

Water Resources Section - Aquatic, Terrestrial, and Natural Resources Branch

December 22, 2023

Mr. Rob Viehl, Section Chief Colorado Water Conservation Board Stream and Lake Protection Section 1313 Sherman Street, 7th Floor Denver, CO 80203

Subject: Instream Flow Recommendations for Square Top Creek in Water Division 1, Clear Creek County to be presented at the January 2024 CWCB Meeting

Dear Mr. Viehl:

The information contained in and referred to in this letter forms the scientific and biological basis for an instream flow (ISF) recommendation on Square Top Creek in Water Division 1. Field investigations relating to this ISF recommendation were conducted by Colorado Parks and Wildlife (CPW) and Colorado Water Conservation Board (CWCB) staff starting in 2019. Square Top Creek is a high-elevation montane stream that CPW reclaimed to support greenback cutthroat trout, along with two alpine lakes where the creek originates. During the summer of 2023, greenback cutthroat trout were stocked in both Upper and Lower Square Top Lakes and Square Top Creek for the first time. Given the recent stocking of the creek and lakes, CPW believes it is timely to bring this recommendation forward to the Board. This instream flow recommendation was first presented to interested parties at the ISF Workshop in January 2019. CPW and CWCB staff also conducted outreach to the Clear Creek County Commissioners in November 2020. It is CPW staff's opinion that the information contained in this letter is sufficient for the CWCB's staff to recommend an ISF appropriation to the Board on Square Top Creek and to specifically address the findings required in Rule 5(i) of the Instream Flow Program Rules.

CPW participates in the ISF Program and develops instream flow recommendations for the Board's consideration in an effort to address CPW's legislative declarations "... that the wildlife and their environment are to be protected, preserved, enhanced, and managed for the use, benefit, and enjoyment of the people of this state and its visitors ... and that, to carry out such program and policy, there shall be a continuous operation of planning, acquisition, and development of wildlife habitats and facilities for wildlife-related opportunities" [§33-1-101 (1) C.R.S.], and "... that the natural, scenic, scientific, and outdoor recreation areas ... be protected, preserved, enhanced and managed for the use, benefit, and enjoyment of the people of this state and (its) visitors ... and that, to carry out such program and policy, there shall be a continuous operation of acquisition, development, and management of ... lands, waters, and facilities." [§33-10-101 (1) C.R.S.].

In addition to these broad statutory guidelines, CPW's current strategic planning document (CPW Strategic Plan, 2015) explains current agency goals to, "[c]onserve wildlife and habitat to ensure healthy sustainable populations and ecosystems." In order to, "protect and enhance water resources for fish and wildlife populations," by pursuing, "partnerships and agreements to enhance instream

flows, protect reservoir levels, and influence water management activities," and to, "[a]dvocate for water quality and quantities to conserve aquatic resources." In addition to the CPW strategic plan, the agency's fish and wildlife conservation activities are also directed by the State Wildlife Action Plan (2002, Revised 2015). The goals and priorities from these documents direct CPW to advocate for the preservation of the state's fish and wildlife resources and natural environment, and therefore link CPW's mission to the goals and priorities of CWCB's Instream Flow and Natural Lake Level Program.

Recommended Segments

CPW is proposing an ISF recommendation on Square Top Creek from the outlet of Lower Square Top Lake (located at UTM 13S 436558.39 4382563.18) to Duck Lake (located at UTM 13S 437816.39 4381775.17). The reach is approximately 1.1 miles in length. The upper portions of the proposed reach is on public lands managed under the Pike National Forest. A short reach approximately 0.5 miles above the confluence with Duck Lake is under private ownership.

Greenback Cutthroat Trout Conservation Goals

The greenback cutthroat trout was designated Colorado's state fish in 1994. This subspecies of cutthroat trout has been listed as a threatened species by both the state and federal government. Following the listing of the greenback cutthroat trout under the authorities on the Endangered Species Act of 1973, state and federal fish and wildlife managers have engaged in efforts to establish new populations of this subspecies around the state of Colorado. The greenback cutthroat trout recovery plan's overall goal is as follows:

"Recovery needs for the Greenback Cuththroat Trout include the establishment of conservation populations through stocking efforts into streams and lakes with suitable habitat throughout the South Platte River drainage, and possibly within adjacent drainages east of the Continental Divide. Populations need to be sufficiently robust (i.e. resilient and redundant) to withstand stochastic, catastrophic, and anthropogenic influences such that they can persist into the future. Meeting these goals will require that threats be sufficiently understood and abated, and range-wide monitoring will be required." (Recovery Outline for the Greenback Cuthroat Trout, 2019)

Establishing new conservation populations of greenback cutthroat trout and protecting the habitat where these populations reside are both critical steps to the successful recovery of the species. CPW believes that instream flow protection on Square Top Creek is an imporant action in the overall conservation of greenback cutthroat trout.

Natural Environment and Biological Summary

Square Top Creek is a high-elevation headwaters creek located at the top of Guanella Pass. The creek flows into Duck Lake, an on-channel reservoir on Duck Creek, then into Geneva Creek and eventually the North Fork South Platte River. The creek's headwaters form downstream of two alpine lakes called Upper and Lower Square Top Lakes at the base of 13,783-foot Square Top Mountain. The stream's hydrology is driven by high-elevation snowmelt into the late summer with a mean basin elevation of 12,190 feet. This region receives approximately 27 inches of precipitation a year. The contributing

basin is approximately 0.9 square miles with alpine tundra ecosystem characteristics. The channel is extremely high-gradient and single thread with substrate that ranges from small gravels to medium-sized boulders. The channel is primarily large to medium-sized cobbles and small boulders that form a series of cascading step-pools. Suitable trout habitat includes slower-velocity pocket pools, large volume step-pools, and undercut banks.

In 2014, CPW biologists began a reclamation project with the goal of removing all non-native trout species in order to reestablish native greenback cutthroat trout. Following the 2014 reclamation effort, CPW biologists began monitoring the lake and stream system to ensure they were negative for whirling disease, a disease which cutthroat trout are highly suspectible to. CPW biologists wanted to ensure that whirling disease had been eradicted before stocking greenback cutthroat trout in the creek. Following a negative whiling disease result in late 2022, Square Top Creek was stocked for the first time with young-of-the-year greenback cutthroat in 2023. Square Top Lakes were also stocked with yearling greenback cutthroat trout. By stocking distinct age classes in the lakes and stream, CPW biologists will be able to better understand movement patterns of fish between Square Top Creek and the lakes.

Square Top Creek also supports a diverse macroinvertebrate community which includes multiple species of caddisflies and mayflies, diptera, odonata, and stonefly species. Colorado Natural Heritage Program notes observations of *Alloperla pilosa,* a stonefly with status as state imperiled and globally imperiled. Plants observed in the field include Short-Fruited Willow, watercress, and multiple types of wildflowers, including Rocky Mountain Columbine and Downy Indian-paintbrush.

R2Cross Background

Initial biological instream flow recommendations were developed using the R2Cross methodology (Espegren, 1996¹). R2Cross uses field data that has been collected in a riffle habitat type. Riffles are often the limiting habitat features in streams during low flow events, so maintaining specific hydraulic conditions across riffle habitat types will also maintain aquatic habitat in pools and runs for most life stages of fish and macroinvertebrates (Nehring, 1979²). The R2Cross model uses field data, including a survey of cross-sectional channel geometry, a longitudinal slope of the water surface, and a flow measurement, as input to a single transect hydraulic model. R2Cross uses Ferguson's Variable-Power Equation (Ferguson, 2007³) to model a stage-discharge relationship and compute corresponding hydraulic parameters of average depth, average velocity, and percent wetted perimeter over modeled stages. Maintaining these three hydraulic parameters at specified levels should ensure conditions that allow movement of fish longintudinally across riffles and adequate depths, velocities, and oxygenation

¹Espegren, G.D., 1996, Development of Instream Flow Recommendations in Colorado Using R2CROSS, Colorado Water Conservation Board.

²Nehring, B.R., 1979, Evaluation of Instream Flow Methods and Determination of Water Quantity Needs for Streams in the State of Colorado, Colorado Division of Wildlife.

³ Ferguson, R.I., 2007. Flow resistance equations for gravel- and boulder-bed streams. Water Resources Research 43. <u>https://doi.org/10.1029/2006WR005422</u>

for production of macroinvertebrates and development of trout eggs. Baseflow recommendations are typically developed based on the flows that meet two of three hydraulic criteria and summer flow recommendations are based on hydraulic criteria that meet three of three hydraulic criteria (as described in Nehring 1979 and Espergren 1996).

In 2019 and 2023, CPW and CWCB staff collected three cross-section data sets on Square Top Creek. The results of the R2Cross analysis are summarized below.

	Bankfull Top	Date Measured	Flow	Flow Meeting	Flow Meeting Three
	Width		Measured	Two Criteria	Criteria
1	8.20 ft	7/16/2019	5.52 cfs	0.84 cfs	1.46 cfs
2	4.31 ft	7/23/2019	4.43 cfs	0.58 cfs	0.82 cfs
3	6.98 ft	7/12/2023	2.72 cfs	0.76 cfs	1.56 cfs
		Recommende	ed Flow Rates:	0.7 cfs	1.3 cfs

The initial biological flow recommendation in the winter is 0.7 cfs. This rate is protective during the overwintering period by maintaining an average depth of 0.2 feet in the stream channel on average. The initial biological flow recommendation in the summer is 1.3 cfs, which will maintain hydraulic parameters of velocity of 1 foot per second (fps), 50 percent wetted perimeter, and adequate depth in critical riffle transects.

In order to make a preliminary determination whether water is available for the R2Cross-based flow recommendations and to determine the appropriate seasonal transition dates, CPW examined basic hydrologic data and water rights information for Square Top Creek. Square Top Creek does not have any gage data, and because it is high-elevation and undeveloped, CWCB staff relied upon regression equations for monthly flow estimates to determine the seasonality of the flow recommendations. CPW is not aware of any active water rights within the reach.

Water Availability-Refined Flow Recommendation

CPW's analysis indicates that the following flows are needed to protect the natural environment to a reasonable degree. Based on the hydrology from CSUFIow18 (Eurich et al., 2021⁴), there appears to be water availability limitations during the late-summer and baseflow periods. Given these limitations, CPW's adjusted flow recommendations are the following:

- Early Spring Flow Recommendation (April 1 through April 30): 0.3 cfs
 - This flow rate has been reduced due to water availability constraints but will maintain sufficient depth and wetted perimeter for movement of greenback cutthroat as they

⁴ Eurich, A., Kampf, S.K., Hammond, J.C., Ross, M., Willi, K., Vorster, A.G. and Pulver, B., 2021, Predicting mean annual and mean monthly streamflow in Colorado ungauged basins, River Research and Applications, 37(4), 569-578.

transition from overwintering conditions to more activity as snowmelt begins. Earlier spring runoff may be a reality in a changing climate.

- Spring Flow Recommendation (May 1 through May 31): 1.0 cfs
 - Maintains adequate depth, velocity, and wetted perimeter at most riffle cross-sections. These hydraulic conditions will support trout as they transition to more metabolic activity as flows rise during the beginning of spring runoff. Earlier spring runoff may be a reality in a changing climate.
- June Flow Recommendation (June 1 through June 30): 1.3 cfs
 - Maintains adequate depth, velocity, and wetted perimeter at all riffle cross-sections. This flow rate will support ideal conditions for feeding and spawning as the greenback cutthroat trout mature and grow.
- July Flow Recommendation (July 1 through July 31): 0.8 cfs
 - Maintains adequate depth, velocity, and wetted perimeter at most riffle cross-sections. This flow rate will support beneficial conditions for feeding and spawning and will maintain suitable resting habitats.
- Late Summer Flow Recommendation (August 1 through August 31): 0.25 cfs
 - This flow rate has been reduced due to water availability constrists but will maintain sufficient depth and wetted perimeter. Sufficient resting habitats will be maintained.
- Baseflow Recommendation (September 1 through March 31): 0.1 cfs
 - This flow rate has been reduced due to water availability constraints but will provide sufficient wetted perimeter for yearling and age one cutthroat trout during the fall and into overwintering periods.


The purpose of this letter is to formally transmit this ISF recommendation to CWCB for the Board's consideration. CPW believes there is a flow-dependent natural environment in Square Top Creek that can be preserved to a reasonable degree with an ISF water right in the recommended rates. Please refer to attachments which include; R2Cross field forms, R2Cross output, flow measurements, fish stocking photographs, and photographs at each cross-section location.

CPW personnel will be available at the January 2024 CWCB meeting to answer any questions that the Board might have regarding these flow recommendations. We appreciate your consideration.

Sincerely,

Katie Birch Digitally signed by Katie Birch

Katie Birch CPW Instream Flow Program Coordinator Attachments (as stated)

Square Top Creek Cross Section 1, looking upstream

Square Top Creek Cross Section 1, looking downstream

Square Top Creek Cross Section 1, downstream overview

Square Top Creek Cross Section 2, looking downstream

Square Top Creek Cross Section 2, Looking upstream

Square Top Creek Cross Section 2, looking across cross section

Square Top Creek, Overview looking downstream

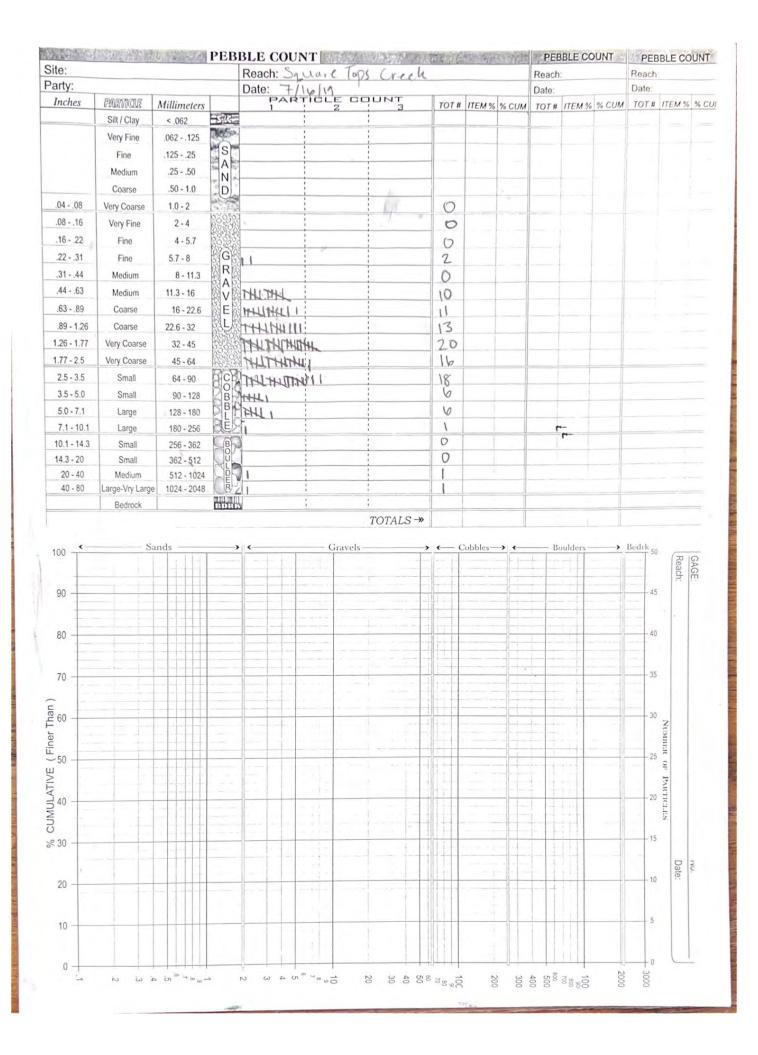
Square Top Creek Cross Section 3, looking upstream

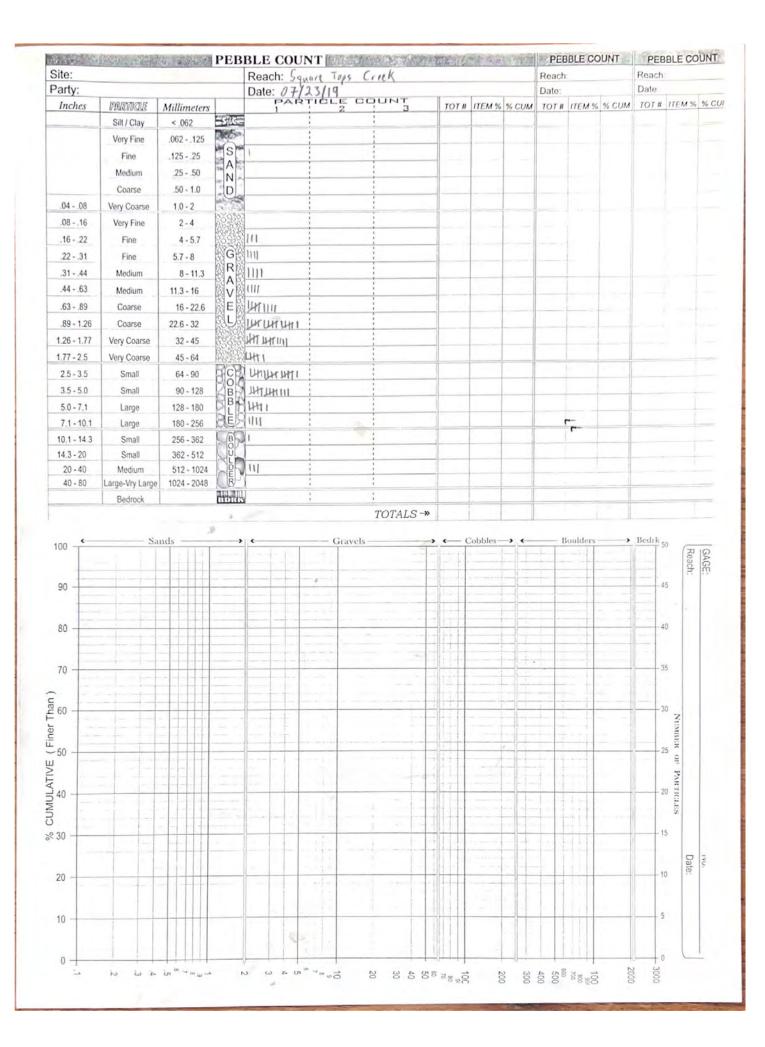
Square Top Creek Cross Section 3, looking downstream

Square Top Creek Cross Section 3, looking downstream from right bank

Square Top Creek, Multi-thread channel

Square Top Lake (Lower)


Square Top Creek, Overview & July 2023 snowmelt reserves



Square Top Creek, Fry greenback cutthroat trout in channel margin

Square Top Creek, August 2023 initial stocking of greenback cutthroat trout

FIELD DATA FOR INSTREAM FLOW DETERMINATIONS

COLORADO WATER CONSERVATION BOARD

LOCATION INFORMATION

STREAM N	AME: S	quare Top:	s creek CAKA	(PW Duck	Cleek) Unaw	ied tub	+ Duck Creek	CROSS-SECTION NO.
CROSS-SEC	CTION LOC	CATION Betwee	n Upper Elmer	Soudie Top	25			
DATE: 7/1	4/19	OBSERVERS: B	irch, M. Painter	, Ayanna Bi	mone (USF	5)		
LEGAL	ON	% SECTION:	SECTION:	TOWNSHIP:	N/S	RANGE:	E/W	PM:
COUNTY:		1000	WATERSHED:	v	VATER DIVISION:		DOW WATER	CODE:
MAP(S):	USGS:	See Lat/Lov	ng					
MAP(S).	USFS:		J					

SUPPLEMENTAL DATA

SAG TAPE SECTION SAME AS DISCHARGE SECTION:	METER TYPE: MANS	h MCB				
METER NUMBER:	DATE RATED:	CALIB/SPIN	80C	TAPE WEIGHT:	ibs/foot	TAPE TENSION: Ibs
CHANNEL BED MATERIAL SIZE RANGE:		-	PHOTOGRAPHS TA	KEN: YES/NO	NUMBER OF P	HOTOGRAPHS:

CHANNEL PROFILE DATA

STATION	DISTANCE FROM TAPE (H)	ROD READING (ft)		8	LEGEND:
X Tape @ Stake LB	0.0	×		Ĭ	Stake 🛞
🗴 Tape @ Stake RB	0.0	×	s ĸ		Station (1)
1 WS @ Tape LB/RB	0.0	6.35/6.36	$\mathbf{E}_{T} \mathbb{Q} \rightarrow$	TAPE	Photo ()
2 WS Upstream	14.2	5.75	Η̈́		
3 WS Downstream	/	Le. 40			Direction of Flo
SLOPE			\square	*	

AQUATIC SAMPLING SUMMARY

DISTANC	E ELEC	TROFIS	HED:	ft	-	F	ISH CA	UGHT:	YES/NO)		WATE	RCHEN	ISTRY	SAMPL	ED: YES	S/NO
LENGTH	· FREC	UENC	DISTR	RIBUTIC	N BY	DNE-IN	CH SIZ	EGRO	UPS (1.	0-1.9,2	2.0-2.9	ETC.)					
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	>15	TOTAL
									-								
_																-	
			1			11											
				-	1	1											
BY COMMON	OR SC	IENTIFI	CORDE	ER NAM	E:	100											
	LENGTH	LENGTH - FREC	LENGTH - FREQUENC	LENGTH - FREQUENCY DISTR	LENGTH - FREQUENCY DISTRIBUTIO		LENGTH - FREQUENCY DISTRIBUTION BY ONE-IN 1 2 3 4 5 6	LENGTH - FREQUENCY DISTRIBUTION BY ONE-INCH SIZ 1 2 3 4 5 6 7 .	LENGTH - FREQUENCY DISTRIBUTION BY ONE-INCH SIZE GRO 1 2 3 4 5 6 7 8	LENGTH - FREQUENCY DISTRIBUTION BY ONE-INCH SIZE GROUPS (1. 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1	LENGTH - FREQUENCY DISTRIBUTION BY ONE-INCH SIZE GROUPS (1.0-1.9, 2 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10	LENGTH - FREQUENCY DISTRIBUTION BY ONE-INCH SIZE GROUPS (1.0-1.9, 2.0-2.9) 1 2 3 4 5 6 7 8 9 10 11	LENGTH - FREQUENCY DISTRIBUTION BY ONE-INCH SIZE GROUPS (1.0-1.9, 2.0-2.9, ETC.) 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 <	LENGTH - FREQUENCY DISTRIBUTION BY ONE-INCH SIZE GROUPS (1.0-1.9, 2.0-2.9, ETC.) 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1	LENGTH - FREQUENCY DISTRIBUTION BY ONE-INCH SIZE GROUPS (1.0-1.9, 2.0-2.9, ETC.) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 1 1 1 1 1 1 1 1 1 14 1 1 1 1 1 1 1 1 1 1 1 14 1	LENGTH - FREQUENCY DISTRIBUTION BY ONE-INCH SIZE GROUPS (1.0-1.9, 2.0-2.9, ETC.) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 1 1 1 1 1 1 1 1 14 15 1	LENGTH - FREQUENCY DISTRIBUTION BY ONE-INCH SIZE GROUPS (1.0-1.9, 2.0-2.9, ETC.) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 >15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 >15 1 1 1 1 1 1 1 14 15 >15 1 1 1 1 1 1 1 14 15 >15 1 1 1 1 1 1 1 1 14 15 >15 1 1 1 1 1 1 1 14 15 >15 1

COMMENTS

FORM #ISF FD 1-85

ST	REAM NAME:	Sq					CR	OSS-SECTION	NO.:	DATE	SHEE	TOF
BE	GINNING OF M		EDGE OF	WATER LOOKING I AKE)	DOWNSTREAM:	LEFT / RIG	HT Gage	Reading:	!!	TIME:		
50		Distance		Total	Water	Depth	Revolutions		Veloc	ity (ft/sec)		
Features	Stake (S) Grassline (G) Waterline (W) Rock (R)	From Initial Point (ft)	Width (ft)	Vertical Depth From Tape/Inst (It)	Depth (ft)	of Obser- vation (ft)		Time (sec)	At Point	Mean in Vertical	Area (It ²)	Discharge (cfs)
	5	0	×	5.0	-							
-		2.5	×	5.95	-							
	BF	3.5	×	5.93	-		3			_		
_		4.8	7	6.20	-	-	-	-	-	-		
_	W	5.1	×	6.35	0			-	-	-		
_		5.4	K	6,45	0.10		-	-		0.07		
_		5.7	×		0,45	-		-	-	0,44		
		6.0	×		0.50	-	-	~		1.89		
_		6.3	×		0,50				-	0.78		
L		6.6	×	-	0.55		-	-	-	2.91		
L		6.9	X		0.60			15	~	2.93		
L		7.2	×		0.50	-	-	-	-	4.21		
L		7,5	×		0.45	-	-	-	~	4.45		
L		7.8	X		0.40	-	-	-	-	4.30		
L		8.1	×		0.50	-	-	-	-	4,43		
ŀ	R	8,4	×		0.55	-	-	-	-	5.07		
ŀ	R	8.7	X	19.00	0.55		-	-	22	2.64		
┝		9.0	×	-	0.45	-	-	-	-	0.99	-	-
┝		9,3	×		0.35	-	2000	-		0.29		
ŀ		9.6	X		-	122-9	105	1-	-	0.09		
┝		9,9	X		0,10	-	-	-				
ŀ	10	10.0	X	6.36	0	-		-	-	-		
ŀ	BFL	10,2		6.13				-				
ŀ	BF*	11.8		5.95				-				
ŀ		14.6	-	5.75		-						
ŀ	5	16.4		5.45		1000	1.11	-				
ŀ	5	14.1		0.15		1.000					1	
ŀ			1									
ŀ		nn.	4					-				
Γ		m	h	1								
Ľ								1.5				
L								_				
								_				
F				-		27						
ŀ	-					1						
ŀ												
ŀ	-					1.19		11			-	
ŀ					-							
ŀ						1						
ŀ												
t	TOTALS:											
r	End of Measu	rement Ti	me:	Gage Readi	ng:	CALCULA	TIONS PERFOR	MED BY:	T	CALCULATIONS	CHECKED BY	1

DISCHARGE/CROSS SECTION NOTES

			NST	TRE	AM			R		MIN	ATI	ON	S			-		Col.	ORADO
COLORADO WATER CONSERVATION BOARD					LOC	ATIC		IFO	RMA	TIO	4							SOR	OF WILLS
STREAM NAME: S GUAI	e To	os Cr	eele	Cal	la	Unn	ame	1 +	nb	50	Juck	C	L)			C	ROSS-	SECTION	NO.
		wer											/						
DATE: 7/23/19 OBSERV	ERS:	Birch 1	Vieh	I,L	ande	1515	Schee	1, li	S, S	Mari		RANG	E:				PM:		
DESCRIPTION	N:			N:		ľ	OWNSH			14/	3	NATO:				WATER O			
COUNTY:		WATERSHE	ED:					w/	TER DI	VISION					DOWY	VALER	ODE:		
MAP(S): USGS: 135	043	6641	43	824	66														
USFS:		1										_				_	-	_	
					SU	PPLI	EME	NTA	LDA	TA									
AG TAPE SECTION SAME AS	YES / N	M	ETER T	YPE:	1		P	-	-	-					-				
ISCHARGE SECTION:	TESTN	DATE RAT		1	JAND	MI	a		-		-					T			
HANNEL BED MATERIAL SIZE F	ANCE	Prinz tant			-	CALI	B/SPIN:	-		sec	TAPE W	VEIGHT	; _		ER OF	_	GRAPH	ION: S:	lbs
MANNEL BED MATERIAL SIZE P	IANGE.	62.0	_			_		PHOTO	GRAP	IS TAKE	EN: YES	S/NO							-
					СН	ANN	EL P	ROF	ILE	DAT	A								
STATION	DI	STANCE OM TAPE	ft)	T	RO	D READ	ING (ft)	T	T	D		1	6	3					EGEND:
Tape @ Stake LB	TR	0.0	1	1		~			_	U	1		e	Ĺ					ake 🕱
Tape @ Stake RB		0.0	16	-		~	u		s										tion (1)
) WS @ Tape LB/RB	1.1	0.0	1.		6.01	160	14		ETC	Q-	->		TAPE						toto
2) WS Upstream		\ .h			-5	76			Ĥ									-	~
WS Downstream	14	>14	1	12	6	03			-	-	1	-					-	Dire	tion of Flo
SLOPE		1				112			1				(5					
			-			10.0			0.01	18484	ADV								
		-		AC	IAUS	IC S	AMF	LIN	GSU		ART								
STREAM ELECTROFISHED: YES	NO	DISTANCE	EELEC	TROFIS	HED: _			F	ISH CA	UGHT:	YES/NC)		WATE	RCHEN	AISTRY	SAMPL	ED: YES	S/NO
		LENGTH	- FREC	UENC	Y DIST	RIBUTI	ON BY C	NE-IN	CH SIZ	E GRO	JPS (1.	0-1.9,	2.0-2.9	ETC.)			-		
PECIES (FILL IN)			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	>15	TOTAL
		-							_						-			-	
											-		-	1	1		1		
			-			-									1	1			

COMMENTS

TRM #ISF FD 1-85

AQUATIC INSECTS IN STREAM SECTION BY COMMON OR SCIENTIFIC ORDER NAME:

DISCHARGE/CROSS SECTION NOTES

STREAM NAME:							CROS	S-SECTION	NO	DATE:		r OF
EGINNING OF MI	EASUREMENT	EDGE OF V	WATER LOOKING D	OWNSTREAM:	LEFT / RIG	нт	Gage Re	ading:	ſi	TIME.		
Stake (S)	Distance	Width	Total	Water	Depth	Rev	olutions		Veloc	ity (ft/sec)		
Stake (S) Grassline (G) Waterline (W) Rock (R)	From Initial Point (ft)	X	Vertical Depth From Tape/Inst (ft)	Depth (ft)	of Obser- vation (ft)	nev		Time (sec)	At Point	Mean in Vertical	Area (ft ²)	Discharge (cfs)
S	0		5.3	-								
farmer -	1.5		5.6	1.		-				-		
6	3.0		5.8		18							
G	4.0		5.9	0		5						
W	4.2		6.04	0								
1.00	4,5		6.2	0.2		-				1.21		
	4.8		6.4	0.35			_			2.0		
	5.2		6.5	0.55		-				2.94		
	5.5		6.4	0.55		Sec.				3.62		
	5.8		65	0.5	12000		i arall			3.30		
100 m	6.1		6.6	0.7		-				3.71		
	6.4		6.6	0.7	* 0.6 on	wa	ding roo	1.1		3.46		
	6.7		6.6	0.65	1.1.1		2	100		1,98		
	7.0		6.6	0.6			1		1	1.54		
	7.3	1	6.5	0.6			1. 1.	1.50	1	0.78		
	7.6	-	6.3	0.3						1.23		
	7.9		6.4	- 0.3		1	150	-	1	0.37	_	
ludercut Bank			6.2	0.25	11.4	- contract	Par and an Art at	Section approved		0		
W	8.2		6.01	0			1			ACTION OF THE ACTION OF THE OWNER	and the Designation of the Party States	The State State State of the State
G	8.5		5.7		1.300	-						
	14.5		5,9	-			-		1	-		
S	17.9		6.0			100	de e	and of	-			
						-	100			-		
			-			-						v
			-	-	-	-				1 11		
							-					
						-						
	-				-	-		1035				
								1000				
			1		Ĩ.			-				
								11.57				
	-											
						-						
						-						
						-						
	-			-		-						
			_			+		1				-
						-		-				
	-					-						
			-		1						8	

CCCDDD] Square Tops CK XS # 47 23 7/12/25 KB LFS UTM 436812 4382380 N5-6,92 R bank Steft edge = 5.18 1ft - 5.19 1.5 FE DF - 6.38 LWS 2.1F6 @ 6.93 2.4ft-7.37, 0.420. 2.7ft-7.38, 0.420 3.0FE-7.42, 0.47J 3.3FE-7,40,0.462 3.6-7.38, 0.8482 + turbulen 3.9-7.27, 0.350 4.2-7.32, 0.350

Squale tops Cont. July D 4.5F6 7.31, 0.420 4.888 7.33,0.400 5,1ft, 7,25, 0.35J 5,481,7.24,0.350 5.7ff, 7.24, 0.35d 6.0EE, 7,26, 0.382 6. 3ft, 7.27, 0.9 2 6.788,7.10,0,20 7.086,7.16,0.252 7.3 PE, 7.38, 0.36) 7.6 PE, 7.20, 0.240 7,982, 6.98.0.082 NSR- 8.19,6.92 -8,684, 6,44 BFR - 8.5 FE, 6.35 9.6FE, 5.93 Dlops Stake, 13,688, 4,508 Afternoon storms tollinging Reach Slope 70°F3 Slope 6.9/der DPSHERM 10,4ft length Pown 6.81 Down 6.81 Q meas, taken Sft dwinstim high elevation alpine will and high elevation medauss-divesse Wetland Sacps w/ Cloness Laslados, Vasiety Cobbles, Similar to Resmany dy moss, sand-lilfind side

R2Cross RESULTS

Stream Name: Square Tops Creek Stream Locations: Below Square Tops Lake Fieldwork Date: 07/16/2019 Cross-section: 1 Observers: Birch Painter Broyone (USFS) Coordinate System: UTM Zone 13 X (easting): 436759 Y (northing): 4382411 Date Processed: 09/20/2023 Slope: 0.0458 Discharge: R2Cross data file: 5.52 (cfs) Computation method: Ferguson VPE R2Cross data filename: R2Cross_Square Tops-1-2019-07-16.xlsx R2Cross version: 2.0.2

LOCATION

ANALYSIS RESULTS

Habitat Criteria Results

Bankfull top width (ft) = 8.2

	Habitat Criteria	Discharge (cfs) Meeting Criteria
Mean Depth (ft)	0.2	0.84
Percent Wetted Perimeter (%)	50.0	1.46
Mean Velocity (ft/s)	1.0	0.77

STAGING TABLE

Feature	Distance to Water (ft)	Top Width (ft)	Mean Depth (ft)	Maximum Depth (ft)	Area (sq ft)	Wetted Perimeter (ft)	Percent Wetted Perimeter	Hydraulic Radius (ft)	Manning's n	Mean Velocity (ft/s)	Discharge (cfs)
Bankfull	5.95	8.2	0.54	1.0	4.44	8.73	100.0	0.51	0.05	3.82	16.99
	5.95	8.2	0.54	1.0	4.44	8.73	99.98	0.51	0.05	3.82	16.98
	6.0	7.52	0.54	0.95	4.05	8.04	92.05	0.5	0.05	3.78	15.3
	6.05	6.83	0.54	0.9	3.69	7.35	84.11	0.5	0.05	3.77	13.9
	6.1	6.15	0.55	0.85	3.36	6.65	76.17	0.51	0.05	3.8	12.78
	6.15	5.62	0.55	0.8	3.07	6.11	69.99	0.5	0.05	3.77	11.59
	6.2	5.34	0.52	0.75	2.8	5.8	66.42	0.48	0.05	3.59	10.04
	6.25	5.2	0.49	0.7	2.54	5.62	64.38	0.45	0.06	3.3	8.37
	6.3	5.05	0.45	0.65	2.28	5.44	62.34	0.42	0.06	3.01	6.86
Waterline	6.35	4.91	0.41	0.6	2.03	5.27	60.3	0.39	0.06	2.71	5.5
	6.4	4.71	0.38	0.55	1.79	5.03	57.65	0.36	0.07	2.44	4.36
	6.45	4.5	0.35	0.5	1.56	4.8	54.99	0.32	0.07	2.16	3.38
	6.5	4.36	0.31	0.45	1.34	4.62	52.95	0.29	0.08	1.85	2.48
	6.55	4.21	0.27	0.4	1.12	4.45	50.92	0.25	0.08	1.54	1.73
	6.6	4.07	0.23	0.35	0.92	4.27	48.88	0.21	0.09	1.23	1.13
	6.65	3.88	0.19	0.3	0.72	4.04	46.32	0.18	0.11	0.94	0.67
	6.7	3.69	0.14	0.25	0.53	3.82	43.75	0.14	0.13	0.66	0.35
	6.75	3.49	0.1	0.2	0.35	3.6	41.18	0.1	0.17	0.39	0.14
	6.8	2.85	0.07	0.15	0.19	2.91	33.32	0.07	0.24	0.22	0.04
	6.85	1.65	0.04	0.1	0.07	1.68	19.29	0.04	0.34	0.11	0.01
	6.9	0.45	0.02	0.05	0.01	0.46	5.28	0.02	0.54	0.05	0.0
	6.93	0.13	0.01	0.01	0.0	0.14	1.59	0.01	1.46	0.01	0.0

This Manning's roughness coefficient was calculated based on velocity estimates from the Ferguson VPE method

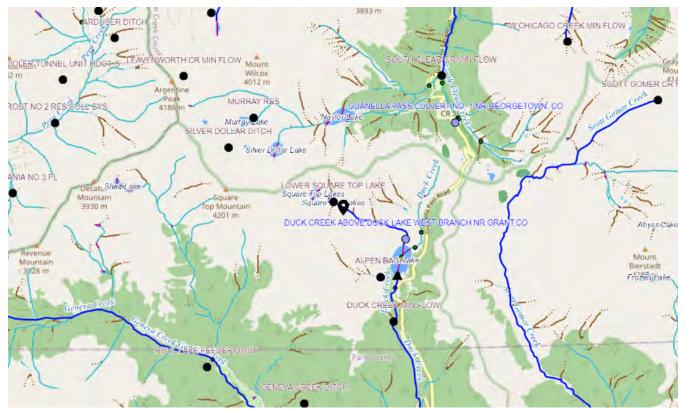
MODEL SUMMARY

Measured Flow (Qm) =	5.52	(cfs)
Calculated Flow (Qc) =	5.51	(cfs)
(Qm-Qc)/Qm * 100 =	0.16%	
Measured Waterline (WLm) =	6.36	(ft)
Calculated Waterline (WLc) =	6.35	(ft)
(WLm-WLc)/WLm * 100 =	0.08%	
Max Measured Depth (Dm) =	0.6	(ft)
Max Calculated Depth (Dc) =	0.6	(ft)
(Dm-Dc)/Dm * 100 =	0.02%	
Mean Velocity =	2.71	(ft/s)
Manning's n =	0.062	
0.4 * Qm =	2.21	(cfs)
2.5 * Qm =	13.79	(cfs)

FIELD DATA

Feature	Station (ft)	Rod Height (ft)	Water depth (ft)	Velocity (ft/s)
	0	5		
	2.5	5.45		
Bankfull	3.5	5.93		
	4.8	6.2		
Waterline	5.1	6.35	0	0
	5.4	6.45	0.1	0.07
	5.7	6.8	0.45	0.44
	6	6.85	0.5	1.89
	6.3	6.85	0.5	0.78
	6.6	6.9	0.55	2.91
	6.9	6.95	0.6	2.93
	7.2	6.85	0.5	4.21
	7.5	6.8	0.45	4.45
	7.8	6.75	0.4	4.3
	8.1	6.85	0.5	4.43
	8.4	6.9	0.55	5.07
	8.7	6.9	0.55	2.64
	9	6.8	0.45	1.73
	9.3	6.7	0.35	0.99
	9.6	6.6	0.25	0.29
	9.9	6.45	0.1	0.09
Waterline	10	6.36	0	0
	10.2	6.13		
Bankfull	11.8	5.95		
	14.6	5.9		
	16.4	5.75		
	18.1	5.45		

COMPUTED FROM MEASURED FIELD DATA


Wetted Perimeter (ft)	Water Depth (ft)	Area (ft^2)	Discharge (cfs)	Percent Discharge
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0.32	0.1	0.03	0	0.04
0.46	0.45	0.14	0.06	1.08
0.3	0.5	0.15	0.28	5.14
0.3	0.5	0.15	0.12	2.12
0.3	0.55	0.17	0.48	8.71
0.3	0.6	0.18	0.53	9.56
0.32	0.5	0.15	0.63	11.45
0.3	0.45	0.14	0.6	10.89
0.3	0.4	0.12	0.52	9.36
0.32	0.5	0.15	0.66	12.05
0.3	0.55	0.17	0.84	15.17
0.3	0.55	0.17	0.44	7.9
0.32	0.45	0.14	0.23	4.23
0.32	0.35	0.1	0.1	1.89
0.32	0.25	0.07	0.02	0.39
0.34	0.1	0.02	0	0.03
0.13	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

DISCLAIMER

"The Colorado Water Conservation Board makes no representations about the use of the software contained in the R2Cross platform for any purpose besides that for which it was designed. To the maximum extent permitted by applicable law, all information, modeling results, and software are provided "as is" without warranty or condition of any kind, including all implied warranties or conditions of merchantability, or fitness for a particular purpose. The user assumes all responsibility for the accuracy and suitability of this program for a specific application. In no event shall the Colorado Water Conservation Board or any state agency, official or employee be liable for any direct, indirect, punitive, incidental, special, consequential damages or any damages whatsoever including, without limitation, damages for loss of use, data, profits, or savings arising from the implementation, reliance on, or use of or inability to use the R2Cross platform.

R2Cross RESULTS

Stream Name: ET to Duck Creek (AKA Square Tops Creek) Stream Locations: Below Square Tops Lake Fieldwork Date: 07/23/2019 Cross-section: 2 Observers: Birch Ris Viehl Lander Coordinate System: UTM Zone 13 X (easting): 436642 Y (northing): 4382480 Date Processed: 09/20/2023 Slope: 0.0193 Discharge: R2Cross data file: 4.43 (cfs) Computation method: Ferguson VPE R2Cross data filename: R2Cross_Square Tops-2-2019-07-23.xlsx R2Cross version: 2.0.2

LOCATION

ANALYSIS RESULTS

Habitat Criteria Results

Bankfull top width (ft) = 4.31

	Habitat Criteria	Discharge (cfs) Meeting Criteria
Mean Depth (ft)	0.2	0.58
Percent Wetted Perimeter (%)	50.0	0.1
Mean Velocity (ft/s)	1.0	0.82

STAGING TABLE

Feature	Distance to Water (ft)	Top Width (ft)	Mean Depth (ft)	Maximum Depth (ft)	Area (sq ft)	Wetted Perimeter (ft)	Percent Wetted Perimeter	Hydraulic Radius (ft)	Manning's n	Mean Velocity (ft/s)	Discharge (cfs)
Bankfull	5.9	4.31	0.51	0.7	2.18	4.9	100.0	0.44	0.05	2.53	5.52
	5.92	4.26	0.49	0.68	2.11	4.85	98.88	0.43	0.05	2.46	5.19
	5.93	4.22	0.48	0.66	2.03	4.79	97.76	0.42	0.05	2.39	4.86
	5.95	4.18	0.47	0.65	1.96	4.74	96.64	0.41	0.05	2.32	4.55
	5.97	4.14	0.46	0.63	1.89	4.68	95.52	0.4	0.05	2.25	4.24
Waterline	5.97	4.13	0.45	0.63	1.87	4.67	95.3	0.4	0.05	2.24	4.18
	5.99	4.1	0.44	0.61	1.81	4.63	94.4	0.39	0.05	2.18	3.95
	6.0	4.05	0.43	0.59	1.74	4.57	93.28	0.38	0.05	2.11	3.67
	6.02	4.03	0.42	0.58	1.67	4.52	92.27	0.37	0.05	2.03	3.39
	6.04	4.0	0.4	0.56	1.6	4.48	91.29	0.36	0.05	1.95	3.12
	6.06	3.97	0.39	0.54	1.53	4.42	90.17	0.35	0.05	1.87	2.87
	6.08	3.93	0.37	0.52	1.46	4.37	89.05	0.33	0.06	1.8	2.63
	6.09	3.9	0.36	0.51	1.39	4.31	87.94	0.32	0.06	1.72	2.4
	6.11	3.87	0.34	0.49	1.33	4.26	86.82	0.31	0.06	1.64	2.17
	6.13	3.84	0.33	0.47	1.26	4.2	85.71	0.3	0.06	1.56	1.96
	6.14	3.8	0.31	0.45	1.19	4.15	84.59	0.29	0.06	1.48	1.76
	6.16	3.77	0.3	0.44	1.13	4.09	83.48	0.27	0.06	1.4	1.57
	6.18	3.74	0.28	0.42	1.06	4.04	82.36	0.26	0.06	1.31	1.39
	6.2	3.7	0.27	0.4	0.99	3.98	81.25	0.25	0.07	1.23	1.22
	6.21	3.65	0.25	0.39	0.93	3.92	79.98	0.24	0.07	1.15	1.07
	6.23	3.6	0.24	0.37	0.87	3.86	78.7	0.22	0.07	1.07	0.92
	6.25	3.55	0.23	0.35	0.8	3.79	77.41	0.21	0.07	0.99	0.79
	6.27	3.5	0.21	0.33	0.74	3.73	76.12	0.2	0.08	0.9	0.67
	6.29	3.44	0.2	0.32	0.68	3.67	74.83	0.19	0.08	0.82	0.56
	6.3	3.38	0.18	0.3	0.62	3.59	73.29	0.17	0.09	0.75	0.46

6.32	3.25	0.17	0.28	0.56	3.44	70.24	0.16	0.09	0.69	0.39
 6.34	3.12	0.16	0.26	0.51	3.29	67.18	0.15	0.09	0.63	0.32
 6.36	2.99	0.15	0.24	0.45	3.14	64.12	0.14	0.1	0.58	0.26
6.37	2.86	0.14	0.23	0.4	2.99	61.06	0.13	0.1	0.52	0.21
6.39	2.73	0.13	0.21	0.35	2.84	58.0	0.12	0.11	0.47	0.17
6.41	2.56	0.12	0.19	0.31	2.67	54.37	0.12	0.12	0.42	0.13
6.42	2.36	0.11	0.17	0.26	2.45	50.0	0.11	0.12	0.38	0.1
6.44	2.16	0.1	0.16	0.23	2.24	45.63	0.1	0.13	0.34	0.08
6.46	1.96	0.1	0.14	0.19	2.02	41.26	0.09	0.14	0.31	0.06
6.48	1.76	0.09	0.12	0.16	1.81	36.88	0.09	0.15	0.28	0.04
6.5	1.56	0.08	0.1	0.13	1.59	32.51	0.08	0.16	0.25	0.03
6.51	1.43	0.07	0.09	0.1	1.45	29.65	0.07	0.17	0.2	0.02
6.53	1.32	0.06	0.07	0.08	1.34	27.39	0.06	0.2	0.15	0.01
 6.55	1.22	0.05	0.05	0.06	1.23	25.13	0.05	0.25	0.11	0.01
6.57	1.11	0.03	0.04	0.04	1.12	22.87	0.03	0.34	0.06	0.0
6.58	1.0	0.02	0.02	0.02	1.01	20.62	0.02	0.57	0.02	0.0

This Manning's roughness coefficient was calculated based on velocity estimates from the Ferguson VPE method

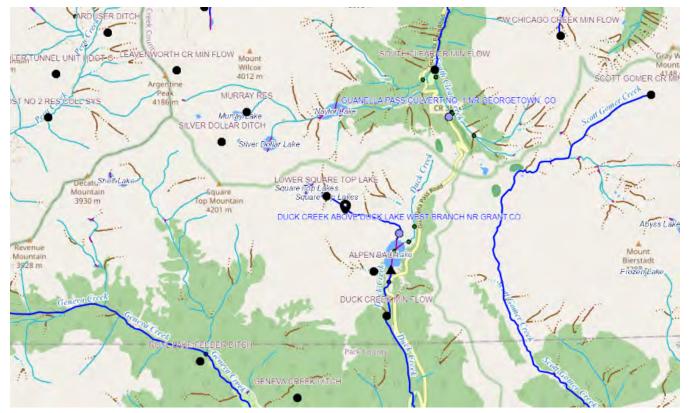
MODEL SUMMARY

Measured Flow (Qm) =	4.43	(cfs)
Calculated Flow (Qc) =	4.28	(cfs)
(Qm-Qc)/Qm * 100 =	3.42%	
Measured Waterline (WLm) =	6.03	(ft)
Calculated Waterline (WLc) =	5.97	(ft)
(WLm-WLc)/WLm * 100 =	0.85%	
Max Measured Depth (Dm) =	0.7	(ft)
Max Calculated Depth (Dc) =	0.63	(ft)
(Dm-Dc)/Dm * 100 =	10.51%	
Mean Velocity =	2.29	(ft/s)
Manning's n =	0.049	
0.4 * Qm =	1.77	(cfs)
2.5 * Qm =	11.07	(cfs)

FIELD DATA

Feature	Station (ft)	Rod Height (ft)	Water depth (ft)	Velocity (ft/s)
	0	5.3		
	1.5	5.6		
	3	5.8		
Bankfull	4	5.9		
Waterline	4.2	6.04	0	0
	4.5	6.2	0.2	1.21
	4.8	6.4	0.35	2
	5.2	6.5	0.55	2.94
	5.5	6.4	0.55	3.62
	5.8	6.5	0.5	3.3
	6.1	6.6	0.7	3.71
	6.4	6.6	0.7	3.46
	6.7	6.6	0.65	1.98
	7	6.6	0.6	1.54
	7.3	6.5	0.6	0.78
	7.6	6.3	0.3	1.23
	7.9	6.4	0.3	0.37
	8.2	6.2	0.25	0
Waterline	8.2	6.01	0	0
Bankfull	8.5	5.7		
	14.5	5.9		
	17.9	6		

COMPUTED FROM MEASURED FIELD DATA


Wetted Perimeter (ft)	Water Depth (ft)	Area (ft^2)	Discharge (cfs)	Percent Discharge
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0.34	0.2	0.06	0.07	1.64
0.36	0.35	0.12	0.24	5.53
0.41	0.55	0.19	0.57	12.78
0.32	0.55	0.17	0.6	13.49
0.32	0.5	0.15	0.49	11.18
0.32	0.7	0.21	0.78	17.59
0.3	0.7	0.21	0.73	16.4
0.3	0.65	0.2	0.39	8.72
0.3	0.6	0.18	0.28	6.26
0.32	0.6	0.18	0.14	3.17
0.36	0.3	0.09	0.11	2.5
0.32	0.3	0.09	0.03	0.75
0.36	0.25	0.04	0	0
0.19	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

DISCLAIMER

"The Colorado Water Conservation Board makes no representations about the use of the software contained in the R2Cross platform for any purpose besides that for which it was designed. To the maximum extent permitted by applicable law, all information, modeling results, and software are provided "as is" without warranty or condition of any kind, including all implied warranties or conditions of merchantability, or fitness for a particular purpose. The user assumes all responsibility for the accuracy and suitability of this program for a specific application. In no event shall the Colorado Water Conservation Board or any state agency, official or employee be liable for any direct, indirect, punitive, incidental, special, consequential damages or any damages whatsoever including, without limitation, damages for loss of use, data, profits, or savings arising from the implementation, reliance on, or use of or inability to use the R2Cross platform.

R2Cross RESULTS

Stream Name: Square Tops Creek Stream Locations: Below Square Tops Lake Fieldwork Date: 07/12/2023 Cross-section: 3 Observers: KB LFS Coordinate System: UTM Zone 13 X (easting): 436812 Y (northing): 4382380 Date Processed: 09/20/2023 Slope: 0.0096 Discharge: Entered Value: 2.72 (cfs) Computation method: Ferguson VPE R2Cross data filename: R2Cross_Square Tops-3-2023-07-12.xlsx R2Cross version: 2.0.2

LOCATION

ANALYSIS RESULTS

Habitat Criteria Results

Bankfull top width (ft) = 6.98

	Habitat Criteria	Discharge (cfs) Meeting Criteria
Mean Depth (ft)	0.2	0.76
Percent Wetted Perimeter (%)	50.0	0.07
Mean Velocity (ft/s)	1.0	1.56

STAGING TABLE

Feature	Distance to Water (ft)	Top Width (ft)	Mean Depth (ft)	Maximum Depth (ft)	Area (sq ft)	Wetted Perimeter (ft)	Percent Wetted Perimeter	Hydraulic Radius (ft)	Manning's n	Mean Velocity (ft/s)	Discharge (cfs)
Bankfull	6.38	6.98	0.8	1.04	5.57	7.99	100.0	0.7	0.04	3.15	17.53
	6.42	6.9	0.76	1.0	5.28	7.88	98.6	0.67	0.04	3.03	16.02
	6.47	6.82	0.72	0.95	4.94	7.74	96.91	0.64	0.04	2.89	14.27
	6.52	6.73	0.68	0.9	4.6	7.61	95.22	0.6	0.04	2.74	12.6
	6.57	6.64	0.64	0.85	4.26	7.47	93.53	0.57	0.04	2.59	11.03
	6.62	6.55	0.6	0.8	3.93	7.34	91.84	0.54	0.04	2.43	9.54
	6.67	6.46	0.56	0.75	3.61	7.2	90.15	0.5	0.04	2.26	8.15
	6.72	6.37	0.52	0.7	3.29	7.07	88.46	0.47	0.04	2.09	6.86
	6.77	6.28	0.47	0.65	2.97	6.93	86.77	0.43	0.04	1.91	5.66
	6.82	6.19	0.43	0.6	2.66	6.8	85.08	0.39	0.05	1.72	4.57
	6.87	6.1	0.39	0.55	2.35	6.66	83.39	0.35	0.05	1.52	3.59
Waterline	6.92	6.0	0.34	0.5	2.05	6.52	81.66	0.31	0.05	1.33	2.72
	6.97	5.8	0.3	0.45	1.76	6.29	78.69	0.28	0.05	1.14	2.01
	7.02	5.68	0.26	0.4	1.47	6.13	76.68	0.24	0.06	0.94	1.38
	7.07	5.58	0.21	0.35	1.19	5.98	74.87	0.2	0.07	0.73	0.87
	7.12	5.32	0.17	0.3	0.91	5.67	71.01	0.16	0.08	0.55	0.5
	7.17	4.89	0.13	0.25	0.66	5.18	64.88	0.13	0.09	0.4	0.26
	7.22	4.6	0.09	0.2	0.42	4.82	60.34	0.09	0.12	0.23	0.1
	7.27	3.0	0.08	0.15	0.23	3.16	39.53	0.07	0.15	0.17	0.04
	7.32	1.73	0.06	0.1	0.1	1.81	22.66	0.05	0.18	0.12	0.01
	7.37	1.21	0.02	0.05	0.03	1.22	15.28	0.02	0.38	0.03	0.0
	7.41	0.34	0.01	0.01	0.0	0.34	4.24	0.01	0.94	0.01	0.0

This Manning's roughness coefficient was calculated based on velocity estimates from the Ferguson VPE method

MODEL SUMMARY

Measured Flow (Qm) =	2.72	(cfs)
Calculated Flow (Qc) =	2.72	(cfs)
(Qm-Qc)/Qm * 100 =	0.08%	
Measured Waterline (WLm) =	6.92	(ft)
Calculated Waterline (WLc) =	6.92	(ft)
(WLm-WLc)/WLm * 100 =	0.05%	
Max Measured Depth (Dm) =	0.48	(ft)
Max Calculated Depth (Dc) =	0.5	(ft)
(Dm-Dc)/Dm * 100 =	-3.89%	
Mean Velocity =	1.33	(ft/s)
Manning's n =	0.051	
0.4 * Qm =	1.09	(cfs)
2.5 * Qm =	6.8	(cfs)

FIELD DATA

Feature	Station (ft)	Rod Height (ft)	Water depth (ft)	Velocity (ft/s)
	0	5.18		
	1	5.69		
Bankfull	1.5	6.38		
Waterline	2.1	6.93	0	
	2.4	7.37	0.42	
	2.7	7.38	0.44	
	3	7.42	0.47	
	3.3	7.4	0.46	
	3.6	7.38	0.48	
	3.9	7.27	0.35	
	4.2	7.32	0.35	
	4.5	7.31	0.42	
	4.8	7.33	0.4	
	5.1	7.25	0.35	
	5.4	7.24	0.35	
	5.7	7.24	0.35	
	6	7.26	0.38	
	6.3	7.27	0.4	
	6.7	7.1	0.2	
	7	7.16	0.25	
	7.3	7.38	0.36	
	7.6	7.2	0.24	
	7.9	6.98	0.08	
Waterline	8.1	6.92	0	
Bankfull	8.5	6.35		
	9.6	5.93		
	13.6	4.5		

COMPUTED FROM MEASURED FIELD DATA

Wetted Perimeter (ft)	Water Depth (ft)	Area (ft^2)	Discharge (cfs)	Percent Discharge
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0.53	0.42	0.13	0.17	6.14
0.3	0.44	0.13	0.18	6.44
0.3	0.47	0.14	0.19	6.88
0.3	0.46	0.14	0.18	6.73
0.3	0.48	0.14	0.19	7.02
0.32	0.35	0.1	0.14	5.12
0.3	0.35	0.1	0.14	5.12
0.3	0.42	0.13	0.17	6.14
0.3	0.4	0.12	0.16	5.85
0.31	0.35	0.1	0.14	5.12
0.3	0.35	0.1	0.14	5.12
0.3	0.35	0.1	0.14	5.12
0.3	0.38	0.11	0.15	5.56
0.3	0.4	0.14	0.19	6.83
0.43	0.2	0.07	0.09	3.41
0.31	0.25	0.07	0.1	3.66
0.37	0.36	0.11	0.14	5.27
0.35	0.24	0.07	0.1	3.51
0.37	0.08	0.02	0.03	0.98
0.21	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

DISCLAIMER

"The Colorado Water Conservation Board makes no representations about the use of the software contained in the R2Cross platform for any purpose besides that for which it was designed. To the maximum extent permitted by applicable law, all information, modeling results, and software are provided "as is" without warranty or condition of any kind, including all implied warranties or conditions of merchantability, or fitness for a particular purpose. The user assumes all responsibility for the accuracy and suitability of this program for a specific application. In no event shall the Colorado Water Conservation Board or any state agency, official or employee be liable for any direct, indirect, punitive, incidental, special, consequential damages or any damages whatsoever including, without limitation, damages for loss of use, data, profits, or savings arising from the implementation, reliance on, or use of or inability to use the R2Cross platform.

General Site Field Visit Data Report (Filters: Name begins with Square Top Creek;)

Туре		Div	Name	CWCB Case Number	Segment ID	Visit Date	Location Description	Watershed Name
Stream		1	Square Top Creek		16/1/A-003	7/11/2016	Duck Creek (?) and Square Top Lakes	Upper South Platte
	Remarks	Date	Remark					
		11/07/16 10:20	Arrive at site. Drove	up above Duck Lake t	o take overview pictu	res.		
		11/07/16 11:43	Julie Holmes 303-56 80444. Cabin owner. Alpenboch, creek tha low month. Bill Holme domestic.	Owns land on downs t comes into west sid es memorial power pla igation Company / Bu	tream portion of Ducl e of Duck Lake. Flow ant powers the cabin.	Lake. s all year. February Has diversion for		
		11/07/16 12:38	Company owns land Duck Creek may not informed me that the named Glacier Creek side of Duck Lake. The notes will refer to Julie Holmes, Square interested in 102(3)b	be the proper name f creek that has been j . It enters northwest to the proposed creek Top Lakes have hyd	oroposed as Duck Crusies and Evens Creek as Duck Creek (?) or	eek is actually c enters northeast DC?.		
		11/07/16 14:07	Trail to STLs passes as 1 which is the sou South of the southerr and tracks were mad	two unnamed unmap thern and 2 the north n lake, referred to as 2	ern lake. A GPS point	DC002 was take.		
		11/07/16 16:24	Spot discharge meas	urement taken, below	v proposed UT. DCN	RLSTL.001		

	0.000									
Stream	GPS Log	CDS Data	Device	GPSPoint Name	Latituda	Longitude	UTM Zone		LITMNorthiss	Horizontal
		GPS Date	Device		Latitude	Longitude	UTM Zone	UTM Easting	UTMNorthing	Accuracy
		11/07/16 13:15	Phone (BJE)	DC001	39.597126	-105.713109				5.000000
		11/07/16 13:43	Phone (BJE)	DC002	39.591485	-105.731599				5.000000
				D D D D D D D D D D						
		11/07/16 14:24	Phone (BJE)	DC003	39.591106	-105.735434				5.000000
		11/07/16 14:49	Phone (BJE)	DC005	39.590039	-105.738112				5.000000
				20000	00.000000	100.100112				0.000000
		11/07/16 14:57	Phone (BJE)	DC006	39.590508	-105.738651				5.000000
		11/07/16 15:11	Phone (BJE)	DC007	39.591770	-105.740171				5.000000
		11/07/16 15:13	Phone (BJE)	DC008	39.591743	-105.740559				5.000000
				20000	00.001140	100.140000				0.000000
		11/07/16 15:19	Phone (BJE)	DC009	39.590908	-105.741571				5.000000
			· · · · · · · · · · · · · · · · · · ·							
		11/07/16 15:48	Phone (BJE)	DC010	39.589892	-105.738043				5.000000

GPSDescription

Trail head to Square Top Lakes. Parked at Guanella Pass and hiked from here "South Park 600 Trail"

Unnamed unmapped natural lake.

Draw that feed Duck Creek (name ?) at trail crossing.

Pictures of DC? Taken from this location, just below proposed UT.

Actual location of proposed UT. Outflow point of Lower Square Top Lake, spilling into Duck Creek (?).

Spring inflow to Lower Square Top Lake.

Spring inflow to Lower Square Top Lake.

Main inflow to Lower Square Top Lake.

Duck Creek (?) near upper terminus spot discharge measurement location.

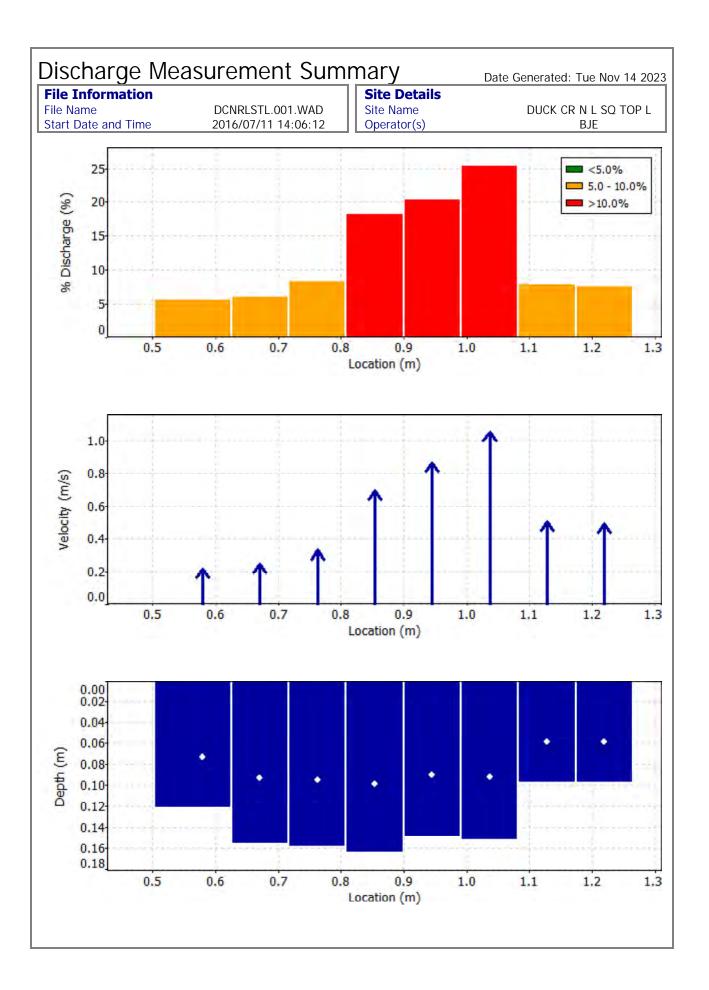
Stream	Photo Log	Photo Date	Camera	Media Type	Photo Video ID	Caption	Photo Comment							
		11/07/16 10:55		Photograph	660	Overview picture of Duck Creek	Photo taken from Guanella Pass Road looking at pr flow reach on Duck Creek, from Duck Lake to Lowe Lakes.							
		Link:												
		11/07/16 10:55		Photograph	661	Lower portion of proposed isf reach	Duck Lake is on the middle left of the photo. The se reach pictured is lower gradient. Duck Creek enters photo middle right.							
		Link:	ink:											
		11/07/16 10:55		Photograph	662	Close up of steep canyon middle of proposed reach	Duck Creek enters the steep tight canyon on the min and exits on the lower left of the photo.							
		Link:												
		11/07/16 10:56		Photograph	663	Upper portion of Duck Creek	Square Top Mountain towering over the headwaters photo upper right.							
		Link:												
		11/07/16 10:56		Photograph	664	Headwaters of Duck Creek	Square Top Mountain towering over the headwaters photo upper right.							
		Link:												
		11/07/16 12:15		Photograph		Duck Lake Bathimetry	Duck Lake bathimetry							
		Link: https://6206386 bca54e529e5752f1e		ssl.cf2.rackcdn.com	/iformbuilder.com/46	1577/_data461577_cwcb_general_subform_photo	os/field_145016004579134ba7fbff.jpg							
		11/07/16 13:46		Photograph	665	Unnamed unmapped lake 1 (south)	The trail from Guanella Pass to Square Top Lakes p natural lake. Photo taken looking southeast.							
		Link:												
		11/07/16 14:03		Photograph	666	Unnamed unmapped lake 2 (north)	The trail from Guanella Pass to Square Top Lakes p natural lake. Photo looking northeast.							
		Link:												
		11/07/16 14:25		Photograph		Draw that feed Duck Creek	Standing at GPS point DC003, in creek on trail, look headwaters.							
			Link: https://620638672b84d7ed4da9- bca54e529e5752f1e6d63fb4a534334b.ssl.cf2.rackcdn.com/iformbuilder.com/461577/_data461577_cwcb_general_subform_photos/field_1355395963579134be5ed05.jpg											
		11/07/16 14:33		Photograph		Draw that feeds Duck Creek (?)	Another unnamed feeder to Duck Creek (?), further previous and flowing less.							
		Link: https://6206380 bca54e529e5752f1e		.ssl.cf2.rackcdn.com	/iformbuilder.com/46	31577/_data461577_cwcb_general_subform_photo	os/field_1831619661579134bfc42cd.jpg							
		11/07/16 14:40		Photograph	667	Duck Creek (?) below lower Square Top Lake near UT	Pictures 667-669 taken from same location, DC005, DC?. Looking downstream. Creek is stable and well high gradient, plunge pool, through alpine meadow, through willows, rushes, sedges and wildflowers, an boulder/cobble bed.							
		Link:												
		11/07/16 14:59		Photograph		Proposed upper terminus.	Photo of GPS DC006							
		Link: https://6206386 bca54e529e5752f1e	672b84d7ed4da9- e6d63fb4a534334b.	.ssl.cf2.rackcdn.com	Link: https://620638672b84d7ed4da9- bca54e529e5752f1e6d63fb4a534334b.ssl.cf2.rackcdn.com/iformbuilder.com/461577/_data461577_cwcb_general_subform_photos/field_1641815423579134c21f638.jpg									

oposed Instream r Square Top	
ction of the a steep canyon,	
ddle right 1/3	
; of Duck Creek,	
; of Duck Creek,	
basses this small	
basses this small	
king upstream at	
west than	
left ridge over functioning: meandering d with a	

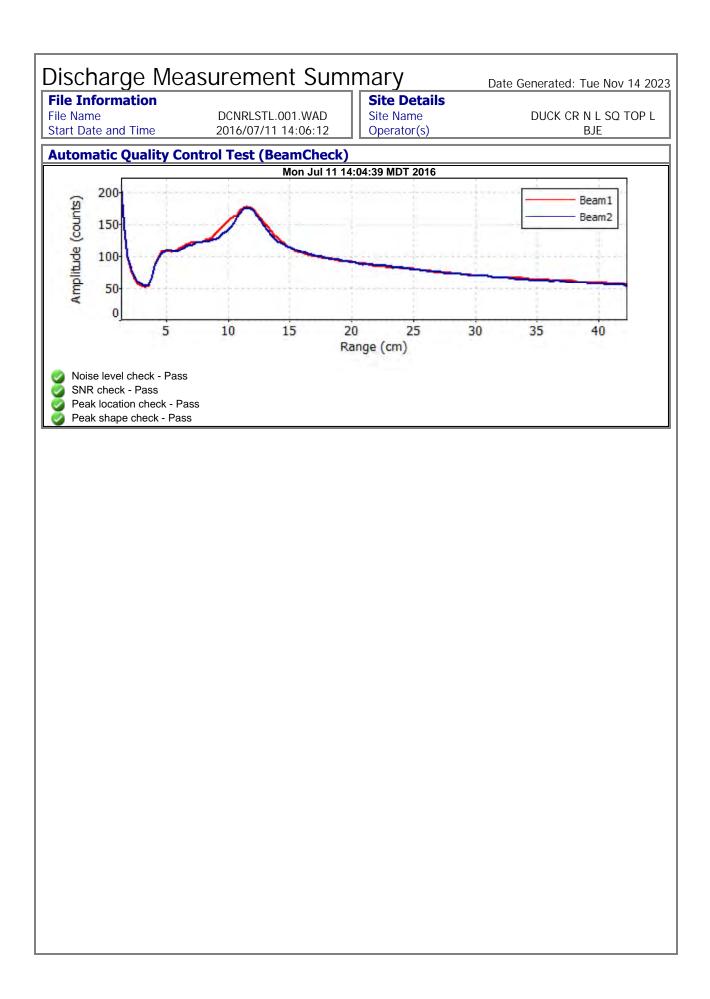
Stream		1	Square Top Cree	ek	16/1/A-00	3 7/20/	2016	Duck Cr	eek (?) and Squa	are Top Lakes					
	Remarks	Date	Remark												
		20/07/16 13:12	17/16 13:12 Track 1 on Trimble GPS Hunt is the circumnavigation of Upper Square Top Lake. The lake has three surface inflows and three springs inflowing at edge of lake. Abundant wildflowers ringing lake.												
	GPS Log	GPS Date	Device	GPSPoint Name	Latitude	Longitude	UTM	Zone	UTM Easting	UTMNorthing	Horizontal Accuracy				
		20/07/16 11:48	Phone (BJE)	STL001			13	3N	438777	4383292					
		20/07/16 12:27	Phone (BJE)	STL002	39.590877	-105.737819					5.000000	_			
		20/07/16 12:53	Phone (BJE)	STL003	39.591139	-105.744836					5.000000	-			
	Photo Log	Photo Date	Camera	Media Type	Photo Video ID	Caption			1	Photo Comment					
		20/07/16 12:28		Photograph	705	Lower Square T	wer Square Top Lake Taken from GPS STL002. LSTL with background.			vith Square Top N					
		Link:													
		20/07/16 13:31		Photograph	706	Upper Square T	op Lake			Photo taken from	the south west	side of the lake.			
		Link:													
		20/07/16 13:33		Photograph	707	Upper Square T	op Lake			Photo taken from the south west side of the lake. foreground.					
		Link:													
		20/07/16 13:36		Photograph	709	Upper Square T	op Lake			Photo taken from the south west side of the lake. the Sawtooth in the background. Left portion of a completed by 710.					
		Link:													
		20/07/16 13:36		Photograph	708	Upper Square T	op Lake			Photo taken from the Sawtooth in the		side of the lake. N			
		Link:													
		20/07/16 13:37		Photograph	710	Upper Square T	op Lake			Photo taken from the Sawtooth in th completed by 709	e background.				
		Link:								, ,					
		20/07/16 13:50		Photograph	711	Upper and Lowe	Upper and Lower Square Top Lakes Photo taken from the south side of the photo is the south side of Upper Squ water spills into a channel that leads center right. Mt. Bierstadt and the Sa			Square Top Lake ads to Lower Squa					
		Link:													
		20/07/16 13:51		Photograph	712	Lower Square T	op Lake			Photo taken from Lower Square Top Bierstadt and the	o is in the bottor	n center of the ph			

		Upper South Platte	
GPSDesc Parking lot, loca On iPhone map Hunt Location from w 705, Lower Squa take	tion of truck. Trimble (GPS). /hich picture are Top Lake		
Upper Square outflo			
ountain in			
ildflowers in the			
t. Bierstadt and noramic,			
t. Bierstadt and			
t. Bierstadt and anoramic,			
It side of the /hich is where re Top Lake, ackground.			
ıre Top Lake. xtograph. Mt.			

20/07/16 13:52	Photograph	713	Marmot	Marmot that make the Square Top Lakes area hom
Link:	I			
20/07/16 13:52	Photograph	714	Marmot	Marmot family that make the Square Top Lakes are
Link:	I			
20/07/16 13:53	Photograph	715	Marmot	Marmot family that make the Square Top Lakes are
Link:	I			
20/07/16 13:54	Photograph	716	Lower Square Top Lake	Photo taken from the south east side of Upper Squa Marshy area creates from Upper Square Top Lake Lower Square Top is in the center of the photograp and the Sawtooth in the background.
Link:				
20/07/16 13:58	Photograph	717	Lower Square Top Lake	Photo taken from the south east side of Upper Squa Lower Square Top is in the center of the photograp the background.
Link:				
20/07/16 14:03	Video	718	Duck Creek (?)	Duck Creek (?) taken from near the trail crossing be Square Top Lake.
Link:				


Э.	-
a home.	
a home.	-
re Top Lake. bottom and h. Mt. Bierstadt	-
ıre Top Lake. ı. Sawtooth is in	
low Lower	
	1

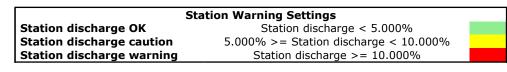
Discharge Measurment Field Visit Data Report (Filters: Name begins with Square Top Creek;)

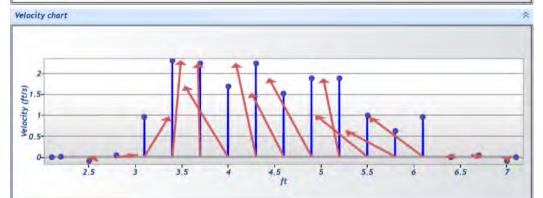

Div	Name	CWCB Case Number	Segment ID	Meas. Date	UTM	Location	Flow Amount (cfs)	Meas #	Rating	Station ID
1	Square Top Creek		16/1/A-003	07/11/2016	UTMx: 436623.9768 UTMy: 4382499.5562	Duck (?) Creek Near Lower Square Top Lake	2.04	1	р	DCNRLSTL
1	Square Top Creek		16/1/A-003	07/23/2019	UTMx: 436658 UTMy: 4382486	Unnamed trib to Duck Creek - 500ft ds of lower Square Top Lake - R2Cross	4.43	2	Р	
1	Square Top Creek		16/1/A-003	07/23/2019	UTMx: 436714 UTMy: 4382457	Unnamed trib to Duck Creek 1000ft DS lower lake	3.84	3	F	

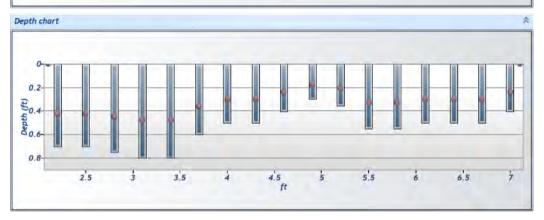
Г

File Info	0	Meas				Site De	tails		Date Gene	ratea. r		112020
File Name DCNRLSTL.001.WAD						Site Nam			DL	JCK CR N	N L SQ T	OP L
Start Date	and Tir	ne	2016/0	7/11 14:06	5:12	Operator	·(s)			E	BJE	
System 1	[nforn	nation		[Jnits	(Metric U	Jnits)	Dis	scharge (Uncerta	ainty	
Sensor Typ			FlowTra	cker C	Distance	m			Category	IS		Stats
Serial #			P235	5 \	/elocity	m/s	s	Acc	uracy	1	.0%	1.0%
CPU Firmw	are Ver	sion	3.9	A	Area	m^	2	Dep	oth	C).6%	4.2%
Software V	'er		2.30) [[Discharge	m^3	3/s		ocity	1	.3%	10.6%
Mounting (Correcti	on	0.0%	6				Wic		C).2%	0.2%
								Met	hod	3	3.1%	
Summar			0			10			tations	5	5.1%	
Averaging	Int.			# Stations		10			erall	6.	.2%	11.4%
Start Edge				Total Widt		0.884 0.104					-1	
	Mean SNR 49.6 dB Total Area				() ()/4							
NA T		1 - 1										
Mean Tem		15.1	2°C	Mean Dep	th	0.118	3					
Mean Temp Disch. Equa		15.1 Mid-S	2 °C I ection I	Mean Dep Mean Velo	th city	0.118 0.554	3 2					
			2 °C I ection I	Mean Dep	th city	0.118	3 2					
Disch. Equi	ation ment	Mid-S Results	2 °C I ection I	Mean Dep Mean Velo Total Dis	th city charge	0.118 0.554 0.057	3 2 77					
Disch. Equi Measure St Clock	ment	Mid-S Results Method	2 °C ection Depth	Mean Dep Mean Velo Total Dis %Dep	th ccity charge MeasD	0.118 0.554 0.057	3 2 77 CorrF		MeanV	Area	Flow	%Q
Disch. Equi Measure St Clock 0 14:06	ment Loc 0.43	Mid-S Results Method None	2 °C ection Depth 0.000	Mean Dep Mean Velo Total Dis %Dep 0.0	th icity charge MeasD 0.0	0.118 0.554 0.057 Vel 0.0000	3 2 77 CorrF	1.00	0.0000	0.000	0.000	0 0.0
Disch. Equi Measure St Clock 0 14:06 1 14:06	ment Loc 0.43 0.58	Mid-S Results Method None 0.6	2 °C ection Depth 0.000 0.122	Mean Dep Mean Velo Total Dis %Dep 0.0 0.0	th icity charge MeasD 0.0 0.049	0.118 0.554 0.057 Vel 0.0000 0.2204	3 2 77 CorrF	1.00 1.00	0.0000	0.000 0.015	0.000	0 0.0 3 5.1
Disch. Equi Measure St Clock 0 14:06 1 14:06 2 14:07	ment Loc 0.43 0.58 0.67	Mid-S Results Method None 0.6 0.6	2 °C ection Depth 0.000 0.122 0.155	Mean Dep Mean Velo Total Disc %Dep 0.0 0.6 0.6	th city charge MeasD 0.0 0.049 0.062	0.118 0.554 0.057 Vel 0.0000 0.2204 0.2494	3 2 77 CorrF	1.00 1.00 1.00	0.0000 0.2204 0.2494	0.000 0.015 0.014	0.000 0.003 0.003	0 0.0 3 5. 5 6.
Disch. Equi Measure St Clock 0 14:06 1 14:06 2 14:07 3 14:08	ment 0.43 0.58 0.67 0.76	Mid-S Results Method None 0.6 0.6 0.6	2 °C ection Depth 0.000 0.122 0.155 0.159	Mean Dep Mean Velo Total Disc %Dep 0.0 0.6 0.6 0.6	th city charge MeasD 0.0 0.049 0.062 0.063	0.118 0.554: 0.057 Vel 0.0000 0.2204 0.2494 0.3320	3 2 77 CorrF	1.00 1.00 1.00 1.00	0.0000 0.2204 0.2494 0.3320	0.000 0.015 0.014 0.015	0.000 0.003 0.003 0.004	0 0. 3 5. 5 6. 8 8.
Disch. Equi Measure St Clock 0 14:06 1 14:06 2 14:07 3 14:08 4 14:09	Loc 0.43 0.58 0.67 0.67 0.85	Mid-S Results Method None 0.6 0.6 0.6 0.6 0.6	2 °C ection Depth 0.000 0.122 0.155 0.159 0.165	Mean Dep Mean Velo Total Disc %Dep 0.0 0.6 0.6 0.6 0.6	th city charge MeasD 0.0 0.049 0.062 0.063 0.066	0.118 0.554: 0.057 Vel 0.0000 0.2204 0.2494 0.3320 0.6980	3 2 77 CorrF	1.00 1.00 1.00 1.00 1.00	0.0000 0.2204 0.2494 0.3320 0.6980	0.000 0.015 0.014 0.015 0.015	0.000 0.003 0.003 0.004 0.010	0 0.0 3 5. 5 6. 8 8.3 5 18.2
Disch. Equi Measure St Clock 0 14:06 1 14:06 2 14:07 3 14:08 4 14:09 5 14:11	ment 0.43 0.58 0.67 0.76 0.85 0.95	Mid-S Results Method None 0.6 0.6 0.6 0.6 0.6 0.6 0.6	2 °C ection Depth 0.000 0.122 0.155 0.159 0.165 0.149	Mean Dep Mean Velo Total Disc %Dep 0.0 0.6 0.6 0.6 0.6 0.6	th city charge MeasD 0.0 0.049 0.062 0.063 0.066 0.060	0.118 0.554: 0.057 Vel 0.0000 0.2204 0.2494 0.3320 0.6980 0.8676	3 2 77 CorrF	1.00 1.00 1.00 1.00 1.00 1.00	0.0000 0.2204 0.2494 0.3320 0.6980 0.8676	0.000 0.015 0.014 0.015 0.015 0.014	0.000 0.003 0.003 0.004 0.010 0.011	0 0.0 3 5. 5 6. 8 8.3 5 18.2 9 20.0
Disch. Equi Measure St Clock 0 14:06 1 14:06 2 14:07 3 14:08 4 14:09 5 14:11 6 14:12	ment 0.43 0.58 0.67 0.67 0.85 0.95 0.95 0.95 0.104	Mid-S Results Method None 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.	2 °C ection Depth 0.000 0.122 0.155 0.159 0.165 0.149 0.152	Mean Dep Mean Velo Total Disc %Dep 0.0 0.6 0.6 0.6 0.6 0.6 0.6	th city charge MeasD 0.0 0.049 0.062 0.063 0.066 0.060 0.061	0.118 0.554: 0.057 Vel 0.0000 0.2204 0.2494 0.3320 0.6980 0.8676 1.0578	3 2 77 CorrF	1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.0000 0.2204 0.2494 0.3320 0.6980 0.8676 1.0578	0.000 0.015 0.014 0.015 0.015 0.014 0.014	0.000 0.003 0.003 0.004 0.010 0.011 0.014	0 0.0 3 5. 5 6. 8 8. 5 18. 9 20.0 8 25.0
Disch. Equi Measure St Clock 0 14:06 1 14:06 2 14:07 3 14:08 4 14:09 5 14:11	ment Loc 0.43 0.58 0.67 0.67 0.85 0.95 0.95 1.04 1.13	Mid-S Results Method None 0.6 0.6 0.6 0.6 0.6 0.6 0.6	2 °C ection Depth 0.000 0.122 0.155 0.159 0.165 0.149	Mean Dep Mean Velo Total Disc %Dep 0.0 0.6 0.6 0.6 0.6 0.6	th city charge MeasD 0.049 0.062 0.063 0.066 0.060 0.061 0.039	0.118 0.554: 0.057 Vel 0.0000 0.2204 0.2494 0.3320 0.6980 0.8676 1.0578 0.5081	3 2 77 CorrF	1.00 1.00 1.00 1.00 1.00 1.00	0.0000 0.2204 0.2494 0.3320 0.6980 0.8676	0.000 0.015 0.014 0.015 0.015 0.014	0.000 0.003 0.003 0.004 0.010 0.011	0 0. 3 5. 5 6. 8 8. 5 18. 9 20. 8 25. 5 7.

Discharge Mea	asurement Sum	mary	Date Generated: Tue Nov 14 2023
File Information File Name Start Date and Time	DCNRLSTL.001.WAD 2016/07/11 14:06:12	Site Details Site Name Operator(s)	DUCK CR N L SQ TOP L BJE
Quality Control			
	No Quality Co	ontrol warnings	

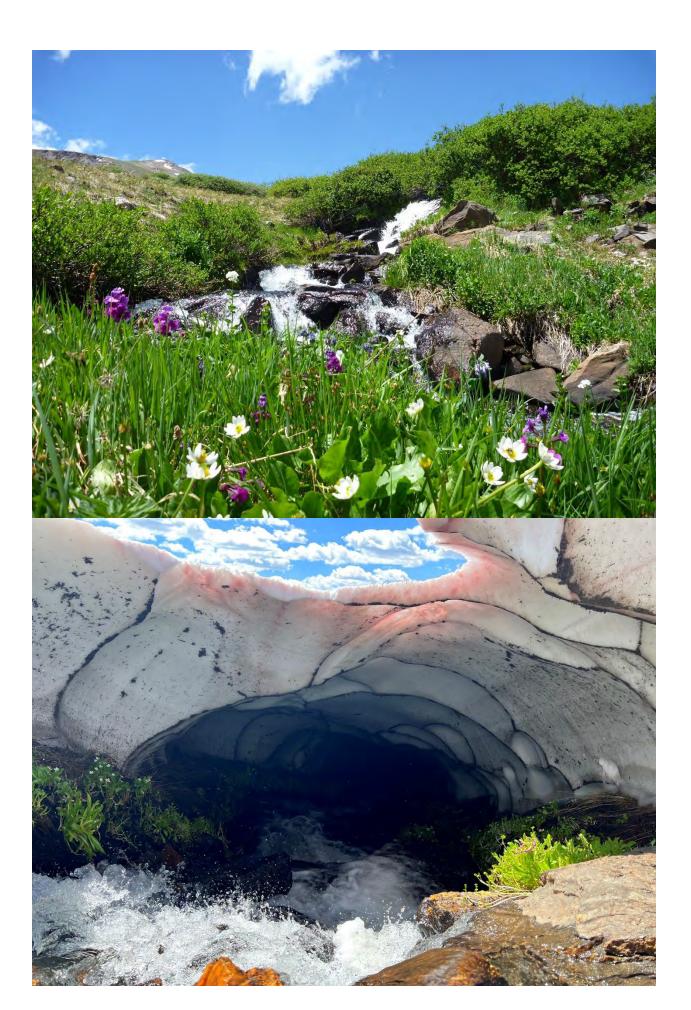



Site name Site number Operator(s) File name Comment	Squaretop 07123 Kb Squaretop		712-182209	.ft				
Start time End time Start location la Start location lo Calculations eng	ititude ongitude	7/12/2023 7/12/2023 39.5 -105. FlowTra	6:21 PM 89 736	Probe sei Probe firi	serial number rial number	Top Setting FT2H2113010 FT2P2114008 1.30 1.6.4		
# Stat			Avg interva	al (s)		arge (ft ³ /s)		
19)		40		2.	722		
Total wi	dth (ft)		Total area	(ft²)	Wetted Pe	rimeter (ft)		
5.0	00		2.710		6.	122		
Mean SN 58.5	. ,	ľ	Mean depth (ft) 0.542			Mean velocity (ft/s) 1.004		
Mean te 56.8	• • •		Max depth 0.800	(ft)		Max velocity (ft/s) 2.304		
Discl Category Accuracy Depth		ainty IVE 1.0% 6.1%	Dischar	ge equation ge uncertai ge referenc	nty	Section IVE Rated		
Velocity Width Method	Velocity 1.4% 9.2% Width 0.2% 0.2% Method 2.6% # Stations 2.6%			Data Col ature peed g correctio		0 PSS-78 - - 000 %		
[No changes we Quality contro	ere made t	Summary ove o this file	erview				



Site name	Squaretops
Site number	07123
Operator(s)	Kb
File name	Squaretops_20230712-182209.ft
Comment	

Site name	Squaretops
Site number	07123
Operator(s)	Kb
File name	Squaretops_20230712-182209.ft
Comment	


5t#	Time	Location (ft)	Method	Depth (ft)	%Depth	Measured Depth (It)	Samples	Vielocity (ft/s)	Correcti on	Mean Velocity (ft/s)	Area (ft²)	Flow (ft3/s)	%Q	
0	5:56 PM	2.100	None	0.000	0.000	0.000	0	0.000		0.001	0.000	0.000	0.000	-
1	5:56 PM	2.200	0.6	0.700	0.600	0.420	61	0,001	1,000	0,001	0,140	0,000	0,005	-
2	6:00 PM	2.500	0.6	0.700	0.600	0.420	80	-0.097	1.000	-0.097	0.210	-0.020	-0.746	-
3	6:03 PM	2.800	0.6	0.750	0.600	0.450	80	0.051	1.000	0.051	0.225	0.012	0.425	
4	6:04 PM	3.100	0.6	0.800	0.600	0.480	80	0.961	1.000	0.961	0.240	0.231	8.471	
5	6:05 PM	3.400	0.6	0.800	0.600	0.480	63	2.304	1.000	2.304	0.240	0.553	20.320	1
6	6:06 PM	3.700	0.6	0.600	0.600	0.360	76	2.235	1.000	2.235	0.180	0.402	14.779	
7	6:08 PM	4.000	0.6	0.500	0.600	0.300	63	1.693	1.000	1.693	0,150	0.254	9,328	4
8	6:09 PM	4.300	0.6	0.500	0.600	0.300	64	2,238	1.000	2,238	0,150	0.336	12,336	
9	6;10 PM	4.600	0.6	0.400	0.600	0.240	80	1.514	1,000	1.514	0,120	0.182	6,677	
10	6:11 PM	4.900	0.6	0.300	0.600	0.180	62	1.872	1.000	1.872	0.090	0.169	6.191	
11	6:12 PM	5.200	0.6	0.350	0.600	0.210	64	1.874	1.000	1.874	0.105	0.197	7.228	
12	6:13 PM	5.500	0.6	0.550	0.600	0.330	80	0.996	1.000	0.996	0.165	0.164	6.036	1
13	6:15 PM	5.800	0.6	0.550	0.600	0.330	64	0.627	1.000	0.627	0.165	0.103	3.802	
14	6:16 PM	6.100	0.6	0.500	0.600	0.300	65	0,950	1.000	0,950	0,150	0,142	5,233	
15	6:17 PM	б.400	0.6	0.500	0.600	0.300	80	-0.006	1,000	0.006	0,150	-0.001	-0.033	
16	6:19 PM	6.700	0.6	0.500	0.600	0.300	58	0.043	1,000	0.043	0.150	0,006	0,235	
17	6:20 PM	7.000	0.6	0.400	0.600	0.240	80	-0.097	1.000	-0.097	0.080	-0.008	-0.287	
18	6:21 PM	7.100	None	0.000	0.000	0.000	0	0.000		-0.097	0.000	0.000	0.000	1

Site name Site number	Squaretops 07123
Operator(s)	Kb
File name Comment	Squaretops_20230712-182209.ft

Quality Control S	Settings
Maximum depth change	50.000%
Maximum spacing change	100.000%
SNR threshold	10.000 dB
Standard error threshold	0.033 ft/s
Spike threshold	10.000%
Maximum velocity angle	20.000 deg
Maximum tilt angle	5.000 deg


Qualit	control	warnings		-			12
St#	Time	Location (ft)	Method	Depth (ft)	%Depth	Measured Depth (ft)	Warnings
1	5:56 PM	2.200	0.6	0.700	0.600	0.420	SNR Threshold Variation, Rod Angle > QC
2	6:00 PM	2.500	0.6	0.700	0.600	0.420	Velocity Angle > QC
4	6:04 PM	3.100	0.6	0.800	0.600	0.480	Standard Error > QC
5	6:05 PM	3.400	0.6	0.800	0.600	0.480	Standard Error > QC,High Stn % Discharge
6	6:06 PM	3.700	0.6	0.600	0.600	0.360	Standard Error > QC,High Stn % Discharge
7	6:08 PM	4.000	0.6	0.500	0.600	0.300	Standard Error > QC
8	6:09 PM	4.300	0.6	0.500	0.600	0.300	Standard Error > QC,High Stn % Discharge
9	6:10 PM	4.600	0.6	0.400	0.600	0.240	Standard Error > QC
10	6:11 PM	4.900	0.6	0.300	0.600	0.180	Standard Error > QC
11	6:12 PM	5.200	0.6	0.350	0.600	0.210	Standard Error > QC
12	6:13 PM	5.500	0.6	0.550	0.600	0.330	Standard Error > QC, Velocity Angle > QC
13	6:15 PM	5.800	0.6	0.550	0.600	0.330	Standard Error > QC, Velocity Angle > QC
14	6:16 PM	6.100	0.6	0.500	0.600	0.300	Standard Error > QC, Velocity Angle > QC
15	6:17 PM	6.400	0.6	0.500	0.600	0.300	Rod Angle > QC
16	6:19 PM	6.700	0.6	0.500	0.600	0.300	Standard Error > QC,Rod Angle > QC
17	6:20 PM	7.000	0.6	0.400	0.600	0.240	Velocity Angle > QC

