Colorado Airborne Snow Measurement Program Airborne Snow Observatory overview & 2022 data

Jeff Deems Airborne Snow Observatories, Inc. Erik Skeie Colorado Water Conservation Board

COLORADO Colorado Water Conserva Home Department of Natural Resources

ASO 3m Snow Depth Quandry Peak, CO 18 April 2021

outline

CASM Working Group Airborne Snow Observatory: why / what / how / where 2022 Colorado program results to-date Upcoming activities & CASM program build-out

Colorado Airborne Snow Measurement Program

Formed in 2020

- Leadership: Denver Water; Northern Water; Dolores WCD; Lynker; ASO, Inc.
- WSRF funded to engage stakeholders & produce report
 - Letters of support from all Roundtables
 - >100 engaged stakeholders regularly participating
 - Report out soon: details program need & sustained pathway

2022 Water Plan Grant program expansion

- Leveraging local & federal program match funds
- Added snow-on flights in CO Headwaters, upper Gunnison, Dolores, Conejos
- Snow-free data development in summer 2022 to expand "shovel-ready" basins
- Outreach & data workshops

Foundation & pathway for a sustained program

- State/federal partnership
- Collaborations with forecast agencies

Decision-making with uncertainty

Rio Grande @ Del Norte

June Forecast & measured Apr-Sept Volumes

- Over-forecast: risk of compact shortage
- Under-forecast: unnecessary curtailment

Rio Grande @ Del Norte Apr-Sept forecast vs observed (kAF)

			June Forecast	Observed	Forecast	- Obs
		2005	795	683	+112	16%
ies		2006	350	412	-62	-15%
		2007	450	593	-143	-24%
		2008	655	623	+32	5%
		2009	490	513	-23	-5%
		2010	485	455	+30	6%
		2011	435	415	+20	5%
	Forecast >	2012	352	328	+24	7%
	TU% LOW	2013	230	344	-114	-50%
	10% High	2014	420	519	-99	-24%
Data courtesy Craig Cotton		2015	385	556	-171	-31%
		2016	475	566	-91	-16%
	3 Engineer	2017	535	574	-39	-7%

Airborne Snow Observatories, Inc A Public Benefit Corporation

٨S

-

::

-

-

53

Snow Water Equivalent

Percent NRCS 1991-2020

≥ 2009

175%

150%

125%

100%

75% 50% 25% ____≤0% No basin value

⊖ Observation Missing O Average is zero ⊗ Average missing Watershed Boundaries - Region (2-Digit HUC) Subregion (4-Digit HUC)

Basin (6-Digit HUC)

d 5-18-2022 07:35 AM MDT

Subbasin (8-Digit HUC) **ONRCS** Natural Resources Conservation Service

Average May 17, 2022, end of day

-

53

Snow Water Equivalent

≥ 2009

175%

150%

125%

100%

75% 50% 25% ____≤0%

⊖ Observation Missing O Average is zero ⊗ Average missing Watershed Boundaries

d 5-18-2022 07:35 AM MDT

Average

Operational forecast models are vulnerable to changing conditions... Statistical streamflow forecast ...and conditions are changing Change factors include: a) April 1 Observed SWE Trends 1955-2016 - Warming temperatures 60% - Snow season duration 40% 20% Rain/snow fraction - Mid-winter melt Temperature index forecast - Rain-on-snow - Wildfire - Beetle-kill Dust on snow * Forecast methods based on historic Mote et al. 2018 data assume that calibrations apply to current conditions

Snowmelt timing & volume is controlled by SWE patterns & snow albedo

Accurate, full-basin SWE & albedo can reduce forecast uncertainty

- Decrease reliance on historic record
- Avoid assumptions about how stations represent basin water volume
- Put existing networks to work in new ways

Airborne Snow Observatories, Inc.

mapping the two most critical snow properties to forecast runoff volume & timing

Snow Water Equivalent

Snow depth from elevation mapping with Riegl VQ1560II-S SWE from insertion of obs & modeled density

Snow Albedo

HySpex VSWIR Spectrometers Snow properties retrieval

Physical Modeling

Coupled lidar & spectrometer measurements Snowpack process modeling

Operations

Unique high-altitude operations Unique rapid product turnaround

Ground Track

California & Colorado parallel applications development

California

- 350+ snow-on flights since 2013 in 10 basins
- Operationally mapping southern Sierra SWE volume
- Continuing program in southern & central Sierra, building to full-state coverage over next 2 years

Colorado

- Numerous NASA, State, & Local projects since 2013
- CASM Stakeholder group defining a sustainable statewide program

Westwide & Global

- WRF-Hydro assimilation & runoff forecasting
- USBR projects in NV, WY, AZ
- Norway hydropower

Operational guidance: California

San Joaquin River: Restoration flows for salmon

- ASO data used in forecast for USBR Fish Recovery Program
- Improved accuracy enables restoration flows & re-watering lower San Joaquin

Environmental

1) Restoration

Flow Scheduling

2) Temperature

Management

Flow Factor

• Early forecast accuracy key to achieving flow factors & summer supply reliability

Kings River 2019: Managing supply & flood risk

- Flood declaration: Army Corps takes over Pine Flat Dam ops & operates solely to protect infrastructure
- 2019: ASO forecast allowed KRWA to operate on 10% exceedance

	Apr-Jul Runoff Forecast Exceedance			
Forecasts	10%	50%	90%	
CA DWR	2.1 MAF	1.8 MAF	1.6 MAF	
NOAA RFC	2.3 MAF	2.1 MAF	1.9 MAF	
ASO		2.5 MAF		

• Saved 100 TAF or ~\$100M of water

"ASO provides invaluable information that is not otherwise available, most importantly information about the rate of melt that provides a real opportunity to optimize reservoir operations for water supply, flood control, and instream requirements."

> Steve Haugen, Watermaster, Kings River Water Association

Water Year 2019 Blue River Basin Denver Water

- 2019 Flights: April 19 & June 24
- May + June storms maintained high elevation snowpack
- SNOTELs snow-free on June 28
- June 24 flight SWE volume: *115 TAF*
 - half of total inflow left to melt
 - enabled response to double flow peak

WY 2022 Colorado Program

Surveys Completed To-date:

- Dolores River: April 15 & May 10
- Conejos River: April 15 & May 10
- CO River @ Windy Gap: April 18
- Blue River @ Dillon: April 19
- East R. @ Almont: April 21 & May 18*
- Taylor R. @ TPR: April 21

Data freely accessible at: data.airbornesnowobservatories.com

Basin	Estimated SWE volume (TAF) April 15	Estimated SWE volume (TAF) May 10
Full Basin	188	61
Uncertainty range	182 - 194	56 - 66

CASM Stakeholder engagement

Outreach & program planning survey

(detailed in report)

- Highly engaged stakeholders
- Agreement that ASO will add value
- Strong interest in creating/funding program
- ASO would add confidence to annual operations and planning
- Incorporating ASO into forecasting is important
- Strong interest in stakeholder-led flight planning group

Airborne Snow Observatories, Inc. A Public Benefit Corporation

Expanding ASO applications: *operational models*

NOAA River Forecast Center testing/evaluation

• ASO SWE data nudges RFC forecast close to observed AJRO 2 months earlier than manual tuning

	Source / Run Type	Volume	Percent of USGS
	USGS AJRO Volume (target)	29.1 KAF	100%
	CBRFC - unmodified	35.2 KAF	121%
flow	CBRFC ASO 3/31	30.2 KAF	104%
oir In	CBRFC ASO 5/24	30.0 KAF	103%
serva	CBRFC ASO both	29.2 KAF	100%
or Re	CBRFC FM 3/27 (added swe)	35.3 KAF	121%
Taylo	CBRFC FM through 4/28 (lz)	35.1 KAF	121%
	CBRFC FM through 5/15	33.3 KAF	114%
	CBRFC FM through 5/25	30.8 KAF	106%

courtesy Pat Kormos, CBRFC

WRF-Hydro applications data assimilation

• High elevation snow data from 24 May ASO assimilation reduces low forecast bias in ESP AJRO forecast

East River @ Almont

Taylor River @ Taylor Park

courtesy Dave Gochis, NCAR

Expanding ASO applications: operational models

NOAA River Forecast Center testing/evaluation

• ASO SWE data nudges RFC forecast close to observed AJRO 2 months earlier than manual tuning

	Source / Run Type	Volume	Percent of USGS
	USGS AJRO Volume (target)	29.1 KAF	100%
	CBRFC - unmodified	35.2 KAF	121%
tlow	CBRFC ASO 3/31	30.2 KAF	104%
oır In	CBRFC ASO 5/24	30.0 KAF	103%
serve	CBRFC ASO both	29.2 KAF	100%
or Ke	CBRFC FM 3/27 (added swe)	35.3 KAF	121%
laylo	CBRFC FM through 4/28 (lz)	35.1 KAF	121%
	CBRFC FM through 5/15	33.3 KAF	114%
	CBRFC FM through 5/25	30.8 KAF	106%

WRF-Hydro applications data assimilation

• High elevation snow data from 24 May ASO assimilation reduces low forecast bias in ESP AJRO forecast

East River @ Almont

Taylor River @ Taylor Park

Next Generation Water Management in CO

An integrated monitoring & forecasting system

Supporting evolving challenges & programs

- decision support information
- providing best snowpack data to experienced forecast teams
- realizing full potential of advanced model systems
- accurate SWE inventory for equitable decision-making

۸S

Observatories, Inc

A Public Benefit Corporation

Colorado Airborne Snow Measurement Program *Program Build-Out*

- Colorado's Water Plan
- Stakeholder engagement
- New funding partnerships
- Federal collaboration
- Snow & runoff model refinement

for more info: airbornesnowobservatories.com coloradosnow.org deems@airbornesnowobservatories.com erik.skeie@state.co.us

