

ASSESSMENT OF STREAMFLOW NEEDS FOR SUPPORTING **RECREATIONAL WATER USES ON THE RIO GRANDE AND CONEJOS RIVER.**

March 2020

Prepared for: Rio Grande, Conejos River, and Saguache Creek Stream Management Plan Rio Grande Headwaters Restoration Project 623 Fourth Street, Alamosa, CO 81101

Prepared by:

Seth Mason Lotic Hydrological PO Box 1524, Carbondale, CO 81623

And

Evan Stafford and Kestrel Kunz American Whitewater PO Box 1540, Cullowhee, NC 28723

Summary

The recreational use assessment presented in this report provides important baseline information relating streamflows and recreational use. This body of work directly supports the Rio Grande Headwater Restoration Project's Stream Management Planning efforts. This report discusses study locations, and methods used to collect and analyze streamflow preference information from recreational users. User survey responses provided by 136 respondents were used to delineate acceptable and optimal streamflow thresholds for supporting recreational use activities on 11 segments on the Rio Grande and Conejos River (Table ES.1). Threshold identification supported quantification of the Boatable Days metric for each assessment reach under typical wet, average, and dry hydrological year types. The assessment followed recommendations the State of Colorado's Basin Implementation Plan guidance documents for quantifying non-consumptive recreational needs.

Respondent numbers for the flow preference study conducted in 2019 are robust for a remote or sparsely populated region of southern Colorado. The large number of responses to flow related questions for most reaches made delineation of flow acceptability thresholds fairly straightforward. However, low response rates among survey participants for reaches 6, 8, 9, and 10 may introduce some uncertainty into flow preference threshold delineated for those sections of river. Low response rates may indicate there is little to no use on these sections during most times of the year. Alternatively, it may indicate that the survey distribution did not reach the typical users of these reaches. Future recreational use assessment activities may benefit from targeted outreach to those users known to recreate on these reaches and inquiries into whether or not they have companions or are aware of additional users/groups that recreate at those locations. It may also be useful to ascertain why these reaches may be receiving so little use and whether or not there is opportunity to increase recreational activity through awareness campaigns, development of river access points, or through some other means.

Reach	h River Reach Description		Min. Acceptable	Min. Optimal	Max. Optimal	Max. Acceptable
1	Rio Grande	Rio Grande Reservoir to Mouth of Box Canyon	350	800	1400	2250*
2	Rio Grande	Box Canyon to Deep Creek/Creede	350	550	1400	2000
3	Rio Grande	Creede to Wagon Wheel Gap	400	600	2100	2750
4	Rio Grande	Wagon Wheel Gap to South Fork	300	600	1800	2800
5	Rio Grande	South Fork to Del Norte (Hwy 112)	350	500	2000	3000
6	Rio Grande	Alamosa to Lasauses	200	500	1000	3000
7	Rio Grande	Lasauses to Lobatos Bridge	300	600	2000	3500
8	Rio Grande	Lobatos Bridge to Lee Trail, NM	300	600	2000	3250
9	Conejos Platoro Reservoir to South Fork Conejos		150	300	600	1200
10	Conejos	S. Fork Conejos to Hwy 17 Bridge	150	300	550	800
11	Conejos	Hwy 17 to Mogote Campground	300	550	2100	2700**

	<i>c c</i>		
Table ES.1. User-defined flow	nreferences for reac	hes included in the B	oatable Days assessment
rubie Bbiri ober denned nen	preferences for reac	mes merudea m me	outuble Duys assessment

*The maximum safe release from Rio Grande Reservoir was 1200 cfs throughout the 1998 to 2017 period.

** Flows never reached this max acceptable threshold during the study period, in part due to mandatory flood mitigation measures triggered by a flow of 2300 cfs or greater at the Mogote stream gauge.

Variable streamflow conditions were found to impact use opportunities on all reaches. The total number of Boatable Days generally increase throughout the assessment area as hydrological conditions transition from dry to average to wet. On most reaches, typical daily streamflows rarely exceed the upper flow acceptability threshold. On Reaches 3, 4, and 5, however, that upper limit is exceeded in wet year types. Reach 4 and Reach 5 are the only two reaches where wet years are characterized by pronounced decrease in total annual Boatable Days. Additional work may be required to understand how alternative water management or climate change impacts diminish or increase the number of Boatable Days available to recreational users on each reach, and whether those changes occur in times of the year when recreation is most likely to occur.

Rio Grande: Wagon Wheel Gap to South Fork (Reach 4)

Table of Contents

S	Summary	2
1.	Introduction	6
2.	Study Area	
<i>3</i> .	Methods	
<i>4</i> .	Results	
5.	Discussion and Conclusions	
6.	References	
AP	PPENDIX A: Analysis Results by Reach	

APPENDIX B: Web Survey

List of Tables

TABLE 1. RIVER SEGMENTS AND CORRESPONDING STREAMFLOW MEASUREMENT GAUGES CONSIDERED IN THIS STUDY.	_ 10
TABLE 4. FLOW PREFERENCE THRESHOLDS DELINEATED FOR EACH REACH IN THE ASSESSMENT AREA. ALL VALUES ARE REPORTED IN CUBIC FEET PER SECOND (CFS).	_16
TABLE 6. BOATABLE DAYS FALLING WITHIN EACH ACCEPTABILITY CATEGORY CALCULATED FOR REACHES WITHIN THE ASSESSMENT AREA FOR TYPICAL DRY, AVERAGE AND WET HYDROLOGICAL YEAR TYPES.	_17
TABLE 7. BOATABLE DAYS ANALYSIS RESULTS BROKEN OUT BY MONTH FOR THE RIO GRANDE: WAGON WHEEL GAP TO SOUT FORK. WHERE AN ACCEPTABILITY CATEGORY (E.G. 'OPTIMAL') IS MISSING FOR A GIVEN MONTH, ZERO DAYS WERE OBSERVED TO FALL WITHIN THAT CATEGORY AND THE ROW WAS LEFT OUT OF THE TABLE FOR BREVITY.	гн _ 18
TABLE 5. KNOWN RECREATIONAL USE CONSTRAINTS OR NAVIGATION HAZARDS ON SEGMENTS OF THE RIO GRANDE.	_ 20

List of Figures

FIGURE 1. UPPER RIO GRANDE RECREATIONAL ASSESSMENT AREA. IMAGE PROVIDED BY RIO GRANDE HEADWATERS RESTORATION PROJECT
Figure 2. Lower Rio Grande recreational assessment area. Image provided by Rio Grande Headwaters Restoration Project
FIGURE 3. CONEJOS RIVER RECREATIONAL ASSESSMENT AREA. IMAGE PROVIDED BY RIO GRANDE HEADWATERS RESTORATION PROJECT
FIGURE 6. SURVEY RESPONSES FROM 136 USERS INDICATING (A) EXPERIENCE LEVEL AND MAXIMUM COMFORTABLE WHITEWATER CLASS; (B) PARTICIPANT CONFIDENCE IN PROVIDING FLOW ACCEPTABILITY RANKINGS FOR ONE OR MORE REACHES IN THE ASSESSMENT AREA
FIGURE 7. SURVEY RESPONSES FOR THE WAGON WHEEL GAP TO SOUTH FORK SECTION OF THE RIO GRANDE. (A) COUNTS OF THE VARIOUS FLOW ACCEPTABILITY RANKINGS PROVIDED BY RESPONDENTS WHERE SURVEY RESPONSES REFLECT STREAMFLOW VARIABILITY AS MEASURED AT THE RIO GRANDE RIVER AT WAGON WHEEL GAP (RIOWAGCO). (B) USER IDENTIFIED CRAFT TYPES AND RECREATIONAL USE OBJECTIVES FOR THE REACH. (C) THE SELF-IDENTIFIED EXPERIENCE AND WHITEWATER SKILL LEVELS PROVIDED BY SURVEY RESPONDENTS
FIGURE 8. FLOW PREFERENCES REPORTED BY USERS FOR THE RIO GRANDE: WAGON WHEEL GAP TO SOUTH FORK. DELINEATED FLOW PREFERENCE CATEGORIES MAPPED ONTO BOXPLOT OF RESPONSES TO OPEN-ENDED QUESTIONS ABOUT DIFFERENT CATEGORIES OF FLOW (TOP) AND PCI2 ANALYSIS RESULTS (BOTTOM)
FIGURE 9. BOATABLE DAYS TOTALS FOR THE RIO GRANDE: WAGON WHEEL GAP TO SOUTH FORK. (A) ANNUAL BOATABLE DAYS TOTALS SUMMARIZED BY HYDROLOGICAL YEAR TYPE. (B) FLOW PREFERENCE RANGES MAPPED TO REPRESENTATIVE STREAMFLOW TIME SERIES FOR WET, AVERAGE, AND DRY YEARS. FLOWS ASSOCIATED WITH SPECIFIC NAVIGATIONAL HAZARDS ARE LABELED. (C) MONTHLY BOATABLE DAYS TOTALS SUMMARIZED BY HYDROLOGICAL YEAR TYPE
FIGURE 10. DISTRIBUTION OF SURVEY RESPONSES INDICATING REACHES THAT ARE THE HIGHEST PRIORITY FOR RECREATIONAL PADDLING IMPROVEMENTS. A MEDIAN SCORE EQUAL TO 1 INDICATES A VERY HIGH PRIORITY WHILE A SCORE OF 8 INDICATES A VERY LOW PRIORITY. A WIDER BOX INDICATES A GREATER SPREAD IN THE SURVEY RESPONSES. A NARROW BOX INDICATES A HIGH DEGREE OF AGREEMENT BETWEEN SURVEY RESPONDENTS

1. Introduction

Considerable work evaluating relationships between streamflow and recreational use opportunities occurred over the last several decades (Brown et al., 1991; Shelby, Brown, & Taylor, 1992; Whittaker and Shelby, 2002). Many flow-recreation studies focus on whitewater boating, such as rafting, kayaking, and canoeing, as flow often determines whether people have opportunity to successfully complete a trip. On many river segments, flow level contributes to the risk, challenge, and/or aesthetic attributes of on-water activities (Whittaker & Shelby, 2000). Natural and man-made changes in streamflow can have direct and indirect impacts on recreational boating experiences. Direct effects include navigation, safety/difficulty, travel times, quality of whitewater stretches, and beach and camp access (Brown, Taylor, & Shelby, 1991; Whittaker et al., 1993; Whittaker & Shelby, 2002). Indirectly, variability in streamflow affects wildlife viewing, scenery, fish habitat, and riparian vegetation over the long term as a result of changes in flow regime (Bovey, 1996; Richter et al., 1997; Jackson & Beschta, 1992; Hill et al., 1991).

Streamflow is often manipulated through releases from dams and reservoirs, pipelines, and diversions. Additional scenarios, such as climate change, drought, and new water rights development can all impact flows and recreation quality. Decision-makers within land and resource management and regulatory agencies, and state and local governments are increasingly interested in the extent that flow regimes can be managed to provide desirable recreational resource conditions. The various recreational use opportunities provided by different flow ranges can be delineated into "niches" (Shelby et al., 1997). These flow niches may include: unacceptably low flow; minimum flow acceptable; technical, but enjoyable flows; optimal flows; challenging high flows; and unacceptably high flows. Methodologies developed by American Whitewater are regularly used to delineate user-defined streamflow niches and subsequently quantify recreational user opportunities under different hydrological conditions. Implementation of these assessment methodologies aims to support water management decision-making. Specific evaluative information on how flow affects recreation quality is often critical, particularly where social values are central to decision-making (Kennedy and Thomas 1995). American Whitewater's Boatable Days assessment methodology is recognized as a best practice for defining recreation flow needs and opportunities (Stafford et al., 2016).

The Rio Grande Basin Roundtable (RGBRT) and the Rio Grande Headwaters Restoration Project (the Restoration Project) are undertaking a river recreation assessment as part of a Stream Management Planning effort. In May of 2018, the Restoration Project officially initiated the Stream Management Plan process for the Rio Grande, Conejos River, and Saguache Creek. American Whitewater was invited to join the Technical Advisory Team (TAT) tasked with guiding the SMP process, identifying and prioritizing ecological, recreational, and community values, development of goals for flows and physical conditions to protect and enhance streams, and establishing methods and associated opportunities and constraints to make progress toward goals. As part of this effort, AW was tasked with completing a Boatable Days assessment. The characterization of Boatable Days provides an objective, science-based measure of existing whitewater recreation opportunities related to variability in streamflow on reaches throughout the assessment area (Figure 1, Figure 2, Figure 3). This information aims to support conversations about how whitewater recreation opportunities might change under future hydrological conditions and water management scenarios. American Whitewater's assessment aims to achieve multiple SMP objectives. The assessment helps meet SMP Objective 3¹ by identifying optimal and acceptable recreational flow preferences on 11 different river segments in the Basin. The Boatable Days Analysis provides the TAT with the necessary quantitative information needed to develop goals to protect and enhance flows for recreation values². The Boatable Days model—as developed for the Rio Grande and Conejos River—can be used to identify opportunities and constraints for implementation of future projects³.

Figure 1. Upper Rio Grande recreational assessment area. Image provided by Rio Grande Headwaters Restoration Project.

¹ Objective 3: Define and prioritize environmental, recreational, and community values.

² Objective 4: Develop goals to improve flows and physical conditions needed to support values.

³ Objective 6: Identify opportunities and constraints for implementation of projects, and additional data needed to inform project development.

Figure 2. Lower Rio Grande recreational assessment area. Image provided by Rio Grande Headwaters Restoration Project.

Figure 3. Conejos River recreational assessment area. Image provided by Rio Grande Headwaters Restoration Project.

In addition to meeting objectives of the SMP, the results of this assessment advance implementation of the Colorado Water Plan⁴. The State's draft Basin Implementation Plan Guidance document recommends quantification of recreational values (e.g., boating and fishing). Section 2.1 of the Guidance⁵ calls for the evaluation of non-consumptive needs in terms of 'measurable outcomes', data, and assessment using methods described in CWCB's Non-consumptive Toolbox (CWCB, 2013). Appendices C and D of the toolbox identify the flow-evaluation methodology developed and used by American Whitewater as an example of a recreation tool that can produce measurable outcomes. This assessment aims to 1) address gaps in data and understanding regarding flow conditions necessary to sustain recreational values on the Rio Grande and Conejos River and 2) improve stakeholders' collective understanding of existing recreational use opportunities and how these opportunities may be impacted by climate change and consumptive water projects.

^{4 &}lt;u>https://www.colorado.gov/pacific/cowaterplan/plan</u>

⁵ http://cwcbweblink.state.co.us/WebLink/0/doc/172522/Electronic.aspx?searchid=da8f2c6c-3efa-48d6-a43e-892b5c2bd750

2. Study Area

River reaches considered in this assessment were identified collaboratively between American Whitewater, the Rio Grande Basin Roundtable's SMP Committee, and the SMP project coordinator. Eight segments on the Rio Grande and three segments on the Conejos River were determined to have significant recreational values and were, therefore, included in the assessment (Table 1). Saguache Creek was not identified as a recreational planning priority. Each segment was mapped to an existing streamflow gauging station and/or a hydrological simulation modeling node. Mapping streamflow gauge/node locations to each assessment reach considered: 1) the historical period of record (POR) for streamflow observations, 2) the distance between the gauge/node and river segment, and 3) the gauge/node most commonly used by recreationalists to inform their use of the segment. A single stream gauge or simulation node was used to represent flows for adjoining river segments in two locations on the Rio Grande and one location on the Conejos.

Reach	River	Segment Description	Corresponding Stream Gauge/Simulation Node
1	Rio Grande	Rio Grande Reservoir to Mouth of Box Canyon	Rio Grande River at Thirty Mile Bridge Near Creede (RIOMILCO)
2	Rio Grande	Box Canyon to Deep Creek/Creede	Rio Grande River at Thirty Mile Bridge Near Creede (RIOMILCO)
3	Rio Grande	Creede to Wagon Wheel Gap	Rio Grande River at Wagon Wheel Gap (RIOWAGCO)
4	Rio Grande	Wagon Wheel Gap to South Fork	Rio Grande River at Wagon Wheel Gap (RIOWAGCO)
5	Rio Grande	South Fork to Del Norte (Hwy 112)	Rio Grande River Near Del Norte, Co (RIODELCO)
6	Rio Grande	Alamosa to Lasauses	Rio Grande River at Alamosa (RIOALACO)
7	Rio Grande	Lasauses to Lobatos Bridge	Rio Grande River Above Trinchera Creek Near Las Sauses (RIOTRICO)
8	Rio Grande	Lobatos Bridge to Lee Trail, NM	Rio Grande River Near Lobatos (RIOLOBCO)
9	Conejos	Platoro Reservoir to South Fork Conejos	Conejos River Below Platoro Reservoir (CONPLACO)
10	Conejos	S. Fork Conejos to Hwy 17 Bridge	Conejos River Below Platoro Reservoir (CONPLACO)
11	Conejos	Hwy 17 to Mogote Campground	Conejos River Near Mogote (CONMOGCO)

Table 1. River segments and corresponding streamflow measurement gauges considered in this study.

3. Methods

American Whitewater collected recreational user feedback through a web-based survey (Appendix C). Four types of questions were included in the survey. The first type of question captured demographic information about each participant's skill level, frequency of participation in riverrelated recreation, etc. The second type of question allowed users to assign use-acceptability rankings to various streamflows. The third question type asked users to identify flows associated with different trip types (technical low-water, standard, challenging high-flow, etc.). The fourth type of question focused on participant perspectives on water management planning activities. These questions were organized around each assessment reach and were supported with general mapping and narrative information about that reach from American Whitewater's website. The Rio Grande Headwaters Restoration Project has the responses from these questions and will utilize them in the larger SMP report. The survey also clearly defined which streamflow measurement gauge to reference when assigning acceptability rankings for conditions on the reach. An announcement of the survey was emailed to American Whitewater's members, posted on the website, distributed via American Whitewater's online newsletter, and shared through the Stream Management Plan email list.

The flow acceptability questions included in the user-survey are the principal focus of this assessment. These questions asked respondents to evaluate recreational use acceptability for a range of measured flows on each study segment using a five-point scale that included the following rankings: Unacceptable, Moderately Unacceptable, Marginal, Moderately Acceptable, and Acceptable. Each ranking in the scale was mapped to an integer value between -2 and 2 where an 'Unacceptable' ranking mapped to a value of -2, a 'Marginal' ranking mapped to a value of 0, and an 'Acceptable' ranking mapped to a value of 2. To further explore and characterize the relationship between flows and recreational use opportunities, the survey posed a series of open-ended questions about streamflows associated with distinct niche experiences. These niche experiences included: lowest navigable flow (minFlow), minimum acceptable flow (lowAcceptable), technical but navigable flows (technicalTrip), flows experienced during a standard trip (standardTrip), challenging high-water (highChallenge), and highest safe flow (highSafe).

The flow options provided in the flow acceptability questions were directly informed by historical hydrology data from each individual stream gauge. The minimum flow option provided for each reach was 100 cfs and the maximum flow option varied depending on historical maximums. The questions that reference the RIOMILCO stream gauge (corresponding gauge for Reach 1 and 2) are an exception. The maximum observed flow at this location is 2,520 cfs. Users on the survey were asked to evaluate flows up to 3,000 cfs. Any survey responses provided for flow values above 2,500 cfs on these reaches were, therefore, considered erroneous.

Flow-acceptability rankings provided through the survey were used to describe preferences among recreational users for various ranges of streamflow. Researchers collecting and organizing surveybased evaluative information often employ a normative approach for analyzing results. The normative approach considers each individual's evaluation (personal norms) of a range of potential conditions. Aggregation of many individuals' personal norms describe a group's collective evaluation (social norms) of resource condition. This approach has been applied extensively in natural resource management settings, often with respect to instream flows for recreation (Shelby and Whittaker, 1995; Shelby et al., 1992a; Vandas et al., 1990; Whittaker and Shelby, 2002b) and is particularly useful for developing thresholds that define low, acceptable, and/or optimal resource conditions (Shelby et al. 1992). Other applications have extended this approach to different indicators and impacts, including: evaluation of how many people are considered too many in a given setting (refer to Donnelly et al., 2000; Manning, 2011; Shelby et al., 1996; Vaske & Donnelly, 2002; Vaske et al., 1986, for reviews), campsite impacts or site sharing (Heberlein and Dunwiddie, 1979; Shelby, 1981), fishing site competition (Martinson and Shelby, 1992; Whittaker and Shelby, 1993), discourteous behavior (Whittaker and Shelby, 1988, 1993; Whittaker et al., 2000), and resource indicators such as litter and campsite impacts (Shelby et al., 1988; Vaske et al., 2002). Notably, the normative approach was employed to understand user preferences for various streamflows on the Grand Canyon (Shelby et al. 1992) and on several other rivers in Colorado (Vandas et al. 1990, Shelby & Whittaker 1995, Fey & Stafford 2009, Fey & Stafford 2010).

Defining management standards is often more efficient if there is a high degree of consensus (or "norm crystallization") among users regarding acceptable and unacceptable resource conditions. Traditional measures of norm crystallization have included the standard deviation, coefficient of variation, and interquartile range of survey responses (Krymkowski et al., 2009; Manning, 2011; Shelby and Vaske, 1991). The Potential for Conflict Index-2 (PCI2) was developed to help address some of the shortcomings associated with traditional measures of norm crystallization when applied to ordinal data. A detailed description of the PCI2 metric is provided by Vaske et al. (2010). Briefly, computed PCI2 values range from 0 to 1.0 where the least amount of consensus (PCI2 = 1.0) occurs when responses are equally divided between two extreme values on a Likert response scale (e.g. 50% Highly Unacceptable and 50% Highly Acceptable). A set of responses with unanimous consensus among respondents yields a PCI2 value of zero.

The normative approach was the basis for describing use acceptability ranges for streamflows on different reaches within the assessment area. The percentage of responses falling within each acceptability ranking were computed for each streamflow on each reach. The numerical representations of flow acceptability preference rankings were used to compute PCI2 scores for each flow included in the survey. Computed PCI2 values were paired on the percentage of respondents that ranked a given flow as 'Moderately Acceptable' or 'Acceptable' and plotted to create use acceptability curves for each of the study reaches.

Use acceptability curves, tabular data summaries, and responses to open-ended questions about niche conditions were used to delineate various normative streamflow characteristics. These characteristics included a minimum acceptable streamflow, a range of acceptable streamflow conditions, and a range of optimum streamflow conditions. The upper and lower thresholds delineated for acceptable and optimal streamflow conditions were then compared to wet-year, average-year, and dry-year hydrological conditions in order to complete a Boatable Days analysis.

The computation of Boatable Days is the dominant quantitative approach used by American Whitewater to characterize recreational use opportunities on rivers (Fey and Stafford, 2009; Shelby and Whittaker, 1995; Whittaker et al., 1993). The metric itself reflects the number of days in a given year that fall within certain defined flow ranges (i.e. lower acceptable flows, optimal flows, upper acceptable flows). The Boatable Days analysis performed on reaches within the assessment area responded to the inter-annual natural and management-induced variability in streamflows by computing the number of Boatable Days that occur in each of three hydrological year types: wet, average and dry.

Wilson Water Group, LLC. provided streamflow time series data for the three hydrological year types defined here. Representative streamflow time series for each year type on each reach required synthesis of historical data. Daily streamflow data was collected from stream gauges throughout the assessment area for a 20-year period of record. Streamflow time series data from each gauge were then ordered by annual peak flow. Average daily streamflows across all years in the lower 25th percentile of the ordered list were computed to produce a representative dry year streamflow time series. The same approach was used to create representative streamflow series for average and wet years where average year types fell between the 25th and 75th percentiles of annual peak flows and average wet year types were those years that fell within the upper 75th percentile of the ordered list.

4. Results

The web-survey captured responses from 136 recreational users. 63% of respondents indicated they were somewhat comfortable or very comfortable reporting flows, 52% of respondents identified themselves as advanced or expert paddlers, 84% identified as Class III or greater paddlers, and 44% recreate on streams and rivers at least 20 days per season (Figure 4). A wide range of preferred craft types were indicated, including oar frame rafts, kayaks, catarafts, canoes, dories, inner tubes, paddle rafts, skiffs, and stand-up paddle boards.

Survey responses were aggregated by reach, reviewed for quality, and displayed graphically to aid in interpretation (Appendix A). An example summary graphic is included for survey responses for the Wagon Wheel Gap to South Fork section of the Rio Grande (Figure 5).

A Rio Grande: Wagon Wheel Gap to South Fork (Reach 4)

Figure 5. Survey responses for the Wagon Wheel Gap to South Fork section of the Rio Grande. (A) Counts of the various flow acceptability rankings provided by respondents where survey responses reflect streamflow variability as measured at the Rio Grande River at Wagon Wheel Gap (RIOWAGCO). (B) User identified craft types and recreational use objectives for the reach. (C) The self-identified experience and whitewater skill levels provided by survey respondents.

Use acceptability curves, tabular data summaries, and responses to open-ended questions about niche conditions were used to delineate various normative streamflow characteristics, including the 'Minimum Acceptable', 'Minimum Optimal', 'Maximum Optimal', and 'Maximum Acceptable' streamflow on each reach (Table 2).

Rio Grande: Wagon Wheel Gap to South Fork (Reach 4)

Figure 6. Flow preferences reported by users for the Rio Grande: Wagon Wheel Gap to South Fork. (Top) Boxplot of responses to open-ended questions about different categories of flow. (Bottom) PCI2 analysis results overlaid on the percentage of respondents that ranked a given flow as "Moderately Acceptable" or "Acceptable". The percentage of respondents in those categories across the full range of flows was fit with a Loess curve to support visualization of flow acceptability ranges.

Responses provided for Reach 6 and Reach 8 of the Rio Grande along with Reach 9 and Reach 10 of the Conejos made delineation of the upper bound for the maximum acceptable flow difficult. Responses to open ended questions suggest that the difficulty or risk for navigation on the Rio Grande reaches in question do not change appreciably as flows increase. These reaches are relatively low-gradient and do not include many navigation hazards. Results for Reach 6 may be affected by a small number of respondents providing flow acceptability rankings. It appears that the lack of a discernable upper bound on acceptable flows for reaches 9 and 10 on the Conejos River may also be due to a limited number of survey respondents for these reaches.

Reach	ch River Reach Description		Min. Acceptable	Min. Optimal	Max. Optimal	Max. Acceptable
1	Rio Grande	Rio Grande Reservoir to Mouth of Box Canyon	350	800	1400	2250*
2	Rio Grande	Box Canyon to Deep Creek/Creede	350	550	1400	2000
3	Rio Grande	Creede to Wagon Wheel Gap	400	600	2100	2750
4	Rio Grande	Wagon Wheel Gap to South Fork	300	600	1800	2800
5	Rio Grande	South Fork to Del Norte (Hwy 112)	350	500	2000	3000
6	Rio Grande	Alamosa to Lasauses	200	500	1000	3000
7	Rio Grande	Lasauses to Lobatos Bridge	300	600	2000	3500
8	Rio Grande	Lobatos Bridge to Lee Trail, NM	300	600	2000	3250
9	Conejos	Platoro Reservoir to South Fork Conejos	150	300	600	1200
10	Conejos	S. Fork Conejos to Hwy 17 Bridge	150	300	550	800
11	Conejos	Hwy 17 to Mogote Campground	300	550	2100	2700

Table 2. Flow preference thresholds delineated for each reach in the assessment area. All values are reported in cubic feet per second (cfs).

*The maximum safe release from Rio Grande Reservoir was 1200 cfs throughout the 1998 to 2017 period.

** Flows never reached this max acceptable threshold during the study period, in part due to mandatory flood mitigation measures triggered by a flow of 2300 cfs or greater at the Mogote stream gauge.

Minimum acceptable flows on the Rio Grande generally range between approximately 350-400 cfs, optimal flows range between approximately 600-2000 cfs, and the upper acceptable flows range between \sim 2000-3000 cfs. A maximum acceptable flow of 2250 cfs was delineated for Reach 1. However, due to infrastructure constraints, the maximum safe release from Rio Grande Reservoir was 1200 cfs between 1998 and 2017. Therefore, this maximum acceptable flow did not occur during the study period. Improvements to the reservoir's outlet works, progressing under the Rio Grande Reservoir Phase II Rehabilitation Project, will substantially increase the maximum permissible release from the reservoir. No clear flow preference patterns exist for the Conejos River reaches. Variability in flow thresholds between reaches can be attributed to different user groups recreating in different locations, the unique geomorphic or hydraulic characteristics of each reach, and/or variability in the sample size of respondents providing flow rankings on each reach and for each listed streamflow. A maximum acceptable flow of 2700 cfs was delineated for Reach 11 on Conejos River. It is important to note that flood mitigation requirements are triggered if streamflow at the Mogote stream gauge (CONMOGCO) reaches or exceeds 2300 cfs. Under this scenario, the operator of Platoro Reservoir and other partners take actions (e.g. utilize Platoro Reservoir flood control storage) to reduce flows and mitigate flooding risk in downstream communities. Stream flows on Reach 11, therefore, never reached the maximum acceptable flow preference threshold during the study period and are unlikely to do so in the future.

Flow preference thresholds were used to compute the number of Boatable Days associated with different hydrological conditions on each reach in the assessment area (Table 3). Results were summarized graphically and in tabular form (Appendix A). Boatable Days totals falling within the range of "Upper Acceptable" flows never exceed zero on several reaches of the Rio Grande. This is

due, in some locations, to the lack of a discernible upper bound on the range of "Optimal" flows identified by recreational users. In other locations, the streamflow time series supplied by Wilson Water Group, LLC to characterize dry, average, and wet year types never exceeded the upper bound of user-defined "Optimal" flows. A different representation of hydrological year types will result in different Boatable Days totals.

Reach	River	Description	Acceptability Category	Dry Year	Avg. Year	Wet Year
			Lower Acceptable	38	38	40
1	$\mathbf{D}^{\prime} \subset 1$	Rio Grande – Reservoir to Mouth – of Box Capyon	Optimal	0	25	43
1	Kio Grande		Upper Acceptable	0	0	0
			Total Days	38	63	83
			Lower Acceptable	17	11	24
0		Box Canyon to Deep	Optimal	21	52	59
2	Kio Grande	Creek/Creede	Upper Acceptable	0	0	0
			Total Days	38	63	83
			Lower Acceptable	43	62	31
2		Creede to Wagon	Optimal	56	80	59
3	Rio Grande	Wheel Gap	Upper Acceptable	0	17	21
			Total Days	99	159	111
		Wagon Wheel Gap to South Fork	Lower Acceptable	101	111	82
			Optimal	54	67	48
4	Rio Grande		Upper Acceptable	2	30	35
			Total Days	157	208	165
			Lower Acceptable	54	56	74
-	Rio Grande	South Fork to Del Norte (Hwy 112)	Optimal	119	127	87
5			Upper Acceptable	12	26	19
			Total Days	185	209	180
		Alamosa to Lasauses –	Lower Acceptable	47	146	204
,	D' C 1		Optimal	0	1	45
0	Rio Grande		Upper Acceptable	0	0	0
			Total Days	47	147	249
			Lower Acceptable	0	39	74
-		Lasauses to Lobatos	Optimal	0	0	47
/	Rio Grande	Bridge	Upper Acceptable	0	0	0
		_	Total Days	0	39	121
			Lower Acceptable	7	137	141
0		Lobatos Bridge to	Optimal	0	46	95
8	Rio Grande	Lee Trail, NM	Upper Acceptable	0	0	2
			Total Days	7	183	238
0	с ·	Platoro Reservoir to	Lower Acceptable	53	56	44
9	Conejos	South Fork Conejos	Optimal	0	17	31

Table 3. Boatable Days falling within each acceptability category calculated for reaches within the assessment area for typical dry, average and wet hydrological year types.

Reach	River	Description	Acceptability Category	Dry Year	Avg. Year	Wet Year
			Upper Acceptable	0	0	0
			Total Days	53	73	75
			Lower Acceptable	53	56	44
10	Contine	S. Fork Conejos to	Optimal	0 17	17	31
10	Conejos	Hwy 17 Bridge	Upper Acceptable	0	0	0
			Total Days	53	73	75
	Conejos	Conejos Hwy 17 to Mogote Campground	Lower Acceptable	29	30	40
11			Optimal	29	59	64
11			Upper Acceptable	0	0	0
			Total Days	58	89	104

Table 4. Boatable Days analysis results broken out by month for the Rio Grande: Wagon Wheel Gap to South Fork. Where an Acceptability Category (e.g. 'Optimal') is missing for a given month, zero days were observed to fall within that category and the row was left out of the table for brevity.

Month	Month Acceptability Category Mar Lower Acceptable		th Acceptability Category Dry Year		Avg. Year	Wet Year
Mar			0	0		
Apr	Lower Acceptable	22	12	14		
	Optimal	8	13	16		
May	Optimal	29	15	13		
	Upper Acceptable	2	16	13		
Jun	Lower Acceptable	12	0	0		
	Optimal	11	16	0		
	Upper Acceptable	0	14	20		
Jul	Lower Acceptable	4	11	10		
	Optimal	0	20	19		
	Upper Acceptable	0	0	2		
Aug	Lower Acceptable	18	28	31		
	Optimal	0	3	0		
Sep	Lower Acceptable	21	30	9		
	Optimal	1	0	0		
Oct	Lower Acceptable	22	30	18		
	Optimal	5	0	0		

Rio Grande: Wagon Wheel Gap to South Fork (Reach 4)

Figure 7. Boatable Days totals for the Rio Grande: Wagon Wheel Gap to South Fork. (A) Annual Boatable Days totals summarized by hydrological year type. (B) Flow preference ranges mapped to representative streamflow time series for wet, average, and dry years. Flows associated with specific navigational hazards are labeled. (C) Monthly Boatable Days totals summarized by hydrological year type.

It is important to note the difference between a Boatable Day and a user-day. A Boatable Day describes when acceptable flows are met to provide an *opportunity* for recreation. User-days indicate the actual numbers of recreational users present on a reach over a period of time. User-days are affected by numerous factors including weather, hazards, river access, etc. while Boatable Days are solely affected by flow conditions. Boatable Days totals for two reaches include days in fall, winter and spring months when current recreational use is known to be light. Totals for the

Alamosa to Lasauses section includes days in November, December, January, and February. Totals for the Lobatos Bridge to Lee Trail, NM section includes days in November and February. It is unlikely that there is much use on these segments during the fall and winter months due to weather conditions, ice hazards on the river, and limited river access due to snow and road closures. When using the Boatable Days analysis results to inform management decisions it will be particularly useful to consider the monthly Boatable Days totals during the typical user-season rather than the annual totals. While ice coverage varies depending on the year and the location, ice has potential to impact user days on most reaches between November 1 and March 31.

Additional constraints or hazards limit recreational use on several segments of the Rio Grande (Table 5). Low bridges are the most common type of navigational hazard. These bridges can make passage for rafts and dories extremely dangerous at high flows. Other craft types like kayaks may be able navigate these hazards at the full range of flows identified by users as falling within optimal or acceptable bounds for recreational use. Navigational hazards and other limitations were not used to modify Boatable Days calculations because they are expected to apply differently to various craft types. However, it is likely that knowledge of these hazards impacted survey respondents' flow preferences and identification of high safe flow levels. On multiple reaches, the highest safe flow corresponds with hazard-related thresholds. On other reaches the high acceptable flow exceeds the flow thresholds identified for hazards in that reach; this is likely due to variations in craft type and skill level among survey respondents.

Reach	Hazard Name	Notes
1	Box Canyon Bridge	Low bridge at Mouth of Box Canyon (Forest Rd 520.21). No discrete flow threshold is available, but this is never passable by any craft type.
2	Rio Oxbow Ranch Private Bridge	The bridge is always passable with drift boats. However, flows > 1,000 cfs (at RIOMILCO gauge) presents issues for rafts with fishing frames.
2	Kansas Club Bridge	Walking bridge for a private fishing club. At high flows, boats must stay river left and be aware of hanging rope and cables. No discrete flow threshold is available.
2	Antlers Resort Bridge	This is a walking bridge that presents an extreme navigation hazard at high flows. Dories and rafts/frames cannot pass at flows > 770 cfs.
2	Broadacres Bridge	This bridge is passable on river left at all flows and river right at most flows. No discrete flow threshold is available.
3	Wason Railroad Bridge	This bridge is hazardous at high flows due to the accumulation of debris on the pilings. No discrete flow threshold is available
4	Wagon Wheel Gap Railroad trestle	Due to the bridge's angle across the river and the debris accumulation on pilings, this bridge presents an extreme navigation hazard and most flows. Local outfitters do not attempt passage of this bridge if flows are > 2,000 cfs (at RIOWAGCO gauge).
4	4UR Bridge (Goose Creek Rd)	This private bridge is a minor obstacle at high flows.
4	Elk Creek Bridge	Passage is not suggested if the flow is at or above 2,500 cfs here.
5	Independent D "W-shaped" diversion dam	A "W-shaped" diversion dam presents a serious navigation hazard to boaters.
5	Hanna Lane/County Rd 17	Dories can safely pass under this bridge up to 5,000, raft frames up to 4,000 cfs (at RIODELCO gauge).
5	Flying W Bridge	Dories can safely pass under this bridge up to 3,500 cfs, and Rafts up to 2,500 cfs (at RIODELCO gauge).

Table 5. Known recreational use constraints or navigation hazards on segments of the Rio Grande.

5	Rio Grande Canal diversion dam	This river-wide diversion dam creates a 10+ foot drop. This is a mandatory portage (on the south bank of the river).
6	Westside Ditch diversion dam	This diversion dam is not passable, regardless of flow. Boaters must portage around this structure.
6	Chicago Ditch diversion dam	This diversion dam is not passable, especially at low flows. Boaters must portage around this structure.
6	Meadow Overflow Ditch diversion dam	This diversion dam is not passable, regardless of flow. Boaters must portage around this structure.
6	New Ditch diversion dam	This diversion dam is not passable, regardless of flow. Boaters must portage around this structure.
6	County Rd Z	This bridge is hazardous at high flows. No discrete flow threshold is available.
8	Lobatos Bridge to Lee Trail NM	This section is closed to recreational uses between April 1 and May 31 due to

Lobatos Bridge to Lee Trail, NM nesting raptors.

5. Discussion and Conclusions

This report discusses study locations, and methods used to collect and analyze streamflow preference information from recreational users. User survey responses provided by 136 respondents were used to delineate acceptable and optimal streamflow thresholds for supporting recreational use activities on 11 segments on the Rio Grande and Conejos River. Threshold identification supported quantification of the Boatable Days metric for each assessment reach under typical wet, average, and dry hydrological year types. The assessment followed recommendations the State of Colorado's Basin Implementation Plan guidance documents for quantifying non-consumptive recreational needs.

Respondent numbers for the flow preference study conducted in 2019 are robust for a remote or sparsely populated region of southern Colorado. The large number of responses to flow related questions for most reaches made delineation of flow acceptability thresholds fairly straightforward. However, low response rates among survey participants for reaches 6, 8, 9, and 10 may introduce some uncertainty into flow preference threshold delineated for those sections of river. Low response rates may indicate there is little to no use on these sections during most times of the year. Alternatively, it may indicate that the survey distribution did not reach the typical users of these reaches. Future recreational use assessment activities may benefit from targeted outreach to those users known to recreate on these reaches and inquiries into whether or not they have companions or are aware of additional users/groups that recreate at those locations. It may also be useful to ascertain why these reaches may be receiving so little use and whether or not there is opportunity to increase recreational activity through awareness campaigns, development of river access points, or through some other means.

Variable streamflow conditions were found to impact use opportunities on all reaches. The total number of Boatable Days generally increase throughout the assessment area as hydrological conditions transition from dry to average to wet. On most reaches, typical daily streamflows rarely exceed the upper flow acceptability threshold. On Reach 4 and Reach 5, however, that upper limit is exceeded in wet year types and on Reach 3, optimal flows are exceeded in wet year types leading to a significant decrease in the number of Boatable Days with optimal flows. These are the only three reaches where wet years are either characterized by pronounced decrease in total annual Boatable Days or significant decrease in days with optimal flows.

The assessment followed recommendations in the State of Colorado's Basin Implementation Plan guidance documents for quantifying non-consumptive recreational needs. In addition to completing a quantitative Boatable Days analysis, results from open-ended recreational user survey questions were evaluated. Responses to these questions provide insights into the recreational community's views on environmental, regulatory, and infrastructure management issues affecting reaches within the planning area (Appendix B). High priority issues identified by multiple users included the following:

- Coordinated reservoir releases and consistent flows for fishing and boating on the Rio Grande
- Removal or mitigation of boating hazards (fencing, diversions, bridges, etc.)
- River access improvements

Survey respondents also indicated which reaches they considered priorities for recreational paddling improvements (Figure 10). The sections of the Rio Grande between Texas Creek and South Fork ranked highest. The section between Lasauses and Lobatos Bridge ranked lowest. Rankings for the Conejos River segments were not requested in the survey. The desire for improvements on high-priority reaches may or may not be flow-based.

Figure 8. Distribution of survey responses indicating reaches that are the highest priority for recreational paddling improvements. A median score equal to 1 indicates a very high priority while a score of 8 indicates a very low priority. A wider box indicates a greater spread in the survey responses. A narrow box indicates a high degree of agreement between survey respondents.

The results presented in this report represent important baseline information characterizing the relationships between flows and recreational use. As such, this body of work directly supports the Rio Grande Headwater Restoration Project's Stream Management Planning efforts. Future efforts may choose to build upon this assessment by calculating the number of Boatable Days available in a greater diversity of hydrological year types, under various water management scenarios, or in anticipation of altered future hydrology due to climate change.

6. References

- Bovee, K.D. (editor). (1996) The Complete IFIM: A Coursebook for IF250. Fort Collins, CO: U.S. Geological Survey.
- Brown, T.C., Taylor, J.G., & Shelby, B. (1991). Assessing the direct effects of Stream flow on recreation: A literature review. Water Resources Bulletin, 27(6), 979-989.
- Colorado Water Conservation Board, 2013. Nonconsumptive Needs Toolbox, Retrieved from: http://cwcbweblink.state.co.us/weblink/0/doc/172701/Electronic.aspx?searchid=b764b205-1125-4f18-b3e8-998e5e025e10
- Fey, N. & Stafford, E. (2009) Flow-Recreation Evaluations for the Upper Colorado River basin. Report prepared for Upper Colorado River Wild and Scenic Stakeholders Group & U.S. Bureau of Land Management.
- Greiner, J. and Warner. (2012) Commercial River Use in the State of Colorado 2008- 2011. Colorado River Outfitters Association.
- Hill, M.T., Platts, W.S., and Beschta, R.L. (1991) Ecological and geomorphological concepts for instream and out-of-channel flow requirements. Rivers 2(3):198-210
- Loomis, J. 2008. The economic contribution of instream flows in Colorado: how angling and rafting use increase with instream flows. January 2008 Economic Development Report, No. 2 (EDR: 08-02). Department of Agriculture and Resource Economics.
- Jackson, W.L. & Beschta, R.L. (1992) Instream flows for rivers: Maintaining stream form and function as a basis for protecting dependant uses. In M.E. Jones and A. Laenen (editors), Interdisciplinary Approaches in Hydrology and Hydrogeology. St. Paul, MN: American Institute of Hydrology.
- Kennedy, J.J. & Thomas, J.W. (1995) Managing natural resources as social value. Pages 311-322 in R.L. Knight and S.F. Bates (editors), A New Century for Natural Resources Management. Island Press, Washington D.C.
- Richter, B.D., Baumgartner, J.V., Wigington, R., and Braun, D.P. (1997) How much water does a river need? Freshwater Biology 37:231-249
- Sanderson, J.S., B.P. Bledsoe, N. L. Poff, T. Wilding, and N. Fey (2012). Yampa-White Basin Roundtable Watershed Flow Evaluation Tool (WFET) Study. Prepared by CDM Smith for The Nature Conservancy, June 2012

- Shelby, B., Brown, T. C., & Taylor, J. G. (1992). Streamflow and Recreation. Ft. Collins, CO: USDA Forest Service, Rocky Mountain Forest and Range Experiment Station (General Technical Report RM-209).
- Shelby, B., Brown, T.C., and Baumgartner, R. (1992) Effects of streamflows on river trips on the Colorado River in Grand Canyon, Arizona. Rivers 3(3): 191-201
- Shelby, B., Stankey, G., and Schindler, B. (1992) Introduction: the role of standards in wilderness management. Pages 1-4 in B.
- Shelby, G. Stankey, and B. Shindler (editors). Defining wilderness quality: The role of standards in wilderness management. Portland, OR: U.S. Forest Service, Pacific Northwest Research Station (General Technical Report PNW-GTR-305).
- Shelby, B., Vaske, J.J., & Donnely, M.P. (1996). Norms, standards and natural resources. Leisure Sciences, 18, 103-123
- Shelby, B., Whittaker, D. & Hansen, W. (1997). Streamflow effects on hiking in Zion National Park, Utah. Rivers, 6(2), 80-93
- Southwick Associates, 2012. Economic Contributions of Outdoor Recreation on the Colorado River & Its Tributaries. Retrieved from: http://protectflows.com/wpcontent/uploads/2012/05/Colorado-River-Recreational-Economic-Impacts- Southwick-Associates-5-3-12_2.pdf
- Stafford, E., Fey, N., and Vaske, J. J. (2016) Quantifying Whitewater Recreation Opportunities in Cataract Canyon of the Colorado River, Utah: Aggregating Acceptable Flows and Hydrologic Data to Identify Boatable Days. River Res. Applic., doi: 10.1002/rra.3049.
- Vandas, S., Whittaker, D., Murphy, D., Prichard, D., and others. (1990) Dolores River Instream Flow Assessment. Denver, Co: U.S. Bureau of Land Management (BLM/YA/PR-90-003).
- Whittaker, D., Shelby, B., Jackson, W., & Beschta, R. (1993). Instream Flows for recreation: A handbook on concepts and research methods. Anchorage, AK: Us National Park Service, Rivers, Trails.
- Whittaker, D. and B. Shelby. (2002) Evaluating instream flows for recreation: a handbook on concepts and research methods. U.S. Department of Interior, National Park Service, Anchorage, AK

APPENDIX A: Analysis Results by Reach

Rio Grande: Rio Grande Reservoir to Mouth of Box Canyon

Α Rio Grande: Rio Grande Reservoir to Mouth of Box Canyon (Reach 1)

Figure 1: Survey responses for the Rio Grande, Rio Grande Reservoir to Mouth of Box Canyon. (A) Flow acceptability rankings. (B) User identified preferred craft types and recreational use objectives. (C) User identified whitewater navigation expertise.

Rio Grande: Rio Grande Reservoir to Mouth of Box Canyon (Reach 1)

Figure 2: Flow preferences reported by users for the Rio Grande: Rio Grande Reservoir to Mouth of Box Canyon. (Top) Boxplot of responses to open-ended questions about different categories of flow. (Bottom) PCI2 analysis results overlaid on the percentage of respondents that ranked a given flow as "Moderately Acceptable" or "Acceptable". The percentage of respondents in those categories across the full range of flows was fit with a Loess curve to support visualization of flow acceptability ranges. Note: the maximum safe release from Rio Grande Reservoir was 1200 cfs throughout the 1998 to 2017 period.

Table 1: Summarized open-format flow-preference question responses for Reach 1, Rio Grande: Rio Grande Reservoir to Mouth of Box Canyon. Note: the maximum safe release from Rio Grande Reservoir was 1200 cfs throughout the 1998 to 2017 period.

Survey Question	25th Percentile	Median Response	75th Percentile	Response Count
Minimum Flow (cfs)	300	400	600	35
Low Acceptable Flow (cfs)	375	500	750	35
Technical Flow (cfs)	300	400	662	32
Standard Trip Flow (cfs)	600	800	1000	35
Challenging High Flow (cfs)	900	1200	1800	29
Highest Safe Flow (cfs)	1150	1500	2100	27

Table 2: PCI2 analysis results for Reach 1, Rio Grande: Rio Grande Reservoir to Mouth of Box Canyon.

Flow (cfs)	PCI2	Median Likert Response	n	Max. Distance	Total Distance
100	0.3216912	-2.0	33	2176	700
200	0.5698529	-2.0	33	2176	1240
300	0.7924837	-1.0	35	2448	1940
400	0.8366013	0.0	35	2448	2048
500	0.8169935	0.0	35	2448	2000
600	0.7140523	0.0	35	2448	1748
700	0.6851211	1.0	34	2312	1584
800	0.6185121	1.5	34	2312	1430
900	0.6777344	2.0	32	2048	1388
1000	0.6435547	2.0	32	2048	1318

Flow (cfs)	PCI2	Median Likert Response	n	Max. Distance	Total Distance
1200	0.6601562	2.0	32	2048	1352
1400	0.7357143	2.0	29	1680	1236
1600	0.7485207	1.5	26	1352	1012
1800	0.8846154	2.0	25	1248	1104
2000	0.8863636	1.0	22	968	858
2250	0.8946281	0.0	22	968	866
2500	0.9136364	0.0	21	880	804
2750	0.9070248	0.0	22	968	878
3000	0.9297521	-0.5	22	968	900

Table 3: Boatable Days analysis results broken out by month for the Rio Grande: Rio Grande Reservoir to Mouth of Box Canyon. Where an Acceptability Category (e.g. 'Optimal') is missing for a given month, zero days were observed to fall within that category and the row was left out of the table for brevity.

Month	Acceptability Category	Dry Year	Avg. Year	Wet Year
Apr	Lower Acceptable	0	0	2
May	Lower Acceptable	27	19	21
	Optimal	0	8	10
Jun	Lower Acceptable	11	13	0
	Optimal	0	17	30
Jul	Lower Acceptable	0	6	17
	Optimal	0	0	3

Rio Grande: Rio Grande Reservoir to Mouth of Box Canyon (Reach 1)

Figure 3: Boatable Days analysis results for the Rio Grande: Rio Grande Reservoir to Mouth of Box Canyon. (A) Total Boatable Days by year type and acceptability category; (B) flow acceptability ranges compared to typical wet, average, and dry year streamflow time series; and (C) monthly Boatable Days totals summarized by year type and acceptability category.

Rio Grande: Box Canyon to Deep Creek/Creede

Figure 4: Survey responses for the Rio Grande, Box Canyon to Deep Creek/Creede. (A) Flow acceptability rankings. (B) User identified preferred craft types and recreational use objectives. (C) User identified whitewater navigation expertise.

Rio Grande: Box Canyon to Deep Creek/Creede (Reach 2)

Figure 5: Flow preferences reported by users for the Rio Grande: Box Canyon to Deep Creek/Creede. (Top) Boxplot of responses to open-ended questions about different categories of flow. (Bottom) PCI2 analysis results overlaid on the percentage of respondents that ranked a given flow as "Moderately Acceptable" or "Acceptable". The percentage of respondents in those categories across the full range of flows was fit with a Loess curve to support visualization of flow acceptability ranges. Table 4: Summarized open-format flow-preference question responses for Reach 2, Rio Grande: Box Canyon to Deep Creek/Creede.

Survey Question	25th Percentile	Median Response	75th Percentile	Response Count
Minimum Flow (cfs)	300	350	400	28
Low Acceptable Flow (cfs)	300	400	500	28
Technical Flow (cfs)	300	400	500	24
Standard Trip Flow (cfs)	575	700	900	28
Challenging High Flow (cfs)	1000	1200	1675	22
Highest Safe Flow (cfs)	1250	1800	2500	22

 Table 5: PCI2 analysis results for Reach 2, Rio Grande: Box Canyon to Deep Creek/Creede.

Flow (cfs)	PCI2	Median Likert Response	n	Max. Distance	Total Distance
100	0.0739645	-2.0	26	1352	100
200	0.1390533	-2.0	26	1352	188
300	0.6257396	-1.0	26	1352	846
400	0.7678571	0.5	28	1568	1204
500	0.6760204	2.0	28	1568	1060
600	0.6109694	2.0	28	1568	958
700	0.4528061	2.0	28	1568	710
800	0.3545918	2.0	28	1568	556
900	0.3214286	2.0	27	1456	468
1000	0.2115385	2.0	25	1248	264
1200	0.5103550	2.0	26	1352	690
1400	0.5659722	2.0	24	1152	652

Flow (cfs)	PCI2	Median Likert Response	n	Max. Distance	Total Distance
1600	0.8560606	1.0	23	1056	904
1800	0.9090909	1.0	23	1056	960
2000	0.9242424	0.0	23	1056	976
2250	0.8636364	-1.0	22	968	836
2500	0.8367769	-2.0	22	968	810
2750	0.8099174	-2.0	22	968	784
3000	0.7871901	-2.0	22	968	762

Table 6: Boatable Days analysis results broken out by month for the Rio Grande: Box Canyon to Deep Creek/Creede. Where an Acceptability Category (e.g. 'Optimal') is missing for a given month, zero days were observed to fall within that category and the row was left out of the table for brevity.

Month	Acceptability Category	Dry Year	Avg. Year	Wet Year
Apr	Lower Acceptable	0	0	2
May	Lower Acceptable	9	6	11
	Optimal	18	21	20
Jun	Lower Acceptable	8	0	0
	Optimal	3	30	30
Jul	Lower Acceptable	0	5	11
	Optimal	0	1	9

Rio Grande: Box Canyon to Deep Creek/Creede (Reach 2)

Figure 6: Boatable Days analysis results for the Rio Grande: Box Canyon to Deep Creek/Creede. (A) Total Boatable Days by year type and acceptability category; (B) flow acceptability ranges compared to typical wet, average, and dry year streamflow time series; and (C) monthly Boatable Days totals summarized by year type and acceptability category.

A Rio Grande: Creede to Wagon Wheel Gap (Reach 3)

Figure 7: Survey responses for the Rio Grande, Creede to Wagon Wheel Gap. (A) Flow acceptability rankings. (B) User identified preferred craft types and recreational use objectives. (C) User identified whitewater navigation expertise.

Rio Grande: Creede to Wagon Wheel Gap (Reach 3)

Figure 8: Flow preferences reported by users for the Rio Grande: Creede to Wagon Wheel Gap. (Top) Boxplot of responses to open-ended questions about different categories of flow. (Bottom) PCI2 analysis results overlaid on the percentage of respondents that ranked a given flow as "Moderately Acceptable" or "Acceptable". The percentage of respondents in those categories across the full range of flows was fit with a Loess curve to support visualization of flow acceptability ranges. Table 7: Summarized open-format flow-preference question responses for Reach 3, Rio Grande: Creede to Wagon Wheel Gap.

Survey Question	25th Percentile	Median Response	75th Percentile	Response Count
Minimum Flow (cfs)	300	400	538	23
Low Acceptable Flow (cfs)	400	450	600	23
Technical Flow (cfs)	350	500	600	21
Standard Trip Flow (cfs)	650	800	1150	22
Challenging High Flow (cfs)	1432	2000	2125	20
Highest Safe Flow (cfs)	1975	2500	3500	19

Table 8: PCI2 analysis results for Reach 3, Rio Grande: Creede to Wagon Wheel Gap.

Flow (cfs)	PCI2	Median Likert Response	n	Max. Distance	Total Distance
100	0.0867769	-2.0	22	968	84
200	0.1611570	-2.0	22	968	156
300	0.7159091	-2.0	23	1056	756
400	0.8489583	0.0	24	1152	978
500	0.8697917	1.0	24	1152	1002
600	0.6857639	2.0	24	1152	790
700	0.4878472	2.0	24	1152	562
800	0.3142361	2.0	24	1152	362
900	0.2500000	2.0	23	1056	264
1000	0.2314050	2.0	22	968	224
1200	0.1681818	2.0	21	880	148
1400	0.2227273	2.0	21	880	196

Flow (cfs)	PCI2	Median Likert Response	n	Max. Distance	Total Distance
1600	0.4300000	2.0	20	800	344
1800	0.5166667	2.0	19	720	372
2000	0.5666667	2.0	19	720	408
2250	0.7469136	1.0	18	648	484
2500	0.8580247	1.0	18	648	556
2750	0.9475309	0.5	18	648	614
3000	0.9444444	0.0	18	648	612
3500	0.9375000	0.0	17	576	540
3750	0.9335938	-0.5	16	512	478
4000	0.9464286	-1.0	15	448	424
4250	0.9285714	-0.5	14	392	364
4500	0.9285714	-0.5	14	392	364
4750	0.9285714	-1.5	14	392	364
5000	0.8928571	-1.5	14	392	350
5250	0.9166667	-1.0	13	336	308
5500	0.8877551	-1.0	14	392	348

Table 9: Boatable Days analysis results broken out by month for the Rio Grande: Creede to Wagon Wheel Gap. Where an Acceptability Category (e.g. 'Optimal') is missing for a given month, zero days were observed to fall within that category and the row was left out of the table for brevity.

Month	Acceptability Category	Dry Year	Avg. Year	Wet Year
Mar	Lower Acceptable	1	0	0
	Lower Acceptable	10	7	2
Apr	Optimal	8	13	16
Mari	Optimal	31	23	16
мау	Upper Acceptable	0	8	10
Jun	Lower Acceptable	5	0	0
	Optimal	11	21	6
	Upper Acceptable	0	9	11
Teel	Lower Acceptable	0	11	10
Jui	Optimal	0	20	21
Ano	Lower Acceptable	2	26	18
Aug	Optimal	0	3	0
Son	Lower Acceptable	18	15	0
Sep	Optimal	1	0	0
Oct	Lower Acceptable	7	3	1
Oct	Optimal	5	0	0

Rio Grande: Creede to Wagon Wheel Gap (Reach 3)

Figure 9: Boatable Days analysis results for the Rio Grande: Creede to Wagon Wheel Gap. (A) Total Boatable Days by year type and acceptability category; (B) flow acceptability ranges compared to typical wet, average, and dry year streamflow time series; and (C) monthly Boatable Days totals summarized by year type and acceptability category.

A Rio Grande: Wagon Wheel Gap to South Fork (Reach 4)

Figure 10: Survey responses for the Rio Grande, Wagon Wheel Gap to South Fork. (A) Flow acceptability rankings. (B) User identified preferred craft types and recreational use objectives. (C) User identified whitewater navigation expertise.

Rio Grande: Wagon Wheel Gap to South Fork (Reach 4)

Figure 11: Flow preferences reported by users for the Rio Grande: Wagon Wheel Gap to South Fork. (Top) Boxplot of responses to open-ended questions about different categories of flow. (Bottom) PCI2 analysis results overlaid on the percentage of respondents that ranked a given flow as "Moderately Acceptable" or "Acceptable". The percentage of respondents in those categories across the full range of flows was fit with a Loess curve to support visualization of flow acceptability ranges. Table 10: Summarized open-format flow-preference question responses for Reach 4, Rio Grande: Wagon Wheel Gap to South Fork.

Survey Question	25th Percentile	Median Response	75th Percentile	Response Count
Minimum Flow (cfs)	300	300	400	28
Low Acceptable Flow (cfs)	300	400	500	28
Technical Flow (cfs)	300	350	425	27
Standard Trip Flow (cfs)	575	700	1000	28
Challenging High Flow (cfs)	1425	2000	2925	26
Highest Safe Flow (cfs)	1600	2500	3250	27

Table 11: PCI2 analysis results for Reach 4, Rio Grande: Wagon Wheel Gap to South Fork.

Flow (cfs)	PCI2	Median Likert Response	n	Max. Distance	Total Distance
100	0.1222222	-2.0	30	1800	220
200	0.2738095	-2.0	29	1680	460
300	0.6833333	-1.0	30	1800	1230
400	0.7900391	0.0	32	2048	1618
500	0.7562500	1.0	31	1920	1452
600	0.5770833	2.0	31	1920	1108
700	0.4729167	2.0	31	1920	908
800	0.4611111	2.0	30	1800	830
900	0.3523810	2.0	29	1680	592
1000	0.3428571	2.0	29	1680	576
1200	0.3596939	2.0	28	1568	564

Flow (cfs)	PCI2	Median Likert Response	n	Max. Distance	Total Distance
1400	0.4862637	2.0	27	1456	708
1600	0.5872781	2.0	26	1352	794
1800	0.8237179	2.0	25	1248	1028
2000	0.9131944	1.5	24	1152	1052
2250	0.9392361	1.5	24	1152	1082
2500	0.9496528	1.0	24	1152	1094
2750	0.9752066	0.0	22	968	944
3000	0.9607438	-0.5	22	968	930
3500	0.9049587	-2.0	22	968	876
3750	0.8363636	-2.0	21	880	736
4000	0.8363636	-2.0	21	880	736
4250	0.8363636	-2.0	21	880	736
4500	0.8227273	-2.0	21	880	724
4750	0.8227273	-2.0	21	880	724
5000	0.8227273	-2.0	21	880	724
5250	0.7250000	-2.0	20	800	580
5500	0.7250000	-2.0	20	800	580

Table 12: Boatable Days analysis results broken out by month for the Rio Grande: Wagon Wheel Gap to South Fork. Where an Acceptability Category (e.g. 'Optimal') is missing for a given month, zero days were observed to fall within that category and the row was left out of the table for brevity.

Month	Acceptability Category	Dry Year	Avg. Year	Wet Year
Mar	Lower Acceptable	2	0	0
Apr	Lower Acceptable	22	12	14
Apr	Optimal	8	13	16
May	Optimal	29	15	13
	Upper Acceptable	2	16	13
	Lower Acceptable	12	0	0
Jun	Optimal	11	16	0
	Upper Acceptable	0	14	20
	Lower Acceptable	4	11	10
Jul	Optimal	0	20	19
	Upper Acceptable	0	0	2
A	Lower Acceptable	18	28	31
Aug	Optimal	0	3	0
See	Lower Acceptable	21	30	9
Sep	Optimal	1	0	0
Oct	Lower Acceptable	22	30	18
Oct	Optimal	5	0	0

Rio Grande: Wagon Wheel Gap to South Fork (Reach 4)

Figure 12: Boatable Days analysis results for the Rio Grande: Wagon Wheel Gap to South Fork. (A) Total Boatable Days by year type and acceptability category; (B) flow acceptability ranges compared to typical wet, average, and dry year streamflow time series; and (C) monthly Boatable Days totals summarized by year type and acceptability category.

A Rio Grande: South Fork to Del Norte (Hwy 112) (Reach 5)

Figure 13: Survey responses for the Rio Grande, South Fork to Del Norte (Hwy 112). (A) Flow acceptability rankings. (B) User identified preferred craft types and recreational use objectives. (C) User identified whitewater navigation expertise.

Rio Grande: South Fork to Del Norte (Hwy 112) (Reach 5)

Figure 14: Flow preferences reported by users for the Rio Grande: South Fork to Del Norte (Hwy 112). (Top) Boxplot of responses to open-ended questions about different categories of flow. (Bottom) PCI2 analysis results overlaid on the percentage of respondents that ranked a given flow as "Moderately Acceptable" or "Acceptable". The percentage of respondents in those categories across the full range of flows was fit with a Loess curve to support visualization of flow acceptability ranges.

Table 13: Summarized open-format flow-preference question responses for Reach 5, Rio Grande: South Fork to Del Norte (Hwy 112).

Survey Question	25th Percentile	Median Response	75th Percentile	Response Count
Minimum Flow (cfs)	300	350	400	20
Low Acceptable Flow (cfs)	312	400	500	18
Technical Flow (cfs)	300	350	500	15
Standard Trip Flow (cfs)	600	800	1000	17
Challenging High Flow (cfs)	1450	2000	2800	15
Highest Safe Flow (cfs)	2200	3000	5000	13

 Table 14: PCI2 analysis results for Reach 5, Rio Grande: South Fork to Del Norte (Hwy 112).

Flow (cfs)	PCI2	Median Likert Response	n	Max. Distance	Total Distance
100	0.0000000	-2.0	20	800	0
200	0.0000000	-2.0	19	720	0
300	0.6125000	-1.5	20	800	490
400	0.6322314	0.0	22	968	612
500	0.5818182	1.0	21	880	512
600	0.3677686	2.0	22	968	356
700	0.1611570	2.0	22	968	156
800	0.1681818	2.0	21	880	148
900	0.1750000	2.0	20	800	140
1000	0.2650000	2.0	20	800	212
1200	0.3500000	2.0	20	800	280
1400	0.3777778	2.0	19	720	272
1600	0.4500000	2.0	19	720	324

Flow (cfs)	PCI2	Median Likert Response	n	Max. Distance	Total Distance
1800	0.5222222	2.0	19	720	376
2000	0.8179012	2.0	18	648	530
2250	0.8819444	1.0	17	576	508
2500	0.9166667	1.0	17	576	528
2750	0.9791667	1.0	17	576	564
3000	0.9726562	0.0	16	512	498
3500	0.8928571	-2.0	13	336	300
3750	0.8452381	-2.0	13	336	284
4000	0.7857143	-2.0	13	336	264
4250	0.7738095	-2.0	13	336	260
4500	0.7500000	-2.0	13	336	252
4750	0.7142857	-2.0	13	336	240
5000	0.7142857	-2.0	13	336	240
5250	0.5555556	-2.0	12	288	160
5500	0.5555556	-2.0	12	288	160
5750	0.5555556	-2.0	12	288	160
6000	0.5555556	-2.0	12	288	160
6250	0.6000000	-2.0	11	240	144
6500	0.6000000	-2.0	11	240	144
6750	0.6000000	-2.0	11	240	144
7000	0.3600000	-2.0	10	200	72
7500	0.3600000	-2.0	10	200	72

Table 15: Boatable Days analysis results broken out by month for the Rio Grande: South Fork to Del Norte (Hwy 112). Where an Acceptability Category (e.g. 'Optimal') is missing for a given month, zero days were observed to fall within that category and the row was left out of the table for brevity.

Month	Acceptability Category	Dry Year	Avg. Year	Wet Year
М	Lower Acceptable	3	16	13
Mar	Optimal	2	0	3
	Lower Acceptable	0	5	0
Apr	Optimal	30	25	30
M	Optimal	19	5	5
Мау	Upper Acceptable	12	12	8
	Lower Acceptable	10	0	0
Jun	Optimal	19	7	0
	Upper Acceptable	0	14	8
	Lower Acceptable	8	0	0
Jul	Optimal	1	31	28
	Upper Acceptable	0	0	3
	Lower Acceptable	21	0	12
Aug	Optimal	7	31	19
C	Lower Acceptable	3	11	20
Sep	Optimal	19	19	0
	Lower Acceptable	9	22	29
Oct	Optimal	22	9	2
Nov	Lower Acceptable	0	2	0

Rio Grande: South Fork to Del Norte (Hwy 112) (Reach 5)

Figure 15: Boatable Days analysis results for the Rio Grande: South Fork to Del Norte (Hwy 112). (A) Total Boatable Days by year type and acceptability category; (B) flow acceptability ranges compared to typical wet, average, and dry year streamflow time series; and (C) monthly Boatable Days totals summarized by year type and acceptability category.

Rio Grande: Alamosa to Lasauses

A Rio Grande: Alamosa to Lasauses (Reach 6)

Figure 16: Survey responses for the Rio Grande, Alamosa to Lasauses. (A) Flow acceptability rankings. (B) User identified preferred craft types and recreational use objectives. (C) User identified whitewater navigation expertise.

Rio Grande: Alamosa to Lasauses (Reach 6)

Figure 17: Flow preferences reported by users for the Rio Grande: Alamosa to Lasauses. (Top) Boxplot of responses to open-ended questions about different categories of flow. (Bottom) PCI2 analysis results overlaid on the percentage of respondents that ranked a given flow as "Moderately Acceptable" or "Acceptable". The percentage of respondents in those categories across the full range of flows was fit with a Loess curve to support visualization of flow acceptability ranges. Table 16: Summarized open-format flow-preference question responses for Reach 6, Rio Grande: Alamosa to Lasauses.

Survey Question	25th Percentile	Median Response	75th Percentile	Response Count
Minimum Flow (cfs)	140	180	190	3
Low Acceptable Flow (cfs)	200	200	300	3
Technical Flow (cfs)	185	190	195	2
Standard Trip Flow (cfs)	625	750	875	2
Challenging High Flow (cfs)	1000	1000	1000	1
Highest Safe Flow (cfs)	5000	5000	5000	1

Table 17: PCI2 analysis results for Reach 6, Rio Grande: Alamosa to Lasauses.

Flow (cfs)	PCI2	Median Likert Response	n	Max. Distance	Total Distance
100	0.50	-2	3	16	8
200	0.75	1	3	16	12
300	0.50	2	3	16	8
400	0.25	2	3	16	4
500	0.00	2	3	16	0
600	0.00	2	3	16	0
700	0.00	2	3	16	0
800	0.00	2	3	16	0
900	0.00	2	3	16	0
1000	0.00	2	3	16	0
1200	0.00	2	2	8	0
1400	0.00	2	2	8	0
1600	NaN	2	1	0	0

Table 18: Boatable Days analysis results broken out by month for the Rio Grande: Alamosa to Lasauses. Where an Acceptability Category (e.g. 'Optimal') is missing for a given month, zero days were observed to fall within that category and the row was left out of the table for brevity.

Month	Acceptability Category	Dry Year	Avg. Year	Wet Year
Jan	Lower Acceptable	0	0	10
Feb	Lower Acceptable	13	21	22
	Lower Acceptable	17	30	31
Mar	Optimal	0	1	0
Apr	Lower Acceptable	0	4	22
May	Lower Acceptable	0	28	15
	Optimal	0	0	16
	Lower Acceptable	10	21	1
Jun	Optimal	0	0	29
Jul	Lower Acceptable	0	1	31
Aug	Lower Acceptable	0	0	31
Sep	Lower Acceptable	0	0	24
Nov	Lower Acceptable	7	27	15
Dec	Lower Acceptable	0	14	2

Rio Grande: Alamosa to Lasauses (Reach 6)

Figure 18: Boatable Days analysis results for the Rio Grande: Alamosa to Lasauses. (A) Total Boatable Days by year type and acceptability category; (B) flow acceptability ranges compared to typical wet, average, and dry year streamflow time series; and (C) monthly Boatable Days totals summarized by year type and acceptability category.

Rio Grande: Lasauses to Lobatos Bridge

A Rio Grande: Lasauses to Lobatos Bridge (Reach 7)

Rio Grande: Lasauses to Lobatos Bridge (Reach 7)

Figure 20: Flow preferences reported by users for the Rio Grande: Lasauses to Lobatos Bridge. (Top) Boxplot of responses to open-ended questions about different categories of flow. (Bottom) PCI2 analysis results overlaid on the percentage of respondents that ranked a given flow as "Moderately Acceptable" or "Acceptable". The percentage of respondents in those categories across the full range of flows was fit with a Loess curve to support visualization of flow acceptability ranges. Table 19: Summarized open-format flow-preference question responses for Reach 7, Rio Grande: Lasauses to Lobatos Bridge.

Survey Question	25th Percentile	Median Response	75th Percentile	Response Count
Minimum Flow (cfs)	200	300	388	8
Low Acceptable Flow (cfs)	275	350	425	8
Technical Flow (cfs)	300	300	350	5
Standard Trip Flow (cfs)	575	850	1275	8
Challenging High Flow (cfs)	1225	1400	1625	4
Highest Safe Flow (cfs)	1700	2000	3500	3

Table 20: PCI2 analysis results for Reach 7, Rio Grande: Lasauses to Lobatos Bridge.

Flow (cfs)	PCI2	Median Likert Response	n	Max. Distance	Total Distance
100	0.2187500	-2.0	8	128	28
200	0.6250000	-1.0	9	160	100
300	0.7750000	0.0	9	160	124
400	0.6000000	1.0	9	160	96
500	0.5312500	2.0	8	128	68
600	0.3333333	2.0	7	96	32
700	0.0000000	2.0	7	96	0
800	0.0000000	2.0	7	96	0
900	0.0000000	2.0	7	96	0
1000	0.0000000	2.0	7	96	0
1200	0.1388889	2.0	6	72	10
1400	0.2777778	2.0	6	72	20

Flow (cfs)	PCI2	Median Likert Response	n	Max. Distance	Total Distance
1600	0.5833333	2.0	5	48	28
1800	0.7500000	2.0	5	48	36
2000	0.8333333	2.0	5	48	40
2250	0.8333333	2.0	5	48	40
2500	0.9166667	2.0	5	48	44
2750	0.9166667	2.0	5	48	44
3000	0.9375000	0.5	4	32	30
3500	1.0000000	0.0	4	32	32
3750	1.0000000	0.0	4	32	32
4000	1.0000000	0.0	4	32	32
4250	1.0000000	-2.0	3	16	16
4500	1.0000000	-2.0	3	16	16
4750	1.0000000	-2.0	3	16	16
5000	1.0000000	-2.0	3	16	16
5250	1.0000000	-2.0	3	16	16
5500	1.0000000	-2.0	3	16	16
5750	1.0000000	-2.0	3	16	16
6000	1.0000000	-2.0	3	16	16
6250	1.0000000	0.0	2	8	8
6500	1.0000000	-2.0	3	16	16

Table 21: Boatable Days analysis results broken out by month for the Rio Grande: Lasauses to Lobatos Bridge. Where an Acceptability Category (e.g. 'Optimal') is missing for a given month, zero days were observed to fall within that category and the row was left out of the table for brevity.

Month	Acceptability Category	Dry Year	Avg. Year	Wet Year
Feb	Lower Acceptable	0	0	1
Mar	Lower Acceptable	0	24	30
Apr	Lower Acceptable	0	4	10
May	Lower Acceptable	0	3	14
	Optimal	0	0	17
I	Lower Acceptable	0	8	0
Jun	Optimal	0	0	30
Jul	Lower Acceptable	0	0	12
Aug	Lower Acceptable	0	0	7

Rio Grande: Lasauses to Lobatos Bridge (Reach 7)

Figure 21: Boatable Days analysis results for the Rio Grande: Lasauses to Lobatos Bridge. (A) Total Boatable Days by year type and acceptability category; (B) flow acceptability ranges compared to typical wet, average, and dry year streamflow time series; and (C) monthly Boatable Days totals summarized by year type and acceptability category.

A Rio Grande: Lobatos Bridge to Lee Trail, NM (Reach 8)

Figure 22: Survey responses for the Rio Grande, Lobatos Bridge to Lee Trail, NM. (A) Flow acceptability rankings. (B) User identified preferred craft types and recreational use objectives. (C) User identified whitewater navigation expertise.

Rio Grande: Lobatos Bridge to Lee Trail, NM (Reach 8)

Figure 23: Flow preferences reported by users for the Rio Grande: Lobatos Bridge to Lee Trail, NM. (Top) Boxplot of responses to open-ended questions about different categories of flow. (Bottom) PCI2 analysis results overlaid on the percentage of respondents that ranked a given flow as "Moderately Acceptable" or "Acceptable". The percentage of respondents in those categories across the full range of flows was fit with a Loess curve to support visualization of flow acceptability ranges. Table 22: Summarized open-format flow-preference question responses for Reach 8, Rio Grande: Lobatos Bridge to Lee Trail, NM.

Survey Question	25th Percentile	Median Response	75th Percentile	Response Count
Minimum Flow (cfs)	200	200	400	17
Low Acceptable Flow (cfs)	250	350	600	17
Technical Flow (cfs)	200	300	400	15
Standard Trip Flow (cfs)	500	600	1000	15
Challenging High Flow (cfs)	1300	1500	2000	9
Highest Safe Flow (cfs)	2000	2250	4000	8

Table 23: PCI2 analysis results for Reach 8, Rio Grande: Lobatos Bridge to Lee Trail, NM.

Flow (cfs)	PCI2	Median Likert Response	n	Max. Distance	Total Distance
100	0.1171875	-2.0	16	512	60
200	0.6736111	-1.0	17	576	388
300	0.7839506	0.5	18	648	508
400	0.8364198	1.0	18	648	542
500	0.7222222	2.0	17	576	416
600	0.5976562	2.0	16	512	306
700	0.5117188	2.0	16	512	262
800	0.3392857	2.0	15	448	152
900	0.2589286	2.0	15	448	116
1000	0.1160714	2.0	15	448	52
1200	0.1224490	2.0	14	392	48
1400	0.2152778	2.0	12	288	62

Flow (cfs)	PCI2	Median Likert Response	n	Max. Distance	Total Distance
1600	0.2700000	2.0	10	200	54
1800	0.3333333	2.0	11	240	80
2000	0.3333333	2.0	11	240	80
2250	0.5000000	2.0	10	200	100
2500	0.5000000	2.0	10	200	100
2750	0.5500000	2.0	9	160	88
3000	0.5500000	2.0	9	160	88
3500	0.7000000	2.0	9	160	112
3750	0.7000000	2.0	9	160	112
4000	0.7000000	2.0	9	160	112
4250	0.7000000	2.0	9	160	112
4500	0.7000000	2.0	9	160	112
4750	0.7000000	2.0	9	160	112
5000	0.7000000	2.0	9	160	112
5250	0.7000000	2.0	9	160	112
5500	0.7000000	2.0	9	160	112
5750	0.7000000	2.0	9	160	112
6000	0.7500000	2.0	9	160	120
6250	0.6900000	2.0	10	200	138
6500	0.8700000	2.0	10	200	174

Table 24: Boatable Days analysis results broken out by month for the Rio Grande: Lobatos Bridge to Lee Trail, NM. Where an Acceptability Category (e.g. 'Optimal') is missing for a given month, zero days were observed to fall within that category and the row was left out of the table for brevity.

Month	Acceptability Category	Dry Year	Avg. Year	Wet Year
Jan	Lower Acceptable	0	0	28
Feb	Lower Acceptable	0	19	29
Mar	Lower Acceptable	7	16	19
	Optimal	0	15	12
Apr	Lower Acceptable	0	20	12
	Optimal	0	1	18
May	Lower Acceptable	0	17	0
	Optimal	0	14	29
	Upper Acceptable	0	0	2
T	Lower Acceptable	0	14	0
Jun	Optimal	0	16	30
I1	Lower Acceptable	0	11	25
Jui	Optimal	0	0	6
Aug	Lower Acceptable	0	0	21
Sep	Lower Acceptable	0	0	1
Nov	Lower Acceptable	0	26	6
Dec	Lower Acceptable	0	14	0

Rio Grande: Lobatos Bridge to Lee Trail, NM (Reach 8)

Figure 24: Boatable Days analysis results for the Rio Grande: Lobatos Bridge to Lee Trail, NM. (A) Total Boatable Days by year type and acceptability category; (B) flow acceptability ranges compared to typical wet, average, and dry year streamflow time series; and (C) monthly Boatable Days totals summarized by year type and acceptability category.

Conejos River: Platoro Reservoir to South Fork Conejos

A Conejos: Platoro Reservoir To South Fork Conejos (Reach 9)

Figure 25: Survey responses for the Conejos, Platoro Reservoir to South Fork Conejos. (A) Flow acceptability rankings. (B) User identified preferred craft types and recreational use objectives. (C) User identified whitewater navigation expertise.

Conejos: Platoro Reservoir To South Fork Conejos (Reach 9)

Figure 26: Flow preferences reported by users for the Conejos: Platoro Reservoir to South Fork Conejos. (Top) Boxplot of responses to open-ended questions about different categories of flow. (Bottom) PCI2 analysis results overlaid on the percentage of respondents that ranked a given flow as "Moderately Acceptable" or "Acceptable". The percentage of respondents in those categories across the full range of flows was fit with a Loess curve to support visualization of flow acceptability ranges.
Table 25: Summarized open-format flow-preference question responses for Reach 9, Conejos: Platoro Reservoir to South Fork Conejos.

Survey Question	25th Percentile	Median Response	75th Percentile	Response Count
Minimum Flow (cfs)	138	250	362	6
Low Acceptable Flow (cfs)	138	275	375	6
Technical Flow (cfs)	100	250	300	5
Standard Trip Flow (cfs)	262	350	700	6
Challenging High Flow (cfs)	500	500	500	5
Highest Safe Flow (cfs)	450	600	825	4

Table 26: PCI2 analysis results for Reach 9, Conejos: Platoro Reservoir to South Fork Conejos.

Flow (cfs)	PCI2	Median Likert Response	n	Max. Distance	Total Distance
100	0.8333333	-1.0	7	96	80
200	0.9444444	1.0	6	72	68
300	0.8055556	2.0	6	72	58
400	0.6875000	1.0	4	32	22
500	0.4375000	1.5	4	32	14
600	0.6250000	1.5	4	32	20
700	0.5625000	2.0	4	32	18
800	0.0000000	2.0	3	16	0
900	0.0000000	2.0	3	16	0
1000	0.0000000	2.0	3	16	0
1200	0.0000000	2.0	3	16	0

Table 27: Boatable Days analysis results broken out by month for the Conejos: Platoro Reservoir to South Fork Conejos. Where an Acceptability Category (e.g. 'Optimal') is missing for a given month, zero days were observed to fall within that category and the row was left out of the table for brevity.

Month	Acceptability Category	Dry Year	Avg. Year	Wet Year
Max	Lower Acceptable	22	17	11
May	Optimal	0	10	1
Les	Lower Acceptable	28	23	1
Jun	Optimal	0	7	29
T1	Lower Acceptable	3	16	30
Jui	Optimal	0	0	1
Aug	Lower Acceptable	0	0	2

Conejos: Platoro Reservoir To South Fork Conejos (Reach 9)

Figure 27: Boatable Days analysis results for the Conejos: Platoro Reservoir to South Fork Conejos. (A) Total Boatable Days by year type and acceptability category; (B) flow acceptability ranges compared to typical wet, average, and dry year streamflow time series; and (C) monthly Boatable Days totals summarized by year type and acceptability category.

Conejos River: South Fork Conejos to Hwy 17 Bridge

A Conejos: S. Fork Conejos to Hwy 17 Bridge (Reach 10)

Figure 28: Survey responses for the Conejos, S. Fork Conejos to Hwy 17 Bridge. (A) Flow acceptability rankings. (B) User identified preferred craft types and recreational use objectives. (C) User identified whitewater navigation expertise.

Conejos: S. Fork Conejos to Hwy 17 Bridge (Reach 10)

Figure 29: Flow preferences reported by users for the Conejos: S. Fork Conejos to Hwy 17 Bridge. (Top) Boxplot of responses to open-ended questions about different categories of flow. (Bottom) PCI2 analysis results overlaid on the percentage of respondents that ranked a given flow as "Moderately Acceptable" or "Acceptable". The percentage of respondents in those categories across the full range of flows was fit with a Loess curve to support visualization of flow acceptability ranges. Table 28: Summarized open-format flow-preference question responses for Reach 10, Conejos: S. Fork Conejos to Hwy 17 Bridge.

Survey Question	25th Percentile	Median Response	75th Percentile	Response Count
Minimum Flow (cfs)	100	100	300	3
Low Acceptable Flow (cfs)	125	150	525	3
Technical Flow (cfs)	100	100	100	2
Standard Trip Flow (cfs)	250	300	650	3
Challenging High Flow (cfs)	500	600	700	2
Highest Safe Flow (cfs)	425	550	675	2

Table 29: PCI2 analysis results for Reach 10, Conejos: S. Fork Conejos to Hwy 17 Bridge.

Flow (cfs)	PCI2	Median Likert Response	n	Max. Distance	Total Distance
100	0.8125	-0.5	4	32	26
200	0.8750	0.0	4	32	28
300	0.9375	0.5	4	32	30
400	0.7500	0.5	4	32	24
500	0.5000	1.0	2	8	4
600	0.2500	1.5	2	8	2
700	0.0000	2.0	2	8	0
800	0.0000	2.0	2	8	0
900	0.0000	2.0	2	8	0
1000	0.0000	2.0	2	8	0
1200	0.0000	2.0	2	8	0

Table 30: Boatable Days analysis results broken out by month for the Conejos: S. Fork Conejos to Hwy 17 Bridge. Where an Acceptability Category (e.g. 'Optimal') is missing for a given month, zero days were observed to fall within that category and the row was left out of the table for brevity.

Month	Acceptability Category	Dry Year	Avg. Year	Wet Year
Marr	Lower Acceptable	22	17	11
may	Optimal	0	10	1
I	Lower Acceptable	28	23	1
Jun	Optimal	0	7	29
Lul	Lower Acceptable	3	16	30
Jui	Optimal	0	0	1
Aug	Lower Acceptable	0	0	2

Conejos: S. Fork Conejos to Hwy 17 Bridge (Reach 10)

Figure 30: Boatable Days analysis results for the Conejos: S. Fork Conejos to Hwy 17 Bridge. (A) Total Boatable Days by year type and acceptability category; (B) flow acceptability ranges compared to typical wet, average, and dry year streamflow time series; and (C) monthly Boatable Days totals summarized by year type and acceptability category.

Conejos River: Hwy 17 to Mogote Campground

A Conejos: Hwy 17 to Mogote Campground (Reach 11)

Figure 31: Survey responses for the Conejos, Hwy 17 to Mogote Campground. (A) Flow acceptability rankings. (B) User identified preferred craft types and recreational use objectives. (C) User identified whitewater navigation expertise.

Conejos: Hwy 17 to Mogote Campground (Reach 11)

Figure 32: Flow preferences reported by users for the Conejos: Hwy 17 to Mogote Campground. (Top) Boxplot of responses to open-ended questions about different categories of flow. (Bottom) PCI2 analysis results overlaid on the percentage of respondents that ranked a given flow as "Moderately Acceptable" or "Acceptable". The percentage of respondents in those categories across the full range of flows was fit with a Loess curve to support visualization of flow acceptability ranges.

Table 31: Summarized open-format flow-preference question responses for Reach 11, Conejos
Hwy 17 to Mogote Campground.

Survey Question	25th Percentile	Median Response	75th Percentile	Response Count
Minimum Flow (cfs)	175	300	450	4
Low Acceptable Flow (cfs)	300	400	500	3
Technical Flow (cfs)	250	300	300	3
Standard Trip Flow (cfs)	575	800	1000	4
Challenging High Flow (cfs)	1350	2000	2250	3
Highest Safe Flow (cfs)	1625	2250	2500	4

Table 32: PCI2 analysis results for Reach 11, Conejos: Hwy 17 to Mogote Campground.

Flow (cfs)	PCI2	Median Likert Response	n	Max. Distance	Total Distance
100	0.3750	-2.0	4	32	12
200	0.8125	-1.5	4	32	26
300	0.8750	-1.0	4	32	28
400	0.7500	0.5	4	32	24
500	0.5000	1.0	4	32	16
600	0.2500	1.5	4	32	8
700	0.0000	2.0	3	16	0
800	0.0000	2.0	3	16	0
900	0.0000	2.0	3	16	0
1000	0.0000	2.0	3	16	0
1200	0.0000	2.0	3	16	0
1400	0.0000	2.0	3	16	0

Flow (cfs)	PCI2	Median Likert Response	n	Max. Distance	Total Distance
1600	0.0000	2.0	4	32	0
1800	0.1875	2.0	4	32	6
2000	0.1875	2.0	4	32	6
2200	0.4375	1.5	4	32	14
2400	0.5000	2.0	3	16	8
2600	0.7500	2.0	3	16	12
2800	0.7500	-1.0	3	16	12
3000	0.7500	-1.0	3	16	12

Table 33: Boatable Days analysis results broken out by month for the Conejos: Hwy 17 to Mogote Campground. Where an Acceptability Category (e.g. 'Optimal') is missing for a given month, zero days were observed to fall within that category and the row was left out of the table for brevity.

Month	Acceptability Category	Dry Year	Avg. Year	Wet Year
A	Lower Acceptable	8	11	13
Apr	Optimal	0	0	4
Mari	Lower Acceptable	7	3	4
Мау	Optimal	24	28	27
Jun	Lower Acceptable	14	0	0
	Optimal	5	30	30
	Lower Acceptable	0	16	23
յա	Optimal	0	1	3

Conejos: Hwy 17 to Mogote Campground (Reach 11)

Figure 33: Boatable Days analysis results for the Conejos: Hwy 17 to Mogote Campground. (A) Total Boatable Days by year type and acceptability category; (B) flow acceptability ranges compared to typical wet, average, and dry year streamflow time series; and (C) monthly Boatable Days totals summarized by year type and acceptability category.

APPENDIX B: Web Survey

1. PLEASE READ THIS BEFORE COMPLETING THE SURVEY

American Whitewater and the Rio Grande Headwaters Restoration Project needs your help to define streamflows that support the full range of recreational boating opportunities on the Rio Grande and Conejos Rivers in Southern Colorado.

Information collected by this study will be used to assess river-dependent recreation as part of a joint stream management planning effort between American Whitewater and the Rio Grande Headwaters Restoration Project. We have developed this survey so individuals and outfitters can report how changes in stream flows affect recreation quality on each of our targeted river segments. Your input will help American Whitewater identify the full range of flows necessary to support recreation experiences, from technical low water to challenging high water opportunities. The information you provide will support development of multipurpose projects in the Basin and can help protect and enhance economies that rely on environmental and recreational water uses.

The river segments targeted by this study include:

- 1) Rio Grande Box Canyon (CO, this not the Taos Box)
- 2) Rio Grande from Box Canyon to Creede (CO, not the Taos Box)
- 3) Rio Grande from Creede to Wagon Wheel Gap
- 4) Rio Grande from Wagon Wheel Gap to South Fork
- 5) Rio Grande from South Fork to Del Norte
- 6) Conejos River from Platoro Reservoir to South Fork Campground
- 7) Conejos River from South Fork to Hwy 17 Bridge
- 8) Conejos River From Highway 17 Bridge, to Mogote Camp Ground
- 9) Rio Grande River From Alamosa to Lasauses
- 10) Rio Grande from Lasauses to Lobatos Bridge
- 11) Rio Grande from Lobatos Bridge to Lee Trail, New Mexico

You will only be asked to respond to survey questions for the segments you have personally experienced.

Please encourage your fellow paddlers to participate in this study.

2. Survey Overview

American Whitewater is conducting the study because decades of research confirms that changes in stream flow, or the amount of water in a river, fundamentally affects recreation quality in most river settings. In the short term, flows determine whether a river provides opportunities for boating and angling, and they affect attributes such as the challenge of whitewater or trip aesthetics. Longer-term flow regimes may also have effects on ecological resources, riparian environments, or channel features such as beaches, pools, rapids, and riffles.

American Whitewater is presenting two series of questions for each study segment in this web-based survey. The first series will ask participants to evaluate flows and overall recreation quality using a five-point "acceptability" scale (unacceptable -2 and acceptable 2) for flows measured at specific data nodes or stream gages. These individual evaluations of flows will be aggregated into social norms to describe overall flow-recreation quality, and allow AW to create Flow-Agreement Acceptability curves (FAAI) that graphically represent this important relationship. In most cases, FAAI curves show inverted U-shapes where low flows and high flows provide less acceptable recreation conditions, while medium flows provide more acceptable (greater value) conditions.

To further refine and validate results from the flow-evaluation curves, a set of single-flow judgments will be requested of survey respondents. For each study segment, respondents will be asked to report a single flow value that provides a distinct paddling experience or "niche" along a spectrum: low, technical, standard, high challenge, and maximum or "highest acceptable" flow. Overlaying these specific flow evaluations on overall flow-evaluation curves provides greater detail for understanding the effect that changes in streamflow can have on recreation quality.

Please take your time responding to the questions in this study. Your thoughtful participation is important to advancing good water policy and river management in the State. For more information on the Rio Grande Basin Stream Management Plan, please visit <u>American Whitewater's Project Page.</u>

3. Participant Inform	ation		
Please describe your accuracy and avoid on nformation. * 1. Your name	self. American Whitewater Iuplication in our web-base	uses your personal information only d survey methods. We do not sell o	/ to ensure r distribute your
* 2. How would you d	lescribe your skill level on the	river?	
Novice Expert	Intermediate	Advanced	
* 3. What is the high	est class of rapid you confider	ntly paddle?	
		Class IV/V Class V	
4 Would you chara	cterize vourself as a private o	r commercial boater?	
Private		ial (guide)	
Commercial (custo	imer)		
5. Your Email			
6. Your Phone			
7. Your Street Addr	ess		
* 8. Your City			
* 9. Your State			

* 10. Your Zip Code
* 11. How often do you participate in river-recreation activities? (check only one)
1 time a season 2-5 times a season 5-20 times a season 20+ times a season 50+ times a season
* 12. How confident are you in reporting flows that you have experienced on the river?
Not comfortable at all somewhat uncomfortable neutral somewhat comfortable very comfortable
Next, we will ask you about specific study segments. Both sets of study questions will be presented for each segment. Lets get to it!

4. Rio Grande River - Box Canyon	
* 13. Have you floated or paddled the Box Canyon section of the Rio Grande in Colorado? (This is not the Taos Box section in NM) For more information and a map of this stretch of river, visit the <u>American Whitewater River Page</u> .	
Yes	
No	

	1	Inflatable kavak/canoe/packraft	
Open canoe			
Other (please specify)			
1			
5. What is your primary recre	ational objective on th	e Box Canyon section of the Rio Grande	e River?
Floating/Scenery	Fishing		
Other (please specify)			

16. With your preferred craft-type in mind, please consider all the flow-dependent characteristics that contribute to a high quality experience (e.g., depth, challenge, safety, availability of surfing or other play areas, aesthetics, and length of run). For comparative purposes, please rate the acceptability of each flow level.

Flows represented are measured by the CO DWR Gage<u>Rio Grande at Thirty Mile Bridge near</u> <u>Creede.</u>

	Unacceptable	Moderately Unacceptable	Marginal	Moderately Acceptable	Acceptable
100	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
200	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
300	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
400	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
600	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
700	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
800	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
900	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1200	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1400	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1600	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1800	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2250	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2750	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

17. What is the minimum flow required to float your preferred craft on this stretch? (please specify in cfs)

18. With your particular craft in mind, what is the lowest acceptable flow that provides a reasonable experience on this run? The lowest acceptable is the lowest flow you would return to boat in your preferred craft, not the minimum flow that allows you to navigate. (please specify in cfs)

19. Some people are interested in taking trips at lower flows for a technical experience. Think of this "technical trip" in your craft and for your primary objective. What is the best flow for a technical trip? (please specify in cfs)

20. Many people are interested in a "standard" river trip at average flows. Think of this "standard trip" in your craft and for your primary objective. What is the best flow for a standard trip? (please specify in cfs)

21. Some people are interested in taking trips at higher flows for increased challenge. Think of this "high challenge trip" in your craft. What is the best flow for a high challenge trip? (please specify in cfs)

22. What is the highest safe flow for your craft and skill level? (please specify in cfs)

23. Do you have any general comments on flows that you feel have not been addressed in the questions we've asked? Specifically if you do not have a good record of flows or dates from when you have run the river please include any qualitative observations on flows needs.

24. Are there other concerns or opportunities on this stretch of river that you would like to report? These could be related to safety, aesthetics, crowding, access facilities, or other factors.

6. Rio Grande River - Box Canyon to Creede
 * 25. Have you floated or paddled the Rio Grande from the Mouth of Box Canyon to Creede (Airport Rd)? For more information on this stretch of river visit the <u>American Whitewater River Page</u>. Yes No

7. Box Canyon to Creede - Flow Survey
For the questions on this page, please rate the quality of the run at each specified flow <u>for your</u> <u>preferred craft-type</u> . Please pay particular attention to the gage and report acceptable flows for that gage only.
* 26. What is your preferred craft for paddling Rio Grande from Box Canyon to Creede? (Choose one) Dory/Drift Boat Packraft/Inflatable Kayak/C-1 Open canoe kayak/canoe Kayak/C-1 Open canoe
Raft/Shredder Other (please specify)
 * 27. What is your primary recreational objective on this section of the Rio Grande River? (Choose one) Floating/Scenery Fishing Exercise
Other (please specify)

28. With your preferred craft in mind, please consider all the flow-dependent characteristics that contribute to a high quality experience (e.g., depth, challenge, safety, availability of surfing or other play areas, aesthetics, and length of run). For comparative purposes, please rate the acceptability of each flow level.

Flows represented are measured by the CO DWR Gage Rio Grande at Thirty Mile Bridge near <u>Creede</u>.

	Unacceptable	Moderately Unacceptable	Marginal	Moderately Acceptable	Acceptable
100	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
200	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
300	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
400	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
600	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
700	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
800	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
900	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1200	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1400	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1600	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1800	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2250	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2750	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

29. What is the minimum flow required to float your preferred craft on this stretch? (please specify in cfs)

30. With your particular craft in mind, what is the lowest acceptable flow that provides a reasonable experience on this run? The lowest acceptable is the lowest flow you would return to boat in your preferred craft, not the minimum flow that allows you to navigate. (please specify in cfs)

31. Some people are interested in taking trips at lower flows for a technical experience. Think of this "technical trip" in your craft and for your primary objective. What is the best flow for a technical trip? (please specify in cfs)

32. Many people are interested in a "standard" river trip at average flows. Think of this "standard trip" in your craft and for your primary objective. What is the best flow for a standard trip? (please specify in cfs)

33. Some people are interested in taking trips at higher flows for increased challenge. Think of this "high challenge trip" in your craft. What is the best flow for a high challenge trip? (please specify in cfs)

34. What is the highest safe flow for your craft and skill level? (please specify in cfs)

35. Do you have any general comments on flows that you feel have not been addressed in the questions we've asked? Specifically if you do not have a good record of flows or dates from when you have run the river please include any qualitative observations on flows needs.

36. Are there other concerns or opportunities on this reach of river that you would like to report? These could be related to safety, aesthetics, crowding, access facilities, or other factors.

8. Rio Grande River - Creede to Wagon Wheel Gap
* 37. Have you floated or paddled the Rio Grande from Creede to Wagon Wheel Gap in Colorado? For more information and a map of this stretch of river, visit the <u>American Whitewater River Page.</u>
Yes
No

9. Creede to Wagon Wheel Gap - Flow Survey
For the questions on this page, please rate the quality of the run at each specified flow <u>for your</u> <u>preferred craft-type</u> . Please pay particular attention to the gage and report acceptable flows for that gage only.
* 38. What is your preferred craft for the Rio Grande River from Creede to Wagon Wheel Gap? (Choose one)
Dory/Drift Boat Packraft/Inflatable Kayak/C-1 Open canoe kayak/canoe
Raft/Shredder
Other (please specify)
 * 39. What is your primary recreational objective on this section of the Rio Grande River? (Choose one) Floating/Scenery Fishing Exercise Other (please specify)
40. With your preferred craft-type in mind, please consider all the flow-dependent characteristics that contribute to a high quality experience (e.g., depth, challenge, safety, availability of surfing or other play areas, aesthetics, and length of run). For comparative purposes, please rate the acceptability of each flow level. Flows represented are measured by the CO DWR GageRio Grande at Wagon Wheel Gap.
Moderately Unacceptable Moderately Unacceptable Marginal Acceptable Acceptable

	Unacceptable	Moderately Unacceptable	Marginal	Acceptable	Acceptable
100	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
200	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
300	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
400	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
600	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
700	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
800	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
900	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

	Unacceptable	Moderately Unacceptable	Marginal	Moderately Acceptable	Acceptable
1000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1200	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1400	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1600	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1800	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2250	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2750	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3750	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4250	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4750	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5250	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1. What is the	minimum flow requi	red to float your preferred	l craft on this s	stretch? (please s	pecify in cfs)
2 With your a	articular craft in mine	what is the lowest acco	ontable flow the	at provides a read	sonable
xperience on raft, not the m	this run? The lowest inimum flow that allo	acceptable is the lowest acce ws you to navigate. (plea	flow you would	d return to boat in cfs)	your preferr
3. Some peop	ole are interested in ta	aking trips at lower flows	for a technical	experience. Thir	nk of this

44. Many people are interested in a "standard" river trip at average flows. Think of this "standard trip" in your craft and for your primary objective. What is the best flow for a standard trip? (please specify in cfs)

45. Some people are interested in taking trips at higher flows for increased challenge. Think of this "high challenge trip" in your craft. What is the best flow for a high challenge trip? (please specify in cfs)

46. What is the highest safe flow for your craft and skill level? (please specify in cfs)

47. Do you have any general comments on flows that you feel have not been addressed in the questions we've asked? Specifically if you do not have a good record of flows or dates from when you have run the river please include any qualitative observations on flows needs.

48. Are there other concerns or opportunities on this reach of river that you would like to report? These could be related to safety, aesthetics, crowding, access facilities, or other factors.

10. Rio Grande River - Wagon Wheel Gap to South Fork	
* 49. Have you floated or paddled the Rio Grande from Wagon Wheel Gap to South Fork Colorado?	
For more information and a map of this stretch of river, visit the <u>American Whitewater River Page.</u> Yes	
Νο	

11. Wagon Wheel Gap to South Fork - Flow Survey
For the questions on this page, please rate the quality of the run at each specified flow <u>for your</u> <u>preferred craft-type</u> . Please pay particular attention to the gage and report acceptable flows for that gage only.
* 50. What is your preferred craft for the Rio Grande River from Wagon Wheel Gap to South Fork, Colorado? (Choose one)
Dory/Drift Boat Packraft/Inflatable Kayak/C-1 Open canoe kayak/canoe
Raft/Shredder
Other (please specify)
* 51. What is your primary recreational objective on this section of the Rio Grande River? (Choose one)
Floating/Scenery Fishing
Exercise
Other (please specify)
52. With your preferred craft-type in mind, please consider all the flow-dependent characteristics that contribute to a high quality experience (e.g., depth, challenge, safety, availability of surfing or other play areas, aesthetics, and length of run). For comparative purposes, please rate the acceptability of each flow

level.

Flows represented are measured by the CO DWR Gage Rio Grande at Wagon Wheel Gap.

	Unacceptable	Moderately Unacceptable	Marginal	Moderately Acceptable	Acceptable
100	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
200	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
300	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
400	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
600	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
700	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
800	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

	Unacceptable	Moderately Unacceptable	Marginal	Moderately Acceptable	Acceptable
900	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1200	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1400	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1600	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1800	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2250	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2750	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3750	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4250	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4750	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5250	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

53. What is the minimum flow required to float your preferred craft on this stretch? (please specify in cfs)

54. With your particular craft in mind, what is the lowest acceptable flow that provides a reasonable experience on this run? The lowest acceptable is the lowest flow you would return to boat in your preferred craft, not the minimum flow that allows you to navigate. (please specify in cfs)

55. Some people are interested in taking trips at lower flows for a technical experience. Think of this "technical trip" in your craft and for your primary objective. What is the best flow for a technical trip? (please specify in cfs)

56. Many people are interested in a "standard" river trip at average flows. Think of this "standard trip" in your craft and for your primary objective. What is the best flow for a standard trip? (please specify in cfs)

57. Some people are interested in taking trips at higher flows for increased challenge. Think of this "high challenge trip" in your craft. What is the best flow for a high challenge trip? (please specify in cfs)

58. What is the highest safe flow for your craft and skill level? (please specify in cfs)

59. Do you have any general comments on flows that you feel have not been addressed in the questions we've asked? Specifically if you do not have a good record of flows or dates from when you have run the river please include any qualitative observations on flows needs.

60. Are there other concerns or opportunities on this reach of river that you would like to report? These could be related to safety, aesthetics, crowding, access facilities, or other factors.

12. Rio Grande River - South Fork to Del Norte	
 * 61. Have you floated or paddled the Rio Grande from South Fork to Del Norte, Colorado? For more information and a map of this stretch of river, visit the<u>American Whitewater River Page.</u> Yes No 	

13. South Fork to D	el Norte - Flow	Survey				
For the questions on this page, please rate the quality of the run at each specified flow <u>for your</u> <u>preferred craft-type</u> . Please pay particular attention to the gage and report acceptable flows for that gage only.						
* 62. What is your pr	eferred craft for t	ne Rio Grande River fron	n South Fork	to Del Norte? (Cho	oose one)	
Dory/Drift Boat	Packraft/Infl kayak/cano	atable 🗌 Kayak/C-1 e	Оре	en canoe		
Raft/Shredder						
Other (please spe	cify)					
* 63. What is your pr Floating/Scenery Exercise Other (please spe	imary recreationa	I objective on this sectio	n of the Rio G	rande River? (Cho	oose one)	
64. With your preferred craft-type in mind, please consider all the flow-dependent characteristics that contribute to a high quality experience (e.g., depth, challenge, safety, availability of surfing or other play areas, aesthetics, and length of run). For comparative purposes, please rate the acceptability of each flow level. Flows represented are measured by the CO DWR Gage <u>Rio Grande River near Del Norte</u>						
	Unacceptable	Moderately Unacceptable	Marginal	Moderately Acceptable	Acceptable	
100	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
200	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	

100	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
200	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
300	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
400	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
600	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
700	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
800	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
900	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	Unacceptable	Moderately Unacceptable	Marginal	Moderately Acceptable	Acceptable
------	--------------	-------------------------	------------	--------------------------	------------
1000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1200	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1400	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1600	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1800	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2250	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2750	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3750	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4250	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4750	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5250	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5750	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6250	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6750	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

65. What is the minimum flow required to float your preferred craft on this stretch? (please specify in cfs)

66. With your particular craft in mind, what is the lowest acceptable flow that provides a reasonable experience on this run? The lowest acceptable is the lowest flow you would return to boat in your preferred craft, not the minimum flow that allows you to navigate. (please specify in cfs)

67. Some people are interested in taking trips at lower flows for a technical experience. Think of this "technical trip" in your craft and for your primary objective. What is the best flow for a technical trip? (please specify in cfs)

68. Many people are interested in a "standard" river trip at average flows. Think of this "standard trip" in your craft and for your primary objective. What is the best flow for a standard trip? (please specify in cfs)

69. Some people are interested in taking trips at higher flows for increased challenge. Think of this "high challenge trip" in your craft. What is the best flow for a high challenge trip? (please specify in cfs)

70. What is the highest safe flow for your craft and skill level? (please specify in cfs)

71. Do you have any general comments on flows that you feel have not been addressed in the questions we've asked? Specifically if you do not have a good record of flows or dates from when you have run the river please include any qualitative observations on flows needs.

14. Conejos River - Platoro to South Fork Campground	
 * 73. Have you floated or paddled the Conejos River from Platoro to the South Fork Campground? For more information and a map of this stretch of river, visit the<u>American Whitewater River Page.</u> Yes 	
No	

atoro to South For	k Confluence - Flow Survey
e questions on this <u>red craft-type</u> . Plea only.	s page, please rate the quality of the run at each specified flow <u>for yo</u> se pay particular attention to the gage and report acceptable flows
What is your preferre	ed craft for the Conejos River from Platoro to South Fork Campground?
)	
Packraft/Inflatable kayak/canoe	Kayak/C-1 Open canoe
Raft/Shredder	
Other (please specify)	
What is your primer	v recreational objective on this section of the Canaics Divers (Chasse of
Floating/Scenery	
Exercise	
Other (please specify)	
L	

76. With your preferred craft-type in mind, please consider all the flow-dependent characteristics that contribute to a high quality experience (e.g., depth, challenge, safety, availability of surfing or other play areas, aesthetics, and length of run). For comparative purposes, please rate the acceptability of each flow level.

Flows represented are measured by the CO DWR Gage Conejos River below Platoro Reservoir.

	Unacceptable	Moderately Unacceptable	Marginal	Moderately Acceptable	Acceptable
100	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
200	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
300	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
400	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
600	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
700	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
800	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
900	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1200	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

77. What is the minimum flow required to float your preferred craft on this stretch? (please specify in cfs)

78. With your particular craft in mind, what is the lowest acceptable flow that provides a reasonable experience on this run? The lowest acceptable is the lowest flow you would return to boat in your preferred craft, not the minimum flow that allows you to navigate. (please specify in cfs)

79. Some people are interested in taking trips at lower flows for a technical experience. Think of this "technical trip" in your craft and for your primary objective. What is the best flow for a technical trip? (please specify in cfs)

80. Many people are interested in a "standard" river trip at average flows. Think of this "standard trip" in your craft and for your primary objective. What is the best flow for a standard trip? (please specify in cfs)

81. Some people are interested in taking trips at higher flows for increased challenge. Think of this "high challenge trip" in your craft. What is the best flow for a high challenge trip? (please specify in cfs)

82. What is the highest safe flow for your craft and skill level? (please specify in cfs)

83. Do you have any general comments on flows that you feel have not been addressed in the questions we've asked? Specifically if you do not have a good record of flows or dates from when you have run the river please include any qualitative observations on flows needs.

16. Conejos River - South Fork to Hwy 17 Bridge
 * 85. Have you floated or paddled the Conejos River from South Fork Campground to Highway 17 Bridge? For more information and a map of this stretch of river, visit the<u>American Whitewater River Page.</u> Yes No

. South Fork Confluence	to Highway 17 Bridge - Flow Survey
r the questions on this pa eferred craft-type. Please ge only.	ge, please rate the quality of the run at each specified flow <u>for your</u> pay particular attention to the gage and report acceptable flows for that
86. What is your preferred (craft for the Conejos River from South Fork Campground to Highway 17?
Packraft/Inflatable	Kayak/C-1 Open canoe
Raft/Shredder	
Other (please specify)	
87. What is your primary re	creational objective on this section of the Conejos River? (Choose one)
Floating/Scenery	Fishing
Exercise	
Other (please specify)	

88. With your preferred craft-type in mind, please consider all the flow-dependent characteristics that contribute to a high quality experience (e.g., depth, challenge, safety, availability of surfing or other play areas, aesthetics, and length of run). For comparative purposes, please rate the acceptability of each flow level.

Flows represented are measured by the CO DWR Gage Conejos River below Platoro Reservoir.

	Unacceptable	Moderately Unacceptable	Marginal	Moderately Acceptable	Acceptable
100	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
200	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
300	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
400	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
600	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
700	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
800	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
900	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1200	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

89. What is the minimum flow required to float your preferred craft on this stretch? (please specify in cfs)

90. With your particular craft in mind, what is the lowest acceptable flow that provides a reasonable experience on this run? The lowest acceptable is the lowest flow you would return to boat in your preferred craft, not the minimum flow that allows you to navigate. (please specify in cfs)

91. Some people are interested in taking trips at lower flows for a technical experience. Think of this "technical trip" in your craft and for your primary objective. What is the best flow for a technical trip? (please specify in cfs)

92. Many people are interested in a "standard" river trip at average flows. Think of this "standard trip" in your craft and for your primary objective. What is the best flow for a standard trip? (please specify in cfs)

93. Some people are interested in taking trips at higher flows for increased challenge. Think of this "high challenge trip" in your craft. What is the best flow for a high challenge trip? (please specify in cfs)

94. What is the highest safe flow for your craft and skill level? (please specify in cfs)

95. Do you have any general comments on flows that you feel have not been addressed in the questions we've asked? Specifically if you do not have a good record of flows or dates from when you have run the river please include any qualitative observations on flows needs.

18. Conejos River - Hwy 17 Bridge to Mogote Campground	
* 97. Have you floated or paddled the Conejos River from Highway 17 Bridge to Mogote Campground? For more information and a map of this stretch of river, visit the <u>American Whitewater River Page.</u>	
Yes	
No	

19. Highway 17 Bridge to Mogote Campground - Flow Survey				
For the questions on this page, please rate the quality of the run at each specified flow <u>for your</u> <u>preferred craft-type</u> . Please pay particular attention to the gage and report acceptable flows for that gage only.				
* 98. What is your preferred craft for the Conejos River from Highway 17 Bridge to Mogote Campground? (Choose one)				
Packraft/Inflatable Kayak/C-1 Open canoe kayak/canoe				
Raft/Shredder				
Other (please specify)				
* 99. What is your primary recreational objective on this section of the Conejos River? (Choose one)				
Exercise				
Other (please specify)				

100. With your preferred craft-type in mind, please consider all the flow-dependent characteristics that contribute to a high quality experience (e.g., depth, challenge, safety, availability of surfing or other play areas, aesthetics, and length of run). For comparative purposes, please rate the acceptability of each flow level.

	Unacceptable	Moderately Unacceptable	Marginal	Moderately Acceptable	Acceptable
100	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
200	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
300	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
400	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
600	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
700	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
800	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
900	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1200	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1400	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1600	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1800	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2200	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2400	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2600	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2800	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Flows represented are measured by the CO DWR Gage Conejos River near Mogote.

101. What is the minimum flow required to float your preferred craft on this stretch? (please specify in cfs)

102. With your particular craft in mind, what is the lowest acceptable flow that provides a reasonable experience on this run? The lowest acceptable is the lowest flow you would return to boat in your preferred craft, not the minimum flow that allows you to navigate. (please specify in cfs)

103. Some people are interested in taking trips at lower flows for a technical experience. Think of this "technical trip" in your craft and for your primary objective. What is the best flow for a technical trip? (please specify in cfs)

104. Many people are interested in a "standard" river trip at average flows. Think of this "standard trip" in your craft and for your primary objective. What is the best flow for a standard trip? (please specify in cfs)

105. Some people are interested in taking trips at higher flows for increased challenge. Think of this "high challenge trip" in your craft. What is the best flow for a high challenge trip? (please specify in cfs)

106. What is the highest safe flow for your craft and skill level? (please specify in cfs)

107. Do you have any general comments on flows that you feel have not been addressed in the questions we've asked? Specifically if you do not have a good record of flows or dates from when you have run the river please include any qualitative observations on flows needs.

* 109. Have you floated or paddled the Rio Grande from Alamosa to Lasauses, through the Alamosa National Wildlife Refuge?

For more information and a map of this stretch of river, visit the<u>American Whitewater River Page</u>.

🔵 Yes

20. Rio Grande River - Alamosa to Lasauses

) No

21. Alamosa to Lasauses - Flow Survey
For the questions on this page, please rate the quality of the run at each specified flow <u>for your</u> <u>preferred craft-type</u> . Please pay particular attention to the gage and report acceptable flows for that gage only.
* 110. What is your preferred craft for the Rio Grande River from Alamosa to Lasauses, through the Alamosa National Wildlife Refuge? (Choose one)
Dory/Drift Boat Packraft/Inflatable Kayak/C-1 Open canoe kayak/canoe
Raft/Shredder
Other (please specify)
* 111. What is your primary recreational objective on this section of the Rio Grande River? (Choose one)
Floating/Scenery Fishing
Exercise

112. With your preferred craft-type in mind, please consider all the flow-dependent characteristics that contribute to a high quality experience (e.g., depth, challenge, safety, availability of surfing or other play areas, aesthetics, and length of run). For comparative purposes, please rate the acceptability of each flow level.

Moderately Unacceptable Moderately Unacceptable Marginal Acceptable Acceptable 100 ()200 () \bigcirc 300 () \bigcirc 400 \bigcirc \bigcirc () \bigcirc 500 \bigcirc 600 \bigcirc \bigcirc () \bigcirc \bigcirc 700 () \bigcirc 800 \bigcirc \bigcirc 900 \bigcirc ()1000 \bigcirc \bigcirc 1200 \bigcirc ()1400 \bigcirc \bigcirc \bigcirc \bigcirc 1600 \bigcirc ()1800 \bigcirc \bigcirc \bigcirc 2000 \bigcirc \bigcirc \bigcirc 2250 () \bigcirc \bigcirc 2500 \bigcirc 2750 \bigcirc ()3000 \bigcirc \bigcirc 3500 () \bigcirc 3750 \bigcirc \bigcirc 4000 \bigcirc \bigcirc \bigcirc \bigcirc 4250 \bigcirc)()4500

Flows represented are measured by the CO DWR GageRio Grande River at Alamosa

113. What is the minimum flow required to float your preferred craft on this stretch? (please specify in cfs)

114. With your particular craft in mind, what is the lowest acceptable flow that provides a reasonable experience on this run? The lowest acceptable is the lowest flow you would return to boat in your preferred craft, not the minimum flow that allows you to navigate. (please specify in cfs)

115. Some people are interested in taking trips at lower flows for a technical experience. Think of this "technical trip" in your craft and for your primary objective. What is the best flow for a technical trip? (please specify in cfs)

116. Many people are interested in a "standard" river trip at average flows. Think of this "standard trip" in your craft and for your primary objective. What is the best flow for a standard trip? (please specify in cfs)

117. Some people are interested in taking trips at higher flows for increased challenge. Think of this "high challenge trip" in your craft. What is the best flow for a high challenge trip? (please specify in cfs)

118. What is the highest safe flow for your craft and skill level? (please specify in cfs)

119. Do you have any general comments on flows that you feel have not been addressed in the questions we've asked? Specifically if you do not have a good record of flows or dates from when you have run the river please include any qualitative observations on flows needs.

22. Rio Grande River - Lasauses to Lobatos Bridge	
* 121. Have you floated or paddled the Rio Grande from Lasauses to Lobatos Bridge. Colorado?	
For more information and a map of this stretch of river, visit the <u>American Whitewater River Page.</u>	
Yes	
No	

23. Lasauses to Lobat	os Bridge - F	low Survey			
For the questions on th <u>preferred craft-type</u> . Ple gage only.	iis page, plea ease pay parti	se rate the quality of th icular attention to the g	e run at each age and repo	specified flow <u>fo</u> r rt acceptable flo ^v	<u>r your</u> ws for that
* 122. What is your pre	ferred craft for	the Rio Grande River fro	om Lasauses to	D Lobato Bridge?	(Choose one)
Dory/Drift Boat	Packraft/Inf kayak/cano	latable Kayak/C-1 e	Oper	n canoe	
Raft/Shredder					
Other (please specify)				
* 123. What is your prin	nary recreatior	nal objective on this secti	on of the Rio G	Grande River? (Ch	noose one)
Floating/Scenery		Fishing			
Exercise					
Other (please specify)				
124. With your preferr contribute to a high qu areas, aesthetics, and level.	ed craft-type in Jality experien I length of run)	n mind, please consider ce (e.g., depth, challenge . For comparative purpo	all the flow-dep e, safety, availa ses, please rat	endent character ability of surfing or e the acceptability	istics that r other play y of each flow
Flows represented a	re measured	by the CO DWR Gage <u>F</u>	Rio Grande Riv	ver near Lobatos	
	Unacceptable	Moderately Unacceptable	Marginal	Moderately Acceptable	Acceptable
100					
200	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
300	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

 \bigcirc

 \bigcirc

400

500

600

700

800

900

	Unacceptable	Moderately Unacceptable	Marginal	Moderately Acceptable	Acceptable
1000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1200	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1400	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1600	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1800	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2250	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2750	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3750	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4250	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4750	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5250	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5750	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6250	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

125. What is the minimum flow required to float your preferred craft on this stretch? (please specify in cfs)

126. With your particular craft in mind, what is the lowest acceptable flow that provides a reasonable experience on this run? The lowest acceptable is the lowest flow you would return to boat in your preferred craft, not the minimum flow that allows you to navigate. (please specify in cfs)

127. Some people are interested in taking trips at lower flows for a technical experience. Think of this "technical trip" in your craft and for your primary objective. What is the best flow for a technical trip? (please specify in cfs)

128. Many people are interested in a "standard" river trip at average flows. Think of this "standard trip" in your craft and for your primary objective. What is the best flow for a standard trip? (please specify in cfs)

129. Some people are interested in taking trips at higher flows for increased challenge. Think of this "high challenge trip" in your craft. What is the best flow for a high challenge trip? (please specify in cfs)

130. What is the highest safe flow for your craft and skill level? (please specify in cfs)

131. Do you have any general comments on flows that you feel have not been addressed in the questions we've asked? Specifically if you do not have a good record of flows or dates from when you have run the river please include any qualitative observations on flows needs.

24. Rio Grande River - Lobatos Bridge	, Colorado to Lee Trail, New Mexico
---------------------------------------	-------------------------------------

* 133. Have you floated or paddled the Rio Grande from Lobatos Bridge, Colorado to Lee Trail, New Mexico?

For more information and a map of this stretch of river, visit the<u>American Whitewater River Page</u>.

🔵 Yes

) No

25. Lobatos Bridge	to Lee Trail - Fl	ow Survey			
For the questions of preferred craft-type. gage only.	n this page, plea Please pay part	se rate the quality of th icular attention to the (ne run at each gage and repo	specified flow <u>for</u> rt acceptable flov	your ws for that
* 134. What is your (Choose one)	preferred craft for	the Rio Grande River fr	om Lobatos Bri	dge to Lee Trail, N	lew Mexico?
Packraft/Inflatable kayak/canoe	e Kaya	ak/C-1	Open canoe		
Raft/Shredder					
Other (please spe	ecify)				
* 135. What is your	primary recreation	nal objective on this sect	ion of the Rio C	Grande River? (Ch	oose one)
Floating/Scenery		Fishing			
Exercise					
Other (please spe	ecify)				
L					
136. With your pre	ferred craft-type i	n mind, please consider	all the flow-dep	pendent character	istics that
areas, aesthetics,	n quality experien and length of run	ce (e.g., depth, challeng). For comparative purpc	je, safety, availa oses, please rat	ability of surfing or e the acceptability	other play of each flow
level.	5		<i>,</i> ,		
Flows represente	ed are measured	by the CO DWR Gage	Rio Grande Riv	ver near Lobatos	
				Madarataly	
	Unacceptable	Moderately Unacceptable	Marginal	Acceptable	Acceptable
100	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
200	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
300	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

200	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
300	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
400	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
600	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
700	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
800	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

	Unacceptable	Moderately Unacceptable	Marginal	Moderately Acceptable	Acceptable
900	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1200	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1400	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1600	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1800	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2250	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2750	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3750	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4250	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4750	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5250	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5750	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6250	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

137. What is the minimum flow required to float your preferred craft on this stretch? (please specify in cfs)

138. With your particular craft in mind, what is the lowest acceptable flow that provides a reasonable experience on this run? The lowest acceptable is the lowest flow you would return to boat in your preferred craft, not the minimum flow that allows you to navigate. (please specify in cfs)

139. Some people are interested in taking trips at lower flows for a technical experience. Think of this "technical trip" in your craft and for your primary objective. What is the best flow for a technical trip? (please specify in cfs)

140. Many people are interested in a "standard" river trip at average flows. Think of this "standard trip" in your craft and for your primary objective. What is the best flow for a standard trip? (please specify in cfs)

141. Some people are interested in taking trips at higher flows for increased challenge. Think of this "high challenge trip" in your craft. What is the best flow for a high challenge trip? (please specify in cfs)

142. What is the highest safe flow for your craft and skill level? (please specify in cfs)

143. Do you have any general comments on flows that you feel have not been addressed in the questions we've asked? Specifically if you do not have a good record of flows or dates from when you have run the river please include any qualitative observations on flows needs.

26. Stream Management Planning

145. Assuming challenges could be addressed, what is your hope/vision for the Rio Grande and Conejos Rivers in 25 Years?

146. What are your top<u>3 infrastructure goals</u> or needs that the Stream Management Plan should focus on? These can be related to diversion structures, storage, gage data, boat ramps, or other factors.

First Priority	
Second Priority	
Third Priority	

147. What are your top <u>3 regulatory goals</u> that the Stream Management Plan should focus on? These can be related to water quality, species of concern, future flow retiming, or other needs.

148. What are your top<u>3 environmental goals</u> or needs that the Stream Management Plan should focus on? These can be related to habitat, channel form and function, flows, or other factors.

First Priority	
Second Drierity	
Second Phonity	
Third Priority	
Third Frioncy	

149. Please describe any opportunities you think exist for improving recreational use and access on the Rio Grande or Conejos Rivers.

150. Which of the following Rio Grande River reaches do you consider to be priorities for boating improvements? Please rank in order of importance with #1 being the most important.
A. Rio Grande - Box Canyon
B. Rio Grande - Texas Creek Ramp to Creede
C. Rio Grande - Creede to Wagon Wheel Gap
D. Rio Grande - Wagon Wheel Gap to South Fork
E. Rio Grande - South Fork to Del Norte
F. Rio Grande - Alamosa to Lasauses
G. Rio Grande - Lasauses to Lobatos Bridge
H. Rio Grande - Lobatos Bridge to Lee Trail, NM

151. Please explain your ranking.

152. Do you have any final comments to add, that may not have been captured by the survey?

27. This Completes the Survey.

Thank you for your participation in this survey!

Your responses will help American Whitewater and Rio Grande Headwaters Restoration Project create Stream Management Plans (SMPs) in the Rio Grande Basin that include robust community engagement. Your feedback allows us to characterize and prioritize environmental and recreational values, and create SMPs that will be used to inform multi-objective projects to restore and protect the natural and cultural resources within the basin.

153. Would you like more information about American Whitewater and our work to Protect, Restore, and Enjoy our nations rivers?

🔵 Yes

🔵 No

28. Sign-Up

154. American Whitewater's BETA Newsletter is a monthly summary of AW's Stewardship Work across the Country. Please sign-up using the fields below.

Name		
Address		
Address 2		
City/Town		
State/Province	select state	•
ZIP/Postal Code		
Country		
Email Address		
Phone Number		

29. Thank You!

From all of us at American Whitewater and the Rio Grande Headwaters Restoration Project, thank you for your participation. We appreciate your time and hope you continue to enjoy and explore the basin's river resources.

APPENDIX B: CHANNEL MIGRATION ANALYSIS

Document Creation:	Generated on Aug. 13, 2019 by Elizabeth Langford, Michael Blazewicz, and Katie Jagt.
Updates:	None.
GENERAL INFORMATION	
	Title of Dataset: Historic Channel Margin Delineations for Select Stretches of the Rio Grande and Conejos Rivers, Colorado
Principal Investigator:	Michael Blazewicz, Round River Design, Inc., michael@roundriverdesign.com
	Co-investigators: Katie Jagt, PE, Watershed Science and Design, PLLC, <u>katiejagt@watershedscienceanddesign.com</u>
	Elizabeth Langford, eglangford@mail.coloradomtn.edu
	Alternate Contact(s): Daniel Boyes <u>daniel@riograndeheadwaters.org</u> or Emma Reesor <u>emma@riograndeheadwaters.org</u> , Rio Grande Headwaters Restoration Project
	Funding sources: The <i>Rio Grande, Conejos River, and Saguache Creek Stream Management Plans:</i> <i>Phase 1, Geomorphic Assessment</i> is funded by Rio Grande Headwaters Restoration Project through a grant provided by the Colorado Water Conservation Board (CWCB).
Intended Use:	Historic channel margins were delineated using available aerial photography for the years 1960, 1975, 1998 and 2017. These delineations identify an approximated, but not exact, location of the channel margin at the time the image was taken. Error exists in the delineations both as a result of difficulties in identifying the banklines due to obscurance from vegetation, clarity of the photographs, and multiple channel threads that make it difficult to choose a main bankline. Additionally error is introduced where the photos have been shot at an oblique angle and/or where georectification of the photos is inexact despite our best efforts to rectify them. These files are intended to be used to investigate at the reach level (1:8000 or greater) locations where significant channel migration have occurred in recent history in order to assist in the geomorphic assessment of the streams for stream management planning. These delineations are not intended to be used for calculating channel migration or bank erosion rates and SHOULD NOT be used for identification or location of fluvial hazards.

SHARING/ACCESS INFORMATION

Licenses/restrictions placed on the data, or limitations of reuse:

None

	Recommended Citation: Rio Grande Headwate Conejos River, and Saguache Creek Stream Mana Assessment. Report prepared for the Colorado V Basin Roundtable Alamosa, CO.	ers Restoration Project (2019). Rio Grande, agement Plans: Phase 1, Geomorphic Vater Conservation Board and the Rio Grande
	Citation for and links to publications that cite or use the data:	
	Rio Grande Headwaters Restoration Project. (2019). Rio Grande, Conejos River, and Saguache Creek Stream Management Plans: Phase 1. Report prepared for the Colorado Water Conservation Board and the Rio Grande Basin Roundtable Alamosa, CO.	
STUDY INFORMATION		
Study Dates:	June-August 2019	
	Source of Aerial Photos: All Aerials an Archive Center (LP DAAC), located at US	e from The Land Processes Distributed Active GGS/EROS, Sioux Falls, SD. http://lpdaac.usgs.gov
	Years of imagery delineated: 196 selected based on data availability, hyd	0/1966, 1975, 1998, 2017. These years were rology data, and interval between photos.
Geographic Area Covered:	l: Conejos: Start: 106°11'16.293"	W 37°3′14.678″N
	End: 105°44'1.584"W	37°18′14.543″N
	Rio Grande: Start: 105°58'46.123"	W 37°33'49.439"N
	End: 105°50'31.579"V	V 37°27′41.114″N
	Data gaps: There is one data gap the river stretch immediately upstream Grande. A portion of this area is covere remains between the 1960 imagery and is listed under 1SVBBI00100341.tif and	in the 1960 Conejos delineationthe image for of the confluence of the Conejos and the Rio d by an image from 1966, however, a gap I the 1966 imagery. The aerial image from 1966 covers the stretch from 105°47'45.488"W,

37°17′50.898″N to 105°44′1.584″W 37°18′14.543″N. This is the only reach in the 1960 delineations that is from 1966 data.

DATA & FILE OVERVIEW

File list (filenames, directory structure (for zipped files) and brief description of all data files):

1960 Conejos.shp_v1: Channel Margin Delineation for the Conejos River in 1960.
1975 Conejos.shp_v1: Channel Margin Delineation for the Conejos River in 1975.
1998 Conejos.shp_v1: Channel Margin Delineation for the Conejos River in 1998.
2017 Conejos.shp_v1: Channel Margin Delineation for the Conejos River in 2017.
1960 Rio Grande_v1.shp: Channel Margin Delineation for the Rio Grande in 1960.
1975 Rio Grande_v1.shp: Channel Margin Delineation for the Rio Grande in 1975.
1998 Conejos_v1.shp: Channel Margin Delineation for the Rio Grande in 1975.
2017 Conejos_v1.shp: Channel Margin Delineation for the Rio Grande in 1975.
2017 Conejos_v1.shp: Channel Margin Delineation for the Rio Grande in 1978.
2017 Conejos_v1.shp: Channel Margin Delineation for the Rio Grande in 2017.
Each .shp consists of the following individual files: .shp, .shx, .prj, .dbf, .sbn .xml, .sbx, .cpg

Additional related data that is not included in the current data package:

Additional reaches of the Rio Grande had channel margins delineated by Joel Sholtes, University of Colorado as a portion of the Colorado Fluvial Hazard Mapping Pilot Project, CWCB, 2019.

Rio Grande: Start: 106°50'34.81"W, 37°47'0.47"N

End: 105°58'46.123"W, 37°33'49.439"N

Projected Coordinate System:NAD_1983_UTM_Zone_13NGeographic Coordinate System:GCS_North_American_1983Datum:D_North_American_1983Prime Meridian:GreenwichFalse Easting:500000

False Northing:	0
Base Projection:	Transverse_Mercator
Scale Factor:	0.99960000
Central_Meridian:	-105.0
Latitude of Origin:	0.0
	Attribute data: FID: EMPTY
	SHAPE: POLYLINE
	RIVER NAME: The river the margin delineation is for (Rio Grande or Conejos)
	YEAR: Aerials from this year were used in the creation of the file. Note, 1966 is listed as 1960 for the one reach where 1966 photos were used.

METHODOLOGICAL INFORMATION

Description of methods used for collection/generation of data:

Memo: "Delineating Channel Margins" by Joel Sholtes, PhD, University of Colorado:

- Yellow lines indicate channel margins of "active channel". This includes un-vegetated bars and islands.
- Use vegetation as a guide to channel margin: un-vegetated bars and islands are considered active channel
- Where tall trees are on stream banks and obscure bank line, approximate channel margin as middle of closest tree canopy.
- Keep polyline endpoints in same direction.

Standards and calibration information, if appropriate: Range of scale used in Arcmap used for visual delineations: 1:2,000-1:4,000

Describe any quality-assurance procedures performed on the data: Data was compared with LiDAR to ensure no major bedrock formations were mapped as part of the historic channels.

ADDITIONAL DATA-SPECIFIC INFORMATION

Georectification: The 1960 and 1975 aerial imagery was georectified by Daniel Boyes at the Rio Grande Headwaters Restoration Project in Fall 2018. In some locations (Rio Grande 1960, Conejos 1975) the georectification was adjusted by Elizabeth Langford in the Summer of 2019. The adjustments were done by manually adding additional feature-to-point control points based on the local roads of Colorado shapefile (CDOT) as well as the NHD Stream layer, where appropriate. Elizabeth Langford also georectified raw aerial imagery for the 1975 Rio Grande delineation. A combination of raw data and previously georectified images were used for the 1975 Conejos delineation.

Local Roads of Colorado (downloaded July 2019): https://data.colorado.gov/Transportation/Local-Roadsin-Colorado/qvrk-xsmj

National Hydrography Dataset (downloaded July 2019):

https://viewer.nationalmap.gov/basic/?basemap=b1&category=nhd&title=NHD%20Vie w

Aerial Images Used:

CONEJOS

1960 1SVBBI00100341.tif A5504201106121.tif A5504200703221.tif (up to 30m off) A5504201105961.tif (up to 20m off) A5504201105631.tif A5504201105661.tif (up to 40m off) A5504201105651.tif 1975 1VDSD003700791.tif 1VDSD003400621.tif 1VDSD0039001412.tif 1VDSD003900031.tif

1998 03710543.SWS.1032802.tif 03710664.SWS.1034021.tif 03710664.NWS.1034019.tif 03710664.NES.1034018.tif 03710663.SES.1034044.tif 03710557.NWS.1032813.tif 03710557.NES.1032812.tif 03710550.NWS.1032730.tif 03710549.SWS.1032703.tif 03710549.SES.1032702.tif 03710549.NES.1032700.tif 03710542.SWS.1032728.tif 03710542.SWS.1032728.tif

2017 ortho_1-1_1n_s_co021_2017_1sid

RIO GRANDE

1960 1VADR000400731.tif (up to 45m off) A5504201508811.tif A5504200602581.tif

1975 1VDSD003400671.tif

1998 03710525.NWS.1032689.tif 03710534.NWS.1032721.tif 03710533.NES.1032692.tif 0310525.SWS.1032691.tif 03710525.SES.1032690.tif

2017 ortho_1-1_1n_s_co003_2017_1.sid

APPENDIX C: SMP TRACER GRAVEL STUDY

RIO GRANDE STATE WILDLIFE AREA CHANNEL BED MOBILITY STUDIES

An important part of river function is the movement of sediment through a river corridor and mobilization of the sediments on the channel bed. These studies look at how much flow is needed in the Rio Grande to pick up and move the bed material and how frequently these flows occur.

IMPORTANCE OF BED MOBILITY

Rivers adjust their shape and composition in response to the sediment and water supplied from the watershed and adjacent hillslopes and channel banks. The movement of sediment on a streambed affects instream and riparian habitat at various scales: At smaller scales, a lack of bed mobility may allow the buildup of fine particles such as sands and silts in the interstitial spaces between larger grains of sediment such as cobbles and gravels. These interstitial spaces are important for fish species but also for key components to the food web such as algae, zooplankton, phytoplankton, and macroinvertebrates.

At larger scales, the mobilization and deposition of bed sediments creates and maintains pools and riffles. Over the long term, changes in the bed surface caused by the mobility of the sediment on the bed are necessary to maintain habitat quality in river systems. Evacuating fine sediment from pools and the deposition of coarse sediment on bars may increase the quality and quantity of habitat used for spawning and rearing. Conversely, a lack of flows that trigger bed mobility will tend to cause either long-term scour or aggradation and tends to simplify the channel, reduce bedform variability, and homogenize aquatic and riparian habitat. Riparian vegetation establishment and succession is dependent upon the mobilization and deposition of sediment within the stream corridor.

The Rio Grande at the State Wildlife Area near Monte Vista, looking upstream on August 29, 2019. Approximate flow 300 cfs.

7621

7620

7618

7617

LiDAR vs. 2019 Survey Data

Station (ft

The Rio Grande State Wildlife Area has full topographic coverage by the LiDAR. This was supplemented with survey data collected by the RGHRP in the summer of 2019. Hydraulic calculations were done using the survey data. For the purposes of this study, we are concerned only with flows that remain in the main channel of the Rio Grande. Simple calculations were done using the manning's equation to determine that the maximum capacity of the main channel is approximately 3400 cfs to 3600 cfs.

Description of Particle Size	Size (mm)	Pebble Count
Sand and Silts	<2	0
Very Fine Gravel	2 - 4	0
Fine Gravel	4 - 6	0
Fine Gravel	6 - 8	0
Medium Gravel	8 - 11	1
Medium Gravel	11 - 16	6
Coarse Gravel	16 - 22	8
Coarse Gravel	22 - 32	22
Very Coarse Gravel	32 - 45	26
Very Coarse Gravel	45 - 64	27
Small Cobble	64 - 90	9
Small Cobble	90 - 128	1
Large Cobble	128 - 180	0
Large Cobble	180 - 256	0

The Rio Grande channel bed at the State Wildlife Area has an average grain size of 29mm, which is classified as a coarse gravel.

INCIPIENT MOTION CALCULATIONS—WHEN DO THE PARTICLES ON THE CHANNEL BED MOVE?

For the Rio Grande at the State Wildlife Area near Monte Vista, CO, flows between 900 and 1200 cfs begin to mobilize the particles on the channel bed.

There are two ways we can calculate this:

- We calculate the critical shear stress, which uses a standardized value (0.047) for the "average" critical value of the Shields Parameter (t_{*c}) that has been observed to cause particle movement in a suite of flume and channel experiments as 1) well as the average grain size in the channel which our team has measured. We then compare the critical shear stress to the shear stress in the channel as calculated using a hydraulic model—when the channel shear stress exceeds the critical shear stress, the average grain size is said to be mobilized.
- By using the Shields diagram, which illustrates the mobilization threshold as a function of two variables: the critical shear force (t_{*}) and the particle Reynolds number (Re_{*}). Each of these variables is calculated for every flow that is expected in 2) the channel and uses the average grain size of the channel bed. The τ and Re are plotted for each flow and if the point is above the line on the Shields diagram, the flow can mobilize the grains on the bed. For this gravel-bedded system, the critical shear force threshold is approximate 0.050 for all particle Reynolds numbers (the area shaded in blue, below).

CRITICAL SHEAR STRESS

$au_o = au_c$ Channel Shear from Critical Shear Stress D50 of Channel Flow (cfs) Bed (mm) Particle Class HEC-RAS (lb/ft2) (lb/ft2) Conclusion 0.4606 100 29 coarse gravel 0.14 No Movement No Movement 200 29 coarse gravel 0.20 0.4606 29 0.24 0.4606 300 coarse gravel No Movement 400 29 0.28 0.4606 coarse gravel No Movement 500 29 coarse gravel 0.32 0.4606 No Movement 600 29 0.35 0.4606 No Movement coarse gravel 29 0.41 800 coarse gravel 0.4606 No Movement 1000 29 0.47 0.4606 Flow Moves Particle coarse gravel 29 0.52 1200 coarse gravel 0.4606 Flow Moves Particle 1400 29 0.56 0.4606 Flow Moves Particle coarse gravel 1600 29 0.6 0.4606 Flow Moves Particle coarse gravel 1800 29 0.63 0.4606 Flow Moves Particle coarse gravel 29 0.66 0.4606 2000 coarse gravel Flow Moves Particle 2200 29 0.69 0.4606 Flow Moves Particle coarse gravel 2400 29 coarse gravel 0.72 0.4606 Flow Moves Particle 29 0.75 0.4606 2600 Flow Moves Particle coarse gravel 29 coarse gravel 0.78 0.4606 2800 Flow Moves Particle 3000 29 0.81 0.4606 Flow Moves Particle coarse gravel 29 0.83 0.4606 3200 coarse gravel Flow Moves Particle 3400 29 0.86 0.4606 Flow Moves Particle coarse gravel

	D50 of Channel		τ _* Critical Shear	Re _* Particle Reynolds number	Location on	
Flow (cfs)	Bed (mm)	Particle Class	Force (unitless)	(unitless)	Shields Diagram	Conclusion
100	29	coarse gravel	0.014	320		
200	29	coarse gravel	0.020	383	Below	No movement
300	29	coarse gravel	0.024	419	Below	No movement
400	29	coarse gravel	0.029	453	Below	No movement
500	29	coarse gravel	0.033	484	Below	No movement
600	29	coarse gravel	0.036	506	Below	No movement
800	29	coarse gravel	0.042	548	Below	No movement
1000	29	coarse gravel	0.048	587	Below	No movement
1200	29	coarse gravel	0.053	617	Below	Flow moves particle
1400	29	coarse gravel	0.057	641	Below	Flow moves particle
1600	29	coarse gravel	0.061	663	Below	Flow moves particle
1800	29	coarse gravel	0.064	679	Below	Flow moves particle
2000	29	coarse gravel	0.067	695	Above	Flow moves particle
2200	29	coarse gravel	0.070	711	Above	Flow moves particle
2400	29	coarse gravel	0.073	726	Above	Flow moves particle
2600	29	coarse gravel	0.077	741	Above	Flow moves particle
2800	29	coarse gravel	0.080	756	Above	Flow moves particle
3000	29	coarse gravel	0.083	770	Above	Flow moves particle
3200	29	coarse gravel	0.085	780	Above	Flow moves particle
3200	29	coarse gravel	0.085	821	Above	Flow moves particle

According to the analysis of historic flows, bed mobilizing flows are present in the channel at the Monte Vista gauge for approximately 30 days during Average years and for 55 days during Wet years.

However, if significant flow (greater than approximately 200cfs) is diverted out of the channel between the gauge and the State Wildlife Area during peak of runoff in Average years, these flows will no longer have the strength to mobilize the channel bed.

08221500

Appendix C: Rio Grande, Conejos River, and Saguache Creek Stream Management Plans

SHIELDS DIAGRAM

TRACER GRAVEL STUDY—WHAT BED MOBILITY WAS OBSERVED IN 2019?

During the 2019 runoff we observed a highly mobile channel bed at the Rio Grande State Wildlife Area.

We deployed 99 gravels and cobbles at the Rio Grande State Wildlife Area on April 29, 2019 and recovered the tracer gravels on August 29, 2019. We recovered 100% of the tracer gravels that were larger than 64 mm either at the transect or immediately downstream. We recovered two of the 22 tracer gravels that were between 32mm and 64 mm downstream of the transect. We recovered no gravels smaller than 32mm.

This leads us to conclude that the flows in 2019, which peaked around 3500 cfs, were strong enough to mobilize gravels (grains smaller than 64mm) but not cobbles (grains larger than 64mm). The native bed material has only a very small fraction of particles larger than 64mm which leads us to conclude that between May and August, the entire bed of the Rio Grande became mobilized.

Tracer Gravel Counts						
Size (mm)	Native Material	Deployed Gravels	Deployed and Recovered at Transect	Deployed and Recovered d/s of Transect	Percent of Tracers Recovered	
< 4	2				n/a	
4 - 8					n/a	
8 - 16	7	25	0	0	0%	
16 - 32	48	30	0	1	3%	
32 - 64	35	22	0	2	9%	
64 - 128	5	16	16	0	100%	
128 - 256		6	4	2	100%	

For the Rio Grande at the State Wildlife Area near Monte Vista, CO, experienced peak flows around **3500 cfs.** This is calculated by looking at the flows measured at the **RIOMONCO** gauge and subtracting the flows diverted out of the channel by the water delivery infrastructure—the average diversion was approximately 525 cfs through the peak of runoff.

The Rio Grande State Wildlife Area on June 18, 2019, near the peak of flows for 2019. While the off-channel and floodplain areas are certainly wet, the difference in the color of the water (brown in the channel and blue on the floodplain and in the oxbow lakes) indicate that the channel is not actively overtopping to the south at the time of this photo.

TRACER GRAVEL STUDY—HOW DO THE CALCULATIONS COMPARE TO THE INCIPIENT MOTION CALCULATIONS?

The results from the tracer gravel study support the incipient motion calculations. The gravels that we placed before runoff, and then found, on the channel bed after runoff are the sizes that we would expect to persist in place based on the flows that this reach of the Rio Grande experienced between May and August 2019. The material that was mobilized are of sizes that the calculations suggest should have been mobile during the 2019 flows.

This analysis increases confidence in the ability of the Incipient Motion Calculations to predict bed mobility for the Rio Grande.

CALCULATED BED MOBILITY

The calculated flows that are necessary to trigger the mobilization of sediment of various sizes within this reach are shown below. According to these calculations, the flows experienced by this reach in 2019, approximately 3500 cfs, had enough energy to mobilize sediment particles smaller than approximately 55mm (denoted by yellow star). Particles smaller than 55mm should have been picked up and transported as bedload; particles larger than 55mm should have remained on the channel bed.

The RGHRP team recovered all tracer gravels larger than 64 mm. Two of these had moved slightly downstream and were found within 100 feet of their initial placement locations. All tracer gravels that were between 32 and 64 mm were mobilized; two of this size class were recovered within 100 feet of their placement locations—and both recovered gravels were measured at 55mm. All grains smaller than 32mm were mobilized and only one was recovered within 100 feet of the placement cross-section.

Appendix C: Rio Grande, Conejos River, and Saguache Creek Stream Management Plans

OBSERVED BED MOBILITY

APPENDIX D: STREAM CLASSIFICATION SYSTEM SUMMARIES

Rosgen Stream Classification System:

A classification system developed by David Rosgen, Ph.D., in which morphological arrangements of stream characteristics are organized into relatively homogeneous stream types using an alphanumeric system. The classifications assigned in this Rapid Geomorphic Assessment would be considered Level II classification, although for a true Level II classification the Rosgen system stipulates that field data must be collected which was not possible given the limited budget assigned for this project.

Reference: Rosgen, D. L. (1996). Applied river morphology. Pagosa Springs, Colo: Wildland Hydrology.

Montgomery-Buffington Bedform Classification System:

A classification system that couples reach-level channel processes with the spatial arrangement of reach morphologies, their links to hillslope processes, and external forcing by confinement, riparian vegetation, and woody debris defines a process-based framework within which to assess channel condition and response potential in mountain drainage basins.

Reference: David R. Montgomery, John M. Buffington; Channel-reach morphology in mountain drainage basins. *GSA Bulletin*; 109 (5): 596–611. doi: <u>https://doi.org/10.1130/0016-7606(1997)109<0596:CRMIMD>2.3.CO;2</u>

Stream Evolution Model:

The Stream Evolution Model (SEM) described by Cluer and Thorne in 2014 was used to assess the current channel condition and active processes in terms of streambed adjustment.

Figure 5. Stream Evolution Model showing geomorphic changes through the four processes of narrowing, widening, aggrading, and/or degrading (Cluer and Thorne, 2014).

Table I. Previous Channel Evolution Models and the proposed Stream Evolution Model with description of reach-average characteristics, or stages

Schumm et al ., 1984	Simon and Hupp, 1986	SEM		Description	
		0. Anast	omosing	Pre-disturbance, dynamically meta-stable network of anabranching channels and floodplain with vegetated islands supporting wet woodland or grassland.	
1	1	-	r	$Qs_{in} \ge Qs_{out}$, $n \sim n_c$ Dynamically stable and laterally active channel within a	
I. Undisturbed	I. Pre-modified		1.Sinuous	Noodplain complex. Flood return period 1-5 yr range.	
			-	$Qs_{in} \ge Qs_{out}$, $h << h_c$ Re-sectioned land drainage, flood control, or navigation	
	II. Constructed		2. Channelized	channels.	
	-		-	$Qs_{in} \leq Qs_{ours}, n > h_c$	
II. Degradation	III. Degradation		3. Degrading	Incising and abandoning its floodplain. Featuring head cuts, knick points or knick zones that incise into the bed, scours away bars and riffles and removes sediments stored at bank toes. Banks stable geotechnically.	
				$Qs_m < Qs_{out}, h > h_c$	
			3s. Arrested degradation	Stabilized, confined or canyon-type channels. Incised channel in which bed lowering and channel evolution have been halted because non-erodible materials (bed rock, tight clays) have been encountered.	
		els -	· · · · · · · ·	$Qs_{in} \sim Qs_{outs}$ $h > h_c$	
III. Rapid Widening	IV. Degradation and widening	read Channe	4. Degradation and widening	Incising with unstable, retreating banks that collapse by slumping and/or rotational slips. Failed material is scoured away and the enlarged channel becomes disconnected from its former floodplain, which becomes a terrace.	
		Th		$Qs_{in} < Qs_{oats} h > h_o$	
		Single	4-3, Renewed incision	Further head cutting within Stage 4 channel. $O_{S_{1}} \leq O_{S_{2}}$, $h \gg h$	
IV. Aggradation	V. Aggradation and widening		5. Aggrading and widening	Bed rising, aggrading, widening channel with unstable banks in which excess load from upstream together with slumped bank material build berms and silts bed, banks stablizing & berming.	
				$Qs_{in} \ge Qs_{out}, h \sim h_c$	
V. Stabilization	VI. Quasi- equilibrium		6. Quasi- equilibrium	Inset floodplain re-established, quasi-equilibrium channel with two-stage cross-section featuring regime channel inset within larger, degraded channel. Berms stabilize as pioneer vegetation traps fine sediment, seeds and plant propagules.	
	1.000			$Qs_{in} - Qs_{out}, h < h_c$	
	VII. ⁽¹⁾ Ente-stage evolution		7. Laterally active	Channel with frequent floodplain connection develops sinuous course, is laterally active and has asymmetrical cross section promoting bar accretion at inner margins and too scour and renewed bank retreat along outer margins of expanding/migrating bends.	
	1 m 1	_		$Qs_{in} \ge Qs_{our}$ h \ll h _c	
		8, Anast	omosing.	Meta-stable channel network. Post-disturbance channel featuring anastomosed planform connected to a frequently inundated floodplain that supports wet woodland or grassland that is bounded by set-back terraces on one or both margins. $Os_{in} \ge Os_{out}$ h << h _c	

^[1] Suggested by Thorne (1999)

111	SEM Stage		Physical Attributes		Vegetation Attributes
our ouge		Hydrologic Regime	Hydraulies and Substrate	Dimensions and Morphology	
0. Anasi meta-sia channels	omosing. Dynamically ble network of anabranching with vegetated islands.	Floods diffused over the full width of the floodplain so flood peaks are maximally alternated. Flood palses diffused and subdued. High water table and close connection between stream flow and ground water ensures reliable base. Hows and continuous hypothesis, though flow in smaller analytanches may be ephemeral.	Multiple channels provide maximum in channel hydraulic diversity through partition of discharge between branches that widens range of in-channel depth velocity combinations. Anubranches create multiple, marginal deadwaters. Wide mage of substrate gräin sizes arranged into numerous, well- sorted bed patches.	Multiple anabranches, islands and side channels maximize. Morphological features abound in-channel and on the extensive and fully connected floodplam, providing a high capacity to store sediment and wood and supporting diverse wetlands. Bank heights are low with stability enhanced by ripariam margins, but some rive cliffs are generated by localised ension. Network and floodplain are highly resilient to disturbance, bulffering the system.	Frequent, small channel adjustments and high, reliable water halfe create objections actings for proliferation and succession of aquatic, emergent, riparian and floodplain apply and retain wood, and widespread vegetation proximal to channels produce abundant leaf inter.
	1.Sinuoas, single- thread, Stable and laterally active. Sediment sorting and inansfer.	Floods up to bankfall discharge retained in- channel reducing attenuation. Larger Boods still spill to floodplain, attenuaring their peaks. Close connection between groundwater and stream flow ensures reliable base flows and good hyporhesis.	Range of in-channel depth/velocity combinations up to bankfull flow provides moderate hydraulic diversi and frequent deadwaters along remaining channel boundaries. Substrate sorting varies between thulweg and alternate or point bars, with different degrees of armoring. Variation in bed morphology continues to supports a high degree of substrate patchiness.	Wetted area relative to flow, shoreline length and complexity decrease due to switch to single channel. Though bedforms and bars remain widespread, frequency of vislands, confluences and diffluences is greatly reduced, adversely affecting capacity to ston aediment and wood. Higher banks are less stable with river cliffs found along outer margins of bends. Ploodplain extent and connectivity undiminished, but number of viside channels and functionality of connected wetlands reduced.	Decreases in hydraulic and morphological diversity trigger reductions in quantity and quality of aqualic, riparian and, especially, emergent plants. Floodplan communities remain diverse, but transition from wetland to more terrestrial assemblages. Reductions in extent of woodlands due to switch from multiple to a single channel decrease recruitment of wood and leaf lister.
Single Thread Channels	 Channelized. Re- sectioned land drainage, flood control, or navigation channels. 	Flood flows retained in-channel up to design discharge, enhancing flood pubses. Flood attenuation reduced: Efficient drainage speeds post-flood recession and lowers groundwater, so base flows and hyporhesis are impaired.	Artificially high in-channel discharge capacity coupled with uniformity of depth/velocity combinations reduces hydramic diversity and comptomises functionality of any marginal deadwaters. Bed substrate scoured, with sorting impacted and patchiness reduced through extreme armoring or paving.	channelization reduces wetted area, shoreline length and complexity relative to flow. Some bedforms and bass remain but islands, side channels, and confinences' diffuences are cradicated Capacity to store sediment and wood reduced, or eliminated by channel mainteninec. Banks stable or reverted, with river eliffs eliminated. Extent, connectivity and functionality of riparian zone, floodplatn and wetlands all diminished.	Aquatic and emergent plants destroyed shuring constructions with recovery limited to patchies and narrow belts. Reparing plants only contribute wood and leaf litter if some of riperian corrulor is left in place. Elodoplain vegetation communities disconnected from channel may transition further to terrestrial assemblages.
	3. Degrading. Incising and abandoning its floodplam. Banks stable geotechnically.	Concentrates progressively grater flood peaks in-channel, further amplifying flood pulse Flood attenuation ineffective. Groundwater recharge is minimal, making base flow-unreliable. Hypotheic zone- damaged or destroyed by scour at bed and bank locs.	Bod lowering, removal of bars and riffles and scour a bank toes reduces hydraulic diversity means there are few, if any, marginal deadwaters. Bod substrate continues to be scoured, with sorting impacted and patchiness reduced through extreme annoring or paving.	Degradation reduces wetted area, shoreline length and complexity pelarive to flow compared to Stage 1. Betforms, bars and islands scoured, confluences/diffluences eradicated and side channels, floodplain and wetlands abandoned. Capacity to store sodiment and wood effectively looit. Banks mostly stable with local river clifts. Functionality of the reparint szune is driminished due to reduced connectivity with channel.	Aquatic and most emergent plants destroyed by incision; only seasonal and annual species romain. Riparain vegetation undercur and increasingly unstable leading to artificially elevated inputs of wood. Input of leaf litter, seeds and propagules continues, but retrainton roduced. Floodplain vegetation stressed due to lower water lable.
	34. Arrested degradation. Confined or canyon-type channels.	Concentrates a wide range of flood peaks, providing no effective flood attenuation and maximal flood pulse effects. Groundwater recharge is minimal, base flow unreliable and hyporfucie zono remains damaged or destroyed.	Similar to Stage 3, though there may be some limited recovery of hydraulic diversity due to presence of invasive or remnant riparian plants and accumulation of log janes formed by tress that have fallen into the degraded channel. Limited sediment rotention, sorting and patch davelopment.	Natural or artificial stabilization locks in dimensions and morphology developed in Stage 3. Lutitide capacity to store sediment and wood once degradation ceases. Banks mostly stable but extent of river cliffs may increase. Functionality of the riparian zone remains diminished and channel is permanently disconnected from its floodplan and wetlands.	Relative stability allows for early succession in emergent and riparian plant communities, improving upply of leal filter. Wood recumment continues, limited by the proximity, withh and contiguity of woodlands on variounding floodplain and torrace unfaces.
	 Degradation and widening, incising with unstable, retreating banks. 	Concentrates an extreme range of flood peaks, negating flood attenuation and furth amplifying flood pulse effects. Groundwate recharge, base flow generation and hyporheic connectivity are all dysfunctional	Hydraulic diversity remains low due to channel scou and efficient downstream transport of woody debris. Deadwaters comtinue to be absent or dysfunctional. Bed scour continues to adversely impact substrate sorting and patchiness.	Sediment impuss from bank certrat initiates limited badform and ba development, but mass failures eliminate stable banks and increas the extent of river cliffs that destroy riparine margins. Wetted area shoreline length and complexity relative to flow all remain low. No recovery of capacity to store sediment and wood, and floodpla still disconnected.	Aquatic plant community remains dysfunctional due to on-going bed degradation and ripartan plants are destroyed by rapid widening. Wood recruitment may increase if banks are forested, though retention depends on trees being large relative to increasing channel width.
	4-3. Renewed Incision. Further head cutting within Stage 4 channel.	Increased range of floods retained in-bank continues to amplify flood pulse effects. Flood attenoation, groundwater recharge, base flow generation and hyporhetic connectivity all remain dysfunctional.	Renewed incision maintains limited range of depth-velocity, combinations and so hydraulic diversity remans low. No new marginal deadwaters are created. Channel scour effectively efiminates functionality of substrate sorting and patchinesis in providing habitat and ecosystem benefits.	Renewed scour removes embryonic bedforms and bars formed in Stage 4. Degree of disconnection of side channels, floodplain and wetlands due to channel meision increases. Any stored sediment wood is flushed downstream. Continued bank retreat forms river effft that erode any remaining riparian fringe.	Aquatic, emergent, riparian and floedplain plast communities all depleted and dysfunctional. Low supply of leaf litter but wood recruitment maintaine until proximal supply in exhausted. Retention depends on trees being large relative to increasing channel width.
	5. Aggrading and widening, Bed rising, banks stubbing & berming.	No significant improvement in flood attinuation but flood pulse effects not quite as marked. Consudvater recharge remains, dysfunctional, and base flows are still unreliable, but some hyporheic connectivity is recovered.	Aggradation renews depth/velocity variability that to improve hydraulic diversity. Small marginal diadwates my divelop, but these are not yet functional in providing habitat and ecosystem benefits. Baas and log jams begin to improve sediment sorting and patchiness.	Wetted area, shoreline length and complexity relative to flow all remain low. Aggradation generates some bedforms and burs but channel remains dysfunctional with regard to effective acroage of sediment and wood. Bank stability improves marginally compared to Stage 4 allowing some recovery in riparant frings. Floodplain connectivity begins to recover due to aggradation at bed and berm formation at banks.	Some returns of aquatic plants. Hars and berrus provide opportunities for emergent and riparian plants. Finodphin plant community emenaios isolated from channel physically and hydrologically. Widening may continue to recruit wood if there are proximal trees and supply of heal hiter may be renewed as well.
	 Quaxi-equilibrium, Regime channel and proto-floodplain re- established. 	Remains disconnected from former floodplate, but increased boundary roughness and energent ripartian stands damp flood pulse effects and reintroduce isome flood attemation. Groundwater recharge and base flow liunctions begin to recover and hypothesis continues to improve.	Develuping regime channel interacts with proto- floodplain surfaces to disspite energy and increase hydraulic diversity. Accurutations of sediment and colonization of bars and berms by emergent and functionality of marginal deadwaters, Patches of contrasting substrate size and sorting desetop accordingly.	Wetted area, shoreline length and complexity relative in flow all remain low. Bedforms and hars recover to pre-disturbance levels restoring some capacity is storing of sediment and wood. Bank abblity continues to improve at expense of river cliffs, allowing further recovery in riparian fringer. Ploodplant connectivity continues to recover and new side channels may be created, though wetlands remain, disconnected.	Relatively stable channel margins and inset features provide sites for development of aquatic, emergent and riporian plant communice. Aggradation improves connectivity with and functionality of floodplain plants, maintaining wood recruitment and enhancing supply of leaf litter.
	7. Laterally active. Regime channel develops sinuous course.	Increases in flow resistance due to development of channel and inset floodplain roughness further damp flood pulse effects while returning groundwater recharge, base flow and hyporbicic functionality back close to Snage 1 level.	Development of planform sinucosity and interaction with maturing Boodplain enhance hydraulic diversity and make marginal dealwaters fully functional. Substrate sorting enhanced and patchness becomes fully functional. Hydraulic and substrate attributes- recover to Stage I levels.	Growth of sinuous channel increases wetted area, shoreline length and complexity. Bedforms and bars persist and new islands, confluences and diffluences develop, increasing capacity to storag of sediment and wood. Renewed bank crossion at bends broadens range of bank morphologies, Extent of new side channels increase with some wellands croated.	Extent of riparian and floodplain plant communities increases at expense of opportunities for energent plants. Stabitization of bunkies reduces wood recruitment bul extension and mouring of riparian and floodplain communities mannam supply of leaf lister.
8. Aaasi amabram	omosing, Meta-stable hing network.	Hydrologic attributes and functions similar to Stage 0 but network inset within the channel created in Stage 4 as modified in Store 7	Hydraulic and substrate attributes and functions similar to Stage 0, but network inset within the channel created in Stage 4 as modified in Stage 7.	Morphological attributes and functions similar to Stage 0, but wetled area, shoreline length, and extent of floodplain and its features diminished because network is inset within the valley	Hydrological, hydrautic and morphological attribute and functions similar to those of Stage 6 allow vegetation attributes to recover to pre-disturbance to one.

Table II. Physical and vegetative attributes for each stage in the Stream Evolution Model

Reference: Cluer, B. and Thorne, C. 2014. A Stream Evolution Model Integrating Habitat and Ecosystem Benefits. River Res. Applic., 30: p.135-154. doi:<u>10.1002/rra.2631</u>

Sediment Regime:

The size, quantity, sorting, and distribution of sediments, which may differ between stream types due to their proximity to different sediment sources, their hydrologic regime, their stream, riparian and floodplain connectivity, and valley and stream morphology.

Sediment Regime	Narrative Description
Transport	Steeper bedrock and boulder/cobble cascade and step-pool stream types; typically in more con- fined valleys, do not supply appreciable quantities of sediments to downstream reaches on an annual basis; little or no mass wasting; storage of fine sediment is negligible due to high trans- port capacity derived from both the high gradient and/or natural entrenchment of the channel.
Confined Source and Transport	Cobble step pool and steep plane bed streams; confining valley walls, comprised of erodible tills, glacial lacustrine, glacial fluvial, or alluvial materials; mass wasting and landslides common and may be triggered by valley rejuvenation processes; storage of coarse or fine sediment is limited due to high transport capacity derived from both the gradient and entrenchment of the channel. Look for streams in narrow valleys where dams, culverts, encroachment (roads, houses, etc.), and subsequent channel management may trigger incision, rejuvenation, and mass wasting processes.
Unconfined Source and Transport	Sand, gravel, or cobble plane bed streams; at least one side of the channel is unconfined by val- ley walls; may represent a stream type departure due to entrenchment or incision and associated bed form changes; these streams are not a significant sediment supply due to boundary resis- tance such as bank armoring, but may begin to experience erosion and supply both coarse and fine sediment when bank failure leads to channel widening; storage of coarse or fine sediment is negligible due to high transport capacity derived from the deep incision and little or no floodplain access. Look for straightened, incised or entrenched streams in unconfined valleys, which may have been bermed and extensively armored and are in Stage II or early Stage III of channel evolution.
Fine Source and Transport & Coarse Deposition	Sand, gravel, or cobble streams with variable bed forms; at least one side of the channel is un- confined by valley walls; may represent a stream type departure due to vertical profile and as- sociated bed form changes; these streams supply both coarse and fine sediments due to little or no boundary resistance; storage of fine sediment is lost or severely limited as a result of chan- nel incision and little or no floodplain access; an increase in coarse sediment storage occurs due to a high coarse sediment load coupled with the lower transport capacity that results from a lower gradient and/or channel depth. Look for historically straightened, incised, or entrenched streams in unconfined valleys, having little or no boundary resistance, increased bank erosion, and large unvegetated bars. These streams are typically in late Stage III and Stage IV of chan- nel evolution.
Coarse Equilibrium (in = out) & Fine Deposition	Sand, gravel, or cobble streams with equilibrium bed forms; at least one side of the channel is unconfined by valley walls; these streams transport and deposit coarse sediment in equilibrium (stream power—produce as a result of channel gradient and hydraulic radius—is balanced by the sediment load, sediment size, and channel boundary resistance); and store a relatively large volume of fine sediment due to the access of high frequency (annual) floods to the floodplain. Look for unconfined streams, which are not incised or entrenched, have boundary resistance (woody buffers), minimal bank erosion, and vegetated bars. These streams are Stage I, late Stage IV, and Stage V.
Deposition	Silt, Sand, gravel, or cobble streams with variable and braided bed forms; at least one side of the channel is unconfined by valley walls; may represent a stream type departure due to changes in slope and/or depth resulting in the predominance of transient depositional features; storage of fine and coarse sediment frequently exceeds transport**. Floodplains are accessed during high frequency (annual) floods. Look for unconfined streams, which are not incised or entrenched, have become significantly over-widened, and if high rates of bank erosion are present, it is offset by the vertical growth of unvegetated bars. These regimes may be located at zones of naturally high deposition (e.g., active alluvial fans, deltas, or upstream of bedrock controls), or may exist due to impoundment and other backwater conditions above weirs, dams and other constrictions.

** Use of the "Deposition" regime characterization may be rare, but valuable as a planning tool, where the reach is storing far more than it is transporting during some defined planning period. The extreme example would be that of an impounded reach where all of the course and a great percentage of the fine sediments are being deposited, rather than transported downstream. This man-made condition may change, thereby changing the sediment regime, but is not likely over the period at which the corridor plan will be used.

Reference: https://dec.vermont.gov/sites/dec/files/wsm/rivers/docs/rv_rivercorridorguide.pdf

River Styles

A scientific tool used to describe and explain the diversity and distribution of <u>river</u> types in a <u>catchment</u> according to river character and behavior. The River Styles Framework differs from other classification systems (e.g. <u>Rosgen Stream Classification</u>) in that it provides an open-ended process for description rather than fitting rivers into pre-existing categories. It was developed by researchers at Macquarie University.

Reference: <u>https://www.mq.edu.au/about/about-the-university/faculties-and-departments/faculty-of-science-and-engineering/departments-and-centres/department-of-environmental-sciences/engage/river-styles-framework</u>