed, one of:
• AllMatchingTSID – all time

series that match the TSID (single
TSID or TSID with wildcards) will
be modified.

• AllTS – all time series before the
command.

• EnsembleID – all time series in
the ensemble will be modified (see
the EnsembleID parameter).

• FirstMatchingTSID – the first
time series that matches the TSID
(single TSID or TSID with
wildcards) will be modified.

• LastMatchingTSID – the last
time series that matches the TSID
(single TSID or TSID with
wildcards) will be modified.

AllTS

TSID The time series identifier or alias for the
time series to be modified, using the *
wildcard character to match multiple
time series.

Required if TSList=*TSID

EnsembleID The ensemble to be modified, if
processing an ensemble.

Required if
TSList=EnsembleID

TableID The identifier for the table that contains
properties.

None – must be specified.

TableTSIDColumn Table column name that is used to
match the time series identifier for
processing.

None – must be specified.

TableTSIDFormat The specification to format the time
series identifier to match the TSID
column. Use the format choices and
other characters to define a unique
identifier.

Time series alias if available, or
otherwise the time series identifier.

TableInputColumns The name(s) of the column(s) to supply
properties for the matching time series.
Separate column names with commas.

None – must be specified.

TSPropertyNames The names(s) of the time series
properties. Separate names by commas,
leave blank to use the corresponding
TableInputColumns name, or use
the special value TS:Description
to set the time series description.

Same as TableInputColumns.

452

Command Reference: SetTimeSeriesProperty()
Set time series properties

Version 09.09.00, 2010-09-23

The SetTimeSeriesProperty() command sets the value of time series properties. Properties that
are used to uniquely identify the time series cannot be set because other commands need to utilize this
information to reference the time series; therefore, properties that cannot be changed include the location
identifier, data source, data type, interval, and scenario. See also the
SetTimeSeriesPropertiesFromTable()and SelectTimeSeries() commands.

The following dialog is used to edit this command and illustrates the syntax of the command.

SetTimeSeriesProperty

SetTimeSeriesProperty() Command Editor

The command syntax is as follows:

SetTimeSeriesProperty(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed,

one of:
• AllMatchingTSID – all time series that

match the TSID (single TSID or TSID with
wildcards) will be modified.

• AllTS – all time series before the command.
• EnsembleID – all time series in the

ensemble will be modified.
• FirstMatchingTSID – the last time

AllTS

 Command Reference – SetTimeSeriesProperty() - 1 453

SetTimeSeriesProperty() Command TSTool Documentation

series that matches the TSID (single TSID or
TSID with wildcards) will be modified.

• LastMatchingTSID – the last time series
that matches the TSID (single TSID or TSID
with wildcards) will be modified.

• SelectedTS – the time series are those
selected with the SelectTimeSeries()
command.

TSID The time series identifier or alias for the time
series to be modified, using the * wildcard
character to match multiple time series.

Required if
TSList=*TSID.

EnsembleID The ensemble to be modified, if processing an
ensemble.

Required if
TSList=EnsembleID.

Description The description to assign to the time series. Use
the format choices and other characters to define
a unique alias.

None.

Units The data units to assign to the time series. The
units should agree with the time series data
values.

None.

Editable If set to True, then graphing the time series will
enable interactive editing features, including the
ability to save the edited time series.

False

PropertyName Name of user-defined property.
PropertyType Property type, to ensure proper initialization and

data check.
Required if
PropertyName is
specified.

PropertyValue Value for property, adhering to the property type
requirements.

Required if
PropertyName is
specified.

A sample command file to set a property for time series read from a StateMod file is as follows:

ReadStateMod(InputFile="Data\ym2004.ddh")
SetTimeSeriesProperty(Units="AF/M")

Command Reference – SetTimeSeriesProperty() - 2 454

Command Reference: SetToMax()
Set data values to the maximum of values from one or more time series

Version 08.16.04, 2008-09-25

The SetToMax() command sets a time series to contain, for each time step, the maximum of its own
values and those of one or more additional (independent) time series. This command replaces the
SetMax() command. See also the SetToMin() command.

The following dialog is used to edit the command and illustrates the command syntax.

SetToMax

SetToMax() Command Editor

 Command Reference – SetToMax() - 1 455

SetToMax() Command TSTool Documentation

The command syntax is as follows:

SetToMax(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSID The time series identifier or alias for the time

series to be modified.
None – must be specified.

IndependentTSList Indicates how the list of time series is specified,
one of:
• AllTS – all time series before the command.
• AllMatchingTSID – all time series that

match the IndependentTSID (single
TSID or TSID with wildcards).

• EnsembleID – the time series from the
specified ensemble will be processed.

• FirstMatchingTSID – the first time
series that matches the TSID (single TSID or
TSID with wildcards) will be processed.

• LastMatchingTSID – the last time series
that matches the TSID (single TSID or TSID
with wildcards) will be processed.

• SelectedTS – the time series are those
selected with the SelectTimeSeries()
command.

• SpecifiedTSID – the specified list of
time series given by the
IndependentTSID parameter.

AllTS (the time series
receiving the result will
not be checked)

IndependentTSID If the IndependentTSList=
SpecifiedTSID, provide the list of time
series identifiers (or alias) to process, separated
by commas. If the IndependentTSList
parameter is AllMatchingTSID,
FirstMatchingTSID, or
LastMatchingTSID, specify a single TSID or
a TSID with wildcards.

Required if
TSList=*TSID.

Independent
EnsembleID

Ensemble identifier. Required if
TSList=EnsembleID.

A sample command file to process data from the State of Colorado’s HydroBase database is as follows:

08236000 - ALAMOSA RIVER ABOVE TERRACE RESERVOIR
08236000.DWR.Streamflow.Month~HydroBase
08236500 - ALAMOSA RIVER BELOW TERRACE RESERVOIR
08236500.DWR.Streamflow.Month~HydroBase
SetToMax(TSID="08236000.DWR.Streamflow.Month",
 IndependentTSList=SpecifiedTSID,
 IndependentTSID="08236500.DWR.Streamflow.Month")

Command Reference – SetToMax() - 2 456

Command Reference: SetToMin()
Set data values to the minimum of values from one or more time series

Version 08.16.04, 2008-09-25

The SetToMin() command sets a time series to contain, for each time step, the minimum of its own
values and those of one or more additional (independent) time series.

The following dialog is used to edit the command and illustrates the command syntax.

SetToMin

SetToMin() Command Editor

 Command Reference – SetToMin() - 1 457

SetToMin() Command TSTool Documentation

The command syntax is as follows:

SetToMin(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSID The time series identifier or alias for the time

series to be modified.
None – must be specified.

IndependentTSList Indicates how the list of time series is specified,
one of:
• AllTS – all time series before the command.
• AllMatchingTSID – all time series that

match the IndependentTSID (single
TSID or TSID with wildcards).

• EnsembleID – the time series from the
specified ensemble will be processed.

• FirstMatchingTSID – the first time
series that matches the TSID (single TSID or
TSID with wildcards) will be processed.

• LastMatchingTSID – the last time series
that matches the TSID (single TSID or TSID
with wildcards) will be processed.

• SelectedTS – the time series are those
selected with the SelectTimeSeries()
command.

• SpecifiedTSID – the specified list of
time series given by the
IndependentTSID parameter.

AllTS (the time series
receiving the result will
not be checked)

IndependentTSID If the IndependentTSList=
SpecifiedTSID, provide the list of time
series identifiers (or alias) to process, separated
by commas. If the IndependentTSList
parameter is AllMatchingTSID,
FirstMatchingTSID, or
LastMatchingTSID, specify a single TSID or
a TSID with wildcards.

Required if
TSList=*TSID.

Independent
EnsembleID

Ensemble identifier. Required if
TSList=EnsembleID.

A sample command file to process data from the State of Colorado’s HydroBase database is as follows:

08236000 - ALAMOSA RIVER ABOVE TERRACE RESERVOIR
08236000.DWR.Streamflow.Month~HydroBase
08236500 - ALAMOSA RIVER BELOW TERRACE RESERVOIR
08236500.DWR.Streamflow.Month~HydroBase
SetToMin(TSID="08236000.DWR.Streamflow.Month",
 IndependentTSList=SpecifiedTSID,
 IndependentTSID="08236500.DWR.Streamflow.Month")

Command Reference – SetToMin() - 2 458

Command Reference: SetWarningLevel()
Set level for warning messages

Version 08.16.00, 2008-08-24

The SetWarningLevel() command sets the warning levels for the screen and log file. Higher
warning levels are useful for troubleshooting commands. The higher the level, the more messages will be
generated. This command can be used multiple times, for example to isolate a problem. Currently the
warning level applies to all components. In the future logging control may be grouped by component.
Levels are not completely consistent but the following guidelines can be followed:

0 = no messages
1 = important messages generated in applications
2 = important messages generated in commands
3+ = messages generated in commands that may explain other problems
10+ = messages in processing code that may still be useful to end users
30+ = low-level messages, for example generated while reading from files or databases

The following dialog is used to edit this command and illustrates the command syntax.

SetWarningLevel

SetWarningLevel() Command Editor

 Command Reference – SetWarningLevel() - 1 459

SetWarningLevel() Command TSTool Documentation

The command syntax is as follows:

SetWarningLevel(Parameter=Value,…)

Command Parameters

Parameter Description Default
ScreenLevel The warning level for the screen (0+). Keep previous setting.
LogFileLevel The warning level for the log file (0+). Keep previous setting

A sample commands file is as follows:

SetWarningLevel(ScreenLevel=1,LogFileLevel=10)

Command Reference – SetWarningLevel() - 2 460

Command Reference: SetWorkingDir()
Set working directory

Version 10.00.02, 2011-05-23

The SetWorkingDir() command sets the working directory for following commands. The working
directory is normally set in one of the following ways, with the current setting being defined by the most
recent action that has occurred:

1. The startup directory for the TSTool program,
2. The directory containing the most recently opened or saved command file.
3. The directory specified by a SetWorkingDir() command,
4. The directory specified by File…Set Working Directory.

In most cases, a SetWorkingDir() command is not needed and should be avoided because it may
complicate commands and troubleshooting. However, for complicated command files that process
data in multiple directories, it may be useful to change the working directory during processing. Setting
the working directory to an absolute path causes all relative paths for input and output files to be
appended to the working directory. Relative paths that use “../” can be specified to move up and down a
directory tree. The current working directory during processing is reset to the initial working directory
(the location of the command file) each time that the commands are run.

In any case, it is recommended that paths used in command parameters be specified using relative paths
(relative to the command file) so that command files and associated data files can be easily moved from
one computer to another.

The following dialog is used to edit the command and illustrates the syntax of the command.

SetWorkingDir

SetWorkingDir() Command Editor

 Command Reference – SetWorkingDir() - 1 461

SetWorkingDir() Command TSTool Documentation

The command syntax is as follows:

SetWorkingDir(Parameter=Value,…)

Command Parameters

Parameter Description Default
WorkingDir The working directory that should be

used. Specify a relative path (e.g., “..”)
to adjust the current working directory.

None – must be specified.

RunMode Indicate the run mode in which the
command should be applied, one of:
• GUIOnly – the command applies

only to interactive runs
• GUIAndBatch – the command

applies to interactive and batch runs
• BatchOnly – the command applies

to batch runs only

GUIAndBatch

A sample command file is as follows:

SetWorkingDir(WorkingDir="C:\temp")

Command Reference – SetWorkingDir() - 2 462

Command Reference: ShiftTimeByInterval()
Shift time series data by one or more time intervals

Version 08.15.00, 2008-05-11

The ShiftTimeByInterval()command shifts a time series in time. This command can be used to
perform a simple shift (e.g., to shift hourly data because the Disaggregate() command did not result
in data being set at the desired hours) and to perform simple routing.

The following dialog is used to edit the command and illustrates the command syntax.

ShiftTimeByInterval

ShiftTimeByInterval() Command Editor

The command syntax is as follows:

ShiftTimeByInterval(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed, one of:

• AllMatchingTSID – all time series that match the TSID
(single TSID or TSID with wildcards) will be modified.

• AllTS – all time series before the command.
• EnsembleID – all time series in the ensemble will be

AllTS

 Command Reference – ShiftTimeByInterval() - 1 463

ShiftTimeByInterval() Command TSTool Documentation

Parameter Description Default
modified.

• LastMatchingTSID – the last time series that matches
the TSID (single TSID or TSID with wildcards) will be
modified.

• SelectedTS – the time series are those selected with the
SelectTimeSeries() command.

TSID The time series identifier or alias for the time series to be
modified, using the * wildcard character to match multiple time
series.

TSID or
EnsembleID must
be specified if
identifiers are being
matched.

EnsembleID The ensemble to be modified, if processing an ensemble. TSID or
EnsembleID must
be specified if
identifiers are being
matched.

ShiftData Interval,multiplier tuples to apply to the data to perform the
shift. All values should be separated by commas. An interval
of -1 indicates that the previous time step should be shifted to
the current time step. If the interval is –1 and the multiplier is
1, the previous time step is shifted to the current and multiplied
by 1, effectively shifting the time series by one interval.

None – at least 1
value,multiplier tuple
must be specified.

A sample command file to shift data from the State of Colorado’s HydroBase is as follows:

08213500 - RIO GRANDE RIVER AT THIRTY MILE BRIDGE NEAR CREEDE
08213500.DWR.Streamflow.Day~HydroBase
ShiftTimeByInterval(TSList=AllMatchingTSID,TSID="08213500.DWR.Streamflow.Day",
 ShiftData="-1,1")
08213500.DWR.Streamflow.Day~HydroBase

ShiftTimeByInterval_graph

Results from ShiftTimeByInterval() Command

Command Reference – ShiftTimeByInterval() - 2 464

Command Reference: SortTimeSeries()
Sort time series by their identifiers

Version 08.15.00, 2008-05-11

The SortTimeSeries() command sorts the time series alphabetically using the time series identifier.
This command is useful for ordering time series before writing output, for example to facilitate
comparison with another version of the output or to be consistent with other data files.

The following dialog is used to edit the command and illustrates the syntax for the command.

SortTimeSeries

SortTimeSeries() Command Editor

The command syntax is as follows:

SortTimeSeries(Parameter=Value,…)

Command Parameters

Parameter Description Default
 Currently no parameters are available for this command.

 Command Reference – SortTimeSeries() - 1 465

SortTimeSeries() Command TSTool Documentation

A sample command file using data from the State of Colorado’s HydroBase is as follows:

06759100 - BIJOU CREEK NEAR FT. MORGAN, CO.
06759100.USGS.Streamflow.Month~HydroBase
06759000 - BIJOU CREEK NEAR WIGGINS, CO.
06759000.USGS.Streamflow.Month~HydroBase
BOXHUDCO - BOX ELDER CREEK NEAR HUDSON, CO
BOXHUDCO.DWR.Streamflow.Month~HydroBase
06756500 - CROW CREEK NEAR BARNSVILLE, CO.
06756500.USGS.Streamflow.Month~HydroBase
06758300 - KIOWA CREEK AT BENNETT, CO.
06758300.USGS.Streamflow.Month~HydroBase
06758000 - KIOWA CREEK AT ELBERT, CO.
06758000.USGS.Streamflow.Month~HydroBase
06757600 - KIOWA CREEK AT K-79 RES, NEAR EASTONVILLE, CO.
06757600.DWR.Streamflow.Month~HydroBase
06758200 - KIOWA CREEK AT KIOWA, CO.
06758200.USGS.Streamflow.Month~HydroBase
06753400 - LONETREE CREEK AT CARR, CO.
06753400.USGS.Streamflow.Month~HydroBase
06753990 - LONETREE CREEK NEAR GREELEY, CO.
06753990.USGS.Streamflow.Month~HydroBase
06753500 - LONETREE CREEK NEAR NUNN, CO.
06753500.USGS.Streamflow.Month~HydroBase
06759910 - SOUTH PLATTE RIVER AT COOPER BRIDGE NEAR BALZAC
06759910.DWR.Streamflow.Month~HydroBase
06759500 - SOUTH PLATTE RIVER AT FORT MORGAN
06759500.USGS.Streamflow.Month~HydroBase
06756995 - SOUTH PLATTE RIVER AT MASTERS, CO.
06756995.USGS.Streamflow.Month~HydroBase
06757000 - SOUTH PLATTE RIVER AT SUBLETTE, CO.
06757000.USGS.Streamflow.Month~HydroBase
06754000 - SOUTH PLATTE RIVER NEAR KERSEY
06754000.DWR.Streamflow.Month~HydroBase
06758500 - SOUTH PLATTE RIVER NEAR WELDONA
06758500.DWR.Streamflow.Month~HydroBase
06758100 - WEST KIOWA CREEK AT ELBERT, CO.
06758100.USGS.Streamflow.Month~HydroBase
SortTimeSeries()

Command Reference – SortTimeSeries() - 2 466

Command Reference: StartLog()
(Re)start the log file

Version 09.08.01, 2010-09-14

The StartLog() command (re)starts the log file. It is useful to insert this command as the first
command in a command file, in order to persistently record the results of processing. A useful standard is
to name the log file the same as the command file, with an additional .log extension, and this convention
is enforced by default. A date or date/time can optionally be added to the log file name.

The following dialog is used to edit the command and illustrates the syntax for the command.

StartLog

StartLog() Command Editor

 Command Reference – StartLog() - 1 467

StartLog() Command TSTool Documentation

The command syntax is as follows:

StartLog(Parameter=Value,…)

Command Parameters

Parameter Description Default
LogFile The name of the log file to write surrounded by double

quotes. The extension of .log will automatically be added,
if not specified.

If not specified, the
existing file will be
restarted.

Suffix Indicates that a suffix will be added before the .log
extension, one of:

 Date – add a date suffix of the form YYYYMMDD.
 DateTime – add a date/time suffix of the form
YYYYMMDD_HHMMSS.

This is useful for automatically archiving logs
corresponding to commands files, to allow checking the
output at a later time. However, generating date/time
stamped log files can increase the amount of disk space
that is used.

Do not add the
suffix.

A sample command file to process State of Colorado HydroBase data is as follows (the Add() command
will generate an error because the units of the time series are incompatible):

StartLog(LogFile="Example_StartLog.log")
06753400 - LONETREE CREEK AT CARR, CO.
06753400.USGS.Streamflow.Month~HydroBase
1179 - BYERS 5 ENE
1179.NOAA.Precip.Month~HydroBase
Add(TSID="06753400.USGS.Streamflow.Month",AddTSList=AllTS,HandleMissingHow="IgnoreMissing")

Command Reference – StartLog() - 2 468

Command Reference:
StartRegressionTestResultsReport()

Start a report file to contain regression test results
Version 08.15.00, 2008-05-11

The StartRegressionTestResultsReport() command starts a report file to be written to as
regression tests are run. The CreateRegressionTestCommandFile() automatically inserts this
command. The CompareFiles() and CompareTimeSeries() commands will write to this file if
it is available.

The following dialog is used to edit the command and illustrates the syntax for the command.

StartRegressionTestResultsReport

StartRegressionTestResultsReport() Command Editor

 Command Reference – StartRegressionTestResultsReport() - 1 469

StartRegressionTestResultsReport() Command TSTool Documentation

The command syntax is as follows:

StartRegressionTestResultsReport(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the report file, enclosed in double quotes if

the file contains spaces or other special characters. A
path relative to the command file can be specified.

None – must be
specified.

See the RunCommands() documentation for how to set up a regression test. The following command
file illustrates how to start the results report:

StartRegressionTestResultsReport(
 OutputFile="RunRegressionTest_commands_general.TSTool.out.txt")
…
RunCommands(InputFile="..\..\..\commands\general\ReadStateMod\Test_ReadStateMod_1.TSTool")
…

Each of the above command files should produce expected time series results, without warnings. If any
command file unexpectedly produces a warning, a warning will also be visible in TSTool. The issue can
then be evaluated to determine whether a software or configuration change is necessary. An example of
the output file is:

SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\add\Test_Add_1.TSTool
SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\addConstant\Test_AddConstant_1.TSTool
SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\adjustExtremes\Test_AdjustExtremes_1.TSTool
SUCCESS
C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\analyzePattern\Test_AnalyzePattern_FromMonthDataValues.TSTool
SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\ARMA\Test_ARMA_1.TSTool
SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\blend\Test_Blend_1.TSTool
SUCCESS
C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\ChangeInterval\Test_ChangeInterval_DayMean_To_MonthMean.TSTool
SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\ChangePeriod\Test_ChangePeriod_1.TSTool
SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\compareTimeSeries\Test_AllDifferent.TSTool
SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\compareTimeSeries\Test_AllSame.TSTool
SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\convertDataUnits\Test_ConvertDataUnits_1.TSTool
SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\Copy\Test_Copy_1.TSTool
SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\CreateEnsemble\Test_CreateEnsemble_1.TSTool
FAILURE C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\CreateFromList\Test_CreateFromList_1.TSTool
WARNING C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\CreateTraces_Alias\Test_CreateTraces_1.TSTool
SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\cumulate\Test_Cumulate_1.TSTool
SUCCESS
C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\DeselectTimeSeries\Test_DeselectTimeSeries_1.TSTool
SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\Disaggregate_Alias\Test_Disaggregate_1.TSTool
SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\divide\Test_Divide_1.TSTool
WARNING C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\fillCarryForward\Test_FillCarryForward_1.TSTool
SUCCESS C:\Develop\TSTool_SourceBuild\TSTool\test\regression\commands\general\fillConstant\Test_FillConstant_Day.TSTool

Command Reference – StartRegressionTestResultsReport() - 2 470

Command Reference: StateModMax()
Compute the maximum of time series in two StateMod files

Version 08.16.04, 2008-09-23

A StateModMax() command performs the following actions:

1. Read all time series from one StateMod time series file,
2. Read all time series from a second StateMod time series file,
3. Generate a list of time series that contains the maximum values comparing matching time series

(using the location identifier). The first list is updated and the second list is discarded.

This command is useful, for example, when creating a demand time series file that is to be the maximum
of historical diversions and irrigation water requirement divided by an average efficiency. It is assumed
that the specified time series have matching identifiers (the first file is used as the master list) and have
consistent units and data intervals. After the time series have been processed, they can be viewed or
written out as a new StateMod file (see the WriteStateMod() command).

The following dialog is used to edit the command and illustrates the syntax for the command.

StateModMax

StateModMax() Command Editor

 Command Reference – StateModMax() - 1 471

StateModMax() Command TSTool Documentation

The command syntax is as follows:

StateModMax(Parameter=Value,…)

Command Parameters

Parameter Description Default
InputFile1 The name of the first StateMod time

series file to read, surrounded by double
quotes. The path to the file can be
absolute or relative to the working
directory.

None – must be specified.

InputFile2 The name of the second StateMod time
series file to read, which must have the
same data interval and units as the first
file.

None – must be specified.

A sample command file is as follows:

StateModMax("rgTW.ddh","rgTWC_prelim.ddm")
WriteStateMod("rgTW.ddm",*)

Command Reference – StateModMax() - 2 472

Command Reference: Subtract()
Subtract one or more time series from another time series

Version 08.15.00, 2008-05-12

The Subtract() command subtracts time series of the same interval. The receiving time series will
have data values set to its original values minus the data values in the indicated time series. If an
ensemble is being processed, another ensemble can be subtracted, a single time series can be subtracted
from all time series in the ensemble, or a list of time series can be subtracted from the ensemble (the
number in the list must match the number of time series in the ensemble).

This command will generate an error if the time series do not have compatible units. If the units are
compatible but are not the same (e.g., IN and FT), then the units of the part will be converted to the units
of the result before subtraction. Missing data in the parts can be ignored (do not set the result to missing)
or can set missing values in the result. The user should consider the implications of ignoring missing
data. Time series being subtracted must have the same data interval.

The following dialog is used to edit the command and illustrates the syntax of the command.

Subtract

Subtract() Command Editor

The command syntax is as follows:

Subtract(Parameter=Value,…)

 Command Reference – Subtract() - 1 473

Subtract() Command TSTool Documentation

Command Parameters

Parameter Description Default
TSID The time series identifier or alias for the time series to

receive the result.
TSID or EnsembleID
must be specified.

EnsembleID The ensemble to receive the result, if processing an
ensemble.

TSID or EnsembleID
must be specified.

Subtract
TSList

Indicates how the list of time series is specified, one of:
• AllTS – all time series before the command.
• AllMatchingTSID – all time series that match the

AddTSID (single TSID or TSID with wildcards) will
be subtracted.

• EnsembleID – the time series from ensemble will be
subtracted.

• LastMatchingTSID – the last time series that
matches the TSID (single TSID or TSID with
wildcards) will be subtracted.

• SelectedTS – the time series are those selected with
the SelectTimeSeries() command.

• SpecifiedTSID – the specified list of time series
given by the SubtractTSID parameter. If using
version 8.02.00 or earlier, use SpecifiedTS.

AllTS (the time series
receiving the sum will
not be subtracted from
itself)

SubtractTSID If the SubtractTSList parameter is
SpecifiedTSID, provide the list of time series
identifiers (or alias) to subtract, separated by commas. If
the SubtractTSList parameter is
AllMatchingTSID, specify a single TSID or a TSID
with wildcards.

Must be specified if
TSList=
SpecifiedTSID,
ignored otherwise.

Subtract
EnsembleID

If the EnsembleID parameter is specified, providing an
ensemble ID will subtract the ensembles.

Use if an ensemble is
being subtracted from
another ensemble.

Handle
MissingHow

Indicates how to handle missing data in a time series, one
of:
• IgnoreMissing – create a result even if missing

data are encountered in one or more time series – this
option is not as rigorous as the others

• SetMissingIfOtherMissing – set the result
missing if any of the other time series values is missing

• SetMissingIfAnyMissing – set the result
missing if any time series value involved is missing

IgnoreMissing

A sample command file to subtract data from the State of Colorado’s HydroBase is as follows:

0100501 - EMPIRE DITCH
0100501.DWR.DivTotal.Month~HydroBase
0100503 - RIVERSIDE CANAL
0100503.DWR.DivTotal.Month~HydroBase
Subtract(TSID="0100501.DWR.DivTotal.Month",SubtractTSList=SpecifiedTSID,
 SubtractTSID="0100503.DWR.DivTotal.Month",
 HandleMissingHow="IgnoreMissing")

Command Reference – Subtract() - 2 474

Command Reference: TableMath()
Perform simple math operation on columns in a table

Version 09.08.01, 2010-09-14

The TableMath() command performs a simple math operation on columns in a table. Although the
design of the command could support more advanced cell range addressing schemes, it currently
processes complete columns of data. For example, a table that is populated by the
CalculateTimeSeriesStatistic() command could be manipulated to produce a new column of
data. This command and related table commands are not an attempt to replace full-feature spreadsheet
programs but are intended to help automate common data processing tasks.

The input is specified by a table column name (Input1) and either a second input column name or a
constant value (Input2), with the result being placed in the output column (Output). Output that
cannot be computed is set to the NonValue value.

The following dialog is used to edit the command and illustrates the syntax of the command (in this case
illustrating how values in a column named ts1 are multiplied by the number 2.

TableMath

TableMath() Command Editor

 Command Reference – TableMath () - 1 475

TableMath() Command TSTool Documentation

The command syntax is as follows:

TableMath(Parameter=Value,…)

Command Parameters

Parameter Description Default
TableID The identifier for the table to process. None – must be

specified.
Input1 First input column name. None – must be

specified.
Operator The operator to be applied as follows:

Input1 Operator Input2 = Output
For example:
Input1 * Input2 = Output

None – must be
specified.

Input2 Second input column name, or a constant value to use as
input.

None – must be
specified.

Output Output column name. If the column is not found it will be
added to the table and will contain the results of processing.

None – must be
specified.

NonValue The value to use in cases where an output result could not
be computed (missing input, division by zero). Null will
result in blanks in output whereas NaN may be shown in
some output products, depending on the specifications for
the format.

Null

Command Reference – TableMath() - 2 476

 Command Reference – TableTimeSeriesMath () - 1

Command Reference: TableTimeSeriesMath()
Perform simple math operation on time series using table input

Version 10.04.00, 2012-01-13

The TableTimeSeriesMath() command performs a simple math operation on time series using
values from a table. For example, a table that is populated by the
CalculateTimeSeriesStatistic() command or ReadTableFromDelimitedFile()
could be used to modify time series data. See also the TableMath() command, which performs math
on a table.

The table value is determined by matching the time series identifier (formatted according to the
TableTSIDFormat parameter) with the TSID value in the table column specified by the
TableTSIDColumn parameter. If necessary, use the ManipulateTableString() command to
generate an identifier column in the table that allows that match. Missing values in the time series
generally will not be updated, although the assignment (=) operator will do so.

The following dialog is used to edit the command and illustrates the syntax of the command.

TableTimeSeriesMath

TableTimeSeriesMath() Command Editor

The command syntax is as follows:

TableTimeSeriesMath(Parameter=Value,…)

477

TableTimeSeriesMath() Command TSTool Documentation

Command Reference – TableTimeSeriesMath() - 2

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be

processed, one of:
• AllMatchingTSID – all time series

that match the TSID (single TSID or
TSID with wildcards).

• AllTS – all time series before the
command.

• EnsembleID – all time series in the
ensemble.

• FirstMatchingTSID – the first time
series that matches the TSID (single
TSID or TSID with wildcards).

• LastMatchingTSID – the last time
series that matches the TSID (single
TSID or TSID with wildcards).

• SelectedTS – the time series selected
with the SelectTimeSeries()
command.

AllTS

TSID The time series identifier or alias for the time
series to be processed, using the * wildcard
character to match multiple time series.

Required if
TSList=*TSID.

EnsembleID The ensemble to be processed, if processing
an ensemble.

Required if
TSList=EnsembleID.

Operator The operator to be applied to the time series
and table input.

None – must be specified.

TableID Identifier for table that provides input. None – must be specified.
TableTSIDColumn Table column name that is used to match the

time series identifier for processing.
None – must be specified.

TableTSIDFormat The specification to format the time series
identifier to match the TSID column. Use the
format choices and other characters to define a
unique identifier.

Time series alias if
available, or otherwise
the time series identifier.

TableInput Column Table column name to retrieve the table value. None – must be specified.
IfTableInputIsBlank Action if time table input is blank during

processing (no value to operate on).
Warn

IfTSListIsEmpty Action if time series list is empty. Fail

The delimited file corresponding to that used in the above dialog example is shown below. In this
example, the time series identifiers have location parts with values ts1 and ts2.

Simple test data
"TSID","DataValue"
ts1,2
ts2,3

478

 Command Reference – TableToTimeSeries() - 1

Command Reference: TableToTimeSeries()
Create time series from a table

Version 10.21.00, 2013-06-27

Note: This command may be split into two separate commands (one for single column data values and
one for multiple column data values) if editing the command parameters becomes confusing.

The TableToTimeSeries() command creates time series from a table. This command can be used
when a command to read time series from a specific file format or datastore has not been implemented.
The table typically is read using one of the following commands:

• ReadTableFromDataStore() – for example, define an ODBC DSN connection to a
database and query time series using an SQL statement.

• ReadTableFromDelimitedFile() – for example, read time series from a comma-
separated-value (CSV) file.

• ReadTableFromExcel() – for example, read time series from a comma-separated-value
(CSV) file

• ReadTableFromHTML() – envisioned for the future.

TSTool internally represents tables as a collection of columns, where a column contains values of a
consistent data type (e.g., integer, string, double). A time series table requires at a minimum a date/time
column (or separate date and time columns), at least one data value column, and optionally one or more
columns for data flags. Data represented in one of two table designs are handled by this command:

• Data for multiple locations/series stored in a single column (common in a database or stream of
data from a data logger) – specify the LocationColumn command parameter.

• Data for multiple locations/series stored in multiple columns (common in spreadsheets and CSV
files) – do not specify the LocationColumn command parameter but instead specify the
ValueColumn and optionally LocationID parameters.

The command provides flexibility to specify time series metadata (e.g., data source, units) as command
parameters, or read from the file. However, this flexibility is limited by practical considerations in
supporting likely data formats. One current limitation of the command is that TSTool does not determine
table column names during discovery mode (discover mode is a partial command run that allows data
such as time series and table identifiers to be provided to later commands for editing). Consequently,
although this command will create time series when run, it does not produce time series information in
discovery mode and the time series will not be listed in later command editors. This limitation will be
addressed in future TSTool updates.

479

TableToTimeSeries () Command TSTool Documentation

Command Reference – TableToTimeSeries () - 2

An example of a table with single data value column with flags is shown in the following figure (note that
a column is used for the location identifier and that the location is different for the topmost and
bottommost records).

TableToTimeSeries_Single_Data

Simple Table with Data Values in a Single Column

In the above example, the list of unique time series is determined by examining the location column
contents. Other time series metadata such as data source and units can be assigned using the
DataSource, Units, and similar parameters. The following dialog is used to edit the command and
illustrates the command syntax when processing single-column data from the above example. Note that
time series metadata are specified with command parameters.

480

TSTool Documentation TableToTimeSeries () Command

 Command Reference – TableToTimeSeries () - 3

TableToTimeSeries_Single

TableToTimeSeries() Command Editor for Table with Data in a Single Column

The following example is also treated as single-column because a single column of data values is present.
However, metadata are taken from other columns. This data format is consistent with a database query
where several tables have been joined together. Although not efficient because time series metadata is
repeated for every row, the format is convenient for data translation. Use the DataSourceColumn,
UnitsColumn and similar parameters to specify metadata. The unique list of time series will be
determined from the combinations of location identifier and other metadata..

481

TableToTimeSeries () Command TSTool Documentation

Command Reference – TableToTimeSeries () - 4

TableToTimeSeries_SingleMeta_Data

Table with Data Values in a Single Column and Metadata Provided in Other Columns

The following dialog is used to edit the command and illustrates the command syntax when processing
single-column data from the above example. Note that time series metadata are specified with command
parameters.

482

TSTool Documentation TableToTimeSeries () Command

 Command Reference – TableToTimeSeries () - 5

TableToTimeSeries_SingleMeta

TableToTimeSeries() Command Editor for Table with Single Data Column and Metadata Columns

An example of multi-column data with flags is shown in the following figure, where each time series has
its own data and flag columns:

TableToTimeSeries_Multiple_Data

Table with Multiple Data Columns

483

TableToTimeSeries () Command TSTool Documentation

Command Reference – TableToTimeSeries () - 6

The following dialog is used to edit the command and illustrates the syntax for the command when
processing multi-column data from the above table.

TableToTimeSeries_Multiple

TableToTimeSeries() Command Editor For Table with Data in a Single Column

The command syntax is as follows:

TableToTimeSeries(Parameter=Value,…)

Command Parameters

Parameter Description Default
TableID The identifier for the table to read. None – must be

specified.
DateTime
Column

The column for date/time, when date and time are in one
column. If the table was read in a way that the column
type is “date/time”, then the values are used directly. If
the table was read in a way that the column type is
“string”, then the string is parsed using default logic or the

Required if
DateColumn is
not specified.

484

TSTool Documentation TableToTimeSeries () Command

 Command Reference – TableToTimeSeries () - 7

Parameter Description Default
DateTimeFormat parameter if specified.

DateTime
Format

The format for date/time strings in the date/time column, if
strings are being parsed. If blank, common formats such
as YYYY-MM-DD hh:mm and MM/DD/YYYY will
automatically be detected. However, it may be necessary
to specify the format to ensure proper parsing. This
format will be used to parse date/times from the
DateTimeColumn or the merged string from the
DateColumn and TimeColumn (if specified). The
format string will depend on the formatter type. Currently,
only the “C” formatter is available, which uses C
programming language specifiers. The resulting format
includes the formatter and specifiers (e.g., C:%m%d%y).

Will automatically
be determined by
examining date/time
strings.

DateColumn The name of column that includes the date, used when
date and time are in separate columns.

Required if
DateTimeColumn
is not specified.

TimeColumn The name of column that includes the time, used when
date and time are in separate columns. If both
DateColumn and TimeColumn are specified, their
contents are merged with a joining colon character and are
then treated as if DateTimeColumn had been specified.

Required if
DateColumn is
specified and the
interval requires
time.

LocationID Used with multiple data column table. The location
identifier(s) to assign to time series, separated by columns
if more than one column is read from the table. Column
names can be specified as literal strings or as
TC[start:stop] to match table column names, where
start is 1+ and stop is blank to read all columns or a
negative number to indicate the offset from the end
column.

None – must be
specified for
multiple column
data tables.

LocationType
Column

Used with single data column table. The name of the
column containing the location type.

Do not assign a
location type.

LocationColumn Used with single data column table. The name of the
column containing the location identifier.

None – must be
specified for single
column data tables.

DataSource
Column

Used with single data column table. The name of the
column containing the data source.

Use the
DataSource
parameter, which
can be blank.

DataType
Column

Used with single data column table. The name of the
column containing the data type.

Use the DataType
parameter, which
can be blank.

ScenarioColumn Used with single data column table. The name of the
column containing the scenario.

Use the Scenario
parameter, which
can be blank.

UnitsColumn Used with single data column table. The name of the
column containing the data units.

Use the Units
parameter, which
can be blank.

ValueColumn The name(s) of column(s) containing data values. None – must be

485

TableToTimeSeries () Command TSTool Documentation

Command Reference – TableToTimeSeries () - 8

Parameter Description Default
Separate column names with commas. The
TC[start:stop] notation discussed for
LocationID can be used. Only one column should be
specified for single data column table.

specified.

FlagColumn The name(s) of column(s) containing the data flag.
Separate column names with commas. The
TC[start:stop] notation discussed for
LocationID can be used. If specified, the number of
columns must match the ValueColumn parameter,
although specifying blank column names is allowed to
indicate that a value column does not have a
corresponding flag column..

Flags are not read.

DataSource The data source (provider) identifier to assign to time
series for each of the value columns (or specify one value
to apply to all columns).

No provider will be
assigned.

DataType The data type to assign to time series for each of the value
columns (or specify one value to apply to all columns).

Use the value
column names for
the data types.

Interval The interval for the time series. Only one interval is
recognized for all the time series in the table. Interval
choices are provided when editing the command. If it is
possible that the date/times are not evenly spaced, then use
the Irregular interval (this is difficult to do for
multiple data column tables).

None – must be
specified.

Scenario The scenario to assign to time series for each of the value
columns (or specify one value to apply to all columns).

No scenario will be
assigned.

Units The data units to assign to time series for each of the value
columns (or specify one value to apply to all columns).

No units will be
assigned.

Missing Strings that indicate missing data in the table (e.g., “m”),
separated by commas.

Interpret empty
column values as
missing data.

Alias The alias to assign to time series, as a literal string or using
the special formatting characters listed by the command
editor. The alias is a short identifier used by other
commands to locate time series for processing.

No alias will be
assigned.

InputStart The date/time to start reading data. All data or global
input start.

InputEnd The date/time to end reading data. All data or global
input end.

486

 Command Reference – TimeSeriesToTable () - 1

Command Reference: TimeSeriesToTable()
Copy one or more time series into a table

Version 10.21.00, 2013-06-26

The TimeSeriesToTable() command copies one or more time series into a table. This command is
useful when performing table analysis processing and outputting table formats (e.g., with the
WriteTableToDelimitedFile() or WriteTableToHTML() commands). The command can
be configured to output one of two table forms:

• Each time series in a separate column, with shared date/time column:
o The time series must be regular interval (no irregular interval time series) and the

intervals must match in order to allow alignment of the date/times.
o Do not specify the TableTSIDColumn or TableTSIDFormat parameters.

• All time series values in a single column (useful for converting time series to a stream of data for
loading into a database)

o Any interval is allowed although mixing time series of varying precision is discouraged.
o Specify the TableTSIDColumn and optionally TableTSIDFormat parameters.

Currently the command can only be used to create a new table but in the future the command is
envisioned to write into an existing table. The following dialog is used to edit the command and
illustrates the syntax of the command when writing a multi-column data table while also outputting data
flags. Note that the value columns can be specified using time series properties.

TimeSeriesToTable

TimeSeriesToTable() Command Editor to Create Multi-Column Data Table

487

TimeSeriesToTable() Command TSTool Documentation

Command Reference – TimeSeriesToTable() - 2

The command syntax is as follows:

TimeSeriesToTable(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed,

one of:
• AllMatchingTSID – all time series that

match the TSID (single TSID or TSID with
wildcards).

• AllTS – all time series before the
command.

• EnsembleID – all time series in the
ensemble.

• FirstMatchingTSID – the first time
series that matches the TSID (single TSID
or TSID with wildcards).

• LastMatchingTSID – the last time
series that matches the TSID (single TSID
or TSID with wildcards).

• SelectedTS – the time series are those
selected with the SelectTimeSeries()
command.

AllTS

TSID The time series identifier or alias for the time
series to be modified, using the * wildcard
character to match multiple time series.

Required when
TSList=*TSID

EnsembleID The ensemble to be modified, if processing an
ensemble.

Required when
TSList=EnsembleID.

TableID The identifier for the table to copy data into (or
the identifier for the new table to create if
IfTableNotFound=Create).

None – must be specified.

DateTimeColumn The table column name to receive date/time
information.

None – must be specified.

TableTSIDColumn For single-column output, the name of the
column in the table for time series identifier
information. The format of the identifier can be
specified using the TableTSIDFormat
parameter.

Optional – if specified will
indicate single-column
output.

TableTSIDFormat For single-column output, indicates how to
format the time series identifier that is inserted
in the column specified by the
TableTSIDColumn parameter.

Optional – if not specified
the alias or full TSID will
be used.

Include
MissingValues

For single-column output, indicates whether
missing values should be transferred to the table.
This is useful to screen out missing values from
sparse time series.

True

ValueColumn The data value column name(s) to receive time None – must be specified.

488

TSTool Documentation TimeSeriesToTable () Command

 Command Reference – TimeSeriesToTable () - 3

Parameter Description Default
series data, specified as follows:
• Multiple names separated by a comma.
• Time series property format specifiers,

available in a list of choices. These
specifiers are consistent with other
commands and the legend formatter in the
graphing tool.

• If a literal string is specified with multi-
column output, names for columns 2+ will
be generated by adding a sequential number
to ValueColumn.

FlagColumn The data flag column name(s) to receive time
series flags, specified using the same syntax as
ValueColumn. A blank in the list will result
in no transfer of flags for the specific time
series.

Do not output flags to the
table.

DataRow1 First table row for data (1+), where the row
number is data only (column names are not
considered a data row).

None – must be specified.

OutputStart The starting date/time for the copy. Available period.
OutputEnd The ending date/time for the copy. Available period.
OutputWindowStart The calendar date/time for the output start

within each year. Specify using the format MM,
MM-DD, MM-DD hh, or MM-DD hh:mm,
consistent with the time series interval precision.
A year of 2000 will be used internally to parse
the date/time. Use this parameter to limit data
processing within the year, for example to
output only a single month or a season.

Output the full year.

OutputWindowEnd Specify date/time for the output end within each
year. See OutputWindowStart for details.

Output the full year.

IfTableNotFound Indicate action if the table identifier is not
matched, one of:
• Create – create a new table
• Warn – warn that the table was not matched

Warn

A sample command file is as follows (this command file is used to verify the command during testing):

Test copying annual time series to a table, and also create the table
StartLog(LogFile="Results/Test_TimeSeriesToTable_Year_Create.TSTool.log")
RemoveFile(InputFile="Results/Test_TimeSeriesToTable_Year_Create_out.csv",
 IfNotFound=Ignore)
NewPatternTimeSeries(Alias=”ts1”,NewTSID="ts1..Flow.Year",SetStart="1960",
 SetEnd="2000",Units="ACFT",PatternValues="1,2,5,8,,20")
NewPatternTimeSeries(Alias=”ts2”,NewTSID="ts2..Flow.Year",SetStart="1950",
 SetEnd="2005",Units="ACFT",PatternValues="2,4,10,16,,40")
TimeSeriesToTable(TableID=TestTable,DateTimeColumn=Year,ValueColumn=%L-%T,
 FlagColumn=”%L-%T-flag”,DataRow=1,IfTableNotFound="Create")
Generate the results.
WriteTableToDelimitedFile(TableID="TestTable",

489

TimeSeriesToTable() Command TSTool Documentation

Command Reference – TimeSeriesToTable() - 4

 OutputFile="Results\Test_TimeSeriesToTable_Year_Create_out.csv")
Uncomment the following to recreate expected results
WriteTableToDelimitedFile(TableID="TestTable",
OutputFile="ExpectedResults\Test_TimeSeriesToTable_Year_Create_out.csv")
CompareFiles(InputFile1="ExpectedResults/Test_TimeSeriesToTable_Year_Create_out.csv",
 InputFile2="Results/Test_TimeSeriesToTable_Year_Create_out.csv",IfDifferent=Warn)

The resulting table will be listed in the Tables area of the TSTool interface and clicking on the
TestTable identifier will display the table similar to the following:

TimeSeriesToTable2

Multi-Column Data Table

490

TSTool Documentation TimeSeriesToTable () Command

 Command Reference – TimeSeriesToTable () - 5

The following example illustrates how to create a single data column table. Because a single column is
being used for data, the data value and corresponding data flag column names are specified literally (not
as time series properties). The column and format for the TSID also must be specified.

TimeSeriesToTable_Single

TimeSeriesToTable() Command Editor to Create Single Data Column Table

491

TimeSeriesToTable() Command TSTool Documentation

Command Reference – TimeSeriesToTable() - 6

The resulting table is as shown in the following figure:

TimeSeriesToTable_Single2

Single Data Column Table

492

Command Reference: VariableLagK()
Lag and attenuate (route) a time series with parameters that vary by rate

Version 10.00.01, 2011-05-15

The VariableLagK() command can be used to lag and attenuate an input time series, resulting in a
new time series. The command is commonly used to route an instantaneous flow time series through a
stretch of river (reach). Lag and K routing is a common routing method that combines the concepts of:

1. Lagging the inflow to simulate travel time in a reach and,
2. Attenuating the wave to simulate the storage-outflow relationship for the reach (see Figure 1).

Inflows Lagged Inflows

Outflows
(lagged and attenuated)

Q

Time

Inflows Lagged Inflows

Outflows
(lagged and attenuated)

Q

Time
Figure 1: Lag and K Routing

At its fundamental level, the method solves the continuity equation using an approach similar to
Muskingum routing (assuming that the Muskingum parameter representing wave storage is negligible).
The governing equation for this routing method is given as:

t
SQQ outin Δ

Δ
=−

where:

Qin = instantaneous inflow [rate] lagged appropriately,
Qout = instantaneous outflow [rate] lagged appropriately,
ΔS = change in storage in the reach [volume],
Δt = time difference.

 Command Reference – VariableLagK() - 1 493

VariableLagK() Command TSTool Documentation

The relationship assumes an outflow-storage relationship of the form:

 S = k ⋅ Qout,

where:

k = attenuation for the outflow [time].

To ensure accurate results, k should be larger or equal to Δt/2. For discrete time steps these relationships
translate into:

2

,
12

2
1

1
21

2
tk

t
k

O
t

SII
O Δ

≥
+

Δ

−
Δ

++
=

where: I1 and I2 are the lagged inflows into the reach at the previous and current time step,
respectively,

 O1 and O2 are the outflows out of the reach at the previous and current time step, respectively,
S1 is the storage within the reach at the previous time step, defined as S1 = k⋅O1, and
Δt is the time difference between the two time steps.

Values for Lag and K can usually be established by comparing routed flows to downstream observations.
Alternatively, the Lag can be estimated using the reach length and wave speed in the reach. Without any
other information, K can be set to Lag/2.

The above discussion applies where the Lag and K parameters are single values (as implemented in the
LagK() command). However, there are cases where the values vary by flow, which is handled by this
command. The approach that is implemented is an adaptation of that described in National Weather
Service River Forecast System LAG/K documentation:
http://www.nws.noaa.gov/oh/hrl/nwsrfs/users_manual/part2/_pdf/24lagk.pdf.

Command Reference – VariableLagK() - 2 494

http://www.nws.noaa.gov/oh/hrl/nwsrfs/users_manual/part2/_pdf/24lagk.pdf

TSTool Documentation VariableLagK() Command

The following dialog is used to edit the command and illustrates the syntax for the command:

ViriableLagK

VariableLagK() Command Editor

The command syntax is as follows:

VariableLagK(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSID Identifier or alias for the time series to be routed. It is

assumed that this series describes an instantaneous flow. Due
to the lagging, the first data values required for the
computation of O2 are not available within this time series and
are therefore set to values set in the InflowStates
parameter.

None – must be
specified.

NewTSID Identifier for the new (routed) time series. This is required to
ensure that the internal identifier for the time series is unique
and accurate for the data. The interval of the identifier must
be the same as for the time series specified by TSID.

None – must be
specified.

 Command Reference – VariableLagK() - 3 495

VariableLagK() Command TSTool Documentation

Parameter Description Default
FlowUnits The units of the flow data specified in the Lag and K tables.

These units must be compatible with the time series units.
The table values will be converted to the time series units if
the units are not the same.

None – must be
specified.

LagInterval The base interval for the time data specified in the Lag and K
tables. The interval must be compatible with the time series
base interval. The table values will be converted to the time
series time interval if the intervals are not the same. For
example, table data specified in Hour base interval will be
converted to Minute if the time series being routed contains
NMinute data.

None – must be
specified.

Lag Flow value and lag time pairs to control routing. The units of
the data values are as specified by the FlowUnits parameter
(see above). The units of the lag are time as specified by the
LagInterval parameter. The Lag value is not required to
be evenly divisible by the time step interval; values in the time
series between time steps will be linearly interpolated. Use
commas and semi-colons to separate values, for example:

 100.0,10;200.0,20

None – must be
specified.

K Flow value and K time pairs to control routing. The
attenuation factor K is applied to the wave. The units of K are
time as specified by the LagInterval parameter. Use
commas and semi-colons to separate values, for example:

 100.0,5;200.0,10

None – must be
specified.

InflowStates Comma-delimited list of default inflow values prior to the start
of the time series. The order of the values is earliest to latest.
The array must specify (Lag/multiplier) + 1 values; i.e., a 10
minute interval with a LAG of 30 must be provided with 30/10
+ 1 = 4 inflow carryover values. Note: Specifying values that
are not consistent with the Lag and K parameters will result
in oscillation!

0 for each value

CURRENTLY
ALWAYS
DEFAULT

OutflowStates Comma-delimited list of default outflow values prior to the
start of the time series. See InflowStates for details.

0 for each value

CURRENTLY
ALWAYS
DEFAULT

Alias The alias that will be assigned to the new time series. No alias will be
assigned.

Command Reference – VariableLagK() - 4 496

TSTool Documentation VariableLagK() Command

A sample command file is as follows (commands to read time series are omitted):

Test routing at 3 hour interval
StartLog(LogFile="Results/Test_VariableLagK_3hr.TSTool.log")
Read NWSCard input file
ReadNwsCard(InputFile="Data\3HR_INPUT.SQIN",Alias=”Inflow”)

Route using the same routing parameters used in the mcp3 input deck
(metric units: Lag(hrs) K(hrs) Q(cms)
Lag
K
24.0 200.0 12.0 600.00 9.0 1500.0 42.0 3000.0
24.0 200.0 12.0 600.00 9.0 1500.0 42.0 3000.0

VariableLagK(TSID="Inflow",NewTSID="TestLoc..SQIN.3Hour.routed",DataUnits=CMS,
 LagInterval=Hour,Lag="200,24.0;600,12.0;1500,9.0;3000,42.0",
 K="200,24.0;600,12.0;1500,9.0;3000,42.0",Alias="3Hr")

 Command Reference – VariableLagK() - 5 497

VariableLagK() Command TSTool Documentation

This page is intentionally blank.

Command Reference – VariableLagK() - 6 498

 Command Reference – WebGet() - 1

Command Reference: WebGet()
Retrieve a file from a website

Version 10.01.00, 2011-11-15

The WebGet() command retrieves content from a website and writes the content to a local file. The
transfer occurs using binary characters and the local copy is the same as that shown by View…Source (or
View…Page Source) in the web browser. This command is useful for mining time series data and other
content from data provider web sites. The local file can then be processed with additional commands
such as ReadFromDelimitedFile().

Extraneous content (such as HTML markup around text) and inconsistencies in newline characters (\r\n
for windows and \n on other systems) may lead to some issues in processing the content. Additional
command capabilities may be implemented to help handle these issues.

The following dialog is used to edit the command and illustrates the syntax for the command. This
example reads stream gage data from the State of Colorado’s website.

WebGet

WebGet() Command Editor

499

WebGet() Command TSTool Documentation

Command Reference – WebGet() - 2

The command syntax is as follows:

WebGet(Parameter=Value,…)

Command Parameters

Parameter Description Default
URI The Uniform Resource Identifier (URI)

for the content to be retrieved. This is
often also referred to as the Uniform
Resource Locator (URL). Global
properties can be used with the
${Property} syntax.

None – must be specified.

LocalFile The local file in which to save the
content. Global properties can be used
with the ${Property} syntax.

None – must be specified.

500

Command Reference: WeightTraces()
Create a time series by weighting data from time series ensemble traces

Version 10.00.00, 2011-03-28

The WeightTraces() command creates a new time series as a weighted sum of time series ensemble
traces, for example as produced by a CreateEnsemble() command. If any trace contains missing
data for a point, the resulting time series value will also be missing. Note that this approach may not be
appropriate for some analyses – the user should evaluate the implications of whether the weighted result
appropriately reflects the (in)dependence of input data.

The following dialog is used to edit the command and illustrates the syntax of the command.

WeightTraces

WeightTraces() Command Editor

 Command Reference – WeightTraces() - 1 501

WeightTraces() Command TSTool Documentation

The command syntax is as follows:

WeightTraces(Parameter=Value,…)

The following older command syntax is updated to the above syntax when a command file is read:

TS Alias = WeightTraces(Parameter=Value,…)

Command Parameters

Parameter Description Default
EnsembleID The ensemble identifier indicating time

series to be processed (e.g., from a
CreateEnemble() command). Time
series matching the years specified by the
Weights parameter will be processed.

None – must be specified.

NewTSID The time series identifier for the new
time series that is created. This typically
uses the same information as the original
time series, with an added scenario.

None – must be specified.

Alias The alias to assign to the time series, as a
literal string or using the special
formatting characters listed by the
command editor. The alias is a short
identifier used by other commands to
locate time series for processing, as an
alternative to the time series identifier
(TSID).

None – must be specified.

SpecifyWeightsHow Weights are currently only applied as
AbsoluteWeights (in the future an
option may be added to normalized
weights to 1.0 accounting for missing
data in the traces).

Must be
AbsoluteWeights.

Weights Specify pairs of trace year and weights
(0-1.0), used to create the new time
series. Trace years must be manually
entered because at the time that the
command is edited, time series have not
yet been queried. The weights do not
need to add to 1. Example data are:
1995,.5,1998,.3,2005,.2

None – must be specified.

Command Reference – WeightTraces() - 2 502

TSTool Documentation WeightTraces() Command

A sample commands file is as follows (longer commands that wrap are shown indented):

Create annual traces from a time series shifted to the current year
The original time series is read from HydroBase

(1995-1998) ALAMOSA RIVER ABOVE JASPER, CO USGS Streamflow Day
08235350.USGS.Streamflow.Day~HydroBase
CreateEnsemble(TSID="08235350.USGS.Streamflow.Day",TraceLength=1Year,
 EnsembleID="Ensemble_Jasper",
 EnsembleName="ALAMOSA RIVER ABOVE JASPER, CO",
 ReferenceDate="2008-01-01",ShiftDataHow=ShiftToReference)
WeightTraces(Alias=”WeightedTS”,EnsembleID="Ensemble_Jasper",
 SpecifyWeightsHow="AbsoluteWeights",
 Weights="1997,.5,1998,.4,1999,.1",
 NewTSID="08235350.USGS.Streamflow.Day.weighted")
WriteDateValue(OutputFile="Results/WeightTraces_out.dv")

UserManualExamples/TestCases/CommandReference/WeightTraces/WeightTraces.TSTool

The results from the commands are shown in the following graph:

WeighTraces_Graph

Results of the WeightTraces() Command

 Command Reference – WeightTraces() - 3 503

WeightTraces() Command TSTool Documentation

This page is intentionally blank.

Command Reference – WeightTraces() - 4 504

Command Reference: WriteCheckFile()
Write a check file containing a summary of data/processing problems

Version 09.03.04, 2009-04-23

The WriteCheckFile() command summarizes the results of command processing warning/failure
messages in a “check file”. This file is useful for reviewing results and for quality control. The check file
is essentially a persistent record of any problems that occurred during processing, whereas a full log file
contains a sequential list of processing.

The following dialog is used to edit the command and illustrates the syntax for the command.

WriteCheckFile

WriteCheckFile() Command Editor

The command syntax is as follows:

WriteCheckFile(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the check file to create, enclosed in double

quotes if the file contains spaces or other special
characters. A path relative to the command file
containing this command can be specified.

Specify a filename with .html extension to generate an
HTML file or .csv to generate a comma-separated value
file suitable for use with Excel. The HTML file will
contain more information and include navigation links.

None – must be
specified.

 Command Reference – WriteCheckFile() - 1 505

WriteCheckFile() Command TSTool Documentation

This page is intentionally blank.

Command Reference – WriteCheckFile() - 2 506

 Command Reference – WriteDateValue() - 1

Command Reference: WriteDateValue()
Write time series to a DateValue format file

Version 10.06.00, 2012-04-05

The WriteDateValue() command writes time series to the specified DateValue format file. See the
DateValue Input Type Appendix for more information about the file format. The time series being
written must have the same data interval – use the TSList parameter to select appropriate time series.

The following dialog is used to edit the command and illustrates the syntax of the command.

WriteDateValue

WriteDateValue() Command Editor

The command syntax is as follows:

WriteDateValue(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed, one

of:
• AllMatchingTSID – all time series that

match the TSID (single TSID or TSID with
wildcards) will be processed.

• AllTS – all time series before the command.
• EnsembleID – all time series in the ensemble

will be processed.
• FirstMatchingTSID – the first time series

that matches the TSID (single TSID or TSID

AllTS

507

WriteDateValue() Command TSTool Documentation

Command Reference – WriteDateValue() - 2

Parameter Description Default
with wildcards) will be processed.

• LastMatchingTSID – the last time series that
matches the TSID (single TSID or TSID with
wildcards) will be processed.

• SelectedTS – the time series are those
selected with the SelectTimeSeries()
command.

TSID The time series identifier or alias for the time series
to be processed, using the * wildcard character to
match multiple time series.

Required if
TSList=*TSID.

EnsembleID The ensemble to be processed, if processing an
ensemble.

Required if TSList=
EnsembleID.

OutputFile The DateValue output file. The path to the file can
be absolute or relative to the working directory
(command file location). Global properties can be
used to specify the filename, using the
${Property} syntax.

None – must be specified.

Delimiter The delimiter character to use between data values.
Comma is the only other allowed value other than the
default space and is recommended for irregular time
series, which are output as blanks when date/times
don’t align with other time series.

Space.

Precision The number of digits after the decimal for numerical
output.

4 (in the future may
default based on data type)

MissingValue The value to write to the file to indicate a missing
value in the time series.

As initialized when
reading the time series or
creating a new time series,
typically -999, NaN, or
another value that is not
expected in data.

OutputStart The date/time for the start of the output. Use the global output
period.

OutputEnd The date/time for the end of the output. Use the global output
period.

Irregular
Interval

The interval (e.g., Day) used when writing irregular
time series, to indicate the precision of date/times.
This may be necessary when it is not possible to
automatically determine the date/time precision. The
date/time precision to format output is assumed to be
Minute if unknown; however, specifying the
irregular interval will inform the data processing.

Determined from the
period start date/time of
each time series, defaulting
to Minute where the
date/time precision is set to
“irregular” (unknown).

A sample command file to process data from the State of Colorado’s HydroBase database is as follows:

0100503 - RIVERSIDE CANAL
0100503.DWR.DivTotal.Month~HydroBase
WriteDateValue(OutputFile="Diversions.dv")

508

Command Reference: WriteHecDss()
Write time series to a HEC-DSS File

Version 09.03.00, 2009-04-10

The WriteHecDss() command writes time series to a HEC-DSS file. See the HEC-DSS Input Type
Appendix for information about how time series properties are output to HEC-DSS files. Current
limitations of the command are:

• Irregular time series are not supported – the focus of initial development has been regular interval
time series.

• 24-hour time series in TSTool cannot be written to HEC-DSS because HEC-DSS only supports
1DAY interval. Therefore, the time series must be converted to a daily time series before writing.
An option to convert 24-hour values to 1DAY may be added to this command in the future.

• HEC-DSS uses times through 2400. TSTool will convert this to 0000 of the next day. Year,
month, and day data are not impacted. The internal TSTool values will be converted to hour
2400 when writing. Therefore, reading from a HEC-DSS file and then writing should result in no
change in data.

• Time series that are written overwrite existing time series, but only for the period that is written.
Therefore, previously written values may remain, even if not appropriate. A future enhancement
will allow the option of removing the old data before writing new data. The work-around is to
write a period that is sufficiently long to guarantee that old data values do not remain in the file,
or clear the file out with another tool such as DSSUTL before writing.

• Currently the connections to the HEC-DSS file will remain open after the write, in order to
minimize performance degradation for multiple write commands. However, this will lock the
HEC-DSS file so that other commands or programs cannot perform file manipulation, such as
removing the file. The connections will automatically time out after several minutes. A future
enhancement will ensure that the file connections can be closed.

The A-F parts of the HEC-DSS time series pathname by default are taken from the time series properties,
as follows:

• The A and B parts are taken from the time series identifier location, where location should be
defined as A:B.

• The C part is taken from the time series data type.
• The D part is taken from the time series period in memory or as defined by the output period.
• The E part is taken from the time series interval.
• The F part is taken from the time series identifier scenario.

These conventions can be overruled by specifying the parts explicitly with command parameters. The
parameter values will apply to all time series being written.

 Command Reference – WriteHecDss() - 1 509

WriteHecDss() Command TSTool Documentation

The following dialog is used to edit the command and illustrates the syntax for the command.

WriteHecDss

WriteHecDss() Command Editor

The command syntax is as follows:

WriteHecDss(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The name of the HEC-DSS file to write,

surrounded by double quotes to protect
whitespace and special characters. If the file
does not exist it will be created.

None – must be specified.

Type The HEC-DSS time series type, indicating
whether the time series is instantaneous, mean,
or accumulated.

None – must be specified.

TSList Indicates the list of time series to be processed,
one of:
• AllMatchingTSID – all time series that

match the TSID (single TSID or TSID
with wildcards) will be processed.

AllTS

Command Reference – WriteHecDss() - 2 510

TSTool Documentation WriteHecDss() Command

Parameter Description Default
• AllTS – all time series before the

command will be processed.
• EnsembleID – all time series in the

ensemble will be processed.
• FirstMatchingTSID – the first time

series that matches the TSID (single TSID
or TSID with wildcards) will be processed.

• LastMatchingTSID – the last time
series that matches the TSID (single TSID
or TSID with wildcards) will be processed.

• SelectedTS – the time selected with the
SelectTimeSeries() command will
be processed.

TSID The time series identifier or alias for the time
series to be processed, using the * wildcard
character to match multiple time series.

Required if TSList=*TSID.

EnsembleID The ensemble to be processed, if processing an
ensemble.

Required if TSList=
EnsembleID.

OutputStart The date/time for the start of the output. Use the global output period or
write all available data.

OutputEnd The date/time for the end of the output. Use the global output period or
write all available data.

Precision The number of digits after the decimal for
numerical output.

HEC-DSS default.

A The DSS path A-part to use for the time series
as written to the HEC-DSS file.

Time series identifier location
part before the : (if : is present)
or the entire location if : is not
present.

B The DSS path B-part to use for the time series
as written to the HEC-DSS file.

Time series identifier location
part after the : (if : is present) or
the blank if : is not present.

C The DSS path C-part to use for the time series
as written to the HEC-DSS file.

Time series identifier data type.

E The DSS path E-part to use for the time series
as written to the HEC-DSS file.

Time series identifier data
interval, converted to HEC-
DSS conventions.

F The DSS path F-part to use for the time series
as written to the HEC-DSS file.

Time series identifier scenario.

Replace Under development – whether to replace the
contents of the previous time series in the
HEC-DSS file.

Only replace what is actually
written.

Close Indicate whether to close connections to the
HEC-DSS file and allow other processes to
move/rename/delete the file. Specifying as
True may slow the software as files are
repeatedly opened and closed.

False – let the HEC-DSS
internal software close the
connection after timing out.

 Command Reference – WriteHecDss() - 3 511

WriteHecDss() Command TSTool Documentation

A sample command file is as follows:

WriteHecDss(OutputFile="sample.dss",TYPE=PER-AVER,
 OutputStart="1992-01-01",OutputEnd="1992-12-31")

Command Reference – WriteHecDss() - 4 512

 Command Reference – WritePropertiesToFile - 1

Command Reference: WritePropertiesToFile()
Write one or more time series processor properties to a file

Version 10.12.00, 2012-07-27

The WritePropertiesToFile() command writes the value of one or more time series processor
properties to a file (this command replaces the older WriteProperty() command, which is being
phased out). The ReadPropertiesFromFile() command can be used to read properties from a
file. Processor properties include global defaults such as InputStart, InputEnd, OutputStart,
OutputEnd, OutputYearType, WorkingDir, and also user-defined properties set with the
SetProperty() command. Internally, properties have a name and a value, which is of a certain type
(string, integer, date/time, etc.). Examples of using the command include:

• creating tests to verify that properties are being set
• passing information from TSTool to another program, such as a Python script
• storing persistent information for later use, such as the date/time that data were last downloaded

from a web service

 A number of property formats are supported as listed in the following table.

Property File Formats

Format Description
NameValue Simple format, all properties handled as text:

 PropertyName=PropertyValue
 PropertyName=”Property value, quoted if necessary”

NameTypeValue Same as NameValue format, with non-primitive objects treated as simple
constructors:
 PropertyName=PropertyValue
 DateTimeProperty=DateTime(“2010-10-01 12:30”)

NameTypeValue
Python

Similar to the NameTypeValue format, however, objects are represented
using “Pythonic” notation, to allow the file to be used directly by Python
scripts:
 PropertyName=”PropertyValue”
 DateTimeProperty=DateTime(2010,10,1,12,30)

513

WritePropertiesToFile() Command TSTool Documentation

Command Reference – WritePropertiesToFile() - 2

The following dialog is used to edit this command and illustrates the syntax of the command.

WritePropertiesToFile

WritePropertiesToFile() Command Editor

The command syntax is as follows:

WritePropertiesToFile(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The property file to write, as an absolute path or

relative to the command file.
None – must be specified.

IncludeProperty The names of properties to write, separated by
commas.

If not specified, all
processor properties will
be written.

WriteMode Indicates how the file should be written:
• Append – append the properties to the file

without checking for matches (create the
file if it does not exist)

• Overwrite – overwrite the properties file
• Update – update the properties in the file

by first checking for matching property
names (which will be updated) and then
appending unmatched properties (not yet
implemented)

Overwrite

FileFormat Format of the properties file (see descriptions in
the above Property File Formats table):
• NameValue
• NameTypeValue
• NameTypeValuePython

NameValue

514

 Command Reference – WriteProperty() - 1

Command Reference: WriteProperty()
Write a time series processor property to a file

Version 10.12.00, 2012-07-30

This command has been replaced with the WritePropertiesToFile() command and will be
removed from the software in a future release.

The WriteProperty() command writes the value of a time series processor property to a file. This is
useful for testing that properties are being set. It could also be used to pass information from TSTool to
another program. The format of the output is:

 Property=”Value”

The following dialog is used to edit this command and illustrates the syntax of the command.

WriteProperty

WriteProperty() Command Editor

515

WriteProperty() Command TSTool Documentation

Command Reference – WriteProperty() - 2

The command syntax is as follows:

WriteProperty(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The property file to write, as an absolute path or

relative to the command file.
None – must be specified.

PropertyName The property name to write None – must be specified.
Append Indicates whether the property should be

appended to the file (True) or overwrite the
file (False).

True

A sample command file is as follows:

WriteProperty(OutputFile="Results/Example_WriteProperty.txt",
 PropertyName="WorkingDir")

516

 Command Reference – WriteReclamationHDB() - 1

Command Reference: WriteReclamationHDB()
Write a time series to a Reclamation HDB database

Version 10.20.00, 2013-04-21

The WriteReclamationHDB() command writes time series to a Reclamation HDB database:

• a single time series (which can be part of an ensemble), indicated by the individual time series
identifier:

o a “real” time series (observations)
o a “model” time series (output from a model)

• all time series in an ensemble, indicated by the ensemble identifier:
o ensemble trace time series are stored as “model” time series (individual ensemble trace

time series can then be read as single time series by specifying the appropriate
“hydrologic indicator”, which is set to the ensemble time series sequence number from
TSTool time series)

See the ReadReclamationHDB() command documentation for information about reading the time
series that are written by this command. See the Reclamation HDB Data Store Appendix for more
information about the database features and limitations. Command functionality includes:

• Time series metadata/new time series:
o The command will not define a new time series (site and model data). It is expected that

time series previously have been defined in the database. This ensures that TSTool can
perform error handling and users do not accidentally load new time series.

o The exception is that new ensembles and corresponding trace time series can be defined
by specifying ensemble name, trace number, and model run date.

• Date/time handling:
o TSTool uniformly uses the time at the end of the recorded interval for data values

(instantaneous time or end of interval for mean and accumulated values), whereas HDB
uses the time at the beginning of the recorded interval for hourly data. See the
ReclamationHDB Datastore appendix for more information.

o Writing NNour data uses WRITE_TO_HDB procedure where the
SAMPLE_END_DATETIME is set to the TSTool date/time and SAMPLE_DATE_TIME is
set the TSTool date/time minus NHour.

o Writing other than NHour data uses the WRITE_TO_HDB procedure with
SAMPLE_DATE_TIME passed as the same value as the TSTool date/time.

• Updating time series records:
o Time series data records for an existing time series will be updated if previously written.

• Missing data:
o Missing data currently are not written. By convention missing values in HDB are simply

not included in the database. Currently the command will not delete previous records if
the new value at a date/time is missing.

• Data units:
o Data units in the time series are not checked against data units in the database because the

units in TSTool data may originally have come from various sources that do not use the
same units abbreviations as HDB. It is the user’s responsibility to ensure that time series
that are being written have units that are compatible with HDB.

• Data flags:

517

WriteReclamationHDB() Command TSTool Documentation

Command Reference – WriteReclamationHDB() - 2

o Data flags from the time series are not written to the database. The ValidationFlag,
OverwriteFlag, and DataFlags parameters are provided to specify HDB flags.
Additional capability may be added in the future.

• Time zone:
o Time zone can be indicated in TSTool time series by including in the start and end

date/time information; however, time zones are difficult to standardize when data comes
from different sources. The default time zone for HDB is configured for the Reclamation
office that uses the database. If the time series time zone is different from the default
(displayed in the note for the TimeZone command parameter in the command editor), it
can be specified as a command parameter. It is the user’s responsibility to verify that the
correct time zone is being used.

• HDB data table:
o The time series interval is used to determine the HDB time series table to write, with

irregular data being written as instantaneous data with date/time precision to minute.
o Irregular data also can be written to a specific output table by using the

IntervalOverride parameter, for example in cases where a time series was read as
irregular but should be treated as hourly in HDB.

o TSTool treats year-interval data generically and does not manage water year (or other
types of years) in special fashion, other than when processing data into year interval time
series. Water year data can be saved in year interval data but currently there is no way to
write to the water-year tables in HDB.

• HDB database procedure:
o The HDB WRITE_TO_HDB stored procedure is used to write individual time series data

records:
 The time series is written to a model time series table if model parameters are

specified.
 The model run date, for single time series and ensembles, is truncated to minutes

in time series identifiers and for query purposes.
o When writing ensembles, the HDB procedure

ENSEMBLE.GET_TSTOOL_ENSEMBLE_MRI is used to determine the model run
identifier corresponding to model time series and then the WRITE_TO_HDB procedure
(above) is used to write data records:
 The ensemble name is determined from the EnsembleName parameter –

existing names can be selected or a new name can be specified
 The trace number is determined from the EnsembleTraceID command

parameter, and will result in the trace being taken from specific time series
properties.

 The model name is determined from the EnsembleModelName parameter.
Model names consistent with non-ensemble model time series are used.

 The model run date is determined from the EnsembleModelRunDate
parameter (if specified then the P_IS_RUNDATE_KEY procedure parameter is
set to Y, if not specified N).

The following dialog is used to edit the command and illustrates the syntax of the command when writing
“real” data, in which case model information is not specified.

518

TSTool Documentation WriteReclamationHDB() Command

 Command Reference – WriteReclamationHDB() - 3

WriteReclamationHDB

WriteReclamationHDB() Command Editor for “Real” Time Series

519

WriteReclamationHDB() Command TSTool Documentation

Command Reference – WriteReclamationHDB() - 4

The following figure illustrates the syntax of the command when writing “model” data for a single time
series, in which case the model parameters are specified via the Single model time series tab.

WriteReclamationHD_Model

WriteReclamationHDB() Command Editor for Single Model Time Series

520

TSTool Documentation WriteReclamationHDB() Command

 Command Reference – WriteReclamationHDB() - 5

The following figure illustrates the syntax of the command when writing an ensemble of “model” time
series, in which case ensemble and related model parameters are specified via the Ensemble of model
time series tab. The TSTool ensemble is specified with the TSList=EnsembleID and EnsembleID
parameters.

WriteReclamationHD_Ensemble

WriteReclamationHDB() Command Editor for Ensemble of Model Time Series

The command syntax is as follows:

WriteReclamationHDB(Parameter=Value,…)

521

WriteReclamationHDB() Command TSTool Documentation

Command Reference – WriteReclamationHDB() - 6

Command Parameters

Parameter Description Default
DataStore The identifier for the ReclamationHDB data store to use

for the database.
None – must be
specified.

TSList Indicates the list of time series to be processed, one of:
• AllMatchingTSID – all time series that match the

TSID (single TSID or TSID with wildcards) will be
processed.

• AllTS – all time series before the command.
• EnsembleID – all time series in the ensemble will

be processed.
• FirstMatchingTSID – the first time series that

matches the TSID (single TSID or TSID with
wildcards) will be processed.

• LastMatchingTSID – the last time series that
matches the TSID (single TSID or TSID with
wildcards) will be processed.

• SelectedTS – the time series are those selected
with the SelectTimeSeries() command.

AllTS

TSID The time series identifier or alias for the time series to be
processed, using the * wildcard character to match
multiple time series.

Required if
TSList=*TSID.

EnsembleID The identifier for the TSTool ensemble to be processed, if
processing an ensemble, not to be confused with the
Ensemble* parameters below that match HDB data.

Required if TSList=
EnsembleID.

Site
CommonName

The site common name for the time series location; used
with the data type common name to determine the
site_datatype_id in the database.

None – must be
specified unless
SiteDataTypeID is
specified.

DataType
CommonName

The data type common name for the time series; used
with the site common name to determine the
site_datatype_id in the database.

None – must be
specified unless
SiteDataTypeID is
specified.

SiteDataTypeID The site_datatype_id value to match the time series. If
specified, the value will be used instead of the
site_datatype_id determined from SiteCommonName
and DataTypeCommonName.

 Use the following parameters when reading a single
model time series.

ModelName The model name for the time series; used with the model
run name, hydrologic indicator(s), and model run date to
determine the model_run_id in the database.

None – must be
specified unless
ModelRunID is
specified.

ModelRunName The model run name for the time series; used with the
model name, hydrologic indicator(s), and model run date
to determine the model_run_id in the database.

None – must be
specified unless
ModelRunID is
specified.

ModelRunDate The model run date (timestamp) to use for the time series; None – must be

522

TSTool Documentation WriteReclamationHDB() Command

 Command Reference – WriteReclamationHDB() - 7

Parameter Description Default
used with the model name, model run name, and
hydrologic indicator(s) to determine the model_run_id in
the database. The run date should be specified using the
format YYYY-MM-DD hh:mm (zero-padded with hour 0-
23, minute 0-59, seconds and hundredths of seconds will
default to 0). Need to implement tests to make sure
this is properly handled, including formatting and
listing existing values.

specified unless
ModelRunID is
specified.

Hydrologic
Indicator

The hydrologic indicator(s) to use for the time series;
used with the model name, model run name, and model
run date to determine the model_run_id in the database.

None – must be
specified unless
ModelRunID is
specified.

ModelRunID The model_run_id value to match the time series. If
specified, the value will be used instead of the
model_run_id determined from ModelName,
ModelRunName, ModelRunDate, and
HydrologicIndicator.

 Use the following parameters when writing an ensemble
of model time series.

EnsembleName The name of the ensemble to write. The
TSList=EnsembleID and EnsembleID parameters
also should be specified.

Must be specified if
writing an ensemble.

EnsembleModelName The model name corresponding to the ensemble. Must be specified if
writing an ensemble.

EnsembleTraceID Indicate how to identify time series trace identifiers:
• %X – use standard time series properties to format the

ensemble trace ID (see command editor for format
characters)

• ${TS:property} – format the trace identifier
from time series properties (e.g., properties read from
original ensemble data)

TSTool and the HDB GET_TSTOOL_ENSEMBLE_MRI
procedure currently require the identifier to be an integer
– additional options for identifying traces may be added
in the future.

The time series
sequence number
(equivalent to the %z
formatting string)

EnsembleModel
RunDate

When writing an ensemble, the model run date for the
ensemble, specified using format:
• YYYY-MM-DD hh:mm (zero-padded with hour 0-

23)
• ${ts:property} – use a run date from a time

series property, truncated to minute
Need to implement tests to make sure this is properly
handled, including formatting and listing existing
values.

If not specified, the
ensemble identifier in
HDB will not include
the model run date.

 The following parameters are always appropriate.
Agency The agency abbreviation (e.g., USBR) for data records

written to the database.
No agency is indicated
in database.

Validation HDB validation flag. Only uppercase characters are No flag is used.

523

WriteReclamationHDB() Command TSTool Documentation

Command Reference – WriteReclamationHDB() - 8

Parameter Description Default
Flag supported.
OverwriteFlag HDB overwrite flag. Overwrite (enforced by

HDB stored
procedure)..

DataFlags User-defined flags, up to 20 characters. No flags are used.
TimeZone Three-letter time zone abbreviation for the data records

written to the database.
Default HDB time
zone is assumed.

OutputStart The date/time for the start of the output. Use the global output
period.

OutputEnd The date/time for the end of the output. Use the global output
period.

524

 Command Reference – WriteRiversideDB() - 1

Command Reference: WriteRiversideDB()
Write time series to a RiversideDB database

Version 10.06.00, 2012-04-15

This command is under development – please provide feedback to developers. The
WriteRiversideDB() command writes time series to a RiversideDB database. See the RiversideDB
Data Store Appendix for more information about the database features and limitations. The command
will not define a new time series but will replace or insert the data records for an existing time series. The
current functionality allows a single time series to be written by matching a specific existing time series in
the database; however, in the future time series properties may be used to write multiple time series with
one command (e.g., use %L to match the location).

The following dialog is used to edit the command and illustrates the syntax of the command when writing
a single time series to the database. In this case the choices are used to select a matching time series and
only one time series can be in the list to process (otherwise a warning will result and nothing is written).

WriteRiversideDB

WriteRiversideDB() Command Editor when Matching/Writing a Single Time Series

525

WriteRiversideDB() Command TSTool Documentation

Command Reference – WriteRiversideDB() - 2

The following figure illustrates use of the Match Time Series Using Properties tab, which is envisioned
as a future enhancement. In this case, the parameter values do not match a specific time series in the
database but instead use the properties from the list of time series being written to indicate how to match a
time series in the database. For example, DataType=%T would use the data type from the time series to
match the data type in the database and Location=%L would use the location identifier from the time
series to match the location identifier in the database. Writing multiple time series requires fewer
commands but the command editor will not be able to confirm that the time series are matched in the
database (this can only occur when running the commands and data are actually processed).

WriteRiversideDB2

WriteRiversideDB() Command Editor when Matching/Writing Multiple Time Series

The following technical issues apply when writing time series:

• Currently there is no authentication to prevent users from using this command. Options will be
explored based on specific system requirements.

• Time series being written must have compatible units with the units of the time series in the
database. The same units or conversion factor of 1.0 must be detected to allow writing.

• Missing values in time series are written as missing values (null) in the database. This allows
missing values in the database to have flags.

o Regular interval time series could be written in such a way that missing values are simply
not written to the database. If this is required, then a new parameter
WriteMissingValues could be added. However, tracking revisions might be
difficult using this approach because older values would need more complex handling
since no newer missing value record would be present.

o Irregular interval time series in TSTool do not have missing value records unless they
were specifically read from input.

• Irregular time series present challenges that may not be fully addressed with the current software
features and may require additional enhancements. For example,
WriteMethod=TrackChanges may not work properly if updates to irregular data have
different date/times than the original values. In this case WriteMethod=DeleteInsert
may be more appropriate; however, this does not check the ProtectedFlags parameter.

The command syntax is as follows:

WriteRiversideDB(Parameter=Value,…)

526

TSTool Documentation WriteRiversideDB() Command

 Command Reference – WriteRiversideDB() - 3

Command Parameters

Parameter Description Default
DataStore The identifier for the RiversideDB data store to use for the

database.
None – must be
specified.

TSList Indicates the list of time series to be processed, one of:
• AllMatchingTSID – all time series that match the

TSID (single TSID or TSID with wildcards) will be
processed.

• AllTS – all time series before the command.
• EnsembleID – all time series in the ensemble will be

processed.
• FirstMatchingTSID – the first time series that

matches the TSID (single TSID or TSID with
wildcards) will be processed.

• LastMatchingTSID – the last time series that
matches the TSID (single TSID or TSID with
wildcards) will be processed.

• SelectedTS – the time series are those selected with
the SelectTimeSeries() command.

AllTS

TSID The time series identifier or alias for the time series to be
processed, using the * wildcard character to match multiple
time series.

Required if
TSList=*TSID.

EnsembleID The ensemble to be processed, if processing an ensemble. Required if TSList=
EnsembleID.

WriteMode This parameter is envisioned if writing multiple time series
is enabled in the future (currently only WriteSingle is
enabled). Indicates how time series are being matched, one
of:
• WriteSingle (the only mode that is enabled), in

which case the Match Specified Single Time Series
tab is used to enter command parameters.

• WriteMultiple (future enhancement), in which
case the Match Time Series Using Properties tab is
used to enter command parameters.

Ensemble time series may fit into either of the above
depending on how the sequence numbers are handled.

WriteSingle

DataType The data type abbreviation in the database to match. None – must be
specified.

DataSubType The data sub-type in the database to match (may be blank). Not used if blank.
Interval The data interval in the database to match. None – must be

specified.
LocationID The location identifier in the database to match. None – must be

specified.
DataSource The data source abbreviation in the database to match. Not used if blank.
Scenario The scenario in the database to match (may be blank). Not used if blank.
SequenceNumber Used for ensembles – the trace number, often the starting

year of the trace (may be blank).
Not used if blank.

WriteDataFlags Indicate whether data flags should be written. True

527

WriteRiversideDB() Command TSTool Documentation

Command Reference – WriteRiversideDB() - 4

Parameter Description Default
OutputStart The date/time for the start of the output. Use the global output

period.
OutputEnd The date/time for the end of the output. Use the global output

period.
WriteMethod The approach for writing time series, one of:

• Delete – delete the time series records but do not
write the time series (useful for testing and database
maintenance)

• DeleteInsert – delete time series records and then
insert. Revision data are not inserted into the database.

• TrackRevisions – track revisions as per the logic
described after this table.

None – must be
specified.

ProtectedFlags Indicate the flag values for database data records that
should NOT be modified, when
WriteMethod=TrackRevisions. Typically these
records indicate that data have been validated and/or
manually entered and automated processes should not
overwrite the values. Currently only one flag value can be
specified; however, multiple values or patterns may be
supported in the future.

None – no data will be
protected.

ComparePrecision The number of digits after the decimal used when
comparing previous database values with values in the time
series. This may be required where input/output operations
result in truncations or round-off.

4

RevisionDateTime The date/time for a new revision, if needed, one of:
• CurrentToSecond syntax – see

SetOuputPeriod() command for more
information.

• ${Property} – property value string
• YYYY-MM-DD hh:mm or similar date/time string

Time from computer
system clock at the
time the command is
run.

RevisionUser User identifier for revisions. Currently this is NOT taken
from the RiversideDB user table. ${Property} notation
can be used.

User’s login from the
operating system.

RevisionComment Comment for revisions. ${Property} notation can be
used.

No comment.

Revision information will be utilized only if configured in the database. The time series data table must
contain a Revision_num column and the Revision table must exist. The time series table layout
information will indicate whether revision numbers are used. If WriteMethod=DeleteInsert and
RevisionComment is provided, then all old data will be deleted (all revisions) and a new revision will
be added corresponding to all inserted records. This ensures that the database size does not grow quickly.
If RevisionComment is not specified, then a revision will not be added in the database (revision will
be set to zero, which corresponds to the “original data” revision).

The following figure explains the logic when WriteMethod=TrackRevisions, which can be used
when RiversideDB is configured with time series tables that use the Revision_num column. The
following flow chart focuses on the case where a data record to write to the database (consisting of a
date/time, a value, and a flag) already exists for the date/time. This indicates that this data record

528

TSTool Documentation WriteRiversideDB() Command

 Command Reference – WriteRiversideDB() - 5

previously has been written to the database. In this case, the existing data record in the database should
be overwritten with the new record unless the existing record is flagged as protected (in this example,
manually adjusted with ProtectedFlags=M). In this case, the manually adjusted value persists and
can be overwritten only if the new data record also is flagged with M, indicating that an additional manual
adjustment has occurred. The following figure illustrates the logic performed for each value. However,
several steps are performed in bulk to improve performance.

Logic for Writing Time Series Values with Revisions (ProtectedFlags=“M”)

Data record(s) from
TSTool time series

DB record already
exists?

Yes – check for
protected values

Write new data to TS
table, including data

flags

Revision
enabled?

Yes

No

DB record has flag
“M” (manual)? No – write

record
with new
revision

STOP
Insert new

revision in DB

No – OK
to write as
Revision 1

Query DB for existing
data record(s)

DB record value
and flag same as

time series?

Yes – no change so
don’t write

Yes – protected
so don’t write

No – but might
be protected

529

WriteRiversideDB() Command TSTool Documentation

Command Reference – WriteRiversideDB() - 6

Revisions to existing data records are stored in the Revision table in RiversideDB. Original data records
in the time series tables have a revision number of ‘1’, which refers to the revision number ‘1’ in the
Revision table. Any time a new revision is needed due to changes in a data value, a new entry is created
in the Revision table, populated with the pertinent information (date/time of revision, user, and a
comment) and the corresponding revision number is assigned to the revised data record in the time series
table. Revision numbers are not incremented for each data value but are incremented for the bulk
database operation (similar to a commit in content management systems). Care should be taken in using
WriteRiversideDB() commands in order to minimize the number of revisions that are tracked. For
example, rather than relying on the default value for the RevisionDateTime command parameter, a
better approach may be to define a property at the top of the command file using a SetProperty()
command and then refer to that property when specifying the RevisionDateTime property. This will
ensure that multiple WriteRiversideDB() commands in a single command file utilize the same
revision information.

If a data revision is detected based on the logic in the above figure, the corresponding revision will be
searched for in the Revision table. If not found, then a new revision record will be inserted into the
Revision table and that information will be used in the time series data table.

Time Series Table Revision Table

MeasType_num Date_Time Val Revision_num Quality_flag

1 2011-04-11 14:35 585.98 1
1 2011-04-11 14:50 586.02 1
1 2011-04-11 15:00 585.98 1
1 2011-04-11 15:10 585.98 1

1 2011-04-11 15:10 585.97 2 M
1 2011-04-11 15:15 585.99 1
1 2011-04-11 15:15 585.98 3 M
1 2011-04-11 15:15 585.97 4 M
1 2011-04-11 15:25 586 1

Revision_num Date_Time User Comment

1 NO REVISION
2 2011-04-11 17:00 JP Manual Change
3 2011-04-11 17:01 JP Manual Change
4 2011-04-11 18:01 JP Manual Change after review

TSTool commands that read RiversideDB time series, such as the ReadRiversideDB() command,
sort time series data records by the Date_Time and revision number (Revision_num) prior to transferring
the data into data objects. Consequently, the entry with the largest revision number for records at the
same sensor (MeasType_num) and time (Date_Time) is used as the valid data record because the record
will be processed last. In the above example, this is the record with Revision_num 4 and a value of
585.97. This approach may result in performance degradation over time if many revisions are made to
data values for the same date/time and consequently it may be appropriate to remove or archive very old
revisions as part of database maintenance. The trade-off between performance and the ability to track
revisions may vary between systems and in general there should be few revisions for the same data point
because data loading will move forward through time without reloading the entire period.

530

Command Reference: WriteRiverWare()
Write time series to a RiverWare format file

Version 08.15.00, 2008-05-12

The WriteRiverWare() command writes one time series to the specified RiverWare format file. See
the RiverWare Input Type Appendix for more information about the file format.

The following dialog is used to edit the command and illustrates the syntax of the command.

WriteRiverWare

WriteRiverWare() Command Editor

 Command Reference – WriteRiverWare() - 1 531

WriteRiverWare() Command TSTool Documentation

The command syntax is as follows:

WriteRiverWare(Parameter=Value, …)

Command Parameters

Parameter Description Default
TSList Indicate how to determine the list of time

series to process (only first one is
written), one of:
 AllMatchingTSID – process time

series that have identifiers matching
the TSID parameter.

 AllTS – process all the time series.
 SelectedTS – process the time

series that are selected (see
SelectTimeSeries()).

None – must be specified.

TSID Used if TSList=AllMatchingTSID
to indicate the time series identifier or
alias for the time series to be filled.
Specify * to match all time series or use
a wildcard for one or more identifier
parts.

Required if
TSList=AllMatchingTSID.

OutputFile The RiverWare file to write. The path to
the file can be absolute or relative to the
working directory. The Browse button
can be used to select the file to write (if a
relative path is desired, delete the leading
path after the select).

None – must be specified.

Units The data units to be output. Specify
units that are recognized by RiverWare –
the units are not actually converted but
the new units string is used in the output
file.

Use the units in the time series.

Scale See the RiverWare Input Type
Appendix.

1

Set_units See the RiverWare Input Type
Appendix.

Set_units are not output.

Set_scale See the RiverWare Input Type
Appendix.

Set_scale are not output.

Precision The number of digits after the decimal to
write.

4

A sample command file to write data from the State of Colorado’s HydroBase is as follows:

08213500 - RIO GRANDE RIVER AT THIRTY MILE BRIDGE NEAR CREEDE
08213500.DWR.Streamflow.Month~HydroBase
WriteRiverWare(TSList=AllTS,OutputFile="08213500.Month.RiverWare",Precision=2)

Command Reference – WriteRiverWare() - 2 532

Command Reference: WriteStateCU()
Write time series to a StateCU format file

Version 08.16.04, 2008-09-04

The WriteStateCU() command writes time series to the specified StateCU frost dates format file.
Currently only the frost dates file can be written with this command. See the WriteStateMod()
command to write StateMod format files (e.g., for the precipitation, temperature, and diversion time series
files used with the StateCU model). See the StateCU Input Type Appendix for more information about
the file format. All time series matching the data types FrostDateL28S, FrostDateL32S,
FrostDateF32F, and FrostDateF28F will be written (all other time series will be ignored). Other
StateCU files may be supported in the future. See also the StateDMI software, which processes other
StateCU files.

The following dialog is used to edit the command and illustrates the syntax of the command.

WriteStateCU

WriteStateCU() Command Editor

 Command Reference – WriteStateCU() - 1 533

WriteStateCU() Command TSTool Documentation

The command syntax is as follows:

WriteStateCU(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The StateCU frost dates output file. The

path to the file can be absolute or relative
to the working directory.

None – must be specified.

OutputStart The date/time for the start of the output. Use the global output period.
OutputEnd The date/time for the end of the output. Use the global output period.

A sample command file is as follows, using data from the State of Colorado’s HydroBase database:

0109 - AKRON 4 E
0109.NOAA.FrostDateL28S.Year~HydroBase
0109.NOAA.FrostDateL32S.Year~HydroBase
0109.NOAA.FrostDateF32F.Year~HydroBase
0109.NOAA.FrostDateF28F.Year~HydroBase
WriteStateCU(OutputFile="test.stm")

Command Reference – WriteStateCU() - 2 534

Command Reference: WriteStateMod()
Write time series to a StateMod format file

Version 08.15.00, 2008-05-12

The WriteStateMod() command writes the time series in memory to the specified StateMod format
file. See the StateMod Input Type Appendix for more information about the file format. It is expected
that the time series have the same interval. The time series identifier location part is written as the
identifier, even if an alias is assigned to a time series.

The following dialog is used to edit the command and illustrates the syntax of the command.

WriteStateMod

WriteStateMod() Command Editor

 Command Reference – WriteStateMod() - 1 535

WriteStateMod() Command TSTool Documentation

The command syntax is as follows:

WriteStateMod(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicate how to determine the list of time

series to process, one of:

 AllMatchingTSID – process time

series that have identifiers matching the
TSID parameter.

 AllTS – process all the time series.
 SelectedTS – process the time series

that are selected (see
SelectTimeSeries()).

None – must be specified.

TSID Used if TSList=AllMatchingTSID to
indicate the time series identifier or alias for
the time series to be filled. Specify * to
match all time series or use a wildcard for
one or more identifier parts.

Required if
TSList=AllMatchingTSID.

OutputFile The StateMod file to write. The path to the
file can be absolute or relative to the
working directory (command file location).

None – must be specified.

OutputStart The date/time for the start of the output. Use the global output period.
OutputEnd The date/time for the end of the output. Use the global output period.
MissingValue The value to write for missing data. -999
Precision The number of digits to use after the

decimal point, for data values. A negative
number indicates that if the formatted
number is larger than the allowed output
width, adjust the format accordingly by
truncating fractional digits. A special value
of –2001 is equivalent to –2 and
additionally NO decimal point will be
printed for large values.

The default output precision if
not specified is -2, which is then
reset based on the data units (see
the system\DATAUNIT file).

A sample command file to process data from the State of Colorado’s HydroBase is as follows:

SetOutputPeriod(OutputStart="1950-01",OutputEnd="2002-12")
08213500 - RIO GRANDE RIVER AT THIRTY MILE BRIDGE NEAR CREEDE
08213500.DWR.Streamflow.Month~HydroBase
08217000 - RIO GRANDE AT WASON, BELOW CREEDE, CO.
08217000.USGS.Streamflow.Month~HydroBase
WriteStateMod(TSList=AllTS,OutputFile="RioGrande.rih")

Command Reference – WriteStateMod() - 2 536

Command Reference: WriteSummary()
Write time series to a summary format file

Version 09.07.00, 2010-08-09

The WriteSummary() command writes time series to a summary report file, as text or HMTL. The
format of the file is a default for the data interval. The total/average column in reports (if output) is based
on the units – a parameter may be added in the future to allow more flexibility.

The following dialog is used to edit the command and illustrates the syntax of the command.

WriteSummary

WriteSummary() Command Editor

 Command Reference – WriteSummary() - 1 537

WriteSummary() Command TSTool Documentation

The command syntax is as follows:

WriteSummary(Parameter=Value,…)

Command Parameters

Parameter Description Default
OutputFile The summary file. The path to the file can be absolute

or relative to the working directory (command file
location). Specifying a filename with an “html”
extension will result in HTML output, which is color-
coded for missing values and has notes for flagged
values.

None – must be
specified.

TSList Indicates the list of time series to be processed, one of:
• AllMatchingTSID – all time series that match

the TSID (single TSID or TSID with wildcards)
will be processed.

• AllTS – all time series before the command.
• EnsembleID – all time series in the ensemble

will be processed.
• FirstMatchingTSID – the first time series that

matches the TSID (single TSID or TSID with
wildcards) will be processed.

• LastMatchingTSID – the last time series that
matches the TSID (single TSID or TSID with
wildcards) will be processed.

• SelectedTS – the time series are those selected
with the SelectTimeSeries() command.

AllTS

TSID The time series identifier or alias for the time series to
be processed, using the * wildcard character to match
multiple time series.

Required if
TSList=*TSID.

EnsembleID The ensemble to be processed, if processing an
ensemble.

Required if
TSList=
EnsembleID.

OutputStart The date/time for the start of the output. Use the global output
period.

OutputEnd The date/time for the end of the output. Use the global output
period.

OutputYearType The output year type, in particular for formatting
monthly and daily time series.

Calendar

A sample command file to process data from the State of Colorado’s HydroBase is as follows:

SetOutputPeriod(OutputStart="1950-01",OutputEnd="2002-12")
08213500 - RIO GRANDE RIVER AT THIRTY MILE BRIDGE NEAR CREEDE
08213500.DWR.Streamflow.Month~HydroBase
08217000 - RIO GRANDE AT WASON, BELOW CREEDE, CO.
08217000.USGS.Streamflow.Month~HydroBase
WriteSummary(TSList=AllTS,OutputFile="RioGrandeStreamflow.txt",TSList="AllTS")

Command Reference – WriteSummary() - 2 538

 Command Reference – WriteTableToDataStore() - 1

Command Reference: WriteTableToDataStore()
Write a table to a datastore

Version 10.18.00, 2013-03-03

This command is under development and has the following limitations:

• Although some error handling has been implemented, it is not very detailed. Improvements will
be made in response to exercising the command functionality.

• Write statements are created for each row of the table being written. This is inefficient and slow.
Improvements will be made in future updates.

• Functionality has been tested mainly with SQL Server.
• Handling of date objects has not been tested.
• Better handling of blank rows needs to be implemented.

The WriteTableToDataStore() command processes each row in a table and executes an SQL
statement to insert the row into a database datastore. If database datastore support is not specifically
provided by TSTool, a generic datastore can be used (see the Generic Database Datastore appendix).
This command cannot be used with web service datastores and use with Excel datastores has not been
tested. This command is useful in particular for bulk data loading such as for database initialization and
when tight integration with TSTool is not required or has not been implemented. In the future additional
command parameters may be added to limit the rows that are being written and allow update
functionality.

General constraints on the query are as follows:

• the table or views being written must be writeable by the user specified for the database
connection (some databases restrict direct access to data and require using stored procedures)

• the table column names must match the database table column names (in the future a command
parameter may be added to allow column names to be mapped)

• data types for table columns must closely match the database:
o internally an SQL statement is created in which data values are formatted as per the data

type (e.g., strings are quoted); consequently column types must be appropriate to generate
correct formatting

o the full precision of floating point numbers is passed to the database (formatting for
display will not apply to values written to the database)

o null values in the table will transfer to null values in the database
o date/time columns in the table will be represented as such in the database table; however,

it may not be possible to limit the precision of the date/time (i.e., hours, minutes, and
seconds may be shown with default zero values in output)

• the specified table columns are written (all are written by default)
o primary keys in the database table do not need to be specified (their values will be

assigned automatically)
o table columns that correspond to related tables in the datastore table need to be mapped

using the DataStoreRelatedColumnsMap command parameter

An example of column mapping to a related table is as follows, using the notation Table.Column to
fully identify columns:

• the string TableID.DataType column is in the input data

539

WriteTableToDataStore() Command TSTool Documentation

Command Reference – WriteTableToDataStore() - 2

• an integer database table TimeSeriesMeta.DataTypesID column is a foreign key to
DataTypes.DataTypesID, and DataTypes.Abbreviation is the string data type – in
other words, the datastore column being written does not match the string data type, but uses a
relationship to match the integer data type in a separate table

To handle this relationship:

• Use the ColumnMap parameter to tell the command that the DataType column in input table
maps to the DataTypesID column in the datastore table:

ColumnMap=”DataType:DataTypesID”

• Use the DataStoreRelatedColumnsMap parameter to tell the command that the
DataTypesID column should be looked up the Abbreviation column, which is a second level
of column mapping:

DataStoreRelatedColumnsMap=”DataTypesID:Abbreviation”

The following dialog is used to edit the command and illustrates the syntax for the command, in this case
writing a table to a datastore that was defined as a GenericDatabaseDataStore.

WriteTableToDataStore

WriteTableToDataStore() Command

The command syntax is as follows:

WriteTableToDataStore(Parameter=Value,…)

540

TSTool Documentation WriteTableToDataStore() Command

 Command Reference – WriteTableToDataStore() - 3

Command Parameters
Parameter Description Default
TableID Identifier for table to write. None – must be specified.
IncludeColumns The names of the table columns to write,

separated by commas.
All columns from
TableID are written.

ExcludeColumns The names of table columns NOT to write,
separated by commas. This will override
IncludeColumns.

All columns from
TableID are written.

DataStore The name of a database datastore to receive
data.

None – must be specified.

DataStoreTable The name of the database table or view to
receive data.

None – must be specified.

ColumnMap Indicate which columns in TableID have
different names in DataStoreTable,
using the syntax:
ColumnName:DatastoreTableName,
ColumnName:DatastoreTableName,
…

DatastoreTableName
columns are assumed to
match the column names in
TableID

DataStoreRelated
ColumnsMap

Indicate datastore columns that need to
match values in a related table in the
datastore. For example, TableID may
contain a column “Abbreviation” but the
corresponding column in
DataStoreTable may refer to a related
table using a foreign key relationship
(matching integer column in both tables). It
is expected that the related table will have
only one primary key column, which will be
determined automatically. However, a
column mapping must be provided to tell the
command which DataStoreTable
column should be matched with the related
table. The syntax of the parameter is:
DataStoreTableCol1:RelatedTableCol1,
DataStoreTableCol2:RelatedTableCol2,
…
The above assumes that foreign keys have
been defined in the DataStoreTable
columns. If the database does not explicitly
define a foreign key relationship in the
database design, then specify the right side
of the map as:
RelatedTable1.RelatedCol1.

DatastoreTableName
columns are assumed to
match the column names in
TableID, with no need to
perform reference table
value matching.

WriteMode The method used to write data, recognizing
the databases use insert and update SQL
statements, one of:
• DeleteInsert – delete the data first

and then insert (all values will need to be
matched to delete)

• Insert – insert the data with no

InsertUpdate

541

WriteTableToDataStore() Command TSTool Documentation

Command Reference – WriteTableToDataStore() - 4

Parameter Description Default
attempt to update if the insert fails

• InsertUpdate – try inserting the data
first and if that fails try to update

• Update – update the data with no
attempt to insert if the update fails

• UpdateInsert – try updating the data
first and if that fails try to insert

This page is intentionally blank.

542

 Command Reference – WriteTableToDelimitedFile() - 1

Command Reference:
WriteTableToDelimitedFile()

Write a table to a delimited file
Version 10.20.00, 2013-03-25

The WriteTableToDelimitedFile() command writes a table to a delimited file. Currently only
the comma is supported as the delimiter. This command is the analog to the
ReadTableFromDelimitedFile() command. It can be used to provide tabular data to other
programs, such as spreadsheet programs and geographic information systems.

The default is to write a standard file header using comment lines that start with the # character. If
available, column names will be written in double quotes as the first non-comment row. Formatting for
cell values is limited and the default precision of floating point numbers may include too many digits –
this will be addressed in future updates.

The following dialog is used to edit the command and illustrates the syntax for the command.

WriteTableToDelimitedFile

WriteTableToDelimitedFile() Command Editor

543

WriteTableToDelimitedFile() Command TSTool Documentation

Command Reference – WriteTableToDelimitedFile() - 2

The command syntax is as follows:

WriteTableToDelimitedFile(Parameter=Value,…)

Command Parameters

Parameter Description Default
TableID Identifier for the table to write. None – must be specified.
OutputFile The name of the file to write, as an

absolute path or relative to the command
file location.

None – must be specified.

WriteHeaderComments Indicates whether to write the header
comments, True or False. Some
programs, such as Esri’s ArcGIS do not
handle delimited files with comments.

True

AlwaysQuoteStrings Indicates whether values in string
columns should always be surrounded
by double quotes:
• False – only quote strings that

contain the delimiter
• True – always quote strings
An example of using
AlwaysQuoteStrings=True is to
quote identifiers that have a leading zero
(e.g., 01234567). Not quoting may
cause the values to be interpreted as
integers when read from the delimited
file.

False

NewlineReplacement The string to replace newlines in string
values, necessary to prevent unexpected
line breaks in output rows. In order to
handle newlines from various systems,
the following patterns are replaced in
sequence:
• \r\n
• \n
• \r
The following special parameter values
are recognized:
• \t – replace newline with tab
• \s – replace newline with space

Do not replace newlines.

544

Command Reference: WriteTableToHTML()
Write a table to an HTML file

Version 09.10.01, 2010-12-07

The WriteTableToHTML() command writes a table to an HTML file. It can be used to publish tables
to the web.

Table column names are output as the HTML table column headers. Formatting for cell values is based
on the precision of the original table data. Default styles are written at the top of the HTML. In the future
the command may accept styles as input.

The following dialog is used to edit the command and illustrates the syntax for the command.

WriteTableToHTML

WriteTableToHTML() Command Editor

 Command Reference – WriteTableToHTML() - 1 545

WriteTableToHTML() Command TSTool Documentation

The command syntax is as follows:

WriteTableToHTML(Parameter=Value,…)

Command Parameters

Parameter Description Default
TableID Identifier for the table to write. None – must be specified.
OutputFile The name of the file to write, as an

absolute path or relative to the command
file location.

None – must be specified.

Command Reference – WriteTableToHTML() - 2 546

Command Reference:
WriteTimeSeriesProperty()

Write a time series property to a file
Version 08.16.03, 2008-08-18

This command is under development and is used primarily for software testing. In particular one
limitation is that the time series identifier is not included in output and therefore properties for
multiple time series are not uniquely identified.

The WriteTimeSeriesProperty() command writes the value of a time series property to a file.
This command should not be confused with the WriteProperty() command, which writes processor
properties. This is useful for testing whether properties are being set. It could also be used to pass
information from TSTool to another program. The format of the output is:

 Property=”Value”

Multi-line properties will be contained within the quotes. The number of properties is limited at this time,
as needed for testing software, but may be increased in the future. The format of output may also change
in the future.

The following dialog is used to edit this command and illustrates the syntax of the command.

WriteTimeSeriesProperty

WriteTimeSeriesProperty() Command Editor

 Command Reference – WriteTimeSeriesProperty() - 1 547

WriteTimeSeriesProperty() Command TSTool Documentation

The command syntax is as follows:

WriteTimeSeriesProperty(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed,

one of:
• AllMatchingTSID – all time series that

match the TSID (single TSID or TSID with
wildcards) will be modified.

• AllTS – all time series before the
command.

• EnsembleID – all time series in the
ensemble will be modified.

• FirstMatchingTSID – the first time
series that matches the TSID (single TSID
or TSID with wildcards) will be modified.

• LastMatchingTSID – the last time
series that matches the TSID (single TSID
or TSID with wildcards) will be modified.

• SelectedTS – the time series are those
selected with the
SelectTimeSeries() command.

AllTS

TSID The time series identifier or alias for the time
series to be modified, using the * wildcard
character to match multiple time series.

Required when
TSList=*TSID

EnsembleID The ensemble to be modified, if processing an
ensemble.

Required when
TSList=EnsembleID.

OutputFile The property file to write, as an absolute path or
relative to the command file.

None – must be specified.

PropertyName The property name to write. None – must be specified.
Append Indicates whether the property should be

appended to the file (True) or overwrite the
file (False).

True

A sample command file is as follows:

WriteTimeSeriesProperty(OutputFile="Results/Example_WriteTimeSeriesProperty.txt",
 PropertyName="DataLimitsOriginal")

Command Reference – WriteTimeSeriesProperty() - 2 548

 Command Reference – WriteTimeSeriesToDataStore() - 1

Command Reference:
WriteTimeSeriesToDataStore()

Write time series to a database datastore
Version 10.21.00, 2013-06-28

The WriteTimeSeriesToDataStore() command writes time series to the specified database
datastore. This command can only write to databases that have a supported design structure. Currently
this command is only available for generic datastores (see the Generic Database Datastore appendix for
information about supported database designs and datastore configuration properties). This command
cannot be used with web service datastores and use with Excel datastores has not been tested. This
command is useful in particular for bulk data loading such as for database initialization and when tight
integration with TSTool is not required or has not been implemented.

The following dialog is used to edit the command and illustrates the syntax of the command.

WriteTimeSeriesToDataStore

WriteTimeSeriesToDataStore() Command Editor

The command syntax is as follows:

WriteTimeSeriesToDataStore(Parameter=Value,…)

549

WriteTimeSeriesToDataStore() Command TSTool Documentation

Command Reference – WriteTimeSeriesToDataStore() - 2

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed,

one of:
• AllMatchingTSID – all time series that

match the TSID (single TSID or TSID with
wildcards) will be processed.

• AllTS – all time series before the command.
• EnsembleID – all time series in the

ensemble will be processed.
• FirstMatchingTSID – the first time

series that matches the TSID (single TSID or
TSID with wildcards) will be processed.

• LastMatchingTSID – the last time series
that matches the TSID (single TSID or TSID
with wildcards) will be processed.

• SelectedTS – the time series are those
selected with the SelectTimeSeries()
command.

AllTS

TSID The time series identifier or alias for the time
series to be processed, using the * wildcard
character to match multiple time series.

Required if
TSList=*TSID.

EnsembleID The ensemble to be processed, if processing an
ensemble.

Required if TSList=
EnsembleID.

OutputStart The date/time for the start of the output. Use the global output
period.

OutputEnd The date/time for the end of the output. Use the global output
period.

DataStore The name of a database datastore to receive data. None – must be
specified.

DataStore
LocationType

The location type to match in the datastore.. Location type from
time series is used.

DataStore
DataSource

The data source (provider) to match in the
datastore.

Data source from time
series is used.

DataStore
DataType

The data type to match in the datastore. Data type from time
series is used.

DataStore
Interval

The data interval to match in the datastore. Data interval from time
series is used.

DataStore
Scenario

The scenario to match in the datastore. Scenario from time
series is used.

DataStore
MissingValue

The value to write to the datastore to indicate a
missing value in the time series. Specify null to
write null to the database.

Missing value used for
the time series will be
used (e.g., NaN, -999).

DataStoreUnits Units to use for time series in the database,
currently not used. Time series data must match
the time series as defined in the database.

WriteMode The method used to write time series data
records, recognizing the databases use insert and

InsertUpdate

550

TSTool Documentation WriteTimeSeriesToDataStore() Command

 Command Reference – WriteTimeSeriesToDataStore() - 3

Parameter Description Default
update SQL statements. Note that any
insert/update actions only occur on exact matches
of date/time, not on a period. For example,
DeleteInsert only deletes records that match
the specific date/time of a value in the time series.
Specify WriteMode as:
• DeleteAllThenInsert – delete all the

data records for the time series and then insert
the time series data records, useful for bulk
loading

• DeletePeriodThenInsert – delete the
data records in the specified output period
and then insert the time series data records,
useful for bulk loading

• DeleteInsert – delete the data first and
then insert (all values will need to be matched
to delete)

• Insert – insert the data with no attempt to
update if the insert fails

• InsertUpdate – try inserting the data first
and if that fails try to update

• Update – update the data with no attempt to
insert if the update fails

• UpdateInsert – try updating the data first
and if that fails try to insert

551

WriteTimeSeriesToDataStore() Command TSTool Documentation

Command Reference – WriteTimeSeriesToDataStore() - 4

This page is intentionally blank.

552

 Command Reference – WriteTimeSeriesToJson() - 1

Command Reference: WriteTimeSeriesToJson()
Write time series to a JSON format file

Version 10.21.00, 2013-07-01

This command is under development. The JSON format will change as feedback is received and
additional time series information is added to the output (e.g., comments, properties).

The WriteTimeSeriesToJson() command writes time series to a file using JSON (JavaScript
Object Notation) format. The file can be included in a JavaScript script to instantiate data objects. The
following example illustrates the format of the JSON file, with two hour-interval time series, one without
data flags, and one with data flags. The JSON format closely matches time series data management
conventions used by TSTool. In the future, support for writing time series data values in parallel (via
overlap=true property for the list) may be implemented in order to save space in the file. JSON files
can be viewed/edited by online tools such as http://jsoneditoronline.org.

{
 "timeSeriesList": {
 "numTimeSeries": 2,
 "overlap": false,
 "timeSeries": [
 {
 "timeSeriesMeta": {
 "tsid": "MyLoc1..MyDataType.Hour",
 "alias": "MyLoc1",
 "description": "Test data, pattern",
 "locationType": "",
 "locationId": "MyLoc1",
 "dataSource": "",
 "dataType": "MyDataType",
 "scenario": "",
 "missingVal": -999.0,
 "units": "CFS",
 "unitsOriginal": "CFS",
 "start": "1950-01-01 00",
 "end": "1950-01-03 12",
 "startOriginal": "1950-01-01 00",
 "endOriginal": "1950-01-03 12",
 "hasDataFlags": false
 },
 "timeSeriesData": [
 { "dt": "1950-01-01 00", "value": 5.0000 },
 { "dt": "1950-01-01 01", "value": 10.0000 },
 { "dt": "1950-01-01 02", "value": 12.0000 },
… omitted …
 { "dt": "1950-01-03 11", "value": 75.0000 },
 { "dt": "1950-01-03 12", "value": 5.0000 }
]
 },
 {
 "timeSeriesMeta": {
 "tsid": "MyLoc2..MyData.Hour",
 "alias": "MyLoc2",
 "description": "Test data, pattern",
 "locationType": "",
 "locationId": "MyLoc2",
 "dataSource": "",
 "dataType": "MyData",
 "scenario": "",
 "missingVal": -999.0,

553

WriteTimeSeriesToJson() Command TSTool Documentation

Command Reference – WriteTimeSeriesToJson() - 2

 "units": "CFS",
 "unitsOriginal": "CFS",
 "start": "1950-01-01 00",
 "end": "1950-01-04 12",
 "startOriginal": "1950-01-01 00",
 "endOriginal": "1950-01-04 12",
 "hasDataFlags": true
 },
 "timeSeriesData": [
 { "dt": "1950-01-01 00", "value": 7.0000, "flag": "A" },
 { "dt": "1950-01-01 01", "value": 12.0000, "flag": "B" },
 { "dt": "1950-01-01 02", "value": 14.0000, "flag": "" },
…omitted…
 { "dt": "1950-01-04 11", "value": -999.0000, "flag": "D" },
 { "dt": "1950-01-04 12", "value": 77.0000, "flag": "E" }
]
 }
]
 }
}

The following dialog is used to edit the command and illustrates the syntax of the command.

WriteTimeSeriesToJson

WriteTimeSeriesToJson() Command Editor

554

TSTool Documentation WriteTimeSeriesToJson() Command

 Command Reference – WriteTimeSeriesToJson() - 3

The command syntax is as follows:

WriteTimeSeriesToJson(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed, one

of:
• AllMatchingTSID – all time series that

match the TSID (single TSID or TSID with
wildcards) will be processed.

• AllTS – all time series before the command.
• EnsembleID – all time series in the ensemble

will be processed.
• FirstMatchingTSID – the first time series

that matches the TSID (single TSID or TSID
with wildcards) will be processed.

• LastMatchingTSID – the last time series that
matches the TSID (single TSID or TSID with
wildcards) will be processed.

• SelectedTS – the time series are those
selected with the SelectTimeSeries()
command.

AllTS

TSID The time series identifier or alias for the time series
to be processed, using the * wildcard character to
match multiple time series.

Required if
TSList=*TSID.

EnsembleID The ensemble to be processed, if processing an
ensemble.

Required if TSList=
EnsembleID.

OutputFile The JSON output file. The path to the file can be
absolute or relative to the working directory
(command file location). Global properties can be
used to specify the filename, using the
${Property} syntax.

None – must be specified.

Precision The number of digits after the decimal for numerical
output.

4 (in the future may
default based on data type)

MissingValue The value to write to the file to indicate a missing
value in the time series, must be a number or NaN.

As initialized when
reading the time series or
creating a new time series,
typically -999, NaN, or
another value that is not
expected in data.

OutputStart The date/time for the start of the output. Use the global output
period.

OutputEnd The date/time for the end of the output. Use the global output
period.

555

WriteTimeSeriesToJson() Command TSTool Documentation

Command Reference – WriteTimeSeriesToJson() - 4

This page is intentionally blank.

556

 Command Reference – WriteTimeSeriesToKml() - 1

Command Reference: WriteTimeSeriesToKml()
Write time series to a KML format file

Version 10.21.00, 2013-07-01

This command is under development. Additional capabilities will be implemented as resources
allow and requirements are identified. The WriteTimeSeriesToKml() command writes time
series to a file using KML (Keyhole Markup Language) format (see:
https://developers.google.com/kml/documentation). The file can be used with Google Earth, Google
Maps, and other spatial viewing tools. This command currently provides very basic capabilities to
visualize the locations where time series data are collected, in particular for point data. In the future the
command will be updated to have additional features, including:

• Providing the option to output the time series using the timestamp and timespan KML features.
• Providing the option to specify style information with a table, for example using the data type to

indicate the symbol and icon.
• Providing additional time series properties for visualization.

The following dialog is used to edit the command and illustrates the syntax of the command.

WriteTimeSeriesToKml

WriteTimeSeriesToKml() Command Editor

The command syntax is as follows:

WriteTimeSeriesToKml(Parameter=Value,…)

557

WriteTimeSeriesToKml() Command TSTool Documentation

Command Reference – WriteTimeSeriesToKml() - 2

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed, one of:

• AllMatchingTSID – all time series that match
the TSID (single TSID or TSID with wildcards)
will be processed.

• AllTS – all time series before the command.
• EnsembleID – all time series in the ensemble

will be processed.
• FirstMatchingTSID – the first time series that

matches the TSID (single TSID or TSID with
wildcards) will be processed.

• LastMatchingTSID – the last time series that
matches the TSID (single TSID or TSID with
wildcards) will be processed.

• SelectedTS – the time series are those selected
with the SelectTimeSeries() command.

AllTS

TSID The time series identifier or alias for the time series to
be processed, using the * wildcard character to match
multiple time series.

Required if
TSList=*TSID.

EnsembleID The ensemble to be processed, if processing an
ensemble.

Required if TSList=
EnsembleID.

OutputFile The KML output file. The path to the file can be
absolute or relative to the working directory (command
file location). Global properties can be used to specify
the filename, using the ${Property} syntax.

None – must be
specified.

Longitude
Property

The name of the time series property containing the
longitude to use for the KML.

Required.

Latitude
Property

The name of the time series property containing the
latitude to use for the KML.

Required.

Elevation
Property

The name of the time series property containing the
elevation to use for the KML.

0

Precision The number of digits after the decimal for numerical
output. Not currently enabled.

4 (in the future may
default based on data
type)

Missing
Value

The value to write to the file to indicate a missing
value in the time series, must be a number or NaN.
Not currently enabled.

As initialized when
reading the time series
or creating a new time
series, typically -999,
NaN, or another value
that is not expected in
data.

OutputStart The date/time for the start of the output, used with
KML timestamp. Not currently enabled.

Use the global output
period.

OutputEnd The date/time for the end of the output, used with
KML timestamp. Not currently enabled.

Use the global output
period.

558

 Command Reference – WriteWaterML() - 1

Command Reference: WriteWaterML()
Write time series to a WaterML XML format file

Version 10.05.00, 2012-03-06

This command is under development. In particular, an evaluation is determining how best to map
internal time series properties to the WaterML specification, including selecting reasonable
defaults while allowing override of defaults.

The WriteWaterML() command writes time series to a WaterML XML format file. See the WaterML
Input Type Appendix for more information about the file format.

The following dialog is used to edit the command and illustrates the syntax of the command.

WriteDateValue

WriteDateValue() Command Editor

The command syntax is as follows:

WriteWaterML(Parameter=Value,…)

Command Parameters

Parameter Description Default
TSList Indicates the list of time series to be processed, one

of:
• AllMatchingTSID – all time series that

match the TSID (single TSID or TSID with
wildcards) will be processed.

• AllTS – all time series before the command.

AllTS

559

WriteWaterML() Command TSTool Documentation

Command Reference – WriteWaterML() - 2

• EnsembleID – all time series in the ensemble
will be processed.

• FirstMatchingTSID – the first time series
that matches the TSID (single TSID or TSID
with wildcards) will be processed.

• LastMatchingTSID – the last time series that
matches the TSID (single TSID or TSID with
wildcards) will be processed.

• SelectedTS – the time series are those
selected with the SelectTimeSeries()
command.

TSID The time series identifier or alias for the time series
to be processed, using the * wildcard character to
match multiple time series.

Required if
TSList=*TSID.

EnsembleID The ensemble to be processed, if processing an
ensemble.

Required if TSList=
EnsembleID.

OutputFile TheWaterML output file. The path to the file can be
absolute or relative to the working directory
(command file location). Global properties can be
used to specify the filename, using the
${Property} syntax.

None – must be specified.

Version The WaterML version to write. Currenly only
version 1.1 is supported.

1.1

Precision The number of digits after the decimal for numerical
output.

4 (in the future may
default based on data type)

MissingValue The value to write to the file to indicate a missing
value in the time series.

As initialized when
reading the time series or
creating a new time series,
typically -999, NaN, or
another value that is not
expected in data.

OutputStart The date/time for the start of the output. Use the global output
period.

OutputEnd The date/time for the end of the output. Use the global output
period.

560

Documentation Binder Spine Labels

This page, when printed, can be used for a spine in a binder.

Colorado's Decision Support Systems (CDSS)
TSTool – Time Series Tool – Command Reference

561

562

	TSTool
	– Time Series Tool –
	Blank Page
	TSTool Syntax Guide
	Commands – Basic Syntax
	Commands – Referring to Parameters
	Commands – Comments
	Commands – Time Series Identifiers
	Processor – Properties
	Time Series – Properties
	Time Series – Data Flags
	Date/Time
	Regular Expression – Notation
	Template – Syntax
	Configuration File – TSTool Configuration File
	Configuration File – Datastore Properties
	Configuration File – Time Series Product Files
	Command Glossary
	Command Reference: #
	Command Reference: /*
	Command Reference: */
	Command Reference: Time Series Identifier (TSID)
	Command Reference: Add()
	Command Reference: AddConstant()
	Command Reference: AdjustExtremes()
	Command Reference: AnalyzePattern()
	Command Reference: AnalyzeNetworkPointFlow()
	Command Reference: AppendFile()
	Command Reference: AppendTable()
	Command Reference: ARMA()
	Command Reference: Blend()
	Command Reference: CalculateTimeSeriesStatistic()
	Command Reference: ChangeInterval()
	Irregular Time Series to Regular Time Series
	Small Interval ACCM to Large Interval ACCM
	 Large Interval ACCM to Small Interval ACCM
	Small Interval MEAN or INST to Large Interval MEAN
	Large Interval MEAN or INST to Small Interval MEAN
	Small Interval INST to Large Interval INST
	Large Interval INST to Small Interval INST

	Regular Time Series to Regular Time Series
	ACCM (Accumulation) to ACCM (Accumulation)
	Small Interval ACCM (Accumulation) to Large Interval ACCM (Accumulation)
	Large Interval ACCM (Accumulation) to Small Interval ACCM (Accumulation)

	ACCM (Accumulation) to INST (Instantaneous)
	ACCM (Accumulation) to MEAN
	Small Interval ACCM to Large Interval MEAN
	Interval ACCM to Same Interval MEAN
	Large Interval ACCM to Small Interval MEAN

	INST (Instantaneous) to INST (Instantaneous)
	Small Interval INST (Instantaneous) to Large Interval INST (Instantaneous)
	Large Interval INST (Instantaneous) to Small Interval INST (Instantaneous)

	INST (Instantaneous) to ACCM (Accumulation)
	INST (Instantaneous) to MEAN
	Small Interval INST (Instantaneous) to Large Interval MEAN
	Interval INST (Instantaneous) to Same Interval MEAN
	Large Interval INST (Instantaneous) to Small Interval MEAN

	 MEAN to MEAN
	Small Interval MEAN to Large Interval MEAN
	Large Interval MEAN to Small Interval MEAN

	MEAN to ACCM (Accumulation)
	Small Interval MEAN to Large Interval ACCM (Accumulation)
	Interval MEAN to Same Interval ACCM (Accumulation)
	Large Interval MEAN to Small Interval ACCM (Accumulation)

	MEAN to INST (Instantaneous)
	Small Interval MEAN to Large Interval INST (Instantaneous)
	Interval MEAN to Same Interval INST (Instantaneous)
	Large Interval MEAN to Small Interval INST (Instantaneous)
	Initial Instantaneous Time Series Calculations
	Instantaneous Time Series Volume Adjustment

	Command Reference: ChangePeriod()
	60_Command_CheckTimeSeries.pdf
	Command Reference: CheckTimeSeriesStatistic()
	60_Command_CompareFiles.pdf
	60_Command_CompareTables.pdf
	Command Reference: CompareTimeSeries()
	Command Reference: ComputeErrorTimeSeries()
	Command Reference: ConvertDataUnits()
	Command Reference: Copy()
	Command Reference: CopyEnsemble()
	Command Reference: CopyTable()
	Command Reference: CreateEnsembleFromOneTimeSeries()
	Command Reference: CreateFromList()
	Command Reference: CreateRegressionTestCommandFile()
	Command Reference: Cumulate()
	Command Reference: Delta()
	Command Reference: DeselectTimeSeries()
	Command Reference: Disaggregate()
	Command Reference: Divide()
	Command Reference: Exit()
	Command Reference: ExpandTemplateFile()
	Example Using Simple Variable Assignment
	Example of Passing Time Series Processor Properties to Templates
	Example of Protecting TSTool Properties in Template with a Literal FreeMarker String
	Example of Using a Comment in the Template, which is Omitted from Expanded Output
	Example Using Variable Assignment and Loop Using List
	Example Using a One-Column Table for a List for Looping
	Example Using a Multiple-Column Table to Loop Through Two Lists
	Example of Expanding a Template to a Processor Property
	Example of Using ExpandTemplateFile() in a Loop to Expand Multiple Files
	Command Reference: FillConstant()
	Command Reference: FillDayTSFrom2MonthTSAnd1DayTS()
	60_Command_FillFromTS.pdf
	Command Reference: FillHistMonthAverage()
	Command Reference: FillHistYearAverage()
	Command Reference: FillInterpolate()
	Command Reference: FillMixedStation()
	Implementation in Colorado’s Decision Support Systems
	Command Reference: fillMOVE1()
	Command Reference: FillMOVE2()
	Command Reference: FillPattern()
	60_Command_FillPrincipalComponentAnalysis.pdf
	Command Reference: FillProrate()
	Command Reference: FillRegression()
	Command Reference: FillRepeat()
	Command Reference: FillUsingDiversionComments()
	Diversion Comment Not Used Flag
	Structure Currently in Use Flag
	Command Reference: FormatDateTimeProperty()
	Command Reference: FormatTableString()
	Command Reference: Free()
	Command Reference: FreeTable()
	60_Command_FTPGet.pdf
	Command Reference: InsertTimeSeriesIntoEnsemble ()
	Command Reference: LagK()
	60_Command_LookupTimeSeriesFromTable.pdf
	Command Reference: ManipulateTableString()
	Command Reference: Multiply()
	Command Reference: NewDayTSFromMonthAndDayTS()
	Command Reference: NewEndOfMonthTSFromDayTS()
	Command Reference: NewEnsemble ()
	Examples
	Command Reference: NewStatisticTimeSeries()
	Examples
	Command Reference: NewStatisticTimeSeriesFromEnsemble()
	Examples
	Command Reference: NewStatisticYearTS()
	Example
	Command Reference: NewTable ()
	Command Reference: NewTimeSeries()
	Command Reference: NewTreeView()
	Command Reference: Normalize()
	Command Reference: OpenHydroBase()
	Command Reference: PrintTextFile()
	Command Reference: ProcessTSProduct()
	Command Reference: ProfileCommands()
	Command Reference: ReadDateValue()
	Command Reference: ReadDelimitedFile()
	Command Reference: ReadHecDss()
	Command Reference: ReadHydroBase()
	Command Reference: ReadMODSIM()
	Command Reference: ReadNrcsAwdb()
	Command Reference: ReadPatternFile()
	Command Reference: ReadPropertiesFromFile()
	Command Reference: ReadRccAcis()
	Command Reference: ReadReclamationHDB()
	60_Command_ReadRiversideDB.pdf
	Command Reference: ReadRiverWare()
	Command Reference: ReadStateCU()
	Command Reference: ReadStateCUB()
	Command Reference: ReadStateMod()
	Command Reference: ReadStateModB()
	Command Reference: ReadTableFromDataStore()
	Command Reference: ReadTableFromDBF()
	60_Command_ReadTableFromDelimitedFile.pdf
	Command Reference: ReadTableFromExcel()
	Command Reference: ReadTimeSeries()
	Command Reference: ReadTimeSeriesList()
	Command Reference: ReadUsgsNwisDaily()
	Command Reference: ReadUsgsNwisGroundwater()
	Command Reference: ReadUsgsNwisInstantaneous()
	60_Command_ReadUsgsNwisRdb.pdf
	Command Reference: ReadWaterML()
	60_Command_ReadWaterOneFlow.pdf
	Command Reference: RelativeDiff()
	Command Reference: RemoveFile()
	Command Reference: RemoveTableRowsFromDataStore()
	60_Command_ReplaceValue.pdf
	Command Reference: ResequenceTimeSeriesData()
	Command Reference: RunCommands()
	Command Reference: RunDSSUTL()
	Command Reference: RunningAverage()
	Command Reference: RunningStatisticTimeSeries()
	Command Reference: RunProgram()
	60_Command_RunPython.pdf
	Command Reference: Scale()
	Command Reference: SelectTimeSeries()
	Command Reference: SetAutoExtendPeriod()
	Command Reference: SetAveragePeriod()
	Command Reference: SetConstant()
	Command Reference: SetDataValue()
	Command Reference: SetDebugLevel()
	Command Reference: SetFromTS()
	Command Reference: SetIgnoreLEZero()
	Command Reference: SetIncludeMissingTS()
	Command Reference: SetInputPeriod()
	Command Reference: SetOutputPeriod()
	Command Reference: SetOutputYearType()
	Command Reference: SetPatternFile()
	60_Command_SetProperty.pdf
	Command Reference: SetTimeSeriesPropertiesFromTable()
	Command Reference: SetTimeSeriesProperty()
	Command Reference: SetToMax()
	Command Reference: SetToMin()
	Command Reference: SetWarningLevel()
	Command Reference: SetWorkingDir()
	Command Reference: ShiftTimeByInterval()
	Command Reference: SortTimeSeries()
	Command Reference: StartLog()
	Command Reference: StartRegressionTestResultsReport()
	Command Reference: StateModMax()
	Command Reference: Subtract()
	Command Reference: TableMath()
	60_Command_TableTimeSeriesMath.pdf
	Command Reference: TableToTimeSeries()
	Command Reference: TimeSeriesToTable()
	Command Reference: VariableLagK()
	60_Command_WebGet.pdf
	Command Reference: WeightTraces()
	Command Reference: WriteCheckFile()
	60_Command_WriteDateValue.pdf
	Command Reference: WriteHecDss()
	Command Reference: WritePropertiesToFile()
	Command Reference: WriteProperty()
	Command Reference: WriteReclamationHDB()
	Command Reference: WriteRiversideDB()
	Command Reference: WriteRiverWare()
	Command Reference: WriteStateCU()
	Command Reference: WriteStateMod()
	Command Reference: WriteSummary()
	Command Reference: WriteTableToDataStore()
	60_Command_WriteTableToDelimitedFile.pdf
	Command Reference: WriteTableToHTML()
	Command Reference: WriteTimeSeriesProperty()
	Command Reference: WriteTimeSeriesToDataStore()
	Command Reference: WriteTimeSeriesToJson()
	Command Reference: WriteTimeSeriesToKml()
	60_Command_WriteWaterML.pdf
	99_TSTool_Spine_CDSS_CommandReference.pdf

