Debris Flow Early Warning System Final Report

Prepared for: Colorado Water Conservation Board; Watershed Restoration Program Attn: Chris Sturm June 24, 2022

Boulder Watershed Collective (previous fiscal agent: Four Mile Fire Protection District) Grant Amount: \$20, 600 Prepared by: Maya MacHamer

Introduction

Debris flows are a poorly-understood hazard that are exacerbated by wildfires. Landslides and debris flows have affected numerous Colorado communities since 2020 associated with post wildfire rain events. These events can be severe like the Black Hollow debris flow in the Poudre River watershed in 2021. It is expected that this hazard will become more frequent as high severity wildfire continues to effect Colorado watersheds.

Geologic hazards such as debris flows and landslides are difficult emergencies to manage and recover from. Debris flows are not commonly experienced, difficult to predict and can cause multiple hazards such as structural collapse, hazardous materials, infrastructure failures, fires, mass casualty and fatalities. Response to these emergencies often include difficult operational coordination when the incident occurs, resource scarcity and access issues. Evacuating downslope, at risk communities prior to the disaster is the best way to minimize impact. The question emergency managers are faced with is where and when to initiate public warnings and what messaging should be included. The Debris Flow Early Warning System project integrates science and the human element. It is a data collection, utilization and communication project that strives to provide a new, innovative way of transmitting soil saturation and rain gage data in real time to be effectively used by emergency managers through public warning systems.

Improved prediction of debris flows and early alerts that provide time for downstream communities to evacuate, has the potential to reduce risk and transform fire and flood recovery strategies for emergency managers. An early warning system for debris flows, if successful, could be utilized statewide.

The Boulder Watershed Collective (BWC) engaged the Colorado Geological Survey (CGS) to assist with debris flow modeling in 2016 as part of flood recovery efforts in Fourmile Canyon in Boulder County. Debris flows occurred in Fourmile Canyon in 2011 and 2013 associated with the Fourmile Fire (2010) burn scar. A better understanding of local debris flow hazards was part of the holistic watershed recovery process pursued by BWC and partners. Conversations throughout the debris flow modeling project led to the development of a pilot project for a debris flow early warning system using the Ingram Gulch watershed, where the debris flows occurred, as the pilot site.

After the 2020 fire season, the project was expanded, and two additional monitoring stations were installed in the Calwood burn scar. Calwood provided an opportunity to evaluate a new burn scar and collect data in a location with different soil types.

As a community, we have a reasonable understanding of where debris flows may occur and on-going research suggests that it is a combination of soil moisture and rainfall intensity that triggers the event to occur. In order to both understand and anticipate when conditions will reach the thresholds wherein a debris flow could initiate, monitoring both rainfall and soil conditions is paramount.

Background

CGS engaged debris flow experts at the Colorado School of Mines to assist with developing the debris flow monitoring and warning system. <u>Dr. Ning Lu</u> and <u>Dr. Alexandra Wayllace</u> have worked on multiple debris flow monitoring sites across the country and have the skills to analyze soil and precipitation data to help develop storm thresholds which could be used to inform warning system alerts.

Numerous data sources were evaluated prior to selecting the monitoring sites at Ingram Gulch. These data were also used to inform decisions on which instrumentation should be installed for monitoring. Evaluations of slope, geology, precipitation, previous storm footprints, values at risk and soil characterization occurred. At Calwood, the USGS Burn Area Emergency Report (BAER) was used to determine high priority monitoring locations where high probability of debris flows was indicated and there were downstream values at risk. Lidar was also used to inform monitoring location decisions.

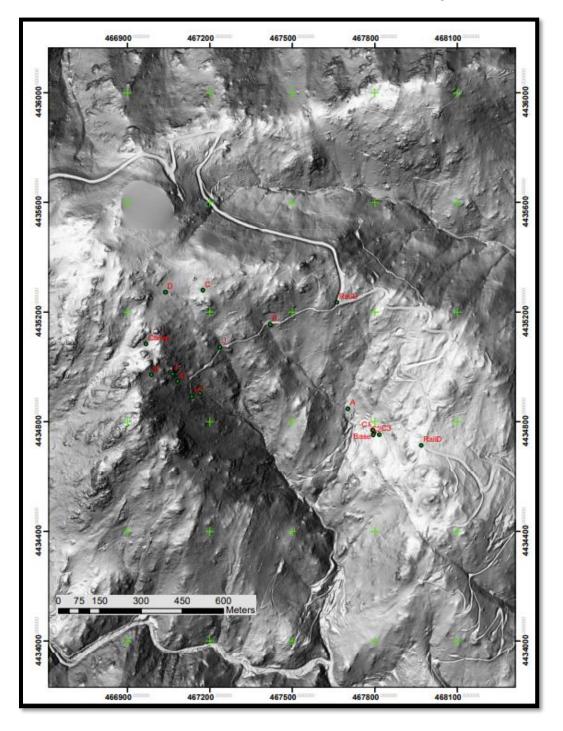


Figure 1: Lidar of Ingram Gulch with proposed monitoring locations and/or soil sample locations indicated.

The ultimate goal of this project is to improve community safety, preparedness and response to future geologic hazards. The primary short-term objective is to provide real-time rain, soil moisture, and soil strength measurements for the purpose of developing data thresholds for warnings and evacuation alerts. These data will inform the Boulder County Office of Disaster Management, Parks and Open Space, and first responders of imminent debris flow threats in the Calwood burn area. The run-out path at Ingram Gulch is short between where a debris flow may initiate and where it would impact homes. There would likely not be enough time to evacuate homes in the case of imminent threat. However, with accurate thresholds, there would be enough time to warn downstream communities that weather conditions are creating the likelihood of a serious potential threat. These differentiations are some of the alert threshold decisions that still need to be integrated with available data.

The available data from each monitoring station can be read directly from the Zentra Cloud web interface (example readings from the system that is deployed in Ingram Gulch in Fourmile Canyon are shown in the Results section) and via an app that is accessible from a phone in the field. Seven monitoring sites were installed in Ingram Gulch (see Fig 1). Installed sites are at points A, C, D, E, F, H & I. Two sites were installed at Calwood. The site above the Mountain Ridge Subdivision is a rain gauge only. All the sites were selected, after careful analysis, because they have experienced debris flows and remain unstable or are at risk of future debris flows.

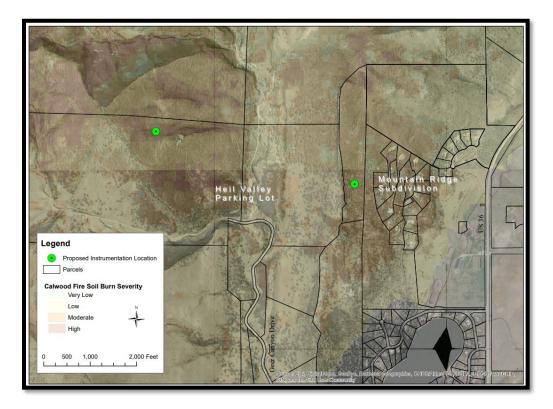
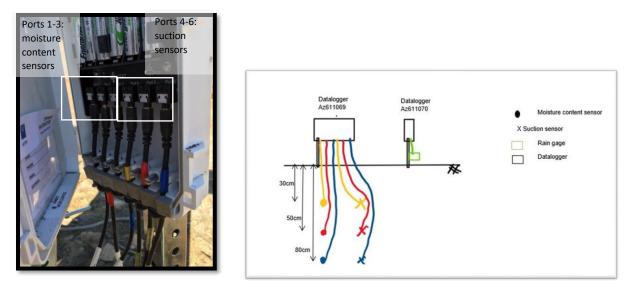


Figure 2: Monitoring sites within the Calwood burn scar.

Methods


After data analysis occurred for site selection all monitoring equipment was purchased with Community Development Block Grant funding provided by a grant through the Colorado Department of Local Affairs. All costs associated with project development, research, technical assistance and consulting provided by the CGS and the School of Mines was donated (inkind) from CGS. CWCB funds were used to support BWC staffing for coordination between partners, equipment installation, development of an educational storymap and other participation in the project.

Two soil sampling events occurred prior to equipment installation. Samples were collected and analyzed by both the Natural Resource Conservation Service and at the School of Mines laboratories. The soil results assisted in selecting appropriate monitoring equipment for installation. A soil pit was dug by hand at each site and soil was collected from each soil horizon. The following soil properties were measured, which are necessary to properly calibrate the sensors before installation: specific gravity, moisture content, Atterberg limits (liquid limit, plasticity index), absorption, clay content and particle size distribution. The soil results assisted in selecting appropriate monitoring equipment for installation.

Figure 3: Example of soil horizons

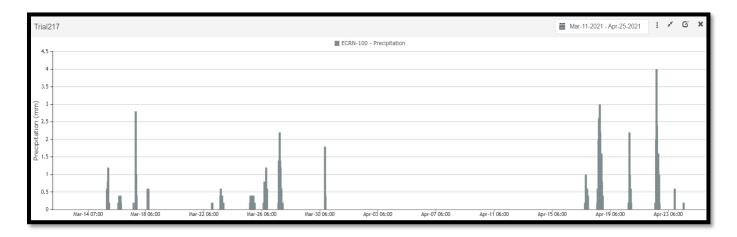
Monitoring equipment was installed at seven sites in Ingram Gulch and two sites at Calwood. Equipment includes: a) One Rain gauge (ECRN-100) to measure precipitation; connected to a solar powered datalogger. b) Tensiometers (TEROS 32) to measure matric suction in kPa; connected to solar powered dataloggers. c) Three volumetric water content sensors (EC-5); connected to datalogger. As shown in Figure 5 below, a pair of volumetric water content – suction sensors are installed at three depths: 30cm (yellow, ports 1 and 4), 50cm (red, ports 2 and 5), and 80cm (blue, ports 3 and 6). No sensors were installed deeper than 80 cm because at that point most of the hillslope material is likely to consist of larger rocks. Holes were excavated by hand. After equipment is installed, all removed material was backfilled to bury the equipment. The logged data is uploaded every 15 minutes and then sent via a 5G data transmitter to off-site computers and posted to the cloud.

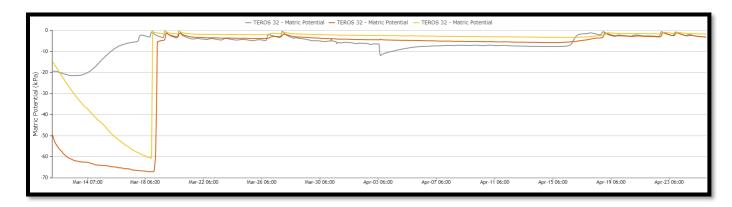
Detail of connections to datalogger (Figure 4), Schematic of subsurface instrumentation (Figure 5)

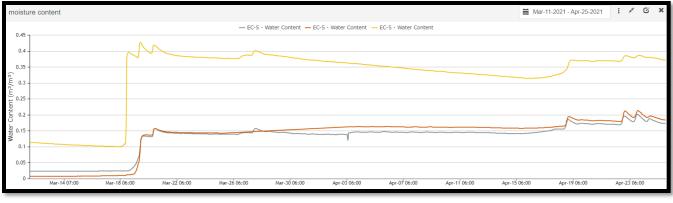
All equipment was calibrated at the School of Mines lab prior to installation. The moisture content sensors were calibrated by preparing controlled volumetric water content samples using soil that was obtained at the site. The specified resolution is 0.03m3/m3. The tensiometers were saturated with distilled, de-aired water. They were installed at an angle of 10 - 80 degrees, have a range of -85 to +50kPa with a resolution of 0.0012kPa. The sensors must be re-saturated in the field if air enters the system (at suctions > 70kPa). The rain gage was also tested in the lab. All sensors were tested using the "Zentra Utility" application:

(https://www.metergroup.com/de/environment/downloads/?download_category=software).

Results


This is an ongoing project. At this stage, results include installation of nine monitoring stations in Ingram Gulch and Calwood which each are able to transmit data in real time. The data feeds directly into the Boulder County Advanced Warning System modeling and notification system as rainfall gauge locations and as points of calibration for the calculated and assumed infiltration and soil moisture components for the physical hydrologic modeling that drives that advanced warning system (VFIo). This Advanced Warning system is what is used in the Boulder County emergency operations center during storm events. The ultimate goal of the comprehensive project is to be able to provide 10 to 15 minutes of warning to individuals in debris flow paths that are going to


Figure 6: Monitoring station with rain gauge and data loggers visible.


slide, which will allow them to evacuate and ultimately save lives. The data can be accessed and used to field verify and inform National Weather Service and the Boulder County Advance Warning system alerts.

The figures below represent an example of data obtained from March 11 to April 25, 2021. Note that there was significant snow at the site on March 13-14. As the snow melts, moisture content increases and suction decreases. The moisture content sensor at z=50cm was disconnected on March 20 and reconnected on April 3. These data are available for each monitoring site. The data is remotely available through Zentra Cloud. While the soil is too dry during some months of the year (and air breaks in the tensiometers), the relevant soil behavior for slope stability is captured when water starts infiltrating into the soil. Colorado School of Mines is analyzing data in a calibrated model used for debris-flow (shallow landslide) prediction. The model synthesizes results by simulating stress and two-dimensional flow in a variably saturated cross-section and is based in numerical synthesis that is validated (calibrated) with the active field monitoring of soil suction and moisture content data. Once there is sufficient field data which has been modeled, preliminary warning system thresholds can be developed and tested. It is estimated that one to two years of data is required to make well informed threshold ranges for alerts.

(a)

(c)

Figure 6. (a) Precipitation vs. time, (b) Matric potential vs. time, (c) volumetric moisture content vs. time.

Conclusions and Discussion

There have been many challenges and lessons learned with this project. Generally, the entire project has taken much longer than expected. The project has been an attempt to integrate academic research and emergency management needs. While this objective remains extremely important, it has been more difficult than expected to merge differing priorities and timeframes, especially when faced with limited capacity caused by covid and natural disasters.

Since we began this project there have been several major debris flows which have caused loss of life in Larimer County and severe infrastructure, economic and natural resource impacts in Garfield County. These events have reaffirmed that while our progress has been slow, the need for a debris flow early warning system is critical. For this reason, BWC, CGS, Colorado School of Mines and Boulder County will continue to build off of the existing data sets and work toward creating data thresholds for different levels of alerts (awareness, warning, evacuation). Additionally, BWC will continue to speak with other agencies pursuing similar work to share data/resources, coordinate when appropriate and ensure that efforts are not duplicated.

The following points are lessons learned from equipment installation which may be helpful for future similar projects.

- Installation of equipment is time consuming and often difficult. The sites that are advantageous for debris flow monitoring are typically steep, often difficult to access and may be hazardous post-wildfire. Digging holes deep enough for multiple levels of soil monitoring is arduous work. The current monitoring system needs adjustment to be useful for "quick deployment" in a post wildfire environment where debris flows may be imminent and data is needed quickly.
- 2. The tensiometers should be insulated with bubble wrap or other material after installation to keep the small rubber tubing from melting together during hot weather.
- 3. When soils are extremely dry and have increased suction potential equipment maintenance may need to occur to reintroduce water into the tensiometer tubing. This should be integrated into a maintenance plan. A small syringe with 10cc's of distilled water is sufficient to re-wet the system.

- 4. The Zentra Cloud system upgraded from 3G to 5G. This change eliminated the ability of data to be uploaded to the cloud without physical replacement of SIM cards. Although data was still being collected and stored, this was an unanticipated equipment maintenance need.
- 5. The tensiometers we chose are produced in Germany. Long delivery times should be expected.

Future work: A video interview with a couple who survived a debris flow that impacted their home as they slept during the 2013 flood event will be added to the <u>Debris Flow Story Map</u>. When completed, the story map will be distributed to partners to share with their networks ad an educational tool.

Potential future research areas include using LIDAR to monitoring surface deformation to strengthen forecasting based on subsurface data and InSAR to monitoring surface and near surface moisture content (calibrated to field soil data monitoring). These tasks are not currently funded, but will be considered in the future.

Agency	Task	CWRP Funds	Match Amount
CWRP Grant	Staffing/storymap	\$20,664	
CDBG	Equipment		\$48,413
	Purchase		
CGS	Technical Support		\$100,000
Boulder County	Calwood		\$7,724
	Equipment		
TOTAL		\$20,664	\$156,137

Actual Expense Budget

Appendix

This Section focuses on any additional information that would benefit the understanding of the plan/ project. This can include photos (before and after), site maps, design drawings, metadata, measurement data used in calculations, survey data, model data, etc. used or generated throughout plan/ project implementation.

- Instrumentation List
- Ingram Gulch Pre-installation soil characterization data.
- Draft public webpage on the Colorado Geological Survey website with links to real time data for each monitoring site at Ingram Gulch: <u>HTTP://www.cwayllace.com/cgs</u>
- Draft story map created by Watershed Science and Design to be used as a public education tool to improve understanding of landslide and debris flow hazards: <u>https://storymaps.arcgis.com/stories/7bc324cad46d47d9ad15d12d750132a2</u>

References

Godt, J.W., Coe, J.A., Kean, J.W., Baum, R.L., Jones, E.S., Harp, E.L., Staley, D.M., and Barnhart, W.D.,2014, Landslides in the Northern Colorado Front Range Caused by Rainfall, September 11–13,2013: Fact Sheet 2013-3114.

Intrieri, E., Gigli, G., Casagli, N., and Nadim, F., 2013, Brief communication "Landslide Early WarningSystem: toolbox and general concepts": Natural Hazards and Earth System Science, v. 13, p. 85–90, doi: 10.5194/nhess-13-85-2013.

Intrieri, E., Gigli, G., Mugnai, F., Fanti, R., and Casagli, N., 2012, Design and implementation of alandslide early warning system: Engineering Geology, v. 147–148, p. 124–136, doi:10.1016/j.enggeo.2012.07.017.

Keaton, J.R., Stock, G.M., and Graff, J.V.D., 2015, Rock-Paper-Scissors; Terrain-Fire-Rain: Associationof Environmental & Engineering Geologists (AEG), doi: 10.13140/RG.2.2.16456.62727.

Keighton, S., and Corrigan, P., 2017, Emerging Technologies at National Weather Service Field Officesto Assess and Communicate Flash Flood/Debris Flow Threats and Preparedness Measures,inDe Graff, J.V. and Shakoor, A. eds., Landslides: Putting Experience, Knowledge and EmergingTechnologies Into Practice, Roanoke, Virginia, USA, Association of Environmental andEngineering Geologists (AEG), v. AEG Special Publication 27, p. 819–828.

Lagomarsino, D., Segoni, S., Fanti, R., and Catani, F., 2013, Updating and tuning a regional-scalelandslide early warning system: Landslides, v. 10, p.91–97, doi: 10.1007/s10346-012-0376-y.

Li, X.P., and Li, Y.A., 2012, Design of GIS-based Monitoring and Early-warning System of LandslideHazard in Diao Zhongba: Energy Procedia, v. 16, p. 1174–1179, doi:10.1016/j.egypro.2012.01.187.

Mirus, B.B., Ebel, B.A., Mohr, C.H., and Zegre, N., 2017, Disturbance Hydrology: Preparing for anIncreasingly Disturbed Future: SPECIAL ISSUE: DISTURBANCE HYDROLOGY: WaterResources Research, v. 53, p. 10007–10016, doi: 10.1002/2017WR021084.

Morgan, M.L., Fitzgerald, F.S., and Morgan, K.S., 2013, Preliminary Survey of Debris Flow, Landslide, and Rockfall Deposits as a result of the September 11-14, 2013 Flooding Events, BoulderCounty, Colorado: http://www.arcgis.com/home/item.html?id=39e6c721635f40c8add90112c9d1a646.

Naidu,S., Sajinkumar, K.S., Oommen, T., Anuja, V.J., Samuel, R.A., and Muraleedharan, C., 2017, Earlywarning system for shallow landslides using rainfall threshold and slope stability analysis:Geoscience Frontiers, doi: 10.1016/j.gsf.2017.10.008.

Segoni, S., Battistini, A., Rossi, G., Rosi, A., Lagomarsino, D., Catani, F., Moretti, S., and Casagli, N.,2015, Technical Note: An operational landslide early warning system at regional scale based onspace–timevariable rainfall thresholds: Natural Hazards and Earth System Science, v. 15, p.853–861, doi: 10.5194/nhess-15-853-2015.

Wilson, R.C., 2005, The Rise and Fall of a Debris-Flow Warning System for the San Francisco BayRegion, California, inGlade, T., Anderson, M., and Crozier, M.J. eds., Landslide Hazard and Risk, Chichester, West Sussex, England, John Wiley & Sons, Ltd, p. 493–516, doi:10.1002/9780470012659.ch17.

METER Group, Inc. USA 2365 NE Hopkins Court, Pullman, WA99163 T 509.332.2756 F 509.332.5158 E info@metergroup.com W metergroup.com

Created Date	1
Quote Number	0

11/24/2020 00019467

Net 30 Days

METER

Address Information			
Bill To Name	X	Ship To Name	mes
Bill To		Ship To	
Contact Name		Ship Via	
Phone			
Email			
Terms			

Pay Terms

Expiration Date

Prepared By

Quantity	Product Code	Description	Sales Price	Total Price
1.00	0132040	TEROS 32 Tensiometer, total length 40 cm syringe refilling, refill tubes length 15 cm 4.7 m cable and stereo plug cable gland with bend protection	\$388.00	\$388.00
1.00	0132080	TEROS 32 Tensiometer, total length 80 cm syringe refilling, refill tubes length 15 cm 4.3 m cable and stereo plug cable gland with bend protection	\$403.00	\$403.00
1.00	0132120	TEROS 32 Tensiometer, total length 120 cm syringe refilling, refill tubes length 15 cm 3.9 m cable and stereo plug cable gland with bend protection	\$418.00	\$418.00
1.00	0152	UMS refill syringe BS60 for Tensiometers with external refilling, volume 60 ml, with faucet	\$18.00	\$18.00
3.00	40593-S	EC-5 Soil Moisture Sensor, 5m Cable, Stereo connector for use with METER loggers	\$125.00	\$375.00
1.00	40799	ECRN-100 High Res Rain Gauge (.2 mm), 5m Cable, Stereo connector for use with METER loggers	\$400.00	\$400.00
2.00	40897	ZL6 Cellular Data Logger, for use worldwide on 3G cellular networks using H-1 SIM, allows access to data via Internet, for use with all METER sensors, self-enclosed, solar charging, batteries included	\$650.00	\$1,300.00
2.00	50097	ZENTRA Cloud 2020 Season Pass for METER Loggers	\$90.00	\$180.00
2.00	50109	ZENTRA Cloud 2021 Season Pass for all METER Loggers	\$180.00	\$360.00

Subtotal	\$3,842.00
Total Price	\$3,842.00
Тах	\$0.00
Freight and Handling	\$20.29
Grand Total	\$3,862.29

This Quote is good for 30 days unless otherwise noted. All prices in U.S Dollars (USD) unless otherwise noted. Shipping charges, if not quoted, may be added to the final invoice. All Custom Orders are final and non-refundable.

Memo

To: Jonathan Lovekin

From: Alexandra Wayllace, Ning Lu

Date: February 19, 2021

Ref: Soil properties of samples from Ingram Gulch

1. Summary of results

Sample testing from 5 locations are summarized in Table 1:

Code	D₁₀ [mm]	D ₃₀ [mm]	D ₆₀ [mm]	% Gravel	% Sand	% fines	Comments
2020CO643202	0.20	0.70	2.55	19.28	80.54	0.18	
2020CO13205	0.17	0.41	1.40	9.00	90.39	0.60	North of "A"
2020CO13204	0.15	0.40	1.40	13.31	84.25	2.44	
2020CO643203	0.20	0.50	1.65	14.07	85.78	0.15	Close to J
2020CO643206	0.17	0.49	2.20	27.23	72.61	0.16	Close to F & G
Code	Cu	Cc	LL	PL	G₅	Soil C	lassification
2020CO643202	12.75	1.37	26.19%	NP	-		SW
2020CO13205	8.24	1.72	35.02%	NP	-		SW
2020CO13204	9.33	1.90	37.03%	NP	-		SW
2020CO643203	8.25	1.52	15.10%	NP	2.65		SW
2020CO643206	12.94	1.31	22.20%	NP	-		SW

Table 1 Soils classification summary

2. Soil samples

Eighteen samples aggregated in 5 groups were provided (Table 2).

Ν	Sample Label	Sample Code
1	E 15-65	2020CO643202
2	E Bt	202000043202
3	#W9	2020CO13205
4	A O-15	
5	AB 18-50	
6	BC	2020000642202
7	Bta	2020CO643203
8	Bt1	
9	A O-18	
10	H2	
11	H3	202000642206
12	H4	2020CO643206
13	H5	
14	#W2	
15	#W8-1	
16	2 (Atterberg)	2020CO13204
17	top	
18	bottom	

Table 2 Soils denomination and description

3. Water content

In-situ water content was taken for all the samples (Table 3). Detailed data provided in Appendix A.

Ν	Sample Label	w
1	E 15-65	6.57%
2	E Bt	8.48%
3	#W9	6.20%
4	A O-15	8.89%
5	AB 18-50	7.64%
6	BC	11.17%
7	Bta	7.98%
8	Bt1	6.36%
9	A O-18	11.53%
10	H2	11.77%
11	H3	3.05%
12	H4	1.57%
13	H5	3.55%
14	#W2	6.26%
15	#W8-1	4.75%
16	2 (Atterberg)	5.81%
17	top	8.38%
18	bottom	5.05%

Table 3 Water content summary

4. Grain size distribution

Appendices B to F show the results of the grain size analysis (dry sieve and hydrometer tests, ASTM D-422).

5. Atterberg limits

All the soil samples were found non-plastic. Liquid limit results (multi-point test) are summarized in Appendices B to F (ASTM D-4318).

6. Specific gravity

Tests for only one soil was performed. Since most of the material are coarse, the same G_s is assumed for the rest of the samples.

Appendix A Water content

SOIL MECHANICS LABORATORY

PROFESSOR: Ph.D. Alexandra Wayllace **T.A.:** Angel Rodrigo Angulo Calderon **PROJECT:** Ingram Gulch

Code	20	20CO6432	202
Denomination		E 15-65	
Date		-	
ITEM		Test No.	
	1	2	3
1. Can No.	C-1	C-2	C-3
2. Mass of can, M1 (g)	11.78	11.83	12.28
3. Mass of can + wet soil, M ₂ (g)	42.62	41.83	46.01
4. Mass of can + dry soil, $M_3(g)$	40.77	40.00	43.85
5. Mass of moisture, M_2 - M_3 (g)	1.85	1.83	2.16
6. Mass of dry soil, M_3 - M_1 (g)	28.99	28.17	31.57
7. Water content, w (%) = ((M ₂ - M ₃)/(M ₃ - M ₁)) x 100	6.38%	6.50%	6.84%
Average water content		6.57%	

Code	20	20CO6432	202
Denomination		E Bt	
Date		-	
ITEM		Test No.	
	1	2	3
1. Can No.	C-19	C-20	C-21
2. Mass of can, M1 (g)	12.19	12.67	11.60
3. Mass of can + wet soil, M ₂ (g)	37.16	33.01	32.32
4. Mass of can + dry soil, $M_3(g)$	35.28	31.42	30.64
5. Mass of moisture, M_2 - M_3 (g)	1.88	1.59	1.68
6. Mass of dry soil, M_3 - M_1 (g)	23.09	18.75	19.04
7. Water content, w (%) = $((M_2 - M_3)/(M_3 - M_1)) \times 100$	8.14%	8.48%	8.82%
Average water content		8.48%	

SOIL MECHANICS LABORATORY

COLORADO SCHOOL OF MINES

PROFESSOR: Ph.D. Alexandra Wayllace **T.A.:** Angel Rodrigo Angulo Calderon **PROJECT:** Ingram Gulch

Code	20:	20CO1320	5-1
Denomination		#W9	
Date		3/6/2020	
ITEM		Test No.	
	1	2	3
1. Can No.	C-4	C-5	C-6
2. Mass of can, M1 (g)	12.37	12.06	12.05
3. Mass of can + wet soil, M ₂ (g)	46.37	44.52	51.24
4. Mass of can + dry soil, $M_3(g)$	44.60	42.56	48.79
5. Mass of moisture, M_2 - M_3 (g)	1.77	1.96	2.45
6. Mass of dry soil, M_3 - M_1 (g)	32.23	30.50	36.74
7. Water content, w (%) = ((M ₂ - M ₃)/(M ₃ - M ₁)) x 100	5.49%	6.43%	6.67%
Average water content		6.20%	

Code	20	20CO643	203
Denomination		A O-15	
Date		-	
ITEM		Test No.	
	1	2	3
1. Can No.	C-10	C-11	C-12
2. Mass of can, M1 (g)	12.50	12.57	11.00
3. Mass of can + wet soil, M ₂ (g)	35.54	35.89	36.45
4. Mass of can + dry soil, $M_3(g)$	33.85	34.54	33.60
5. Mass of moisture, M_2 - M_3 (g)	1.69	1.35	2.85
6. Mass of dry soil, M_3 - M_1 (g)	21.35	21.97	22.60
7. Water content, w (%) = $((M_2 - M_3)/(M_3 - M_1)) \times 100$	7.92%	6.14%	12.61%
Average water content		8.89%	

PROFESSOR: Ph.D. Alexandra Wayllace **T.A.:** Angel Rodrigo Angulo Calderon **PROJECT:** Ingram Gulch SOIL MECHANICS LABORATORY

Code	2020CO643203		
Denomination	AB 18-50		
Date		-	
ITEM		Test No.	
	1	2	3
1. Can No.	C-13	C-14	C-15
2. Mass of can, M1 (g)	12.40	12.16	12.36
3. Mass of can + wet soil, M ₂ (g)	33.53	31.31	37.39
4. Mass of can + dry soil, $M_3(g)$	31.95	29.93	35.74
5. Mass of moisture, M_2 - M_3 (g)	1.58	1.38	1.65
6. Mass of dry soil, M_3 - M_1 (g)	19.55	17.77	23.38
7. Water content, w (%) = $((M_2 - M_3)/(M_3 - M_1)) \times 100$	8.08%	7.77%	7.06%
Average water content		7.64%	

Code	20	20CO6432	203
Denomination		BC	
Date		-	
ITEM		Test No.	
	1	2	3
1. Can No.	C-16	c-17	c-18
2. Mass of can, M1 (g)	12.41	12.54	11.52
3. Mass of can + wet soil, M ₂ (g)	32.99	35.28	35.78
4. Mass of can + dry soil, $M_3(g)$	30.87	32.95	33.45
5. Mass of moisture, M_2 - M_3 (g)	2.12	2.33	2.33
6. Mass of dry soil, M_3 - M_1 (g)	18.46	20.41	21.93
7. Water content, w (%) = $((M_2 - M_3)/(M_3 - M_1)) \times 100$	11.48%	11.42%	10.62%
Average water content		11.17%	

COLORADO SCHOOL OF MINES

PROFESSOR: Ph.D. Alexandra Wayllace **T.A.:** Angel Rodrigo Angulo Calderon **PROJECT:** Ingram Gulch SOIL MECHANICS LABORATORY

Code	20	20CO64320	03	
Denomination		Bta		
Date		-		
ITEM		Test No.		2443205 1043203
	1	2	3	BLA CONTRACTOR
1. Can No.	C-1			
2. Mass of can, M1 (g)	11.77			A THE CARLES A STA
3. Mass of can + wet soil, M_2 (g)	51.83			A DATA THE AND A DATA
4. Mass of can + dry soil, $M_3(g)$	48.87			The second s
5. Mass of moisture, M_2 - M_3 (g)	2.96			A State of the second sec
6. Mass of dry soil, M_3 - M_1 (g)	37.10			A second contraction of the second se
7. Water content, w (%) = $((M_2 - M_3)/(M_3 - M_1)) \times 100$	7.98%			
Average water content		7.98%		Soil Sample Picture

Code	202	20CO64320)3	
Denomination		Bt1		
Date		-		And and a second and a second
ITEM		Test No.		Zanad Co 443 acg
	1	2	3	St-isen a
1. Can No.	C-2			
2. Mass of can, M1 (g)	11.84			A THE ALL IN A MARKED
3. Mass of can + wet soil, M_2 (g)	37.41			
4. Mass of can + dry soil, $M_3(g)$	35.88			
5. Mass of moisture, M_2 - M_3 (g)	1.53			
6. Mass of dry soil, M_3 - M_1 (g)	24.04			
7. Water content, w (%) = $((M_2 - M_3)/(M_3 - M_1)) \times 100$	6.36%			
Average water content		6.36%		Soil Sample Picture

COLORADO SCHOOL OF MINES

PROFESSOR: Ph.D. Alexandra Wayllace **T.A.:** Angel Rodrigo Angulo Calderon **PROJECT:** Ingram Gulch SOIL MECHANICS LABORATORY

Code	202	20CO6432	03	
Denomination		A O-18		A State of the second s
Date		-		A second de la constance de la
ITEM		Test No.		202000643203
	1	2	3	A 0-18
1. Can No.	C-4			A REAL PROPERTY AND
2. Mass of can, M1 (g)	12.34			and the second sec
3. Mass of can + wet soil, $M_2(g)$	31.49			
4. Mass of can + dry soil, M ₃ (g)	29.51			The second se
5. Mass of moisture, M ₂ - M ₃ (g)	1.98			A Dest the state of the
6. Mass of dry soil, M ₃ - M ₁ (g)	17.17			A THE AND A REAL AND A
7. Water content, w (%) = $((M_2 - M_3)/(M_3 - M_1)) \times 100$	11.53%			Cites in the second sec
Average water content		11.53%		Soil Sample Picture

Code Denomination	20	20CO64320 H2)6	
Date		6/26/20 Test No.		
ITEM	1	2	3	
1. Can No.	C-5			
2. Mass of can, M1 (g)	12.02			asto -
3. Mass of can + wet soil, M_2 (g)	27.31			6/2020002000
4. Mass of can + dry soil, $M_3(g)$	25.70			W2 CM
5. Mass of moisture, M_2 - M_3 (g)	1.61			and the second
6. Mass of dry soil, M_3 - M_1 (g)	13.68			
7. Water content, w (%) = ((M ₂ - M ₃)/(M ₃ - M ₁)) x 100	11.77%			and the second
Average water content		11.77%	-	Soil Sample Picture

COLORADO SCHOOL OF MINES

PROFESSOR: Ph.D. Alexandra Wayllace **T.A.:** Angel Rodrigo Angulo Calderon **PROJECT:** Ingram Gulch SOIL MECHANICS LABORATORY

Code	20	20co64320	6	
Denomination		H3		Constitution (11)
Date		6/26/20		MAT I
ITEM		Test No.		
	1	2	3	
1. Can No.	C-6			
2. Mass of can, M1 (g)	12.03			6-17-1-19
3. Mass of can + wet soil, M_2 (g)	41.05			de
4. Mass of can + dry soil, $M_3(g)$	40.19			202020643200
5. Mass of moisture, M_2 - M_3 (g)	0.86			H3 5-770H
6. Mass of dry soil, M_3 - M_1 (g)	28.16			State State State
7. Water content, w (%) = ((M ₂ - M ₃)/(M ₃ - M ₁)) x 100	3.05%			and the second se
Average water content		3.05%		Soil Sample Picture

Code	202	20CO64320)6
Denomination		H4	
Date		6-26-20	
ITEM	_	Test No.	
	1	2	3
1. Can No.	C-7		
2. Mass of can, M1 (g)	12.79		
3. Mass of can + wet soil, M ₂ (g)	65.91		
4. Mass of can + dry soil, $M_3(g)$	65.09		
5. Mass of moisture, M_2 - M_3 (g)	0.82		
6. Mass of dry soil, M_3 - M_1 (g)	52.30		
7. Water content, w (%) = $((M_2 - M_3)/(M_3 - M_1)) \times 100$	1.57%		
Average water content		1.57%	

COLORADO SCHOOL OF MINES

PROFESSOR: Ph.D. Alexandra Wayllace **T.A.:** Angel Rodrigo Angulo Calderon **PROJECT:** Ingram Gulch SOIL MECHANICS LABORATORY

Code	202	20CO64320)6	
Denomination		H5		
Date		6-26-20		
ITEM	1	Test No. 2	3	
1. Can No.	C8			
2. Mass of can, M1 (g)	11.60			A use
3. Mass of can + wet soil, M ₂ (g)	64.70			A GOOD A
4. Mass of can + dry soil, $M_3(g)$	62.88			6126120 CM
5. Mass of moisture, M_2 - M_3 (g)	1.82			15 66-0
6. Mass of dry soil, M_3 - M_1 (g)	51.28			
7. Water content, w (%) = ((M ₂ - M ₃)/(M ₃ - M ₁)) x 100	3.55%			
Average water content		3.55%		Soil Sample Picture

Code	2(020CO132	04
Denomination		#W2	
Date		3/6/2020	
ITEM		Test No.	
	1	2	3
1. Can No.	C-7	C-8	C-9
2. Mass of can, M1 (g)	12.82	11.59	12.02
3. Mass of can + wet soil, M ₂ (g)	49.27	61.33	56.97
4. Mass of can + dry soil, $M_3(g)$	46.89	58.42	54.59
5. Mass of moisture, M_2 - M_3 (g)	2.38	2.91	2.38
6. Mass of dry soil, M_3 - M_1 (g)	34.07	46.83	42.57
7. Water content, w (%) = ((M ₂ - M ₃)/(M ₃ - M ₁)) x 100	6.99%	6.21%	5.59%
Average water content		6.26%	

PROFESSOR: Ph.D. Alexandra Wayllace **T.A.:** Angel Rodrigo Angulo Calderon **PROJECT:** Ingram Gulch SOIL MECHANICS LABORATORY

Code	2020co13204		
Denomination		#W8-1	
Date		-	
ITEM		Test No.	
	1	2	3
1. Can No.	C-22	C-23	C-24
2. Mass of can, M1 (g)	12.43	12.50	11.83
3. Mass of can + wet soil, M ₂ (g)	39.49	34.36	39.30
4. Mass of can + dry soil, $M_3(g)$	38.35	33.19	38.19
5. Mass of moisture, M_2 - M_3 (g)	1.14	1.17	1.11
6. Mass of dry soil, M_3 - M_1 (g)	25.92	20.69	26.36
7. Water content, w (%) = $((M_2 - M_3)/(M_3 - M_1)) \times 100$	4.40%	5.65%	4.21%
Average water content		4.75%	

Code	2020CO13204			
Denomination	2 (Atterberg)			
Date		3/6/2020		Atterberg
ITEM		Test No.		Ziploc 6/3/2020
	1	2	3	202000 13 204
1. Can No.	C-3			2 2
2. Mass of can, M1 (g)	12.28			
3. Mass of can + wet soil, M ₂ (g)	45.77			
4. Mass of can + dry soil, $M_3(g)$	43.93			
5. Mass of moisture, M_2 - M_3 (g)	1.84			and the second of the second o
6. Mass of dry soil, M_3 - M_1 (g)	31.65			
7. Water content, w (%) = $((M_2 - M_3)/(M_3 - M_1)) \times 100$	5.81%			and and and and a second
Average water content		5.81%	-	Soil Sample Picture

COLORADO SCHOOL OF MINES

PROFESSOR: Ph.D. Alexandra Wayllace **T.A.:** Angel Rodrigo Angulo Calderon **PROJECT:** Ingram Gulch SOIL MECHANICS LABORATORY

Code	20	20CO1320	4	and the second se
Denomination		top		
Date		-		2=200
ITEM	1	Test No. 2	3	top 53
1. Can No.	C-10		-	0
2. Mass of can, M1 (g)	12.50			7020 -0
3. Mass of can + wet soil, M ₂ (g)	43.94			20204
4. Mass of can + dry soil, $M_3(g)$	41.51			1.2
5. Mass of moisture, M_2 - M_3 (g)	2.43			
6. Mass of dry soil, M_3 - M_1 (g)	29.01			
7. Water content, w (%) = ((M ₂ - M ₃)/(M ₃ - M ₁)) x 100	8.38%			and the second
Average water content		8.38%		Soil Sample Picture

Code	20)20CO1320	4	
Denomination		bottom		1.0.04
Date		-		00-
ITEM	1	Test No. 2	3	Reption
1. Can No.	C-9			- CON
2. Mass of can, M1 (g)	12.02			7020 004
3. Mass of can + wet soil, M_2 (g)	55.10			132
4. Mass of can + dry soil, $M_3(g)$	53.03			
5. Mass of moisture, M_2 - M_3 (g)	2.07			
6. Mass of dry soil, M_3 - M_1 (g)	41.01			
7. Water content, w (%) = $((M_2 - M_3)/(M_3 - M_1)) \times 100$	5.05%			
Average water content		5.05%		Soil Sample Picture

Appendix B Sample 2020CO643202

MINES. PRO

PROFESSOR: PhD. Alexandra Wayllace **T.A.:** Angel Rodrigo Angulo Calderon **TERM:** Fall 2020

SOIL MECHANICS LABORATORY

" SIEVE ANALYSIS"

SIEVE ANALYSIS

Description of soil Ingram Gulch Sample No. 2020CO643202

Mass of dry specimen W= 406.9 [g]

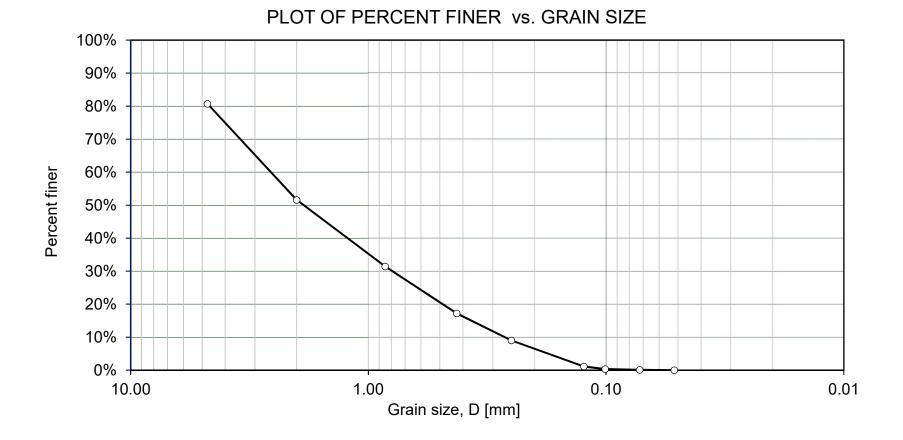
Location Boulder Landslide

Tested by Angel Rodrigo Angulo Calderon...... Date December 14th, 2020

Sieve No.	Sieve opening (mm)	Mass of soil retained on each sieve, W _n (g)	Percent of mass retained on each sieve R _n	Cumulative percent retained ∑R _n	Percent finer 100-∑R _n
4	4.75	75.8	19.28	19.28	80.72
10	2	114.6	29.15	48.42	51.58
20	0.85	79.2	20.14	68.57	31.43
40	0.425	55.9	14.22	82.78	17.22
60	0.25	32.3	8.21	91.00	9.00
120	0.124	31.0	7.88	98.88	1.12
200	0.075	3.7	0.94	99.82	0.18
Pan		0.7			

∑W_n=W₁= 393.2

Mass loss during sieve analysis =


3.37%

PROFESSOR: PhD. Alexandra Wayllace **T.A.:** Angel Rodrigo Angulo Calderon **TERM:** Fall 2020 SOIL MECHANICS LABORATORY

" SIEVE ANALYSIS"

PLOT OF PERCENT FINER VS. GRAIN SIZE

PROFESSOR: PhD. Alexandra Wayllace T.A.: Angel Rodrigo Angulo Calderon TERM: Fall 2020

SOIL MECHANICS LABORATORY

" SIEVE ANALYSIS"

SOIL CLASSIFICATION PARAMETERS

D [mm]	% Finer
4.7500	80.72%
2.0000	51.58%
0.8500	31.43%
0.4250	17.22%
0.2500	9.00%
0.1240	1.12%
0.1008	0.36%
0.0722	0.10%
0.0516	0.02%

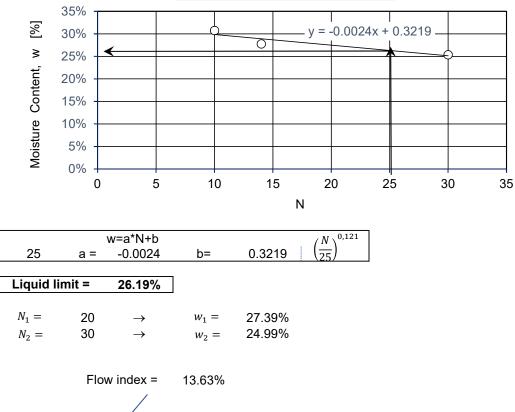
D ₁₀ [mm]	=	0.20
D ₃₀ [mm]	=	0.70
D ₆₀ [mm]	=	2.55
C _u	=	12.75
C _c	=	1.37
% ret No. 20)0 =	99.82
% ret No. 4	=	19.28
% Gravel =		19.28
% Sand =		80.54
% Silt =		0.18
% Clay =		0.00
	S۱	N

	COLORAE	OO SCHOOL OF	MINES				SC	DIL MECHANIC	S LABORA			
	MINES	PROFESSOR: F T.A.: Angel Rode TERM: Fall 2020	rigo Angulo					"HYDROME	TER TEST			
				HYDROMETE	R ANALYSIS							
	Correcti	on Factors			Soil Data		Hyo	Irometer Data	a			
	Meniscus correction	F _m =		Spec. gravity	G _s =	2.65	Length		14			
	Zero correction	F _z =	1	Soil mass	M _s [g]=	50	Bulb volume					
				Viscosity	η (g*s/cm²)=	9.11E-06	Area	A _c [cm ²]= a =	27.8 1.00			
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	a – (9)	1.00			
Time	Hydrometer Reading			Percent Finer		L		(0) D	1		_	L ₁
min]	R	[°C]	R_{cp}	((a*R _{cp})/M _s)*100	R_{cL}	[cm]	Α	[mm]		E: 2020CO643202	Fτ	[cm
0.25	17	19	15.90	31.80%	18	13.34	0.0138	0.1008		() () () () () () () () () () () () () (-0.1	7.5
0.5	15	19	13.9	27.80%	16	13.67	0.0138	0.0722		20205014	-0.1	7.9
1	13	19	11.9	23.80%	14	14.00	0.0138	0.0516		27 -	-0.1	8.2
2	10	19	8.9	17.80%	11	14.49	0.0138	0.0371	ť		-0.1	8.7
4	9	19	7.9	15.80%	10	14.65	0.0138	0.0264		HE FILL	-0.1	8.9
8	8	19	6.9	13.80%	9	14.82	0.0138	0.0188			-0.1	9.0
15	7	19	5.9	11.80%	8	14.98	0.0138	0.0138	C		-0.1	9.2
30	7	19	5.9	11.80%	8	14.98	0.0138	0.0098	- <u>}</u>		-0.1	9.2
60	5	19	3.9	7.80%	6	15.31	0.0138	0.0070			-0.1	9.5
120	4	19	2.9	5.80%	5	15.47	0.0138	0.0050			-0.1	9.7
240	4	20	3.15	6.30%	5	15.47	0.0137	0.0035		Cred V	0.15	9.7
480 1440	3	20	2.15	4.30% 3.80%	4 4	15.64 15.64	0.0137	0.0025			0.15	9.8
1440	3	19	1.9		4 curve only for h		0.0138	0.0014			-0.1	9.8
						yuronneu'y a	narysis only					
				35%								
				30%								
				25%								
			ner	2370 2								
			Percent Finer	20%								
			rcer	15%								
						<u>-a</u>						
				10%								
				5%		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-a					
							0					
				0% 0.100		0.010 eter [mm]		0.001				

NES

N=

SOIL MECHANICS LABORATORY


PROFESSOR: PhD. Alexandra Wayllace T.A.: Angel Rodrigo Angulo Calderon TERM: Fall 2020

LIQUID LIMIT TEST

LIQUID LIMIT TEST

Description of soil Inram Gulch......Sample No. 2020CO643202..... Location Boulder Landslide..... Tested by Angel Rodrigo Angulo Calderon...Date December 14th, 2020

ltem	Test No.				
	1	2	3		
Can No.	1-1	1-2	1-3		
Mass of can W_1 [g]	11.91	11.83	12.14		
Mass of can + we W_2 [g]	18.88	19.33	19.2		
Mass of can + dry W_3 [g]	17.47	17.7	17.54		
Mass of moisture $W_2 - W_3$ [g]	1.41	1.63	1.66		
Mass of dry soil $W_3 - W_1 [g]$	5.56	5.87	5.4		
Moisture contentw $[\%] = \frac{W_2 - W_3}{W_3 - W_1} * 100$	25.36%	27.77%	30.74%		
Number of blows N	30	14	10		

 $w_1 \ [\%] - w_2$

 $logN_2 - logN_1$

 $F_1 =$

[%]

LIQUID LIMIT TEST RESULTS

Appendix C Sample 2020CO13205

PROFESSOR: PhD. Alexandra Wayllace **T.A.:** Angel Rodrigo Angulo Calderon **TERM:** Fall 2020

SOIL MECHANICS LABORATORY

" SIEVE ANALYSIS"

SIEVE ANALYSIS

Mass of dry specimen W= 502.4 [g]

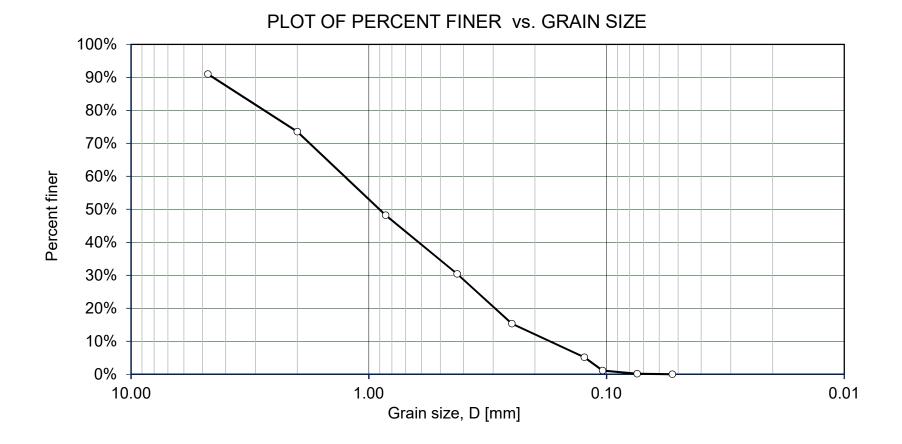
Location Boulder Landslide

Tested by Angel Rodrigo Angulo Calderon...... Date December 14th, 2020

Sieve No.	Sieve opening (mm)	Mass of soil retained on each sieve, W _n (g)	Percent of mass retained on each sieve R _n	Cumulative percent retained ∑R _n	Percent finer 100-∑R _n
4	4.75	44.7	9.00	9.00	91.00
10	2	86.6	17.44	26.44	73.56
20	0.85	125.7	25.31	51.75	48.25
40	0.425	88.4	17.80	69.55	30.45
60	0.25	75.0	15.10	84.66	15.34
120	0.124	50.4	10.15	94.80	5.20
200	0.075	22.8	4.59	99.40	0.60
Pan		3.0			

 $\Sigma W_n = W_1 = 496.6$

Mass loss during sieve analysis =


1.154%

PROFESSOR: PhD. Alexandra Wayllace **T.A.:** Angel Rodrigo Angulo Calderon **TERM:** Fall 2020 SOIL MECHANICS LABORATORY

"SIEVE ANALYSIS"

PLOT OF PERCENT FINER VS. GRAIN SIZE

PROFESSOR: PhD. Alexandra Wayllace **T.A.:** Angel Rodrigo Angulo Calderon **TERM:** Fall 2020

SOIL MECHANICS LABORATORY

" SIEVE ANALYSIS"

SOIL CLASSIFICATION PARAMETERS

D [mm]	% Finer
4.7500	91.00%
2.0000	73.56%
0.8500	48.25%
0.4250	30.45%
0.2500	15.34%
0.1240	5.20%
0.1039	1.13%
0.0743	0.20%
0.0528	0.03%

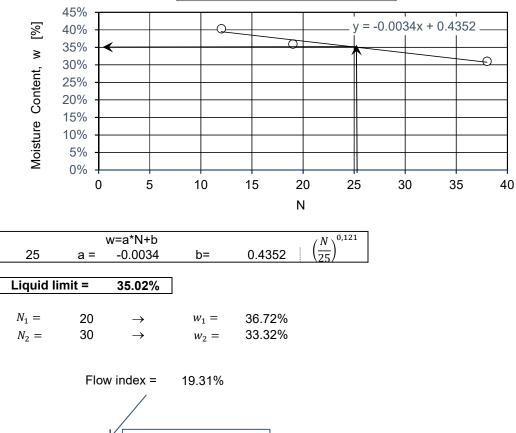
D ₁₀ [mm]	=	0.17
D ₃₀ [mm]	=	0.41
D ₆₀ [mm]	=	1.40
C _u	=	8.24
C _c	=	1.72
% ret No. 200	=	99.40
% ret No. 4 =		9.00
% Gravel =		9.00
% Sand =		90.39
% Silt =		0.60
% Clay =		0.00
	SW	

	MINES	T.A.: Angel Rodu TERM: Fall 2020	rigo Angulo)	Calderon				"HYDROME	TER TEST	"		
				HYDROMETEI						ļ		
	Correcti	on Factors			Soil Data		-	Irometer Dat	а			
	Meniscus correction	$F_m =$		Spec. gravity	G _s =	2.65	Length	L ₂ [cm]=	14			
	Zero correction	F _z =		Soil mass	M _s [g]=	50	Bulb volume					
				Viscosity	η (g*s/cm²)=	9.11E-06	Area	A _c [cm ²]=				
								a =	1.00			
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	1	1		
Time	Hydrometer Reading	-	R_{cp}	Percent Finer	R_{cL}	L	Α	D	SAMPL	E: 2020CO13205	FT	L ₁
[min]	R	[°C]		((a*R _{cp})/M _s)*100		[cm]		[mm]				[cm
0.25	12	19	10.90	21.80%	13	14.16	0.0138	0.1039			-0.1	8.4
0.5	10	19	8.9	17.80%	11	14.49	0.0138	0.0743		10000A14	-0.1	8.7
1	9	19	7.9 7.9	15.80%	10	14.65	0.0138	0.0528			-0.1	8.9
2 4	9	19 19	7.9 6.9	15.80% 13.80%	10 9	14.65 14.82	0.0138 0.0138	0.0374 0.0266			-0.1 -0.1	8.9 9.0
4 8	8	19	6.9	13.80%	9	14.82	0.0138	0.0200			-0.1 -0.1	9.0
15	8	19	6.9	13.80%	9	14.82	0.0138	0.0137	_	ELAR T	-0.1	9.0
30	7	19	5.9	11.80%	8	14.98	0.0138	0.0098			-0.1	9.2
60	7	19	5.9	11.80%	8	14.98	0.0138	0.0069			-0.1	9.2
120	6	19	4.9	9.80%	7	15.15	0.0138	0.0049	and the second second		-0.1	9.4
240	6	19	4.9	9.80%	7	15.15	0.0137	0.0034			-0.1	9.4
480	5	20	4.15	8.30%	6	15.31	0.0137	0.0024	-		0.15	9.5
1440	5	19	3.9	7.80%	6	15.31	0.0138	0.0014			-0.1	9.5
				Gradation	curve only for h	ydrometry a	nalysis only					
				25%								
				20%								
			L.	De la	_							
			-ine	15%								
			Percent Finer		, , , , , , , , , , , , , , , , , , ,	$\sim - \alpha$						
			LCe	10%		~						
			Ре				0	•				
				5%								
				0%								
				0%	ſ	0.010		0.001				
				0.100		eter [mm]		0.001				

NES

N=

SOIL MECHANICS LABORATORY


PROFESSOR: PhD. Alexandra Wayllace T.A.: Angel Rodrigo Angulo Calderon TERM: Fall 2020

LIQUID LIMIT TEST

LIQUID LIMIT TEST

Description of soil Inram Gulch......Sample No. 2020CO13205..... Location Boulder Landslide.... Tested by Angel Rodrigo Angulo Calderon...Date December 14th, 2020

ltem	Test No.				
Item	1	2	3		
Can No.	II-1	II-2	II-3		
Mass of can W_1 [g]	16.31	12.51	12.81		
Mass of can + we W_2 [g]	40.45	30.88	31.39		
Mass of can + dry W_3 [g]	34.73	26.02	26.05		
Mass of moisture $W_2 - W_3$ [g]	5.72	4.86	5.34		
Mass of dry soil $W_3 - W_1$ [g]	18.42	13.51	13.24		
Moisture contentw [%] = $\frac{W_2 - W_3}{W_3 - W_1} * 100$	31.05%	35.97%	40.33%		
Number of blows N	38	19	12		

 $w_1 \ [\%] - w_2 \ [\%]$

 $log N_2 - log N_1$

 $F_1 =$

LIQUID LIMIT TEST RESULTS

Appendix D Sample 2020CO13204

COLORADO SCHOOL OF MINES COLORADO SCHOOL OF PROFESSOR: PhD. Alexar

PROFESSOR: PhD. Alexandra Wayllace **T.A.:** Angel Rodrigo Angulo Calderon **TERM:** Fall 2020

SOIL MECHANICS LABORATORY

" SIEVE ANALYSIS"

SIEVE ANALYSIS

Mass of dry specimen W= 508.6 [g]

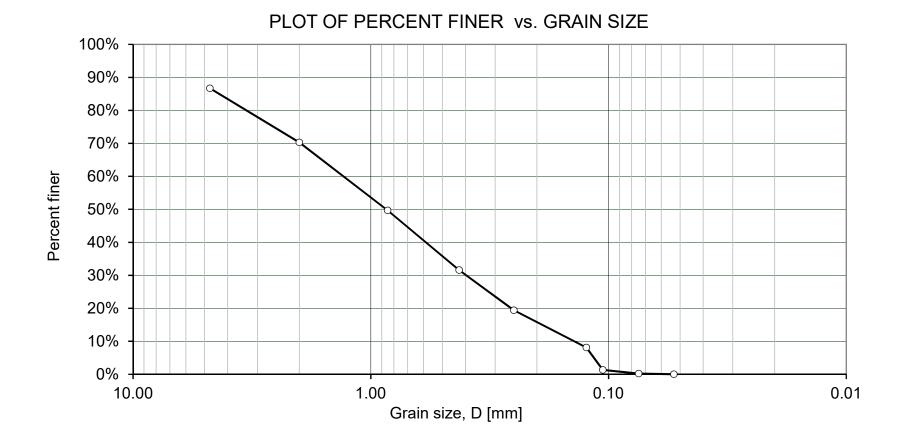
Location Boulder Landslide

Tested by Angel Rodrigo Angulo Calderon...... Date December 14th, 2020

Sieve No.	Sieve opening (mm)	Mass of soil retained on each sieve, W _n (g)	Percent of mass retained on each sieve R _n	Cumulative percent retained ∑R _n	Percent finer 100-∑R _n
4	4.75	67.7	13.40	13.40	86.60
10	2	83.5	16.52	29.92	70.08
20	0.85	104.8	20.74	50.66	49.34
40	0.425	92.0	18.21	68.87	31.13
60	0.25	61.9	12.25	81.12	18.88
120	0.124	57.4	11.36	92.48	7.52
200	0.075	28.9	5.72	98.20	1.80
Pan		9.1			

 $\Sigma W_n = W_1 = 505.3$

Mass loss during sieve analysis =


0.649%

PROFESSOR: PhD. Alexandra Wayllace **T.A.:** Angel Rodrigo Angulo Calderon **TERM:** Fall 2020 SOIL MECHANICS LABORATORY

"SIEVE ANALYSIS"

PLOT OF PERCENT FINER VS. GRAIN SIZE

PROFESSOR: PhD. Alexandra Wayllace **T.A.:** Angel Rodrigo Angulo Calderon **TERM:** Fall 2020

SOIL MECHANICS LABORATORY

" SIEVE ANALYSIS"

SOIL CLASSIFICATION PARAMETERS

D [mm]	% Finer
4.7500	86.69%
2.0000	70.27%
0.8500	49.67%
0.4250	31.58%
0.2500	19.41%
0.1240	8.12%
0.1057	1.32%
0.0747	0.22%
0.0531	0.03%

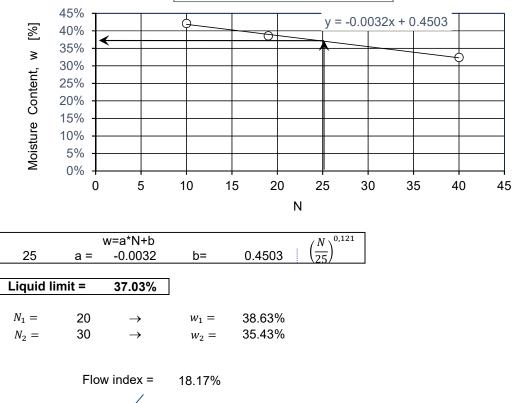
D ₁₀ [mm]] =	0.15					
D ₃₀ [mm]] =	0.40					
D ₆₀ [mm]] =	1.40					
C _u	=	9.33					
C _c	=	1.90					
% ret No	. 200 =	98.20					
% ret No	. 4 =	13.40					
% Grave	el =	13.40					
% Sand	=	84.80					
% Silt =		1.80					
% Clay =	=	0.00					
	SW						

2002	COLORAE	OO SCHOOL OF I	MINES				SC	DIL MECHANIC	S LABORA			
	MINES	PROFESSOR: F T.A.: Angel Rode TERM: Fall 2020	rigo Angulo	ndra Wayllace Calderon				"HYDROME	TER TEST	"		
				HYDROMETEI	R ANALYSIS							
	Correcti	ion Factors			Soil Data		Hyo	drometer Dat	a			
	Meniscus correction	$F_m =$		Spec. gravity	G _s =	2.65	Length	L 2 [cm]=	14			
	Zero correction	F _z =	1	Soil mass	M _s [g]=	50	Bulb volume					
				Viscosity	η (g*s/cm²)=	9.11E-06	Area	A _c [cm ²]= a =	27.8 1.00			
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	<u>u –</u> (9)	1.00]		
Time	Hydrometer Reading			Percent Finer		L		D	1			L ₁
[min]	R	[°C]	R_{cp}	((a*R _{cp})/M _s)*100	R_{cL}	[cm]	Α	 [mm]	SAMPL	.E: 2020CO13204	Fτ	[cm
0.25	12	19	10.90	21.80%	13	14.16	0.0138	0.1039	and the	- had been for	-0.1	8.4
0.5	10	19	8.9	17.80%	11	14.49	0.0138	0.0743		ANCO/SON.	-0.1	8.7
1	9	19	7.9	15.80%	10	14.65	0.0138	0.0528		Renter Fritz	-0.1	8.9
2	9	19	7.9	15.80%	10	14.65	0.0138	0.0374		AI	-0.1	8.9
4	8	19	6.9	13.80%	9	14.82	0.0138	0.0266			-0.1	9.0
8	8	19	6.9	13.80%	9	14.82	0.0138	0.0188			-0.1	9.0
15	8	19	6.9	13.80%	9	14.82	0.0138	0.0137	24		-0.1	9.0
30	7	19	5.9	11.80%	8	14.98	0.0138	0.0098			-0.1	9.2
60	7	19	5.9	11.80%	8	14.98	0.0138	0.0069			-0.1	9.2
120	6	19	4.9	9.80%	7	15.15	0.0138	0.0049			-0.1	9.4
240 480	6 5	19 20	4.9 4.15	9.80% 8.30%	7 6	15.15	0.0137 0.0137	0.0034 0.0024			-0.1 0.15	9.4 9.5
480 1440	5	20 19	4.15 3.9	8.30% 7.80%	6	15.31 15.31	0.0137	0.0024		11 : 17	-0.1	9.5 9.5
1440	5	19	5.9		curve only for h			0.0014			-0.1	9.0
						yarometry a						
				25%								
				20%								
			Percent Finer	15%	<							
			L L		٥٥							
			Icel	10%		<u>~</u>						
			Pe				0	~				
				5%								
				0% 0.100	(0.010		0.001				
				0.100		eter [mm]		0.001				
					Dialiti							

NES

N=

SOIL MECHANICS LABORATORY


PROFESSOR: PhD. Alexandra Wayllace T.A.: Angel Rodrigo Angulo Calderon TERM: Fall 2020

LIQUID LIMIT TEST

LIQUID LIMIT TEST

Description of soil Inram Gulch......Sample No. 2020CO13204..... Location Boulder Landslide..... Tested by Angel Rodrigo Angulo Calderon...Date December 14th, 2020

ltem	Test No.				
ltem	1	2	3		
Can No.	2-1	2-2	2-3		
Mass of can W_1 [g]	11.66	12.44	11.82		
Mass of can + we W_2 [g]	25.71	37.27	38.18		
Mass of can + dry W_3 [g]	22.27	29.91	30.84		
Mass of moisture $W_2 - W_3$ [g]	3.44	7.36	7.34		
Mass of dry soil $W_3 - W_1 [g]$	10.61	17.47	19.02		
Moisture contentw $[\%] = \frac{W_2 - W_3}{W_3 - W_1} * 100$	32.42%	42.13%	38.59%		
Number of blows N	40	10	19		

 $w_1 \ [\%] - w_2 \ [\%]$

 $log N_2 - log N_1$

 $F_1 =$

LIQUID LIMIT TEST RESULTS

Appendix E Sample 2020CO643203

PROFESSOR: PhD. Alexandra Wayllace **T.A.:** Angel Rodrigo Angulo Calderon **TERM:** Fall 2020

SOIL MECHANICS LABORATORY

" SIEVE ANALYSIS"

SIEVE ANALYSIS

Mass of dry specimen W = 461.2 [g]

Location Boulder Landslide

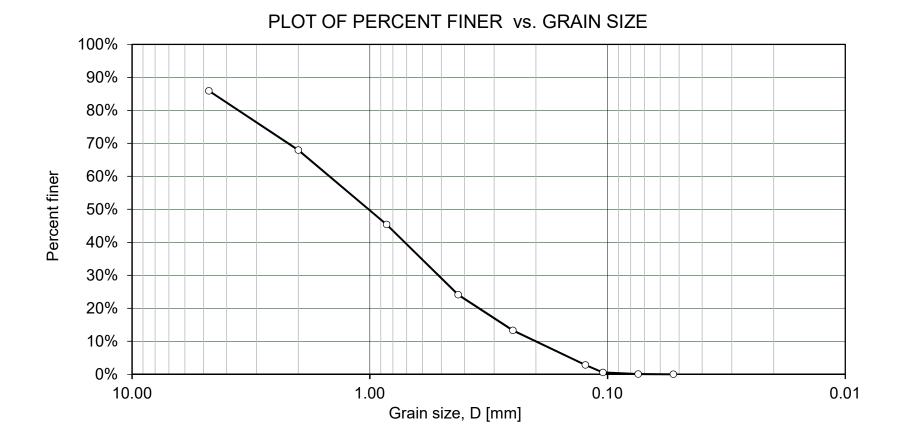
Tested by Angel Rodrigo Angulo Calderon...... Date December 14th, 2020

Sieve No.	Sieve opening (mm)	Mass of soil retained on each sieve, W _n (g)	Percent of mass retained on each sieve R _n	Cumulative percent retained ∑R _n	Percent finer 100-∑R _n
4	4.75	64.3	14.07	14.07	85.93
10	2	82.1	17.96	32.04	67.96
20	0.85	103.1	22.56	54.60	45.40
40	0.425	97.2	21.27	75.86	24.14
60	0.25	49.4	10.81	86.67	13.33
120	0.124	47.8	10.46	97.13	2.87
200	0.075	12.4	2.71	99.85	0.15
Pan		0.7			

∑W_n=W₁= 457

Mass loss during sieve analysis =

0.911%



PROFESSOR: PhD. Alexandra Wayllace **T.A.**: Angel Rodrigo Angulo Calderon **TERM**: Fall 2020

SOIL MECHANICS LABORATORY

" SIEVE ANALYSIS"

PLOT OF PERCENT FINER VS. GRAIN SIZE

PROFESSOR: PhD. Alexandra Wayllace **T.A.:** Angel Rodrigo Angulo Calderon **TERM:** Fall 2020

SOIL MECHANICS LABORATORY

" SIEVE ANALYSIS"

SOIL CLASSIFICATION PARAMETERS

D [mm]	% Finer
4.7500	85.93%
2.0000	67.96%
0.8500	45.40%
0.4250	24.14%
0.2500	13.33%
0.1240	2.87%
0.1045	0.57%
0.0743	0.10%
0.0528	0.02%

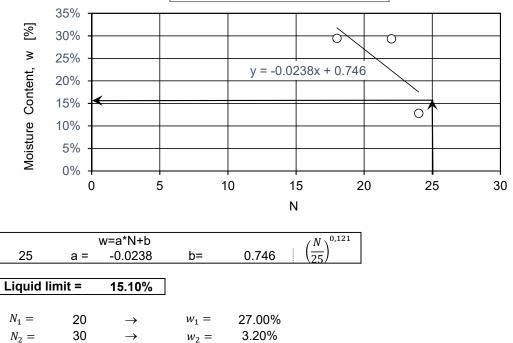
D ₁₀ [mm]	=	0.20					
D ₃₀ [mm]	=	0.50					
D ₆₀ [mm]	=	1.65					
C _u	=	8.25					
C _c	=	1.52					
% ret No	. 200 =	99.85					
% ret No	. 4 =	14.07					
% Grave	=	14.07					
% Sand	=	85.78					
% Silt =		0.15					
% Clay =	=	0.00					
	SW						

2027		OO SCHOOL OF					sc	DIL MECHANIC	S LABORA	TORY		
	MINES	PROFESSOR: F T.A.: Angel Rodu TERM: Fall 2020	igo Angulo	ndra Wayllace Calderon				"HYDROME	TER TEST	33		
				HYDROMETE	R ANALYSIS							
	Correcti	ion Factors			Soil Data		Hyo	drometer Dat				
	Meniscus correction	$F_m =$		Spec. gravity	G _s =	2.65	Length	L 2 [cm]=	14			
	Zero correction	F _z =	1	Soil mass	M _s [g]=	50	Bulb volume					
				Viscosity	η (g*s/cm²)=	9.11E-0	6 Area	A _c [cm ²]= a =	27.8 1.00			
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	a – (9)	1.00]		
Time	Hydrometer Reading	1		Percent Finer		L		(0) D	1			L1
[min]	R	[°C]	R_{cp}	((a*R _{cp})/M _s)*100	R _{cL}	_ [cm]	Α	[mm]	SAMPL	E: 2020CO643203	Fτ	[cm
0.25	11	19	9.90	19.80%	12	14.33	0.0138	0.1045	1000		-0.1	8.5
0.5	10	19	8.9	17.80%	11	14.49	0.0138	0.0743		1 22.1	-0.1	8.7
1	9	19	7.9	15.80%	10	14.65	0.0138	0.0528			-0.1	8.9
2	8	19	6.9	13.80%	9	14.82	0.0138	0.0376			-0.1	9.0
4	8	19	6.9	13.80%	9	14.82	0.0138	0.0266			-0.1	9.0
8	7	19	5.9	11.80%	8	14.98	0.0138	0.0189		A REF	-0.1	9.2
15	6	19	4.9	9.80%	7	15.15	0.0138	0.0139			-0.1	9.4
30	6	19	4.9	9.80%	7	15.15	0.0138	0.0098		(AH	-0.1	9.4
60	5	19	3.9	7.80%	6	15.31	0.0138	0.0070			-0.1	9.5
120	5	19	3.9	7.80%	6	15.31	0.0138	0.0049			-0.1	9.5
240	5	20	4.15	8.30%	6	15.31	0.0137	0.0035		253	0.15	9.5
480 1440	4 3	20 19	3.15 1.9	6.30% 3.80%	5 4	15.47 15.64	0.0137 0.0138	0.0025 0.0014			0.15 -0.1	9.7 9.8
1440	3	19	1.9		4 curve only for h			0.0014			-0.1	9.0
						yuronicuya	anarysis only					
				25%								
				20%								
				20%								
			Jer	15%								
			Percent Finer	15%	\sim							
			ent	10%	De la companya de la comp							
			erc	1070	0—		$-\alpha$					
			۵.	5%) D	o l				
				0%				-				
				0.100	(0.010		0.001				
						eter [mm]						

NES

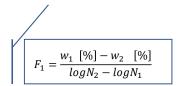
SOIL MECHANICS LABORATORY

PROFESSOR: PhD. Alexandra Wayllace T.A.: Angel Rodrigo Angulo Calderon TERM: Fall 2020


LIQUID LIMIT TEST

LIQUID LIMIT TEST

Description of soil Inram Gulch......Sample No. 2020CO643203..... Location Boulder Landslide..... Tested by Angel Rodrigo Angulo Calderon...Date December 14th, 2020


ltem	Test No.				
	1	2	3		
Can No.	4-1	4-2	4-3		
Mass of can W_1 [g]	12.95	12.64	11.9		
Mass of can + we W_2 [g]	36.96	31.19	31.07		
Mass of can + dry W_3 [g]	34.23	26.97	26.72		
Mass of moisture $W_2 - W_3$ [g]	2.73	4.22	4.35		
Mass of dry soil $W_3 - W_1$ [g]	21.28	14.33	14.82		
Moisture contentw $[\%] = \frac{W_2 - W_3}{W_3 - W_1} * 100$	12.83%	29.45%	29.35%		
Number of blows N	24	18	22		

LIQUID LIMIT TEST RESULTS

Flow index = 135.16%

N=

Appendix F Sample 2020CO643206

COLORADO SCHOOL OF MINES COLORADO SCHOOL OF PROFESSOR: PhD. Alexan

PROFESSOR: PhD. Alexandra Wayllace **T.A.:** Angel Rodrigo Angulo Calderon **TERM:** Fall 2020

SOIL MECHANICS LABORATORY

" SIEVE ANALYSIS"

SIEVE ANALYSIS

Mass of dry specimen W= 518.2 [g]

Location Boulder Landslide

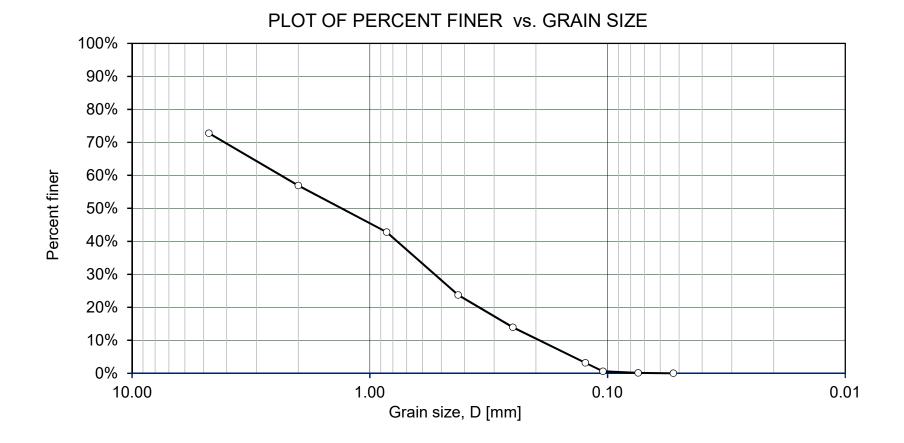
Tested by Angel Rodrigo Angulo Calderon...... Date December 14th, 2020

Sieve No.	Sieve opening (mm)	Mass of soil retained on each sieve, W _n (g)	Percent of mass retained on each sieve R _n	Cumulative percent retained ∑R _n	Percent finer 100-∑R _n
4	4.75	135.2	27.23	27.23	72.77
10	2	78.8	15.87	43.09	56.91
20	0.85	70.1	14.12	57.21	42.79
40	0.425	94.6	19.05	76.26	23.74
60	0.25	48.7	9.81	86.07	13.93
120	0.124	53.3	10.73	96.80	3.20
200	0.075	15.1	3.04	99.84	0.16
Pan		0.8			

 $\Sigma W_n = W_1 = 496.6$

Mass loss during sieve analysis =

4.168%



PROFESSOR: PhD. Alexandra Wayllace **T.A.:** Angel Rodrigo Angulo Calderon **TERM:** Fall 2020

SOIL MECHANICS LABORATORY

" SIEVE ANALYSIS"

PLOT OF PERCENT FINER VS. GRAIN SIZE

PROFESSOR: PhD. Alexandra Wayllace **T.A.:** Angel Rodrigo Angulo Calderon **TERM:** Fall 2020

SOIL MECHANICS LABORATORY

" SIEVE ANALYSIS"

SOIL CLASSIFICATION PARAMETERS

D [mm]	% Finer
4.7500	72.77%
2.0000	56.91%
0.8500	42.79%
0.4250	23.74%
0.2500	13.93%
0.1240	3.20%
0.1045	0.63%
0.0743	0.11%
0.0528	0.02%

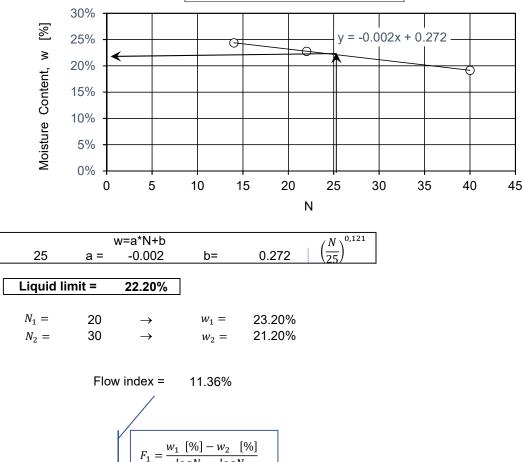
D ₁₀ [mm]	=		0.20				
D ₃₀ [mm]	=		0.55				
D ₆₀ [mm]	=		1.14				
C _u	=		5.70				
C _c	=		2.41				
% ret No. 200) =		99.84				
% ret No. 4 =			27.23				
% Gravel =			27.23				
% Sand =			72.61				
% Silt =			0.16				
% Clay =			0.00				
SW							

20	COLORADO SCHOOL OF MINES					SOIL MECHANICS LABORATORY						
	MINES	PROFESSOR: F T.A.: Angel Rodu TERM: Fall 2020	rigo Angulo	ndra Wayllace Calderon				"HYDROME	TER TEST	•••		
HYDROMETER ANALYS												
		Correction Factors Soil Da										
	Meniscus correction	F _m =		Spec. gravity	G _s =	2.65	Length	L 2 [cm]=	14			
	Zero correction	F _z =	1	Soil mass	M _s [g]=	50	Bulb volume					
				Viscosity	η (g*s/cm²)=	9.11E-0	3 Area	A _c [cm ²]= a =	27.8 1.00			
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	<u>a –</u> (9)	1.00			
Time	Hydrometer Reading			Percent Finer		L (P)		D	1		1	L1
[min]	R	[°C]	R_{cp}	((a*R _{cp})/M _s)*100	R_{cL}	_ [cm]	Α	[mm]	SAMPL	E: 2020CO643206	F _τ	[cn
0.25	11	19	9.90	19.80%	12	14.33	0.0138	0.1045			-0.1	8.5
0.5	10	19	8.9	17.80%	11	14.49	0.0138	0.0743		1	-0.1	8.7
1	9	19	7.9	15.80%	10	14.65	0.0138	0.0528			-0.1	8.9
2	8	19	6.9	13.80%	9	14.82	0.0138	0.0376			-0.1	9.0
4	7	19	5.9	11.80%	8	14.98	0.0138	0.0267			-0.1	9.2
8	7	19	5.9	11.80%	8	14.98	0.0138	0.0189	_		-0.1	9.2
15	6	19	4.9	9.80%	7	15.15	0.0138	0.0139			-0.1	9.4
30	6	19	4.9	9.80%	7	15.15	0.0138	0.0098		(AH	-0.1	9.4
60	5	19	3.9	7.80%	6	15.31	0.0138	0.0070			-0.1	9.5
120	5	19	3.9	7.80%	6	15.31	0.0138	0.0049			-0.1	9.5
240 480	4	19 20	2.9 3.15	5.80% 6.30%	5 5	15.47 15.47	0.0137 0.0137	0.0035 0.0025			-0.1 0.15	9.7 9.7
400 1440	4	19	2.9	5.80%	5	15.47	0.0137	0.0025			-0.1	9.7
1440		15	2.5		curve only for h			0.0014			-0.1	5.1
						,						
				25%								
				20%								
				20%								
			Jer	15%								
			iĒ	1370	~							
			ent	10%								
			Percent Finer	1070	0	\sim	2					
			<u>م</u>	5%			\sim	-0				
				0%	(010		0.001				
				0.100				0.001				
				0.100		0.010 ieter [mm]		0.001				

NES

N=

SOIL MECHANICS LABORATORY


PROFESSOR: PhD. Alexandra Wayllace T.A.: Angel Rodrigo Angulo Calderon TERM: Fall 2020

LIQUID LIMIT TEST

LIQUID LIMIT TEST

Description of soil Inram Gulch......Sample No. 2020CO643206..... Location Boulder Landslide..... Tested by Angel Rodrigo Angulo Calderon...Date December 14th, 2020

ltem	Test No.					
	1	Test No. 2 V-2 17.8 36.07 32.68 3.39 14.88 22.78%	3			
Can No.	V-1	V-2	V-3			
Mass of can W_1 [g]	17.62	17.8	16.96			
Mass of can + we W_2 [g]	35.66	36.07	43.64			
Mass of can + dry W_3 [g]	32.76	32.68	38.41			
Mass of moisture $W_2 - W_3$ [g]	2.9	3.39	5.23			
Mass of dry soil $W_3 - W_1 [g]$	15.14	14.88	21.45			
Moisture contentw [%] = $\frac{W_2 - W_3}{W_3 - W_1} * 100$	19.15%	22.78%	24.38%			
Number of blows N	40	22	14			

 $log N_2 - log N_1$

LIQUID LIMIT TEST RESULTS