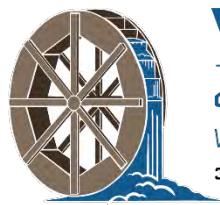


JULESBURG (JUMBO) RESERVOIR

Jumbo Reservoir State Wildlife Area
Logan and Sedgwick Counties, Colorado

DAMIDs:


640212 – Julesburg #1
640213 – Julesburg #1a
640214 – Julesburg #2
640215 – Julesburg #3
640104 – Julesburg #4

JULESBURG RESERVOIR ENLARGEMENT ALTERNATIVES ANALYSIS REPORT

Prepared for:

Julesburg Irrigation District
315 Cedar Street
Julesburg, CO 80737

Prepared by:

W. W. WHEELER
& ASSOCIATES, INC.

Water Resources and Geotechnical Engineers
3700 S. INCA STREET, ENGLEWOOD, CO 80110
303-761-4130 • WWWHEELER.COM

March 2025

EXECUTIVE SUMMARY

This Alternatives Analysis Report for the enlargement of Julesburg Reservoir was prepared by W.W. Wheeler & Associates, Inc. (Wheeler) for the Julesburg Irrigation District. This Alternatives Analysis project was completed to develop feasibility level alternatives that address existing dam safety concerns and provide enlargement options for Julesburg Reservoir to recover its lost storage due to sedimentation. Detailed descriptions of each alternative are presented in section 5.3 and summarized below:

Alternative A – Alternative A focuses on rehabilitating the existing embankments while maintaining a similar reservoir configuration. This alternative raises each dam crest by five to six feet to meet the targeted reservoir capacity of 28,178 acre-feet. The existing spillway would be raised by approximately 3.5 feet. Toe drains would be installed along each downstream embankment to mitigate seepage. Constructing this alternative would require draining the reservoir pool and purchasing land or easements for the new inundated area. This alternative also includes rerouting the inlet canal which is a large cut and could be used for on-site embankment materials.

Alternative B – Alternative B involves a combination of rehabilitating and reconstructing the existing dams. This alternative proposes the reconstruction of Dams 1a, 2, and 3 into a single new dam located downstream, referred to as Julesburg Dam A. For Dam 1, the embankment crest would be slightly raised (0.8 foot), and a toe drain would be installed to mitigate seepage. For Dam 4, a toe drain would be installed along the northern embankment, and two spillways would be cut into the embankment and armored. The new alignment for Julesburg Dam A was located to obtain the targeted storage capacity while maintaining a similar normal high-water level compared to the current operating level. Constructing this alternative would require partially draining the reservoir and land acquisition or easements for the new dam inundated area.

Alternative C – Alternative C proposes the reconstruction of Dams 1, 1a, 2, and 3 into two new dams located downstream, referred to Julesburg Dam Band Julesburg Dam C. This alternative would optimize the alignments of new dams to minimize modifications at Dam 4 while meeting the targeted reservoir capacity and maintaining the existing operating level. For Dam 4, a toe drain would be installed along the northern embankment, and the existing spillway would be slightly modified and armored. Modification to the inlet channel will address slope issues by moving the reservoir inlet closer to the new Julesburg Dam C. Constructing this alternative would require partially draining the reservoir and land acquisition or easements for the new impoundment area associated with the footprints.

Table E.1: Opinion of Alternatives Probable Project Cost

Item Description	Alternative A	Alternative B	Alternative C
	Enlarge All Dams	Replace Dams 1a, 2, and 3	Replace 1, 1a, 2, and 3
Direct Construction Costs	\$25,781,000	\$37,249,000	\$40,921,000
Indirect Construction Costs	\$9,818,000	\$19,171,000	\$20,757,000
Total Construction Costs	\$35,599,000	\$56,420,000	\$61,678,000

Note: All costs in projected 2025 dollars

JULESBURG RESERVOIR ENLARGEMENT

ALTERNATIVES ANALYSIS REPORT

TABLE OF CONTENTS

	Page
EXECUTIVE SUMMARY	i
1.0 INTRODUCTION	1
1.1 Project Objective	1
1.2 Scope of Work	1
1.3 Authorization.....	1
1.4 Project Location.....	1
1.5 Project Team	2
2.0 BACKGROUND	3
2.1 Julesburg Reservoir	3
2.2 Previous Studies.....	4
2.2.1 <i>Fifteenth Biennial Report</i> (Colorado State Engineer, 1910)	4
2.2.2 <i>Design Engineering Report Julesburg Reservoir Dam No. 3</i> (Wheeler, 1986)	5
2.2.3 <i>Geotechnical Investigation Rehabilitation of Julesburg Reservoir Dam No. 3</i> (Chen & Assoc., 1986)	5
2.2.4 <i>Design Engineering Report Julesburg Reservoir Dam No. 2 Toe Drains and Embankment Stabilization</i> (Wheeler, 1988a).....	5
2.2.5 <i>Outlet Works Engineer Report</i> (Wheeler, 1992) and <i>Completion Report</i> (Wheeler, 1996)	6
2.2.6 <i>Feasibility Study, Enlargement of Julesburg Reservoir</i> (Wheeler, 1998a)	6
2.2.7 <i>Comprehensive Dam Safety Evaluation Report, Dam 4</i> (DWR, 2024a)	6
2.3 Previous Dam Modifications	6
2.4 DWR Review/Site Visit	7
3.0 INFLOW HYDROLOGY ANALYSIS.....	8
3.1 Basin and Reservoir Configuration	8
3.2 Precipitation.....	9
3.3 Rainfall to Runoff Transformation Method.....	10
3.3.1 Clark Unit Hydrograph.....	12
3.4 Baseflow.....	13
3.5 Existing Spillway Rating Curve	13
3.6 Existing Reservoir Capacity	13
3.7 Hydrologic Model Entry and SMA Parameter Summary.....	13
3.8 Hydrologic Model Results	16
3.9 Reasonableness Checks	19
3.10 Model Calibration and Confidence	21
4.0 GEOTECHNICAL AND GEOLOGICAL ANALYSES.....	22
4.1 Geology	22
4.1.1 Geologic Units	22
4.1.2 Seismicity and Faulting.....	22
4.1.3 Site Conditions	23
4.1.4 Borrow Source	23

4.2	Background Information.....	23
4.2.1	Dam No. 1 Available Geotechnical Information	23
4.2.2	Dam No. 1A Available Geotechnical Information.....	23
4.2.3	Dam No. 2 Available Geotechnical Information	23
4.2.4	Dam No. 3 Properties.....	24
4.2.5	Dam No. 4 Properties.....	24
4.3	Seepage Modeling.....	25
4.4	Slope Stability Modeling.....	25
4.4.1	Slope Stability Analysis Results for Existing Conditions.....	26
4.4.2	Slope Stability Analysis Results for Alternatives A and B.....	26
4.5	Wheelers Review of the Dam Failure.....	27
5.0	ALTERNATIVES ANALYSIS	29
5.1	Overview and Objective.....	29
5.2	Alternatives Options.....	29
5.2.1	Alternative A – Enlarge All Dams	29
5.2.2	Alternative B – Replace Dams 1A, 2, and 3.....	30
5.2.3	Alternative C – Replace Dams Nos. 1, 1A, 2, 3	30
5.3	Alternative Design Criteria	31
5.2.1	Hazard and Hydrologic Hazard Assumptions	31
5.2.2	Reservoir Storage Area.....	31
5.2.3	Hydrology and Spillway Sizing	33
5.2.4	Wave Run-up	34
5.2.5	Slope Stability and Seepage.....	34
5.2.6	Drawdown	35
6.0	OPINION OF PROBABLE COST	37
6.1	Cost Development Approach	37
6.2	Direct Construction Opinions of Cost	37
6.3	Indirect Project Opinions of Cost.....	38
7.0	RECOMMENDATIONS and NEXT STEPS	41
8.0	REFERENCES	42

<u>List of Tables</u>	<u>Page</u>
Table E.1: Opinion of Alternatives Probable Project Cost.....	i
Table 2.1: Dam Parameters	4
Table 3.1: Basin Geometric Characteristics	9
Table 3.2: Precipitation Frequency Values for Analyzed Storms	10
Table 3.3: Unscaled Precipitation Frequency Values for PMP Candidate Storms	10
Table 3.4: Basin Properties	12
Table 3.5: Basin Clark Unit Hydrograph Parameters.....	12
Table 3.6: CSU-SMA Method HEC-HMS Meteorological Model.....	14
Table 3.7: CSU-SMA Method HEC-HMS Basin Model	15
Table 3.8: Peak Inflow and Reservoir Water Surface Elevation for the PMP Event (based on scaled precipitation)	16
Table 4.1: Acceptable Minimum Factors of Safety for Slope Stability	25
Table 4.2: Selected Material Properties	25

Table 4.3: Calculated Factors of Safety for Existing Dams with Water Level at 3708.5 Feet	26
Table 4.4: Minimum Required Slopes for Alternatives.....	27
Table 5.1: Reservoir Capacity Table	33
Table 5.2: Design Features.....	33
Table 5.3: Spillway Discharge	34
Table 5.4: Embankment Design Slopes	35
Table 5.5: Drawdown Time	36
Table 6.1: Opinion of Alternatives Probable Project Cost	37
Table 6.2: Alternatives Direct Construction Costs Summary	38
Table 6.3: Alternatives Indirect Project Cost Summary.....	40

List of Figures

Page

Figure 1.1: Project Location Map	2
Figure 2.1: Site Map.....	3
Figure 3.1: Julesburg Reservoir Sub-Basins	8
Figure 3.2: Flood Frequency Curve for Julesburg Reservoir (unscaled)	17
Figure 3.3: Julesburg Reservoir Existing Reservoir Stage Probability Curve (unscaled)	17
Figure 3.4: Julesburg Reservoir Alternative A Reservoir Stage Probability Curve (unscaled)....	18
Figure 3.5: Julesburg Reservoir Alternative B Reservoir Stage Probability Curve (unscaled)....	18
Figure 3.6: Julesburg Reservoir Alternative C Reservoir Stage Probability Curve (unscaled)....	19

List of Appendices

Appendix A Julesburg Reservoir Enlargement Feasibility Drawings

Appendix B Calculations

- B1: Drainage Basin Documentation
- B2: Precipitation Documentation
- B3: Soil and Infiltration Documentation
- B4: Clark Unit Hydrograph Documentation
- B5: Existing and Proposed Reservoir Capacity Curve and Spillway Rating Curve Documentation
- B6: USGS StreamStats Report
- B7: HEC-HMS Entry Documentation
- B8: Wave-Runup Documentation
- B9: Slope Stability Figures

Appendix C Alternative Opinions of Probable Cost

File Location: R:\0900\0985\0985.04\06_Documents\AlternativesReport\Julesburg_AlternativeReport_Final_March2025.docx

W. W. WHEELER
& ASSOCIATES, INC.
Water Resources and
Geotechnical Engineers

Julesburg (Jumbo) Reservoir Enlargement
Alternatives Analysis Report
March 2025 • Page iv

1.0 INTRODUCTION

1.1 Project Objective

This Alternatives Analysis project was completed to develop feasibility level alternatives that address existing dam safety concerns and loss of storage. The reservoir is currently restricted to a lower operating level due to seepage and slope stability issues. And over time the reservoir has lost approximately 8,000 acre-feet of storage due to sedimentation.

1.2 Scope of Work

The Scope of Work for this project included the following major tasks:

- Task 1: Background Data Review and Preliminary Investigation
- Task 2: Hydrology
- Task 3: Geotechnical Evaluation
- Task 4: Feasibility Designs
- Task 5: Alternatives Analysis Report

1.3 Authorization

The work documented in this report was authorized by an Agreement between the Julesburg Irrigation District and W. W. Wheeler & Associates, Inc. (Wheeler) that was executed on April 26, 2024.

1.4 Project Location

Julesburg Reservoir is located approximately twenty miles southwest of the Town of Julesburg, Colorado on the border between Logan County and Sedgwick County. The reservoir is an off-channel storage facility formed from four dams, all of which are owned and operated by Julesburg Irrigation District. The reservoir is filled primarily by water diverted from the South Platte River through the Harmony Ditch. Water from the reservoir is used to provide irrigation water to approximately 19,000 acres. A project location map is presented on Figure 1.1.

Figure 1.1: Project Location Map

1.5 Project Team

Key staff responsible for the preparation of this report included:

Larry Frame	Julesburg Irrigation District Manager
Todd Street, P.E.	Project Manager
Christine Mugele, P.E.	Water Resources Engineer
Jesse Reigle, P.E.	Geotechnical Engineer
Amin Ghorbanpour, P.E.	Geotechnical Engineer

2.0 BACKGROUND

2.1 Julesburg Reservoir

Julesburg Reservoir, also known as Jumbo Reservoir, as it is located within the Jumbo Reservoir State Wildlife Area, is formed by five separate embankments ranging from 23 to 66 feet in height. The dam outlet works and spillway are both located in Dam 4, the easternmost embankment section. The outlet works discharges directly into the Highline Canal and any spillway flow travels over the natural depression along County Road 28 and is captured in Cottonwood Creek.

Figure 2.1: Site Map

In the late 1970s, Julesburg Reservoir was placed on a restrictive water surface elevation order by the Colorado Division of Water Resources, due to observed seepage and slumps. Since that time, Julesburg Reservoir has been operated at a maximum gage height of 24 feet. In the early 2000s, the Julesburg Irrigation District Manager updated the reservoir capacity curve by manually measuring inflow and recording the associated gage height during a dry year. Through this process, it became apparent that the reservoir has partially filled with sediment over time. Originally, at gage height 24 feet, the reservoir capacity was 24,666 acre-feet of water storage; it has since been reduced to approximately 20,206 acre-feet. Per the Julesburg Reservoir water right Case No. CA0944, Julesburg Reservoir can store 28,178 acre-feet of water storage under a senior water right with an administrative priority number of 19765 and a 1908 Adjudication Date.

In addition to sedimentation, Julesburg Reservoir and associated dams have exhibited some dam safety concerns over time. The most concerning dam safety issue at Julesburg Reservoir appears to be the potential for seepage and piping, leading to a risk of dam failure. In 1910, Dam 2 failed, and the failure was attributed to piping of fines in the upper portion of the bedrock. It was hypothesized that piping allowed hydrostatic pressure to develop in the dam foundation, which became sufficient for uplift and subsequent failure. However, after further investigation into slope stability and seepage within this study, Wheeler hypothesized that a high phreatic surface along the toe of the dam lead to slope instability and failure. Currently, a self-imposed reservoir restriction is in place for Julesburg Reservoir due to these seepage and slope stability concerns.

Julesburg Reservoir is formed by five earthen embankment dams ranging from 23 feet to 66 feet in height and specific dam parameters summarized in Table 2.1. The dam crests also act as county roads or access roads. Dam 1, 1A, 2 and 3 dam crest access roads also serve as County Road 24.8. Dam 4 is crest access road is also County Road 3 and County Road 28. Dam 1 is located approximately 0.8 miles upstream of Little Jumbo Reservoir and Dam, which is owned and operated by Colorado Parks and Wildlife. Dam 4 embankment contains the updated 1996 outlet works conduit and tower and the broad crested overflow service spillway for Julesburg Reservoir.

Table 2.1: Dam Parameters

Dam No.	Dam Crest (NAVD 88) ¹	Dam Length (feet) ¹	Dam Crest Width (feet) ²	Dam Height (feet) ¹	Upstream Slope (horizontal:vertical) ²	Downstream Slope (horizontal:vertical) ²
1	3715.2	2,722	20	23.4	2.8:1	1.7 to 2.6:1
1a	3715.9	743	20	18.2	1.5 to 1.7:1	1.5 to 2.5:1
2	3716.0	1,956	18	66	1.7:1	2.5:1
3	3716.0	1,917	20	40	3:1	1.5 to 2.5:1
4 (includes Dike / Dam 5)	3716.0	3,340	25 to 30	32.8	2.8:1	1.7 to 2.6:1

Notes: 1. Parameter was obtained from the existing 2-foot LiDAR data (Merrick & Co, 2019).

2. Parameter was obtained from the previous report (Wheeler, 1998).

2.2 Previous Studies

Several previous studies have been completed on Julesburg Reservoir including specific studies on each of the five dams. The studies of significance are summarized below.

2.2.1 Fifteenth Biennial Report (Colorado State Engineer, 1910)

On March 11, 1910, there was a sudden breach of Julesburg Reservoir Dam No. 2. On March 14, 1910, the Deputy State Engineer (Mr. J. W. Johnson) visited the site and completed a report regarding the breach. His report noted that the natural surface was underlaid with soft sandstone at 3 to 4 feet and the breach top width was approximately 400 feet wide with a bottom width of 300 feet wide and a breach height of approximately 20 feet. Per this report, the stratification under the failed dam was exceedingly porous and dangerous for the purposes of holding water. As water was stored in the reservoir, it eventually found a seepage path through the upper surface of the

underlying rock above the dam. The report concluded that gradually, the upward pressure exceeded the weight of the dam and underlying rock and was lifted from its bed and carried downstream at the toe of the dam. Under the major part of the dam, the super-incumbent load was enough to overcome the uplift pressure until the toe of the dam lifted, at which point the dam collapsed. It should be noted that during the current study, Wheeler could not replicate similar conditions through seepage and stability modeling.

The State Engineer recommended several test pits to be completed prior to reconstruction. A tight continuous curtain wall was also recommended to a depth that exceeded all loose insecure strata and penetrated well into the solid bedrock.

2.2.2 Design Engineering Report Julesburg Reservoir Dam No. 3 (Wheeler, 1986)

This report noted that the stability of Julesburg Reservoir Dam No. 3 was unknown and there have been concerns regarding the presence of wet areas on the downstream slopes of Dams No. 2 and 3. A geotechnical investigation was completed as summarized above. This report proposed the construction of a sand filter on the downstream slope, covered by an earth berm, to protect the filter and to provide additional weight on the toe. It was recommended that the filter be connected to a trench drain designed to relieve pore pressure within the foundation. The filter was constructed to Elevation 3693 and designed to be extended to elevation 3710 in future years as funds become available.

2.2.3 Geotechnical Investigation Rehabilitation of Julesburg Reservoir Dam No. 3 (Chen & Assoc., 1986)

A geotechnical investigation was completed in 1986 for Julesburg Reservoir Dam No. 3. The primary embankment fill was found to contain two to five feet of clayey sand overlaying 25 to 41 feet of sandy silt, and sandy clay, with lenses of slightly organic material. Bedrock was found between 27 and 45 feet below the existing dam crest and consisted of siltstone. Water was encountered at depths of 24.5 and 38.5 feet below the dam crest. During this measurement, the reservoir water surface elevation was 12 feet below the crest. A slope stability analysis was performed with the reservoir water surface elevation at varied elevations. The analyses indicated that a reservoir water surface at Elevation 3705 would have adequate factors of safety for static and pseudo-static cases; however, water surface elevations greater than 3705 would result in inadequate factors of safety. The factors of safety could be increased by placing a berm at the downstream toe of the embankment.

2.2.4 Design Engineering Report Julesburg Reservoir Dam No. 2 Toe Drains and Embankment Stabilization (Wheeler, 1988a)

Concerns were raised regarding seepage at the downstream toe of Dam No. 2 and the overall stability of the dam was determined to be marginal. Slope stability analyses show that, at a reservoir level of Elevation 3707.2¹, which is equal to gage height 25.5, the safety factors fall below recommended minimums unless a berm is constructed at the downstream toe. The 1998 report recommended to install a small sand filter blanket extending to Elevation 3676, with a toe

¹ All elevations in this report are reported in feet above the North American Vertical Datum of 1988 (NAVD88).

drain. Additionally, to prevent potential piping of fine-grained soils, a sand filter on the downstream slope was recommended to be constructed, covered by an earth berm, and connected to a trench drain for pore pressure relief. Engineering calculations confirmed that the proposed berms and filters can be built with locally available materials.

2.2.5 Outlet Works Engineer Report (Wheeler, 1992) and Completion Report (Wheeler, 1996)

The outlet works design and construction consisted of new outlet works structures and dam embankment constructed downstream of the existing dam to ensure the dam could fill during construction. The outlet works consisted of a cased-in-place, double box, and reinforced concrete conduit. Two large reservoir sluice gates are located at the inlet to the box conduits. The intake tower is equipped with movable fish screens and blind plates to contain game fish within the reservoir. The rehabilitated Dam 4 embankment is approximately 700 feet long with a maximum height of 33 feet. The embankment was designed with an eight-foot-wide cutoff trench constructed four feet into bedrock. The seepage control system, consisting of a drainage blanket, slotted drainage pipe, and outlet conduit filter diaphragm, was also constructed.

2.2.6 Feasibility Study, Enlargement of Julesburg Reservoir (Wheeler, 1998a)

Wheeler completed a feasibility study in 1998 with alternatives and costs to enlarge Julesburg Reservoir. The report included options to bring the dam embankments up to current standards and would provide up to 21,900 acre-feet of total reservoir storage. Three alternatives were developed with six different design options. Costs were estimated to range from \$387,000 for limited improvements to Dam 1 and no storage increase, to \$23 million for completed reconstruction program and maximum storage increase of 21,900 acre-feet.

The 1998 feasibility study was used as a starting point for this updated alternative analysis for the enlargement of Julesburg Reservoir.

2.2.7 Comprehensive Dam Safety Evaluation Report, Dam 4 (DWR, 2024a)

A Comprehensive Dam Safety Evaluation (CDSE) of Julesburg Reservoir Dam No. 4 was completed by the Colorado Division of Water Resources (DWR) Dam Safety Branch on March 2024 to evaluate potential failure modes and risk to determine the safe storage level. The report concluded that the reconstructed outlet works, and channel was designed with a cutoff trench and blanket drain that performs as intended and is considered satisfactory. It was noted that the sand filter cutoff trench, which was installed with the 1992 construction, extended deep enough to provide a filtered exit for all seepage; therefore, at existing conditions, the southern portion of Dam 4 was considered conditionally satisfactory.

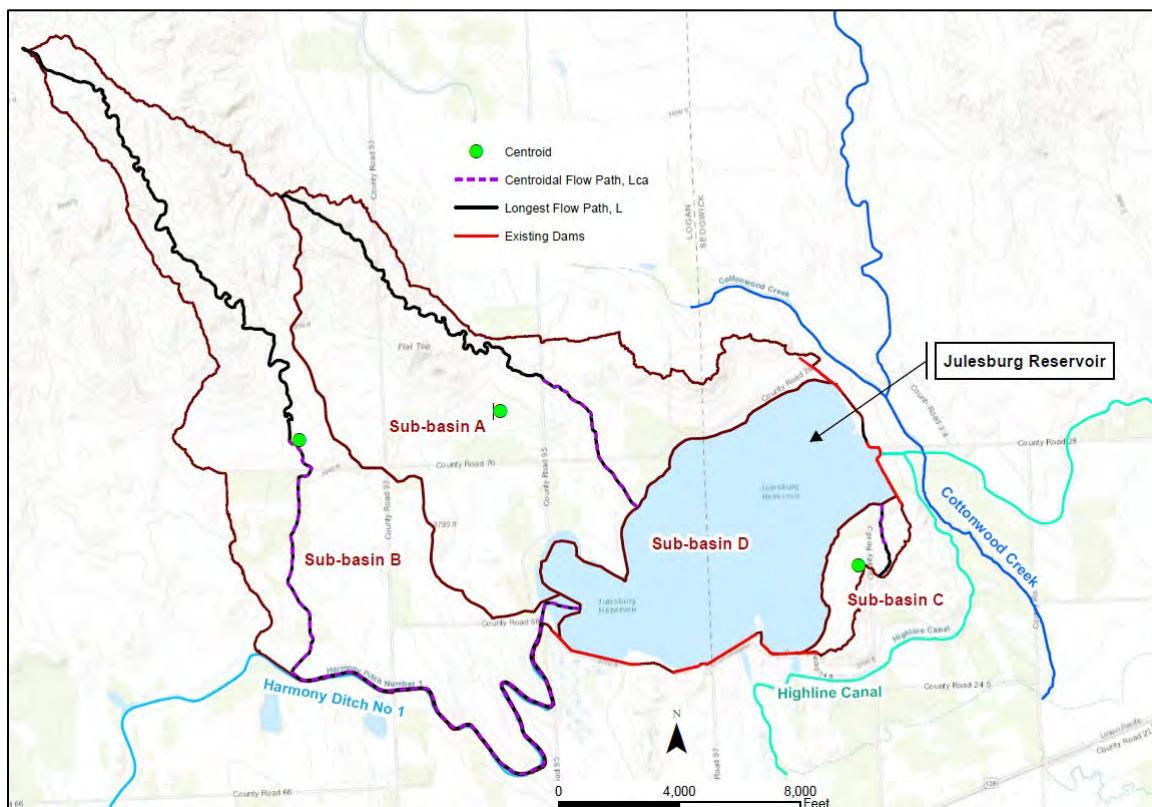
2.3 Previous Dam Modifications

Julesburg Reservoir was constructed between 1900 and 1905 for the purpose of providing irrigation water for local farmers. The reservoir was formed by the construction of five dams from local materials taken from the reservoir area. On March 11, 1910, the Dam 2 embankment failed due to piping erosion at the toe of the embankment leading to slope failure. Since the failure, several modifications have been made to Julesburg Reservoir Dams 2, 3 and 4. The modifications are summarized below:

- Dam 2 was reconstructed in 1910, immediately after the failure. The rehabilitation of the embankment section included an additional 550 feet of curtain wall on the upstream toe of the embankment and 275 feet of core wall in the center of the embankment. The upstream embankment slope was 2H:1V (horizontal: vertical) and the downstream embankment slope was 3H:1V. A concrete facing and parapet wall were also constructed on the upstream face of the embankment at this time.
- In 1987, a downstream stabilizing berm and toe drain filter was constructed at Dam 3. The top stabilizing berm extended up to Elevation 3693 with the intention of future construction to bring the berm up to Elevation 3710. The future construction has not been completed at this time.
- As-built drawings were completed in 1988 (Wheeler, 1988a) showing the installation of a filter blanket, stabilizing berm, and toe drain completed at Dam 2.
- In 1996, design drawings were developed for the outlet work rehabilitation project completed at Dam 4 (Wheeler, 1996). The project consisted of new outlet works structure including outlet conduit, filter diaphragm, sluice gates, wall thimbles, and gate operations. The work also included 700 feet of reconstructed embankment with cutoff trench and a filter sand blanket with drain.

2.4 DWR Review/Site Visit

The most recent available DWR Dam Safety inspection of the Julesburg Reservoir Dams was completed on November 15, 2023 by the Dam Safety Engineer Kallie Baur (DWR, 2023a-c). Each of the dams was determined to be conditionally satisfactory at the restricted elevation level. Per the inspection reports, Dam 1 and 4 were identified as seeping excessively at full storage, and Dam 3 was observed to potentially have seepage through the foundation shale. It was recommended by the DWR to perform a comprehensive dam safety evaluation (CDSE) for all the dams and to maintain the reservoir restriction until further notice.



3.0 INFLOW HYDROLOGY ANALYSIS

The inflow hydrology was developed using guidelines and methods as recommended by DWR (DWR, 2020d; DWR, 2022). Completing the reasonableness checks and calibration portions of the guidance were excluded for this feasibility study. Those sections will be completed during the initial design phases. A hydrologic model was developed using HEC-HMS 4.12 software (USACE, 2024). Detailed descriptions of the development of key HEC-HMS model inputs are summarized in the following sections.

3.1 Basin and Reservoir Configuration

The 10.36 square mile drainage basin for Julesburg Reservoir was divided into four sub-basins, as shown on Figure 3.1. Wheeler did not modify the drainage basins based on the different alternatives discussed. It was assumed that the minor changes in the surface area related to the different alternatives would be negligible. Finalized drainage basins should be completed during the initial design phase of the preferred alternative. Sub-basin A represents inflow into the reservoir from the two local unnamed drainage ditches. Sub-basin B represents local runoff into Harmony Ditch No. 1 that could potentially drain into the reservoir. Sub-basin C represents a small area south of the reservoir between Dams 3 and 4 that topographically drains into the reservoir. Sub-basin D is the Julesburg Reservoir. For Sub-basin D, any precipitation that falls directly onto the reservoir is included as direct runoff.

Figure 3.1: Julesburg Reservoir Sub-Basins

The Julesburg Reservoir drainage basin generally slopes northwest to southeast with predominately sandy loam soils. The vegetative cover consists primarily of farmland and shrubs. Table 3.1 provides a summary of key geometric characteristics of the modeled basin.

Table 3.1: Basin Geometric Characteristics

Sub-Basin	Area, A (square miles)	Drainage Length, L (mile)	Centroid Length, L_{ca} (mile)	Elevation Change, ΔZ (feet)	Watercourse Slope, S (feet / mile)
A	3.68	3.8	1.1	319	84
B	4.15	9.7	5.5	432	44
C	0.27	0.5	0.3	85	170
D - Reservoir	2.26	NA	NA	NA	NA

3.2 Precipitation

For this study, precipitation estimates of the “critical” storm were developed using the Regional Extreme Precipitation Study (REPS) tools (DWR, 2024c) for various precipitation Frequency Storms (FS) and Probable Maximum Precipitation (PMP) conditions. The web-based PMP and MetPortal tool were used to develop precipitation depths and temporal patterns for PMP and FS storms.

For Frequency Storms, the Annual Recurrence Intervals (ARIs) from 10 years to 10,000,000 years were estimated for the following storms:

- Local Storm (LS): 2-hour duration rainfall with a “Synthetic East” temporal distribution,
- Mesoscale with Embedded Convection (MEC): 6-hour duration rainfall with a “Front-Loaded Synthetic East” temporal distribution, and
- Mid-Latitude Cyclone / Tropical Storm Remnant (MLC / TSR): 48-hour duration rainfall with a “Center-Loaded Synthetic East” temporal distribution.

When a storm of a given frequency is used for assessing downstream flooding (e.g., 1,000-year event), the *REPS Guidelines* (DWR, 2024c) specifies that all three candidate Frequency Storm types be used with the basin hydrologic model to determine the critical storm for that frequency.

The best-estimate unscaled and scaled Frequency Storm (FS) totals for the potential storms are summarized in Table 3.2 over the range of Average Recurrence Intervals (ARI) assessed. Following Rule 7.2.4 (DWR, 2024), the unscaled precipitation depths for the Frequency Storms and Local and General PMP storms are multiplied by an atmospheric moisture factor (AMF) of 1.07 to determine the scaled Inflow Design Flood (IDF) for evaluating spillways. The precipitation depth values for the 2-hour and 48-hour storms given in the table are the cumulative values at exactly 2 and 48 hours. The temporal data obtained for HEC-HMS model entry extended beyond 2 and 48 hours, which resulted in the slightly higher total precipitation depths reflected in the HEC-HMS rainfall-runoff modeling.

Table 3.2: Precipitation Frequency Values for Analyzed Storms

ARI (years)	LS 2-hour Synthetic East Storm (inches)		MEC 6-hour Front-Loaded Synthetic East Storm (inches)		MLC / TSR 48-hour Center-Loaded Synthetic East Storm (inches)	
	Unscaled	Scaled	Unscaled	Scaled	Unscaled	Scaled
10	1.97	2.11	2.20	2.36	3.33	3.56
100	3.22	3.45	3.52	3.76	5.08	5.44
1,000	4.61	4.94	5.04	5.39	6.92	7.41
10,000	6.18	6.61	6.83	7.31	8.87	9.49
100,000	7.93	8.49	8.93	9.56	10.95	11.72
1,000,000	9.91	10.60	11.40	12.20	13.16	14.08
10,000,000	12.13	12.98	14.31	15.31	15.50	16.59

The unscaled and scaled Local and General storm PMP estimates and temporal distributions that were generated by the REPS tool are summarized in Table 3.3. The process resulted in the following three candidate site-specific PMP storms:

- General Storm PMP, 72-hour duration, with a “Synthetic East” temporal distribution and 15-minute timesteps.
- Local Storm PMP, 2-hour duration, with a “Stacked” temporal distribution and 5-minute timesteps.
- Local Storm PMP, 6-hour duration, with a “Synthetic East” temporal distribution and 5-minute timesteps.
- Local Storm PMP, 24-hour duration, with a “Synthetic Hybrid” temporal distribution and 5-minute timesteps.

Table 3.3: Unscaled Precipitation Frequency Values for PMP Candidate Storms

PMP Candidate Storms	Cumulative Storm Precipitation (inches)	
	Unscaled	Scaled
General Storm PMP, 72-hour duration	18.6	19.9
Local Storm PMP, 2-hour duration	14.9	15.9
Local Storm PMP, 6-hour duration	18.6	19.9
Local Storm PMP, 24-hour duration	20.1	21.5

3.3 Rainfall to Runoff Transformation Method

The combined basin loss and runoff response was developed following the Colorado State University Soil Moisture Accounting method (CSU-SMA) (DWR, 2022). To estimate the various soil loss parameters necessary to employ the SMA loss estimation approach in HEC-HMS, a GIS tool has been developed by DWR using the python scripting language of ArcGIS. This CSU-SMA python script requires several raster GIS aerial coverages of soils and surface data for the basin as listed below:

- Aerial coverage of % sand,
- Aerial coverage of % clay,
- Aerial coverage of % organic matter,
- Aerial coverage of depth to restrictive layer (measured in inches), and
- Aerial coverage of fractional vegetative cover.

The first four raster datasets (% sand, % clay, % organic matter, and depth to restrictive layer) have been obtained from the NRCS Gridded National Soil Survey Geographic Database (gNATSGO) by DWR, and subsequently tiled and clipped to cover the State of Colorado. DWR has provided online access to these raster datasets. The raster dataset of fractional vegetative cover is computed from USGS Landsat 5 B3 (red) and B4 (infrared) aerial images using methods detailed in the guidelines. The B3 and B4 Landsat images are also available online from the USGS (USGS, 2011).

The various raster datasets and basin delineation shapefile were compiled and used with the CSU-SMA python script to compute basin averages of the following soil parameters that are used with the SMA loss method in HEC-HMS:

- Maximum infiltration rate (inches / hour),
- Soil percolation rate (inches / hour),
- Soil storage (inches),
- Groundwater (GW) layer 1 storage (inches),
- Soil tension storage (inches), and
- Initial soil moisture content (%).

The SMA loss properties used in the hydrology model are summarized in Table 3.4. The soil properties in the Julesburg Reservoir basin are similar between the different basins. The largest difference between the basins is related to the infiltration and soil storage parameter. Sub-basin B has a slightly higher soil storage capacity, which means more water can be stored in the soil before direct runoff occurs. Sub-basin C has a slightly slower infiltration rate that would result in faster direct runoff. These differences are directly related to the time of concentration for each basin which is dependent on the shape, size and elevation changes in the basin. Sub-basin C is smaller with less elevation change, and Sub-basin B is larger with a longer flow path to reach the reservoir.

Table 3.4: Basin Properties

Property	Sub-basin A	Sub-basin B	Sub-basin C
% Soil	44.500	39.076	48.080
% Groundwater	0	0	0
Max Infiltration (inches/hour)	1.263	1.432	0.915
% Impervious	5	5	5
Soil Storage (inches)	18.677	20.529	18.518
Tension Storage (inches)	8.817	8.443	9.685
Soil Percolation (inches/hour)	0.181	0.485	0.111
Groundwater storage (inches)	2.075	2.281	2.058
Groundwater Percolation (inches/hour)	0.1	0.1	0.1
Groundwater Coefficient ⁽¹⁾ (hours)	2.074	4.510	0.598

Note: (1) DWR guidance recommends that the groundwater coefficient is three times the storage coefficient, R, calculated below.

3.3.1 Clark Unit Hydrograph

The CSU-SMA method uses the Clark Unit Hydrograph in HEC-HMS for the rainfall-runoff transformation. Basin infiltration considers CSU-SMA losses such as the initial soil storage potential, ground water percolation, and subsurface stormflow as part of the direct losses. Once direct losses have been accounted for and rainfall excess is determined, the runoff response from rainfall excess may be estimated with a unit hydrograph, which is defined as the time distribution of one inch of direct runoff from a storm of a specified duration for a basin. The Clark dimensionless unit hydrograph technique is recommended by the State of Colorado as the preferred technique for performing rainfall to runoff transformation in natural basins.

The time of concentration (T_c) for the basin was computed from geometric measurements (area, drainage length, drainage length to centroid, and slope) and the storage coefficient as summarized in Table 3.5. For application to the CSU-SMA approach, DWR guidelines recommend that the ratio of the storage coefficient to the sum of the storage coefficient and the time of concentration ($K = R / (R + T_c)$) should lie in the range 0.2 to 0.3. The resultant ratio is then used as a tool to calibrate the model. The use of the lower end of the range of acceptable values (Ratio of 0.2) results in a smaller delay and higher peak runoff response, whereas the higher end of the range (Ratio of 0.3) produces a lower peak runoff response. Due to the sandy soils in this basin, Wheeler selected a ratio of 0.3 as an initial storage coefficient for each basin.

Table 3.5: Basin Clark Unit Hydrograph Parameters

Sub-basin	Time of Concentration (T_c) (hours)	Clark Storage Coefficient (R) (hours)	Ratio, $R / (T_c + R)$
A	1.61	0.69	0.3
B	3.51	1.51	0.3
C	0.47	0.20	0.3

The combined basin loss and runoff response was developed according to the Colorado State University Soil Moisture Accounting method (CSU-SMA) (DWR, 2022).

3.4 Baseflow

Baseflow values for Julesburg Reservoir were not applied since the reservoir is located off-channel on small, unnamed ditches. Wheeler also assumed the inlet ditch was empty except for the portion of the basin that flows into the ditch and drains into the reservoir (Sub-basin B). The inlet ditch typically flows from winter to early fall before these early spring and summer storms are expected.

3.5 Existing Spillway Rating Curve

An existing spillway rating curve was used as part of the reservoir routing of Julesburg Reservoir. Wheeler developed a two-dimensional hydraulic model of the existing broad crested weir service spillway flow that overtops the spillway crest located along County Road 28. Detailed hydraulic model development, assumptions and results are provided in Appendix B.

3.6 Existing Reservoir Capacity

An existing reservoir capacity curve was calculated for Julesburg Reservoir based on a combination of the 2019 two-foot LiDAR data collected for the Colorado Water Conservation Board (CWCB) by (Merrick, 2019) and the field measurements and recordings taken by the Julesburg Irrigation District Manager. Field measurements were taken during an extremely dry year by measuring inflow and recording the reservoir water surface elevation. This data was then used to develop an existing reservoir storage capacity that extended up to the operational high water line. The field measurements, where applicable, generally compared to the updated LiDAR capacity curve. Wheeler used the two-foot LiDAR data to develop a capacity curve above the reservoir level during the time when the LiDAR was flown. With develop a terrain surface in HEC-RAS 6.5 where volume was calculated using the 2D storage area feature. The LiDAR capacity curve does not include storage volume below Elevation 3704 (the reservoir level at the time when the LiDAR was flown). Therefore, for the existing reservoir capacity curve, Wheeler used the field measurement curve for elevations below 3704 and the 2019 LiDAR data for elevations above 3704. Details of the reservoir capacity curve derivation are provided in Appendix B.

3.7 Hydrologic Model Entry and SMA Parameter Summary

Tables 3.6 and 3.7 summarize the final CSU-SMA method parameters, sources, and values, and are organized by HEC-HMS component.

Table 3.6: CSU-SMA Method HEC-HMS Meteorological Model

HMS Method	Parameter (Units)	Hydrology Source	Recommended Parameter Value
Precipitation Specified Hyetograph	“Precipitation Gages” (incremental inch)	REPS PMP and MetPortal Frequency Storm	Temporal Data
Annual Evapotranspiration	Rate (inches/day)	Guidance ⁽¹⁾	0.098 inches/day

Note: (1) Recommended value taken from the *Guidelines for Hydrological Modeling and Flood Analysis* (DWR, 2022).

Table 3.7: CSU-SMA Method HEC-HMS Basin Model

HMS Method	Parameter (Units)	Hydrology Source	Recommended Parameter Value		
			Sub-basin A	Sub-basin B	Sub-basin C
Simple Canopy	Initial Storage (%)	Guidance ⁽¹⁾	0	0	0
	Max Storage (inches)	Guidance ⁽¹⁾	0.169	0.169	0.169
	Uptake Method	Guidance ⁽¹⁾	“Simple”	“Simple”	“Simple”
Soil Moisture Accounting (SMA) Loss	Soil (%)	“hms_initialsm_table” ⁽²⁾	44.500	39.076	48.080
	Groundwater 1 (%)	Guidance ⁽¹⁾	0	0	0
	Groundwater 2 (%)	Guidance ⁽¹⁾	0	0	0
	Max Infiltration (inches/hour)	“hms_maxinfil_table” ⁽²⁾	1.263	1.432	0.915
	Impervious (%)	Guidance ⁽¹⁾	5	5	5
	Soil Storage (inches)	“hms_soilstorage_table” ⁽²⁾	18.677	20.529	18.518
	Tension Storage (inches)	“hms_tensionstore_table” ⁽²⁾	8.817	8.443	9.685
	Soil Percolation (inches/hour)	“hms_soilperc_table” ⁽²⁾	0.181	0.485	0.111
	GW1 Storage (inches)	“hms_gw1storage_table” ⁽²⁾	2.075	2.281	2.058
	GW1 Percolation (inches/hour)	Guidance ⁽¹⁾	0.1	0.1	0.1
	GW1 Coefficient (hour)	Guidance ⁽¹⁾ , GW1 = 3 * R	2.074	4.510	0.598
	GW2 Storage (inches)	Guidance ⁽¹⁾	0	0	0
	GW2 Percolation (inches/hour)	Guidance ⁽¹⁾	0	0	0
	GW2 Coefficient (hours)	Guidance ⁽¹⁾	0	0	0
Clark Unit Hydrograph Transform	Method	Guidance ⁽¹⁾	Standard	Standard	Standard
	Time of Concentration, Tc (hours)	Guidance ⁽¹⁾	1.613	3.508	0.465
	Storage Coefficient, R (hours)	Guidance ⁽¹⁾ , R/(Tc+R) Ratio of 0.8	0.69	1.51	0.20
	Time-Area Method	Guidance ⁽¹⁾	Default	Default	Default
Linear Reservoir Baseflow	Layers	Guidance ⁽¹⁾	1	1	1
	Initial Type	Guidance ⁽¹⁾	Discharge	Discharge	Discharge
	GW1 Initial (cfs)	Guidance ⁽¹⁾	0	0	0
	GW1 Fraction	Guidance ⁽¹⁾	Blank	Blank	Blank
	GW Coefficient	Guidance ⁽¹⁾ , GW1 = 3 * R	2.074	4.510	0.598
	GW1 Reservoirs	Guidance ⁽¹⁾	1	1	1

Notes: (1) Recommended value from the Mountain Hydrology Guidance (DWR, 2022).

(2) Unique basin value calculated using the CSU-SMA method. The calculated “mean field” was used.

3.8 Hydrologic Model Results

The results listed in Tables 3.8 were used to determine the controlling storm event using the unscaled precipitation estimates. Figure 3.2 shows the flood frequency curve developed for Julesburg Reservoir with unscaled results. Figure 3.3 shows a reservoir stage probability curve based on the existing dam features. Figures 3.4 through 3.6 show the reservoir stage probability curve for each alternative. The alternative descriptions and design evaluation is provided in Section 5.

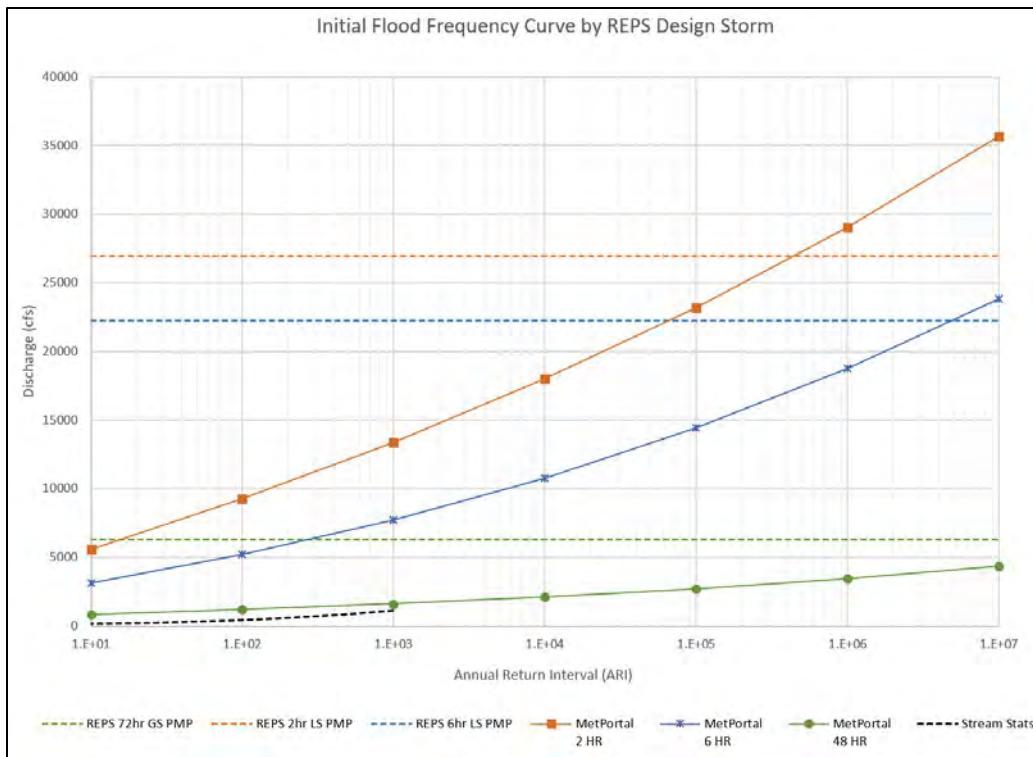
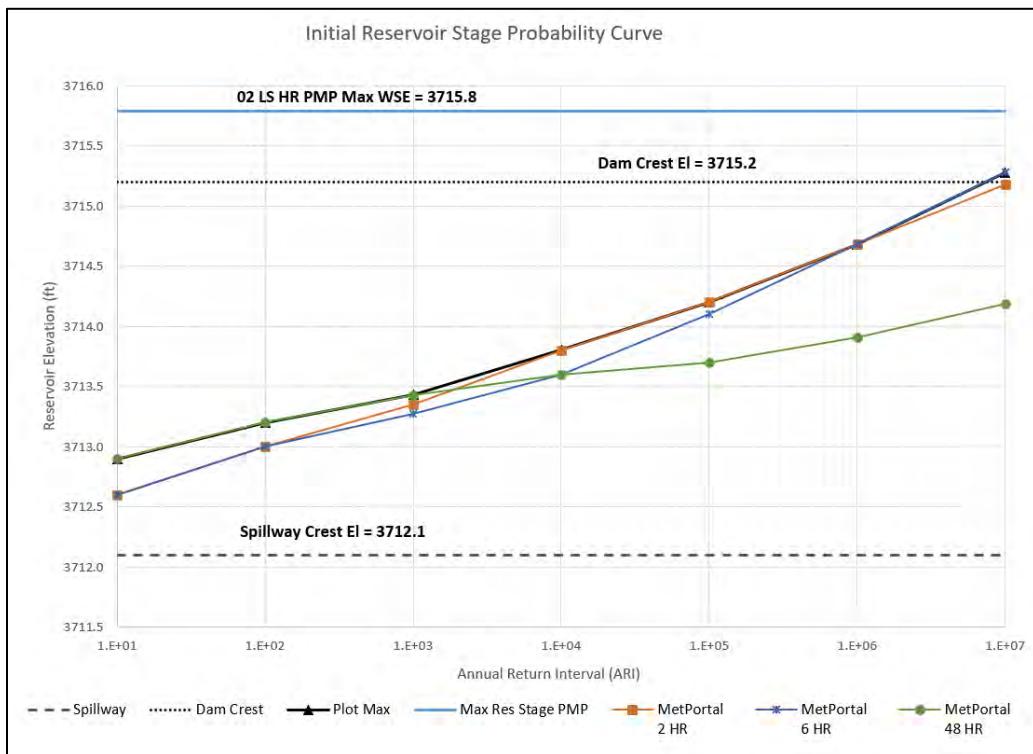

The results are based on reservoir routing analyses with the initial reservoir elevation at the service spillway crest elevation. The outlet works were assumed to be closed for each alternative in accordance with DWR guidance. The existing conditions routing results for the controlling storm show that the dams with crest elevations less than 3715.9 will overtop. For the three alternative conditions reservoir routing, the spillway crest and length and dam crest elevation were designed to meet the dam safety freeboard requirements discussed further in Section 5. And as the alternatives move into design, the spillway length and elevation can be adjusted to fine tune the target storage volumes and minimize the dam improvements that would be required.

Table 3.8: Peak Inflow and Reservoir Water Surface Elevation for the PMP Event (based on scaled precipitation)


Design Storm	Scaled PMP ⁽¹⁾				
	Peak Inflow All Scenarios (cubic feet per second)	WSE Existing	WSE Alternative A	WSE Alternative B	WSE Alternative C
REPS General Storm 72-Hour	6,899	3714.9 feet	3716.8 feet	3712.5 feet	3713.2 feet
REPS Local Storm 2-Hour	28,942	3715.7 feet	3718.0 feet	3713.5 feet	3714.0 feet
REPS Local Storm 6-Hour	23,990	3715.9 feet	3718.2 feet	3713.8 feet	3714.4 feet
REPS Local Storm 24-Hour	17,592	3715.8 feet	3718.0 feet	3713.6 feet	3714.3 feet

Note: (1) The REPS 6-hour Local Storm is the controlling PMP, as determined by the maximum reservoir water surface elevation and highlighted gray in the table.

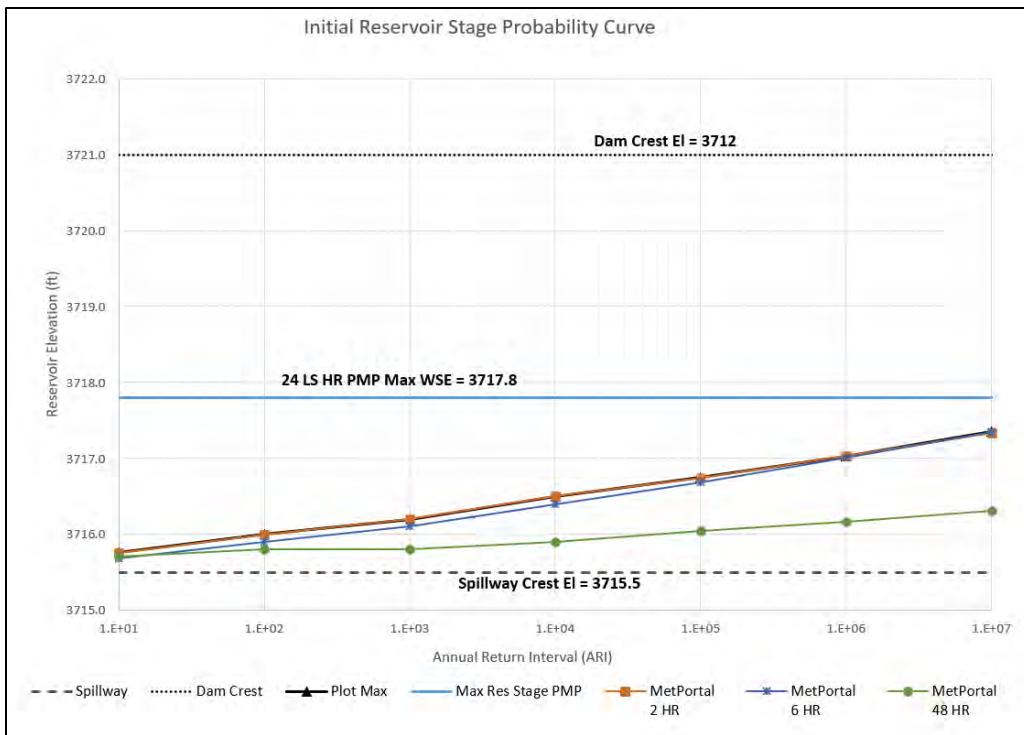


Figure 3.2: Flood Frequency Curve for Julesburg Reservoir (unscaled)

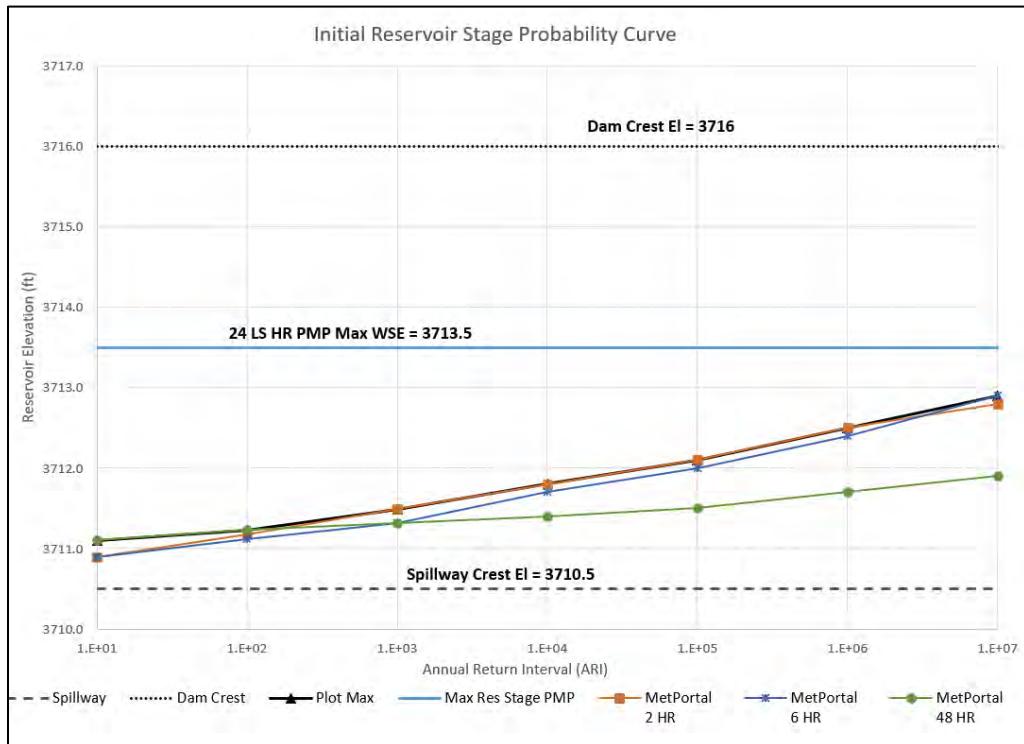


Figure 3.3: Julesburg Reservoir Existing Reservoir Stage Probability Curve (unscaled)

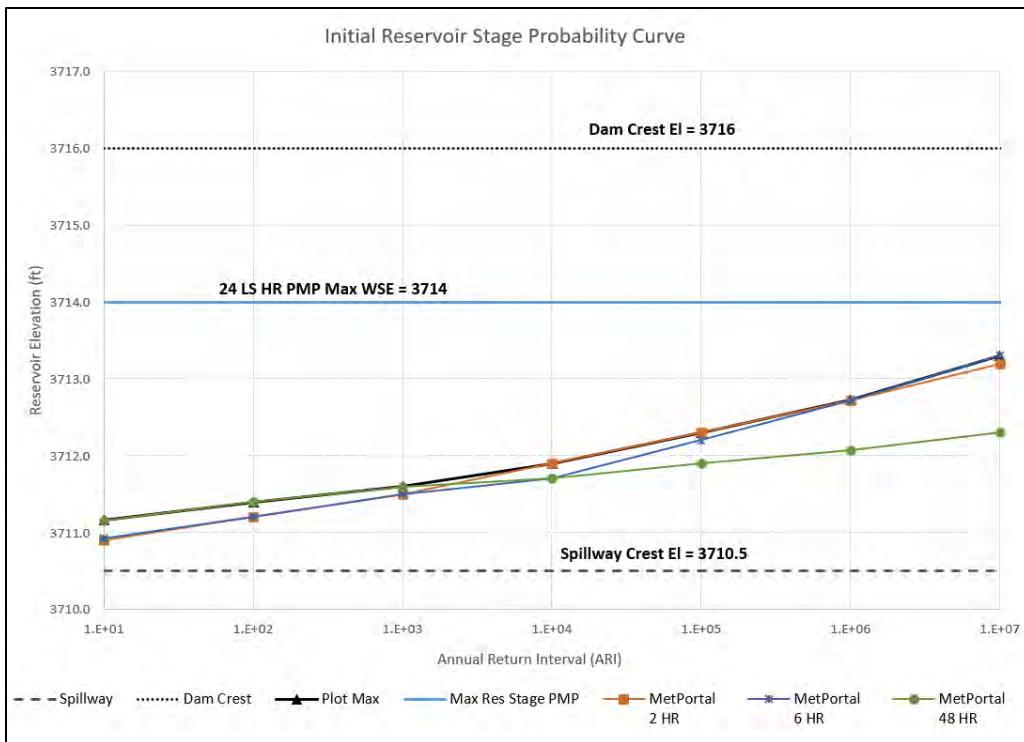


Figure 3.4: Julesburg Reservoir Alternative A Reservoir Stage Probability Curve (unscaled)

Figure 3.5: Julesburg Reservoir Alternative B Reservoir Stage Probability Curve (unscaled)

Figure 3.6: Julesburg Reservoir Alternative C Reservoir Stage Probability Curve (unscaled)

3.9 Reasonableness Checks

After the initial HEC-HMS model was constructed using the information developed in Sections 3.1 through 3.7, the guidance specifies performing a series of “reasonableness checks” on the hydrologic results to increase confidence in the model’s capability to accurately reproduce observed local flood runoff behavior. Results of the “reasonableness checks” are used to establish a model “confidence level” that is used as part of the final calibration process. The specific checks given in the DWR guidance with the corresponding findings are summarized below.

1. Develop peak flow estimates (to check hydrologic model results against) at more frequent AEP’s: the 100-, 200-, and 1,000-year ARI events, using alternate hydrologic methods: stream gage flood frequency analysis and regional regression flood frequency analysis.

Following the guidance, peak flow estimates were obtained for the 100-year, 200-year, and 1,000-year ARIs using the regional regression flood frequency analysis from StreamStats (USGS, 2022). Additionally, Wheeler searched for nearby stream gages and found one on Goose Creek near Hoyt, CO. The gage flows would be further evaluated during the model calibration proposes in final design.

2. Review historical floods and determine the most likely storm type to control maximum runoff at the given location.

A search was completed to find any historical flood studies or paleoflood studies available in the vicinity of Julesburg Reservoir. No historical or paleoflood studies were found near the reservoir.

Based on initial hydrologic results for Julesburg Reservoir, the Probable Maximum Flood (PMF) controlling storm type is the Local 2-hour for peak inflow and the Local 48-hour storm for inflow volume. This matches the guidance based on the basin size from Table 11 (DWR, 2022).

3. Check on the seasonality of rainfall and see if the most assumed controlling storm type corresponds with local behavior.

Using Figure 21 of (DWR, 2022), the Julesburg Reservoir basin is in the northeast storm seasonality zone in Colorado. The corresponding storm frequency histograms for this region show May and July as maximum seasonal rainfall months. This corresponds with historical water surface elevation fluctuations observed at the reservoir between May and July.

4. Plot estimated flood response at AEPs from more frequent storms, through extreme storms, all the way to controlling PMP on the appropriate peak flow envelope plot (DWR, 2022) to compare results with historical hydrologic data based on region and basin size.

The PMF was plotted on the REPS Transposition Zones 1 and 3 for eastern plains and front range planes less than 7,500 feet in elevation. The figure shows that the PMF events are reasonable and within the 90-percent confidence bounds. This result also shows that the model-estimated peak flows for the frequent storms are larger than those calculated in StreamStats using regional equations.

Figure 3.2 shows the initial flood frequency curve for the REPS design storm. The curves appear consistent with the expected behavior and indicate the short-duration (2-hour) storm governs at this site for inflow and the 48-hour governs for inflow volume.

Figure 3.3 shows the reservoir stage probability curve based on the initial results. The figure shows the controlling storm as the 2-hour and 48-hour storm. The dam overtops between the 1,000,00-year ARI and 10,000,000-year ARI and the spillway is activated during any storm because the initial water surface elevation was set to the normal high water line at existing spillway crest Elevation 7312.1.

5. Check runoff coefficients for uncalibrated and unscaled model.

Runoff coefficients were calculated for the largest drainage basin by taking the basin precipitation volume and dividing by the discharge volume for each storm event. Based on the results, the runoff coefficients averaged 75-percent for the more frequent storm events which is slightly higher than those calculated by CSU during the mountain hydrology research. The runoff coefficients averaged 95-percent for the less frequent storm events which are higher than those averaged in the guidance, but similar to examples seen by DWR.

6. Check the upper tail ratio and compare the result to the regional Upper Tail Ratio (UTR) data provided in the DWR guidance.

The upper tail ratio for Julesburg Reservoir is 4.8, which is similar to the UTRs computed from the regional datasets for similar drainage basin sizes, which ranged between 5 and 6. However, the regional UTRs were all completed for drainage basins in the mountains and may not be applicable for this drainage basin.

Table 3-8: HEC-HMS Meteorological Model vs. Calibration Targets

Annual Return Interval (years)	Uncalibrated HEC-HMS Inflow (cfs)	Calibration Targets (cfs)		
		StreamStats	Regional Envelope Curve	90 Percent Confidence Bounds ⁽¹⁾
100	9,271	455	N/A	320, 645 ⁽¹⁾
1,000	13,376	1,136	N/A	840, 1,536 ⁽¹⁾
PMF	26,921	N/A	39,828	19,961, 79,467 ⁽²⁾

(1) DWR, 2022, Section 9.3, calculate 90% confidence bounds based on StreamStats ASEp (equals 36 for 100-year and 31 for 1,000 year) and log10 cycle in Table 10 (using 36 equals 0.152 and 31 equals 0.131).

(2) DWR, 2022, calculate 90% confidence bounds based on 0.3log10 for probable maximum flood.

The 100-year and 1,000-year Annual Return Intervals and peak regional envelope value with the 90% uncertainty bounds were calculated as offsets from the guidance and summarized in Table 3-8. Review of the model results and reasonableness checks were performed to determine the model confidence which is used during the calibration process. The local Probable Maximum Flood (PMF) is aligned with the Colorado Dam Safety Envelope Curve without further calibration. However, the 100-year and 1,000-year peak discharges are significantly higher than the calculated regression values and are currently outside the 90-percent confidence bounds and will therefore require calibration.

3.10 Model Calibration and Confidence

The model confidence and calibration process were not completed as part of this alternatives analysis study. For final design, the model calibration may be used to adjust flows and optimize the preferred alternative. If the model were calibrated, the results would potentially show a decrease to the estimated inflow. Using uncalibrated results is therefore considered reasonably conservative. Results should be calibrated for the final design.

4.0 GEOTECHNICAL AND GEOLOGICAL ANALYSES

4.1 Geology

The Julesburg Reservoir is located at the boundary between the Colorado Piedmont and the High Plains physiographic province in Colorado. The area consists of gently rolling plains with extensive sedimentary deposits. Bedrock is generally not exposed in the project area, as it is overlain by surficial soils or man-placed fill. Lithological descriptions of subsurface units are based on regional geologic mapping and published data sources, specifically the Geologic Map of the Lower South Platte River Valley Between Hardin, Colorado and Paxton, Nebraska, Showing Topography of the Rocks Beneath the Quaternary Deposits (Brown, 1950).

4.1.1 Geologic Units

Near-surface bedrock and surficial deposits underlying the project area include the following:

- Twr – White River Group (Undifferentiated)
This unit underlies the site and consists mainly of the Brule and Chadron Formations. The Brule Formation comprises silt, clay, and localized channel deposits. The Chadron Formation is primarily clay with some channel deposits.
- To – Ogallala Formation
The Ogallala Formation underlies the area and consists of interbedded sand, gravel, silt, and clay, with local occurrences of hard calcareous sandstone and limestone.
- Qal – Quaternary Alluvium
This unit comprises coarse gravel, sand, silt, and clay deposited along modern river channels and floodplains.
- Qds – Quaternary Dune Sand
This unit consists of sand, silt, and clay deposited by wind, forming localized dune fields.
- Kp – Pierre Shale (Cretaceous Age)
This unit comprises dark shale with sandstone lenses and underlies the Tertiary and Quaternary formations.

4.1.2 Seismicity and Faulting

The region surrounding the project area is generally considered to have low seismicity. The site is located in a region characterized by low to moderate earthquake hazard levels, as identified by the Colorado Geological Survey. The nearest mapped fault is the Golden Fault, approximately 200 miles to the southwest near Denver. Based on studies performed by the Colorado Geological Survey (Kirkham and Rodgers, 1981), the site is located within a low to moderate seismicity region. It is not near any active fault zones. The Seismotectonic Province in this region is estimated to generate maximum credible earthquakes (MCEs) ranging up to magnitude 6.6, as

evidenced by the largest known historical earthquake in Colorado, which occurred on November 8, 1882.

4.1.3 Site Conditions

The Julesburg Dam site is located within a rolling plains environment with a combination of surficial alluvial and aeolian deposits overlaying Tertiary and Cretaceous-age bedrock. The dam embankments and abutments are composed of compacted fill material, which was placed over natural deposits.

4.1.4 Borrow Source

The proposed borrow source for dam rehabilitation or construction is located within the White River Group (Twr), southwest of the Julesburg Reservoir. This unit consists primarily of the Brule and Chadron Formations, which contain fine-grained silts and clays. The Brule Formation is composed of silt with moderately plastic clay and localized channel deposits. The Chadron Formation consists primarily of clay with some channel deposits, which could serve as a low-permeability core material.

The suitability of these materials for construction will require a geotechnical site investigation, including field sampling and laboratory testing. The geotechnical properties of the borrow source materials will need to be studied to assess the suitability of these materials as embankment fill. The geotechnical site investigation will also provide necessary information to estimate the available quantity of the borrow source materials for the proposed alternatives.

4.2 Background Information

The subsurface conditions at Julesburg Reservoir were evaluated using historical reports and inspection records. This section summarizes the available data that informed the slope stability analyses, including embankment zoning, depth to bedrock, phreatic surface conditions, and material properties.

4.2.1 Dam No. 1 Available Geotechnical Information

Dam No. 1 has a height of 23.4 feet and a crest length of 2,722 feet. No specific geotechnical data regarding the embankment zones, soil types, groundwater, or bedrock conditions are available for this dam.

4.2.2 Dam No. 1A Available Geotechnical Information

Dam No. 1A has a height of 18.2 feet and a crest length of 743 feet. No specific geotechnical data regarding embankment zones, soil types, groundwater, or bedrock conditions are available for this dam.

4.2.3 Dam No. 2 Available Geotechnical Information

Dam No. 2 is 66 feet high with a crest length of 1,956 feet and a crest width of 18 feet. The embankment is composed of silts and clays, with materials sourced locally during the original construction and subsequent repairs (Wheeler, 1988a). The upstream slope is protected with riprap, replacing a previous concrete slab. The downstream slope features a stability berm

constructed during seepage remedial measures. Chen & Associates performed a geotechnical investigation and installed piezometers at this dam in 1978.

Laboratory analyses classify the embankment materials as clayey silts to sandy clays, with liquid limits ranging from 43 to 46 and plasticity indices between 16 and 20. Foundation soils consist of fine-grained sandy clays and silts. Persistent seeps have been observed at or above the downstream toe of the dam. Chen & Associates (Chen & Assoc., 1988) used a conservative assumption of seepage outcrop at Elevation 3676.

Bedrock characteristics are not well documented. Following a failure in 1910, concrete cutoffs were installed into the underlying bedrock during reconstruction. More information on bedrock properties is unavailable (Chen & Assoc., 1988). Repairs in the 1980s included the installation of sand filter blankets and toe drains, along with stability berms to improve downstream stability. These berms have a minimum slope of 3:1 and include perforated drainpipes to address the seepage issues (Wheeler, 1988a).

4.2.4 Dam No. 3 Properties

Dam No. 3 is 40 feet high with a crest length of 1,917 feet and a crest width of 20 feet. The embankment consists of two- to five-foot-thick clayey sand overlying 25 to 41 feet of silts with interbedded sandy clay lenses and clayey silt lenses. Some clays near the foundation contain 2.8% to 3.7% organic content (Chen & Assoc., 1986).

Areas of the embankment that are composed of silts are cohesionless and prone to localized surface sloughing. Groundwater was encountered at 27.5 to 30 feet depths during drilling and fluctuated between 24.5 and 38.5 feet in subsequent monitoring. Perforated PVC pipes were installed in exploratory borings to facilitate long-term water level monitoring (Chen & Assoc., 1986). The siltstone bedrock was encountered at depths ranging from 27 to 45 feet.

4.2.5 Dam No. 4 Properties

Dam No. 4 has a structural height of 32.8 feet and a crest length of 3,340 feet, with a crest width of 25 feet. The upstream slope is approximately 3H:1V, while the downstream slope varies between 2.0H:1V and 2.5H:1V. The embankment includes clayey silt and sandy clay soils, with materials sourced locally during original construction and subsequent repairs. During rehabilitation, a blanket drain with a 24-inch sand filter and perforated pipes was installed to address seepage issues (Wheeler, 1987; Kumar, 1994). The embankment's as-built configuration includes a riprap section along the upstream slope to mitigate erosion (Kumar, 1994; Wheeler, 1990).

Geotechnical investigations indicate that the foundation consists of sandy siltstone bedrock encountered at varying depths beneath a sandy silt and silty sand alluvium layer. A cutoff trench, installed during the 1992 outlet channel reconstruction, extends four feet into the bedrock to intercept seepage through the foundation (Kumar, 1992). The lateral extent of this cutoff trench is unknown. Seepage was still occurring and there have been wet areas downstream of the cutoff trench following the installation of the cutoff trench.

4.3 Seepage Modeling

Wheeler assumed a reasonable phreatic surface for each dam to support the slope stability analyses. Historical piezometric level information is limited or absent for use in creating and validating a seepage model. Instead, phreatic surfaces were assumed based on recorded reservoir levels, observations at the downstream toe of the dam, and limited recorded piezometric data. The phreatic surfaces for each dam were developed by connecting the reservoir water surface on the upstream side of the dam to the downstream toe. There is a possibility of a higher phreatic surface at the downstream toe due to the presence of more pervious silt layers. For this alternatives analysis, Wheeler assumed the phreatic surface daylights at the downstream toe of each dam.

4.4 Slope Stability Modeling

To evaluate the existing slope stability and support the alternatives analysis, slope stability analyses were performed considering the long-term steady-state and rapid drawdown conditions for the maximum height embankment section for each dam. A slope stability analysis was performed for six locations as shown on Figure B-1 in Appendix B. The analyses were performed using Spencer's method and the computer program SLOPE/W (Sequent, 2021). The analysis considered minimum acceptable factors of safety as presented in Table 4.1.

Table 4.1: Acceptable Minimum Factors of Safety for Slope Stability

Loading Condition	Minimum Acceptable Factor of Safety	Reference
Long-Term Steady-State	1.5	USBR, 2011
Rapid Drawdown	1.2	USBR, 2011

The geotechnical information to develop material properties for the slope stability analyses is limited. Wheeler used conservative material properties based on the data presented in Section 4.1. Information from all the dams was used to develop a single set of material properties for the slope stability analysis of each dam. The material properties used in the slope stability analysis are presented in Table 4.2.

Table 4.2: Selected Material Properties

Material	Total Unit Weight (pcf)	Effective Stress Parameters		Total Stress Parameters	
		Φ (degrees)	Cohesion, c (psf)	Φ' (degrees)	Cohesion, c' (psf)
Original Embankment Fill	110	31	25	20	100
Reconstructed Embankment Fill	110	31	25	20	100
Embankment Buttress	110	33	50	20	100
Embankment Raise Fill	110	31	25	20	100
Filter Sand	115	32	0	32	0
Alluvium	120	30	0	30	0
Weathered Bedrock	110	25	500	-	-
Bedrock	115	35	1000	-	-

Notes: pcf=pounds per cubic foot, deg=degree

Estimated drained and undrained shear strengths and unit weights for the dam embankment and foundation materials were developed using information obtained from previous field investigations and laboratory testing programs including in-situ Standard Penetration Testing (SPT), gradation, Atterberg, and triaxial test results.

4.4.1 Slope Stability Analysis Results for Existing Conditions

Estimated slope stability factors of safety for each dam using their existing condition and a restricted water level of Elevation 3708.5 are presented in Table 4.3. The slope stability models and results are provided in Figure B-1 to Figure B-19 in Appendix B.

Table 4.3: Calculated Factors of Safety for Existing Dams with Water Level at 3708.5 Feet

Condition	Long-Term Steady State (Minimum Acceptable FS=1.5)		Upstream Rapid Drawdown (Minimum Acceptable FS=1.2)
	Downstream Slope	Upstream Slope	Upstream Slope
Dam No. 1	1.4	1.7	1.3
Dam No. 1A	1.9	1.5	1.5
Dam No. 2 (Section C) ¹	1.4	1.9	1.0
Dam No. 2 (Section D) ¹	1.9	1.5	0.7
Dam No. 3	1.3	1.7	0.9
Dam No. 4	1.7	2.0	2.0

Notes: Numbers in red or bold fonts indicate an inadequate factor of safety.

1. Section C is located mid-slope on the valley side while Section D is the maximum height embankment section.

The downstream slopes of Dam No. 1, Dam No. 2 (Section C), and Dam No. 3 do not meet the minimum required factor of safety of 1.5 under the long-term, steady-state condition. The downstream slopes of Dam No. 1A, Dam No. 2 (Section D), and Dam No. 4 have adequate factors of safety.

The upstream slopes for all dams meet the minimum required factor of safety of 1.5 under the long-term, steady-state condition. The upstream slopes of Dam No. 2 (Section D) and Dam No. 3 do not meet the minimum required factor of safety of 1.2 under the rapid drawdown condition. The upstream slopes of Dam No. 1, Dam No. 1A, Dam No. 2 (Section C), and Dam No. 4 have adequate factors of safety.

4.4.2 Slope Stability Analysis Results for Alternatives A and B

Slope stability analyses were performed to support the design of Alternatives A and B, which are described more fully in Section 5.0. Stability analysis was only performed for existing dams and proposed dam raises. Reasonably conservative slopes were assumed for proposed new dams.

Under Alternative C all dams, except the rehabilitated Dam 4, will be new and stability analyses were not completed for Alternative C.

Dam raises for each alternative are based on design criteria discussed in Section 5.3. Alternative A includes raising the crest of all dams to Elevation 3721 with the reservoir level at Elevation 3715.5. Alternative B includes raising all dam crests to Elevation 3715.8 with the reservoir level at Elevation 3710.5. The crest width for each dam was modeled to be wide enough to satisfy the State's minimum crest width requirement. Based on the requirement, the crest widths ranged from 14 feet to 21 feet.

The slope stability analysis figures for Alternative A are provided in Figure B-20 to Figure B-37 in Appendix B. The slope stability analysis figures for Alternative B are provided in Figure B-38 to Figure B-43. A summary of the slope stability analysis for these alternatives is presented in Table 4.4. The slopes presented in Table 4.4 are the minimum slopes that would be required to meet the minimum acceptable stability factor of safety using the selected material properties.

Table 4.4: Minimum Required Slopes for Alternatives

Dam	Alternative A	Alternative B	Alternative C
Dam No. 1	Upstream 2.8:1 Downstream 2.5:1	Upstream 3:1, Downstream 2.5:1	N/A
Dam No. 1A	Upstream 2.8:1 Downstream 2.5:1	N/A	N/A
Dam No. 2 ¹	Upstream 4:1 Downstream 2.5:1	N/A	N/A
Dam No. 3	Upstream 4:1 Downstream 3:1	N/A	N/A
Dam No. 4	Upstream 3:1 Downstream 3:1	Upstream 3:1, Downstream 2.5:1	Upstream 3:1, Downstream 2.5:1

Notes:

1. The minimum required upstream slope was estimated to be 4.5:1 for the maximum height section of the dam (Section D). The dam is built across a valley, an upstream slope of 4:1 is likely adequate based on the 3-dimensional effect of more stable abutments.

4.5 Wheelers Review of the Dam Failure

Wheeler reviewed the *Preliminary Report on the Reconstruction of the Julesburg Reservoir* by George Prince (Prince, 1910), which described the cause of the 1910 dam failure, as well as other historical reports with information on past seepage issues. The *Preliminary Report* found the 1910 dam failure to be caused by rupture of the porous bedrock beneath the dam at a depth of 30 feet due to the build-up of water pressure. The author mentioned that "seep" holes were observed in the downstream toe area; however, these "seep" holes did not have the capacity to relieve all the built-up pressure in the bedrock. The assessment of slope stability failures, however, requires substantial amounts of field data and analyses. In the absence of field data and engineering analyses, these historical assessments should be considered as opinions.

Seeps and slope failures have been observed and documented throughout the history of Julesburg Reservoir. Based on preliminary seepage analysis Wheeler performed for this project, the seepage and slope stability issues at Julesburg Reservoir are likely caused by internal erosion

mechanisms. Wheeler estimates the exit seepage gradients in the downstream toe area of Dam 2 to be in range of 0.3 feet. This seepage gradient is sufficient to initiate internation erosion. Laboratory test results to characterize the existing embankment fills and underlying alluvium are limited; however, the available geotechnical information indicates that cohesive clays and cohesionless silts are both present in the dam embankments. The alluvium is also composed of clayey sand to silty sand materials. The fine cohesionless materials such as the silt in the dam embankments or the silty sand in the dam foundation are more susceptible to internal erosion.

Based on the results of the seepage analysis, the uplift pressures in the bedrock beneath the dam are not sufficient to cause the bedrock rupture or uplift. A more plausible slope failure mechanism is the erosion of cohesionless materials in the embankment dam or the underlying alluvium, or weathered bedrock due to sufficient seepage gradients in the downstream toe area of the dam. This failure mechanism is supported by Wheeler's preliminary seepage analysis using limited available geotechnical information; it is also consistent with the historical observations.

In Wheeler's opinion, an effective solution to mitigate the risk of unfiltered seepage and slope stability failures in the downstream toe area of the dams is to build a toe drain system with a stability berm to provide a filtered exit at the location where the phreatic surface daylights in the downstream area of the dams. The historical observations of the seepage on the downstream face of the Dam 2 indicate the possibility of seepage exiting above the downstream toe on the downstream face of the dam. A toe drain system could be designed to include a chimney that extends above the toe along the downstream face to provide a filtered exit for seeps above the toe.

5.0 ALTERNATIVES ANALYSIS

5.1 Overview and Objective

The Julesburg Reservoir enlargement alternatives were developed to eliminate the water surface elevation restriction, to regain storage lost due to reservoir sedimentation, and to bring the five dams forming the reservoir into compliance with the DWR Dam Safety *Rules and Regulations* (DWR, 2020a).

5.2 Alternatives Options

Three alternatives were created to provide a range of options that meet the goals and objectives of the Julesburg Irrigation District as listed below. Conceptual design drawings for each alternative are presented in Appendix A and an opinion of cost for each alternative is presented in Appendix C. The three alternatives evaluated in this study are described in detail below.

Alternative A – Enlarge All Dams, substantial WSEL increase.

Alternative B – Downstream Replacement Dams 1A, 2, and 3, Minor WSEL increase.

Alternative C – Downstream Replacement 1, 1A, 2, and 3, Minor WSEL increase.

5.2.1 Alternative A – Enlarge All Dams

Alternative A focuses on rehabilitating the existing embankments while maintaining a similar reservoir configuration. This alternative includes modifications to both the upstream and downstream embankments to improve slope stability, as well as an increase in dam crest elevation by five to six feet. Additionally, the spillway crest would be raised to increase reservoir storage, and the inlet channel would be realigned. The dam crest raise/expansion would merge Dams 1A, 2, and 3 into a single crest that roughly follows the alignment of County Road 24.8. The dam crest raise/expansion would extend Dam 1 and 4 by several hundred feet. Toe drains would be installed along each downstream embankment to mitigate seepage.

To increase storage capacity, the spillway crest elevation would be raised to compensate for storage lost to sedimentation. The normal high water line would rise from a gage height of 27.5 (Elevation 3712.1) to gage height 30.9 (Elevation 3715.5), thus boosting the reservoir's storage capacity to 28,900 acre-feet.

The proposed increase in the normal high water line would require realigning the inlet canal. As a result, this alternative proposes a new inlet channel alignment above the normal high water line. Material from this channel could also provide on-site fill material needed for the dam expansions.

Constructing this alternative would require draining the reservoir pool to allow for modifications to the upstream embankment slope. Additionally, County Road 28, which runs along the north side of the reservoir, would need to be either rerouted or raised to prevent flooding during normal operations. This alternative would also require some land acquisition or easements due to the increased normal high water level and the rerouting of the inlet canal. Furthermore, it is assumed that Clean Water Act Section 404 permitting can be obtained under a Nationwide Permit and that

an individual permit would not be required for this Alternative. This assumption should be reevaluated if this alternative if the preferred design.

5.2.2 Alternative B – Replace Dams 1A, 2, and 3

Alternative B involves a combination of rehabilitating and reconstructing the existing dams. This alternative proposes the reconstruction of Dams 1a, 2, and 3 into a single new dam located downstream, referred to as Julesburg Dam A. The design of Julesburg Dam A would meet current DWR Dam Safety standards, including a cutoff trench and internal drainage systems. The reconstruction of these dams would address slope stability issues of existing dams, both upstream and downstream.

This alternative also includes rehabilitating Dams 1 and 4. For Dam 1, the embankment crest and both upstream and downstream slopes would be slightly raised, and a toe drain would be installed to mitigate seepage. For Dam 4, a toe drain would be installed along the northern embankment, and two spillways would be cut into the embankment and armored, as necessary. Since the Dam 4 crest alignment follows County Roads 3 and 28, spillway slopes would be limited to a maximum of 8% (12H:1V).

Alternative B would modify the reservoir configuration by relocating Dam Nos. 1a, 2 and 3 downstream, which would increase the storage capacity. The new alignment, known as Julesburg Dam A, would allow the normal high water line to decrease from a gage height of 27.5 (Elevation 3712.1) to 25.9 (Elevation 3710.5), and as a result, the reservoir's storage capacity would increase from 19,900 acre-feet to 28,300 acre-feet. A lower normal high water line also means the existing inlet channel could continue to be used without modifications, other than typical maintenance. Without modifications to the inlet channel, however, another on-site embankment fill source would be needed for this alternative.

Constructing this alternative would require partially draining the reservoir to allow for minor modifications to the upstream embankment slope and spillway. Additionally, land acquisition or easements would be needed for the expanded reservoir area and embankment alignment associated with Julesburg Dam A. Obtaining a Clean Water Act Section 404 permit is expected to be more challenging under this alternative due to the new dam alignment, as it would likely require an individual permit.

5.2.3 Alternative C – Replace Dams Nos. 1, 1A, 2, 3

Alternative C proposes the reconstruction of Dams 1, 1a, 2, and 3 into two new dams located downstream, referring to Julesburg Dam B and Julesburg Dam C. This alternative would optimize the alignments of the new Julesburg Dam B and C to minimize modifications at Dam 4. The new dam designs would meet current DWR Dam Safety standards, including a cutoff trench and internal drainage systems. The reconstruction of these dams would also address slope stability issues both upstream and downstream. For Dam 4, a toe drain would be installed along the northern embankment, and the existing spillway would be slightly modified and armored, as necessary. Since the Dam 4 crest alignment follows County Roads 3 and 28, the spillway cut slopes would be limited to a maximum of 8% (12H:1V).

Alternative C would modify the reservoir configuration by relocating the existing dams downstream and increasing the storage capacity. The alignments of new Julesburg Dam B and C would allow the normal high water line to decrease from a gage height of 27.5 (Elevation 3712.1) to 25.9 (Elevation 3710.5). As a result, the reservoir's storage capacity would increase from 19,900 acre-feet to 28,300 acre-feet. Because of the proposed location of Julesburg Dam C, the existing inlet channel could be modified to enter the reservoir approximately 1.6 miles upstream of the existing inlet location. Since minimal modifications to the inlet channel are proposed, another on-site embankment fill source would be needed for this alternative to be constructed.

Constructing this alternative would require partially draining the reservoir to allow for minor modifications to the spillway. Additionally, land acquisition or easements would be needed for the expanded reservoir storage area and embankment alignments associated with Julesburg Dam B and C. The land issue is particularly notable for Julesburg Dam C, which is proposed at the current location of Little Jumbo Reservoir and Dam, owned by Colorado Parks and Wildlife. Obtaining Clean Water Act Section 404 permitting is expected to be more challenging under this alternative compared to Alternative A and B. An individual permit is likely to be needed, and mitigation may be required for significant wetlands located downstream of Dam No. 1.

5.3 Alternative Design Criteria

To develop the three alternatives, several preliminary analyses and key assumptions were performed to meet DWR standards. Reservoir storage evaluation was required for each alternative to determine operating and normal high water line elevations. Inflow hydrology and spillway sizing analysis was conducted to provide dimensions for the conceptual spillway improvements. Wave run-up calculations were completed for each alternative to estimate freeboard and initial riprap sizing for erosion protection on the dam upstream slope. Slope stability analysis was performed for steady-state and rapid drawdown to address concerns regarding stability of the dams. Seepage modeling was performed to understand the need for downstream toe drains or cutoff trenches. The following sections further detail each of the analyses.

5.2.1 Hazard and Hydrologic Hazard Assumptions

For this alternatives analysis study, Wheeler assumed that each dam was classified as High Hazard and Extreme Hydrologic Hazard. Per DWR guidance for hazard classification and hydrologic hazard analysis (DWR, 2020c; DWR, 2020d), these classifications require the spillway and dam crest elevation to be sized for the PMP. Using the PMP meets the maximum inflow design flood requirement by DWR. This is a conservative assumption; the benefits of completing a full hydrologic hazard analysis for the highest dam should be considered once an alternative has been chosen.

5.2.2 Reservoir Storage Area

A reservoir storage capacity curve was updated for each of the alternatives. To calculate the existing capacity curve, a combination of the 2019 two-foot LiDAR data collected for the Colorado Water Conservation Board (CWCB) by (Merrick, 2019) and the field measurements and recordings taken by the Julesburg Irrigation District Manager. Field measurements were taken

during an extremely dry year by measuring inflow and recording the reservoir water surface elevation. This data was then used to develop an existing reservoir storage capacity that extended up to the operational high water line. The field measurements, where applicable, generally compared to the updated LiDAR capacity curve. A LiDAR capacity curve was developed by using the two-foot LiDAR data to develop a terrain surface in HEC-RAS 6.5 where volume was calculated using the 2D storage area feature. The LiDAR capacity curve does not include storage volume below Elevation 3704. Therefore, for the existing reservoir capacity curve, Wheeler used the field measurement curve for elevations below 3704 and the 2019 LiDAR data for elevations above 3704.

To determine the dam modifications needed for each alternative, Wheeler used an iterative approach to meet the reservoir storage requirement of 28,178 acre-feet. According to the Julesburg Irrigation District Manager, the reservoir is currently operated at a water surface elevation 3.2 feet below the service spillway crest. The District purposely operates lower than the service spillway crest to eliminate nuisance flows due to waves or small storm events. Therefore, for the purposes of this study, Wheeler has selected an operating high water line elevation that meets the storage requirement, then selected one foot higher as the normal high water line. Table 5.1 summarizes the reservoir capacity table for each alternative. Table 5.2 summarizes the operational high water level and normal high water level elevations used for each alternative.

Table 5.1: Reservoir Capacity Table

Gage Height (feet)	Elevation (feet, NAVD88)	Existing / Alternative A (acre-feet)	Alternative B (acre-feet)	Alternative C (acre-feet)	Notes
-39.6	3645.0	0	0	0	
5.0	3689.6	0	2,202	987	
7.0	3691.6	730	3,206	2,094	
9.0	3693.6	1,940	4,709	3,722	
11.0	3695.6	3,697	6,779	5,937	
13.0	3697.6	5,580	8,995	8,315	
15.0	3699.6	7,780	11,546	11,049	
17.0	3701.6	10,150	14,287	13,986	
19.0	3703.6	12,938	18,094	18,011	
21.0	3705.6	15,611	21,958	22,302	
23.0	3707.6	18,411	25,174	25,770	
24.0	3708.6	19,847	26,815	27,543	Exist OHWL
24.9	3709.5	21,154	28,316	29,171	Alt B / C OHWL
25.9	3710.5	22,662	30,030	31,022	Alt B / C NHWL
27.0	3711.6	24,336	31,965	33,113	
27.5	3712.1	25,105	32,831	34,054	Exist NHWL
29.0	3713.6	27,467	35,549	37,005	
29.9	3714.5	28,919	37,200	38,804	Alt A OHWL
30.9	3715.5	30,557	39,074	40,841	Alt A NHWL
31.4	3716.0	31,402	40,036	41,890	Alt B / C Dam Crest
33.0	3717.6	34,157	43,165	45,313	
36.4	3721.0	40,281	50,096	52,854	Alt A Dam Crest
38.4	3723.0	43,957	54,353	57,492	

Note: Operating High Water Line (OHWL) and Normal High Water Line (NHWL)

Table 5.2: Design Features

Parameter	Existing Elevation in feet, NAVD88 (Gage height)	Alternative A Elevation in feet, NAVD88 (Gage height)	Alternative B Elevation in feet, NAVD88 (Gage height)	Alternative C Elevation in feet, NAVD88 (Gage height)
Operating High Water Line (OHWL)	3708.6 (GH 24)	3714.5 (GH 29.9)	3709.5 (GH 24.9)	3709.5 (GH 24.9)
Normal High Water Line (NHWL)	3712.1 (GH 27.5)	3715.5 (GH 30.9)	3710.5 (GH 25.9)	3710.5 (GH 25.9)

5.2.3 Hydrology and Spillway Sizing

Inflow hydrology was completed for Julesburg Reservoir as summarized in Section 3. Per DWR guidance for spillway design, Wheeler applied the atmospheric moisture factor (AMF) of 1.07 to

the controlling PMP storm: the 6-hour Local Storm. The spillway crest elevation was determined in Section 5.2.2 based on the storage capacity. The spillway length was then adjusted to pass an inflow design storm plus one foot of freeboard, per the DWR *Rules* (DWR, 2020a). The proposed spillways were designed to match the existing spillway at Julesburg Reservoir Dam No. 4. The existing spillway is a broad crested weir with a control section at County Road 28. The proposed spillway design also consists of a broad crested weir with a control section at County Road 28. Because the control section is a two-lane county road, design modifications included a minimum, width of 22 feet and a maximum longitudinal slope of 10H:1V. No local guidance for Logan County and Sedgwick County was available online; therefore, county road dimensions need to be verified by the county during the initial design phase.

Wheeler initially used the broad crested weir spillway feature in the hydrologic model described in Section 3 to determine a spillway length that would meet the DWR *Rules* (DWR, 2020a). Then, using the spillway length, crest elevation plus minimum county road widths and longitudinal slopes, Wheeler developed a two-dimensional hydraulic model to estimate the spillway rating curve for each alternative. Further details about the hydraulic model development are provided in Appendix B. Table 5.3 summarizes the spillway capacity tables for each alternative.

Table 5.3: Spillway Discharge

Gage Height	Elevation	Existing Discharge (cfs)	Alternative A Discharge (cfs)	Alternative B Discharge (cfs)	Alternative C Discharge (cfs)
25.9	3710.5	0	0	0	0
27.0	3711.6	0	0	1,292	421
27.5	3712.1	0	0	3,241	938
29.0	3713.6	565	0	13,998	4,128
29.9	3714.5	2,079	0	23,381	7,637
30.9	3715.5	5,280	0	36,059	13,026
31.4	3716.0	7,674	1,279	42,397	15,720
33.0	3717.6	NA	13,292	NA	NA
36.4	3721.0	NA	80,895	NA	NA

Note: cfs = cubic feet per second

5.2.4 Wave Run-up

Wave runup calculations were performed following DWR guidance for each of the Julesburg Reservoir dams. According to the guidance, normal freeboard is calculated as the vertical distance between the dam crest and the normal high water operating line and must be the greater of three feet or the calculated wave runup generated by sustained 100 mile per hour winds. The maximum wave runup depth of 5.3 feet was calculated at the northwest section of Dam 4. This wave runup depth was conservatively based on the steepest upstream existing and proposed slope of 2H:1V. Once a preferred alternative is selected, this calculation will be updated with final upstream slopes for each dam to minimize conservatism within the freeboard number.

5.2.5 Slope Stability and Seepage

Table 5.4 summarizes the minimum design slopes and identifies the need for a drainage system based on the geotechnical evaluations discussed in Section 4.0. The dam stability analysis

showed that some of the existing embankments do not meet the minimum acceptable factors of safety for the long-term steady-state stability loading. The existing models were utilized to add additional fill to upstream and/or downstream slopes to develop a stable embankment design. Further detailed calculations are provided in Appendix B.

Table 5.4: Embankment Design Slopes

Dam	Parameter	Alternative A	Alternative B	Alternative C
Dam 1	Upstream Slope	2.8H:1V	3H:1V (above reservoir)	3H:1V (Julesburg Dam C)
	Downstream Slope	2.5H:1V	2.5H:1V	3H:1V (Julesburg Dam C)
	Toe Drain Required?	Yes	Yes	Yes
Dam 1a	Upstream Slope	2.8H:1V	-	-
	Downstream Slope	2.5H:1V	-	-
	Toe Drain Required?	Yes	-	-
Dam 2	Upstream Slope	4H:1V	3H:1V (Julesburg Dam A)	3H:1V (Julesburg Dam B)
	Downstream Slope	2.5H:1V	3H:1V (Julesburg Dam A)	3H:1V (Julesburg Dam B)
	Toe Drain Required?	No	Yes	Yes
Dam 3	Upstream Slope	4H:1V	-	-
	Downstream Slope	3H:1V	-	-
	Toe Drain Required?	No	-	-
Dam 4	Upstream Slope	3H:1V	3H:1V	3H:1V
	Downstream Slope	3H:1V	3H:1V	3H:1V
	Toe Drain Required?	Yes - partially	Yes - partially	Yes - partially

5.2.6 Drawdown

With the proposed enlargement of the reservoir storage, Wheeler reviewed and evaluated the drawdown capacity of the existing outlet works structure at Julesburg Reservoir. The outlet works structure is located on Dam 4 and was reconstructed in 1996. The structure includes two 4.5-foot-wide by 5-foot-tall cast-in-place box culverts. The existing outlet works capacity curve, developed as part of the rehabilitation design and construction project, was used to evaluate the drawdown capacity for the three enlargement alternatives. Wheeler compared the results to Rule 7.8.2.1 which states, 'Outlets shall be capable of releasing the top five feet of the reservoir capacity in five days,' to verify whether the outlet works meets Colorado Dam Safety standards. Table 5.5 summarizes the results, which show that the existing outlet works structure is sufficient to meet the drawdown requirement of five feet in five days, except for Alternative C. Alternative C would require a waiver from DWR or a new outlet structure to be constructed since the drawdown period is less than five feet after five days.

Table 5.5: Drawdown Time

Reservoir Scenario	Drawdown Elevation (Gage Height)	Drawdown Time (days)
Existing	3707.1 (GH 22.5)	3.9
Alternative A	3710.5 (GH 25.9)	4.0
Alternative B	3705.5 (GH 20.9)	4.7
Alternative C	3705.5 (GH 20.9)	5.1

6.0 OPINION OF PROBABLE COST

6.1 Cost Development Approach

Wheeler developed feasibility-level opinions of probable project cost for the three alternatives for enlargement of Julesburg Reservoir. Wheeler's opinions of probable cost are reasonably conservative and considered to be equivalent to a Class 5, feasibility-level budget opinion (AACE, 2005). As project planning and the final design develops, the project budgets can change significantly due to the final configuration of the project and other unforeseen issues. The potential for these changes should be considered during planning and budgeting phases.

Preliminary construction quantities, preliminary project construction bid tabs, and project budget opinion costs were developed for the three alternatives. These direct construction costs were developed in 2025 construction dollars. The indirect project costs include budgets for non-construction items that are required to complete the project, such as design engineering; construction change order contingencies; permitting, legal and administrative costs; and construction administration and engineering. A summary of the opinion of probable direct construction and indirect project costs for each alternative is provided in Table 6.1. A summary of the key elements in the direct construction costs is provided in Table 6.2. A summary of the key elements in the indirect project costs are provided in Table 6.3. Additional details about Wheeler's feasibility-level opinions of probable project costs are provided in Appendix C.

Table 6.1: Opinion of Alternatives Probable Project Cost

Item Description	Alternative A	Alternative B	Alternative C
	Enlarge All Dams	Replace Dams 1a, 2, and 3	Replace 1, 1a, 2, and 3
Direct Construction Costs	\$25,781,000	\$37,249,000	\$40,921,000
Indirect Construction Costs	\$9,818,000	\$19,171,000	\$20,757,000
Total Construction Costs	\$35,599,000	\$56,420,000	\$61,678,000

Note: All costs in projected 2025 dollars

6.2 Direct Construction Opinions of Cost

The key work elements that were developed to prepare an opinion of the direct construction costs are summarized as follows:

1. Preparatory work, including mobilization, bonds, insurance, stormwater management, clearing and grubbing, strip and stockpile topsoil, and reclamation and clean up.
2. Earthwork for each dam, including excavation, hauling, structural fill, and compaction.
3. Upstream embankment erosion protection for each dam, including riprap and bedding material.
4. Internal drainage systems for each dam, including filter sand and gravel material.
5. Inlet channel improvements.
6. Spillway improvements, including a concrete control section constructed upstream of County Road 28 and downstream armoring.

7. Enlargement of the outlet works tower including raising the tower and lengthening the bridge.
8. Dam safety instrumentation installation.
9. Miscellaneous earthwork.
10. Unlisted Items.

Unlisted items were estimated at 10 percent of the construction cost. Unlisted items are included to provide a contingency for additional design features that are typically included in the final design work that cannot be identified at this stage of project development. Contractor mobilization, bonds, general administration, and insurance were estimated at approximately 15 percent of the construction costs. Stormwater management, including erosion and sediment control, were estimated at approximately 5 percent of the construction costs with the assumption that the existing outlet works can be used to help maintain the reservoir at specified elevations during construction.

Table 6.2 provides a summary of the direct construction costs. A detailed listing of the anticipated construction items for each alternative is provided in Appendix C. The opinions of probable direct construction costs are reported in 2025 dollars.

Table 6.2: Alternatives Direct Construction Costs Summary

Item Description	Alternative A	Alternative B	Alternative C
	Enlarge All Dams	Replace Dams 1a, 2, and 3	Replace 1, 1a, 2, and 3
Preparatory Work	\$5,134,000	\$6,926,000	\$7,500,000
Earthwork (Includes all dams)	\$2,872,000	\$14,773,000	\$16,840,000
Upstream Embankment Projection (all dams)	\$7,692,000	\$9,001,000	\$10,862,000
Internal Drainage Systems (all dams)	\$2,437,000	\$2,763,000	\$2,293,000
Inlet channel improvements	\$4,558,000	\$0	\$34,000
Spillway Work	\$721,000	\$867,000	\$192,000
Enlargement of Outlet Works Tower	\$328,000	\$0	\$0
Dam Safety Instrumentation	\$119,000	\$119,000	\$119,000
Miscellaneous earthwork	\$43,000	\$43,000	\$43,000
Unlisted Items	\$1,877,000	\$2,757,000	\$3,038,000
Direct Construction Costs	\$25,781,000	\$37,249,000	\$40,921,000

Note: All costs were escalated to 2025 dollars

6.3 Indirect Project Opinions of Cost

A summary of the indirect project cost elements is provided below.

1. **Land Acquisitions or Easement Purchases** – This is an approximate cost based on the increased surface area of the normal high water line for each alternative. The area also includes the new dam alignments. Wheeler used a flat amount of \$1,000 per acre to estimate this cost.
2. **County Road Changes** – Cost associated with anticipated county road changes were estimated based on the earthwork and base course material needed to complete the work.

3. **Final Design and DWR Dam Safety Approval** – Final design engineering was assumed to be 10 percent of the construction cost. This work would include the preparation of detailed construction drawings, construction specifications, and a design summary report that documents the engineering analyses completed to support the design. These design documents will require review and approval by the DWR.
4. **Environmental Permitting** – A environmental permitting cost was estimated between 5 and 20 percent, depending on the type of CWA Section 404 permit required. For Alternative A, Wheeler assumed a nationwide permit would be required. For Alternatives B and C, an individual permit may be required and are typically more expensive. This percentage also includes other required permits to complete the project.
5. **Construction Administration and Engineering** – The construction administration and engineering costs were estimated as 10 percent of the sum of the direct construction cost. This budget would include the following activities that are normally required by the DWR, including:
 - a. On-site resident engineering and preparation of daily construction reports;
 - b. Materials testing;
 - c. Routine progress meetings and preparation of meeting summaries;
 - d. Monthly progress reports with photos and construction test results;
 - e. Review and approval of contractor's monthly payment requests;
 - f. Review of construction change orders;
 - g. Responses to contractor requests for information (RFI);
 - h. Preparation of a final construction report; and
 - i. Preparation of Record Drawings to document the "as-built" condition of the project.
6. **Construction Contingency** – A change order contingency equivalent to 20 percent of the opinion of probable construction cost total was included. This change order contingency is included to address changes to construction quantities or unexpected changes that normally occur during a large heavy civil construction project.

Table 6.3 provides a summary of the indirect construction costs.

Table 6.3: Alternatives Indirect Project Cost Summary

Item Description	Alternative A	Alternative B	Alternative C
	Enlarge All Dams	Replace Dams 1a, 2, and 3	Replace 1, 1a, 2, and 3
Land Acquisition or Easement Purchases	\$283,000	\$355,000	\$515,000
County Road Changes	\$244,000	\$624,000	\$190,000
Final Design Engineering and DWR Dam Safety Approval (10%)	\$2,065,000	\$3,032,000	\$3,342,000
Environmental Permitting	\$1,032,000	\$6,064,000	\$6,684,000
Construction Administration and Engineering (10%)	\$2,065,000	\$3,032,000	\$3,342,000
Construction Contingency (20%)	\$4,129,000	\$6,064,000	\$6,684,000
Indirect Project Costs	\$9,818,000	\$19,171,000	\$20,757,000

Note: All costs were escalated to 2025 dollars

7.0 RECOMMENDATIONS AND NEXT STEPS

Based on this Alternatives Analysis Report and Conceptual Designs for the enlargement of Julesburg Reservoir, Wheeler offers the following recommendations and next steps:

- Complete a geotechnical site investigation to verify the slope stability and seepage soil material assumptions and obtain the required data needed to complete a final design for the enlargement of Julesburg Reservoir.
- Select the preferred Alternative Design Concept and develop the 30-percent design package. Typically, the 30-percent design is sufficient to begin most permitting efforts.
- Evaluate and complete, if necessary, a hydrologic hazard and hazard classification for the preferred Alternative.

8.0 REFERENCES

1. American Association of Cost Engineering (AACE, 2005), *AACE International Recommended Practice No. 18R-97, Cost Estimate Classification System*, February 2, 2005.
2. Chen & Associates Consulting Geotechnical Engineers (Chen & Assoc., 1984), *Observation of Existing Conditions at Julesburg Dam No. 2*, 1984.
3. Chen & Associates Consulting Geotechnical Engineers (Chen & Assoc., 1986), *Slope Stability Analysis: Julesburg Reservoir Dam No. 3*, 1986.
4. Chen & Associates Consulting Geotechnical Engineers (Chen & Assoc., 1988), *Slope Stability Analysis and Remedial Measures for Julesburg Dam No. 2*. Consulting Geotechnical Engineers, 1988.
5. Colorado Division of Water Resources, State Engineer's Office (DWR, 1978a), *Piezometer Readings and Monitoring Data for Julesburg Dam No. 2*, 1978.
6. Colorado Division of Water Resources, State Engineer's Office (DWR, 1978b), *Piezometer Readings vs. Reservoir Elevation for Julesburg Dam No. 3*, 1978.
7. Colorado Division of Water Resources, State Engineer's Office (DWR, 1989), *Filter Gradation and Toe Drain Drawings for Julesburg Dam No. 2*, 1989.
8. Colorado Division of Water Resources, Dam Safety Branch (DWR, 2020a), *Rules and Regulations for Dam Safety and Dam Construction*. 2-CCR 402-1. Denver, CO, January 1, 2020.
9. Colorado Division of Water Resources, Dam Safety Branch (DWR, 2020b), *Engineer's Inspection Report*. October 29, 2020.
10. Colorado Division of Water Resources, Dam Safety Branch (DWR, 2020c), *Guidelines for Hazard Classification*. Denver, CO, January 21, 2020.
11. Colorado Division of Water Resources, Dam Safety Branch (DWR, 2020d), *Guidelines for Hydrologic Hazard Analysis*. Denver, CO, January 7, 2020.
12. Colorado Division of Water Resources, Dam Safety Branch (DWR, 2022), *Guidelines for Hydrological Modeling and Flood Analysis*, September 12, 2022.
13. Colorado Division of Water Resources, Dam Safety Branch (DWR, 2023a). *Engineer's Inspection Report: Julesburg Dam #1 (ID: 640212)*, Nov. 15, 2023.
14. Colorado Division of Water Resources, Dam Safety Branch (DWR, 2023b). *Engineer's Inspection Report: Julesburg Dam #1A (ID: 640213)*, Nov. 15, 2023.
15. Colorado Division of Water Resources (DWR, 2023c), *Engineer's Inspection Report: Julesburg Dam No. 4 (ID: 640104)*, Nov. 15, 2023.

16. Colorado Division of Water Resources, Dam Safety Branch (DWR, 2023d), *Comprehensive Dam Safety Evaluation Report: Julesburg Dam No. 4 (ID: 640104)*, 2023.
17. Colorado Division of Water Resources, Dam Safety Branch (DWR, 2024a), *Comprehensive Dam Safety Evaluation Report, Dam 4*, March 2024.
18. Colorado Division of Water Resources, Dam Safety Branch (DWR, 2024b), *Engineer's Inspection Report: Julesburg Dam No. 2 (ID: 640214)*, 2024.
19. Colorado Division of Water Resources, Dam Safety Branch (DWR, 2024c), *Guidelines for the Use of Regional Extreme Precipitation Study (REPS) Rainfall Estimation Tools*. Denver, CO, August 22, 2024.
20. Colorado State Engineer (Colorado State Engineer, 1910), *Fifteenth Biennial Report State Engineer, Colorado*, March 25, 1910.
21. State of Colorado Water District 64 (State of Colorado, 1910), CA0994 *State of Colorado County of Logan*, March 7, 1910.
22. Julesburg Irrigation District (Julesburg, 1987), *Filter Blanket and Drainage Drawings for Julesburg Dam No. 4*, 1987.
23. Kumar & Associates, Inc. (Kumar, 1992), *Geotechnical Engineering Study: Replacement of Outlet Works and Associated Embankment Construction for Julesburg Reservoir*, 1992.
24. Kumar & Associates, Inc. (Kumar, 1994), *Slope Stability Analyses for As-Built Conditions: Julesburg Dam No. 4*, 1994.
25. Lieber-McAtee & Associates, Inc. (Lieber-McAtee, 1980), *Embankment Laboratory Table for Julesburg Dam No. 4*, 1980.
26. Merrick & Co. (Merrick, 2019), 2-foot LiDAR Data called 2019 NE/SE Block 1 (Sedgwick, Logan, Phillips, N Yuma, & N Washington), Flown in 2019, Published 2021.
27. Prince, G. T. (Prince, 1910), *Report, description of Reconstruction of "Jumbo Dam" of the Julesburg Reservoir, owned by The Julesburg Irrigation District*, September 17, 1910.
28. Sequent (Sequent, 2021), GeoStudio 2D SLOPE/W software, 2021.
29. U.S. Army Corps of Engineers (USACE, 2024), Hydrologic Modeling Systems (HEC-HMS) Version 4.12, May 8, 2024.
30. U.S. Bureau of Reclamation (USBR, 1987), *Design of Small Dams*, 3rd ed. Washington D.C., 1987.
31. U.S. Bureau of Reclamation (USBR, 2011), *Design Standards No. 13 Embankment Dams Chapter 4: Static Stability Analysis Phase 4*, October 2011.
32. U.S. Geological Survey (USGS, 2011) Landsat images, 2011.

33. W. W. Wheeler & Associates, Inc. (Wheeler, 1980), *Geotechnical Report for Julesburg Dams No. 3 & 4*, 1980.
34. W. W. Wheeler & Associates, Inc. (Wheeler, 1986), *Design Engineering Report for Julesburg Reservoir Dam No. 3*, 1986.
35. W. W. Wheeler & Associates, Inc. (Wheeler, 1987), *Piezometer Readings vs. Reservoir Elevation for Julesburg Dam No. 3*, 1987.
36. W. W. Wheeler & Associates, Inc. (Wheeler, 1988a), *Design Engineering Report: Toe Drains and Embankment Stabilization for Julesburg Dam No. 2*, 1988.
37. W. W. Wheeler & Associates, Inc. (Wheeler, 1988b), *Drainage and Filter Blanket Details for Julesburg Dam No. 2*, 1988.
38. W. W. Wheeler & Associates, Inc. (Wheeler, 1990), *Phreatic Surface and Piezometer Measurements for Julesburg Dam No. 4*, 1990.
39. W. W. Wheeler & Associates, Inc. (Wheeler, 1992), *Engineering Design Report for Julesburg Reservoir Dam No. 4 Replacement of Outlet Works*, April 1992.
40. W. W. Wheeler & Associates, Inc. (Wheeler, 1996), *Completion Report for Julesburg Reservoir Dam No. 4 Reconstruction of Outlet Works*, November 1996.
41. W. W. Wheeler & Associates, Inc. (Wheeler, 1998), *Feasibility Study Enlargement of Julesburg Reservoir*, 1998.

Appendix B

Calculations

Appendix B.1

Drainage Basin Documentation

W. W. WHEELER <small>& ASSOCIATES, INC.</small> <small>Water Resources Engineers</small>	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Basin DEM and Parameters	Approved			

OBJECTIVE:

Document the source of the basin Digital Elevation Model (DEM).

Use the StreamStats basin as a starting point and calculate basin parameters using the DEM.

Develop Unit Hydrograph Parameters (A, L, Lca, S)

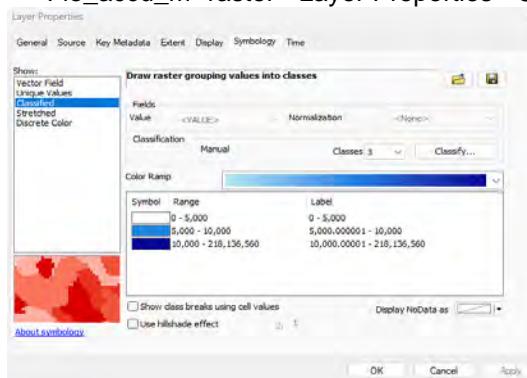
METHOD:

1. Download 1 meter DEM data. Data accessed through Colorado Hazard Mapping

Website: <https://coloradohazardmapping.com/LidarDownload>

2. Record and verify DEM metadata

- a. Select "Info/Metadata": Print page to PDF and save in the same Original DEM Folder.
- b. Verify the following DEM metadata
 - Project geographic coordinates: North American Datum of 1983 2011 (NAD 83 11)
 - Elevation Datum: North American Vertical Datum of 1988 (NAVD 88)
 - Resolution: 2-ft LiDAR
 - Publication Date: 12/8/2021
 - Start Date: 7/31/2019
 - End Date: 9/8/2019


4. DEM Processing:

- a. Merge the geotiffs together.
- b. Clip the geotiff to include the subbasin and downstream.
- c. final dem is located here.
 - File Location:

R:\0900\0985\0985.04\08_GIS\LiDAR\DEM_f2.tif

5. Basin delineation using Arc Toolbox

- a. Spatial Analyst - Hydrology - Fill (Don't specify z limit)
 - File Location:
- R:\0900\0985\0985.04\08_GIS\LiDAR\Hydrology\LargeDEM\fill.tif
- b. Spatial Analyst - Hydrology - Flow Direction ("fill_m" raster as the surface raster)
 - File Location:
- R:\0900\0985\0985.04\08_GIS\LiDAR\Hydrology\LargeDEM\flowdirc2.tif
- c. Spatial Analyst - Hydrology - Flow Accumulation (Output type FLOAT)
 - File Location:
- R:\0900\0985\0985.04\08_GIS\LiDAR\Hydrology\LargeDEM\Flowacc.tif
- "Flo_accu_m" raster - Layer Properties - Classified - Visualize streamlines

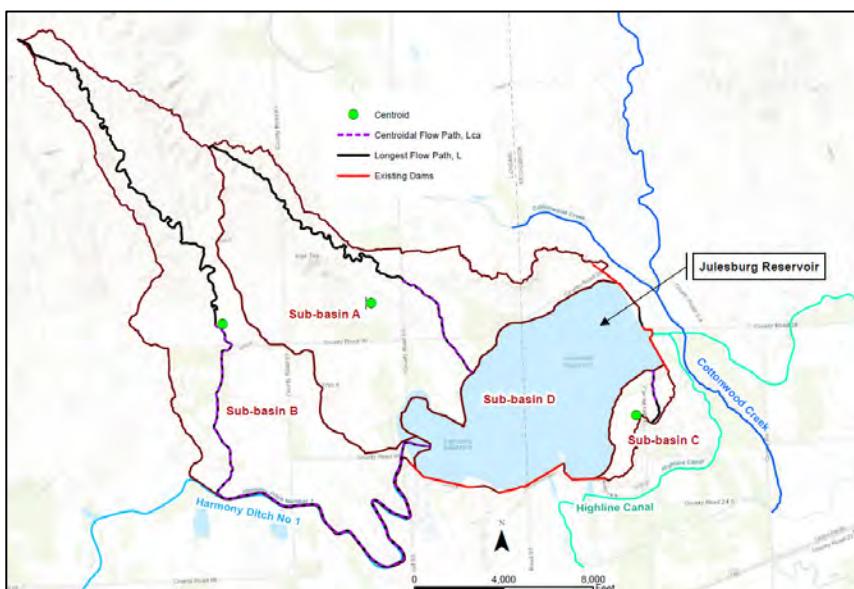
Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
Basin DEM and Parameters	Approved			

c. Spatial Analyst - Hydrology - Flow Accumulation, CONTINUED

- Create a delineation point based on "Flow_accu_m" raster.
- Delineation point:

R:\0900\0985\0985.04\08_GIS\LiDAR\Hydrology\DelineationPoint.shp

d. Spatial Analyst - Hydrology - Watershed (don't specify z limit) -


- File Location:
R:\0900\0985\0985.04\08_GIS\LiDAR\Hydrology\LargeDEM\watershed.tif

d. Converted Watershed into shapefile.

- File Location:
R:\0900\0985\0985.04\08_GIS\LiDAR\Hydrology\LargeDEM\watershed_large.shp

d. Split the basin into subbasins. 1 - directly into the reservoir; 2 - runoff into the inlet canal or

- File Location:
R:\0900\0985\0985.04\08_GIS\LiDAR\Hydrology\Watershed.shp

W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Basin DEM and Parameters	Approved			

6. Final basin parameters

a. Delineate Basin & Subbasins

- Basin Shapefile:

R:\0900\0985\0985.04\08_GIS\LiDAR\Hydrology\Watershed.shp

▪ Area Total:	6630.2 ac
---------------	-----------

- SubBasin Shapefile:

▪ Basin A:	2355.2 ac
▪ Basin B:	2654.3 ac
▪ Basin C:	174.0 ac
▪ Reservoir D:	1446.7 ac

b. Calculate Basin Centroid. Full basin was used in MetPortal

- Shapefile:

R:\0900\0985\0985.04\08_GIS\SHP\Centroid.shp

▪ X Coord:	▪ Y Coord:
▪ Basin A:	-102.67695
▪ Basin B:	-102.70116
▪ Basin C:	-102.63462
▪ Reservoir D:	-102.65001
▪ Full Basin (used in	-102.67966
	40.943638
	40.941605
	40.928612
	40.931352
	40.939749

c. Use the DEM contours to trace the longest flow path, L, and flow path along the centroid,.

- File Location

R:\0900\0985\0985.04\08_GIS\SHP\LongestFlowPath.shp

▪ L (feet) :	
▪ Basin A:	20,016.5
▪ Basin B:	51,475.5
▪ Basin C:	2,629.0
▪ Reservoir D:	NA

- File Location

R:\0900\0985\0985.04\08_GIS\SHP\LongestFlowPath.shp

▪ Lca (feet) :	
▪ Basin A:	5,854.4
▪ Basin B:	29,014.3
▪ Basin C:	1,540.4
▪ Reservoir D:	NA

W. W. WHEELER <small>& ASSOCIATES, INC.</small> <small>Water Resources Engineers</small>	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Basin DEM and Parameters	Approved			

RESULTS:

1. MXD Figure for final parameters

- File Location:

R:\0900\0985\0985.04\08_GIS\MXD\WorkMapLL.mxd

Area	Longest Flow path Length	Highest Elevation Along L ⁽¹⁾	Lowest Elevation Along L ⁽²⁾	Longest Flow path Slope	Centroidal Flow path Length	Centroid X	Centroid Y	
A	L	El _{MAX}	El _{MIN}	S	L _{CA}	X	Y	Basin
(Mile ²)	(Mile)	(Feet)	(Feet)	(Feet/ Mile)	(Mile)	(Decimal Deg)	(Decimal Deg)	
3.680000	3.791000	4026.0	3707	84.14085993	1.108790	-102.67695	40.94364	A
4.147000	9.749140	4138.6	3707	44.26646863	5.495140	-102.70116	40.94161	B
0.271922	0.497915	3792.0	3707	170.7118685	0.291746	-102.63462	40.92861	C
2.260390	NA	3707.0	3707	NA	NA	-102.65001	40.93135	D-res

(1) Determined using contours created from the 1-meter DEM in GIS.

(2) Determined using contours created from the 1-meter DEM in GIS, elevation of the channel downstream of the outlet works; consistent with EIR crest El - dam height.

REFERENCES:

- Colorado Water Conservation District (CWCB), Data publication date 5/9/2019, Data Flown between 7/31/2019 and 9/8/2019, obtained online 7/1/2024
- U.S. Geological Survey (USGS). (USGS, 2022), **StreamStats v4.21.0**, obtained online 7/1/2024

Appendix B.2

Precipitation Documentation

Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
Precip Documentation, REPS PMP	Approved			

OBJECTIVE:

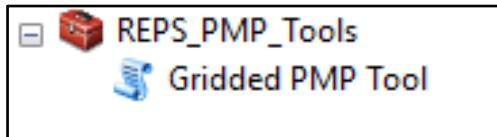
Document the precipitation development for the Probable Maximum Precipitation (PMP).

METHOD:

1. Follow Guidance from the Colorado Division of Water Resources:

Colorado Division of Water Resources, Dam Safety Branch (DWR, 2020-3),
Guidelines for the Use of Regional Extreme Precipitation Study (REPS) Rainfall Estimation Tools, January 21, 2020

Colorado Division of Water Resources, Dam Safety Branch (DWR, 2020-3),
Guidelines for the Use of Regional Extreme Precipitation Study (REPS) Rainfall Estimation Tools, August 22, 2024


2. Download the CO-NM REPS (hereafter referred to as REPS).

REPS is a GIS-based tool that runs as a toolbox script in ArcGIS.

REPS PMP Tool (Version 1.10)

Location on Network:

S:\GIS\REPS\REPS_PMP_Tool_v1_10_Final_Nov 2018\PMP_Evaluation_Tool\Script\REPS_PMP_Tools.tbx

3. Add the representative watershed Polygon to ArcGIS

- File Location, watershed SHP:

R:\0900\0985\0985.04\08_GIS\LiDAR\Hydrology\Watershed.shp

- Check the basin area being evaluated. If the basin area exceeds thresholds of 100 miles, subdivision of the basin may be required for appropriate evaluation of the 2HR and 6HR Local Storm.

Basin Area (sq mi) : , basin size OK

- Check the basin area being evaluated. If the basin is located south of Latitude 38.5, then the tropical storm type technically also applies.

Basin Centroid, Y, Latitude : , south of Latitude 38.5° NA

- File Location, MXD with REPS analysis and results:

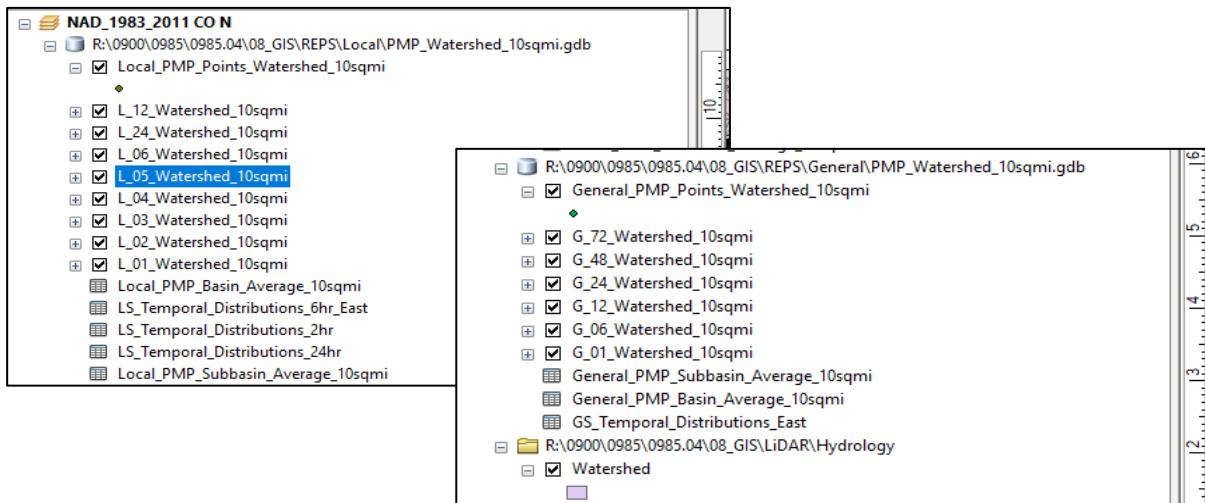
R:\0900\0985\0985.04\08_GIS\MXD\hydrology\04_REPS.mxd

4. Run the REPS GIS "Gridded PMP Tool" and checked the tool results with the new REPS web tool

- File Location, RESULTS/OUTPUT FILES:

R:\0900\0985\0985.04\08_GIS\REPS

- The REPS tool was run for the Local Storm, General Storm, and Tropical Storm. Note that the basin is located north of Latitude 38.5 and the Tropical Storm does not apply.


Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
Precip Documentation, REPS PMP	Approved			

- The REPS tool creates separate folders for the selected storm durations which in this case were the Local, General Storm, and Tropical Storms. Each folder has a summary plot of computed depth duration based on the basin outline, and a geodatabase (.gdb) containing additional information.
- The REPS web tool provided the same values as the GIS tool

5. General Storm: Add the created ".gdb" to ArcMap, the two attribute tables (PMP Summary and Temporal Distribution) and 72 HR raster:

7. Local Storm: Add the created ".gdb" to ArcMap, the three attribute tables (PMP Summary, 2HR and 6HR Temporal Distribution) and 2HR, 6 HR and 24HR raster:

8. ArcMap Table of Contents containing REPS PMP Results for General, Tropical, and Local Storms:

9. General Storm tabular data from .gdb:

General_PMP_Basin_Average_10sqmi								
	OBJECTID *	Storm Type	PMP_01	PMP_06	PMP_12	PMP_24	PMP_48	PMP_72
	1	General	3.33	8.3	12.39	15.78	17.93	18.58

General_PMP_Subbasin_Average_10sqmi								
	OBJECTID *	Storm Type	Subbasin	PMP_01	PMP_06	PMP_12	PMP_24	PMP_48
	1	General	A	3.32	8.3	12.4	15.8	17.92
	2	General	B	3.3	8.29	12.36	15.75	17.9
	3	General	C	3.4	8.3	12.4	15.8	18
	4	General	D - Res	3.39	8.3	12.4	15.8	17.99

Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
Precip Documentation, REPS PMP	Approved			

Duration (hr)	REPS General Storm	107% ⁽¹⁾ REPS General Storm
	(in)	(in)
1	3.33	3.56
6	8.3	8.88
12	12.39	13.26
24	15.78	16.88
48	17.93	19.19
72	18.58	19.88

11. Local Storm tabular data from .gdb:

Local_PMP_Basin_Average_10sqmi

OBJECTID *	Storm Type	PMP_01	PMP_02	PMP_03	PMP_04	PMP_05	PMP_06	PMP_12	PMP_24
1	Local	9.48	14.86	18.31	18.31	18.31	18.57	20.02	20.05

Local_PMP_Subbasin_Average_10sqmi

OBJECTID *	Storm Type	Subbasin	PMP_01	PMP_02	PMP_03	PMP_04	PMP_05	PMP_06	PMP_12	PMP_24
1	Local	A	9.5	14.87	18.32	18.32	18.32	18.64	20.08	20.14
2	Local	B	9.45	14.82	18.29	18.29	18.29	18.36	19.79	19.82
3	Local	C	9.5	14.9	18.38	18.38	18.38	18.8	20.3	20.3
4	Local	D - Res	9.5	14.9	18.33	18.33	18.33	18.79	20.29	20.29

Duration (hr)	REPS Local Storm	107% ⁽¹⁾ REPS Local Storm
	(in)	(in)
1	9.48	10.14
2	14.86	15.90
3	18.31	19.59
4	18.31	19.59
5	18.31	19.59
6	18.57	19.87
12	20.02	21.42
24	20.05	21.45

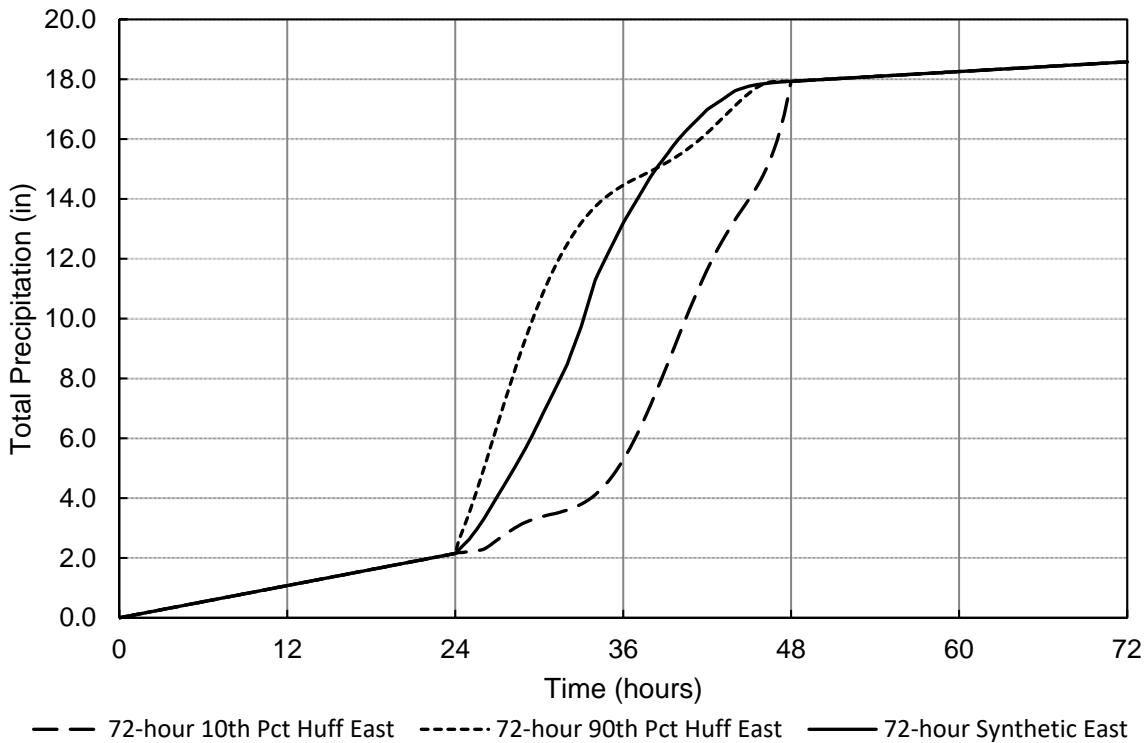
NOTE

1. Analysis ultimately included a 7-percent augmentation factor for an increase in atmospheric moisture to account for climate change (added in HEC-HMS).

12. General Storm, temporal distribution, tabular data from .gdb:

Temporal results are provided for the 10th and 90th% Huff Distribution and Synthetic Storm. The Synthetic Storm was used. GIS excerpt show below.

NOTE: Paste the full temporal data on the [REPS_PMP_TemporalData] tab. Printable temporal data is included at the end of this calculation. The figure below also exists in its own printable tab [Fig_PMP_GS].


GS_Temporal_Distributions_East			GS_24_hour_10th_Percentile_Huff_East	GS_24_hour_90th_Percentile_Huff_East	GS_24_hour_Synthetic_East
OBJECTID *	TIMESTEP	MINUTE			
1	1	15	0.022	0.022	0.022
2	2	30	0.045	0.045	0.045
3	3	45	0.067	0.067	0.067
4	4	60	0.09	0.09	0.09
5	5	75	0.112	0.112	0.112
6	6	90	0.134	0.134	0.134
7	7	105	0.157	0.157	0.157

Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
Precip Documentation, REPS PMP	Approved			

GS_Temporal_Distributions_East

OBJECTID *	TIMESTEP	MINUTE	GS_24_hour_10th_Percentile_Huff_East	GS_24_hour_90th_Percentile_Huff_East	GS_24_hour_Synthetic_East
282	282	4230	18.539	18.539	18.539
283	283	4245	18.546	18.546	18.546
284	284	4260	18.553	18.553	18.553
285	285	4275	18.56	18.56	18.56
286	286	4290	18.566	18.566	18.566
287	287	4305	18.573	18.573	18.573
288	288	4320	18.58	18.58	18.58

Julesburg Reservoir: REPS PMP Hyetograph - 100% General Storm

14. Local Storms, temporal distribution, tabular data from .gdb:

Temporal results are provided for the 2-hr, 6-hr, 24-hr 10th and 90th% Huff Distribution and Synthetic Storm

The 2-Hr, 6-hr, 24-hr Storms were used.

GIS excerpts shown below.

NOTE: Paste the full temporal data on the [REPS_PMP_TemporalData] tab. Printable temporal data is included at the end of this calculation. The figures below also exists in their own printable tabs [Fig_PMP_LS2hr] and [Fig_PMP_LS6hr] and [Fig_PMP_LS24hr].

Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
Precip Documentation, REPS PMP	Approved			

2-Hr Storm

LS_Temporal_Distributions_2hr

OBJECTID *	TIMESTEP	MINUTE	LS_2_hour_Stacked
1	1	5	1.389
2	2	10	2.612
3	3	15	3.686
4	4	20	4.628
5	5	25	5.455
6	6	30	6.185
7	7	35	6.835

LS_Temporal_Distributions_2hr

OBJECTID *	TIMESTEP	MINUTE	LS_2_hour_Stacked
19	19	95	12.618
20	20	100	13.067
21	21	105	13.515
22	22	110	13.963
23	23	115	14.412
24	24	120	14.86

6-Hr Storm

LS_Temporal_Distributions_6hr_East

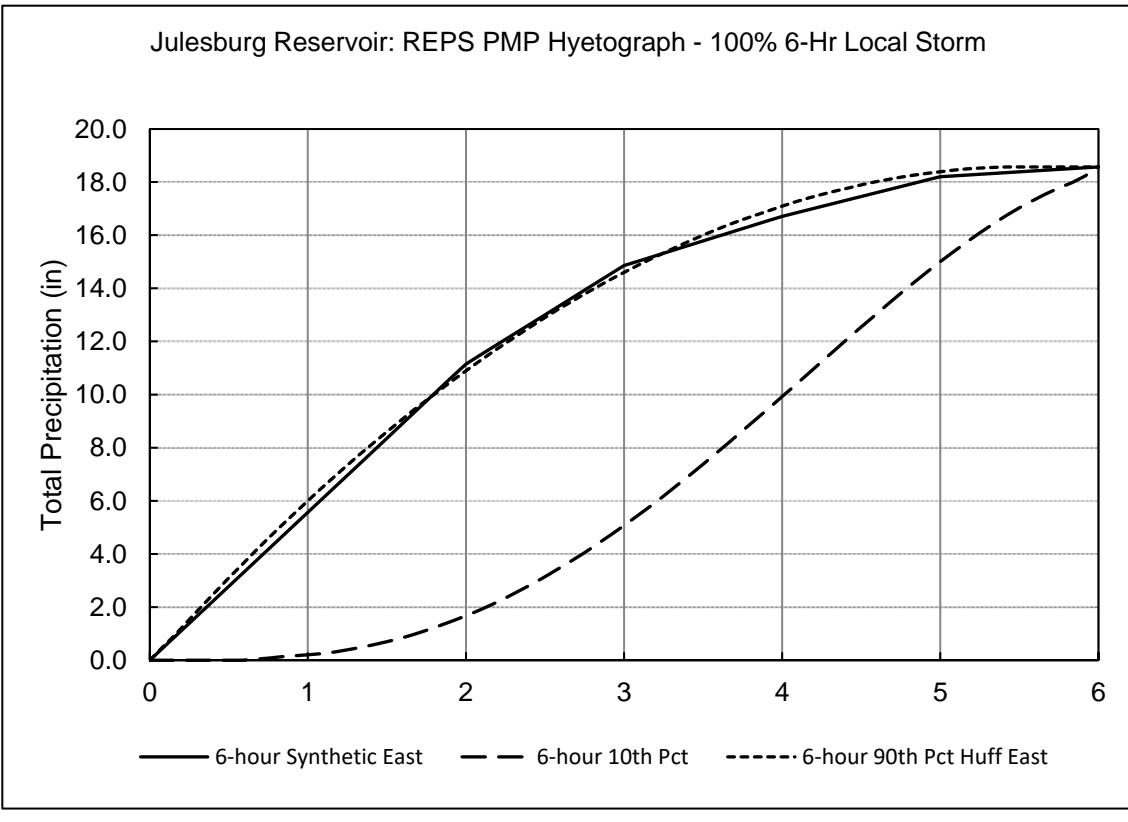
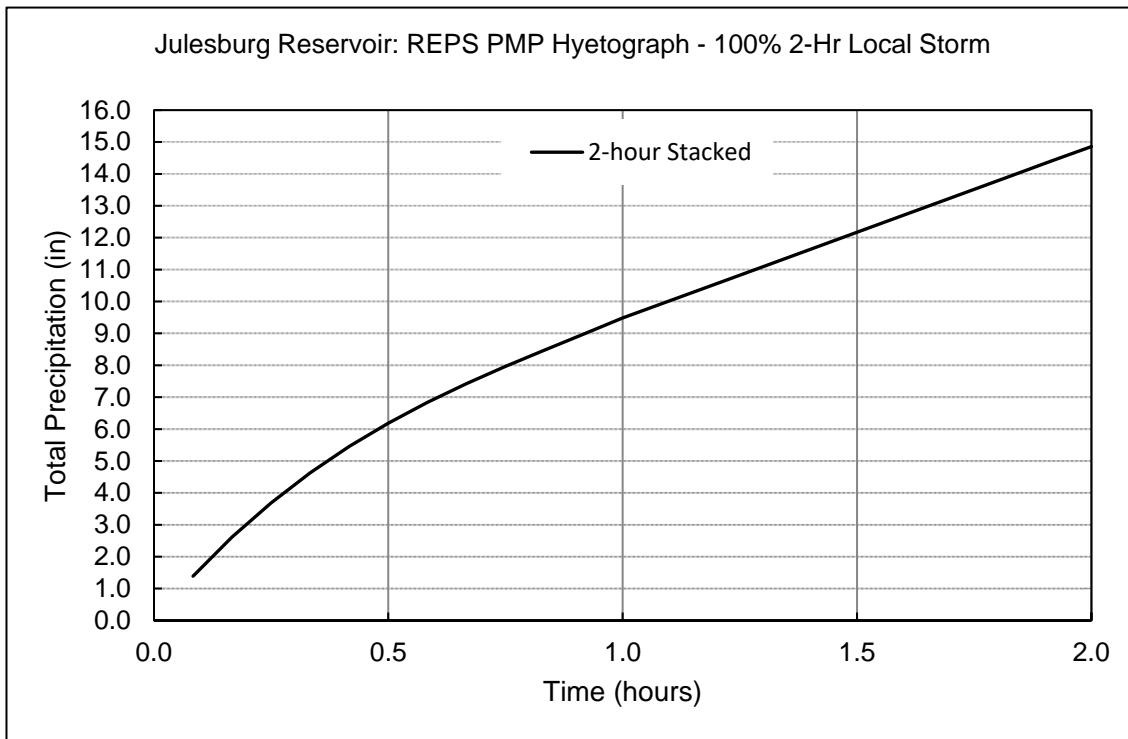
OBJECTID *	TIMESTEP	MINUTE	LS_6_hour_10th_Percentile_Huff_East	LS_6_hour_90th_Percentile_Huff_East	LS_6_hour_Synthetic_East
1	1	5	0	0.505	0.464
2	2	10	0	0.99	0.927
3	3	15	0	1.53	1.391
4	4	20	0	2.059	1.853
5	5	25	0	2.579	2.318
6	6	30	0	3.092	2.78

LS_Temporal_Distributions_6hr_East

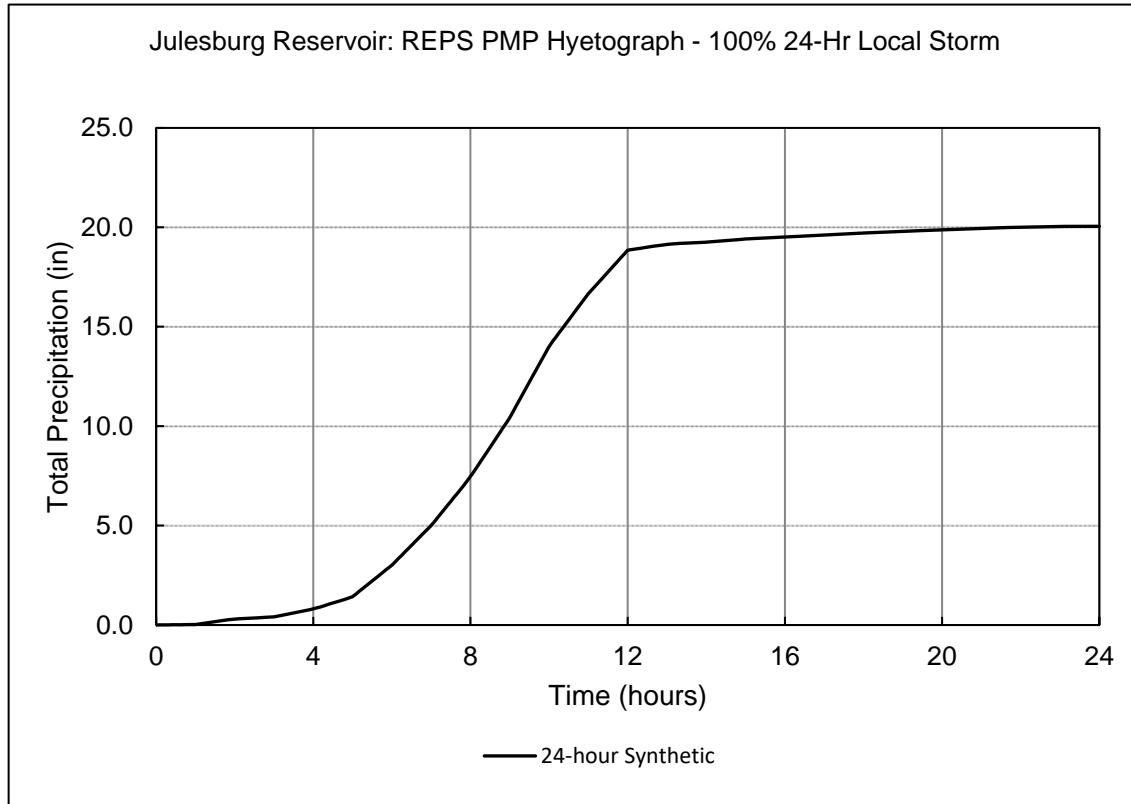
OBJECTID *	TIMESTEP	MINUTE	LS_6_hour_10th_Percentile_Huff_East	LS_6_hour_90th_Percentile_Huff_East	LS_6_hour_Synthetic_East
67	67	335	17.3	18.57	18.416
68	68	340	17.549	18.57	18.446
69	69	345	17.781	18.57	18.477
70	70	350	17.979	18.57	18.509
71	71	355	18.234	18.57	18.538
72	72	360	18.57	18.57	18.57

24-Hr Storm

LS_Temporal_Distributions_24hr



OBJECTID *	TIMESTEP	MINUTE	LS_24_hour_Synthetic_Hybrid
1	1	5	0.002
2	2	10	0.004
3	3	15	0.004
4	4	20	0.006
5	5	25	0.008
6	6	30	0.01

LS_Temporal_Distributions_24hr


OBJECTID *	TIMESTEP	MINUTE	LS_24_hour_Synthetic_Hybrid
283	283	1415	20.042
284	284	1420	20.044
285	285	1425	20.046
286	286	1430	20.046
287	287	1435	20.048
288	288	1440	20.05

Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
Precip Documentation, REPS PMP	Approved			

Local Storms - Hyetograph Summary

Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
Precip Documentation, REPS PMP	Approved			

15. Gridded Precip Display:

a. Add 72 Hour REPS General Storm Raster:

GIS - Add data - General - PMP Geodatabase - Raster for 72 hour storm:

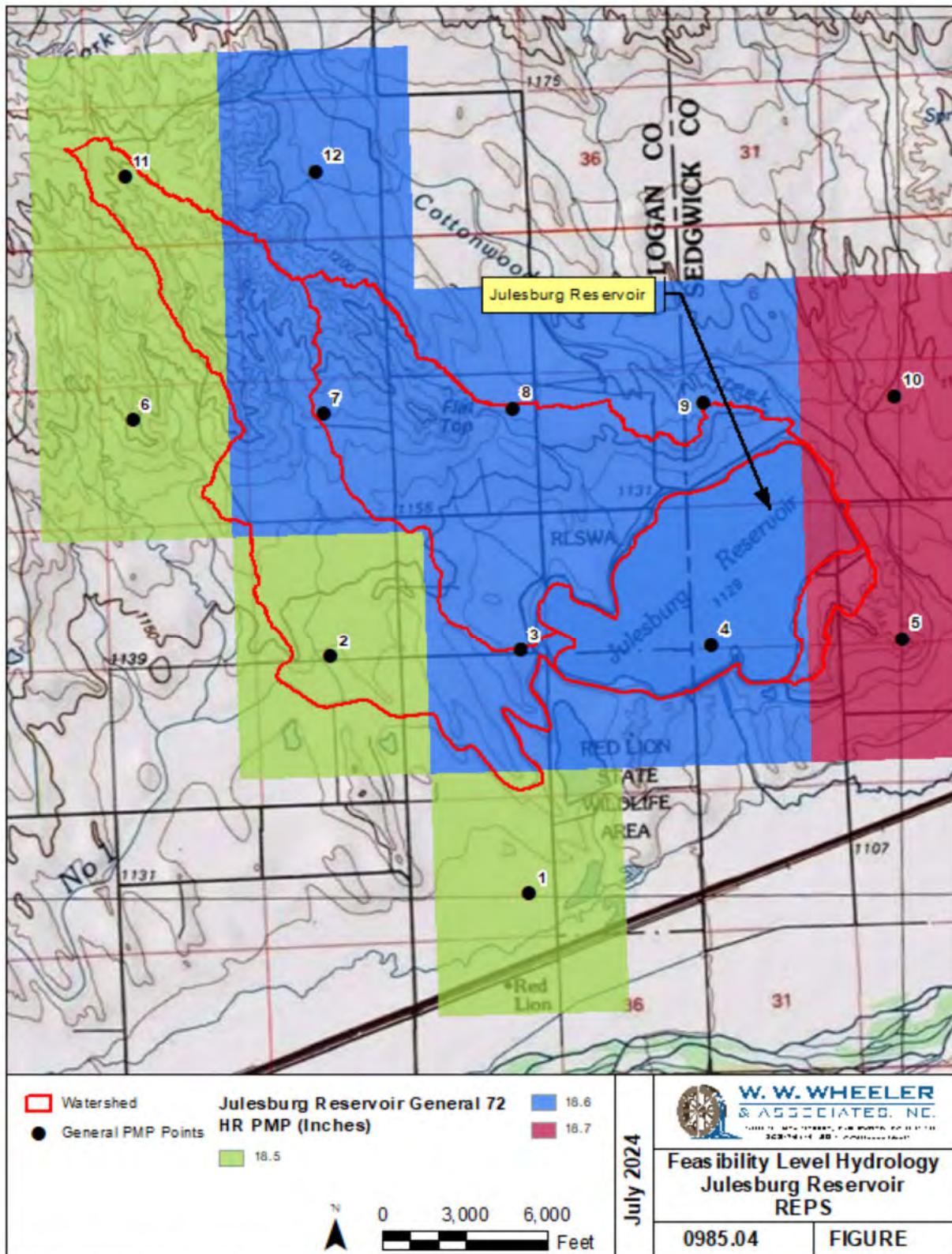
b. Add 2 Hour, 6 Hour, (and if applicable, 24 Hour) REPS Local Storm Raster:

GIS - Add data - Local - PMP Geodatabase - Raster for 72 hour storm:

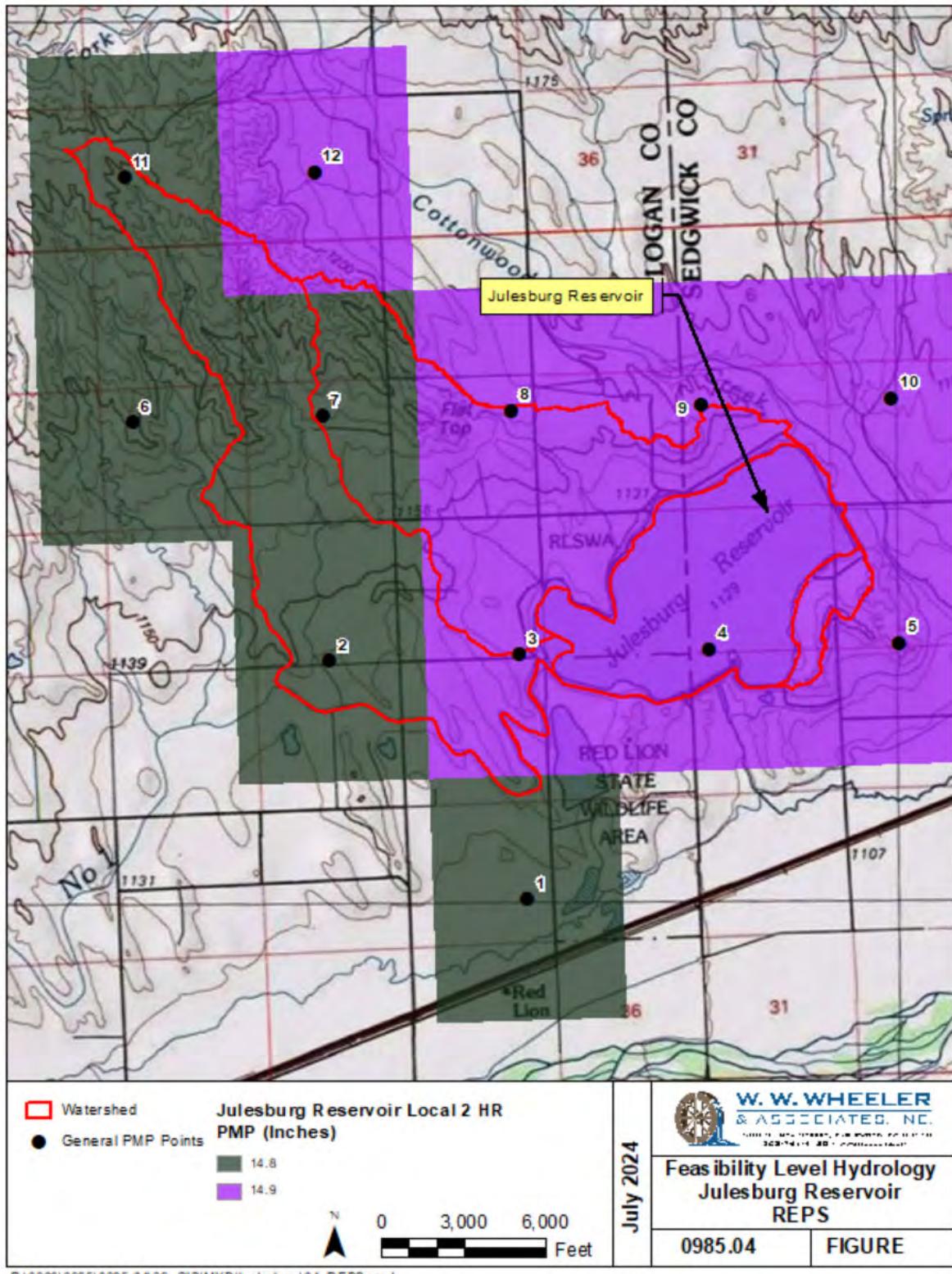
c. Display the unique precip values:

Layer properties - Symbology - "Show:" Unique Values - Apply:

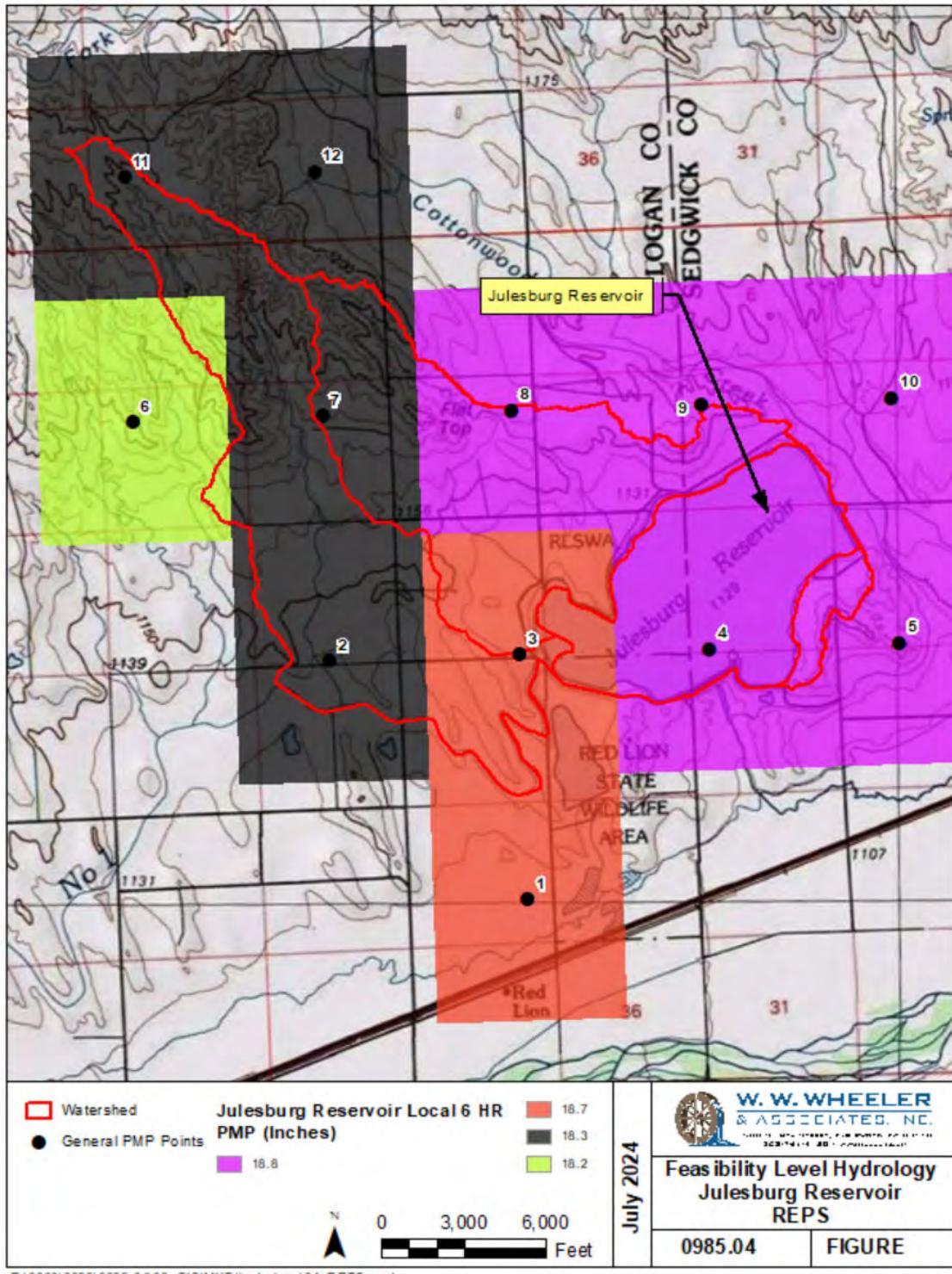
Layer properties - General - Layer Name - Identify Dam and Storm Type for Legend:


(Include storm duration (2, 6, 24, 72HR), Local or General, and units "Inches")

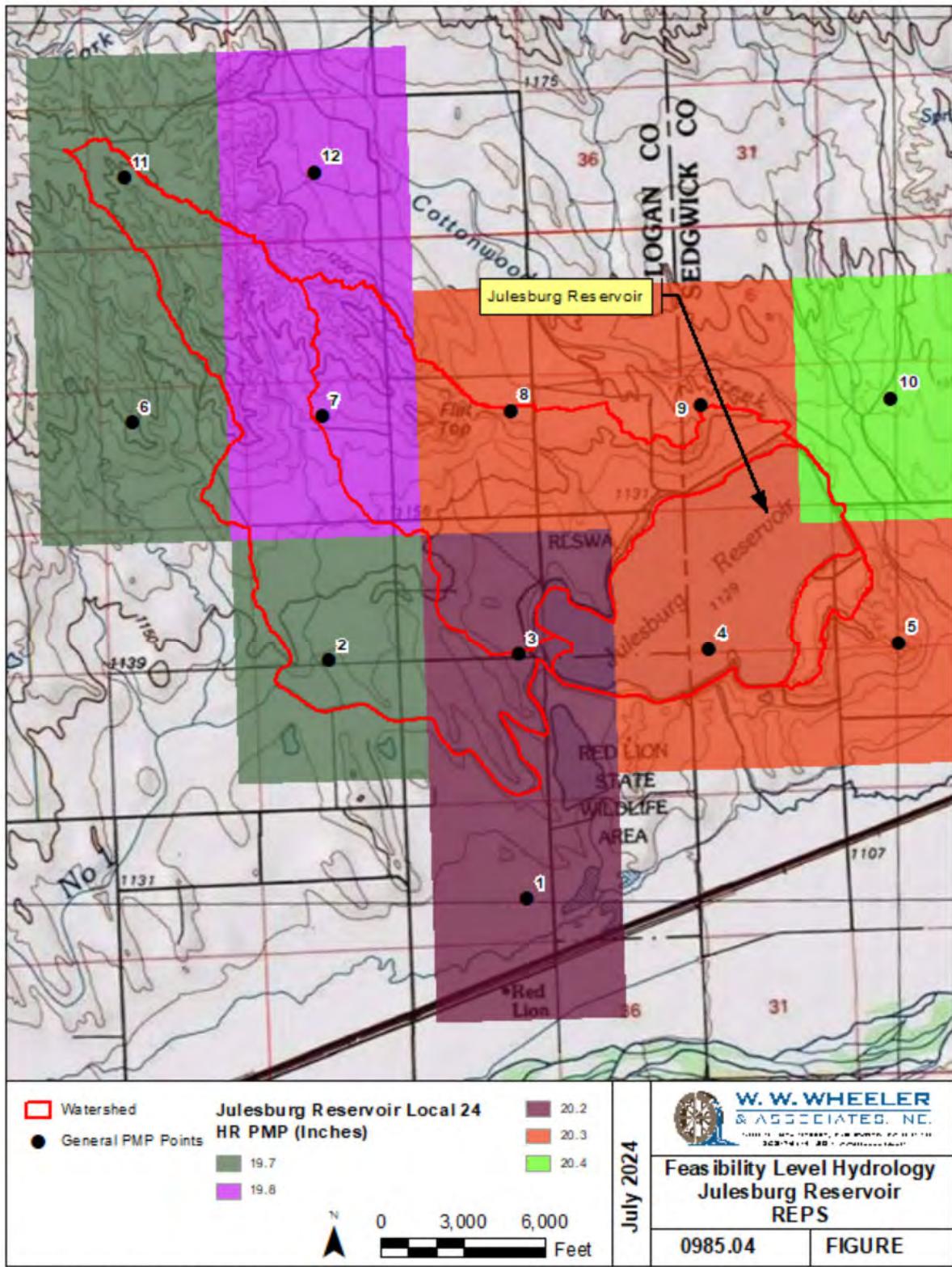
c. Format Legend


Legend properties - Items - select layer raster being displayed - Style :

d. Save new MXD - Print to PDF


Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
Precip Documentation, REPS PMP	Approved			

Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
Precip Documentation, REPS PMP	Approved			



Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
Precip Documentation, REPS PMP	Approved			

Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
Precip Documentation, REPS PMP	Approved			

Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
Precip Documentation, REPS PMP	Approved			

16. Print PMP Points Attribute Tables for Each Storm Type:

Local_PMP_Points

LS PMP Points									
OBJECTID *	Shape *	ID	POINT_X	POINT_Y	ELEV_FT	TRANS_ZONE	ELEV_ADJ	DIVIDE	
1	Point	96146	-102.675	40.9	3648.294		1	1	East
2	Point	96491	-102.7	40.925	3734.894		1	1	East
3	Point	96492	-102.675	40.925	3716.55		1	1	East
4	Point	96493	-102.65	40.925	3707.553		1	1	East
5	Point	96494	-102.625	40.925	3709.493		1	1	East
6	Point	96837	-102.725	40.95	3941.893		1	1	East
7	Point	96838	-102.7	40.95	3862.453		1	1	East
8	Point	96839	-102.675	40.95	3802.887		1	1	East
9	Point	96840	-102.65	40.95	3780.913		1	1	East
10	Point	96841	-102.625	40.95	3734.048		1	1	East
11	Point	97185	-102.725	40.975	4073.666		1	1	East
12	Point	97186	-102.7	40.975	3892.403		1	1	East

PMP_01	PMP_02	PMP_03	PMP_04	PMP_05	PMP_06	PMP_12	PMP_24	Storm ID 01-hour
9.4	14.8	18.3	18.3	18.3	18.7	20.2	20.2	SPAS_1295_3
9.4	14.8	18.3	18.3	18.3	18.3	19.7	19.7	SPAS_1295_3
9.5	14.9	18.3	18.3	18.3	18.7	20.2	20.2	SPAS_1295_3
9.5	14.9	18.3	18.3	18.3	18.8	20.3	20.3	SPAS_1295_3
9.5	14.9	18.4	18.4	18.4	18.8	20.3	20.3	SPAS_1295_3
9.4	14.8	18.2	18.2	18.2	18.2	19.7	19.7	SPAS_1295_3
9.5	14.8	18.3	18.3	18.3	18.3	19.7	19.8	SPAS_1295_3
9.5	14.9	18.3	18.3	18.3	18.8	20.2	20.3	SPAS_1295_3
9.5	14.9	18.4	18.4	18.4	18.8	20.3	20.3	SPAS_1295_3
9.5	14.9	18.4	18.4	18.4	18.8	20.3	20.4	SPAS_1295_3
9.4	14.8	18.3	18.3	18.3	18.3	19.7	19.7	SPAS_1295_3
9.5	14.9	18.3	18.3	18.3	18.3	19.8	19.8	SPAS_1295_3

Storm ID 02-hour	Storm ID 03-hour	Storm ID 04-hour	Storm ID 05-hour	Storm ID 06-hour
SPAS_1295_3	SPAS_1295_3	SPAS_1295_3	SPAS_1295_3	SPAS_1036_1
SPAS_1295_3	SPAS_1295_3	SPAS_1295_3	SPAS_1295_3	SPAS_1295_3
SPAS_1295_3	SPAS_1295_3	SPAS_1295_3	SPAS_1295_3	SPAS_1036_1
SPAS_1295_3	SPAS_1295_3	SPAS_1295_3	SPAS_1295_3	SPAS_1036_1
SPAS_1295_3	SPAS_1295_3	SPAS_1295_3	SPAS_1295_3	SPAS_1036_1
SPAS_1295_3	SPAS_1295_3	SPAS_1295_3	SPAS_1295_3	SPAS_1295_3
SPAS_1295_3	SPAS_1295_3	SPAS_1295_3	SPAS_1295_3	SPAS_1295_3
SPAS_1295_3	SPAS_1295_3	SPAS_1295_3	SPAS_1295_3	SPAS_1036_1
SPAS_1295_3	SPAS_1295_3	SPAS_1295_3	SPAS_1295_3	SPAS_1036_1
SPAS_1295_3	SPAS_1295_3	SPAS_1295_3	SPAS_1295_3	SPAS_1036_1
SPAS_1295_3	SPAS_1295_3	SPAS_1295_3	SPAS_1295_3	SPAS_1295_3
SPAS_1295_3	SPAS_1295_3	SPAS_1295_3	SPAS_1295_3	SPAS_1295_3
SPAS_1295_3	SPAS_1295_3	SPAS_1295_3	SPAS_1295_3	SPAS_1295_3
SPAS_1295_3	SPAS_1295_3	SPAS_1295_3	SPAS_1295_3	SPAS_1295_3
SPAS_1295_3	SPAS_1295_3	SPAS_1295_3	SPAS_1295_3	SPAS_1295_3

Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
Precip Documentation, REPS PMP	Approved			

Local_PMP_Points (Cont)

Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
Precip Documentation, REPS PMP	Approved			

General Storm PMP Points

General PMP Points

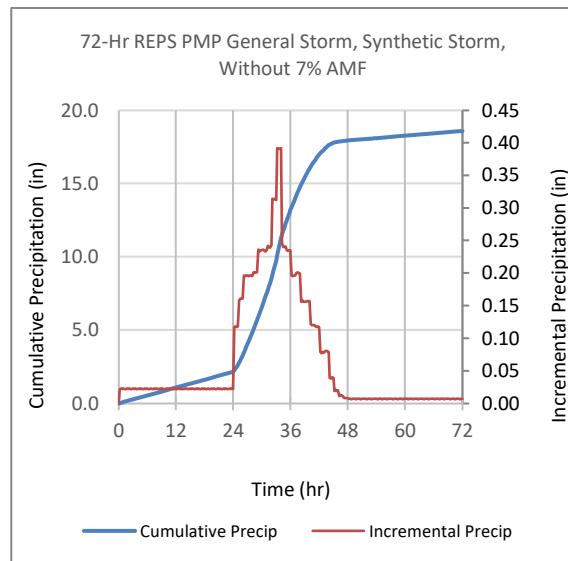
OBJECTID *	Shape *	ID	POINT_X	POINT_Y	ELEV_FT	TRANS_ZONE	ELEV_ADJ	DIVIDE
1	Point	96146	-102.675	40.9	3648.294	1	1	East
2	Point	96491	-102.7	40.925	3734.894	1	1	East
3	Point	96492	-102.675	40.925	3716.55	1	1	East
4	Point	96493	-102.65	40.925	3707.553	1	1	East
5	Point	96494	-102.625	40.925	3709.493	1	1	East
6	Point	96837	-102.725	40.95	3941.893	1	1	East
7	Point	96838	-102.7	40.95	3862.453	1	1	East
8	Point	96839	-102.675	40.95	3802.887	1	1	East
9	Point	96840	-102.65	40.95	3780.913	1	1	East
10	Point	96841	-102.625	40.95	3734.048	1	1	East
11	Point	97185	-102.725	40.975	4073.666	1	1	East
12	Point	97186	-102.7	40.975	3892.403	1	1	East

PMP_01	PMP_06	PMP_12	PMP_24	PMP_48	PMP_72	Storm ID 01-hour	Storm ID 06-hour
3.3	8.3	12.3	15.7	17.9	18.5	SPAS_1560_1_gen	SPAS_1560_1_gen
3.3	8.3	12.3	15.7	17.9	18.5	SPAS_1560_1_gen	SPAS_1560_1_gen
3.3	8.3	12.4	15.8	17.9	18.6	SPAS_1560_1_gen	SPAS_1560_1_gen
3.4	8.3	12.4	15.8	18	18.6	SPAS_1560_1_gen	SPAS_1560_1_gen
3.4	8.3	12.4	15.8	18	18.7	SPAS_1560_1_gen	SPAS_1560_1_gen
3.3	8.2	12.3	15.7	17.9	18.5	SPAS_1560_1_gen	SPAS_1560_1_gen
3.3	8.3	12.4	15.8	17.9	18.6	SPAS_1560_1_gen	SPAS_1560_1_gen
3.3	8.3	12.4	15.8	17.9	18.6	SPAS_1560_1_gen	SPAS_1560_1_gen
3.4	8.3	12.4	15.8	18	18.6	SPAS_1560_1_gen	SPAS_1560_1_gen
3.4	8.3	12.4	15.9	18	18.7	SPAS_1560_1_gen	SPAS_1560_1_gen
3.3	8.3	12.4	15.7	17.9	18.5	SPAS_1560_1_gen	SPAS_1560_1_gen
3.3	8.3	12.4	15.8	17.9	18.6	SPAS_1560_1_gen	SPAS_1560_1_gen

Storm ID 12-hour	Storm ID 24-hour	Storm ID 48-hour	Storm ID 72-hour
SPAS_1530_1	SPAS_1530_1	SPAS_1530_1	SPAS_1530_1
SPAS_1530_1	SPAS_1530_1	SPAS_1530_1	SPAS_1530_1
SPAS_1530_1	SPAS_1530_1	SPAS_1530_1	SPAS_1530_1
SPAS_1530_1	SPAS_1530_1	SPAS_1530_1	SPAS_1530_1
SPAS_1530_1	SPAS_1530_1	SPAS_1530_1	SPAS_1530_1
SPAS_1530_1	SPAS_1530_1	SPAS_1530_1	SPAS_1530_1
SPAS_1530_1	SPAS_1530_1	SPAS_1530_1	SPAS_1530_1
SPAS_1530_1	SPAS_1530_1	SPAS_1530_1	SPAS_1530_1
SPAS_1530_1	SPAS_1530_1	SPAS_1530_1	SPAS_1530_1
SPAS_1530_1	SPAS_1530_1	SPAS_1530_1	SPAS_1530_1
SPAS_1530_1	SPAS_1530_1	SPAS_1530_1	SPAS_1530_1
SPAS_1530_1	SPAS_1530_1	SPAS_1530_1	SPAS_1530_1
SPAS_1530_1	SPAS_1530_1	SPAS_1530_1	SPAS_1530_1
SPAS_1530_1	SPAS_1530_1	SPAS_1530_1	SPAS_1530_1
SPAS_1530_1	SPAS_1530_1	SPAS_1530_1	SPAS_1530_1
SPAS_1530_1	SPAS_1530_1	SPAS_1530_1	SPAS_1530_1

Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
Precip Documentation, REPS PMP	Approved			

General Storm PMP Points (cont)


Storm ID 72-hour	Storm Name 01-hour	Storm Name 06-hour	Storm Name 12-hour
SPAS_1530_1	Conway, TX - May, 1951	Conway, TX - May, 1951	Guadalupe Pass, TX - Sep, 2013
SPAS_1530_1	Conway, TX - May, 1951	Conway, TX - May, 1951	Guadalupe Pass, TX - Sep, 2013
SPAS_1530_1	Conway, TX - May, 1951	Conway, TX - May, 1951	Guadalupe Pass, TX - Sep, 2013
SPAS_1530_1	Conway, TX - May, 1951	Conway, TX - May, 1951	Guadalupe Pass, TX - Sep, 2013
SPAS_1530_1	Conway, TX - May, 1951	Conway, TX - May, 1951	Guadalupe Pass, TX - Sep, 2013
SPAS_1530_1	Conway, TX - May, 1951	Conway, TX - May, 1951	Guadalupe Pass, TX - Sep, 2013
SPAS_1530_1	Conway, TX - May, 1951	Conway, TX - May, 1951	Guadalupe Pass, TX - Sep, 2013
SPAS_1530_1	Conway, TX - May, 1951	Conway, TX - May, 1951	Guadalupe Pass, TX - Sep, 2013
SPAS_1530_1	Conway, TX - May, 1951	Conway, TX - May, 1951	Guadalupe Pass, TX - Sep, 2013
SPAS_1530_1	Conway, TX - May, 1951	Conway, TX - May, 1951	Guadalupe Pass, TX - Sep, 2013
SPAS_1530_1	Conway, TX - May, 1951	Conway, TX - May, 1951	Guadalupe Pass, TX - Sep, 2013
SPAS_1530_1	Conway, TX - May, 1951	Conway, TX - May, 1951	Guadalupe Pass, TX - Sep, 2013
SPAS_1530_1	Conway, TX - May, 1951	Conway, TX - May, 1951	Guadalupe Pass, TX - Sep, 2013
SPAS_1530_1	Conway, TX - May, 1951	Conway, TX - May, 1951	Guadalupe Pass, TX - Sep, 2013
SPAS_1530_1	Conway, TX - May, 1951	Conway, TX - May, 1951	Guadalupe Pass, TX - Sep, 2013
SPAS_1530_1	Conway, TX - May, 1951	Conway, TX - May, 1951	Guadalupe Pass, TX - Sep, 2013
SPAS_1530_1	Conway, TX - May, 1951	Conway, TX - May, 1951	Guadalupe Pass, TX - Sep, 2013

Storm Name 24-hour	Storm Name 48-hour	Storm Name 72-hour
Guadalupe Pass, TX - Sep, 2013	Guadalupe Pass, TX - Sep, 2013	Guadalupe Pass, TX - Sep, 2013
Guadalupe Pass, TX - Sep, 2013	Guadalupe Pass, TX - Sep, 2013	Guadalupe Pass, TX - Sep, 2013
Guadalupe Pass, TX - Sep, 2013	Guadalupe Pass, TX - Sep, 2013	Guadalupe Pass, TX - Sep, 2013
Guadalupe Pass, TX - Sep, 2013	Guadalupe Pass, TX - Sep, 2013	Guadalupe Pass, TX - Sep, 2013
Guadalupe Pass, TX - Sep, 2013	Guadalupe Pass, TX - Sep, 2013	Guadalupe Pass, TX - Sep, 2013
Guadalupe Pass, TX - Sep, 2013	Guadalupe Pass, TX - Sep, 2013	Guadalupe Pass, TX - Sep, 2013
Guadalupe Pass, TX - Sep, 2013	Guadalupe Pass, TX - Sep, 2013	Guadalupe Pass, TX - Sep, 2013
Guadalupe Pass, TX - Sep, 2013	Guadalupe Pass, TX - Sep, 2013	Guadalupe Pass, TX - Sep, 2013
Guadalupe Pass, TX - Sep, 2013	Guadalupe Pass, TX - Sep, 2013	Guadalupe Pass, TX - Sep, 2013
Guadalupe Pass, TX - Sep, 2013	Guadalupe Pass, TX - Sep, 2013	Guadalupe Pass, TX - Sep, 2013
Guadalupe Pass, TX - Sep, 2013	Guadalupe Pass, TX - Sep, 2013	Guadalupe Pass, TX - Sep, 2013
Guadalupe Pass, TX - Sep, 2013	Guadalupe Pass, TX - Sep, 2013	Guadalupe Pass, TX - Sep, 2013
Guadalupe Pass, TX - Sep, 2013	Guadalupe Pass, TX - Sep, 2013	Guadalupe Pass, TX - Sep, 2013
Guadalupe Pass, TX - Sep, 2013	Guadalupe Pass, TX - Sep, 2013	Guadalupe Pass, TX - Sep, 2013
Guadalupe Pass, TX - Sep, 2013	Guadalupe Pass, TX - Sep, 2013	Guadalupe Pass, TX - Sep, 2013
Guadalupe Pass, TX - Sep, 2013	Guadalupe Pass, TX - Sep, 2013	Guadalupe Pass, TX - Sep, 2013

	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	REPS Temporal - General Storm, 72 HR Synthetic West	Approved			

**72-Hr General Storm, Synthetic Storm, REPS Probable Maximum Precipitation
Without 7% "Atmospheric Moisture Factor"**

Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
0	0.00	0	--	0.00000
1	0.25	15	0.02200	0.02200
2	0.50	30	0.02300	0.04500
3	0.75	45	0.02200	0.06700
4	1.00	60	0.02300	0.09000
5	1.25	75	0.02200	0.11200
6	1.50	90	0.02200	0.13400
7	1.75	105	0.02300	0.15700
8	2.00	120	0.02200	0.17900
9	2.25	135	0.02300	0.20200
10	2.50	150	0.02200	0.22400
11	2.75	165	0.02200	0.24600
12	3.00	180	0.02300	0.26900
13	3.25	195	0.02200	0.29100
14	3.50	210	0.02300	0.31400
15	3.75	225	0.02200	0.33600
16	4.00	240	0.02200	0.35800
17	4.25	255	0.02300	0.38100
18	4.50	270	0.02200	0.40300
19	4.75	285	0.02300	0.42600
20	5.00	300	0.02200	0.44800
21	5.25	315	0.02200	0.47000
22	5.50	330	0.02300	0.49300
23	5.75	345	0.02200	0.51500
24	6.00	360	0.02300	0.53800
25	6.25	375	0.02200	0.56000
26	6.50	390	0.02200	0.58200
27	6.75	405	0.02300	0.60500
28	7.00	420	0.02200	0.62700
29	7.25	435	0.02200	0.64900
30	7.50	450	0.02300	0.67200
31	7.75	465	0.02200	0.69400
32	8.00	480	0.02300	0.71700
33	8.25	495	0.02200	0.73900
34	8.50	510	0.02200	0.76100
35	8.75	525	0.02300	0.78400
36	9.00	540	0.02200	0.80600

	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	REPS Temporal - General Storm, 72 HR Synthetic West	Approved			

**72-Hr General Storm, Synthetic Storm, REPS Probable Maximum Precipitation
Without 7% "Atmospheric Moisture Factor"**

Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
37	9.25	555	0.02300	0.82900
38	9.50	570	0.02200	0.85100
39	9.75	585	0.02200	0.87300
40	10.00	600	0.02300	0.89600
41	10.25	615	0.02200	0.91800
42	10.50	630	0.02300	0.94100
43	10.75	645	0.02200	0.96300
44	11.00	660	0.02200	0.98500
45	11.25	675	0.02300	1.00800
46	11.50	690	0.02200	1.03000
47	11.75	705	0.02300	1.05300
48	12.00	720	0.02200	1.07500
49	12.25	735	0.02200	1.09700
50	12.50	750	0.02300	1.12000
51	12.75	765	0.02200	1.14200
52	13.00	780	0.02300	1.16500
53	13.25	795	0.02200	1.18700
54	13.50	810	0.02200	1.20900
55	13.75	825	0.02300	1.23200
56	14.00	840	0.02200	1.25400
57	14.25	855	0.02300	1.27700
58	14.50	870	0.02200	1.29900
59	14.75	885	0.02200	1.32100
60	15.00	900	0.02300	1.34400
61	15.25	915	0.02200	1.36600
62	15.50	930	0.02300	1.38900
63	15.75	945	0.02200	1.41100
64	16.00	960	0.02200	1.43300
65	16.25	975	0.02300	1.45600
66	16.50	990	0.02200	1.47800
67	16.75	1005	0.02300	1.50100
68	17.00	1020	0.02200	1.52300
69	17.25	1035	0.02200	1.54500
70	17.50	1050	0.02300	1.56800
71	17.75	1065	0.02200	1.59000
72	18.00	1080	0.02300	1.61300
73	18.25	1095	0.02200	1.63500

72-Hr REPS PMP General Storm, Synthetic Storm,
Without 7% AMF

	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	REPS Temporal - General Storm, 72 HR Synthetic West	Approved			

**72-Hr General Storm, Synthetic Storm, REPS Probable Maximum Precipitation
Without 7% "Atmospheric Moisture Factor"**

Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
74	18.50	1110	0.02200	1.65700
75	18.75	1125	0.02300	1.68000
76	19.00	1140	0.02200	1.70200
77	19.25	1155	0.02200	1.72400
78	19.50	1170	0.02300	1.74700
79	19.75	1185	0.02200	1.76900
80	20.00	1200	0.02300	1.79200
81	20.25	1215	0.02200	1.81400
82	20.50	1230	0.02200	1.83600
83	20.75	1245	0.02300	1.85900
84	21.00	1260	0.02200	1.88100
85	21.25	1275	0.02300	1.90400
86	21.50	1290	0.02200	1.92600
87	21.75	1305	0.02200	1.94800
88	22.00	1320	0.02300	1.97100
89	22.25	1335	0.02200	1.99300
90	22.50	1350	0.02300	2.01600
91	22.75	1365	0.02200	2.03800
92	23.00	1380	0.02200	2.06000
93	23.25	1395	0.02300	2.08300
94	23.50	1410	0.02200	2.10500
95	23.75	1425	0.02300	2.12800
96	24.00	1440	0.02200	2.15000
97	24.25	1455	0.11700	2.26700
98	24.50	1470	0.11800	2.38500
99	24.75	1485	0.11700	2.50200
100	25.00	1500	0.11800	2.62000
101	25.25	1515	0.15800	2.77800
102	25.50	1530	0.16100	2.93900
103	25.75	1545	0.16100	3.10000
104	26.00	1560	0.16100	3.26100
105	26.25	1575	0.19600	3.45700
106	26.50	1590	0.19500	3.65200
107	26.75	1605	0.19600	3.84800
108	27.00	1620	0.19600	4.04400
109	27.25	1635	0.19500	4.23900
110	27.50	1650	0.19600	4.43500

72-Hr REPS PMP General Storm, Synthetic Storm,
Without 7% AMF

	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	REPS Temporal - General Storm, 72 HR Synthetic West	Approved			

**72-Hr General Storm, Synthetic Storm, REPS Probable Maximum Precipitation
Without 7% "Atmospheric Moisture Factor"**

Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
111	27.75	1665	0.19600	4.63100
112	28.00	1680	0.19500	4.82600
113	28.25	1695	0.20100	5.02700
114	28.50	1710	0.20000	5.22700
115	28.75	1725	0.20100	5.42800
116	29.00	1740	0.20100	5.62900
117	29.25	1755	0.23600	5.86500
118	29.50	1770	0.23300	6.09800
119	29.75	1785	0.23500	6.33300
120	30.00	1800	0.23500	6.56800
121	30.25	1815	0.23600	6.80400
122	30.50	1830	0.23500	7.03900
123	30.75	1845	0.23300	7.27200
124	31.00	1860	0.23500	7.50700
125	31.25	1875	0.24200	7.74900
126	31.50	1890	0.24000	7.98900
127	31.75	1905	0.23900	8.22800
128	32.00	1920	0.24300	8.47100
129	32.25	1935	0.31400	8.78500
130	32.50	1950	0.31300	9.09800
131	32.75	1965	0.31400	9.41200
132	33.00	1980	0.31200	9.72400
133	33.25	1995	0.39200	10.11600
134	33.50	2010	0.39100	10.50700
135	33.75	2025	0.39100	10.89800
136	34.00	2040	0.39200	11.29000
137	34.25	2055	0.24600	11.53600
138	34.50	2070	0.24000	11.77600
139	34.75	2085	0.24000	12.01600
140	35.00	2100	0.24100	12.25700
141	35.25	2115	0.23500	12.49200
142	35.50	2130	0.23400	12.72600
143	35.75	2145	0.23500	12.96100
144	36.00	2160	0.23500	13.19600
145	36.25	2175	0.19600	13.39200
146	36.50	2190	0.19500	13.58700
147	36.75	2205	0.19600	13.78300

72-Hr REPS PMP General Storm, Synthetic Storm,
Without 7% AMF

W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	REPS Temporal - General Storm, 72 HR Synthetic West	Approved			

**72-Hr General Storm, Synthetic Storm, REPS Probable Maximum Precipitation
Without 7% "Atmospheric Moisture Factor"**

Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
148	37.00	2220	0.19600	13.97900
149	37.25	2235	0.20000	14.17900
150	37.50	2250	0.20100	14.38000
151	37.75	2265	0.20000	14.58000
152	38.00	2280	0.19900	14.77900
153	38.25	2295	0.15600	14.93500
154	38.50	2310	0.15800	15.09300
155	38.75	2325	0.15600	15.24900
156	39.00	2340	0.15600	15.40500
157	39.25	2355	0.15600	15.56100
158	39.50	2370	0.15700	15.71800
159	39.75	2385	0.15700	15.87500
160	40.00	2400	0.15700	16.03200
161	40.25	2415	0.12100	16.15300
162	40.50	2430	0.12000	16.27300
163	40.75	2445	0.12000	16.39300
164	41.00	2460	0.12000	16.51300
165	41.25	2475	0.11800	16.63100
166	41.50	2490	0.11700	16.74800
167	41.75	2505	0.11800	16.86600
168	42.00	2520	0.11700	16.98300
169	42.25	2535	0.07900	17.06200
170	42.50	2550	0.07700	17.13900
171	42.75	2565	0.07900	17.21800
172	43.00	2580	0.07800	17.29600
173	43.25	2595	0.08000	17.37600
174	43.50	2610	0.08100	17.45700
175	43.75	2625	0.08000	17.53700
176	44.00	2640	0.07900	17.61600
177	44.25	2655	0.03900	17.65500
178	44.50	2670	0.03800	17.69300
179	44.75	2685	0.04000	17.73300
180	45.00	2700	0.03900	17.77200
181	45.25	2715	0.01900	17.79100
182	45.50	2730	0.02100	17.81200
183	45.75	2745	0.01900	17.83100
184	46.00	2760	0.02000	17.85100

72-Hr REPS PMP General Storm, Synthetic Storm,
Without 7% AMF

	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	REPS Temporal - General Storm, 72 HR Synthetic West	Approved			

**72-Hr General Storm, Synthetic Storm, REPS Probable Maximum Precipitation
Without 7% "Atmospheric Moisture Factor"**

Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
185	46.25	2775	0.01100	17.86200
186	46.50	2790	0.01300	17.87500
187	46.75	2805	0.01200	17.88700
188	47.00	2820	0.01100	17.89800
189	47.25	2835	0.00800	17.90600
190	47.50	2850	0.00800	17.91400
191	47.75	2865	0.00800	17.92200
192	48.00	2880	0.00800	17.93000
193	48.25	2895	0.00700	17.93700
194	48.50	2910	0.00700	17.94400
195	48.75	2925	0.00600	17.95000
196	49.00	2940	0.00700	17.95700
197	49.25	2955	0.00700	17.96400
198	49.50	2970	0.00700	17.97100
199	49.75	2985	0.00600	17.97700
200	50.00	3000	0.00700	17.98400
201	50.25	3015	0.00700	17.99100
202	50.50	3030	0.00700	17.99800
203	50.75	3045	0.00600	18.00400
204	51.00	3060	0.00700	18.01100
205	51.25	3075	0.00700	18.01800
206	51.50	3090	0.00700	18.02500
207	51.75	3105	0.00700	18.03200
208	52.00	3120	0.00600	18.03800
209	52.25	3135	0.00700	18.04500
210	52.50	3150	0.00700	18.05200
211	52.75	3165	0.00700	18.05900
212	53.00	3180	0.00600	18.06500
213	53.25	3195	0.00700	18.07200
214	53.50	3210	0.00700	18.07900
215	53.75	3225	0.00700	18.08600
216	54.00	3240	0.00700	18.09300
217	54.25	3255	0.00600	18.09900
218	54.50	3270	0.00700	18.10600
219	54.75	3285	0.00700	18.11300
220	55.00	3300	0.00700	18.12000
221	55.25	3315	0.00600	18.12600

72-Hr REPS PMP General Storm, Synthetic Storm,
Without 7% AMF

<p>W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers</p>	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	REPS Temporal - General Storm, 72 HR Synthetic West	Approved			

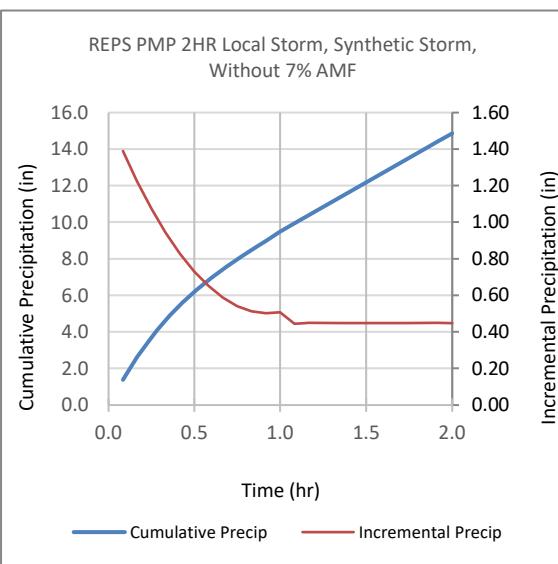
**72-Hr General Storm, Synthetic Storm, REPS Probable Maximum Precipitation
Without 7% "Atmospheric Moisture Factor"**

Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
222	55.50	3330	0.00700	18.13300
223	55.75	3345	0.00700	18.14000
224	56.00	3360	0.00700	18.14700
225	56.25	3375	0.00600	18.15300
226	56.50	3390	0.00700	18.16000
227	56.75	3405	0.00700	18.16700
228	57.00	3420	0.00700	18.17400
229	57.25	3435	0.00700	18.18100
230	57.50	3450	0.00600	18.18700
231	57.75	3465	0.00700	18.19400
232	58.00	3480	0.00700	18.20100
233	58.25	3495	0.00700	18.20800
234	58.50	3510	0.00600	18.21400
235	58.75	3525	0.00700	18.22100
236	59.00	3540	0.00700	18.22800
237	59.25	3555	0.00700	18.23500
238	59.50	3570	0.00600	18.24100
239	59.75	3585	0.00700	18.24800
240	60.00	3600	0.00700	18.25500
241	60.25	3615	0.00700	18.26200
242	60.50	3630	0.00700	18.26900
243	60.75	3645	0.00600	18.27500
244	61.00	3660	0.00700	18.28200
245	61.25	3675	0.00700	18.28900
246	61.50	3690	0.00700	18.29600
247	61.75	3705	0.00600	18.30200
248	62.00	3720	0.00700	18.30900
249	62.25	3735	0.00700	18.31600
250	62.50	3750	0.00700	18.32300
251	62.75	3765	0.00600	18.32900
252	63.00	3780	0.00700	18.33600
253	63.25	3795	0.00700	18.34300
254	63.50	3810	0.00700	18.35000
255	63.75	3825	0.00700	18.35700
256	64.00	3840	0.00600	18.36300
257	64.25	3855	0.00700	18.37000
258	64.50	3870	0.00700	18.37700

72-Hr REPS PMP General Storm, Synthetic Storm,
Without 7% AMF

<p>W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers</p>	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	REPS Temporal - General Storm, 72 HR Synthetic West	Approved			

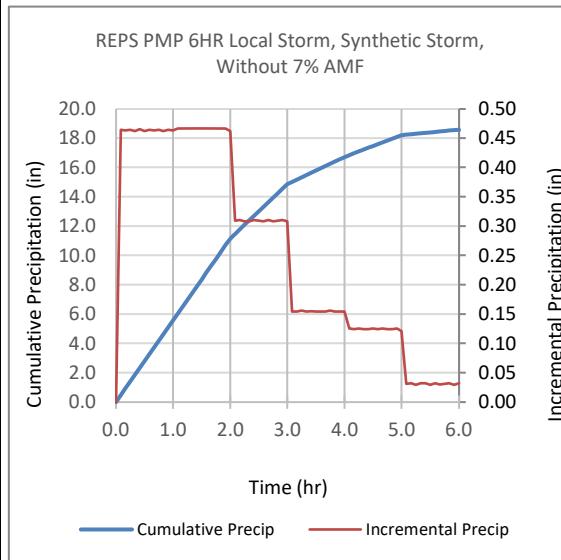
**72-Hr General Storm, Synthetic Storm, REPS Probable Maximum Precipitation
Without 7% "Atmospheric Moisture Factor"**


Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
259	64.75	3885	0.00700	18.38400
260	65.00	3900	0.00600	18.39000
261	65.25	3915	0.00700	18.39700
262	65.50	3930	0.00700	18.40400
263	65.75	3945	0.00700	18.41100
264	66.00	3960	0.00700	18.41800
265	66.25	3975	0.00600	18.42400
266	66.50	3990	0.00700	18.43100
267	66.75	4005	0.00700	18.43800
268	67.00	4020	0.00700	18.44500
269	67.25	4035	0.00600	18.45100
270	67.50	4050	0.00700	18.45800
271	67.75	4065	0.00700	18.46500
272	68.00	4080	0.00700	18.47200
273	68.25	4095	0.00600	18.47800
274	68.50	4110	0.00700	18.48500
275	68.75	4125	0.00700	18.49200
276	69.00	4140	0.00700	18.49900
277	69.25	4155	0.00700	18.50600
278	69.50	4170	0.00600	18.51200
279	69.75	4185	0.00700	18.51900
280	70.00	4200	0.00700	18.52600
281	70.25	4215	0.00700	18.53300
282	70.50	4230	0.00600	18.53900
283	70.75	4245	0.00700	18.54600
284	71.00	4260	0.00700	18.55300
285	71.25	4275	0.00700	18.56000
286	71.50	4290	0.00600	18.56600
287	71.75	4305	0.00700	18.57300
288	72.00	4320	0.00700	18.58000

72-Hr REPS PMP General Storm, Synthetic Storm,
Without 7% AMF

	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	REPS Temporal - Local Storm, 2 HR Stacked	Approved			

**2-Hr Local Storm, Stacked, REPS Probable Maximum Precipitation
Without 7% "Atmospheric Moisture Factor"**

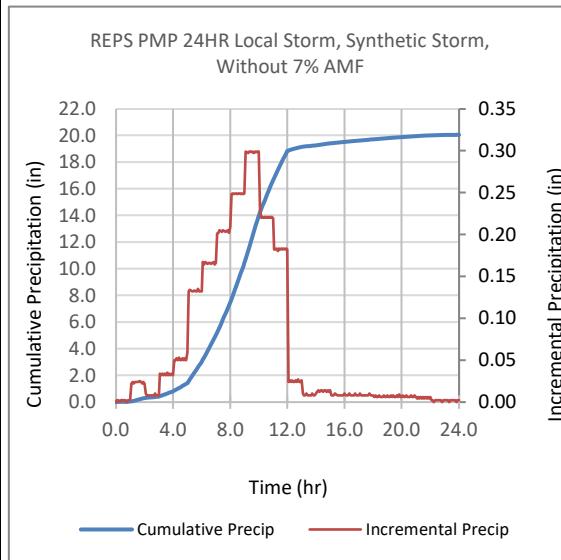

Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
0	0.00	0	--	0.00000
1	0.08	5	1.38900	1.38900
2	0.17	10	1.22300	2.61200
3	0.25	15	1.07400	3.68600
4	0.33	20	0.94200	4.62800
5	0.42	25	0.82700	5.45500
6	0.50	30	0.73000	6.18500
7	0.58	35	0.65000	6.83500
8	0.67	40	0.58700	7.42200
9	0.75	45	0.54100	7.96300
10	0.83	50	0.51300	8.47600
11	0.92	55	0.50100	8.97700
12	1.00	60	0.50700	9.48400
13	1.08	65	0.44400	9.92800
14	1.17	70	0.44900	10.37700
15	1.25	75	0.44800	10.82500
16	1.33	80	0.44800	11.27300
17	1.42	85	0.44900	11.72200
18	1.50	90	0.44800	12.17000
19	1.58	95	0.44800	12.61800
20	1.67	100	0.44900	13.06700
21	1.75	105	0.44800	13.51500
22	1.83	110	0.44800	13.96300
23	1.92	115	0.44900	14.41200
24	2.00	120	0.44800	14.86000

	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	REPS Temporal - Local Storm, 6 HR Synthetic West	Approved			

**6-Hr Local Storm, Synthetic, REPS Probable Maximum Precipitation
Without 7% "Atmospheric Moisture Factor"**

Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
0	0.00	0	--	0.00000
1	0.08	5	0.46400	0.46400
2	0.17	10	0.46300	0.92700
3	0.25	15	0.46400	1.39100
4	0.33	20	0.46200	1.85300
5	0.42	25	0.46500	2.31800
6	0.50	30	0.46200	2.78000
7	0.58	35	0.46400	3.24400
8	0.67	40	0.46300	3.70700
9	0.75	45	0.46400	4.17100
10	0.83	50	0.46200	4.63300
11	0.92	55	0.46400	5.09700
12	1.00	60	0.46300	5.56000
13	1.08	65	0.46600	6.02600
14	1.17	70	0.46600	6.49200
15	1.25	75	0.46600	6.95800
16	1.33	80	0.46600	7.42400
17	1.42	85	0.46600	7.89000
18	1.50	90	0.46700	8.35700
19	1.58	95	0.46600	8.82300
20	1.67	100	0.46600	9.28900
21	1.75	105	0.46600	9.75500
22	1.83	110	0.46600	10.22100
23	1.92	115	0.46600	10.68700
24	2.00	120	0.46200	11.14900
25	2.08	125	0.30900	11.45800
26	2.17	130	0.31000	11.76800
27	2.25	135	0.30800	12.07600
28	2.33	140	0.30800	12.38400
29	2.42	145	0.31000	12.69400
30	2.50	150	0.30900	13.00300
31	2.58	155	0.30800	13.31100
32	2.67	160	0.31000	13.62100
33	2.75	165	0.30800	13.92900
34	2.83	170	0.30900	14.23800
35	2.92	175	0.31000	14.54800
36	3.00	180	0.30800	14.85600

	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	REPS Temporal - Local Storm, 6 HR Synthetic West	Approved			

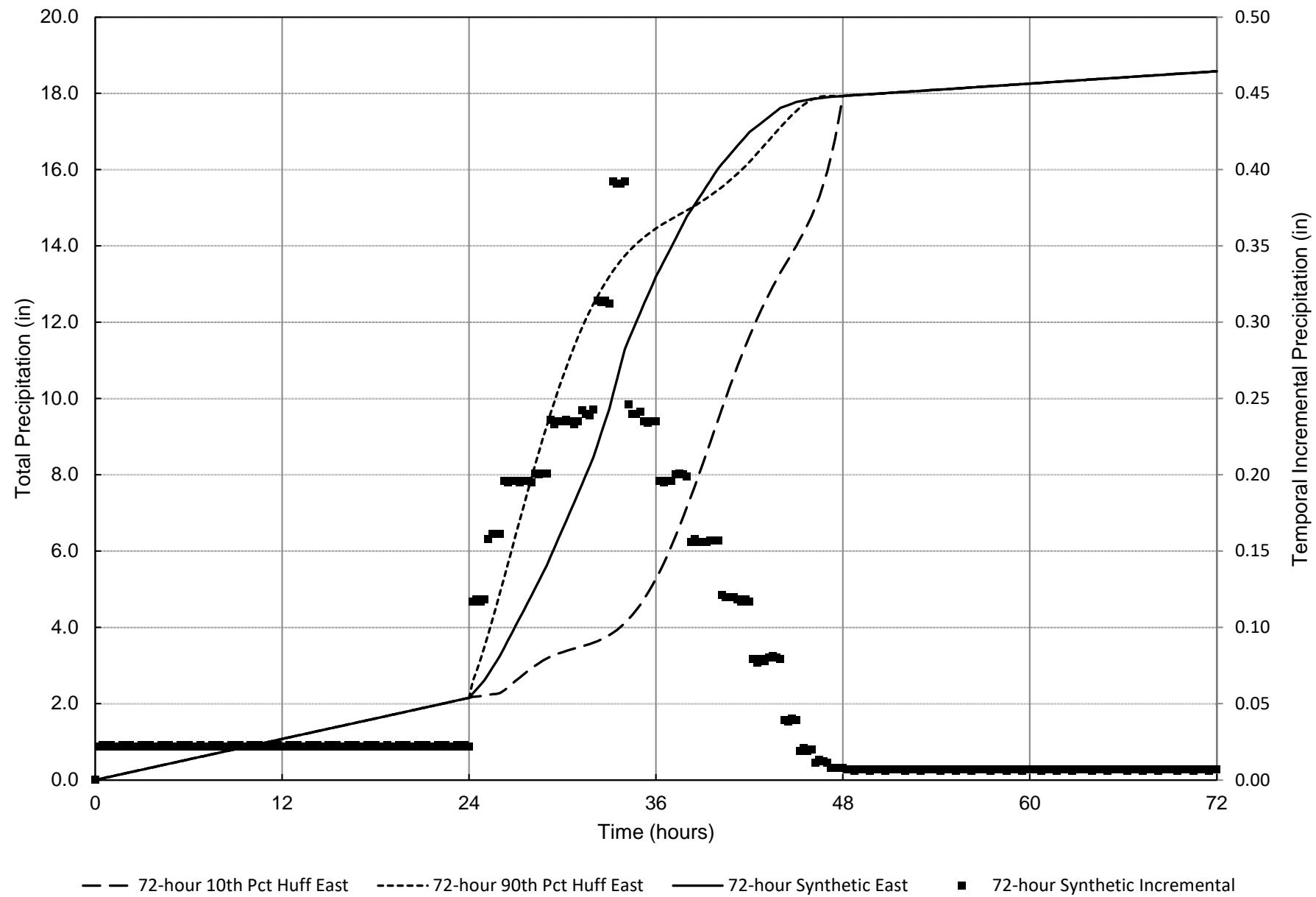

**6-Hr Local Storm, Synthetic, REPS Probable Maximum Precipitation
Without 7% "Atmospheric Moisture Factor"**

Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
37	3.08	185	0.15400	15.01000
38	3.17	190	0.15400	15.16400
39	3.25	195	0.15600	15.32000
40	3.33	200	0.15400	15.47400
41	3.42	205	0.15500	15.62900
42	3.50	210	0.15400	15.78300
43	3.58	215	0.15400	15.93700
44	3.67	220	0.15400	16.09100
45	3.75	225	0.15600	16.24700
46	3.83	230	0.15400	16.40100
47	3.92	235	0.15400	16.55500
48	4.00	240	0.15400	16.70900
49	4.08	245	0.12500	16.83400
50	4.17	250	0.12400	16.95800
51	4.25	255	0.12500	17.08300
52	4.33	260	0.12400	17.20700
53	4.42	265	0.12400	17.33100
54	4.50	270	0.12500	17.45600
55	4.58	275	0.12400	17.58000
56	4.67	280	0.12500	17.70500
57	4.75	285	0.12400	17.82900
58	4.83	290	0.12400	17.95300
59	4.92	295	0.12500	18.07800
60	5.00	300	0.12100	18.19900
61	5.08	305	0.03100	18.23000
62	5.17	310	0.03200	18.26200
63	5.25	315	0.02900	18.29100
64	5.33	320	0.03200	18.32300
65	5.42	325	0.03200	18.35500
66	5.50	330	0.02900	18.38400
67	5.58	335	0.03200	18.41600
68	5.67	340	0.03000	18.44600
69	5.75	345	0.03100	18.47700
70	5.83	350	0.03200	18.50900
71	5.92	355	0.02900	18.53800
72	6.00	360	0.03200	18.57000

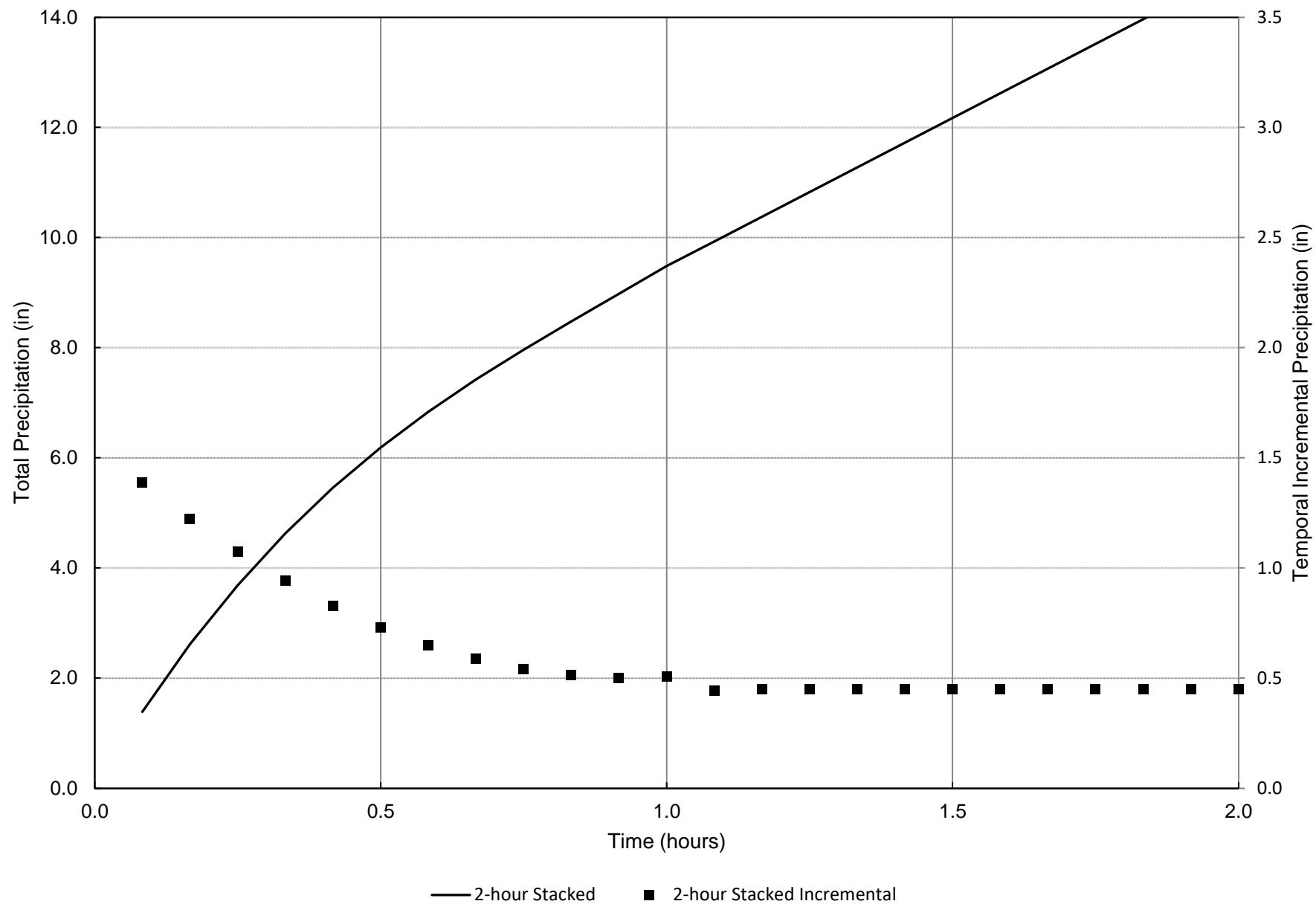
W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	REPS Temporal - Local Storm, 6 HR Synthetic West	Approved			

**6-Hr Local Storm, Synthetic, REPS Probable Maximum Precipitation
Without 7% "Atmospheric Moisture Factor"**

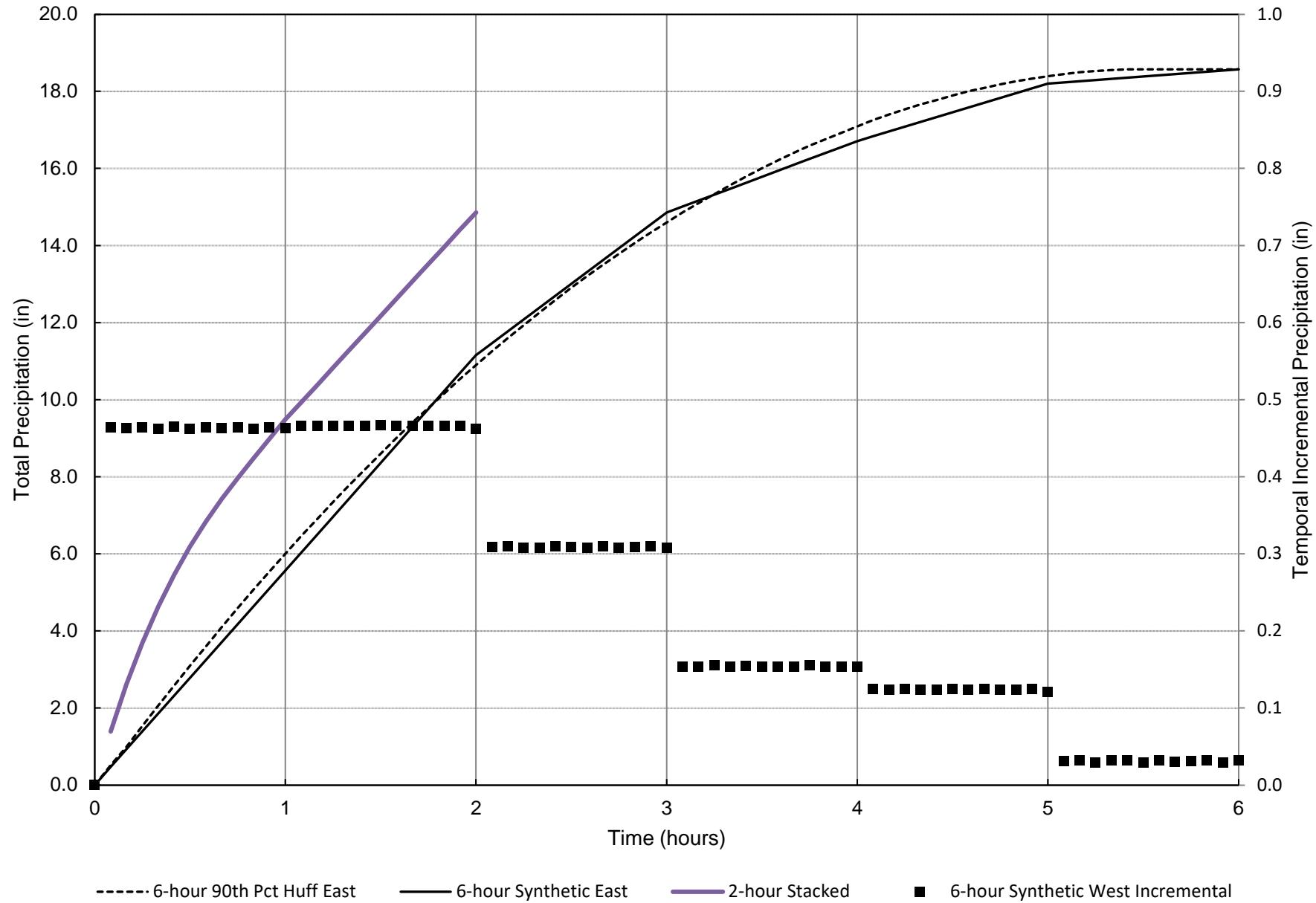
Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
0	0.00	0	0.00000	--
1	0.08	5	0.00200	0.00200
2	0.17	10	0.00400	0.00200
3	0.25	15	0.00400	0.00000
4	0.33	20	0.00600	0.00200
5	0.42	25	0.00800	0.00200
6	0.50	30	0.01000	0.00200
7	0.58	35	0.01200	0.00200
8	0.67	40	0.01400	0.00200
9	0.75	45	0.01400	0.00000
10	0.83	50	0.01600	0.00200
11	0.92	55	0.01800	0.00200
12	1.00	60	0.02000	0.00200
13	1.08	65	0.04200	0.02200
14	1.17	70	0.06600	0.02400
15	1.25	75	0.08800	0.02200
16	1.33	80	0.11200	0.02400
17	1.42	85	0.13600	0.02400
18	1.50	90	0.16000	0.02400
19	1.58	95	0.18400	0.02400
20	1.67	100	0.20900	0.02500
21	1.75	105	0.23300	0.02400
22	1.83	110	0.25500	0.02200
23	1.92	115	0.27900	0.02400
24	2.00	120	0.30100	0.02200
25	2.08	125	0.31100	0.01000
26	2.17	130	0.31900	0.00800
27	2.25	135	0.32700	0.00800
28	2.33	140	0.33500	0.00800
29	2.42	145	0.34300	0.00800
30	2.50	150	0.35100	0.00800
31	2.58	155	0.35900	0.00800
32	2.67	160	0.36700	0.00800
33	2.75	165	0.37700	0.01000
34	2.83	170	0.38500	0.00800
35	2.92	175	0.39300	0.00800
36	3.00	180	0.40100	0.00800

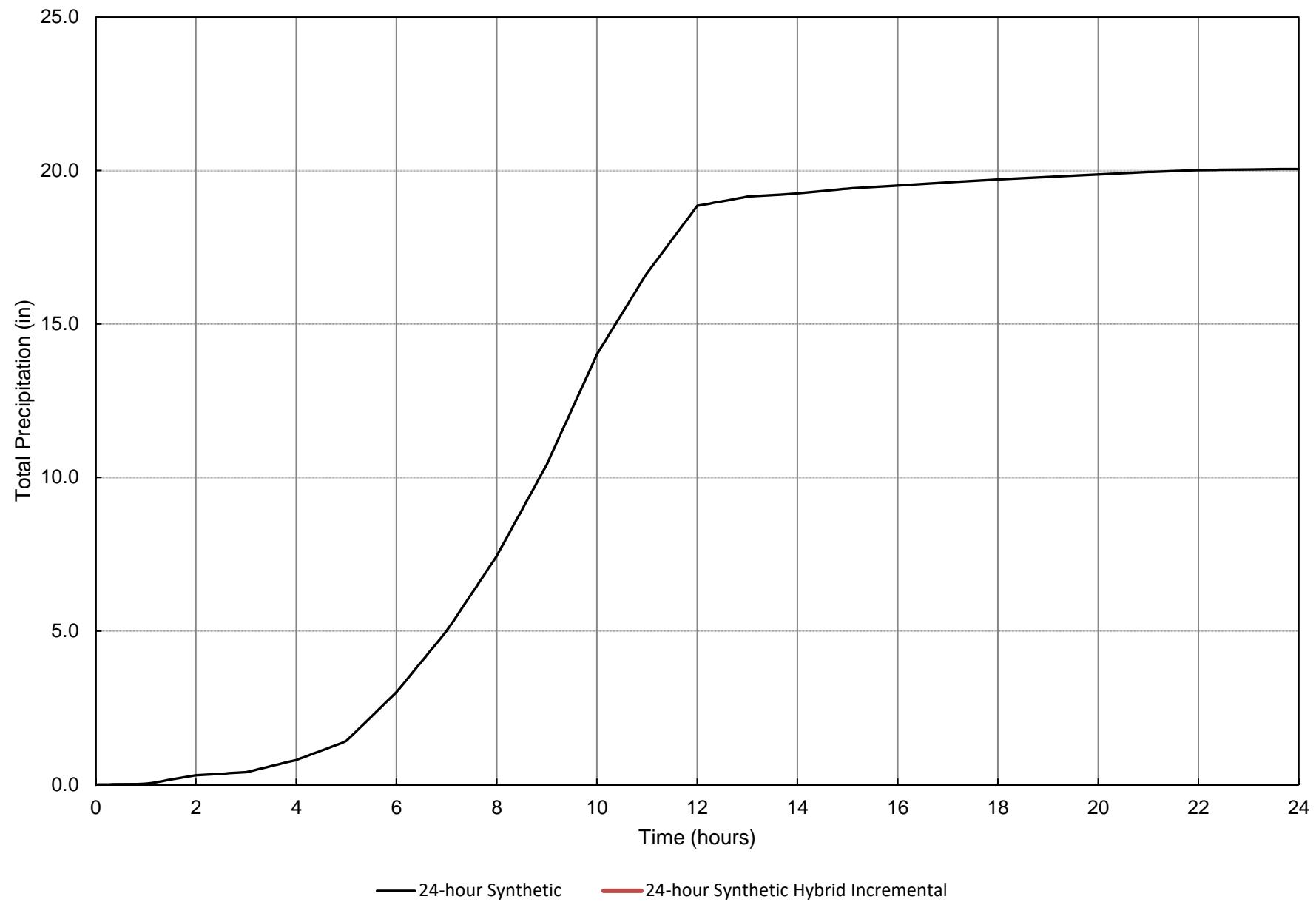


	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	REPS Temporal - Local Storm, 6 HR Synthetic West	Approved			


**6-Hr Local Storm, Synthetic, REPS Probable Maximum Precipitation
Without 7% "Atmospheric Moisture Factor"**

Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
37	3.08	185	0.43500	0.03400
38	3.17	190	0.46700	0.03200
39	3.25	195	0.50100	0.03400
40	3.33	200	0.53300	0.03200
41	3.42	205	0.56700	0.03400
42	3.50	210	0.59900	0.03200
43	3.58	215	0.63400	0.03500
44	3.67	220	0.66600	0.03200
45	3.75	225	0.70000	0.03400
46	3.83	230	0.73200	0.03200
47	3.92	235	0.76600	0.03400
48	4.00	240	0.79800	0.03200
49	4.08	245	0.84800	0.05000
50	4.17	250	0.89800	0.05000
51	4.25	255	0.95000	0.05200
52	4.33	260	1.00000	0.05000
53	4.42	265	1.05300	0.05300
54	4.50	270	1.10300	0.05000
55	4.58	275	1.15300	0.05000
56	4.67	280	1.20500	0.05200
57	4.75	285	1.25500	0.05000
58	4.83	290	1.30700	0.05200
59	4.92	295	1.35700	0.05000
60	5.00	300	1.41600	0.05900
61	5.08	305	1.54800	0.13200
62	5.17	310	1.68200	0.13400
63	5.25	315	1.81500	0.13300
64	5.33	320	1.94700	0.13200
65	5.42	325	2.07900	0.13200
66	5.50	330	2.21200	0.13300
67	5.58	335	2.34400	0.13200
68	5.67	340	2.47600	0.13200
69	5.75	345	2.61100	0.13500
70	5.83	350	2.74300	0.13200
71	5.92	355	2.87500	0.13200
72	6.00	360	3.00700	0.13200

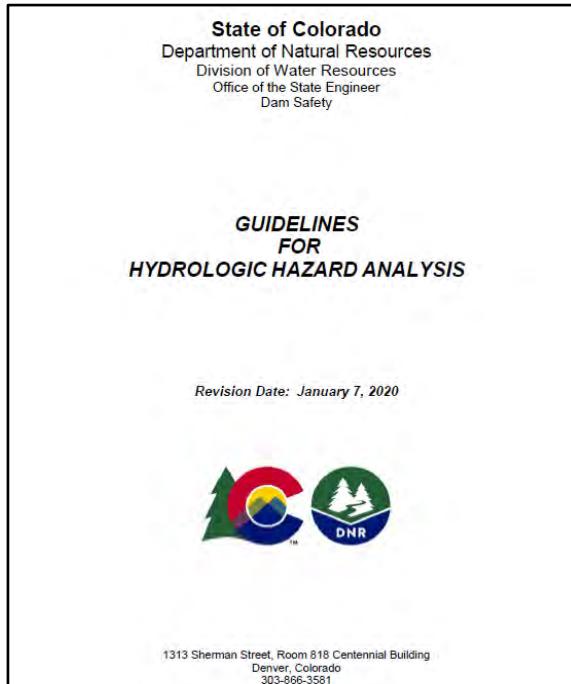

Julesberg Reservoir : REPS PMP Hyetograph - 100% General Storm


Julesberg Reservoir : REPS PMP Hyetograph - 100% 2-Hr Local Storm

Julesberg Reservoir : REPS PMP Hyetograph - 100% 6-Hr Local Storm

Julesberg Reservoir : REPS PMP Hyetograph - 100% 24-Hr Local Storm

W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal F	Approved			


OBJECTIVE:

Document the precipitation development for the Frequency Storms (FS) using MetPortal.

METHOD:

- Follow Guidance from the DWR's Guidelines for Hydrologic Hazard, Section 2.

Colorado Division of Water Resources, Dam Safety Branch (DWR, 2020-3), **Guidelines for Hydrologic Hazard Analysis**, January 7, 2020.

Section 2. A Procedure for Determining Hydrologic Hazard

2.1 A presumptive Hydrologic Hazard classification of *Extreme* (see the 2020 Rules, Rule 4.15) may be taken for design purposes with no further justification. *Extreme* Hydrologic Hazard requires an IDF based on probable maximum precipitation (PMP) in accordance with the 2020 Rules, Rule 7.2, Table 7.1.

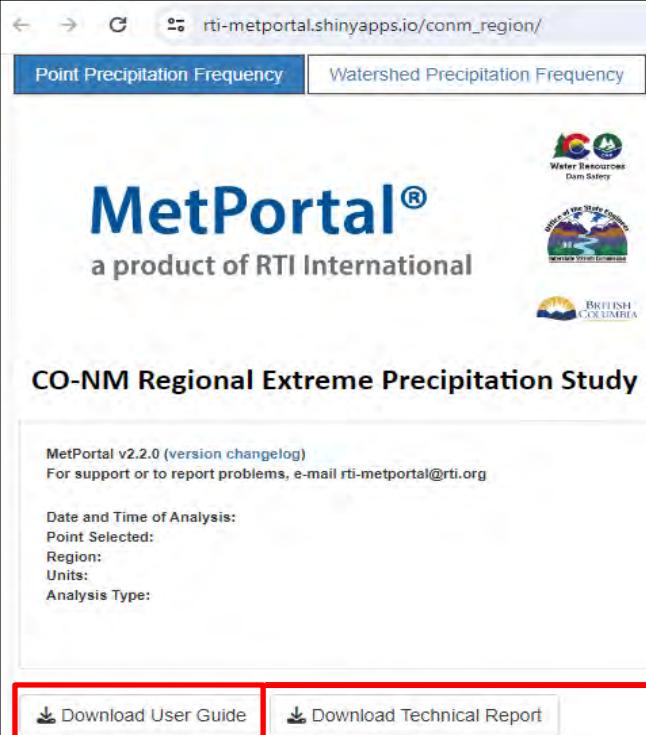
2.2 Otherwise, Hydrologic Hazard determination involves an overtopping dam breach analysis (or breach by other plausible hydrologic failure modes), associated flood routing, and consequence analysis. Consequence analysis includes estimating population at risk (PAR), warning adequacy, fatality rates, and expected life loss.

2.3 A spillway size must be assumed as a starting place for Hydrologic Hazard analysis. For an existing dam the existing spillway size should be used. For new dams or reservoir enlargement projects, a spillway sized to pass the flood from the Critical 1% annual exceedance probability (AEP) storm should be assumed because this is the minimum IDF allowable under the 2020 Rules for any Hydrologic Hazard category.

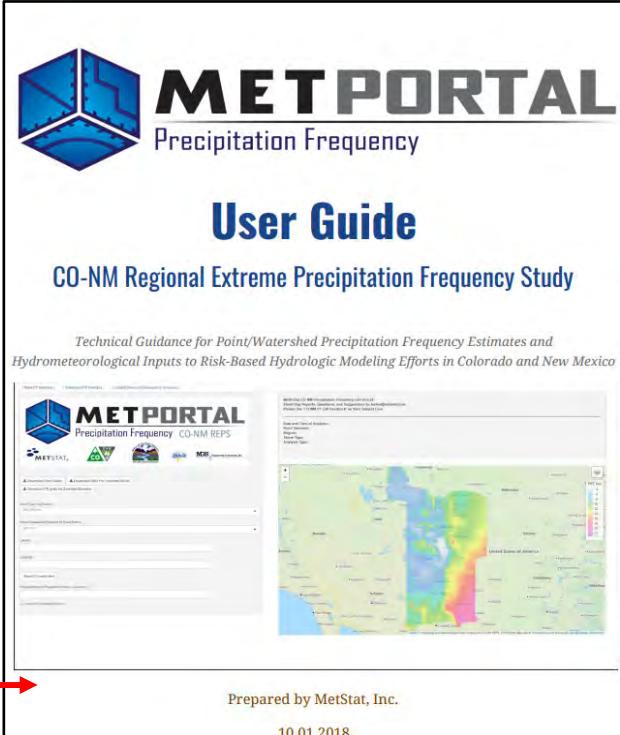
Table 7.1: Prescriptive IDF Requirements

Hydrologic Hazard	Critical ¹ Rainfall
Extreme	Probable Maximum Precipitation (PMP)
High	0.01% AEP
Significant	0.1% AEP
Low	1% AEP

Other Notation


AEP		ARI (yr)
10 ⁻⁴	1E-04	10,000
10 ⁻³	1E-03	1,000
10 ⁻²	1E-02	100

W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal F	Approved			


2. Launch the CO-NM REPS Precipitation Frequency on-line tool MetPortal.

MetPortal Online Tool: Version 2.2.0

Website: https://rti-metportal.shinyapps.io/conm_region/

The screenshot shows the MetPortal interface for the CO-NM Regional Extreme Precipitation Study. It features a header with the MetPortal logo, a sub-header for the CO-NM study, and sections for Point Precipitation Frequency and Watershed Precipitation Frequency. Logos for Colorado Water Resources and Water Safety, the U.S. Army Corps of Engineers, and British Columbia are displayed. A sidebar on the left provides version information and analysis parameters. At the bottom are links to download the User Guide and Technical Report.

The screenshot shows the MetPortal User Guide and Technical Report interface. It features a large 'METPORTAL Precipitation Frequency' logo and the title 'User Guide CO-NM Regional Extreme Precipitation Frequency Study'. Below this is a technical report abstract. The right side of the interface shows a map of the study area with precipitation frequency contours. A red arrow points from the 'Download User Guide' link on the left to the 'User Guide' section on the right.

User Guide:

MetStat, Inc., (MetStat, 2018) **MetPortal Precipitation Frequency User Guide**
CO-NM Regional Extreme Precipitation Frequency Study, Revised 01/01/2018.

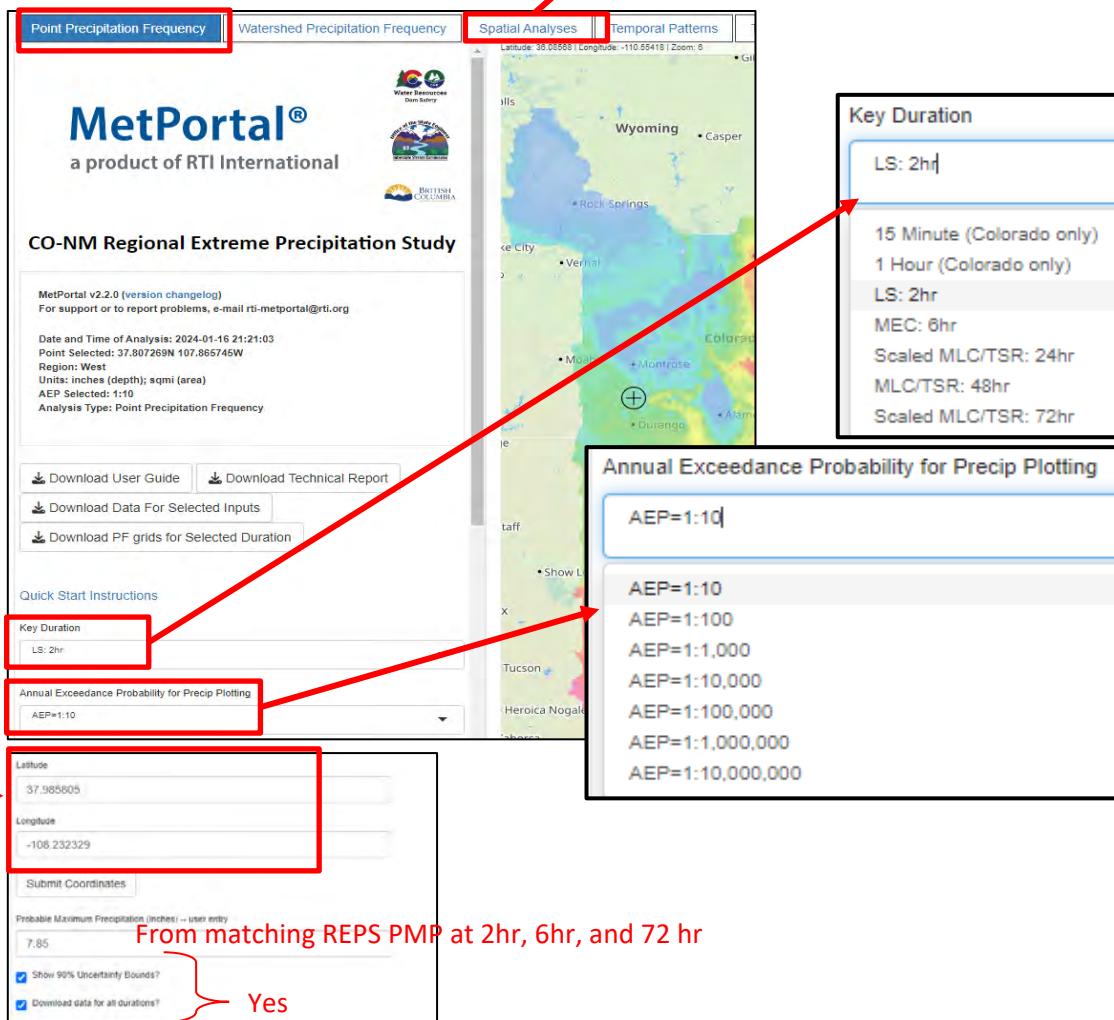
MetPortal is a web-based tool that generates point and watershed precipitation frequency estimates for the following storm types:

- Local Storms (LS), calculated from annual maximum series at 2-hr durations
- Mesoscale with Embedded Convection (MEC) storms, calculated from annual maximum series at 6-hr durations
- Midlatitude Cyclone/Tropical Storm Remnants (MLC/TSR), calculated from annual maximum series at 48-hr durations

For Julesberg Reservoir, the Point Precipitation Frequency was used, which does not apply an Areal Reduction Factor (ARF). The point based precipitation frequency interface is intended for watersheds of 50 mi² or less, which applies to this basin with a total basin area of 10.36 mi².

Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
Precip Documentation, MetPortal F	Approved			

3. Provide the required GUI entries and run the on-line MetPortal tool.


a. The calculated centroid of the whole watershed was used for the point precipitation estimate:

Latitude	40.93975
Longitude	-102.67966

Results were obtained for seven (unscaled) storm types and subsequent Annual Exceedance Probabilities (AEP) shown in the expanded dropdown menus below:

AEP	ARI (yr)
10 ⁻¹	1E-01
10 ⁻²	1E-02
10 ⁻³	1E-03
10 ⁻⁴	1E-04
10 ⁻⁵	1E-05
10 ⁻⁶	1E-06
10 ⁻⁷	1E-07

See Step 5.

Point Precipitation Frequency Watershed Precipitation Frequency Spatial Analyses Temporal Patterns

Latitude: 37.985805 | Longitude: -106.232329 | Zoom: 6

MetPortal®
a product of RTI International

CO-NM Regional Extreme Precipitation Study

MetPortal v2.2.0 (version changelog)
For support or to report problems, e-mail rti-metportal@rti.org

Date and Time of Analysis: 2024-01-16 21:21:03
Point Selected: 37.807269N 107.865745W
Region: West
Units: inches (depth): sqmi (area)
AEP Selected: 1:10
Analysis Type: Point Precipitation Frequency

Download User Guide Download Technical Report
Download Data For Selected Inputs
Download PF grids for Selected Duration

Quick Start Instructions

Key Duration
LS: 2hr

Annual Exceedance Probability for Precip Plotting
AEP=1:10

Latitude
37.985805
Longitude
-106.232329
Submit Coordinates

Probable Maximum Precipitation (inches) -- user entry
7.85
Show 99% Uncertainty Bounds? Yes
Download data for all durations? Yes

Key Duration

- LS: 2hr
- 15 Minute (Colorado only)
- 1 Hour (Colorado only)
- LS: 2hr
- MEC: 6hr
- Scaled MLC/TSR: 24hr
- MLC/TSR: 48hr
- Scaled MLC/TSR: 72hr

Annual Exceedance Probability for Precip Plotting

- AEP=1:10
- AEP=1:100
- AEP=1:1,000
- AEP=1:10,000
- AEP=1:100,000
- AEP=1:1,000,000
- AEP=1:10,000,000

From matching REPS PMP at 2hr, 6hr, and 72 hr

Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
Precip Documentation, MetPortal F	Approved			

4. MetPortal Watershed Precipitation Frequency Results

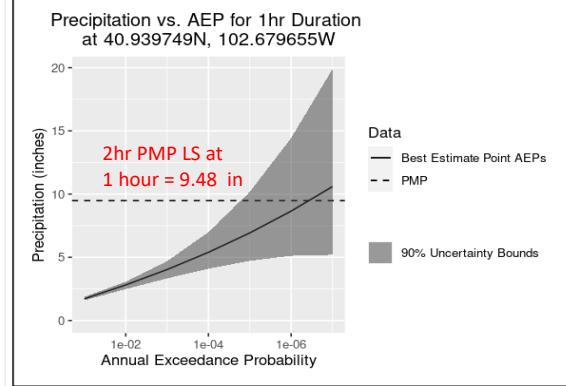
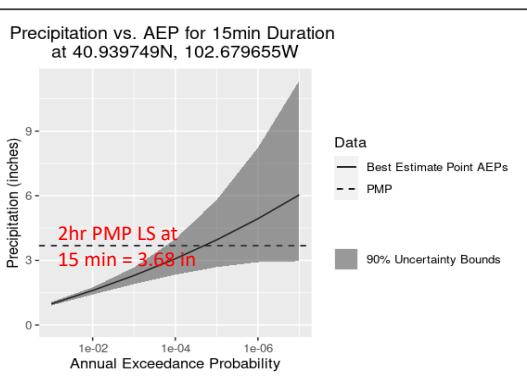
a. The table summary below was re-created directly from the MetPortal "Point Precipitation Frequency Interface".

NOTE: The values for the 2-hr and 48-hr storms are the cumulative values at exactly **2 and 48 hrs**. The temporal analysis which provides the Hyetograph for HEC-HMS entry extended beyond 2 and 48 hrs, resulting in slightly higher total precipitation depths which are reflected in the HEC-HMS rainfall-runoff modeling.

MetPortal Point Precipitation Frequency Summary Table

AEP (yr)	ARI (yr)	15-min Storm (in)	1-hr Storm (in)	2-hr Local Storm ⁽¹⁾ (in)	6-hr MEC storm ⁽²⁾ (in)	48-hr MLC/TSR (in)
1E-01	10	0.98	1.72	1.97	2.20	3.33
1E-02	100	1.61	2.82	3.22	3.52	5.08
1E-03	1,000	2.30	4.03	4.61	5.04	6.92
1E-04	10,000	3.08	5.39	6.18	6.83	8.87
1E-05	100,000	3.95	6.93	7.93	8.93	10.95
1E-06	1,000,000	4.93	8.65	9.91	11.40	13.16
1E-07	10,000,000	6.04	10.59	12.129	14.306	15.50

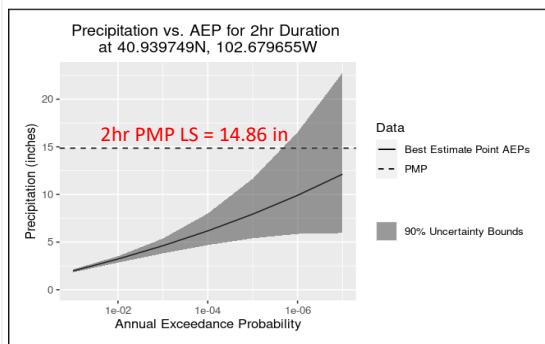
NOTE

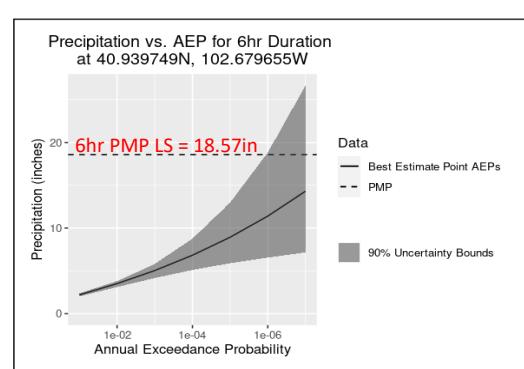


1. LS areal coverage is typically less than 50 mi², **approximately 10X Total Basin**
2. MEC storm types can produce large floods on intermediate size watersheds of less than 1,000 mi²

Precipitation (inches) for 15min Duration and Given AEP at 40.939749N, 102.679655W

	Lower Bound - 5% (inches)	Best Estimate (inches)	Upper Bound - 95% (inches)
AEP=1:10	0.91	0.98	1.07
AEP=1:100	1.42	1.61	1.75
AEP=1:1,000	1.90	2.30	2.67
AEP=1:10,000	2.34	3.08	3.98
AEP=1:100,000	2.69	3.95	5.80
AEP=1:1,000,000	2.92	4.93	8.23
AEP=1:10,000,000	2.96	6.04	11.34

Precipitation (inches) for 1hr Duration and Given AEP at 40.939749N, 102.679655W

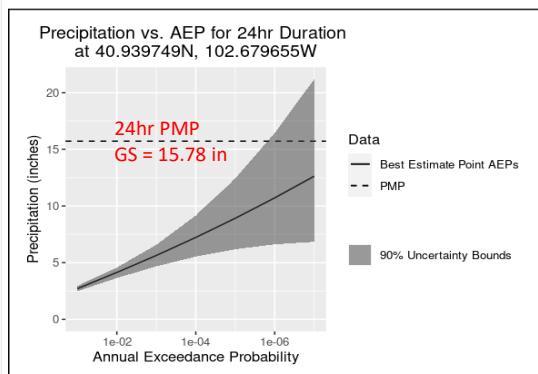
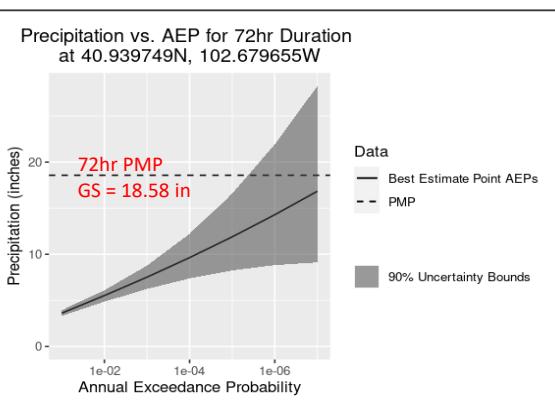

	Lower Bound - 5% (inches)	Best Estimate (inches)	Upper Bound - 95% (inches)
AEP=1:10	1.60	1.72	1.87
AEP=1:100	2.49	2.82	3.07
AEP=1:1,000	3.33	4.03	4.69
AEP=1:10,000	4.10	5.39	6.99
AEP=1:100,000	4.72	6.93	10.18
AEP=1:1,000,000	5.12	8.65	14.43
AEP=1:10,000,000	5.20	10.59	19.89


Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
Precip Documentation, MetPortal F	Approved			

Precipitation (inches) for 2hr Duration and Given AEP at 40.939749N, 102.679655W

	Lower Bound - 5% (inches)	Best Estimate (inches)	Upper Bound - 95% (inches)
AEP=1:10	1.83	1.97	2.14
AEP=1:100	2.85	3.22	3.51
AEP=1:1,000	3.81	4.61	5.37
AEP=1:10,000	4.69	6.18	8.00
AEP=1:100,000	5.40	7.93	11.65
AEP=1:1,000,000	5.86	9.91	16.52
AEP=1:10,000,000	5.95	12.13	22.77

Precipitation (inches) for 6hr Duration and Given AEP at 40.939749N, 102.679655W



	Lower Bound - 5% (inches)	Best Estimate (inches)	Upper Bound - 95% (inches)
AEP=1:10	2.02	2.20	2.38
AEP=1:100	3.12	3.52	3.81
AEP=1:1,000	4.16	5.04	5.82
AEP=1:10,000	5.10	6.83	8.76
AEP=1:100,000	5.90	8.93	12.98
AEP=1:1,000,000	6.55	11.40	18.82
AEP=1:10,000,000	7.16	14.31	26.64

Precipitation (inches) for 72hr Duration and Given AEP at 40.939749N, 102.679655W

	Lower Bound - 5% (inches)	Best Estimate (inches)	Upper Bound - 95% (inches)
AEP=1:10	3.31	3.62	3.93
AEP=1:100	4.87	5.52	6.09
AEP=1:1,000	6.24	7.52	8.77
AEP=1:10,000	7.39	9.64	12.22
AEP=1:100,000	8.25	11.90	16.58
AEP=1:1,000,000	8.83	14.30	21.93
AEP=1:10,000,000	9.12	16.85	28.26

Precipitation (inches) for 24hr Duration and Given AEP at 40.939749N, 102.679655W

	Lower Bound - 5% (inches)	Best Estimate (inches)	Upper Bound - 95% (inches)
AEP=1:10	2.48	2.71	2.95
AEP=1:100	3.65	4.14	4.57
AEP=1:1,000	4.68	5.64	6.58
AEP=1:10,000	5.54	7.23	9.16
AEP=1:100,000	6.19	8.92	12.43
AEP=1:1,000,000	6.62	10.72	16.44
AEP=1:10,000,000	6.84	12.63	21.18

W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		

2-Hr Local Storm, Synthetic Storm, AEP = 1E-01 Hyetograph
Without 7% "Atmospheric Moisture Factor"

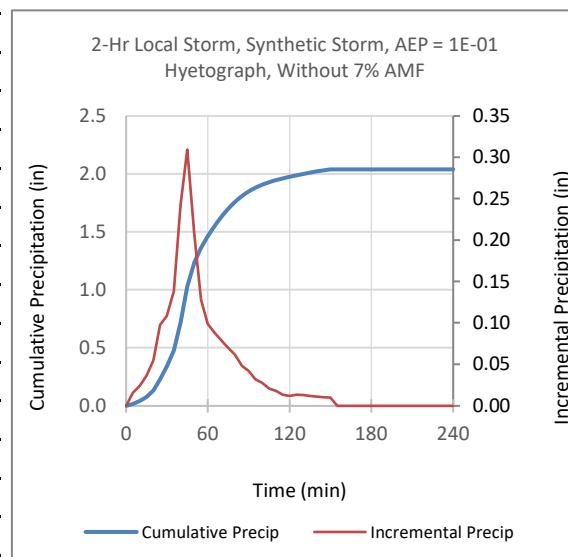
Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
0	0.00	0	0.00000	0.00000
1	0.08	5	0.01557	0.01557
2	0.17	10	0.02385	0.03942
3	0.25	15	0.03646	0.07588
4	0.33	20	0.05440	0.13028
5	0.42	25	0.09756	0.22785
6	0.50	30	0.10840	0.33625
7	0.58	35	0.13797	0.47422
8	0.67	40	0.24243	0.71666
9	0.75	45	0.30945	1.02610
10	0.83	50	0.20695	1.23306
11	0.92	55	0.12811	1.36117
12	1.00	60	0.09875	1.45992
13	1.08	65	0.08830	1.54822
14	1.17	70	0.07864	1.62686
15	1.25	75	0.06977	1.69664
16	1.33	80	0.06169	1.75833
17	1.42	85	0.04790	1.80622
18	1.50	90	0.04179	1.84801
19	1.58	95	0.03173	1.87974
20	1.67	100	0.02759	1.90734
21	1.75	105	0.02070	1.92803
22	1.83	110	0.01794	1.94597
23	1.92	115	0.01340	1.95937
24	2.00	120	0.01163	1.97100
25	2.08	125	0.01340	1.98440
26	2.17	130	0.01281	1.99721
27	2.25	135	0.01183	2.00904
28	2.33	140	0.01104	2.02008
29	2.42	145	0.01025	2.03033
30	2.50	150	0.00966	2.03998
31	2.58	155	0.00000	2.03998
32	2.67	160	0.00000	2.03998
33	2.75	165	0.00000	2.03998
34	2.83	170	0.00000	2.03998
35	2.92	175	0.00000	2.03998
36	3.00	180	0.00000	2.03998
37	3.08	185	0.00000	2.03998

MetPortal v2.2.0

Date and Time of Analysis: 2024-07-10
20:56:46

Point Selected: 40.939749N 102.679655W

Region: East


Units: inches (depth); sqmi (area)

Storm Type: Local Storm

Analysis Type: Temporal

ARF applied: No

Storm Selected: Synthetic Storm

<p>W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers</p>	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		

2-Hr Local Storm, Synthetic Storm, AEP = 1E-01 Hyetograph
Without 7% "Atmospheric Moisture Factor"

Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)	
38	3.17	190	0.00000	2.03998	
39	3.25	195	0.00000	2.03998	
40	3.33	200	0.00000	2.03998	
41	3.42	205	0.00000	2.03998	
42	3.50	210	0.00000	2.03998	
43	3.58	215	0.00000	2.03998	
44	3.67	220	0.00000	2.03998	
45	3.75	225	0.00000	2.03998	
46	3.83	230	0.00000	2.03998	
47	3.92	235	0.00000	2.03998	
48	4.00	240	0.00000	2.03998	

<p>W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers</p>	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		

**6-Hr MEC Storm, Synthetic Storm, AEP = 1E-01 Hyetograph
Without 7% "Atmospheric Moisture Factor"**

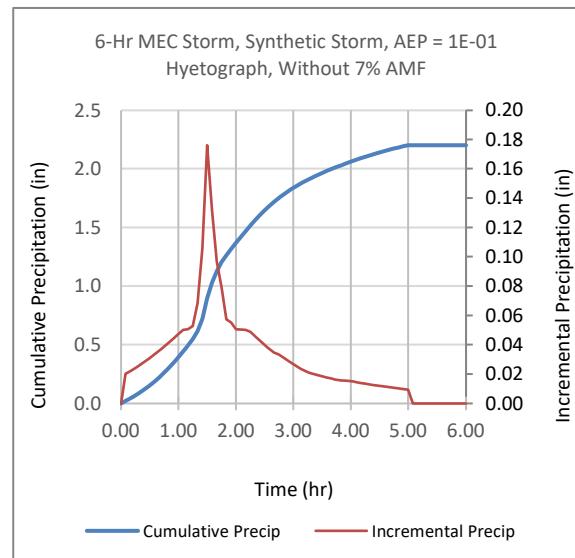
Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
0	0.00	0	0.00000	0.00000
1	0.08	5	0.02025	0.02025
2	0.17	10	0.02201	0.04226
3	0.25	15	0.02421	0.06647
4	0.33	20	0.02619	0.09266
5	0.42	25	0.02839	0.12105
6	0.50	30	0.03081	0.15187
7	0.58	35	0.03324	0.18510
8	0.67	40	0.03588	0.22098
9	0.75	45	0.03852	0.25950
10	0.83	50	0.04138	0.30088
11	0.92	55	0.04424	0.34512
12	1.00	60	0.04732	0.39244
13	1.08	65	0.05018	0.44262
14	1.17	70	0.05062	0.49324
15	1.25	75	0.05282	0.54607
16	1.33	80	0.06823	0.61430
17	1.42	85	0.10565	0.71995
18	1.50	90	0.17608	0.89603
19	1.58	95	0.13206	1.02809
20	1.67	100	0.09684	1.12493
21	1.75	105	0.07924	1.20417
22	1.83	110	0.05723	1.26139
23	1.92	115	0.05502	1.31642
24	2.00	120	0.05062	1.36704
25	2.08	125	0.05040	1.41744
26	2.17	130	0.05018	1.46763
27	2.25	135	0.04886	1.51649
28	2.33	140	0.04578	1.56227
29	2.42	145	0.04270	1.60497
30	2.50	150	0.03984	1.64481
31	2.58	155	0.03720	1.68200
32	2.67	160	0.03456	1.71656
33	2.75	165	0.03324	1.74979
34	2.83	170	0.03103	1.78083
35	2.92	175	0.02861	1.80944
36	3.00	180	0.02685	1.83629
37	3.08	185	0.02487	1.86117

MetPortal v2.2.0

**Date and Time of Analysis: 2024-07-10
20:57:03**

Point Selected: 40.939749N 102.679655W

Region: East


Units: inches (depth); sqmi (area)

Storm Type: MEC

Analysis Type: Temporal

ARF applied: No

Storm Selected: Front-Loaded Synthetic St

<p>W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers</p>	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		

6-Hr MEC Storm, Synthetic Storm, AEP = 1E-01 Hyetograph
Without 7% "Atmospheric Moisture Factor"

Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
38	3.17	190	0.02289	1.88406
39	3.25	195	0.02113	1.90519
40	3.33	200	0.02025	1.92543
41	3.42	205	0.01937	1.94480
42	3.50	210	0.01849	1.96329
43	3.58	215	0.01761	1.98090
44	3.67	220	0.01695	1.99785
45	3.75	225	0.01607	2.01391
46	3.83	230	0.01563	2.02954
47	3.92	235	0.01541	2.04495
48	4.00	240	0.01519	2.06014
49	4.08	245	0.01453	2.07466
50	4.17	250	0.01387	2.08853
51	4.25	255	0.01343	2.10195
52	4.33	260	0.01277	2.11472
53	4.42	265	0.01233	2.12705
54	4.50	270	0.01189	2.13893
55	4.58	275	0.01145	2.15038
56	4.67	280	0.01100	2.16138
57	4.75	285	0.01056	2.17195
58	4.83	290	0.01012	2.18207
59	4.92	295	0.00968	2.19176
60	5.00	300	0.00924	2.20100
61	5.08	305	0.00000	2.20100
62	5.17	310	0.00000	2.20100
63	5.25	315	0.00000	2.20100
64	5.33	320	0.00000	2.20100
65	5.42	325	0.00000	2.20100
66	5.50	330	0.00000	2.20100
67	5.58	335	0.00000	2.20100
68	5.67	340	0.00000	2.20100
69	5.75	345	0.00000	2.20100
70	5.83	350	0.00000	2.20100
71	5.92	355	0.00000	2.20100
72	6.00	360	0.00000	2.20100

W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		

48-Hr MLC Storm, Synthetic Storm, AEP = 1E-01 Hyetograph
Without 7% "Atmospheric Moisture Factor"

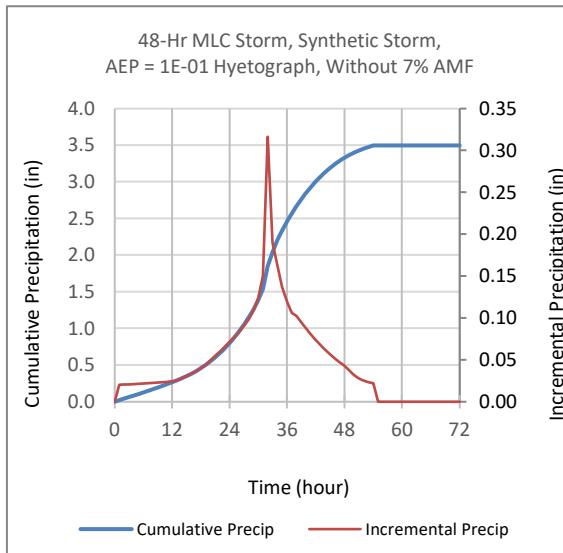
Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
0	0.00	0	0.00000	0.00000
1	1.00	60	0.01997	0.01997
2	2.00	120	0.02030	0.04027
3	3.00	180	0.02063	0.06090
4	4.00	240	0.02097	0.08187
5	5.00	300	0.02130	0.10317
6	6.00	360	0.02163	0.12480
7	7.00	420	0.02196	0.14676
8	8.00	480	0.02230	0.16906
9	9.00	540	0.02263	0.19169
10	10.00	600	0.02296	0.21466
11	11.00	660	0.02363	0.23828
12	12.00	720	0.02429	0.26258
13	13.00	780	0.02496	0.28754
14	14.00	840	0.02796	0.31549
15	15.00	900	0.03028	0.34578
16	16.00	960	0.03328	0.37906
17	17.00	1020	0.03628	0.41533
18	18.00	1080	0.03994	0.45527
19	19.00	1140	0.04393	0.49920
20	20.00	1200	0.04925	0.54845
21	21.00	1260	0.05491	0.60337
22	22.00	1320	0.05990	0.66327
23	23.00	1380	0.06556	0.72883
24	24.00	1440	0.07155	0.80038
25	25.00	1500	0.07688	0.87726
26	26.00	1560	0.08353	0.96079
27	27.00	1620	0.09085	1.05165
28	28.00	1680	0.09851	1.15016
29	29.00	1740	0.10949	1.25965
30	30.00	1800	0.12314	1.38278
31	31.00	1860	0.14976	1.53254
32	32.00	1920	0.31616	1.84870
33	33.00	1980	0.18970	2.03840
34	34.00	2040	0.16307	2.20147
35	35.00	2100	0.13645	2.33792
36	36.00	2160	0.11981	2.45773
37	37.00	2220	0.10616	2.56389

MetPortal v2.2.0

Date and Time of Analysis: 2024-07-10
20:56:32

Point Selected: 40.939749N 102.679655W

Region: East


Units: inches (depth); sqmi (area)

Storm Type: MLC

Analysis Type: Temporal

ARF applied: No

Storm Selected: Center-Loaded Synthetic S

<p>W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers</p>	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		

48-Hr MLC Storm, Synthetic Storm, AEP = 1E-01 Hyetograph
Without 7% "Atmospheric Moisture Factor"

Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
38	38.00	2280	0.10217	2.66606
39	39.00	2340	0.09452	2.76058
40	40.00	2400	0.08719	2.84777
41	41.00	2460	0.08020	2.92797
42	42.00	2520	0.07355	3.00152
43	43.00	2580	0.06756	3.06908
44	44.00	2640	0.06190	3.13098
45	45.00	2700	0.05624	3.18723
46	46.00	2760	0.05125	3.23848
47	47.00	2820	0.04692	3.28540
48	48.00	2880	0.04260	3.32800
49	49.00	2940	0.03727	3.36527
50	50.00	3000	0.03162	3.39689
51	51.00	3060	0.02762	3.42451
52	52.00	3120	0.02496	3.44947
53	53.00	3180	0.02296	3.47244
54	54.00	3240	0.02196	3.49440
55	55.00	3300	0.00000	3.49440
56	56.00	3360	0.00000	3.49440
57	57.00	3420	0.00000	3.49440
58	58.00	3480	0.00000	3.49440
59	59.00	3540	0.00000	3.49440
60	60.00	3600	0.00000	3.49440
61	61.00	3660	0.00000	3.49440
62	62.00	3720	0.00000	3.49440
63	63.00	3780	0.00000	3.49440
64	64.00	3840	0.00000	3.49440
65	65.00	3900	0.00000	3.49440
66	66.00	3960	0.00000	3.49440
67	67.00	4020	0.00000	3.49440
68	68.00	4080	0.00000	3.49440
69	69.00	4140	0.00000	3.49440
70	70.00	4200	0.00000	3.49440
71	71.00	4260	0.00000	3.49440
72	72.00	4320	0.00000	3.49440

W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		

**2-Hr Local Storm, Synthetic Storm, AEP = 1E-02 Hyetograph
Without 7% "Atmospheric Moisture Factor"**

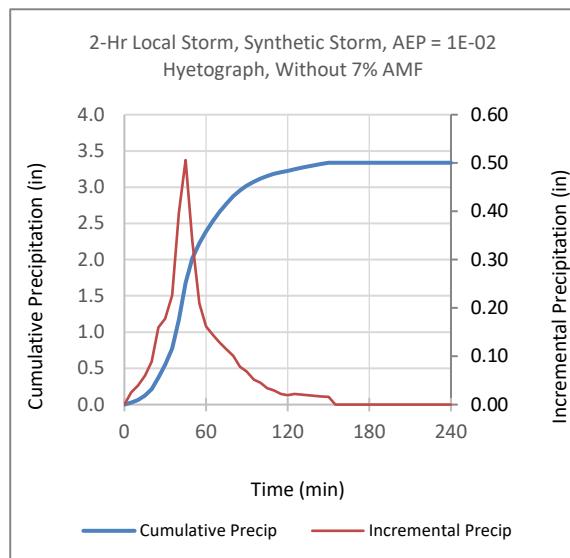
Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
0	0.00	0	0.00000	0.00000
1	0.08	5	0.02547	0.02547
2	0.17	10	0.03901	0.06448
3	0.25	15	0.05964	0.12412
4	0.33	20	0.08898	0.21311
5	0.42	25	0.15959	0.37269
6	0.50	30	0.17732	0.55001
7	0.58	35	0.22568	0.77569
8	0.67	40	0.39655	1.17225
9	0.75	45	0.50617	1.67841
10	0.83	50	0.33852	2.01693
11	0.92	55	0.20956	2.22649
12	1.00	60	0.16152	2.38802
13	1.08	65	0.14444	2.53245
14	1.17	70	0.12864	2.66109
15	1.25	75	0.11413	2.77522
16	1.33	80	0.10091	2.87613
17	1.42	85	0.07834	2.95447
18	1.50	90	0.06835	3.02282
19	1.58	95	0.05191	3.07473
20	1.67	100	0.04514	3.11986
21	1.75	105	0.03385	3.15372
22	1.83	110	0.02934	3.18306
23	1.92	115	0.02192	3.20498
24	2.00	120	0.01902	3.22400
25	2.08	125	0.02192	3.24592
26	2.17	130	0.02096	3.26688
27	2.25	135	0.01934	3.28622
28	2.33	140	0.01805	3.30428
29	2.42	145	0.01676	3.32104
30	2.50	150	0.01580	3.33684
31	2.58	155	0.00000	3.33684
32	2.67	160	0.00000	3.33684
33	2.75	165	0.00000	3.33684
34	2.83	170	0.00000	3.33684
35	2.92	175	0.00000	3.33684
36	3.00	180	0.00000	3.33684
37	3.08	185	0.00000	3.33684

MetPortal v2.2.0

**Date and Time of Analysis: 2024-07-10
20:56:46**

Point Selected: 40.939749N 102.679655W

Region: East


Units: inches (depth); sqmi (area)

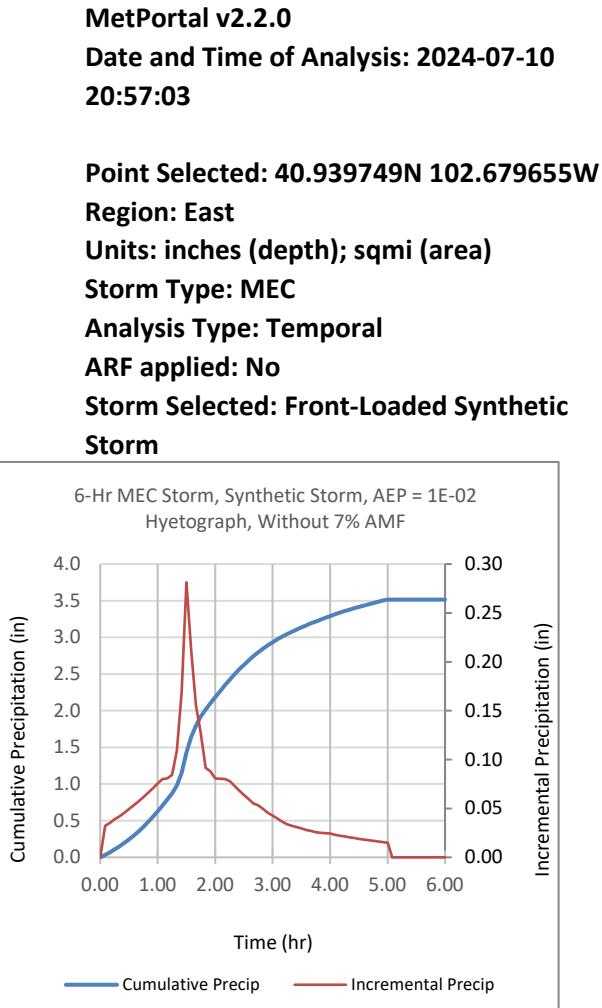
Storm Type: Local Storm

Analysis Type: Temporal

ARF applied: No

Storm Selected: Synthetic Storm

W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		


2-Hr Local Storm, Synthetic Storm, AEP = 1E-02 Hyetograph
Without 7% "Atmospheric Moisture Factor"

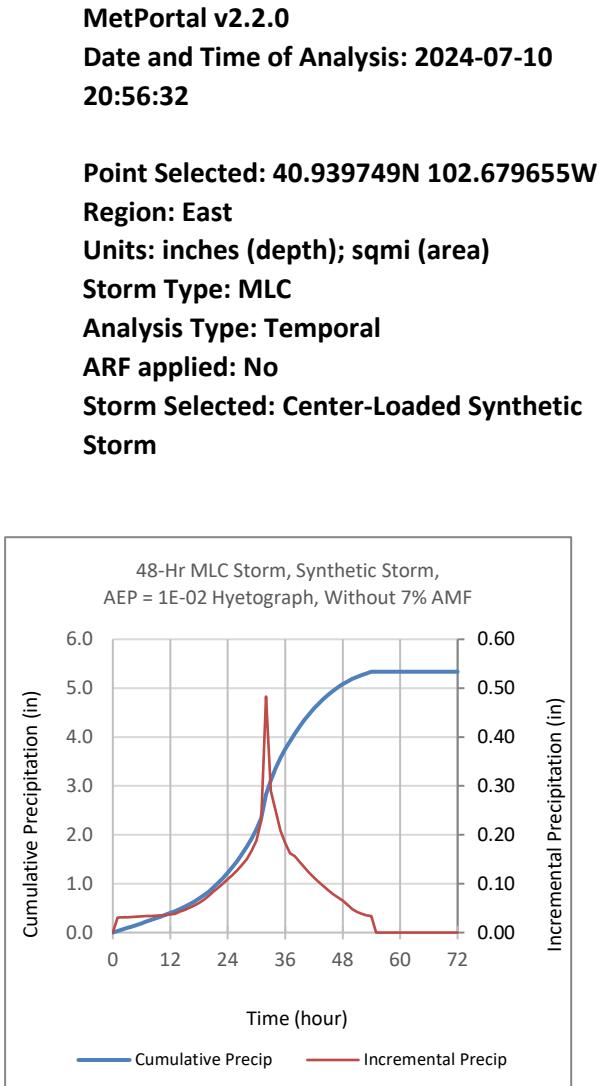
Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)	
38	3.17	190	0.00000	3.33684	
39	3.25	195	0.00000	3.33684	
40	3.33	200	0.00000	3.33684	
41	3.42	205	0.00000	3.33684	
42	3.50	210	0.00000	3.33684	
43	3.58	215	0.00000	3.33684	
44	3.67	220	0.00000	3.33684	
45	3.75	225	0.00000	3.33684	
46	3.83	230	0.00000	3.33684	
47	3.92	235	0.00000	3.33684	
48	4.00	240	0.00000	3.33684	

W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		

**6-Hr MEC Storm, Synthetic Storm, AEP = 1E-02 Hyetograph
Without 7% "Atmospheric Moisture Factor"**

Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
0	0.00	0	0.00000	0.00000
1	0.08	5	0.03235	0.03235
2	0.17	10	0.03516	0.06751
3	0.25	15	0.03868	0.10618
4	0.33	20	0.04184	0.14802
5	0.42	25	0.04536	0.19338
6	0.50	30	0.04922	0.24260
7	0.58	35	0.05309	0.29570
8	0.67	40	0.05731	0.35301
9	0.75	45	0.06153	0.41454
10	0.83	50	0.06610	0.48064
11	0.92	55	0.07067	0.55131
12	1.00	60	0.07559	0.62690
13	1.08	65	0.08016	0.70707
14	1.17	70	0.08087	0.78794
15	1.25	75	0.08438	0.87232
16	1.33	80	0.10900	0.98132
17	1.42	85	0.16877	1.15008
18	1.50	90	0.28128	1.43136
19	1.58	95	0.21096	1.64232
20	1.67	100	0.15470	1.79703
21	1.75	105	0.12658	1.92360
22	1.83	110	0.09142	2.01502
23	1.92	115	0.08790	2.10292
24	2.00	120	0.08087	2.18379
25	2.08	125	0.08052	2.26430
26	2.17	130	0.08016	2.34447
27	2.25	135	0.07806	2.42252
28	2.33	140	0.07313	2.49566
29	2.42	145	0.06821	2.56387
30	2.50	150	0.06364	2.62751
31	2.58	155	0.05942	2.68693
32	2.67	160	0.05520	2.74213
33	2.75	165	0.05309	2.79522
34	2.83	170	0.04958	2.84480
35	2.92	175	0.04571	2.89050
36	3.00	180	0.04290	2.93340
37	3.08	185	0.03973	2.97313

W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		


6-Hr MEC Storm, Synthetic Storm, AEP = 1E-02 Hyetograph
Without 7% "Atmospheric Moisture Factor"

Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
38	3.17	190	0.03657	3.00970
39	3.25	195	0.03375	3.04345
40	3.33	200	0.03235	3.07580
41	3.42	205	0.03094	3.10674
42	3.50	210	0.02953	3.13627
43	3.58	215	0.02813	3.16440
44	3.67	220	0.02707	3.19147
45	3.75	225	0.02567	3.21714
46	3.83	230	0.02496	3.24210
47	3.92	235	0.02461	3.26672
48	4.00	240	0.02426	3.29098
49	4.08	245	0.02321	3.31418
50	4.17	250	0.02215	3.33633
51	4.25	255	0.02145	3.35778
52	4.33	260	0.02039	3.37817
53	4.42	265	0.01969	3.39786
54	4.50	270	0.01899	3.41685
55	4.58	275	0.01828	3.43513
56	4.67	280	0.01758	3.45271
57	4.75	285	0.01688	3.46959
58	4.83	290	0.01617	3.48576
59	4.92	295	0.01547	3.50123
60	5.00	300	0.01477	3.51600
61	5.08	305	0.00000	3.51600
62	5.17	310	0.00000	3.51600
63	5.25	315	0.00000	3.51600
64	5.33	320	0.00000	3.51600
65	5.42	325	0.00000	3.51600
66	5.50	330	0.00000	3.51600
67	5.58	335	0.00000	3.51600
68	5.67	340	0.00000	3.51600
69	5.75	345	0.00000	3.51600
70	5.83	350	0.00000	3.51600
71	5.92	355	0.00000	3.51600
72	6.00	360	0.00000	3.51600

W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		

48-Hr MLC Storm, Synthetic Storm, AEP = 1E-02 Hyetograph
Without 7% "Atmospheric Moisture Factor"

Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
0	0.00	0	0.00000	0.00000
1	1.00	60	0.03050	0.03050
2	2.00	120	0.03101	0.06150
3	3.00	180	0.03151	0.09302
4	4.00	240	0.03202	0.12504
5	5.00	300	0.03253	0.15757
6	6.00	360	0.03304	0.19061
7	7.00	420	0.03355	0.22416
8	8.00	480	0.03406	0.25822
9	9.00	540	0.03456	0.29278
10	10.00	600	0.03507	0.32785
11	11.00	660	0.03609	0.36394
12	12.00	720	0.03711	0.40105
13	13.00	780	0.03812	0.43917
14	14.00	840	0.04270	0.48187
15	15.00	900	0.04626	0.52812
16	16.00	960	0.05083	0.57895
17	17.00	1020	0.05540	0.63436
18	18.00	1080	0.06100	0.69535
19	19.00	1140	0.06710	0.76245
20	20.00	1200	0.07523	0.83768
21	21.00	1260	0.08387	0.92155
22	22.00	1320	0.09149	1.01304
23	23.00	1380	0.10014	1.11318
24	24.00	1440	0.10928	1.22246
25	25.00	1500	0.11742	1.33988
26	26.00	1560	0.12758	1.46746
27	27.00	1620	0.13877	1.60623
28	28.00	1680	0.15046	1.75668
29	29.00	1740	0.16723	1.92392
30	30.00	1800	0.18807	2.11199
31	31.00	1860	0.22874	2.34072
32	32.00	1920	0.48289	2.82361
33	33.00	1980	0.28973	3.11334
34	34.00	2040	0.24907	3.36240
35	35.00	2100	0.20840	3.57081

<p>W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers</p>	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		

48-Hr MLC Storm, Synthetic Storm, AEP = 1E-02 Hyetograph
Without 7% "Atmospheric Moisture Factor"

Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
36	36.00	2160	0.18299	3.75380
37	37.00	2220	0.16215	3.91594
38	38.00	2280	0.15605	4.07199
39	39.00	2340	0.14436	4.21635
40	40.00	2400	0.13317	4.34952
41	41.00	2460	0.12250	4.47202
42	42.00	2520	0.11233	4.58436
43	43.00	2580	0.10318	4.68754
44	44.00	2640	0.09454	4.78209
45	45.00	2700	0.08590	4.86799
46	46.00	2760	0.07828	4.94627
47	47.00	2820	0.07167	5.01794
48	48.00	2880	0.06506	5.08300
49	49.00	2940	0.05693	5.13993
50	50.00	3000	0.04829	5.18822
51	51.00	3060	0.04219	5.23041
52	52.00	3120	0.03812	5.26853
53	53.00	3180	0.03507	5.30360
54	54.00	3240	0.03355	5.33715
55	55.00	3300	0.00000	5.33715
56	56.00	3360	0.00000	5.33715
57	57.00	3420	0.00000	5.33715
58	58.00	3480	0.00000	5.33715
59	59.00	3540	0.00000	5.33715
60	60.00	3600	0.00000	5.33715
61	61.00	3660	0.00000	5.33715
62	62.00	3720	0.00000	5.33715
63	63.00	3780	0.00000	5.33715
64	64.00	3840	0.00000	5.33715
65	65.00	3900	0.00000	5.33715
66	66.00	3960	0.00000	5.33715
67	67.00	4020	0.00000	5.33715
68	68.00	4080	0.00000	5.33715
69	69.00	4140	0.00000	5.33715
70	70.00	4200	0.00000	5.33715
71	71.00	4260	0.00000	5.33715
72	72.00	4320	0.00000	5.33715

W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		

**2-Hr Local Storm, Synthetic Storm, AEP = 1E-03 Hyetograph
Without 7% "Atmospheric Moisture Factor"**

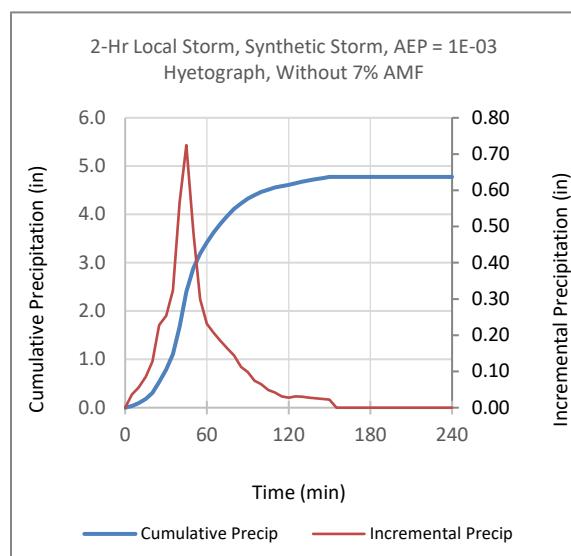
Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
0	0.00	0	0.00000	0.00000
1	0.08	5	0.03646	0.03646
2	0.17	10	0.05584	0.09230
3	0.25	15	0.08538	0.17768
4	0.33	20	0.12737	0.30505
5	0.42	25	0.22844	0.53349
6	0.50	30	0.25382	0.78732
7	0.58	35	0.32305	1.11037
8	0.67	40	0.56764	1.67801
9	0.75	45	0.72455	2.40257
10	0.83	50	0.48457	2.88714
11	0.92	55	0.29997	3.18712
12	1.00	60	0.23121	3.41833
13	1.08	65	0.20675	3.62508
14	1.17	70	0.18414	3.80922
15	1.25	75	0.16337	3.97259
16	1.33	80	0.14445	4.11704
17	1.42	85	0.11214	4.22919
18	1.50	90	0.09784	4.32702
19	1.58	95	0.07430	4.40133
20	1.67	100	0.06461	4.46594
21	1.75	105	0.04846	4.51439
22	1.83	110	0.04200	4.55639
23	1.92	115	0.03138	4.58777
24	2.00	120	0.02723	4.61500
25	2.08	125	0.03138	4.64638
26	2.17	130	0.03000	4.67638
27	2.25	135	0.02769	4.70407
28	2.33	140	0.02584	4.72991
29	2.42	145	0.02400	4.75391
30	2.50	150	0.02261	4.77652
31	2.58	155	0.00000	4.77652
32	2.67	160	0.00000	4.77652
33	2.75	165	0.00000	4.77652
34	2.83	170	0.00000	4.77652
35	2.92	175	0.00000	4.77652
36	3.00	180	0.00000	4.77652
37	3.08	185	0.00000	4.77652

MetPortal v2.2.0

**Date and Time of Analysis: 2024-07-10
20:56:46**

Point Selected: 40.939749N 102.679655W

Region: East


Units: inches (depth); sqmi (area)

Storm Type: Local Storm

Analysis Type: Temporal

ARF applied: No

Storm Selected: Synthetic Storm

W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		

2-Hr Local Storm, Synthetic Storm, AEP = 1E-03 Hyetograph
Without 7% "Atmospheric Moisture Factor"

Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)	
38	3.17	190	0.00000	4.77652	
39	3.25	195	0.00000	4.77652	
40	3.33	200	0.00000	4.77652	
41	3.42	205	0.00000	4.77652	
42	3.50	210	0.00000	4.77652	
43	3.58	215	0.00000	4.77652	
44	3.67	220	0.00000	4.77652	
45	3.75	225	0.00000	4.77652	
46	3.83	230	0.00000	4.77652	
47	3.92	235	0.00000	4.77652	
48	4.00	240	0.00000	4.77652	

<p>W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers</p>	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		

6-Hr MEC Storm, Synthetic Storm, AEP = 1E-03 Hyetograph

Without 7% "Atmospheric Moisture Factor"

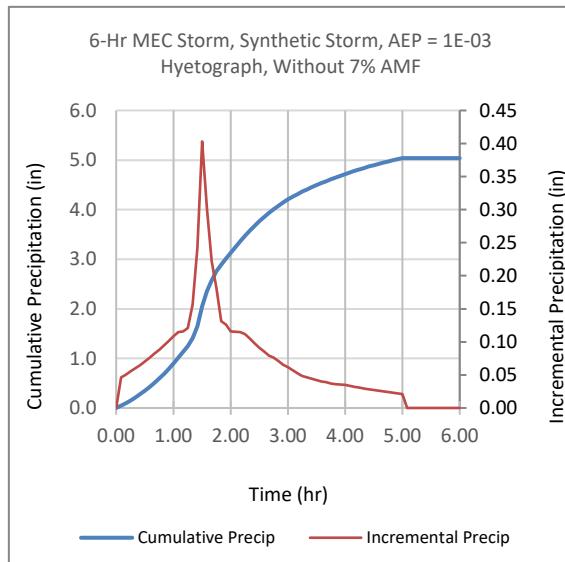
Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
0	0.00	0	0.00000	0.00000
1	0.08	5	0.04636	0.04636
2	0.17	10	0.05039	0.09675
3	0.25	15	0.05543	0.15218
4	0.33	20	0.05996	0.21214
5	0.42	25	0.06500	0.27715
6	0.50	30	0.07055	0.34769
7	0.58	35	0.07609	0.42378
8	0.67	40	0.08214	0.50592
9	0.75	45	0.08818	0.59410
10	0.83	50	0.09473	0.68883
11	0.92	55	0.10128	0.79012
12	1.00	60	0.10834	0.89845
13	1.08	65	0.11489	1.01334
14	1.17	70	0.11590	1.12924
15	1.25	75	0.12094	1.25018
16	1.33	80	0.15621	1.40638
17	1.42	85	0.24187	1.64826
18	1.50	90	0.40312	2.05138
19	1.58	95	0.30234	2.35372
20	1.67	100	0.22172	2.57543
21	1.75	105	0.18140	2.75684
22	1.83	110	0.13101	2.88785
23	1.92	115	0.12598	3.01383
24	2.00	120	0.11590	3.12972
25	2.08	125	0.11539	3.24512
26	2.17	130	0.11489	3.36001
27	2.25	135	0.11187	3.47187
28	2.33	140	0.10481	3.57668
29	2.42	145	0.09776	3.67444
30	2.50	150	0.09121	3.76564
31	2.58	155	0.08516	3.85080
32	2.67	160	0.07911	3.92992
33	2.75	165	0.07609	4.00601
34	2.83	170	0.07105	4.07705
35	2.92	175	0.06551	4.14256
36	3.00	180	0.06148	4.20404
37	3.08	185	0.05694	4.26098
38	3.17	190	0.05241	4.31338
39	3.25	195	0.04837	4.36176
40	3.33	200	0.04636	4.40812

MetPortal v2.2.0

Date and Time of Analysis: 2024-07-10
20:57:03

Point Selected: 40.939749N 102.679655W

Region: East


Units: inches (depth); sqmi (area)

Storm Type: MEC

Analysis Type: Temporal

ARF applied: No

Storm Selected: Front-Loaded Synthetic Storm

<p>W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers</p>	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		

6-Hr MEC Storm, Synthetic Storm, AEP = 1E-03 Hyetograph
Without 7% "Atmospheric Moisture Factor"

Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
41	3.42	205	0.04434	4.45246
42	3.50	210	0.04233	4.49479
43	3.58	215	0.04031	4.53510
44	3.67	220	0.03880	4.57390
45	3.75	225	0.03678	4.61069
46	3.83	230	0.03578	4.64646
47	3.92	235	0.03527	4.68173
48	4.00	240	0.03477	4.71650
49	4.08	245	0.03326	4.74976
50	4.17	250	0.03175	4.78151
51	4.25	255	0.03074	4.81225
52	4.33	260	0.02923	4.84147
53	4.42	265	0.02822	4.86969
54	4.50	270	0.02721	4.89690
55	4.58	275	0.02620	4.92310
56	4.67	280	0.02520	4.94830
57	4.75	285	0.02419	4.97249
58	4.83	290	0.02318	4.99566
59	4.92	295	0.02217	5.01784
60	5.00	300	0.02116	5.03900
61	5.08	305	0.00000	5.03900
62	5.17	310	0.00000	5.03900
63	5.25	315	0.00000	5.03900
64	5.33	320	0.00000	5.03900
65	5.42	325	0.00000	5.03900
66	5.50	330	0.00000	5.03900
67	5.58	335	0.00000	5.03900
68	5.67	340	0.00000	5.03900
69	5.75	345	0.00000	5.03900
70	5.83	350	0.00000	5.03900
71	5.92	355	0.00000	5.03900
72	6.00	360	0.00000	5.03900

W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		

48-Hr MLC Storm, Synthetic Storm, AEP = 1E-03 Hyetograph
Without 7% "Atmospheric Moisture Factor"

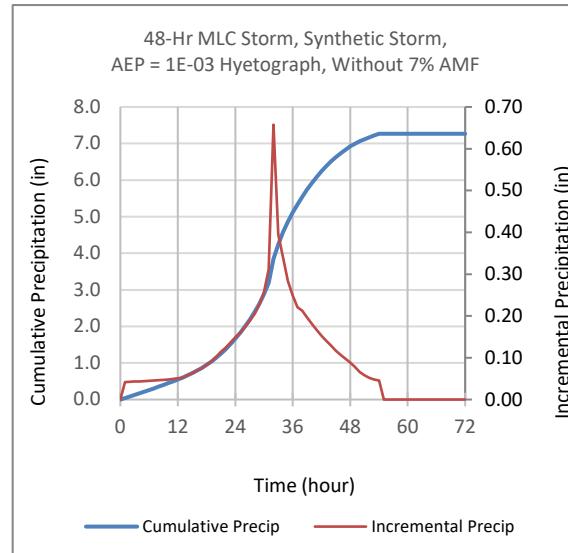
Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
0	0.00	0	0.00000	0.00000
1	1.00	60	0.04153	0.04153
2	2.00	120	0.04222	0.08374
3	3.00	180	0.04291	0.12665
4	4.00	240	0.04360	0.17026
5	5.00	300	0.04429	0.21455
6	6.00	360	0.04499	0.25954
7	7.00	420	0.04568	0.30522
8	8.00	480	0.04637	0.35159
9	9.00	540	0.04706	0.39865
10	10.00	600	0.04775	0.44640
11	11.00	660	0.04914	0.49554
12	12.00	720	0.05052	0.54607
13	13.00	780	0.05191	0.59797
14	14.00	840	0.05814	0.65611
15	15.00	900	0.06298	0.71909
16	16.00	960	0.06921	0.78830
17	17.00	1020	0.07544	0.86374
18	18.00	1080	0.08305	0.94679
19	19.00	1140	0.09136	1.03815
20	20.00	1200	0.10243	1.14058
21	21.00	1260	0.11420	1.25478
22	22.00	1320	0.12458	1.37936
23	23.00	1380	0.13634	1.51570
24	24.00	1440	0.14880	1.66450
25	25.00	1500	0.15988	1.82438
26	26.00	1560	0.17372	1.99809
27	27.00	1620	0.18894	2.18704
28	28.00	1680	0.20486	2.39190
29	29.00	1740	0.22770	2.61960
30	30.00	1800	0.25608	2.87568
31	31.00	1860	0.31145	3.18712
32	32.00	1920	0.65750	3.84462
33	33.00	1980	0.39450	4.23911
34	34.00	2040	0.33913	4.57824
35	35.00	2100	0.28376	4.86200
36	36.00	2160	0.24916	5.11116
37	37.00	2220	0.22078	5.33194

MetPortal v2.2.0

Date and Time of Analysis: 2024-07-10
20:56:32

Point Selected: 40.939749N 102.679655W

Region: East


Units: inches (depth); sqmi (area)

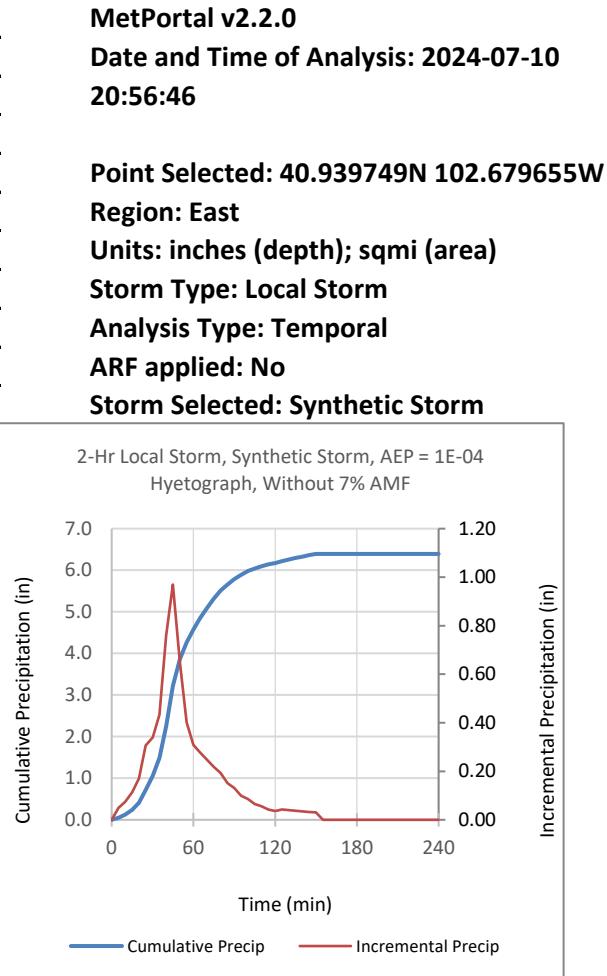
Storm Type: MLC

Analysis Type: Temporal

ARF applied: No

Storm Selected: Center-Loaded Synthetic Storm

W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		


48-Hr MLC Storm, Synthetic Storm, AEP = 1E-03 Hyetograph
Without 7% "Atmospheric Moisture Factor"

Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
38	38.00	2280	0.21247	5.54441
39	39.00	2340	0.19656	5.74097
40	40.00	2400	0.18133	5.92230
41	41.00	2460	0.16680	6.08910
42	42.00	2520	0.15295	6.24205
43	43.00	2580	0.14050	6.38255
44	44.00	2640	0.12873	6.51128
45	45.00	2700	0.11696	6.62824
46	46.00	2760	0.10658	6.73483
47	47.00	2820	0.09759	6.83241
48	48.00	2880	0.08859	6.92100
49	49.00	2940	0.07752	6.99852
50	50.00	3000	0.06575	7.06426
51	51.00	3060	0.05744	7.12171
52	52.00	3120	0.05191	7.17362
53	53.00	3180	0.04775	7.22137
54	54.00	3240	0.04568	7.26705
55	55.00	3300	0.00000	7.26705
56	56.00	3360	0.00000	7.26705
57	57.00	3420	0.00000	7.26705
58	58.00	3480	0.00000	7.26705
59	59.00	3540	0.00000	7.26705
60	60.00	3600	0.00000	7.26705
61	61.00	3660	0.00000	7.26705
62	62.00	3720	0.00000	7.26705
63	63.00	3780	0.00000	7.26705
64	64.00	3840	0.00000	7.26705
65	65.00	3900	0.00000	7.26705
66	66.00	3960	0.00000	7.26705
67	67.00	4020	0.00000	7.26705
68	68.00	4080	0.00000	7.26705
69	69.00	4140	0.00000	7.26705
70	70.00	4200	0.00000	7.26705
71	71.00	4260	0.00000	7.26705
72	72.00	4320	0.00000	7.26705

W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		

2-Hr Local Storm, Synthetic Storm, AEP = 1E-04 Hyetograph
Without 7% "Atmospheric Moisture Factor"

Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
0	0.00	0	0.00000	0.00000
1	0.08	5	0.04879	0.04879
2	0.17	10	0.07473	0.12352
3	0.25	15	0.11426	0.23778
4	0.33	20	0.17046	0.40823
5	0.42	25	0.30571	0.71395
6	0.50	30	0.33968	1.05363
7	0.58	35	0.43232	1.48595
8	0.67	40	0.75965	2.24559
9	0.75	45	0.96963	3.21523
10	0.83	50	0.64848	3.86371
11	0.92	55	0.40144	4.26515
12	1.00	60	0.30942	4.57456
13	1.08	65	0.27668	4.85125
14	1.17	70	0.24642	5.09767
15	1.25	75	0.21863	5.31630
16	1.33	80	0.19331	5.50961
17	1.42	85	0.15008	5.65969
18	1.50	90	0.13093	5.79062
19	1.58	95	0.09943	5.89005
20	1.67	100	0.08646	5.97652
21	1.75	105	0.06485	6.04136
22	1.83	110	0.05620	6.09756
23	1.92	115	0.04200	6.13956
24	2.00	120	0.03644	6.17600
25	2.08	125	0.04200	6.21800
26	2.17	130	0.04014	6.25814
27	2.25	135	0.03706	6.29520
28	2.33	140	0.03459	6.32978
29	2.42	145	0.03212	6.36190
30	2.50	150	0.03026	6.39216
31	2.58	155	0.00000	6.39216
32	2.67	160	0.00000	6.39216
33	2.75	165	0.00000	6.39216
34	2.83	170	0.00000	6.39216
35	2.92	175	0.00000	6.39216
36	3.00	180	0.00000	6.39216
37	3.08	185	0.00000	6.39216

W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		

2-Hr Local Storm, Synthetic Storm, AEP = 1E-04 Hyetograph
Without 7% "Atmospheric Moisture Factor"

Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)	
38	3.17	190	0.00000	6.39216	
39	3.25	195	0.00000	6.39216	
40	3.33	200	0.00000	6.39216	
41	3.42	205	0.00000	6.39216	
42	3.50	210	0.00000	6.39216	
43	3.58	215	0.00000	6.39216	
44	3.67	220	0.00000	6.39216	
45	3.75	225	0.00000	6.39216	
46	3.83	230	0.00000	6.39216	
47	3.92	235	0.00000	6.39216	
48	4.00	240	0.00000	6.39216	

W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		

**6-Hr MEC Storm, Synthetic Storm, AEP = 1E-04 Hyetograph
Without 7% "Atmospheric Moisture Factor"**

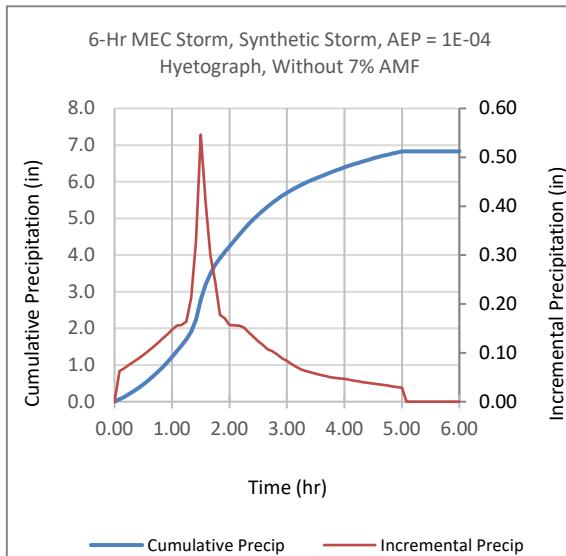
Time	Elapsed	Elapsed	Incremental	Cumulative
Step	Time	Time	Precip	Precip
(#)	(h)	(min)	(in)	(in)
0	0.00	0	0.00000	0.00000
1	0.08	5	0.06282	0.06282
2	0.17	10	0.06828	0.13110
3	0.25	15	0.07511	0.20621
4	0.33	20	0.08125	0.28746
5	0.42	25	0.08808	0.37554
6	0.50	30	0.09559	0.47113
7	0.58	35	0.10310	0.57423
8	0.67	40	0.11130	0.68553
9	0.75	45	0.11949	0.80502
10	0.83	50	0.12837	0.93339
11	0.92	55	0.13724	1.07063
12	1.00	60	0.14680	1.21743
13	1.08	65	0.15568	1.37311
14	1.17	70	0.15704	1.53015
15	1.25	75	0.16387	1.69403
16	1.33	80	0.21167	1.90569
17	1.42	85	0.32774	2.23344
18	1.50	90	0.54624	2.77968
19	1.58	95	0.40968	3.18936
20	1.67	100	0.30043	3.48979
21	1.75	105	0.24581	3.73560
22	1.83	110	0.17753	3.91313
23	1.92	115	0.17070	4.08383
24	2.00	120	0.15704	4.24087
25	2.08	125	0.15636	4.39723
26	2.17	130	0.15568	4.55291
27	2.25	135	0.15158	4.70449
28	2.33	140	0.14202	4.84651
29	2.42	145	0.13246	4.97898
30	2.50	150	0.12359	5.10256
31	2.58	155	0.11539	5.21796
32	2.67	160	0.10720	5.32516
33	2.75	165	0.10310	5.42826
34	2.83	170	0.09627	5.52453
35	2.92	175	0.08876	5.61330
36	3.00	180	0.08330	5.69660
37	3.08	185	0.07716	5.77376

MetPortal v2.2.0

**Date and Time of Analysis: 2024-07-10
20:57:03**

Point Selected: 40.939749N 102.679655W

Region: East


Units: inches (depth); sqmi (area)

Storm Type: MEC

Analysis Type: Temporal

ARF applied: No

**Storm Selected: Front-Loaded Synthetic
Storm**

<p>W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers</p>	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		

6-Hr MEC Storm, Synthetic Storm, AEP = 1E-04 Hyetograph
Without 7% "Atmospheric Moisture Factor"

Time	Elapsed	Elapsed	Incremental	Cumulative
Step	Time	Time	Precip	Precip
(#)	(h)	(min)	(in)	(in)
38	3.17	190	0.07101	5.84477
39	3.25	195	0.06555	5.91032
40	3.33	200	0.06282	5.97313
41	3.42	205	0.06009	6.03322
42	3.50	210	0.05736	6.09058
43	3.58	215	0.05462	6.14520
44	3.67	220	0.05258	6.19778
45	3.75	225	0.04984	6.24762
46	3.83	230	0.04848	6.29610
47	3.92	235	0.04780	6.34389
48	4.00	240	0.04711	6.39101
49	4.08	245	0.04506	6.43607
50	4.17	250	0.04302	6.47909
51	4.25	255	0.04165	6.52074
52	4.33	260	0.03960	6.56034
53	4.42	265	0.03824	6.59858
54	4.50	270	0.03687	6.63545
55	4.58	275	0.03551	6.67096
56	4.67	280	0.03414	6.70510
57	4.75	285	0.03277	6.73787
58	4.83	290	0.03141	6.76928
59	4.92	295	0.03004	6.79932
60	5.00	300	0.02868	6.82800
61	5.08	305	0.00000	6.82800
62	5.17	310	0.00000	6.82800
63	5.25	315	0.00000	6.82800
64	5.33	320	0.00000	6.82800
65	5.42	325	0.00000	6.82800
66	5.50	330	0.00000	6.82800
67	5.58	335	0.00000	6.82800
68	5.67	340	0.00000	6.82800
69	5.75	345	0.00000	6.82800
70	5.83	350	0.00000	6.82800
71	5.92	355	0.00000	6.82800
72	6.00	360	0.00000	6.82800

W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		

48-Hr MLC Storm, Synthetic Storm, AEP = 1E-04 Hyetograph
Without 7% "Atmospheric Moisture Factor"

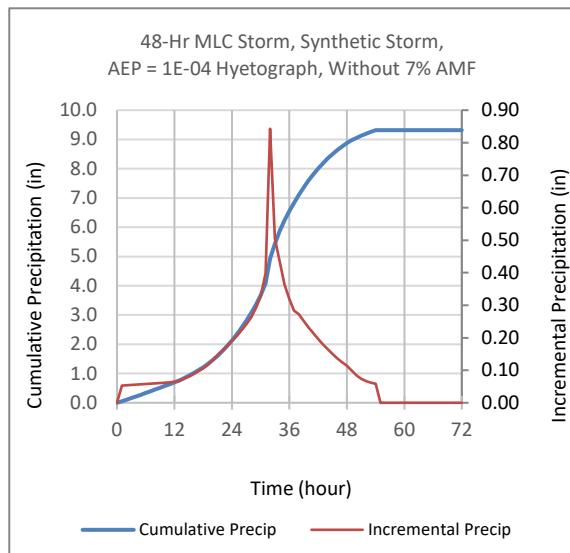
Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
0	0.00	0	0.00000	0.00000
1	1.00	60	0.05324	0.05324
2	2.00	120	0.05413	0.10736
3	3.00	180	0.05501	0.16238
4	4.00	240	0.05590	0.21828
5	5.00	300	0.05679	0.27506
6	6.00	360	0.05767	0.33274
7	7.00	420	0.05856	0.39130
8	8.00	480	0.05945	0.45075
9	9.00	540	0.06034	0.51108
10	10.00	600	0.06122	0.57231
11	11.00	660	0.06300	0.63531
12	12.00	720	0.06477	0.70008
13	13.00	780	0.06655	0.76663
14	14.00	840	0.07453	0.84116
15	15.00	900	0.08074	0.92190
16	16.00	960	0.08873	1.01063
17	17.00	1020	0.09672	1.10735
18	18.00	1080	0.10648	1.21383
19	19.00	1140	0.11712	1.33095
20	20.00	1200	0.13132	1.46227
21	21.00	1260	0.14640	1.60867
22	22.00	1320	0.15971	1.76839
23	23.00	1380	0.17480	1.94319
24	24.00	1440	0.19077	2.13396
25	25.00	1500	0.20497	2.33892
26	26.00	1560	0.22271	2.56164
27	27.00	1620	0.24223	2.80387
28	28.00	1680	0.26264	3.06651
29	29.00	1740	0.29192	3.35843
30	30.00	1800	0.32830	3.68673
31	31.00	1860	0.39929	4.08602
32	32.00	1920	0.84294	4.92895
33	33.00	1980	0.50576	5.43471
34	34.00	2040	0.43478	5.86949
35	35.00	2100	0.36379	6.23328
36	36.00	2160	0.31943	6.55271
37	37.00	2220	0.28305	6.83576

MetPortal v2.2.0

Date and Time of Analysis: 2024-07-10
20:56:32

Point Selected: 40.939749N 102.679655W

Region: East


Units: inches (depth); sqmi (area)

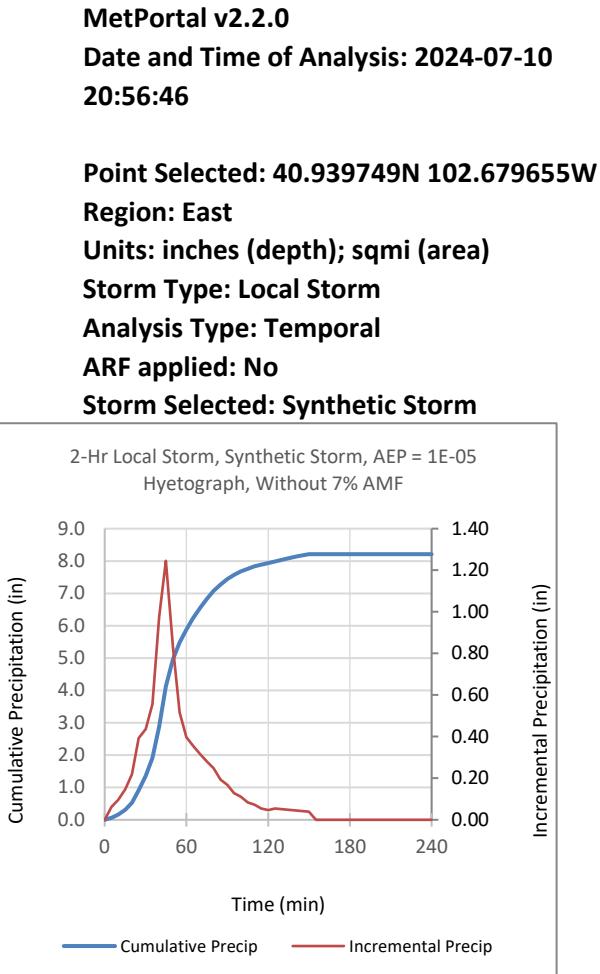
Storm Type: MLC

Analysis Type: Temporal

ARF applied: No

Storm Selected: Center-Loaded Synthetic Storm

<p>W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers</p>	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		


48-Hr MLC Storm, Synthetic Storm, AEP = 1E-04 Hyetograph
Without 7% "Atmospheric Moisture Factor"

Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
38	38.00	2280	0.27240	7.10816
39	39.00	2340	0.25199	7.36015
40	40.00	2400	0.23247	7.59263
41	41.00	2460	0.21384	7.80647
42	42.00	2520	0.19609	8.00256
43	43.00	2580	0.18012	8.18268
44	44.00	2640	0.16504	8.34772
45	45.00	2700	0.14995	8.49767
46	46.00	2760	0.13664	8.63432
47	47.00	2820	0.12511	8.75943
48	48.00	2880	0.11357	8.87300
49	49.00	2940	0.09938	8.97238
50	50.00	3000	0.08429	9.05667
51	51.00	3060	0.07365	9.13032
52	52.00	3120	0.06655	9.19686
53	53.00	3180	0.06122	9.25809
54	54.00	3240	0.05856	9.31665
55	55.00	3300	0.00000	9.31665
56	56.00	3360	0.00000	9.31665
57	57.00	3420	0.00000	9.31665
58	58.00	3480	0.00000	9.31665
59	59.00	3540	0.00000	9.31665
60	60.00	3600	0.00000	9.31665
61	61.00	3660	0.00000	9.31665
62	62.00	3720	0.00000	9.31665
63	63.00	3780	0.00000	9.31665
64	64.00	3840	0.00000	9.31665
65	65.00	3900	0.00000	9.31665
66	66.00	3960	0.00000	9.31665
67	67.00	4020	0.00000	9.31665
68	68.00	4080	0.00000	9.31665
69	69.00	4140	0.00000	9.31665
70	70.00	4200	0.00000	9.31665
71	71.00	4260	0.00000	9.31665
72	72.00	4320	0.00000	9.31665

<p>W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers</p>	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		

**2-Hr Local Storm, Synthetic Storm, AEP = 1E-05 Hyetograph
Without 7% "Atmospheric Moisture Factor"**

Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
0	0.00	0	0.00000	0.00000
1	0.08	5	0.06267	0.06267
2	0.17	10	0.09599	0.15866
3	0.25	15	0.14676	0.30542
4	0.33	20	0.21895	0.52437
5	0.42	25	0.39268	0.91705
6	0.50	30	0.43632	1.35337
7	0.58	35	0.55531	1.90868
8	0.67	40	0.97576	2.88444
9	0.75	45	1.24548	4.12992
10	0.83	50	0.83297	4.96288
11	0.92	55	0.51565	5.47853
12	1.00	60	0.39744	5.87597
13	1.08	65	0.35540	6.23137
14	1.17	70	0.31653	6.54790
15	1.25	75	0.28083	6.82873
16	1.33	80	0.24830	7.07703
17	1.42	85	0.19277	7.26980
18	1.50	90	0.16818	7.43798
19	1.58	95	0.12772	7.56570
20	1.67	100	0.11106	7.67676
21	1.75	105	0.08330	7.76006
22	1.83	110	0.07219	7.83225
23	1.92	115	0.05394	7.88620
24	2.00	120	0.04680	7.93300
25	2.08	125	0.05394	7.98694
26	2.17	130	0.05156	8.03851
27	2.25	135	0.04760	8.08611
28	2.33	140	0.04442	8.13053
29	2.42	145	0.04125	8.17178
30	2.50	150	0.03887	8.21066
31	2.58	155	0.00000	8.21066
32	2.67	160	0.00000	8.21066
33	2.75	165	0.00000	8.21066
34	2.83	170	0.00000	8.21066
35	2.92	175	0.00000	8.21066
36	3.00	180	0.00000	8.21066
37	3.08	185	0.00000	8.21066

W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		

2-Hr Local Storm, Synthetic Storm, AEP = 1E-05 Hyetograph
Without 7% "Atmospheric Moisture Factor"

Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)	
38	3.17	190	0.00000	8.21066	
39	3.25	195	0.00000	8.21066	
40	3.33	200	0.00000	8.21066	
41	3.42	205	0.00000	8.21066	
42	3.50	210	0.00000	8.21066	
43	3.58	215	0.00000	8.21066	
44	3.67	220	0.00000	8.21066	
45	3.75	225	0.00000	8.21066	
46	3.83	230	0.00000	8.21066	
47	3.92	235	0.00000	8.21066	
48	4.00	240	0.00000	8.21066	

<p>W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers</p>	Julesburg Reservoir		Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a		Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS		Approved	0		

**6-Hr MEC Storm, Synthetic Storm, AEP = 1E-05 Hyetograph
Without 7% "Atmospheric Moisture Factor"**

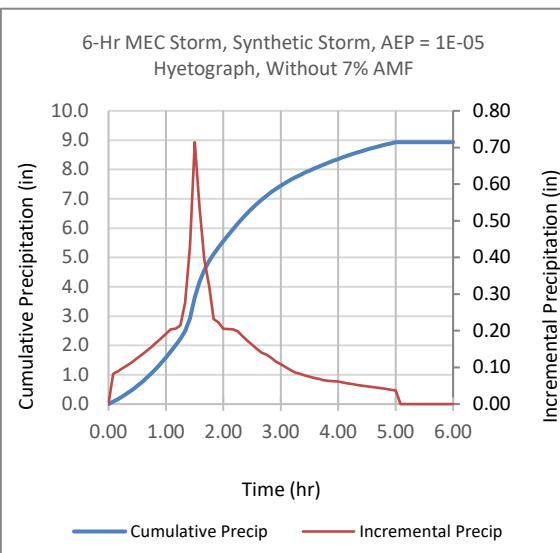
Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
0	0.00	0	0.00000	0.00000
1	0.08	5	0.08216	0.08216
2	0.17	10	0.08930	0.17146
3	0.25	15	0.09823	0.26969
4	0.33	20	0.10627	0.37595
5	0.42	25	0.11520	0.49115
6	0.50	30	0.12502	0.61617
7	0.58	35	0.13484	0.75101
8	0.67	40	0.14556	0.89657
9	0.75	45	0.15628	1.05285
10	0.83	50	0.16788	1.22073
11	0.92	55	0.17949	1.40022
12	1.00	60	0.19200	1.59222
13	1.08	65	0.20360	1.79582
14	1.17	70	0.20539	2.00121
15	1.25	75	0.21432	2.21553
16	1.33	80	0.27683	2.49236
17	1.42	85	0.42864	2.92100
18	1.50	90	0.71440	3.63540
19	1.58	95	0.53580	4.17120
20	1.67	100	0.39292	4.56412
21	1.75	105	0.32148	4.88560
22	1.83	110	0.23218	5.11778
23	1.92	115	0.22325	5.34103
24	2.00	120	0.20539	5.54642
25	2.08	125	0.20450	5.75092
26	2.17	130	0.20360	5.95452
27	2.25	135	0.19825	6.15277
28	2.33	140	0.18574	6.33851
29	2.42	145	0.17324	6.51176
30	2.50	150	0.16163	6.67339
31	2.58	155	0.15092	6.82431
32	2.67	160	0.14020	6.96451
33	2.75	165	0.13484	7.09935
34	2.83	170	0.12591	7.22526
35	2.92	175	0.11609	7.34135
36	3.00	180	0.10895	7.45030
37	3.08	185	0.10091	7.55121

MetPortal v2.2.0

**Date and Time of Analysis: 2024-07-10
20:57:03**

Point Selected: 40.939749N 102.679655W

Region: East


Units: inches (depth); sqmi (area)

Storm Type: MEC

Analysis Type: Temporal

ARF applied: No

Storm Selected: Front-Loaded Synthetic Storm

<p>W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers</p>	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		

6-Hr MEC Storm, Synthetic Storm, AEP = 1E-05 Hyetograph
Without 7% "Atmospheric Moisture Factor"

Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
38	3.17	190	0.09287	7.64408
39	3.25	195	0.08573	7.72981
40	3.33	200	0.08216	7.81196
41	3.42	205	0.07858	7.89055
42	3.50	210	0.07501	7.96556
43	3.58	215	0.07144	8.03700
44	3.67	220	0.06876	8.10576
45	3.75	225	0.06519	8.17095
46	3.83	230	0.06340	8.23435
47	3.92	235	0.06251	8.29686
48	4.00	240	0.06162	8.35848
49	4.08	245	0.05894	8.41742
50	4.17	250	0.05626	8.47368
51	4.25	255	0.05447	8.52815
52	4.33	260	0.05179	8.57994
53	4.42	265	0.05001	8.62995
54	4.50	270	0.04822	8.67817
55	4.58	275	0.04644	8.72461
56	4.67	280	0.04465	8.76926
57	4.75	285	0.04286	8.81212
58	4.83	290	0.04108	8.85320
59	4.92	295	0.03929	8.89249
60	5.00	300	0.03751	8.93000
61	5.08	305	0.00000	8.93000
62	5.17	310	0.00000	8.93000
63	5.25	315	0.00000	8.93000
64	5.33	320	0.00000	8.93000
65	5.42	325	0.00000	8.93000
66	5.50	330	0.00000	8.93000
67	5.58	335	0.00000	8.93000
68	5.67	340	0.00000	8.93000
69	5.75	345	0.00000	8.93000
70	5.83	350	0.00000	8.93000
71	5.92	355	0.00000	8.93000
72	6.00	360	0.00000	8.93000

W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		

48-Hr MLC Storm, Synthetic Storm, AEP = 1E-05 Hyetograph
Without 7% "Atmospheric Moisture Factor"

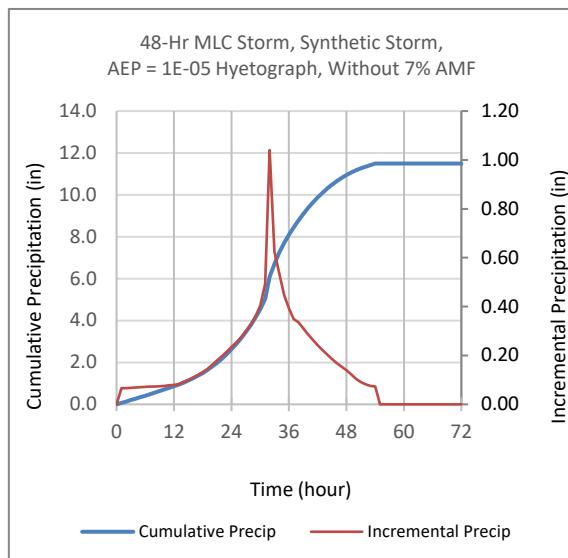
Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
0	0.00	0	0.00000	0.00000
1	1.00	60	0.06569	0.06569
2	2.00	120	0.06679	0.13248
3	3.00	180	0.06788	0.20037
4	4.00	240	0.06898	0.26935
5	5.00	300	0.07007	0.33942
6	6.00	360	0.07117	0.41059
7	7.00	420	0.07226	0.48285
8	8.00	480	0.07336	0.55621
9	9.00	540	0.07445	0.63066
10	10.00	600	0.07555	0.70621
11	11.00	660	0.07774	0.78395
12	12.00	720	0.07993	0.86388
13	13.00	780	0.08212	0.94599
14	14.00	840	0.09197	1.03797
15	15.00	900	0.09964	1.13760
16	16.00	960	0.10949	1.24709
17	17.00	1020	0.11934	1.36644
18	18.00	1080	0.13139	1.49782
19	19.00	1140	0.14453	1.64235
20	20.00	1200	0.16205	1.80440
21	21.00	1260	0.18066	1.98505
22	22.00	1320	0.19708	2.18214
23	23.00	1380	0.21570	2.39783
24	24.00	1440	0.23540	2.63323
25	25.00	1500	0.25292	2.88616
26	26.00	1560	0.27482	3.16098
27	27.00	1620	0.29891	3.45988
28	28.00	1680	0.32409	3.78397
29	29.00	1740	0.36022	4.14420
30	30.00	1800	0.40511	4.54931
31	31.00	1860	0.49271	5.04201
32	32.00	1920	1.04016	6.08217
33	33.00	1980	0.62409	6.70626
34	34.00	2040	0.53650	7.24276
35	35.00	2100	0.44891	7.69167
36	36.00	2160	0.39416	8.08584
37	37.00	2220	0.34927	8.43511

MetPortal v2.2.0

Date and Time of Analysis: 2024-07-10
20:56:32

Point Selected: 40.939749N 102.679655W

Region: East


Units: inches (depth); sqmi (area)

Storm Type: MLC

Analysis Type: Temporal

ARF applied: No

Storm Selected: Center-Loaded Synthetic Storm

W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		

48-Hr MLC Storm, Synthetic Storm, AEP = 1E-05 Hyetograph
Without 7% "Atmospheric Moisture Factor"

Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
38	38.00	2280	0.33613	8.77124
39	39.00	2340	0.31095	9.08220
40	40.00	2400	0.28686	9.36906
41	41.00	2460	0.26387	9.63293
42	42.00	2520	0.24197	9.87490
43	43.00	2580	0.22226	10.09717
44	44.00	2640	0.20365	10.30082
45	45.00	2700	0.18504	10.48586
46	46.00	2760	0.16861	10.65447
47	47.00	2820	0.15438	10.80885
48	48.00	2880	0.14015	10.94900
49	49.00	2940	0.12263	11.07163
50	50.00	3000	0.10402	11.17564
51	51.00	3060	0.09088	11.26652
52	52.00	3120	0.08212	11.34864
53	53.00	3180	0.07555	11.42419
54	54.00	3240	0.07226	11.49645
55	55.00	3300	0.00000	11.49645
56	56.00	3360	0.00000	11.49645
57	57.00	3420	0.00000	11.49645
58	58.00	3480	0.00000	11.49645
59	59.00	3540	0.00000	11.49645
60	60.00	3600	0.00000	11.49645
61	61.00	3660	0.00000	11.49645
62	62.00	3720	0.00000	11.49645
63	63.00	3780	0.00000	11.49645
64	64.00	3840	0.00000	11.49645
65	65.00	3900	0.00000	11.49645
66	66.00	3960	0.00000	11.49645
67	67.00	4020	0.00000	11.49645
68	68.00	4080	0.00000	11.49645
69	69.00	4140	0.00000	11.49645
70	70.00	4200	0.00000	11.49645
71	71.00	4260	0.00000	11.49645
72	72.00	4320	0.00000	11.49645

W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		

**2-Hr Local Storm, Synthetic Storm, AEP = 1E-06 Hyetograph
Without 7% "Atmospheric Moisture Factor"**

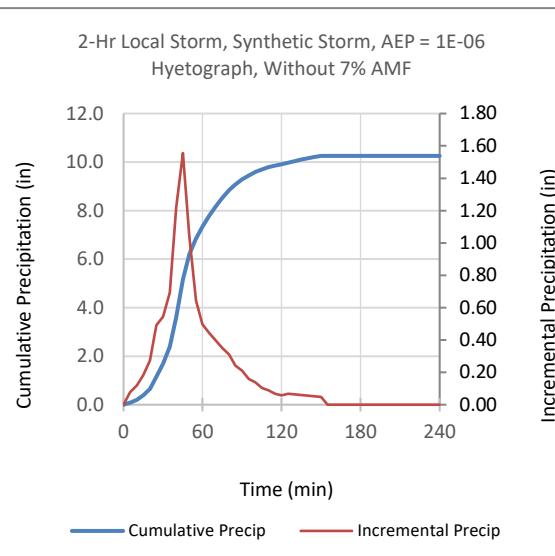
Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
0	0.00	0	0.00000	0.00000
1	0.08	5	0.07827	0.07827
2	0.17	10	0.11989	0.19816
3	0.25	15	0.18330	0.38146
4	0.33	20	0.27346	0.65492
5	0.42	25	0.49045	1.14536
6	0.50	30	0.54494	1.69030
7	0.58	35	0.69356	2.38386
8	0.67	40	1.21868	3.60255
9	0.75	45	1.55556	5.15810
10	0.83	50	1.04034	6.19844
11	0.92	55	0.64402	6.84246
12	1.00	60	0.49639	7.33886
13	1.08	65	0.44388	7.78273
14	1.17	70	0.39533	8.17806
15	1.25	75	0.35074	8.52881
16	1.33	80	0.31012	8.83893
17	1.42	85	0.24076	9.07969
18	1.50	90	0.21005	9.28974
19	1.58	95	0.15952	9.44926
20	1.67	100	0.13871	9.58797
21	1.75	105	0.10403	9.69201
22	1.83	110	0.09016	9.78217
23	1.92	115	0.06737	9.84954
24	2.00	120	0.05846	9.90800
25	2.08	125	0.06737	9.97537
26	2.17	130	0.06440	10.03978
27	2.25	135	0.05945	10.09922
28	2.33	140	0.05548	10.15471
29	2.42	145	0.05152	10.20623
30	2.50	150	0.04855	10.25478
31	2.58	155	0.00000	10.25478
32	2.67	160	0.00000	10.25478
33	2.75	165	0.00000	10.25478
34	2.83	170	0.00000	10.25478
35	2.92	175	0.00000	10.25478
36	3.00	180	0.00000	10.25478
37	3.08	185	0.00000	10.25478

MetPortal v2.2.0

**Date and Time of Analysis: 2024-07-10
20:56:46**

Point Selected: 40.939749N 102.679655W

Region: East


Units: inches (depth); sqmi (area)

Storm Type: Local Storm

Analysis Type: Temporal

ARF applied: No

Storm Selected: Synthetic Storm

W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		

2-Hr Local Storm, Synthetic Storm, AEP = 1E-06 Hyetograph
Without 7% "Atmospheric Moisture Factor"

Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)	
38	3.17	190	0.00000	10.25478	
39	3.25	195	0.00000	10.25478	
40	3.33	200	0.00000	10.25478	
41	3.42	205	0.00000	10.25478	
42	3.50	210	0.00000	10.25478	
43	3.58	215	0.00000	10.25478	
44	3.67	220	0.00000	10.25478	
45	3.75	225	0.00000	10.25478	
46	3.83	230	0.00000	10.25478	
47	3.92	235	0.00000	10.25478	
48	4.00	240	0.00000	10.25478	

W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		

6-Hr MEC Storm, Synthetic Storm, AEP = 1E-06 Hyetograph
Without 7% "Atmospheric Moisture Factor"

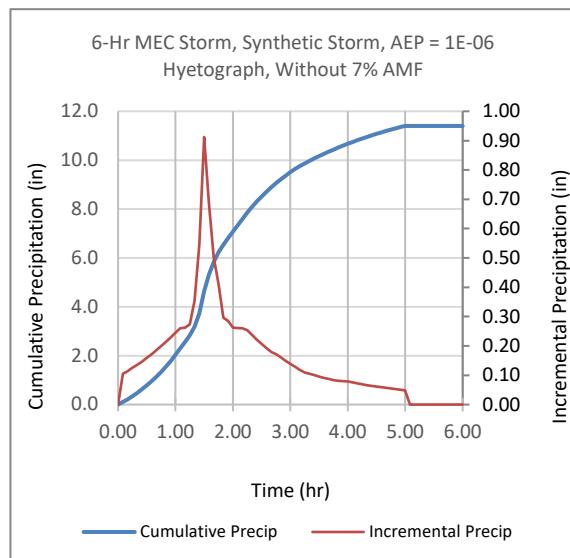
Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
0	0.00	0	0.00000	0.00000
1	0.08	5	0.10489	0.10489
2	0.17	10	0.11401	0.21890
3	0.25	15	0.12541	0.34431
4	0.33	20	0.13567	0.47998
5	0.42	25	0.14707	0.62706
6	0.50	30	0.15961	0.78667
7	0.58	35	0.17216	0.95882
8	0.67	40	0.18584	1.14466
9	0.75	45	0.19952	1.34418
10	0.83	50	0.21434	1.55852
11	0.92	55	0.22916	1.78768
12	1.00	60	0.24512	2.03280
13	1.08	65	0.25994	2.29274
14	1.17	70	0.26222	2.55496
15	1.25	75	0.27362	2.82859
16	1.33	80	0.35343	3.18202
17	1.42	85	0.54725	3.72927
18	1.50	90	0.91208	4.64135
19	1.58	95	0.68406	5.32541
20	1.67	100	0.50164	5.82705
21	1.75	105	0.41044	6.23749
22	1.83	110	0.29643	6.53391
23	1.92	115	0.28503	6.81894
24	2.00	120	0.26222	7.08116
25	2.08	125	0.26108	7.34224
26	2.17	130	0.25994	7.60219
27	2.25	135	0.25310	7.85529
28	2.33	140	0.23714	8.09243
29	2.42	145	0.22118	8.31361
30	2.50	150	0.20636	8.51997
31	2.58	155	0.19268	8.71264
32	2.67	160	0.17900	8.89164
33	2.75	165	0.17216	9.06380
34	2.83	170	0.16075	9.22455
35	2.92	175	0.14821	9.37276
36	3.00	180	0.13909	9.51185
37	3.08	185	0.12883	9.64069

MetPortal v2.2.0

Date and Time of Analysis: 2024-07-10
20:57:03

Point Selected: 40.939749N 102.679655W

Region: East


Units: inches (depth); sqmi (area)

Storm Type: MEC

Analysis Type: Temporal

ARF applied: No

Storm Selected: Front-Loaded Synthetic Storm

W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		

6-Hr MEC Storm, Synthetic Storm, AEP = 1E-06 Hyetograph
Without 7% "Atmospheric Moisture Factor"

Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
38	3.17	190	0.11857	9.75926
39	3.25	195	0.10945	9.86871
40	3.33	200	0.10489	9.97359
41	3.42	205	0.10033	10.07392
42	3.50	210	0.09577	10.16969
43	3.58	215	0.09121	10.26090
44	3.67	220	0.08779	10.34869
45	3.75	225	0.08323	10.43192
46	3.83	230	0.08095	10.51286
47	3.92	235	0.07981	10.59267
48	4.00	240	0.07867	10.67134
49	4.08	245	0.07525	10.74658
50	4.17	250	0.07183	10.81841
51	4.25	255	0.06955	10.88796
52	4.33	260	0.06613	10.95408
53	4.42	265	0.06385	11.01793
54	4.50	270	0.06157	11.07949
55	4.58	275	0.05929	11.13878
56	4.67	280	0.05701	11.19578
57	4.75	285	0.05472	11.25051
58	4.83	290	0.05244	11.30295
59	4.92	295	0.05016	11.35312
60	5.00	300	0.04788	11.40100
61	5.08	305	0.00000	11.40100
62	5.17	310	0.00000	11.40100
63	5.25	315	0.00000	11.40100
64	5.33	320	0.00000	11.40100
65	5.42	325	0.00000	11.40100
66	5.50	330	0.00000	11.40100
67	5.58	335	0.00000	11.40100
68	5.67	340	0.00000	11.40100
69	5.75	345	0.00000	11.40100
70	5.83	350	0.00000	11.40100
71	5.92	355	0.00000	11.40100
72	6.00	360	0.00000	11.40100

<p>W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers</p>	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		

**48-Hr MLC Storm, Synthetic Storm, AEP = 1E-06 Hyetograph
Without 7% "Atmospheric Moisture Factor"**

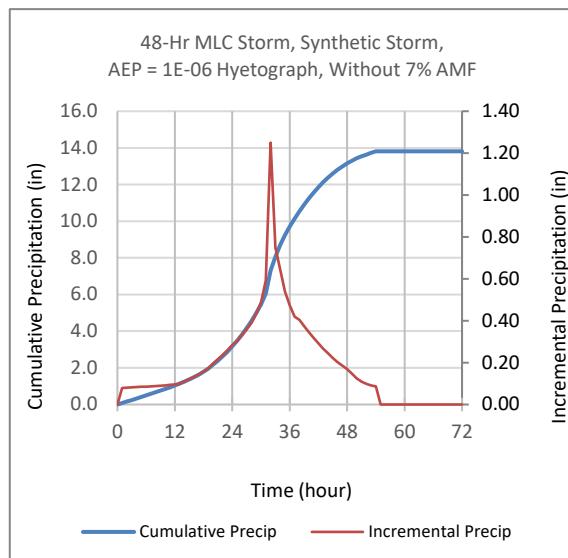
Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
0	0.00	0	0.00000	0.00000
1	1.00	60	0.07894	0.07894
2	2.00	120	0.08025	0.15919
3	3.00	180	0.08157	0.24075
4	4.00	240	0.08288	0.32364
5	5.00	300	0.08420	0.40784
6	6.00	360	0.08551	0.49335
7	7.00	420	0.08683	0.58018
8	8.00	480	0.08815	0.66832
9	9.00	540	0.08946	0.75779
10	10.00	600	0.09078	0.84856
11	11.00	660	0.09341	0.94197
12	12.00	720	0.09604	1.03801
13	13.00	780	0.09867	1.13668
14	14.00	840	0.11051	1.24719
15	15.00	900	0.11972	1.36691
16	16.00	960	0.13156	1.49847
17	17.00	1020	0.14340	1.64187
18	18.00	1080	0.15787	1.79974
19	19.00	1140	0.17366	1.97340
20	20.00	1200	0.19471	2.16811
21	21.00	1260	0.21707	2.38518
22	22.00	1320	0.23681	2.62199
23	23.00	1380	0.25917	2.88116
24	24.00	1440	0.28285	3.16402
25	25.00	1500	0.30390	3.46792
26	26.00	1560	0.33022	3.79814
27	27.00	1620	0.35916	4.15730
28	28.00	1680	0.38942	4.54671
29	29.00	1740	0.43283	4.97955
30	30.00	1800	0.48677	5.46632
31	31.00	1860	0.59202	6.05834
32	32.00	1920	1.24982	7.30816
33	33.00	1980	0.74989	8.05805
34	34.00	2040	0.64464	8.70269
35	35.00	2100	0.53940	9.24209
36	36.00	2160	0.47362	9.71571
37	37.00	2220	0.41968	10.13538

MetPortal v2.2.0

**Date and Time of Analysis: 2024-07-10
20:56:32**

Point Selected: 40.939749N 102.679655W

Region: East


Units: inches (depth); sqmi (area)

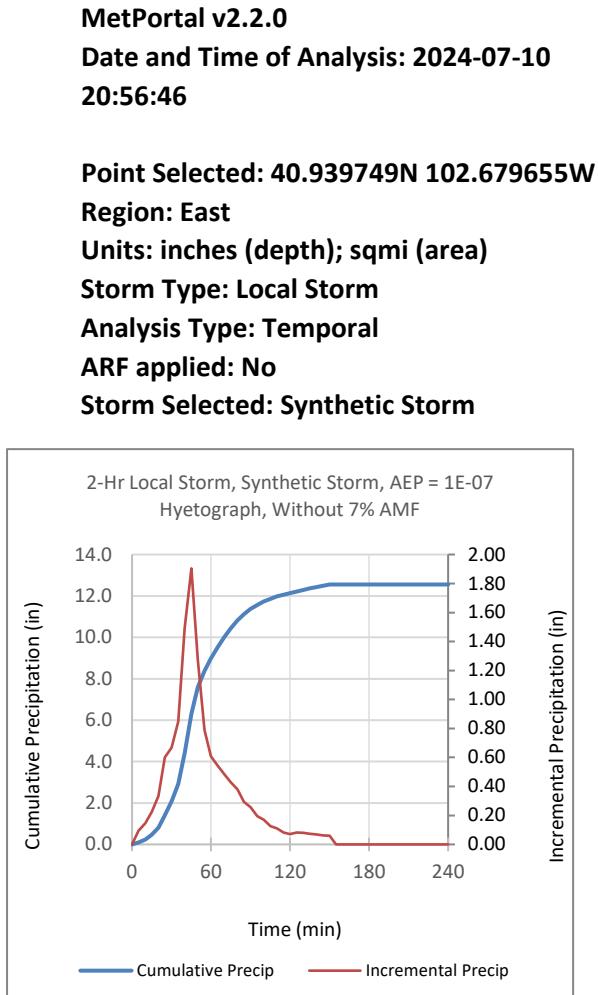
Storm Type: MLC

Analysis Type: Temporal

ARF applied: No

Storm Selected: Center-Loaded Synthetic Storm

W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		


48-Hr MLC Storm, Synthetic Storm, AEP = 1E-06 Hyetograph
Without 7% "Atmospheric Moisture Factor"

Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
38	38.00	2280	0.40389	10.53927
39	39.00	2340	0.37363	10.91290
40	40.00	2400	0.34469	11.25759
41	41.00	2460	0.31706	11.57465
42	42.00	2520	0.29075	11.86540
43	43.00	2580	0.26707	12.13246
44	44.00	2640	0.24470	12.37716
45	45.00	2700	0.22234	12.59950
46	46.00	2760	0.20260	12.80210
47	47.00	2820	0.18550	12.98760
48	48.00	2880	0.16840	13.15600
49	49.00	2940	0.14735	13.30335
50	50.00	3000	0.12498	13.42833
51	51.00	3060	0.10919	13.53752
52	52.00	3120	0.09867	13.63619
53	53.00	3180	0.09078	13.72697
54	54.00	3240	0.08683	13.81380
55	55.00	3300	0.00000	13.81380
56	56.00	3360	0.00000	13.81380
57	57.00	3420	0.00000	13.81380
58	58.00	3480	0.00000	13.81380
59	59.00	3540	0.00000	13.81380
60	60.00	3600	0.00000	13.81380
61	61.00	3660	0.00000	13.81380
62	62.00	3720	0.00000	13.81380
63	63.00	3780	0.00000	13.81380
64	64.00	3840	0.00000	13.81380
65	65.00	3900	0.00000	13.81380
66	66.00	3960	0.00000	13.81380
67	67.00	4020	0.00000	13.81380
68	68.00	4080	0.00000	13.81380
69	69.00	4140	0.00000	13.81380
70	70.00	4200	0.00000	13.81380
71	71.00	4260	0.00000	13.81380
72	72.00	4320	0.00000	13.81380

W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		

**2-Hr Local Storm, Synthetic Storm, AEP = 1E-07 Hyetograph
Without 7% "Atmospheric Moisture Factor"**

Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
0	0.00	0	0.00000	0.00000
1	0.08	5	0.09582	0.09582
2	0.17	10	0.14676	0.24258
3	0.25	15	0.22439	0.46697
4	0.33	20	0.33476	0.80173
5	0.42	25	0.60039	1.40211
6	0.50	30	0.66709	2.06921
7	0.58	35	0.84903	2.91824
8	0.67	40	1.49187	4.41010
9	0.75	45	1.90425	6.31436
10	0.83	50	1.27354	7.58790
11	0.92	55	0.78838	8.37629
12	1.00	60	0.60766	8.98395
13	1.08	65	0.54338	9.52733
14	1.17	70	0.48395	10.01128
15	1.25	75	0.42937	10.44064
16	1.33	80	0.37964	10.82028
17	1.42	85	0.29473	11.11502
18	1.50	90	0.25713	11.37215
19	1.58	95	0.19528	11.56743
20	1.67	100	0.16981	11.73723
21	1.75	105	0.12735	11.86459
22	1.83	110	0.11037	11.97496
23	1.92	115	0.08248	12.05744
24	2.00	120	0.07156	12.12900
25	2.08	125	0.08248	12.21148
26	2.17	130	0.07884	12.29032
27	2.25	135	0.07277	12.36309
28	2.33	140	0.06792	12.43101
29	2.42	145	0.06307	12.49408
30	2.50	150	0.05943	12.55351
31	2.58	155	0.00000	12.55351
32	2.67	160	0.00000	12.55351
33	2.75	165	0.00000	12.55351
34	2.83	170	0.00000	12.55351
35	2.92	175	0.00000	12.55351
36	3.00	180	0.00000	12.55351
37	3.08	185	0.00000	12.55351

W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		

2-Hr Local Storm, Synthetic Storm, AEP = 1E-07 Hyetograph
Without 7% "Atmospheric Moisture Factor"

Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)	
38	3.17	190	0.00000	12.55351	
39	3.25	195	0.00000	12.55351	
40	3.33	200	0.00000	12.55351	
41	3.42	205	0.00000	12.55351	
42	3.50	210	0.00000	12.55351	
43	3.58	215	0.00000	12.55351	
44	3.67	220	0.00000	12.55351	
45	3.75	225	0.00000	12.55351	
46	3.83	230	0.00000	12.55351	
47	3.92	235	0.00000	12.55351	
48	4.00	240	0.00000	12.55351	

W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		

**6-Hr MEC Storm, Synthetic Storm, AEP = 1E-07 Hyetograph
Without 7% "Atmospheric Moisture Factor"**

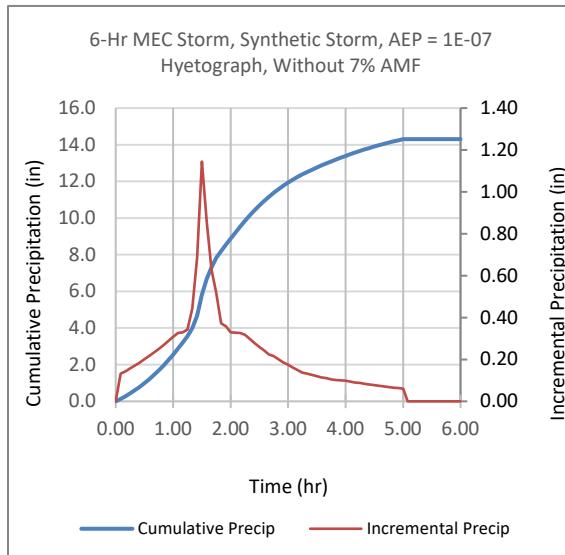
Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
0	0.00	0	0.00000	0.00000
1	0.08	5	0.13162	0.13162
2	0.17	10	0.14306	0.27468
3	0.25	15	0.15737	0.43204
4	0.33	20	0.17024	0.60228
5	0.42	25	0.18455	0.78683
6	0.50	30	0.20028	0.98711
7	0.58	35	0.21602	1.20313
8	0.67	40	0.23319	1.43632
9	0.75	45	0.25035	1.68668
10	0.83	50	0.26895	1.95563
11	0.92	55	0.28755	2.24318
12	1.00	60	0.30758	2.55076
13	1.08	65	0.32618	2.87694
14	1.17	70	0.32904	3.20597
15	1.25	75	0.34334	3.54932
16	1.33	80	0.44349	3.99280
17	1.42	85	0.68669	4.67949
18	1.50	90	1.14448	5.82397
19	1.58	95	0.85836	6.68233
20	1.67	100	0.62946	7.31180
21	1.75	105	0.51502	7.82681
22	1.83	110	0.37196	8.19877
23	1.92	115	0.35765	8.55642
24	2.00	120	0.32904	8.88546
25	2.08	125	0.32761	9.21306
26	2.17	130	0.32618	9.53924
27	2.25	135	0.31759	9.85683
28	2.33	140	0.29756	10.15440
29	2.42	145	0.27754	10.43194
30	2.50	150	0.25894	10.69087
31	2.58	155	0.24177	10.93265
32	2.67	160	0.22460	11.15725
33	2.75	165	0.21602	11.37327
34	2.83	170	0.20171	11.57498
35	2.92	175	0.18598	11.76096
36	3.00	180	0.17453	11.93550
37	3.08	185	0.16166	12.09715

MetPortal v2.2.0

**Date and Time of Analysis: 2024-07-10
20:57:03**

Point Selected: 40.939749N 102.679655W

Region: East


Units: inches (depth); sqmi (area)

Storm Type: MEC

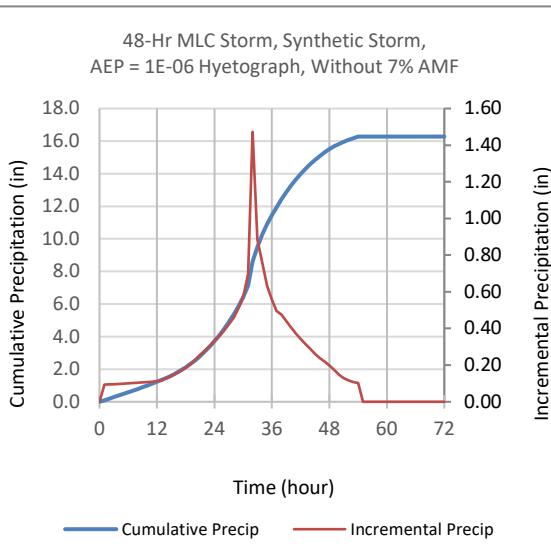
Analysis Type: Temporal

ARF applied: No

Storm Selected: Front-Loaded Synthetic Storm

W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		

6-Hr MEC Storm, Synthetic Storm, AEP = 1E-07 Hyetograph
Without 7% "Atmospheric Moisture Factor"

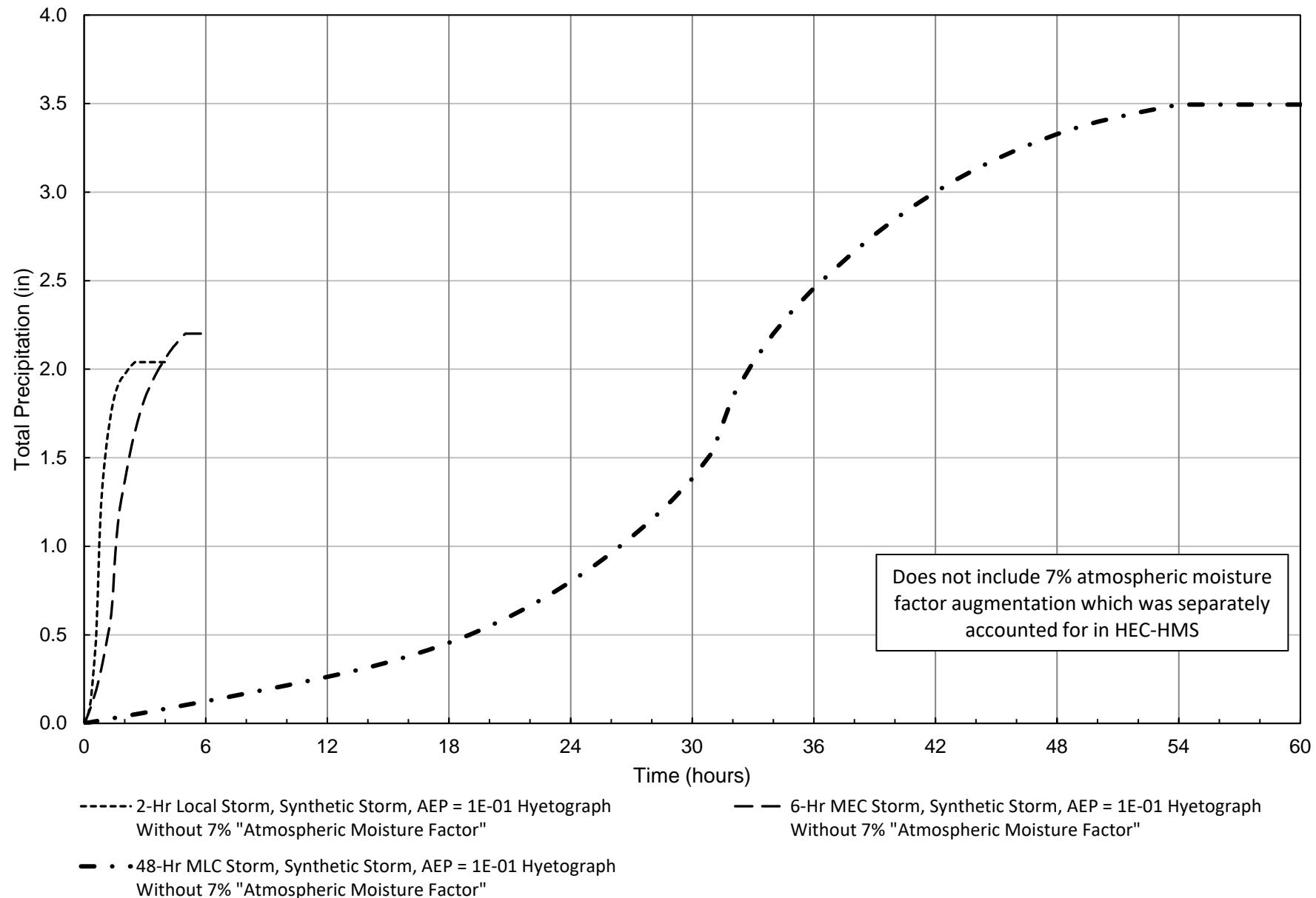

Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
38	3.17	190	0.14878	12.24594
39	3.25	195	0.13734	12.38327
40	3.33	200	0.13162	12.51489
41	3.42	205	0.12589	12.64078
42	3.50	210	0.12017	12.76095
43	3.58	215	0.11445	12.87540
44	3.67	220	0.11016	12.98556
45	3.75	225	0.10443	13.08999
46	3.83	230	0.10157	13.19156
47	3.92	235	0.10014	13.29170
48	4.00	240	0.09871	13.39042
49	4.08	245	0.09442	13.48484
50	4.17	250	0.09013	13.57496
51	4.25	255	0.08727	13.66223
52	4.33	260	0.08297	13.74520
53	4.42	265	0.08011	13.82532
54	4.50	270	0.07725	13.90257
55	4.58	275	0.07439	13.97696
56	4.67	280	0.07153	14.04849
57	4.75	285	0.06867	14.11716
58	4.83	290	0.06581	14.18297
59	4.92	295	0.06295	14.24591
60	5.00	300	0.06009	14.30600
61	5.08	305	0.00000	14.30600
62	5.17	310	0.00000	14.30600
63	5.25	315	0.00000	14.30600
64	5.33	320	0.00000	14.30600
65	5.42	325	0.00000	14.30600
66	5.50	330	0.00000	14.30600
67	5.58	335	0.00000	14.30600
68	5.67	340	0.00000	14.30600
69	5.75	345	0.00000	14.30600
70	5.83	350	0.00000	14.30600
71	5.92	355	0.00000	14.30600
72	6.00	360	0.00000	14.30600

W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		

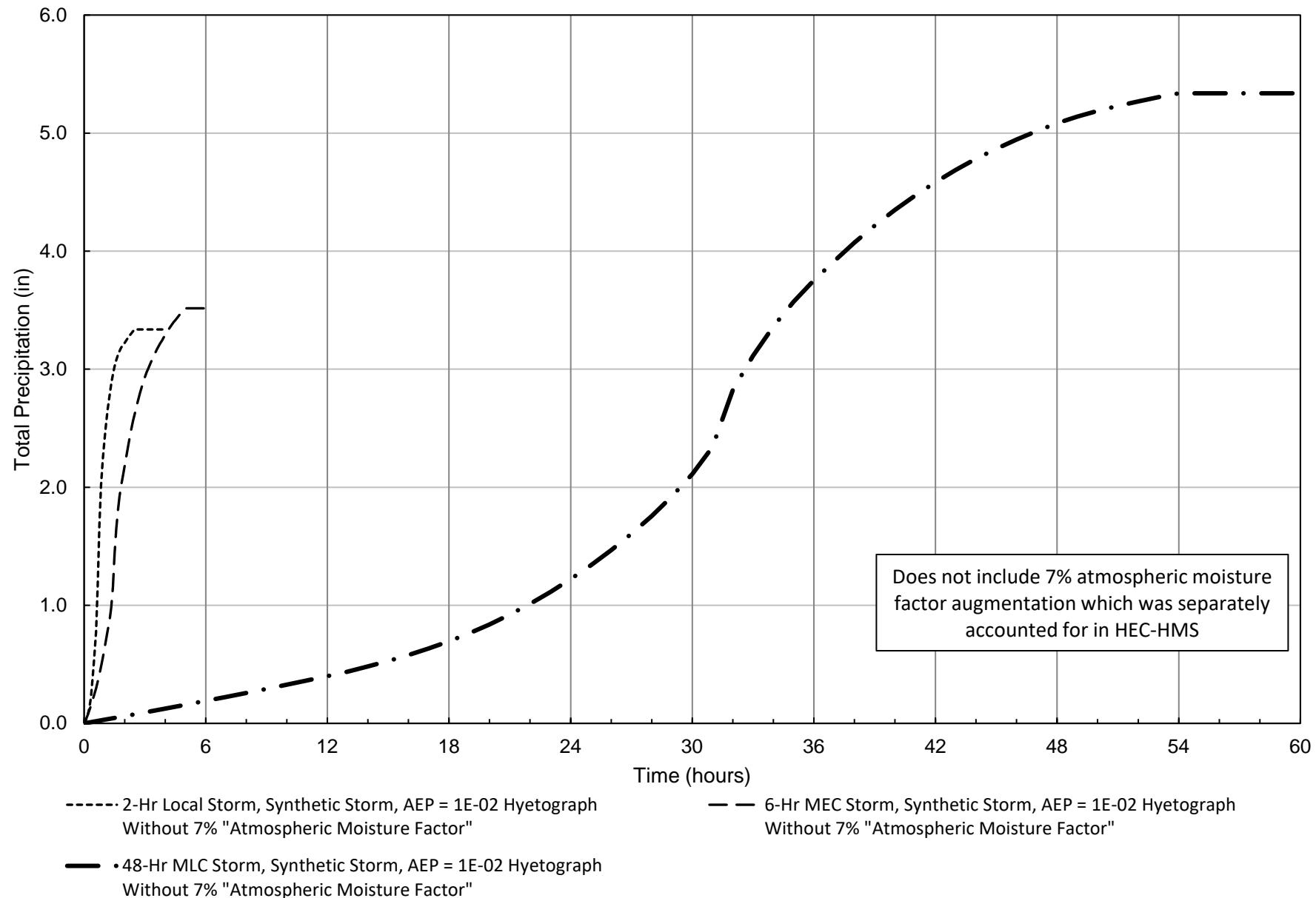
48-Hr MLC Storm, Synthetic Storm, AEP = 1E-07
Hyetograph Without 7% "Atmospheric Moisture Factor"

Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
0	0.00	0	0.00000	0.00000
1	1.00	60	0.09302	0.09302
2	2.00	120	0.09457	0.18759
3	3.00	180	0.09612	0.28370
4	4.00	240	0.09767	0.38137
5	5.00	300	0.09922	0.48059
6	6.00	360	0.10077	0.58136
7	7.00	420	0.10232	0.68368
8	8.00	480	0.10387	0.78755
9	9.00	540	0.10542	0.89297
10	10.00	600	0.10697	0.99994
11	11.00	660	0.11007	1.11001
12	12.00	720	0.11317	1.22319
13	13.00	780	0.11627	1.33946
14	14.00	840	0.13023	1.46968
15	15.00	900	0.14108	1.61076
16	16.00	960	0.15503	1.76579
17	17.00	1020	0.16898	1.93477
18	18.00	1080	0.18604	2.12081
19	19.00	1140	0.20464	2.32545
20	20.00	1200	0.22944	2.55489
21	21.00	1260	0.25580	2.81069
22	22.00	1320	0.27905	3.08975
23	23.00	1380	0.30541	3.39516
24	24.00	1440	0.33331	3.72847
25	25.00	1500	0.35812	4.08659
26	26.00	1560	0.38913	4.47572
27	27.00	1620	0.42323	4.89895
28	28.00	1680	0.45889	5.35784
29	29.00	1740	0.51005	5.86789
30	30.00	1800	0.57361	6.44150
31	31.00	1860	0.69764	7.13913
32	32.00	1920	1.47279	8.61192
33	33.00	1980	0.88367	9.49559
34	34.00	2040	0.75965	10.25523
35	35.00	2100	0.63562	10.89086
36	36.00	2160	0.55811	11.44897
37	37.00	2220	0.49455	11.94351

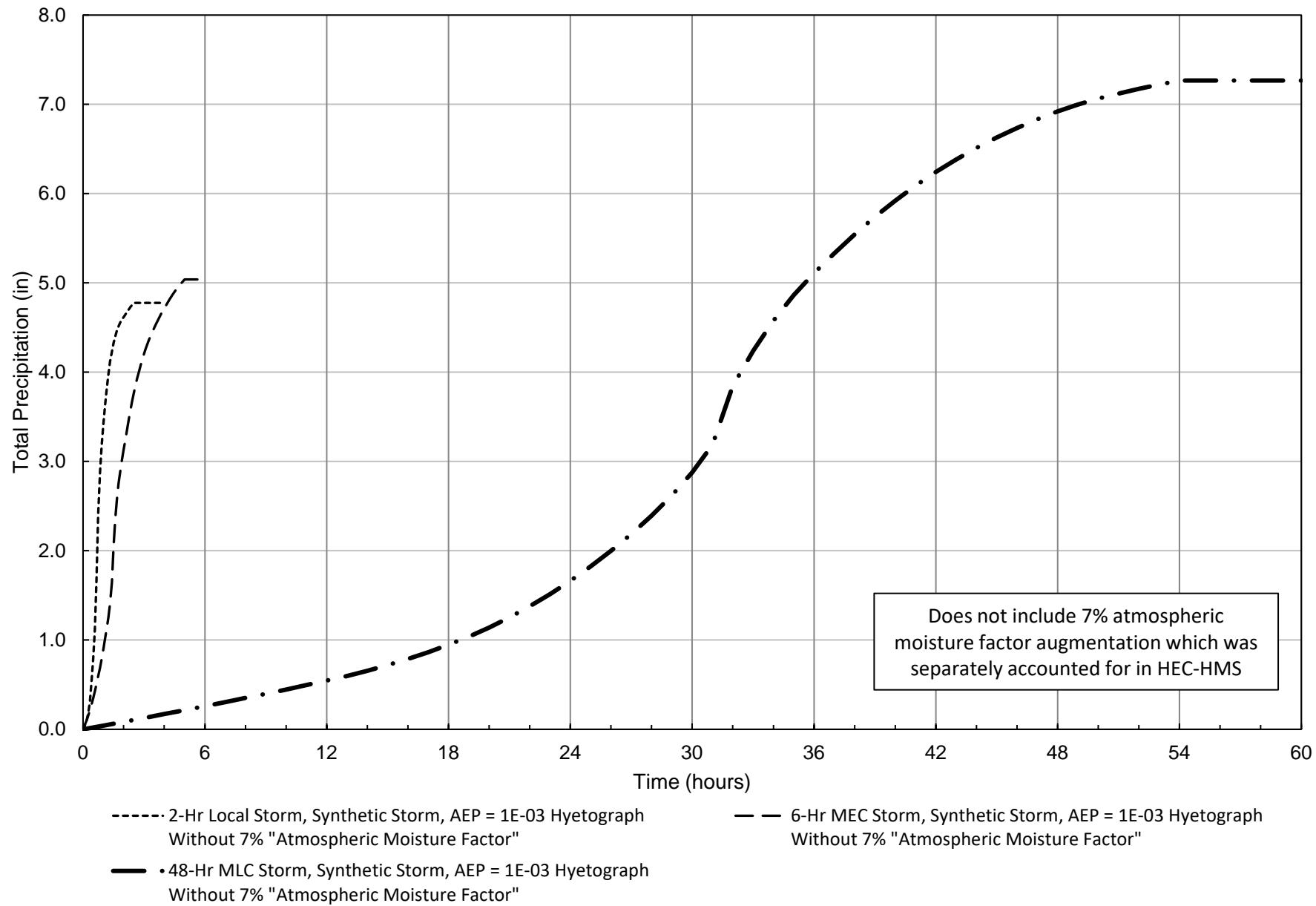
MetPortal v2.2.0
Date and Time of Analysis: 2024-07-10 20:56:32
Point Selected: 40.939749N 102.679655W
Region: East
Units: inches (depth); sqmi (area)
Storm Type: MLC
Analysis Type: Temporal
ARF applied: No
Storm Selected: Center-Loaded Synthetic Storm

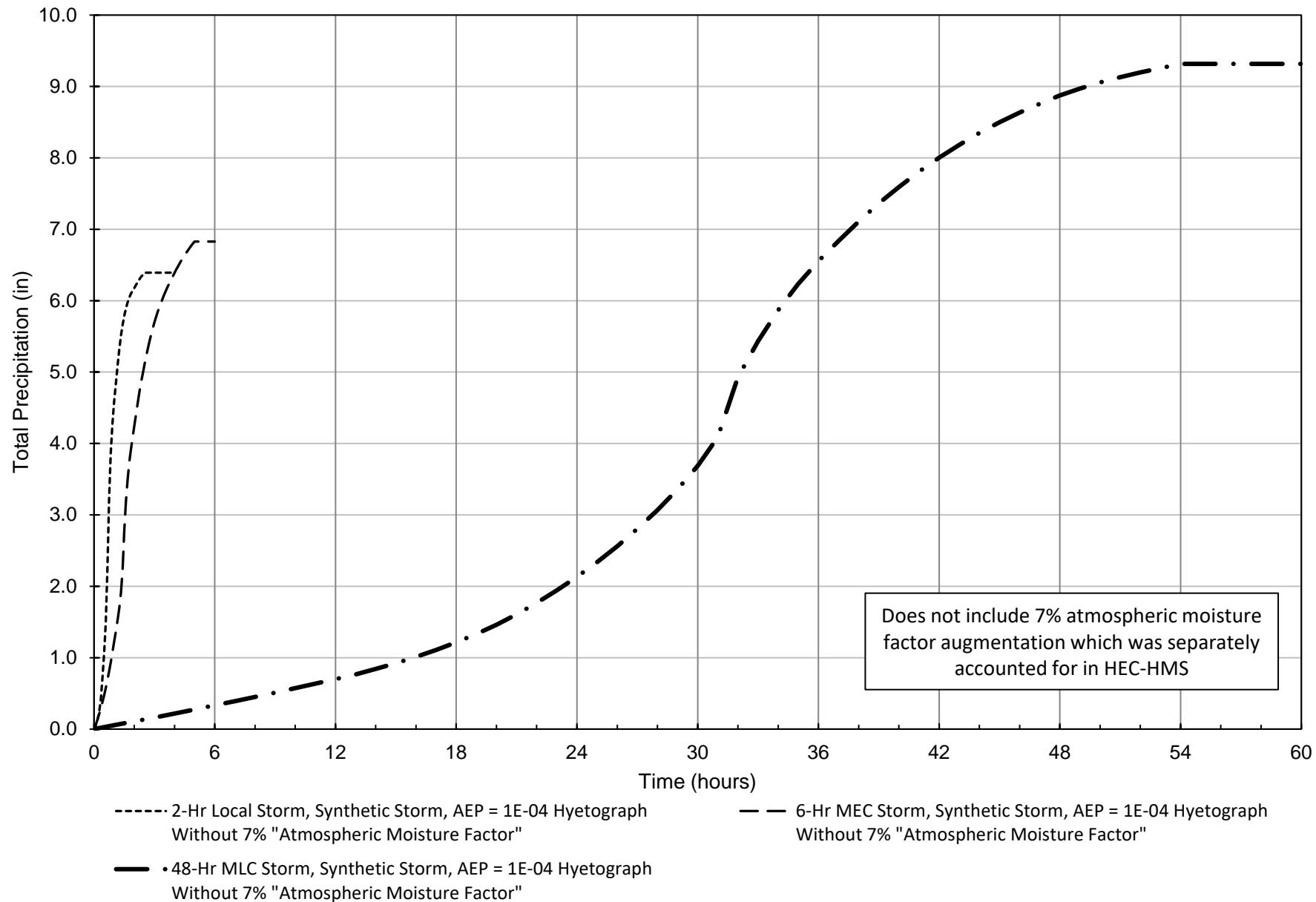


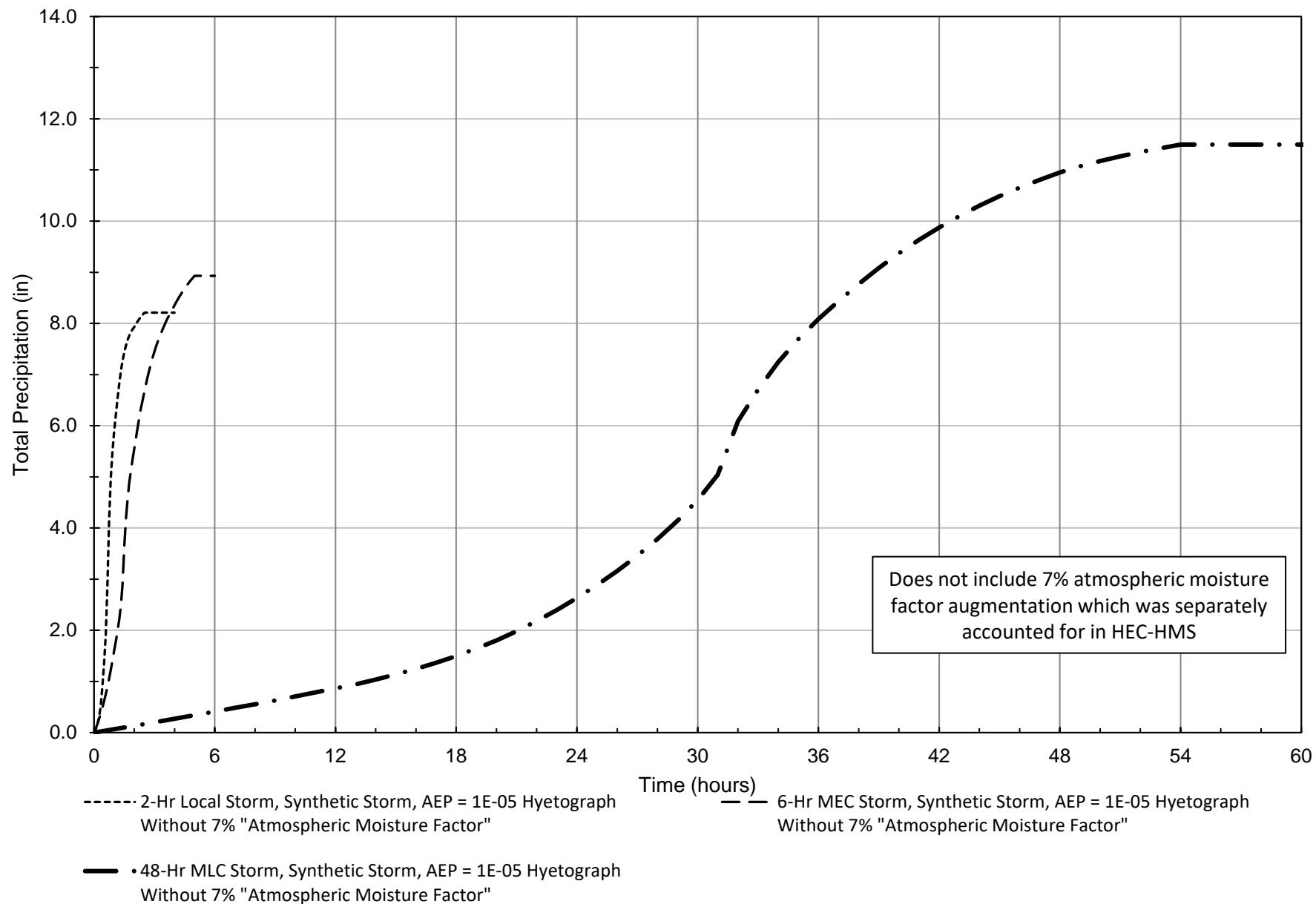
W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Precip Documentation, MetPortal FS	Approved	0		


48-Hr MLC Storm, Synthetic Storm, AEP = 1E-07
Hyetograph Without 7% "Atmospheric Moisture Factor"

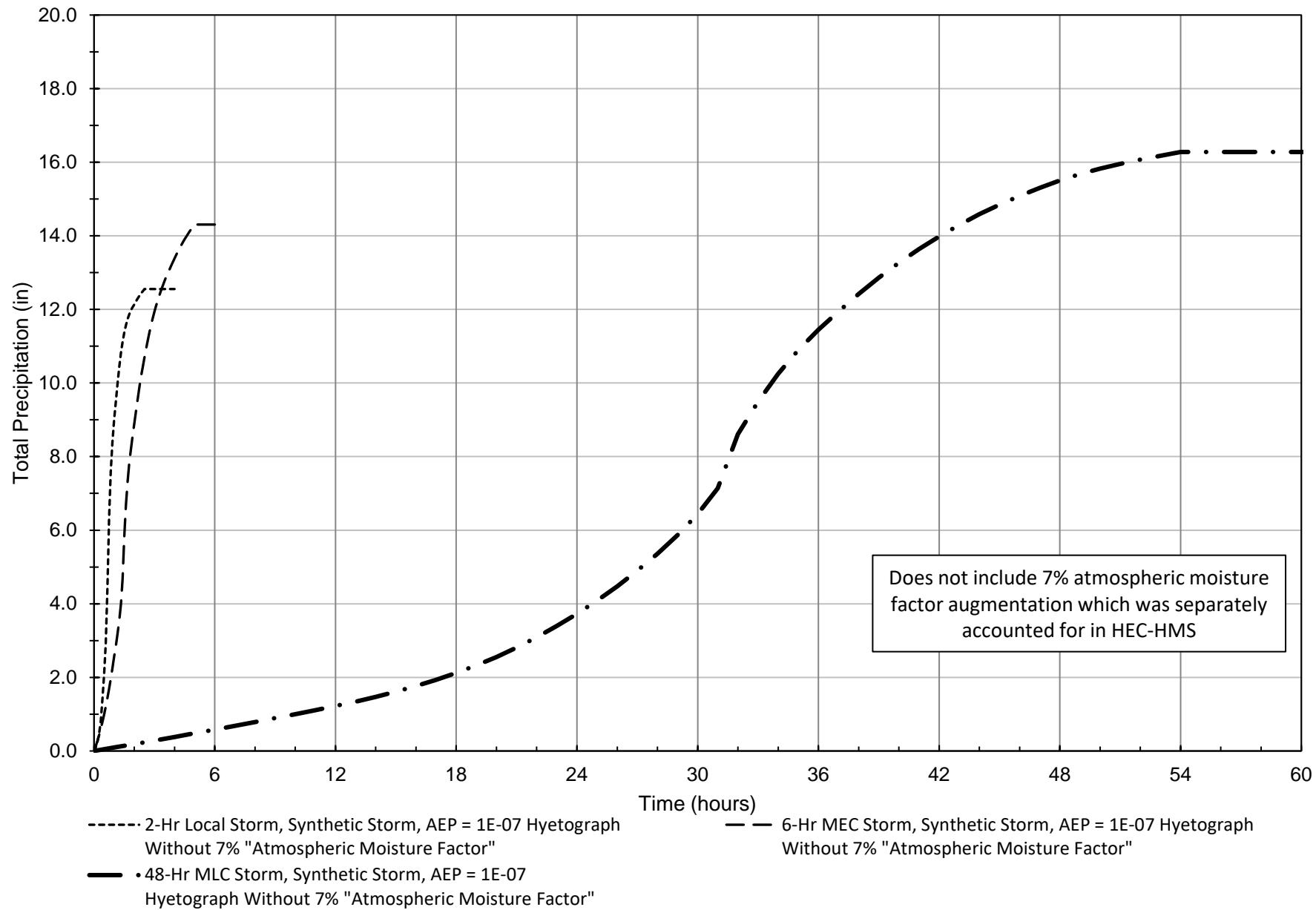
Time Step (#)	Elapsed Time (h)	Elapsed Time (min)	Incremental Precip (in)	Cumulative Precip (in)
38	38.00	2280	0.47594	12.41945
39	39.00	2340	0.44029	12.85974
40	40.00	2400	0.40618	13.26592
41	41.00	2460	0.37362	13.63954
42	42.00	2520	0.34262	13.98216
43	43.00	2580	0.31471	14.29687
44	44.00	2640	0.28836	14.58522
45	45.00	2700	0.26200	14.84722
46	46.00	2760	0.23875	15.08597
47	47.00	2820	0.21859	15.30456
48	48.00	2880	0.19844	15.50300
49	49.00	2940	0.17363	15.67663
50	50.00	3000	0.14728	15.82391
51	51.00	3060	0.12867	15.95259
52	52.00	3120	0.11627	16.06886
53	53.00	3180	0.10697	16.17583
54	54.00	3240	0.10232	16.27815
55	55.00	3300	0.00000	16.27815
56	56.00	3360	0.00000	16.27815
57	57.00	3420	0.00000	16.27815
58	58.00	3480	0.00000	16.27815
59	59.00	3540	0.00000	16.27815
60	60.00	3600	0.00000	16.27815
61	61.00	3660	0.00000	16.27815
62	62.00	3720	0.00000	16.27815
63	63.00	3780	0.00000	16.27815
64	64.00	3840	0.00000	16.27815
65	65.00	3900	0.00000	16.27815
66	66.00	3960	0.00000	16.27815
67	67.00	4020	0.00000	16.27815
68	68.00	4080	0.00000	16.27815
69	69.00	4140	0.00000	16.27815
70	70.00	4200	0.00000	16.27815
71	71.00	4260	0.00000	16.27815
72	72.00	4320	0.00000	16.27815


Julesburg Reservoir - 10-YR Frequency Storm Hyetographs


Julesburg Reservoir - 100-YR Frequency Storm Hyetographs


Julesburg Reservoir - 1,000-YR Frequency Storm Hyetographs


Julesburg Reservoir - 10,000-YR Frequency Storm Hyetographs


Julesburg Reservoir - 100,000-YR Frequency Storm Hyetographs

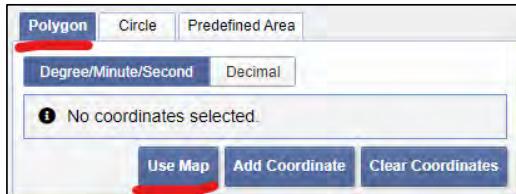
Julesburg Reservoir - 1,000,000-YR Frequency Storm Hyetographs

Julesburg Reservoir - 10,000,000-YR Frequency Storm Hyetographs

Appendix B.3

Soil and Infiltration Documentation

	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 1a, 2, 3, and 4	Checked	JTC	Date	7/11/2024
	CSU-SMA Input Data	Approved			


OBJECTIVE:

Document the obtainment and processing of the input data required to run the CSU-SMA GIS tool.
Note, regardless of how many basins are in the analysis, the CSU-SMA tool only needs to be run once.

METHOD:

1. The *Guidelines for Hydrological Modeling and Flood Analysis* (DWR, 2022), Section 4 and Section 5 describe the process which was followed below.
2. Download "Landsat" images for the "Normalized Difference Vegetation Index" (NDVI) raster calculation which is then used to calculate the "Fractional Vegetative Cover", or Fg.
 - a. Download the "Landsat red and infrared band images" for the basin with USGS EarthExplorer:
USGS Website: <https://earthexplorer.usgs.gov/>

- b. (Guidance, Section 4.4) Set Search Criteria: Polygon - Use Map

- c. Select Tab "Data Sets":

Landsat -> Landsat Collection 2 Level-1

Landsat 4-5 TM C2 Level-1 or Level-2.

2. Select Your Data Set(s)

Check the boxes for the data set(s) you want to search. When done selecting data set(s), click the *Additional Criteria* or *Results* buttons below. Click the plus sign next to the category name to show a list of data sets.

Use Data Set Prefilter (What's This?)

Data Set Search:

APPROX

- CEOS Legacy
- Commercial Satellites
- Declassified Data
- Digital Elevation
- Digital Line Graphs
- Digital Maps
- EO-1
- Global Fiducials
- HCMM
- ISERV
- Land Cover
- Landsat (1)
 - Landsat Collection 2 Level-3 Science Products
 - Landsat C2 U.S. Analysis Ready Data (ARD)
 - Landsat Collection 2 Level-2
 - Landsat Collection 2 Level-1 (1)
 - Landsat C2 Atmospheric Auxiliary Data (1)
 - Landsat Collection 1
 - Landsat Legacy

2. Select Your Data Set(s)

Check the boxes for the data set(s) you want to search. When done selecting data set(s), click the *Additional Criteria* or *Results* buttons below. Click the plus sign next to the category name to show a list of data sets.

Use Data Set Prefilter (What's This?)

Data Set Search:

ISERV

- Land Cover
- Landsat (1)
 - Landsat Collection 2 Level-3 Science Products
 - Landsat C2 U.S. Analysis Ready Data (ARD)
 - Landsat Collection 2 Level-2
 - Landsat Collection 2 Level-1 (1)
 - Landsat 8-9 OLI/TIRS C2 L1
 - Landsat 7 ETM+ C2 L1
 - Landsat 4-5 TM C2 L1 (1)
 - Landsat 1-5 MSS C2 L1

Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 1a, 2, 3, and 4	Checked	JTC	Date	7/11/2024
CSU-SMA Input Data	Approved			

2. Download "Landsat" images for the (NDVI) raster calculation, continued....

d. Select Tab "Additional Criteria":

Land Cloud Cover -> "0 to 10"

Satellite -> Landsat5

Results

Search Criteria Data Sets **Additional Criteria** Results

3. Additional Criteria (Optional)
If you have more than one data sets selected, use the dropdown to select the additional criteria for each data set.

Data Sets: **Landsat 4-5 TM C2 L1**

Landsat Product Identifier L1	⊕
WRS Path	⊕
WRS Row	⊕
Satellite	⊕
Landsat 5	⊖

Note 1/17/2024: Land Cover is now on the first tab, "Search Criteria"

Date Range Cloud Cover Result Options

Cloud Cover Range: 0% - 10%

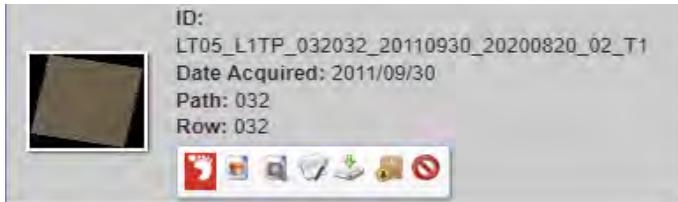

Unknown Cloud Cover Values **Included**

This filter will only be applied to data sets that support cloud cover filtering (in the data set list denotes cloud cover support).

Data Sets » Additional Criteria » Results »

e. Look at result imagery from September or October.

Select the "footprint" icon and chose a flight path(s) that covers the entire basin-of-interest.



Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 1a, 2, 3, and 4	Checked	JTC	Date	7/11/2024
CSU-SMA Input Data	Approved			

2. Download "Landsat" images for the (NDVI) raster calculation, continued....

Record the Metadata for the selected aerial:

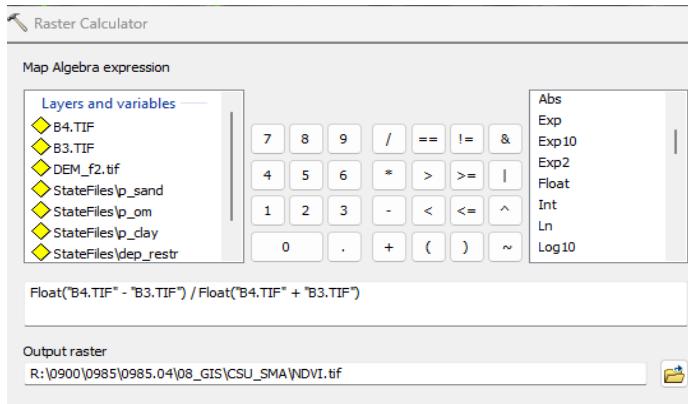
- Save to network: R:\0900\0985\0985.04\12_Hydrology\CSU_SMA\Landsat
- Landsat Product Identifier L1:
LT05_L1TP_032032_20110930_20200820_02_T1
- Coordinate System UTM Zone 13 WGS 84
- Date Acquired: 9/30/2011

f. Download Options - Product Options

Select and Download the Landsat GeoTiff "B3.TIF" (red) and "B4.TIF" (near-infrared)

CLIENT (R:)	> 0900 > 0985 > 0985.04 > 12_Hydrology > CSU_SMA > Landsat
Name	Date modified
MetaData.pdf	7/11/2024 11:33 AM
LT05_L1TP_032032_20110930_20200820_02_T1_B4.TIF	7/11/2024 11:32 AM
LT05_L1TP_032032_20110930_20200820_02_T1_B3.TIF	7/11/2024 11:32 AM

3. Calculate NDVI raster in GIS.


a. Arc ToolBox: Spatial Analyst Tools - Map Algebra - "Raster Calculator". Raster file name abbreviated in GIS Table of Contents.

$$NDVI_{Raster} = \frac{FLOAT(B4 - B3)}{FLOAT(B4 + B3)}$$

Where:

B3 = Landsat 5 band raster for "red"

B4 = Landsat 5 band raster for "near infrared"

- Result File Location:

R:\0900\0985\0985.04\08_GIS\CSU_SMA\NDVI.tif

3. Calculate NDVI raster in GIS, continued...

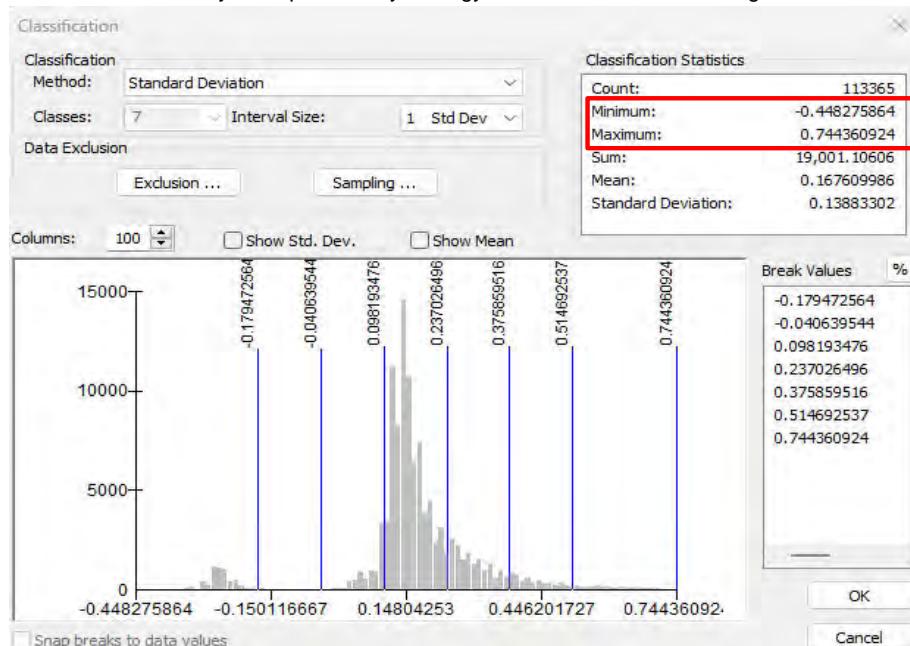
b. Clip to general basin area. Create a "Clip" shapefile (do in the same coordinate system as NDVI Raster). Include a buffer around basin (don't use the basin outline exclusively).

- File Location:

R:\0900\0985\0985.04\08_GIS\CSU_SMA\NDVI_clp.tif

Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 1a, 2, 3, and 4	Checked	JTC	Date	7/11/2024
CSU-SMA Input Data	Approved			

Arc ToolBox: Data Management tools - Raster - Raster Processing - Clip (Yes "Use Input Features for Clipping Geometry") - Raster Created "NDVI_Clip"


4. Determine $NDVI_{inf}$ and $NDVI_0$, which represent the range of NDVI values for the basin.

a. NDVI raster ranges in value from -1 to 1:

NDVI -1 to 0 : Negative NDVI correlates with open water, snow, and some rock outcrops
NDVI 0 < to 1 : Bare soil to "1" represents full vegetation

b. Find the range of raster values for the basin of interest by using GIS Raster Properties:

Raster "NDVI_i" - Layer Properties - Symbology - Classified - Look at Histogram -

$$NDVI_0 = -0.448276 \text{ Min classification statistic}$$

$$NDVI_{inf} = 0.744361 \text{ Max classification statistic}$$

5. Develop the fractional vegetative cover (Fg) for the basin.

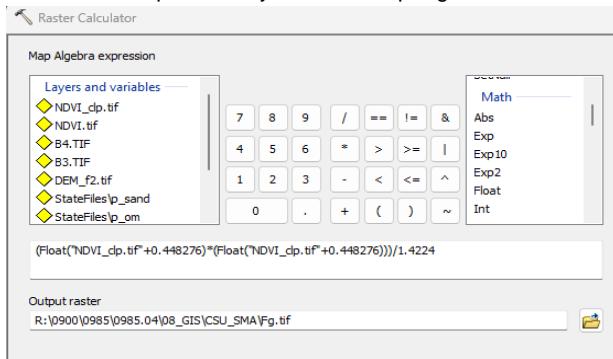
$$Fg = \frac{(FLOAT(NDVI_i) - NDVI_0) * (FLOAT(NDVI_i) - NDVI_0)}{(NDVI_{inf} - NDVI_0) * (NDVI_{inf} - NDVI_0)}$$

Where:

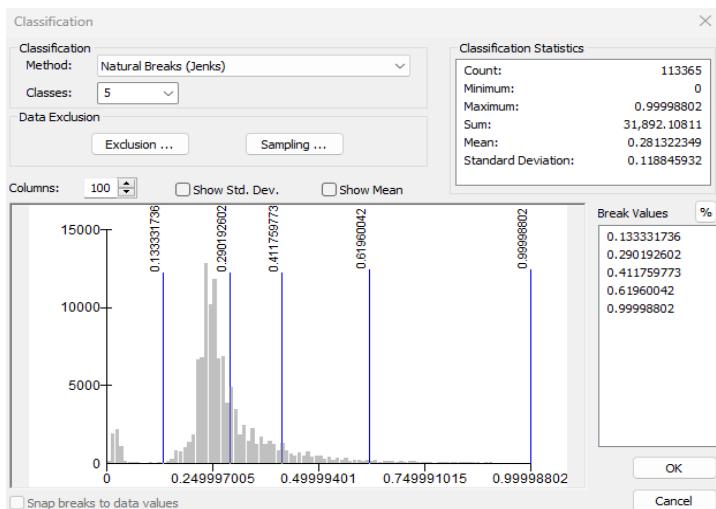
$$NDVI_0 = -0.448276 \text{ Determined above, Min classification statistic}$$

$$NDVI_{inf} = 0.744361 \text{ Determined above, Max classification statistic}$$

$$NDVI_i = \text{Raster calculated above and clipped}$$


$$NDVI_{inf} - NDVI_0 = 1.192637 \text{ Simplify Fg equation terms}$$

$$(NDVI_{inf} - NDVI_0)^2 = 1.4224 \text{ Simplify Fg equation terms}$$


$$Fg = \frac{(FLOAT(NDVI_i) - -0.448276) * (FLOAT(NDVI_i) - -0.448276)}{1.4224}$$

	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 1a, 2, 3, and 4	Checked	JTC	Date	7/11/2024
	CSU-SMA Input Data	Approved			

a. Arc ToolBox: Spatial Analyst Tools - Map Algebra - "Raster Calculator".

b. Fg check: raster values should be between 0 and 1:

6. Clip the statewide soil property raster datasets.

- Network copy of soil data (from: https://dnrftp.state.co.us/#/DWR/DamSafety/Colorado_Soils/)
S:\GIS\CSU_SMA\SOIL_NRCS
- Note, these are large files, so copy to project folder, clip, and remove the copy keeping only the clipped soil data in the project folder.
 - a. Start with MXD containing statewide rasters. Note, select appropriate UTM Zone. Statewide soil data rasters are in NAD_1983_UTM_Zone_13N. XX Dam is in Zone (12 or 13)N
 - b. Clip the "originals", "p_sand", "p.om", "p_clay", and "dep_restr" using the same boundary from the Fg generation.

Arc ToolBox: Data Management tools - Raster - Raster Processing - Clip (Yes "Use Input Features for Clipping Geometry"):

R:\0900\0985\0985.04\08_GIS\CSU_SMA\clip

Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 1a, 2, 3, and 4	Checked	JTC	Date	7/11/2024
CSU-SMA Input Data	Approved			

b. Add "Fg" raster, DEM raster, and convert all into NAD_1983_UTM_Zone_13N

ASSUMPTIONS / INPUTS:

1. Run the CSU Python Script

- Network location of python tool:

S:\GIS\CSU_SMA\CSU_SMA_Python_Script\CSU_SMApython2.tbx
Downloaded from: <https://drive.google.com/drive/folders/1nuF3Oj8UTfgLm7YRZQS4lvKVAJbf69UV>

- Note, as of 1/18/2024 and according to Google Drive version, this python tool "CSU_SMApython2.tbx" was last modified Jan 25, 2022 by Mark Perry.

a. Make sure .SHP for basin outline has an attribute "name":

Table

Watershed

	FID	Shape *	Id	gridcode	Area	Area_sqmi	X_Center	Y_Center	HydroID	Name
▶	0	Polygon	2	1	2355.22	3.68003	-102.676952	40.943638	5	A
	1	Polygon	2	1	2654.33	4.14738	-102.701159	40.941605	6	B
	2	Polygon	2	1	174.03	0.271922	-102.634616	40.928612	10	C
	3	Polygon	2	1	1446.65	2.26039	-102.650012	40.931352	8	D - Res
	4	Polygon	2	1	6630.22	10.3597	-102.679655	40.939749	11	All

CSU_SMApython

%sand-raster
USE\p_sand.tif

%clay-raster
USE\p_clay.tif

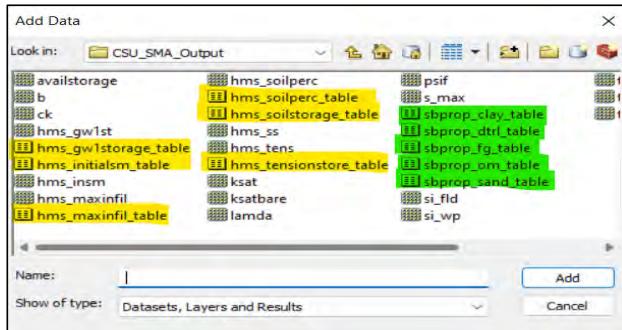
%OM-raster
USE\p_om.tif

DepthToRestrictive-raster
USE\dep_restr.tif

Fg-vegcover-raster
USE\Fg.tif

sub-basin_shapefile
R:\0900\0985\0985.04\08_GIS\LiDAR\Hydrology\Watershed.shp

sub-basin raster
DEM_f2.tif


Output_folder
R:\0900\0985\0985.04\08_GIS\CSU_SMA\output

Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 1a, 2, 3, and 4	Checked	JTC	Date	7/11/2024
CSU-SMA Input Data	Approved			

RESULTS:

1. GIS - Add Data - Navigate to the Output Folder from the last step - Add tables:

2. Print Summary Statistics Tables from Step 1, Summarize in table below

sbprop_sand_table

sbprop_sand_table											
Rowid	NAME	ZONE-CODE	COUNT	AREA	MIN	MAX	RANGE	MEAN	STD	SUM	
1	A		1	2377455	9509820	0.182	0.95	0.768	0.449599	0.150096	1068901.818937
2	B		2	2683921	10735684	0.221	0.95	0.729	0.52451	0.162488	1407743.175444
3	C		3	175062	700248	0.36	0.706	0.346	0.422534	0.123115	73969.665672
4	D - Res		4	62722	250888	0.182	0.775	0.593	0.333136	0.083385	20894.954237

sbprop_clay_table

sbprop_clay_table											
Rowid	NAME	ZONE-CODE	COUNT	AREA	MIN	MAX	RANGE	MEAN	STD	SUM	
1	A		1	2377455	9509820	0.017	0.297	0.28	0.195542	0.060357	464892.183179
2	B		2	2683921	10735684	0.017	0.33	0.313	0.181055	0.075254	485937.85206
3	C		3	175062	700248	0.12	0.29	0.17	0.239338	0.053774	41899.008643
4	D - Res		4	62722	250888	0.081	0.297	0.216	0.217627	0.059821	13650.020895

sbprop_om_table

sbprop_om_table											
Rowid	NAME	ZONE-CODE	COUNT	AREA	MIN	MAX	RANGE	MEAN	STD	SUM	
1	A		1	2377455	9509820	0.0031	0.0383	0.0352	0.015553	0.006392	36975.773376
2	B		2	2683921	10735684	0.0031	0.0383	0.0352	0.014644	0.00559	39304.085351
3	C		3	175062	700248	0.0047	0.0192	0.0145	0.016474	0.003674	2883.909302
4	D - Res		4	62722	250888	0.0036	0.0239	0.0203	0.010814	0.004318	678.299299

sbprop_dtrl_table (*Units in inches*)

sbprop_dtrl_table															
Rowid	NAME	ZONE-CODE	COUNT	AREA	MIN	MAX	RANGE	MEAN	STD	SUM	VARIETY	MAJORITY	MINORITY	MEDIAN	
1	A		1	2383001	9532004	11	79	68	74.431484	15.947885	177370301	4	79	11	79
2	B		2	2685567	10742268	79	79	0	79	0	212159793	1	79	79	79
3	C		3	176096	704384	79	79	0	79	0	13911584	1	79	79	79
4	D - Res		4	1463755	5855020	11	79	68	78.578848	5.190724	115020182	4	79	11	79

sbprop_fg_table

sbprop_fg_table											
Rowid	NAME	ZONE-CODE	COUNT	AREA	MIN	MAX	RANGE	MEAN	STD	SUM	
1	A		1	2383001	9532004	0.128951	0.788287	0.659336	0.282542	0.078846	673297.68489
2	B		2	2685567	10742268	0.137614	0.848011	0.710396	0.260736	0.05504	700225.304646
3	C		3	176096	704384	0.129489	0.678331	0.548821	0.310447	0.095074	54668.490109
4	D - Res		4	1463755	5855020	0.000796	0.943759	0.942963	0.113173	0.20531	165657.265913

	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 1a, 2, 3, and 4	Checked	JTC	Date	7/11/2024
	CSU-SMA Input Data	Approved			

Subbasin Soil Property Summary						
Sub-Basin	% Sand	% Clay	% Organic Matter	Depth to Restrictive Layer (in)	Depth to Restrictive Layer (cm)	Fractional Vegetative Cover
A	45.0%	19.6%	1.6%	74.4	189.0	28.3%
B	52.5%	18.1%	1.5%	79	200.7	26.1%
C	42.3%	23.9%	1.6%	79	200.7	31.0%
D	33.3%	21.8%	1.1%	78.6	199.6	11.3%

3. Compare Subbasin Soil Properties to StreamStats Basin Properties, Soil Survey Geographic Database (SSURGO)

Basin	SSURGO A	SSURGO B	SSURGO C	SSURGO D	STATS CLAY
Full Basin	18.9	27.2	18	1.79	9.89

Soil data from StreamStats is limited for the full basin. However, the % Clay and % Sand values match close. Based on this comparison, the CSU-SMA Soil properties appear to be reasonable for the basin.

4. Compare Subbasin Soil Properties to the USGS Web Soil Survey (WSS), based on a weighted average calculation of the "soil physical property" percent for the top 20 inches of each soil map unit for the whole basin.

Website: <https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm>

SHP : (The same as what was used in the GIS Tool)

R:\0900\0985\0985.04\08_GIS\LiDAR\Hydrology\Watershed.shp

Obtain WSS Results: Soil Data Explorer tab --> Soil Properties and Qualities tab --> Soil Physical Properties tab --> Percent Sand / Clay / Organic Matter

Aggregation Method: Weighted Average

Tie Break Rule: Higher

Layer Options: Depth Range, Top Depth 0, Bottom Depth 20, Inches

Obtain WSS Results: Soil Data Explorer tab --> Soil Properties and Qualities tab --> Soil Qualities and Features --> Depth to Any Soil Restrictive Layer

Aggregation Method: Weighted Average

Tie Break Rule: Higher (I don't think this matters if using weighted average)

Nulls as Zero: N/A

R:\0900\0985\0985.04\12_Hydrology\CSU_SMA\SoilSurveyClay.pdf

R:\0900\0985\0985.04\12_Hydrology\CSU_SMA\SoilSurveyDepth.pdf

R:\0900\0985\0985.04\12_Hydrology\CSU_SMA\SoilSurveyOM.pdf

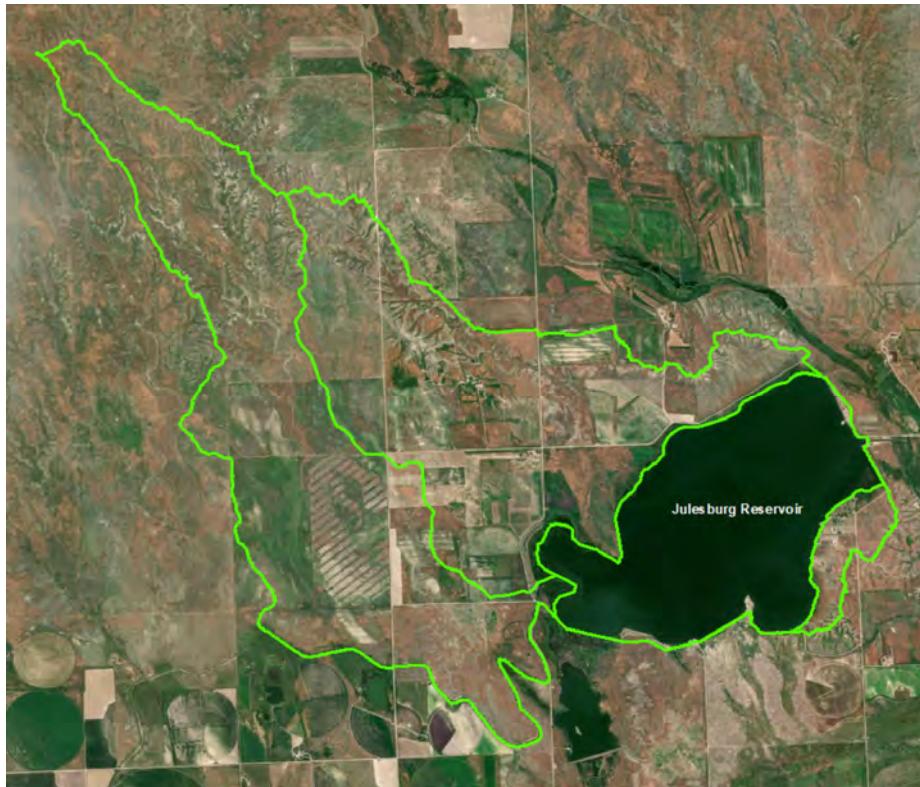
Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 1a, 2, 3, and 4	Checked	JTC	Date	7/11/2024
CSU-SMA Input Data	Approved			

WSS Summary Table for percent sand, clay and organic matter, and depth to restrictive layer:

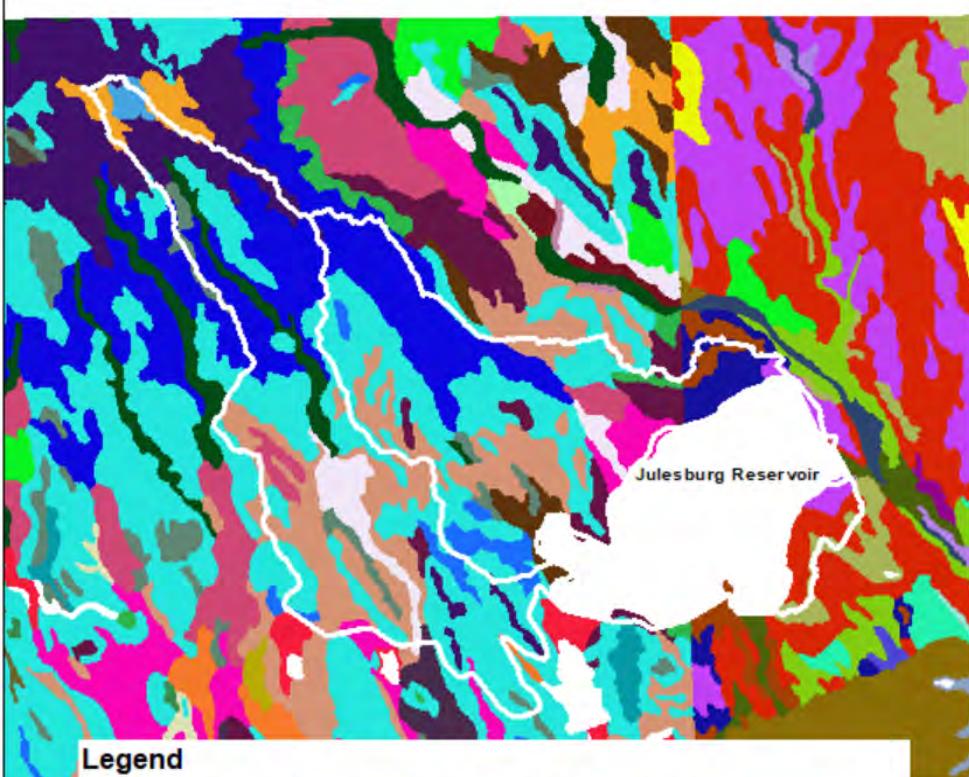
Map Unit	Map Unit	Acres AOI	Sand Rating	Clay Rating	OM Rating	D to Soil Restrictive
Symbol	Name	(Acres)	(%)	(%)	(%)	(cm)
1	Albinas loam, 0 to 3 percent slopes	151.3	39	22.9	3.68	200.0
4	Altvan-Eckley sandy loams, 3 to 5	12.2	59.8	23.6	1.04	200.0
5	Altvan-Eckley sandy loams, 5 to 9	24.7	59.8	23.6	1.04	200.0
6	Aquolls	0.6	55.1	23.8	2.28	200.0
14	Ellicott-Ellicott sandy-skeletal	126.7	95	1.6	0.3	200.0
16	Bridgeport loam	5.3	31.4	21.5	1.61	200.0
18	Chappell sandy loam	193.2	65.2	11.5	0.97	200.0
24	Dix-Altvan complex, 10 to 30	0	79.2	7.4	0.96	71.0
25	Dix-Eckley complex, 5 to 25	239.6	74.3	7	0.64	200.0
27	Epping loam, 3 to 9 percent slopes	24.1	43	17.5	0.75	28.0
61	Manter, sandy loam, 0 to 3 percent	106.1	66.5	14.2	2.24	200.0
69	Mitchell-Keota loams, 0 to 3	17.5	21.2	14.5	0.75	61.0
70	Mitchell-Keota loams, 3 to 9	163	21.2	14.5	0.75	71.0
86	Peetz gravelly sandy loam, 5 to 25	908.5	67.9	10.5	1.63	200.0
89	Platner loam, 0 to 3 percent slopes	40.6	33.7	33.8	1.5	200.0
92	Rago loam, 0 to 3 percent slopes	87.9	36.3	30.8	1.5	200.0
99	Satanta loam, 0 to 1 percent	118.7	40	21.7	1.34	200.0
100	Satanta loam, 1 to 3 percent	852.6	39.3	22.6	1.31	200.0
103	Satanta loam, wet	0.8	37.8	24.9	1.21	200.0
118	Wages loam, 0 to 3 percent slopes	123	44	27	0.72	84.0
119	Wages loam, 3 to 5 percent slopes	168.5	44.1	22.7	1.57	200.0
120	Wages loam, 5 to 9 percent slopes	0.8	44.1	22.7	1.57	200.0
122	Wages-Manter complex, 3 to 9	547.7	44.1	22.7	1.57	200.0
123	Wages-Rosebud loams, 3 to 5	141.7	44.1	22.7	1.57	84.0
124	Wages-Rosebud loams, 5 to 9	805.8	44.1	22.7	1.57	84.0
132	Water	562				200.0
133	Ellicott-Glenberg complex, 0 to 3	7	95	1.6	0.3	200.0
EcE	Eckley-Chappell complex, 9 to 20	28	73.5	10.9	1.13	200.0
EpE	Epping gravelly loam, 5 to 15	40.9	40.4	22	0.75	38.0
KyD	Keota-Epping loams, 3 to 9	124.4	17.4	25.5	0.35	50.0
Ls	Las loam	1.7	37.6	25	0.45	200.0
RcB	Richfield loam, 0 to 3 percent	59.9	36.8	27.8	0.99	200.0
W	Water	830.7				200.0
WaC	Wages gravelly loam, 3 to 5	0.6	37.3	25.3	1.75	200.0
WaD	Wages gravelly loam, 5 to 9	113.6	37.3	25.3	1.75	200.0

Total	% Sand	% Clay	%OM	Depth (cm)
	39.1%	14.9%	1.1%	173.29

Subbasin Soil Property Summary (Mean Values)					
Sub-Basin	% Sand	% Clay	% Organic Matter	Depth to Restrictive Layer (cm)	Fractional Vegetative Cover
Average, SMA	43.2%	20.8%	1.4%	197.47	24.2%
Average, WSS	39.1%	14.9%	1.1%	173.29	N/A

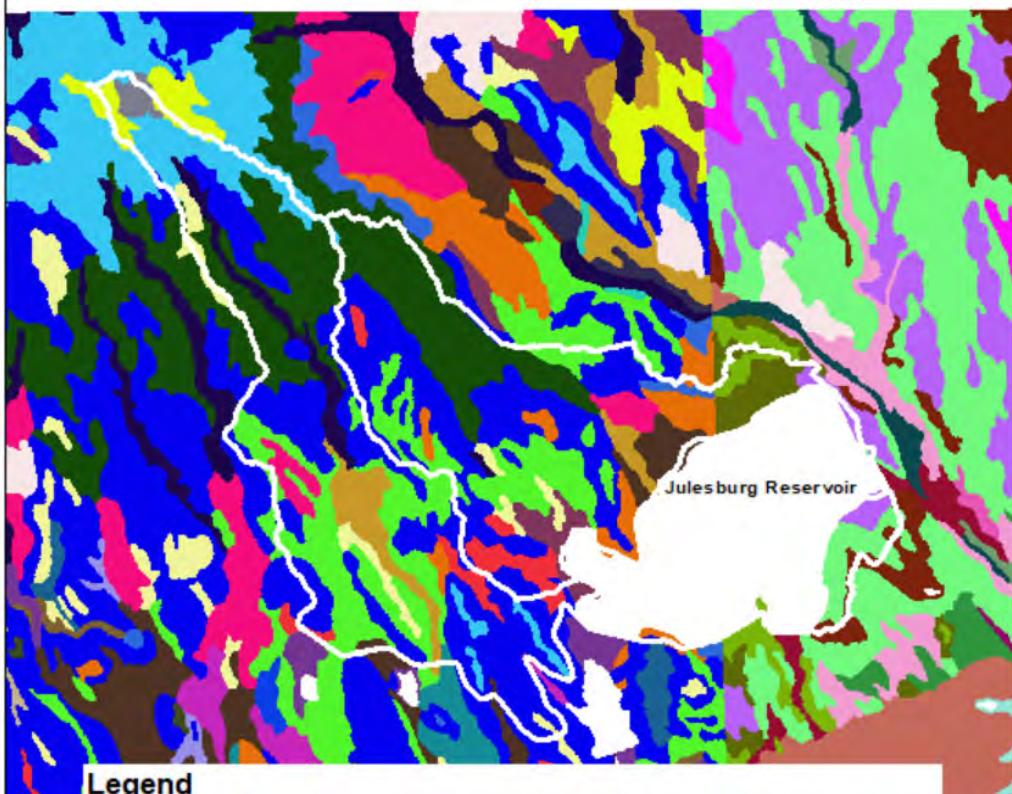

The CSU-SMA vs WSS-weighted-average for basin soil properties of percent sand, percent clay and percent organic matter had a difference of 4.2%, 5.9%, 0.3% and 24 cm, respectively. All within a reasonable amount of difference.

Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 1a, 2, 3, and 4	Checked	JTC	Date	7/11/2024
CSU-SMA Input Data	Approved			


4. Print GIS Subbasin Property Maps (next pages)

1 Aerial Imagery	5 Percent Organic Material
2 Topography	6 Depth to Restrictive Layer (inches)
3 Percent Sand	7 Fractional Vegetative Cover
4 Percent Clay	

Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 1a, 2, 3, and 4	Checked	JTC	Date	7/11/2024
CSU-SMA Input Data	Approved			



Legend

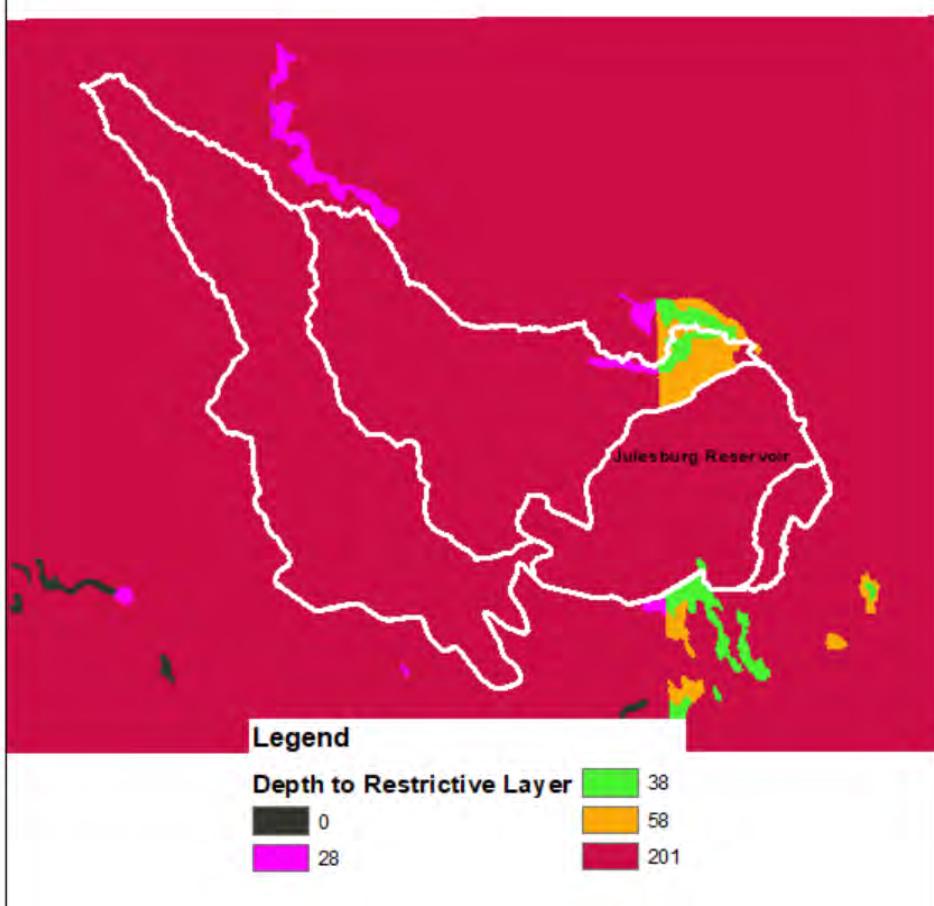
Percent Sand	95	68	60.5	41.8	37.1	33.1	19.7
	95	68	60.3	39.8	37	32.8	18.2
	94.3	67.2	55.4	39.7	36	32	15
	89	66.7	54.3	39.1	35.3	31.7	9.8
	77.5	66.6	43.7	38	34.4	29.6	9.1
	71.8	66.4	43.6	37.7	34.2	23.2	
	70.6	65.2	43	37.2	34.1	22.1	

Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 1a, 2, 3, and 4	Checked	JTC	Date	7/11/2024
CSU-SMA Input Data	Approved			

Legend

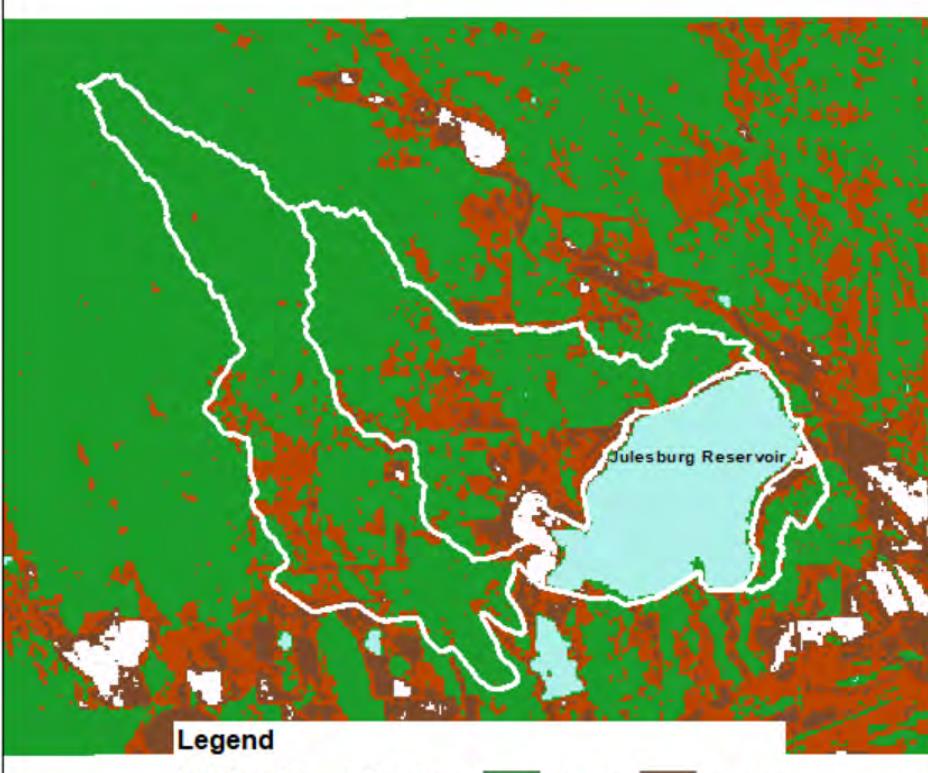
Percent Clay	8.3	14.3	20.8	22.9	25.3	32.7
0	10.2	14.5	21.3	23.1	25.4	33
1.7	10.9	14.8	21.4	23.4	26.6	33.4
4	11.5	16.1	21.7	23.7	27.2	38
4.2	12	16.2	21.8	24.6	29	
7.6	12.9	18.5	22	25	29.7	
8.1	13.3	20.5	22.2	25.1	31	

Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 1a, 2, 3, and 4	Checked	JTC	Date	7/11/2024
CSU-SMA Input Data	Approved			



Legend

Percent Organic Material	1.95	1.45	1.08	0.75	0.36
3.83					
2.73	1.92	1.41	1.06	0.71	0.31
2.39	1.88	1.3	1.03	0.69	0.25
2.33	1.78	1.25	1	0.67	
2.27	1.72	1.23	0.92	0.55	
2.17	1.68	1.11	0.78	0.47	
	1.5	1.09	0.77	0.42	



Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 1a, 2, 3, and 4	Checked	JTC	Date	7/11/2024
CSU-SMA Input Data	Approved			

Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 1a, 2, 3, and 4	Checked	JTC	Date	7/11/2024
CSU-SMA Input Data	Approved			

4. Print SMA Output Tables from Step 1, Summarize in table below

hms_initialsm_table

Rowid	NAME	ZONE-CODE	COUNT	AREA	MIN	MAX	RANGE	MEAN	STD	SUM
1	A	1	2377455	9509820	8.471975	62.850224	54.378248	44.500262	12.203708	105797371.437492
2	B	2	2683921	10735684	8.471975	59.56102	51.089045	39.076235	13.597922	104877527.888292
3	C	3	175062	700248	23.387081	54.633144	31.246063	48.080304	10.761282	8417034.237698
4	D - Res	4	62722	250888	17.949392	62.850224	44.900831	53.811848	5.290683	3375186.703444

hms_maxinfil_table

Rowid	NAME	ZONE-CODE	COUNT	AREA	MIN	MAX	RANGE	MEAN	STD	SUM
1	A	1	2377455	9509820	0.513261	7.10556	6.592299	1.263134	0.469298	3003045.40879
2	B	2	2683921	10735684	0.398364	6.70811	6.309746	1.431567	1.041458	3842212.12703
3	C	3	175062	700248	0.585586	1.461187	0.875601	0.914971	0.199983	160176.714804
4	D - Res	4	62722	250888	0.491374	2.80532	2.313946	1.361171	0.593171	85375.373755

hms_soilstorage_table

Rowid	NAME	ZONE-CODE	COUNT	AREA	MIN	MAX	RANGE	MEAN	STD	SUM
1	A	1	2377455	9509820	2.99281	30.222893	27.230083	18.676961	4.56028	44403634.990531
2	B	2	2683921	10735684	16.202959	30.222893	14.019934	20.528664	3.264113	55097311.704943
3	C	3	175062	700248	17.073444	22.465631	5.392187	18.518013	1.750627	3241800.426352
4	D - Res	4	62722	250888	2.99281	24.743111	21.750301	16.494038	5.621391	1034539.020868

Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 1a, 2, 3, and 4	Checked	JTC	Date	7/11/2024
CSU-SMA Input Data	Approved			

hms_tensionstore_table

hms_tensionstore_table

Rowid	NAME	ZONE-CODE	COUNT	AREA	MIN	MAX	RANGE	MEAN	STD	SUM
1	A	1	2377455	9509820	1.727553	13.980151	12.252598	8.817038	2.594273	20962111.221417
2	B	2	2683921	10735684	2.844974	13.980151	11.135178	8.442847	2.193555	22659934.375072
3	C	3	175062	700248	5.83784	10.423696	4.585856	9.684885	1.669795	1695455.31511
4	D - Res	4	62722	250888	1.727553	13.980151	12.252598	9.84756	3.589719	617658.687912

hms_soilperc_table

hms_soilperc_table

Rowid	NAME	ZONE-CODE	COUNT	AREA	MIN	MAX	RANGE	MEAN	STD	SUM
1	A	1	2377455	9509820	0.032154	7.295838	7.263684	0.181498	0.372205	431502.774485
2	B	2	2683921	10735684	0.02568	6.887745	6.862065	0.485075	1.245286	1301902.58782
3	C	3	175062	700248	0.038241	0.450127	0.411886	0.111014	0.12909	19434.338478
4	D - Res	4	62722	250888	0.032089	0.692108	0.660019	0.078342	0.058378	4913.785827

hms_gw1storage_table

hms_gw1storage_table

Rowid	NAME	ZONE-CODE	COUNT	AREA	MIN	MAX	RANGE	MEAN	STD	SUM
1	A	1	2377455	9509820	0.332534	3.358099	3.025565	2.075218	0.506698	4933737.538714
2	B	2	2683921	10735684	1.800329	3.358099	1.557771	2.280963	0.362679	6121923.858948
3	C	3	175062	700248	1.897049	2.496181	0.599132	2.057557	0.194514	360200.044313
4	D - Res	4	62722	250888	0.332534	2.749235	2.4167	1.832671	0.624599	114948.783853

HEC-HMS	CSU SMA Python Script Output Table	Basin A		Basin B		Basin C		Basin D	
		Average Value *							
HEC-HMS Max Infiltration	hms_maxinfil_table	1.263	1.432	0.915	1.361				
HEC-HMS Soil Percolation	hms_soilperc_table	0.181	0.485	0.111	0.078				
HEC-HMS Soil Storage	hms_soilstorage_table	18.677	20.529	18.518	16.494				
HEC-HMS Parameter GW1 Storage	hms_gw1storage_table	2.075	2.281	2.058	1.833				
HEC-HMS Tension Storage	hms_tensionstore_table	8.817	8.443	9.685	9.848				
HEC-HMS Initial Soil Moisture	hms_initialsm_table	44.500	39.076	48.080	53.812				

* Note, only report to the 1,000th of an inch

REFERENCES:

- Colorado Division of Water Resources, Dam Safety Branch (DWR, 2022), *Guidelines for Hydrological Modeling and Flood Analysis*, September 12, 2022.
- U.S. Geological Survey (USGS) Landsat Imagery. (USGS Landsat, 2011), [LT05_L1TP_035034_20110919_20200820_02_T1](https://doi.org/10.5066/P9L55034), Acquired 9/19/2011, obtained online 4/18/2022.

Appendix B.4

Clark Unit Hydrograph Documentation

Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
Clark UH Parameters	Approved			

OBJECTIVE:

Document the Unit Hydrograph (UH) approach used in the CSU Soil Moisture Accounting (CSU-SMA) method (DWR, 2022). The UH parameters are entered directly in to the HEC-HMS model.

METHOD:

1. The *Guidelines for Hydrological Modeling and Flood Analysis* (DWR, 2022), Section 6.3 indicate the Clark UH approach is used. The two parameter variables are the "Time of Concentration", T_c , and "Storage Coefficient", R .

Table 5 of the Guidance provides a starting point depending on the basin region and elevation:

Table 5: Summary of guidance for Clark UH T_c and R parameter estimation by region⁽¹⁾

Region	T_c , time of concentration (hrs)	R , storage coefficient (hrs)
Mountains > 7,500 ft	$T_c = 2.4 A^{0.1} L^{0.25} L_{ca}^{0.25} S^{-0.2}$ (Sabol, 2008)	Sub-basin<10sqmi: $R/(T_c+R)=0.6-0.8$ Sub-basin>10sqmi: 7 hours
Front Range foothills, Eastern Plains, and West Slope Canyons ⁽²⁾	$T_c = 2.4 A^{0.1} L^{0.25} L_{ca}^{0.25} S^{-0.2}$ (Sabol, 2008)	$R/(T_c+R) = 0.2-0.3$ <u>or $R=0.37 T_c^{1.11} L^{0.8} A^{-0.57}$</u> (Sabol, 2008)
Agricultural	$T_c=7.2 A^{0.1} L^{0.25} L_{ca}^{0.25} S^{-0.2}$ (Sabol, 2008)	$R=0.37 T_c^{1.11} L^{0.8} A^{-0.57}$ (Sabol, 2008)
Urban/developed	$T_c=3.2 A^{0.1} L^{0.25} L_{ca}^{0.25} S^{-0.14} RTIMP^{-0.36}$ (Sabol, 2008)	$R=0.37 T_c^{1.11} L^{0.8} A^{-0.57}$ (Sabol, 2008)

- (1) These estimates should be used as a starting place; T_c and R should be checked and calibrated as needed based on reasonableness checks against peak flow envelopes and flood frequency estimates, as discussed in Sections 9 & 10 below.
- (2) HEC-HMS's Clark UH Variable method for estimating T_c and R may help in model calibration per Section 10 below

Section 10.3 of the Guidance on model calibration and application of T_c and R :

- **Clark Unit Hydrograph Time of Concentration (hr):** T_c generally represents channel storage and travel time through the basin stream network. Decreasing T_c will produce larger peak flows and flashier surface runoff hydrographs. See discussions above about use of Clark Variable method to produce non-linear runoff response, i.e., flashier runoff response with increasing rainfall intensity and excess precipitation.
- **Clark Unit Hydrograph Storage Coefficient (hr):** R generally represents hillslope storage in the basin. Decreasing R will have a similar effect as decreasing T_c , producing larger peak flows and flashier surface runoff hydrographs.

2. The first calculated parameter is the "Time of Concentration" T_c , which is calculated according to Sabol (2008) for the Rocky Mountain, Great Plains, and CO Plateau Regions:

$$T_c = 2.4 * A^{0.1} * L^{0.25} * L_{ca}^{0.25} * S^{-0.2}$$

Where:

A = The total (sub)basin area in square miles

L = The longest flow path length in miles

S = The longest flow path slope in feet per mile

L_{ca} = The centroidal flow path length in miles

Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
Clark UH Parameters	Approved			

3. The second calculated parameter is the "Storage Coefficient" R. The Storage Coefficient represents basin storage, and is a recommended calibration parameter for the model to obtain HEC-HMS results that align more closely with the StreamStats Peak Flow Statistics. Larger values of "R" according to the Guidance "lead to lower predictions of peak flow and more attenuated hydrographs".

Based on Table 5 reproduced above, the following decision sequence was used to determine a starting value of "R":

a. Is the elevation above 7,500 feet, and is the area greater than 10 mi²?

If "Yes", the Guidance recommends using a constant value of R = 7 based on a general average of Colorado mountain basins investigated by CSU (Irvin, 2021)

Not applicable in this case, Elev < 7,500 ft

b. Is the elevation above 7,500 feet, and is the area less than 10 mi²?

If "Yes", the Guidance indicates the ratio of "R / (T_c+R)" is within a range of 0.6 to 0.8:

$$0.6 < \frac{R}{T_c + R} < 0.8$$

$$R = 1.5 T_c \text{ to } 4T_c$$

Not applicable in this case, Elev < 7,500 ft

c. Is the basin in the Front Range foothills, Eastern Plains, or West Slope Canyons

If "Yes", the Guidance indicates the ratio of "R / (T_c+R)" is within a range of 0.2 to 0.3:

$$0.2 < \frac{R}{T_c + R} < 0.3$$

$$R = 0.25 T_c \text{ to } 0.43T_c$$

Use 0.43T_c as a starting place for R

d. It is noted that "R" can be calculated according to Sabol (2008):

$$R = 0.37 * T_c^{1.11} * L^{0.80} * A^{-0.57}$$

"R" according to Sabol was also calculated for comparison against the range indicated from the Guidance and may be relevant when calibrating the model.

Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
Clark UH Parameters	Approved			

ASSUMPTIONS / INPUTS:

Note: Values below are from the **RESULTS** of Step No. 2, Basin DEM Parameters. The Area "A" and Length "L" and "Lca" values below were obtained in meters, calculated using GIS, and recorded to 6 decimal places. The Max and Min elevation were recorded to the nearest whole meter.

Area	Longest Flow path Length	Highest Elevation Along L ⁽¹⁾	Lowest Elevation Along L ⁽²⁾	Longest Flow path Slope	Centroidal Flow path Length	Centroid X	Centroid Y	
A	L	El MAX	El MIN	S	L CA	X	Y	Basin
(Mile ²)	(Mile)	(Feet)	(Feet)	(Feet/ Mile)	(Mile)	(Decimal Deg)	(Decimal Deg)	
3.680000	3.791000	4026.0	3707.0	84.14085993	1.108790	-102.676952	40.943638	A
4.147000	9.749140	4138.6	3707.0	44.26646863	5.495140	-102.701159	40.941605	B
0.271922	0.497915	3792.0	3707.0	170.7118685	0.291746	-102.634616	40.928612	C
2.260390	NA	3707.0	3707.0	NA	NA	-102.650012	40.931352	D-res

(1) Determined using contours created from the 1-meter DEM in GIS.

(2) Determined using contours created from the 1-meter DEM in GIS, elevation of the channel downstream of the outlet works; consistent with EIR crest EI - dam height.

CALCULATIONS:

Time of Concentration	Storage Coefficient, Min Range	Storage Coefficient, Max Range	Storage Coefficient (Sabol)	
T _c	R _{Ratio 0.2} ⁽¹⁾	R _{Ratio 0.3} ⁽²⁾	R _{SABOL}	Basin
(Hour)	(Hour)	(Hour)	(Hour)	
1.61	0.40	0.69	0.87	A
3.51	0.88	1.50	4.09	B
0.47	0.12	0.20	0.19	C
Na	NA	NA	NA	D-res

RESULTS:

The following Time of Concentration (T_c), and Storage Coefficient (R) as summarized in the table below was entered into Calculation 7 as the initial condition for HEC-HMS entry. Additional refinement /calibration are completed in Calculation to determine the final Storage Coefficient value.

Basin	Time of Concentration	Storage Coefficient (Sabol)
	T _c	R _{0.43*Tc}
	(Hour)	(Hour)
A	1.613	0.69
B	3.508	1.51
C	0.465	0.20
D-res	NA	NA

	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
	Clark UH Parameters	Approved			

REFERENCES:

1. Colorado Division of Water Resources, Dam Safety Branch (DWR, 2022), *Guidelines for Hydrological Modeling and Flood Analysis*, September 12, 2022.
2. Irvin, Ben Christopher, IV (Irvin, 2021), Parameter Estimation Methods for Models of Major Flood Events in Ungaged Mountain Basins of Colorado, Master's Thesis, Colorado State University, Dept. of Civil and Environmental Engineering, Fall 2021.
3. Sabol, George V. (Sabol, 2008), *Hydrologic Basin Response Parameter Estimate Guidelines*, prepared for the State of Colorado Office of the State Engineer Dam Safety Branch, May 2008.
4. U.S. Geological Survey (USGS). (USGS, 2022), StreamStats v4.21.0, obtained online 7/1/2024

Appendix B.6

USGS StreamStats Report

Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
StreamStats Documentation	Approved			

OBJECTIVE:

1. Document StreamStats "Peak-Flow" Statistics for Envelope Curve Calibration.
2. Extrapolate stream stats for the 1000 year Annual Return Event. Include a summary on the SEO Confidence Checklist "Reasonableness & Checks", Item No. 2.

METHOD:

1. Use StreamStats to obtain an initial basin area, basin shapefile, and basin report.
StreamStats Website : <https://streamstats.usgs.gov/ss/>

Delineate the basin by clicking on a blue stream cell at the dam location. Download the basin (ShapeFile), as well as "Build a Report". The report builder includes both Regression Based Scenarios and Basin Characteristics. Select the Regression Based Scenarios for Peak-Flow, Flood-Volume, Annual Flow, Monthly Flow, and "Select All Basin Characteristics"

2. Plot the StreamStats "Peak Flow" values from the reported range of Annual Return Intervals (ARIs). Include the range of values based on the Stream Stats Average Standard Error of Prediction, ASEp, if provided, (%). If not, include a range that is +/- 20% (for calibration/reasonable checks)
3. Extrapolate the StreamStats "Peak Flow" for the 1000 year Annual Return Event. Include a summary on the SEO Confidence Checklist "Reasonableness & Checks", Item No. 2.

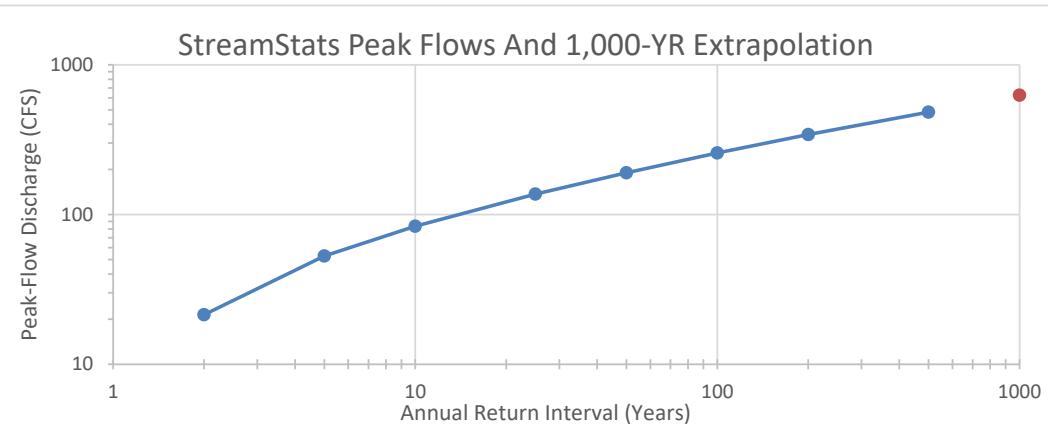
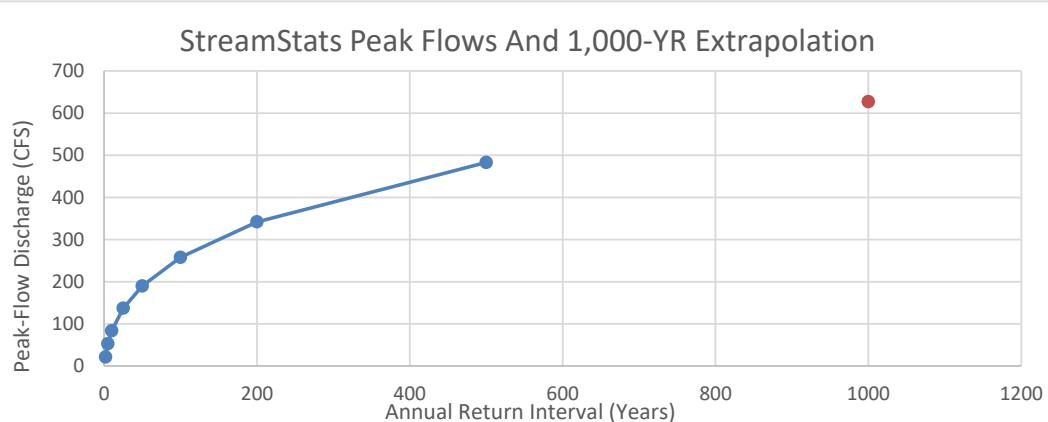
ASSUMPTIONS/INPUTS:

1. Abbreviations:
 - Annual Exceedance Probability (AEP) of event, Percent
 - Annual Return Interval (ARI) of event, Years
 - Cubic Feet Per Second (CFS) discharge of the event
2. Download StreamStats Report and basin shapefile for reservoir basin.
StreamStats Version: V.4.21.0
Regression Based Scenarios: Peak-Flow, Flood-Volume, Annual Flow, Monthly Flow
Basin Characteristics: All

Location of Report PDF: R:\0900\0985\0985.04\12_Hydrology
File Name of Report PDF: StreamStats_JulesburgRes.pdf

Location of Basin SHP: R:\0900\0985\0985.04\08_GIS\SHP\streamstats
File Name of Basin SHP: globalwatershed.shp

3. StreamStats Peak Flow from PDF Report:



Statistic	AEP (%)	ARI (YEARS)	Value (CFS)
50-percent AEP flood	50%	2	21.4
20-percent AEP flood	20%	5	52.9
10-percent AEP flood	10%	10	83.6
4-percent AEP flood	4%	25	137
2-percent AEP flood	2%	50	190
1-percent AEP flood	1%	100	258
0.5-percent AEP flood	0.5%	200	342
0.2-percent AEP flood	0.2%	500	483

4. StreamStats Extrapolation for the 1,000-YR uses a natural log extrapolation of the entire StreamStats dataset.

Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 2, 3, 4 and 1a	Checked	JTC	Date	7/2/2024
StreamStats Documentation	Approved			

CALCULATIONS:

1. Plot and Extrapolate StreamStats Peak Flow

Using Logarithmic Extrapolation for the 1,000 yr ARI Storm Event

Statistic	AEP (%)	ARI (YEARS)	Value (CFS)
0.1-percent AEP flood	0.1%	1000	627

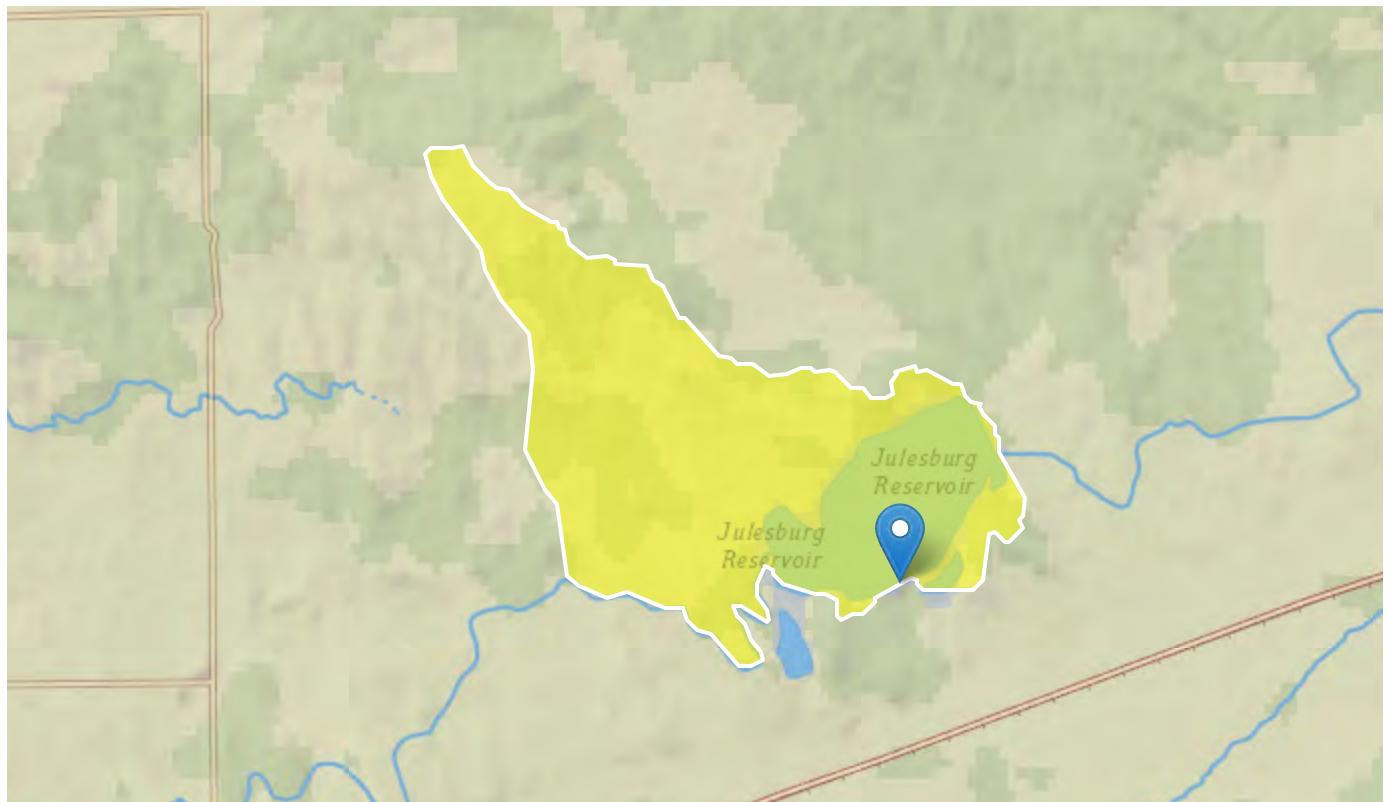
RESULTS:

StreamStats 1,000 Year Discharge By Extrapolation:

X = 1000 ARI, Years
Y = 627.13 CFS

REFERENCES:

1. Capesius, J.P., and Stephens, V. C., 2009, Regional Regression Equations for Estimation of Natural Streamflow Statistics in Colorado: U. S. Geological Survey Scientific Investigations Report 2009-5136, 32 p.
2. U.S. Geological Survey (USGS). (USGS, 2022), **StreamStats v4.21.0**, obtained online 7/2/2024.


StreamStats Report - Updated Basin

Region ID: CO

Workspace ID: CO20250218044908097000

Clicked Point (Latitude, Longitude): 40.92190, -102.64959

Time: 2025-02-17 21:49:51 -0700

+ Collapse All

➤ Basin Characteristics

Parameter	Code	Parameter Description	Value	Unit
BSLDEM10M		Mean basin slope computed from 10 m DEM	3	percent
CSL1085LFP		Change in elevation divided by length between points 10 and 85 percent of distance along the longest flow path to the basin divide, LFP from 2D grid	53.5	feet per
DRNAREA		Area that drains to a point on a stream	10.4	square miles
EL7500		Percent of area above 7500 ft	0	percent
ELEV		Mean Basin Elevation	3760	feet

Parameter	Code	Parameter Description	Value	Unit
ELEVMAX		Maximum basin elevation	4130	feet
I24H100Y		Maximum 24-hour precipitation that occurs on average once in 100 years	4.78	inches
I24H2Y		Maximum 24-hour precipitation that occurs on average once in 2 years - Equivalent to precipitation intensity index	2.12	inches
I6H100Y		6-hour precipitation that is expected to occur on average once in 100 years	4.41	inches
I6H2Y		Maximum 6-hour precipitation that occurs on average once in 2 years	1.64	inches
LAT_OUT		Latitude of Basin Outlet	40.92188	degrees
LC11BARE		Percentage of barren from NLCD 2011 class 31	0.3	percent
LC11CRPHAY		Percentage of cultivated crops and hay, classes 81 and 82, from NLCD 2011	13.7	percent
LC11DEV		Percentage of developed (urban) land from NLCD 2011 classes 21-24	3	percent
LC11FOREST		Percentage of forest from NLCD 2011 classes 41-43	0.1	percent
LC11GRASS		Percent of area covered by grassland/herbaceous using 2011 NLCD	61	percent
LC11IMP		Average percentage of impervious area determined from NLCD 2011 impervious dataset	3	percent
LC11SHRUB		Percent of area covered by shrubland using 2011 NLCD	0	percent
LC11SNOIC		Percent snow and ice from NLCD 2011 class 12	0	percent
LC11WATER		Percent of open water, class 11, from NLCD 2011	16.7	percent
LC11WETLND		Percentage of wetlands, classes 90 and 95, from NLCD 2011	5.3	percent
LFPLENGTH		Length of longest flow path	4.84	miles
LONG_OUT		Longitude of Basin Outlet	-102.649581	degrees
MINBELEV		Minimum basin elevation	3680	feet
OUTLETELEV		Elevation of the stream outlet in feet above NAVD88	3707	feet
PRECIP		Mean Annual Precipitation	17.89	inches
RCN		Runoff-curve number as defined by NRCS (http://policy.nrcc.usda.gov/OpenNonWebContent.aspx?content=17758.wba)	62.91	dimensionless

Parameter	Code	Parameter Description	Value	Unit
RUNCO_CO		Soil runoff coefficient as defined by Verdin and Gross (2017)	0.26	dimensionless
SSURGOA		Percentage of area of Hydrologic Soil Type A from SSURGO	26.7	percent
SSURGOB		Percentage of area of Hydrologic Soil Type B from SSURGO	31.8	percent
SSURGOC		Percentage of area of Hydrologic Soil Type C from SSURGO	19.6	percent
SSURGOD		Percentage of area of Hydrologic Soil Type D from SSURGO	1.1	percent
STATSCLAY		Percentage of clay soils from STATSGO	11.49	percent
STORNHD		Percent storage (wetlands and waterbodies) determined from 1:24K NHD	21.2	percent
TOC		Time of concentration in hours	6.57	hours

General Disclaimers

This watershed has been edited, computed flows and basin characteristics may not apply. For more information, submit a support request from the 'Help' button in the upper-right of the screen, attach a pdf of this report and request assistance from your local StreamStats regional representative.

Peak-Flow Statistics

Peak-Flow Statistics Parameters [Plains Region Peak Flow 2016 5099]

Parameter	Code	Parameter Name	Value	Units	Min Limit	Max Limit
BSLDEM10M		Mean Basin Slope from 10m DEM	3	percent	0.41	21.9
DRNAREA		Drainage Area	10.4	square miles	0.26	3560
STATSCLAY		STATSGO Percentage of Clay Soils	11.49	percent	5.2	38.5

Peak-Flow Statistics Flow Report [Plains Region Peak Flow 2016 5099]

PIL: Lower 90% Prediction Interval, PIU: Upper 90% Prediction Interval, ASEp: Average Standard Error of Prediction, SE: Standard Error, PC: Percent Correct, RMSE: Root Mean Squared Error, PseudoR²: Pseudo R Squared (other -- see report)

Statistic	Value	Unit	ASEp
50-percent AEP flood	33.4	ft ³ /s	131
20-percent AEP flood	86.7	ft ³ /s	102
10-percent AEP flood	140	ft ³ /s	103
4-percent AEP flood	235	ft ³ /s	113
2-percent AEP flood	331	ft ³ /s	123
1-percent AEP flood	455	ft ³ /s	136
0.5-percent AEP flood	608	ft ³ /s	150
0.2-percent AEP flood	868	ft ³ /s	170

Peak-Flow Statistics Citations

Kohn, M.S., Stevens, M.R., Harden, T.M., Godaire, J.E., Klinger, R.E., and Mommandi, A., 2016, Paleoflood investigations to improve peak-streamflow regional-regression equations for natural streamflow in eastern Colorado, 2015: U.S. Geological Survey Scientific Investigations Report 2016-5099, 58 p. (<http://dx.doi.org/10.3133/sir20165099>)

➤ Bankfull Statistics

Bankfull Statistics Parameters [Interior Plains D Bieger 2015]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	10.4	square miles	0.19305	59927.7393

Bankfull Statistics Parameters [Great Plains P Bieger 2015]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	10.4	square miles	0.598455	30899.82624

Bankfull Statistics Parameters [USA Bieger 2015]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	10.4	square miles	0.07722	59927.7393

Bankfull Statistics Flow Report [Interior Plains D Bieger 2015]

Statistic	Value	Unit
Bieger_D_channel_width	26.7	ft
Bieger_D_channel_depth	2.34	ft
Bieger_D_channel_cross_sectional_area	65.2	ft ²

Bankfull Statistics Flow Report [Great Plains P Bieger 2015]

Statistic	Value	Unit
Bieger_P_channel_width	13.3	ft
Bieger_P_channel_depth	1.72	ft
Bieger_P_channel_cross_sectional_area	49.1	ft ²

Bankfull Statistics Flow Report [USA Bieger 2015]

Statistic	Value	Unit
Bieger_USA_channel_width	28.2	ft
Bieger_USA_channel_depth	1.99	ft
Bieger_USA_channel_cross_sectional_area	60.5	ft ²

Bankfull Statistics Flow Report [Area-Averaged]

Statistic	Value	Unit
Bieger_D_channel_width	26.7	ft
Bieger_D_channel_depth	2.34	ft
Bieger_D_channel_cross_sectional_area	65.2	ft ²
Bieger_P_channel_width	13.3	ft
Bieger_P_channel_depth	1.72	ft
Bieger_P_channel_cross_sectional_area	49.1	ft ²
Bieger_USA_channel_width	28.2	ft
Bieger_USA_channel_depth	1.99	ft
Bieger_USA_channel_cross_sectional_area	60.5	ft ²

Bankfull Statistics Citations

Bieger, Katrin; Rathjens, Hendrik; Allen, Peter M.; and Arnold, Jeffrey G., 2015, Development and Evaluation of Bankfull Hydraulic Geometry Relationships for the Physiographic Regions of the United States, Publications from USDA-ARS / UNL Faculty, 17p. (https://digitalcommons.unl.edu/usdaarsfacpub/1515?utm_source=digitalcommons.unl.edu%2Fusdaarsfacpub%2F1515&utm_medium=PDF&utm_campaign=StreamStats)

➤ Maximum Probable Flood Statistics

Maximum Probable Flood Statistics Parameters [Crippen Bue Region 12]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	10.4	square miles	0.1	7000

Maximum Probable Flood Statistics Flow Report [Crippen Bue Region 12]

Statistic	Value	Unit
Maximum Flood Crippen Bue Regional	51400	ft^3/s

Maximum Probable Flood Statistics Citations

Crippen, J.R. and Bue, Conrad D. 1977, Maximum Floodflows in the Conterminous United States, Geological Survey Water-Supply Paper 1887, 52p. (<https://pubs.usgs.gov/wsp/1887/report.pdf>)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.27.0

StreamStats Services Version: 1.2.22

NSS Services Version: 2.2.1

Appendix B.7

HEC-HMS Entry Documentation

W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 1a, 2, 3, and 4	Checked	JTC	Date	7/23/2024
	Initial HEC-HMS Entry and Results	Approved			

OBJECTIVE:

This calculation documents the development of the HEC-HMS Basin Runoff Model.

METHOD:

1. Develop a HEC-HMS model of the basin, HEC-HMS model Version 4.12 (USACE, 2024).
 - a. HMS input parameters using the new mountain hydrology approach which incorporates Soil Moisture Accounting (SMA), see the *Guidelines for Hydrological Modeling and Flood Analysis*, March 28th 2022 (DWR, 2022).

2. HMS Entry:

- a. Basin Model - Reservoir Creation Tool - Add Reservoir:

- Method: Outflow Structures
- Storage Method: Elevation-Storage
- Initial Condition: NHWL Ele Existing Alt A Alt B Alt C

-- Elevation (FT):

3712.10	3715.50	3710.50	3710.50
---------	---------	---------	---------

- Main Tailwater: Assume None

- Time Step Method: Automatic Adaptation

- Spillways: 1

-- Method:

Specified Spillway

Created in HEC-RAS, based on LiDAR and Reservoir Options Calc 6

-- Rating Curve:

--

- Dam Tops: 1

-- Method:

Level Overflow

Existing Alt A Alt B Alt C

-- Elevation (FT):

3715.2			
(Dam1)	3721.0	3716.0	3716.0

LiDAR

-- Length (FT):

2722 (Dam1)			
-------------	--	--	--

LiDAR

-- Coefficient:

7956 (Dam2)	10678.0	10678.0	10678.0
-------------	---------	---------	---------

Broad Crested Weir

-- Coefficient:

2.68	2.68	2.68	2.68
------	------	------	------

- b. Basin Model - Subbasin Creation Tool (In this case the "subbasin" is all one basin)

- Downstream: Reservoir created in Step 2.a.

Basin A Basin B Basin C Basin D

▪ Area: (mi^2)

3.68	4.15	0.27	2.26
------	------	------	------

- Discretization Method: --None--

- Canopy Method: Simple Canopy

-- Initial Storage (%):

0	0	0	0
---	---	---	---

Recommended Value (DWR, 2022)

-- Max Storage (IN):

0.169	0.169	0.169	0.169
-------	-------	-------	-------

Recommended Value (DWR, 2022)

-- Crop Coefficient:

1	1	1	1
---	---	---	---

HEC-HMS default

-- Evapotranspiration:

Only Dry Periods	Only Dry Periods	Only Dry Periods	Only Dry Periods
------------------	------------------	------------------	------------------

HEC-HMS default

-- Uptake Method:

Simple	Simple	Simple	Simple
--------	--------	--------	--------

Recommended Value (DWR, 2022)

- Surface Method: --None--

W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 1a, 2, 3, and 4	Checked	JTC	Date	7/23/2024
	Initial HEC-HMS Entry and Results	Approved			

b. Basin Model - Continued...

▪ Loss Method: Soil Moisture Accounting

	Basin A	Basin B	Basin C	Basin D	
-- Soil (%) :	44.500	39.076	48.080	53.812	CSU-SMA Tool, "hms_initialsm_table", mean
-- Groundwater 1 (%) :	0	0	0	0	Recommended Value (DWR, 2022)
-- Groundwater 2 (%) :	0	0	0	0	Recommended Value (DWR, 2022)
-- Max Infiltration (IN/HR) :	1.263	1.432	0.915	1.361	CSU-SMA Tool, "hms_maxinfil_table", calibration potential (DWR, 2022)
-- Impervious (%) :	5	5	5	5	"hms_soilstorage_table", mean, calibration
-- Soil Storage (IN) :	18.677	20.529	18.518	16.494	"hms_tensionstore_table", mean
-- Tension Storage (IN) :	8.817	8.443	9.685	9.848	CSU-SMA Tool, "hms_gw1storage_table", mean, calibration
-- Soil Percolation (IN/HR) :	0.181	0.485	0.111	0.078	Recommended Range 0.02 in/hr (San Juans) to 0.1 in/hr (Front Range). calibration
-- GW 1 Storage (IN) :	2.075	2.281	2.058	1.833	3 X R (from Clark UH), Recommended Value (DWR, 2022)
-- GW 1 Percolation (IN/HR) :	0.1	0.1	0.1	0.1	Recommended Range 0.02 in/hr (San Juans) to 0.1 in/hr (Front Range). calibration
-- GW 1 Coefficient (HR) :	2.074	4.51	0.598	NA	Recommended Value (DWR, 2022)
-- GW 2 Storage (IN) :	0	0	0	0	Recommended Value (DWR, 2022)
-- GW 2 Percolation (IN/HR) :	0	0	0	0	Recommended Value (DWR, 2022)
-- GW 2 Coefficient (HR) :	0	0	0	0	Recommended Value (DWR, 2022)

▪ Transform Method: Clark Unit Hydrograph

	Basin A	Basin B	Basin C	Basin D	
-- Method :	Standard	Standard	Standard		Tc from Clark UH Worksheet: $T_c = 2.4 * A^{0.1} * L^{0.25} * L_{ca}^{0.25} * S^{-0.2}$
-- Time of Concentration, Tc (HR) :	1.61	3.51	0.47	NA	
-- Storage Coefficient, R (HR) :	0.69	1.51	0.20	NA	Use a Storage Coefficient based on a ratio of: R/(Tc+R) = 0.3

W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 1a, 2, 3, and 4	Checked	JTC	Date	7/23/2024
	Initial HEC-HMS Entry and Results	Approved			

R/(Tc+R):

0.30

0.30

0.30

NA

Initial HEC-HMS, Start with 0.43TC

▪ Baseflow Method: Linear Reservoir

-- Layers :

1

1

1

1

(previous versions of HEC-HMS/Guidance calls this "Reservoirs")
Recommended Value (DWR, 2022)

-- Initial Type :

Discharge

Discharge

Discharge

Discharge

-- GW 1 Initial (CFS) :

0

0

0

0

-- GW 1 Fraction :

(blank)

(blank)

(blank)

(blank)

-- GW 1 Coefficient (HR) :

2.074

4.510

0.598

NA

3 X R (from Clark UH), Recommended Value (DWR, 2022)

-- GW 1 Reservoirs :

1

1

1

1

(previous versions of HEC-HMS/Guidance calls this "Steps")

c. Meteorologic Models - 25 Total, including (Remnant) Tropical Storm

▪ Naming Convention

-- PMP_GS : Probable Maximum Precipitation, General Storm

-- PMP_TS : Probable Maximum Precipitation, (Remnant) Tropical

-- PMP_LS_02HR : Probable Maximum Precipitation, Local Storm 2 HR

-- PMP_LS_06HR : Probable Maximum Precipitation, Local Storm 6 HR

-- 1E01_10YR_02HR_LS: 10YR Frequency Storm, 2 HR Local Storm

-- 1E01_10YR_06HR_MEC: 10YR Frequency Storm, 6 HR Mesoscale Storms with Embedded Convection

-- 1E01_10YR_48HR_MLC: 10YR Frequency Storm, 48 HR Mid-Latitude Cyclones

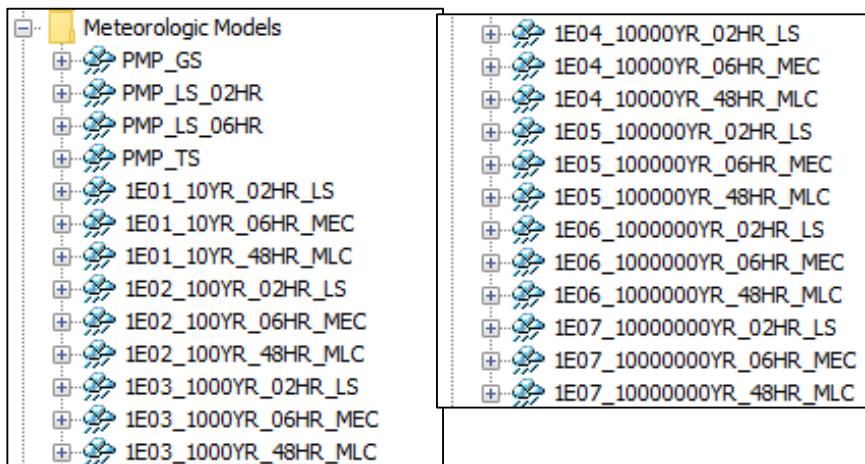
▪ First Meteorologic Model: All defaults except for "Evapotranspiration", and set Basin - Include Subbasins - to "Yes".

Meteorology Model		Basins	Options
Met Name: PMP_GS			
Description: <input type="text"/>			
Unit System: <input type="text" value="U.S. Customary"/>			
Shortwave: <input type="text" value="--None--"/>			
Longwave: <input type="text" value="--None--"/>			
Precipitation: <input type="text" value="Specified Hyetograph"/>			
Temperature: <input type="text" value="--None--"/>			
Windspeed: <input type="text" value="--None--"/>			
Pressure: <input type="text" value="--None--"/>			
Dew Point: <input type="text" value="--None--"/>			
Evapotranspiration: <input type="text" value="Annual Evapotranspiration"/>			
Snowmelt: <input type="text" value="--None--"/>			
Replace Missing: <input type="text" value="Abort Compute"/>			

	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 1a, 2, 3, and 4	Checked	JTC	Date	7/23/2024
	Initial HEC-HMS Entry and Results	Approved			

 Meteorology Model Basins Options

Met Name: PMP_GS


Basin Model	Include Subbasins
Julesburg Existing	Yes
Julesburg Opt 1	Yes
Julesburg Opt 2	Yes
Julesburg Opt 3	Yes

-- "Annual Evapotranspiration" :

Rate (IN/DAY): 0.098 Recommended Value (DWR, 2022)
 Percent Pattern: --None-- Recommended Value (DWR, 2022)

c. Meteorologic Models, continued....

- Then create 20 copies and rename according to naming convention:

d. Time-Series Data - Precipitation gages - 25 Total.

- Naming Convention (same as Meteorologic Models)
 - PMP_GS : Probable Maximum Precipitation, General Storm
 - PMP_LS_02HR : Probable Maximum Precipitation, Local Storm 2 HR
 - PMP_LS_06HR : Probable Maximum Precipitation, Local Storm 6 HR
 - 1E01_10YR_02HR_LS: 10YR Frequency Storm, 2 HR Local Storm
 - 1E01_10YR_06HR_MEC: 10YR Frequency Storm, 6 HR Mesoscale Storms with Embedded
 - 1E01_10YR_48HR_MLC: 10YR Frequency Storm, 48 HR Mid-Latitude Cyclones

-- "PMP_GS", and "PMP_TS" :

Units: Cumulative Inches Recommended (DWR, 2022)
 Time Interval: 15 minutes Recommended Value (DWR, 2022)
 Time Window: 10 days Recommended Value (DWR, 2022)

-- "PMP_LS_02HR", "PMP_LS_06HR" and if applicable "PMP_LS_24hr":

Units: Cumulative Inches
 Time Interval: 5 minutes Recommended Value (DWR, 2022)
 Time Window: 2 days Recommended Value (DWR, 2022)

	Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 1a, 2, 3, and 4	Checked	JTC	Date		7/23/2024
Initial HEC-HMS Entry and Results	Approved				

For faster entry, copy these three Precipitation Frequency events for the 10YR storm and use as a template for the subsequent 100 - 10,000,000YR Frequency Storms.

-- "1E01_10YR_02HR_LS"

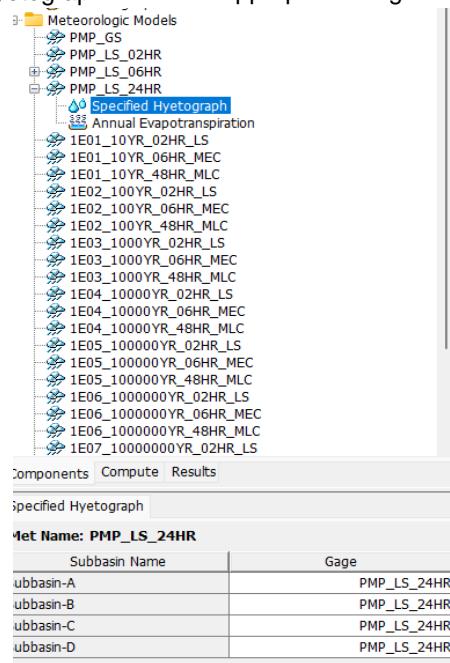
"1E01_10YR_06HR_MEC":

Units: Cumulative Inches

Time Interval: 5 minutes Recommended Value (DWR, 2022)

Time Window: 2 days Recommended Value (DWR, 2022)

-- "1E01_10YR_48HR_MLC" :


Units: Cumulative Inches

Time Interval: 1 hour Recommended Value (DWR, 2022)

Time Window: 10 days Recommended Value (DWR, 2022)

Go back and pair correct precipitation gage with matching meteorologic model:

-- "Specified Hyetograph" : Select appropriate Gage based on "Time-Series Data" - Precipitation

e. Control Specifications

-- 02day_1min :

Start/End Date and Time: Span same 2 days as Precipitation Gage

Time Interval: 1 minute

-- 10day_5min :

Start/End Date and Time: Span same 10 days as Precipitation Gage

Time Interval: 5 minute

f. Paired Data - "Elevation-Storage Functions"

-- Reservoir Volume : From LiDAR, see Calc 06 Pertinent Data Update

Go back and pair with Basin Model, Reservoir "Elev-Stor Function"

g. Paired Data - "Elevation-Discharge Functions"

-- Spillway Capacity : From LiDAR, see Calc 06 Pertinent Data Update

Julesburg Reservoir	Made by	CBM	Job No.	985.04
Dam 1, 1a, 2, 3, and 4	Checked	JTC	Date	7/23/2024
Initial HEC-HMS Entry and Results	Approved			

Go back and pair with Basin Model, Specified Spillway, "Elevation Discharge"

3. HMS Create Compute:

- Create computes for each of the runs, 25 total (including GS_TS, noting either the GS or TS will control, so between the two they are "Run 1")
- For initial calibration, do not apply the 7% Atmospheric Moisture Factor.
(Ratio - Ratio Method - Precipitation - Ratio 1.07)

Simulation Runs	
01_PMP_GS	12_1E03_1000YR_48HR_Opt2
01_PMP_Opt1	12_1E03_1000YR_48HR_Opt3
01_PMP_Opt2	13_1E04_10000YR_02HR_LS
01_PMP_Opt3	13_1E04_10000YR_02HR_Opt1
02_PMP_LS_Opt1	13_1E04_10000YR_02HR_Opt2
02_PMP_LS_Opt2	13_1E04_10000YR_02HR_Opt3
02_PMP_LS_Opt3	14_1E04_10000YR_06HR_MEC
02_PMP_LS_Opt2	14_1E04_10000YR_06HR_Opt1
02_PMP_LS_Opt3	14_1E04_10000YR_06HR_Opt2
02_PMP_LS_Opt2	14_1E04_10000YR_06HR_Opt3
03a_PMP_LS_24HR	15_1E04_10000YR_48HR_MLC
03_PMP_LS_Opt1	15_1E04_10000YR_48HR_Opt1
03_PMP_LS_Opt1_Design	15_1E04_10000YR_48HR_Opt2
03_PMP_LS_Opt2	15_1E04_10000YR_48HR_Opt3
03_PMP_LS_Opt2_Design	16_1E05_100000YR_02HR_LS
03_PMP_LS_Opt3	16_1E05_100000YR_02HR_Opt1
03_PMP_LS_Opt3_Design	16_1E05_100000YR_02HR_Opt2
03_PMP_LS_06HR	16_1E05_100000YR_02HR_Opt3
03_PMP_LS_06HR_Design	17_1E05_100000YR_06HR_MEC
04_1E01_10YR_02HR_LS	17_1E05_100000YR_06HR_Opt1
04_1E01_10YR_02HR_Opt1	17_1E05_100000YR_06HR_Opt2
04_1E01_10YR_02HR_Opt2	17_1E05_100000YR_06HR_Opt3
04_1E01_10YR_02HR_Opt3	18_1E05_100000YR_48HR_MLC
05_1E01_10YR_06HR_MEC	18_1E05_100000YR_48HR_Opt1
05_1E01_10YR_06HR_Opt1	18_1E05_100000YR_48HR_Opt2
05_1E01_10YR_06HR_Opt2	18_1E05_100000YR_48HR_Opt3
05_1E01_10YR_06HR_Opt3	19_1E06_1000000YR_02HR_LS
06_1E01_10YR_48HR_MLC	19_1E06_1000000YR_02HR_Opt1
06_1E01_10YR_48HR_Opt1	19_1E06_1000000YR_02HR_Opt2
06_1E01_10YR_48HR_Opt2	19_1E06_1000000YR_02HR_Opt3
06_1E01_10YR_48HR_Opt3	19_1E06_1000000YR_06HR_MEC
07_1E02_100YR_02HR_LS	19_1E06_1000000YR_06HR_Opt1
07_1E02_100YR_02HR_Opt1	19_1E06_1000000YR_06HR_Opt2
07_1E02_100YR_02HR_Opt2	19_1E06_1000000YR_06HR_Opt3
07_1E02_100YR_02HR_Opt3	20_1E06_1000000YR_06HR_Opt1
08_1E02_100YR_06HR_MEC	20_1E06_1000000YR_06HR_Opt2
08_1E02_100YR_06HR_Opt1	20_1E06_1000000YR_06HR_Opt3
08_1E02_100YR_06HR_Opt2	21_1E06_1000000YR_48HR_MLC
08_1E02_100YR_06HR_Opt3	21_1E06_1000000YR_48HR_Opt1
09_1E02_100YR_48HR_MLC	21_1E06_1000000YR_48HR_Opt2
09_1E02_100YR_48HR_Opt1	21_1E06_1000000YR_48HR_Opt3
09_1E02_100YR_48HR_Opt2	22_1E07_10000000YR_02HR_LS
09_1E02_100YR_48HR_Opt3	22_1E07_10000000YR_02HR_Opt1
10_1E03_1000YR_02HR_LS	22_1E07_10000000YR_02HR_Opt2
10_1E03_1000YR_02HR_Opt1	22_1E07_10000000YR_02HR_Opt3
10_1E03_1000YR_02HR_Opt2	23_1E07_10000000YR_06HR_MEC
10_1E03_1000YR_02HR_Opt3	23_1E07_10000000YR_06HR_Opt1
11_1E03_1000YR_06HR_MEC	23_1E07_10000000YR_06HR_Opt2
11_1E03_1000YR_06HR_Opt1	23_1E07_10000000YR_06HR_Opt3
11_1E03_1000YR_06HR_Opt2	24_1E07_10000000YR_48HR_MLC
11_1E03_1000YR_06HR_Opt3	24_1E07_10000000YR_48HR_Opt1
	24_1E07_10000000YR_48HR_Opt2
	24_1E07_10000000YR_48HR_Opt3

W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Julesburg Reservoir	Made by	CBM	Job No.	985.04
	Dam 1, 1a, 2, 3, and 4	Checked	JTC	Date	7/23/2024
	Initial HEC-HMS Entry and Results	Approved			

CALCULATIONS:

1. Run HEC-HMS model with frequency storm rainfall distributions to determine which is controlling the 2-, 6-, or 48-hour duration frequency storm. Also run the HEC-HMS model with rainfall for the REPS General/(Residual) Tropical and Local PMP Storms.
 - a. The controlling storm duration for each frequency storm event will be the inflow event with the maximum routed reservoir water surface elevation.
 - b. For the controlling storm, record the maximum inflow (CFS). Compare to StreamStats 100YR (within 20% or standard error of prediction) and compare REPS PMP to CO Envelope Curve and calibrate if required.

HMS Model - Organize Simulation Runs

Design Storm:	Annual Return Event							
	PMP	10	100	1,000	10,000	100,000	1,000,000	10,000,000
	N/A	1E+01	1E+02	1E+03	1E+04	1E+05	1E+06	1E+07
REPS GS/TS 72 HR	01							
REPS LS 2 HR	02							
REPS LS 6 HR	03							
REPS LS 24 HR	03a							
MetPortal 2 HR		04	07	10	13	16	19	22
MetPortal 6 HR		05	08	11	14	17	20	23
MetPortal 48 HR		06	09	12	15	18	21	24

Appendix B.8

Wave-Runup Documentation

	Subject	Julesburg Irrigation Ditch	Made by	CBM	Job No.	985.04
	Julesburg Reservoir		Checked	JTC	Date	8/29/2024
	Freeboard Estimation & Wave Runup		Approved			

Objective: Calculate normal and residual freeboard requirement for Julesburg Reservoir in the Existing and Option 1 conditions

Methods: Use US Bureau of Reclamation Design Manual 13, Chapter 6: Freeboard, DS-13(6)-2 to estimate normal freeboard and residual freeboard (required minimum freeboard during peak IDF water surface).

Rule 7.4.2.2.1 of Colorado Rules and Regulations for Dam Safety and Dam Construction, 2-CCR 402-1 (January, 2020) indicates that minimum normal freeboard must be the greater of three feet or the wave setup and runup generated by a sustained 100 mph wind.

Rule 7.4.2.2.2 of 2-CCR 402-1 (January, 2020) indicates that minimum residual freeboard must be the greater of one foot or the wave setup and runup generated by a sustained 10 percent Hourly Exceedance Probability (HEP) wind.

Assumptions: Inflow design flood is 23,990 cfs based on a PMP, 6-hour Local Storm (incl. 7% AMF)

Upstream Embankment Slope varies for each dam and is provided below. The slope is equivalent to $1 / (\text{tangent of the slope angle, } \alpha)$

USBR DS 13 Chapter 6, Figure 6.2.2-1 is used to provide freeboard for 100 mph wind runup + setup

Average reservoir depth along the central fetch radius is calculated for each dam on tab 'Average Depth'

Note: 1 - Water surface elevation from flood routing results of IDF through design spillway.

1) Design Normal Freeboard - For Existing and Option 1

Normal Freeboard = vertical distance between the NHWL and the lowest point on the dam crest

2) Design Residual Freeboard - For Existing and Option 1

Residual Freeboard = vertical distance between the maximum WSEL during the IDF and the lowest point on the dam crest

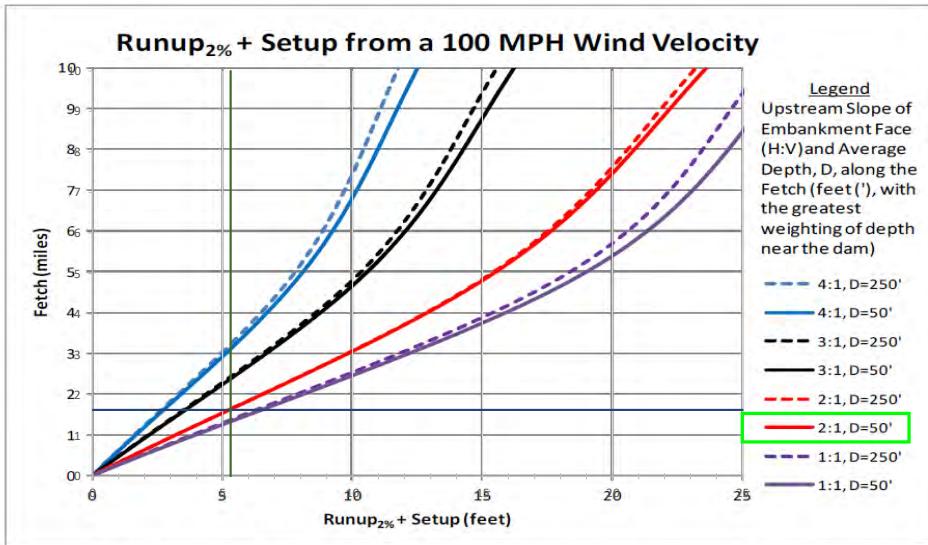
Calculations: Calculation 1: Normal and Residual Freeboard

Results: Calculation 1: Design Freeboard of 7 Feet, and Residual Freeboard of 1.31 feet are both acceptable

Calculation 1: Normal and Residual Freeboard

Step 1 Calculate Reservoir Fetch using nine radii on three degree spacing to each side of the central radius, which is perpendicular to the dam

Note that in cases where it is not clear which Central Radius Location will yield the greatest Average Radius Length, multiple locations should be tested.


Radius ID	Angle (degrees)	Dam 1 Length (feet)	Dam 2 Length (feet)	Dam 3 Length (feet)	Dam 4 Length (feet)	Dam 5 Length (feet)	Dam 1a Length (feet)
Upstream Slope (1 V: X H)		2.8	1.5; 1.7; 2	1.7	2.73	3	2.8
Average Reservoir Depth		20.75	23.20	24.39	24.94	25.65	23.30
Average Radius Length (feet)		5655	5857	7543	7945	8660	6,079
Average Radius Length (miles)		1.1	1.1	1.4	1.5	1.6	1.15

Average Radius is equal to the **Reservoir Fetch**, as defined by DS-13(6)-2. Refer to attached reservoir fetch figure.

Step 2

Use Figure 6.2.2-1 from DS-13(6)-2 to determine wave runup + setup for 100 mph wind. Wheeler assumed a slope of 2:1 for a representative of all upstream slopes for each dam. During final design, a less conservative slope should be used to reduce the estimated freeboard.

Subject	Julesburg Irrigation Ditch	Made by	CBM	Job No.	985.04
Julesburg Reservoir		Checked	JTC	Date	8/29/2024
Freeboard Estimation & Wave Runup		Approved			

Figure 6.2.2-1. Runup_{2%} + setup from a 100-mi/h sustained wind velocity on a surface protected by riprap.

Runup + Setup for 100 mi/h sustained wind velocity =

Dam 1	3.40	feet
Dam 1a	3.65	feet
Dam 2	3.50	feet
Dam 3	4.60	feet
Dam 4	4.80	feet
Dam 5	5.30	feet

Step 3

Use Probabilistic Freeboard and Riprap Analysis (PFARA) software as referenced in DS-13(6)-2 to generate a 10% Hourly Exceedance Probability Over-Water Wind Velocity plot for the dam site in question. Then use the plot to determine the 10% HEP Over-Water Wind Velocity (VM_{10%}). Alternatively, use the computed table of PFARA results provided by the CODWR in their design spreadsheet.

Table 1: 10% Probability of Non-Exceedence (P_{WH})

PFARA Station	Station I.D.	Over Water Wind Velocity (mph)			
		10% Probability of Non-Exceedence (P _{WH})			
		Fetch Length	0.5 mile	1.0 mile	1.5 mile
Aurora/Buckley	CO23036		18.0	18.5	19.0
Alamosa	CO23061		22.5	23.0	23.5
Denver/Sta Gage	CO23062		22.0	23.0	24.6
Eagle	CO23062		23.0	24.0	25.0
Grand Junction	CO23066		19.5	20.0	21.0
La Junta	CO23067		18.0	19.0	20.0
Pueblo	CO23068		18.0	19.0	20.0
Trinidad	CO23070		22.0	23.0	24.0
Akron	CO24015		26.0	27.0	28.0
Denver	CO93032		19.0	20.0	21.0
Colorado Springs	CO93037		20.0	21.0	23.0
Pueblo	CO93058		20.0	20.2	21.0
USAFA	CO93065		21.0	22.0	22.5
Fort Carson	CO93065		20.0	20.5	21.0

* Wind Velocity Calculated using PRARA Program by the Colorado Division of Water Resources, Dam Safety

$$P_{WH} = 1.0E-01$$

$$VM_{10\%} = 27.5 \text{ mph}$$

W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Subject	Julesburg Irrigation Ditch	Made by	CBM	Job No.	985.04
	Julesburg Reservoir	Checked	JTC	Date	8/29/2024	
	Freeboard Estimation & Wave Runup	Approved				

Step 4 Calculate Wind-Generated Significant Wave Height at $P_{WH} = 10\%$ using Equation 2 from Appendix B, Section B.4.1 of DS-13(6)-2
where:

H_s = Wind Generated Significant Wave Height (feet),

F = Fetch (miles) and

VMPH = Over-Water Wind Velocity (mph) at selected HEP.

$$H_s = 0.0245 \cdot F^{1/2} \cdot VMPH \cdot (1.1 + 0.0156 \cdot VMPH)^{1/2}$$

Variable	Unit	Dam 1	Dam 1a	Dam 2	Dam 3	Dam 4	Dam 5
Fetch, F	miles	1.07	1.15	1.43	1.50	1.64	1.11
10% HEP Wind Speed, VMPH _{10%}	mph	27.1	27.3	27.9	25.0	28.3	27.2
10% HEP Wave Height, H _{s-10%}	feet	0.85	0.89	1.01	0.92	1.10	0.87

Step 5 Calculate Wave Period at $P_{WH} = 10\%$ using Equation 4 from Appendix B, Section B.4.2 of DS-13(6)-2
where:

T = Wave Period (seconds).

$$T = 0.464 \cdot F^{1/3} \cdot VMPH^{1/3} \cdot (1.1 + 0.0156 \cdot VMPH)^{1/6}$$

Variable	Unit	Dam 1	Dam 1a	Dam 2	Dam 3	Dam 4	Dam 5
Fetch, F	miles	1.07	1.15	1.43	1.50	1.64	1.11
10% HEP Wind Speed, VMPH _{10%}	mph	27.1	27.3	27.9	25.0	28.3	27.2
10% HEP Wave Period, T	seconds	0.38	0.41	0.52	0.48	0.61	0.40

Step 6 Calculate Surf Similarity Factor at $P_{WH} = 10\%$ using Equation 7 from Appendix B, Section B.4.3 of DS-13(6)-2
where:

ξ_p = Surf Similarity Factor and

$\tan(\alpha)$ = slope of the upstream face of the dam embankment (V:1H).

$$\xi_p = (2.26 \cdot T \cdot \tan(\alpha)) / H_s^{1/2}$$

Variable	Unit	Dam 1	Dam 1a	Dam 2	Dam 3	Dam 4	Dam 5
10% HEP Wave Period, T _{10%}	seconds	0.38	0.41	0.52	0.48	0.61	0.40
$\tan(\alpha)$ = Upstream Slope	V:1H	0.4	0.4	0.6	0.6	0.4	0.3
10% HEP Wave Height, H _{s-10%}	feet	0.85	0.89	1.01	0.92	1.10	0.87
Surf Similarity Factor, ξ_p	---	0.33	0.35	0.69	0.67	0.48	0.32

Step 7 Calculate Wave Runup at $P_{WH} = 10\%$ using Equation 8 from Appendix B, Section B.4.3 of DS-13(6)-2
where:

R = Wave runup on relatively impermeable slope (feet),

A, C = Coefficients dependent on ξ_p = (see Table B-4 of Appendix B, DS-13(6)-2),

γ_r = Surface roughness reduction factor (see Table B-3 of Appendix B, DS-13(6)-2),

γ_b = Berm influence reduction factor (1.0 for non-bermed profiles),

γ_h = Shallow-water reduction factor (1.0 for Rayleigh distributed waves),

B = Angle between the Fetch and the dam axis (degrees). (0° is normal incidence and is commonly used to compute fetch, which is directly perpendicular to the dam axis.), and

γ_β = Reduction factor for direction of fetch relative to dam axis (see Figure B-4 of Appendix B, DS-13(6)-2).

$$R = H_s \cdot (A \cdot \xi_p + C) \cdot \gamma_r \cdot \gamma_b \cdot \gamma_h \cdot \gamma_\beta$$

Variable	Dam 1	Dam 1a	Dam 2	Dam 3	Dam 4	Dam 5	Unit
10% HEP Wave Height, H _{s-10%}	0.85	0.89	1.01	0.92	1.10	0.87	feet
Surf Similarity Factor, ξ_p	0.33	0.35	0.69	0.67	0.48	0.32	---
Runup Coefficient A	1.60	1.60	1.60	1.60	1.60	1.60	---
Runup Coefficient C	0.00	0.00	0.00	0.00	0.00	0.00	---
Surface roughness reduction factor, γ_r	0.55	0.55	0.55	0.55	0.55	0.55	---
Berm influence reduction factor, γ_b	1.00	1.00	1.00	1.00	1.00	1.00	---
Shallow-water reduction factor, γ_h	1.00	1.00	1.00	1.00	1.00	1.00	---
Fetch incidence angle reduction factor, γ_β	1.00	1.00	1.00	1.00	1.00	1.00	---
10% HEP Wave Runup, R _{10%}	0.249	0.276	0.617	0.540	0.470	0.244	feet

	Subject	Julesburg Irrigation Ditch	Made by	CBM	Job No.	985.04
	Julesburg Reservoir	Checked	JTC	Date	8/29/2024	
	Freeboard Estimation & Wave Runup	Approved				

Step 8 Calculate Wind Setup at $P_{WH} = 10\%$ using Equation 9 from Appendix B, Section B.4.4 of DS-13(6)-2

where:

S = Wind Setup (feet) and

D = Average depth of water (feet) along computed Fetch.

$$S = (VMPH_{10\%}^2 \cdot F) / (1400 \cdot D)$$

Variable	Dam 1	Dam 1a	Dam 2	Dam 3	Dam 4	Dam 5	Unit
10% HEP Wind Speed, VMPH _{10%}	27.1	27.3	27.9	25.0	28.3	27.2	mph
Fetch, F	1.07	1.15	1.11	1.43	1.50	1.64	miles
Average Depth Along Fetch, D	20.8	23.3	23.2	24.4	24.9	25.6	feet
10% HEP Wind Setup, S _{10%}	0.027	0.026	0.027	0.026	0.034	0.034	feet

Step 9 Check Design values of Normal and Residual Freeboard for Existing Conditions

Per Rule 7.4.2.2.1, the minimum normal freeboard shall be the greater of 3 feet or the wave setup and runup generated by a sustained 100 mph wind.

Design Normal Freeboard = feet
 Wave Runup + Setup for 100 mph sustained wind = feet
 Minimum Normal Freeboard = feet
 Design Normal Freeboard value is:

Dam 1	Dam 1a	Dam 2	Dam 3	Dam 4	Dam 5
3.10	3.80	3.80	3.80	3.90	3.90
3.40	3.65	3.50	4.60	4.80	5.30
3.40	3.65	3.50	4.60	4.80	5.30
Not Acceptable	Acceptable	Acceptable	Not Acceptable	Not Acceptable	Not Acceptable

Per Rule 7.4.2.2.2, the minimum residual freeboard shall be the greater of 1 foot or the wave setup and runup generated by a sustained 10% HEP wind.

Design Residual Freeboard = feet
 Wave Runup + Setup for 22 mph sustained wind = feet
 Minimum Residual Freeboard = feet
 Design Residual Freeboard value is:

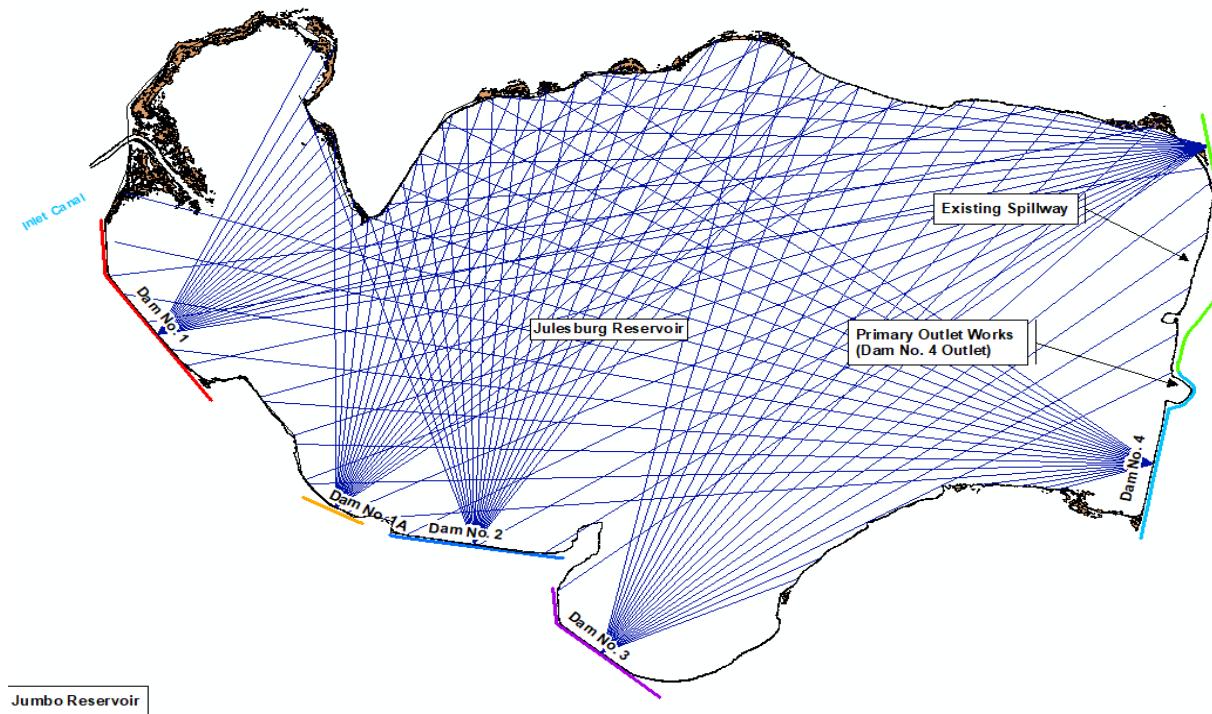
Dam 1	Dam 1a	Dam 2	Dam 3	Dam 4	Dam 5
-0.60	0.10	0.10	0.10	0.20	0.20
0.28	0.30	0.64	0.57	0.50	0.28
1.00	1.00	1.00	1.00	1.00	1.00
Not Acceptable					

Step 10 Check Design values of Normal and Residual Freeboard for Alternative A

Per Rule 7.4.2.2.1, the minimum normal freeboard shall be the greater of 3 feet or the wave setup and runup generated by a sustained 100 mph wind.

Design Normal Freeboard = feet
 Wave Runup + Setup for 100 mph sustained wind = feet
 Minimum Normal Freeboard = feet
 Design Normal Freeboard value is:

Dam 1	Dam 1a	Dam 2	Dam 3	Dam 4	Dam 5
5.50	5.50	5.50	5.50	5.50	5.50
3.40	3.65	3.50	4.60	4.80	5.30
3.40	3.65	3.50	4.60	4.80	5.30
Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable


Per Rule 7.4.2.2.2, the minimum residual freeboard shall be the greater of 1 foot or the wave setup and runup generated by a sustained 10% HEP wind.

Design Residual Freeboard = feet
 Wave Runup + Setup for sustained wind 10% HEP = feet
 Minimum Residual Freeboard = feet
 Design Residual Freeboard value is:

Dam 1	Dam 1a	Dam 2	Dam 3	Dam 4	Dam 5
2.20	2.20	2.20	2.20	2.20	2.20
0.28	0.30	0.64	0.57	0.50	0.28
1.00	1.00	1.00	1.00	1.00	1.00
Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable

Subject	Julesburg Irrigation Ditch	Made by	CBM	Job No.	985.04
Julesburg Reservoir		Checked	JTC	Date	8/29/2024
Freeboard Estimation & Wave Runup		Approved			

Attachment 1: Reservoir Fetch Figure

	Subject	Julesburg Irrigation Ditch		Made by	CBM	Job No.	985.04
	Julesburg Reservoir			Checked	JTC	Date	8/29/2024
	Freeboard Estimation & Wave Runup			Approved			
Objective: Calculate normal and residual freeboard requirement for Julesburg Reservoir in the Existing and Option 1 conditions							
Methods: Use US Bureau of Reclamation Design Manual 13, Chapter 6: Freeboard, DS-13(6)-2 to estimate normal freeboard and residual freeboard (required minimum freeboard during peak IDF water surface). Rule 7.4.2.2.1 of Colorado Rules and Regulations for Dam Safety and Dam Construction, 2-CCR 402-1 (January, 2020) indicates that minimum normal freeboard must be the greater of three feet or the wave setup and runup generated by a sustained 100 mph wind. Rule 7.4.2.2.2 of 2-CCR 402-1 (January, 2020) indicates that minimum residual freeboard must be the greater of one foot or the wave setup and runup generated by a sustained 10 percent Hourly Exceedance Probability (HEP) wind.							
Assumptions: Inflow design flood is 23,990 cfs based on a PMP, 6-hour Local Storm (incl. 7% AMF) Upstream Embankment Slope varies for each dam and is provided below. The slope is equivalent to $1 / (\tan \alpha)$ USBR DS 13 Chapter 6, Figure 6.2.2-1 is used to provide freeboard for 100 mph wind runup + setup Average reservoir depth along the central fetch radius is calculated for each dam on tab 'Average Depth'							
Design:	Design Dam Crest Elevation Alternative B =	3716.00	3716.00	3716.00	3716.00	3716.00	3716.00
	Maximum IDF Water Surface Elevation Alternative B =	3713.50	3713.50	3713.50	3713.50	3713.50	3713.50
	Design Normal Reservoir Water Surface Elevation Alternative B =	3710.50	3710.50	3710.50	3710.50	3710.50	3710.50
							feet
Note: 1 - Water surface elevation from flood routing results of IDF through design spillway.							
1) Design Normal Freeboard - For Alternative B Normal Freeboard = vertical distance between the NHWL and the lowest point on the dam crest Design Normal Freeboard Alternative B = 5.50 feet							
2) Design Residual Freeboard - For Alternative B Residual Freeboard = vertical distance between the maximum WSEL during the IDF and the lowest point on the dam crest Design Residual Freeboard Alternative B = 2.50 feet							
Calculations:	Calculation 1: Normal and Residual Freeboard						

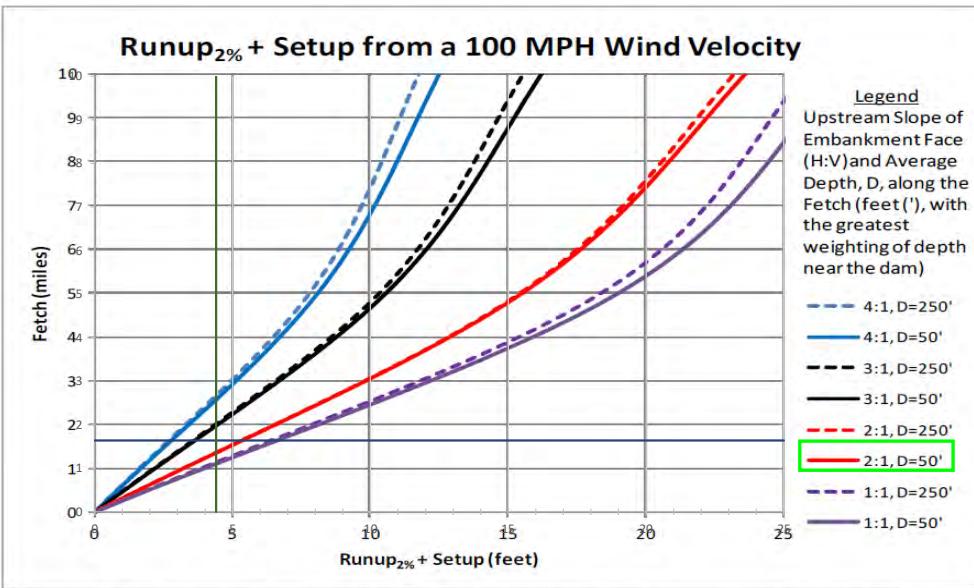
Subject	Julesburg Irrigation Ditch	Made by	CBM	Job No.	985.04
Julesburg Reservoir		Checked	JTC	Date	8/29/2024
Freeboard Estimation & Wave Runup		Approved			

Results: Calculation 1: Design Freeboard of 7 Feet, and Residual Freeboard of 1.31 feet are both acceptable

Calculation 1: Normal and Residual Freeboard

Step 1

Calculate Reservoir Fetch using nine radii on three degree spacing to each side of the central radius, which is perpendicular to the dam


Note that in cases where it is not clear which Central Radius Location will yield the greatest Average Radius Length, multiple locations should be tested. For Dam No. 2, it was conservatively assumed that the existing dams were removed during construction and wave runoff could occur across the whole reservoir.

Radius ID	Angle (degrees)	Dam 1 Length (feet)	Dam2_new Length (feet)	Dam 3 Length (feet)	Dam 4 Length (feet)	Dam 5 Length (feet)	Dam 1a Length (feet)
Upstream Slope (1 V: X H)		2.8			2.73	3	
Average Reservoir Depth		16.37	53.64		20.09	20.11	
+27°	27	4059	7326		1123	9124	
+24°	24	4085	7736		1265	8965	
+21°	21	3218	8019		1499	9525	
+18°	18	3185	8114		1945	10154	
+15°	15	3194	8064		8635	10605	
+12°	12	3073	8188		9396	10868	
+9°	9	2941	8344		9526	10805	
+6°	6	2851	8354		9916	10994	
+3°	3	2791	8648		11010	11694	
Central Radius (0°)	0	2742	8920		11634	11992	
-3°	-3	2767	8912		11862	12319	
-6°	-6	6327	8707		11928	9144	
-9°	-9	7752	8640		9219	8843	
-12°	-12	7970	8640		9057	8560	
-15°	-15	8291	8713		9016	7952	
-18°	-18	8826	9030		8964	6939	
-21°	-21	10203	9211		8711	2885	
-24°	-24	11364	9435		8281	2112	
-27°	-27	11806	9648		7964	1064	
Average Radius Length (feet)		5655	8560		7945	8660	
Average Radius Length (miles)		1.1	1.6		1.5	1.6	

Average Radius is equal to the Reservoir Fetch, as defined by DS-13(6)-2. Refer to attached reservoir fetch figure.

Step 2

Use Figure 6.2.2-1 from DS-13(6)-2 to determine wave runup + setup for 100 mph wind. Wheeler assumed a slope of 2:1 for a representative of all upstream slopes for each dam. During final design, a less conservative slope should be used to reduce the estimated freeboard.

Figure 6.2.2-1. Runup_{2%} + setup from a 100-mi/h sustained wind velocity on a surface protected by riprap.

	Subject	Julesburg Irrigation Ditch	Made by	CBM	Job No.	985.04
	Julesburg Reservoir		Checked	JTC	Date	8/29/2024
	Freeboard Estimation & Wave Runup		Approved			

Runup + Setup for 100 mi/h sustained wind velocity =

Dam 1 3.40 feet

Dam 2 3.60 feet

Dam 4 4.80 feet

Dam 5 4.40 feet

Step 3

Use Probabilistic Freeboard and Riprap Analysis (PFARA) software as referenced in DS-13(6)-2 to generate a 10% Hourly Exceedance Probability Over-Water Wind Velocity plot for the dam site in question. Then use the plot to determine the 10% HEP Over-Water Wind Velocity (VMPH_{10%}). Alternatively, use the computed table of PFARA results provided by the CODWR in their design spreadsheet.

Table 1: 10% Probability of Non-Exceedence (P_{WH})

PFARA Station	Station I.D.	Over Water Wind Velocity (mph)			
		10% Probability of Non-Exceedence (P _{WH})			
		0.5 mile	1.0 mile	1.5 mile	2 mile
Aurora/Buckley	CO23036	18.0	18.5	19.0	19.0
Alamosa	CO23061	22.5	23.0	23.5	24.0
Denver/Sta Gage	CO23062	22.0	23.0	24.6	26.0
Eagle	CO23062	23.0	24.0	25.0	26.0
Grand Junction	CO23066	19.5	20.0	21.0	22.0
La Junta	CO23067	18.0	19.0	20.0	21.0
Pueblo	CO23068	18.0	19.0	20.0	20.0
Trinidad	CO23070	22.0	23.0	24.0	24.0
Akron	CO24015	26.0	27.0	28.0	29.0
Denver	CO93032	19.0	20.0	21.0	21.0
Colorado Springs	CO93037	20.0	21.0	23.0	23.0
Pueblo	CO93058	20.0	20.2	21.0	22.0
USAFA	CO93065	21.0	22.0	22.5	23.0
Fort Carson	CO93065	20.0	20.5	21.0	22.0

* Wind Velocity Calculated using PRARA Program by the Colorado Division of Water Resources, Dam Safety

P_{WH} = 1.0E-01

VMPH_{10%} = 27.5 mph

Step 4

Calculate Wind-Generated Significant Wave Height at P_{WH} = 10% using Equation 2 from Appendix B, Section B.4.1 of DS-13(6)-2

where:

H_s = Wind Generated Significant Wave Height (feet),

F = Fetch (miles) and

VMPH = Over-Water Wind Velocity (mph) at selected HEP.

$$H_s = 0.0245 \cdot F^{1/2} \cdot VMPH \cdot (1.1 + 0.0156 \cdot VMPH)^{1/2}$$

Variable	Unit	Dam 1	Dam 1a	Dam 2	Dam 3	Dam 4	Dam 5
Fetch, F	miles	<u>1.07</u>		<u>1.62</u>		<u>1.50</u>	<u>1.64</u>
10% HEP Wind Speed, VMPH _{10%}	mph	<u>27.1</u>		<u>28.2</u>		<u>28.0</u>	<u>28.3</u>
10% HEP Wave Height, H _{s-10%}	feet	<u>0.85</u>		<u>1.09</u>		<u>1.04</u>	<u>1.10</u>

Step 5

Calculate Wave Period at P_{WH} = 10% using Equation 4 from Appendix B, Section B.4.2 of DS-13(6)-2

where:

T = Wave Period (seconds).

$$T = 0.464 \cdot F^{1/3} \cdot VMPH^{1/3} \cdot (1.1 + 0.0156 \cdot VMPH)^{1/6}$$

Variable	Unit	Dam 1	Dam 1a	Dam 2	Dam 3	Dam 4	Dam 5
Fetch, F	miles	<u>1.07</u>		<u>1.62</u>		<u>1.50</u>	<u>1.64</u>
10% HEP Wind Speed, VMPH _{10%}	mph	<u>27.1</u>		<u>28.2</u>		<u>28.0</u>	<u>28.3</u>
10% HEP Wave Period, T	seconds	<u>0.38</u>		<u>0.61</u>		<u>0.56</u>	<u>0.61</u>

	Subject	Julesburg Irrigation Ditch	Made by	CBM	Job No.	985.04
	Julesburg Reservoir		Checked	JTC	Date	8/29/2024
	Freeboard Estimation & Wave Runup		Approved			

Step 6 Calculate Surf Similarity Factor at $P_{WH} = 10\%$ using Equation 7 from Appendix B, Section B.4.3 of DS-13(6)-2

where:

ξ_p = Surf Similarity Factor and

$\tan(\alpha)$ = slope of the upstream face of the dam embankment (V:1H).

$$\xi_p = (2.26 \cdot T \cdot \tan(\alpha)) / H_s^{1/2}$$

Variable	Unit	Dam 1	Dam 1a	Dam 2	Dam 3	Dam 4	Dam 5
10% HEP Wave Period, $T_{10\%}$	seconds	0.38		0.61		0.56	0.61
$\tan(\alpha)$ = Upstream Slope	V:1H	0.4		0.6		0.4	0.3
10% HEP Wave Height, $H_{s-10\%}$	feet	0.85		1.09		1.04	1.10
Surf Similarity Factor, ξ_p	---	0.33		0.77		0.45	0.44

Step 7 Calculate Wave Runup at $P_{WH} = 10\%$ using Equation 8 from Appendix B, Section B.4.3 of DS-13(6)-2

where:

R = Wave runup on relatively impermeable slope (feet),

A, C = Coefficients dependent on ξ_p = (see Table B-4 of Appendix B, DS-13(6)-2),

γ_r = Surface roughness reduction factor (see Table B-3 of Appendix B, DS-13(6)-2),

γ_b = Berm influence reduction factor (1.0 for non-bermed profiles),

γ_h = Shallow-water reduction factor (1.0 for Rayleigh distributed waves),

B = Angle between the Fetch and the dam axis (degrees). (0° is normal incidence and is commonly used to computed fetch, which is directly perpendicular to the dam axis.), and

γ_β = Reduction factor for direction of fetch relative to dam axis (see Figure B-4 of Appendix B, DS-13(6)-2).

$$R = H_s \cdot (A \cdot \xi_p + C) \cdot \gamma_r \cdot \gamma_b \cdot \gamma_h \cdot \gamma_\beta$$

Variable	Dam 1	Dam 1a	Dam 2	Dam 3	Dam 4	Dam 5	Unit
10% HEP Wave Height, $H_{s-10\%}$	0.85		1.09		1.04	1.10	feet
Surf Similarity Factor, ξ_p	0.33		0.77		0.45	0.44	---
Runup Coefficient A	1.60		1.60		1.60	1.60	---
Runup Coefficient C	0.00		0.00		0.00	0.00	---
Surface roughness reduction factor, γ_r	0.55		0.55		0.55	0.55	---
Berm influence reduction factor, γ_b	1.00		1.00		1.00	1.00	---
Shallow-water reduction factor, γ_h	1.00		1.00		1.00	1.00	---
Fetch incidence angle reduction factor, γ_β	1.00		1.00		1.00	1.00	---
10% HEP Wave Runup, $R_{10\%}$	0.249		0.742		0.414	0.427	feet

Step 8 Calculate Wind Setup at $P_{WH} = 10\%$ using Equation 9 from Appendix B, Section B.4.4 of DS-13(6)-2

where:

S = Wind Setup (feet) and

D = Average depth of water (feet) along computed Fetch.

$$S = (VMPH_{10\%}^2 \cdot F) / (1400 \cdot D)$$

Variable	Dam 1	Dam 1a	Dam 2	Dam 3	Dam 4	Dam 5	Unit
10% HEP Wind Speed, VMPH _{10%}	27.1		28.2		28.0	28.3	mph
Fetch, F	1.07		1.62		1.50	1.64	miles
Average Depth Along Fetch, D	16.4		53.6		20.09	20.11	feet
10% HEP Wind Setup, $S_{10\%}$	0.034		0.017		0.042	0.047	feet

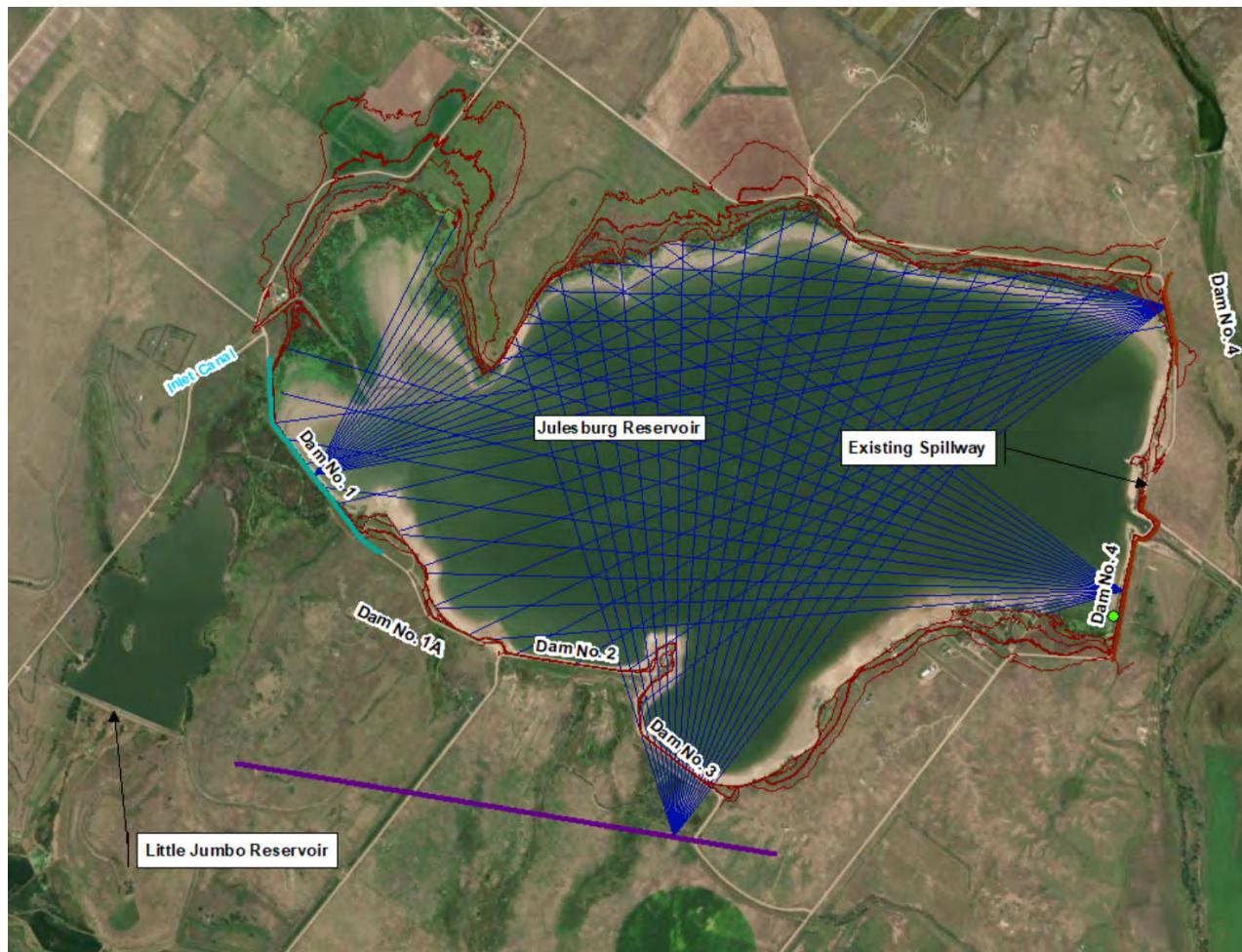
Step 9 Check Design values of Normal and Residual Freeboard for Alternative B

Per Rule 7.4.2.2.1, the minimum normal freeboard shall be the greater of 3 feet or the wave setup and runup generated by a sustained 100 mph wind.

Design Normal Freeboard = feet
 Wave Runup + Setup for 100 mph sustained wind = feet
 Minimum Normal Freeboard = feet
 Design Normal Freeboard value is:

Dam 1	Dam 1a	Dam 2	Dam 3	Dam 4	Dam 5
5.50		5.50		5.50	5.50
3.40		5.30		4.80	5.30
3.40		5.30		4.80	5.30
Acceptable		Acceptable		Acceptable	Acceptable

	Subject	Julesburg Irrigation Ditch	Made by	CBM	Job No.	985.04
	Julesburg Reservoir	Checked	JTC	Date	8/29/2024	
	Freeboard Estimation & Wave Runup	Approved				


Per Rule 7.4.2.2.2, the minimum residual freeboard shall be the greater of 1 foot or the wave setup and runup generated by a sustained 10% HEP wind.

Design Residual Freeboard = feet
 Wave Runup + Setup for 22 mph sustained wind = feet
 Minimum Residual Freeboard = feet
 Design Residual Freeboard value is:

Dam 1	Dam 1a	Dam 2	Dam 3	Dam 4	Dam 5
2.50		2.50		2.50	2.50
0.28		0.76		0.46	0.47
1.00		1.00		1.00	1.00
Acceptable		Acceptable		Acceptable	Acceptable

	Subject	Julesburg Irrigation Ditch	Made by	CBM	Job No.	985.04
	Julesburg Reservoir		Checked	JTC	Date	8/29/2024
	Freeboard Estimation & Wave Runup		Approved			

Attachment 1: Reservoir Fetch Figure

W. W. WHEELER & ASSOCIATES, INC. Water Resources Engineers	Subject	Julesburg Irrigation Ditch	Made by	CBM	Job No.	985.04
	Julesburg Reservoir		Checked	JTC	Date	8/29/2024
	Freeboard Estimation & Wave Runup		Approved			

Objective: Calculate normal and residual freeboard requirement for Julesburg Reservoir in the Existing and Option 1 conditions

Methods: Use US Bureau of Reclamation Design Manual 13, Chapter 6: Freeboard, DS-13(6)-2 to estimate normal freeboard and residual freeboard (required minimum freeboard during peak IDF water surface).

Rule 7.4.2.2.1 of Colorado Rules and Regulations for Dam Safety and Dam Construction, 2-CCR 402-1 (January, 2020) indicates that minimum normal freeboard must be the greater of three feet or the wave setup and runup generated by a sustained 100 mph wind.

Rule 7.4.2.2.2 of 2-CCR 402-1 (January, 2020) indicates that minimum residual freeboard must be the greater of one foot or the wave setup and runup generated by a sustained 10 percent Hourly Exceedance Probability (HEP) wind.

Assumptions: Inflow design flood is 23,990 cfs based on a PMP, 6-hour Local Storm (incl. 7% AMF)
Upstream Embankment Slope varies for each dam and is provided below. The slope is equivalent to 1 / (the
USBR DS 13 Chapter 6, Figure 6.2.2-1 is used to provide freeboard for 100 mph wind runup + setup
Average reservoir depth along the central fetch radius is calculated for each dam on tab 'Average Depth'

Dam 1	Dam 1a	Dam 2	Dam 3	Dam 4	Dam 5
3716.00	3716.00	3716.00	3716.00	3716.00	3716.00
3714.20	3714.20	3714.20	3714.20	3714.20	3714.20
3710.50	3710.50	3710.50	3710.50	3710.50	3710.50

Note: 1 - Water surface elevation from flood routing results of IDF through design spillway.

1) Design Normal Freeboard - For Alternative C

Normal Freeboard = vertical distance between the NHWL and the lowest point on the dam crest

2) Design Residual Freeboard - For Alternative C

Residual Freeboard = vertical distance between the maximum WSEL during the IDF and the lowest point on the dam crest

Residual Freeboard = vertical distance between the maximum VSEL during the IBI and the lowest point on the dam crest

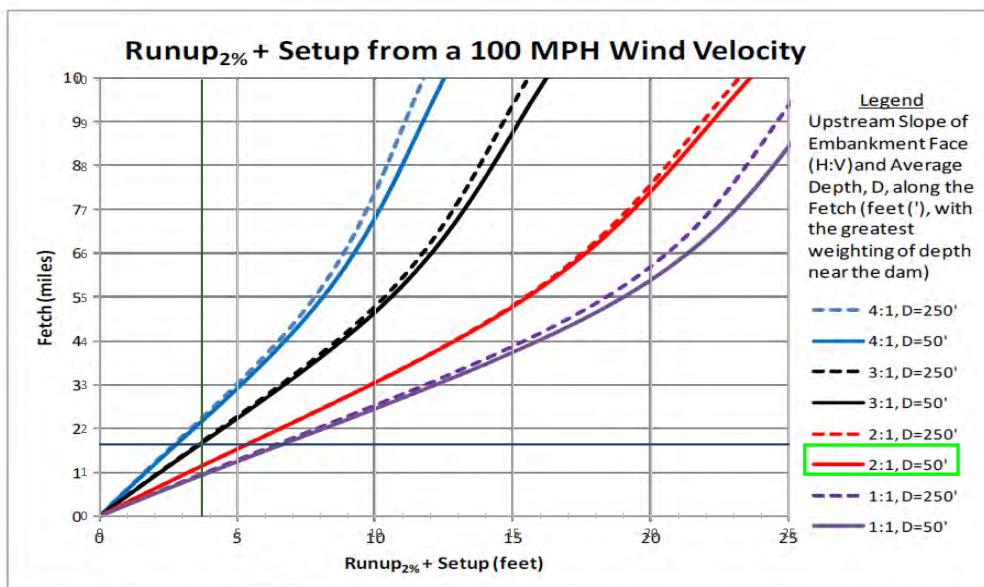
Calculations: Calculation 1: Normal and Residual Freeboard

Results: Calculation 1: Design Freeboard of 7 Feet, and Residual Freeboard of 1.31 feet are both acceptable

Calculation 1: Normal and Residual Freeboard

Step 1

Calculate Reservoir Fetch using nine radii on three degree spacing to each side of the central radius, which is perpendicular to the dam


Note that in cases where it is not clear which Central Radius Location will yield the greatest Average Radius Length, multiple locations should be tested. For new Dams No. 1 and 2, it was conservatively assumed that the existing dams were removed during construction and wave runoff could occur across the whole reservoir.

Radius ID	Angle (degrees)	Opt3_Dm1 Length (feet)	Opt3Dam2 Length (feet)	Dam 3 Length (feet)	Dam 4 Length (feet)	Dam 5 Length (feet)	Dam 1a Length (feet)
Upstream Slope (1 V: X H)		2.5	2.5		2.73	3	
Average Reservoir Depth		44.21	56.69		20.09	20.11	
+27°	27	4600	6463		1123	9124	
+24°	24	3922	6637		1265	8965	
+21°	21	3442	6704		1499	9525	
+18°	18	3200	6924		1945	10154	
+15°	15	3028	7049		8635	10605	
+12°	12	3059	7328		9396	10868	
+9°	9	4957	7297		9526	10805	
+6°	6	5161	7741		9916	10994	
+3°	3	5588	8055		11010	11694	
Central Radius (0°)	0	7557	8110		11634	11992	
-3°	-3	7937	8023		11862	12319	
-6°	-6	8301	8042		11928	9144	
-9°	-9	8239	8137		9219	8843	
-12°	-12	8142	8305		9057	8560	
-15°	-15	7505	8731		9016	7952	
-18°	-18	7269	9051		8964	6939	
-21°	-21	7027	9404		8711	2885	
-24°	-24	9235	9770		8281	2112	
-27°	-27	10515	10031		7964	1064	
Average Radius Length (feet)	6247	7990			7945	8660	
Average Radius Length (miles)	1.2	1.5			1.5	1.6	

Average Radius is equal to the Reservoir Fetch, as defined by DS-13(6)-2. Refer to attached reservoir fetch figure.

Subject	Julesburg Irrigation Ditch	Made by	CBM	Job No.	985.04
Julesburg Reservoir		Checked	JTC	Date	8/29/2024
Freeboard Estimation & Wave Runup		Approved			

Step 2 Use Figure 6.2.2-1 from DS-13(6)-2 to determine wave runup + setup for 100 mph wind. Wheeler assumed a slope of 2:1 for a representative of all upstream slopes for each dam. During final design, a less conservative slope should be used to reduce the estimated freeboard.

Figure 6.2.2-1. Runup_{2%} + setup from a 100-mi/h sustained wind velocity on a surface protected by riprap.

Runup + Setup for 100 mi/h sustained wind velocity =

Dam 1	<u>3.80</u>	feet	(This is an estimate, should be conservative enough)
Dam 2	<u>4.10</u>	feet	
Dam 4	<u>4.80</u>	feet	
Dam 5	<u>3.70</u>	feet	

Step 3

Use Probabilistic Freeboard and Riprap Analysis (PFARA) software as referenced in DS-13(6)-2 to generate a 10% Hourly Exceedance Probability Over-Water Wind Velocity plot for the dam site in question. Then use the plot to determine the 10% HEP Over-Water Wind Velocity (VMPH_{10%}). Alternatively, use the computed table of PFARA results provided by the CODWR in their design spreadsheet.

Table 1: 10% Probability of Non-Exceedence (PWH)

PFARA Station	Station I.D.	Over Water Wind Velocity (mph)			
		10% Probability of Non-Exceedence (P _{WH})			
		0.5 mile	1.0 mile	1.5 mile	2 mile
Aurora/Buckley	CO23036	18.0	18.5	19.0	19.0
Alamosa	CO23061	22.5	23.0	23.5	24.0
Denver/Sta Gage	CO23062	22.0	23.0	24.6	26.0
Eagle	CO23062	23.0	24.0	25.0	26.0
Grand Junction	CO23066	19.5	20.0	21.0	22.0
La Junta	CO23067	18.0	19.0	20.0	21.0
Pueblo	CO23068	18.0	19.0	20.0	20.0
Trinidad	CO23070	22.0	23.0	24.0	24.0
Akron	CO24015	26.0	27.0	28.0	29.0
Denver	CO93032	19.0	20.0	21.0	21.0
Colorado Springs	CO93037	20.0	21.0	23.0	23.0
Pueblo	CO93058	20.0	20.2	21.0	22.0
USAFA	CO93065	21.0	22.0	22.5	23.0
Fort Carson	CO93065	20.0	20.5	21.0	22.0

* Wind Velocity Calculated using PRARA Program by the Colorado Division of Water Resources, Dam Safety

$$P_{WH} = \underline{1.0E-01}$$

$$VMPH_{10\%} = \underline{27.5} \text{ mph}$$

Subject	Julesburg Irrigation Ditch	Made by	CBM	Job No.	985.04
Julesburg Reservoir		Checked	JTC	Date	8/29/2024
Freeboard Estimation & Wave Runup		Approved			

Step 4 Calculate Wind-Generated Significant Wave Height at $P_{WH} = 10\%$ using Equation 2 from Appendix B, Section B.4.1 of DS-13(6)-2

where:

H_s = Wind Generated Significant Wave Height (feet),

F = Fetch (miles) and

VMPH = Over-Water Wind Velocity (mph) at selected HEP.

$$H_s = 0.0245 \cdot F^{1/2} \cdot VMPH \cdot (1.1 + 0.0156 \cdot VMPH)^{1/2}$$

Variable	Unit	Dam 1	Dam 1a	Dam 2	Dam 3	Dam 4	Dam 5
Fetch, F	miles	1.18		1.51		1.50	1.50
10% HEP Wind Speed, VMPH _{10%}	mph	27.4		28.0		28.0	28.0
10% HEP Wave Height, H _{s-10%}	feet	0.90		1.05		1.04	1.04

Step 5 Calculate Wave Period at $P_{WH} = 10\%$ using Equation 4 from Appendix B, Section B.4.2 of DS-13(6)-2

where:

T = Wave Period (seconds).

$$T = 0.464 \cdot F^{1/3} \cdot VMPH^{1/3} \cdot (1.1 + 0.0156 \cdot VMPH)^{1/6}$$

Variable	Unit	Dam 1	Dam 1a	Dam 2	Dam 3	Dam 4	Dam 5
Fetch, F	miles	1.18		1.51		1.50	1.50
10% HEP Wind Speed, VMPH _{10%}	mph	27.4		28.0		28.0	28.0
10% HEP Wave Period, T	seconds	0.42		0.56		0.56	0.56

Step 6 Calculate Surf Similarity Factor at $P_{WH} = 10\%$ using Equation 7 from Appendix B, Section B.4.3 of DS-13(6)-2

where:

ξ_p = Surf Similarity Factor and

$\tan(\alpha)$ = slope of the upstream face of the dam embankment (V:1H).

$$\xi_p = (2.26 \cdot T \cdot \tan(\alpha)) / H_s^{1/2}$$

Variable	Unit	Dam 1	Dam 1a	Dam 2	Dam 3	Dam 4	Dam 5
10% HEP Wave Period, T _{10%}	seconds	0.42		0.56		0.56	0.56
$\tan(\alpha)$ = Upstream Slope	V:1H	0.4		0.6		0.4	0.3
10% HEP Wave Height, H _{s-10%}	feet	0.90		1.05		1.04	1.04
Surf Similarity Factor, ξ_p	---	0.40		0.73		0.45	0.41

Step 7 Calculate Wave Runup at $P_{WH} = 10\%$ using Equation 8 from Appendix B, Section B.4.3 of DS-13(6)-2

where:

R = Wave runup on relatively impermeable slope (feet),

A, C = Coefficients dependent on ξ_p = (see Table B-4 of Appendix B, DS-13(6)-2),

γ_r = Surface roughness reduction factor (see Table B-3 of Appendix B, DS-13(6)-2),

γ_b = Berm influence reduction factor (1.0 for non-bermed profiles),

γ_h = Shallow-water reduction factor (1.0 for Rayleigh distributed waves),

B = Angle between the Fetch and the dam axis (degrees). (0° is normal incidence and is commonly used to compute fetch, which is directly perpendicular to the dam axis.), and

γ_p = Reduction factor for direction of fetch relative to dam axis (see Figure B-4 of Appendix B, DS-13(6)-2).

$$R = H_s \cdot (A \cdot \xi_p + C) \cdot \gamma_r \cdot \gamma_b \cdot \gamma_h \cdot \gamma_p$$

Variable	Dam 1	Dam 1a	Dam 2	Dam 3	Dam 4	Dam 5	Unit
10% HEP Wave Height, H _{s-10%}	0.90		1.05		1.04	1.04	feet
Surf Similarity Factor, ξ_p	0.40		0.73		0.45	0.41	---
Runup Coefficient A	1.60		1.60		1.60	1.60	---
Runup Coefficient C	0.00		0.00		0.00	0.00	---
Surface roughness reduction factor, γ_r	0.55		0.55		0.55	0.55	---
Berm influence reduction factor, γ_b	1.00		1.00		1.00	1.00	---
Shallow-water reduction factor, γ_h	1.00		1.00		1.00	1.00	---
Fetch incidence angle reduction factor, γ_p	1.00		1.00		1.00	1.00	---
10% HEP Wave Runup, R _{10%}	0.321		0.671		0.414	0.377	feet

	Subject	Julesburg Irrigation Ditch	Made by	CBM	Job No.	985.04
	Julesburg Reservoir		Checked	JTC	Date	8/29/2024
	Freeboard Estimation & Wave Runup		Approved			

Step 8 Calculate Wind Setup at $P_{WH} = 10\%$ using Equation 9 from Appendix B, Section B.4.4 of DS-13(6)-2

where:

S = Wind Setup (feet) and

D = Average depth of water (feet) along computed Fetch.

$$S = (VMPH_{10\%}^2 \cdot F) / (1400 \cdot D)$$

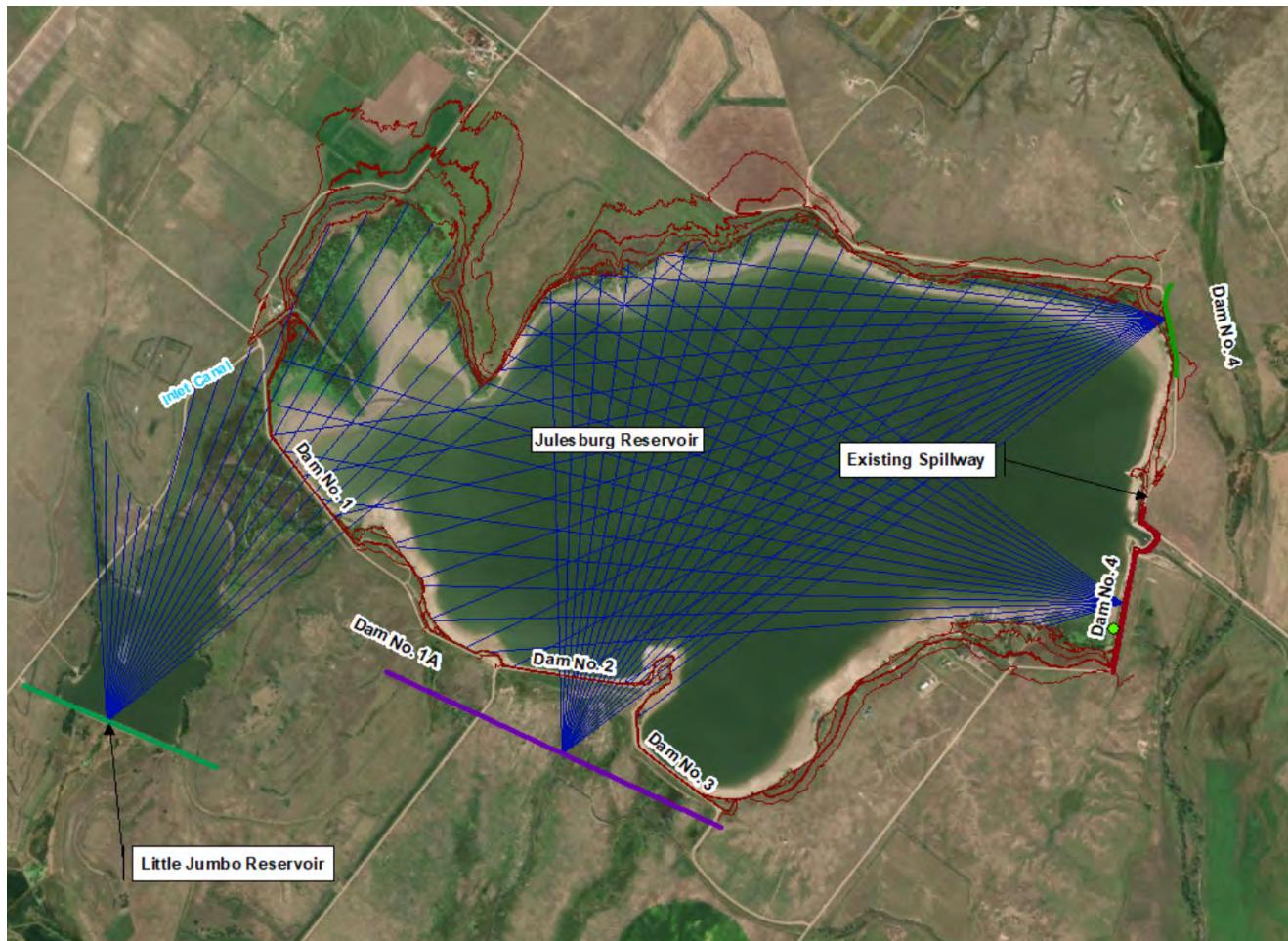
Variable	Dam 1	Dam 1a	Dam 2	Dam 3	Dam 4	Dam 5	Unit
10% HEP Wind Speed, VMPH _{10%}	27.4		28.0		28.0	28.0	mph
Fetch, F	1.18		1.51		1.50	1.50	miles
Average Depth Along Fetch, D	44.2		56.7		20.09	20.11	feet
10% HEP Wind Setup, S _{10%}	0.014		0.015		0.042	0.042	feet

Step 9 Check Design values of Normal and Residual Freeboard for Alternative C

Per Rule 7.4.2.2.1, the minimum normal freeboard shall be the greater of 3 feet or the wave setup and runup generated by a sustained 100 mph wind.

Design Normal Freeboard = feet
 Wave Runup + Setup for 100 mph sustained wind = feet
 Minimum Normal Freeboard = feet
 Design Normal Freeboard value is:

Dam 1	Dam 1a	Dam 2	Dam 3	Dam 4	Dam 5
5.50		5.50		5.50	5.50
3.80		4.10		4.80	3.70
3.80		4.10		4.80	3.70
Acceptable		Acceptable		Acceptable	Acceptable


Per Rule 7.4.2.2.2, the minimum residual freeboard shall be the greater of 1 foot or the wave setup and runup generated by a sustained 10% HEP wind.

Design Residual Freeboard = feet
 Wave Runup + Setup for 22 mph sustained wind = feet
 Minimum Residual Freeboard = feet
 Design Residual Freeboard value is:

Dam 1	Dam 1a	Dam 2	Dam 3	Dam 4	Dam 5
1.80		1.80		1.80	1.80
0.34		0.69		0.46	0.42
1.00		1.00		1.00	1.00
Acceptable		Acceptable		Acceptable	Acceptable

	Subject	Julesburg Irrigation Ditch	Made by	CBM	Job No.	985.04
	Julesburg Reservoir		Checked	JTC	Date	8/29/2024
	Freeboard Estimation & Wave Runup		Approved			

Attachment 1: Reservoir Fetch Figure

Appendix C

Alternative Opinions of Probable Cost

CLASS 5 OPINION OF PROBABLE COST
JULESBURG RESERVOIR - ENLARGEMENT ALTERNATIVE A
Julesberg Irrigation District

Item No.	Description	Quantity	Unit	Unit Price	Total
Preparatory Work					
1	Mobilization, Bonds, Insurance & General Conditions (15% of construction costs)	15%			\$3,096,700
2	Storm Water Management - Erosion and Sediment Control (5% of construction costs)	5%			\$1,032,200
3	Clearing and Grubbing	68	AC	\$2,271	\$154,100
4	Strip and Stockpile Topsoil	54,752	CY	\$4.50	\$246,400
5	Reclamation and Cleanup	1	LS	\$604,660	\$604,700
Subtotal					\$5,134,100
Construction Components					
6	Dam 1 Fill Borrow and Placement	74,785	CY	\$8.50	\$635,700
7	Dam 1 Drainage System	1	LS	\$728,600	\$728,600
8	Dam 1 US Erosion Protectoin	1	LS	\$1,594,200	\$1,594,200
9	Dam 1a Borrow and Placement	8,658	CY	\$8.50	\$73,600
10	Dam 1a Drainage System	1	LS	\$279,000	\$279,000
11	Dam 1a US Erosion Protectoin	1	LS	\$296,200	\$296,200
12	Dam 2 Borrow and Placement	104,240	CY	\$8.50	\$886,000
13	Dam 2 Drainage System Extended	1	LS	\$574,100	\$574,100
14	Dam 2 US Erosion Protectoin	1	LS	\$2,050,500	\$2,050,500
15	Dam 3 Borrow and Placement	89,474	CY	\$8.50	\$760,500
16	Dam 3 Drainage System Extended	1	LS	\$488,600	\$488,600
17	Dam 3 US Erosion Protectoin	1	LS	\$1,870,500	\$1,870,500
18	Dam 4 Borrow and Placement (includes northeast dike)	60,665	CY	\$8.50	\$515,700
19	Dam 4 Drainage System	1	LS	\$366,500	\$366,500
20	Dam 4 US Erosion Protectoin	1	LS	\$1,880,600	\$1,880,600
21	Inlet Canal Improvements	557,147	CY	\$8.00	\$4,457,200
22	Inlet Canal Access Road	1,568	CY	\$64.20	\$100,700
23	Enlarge Outlet Works Tower and Bridge	1	LS	\$327,503	\$327,500
24	Misc. Earthwork (undefined)	5,000	CY	\$8.50	\$42,500
25	Misc. Reinforced Concrete (Appurtenant Structures, Spillway, etc.)	396	CY	\$1,602	\$633,900
26	Spillway Armor	1	LS	\$86,563	\$86,600
27	Dam Safety Instrumentation	1	LS	\$119,057	\$119,100
28	Unscheduled Items (10% of other construction components)	10%			\$1,876,800
Subtotal					\$20,644,600
TOTAL DIRECT CONSTRUCTION COSTS					\$25,778,700
Indirect Construction Costs					
29	Land Acquisitions based on NHWL	283	AC	\$1,000	\$282,900
30	Reroute County Road 28	1	LS	\$243,716	\$243,700
31	Final Design and SEO Dam Safety Approval (10% Direct Construction Costs)	10%			\$2,064,500
32	Construction Administration and Engineering (10% Direct Construction Costs)	10%			\$2,064,500
33	Environmental Permitting (404, T&E, etc.)	5%			\$1,032,200
34	Construction Contingency (20% of DCS)	20%			\$4,128,900
TOTAL INDIRECT CONSTRUCTION COSTS					\$9,816,700
TOTAL ESTIMATED PROJECT COSTS (2025)					\$35,595,400

Assumptions and Notes:

- 1) Totals rounded up to nearest \$100 for simplification.
- 2) To account for approximate inflation, the total estimated project costs should be increased by 3 percent for each year beyond 2025.

CLASS 5 OPINION OF PROBABLE COST
JULESBURG RESERVOIR - ENLARGEMENT ALTERNATIVE B
Julesberg Irrigation District

Item No.	Description	Quantity	Unit	Unit Price	Total
Preparatory Work					
1	Mobilization, Bonds, Insurance & General Conditions (15% of construction costs)	15%			\$4,548,200
2	Storm Water Management - Erosion and Sediment Control (5% of construction costs)	5%			\$1,516,100
3	Clearing and Grubbing	64	AC	\$2,271	\$145,600
4	Strip and Stockpile Topsoil	51,719	CY	\$4.50	\$232,700
5	Reclamation and Cleanup	1	LS	\$483,396	\$483,400
Subtotal					\$6,926,000
Construction Components					
6	Dam 1 Fill Borrow and Placement	15,440	CY	\$8.5	\$131,200
7	Dam 1 Drainage System	1	LS	\$659,700	\$659,700
8	Dam 1 US Erosion Protection	1	LS	\$674,300	\$674,300
9	Dam 1A Breach	12,426	CY	\$16.2	\$201,300
10	Dam 2 Breach	30,139	CY	\$16.2	\$488,300
11	Dam 3 Breach	44,250	CY	\$16.2	\$716,900
12	Juesburg Dam A Borrow and Placement	1,539,977	CY	\$8.5	\$13,089,800
13	Juesburg Dam A Cutoff Constructoin	17,109	CY	\$8.5	\$145,400
14	Juesburg Dam A Internal Drainage System	1	LS	\$1,736,370	\$1,736,400
15	Juesburg Dam A US Erosion Protection	1	LS	\$8,326,493	\$8,326,500
16	Juesburg Dam A Outlet (Optional)	1	LS	\$3,926,031	\$0
17	Dam 4 Drainage System	1	LS	\$366,478	\$366,500
18	Misc. Earthwork	5,000	CY	\$8.5	\$42,500
19	Misc. Reinforced Concrete (Appurtenant Structures, Spillway, etc.)	476	CY	\$1,602	\$762,600
20	Spillway Armor	1	LS	\$104,151	\$104,200
21	Dam Safety Instrumentation	1	LS	\$119,057	\$119,100
22	Unscheduled Items (10% of other construction components)	10%			\$2,756,500
Subtotal					\$30,321,200
TOTAL DIRECT CONSTRUCTION COSTS					\$37,247,200
Indirect Construction Costs					
23	Land Acquisitions - (Purchase or Easement - Decide, consider increased NHWL and canal)	355	AC	\$1,000	\$355,300
24	Reroute County Road 1 and County Road 24.8	1	LS	\$623,593	\$623,600
25	Final Design and SEO Dam Safety Approval (10% Direct Construction Costs)	10%			\$3,032,100
26	Construction Administration and Engineering (10% Direct Construction Costs)	10%			\$3,032,100
27	Environmental Permitting (404, T&E, etc.)	20%			\$6,064,200
28	Construction Contingency (20% of DCS)	20%			\$6,064,200
TOTAL INDIRECT CONSTRUCTION COSTS					\$19,171,500
TOTAL ESTIMATED PROJECT COSTS (2024)					\$56,418,700

Assumptions and Notes:

- 1) Totals rounded up to nearest \$100 for simplification.
- 2) To account for approximate inflation, the total estimated project costs should be increased by 3 percent for each year beyond 2025.

CLASS 5 OPINION OF PROBABLE COST
JULESBURG RESERVOIR - ENLARGEMENT ALTERNATIVE C
Julesberg Irrigation District

Item No.	Description	Quantity	Unit	Unit Price	Total
Preparatory Work					
1	Mobilization, Bonds, Insurance & General Conditions (15% of construction costs)	15%			\$5,013,200
2	Storm Water Management - Erosion and Sediment Control (5% of construction costs)	5%			\$1,671,100
3	Clearing and Grubbing	65	AC	\$2,271	\$147,900
4	Strip and Stockpile Topsoil	52,517	CY	\$4.50	\$236,300
5	Reclamation and Cleanup	1	LS	\$431,364	\$431,400
Subtotal					\$7,499,900
Construction Components					
6	Juesburg Dam C Borrow and Placement	861,716	CY	\$8.5	\$7,324,600
7	Juesburg Dam C Cutoff Construction	7,179	CY	\$8.5	\$61,000
8	Juesburg Dam C Internal Drainage System	1	LS	\$686,500	\$686,500
9	Juesburg Dam C US Erosion Protection	1	LS	\$5,431,200	\$5,431,200
10	Dam 1 Breach	38,250	CY	\$16.2	\$619,700
11	Dam 1A Breach	12,426	CY	\$16.2	\$201,300
12	Dam 2 Breach	30,139	CY	\$16.2	\$488,300
13	Dam 3 Breach	44,250	CY	\$16.2	\$716,900
14	Juesburg Dam B Borrow and Placement	861,716	CY	\$8.5	\$7,324,600
15	Juesburg Dam B Cutoff Constructoin	12,218	CY	\$8.5	\$103,800
16	Juesburg Dam B Internal Drainage System	1	LS	\$1,239,916	\$1,239,900
17	Juesburg Dam B US Erosion Protection	1	LS	\$5,431,162	\$5,431,200
18	Juesburg Dam B Outlet (Optional)	1	LS	\$3,679,608	\$0
19	Dam 4 Drainage System	1	LS	\$366,478	\$366,500
20	Misc. Earthwork	5,000	CY	\$8.5	\$42,500
21	Misc. Reinforced Concrete (Appurtenant Structures)	106	CY	\$1,602	\$169,100
22	Spillway Armoring	1	LS	\$23,100	\$23,100
23	Inlet Canal Reroute	3,450	CY	\$8.0	\$27,600
24	Inlet Canal Armoring	93	CY	\$64.2	\$5,900
25	Dam Safety Instrumentation	1	LS	\$119,057	\$119,100
26	Unscheduled Items (10% of other construction components)	10%			\$3,038,300
Subtotal					\$33,421,100
TOTAL DIRECT CONSTRUCTION COSTS					\$40,921,000
Indirect Construction Costs					
27	Land Acquisitions - (Purchase or Easement - Decide, consider increased NHWL and canal)	515	AC	\$1,000	\$515,200
28	Reroute County Road 95	1	LS	\$190,403	\$190,400
29	Final Design and SEO Dam Safety Approval (10% Direct Construction Costs)	10%			\$3,342,100
30	Construction Administration and Engineering (10% Direct Construction Costs)	10%			\$3,342,100
31	Environmental Permitting (404, T&E, etc.)	20%			\$6,684,200
32	Construction Contingency (20% of DCS)	20%			\$6,684,200
TOTAL INDIRECT CONSTRUCTION COSTS					\$20,758,200
TOTAL ESTIMATED PROJECT COSTS (2024)					\$61,679,200

Assumptions and Notes:

- 1) Totals rounded up to nearest \$100 for simplification.
- 2) To account for approximate inflation, the total estimated project costs should be increased by 3 percent for each year beyond 2025.