

Water Resources Section - Aquatic, Terrestrial, and Natural Resources Branch

December 22, 2023

Mr. Rob Viehl, Section Chief Colorado Water Conservation Board Stream and Lake Protection Section 1313 Sherman Street, 7th Floor Denver, CO 80203

Subject: Instream Flow Recommendations for Williams Gulch in Water Division 1, Larimer County to be presented at the January 2024 CWCB Meeting

Dear Mr. Viehl:

The information contained within and referred to in this letter forms the scientific and biological basis for an instream flow (ISF) recommendation on Williams Gulch in Water Division 1. Field investigations relating to this ISF recommendation were conducted by Colorado Parks and Wildlife (CPW) and Colorado Water Conservation Board (CWCB) staff in 2023. Williams Gulch is a high-elevation stream that CPW reclaimed to support native greenback cutthroat trout in 2021. This ISF recommendation was presented to interested parties at the ISF Workshop in January 2023. CPW and CWCB staff also conducted outreach to the Larimer County Commissioners in December 2023. It is CPW staff's opinion that the information contained in this letter is sufficient for the CWCB's staff to recommend an ISF appropriation to the Board on Williams Gulch as it specifically addresses the findings required in Rule 5(i) of the Instream Flow Program Rules.

CPW participates in the ISF Program and develops ISF recommendations for the Board's consideration in an effort to address CPW's legislative directives "... that the wildlife and their environment are to be protected, preserved, enhanced, and managed for the use, benefit, and enjoyment of the people of this state and its visitors ... and that, to carry out such program and policy, there shall be a continuous operation of planning, acquisition, and development of wildlife habitats and facilities for wildlife-related opportunities" [§33-1-101 (1) C.R.S.], and "... that the natural, scenic, scientific, and outdoor recreation areas ... be protected, preserved, enhanced and managed for the use, benefit, and enjoyment of the people of this state and (its) visitors ... and that, to carry out such program and policy, there shall be a continuous operation of acquisition, development, and management of ... lands, waters, and facilities." [§33-10-101 (1) C.R.S.].

In addition to these broad statutory guidelines, CPW's strategic planning document (CPW Strategic Plan, 2015) explains the agency's current goals to, "[c]onserve wildlife and habitat to ensure healthy sustainable populations and ecosystems" in order to, "protect and enhance water resources for fish and wildlife populations," by pursuing, "partnerships and agreements to enhance instream flows, protect reservoir levels, and influence water management activities," and to, "[a]dvocate for water quality and quantities to conserve aquatic resources." In addition to the CPW strategic plan, the agency's fish and wildlife conservation activities are also informed by the State Wildlife Action Plan

(2002, Revised 2015). The aforementioned documents direct CPW to advocate for the preservation of the state's fish and wildlife resources and natural environment, and therefore link CPW's mission to the goals and priorities of CWCB's Instream Flow and Natural Lake Level Program.

Recommended Segments

CPW is proposing an ISF recommendation on Williams Gulch from the headwaters, located at UTM 13S 431929.17 4509289.75, to the confluence with the Cache la Poudre River (Poudre River), located at UTM 13S 436481.69 4506563.58. The reach is approximately 4.6 miles in length. The upper portions of the proposed reach are on public lands managed under the Roosevelt National Forest. A short section of Williams Gulch, approximately 0.5 miles above the confluence with the Poudre River, is on CPW's Bliss Creek State Wildlife Area.

Greenback Cutthroat Trout Conservation Goals

The greenback cutthroat trout was designated Colorado's state fish in 1994. This subspecies of cutthroat trout is listed as a threatened species by both the state and federal government. Following the listing of the greenback cutthroat trout under the authorities of the Endangered Species Act of 1973, state and federal fish and wildlife managers have engaged in efforts to recovery the species and establish new populations of this subspecies around the state of Colorado. The greenback cutthroat trout recovery plan's overall goal is as follows:

"Recovery needs for the Greenback Cuththroat Trout include the establishment of conservation populations through stocking efforts into streams and lakes with suitable habitat throughout the South Platte River drainage, and possibly within adjacent drainages east of the Continental Divide. Populations need to be sufficiently robust (i.e. resilient and redundant) to withstand stochastic, catastrophic, and anthropogenic influences such that they can persist into the future. Meeting these goals will require that threats be sufficiently understood and abated, and range-wide monitoring will be required." (Recovery Outline for the Greenback Cutthroat Trout, 2019)

Establishing new conservation populations of greenback cutthroat trout and protecting the habitat where these populations reside are both critical steps to the successful recovery of the species. CPW believes that ISF protection on Williams Gulch is an imporant step in the overall conservation of greenback cutthroat trout.

Natural Environment and Biological Summary

Williams Gulch is a high-elevation headwaters creek located east of the Rawah Wilderness. The creek flows southeasterly and directly into the Poudre River near Kinikinik off Cameron Pass. The contributing drainage basin is approximately 3.9 square miles. The basin is forested and mountainous with a mean elevation of 9,800 feet. The stream's hydrology is snowmelt-driven into the late summer, and the basin receives approximately 24 inches of precipitation a year.

Williams Gulch is a high-gradient headwaters steam. At the Poudre River valley floor, the channel begins anastamosing and transitions to a wetland, beaver dam complex. It then merges into a main

channel and crosses under Highway 14 to its confluence with the Poudre River. Substrate observed in this reach ranges from sand to large cobbles. Williams Gulch supports ideal cutthroat trout habitat including the following: large pools, amble large woody debris, long runs, undercut banks, gravel spawning beds, and aquatic macrophyte and diatom communities throughout the channel.

For decades, Williams Gulch supported a self-sustaining population of Colorado River cutthroat trout. This suitable cutthroat habitat made it a prime candidate stream for greenback cutthroat trout recovery. In September 2021, CPW biologists lead a successful chemical reclamation project to remove the Colorado River cutthroat trout from Williams Gulch with the end goal of establishing native greenback cutthroat trout. Following the reclamation, fish electroshocking efforts confirmed all nonnative cutthroat had been removed from the creek. In September 2022, CPW biologists and volunteers stocked young-of-the-year greenback cutthroat trout in the stream.

Williams Gulch also supports an abundant macroinvertebrate community which includes multiple types of cased caddisfly, multiple types of stoneflies, mayflies, and diptera. Additionally, Colorado Natural Heritage Program notes a rare, globally imperiled, plant association within the watershed. The association is Wyoming Big Sagebrush and Rocky Mountain Wildrye Shrubland which occurs on steep south-facing slopes in the Poudre River watershed. In 2020, the lower part of the watershed burned in the Cameron Peak wildfire. Fire impacts are evident and have resulted in a major reconfiguration of the channel. The wet meadow complex supported by Williams Gulch remains intact and healthy despite the recent fire activity and the burned mature pine stands in lower portions of the watershed.

R2Cross Background

Initial biological flow recommendations were developed using the R2Cross methodology (Espegren, 1996¹). R2Cross uses field data collected in a riffle habitat type. Riffles are often the limiting habitat features in streams during low flow events, so maintaining specific hydraulic conditions across riffle habitat types will also maintain aquatic habitat in pools and runs for most life stages of fish and macroinvertebrates (Nehring, 1979²). The R2Cross model uses field data, including a survey of cross-sectional channel geometry, a longitudinal slope of the water surface, and a flow measurement, as inputs to a single transect hydraulic model. R2Cross uses the Ferguson Variable-Power Equation (Ferguson, 2007³) to model a stage-discharge relationship and to compute corresponding hydraulic parameters of average depth, average velocity, and percent wetted perimeter over modeled stages. Maintaining these three hydraulic parameters at specified levels should ensure conditions that allow for the movement of fish longintudinally across riffles and provide adequate depths, velocities, and oxygenation for the production of macroinvertebrates and development of trout eggs.

¹Espegren, G.D., 1996, Development of Instream Flow Recommendations in Colorado Using R2CROSS, Colorado Water Conservation Board.

²Nehring, B.R., 1979, Evaluation of Instream Flow Methods and Determination of Water Quantity Needs for Streams in the State of Colorado, Colorado Division of Wildlife.

³ Ferguson, R.I., 2007. Flow resistance equations for gravel- and boulder-bed streams. Water Resources Research 43. https://doi.org/10.1029/2006WR005422

Baseflow recommendations are typically developed based on the flows that meet two of the three hydraulic criteria, and summer flow recommendations are based on hydraulic criteria that meet all three of the three hydraulic criteria (as described in Nehring 1979 and Espergren 1996).

In 2023, CPW and CWCB staff collected two cross-section data sets on the lower portion of Williams Gulch on Bliss SWA. The results of the R2Cross analysis are summarized below.

	Bankfull	Date	Flow	Flow Meeting	Flow Meeting Three
	Top Width	Measured	Measured	Two Criteria	Criteria
1	8.54 ft	7/11/2023	2.43 cfs	1.00 cfs	2.3 cfs
2	11.58 ft	7/11/2023	2.43 cfs	1.39 cfs	1.78 cfs
		Recommend	1.2 cfs	2.0 cfs	

The initial biological flow recommendation during the baseflow period is 1.2 cfs. This rate is protective during the overwintering period as it maintains adequate wetted perimeter, average depth of 0.2 feet in cross-section one, and average velocity of 1 foot per second (fps) in cross-section two. The initial biological flow recommendation in the summer is 2.0 cfs, which will maintain these hydraulic parameters in both surveyed critical riffle transects.

In order to make a preliminary determination whether water is available for the R2Cross-based flow recommendations and to determine the appropriate seasonal transition dates, CPW examined basic hydrologic data and water rights information for Williams Gulch. Williams Gulch does not have any gage data, and because it is high-elevation and undeveloped, CWCB staff relied upon regression equations for monthly flow estimates to determine the seasonality of the flow recommendations. CPW is not aware of any active water rights within the reach.

Water Availability-Refined Flow Recommendation

CPW's analysis indicates that the following flows are needed to protect the natural environment to a reasonable degree. Based on the hydrology from CSUFlow18 (Eurich et al., 2021⁴), there appears to be water availablity limitations during the fall and winter periods. Therefore, CPW's adjusted flow recommendation are the following:

- Spring and Summer Flow Recommendation (April 1 through July 31): 2.0 cfs
 - Maintains adequate depth, velocity, and wetted perimeter during the spring and summer when fish have more metabolic activity during their periods of increased activity. This higher flow rate will support beneficial feeding and spawning conditions as greenback cutthroat trout mature and grow.

⁴ Eurich, A., Kampf, S.K., Hammond, J.C., Ross, M., Willi, K., Vorster, A.G. and Pulver, B., 2021, Predicting mean annual and mean monthly streamflow in Colorado ungauged basins, River Research and Applications, 37(4), 569-578

- Late Summer Flow Recommendation (August 1 through August 31): 1.1 cfs
 - Maintains adequate wetted perimeter and sufficient depth and velocity while water temperatures may be high in the late summer. Although this flow rate is reduced slightly due to water availability constraints, it should maintain resting habitat for greenback cutthroat trout.
- Fall Flow Recommendation (September 1 through October 31): 0.7 cfs
 - This flow rate has been reduced due to water availability constraints but will maintain adequate wetted perimeter and depth in runs and pools to support greenback cutthroat trout. This flow rate will also allow fish to move to more stable habitat for the overwintering period.
- Baseflow Recommendation (November 1 through March 31): 0.4 cfs
 - This flow rate has been reduced due to water availability constraints, but will maintain adequate available habitat in runs and pools to support fish during the overwintering period.

The purpose of this letter is to formally transmit this ISF recommendation to CWCB for the Board's consideration. CPW believes there is a flow-dependent natural environment in Williams Gulch that can be preserved to a reasonable degree with an ISF water right in the recommended rates. Please refer to attachments which include: R2Cross field forms, R2Cross output, flow measurements, fish stocking photographs, and photographs at each cross-section location.

CPW personnel will be available at the January 2024 CWCB meeting to answer any questions that the Board might have regarding these flow recommendations. We appreciate your consideration.

Sincerely,

Katie Birch Digitally signed by Katie Birch Date: 2024.01.10 11:19:48-07'00'

Katie Birch
CPW Instream Flow Program Coordinator
Attachments (as stated)

FIELD DATA FOR INSTREAM FLOW DETERMINATIONS

LOCATION INFORMATION

CONSERVATION BOARD					LOCA	ATIC	11 11	VFO	HIVIA	1101	A								
STREAM NAME: WILLO	ims	Gulch																23	N NO.:
1 / 1 - 1 -		AWS 2																	
	131	436	31,7	4	KOI	511	2												
ATE: 7/11/23 OBSE	RVERS: Y	Birch	1		dell	001	0												
EGAL % SECTESCRIPTION	TION:		ECTION			T	OWNSH	IIP;		N/	'S	RANGI	E:		E	-/W	PM:		
COUNTY: Larimer	-	WATERSHE	D: D	a.d				W	ATER DI	VISION:					DOW V	WATER	CODE:		
USGS:			To	md	14														
MAP(S):																			
					SUF	PPLE	EME	NTA	L DA	TA									
AG TAPE SECTION SAME AS	() [ME	TER TY	PE: T	7	1	.1) (_	- 1	5.	1 11	- 1.	a de				
ISCHARGE SECTION:	YESUN	DATE RATI		1	-10	Tra	ilki	1 4	2 (r	neusv	sea	20	· al	31/10	grine			227.	
	F BANGE			_		CALI	B/SPIN:				_	EIGHT	-	NIIMBE	ER OF F	РНОТО	GRAPH		lbs
Small cobole,	sme lo	age San	4 3/0	Cok	1016			PHOT	OGRAPI	HS TAKE	N. YE	S/NO			3 1	ou	LB		
		V			CHA	NN	ELP	ROF	ILE	DAT	A								
STATION	D	ISTANCE (t)	T	ROD	READ	ING (ft		T		0		(3)	A .					EGEND:
Tape @ Stake LB	FF	0.0	,	1	^	^			_	(V		-					St	ake 🕱
Tape @ Stake RB		0.0			7	^	0		s K	Q -> = very uniform bed mater (mostly)					fire				
1) WS @ Tape LB/RB		0.0		16	15	16	160		E T C		Q -	>	TAPE	ver	J'm	ateria	Photo ()		
2) WS Upstream	1	22.8			5,7	9			Н					(W	01/10	(08	oble)	-	
3) WS Downstream	/	7		1	0,40)			-					2				Direc	tion of Flor
SLOPE		v.	2%										(8	9					-
		61	5	AC	UAT	IC S	AME	PLIN	GSL	JMM	ARY								
		DISTANC		TRAFIS	uen:	f	,	1	FISH CA	UGHT:	YES/NO			WATER	RCHEM	MISTRY	SAMPL	ED: YES	S/NO
STREAM ELECTROFISHED: Y	E5/NO	LENGTH		_		-	-					_	0-20						
SPECIES (FILL IN)		LENGTH	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	>15	TOTAL
macrosabunda	nt																		
								-										-	/
AQUATIC INSECTS IN STREAM	SECTION E	BY COMMON	OR SCI	ENTIFI	CORDE	R NAM	1E;									_			
AGOATIO INGLOTO IN OTTICAL																			
						~	28484	ENIT	re										
			-	1		-	MMC			10	1 -			-		1	T.	-	
Great fish ha		under	ut	bur	nks.	lar	ge !	1	-1	2/00	- L		Mei	16		-1-	100	nt	12)
14. 0		readou	Bei	1Ver	by.	ras	(19	10	PSTV	1	· A	o na	10		GLIC	but	10	ab	under
throughout c	hann	19, 15	Ne	Lbu	med	1,50	me	MG	the t	ine	las	1	11	ream	0	AT	VIH	16/5	dohn

FORM #ISF FD 1-85

| barbottal etting good millions, abundant wetherd plants/sedges a fire buffering but pines are all burned (were healthy) DISCHARGE/CROSS SECTION NOTES

STREAM NAME:	William						CHOS	S-SECTION				12 OF Z
EGINNING OF M	IEASUREMEN	EDGE OF (0.0 AT ST	WATER LOOKING AKE)	DOWNSTREAM	LEFT/RIC	GHT G	age Re	ading:		TIME: 11.3V	AM	_
Stake (S) Grassline (G) Waterline (W) Rock (R)	Distance From Initial Point (ft)	Width (ft)	Total Vertical Depth From Tape/Inst (ft)	Water Depth (ft)	Depth of Obser- vation (ft)	Revolu	tions	Time (sec)	At Point	Mean in Vertical	Area (ft²)	Discharge (cfs)
5	80	-	5.6.			7						
BF	0:75		5.84		1	1 00	4 K					
LWS	1.)		6.15	0								-
1	1.15		6.43	0.32							-	
	1.5		6.51	0.39		1			- 11	-		
	1.9		6.49	0,34								
	2.3		6.40	0.23								
	27		6.48	0.31								
	3.1		6.46	0.32								
	3,5		6.49	0.32								
	3,9		6.44	0.30								
<i>y</i>	4.3		6,37	0.20								
-	4.7	4.	6.50	0.31								
	5.1		6.466	0.25								
	5.5		6.43	0.24								
	5.9		6.36	0.25		2		()				
	6.3		6.37	0.30	42 Th	100 2)!	1Sw	1+-				
	6.7		6.40	0 25								
	7.1		6.39	0.25						41		
	7.5		6.45	0.4		1 1				1		
	7.9		6.49	0.4						-		
	8.3		6.46	0.3		-						
	8.7		6.37	0.25								
RWS	9.1		6.35	0.2	^			-				
	9.7		6.10	Ø.	0	-	_		1 11			
BF	\$6.9.	3	5.85	'								
,	9.8		5.75									
	10.3		5.25				_					
5	10.2		5.06									
	-											
		-										
,												
							-					
TOTALS:												
nd of Measurer	nent Tim	0.	Gage Reading	i: It	CALCULAT	IONS PERI	ORME	BY:		CALCULATIONS	CHECKED BY	:

FIELD DATA FOR INSTREAM FLOW DETERMINATIONS

CONSERV	ATION BOARD					LOC	ATIC	INC	NFO	HIVIA	1101	А							erezio	11.6173	
STREAM NA	ME: Willian	us f	rulch															2-	SECTION 23	N NO.	
CROSS-SECT	TION LOCATION		SS SN	Δ																	
		13T	436		1	40	501	449	2												
DATE 7/11	123 OBSER		-	Side	1 7	- 1	0-0		0									.			
LEGAL DESCRIPTION	W SECT			SECTIO			T	OWNS	HIP:		N.	/S	RANG	E:			E/W	PM:			
COUNTY:	arimer		WATERSH	IED: P	ond	ve.			W	ATER DI	VISION					DOW	WATER	CODE:			
	USGS:			1	Ovio																
MAP(S):	USFS:																				
						SUI	PPLI	EME	NTA	L DA	TA										
SAG TAPE SE	CTION SAME AS	YES	A 6	METER T	YPE: \	Mea	Sur	ed	die	1	peln	X	1.7	w	1 F	TZ	by	M.).		
METER NUME		120(DATE RA	TED:		1,16,	T					-	VEIGHT			bs/foot	1	E TENS		lbs	
CHANNEL BE	D MATERIAL SIZE	RANGE:					CALI	B/SPIN			HS TAK		VEIGHT	Ī				GRAPH			
						0111					-										
						CHA	ANN	ELF	ROF	ILE	DAI	4	-				_		_	FOSNO	
STATIO		D FF	DISTANCE (ft) ROD READING					ING (f	t)					(LEGEND:	
0	Stake LB		0.0		-	×			-	s -	-				-				- St	ake 🕱	
0	Stake RB		0.0		-	×			_	K				TAPE						ation (1)	
0	ape LB/RB		0.0		5	TR.		.73	-	T C H				TAF						Photo (1)	
2 WS Ups		,	>14.3	1	+	5.7	-		_	_							Direction			ction of Flow	
	wnstream		1			5.0	11		\dashv					(•				-		
SLOPE		1	190								- 10/51										
	5.73				AC	UAT	IC S	AMI	PLIN	G SI	JMM	ARY				-					
STREAM ELE	CTROFISHED: YE	S/NO	DISTANC	CE ELEC	TROFIS	HED: _			F	ISH CA	UGHT:	YES/NO			WATE	RCHE	MISTRY	SAMPL	ED: YE	5/NO	
			LENGTH	- FREC	UENC	DISTR	IBUTIO	ON BY	ONE-IN	CHSIZ	E GRO	JPS (1.	0-1.9,	2.0-2.9	ETC.)						
SPECIES (FIL				1	2	3	4	5	' 6	7	8	9	10	11	12	13	14	15	>15	TOTAL	
cadd		cases																			
Street	14 (2)																				
dipte	You											6									
AQUATIC INSE	CTS IN STREAM S	ECTION B	Y COMMON	OR SCI	ENTIFIC	ORDE	RNAM	E:			P										
	6																				
							CC	MM	ENT	S										-	
0=2,2	1 cts																				
								-													
								12													

DISCHARGE/CROSS SECTION NOTES

STREAM NAME:		V13	WATER LOOMING	OWNETS:	7			S-SECTION N		DATE: 7/11/	- J SHEE	12 OF Z
EGINNING OF M	EASUREMEN	(0.0 AT STA	VATER LOOKING D	OWNSTREAM:	(LEFT/RI	GHT G	age Rea	ading: .		пме: \5		T
Stake (S) Grassline (G) Waterline (W) Rock (R)	Distance From Initial Point (ft)	Width (ft)	Total Vertical Depth From Tape/Inst (ft)	Water Depth (ft)	Depth of Obser- vation (ft)	Revolu	tions	Time (sec)	At Point	y (ft/sec) Mean in Vertical	Area (ft ²)	Discharge (cfs)
S	P		4.36									
	-8		4.61			47	T					
BF	1.5		4.95									
LWS	2.3		5.74	0			-			-		-
+	2.7		5.96	0.28		4						
	3.1		5.98	0.30		-						
	3.5		5,93	0.22		-						
)	3.9	110-	5.97	0.28								
	4.3		5,91	0.25		100						
	4,7		5.94	0.25						-		
	5.1		5.82	0.2	- 100							
_	5.5		5.87	0.2							-	-
	5.9		5.91	0.25		-			*	-		-
	6.3		5.91	0.25								
	6.7		5.95	0.25		-						
	7.1		6.00	0.3		-						
	7.5	-	6.00	0.3		-						
			5.97	0.28		- 3				5		
	8.3		5.95	0.25			per site	-to-		4 4		
,	8.7		5,10	0.2	BIT	n - L	- 1	111				
	9,1						-		h pri	e 10		
0	9.5		5.82	80.0		-						
RWS	9,9		5.75	φ		-	-					
-	10.9		5.43									
	12.8		5,07			100	1000	100				
	12.9		5.04				450					
BF	13:1		4.94			1						
, 5	17.6		4,60			+		1				
								1				
												30
1	3-4											
						44						
TOTAL S.												
TOTALS:			Granding Committee in the Committee in t		CALCU	ATIONS PE	DEODM	ED BY		CALCULATION	S CHECKED	BY:

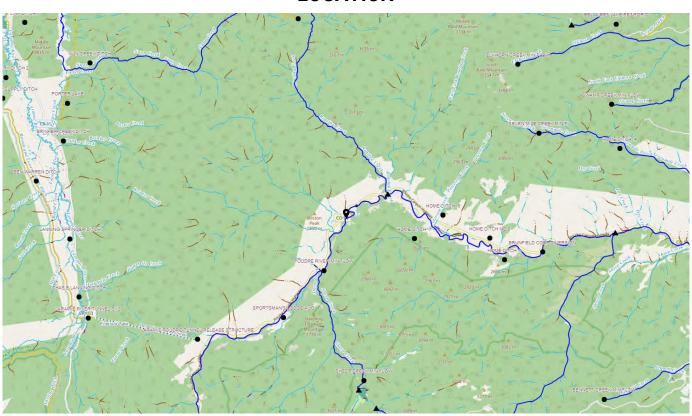
R2Cross RESULTS

Stream Name: Williams Gulch

Stream Locations: At Bliss SWA, Hwy 14

Fieldwork Date: 07/11/2023

Cross-section: 1 **Observers:** Birch Sidell


Coordinate System: UTM Zone 13 X (easting): 436363 Y (northing): 4506510 **Date Processed:** 09/21/2023

Slope: 0.0268

Discharge: Entered Value: 2.43 (cfs)
Computation method: Ferguson VPE
R2Cross data filename: Williams Gulch XS 1 - 07-11-2023 Q=2.434.xlsx

R2Cross version: 2.0.2

LOCATION

ANALYSIS RESULTS

Habitat Criteria Results

Bankfull top width (ft) = 8.54

	Habitat Criteria	Discharge (cfs) Meeting Criteria
Mean Depth (ft)	0.2	1.0
Percent Wetted Perimeter (%)	50.0	0.01
Mean Velocity (ft/s)	1.0	2.29

STAGING TABLE

Feature	Distance to Water (ft)	Top Width (ft)	Mean Depth (ft)	Maximum Depth (ft)	Area (sq ft)	Wetted Perimeter (ft)	Percent Wetted Perimeter	Hydraulic Radius (ft)	Manning's n	Mean Velocity (ft/s)	Discharge (cfs)
Bankfull	5.85	8.54	0.56	0.66	4.78	9.31	100.0	0.51	0.06	2.41	11.52
	5.87	8.51	0.55	0.64	4.64	9.27	99.55	0.5	0.07	2.33	10.82
	5.88	8.49	0.53	0.63	4.5	9.23	99.09	0.49	0.07	2.25	10.15
	5.9	8.47	0.52	0.61	4.36	9.19	98.64	0.47	0.07	2.18	9.49
	5.92	8.44	0.5	0.59	4.22	9.15	98.19	0.46	0.07	2.1	8.86
	5.93	8.42	0.48	0.58	4.08	9.1	97.73	0.45	0.07	2.02	8.25
	5.95	8.39	0.47	0.56	3.94	9.06	97.28	0.44	0.07	1.94	7.66
	5.97	8.37	0.45	0.54	3.81	9.02	96.83	0.42	0.07	1.86	7.09
	5.98	8.35	0.44	0.53	3.67	8.98	96.37	0.41	0.07	1.79	6.55
	6.0	8.32	0.42	0.51	3.53	8.93	95.92	0.4	0.08	1.71	6.03
	6.01	8.3	0.41	0.49	3.39	8.89	95.47	0.38	0.08	1.63	5.53
	6.03	8.28	0.39	0.48	3.26	8.85	95.01	0.37	0.08	1.55	5.05
	6.05	8.25	0.38	0.46	3.12	8.81	94.56	0.35	0.08	1.47	4.59
	6.06	8.23	0.36	0.45	2.98	8.77	94.11	0.34	0.08	1.39	4.16
	6.08	8.2	0.35	0.43	2.85	8.72	93.65	0.33	0.09	1.32	3.75
	6.1	8.18	0.33	0.41	2.71	8.68	93.2	0.31	0.09	1.24	3.36
	6.11	8.16	0.32	0.4	2.58	8.64	92.75	0.3	0.09	1.16	3.0
	6.13	8.13	0.3	0.38	2.44	8.6	92.29	0.28	0.1	1.09	2.65
Waterline	6.14	8.11	0.29	0.37	2.35	8.57	91.97	0.27	0.1	1.03	2.42
	6.15	8.11	0.28	0.36	2.31	8.55	91.84	0.27	0.1	1.01	2.33
	6.16	8.1	0.27	0.35	2.18	8.52	91.46	0.26	0.1	0.93	2.03
	6.18	8.08	0.25	0.33	2.04	8.48	91.08	0.24	0.11	0.86	1.75
	6.2	8.07	0.24	0.31	1.91	8.45	90.7	0.23	0.11	0.78	1.5
	6.21	8.06	0.22	0.3	1.78	8.41	90.32	0.21	0.12	0.71	1.26
	6.23	8.05	0.2	0.28	1.64	8.38	89.94	0.2	0.13	0.64	1.05

6.25	8.04	0.19	0.26	1.51	8.34	89.56	0.18	0.14	0.57	0.86
6.26	8.03	0.17	0.25	1.38	8.31	89.18	0.17	0.15	0.5	0.69
6.28	8.01	0.16	0.23	1.25	8.27	88.8	0.15	0.16	0.44	0.54
6.3	8.0	0.14	0.21	1.11	8.24	88.42	0.14	0.17	0.37	0.41
6.31	7.99	0.12	0.2	0.98	8.2	88.03	0.12	0.19	0.31	0.31
6.33	7.98	0.11	0.18	0.85	8.16	87.65	0.1	0.21	0.25	0.21
6.34	7.97	0.09	0.17	0.72	8.13	87.27	0.09	0.24	0.2	0.14
6.36	7.66	0.08	0.15	0.59	7.81	83.82	0.08	0.28	0.16	0.09
6.38	6.84	0.07	0.13	0.47	6.97	74.82	0.07	0.3	0.13	0.06
6.39	6.1	0.06	0.12	0.36	6.2	66.58	0.06	0.34	0.11	0.04
6.41	5.28	0.05	0.1	0.27	5.35	57.48	0.05	0.39	0.09	0.02
6.43	4.69	0.04	0.08	0.19	4.75	50.96	0.04	0.47	0.06	0.01
6.44	3.94	0.03	0.07	0.12	3.98	42.68	0.03	0.61	0.04	0.0
6.46	3.07	0.02	0.05	0.06	3.09	33.23	0.02	0.88	0.02	0.0
6.48	1.56	0.01	0.03	0.02	1.57	16.87	0.01	1.25	0.01	0.0
6.49	0.49	0.01	0.02	0.0	0.49	5.27	0.01	1.92	0.0	0.0

This Manning's roughness coefficient was calculated based on velocity estimates from the Ferguson VPE method

MODEL SUMMARY

Measured Flow (Qm) =	2.43	(cfs)
Calculated Flow (Qc) =	2.43	(cfs)
(Qm-Qc)/Qm * 100 =	0.24%	
Measured Waterline (WLm) =	6.16	(ft)
Calculated Waterline (WLc) =	6.14	(ft)
(WLm-WLc)/WLm * 100 =	0.21%	
Max Measured Depth (Dm) =	0.4	(ft)
Max Calculated Depth (Dc) =	0.37	(ft)
(Dm-Dc)/Dm * 100 =	8.07%	
Mean Velocity =	1.03	(ft/s)
Manning's n =	0.099	
0.4 * Qm =	0.97	(cfs)
2.5 * Qm =	6.08	(cfs)

FIELD DATA

Feature	Station (ft)	Rod Height (ft)	Water depth (ft)	Velocity (ft/s)
	0	5.6		
Bankfull	0.75	5.84		
Waterline	1.1	6.15	0	
	1.15	6.43	0.32	
	1.5	6.51	0.39	
	1.9	6.49	0.34	
	2.3	6.4	0.23	
	2.7	6.48	0.31	
	3.1	6.46	0.32	
	3.5	6.49	0.32	
	3.9	6.44	0.3	
	4.3	6.37	0.2	
	4.7	6.5	0.31	
	5.1	6.46	0.25	
	5.5	6.43	0.24	
	5.9	6.36	0.25	
	6.3	6.37	0.3	
	6.7	6.4	0.25	
	7.1	6.39	0.25	
	7.5	6.45	0.4	
	7.9	6.49	0.4	
	8.3	6.46	0.3	
	8.7	6.37	0.25	
	9.1	6.35	0.2	
Waterline	9.2	6.16	0	
Bankfull	9.3	5.85		
	9.7	5.75		
	10.3	5.25		
	11.2	5.06		

COMPUTED FROM MEASURED FIELD DATA

Wetted Perimeter (ft)	Water Depth (ft)	Area (ft^2)		Percent Discharge
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0.28	0.32	0.06	0.07	2.73
0.36	0.39	0.15	0.15	6.23
0.4	0.34	0.14	0.14	5.79
0.41	0.23	0.09	0.1	3.92
0.41	0.31	0.12	0.13	5.28
0.4	0.32	0.13	0.13	5.45
0.4	0.32	0.13	0.13	5.45
0.4	0.3	0.12	0.12	5.11
0.41	0.2	0.08	0.08	3.41
0.42	0.31	0.12	0.13	5.28
0.4	0.25	0.1	0.1	4.26
0.4	0.24	0.1	0.1	4.09
0.41	0.25	0.1	0.1	4.26
0.4	0.3	0.12	0.12	5.11
0.4	0.25	0.1	0.1	4.26
0.4	0.25	0.1	0.1	4.26
0.4	0.4	0.16	0.17	6.81
0.4	0.4	0.16	0.17	6.81
0.4	0.3	0.12	0.12	5.11
0.41	0.25	0.1	0.1	4.26
0.4	0.2	0.05	0.05	2.13
0.21	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

DISCLAIMER

"The Colorado Water Conservation Board makes no representations about the use of the software contained in the R2Cross platform for any purpose besides that for which it was designed. To the maximum extent permitted by applicable law, all information, modeling results, and software are provided "as is" without warranty or condition of any kind, including all implied warranties or conditions of merchantability, or fitness for a particular purpose. The user assumes all responsibility for the accuracy and suitability of this program for a specific application. In no event shall the Colorado Water Conservation Board or any state agency, official or employee be liable for any direct, indirect, punitive, incidental, special, consequential damages or any damages whatsoever including, without limitation, damages for loss of use, data, profits, or savings arising from the implementation, reliance on, or use of or inability to use the R2Cross platform.

R2Cross RESULTS

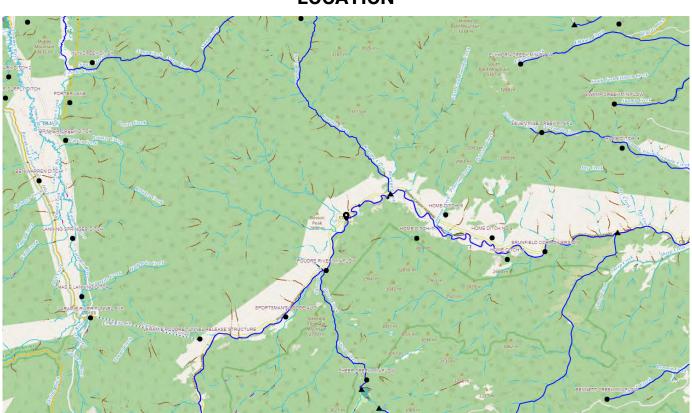
Stream Name: Williams Gulch

Stream Locations: At Bliss SWA, Hwy 14

Fieldwork Date: 07/11/2023

Cross-section: 2 **Observers:** Birch Sidell

Coordinate System: UTM Zone 13 X (easting): 436347 Y (northing): 4506448 **Date Processed:** 09/21/2023


Slope: 0.0126

Discharge: Entered Value: 2.43 (cfs)

Computation method: Ferguson VPE R2Cross data filename: Williams Gulch XS 2 - 07-11-2023 Q=2.434.xlsx

R2Cross version: 2.0.2

LOCATION

ANALYSIS RESULTS

Habitat Criteria Results

Bankfull top width (ft) = 11.58

	Habitat Criteria	Discharge (cfs) Meeting Criteria
Mean Depth (ft)	0.2	1.78
Percent Wetted Perimeter (%)	50.0	0.12
Mean Velocity (ft/s)	1.0	1.39

STAGING TABLE

Feature	Distance to Water (ft)	Top Width (ft)	Mean Depth (ft)	Maximum Depth (ft)	Area (sq ft)	Wetted Perimeter (ft)	Percent Wetted Perimeter	Hydraulic Radius (ft)	Manning's n	Mean Velocity (ft/s)	Discharge (cfs)
Bankfull	4.95	11.58	0.77	1.05	8.91	12.13	100.0	0.73	0.03	4.4	39.23
	4.99	11.47	0.74	1.01	8.49	11.99	98.88	0.71	0.03	4.26	36.18
	5.04	11.32	0.7	0.96	7.92	11.81	97.37	0.67	0.03	4.07	32.24
	5.09	11.07	0.66	0.91	7.36	11.54	95.12	0.64	0.03	3.9	28.7
	5.14	10.76	0.63	0.86	6.81	11.2	92.31	0.61	0.03	3.74	25.49
	5.19	10.44	0.6	0.81	6.28	10.86	89.51	0.58	0.03	3.58	22.49
	5.24	10.13	0.57	0.76	5.77	10.52	86.71	0.55	0.03	3.41	19.67
	5.29	9.81	0.54	0.71	5.27	10.18	83.91	0.52	0.03	3.24	17.05
	5.34	9.5	0.5	0.66	4.79	9.84	81.11	0.49	0.03	3.05	14.61
	5.39	9.18	0.47	0.61	4.32	9.5	78.31	0.45	0.03	2.86	12.36
	5.44	8.88	0.44	0.56	3.87	9.17	75.63	0.42	0.04	2.66	10.28
	5.49	8.68	0.4	0.51	3.43	8.94	73.69	0.38	0.04	2.42	8.28
	5.54	8.47	0.35	0.46	3.0	8.7	71.75	0.34	0.04	2.16	6.49
	5.59	8.26	0.31	0.41	2.58	8.47	69.81	0.3	0.04	1.89	4.89
	5.64	8.06	0.27	0.36	2.17	8.23	67.87	0.26	0.04	1.61	3.5
Waterline	5.69	7.85	0.23	0.31	1.78	8.0	65.93	0.22	0.05	1.31	2.33
	5.74	7.64	0.18	0.26	1.39	7.76	63.99	0.18	0.05	1.0	1.39
	5.79	7.3	0.14	0.21	1.01	7.4	61.03	0.14	0.06	0.71	0.72
	5.84	6.74	0.1	0.16	0.66	6.82	56.26	0.1	0.08	0.44	0.29
	5.89	5.8	0.06	0.11	0.35	5.85	48.26	0.06	0.12	0.22	0.08
	5.94	3.62	0.03	0.06	0.1	3.64	29.98	0.03	0.21	0.07	0.01
	5.99	0.72	0.01	0.01	0.01	0.72	5.95	0.01	0.44	0.02	0.0

This Manning's roughness coefficient was calculated based on velocity estimates from the Ferguson VPE method

MODEL SUMMARY

Measured Flow (Qm) =	2.43	(cfs)
Calculated Flow (Qc) =	2.38	(cfs)
(Qm-Qc)/Qm * 100 =	2.38%	
Measured Waterline (WLm) =	5.75	(ft)
Calculated Waterline (WLc) =	5.69	(ft)
(WLm-WLc)/WLm * 100 =	1.01%	
Max Measured Depth (Dm) =	0.3	(ft)
Max Calculated Depth (Dc) =	0.31	(ft)
(Dm-Dc)/Dm * 100 =	-4.31%	
Mean Velocity =	1.34	(ft/s)
Manning's n =	0.046	
0.4 * Qm =	0.97	(cfs)
2.5 * Qm =	6.08	(cfs)

FIELD DATA

Feature	Station (ft)	Rod Height (ft)	Water depth (ft)	Velocity (ft/s)
	0	4.36		
	0.8	4.61		
Bankfull	1.5	4.95		
Waterline	2.3	5.74	0	
	2.7	5.96	0.28	
	3.1	5.98	0.3	
	3.5	5.93	0.22	
	3.9	5.97	0.28	
	4.3	5.91	0.25	
	4.7	5.94	0.25	
	5.1	5.82	0.2	
	5.5	5.87	0.2	
	5.9	5.91	0.25	
	6.3	5.91	0.25	
	6.7	5.95	0.25	
	7.1	6	0.3	
	7.5	6	0.3	
	7.9	5.97	0.3	
	8.3	5.94	0.28	
	8.7	5.95	0.25	
	9.1	5.9	0.2	
	9.5	5.82	0.08	
Waterline	9.9	5.75	0	
	10.9	5.43		
	12.8	5.07		
	12.9	5.04		
Bankfull	13.1	4.94		
	17.6	4.6		

COMPUTED FROM MEASURED FIELD DATA

Wetted Perimeter (ft)	Water Depth (ft)	Area (ft^2)	Discharge (cfs)	Percent Discharge
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0.46	0.28	0.11	0.15	6.31
0.4	0.3	0.12	0.16	6.76
0.4	0.22	0.09	0.12	4.96
0.4	0.28	0.11	0.15	6.31
0.4	0.25	0.1	0.14	5.63
0.4	0.25	0.1	0.14	5.63
0.42	0.2	0.08	0.11	4.5
0.4	0.2	0.08	0.11	4.5
0.4	0.25	0.1	0.14	5.63
0.4	0.25	0.1	0.14	5.63
0.4	0.25	0.1	0.14	5.63
0.4	0.3	0.12	0.16	6.76
0.4	0.3	0.12	0.16	6.76
0.4	0.3	0.12	0.16	6.76
0.4	0.28	0.11	0.15	6.31
0.4	0.25	0.1	0.14	5.63
0.4	0.2	0.08	0.11	4.5
0.41	0.08	0.03	0.04	1.8
0.41	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

DISCLAIMER

"The Colorado Water Conservation Board makes no representations about the use of the software contained in the R2Cross platform for any purpose besides that for which it was designed. To the maximum extent permitted by applicable law, all information, modeling results, and software are provided "as is" without warranty or condition of any kind, including all implied warranties or conditions of merchantability, or fitness for a particular purpose. The user assumes all responsibility for the accuracy and suitability of this program for a specific application. In no event shall the Colorado Water Conservation Board or any state agency, official or employee be liable for any direct, indirect, punitive, incidental, special, consequential damages or any damages whatsoever including, without limitation, damages for loss of use, data, profits, or savings arising from the implementation, reliance on, or use of or inability to use the R2Cross platform.

Site name Williams2
Site number 071123
Operator(s) Kb

File name Williams2_20230711-200044.ft

Comment

Start time7/11/2023 7:38 PMEnd time7/11/2023 8:00 PMStart location latitude40.707Start location longitude-105.753Calculations engineFlowTracker2

Sensor type Top Setting
Handheld serial number
Probe serial number
Probe firmware 1.30
Handheld software 1.6.4

# Stations	Avg interval (s)	Total discharge (ft ³ /s)
21	40	2.434

Total width (ft)	Total area (ft²)	Wetted Perimeter (ft)
8.000	3.080	8.309

Mean SNR (dB)	Mean depth (ft)	Mean velocity (ft/s)
37.316	0.385	0.790

Mean temp (°F)	Max depth (ft)	Max velocity (ft/s)
62.446	0.500	1.096

Discharg	je Uncerta	inty
Category	ISO	IVE
Accuracy	1.0%	1.0%
Depth	0.4%	6.0%
Velocity	0.4%	5.2%
Width	0.1%	0.1%
Method	1.9%	
# Stations	2.4%	
Overall	3.2%	8.0%

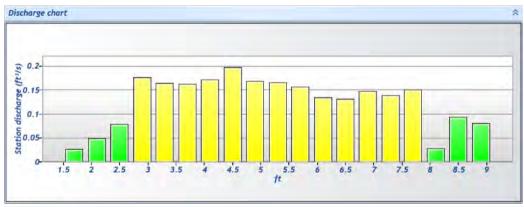
Discharge equation	Mid Section
Discharge uncertainty	IVE
Discharge reference	Rated

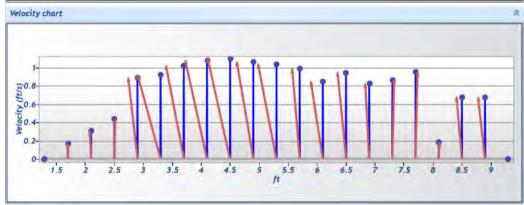
Data Collectio	n Settings
Salinity	0.000 PSS-78
Temperature Sound speed	-
Sound speed	-
Mounting correction	0.000 %

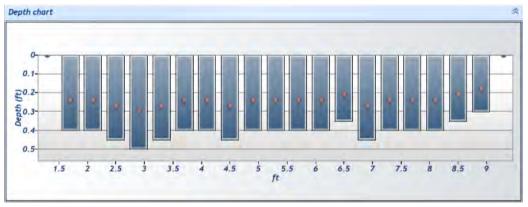
Summary overview

No changes were made to this file Quality control warnings

Site name Williams2
Site number 071123
Operator(s) Kb


File name Williams2_20230711-200044.ft


Comment


Station Warning Settings

Station discharge OKStation discharge < 5.000%</th>Station discharge caution5.000% >= Station discharge < 10.000%</th>Station discharge warningStation discharge >= 10.000%

Site name Williams2
Site number 071123
Operator(s) Kb

File name Williams2_20230711-200044.ft

Comment

St#	Time	Location (ft)	Method	Depth (ft)	%Depth	Measured Depth (ft)	Samples	Vislocity (ft/s)	Correcti on	Mean Velocity (ft/s)	Area (ft²)	Flow (tt3/s)	%Q	
0	7:38 PM	1.300	None	0.000	0.000	0.000	0	0.000		0.168	0.000	0.000	0.000	4
1	7:38 PM	1.700	0.6	0.400	0.600	0.240	39	0.168	1,000	0.168	0,160	0.027	1,105	,
2	7:39 PM	2.100	0.6	0.400	0.600	0.240	51	0.308	1.000	0.308	0.160	0.049	2.025	1
3	7:40 PM	2.500	0.6	0.450	0.600	0.270	60	0.441	1.000	0.441	0.180	0.079	3.259	b
4	7:41 PM	2.900	0.6	0.500	0.600	0.300	47	0.886	1.000	0.886	0.200	0.177	7.279	
5	7:43 PM	3.300	0.6	0.450	0.600	0.270	62	0.917	1.000	0.917	0.180	0.165	6.779	1
6	7:44 PM	3.700	0.6	0.400	0.600	0.240	80	1.021	1.000	1.021	0.160	0.163	6.708	4
7	7:45 PM	4.100	0.6	0.400	0.600	0.240	80	1.075	1.000	1.075	0.160	0.172	7,066	
8	7:45 PM	4.500	0.6	0.450	0.600	0.270	62	1.096	1.000	1.096	0.180	0.197	8,105	
9	7:47 PM	4.900	0.6	0.400	0.600	0.240	68	1.060	1,000	1.060	0.160	0.170	6,964	1
10	7:48 PM	5.300	0.6	0.400	0.600	0.240	63	1.037	1.000	1.037	0.160	0.166	6.815	1
11	7:49 PM	5.700	0.6	0.400	0.600	0.240	64	0.987	1.000	0.987	0.160	0.158	6.489	ŀ
12	7:50 PM	6.100	0.6	0.400	0.600	0.240	63	0.847	1.000	0.847	0.160	0.136	5.569	4
13	7:51 PM	6.500	0.6	0.350	0.600	0.210	56	0.946	1.000	0.946	0.140	0.132	5.438	
14	7:52 PM	6.900	0.6	0.450	0.600	0.270	63	0,821	1.000	0,821	0,180	0.148	6.070	
15	7:54 PM	7.300	0.6	0.400	0.600	0.240	56	0.867	1.000	0.867	0,160	0.139	5,697	5
16-	7:55 PM	7.700	0.6	0.400	0.600	0.240	65	0.947	1,000	0.947	0,160	0.152	6,224	1
17	7:56 PM	8.100	0.6	0.400	0.600	0.240	80	0.181	1.000	0.181	0.160	0.029	1.188	Ġ
18	7:57 PM	8.500	0.6	0.350	0.600	0.210	72	0.679	1.000	0.679	0.140	0.095	3.905	1
19	7:58 PM	8.900	0.6	0.300	0.600	0.180	72	0.673	1.000	0.673	0.120	0.081	3.315	
20	8:00 PM	9.300	None	0.000	0.000	0.000	0	0.000		0.673	0.000	0.000	0.000	1

Site name Williams2
Site number 071123
Operator(s) Kb

File name Williams2_20230711-200044.ft

Comment

Quality Control Settings

Maximum depth change 50.000%

Maximum spacing change 100.000%

SNR threshold 10.000 dB

Standard error threshold 0.033 ft/s

Spike threshold 10.000%

Maximum velocity angle 20.000 deg

Maximum tilt angle 5.000 deg

