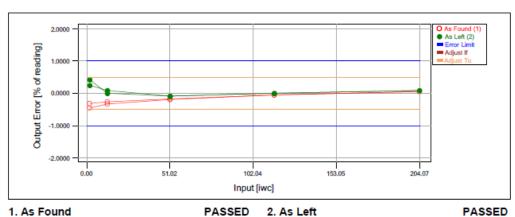
Advanced Validation Methods & Technical Assistance: Supply Meter Testing

What is a Meter Test?

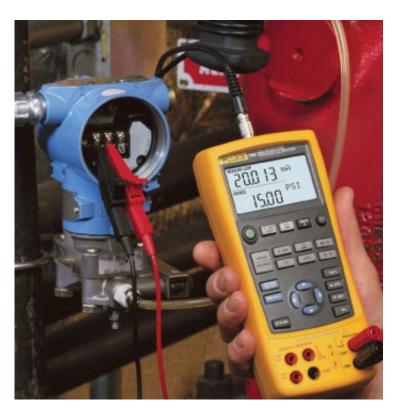
- In-situ
- Volumetric comparison
- Using a known volume

Meter Test Misconceptions


- "Got a certificate"
- "We have redundant meters"
- "Guaranteed it would be accurate"
- "Only needs calibration"

Meter Calibration

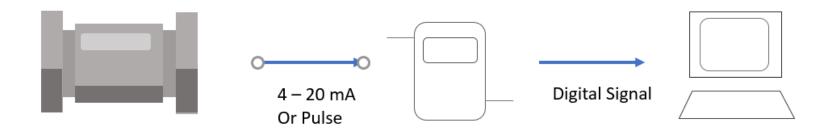
1. As Found May Error: -0.46 % of reading


Max Error0.40 % or reading				
Nominal Input [iwc]	Actual Input [iwc]	Nominal Output [mA]	Actual Output [mA]	Found Error [% of reading]
2.04	2.05	5.60	5.5776	-0.4647
12.75	12.76	8.00	7.9748	-0.3260
51.02	51.04	12.00	11.9782	-0.1963
114.79	114.80	16.00	15.9923	-0.0516
204.07	204.06	20.00	20.0107	0.0555
114.79	114.80	16.00	15.9928	-0.0485
51.02	51.00	12.00	11.9779	-0.1728
12.75	12.76	8.00	7.9803	-0.2572
2.04	2.06	5.60	5.5902	-0.3094

PASSED

2. As Left

Max Error: 0.4	2 % of reading	


Nominal Input [iwc]	Actual Input [iwc]	Nominal Output [mA]	Actual Output [mA]	Found Error [% of reading]
2.04	2.08	5.60	5.6288	0.2398
12.75	12.72	8.00	8.0016	0.0875
51.02	51.03	12.00	11.9905	-0.0873
114.79	114.77	16.00	15.9988	-0.0012
204.07	204.04	20.00	20.0158	0.0849
114.79	114.78	16.00	16.0002	0.0043
51.02	51.03	12.00	11.9908	-0.0848
12.75	12.76	8.00	8.0015	0.0077
2.04	2.05	5.60	5.6270	0.4168

Primary and Secondary Devices

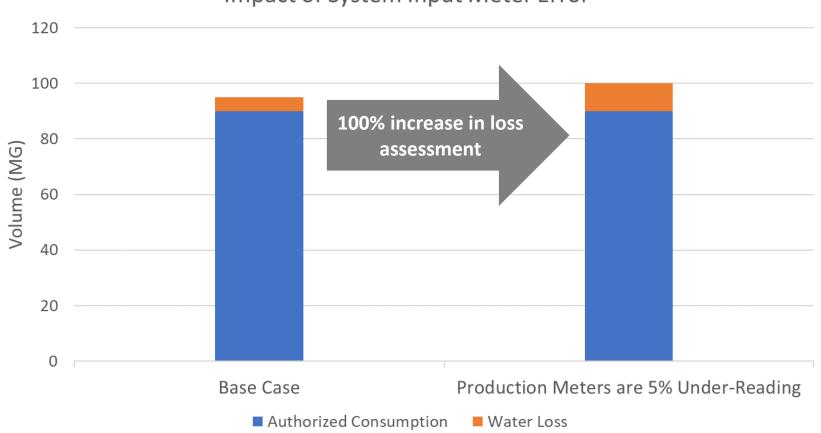
Measurement Element

Secondary Electronics*

SCADA System

Why Perform Meter Tests?

- Only way to verify performance
- Protect your investment
- Improve water balance
- Improve data validity score

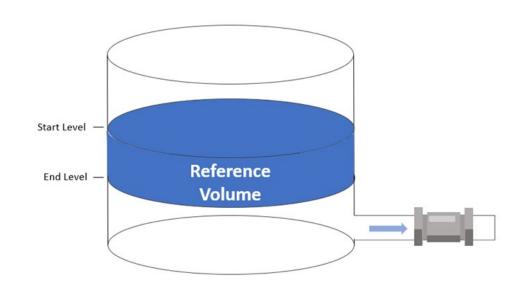


Why Perform Meter Tests?

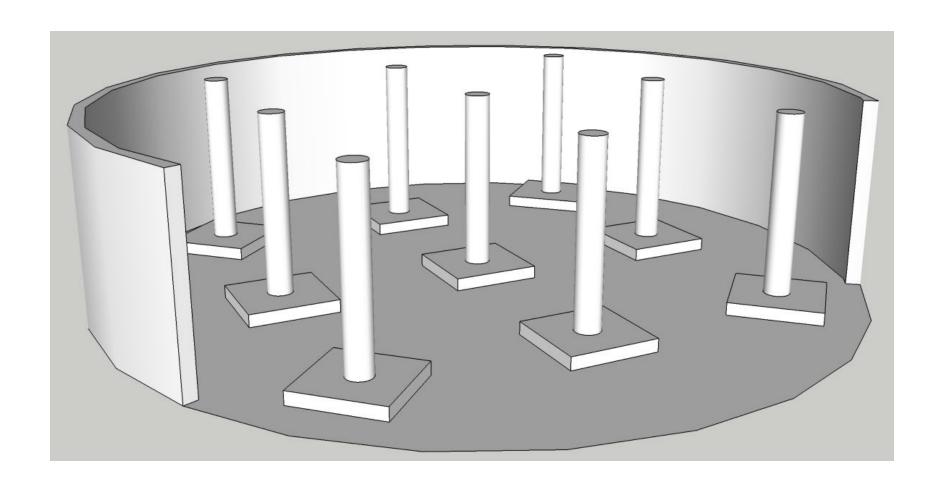
Impact of System Input Meter Error

How to Test a Meter

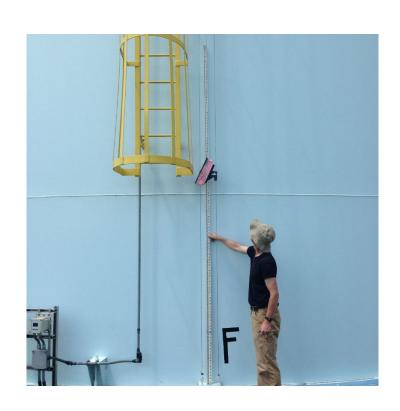
- Use a known volume
- Use a meter of known accuracy
- Consider flow conditions and pipe configuration



Testing with a known volume


- Preferred Method
- Use Tank or Clearwell
- Measure Level Change
- Requires Accurate Gal/Ft

Testing with a known volume

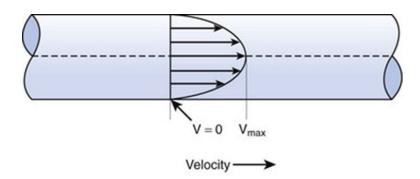


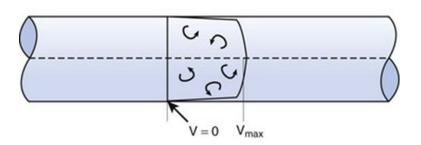
Testing with a known volume

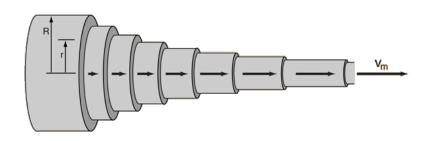
Testing Requirements:

- Tank
- Accurate Measurement or Drawing
- Ability to isolate for extended period
- Way to accurately measure water level

Testing with a Reference Meter

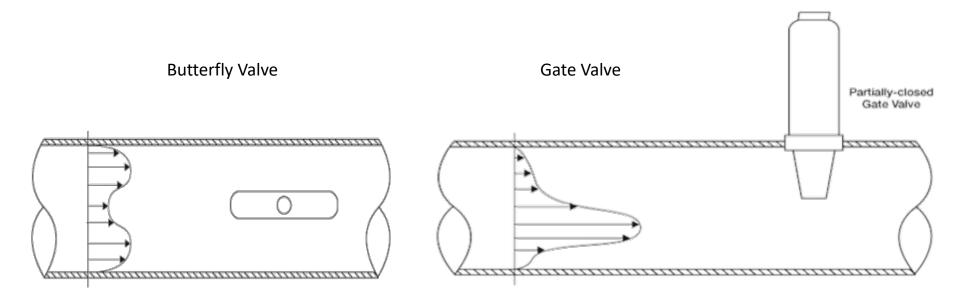


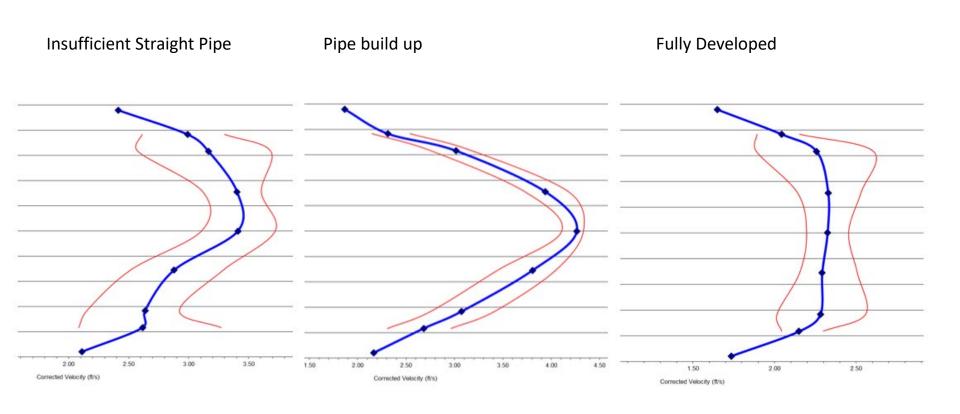




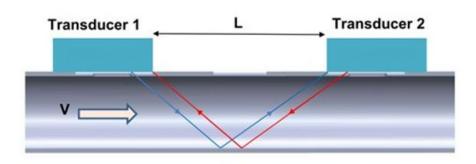
Velocity Profiles

- "Laminar Flow"
- Turbulent Flow
- Fully Developed Flow Profile




Velocity Profiles

Velocity Profiles



Ultrasonic Meters

- Transit Time Ultrasonic measures time difference of sound pulses between transducers
- Requires Pipe Information
- Does not use velocity profile

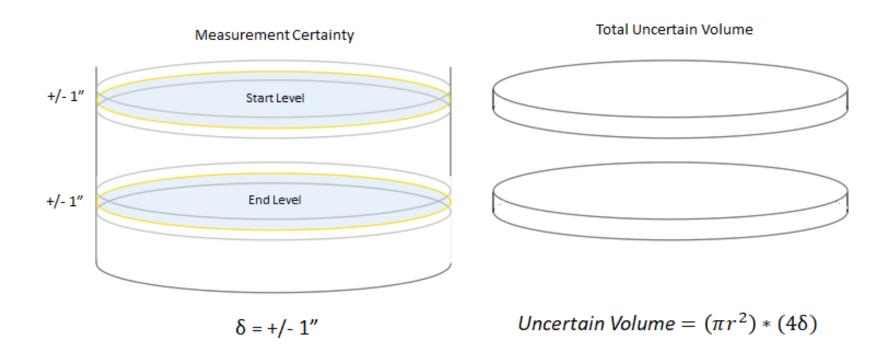
Insertion Meters

- Electromagnetic or Paddle-Wheel
- Single or Multi-Point Measuring
- Requires Accurate Velocity Profile

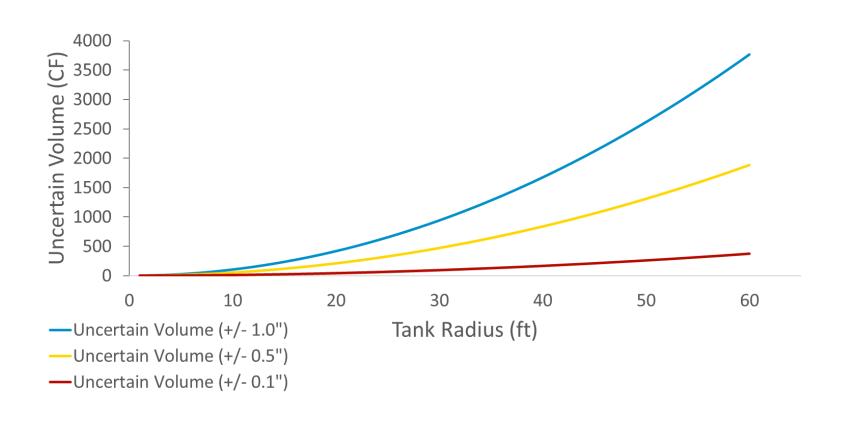
Testing with a Reference Meter

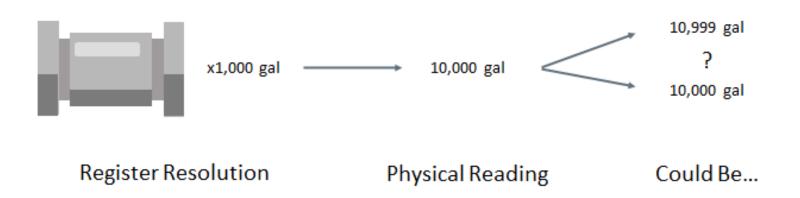
Testing Requirements:

- Exposed Pipe possibly with tap
- Straight Pipe upstream and downstream of reference meter!!

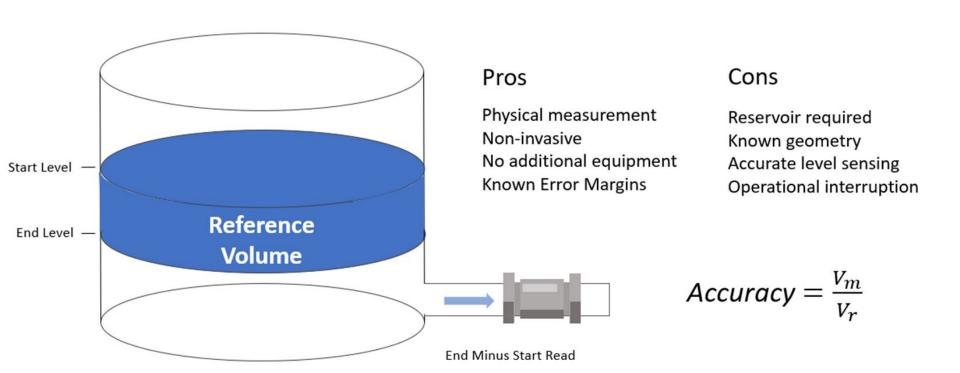


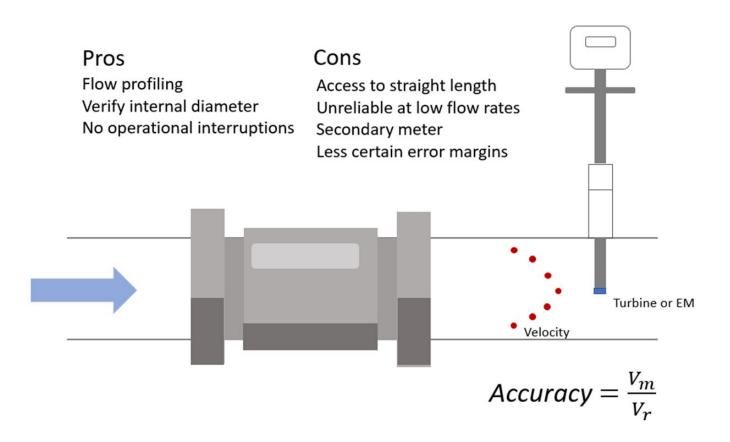
- Inaccurate Tank Dimensions
- Unstable Velocity Profile
- Instrument Inaccuracy
- Inaccurate Piping Information
- Etc.

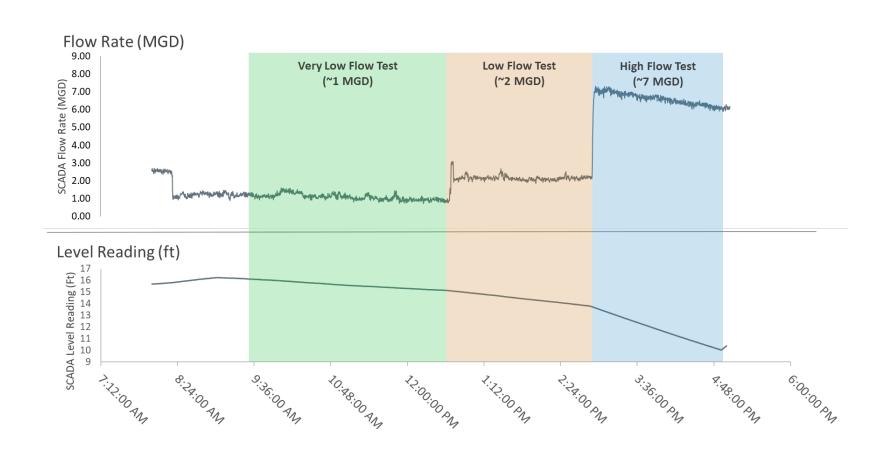




 $Uncertain\ Volume = 2*Register\ Resolution$


- Inherent Meter Accuracy (+/- 2%)
- Pipe Dimensions
- Velocity Profile Uncertainty


Known Volume Test Summary


Reference Meter Test Summary

Meter Test Results

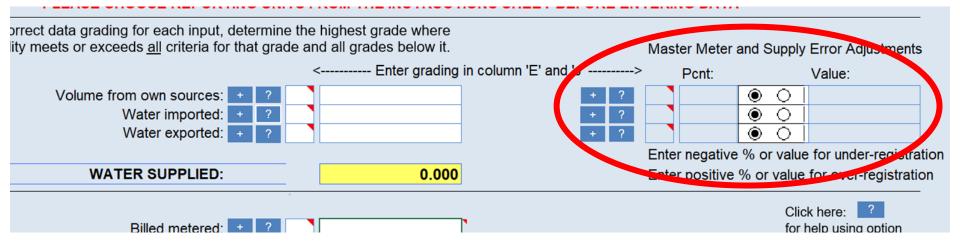
	Meter A	Meter B	Meter C
Volume Supplied	100	1,000	10,000
Meter Accuracy	105.5%	112.6%	99.1%

Weighted Average: (Sum of Volume x Accuracy) / (Sum of Volume)

Example: (100x105.5 + 1,000x112.6 + 10,000x99.1) / (100+1,000+10,000)

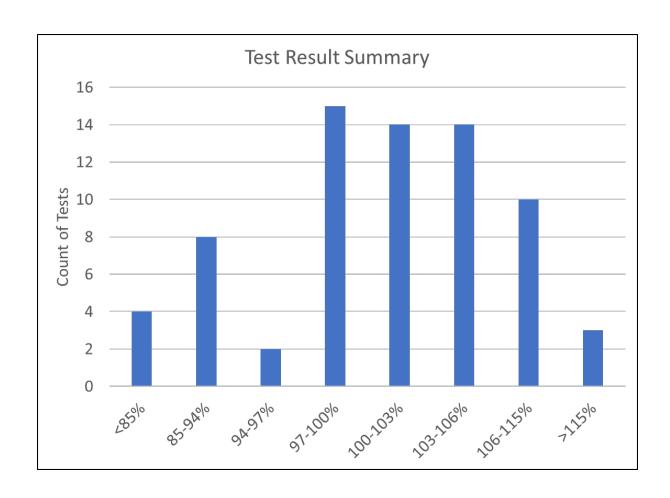
= 100.37%

	Meter A	Meter B	Meter C
Volume Supplied	100	1,000	10,000
Meter Accuracy	105.5%	112.6%	99.1%


Comparison of Calculations

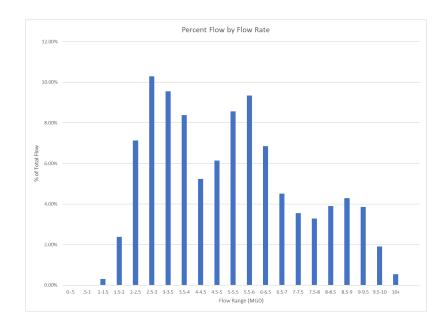
- Weighted Average Average Accuracy = 100.4%
- Simple Average Average Accuracy = 105.7%

- Adjustment to AWWA Audit Software
- Recalibrate/Repair Meter
- Leave blank if no test results?



Summary Stats

Total Tests	70
Min	32.2%
Max	133.6%
Mean	100.3%
Median	101.2%



Data Request for Meter Testing

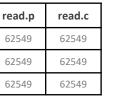
- Meter Make/Model
- Meter Size
- Flow History
- Upstream & Downstream Straight Pipe

- Piping Configuration
- Proximity to Tank/Clearwell
- Previous Test/Calibration Results

Advanced Validation Methods & Technical Assistance: Billing Data Analysis

Why perform Consumption Data Analysis

- Confirm consumption volumes
 - Both metered and unmetered
 - Differentiate billed vs. unbilled
- Identify practices that may contribute to water losses
- Identify lost revenue or new sources of revenue
- Analysis and validation can be done from a volume perspective and from a revenue perspective

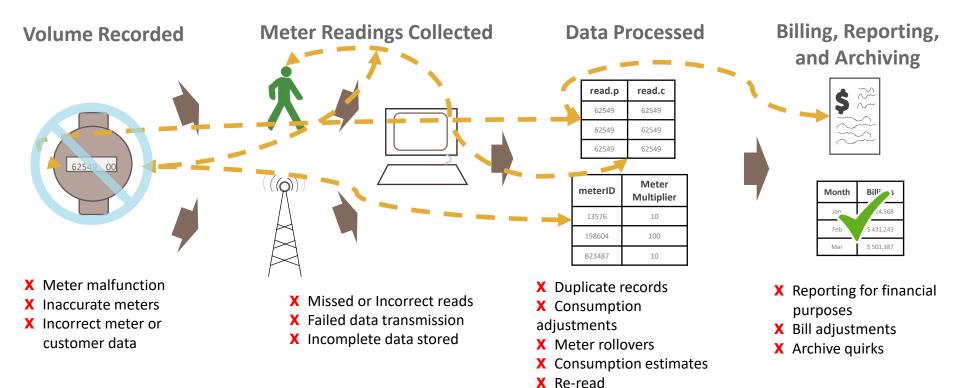


Why perform Consumption Data Analysis

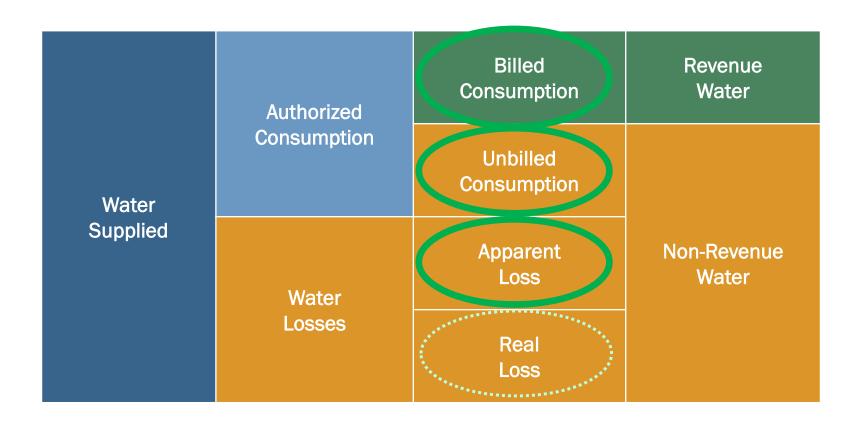
Meter Reading and Billing System

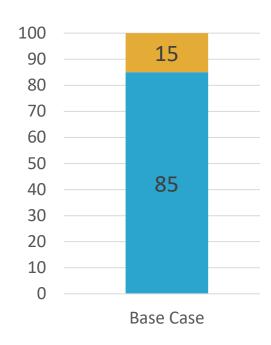
Billing, Reporting, and Archiving

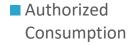
meterID	Meter Multiplier
13576	10
198604	100
B23487	10



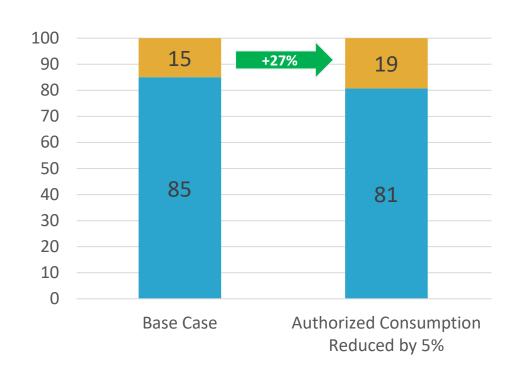
Month	Billings
Jan	\$ 324,568
Feb	\$ 431,243
Mar	\$ 501,387


Why Analyze Billing Data?

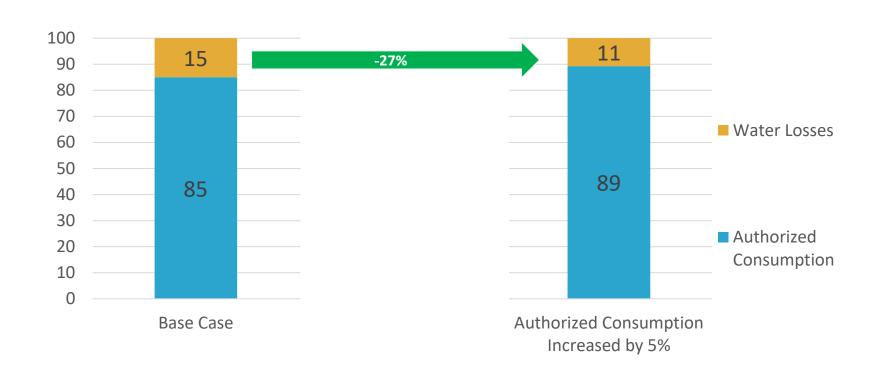

Why perform Consumption Data Analysis



Confirm Consumption Volume



Confirm Consumption Volume



Authorized Consumption

Confirm Consumption Volume

- Relevant to potable water audit
 - ✓ Include potable water services
 - ✓ Include potable water uses that may be tracked in a different system wholesale, hydrant sales, temporary meters, construction meters
 - ✓ Exclude raw, recycled or other types of non-potable water

Relevant to water audit period

November

December

Previous Read

Total Consumption Outside
Audit Period

Consumption Outside
Audit Period

Consumption Outside
Audit Period

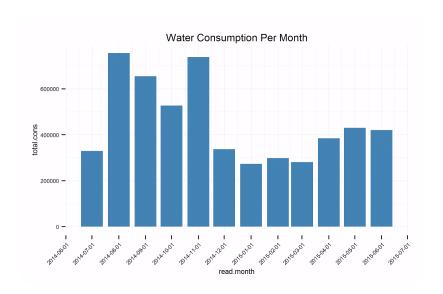
Water Audit Period Start Date

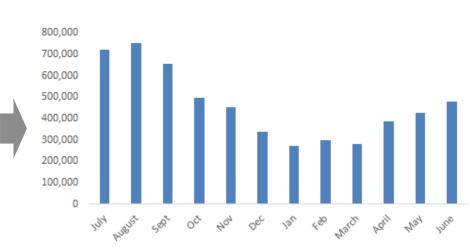
Water Audit Period Start Date

Consumption Start Date

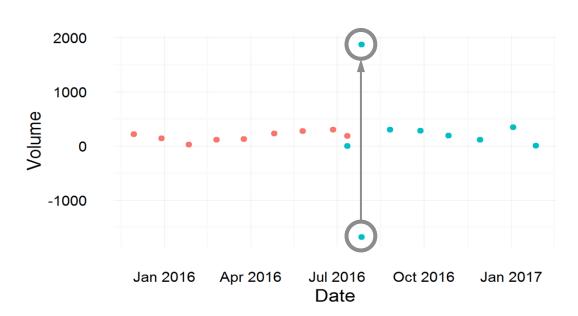
- Relevant to water audit period
 - ✓ Lag time analysis

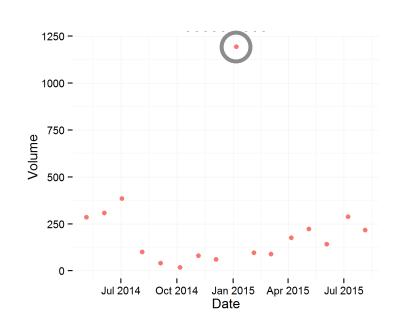
12-month period	Total Consumption (MG)	Difference with Audit Period
Audit Period	25,648	
Shifted by 1 month	25,635	-0.05%
Shifted by 2 months	25,800	0.60%


- Relevant to water audit period
 - ✓ Lag time analysis


12-month period	Total Consumption (MG)	Difference with Audit Period
Audit Period	578.9	-
Shifted by 1 month	575.8	- 0.50%
Shifted by 2 months	549.6	- 4.75%

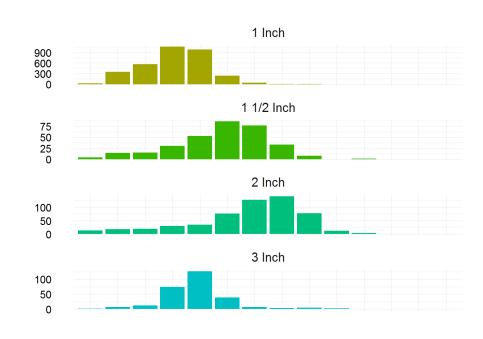
- Relevant to water audit period
 - ✓ Prorating Consumption




- Correct
 - **✓** Duplicates
 - ✓ Negatives
 - Adjustments
 - Meter Changes
 - Meter Rollovers

- Correct
 - **✓** Duplicates
 - ✓ Negatives
 - Adjustments
 - Meter Changes
 - Meter Rollovers
 - **✓** Outliers

- Correct
 - ✓ Duplicates
 - ✓ Negatives
 - Adjustments
 - Meter Changes
 - Meter Rollovers
 - ✓ Outliers
 - ✓ Units and Multipliers

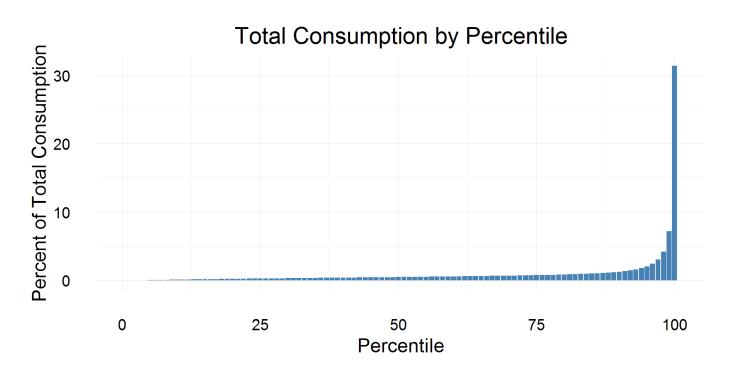

Comparing Meter Model, Size, and Multiplier				
Size	Model	Multiplier (0.01)	Multiplier (0.1)	Multiplier (1.0)
3/4 Inch	35	3988	-	2
3/4 Inch	70	1	-	-
3/4 Inch	PF-170	1	-	-
3/4 Inch	PF-35	2000	1	-
1 Inch	35	1	-	-
1 Inch	70	6586	-	-
1 Inch	PF-170	1	-	-
1 Inch	PF-70	5325	1	1
1.5 Inch	120	-	371	-
1.5 Inch	PF-120	1	213	-
1.5 Inch	PF-170	-	1	-
2 Inch	170	2	258	-
2 Inch	PF-170	-	120	-
4 Inch Comp	70	-	1	-
6 Inch	170	-	1	-

Other checks – Revenues

- Correct customer and meter data
 - ✓ Customer type
 - ✓ Service type

Other checks – Revenues

- Correct customer and meter data
 - ✓ Customer type
 - ✓ Service type
 - ✓ Meter size
 - Size in field matches size in system
 - Appropriate for consumption volumes


- Account status
 - ✓ Active or Inactive
- Other utility specific regulation
 - ✓ Separate fire suppression system requirement
 - ✓ Irrigation restrictions
 - √ Volume adjustment for fire uses

Other checks – Revenues

Knowing your largest consumers

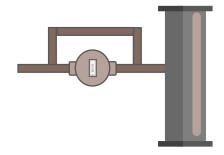
In summary

- Meter reading and billing systems are a invaluable tool for any water utility not
 just for it's primary purpose but also to:
 - ✓ Assure correct volumes are billed and recorded
 - ✓ Track utility processes that may impact water losses and revenue
 - ✓ Complement effective NRW reduction strategies
- These checks can have a significant impact on a water audit which in turn will shape the selection of cost-effective strategies for the reduction of NRW

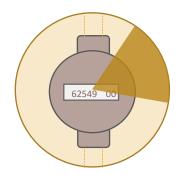
Data Request for Billing Data Analysis

Billing Data Analytics (Integrity Review & Anomaly Flagging)

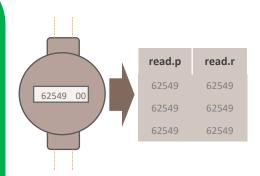
Timeframe for the data requested unless noted otherwise: Calendar 2020 plus 2 months on the front and back end (so 16 months total). In order to perform this analysis, we will need to receive raw billing data or meter read data in a specific format. We will need data in a single file in .csv format with a single record for each bill. Each record should include the following fields (variables), if you have them available.


REC	QUESTED BILLING DATA FIELDS			
1	Location ID	a unique identifier for a parcel or service connection in the water system, similar to an address		
2	Customer ID	a unique identifier for a customer at a given location		
3	Meter ID	a unique identifier for a meter at a given location		
4	Meter Size	indication of meter size		
5	Meter Installation Date	The installation date for the meter body, ideally including meters that have been replaced.		
6	Meter Total Lifetime Throughput	The total volume of water that has passed through the meter, accounting for meter rollovers.		
7	Service or Account Type	identifying fields that indicate what type of service is provided (e.g., "residential")		
8	Read Date	the date on which the meter was read		
9	Previous Read Date	the date on which the meter was last read		
10	Read Volume	the raw totalizer volume from the meter on the read date		
11	Previous Read Volume	the raw totalizer volume from the meter on the previous read date		
12	Units	the units that the read volumes are recorded in		
13	Billed Consumption	the actual volume the customer was billed for during the billing period		
14	Adjustment or Estimate Flags	any flags that indicate the billed consumption was adjusted or estimated during the billing period.		

Advanced Validation Methods & Technical Assistance: Customer Meter Test Design And Results Analysis


Types of Apparent Losses

Unauthorized Consumption


Theft!

Metering Inaccuracy

Customer meter under registration

Data Handling Errors

Reporting or other clerical errors during the handling of meter reading data

Apparent Loss: Customer meter testing

Many meters, small volumes

Few meters, large volumes

Estimating Customer Metering Inaccuracy

Meter Population Sample

Customer Meter Testing Process

- 1 **Design Testing Strategy**Determine goals of testing program and agree upon a sampling strategy and number of meters to sample.
- 2 Meter Sample Selection

 Evaluate meter inventory or billing data to generate a list of meters and alternates based on the agreed test design.
- Retrieve & Replace Meters

 Pull and test small meters identified in meter sample.

- 4 Meters Tested

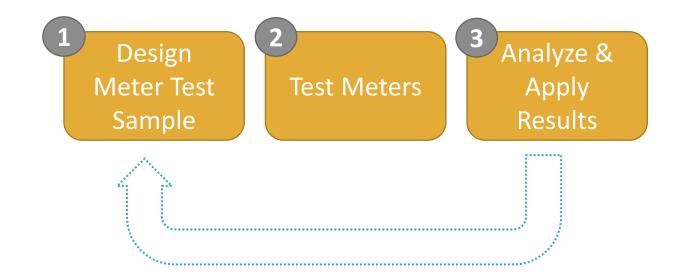
 Meter testing contractor tests meters and documents results thoroughly (tabular electronic format is preferred).
- 4 Results Analyzed
 Provide meter test results for analysis.



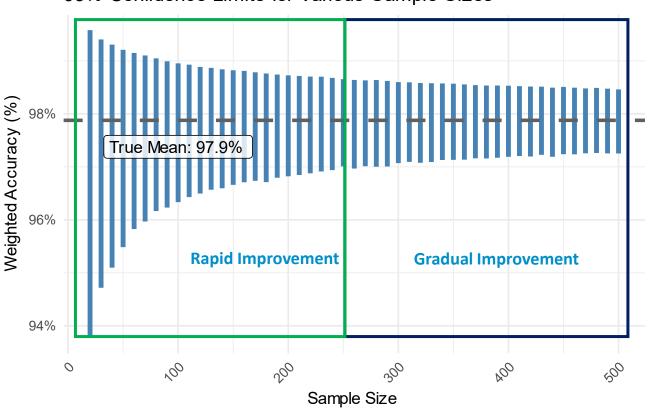
Small Meter Testing Strategy

How many small customer meters do you need to test?

- 1. Evaluate the level of certainty required to meet management objective.
 - 2. Select a sample size that provides the required level of certainty.



Small Meter Testing Strategy How many small customer meters do you need to test?


1. It depends.....

95% Confidence Limits for Various Sample Sizes

Small Customer Meter Sample Design

Design Meter Test Sample

- Representative and random _ meter sample
- remember our goal is to appreciate the accuracy of the **whole population**

 What sample size is big enough?

Small Customer Meter Testing

Test Meters

- Careful with meter transport
- Test at low, medium, and high flows
- Document thoroughly
 - include reference volume, testing flow rate, meter totalizer reads, all meter information
 - compile data in analysis-friendly format

Weighting Factors

Time-Based (AWWA M36 4th Edition)

Customer meters spend 15% of the *time* at low flows, 70% at medium flows, and 15% at high flows—need to convert to volume-based weights.

Test Flow Rate (gpm)	Percent of Time Spent at Each Flow Rate	Volume Recorded in 1 Hour at Each Flow Rate (gal)	Percent of Total Volume Recorded at Each Flow Rate
0.5	15%	4.5	1.3%
3	70%	126	35.4%
25	15%	225	63.3%

Volume-Based (AWWA M6)

Customer meters see 15% of the *volume* at low flows, 70% at medium flows, and 15% at high flows—no conversion needed.

2016 Residential End Use Study Weighting (pending publication)

The most recent research on the percent of volume recorded at various flow rates suggests that about 13% of the **volume** is recorded at low flow rates, 55% at medium rates, and 32% at high flow rates—no conversion needed.

Weighting Factors

How do weighting factors overall accuracy?

Overall inaccuracy may be inappropriately biased by low flow inaccuracy when using simple mean

Weighting Method	All Results (2011-18) 3,873 records
M36 Weighted Mean	98.36%
M6 Weighted Mean	97.43%
2016 REU Weighted Mean	97.59%
None (simple mean)	96.67%

Small Customer Meter Analysis

Analyze & Apply Test Results

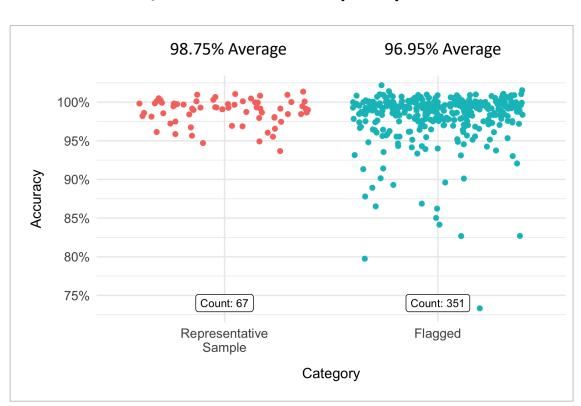
- Organize all test results
- Analyze accuracy findings
- Consider confidence limits
- Calculate Apparent Loss Volumes

Small Customer Meter Analysis

Analyze & Apply Test Results

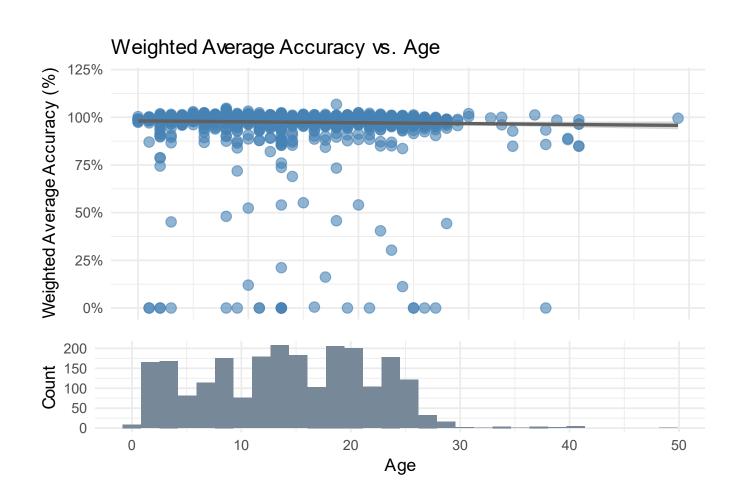
Accuracy Results Analysis Considerations

- Averaging across flow rate results
 - · time-weighting
 - volume-weighting and consumption profiling
- Handling stuck meters



Small Meters (2018) – Flagged vs. Random

3/4" and 1" Results (2018)



WSO determined to a 95% confidence level that the mean accuracy for the random sample meters is somewhere **between 0.7%** and 2.0% higher than the flagged meters in the case of 3/4" and 1" meters.

Accuracy and Age

Small Customer Meter Testing

Meter Size	Meter Population	Registered Consumption Volume (MG)	Volume-Weighted Average Accuracy	Unregistered Consumption Volume (MG)
5/8"	13,548	2,225	92.0%	194
3/4"	1,392	203	98.5%	3
1"	2,145	274	96.9%	9
1-1/2"	311	57	94.0%	4
2"	391	78	97.6%	2

$$Accuracy = \frac{Registered\ Consumption\ Volume}{Total\ Registered\ Volume}$$

the more consumption, the more important accuracy!

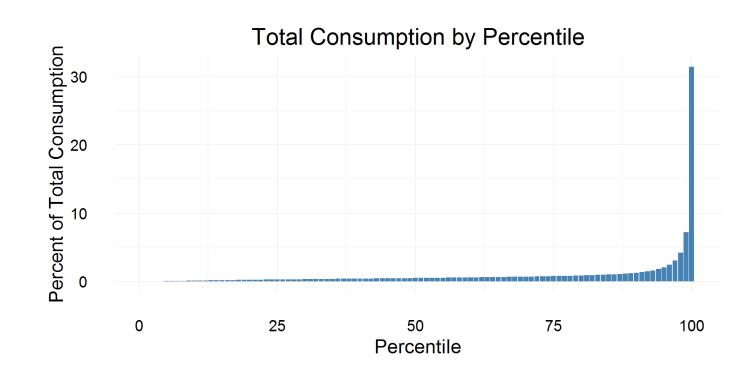
Large Customer Meter Testing

- Fewer, more important meters!
- Individual assessment
- Prioritize by consumption
- Flow profiling is key

Design Meter Test
Sample

Test Meters

Analyze & Apply
Results



Large Customer Meter Testing

Design Meter Test
Sample

- Critical for revenue monitoring and recovery
- Significant factor in apparent loss assessment

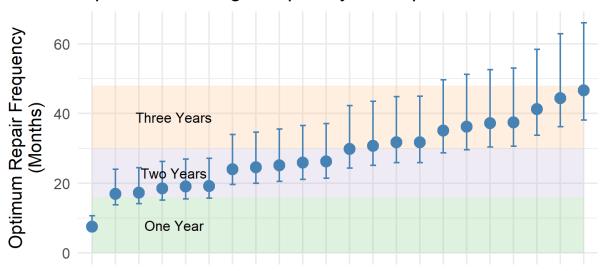
Balancing the costs of testing a large customer meter

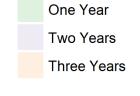
Cost of Inaccuracy:

- Reduced Volume Recorded
- Retail Value of Water Sold
- Inaccurate water loss estimates

Cost of Testing and Repair:

Expected Cost of Test and Repair





Overall Schedule

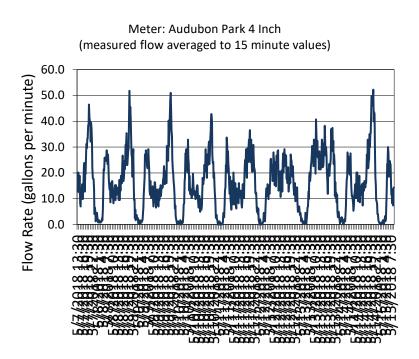
Optimum Testing Frequency for Top Revenue Meters

Frequency Bin

Large Meters Ranked by Optimum Repair Frequency

Testing Frequency	Count of Meters
1 year	1
2 years	10
3 years	11
Regular Testing	36
Total	58

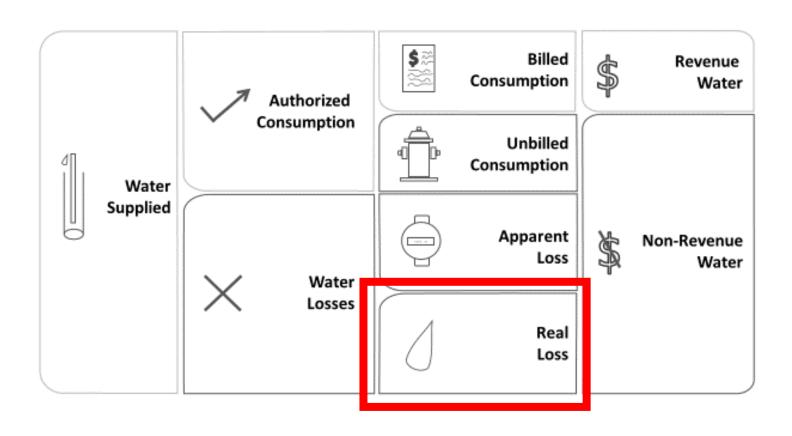
Customer Meter Profiling



Customer Meter Profiling

Customer Meter Accuracy Test

- Small and Large meters should have different testing strategies
 - Small meter test samples based on random sampling
 - Large meter test samples based on consumption volume (& revenue generation)
- Meters should be tested at low, medium, and high flow and test results weighted for averaging
- Add layer of consumption volume to calculate Apparent Losses due to meter inaccuracy
- Data request is at a minimum an inventory of customer meters – including age and throughput
 - Additional data may be requested depending on testing objectives


Advanced Validation Methods & Technical Assistance: Real Loss Component **Analysis**

Methods: AWWA Water

Balance

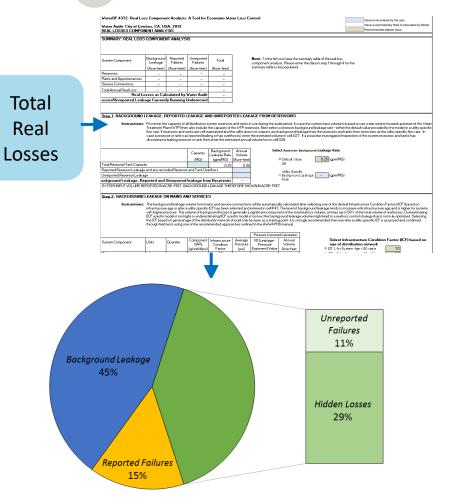
Real Losses

- Leaks from the water mains, valves, hydrants, service lines
- Leaks and overflows from water tanks

Why Component Analysis?

Different types of leakage should be addressed... Differently!

From Water Audit To Component Analysis

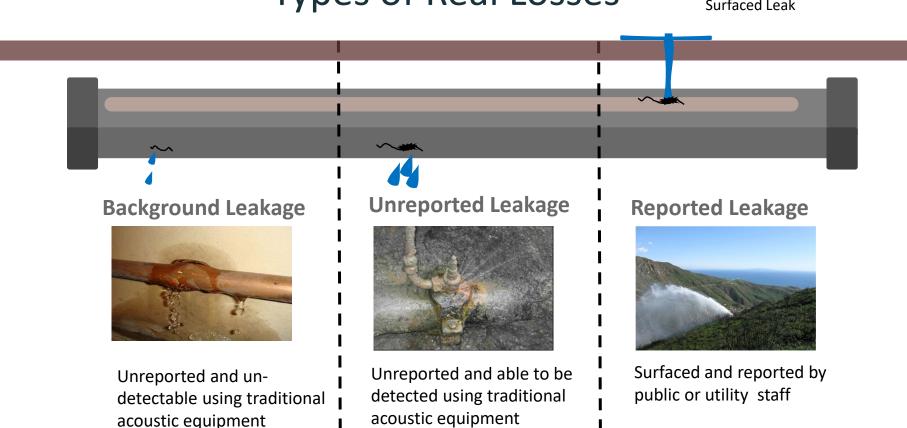

1 AWWA Audit Model

AWWA Free Water Audit Software:

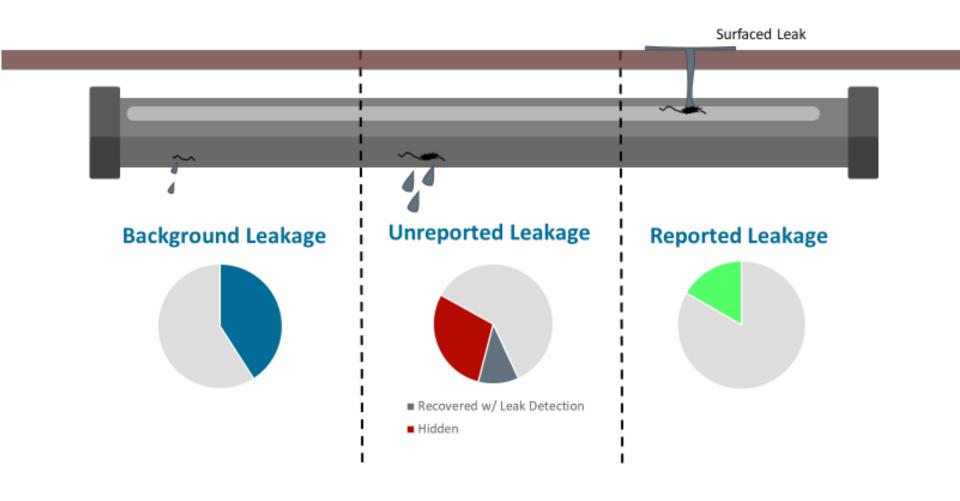
RESOCIED Worksheet

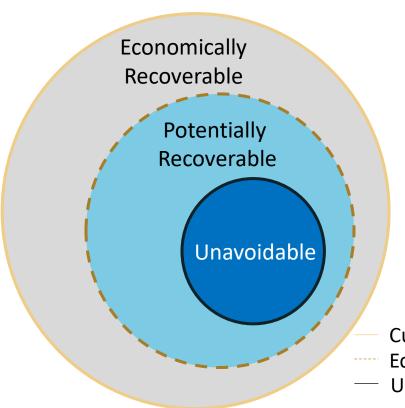
RESOCIED Work

2 Component Analysis Model

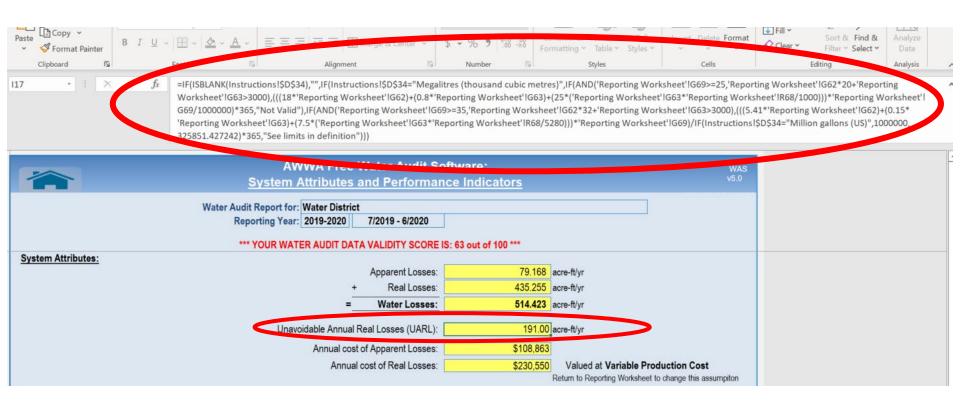


Types of Real Losses


Surfaced Leak


Types of Real Losses

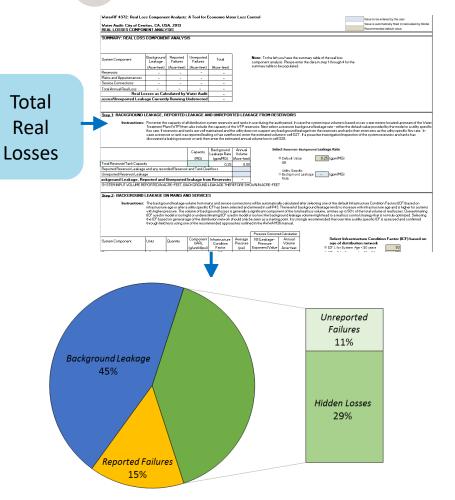
Recoverability of Real Losses


The AWWA audit software will model the **technical** minimum level of real loss based on system infrastructure data.

Current Annual Real Losses
Economic Level of Real Losses
Unavoidable Annual Real Losses

AWWA Technical Minimum Leakage

From Water Audit To Component Analysis


1 AWWA Audit Model

AWWA Free Water Audit Software:

RESOCIED Worksheet

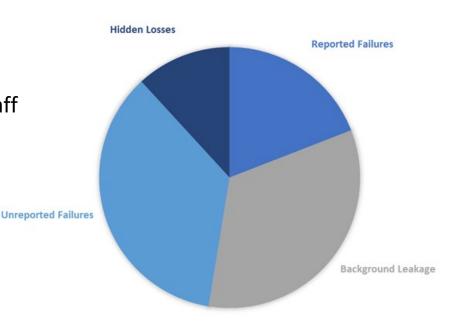
RESOCIED Work

2 Component Analysis Model

Background

Modeled from Infrastructure Data

Reported Failures


- Leaks called in by customers or utility staff
- Noticeable without leak equipment

Unreported Failures

Discovered through leak detection

Hidden Losses

 Difference between Audit results and known failure volume

ATER SUPPLIED		
WATER SUPPLIE	3 600 000	Acre-feet/Yr
WATER OOFFEIL	5,000.000	1000-100011
THORIZED CONSUMPTION		
Billed Metere	d: 3,000.000	Acre-feet/Yr
Billed Unmetere	d: -	Acre-feet/Yr
Unbilled Metere	d: -	Acre-feet/Yr
Unbilled Unmetere	d: 10.000	Acre-feet/Yr
AUTHORIZED CONSUMPTIO	N: 3,010.000	Acre-feet/Yr
WATER LOSSE	S: 590.000	Acre-feet/Yr
APPARENT LOSSE	S: 80.000	Acre-feet/Yr
REAL LOSSE	S: 510.000]Acre-feet/Yr
NON REVENUE WATER	R: 600.000	Acre-feet/Yr
STEM DATA		
Length of main	150.0	miles
Number of active AND inactive service connections		service connections
Service connection densit		conn./mile main
Average length of customer service line	7.	feet
Average religit of customer service line Average operating pressur		
, troining probbat		ween curb stop and customer meter or point of first use
OST DATA	metered service conn	

Mains by Size	ns by Size Number of Leaks & Failures per Year Number of Leaks & Failures per	Langth of Main	Failure Frequency	Average Failure Flow Rate @	Average Pressure	Average N1 (Leakage- Pressure Exponent)	A	Average Annual Tot	Total Annual		
		Length of Main	(number / 100miles / yr)	70psi		Value	Average Awareness Duration	Average Duration for Location and Repair/Shutoff Failure	Total Duration	Loss per Failure	Loss
		miles		(gpm)	(psi)		(days)	(days)	(days)	(MG)	(MG)
Diameter 2"	4	17.0	24	13.90	66.0	1.00	2.00	4.00	6.00	0.11	0.45
Diameter 3"	8	38.0	21	13.90	66.0	1.00	2.00	6.00	8.00	0.15	1.21
Diameter 4"	4	61.0	7	44.00	66.0	1.00	1.00	6.00	7.00	0.42	1.67
Diameter 6"	14	52.0	27	92.00	66.0	1.00	1.00	10.00	11.00	1.37	19.24
Diameter 8"	3	2.0	150	92.00	66.0	1.00	0.50	6.00	6.50	0.81	2.44
Diameter 10"			_	02.00	66.0	1 00		_	_	_	_

Number of	Number of		Failure Frequency	Average Failure Flow Rate @		N1 (Leakage-	A	verage Failure Duration		Average	T
Failures per Year	Appurtenances	Number of Failures per 1000 Appurtenances	70psi	Average Pressure	Pressure Exponent) Value	Average Awareness Duration	Average Duration for Location and Repair/Shutoff Failure	Total Duration	Loss per Failure	Total Annual Loss	
			(gpm)	(psi)		(days)	(days)	(days)	Acre-feet	Acre-feet	
4	200	20	3.50	80.0	1.00	10.00	5.00	15.00	0.27	1.06	
5	1,000	5	6.90	80.0	1.00	15.00	10.00	25.00	0.87	4.36	
8	10,000	1	0.25	80.0	1.00	25.00	20.00	45.00	0.06	0.45	
-		-	-	80.0	1.00		-	-	-	-	
	Year 4 5	Failures per Year Appurtenances 4 200 5 1,000	Number of Failures per Year Total Number of Appurtenances Frequency Number of Failures per 1000 Appurtenances 4 200 20 5 1,000 5 8 10,000 1	Number of Failures per Year Total Number of Appurtenances Frequency Number of Failures per 1000 Appurtenances Flow Rate @ 4 200 20 3.50 5 1,000 5 6.90 8 10,000 1 0.25	Number of Failures per Year Total Number of Appurtenances Frequency Number of Failures per 1000 Appurtenances Flow Rate @ Pressure Average Pressure 4 200 20 3.50 80.0 5 1,000 5 6.90 80.0 8 10,000 1 0.25 80.0	Number of Failures per Year Total Number of Appurtenances Frequency Number of Failures per 1000 Appurtenances Flow Rate @ Pressure Average Pressure N1 (Leakage-Pressure Exponent) Value 4 200 20 3.50 80.0 1.00 5 1,000 5 6.90 80.0 1.00 8 10,000 1 0.25 80.0 1.00	Number of Failures per Year Total Number of Appurtenances Frequency Number of Failures per 1000 Appurtenances Flow Rate @ Pressure Average Pressure Exponent) Value N1 (Leakage-Pressure Exponent) Value Average Awareness Duration 4 200 20 3.50 80.0 1.00 10.00 5 1,000 5 6.90 80.0 1.00 15.00 8 10,000 1 0.25 80.0 1.00 25.00	Number of Failures per Year Total Number of Appurtenances Frequency Number of Failures per 1000 Appurtenances Flow Rate @ Pressure Average Pressure Exponent) Value N1 (Leakage-Pressure Exponent) Value Average Awareness Duration Average Pailure Duration 4 200 20 3.50 80.0 1.00 10.00 5.00 5 1,000 5 6.90 80.0 1.00 15.00 10.00 8 10,000 1 0.25 80.0 1.00 25.00 20.00	Number of Failures per Year Total Number of Failures per Year Total Number of Failures per Year Total Number of Failures per 1000 Appurtenances (gpm) (psi) (days) (d	Number of Failures per Year Total Number of Appurtenances Frequency Number of Failures per 1000 Appurtenances Flow Rate @ Pressure Average Pressure Exponent Value N1 (Leakage-Pressure Exponent) Value Average Awarenees Duration of Callure Average Duration for Location and Repair/Shutoff Failure Average Annual Loss per Failure 4 200 20 3.50 80.0 1.00 10.00 5.00 15.00 0.27 5 1,000 5 6.90 80.0 1.00 15.00 10.00 25.00 0.87 8 10,000 1 0.25 80.0 1.00 25.00 20.00 45.00 0.06	

Data Required:

- Real Losses from Water Audit
- System Infrastructure Data
- Detailed Leak Repair Information

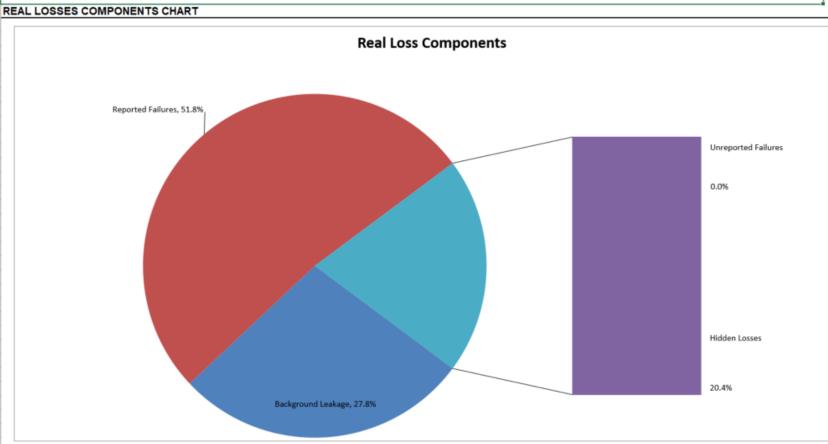
Systematic data handling errors: + ?	0.156	MG/Yr
Default option selected for Systematic data handling	errors - a grading of 5 is	s applied but not displayed
Apparent Losses:	1.279	MG/Yr
Real Losses (Current Annual Real Losses or CARL)		
Real Losses = Water Losses - Apparent Losses:	2.882	MG/Yr
WATER LOSSES:	4.162	MG/Yr
NON-REVENUE WATER		
NON-REVENUE WATER:	6,590	MG/Yr
= Water Losses + Unbilled Metered + Unbilled Unmetered		
SYSTEM DATA		

Mains by Size	Number of Leaks &	Length of Main	Failure Average Failure Frequency Flow Rate @		Average N1 (Leakage- Pressure Exponent)		Average Failure Duration			Average Annual	Total Annual
	Failures per Year	ires per	(number / 100miles / yr)	70psi	Pressure	Value	Average Awareness Duration	Average Duration for Location and Repair/Shutoff Failure	Total Duration	Loss per Failure	Loss
		miles		(gpm)	(psi)		(days)	(days)	(days)	(MG)	(MG)
Diameter 2"	4	17.0	24	13.90	66.0	1.00	2.00	4.00	6.00	0.11	0.45
Diameter 3"	8	38.0	21	13.90	66.0	1.00	2.00	6.00	8.00	0.15	1.21
Diameter 4"	4	61.0	7	44.00	66.0	1.00	1.00	6.00	7.00	0.42	1.67
Diameter 6"	14	52.0	27	92.00	66.0	1.00	1.00	10.00	11.00	1.37	19.24
Diameter 8"	3	2.0	150	92.00	66.0	1.00	0.50	6.00	6.50	0.81	2.44
Diamotor 10"				02.00	66.0	1 00					

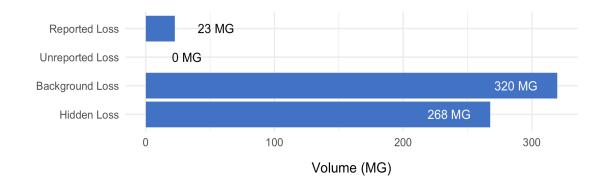
			Unique ID# for failure or work order
		Failure Event Type	Reported - from complaints Unreported - from proactive leak detection
		Service Connection Ownership	Utility Maintained Section
		Where Service Leak Occurred	Customer Maintained Section
		General Location of Failure Event	For Example - House Address
	Minimum	Size Information	Service Connection Size
	Required Information	Failure Event Reported	Date
	information		Time
		Failure Event Dinneinted	Date
		Failure Event Pinpointed	Time
		Failure Event Contained/Valve-	Date
		off/Repaired	Time

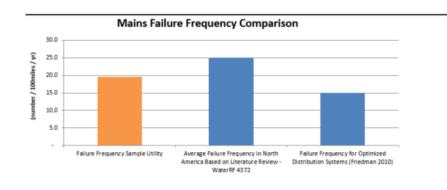
WaterRF 4372: Real Loss Component Analysis: A Tool for Economic Water Loss Cont

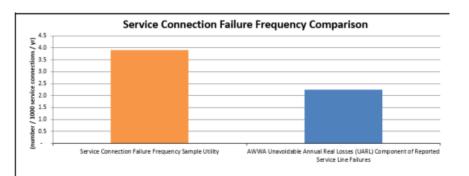
REAL LOSSES COMPONENT ANALYSIS

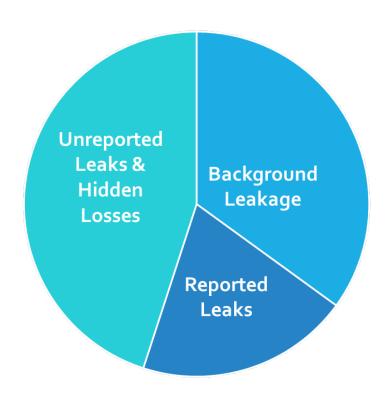

SUMMARY: REAL LOSS COMPONENT ANALYSIS

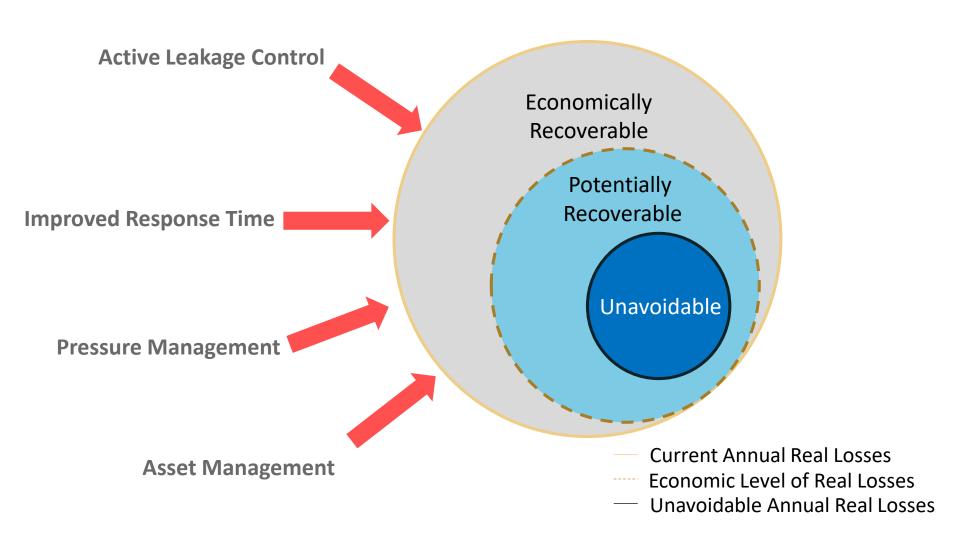
System Component	Background Leakage	Reported Failures	Unreported Failures	Total
	(Acre-feet)	(Acre-feet)	(Acre-feet)	(Acre-feet)
Reservoirs	4.03	-	-	4.03
Mains and Appurtenances	41.24	238.19	-	279.44
Service Connections	96.56	26.14	-	122.70
Total Annual Real Loss	141.84	264.33	-	406.17
	510.00			
Hidden Losses/Unreporte	103.83			




WaterRF 4372: Real Loss Component Analysis: A Tool for Economic Water Loss Control

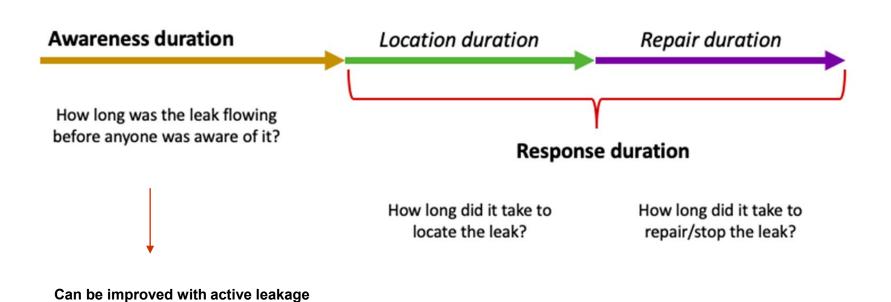





- Based on types of leakage in the system
- Based on value of recoverable leakage
- Based on cost of leakage reduction interventions
- Determine implementation strategy


Intervention Strategies

Surfaced Leak

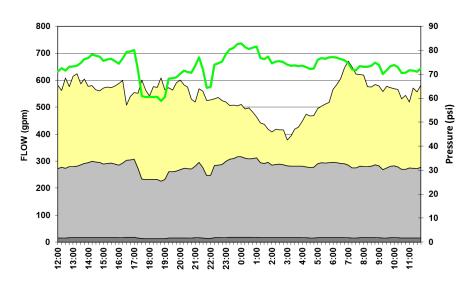


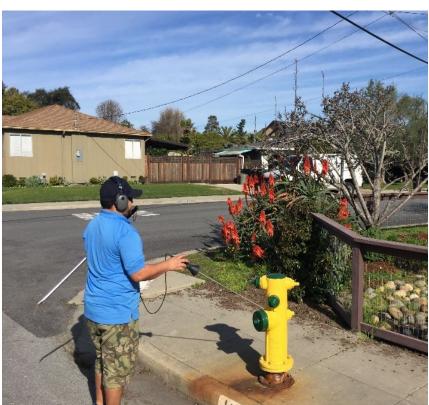
control

Managing Real Losses

Improved Response Time

Improved Response Time


Reported and Unreported Failure Events				
Failures on Mains	Rep	orted	Unreported	
Total Failures on Mains		25	-	
Average location and repair duration		10.0	-	days
Total Volume lost (stemming from location and repair duration)		116.2	-	Acre-feet
Total Cost of Volume lost (stemming from location and repair duration)	\$	58,081	\$ -	
What IF Location and Repair Duration is Reduced to		5		days
Percent Reduction		50%	0%	
Potential Related Savings in Leakage Volume		58.1	-	Acre-feet
Potential Related Savings in Leakage Volume Cost	\$	29,040	\$ -	
Service Line Failures	Rep	orted	Unreported	
Total Number of Failures on Service Connections		30	-	
Average location and repair duration		10.0	-	days
Total Volume lost (stemming from location and repair duration)		10.5	-	Acre-feet
Total Cost of Volume lost (stemming from location and repair duration)	\$	5,227	\$ -	
What IF Location and Repair Duration is Reduced to		5		days
Percent Reduction		50%	0%	
Potential Related Savings in Leakage Volume		5.2	-	Acre-feet
Potential Related Savings in Leakage Volume Cost	\$	2,614	\$ -	
5.11	Rep	orted	Unreported	
Failures on System Appurtenances		17		
Total Number of Failures on System Appurtenances				
		13.5	-	days

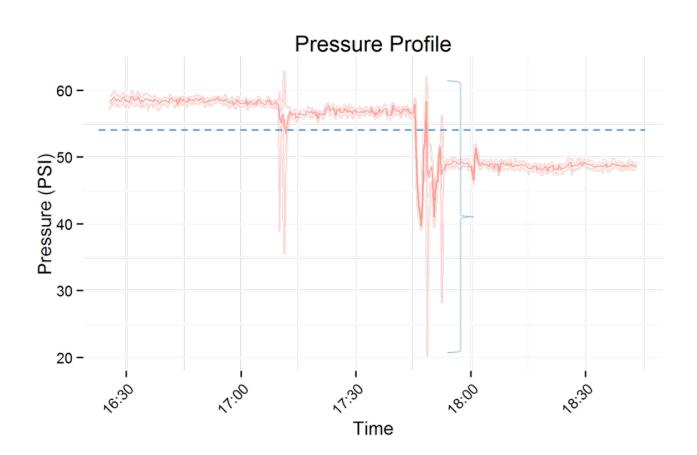


Active Leakage Control

- Proactive Leak Detection
- Leak Noise Loggers
- DMA Measurements

Active Leakage Control

cv	Variable Cost of Real Losses Variable Production cost (applied to Real Losses): 1.53 \$/per kgal 500.00 \$/Acre-ft
СІ	Cost of comprehensive leak detection survey (excluding leak repair cost) 300.00 \$/per mile \$45,000 \$/for entire system
RR	Average Rate of Rise of Unreported Leakage 0.30 kgal/mile of mains/day in a year 0.14 AF/day in a year
	CI/CV 195.5 kgal/mile
EIF	Economic Intervention Frequency [0.789 * (CI/CV)/RR] ^0.5 22.7 months 689.7 days
	Economic Intervention Frequency - Average Leak Run Time 344.9 days Economic Percentage of System to be Surveyed per Year 53
ABI	Average Annual Budget for Intervention (Proactive Leak Detection) 23,814 \$/year
EUL	Economic Unreported Real Losses 15,520 kgal/year 47.6 AF/year
	Economic Infrastructure Leakage Index (ILI) 2.6



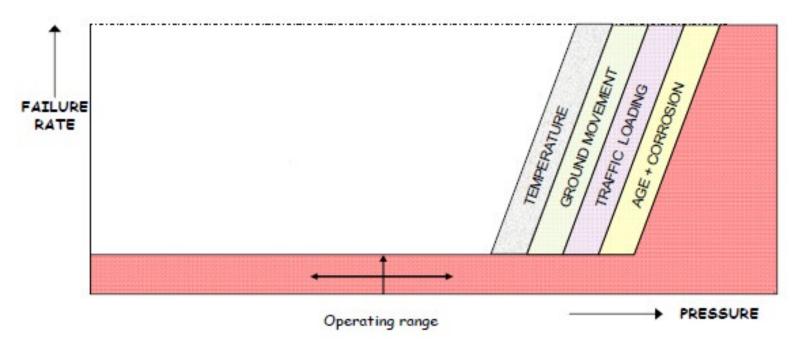
Pressure Management

Pressure Management Opportunities

	Existing Pressure Management Policy
Current Average System Pressure	80.0 PSI
Total Annual Real Losses	510.0 Acre-feet/Yr
Value of Real Losses	255,000 \$/year

FAVAD N1 Value Used for Calculation of Real Loss Reduction Due to Reduction of Average System Pressure

	O Use Default N1	1.0
	⊕ Use System Specific N1	1.2
Enter % of rigid pipes and service connections in system	40%	
ILI	2.6	


	Alternative Pressure Management Policy	
Assumed Reduction in Average System Pressure	5.0	PSI
Assumed % Reduction in Average System Pressure	6%	
Real Loss Volume Saved Through Alternative Pressure Management Policy	38.0	Acre-feet/Yr
Value of Real Loss Volume Saved Through Alternative Pressure Management Policy	18,984	\$/Year
Enter Estimated Cost of Implementing Alternative Pressure Management Policy	20,000	\$
Simple Payback Period for Implementing Alternative Pressure Management Policy	1.1	Years

Asset Management

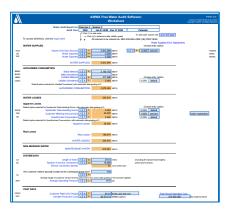
- Create Inventory by Age, Size, Material, Etc.
- Failure Rates Affected by Multiple Factors

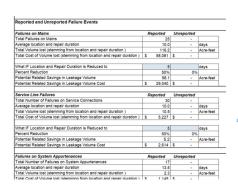
Real Loss Program Development

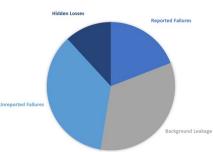
Calculate Water Losses

- AWWA Water Audit Model
- Real Losses v.
 Apparent Losses

Breakdown Leakage Volumes


- Background
- Reported
- Hidden
- Unreported


Economic Analysis

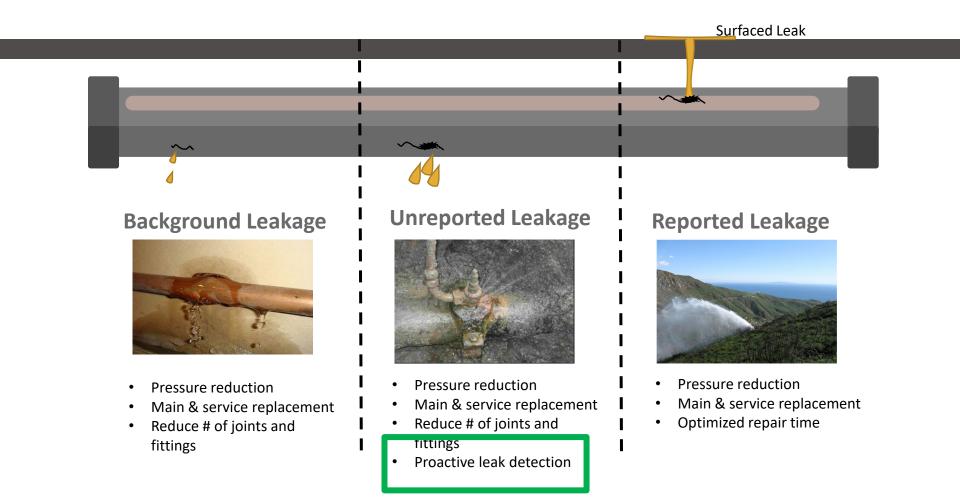

- Value Lost Water
- Evaluate Cost of Intervention

Implement Interventions

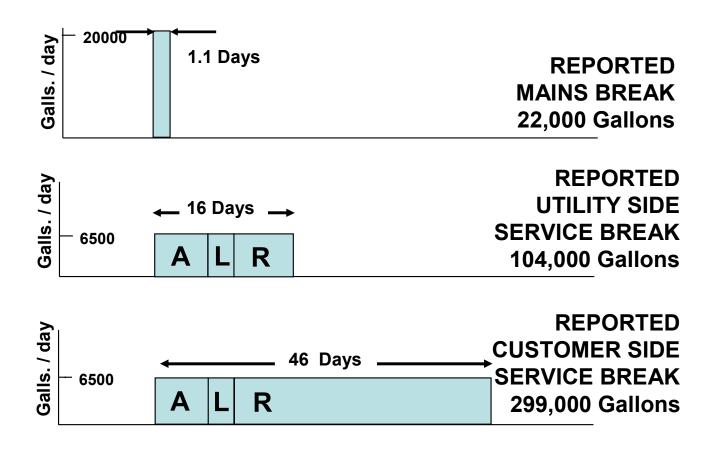
- Leak Detection
- Pressure Management
- Repair Time
- Infrastructure Management

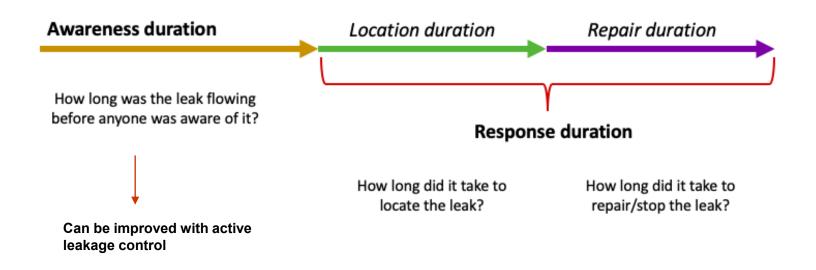
Data Request for Component Analysis

- Completed Water Audit Software
- Reported Leak Repair Data
- Unreported Leak Repair Data
- Additional Infrastructure Data (# Valves, hydrants, etc)

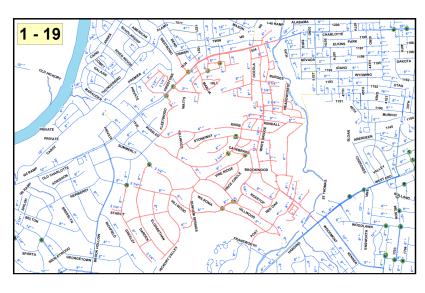

		Unique ID# for failure or work order	
Minimum Required Information	Failure Event Type	Reported - from complaints Unreported - from proactive leak detection	
	Service Connection Ownership	Utility Maintained Section Customer Maintained Section	
	Where Service Leak Occurred General Location of Failure Event		
	Size Information	Service Connection Size	
	Failure Event Reported	Date	
		Time	
	Failure Event Pinpointed	Date	
		Time	
	Failure Event Contained/Valve- off/Repaired	Date	
		Time	

Advanced Validation Methods & Technical Assistance: Leak Detection Survey


Types of Real Losses & Intervention Strategies

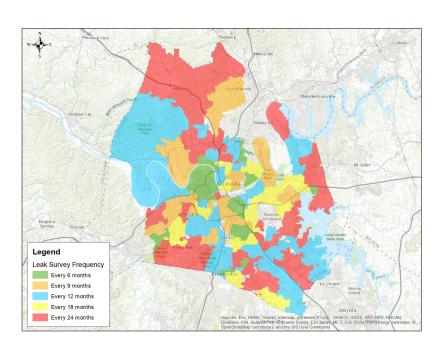

The Impact of Leak Run Times

Real Loss Management Strategies *Improved Response Time*



Leak Survey

- Type of field investigation that uses specialized acoustic equipment to survey the water distribution system to locate non-surfacing leaks
- Select a portion or whole distribution system to check for leaks
 - Where to survey
 - How frequently
- During the survey, technicians listen to meters, service connections, hydrants, and valves throughout the water distribution system
- Depending on the complexity, other equipment or technologies may be employed to confirm and pinpoint the leak



Leak Survey

- Where to survey
 - If first survey, select areas based on operational knowledge:
 - Reported leak events
 - Older parts of the system
 - Low pressure reports
 - Unexplained bodies of water
 - Questionable contractor work
 - If previous surveys have been conducted
 - Areas not previously surveyed
 - Analysis of previous leak surveys
- How frequently
 - Depends on system condition and economics – costs of water lost and costs of intervention
 - Perform a component analysis of real losses
 - Analysis of results from leak surveys

Acoustic Leak Detection

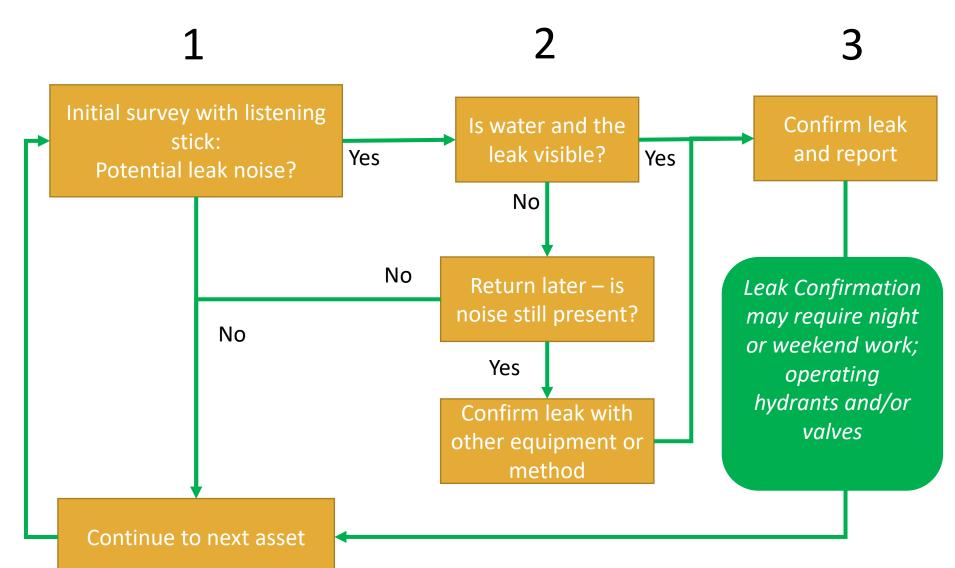
- Walking survey with listening device
 - Listening Stick
 - Geophone
 - Electronic Sounding Instrument
- Leak noise correlators & hydrophones
- Noise loggers
- Line locators
- Metal detectors

Leak Sound Characteristics:

- Pipe Wall higher frequency, shorter travel
- "Escaping" Water lower frequency, travels farther
- Impact lower frequency, water impacting cavity walls and rocks circulating in cavity
- Continuous leak sound is continuous unlike transient ambient noises

Factors Affecting Leak Sound:

- System Pressure
- Pipe Material & Size
- Background Noise
- Type Of Leak
- Surface Covering Pipes



- Sources Of Interference
 - Traffic & Other Equipment Noise
 - Variation of Soil Moisture & Water Table
 - Variation of Surface Materials
 - Variation of Depth
 - Variation of Soil Properties
 - Variation in Pipe Bedding Materials
 - Low Pressure in Pipe
 - Radio Frequency Interference

- Non-Leak Sound Sources ("False Positives"):
 - Gas lines
 - Repair couplings
 - PRVs
 - Force mains
 - Consumption
 - Meter noise
 - Partially closed or broken valves
 - Active blow-offs

- Methods to verify leaks
 - Visible water
 - Chlorine test
 - Shut-off water service (for leaks suspected on service line or customer meter)
 - Operating hydrants or valves
 - Leak noise correlation
 - Excavation
- We make every effort possible to find the exact location of the leak.
 However, unknow conditions underground may cause the leak to
 appear to be some distance from the real location. Marked leak
 locations may have a margin of error of 5-8 feet.
- If during the excavation, the utility is having trouble locating a reported leak, WSO technicians can assist during the excavation

Office 013.431.3222 %./mile 013.431.3720

LEAK REPORT

Date: October 15, 2021

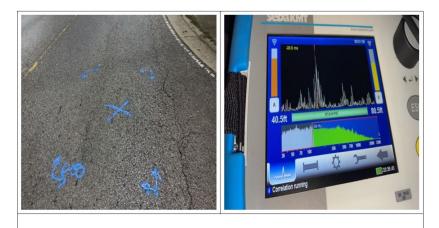
Report #: 51

Survey ☑ Recheck □ Location Error □ Request □

LOCATION

Address: 570 W Eastland St, Gallatin, Tennessee, 37066

Cross Street: Roosevelt cir Grid Map: 47

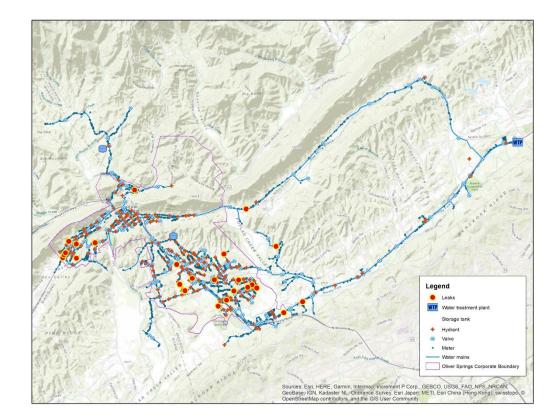

DETAILS

Suspected On: Main

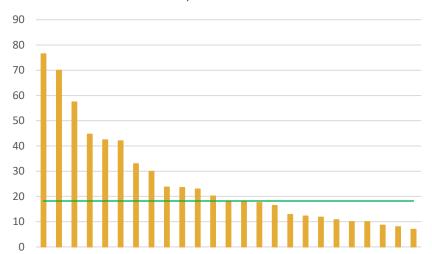
Indication: Sonic, ID:

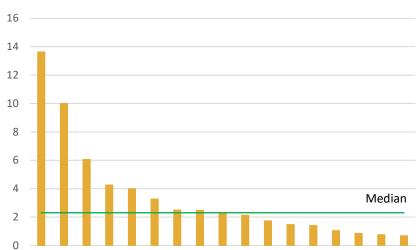
Correlation, Visual Water

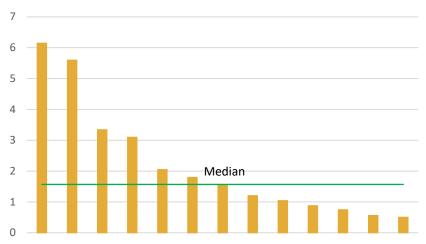
Leak Report


Leak Reports

Results of recent survey ~65 miles

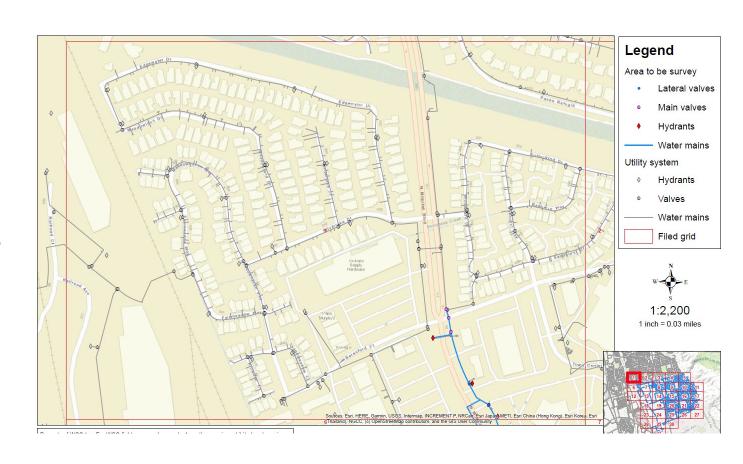

		% OF		% of Total
INFRASTRUCTURE	COUNT OF	TOTAL	ESTIMATED FLOW	FLOW RATE
Түре	LEAKS	LEAKS	RATE (GPM)	
Main	5	18%	33	31%
Service	12	43%	38	36%
Meter	5	18%	6	6%
Hydrant	6	21%	30	28%
TOTAL	28	100%	107	100%




All Leaks/100 miles of main

Main Leaks/100 miles of main

Service & Meter Leaks/1,000 customers



Leak Survey Data Request

GIS files or maps:

- PipeMaterial
- Size
- Asset Type

