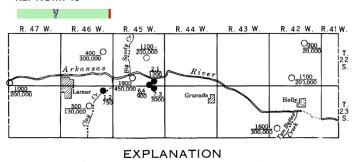
ArkDSS Task 2.8 Appendix B

Alluvial Aquifer Properties: References from the CWCB/CGS Spatial Bibliography and HRS' Notes on Groundwater Zones

See Table A at the end of the document for the Spatial Bibliography publications used; see Spatial Bibliography for additional references

Groundwater Zones: WD16, WD79, WD14 North, WD12, WD17, WD17 North, WD67 Northwest, WD67 Northeast, WD67 South, Southern High Plains DB – WD67, Upper Big Sandy DB, Northern High Plains DB, Adobe, HIM Alluvial Aquifer – WD17, HIM Alluvial Aquifer – WD67, Big Sandy, Rush, Horse, HIM Alluvial Aquifer – WD14, WD14, Chico, Upper Black Squirrel Creek DB, Fountain Creek Reach 1, 2, 3, & 5, Salt Creek-Arkansas River, WD15, Pueblo Res, Florence, Cannon City-Penrose, Purgatoire River-Below Thatcher, and Two Butte Creek

REF NUM: 35



		Well cha	racteristics		
Aquifer name and description	Dept	h (ft)	Yield (ga	al/min)	Remarks
	Common range	May exceed	Common range	May exceed	
		Princip	al Aquifers		
Arkansas alluvial aquifer: Boulders, cobbles, gravel, sand, and clay. Generally grades from fine sand near the surface to coarse sand and gravel at the base. Generally unconfined.	25 - 100	200	100 – 1,200	1,500	Principal source of water for irrigation, public supply, and industrial wells. Transmissivity, ranges from 1,000 to 150,000 ft²/d. Dissolved-solids concentration ranges from about 800 to 5,000 mg/L Water hard to extremely hard.

Useful page(s): 164

Groundwater Zones: WD67 Northeast, WD67 South, Southern High Plains DB-WD67, Northern High Plains DB, HIM Alluvial Aquifer-WD67, Big Sandy, and Two Butte Creek

REF NUM: 46

Artesian well in Dakota Sandstone

Large-capacity irrigation or publicsupply well in unconsolidated deposits

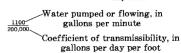


FIGURE 7.—Map of part of the report area showing the location of aquif:r tests, the coefficients of transmissibility, and the pumping rates.

Table 2.—Summary of the results of aquifer tests

[Principal aquifer: Kd, Dakota Sandstone; To, Ogallala Formation; Qt, terrace deposits, Arkansas River; Qal, alluvium, Arkansas River; Qal, C, alluvium, Clay Creek]

Useful pages: 25, 26, 27

Well	Princi- pal aqui- fer	Depth of well (feet)	Depth to bed- rock (feet)	Depth to water below meas- uring point (feet)	Total satu- rated thick- ness (feet)	Satu- rated sand and gravel (feet)	Dura- tion of pump- ing (hours)	Average pump- ing rate (gpm)	down (feet)	Specific capac- ity (gpm per ft of draw- down)	cient of trans- missi- bility	field co-	of per- perme- ability	Radius of in- fluence	cient of stor-	Water tem- pera- ture (° F)	Date of test	Remarks
22-42-11bbb 33abb 22-45-15dda 33babl 22-45-35cedl 35dba 22-46-14aaa 22-47-31cbc 23-42-30dddl 23-45-2aac 23-46-2dba 23-46-15bca	Qt Qal Kd Qt Qal Qal Kd Kd	140 115 63 220 146 36 111 176 138	138 63 146 35 109	70 60.8 60.1 17.1 +10.0 +22.35 49.8 8.1 52.2 +19.5 +5.1 36	75 77 55 46 98 29 57	98 57 18 13	8 24 8 20 2 2 2 8 60 72 2 1 46	300 1,600 1,100 1,900 6.4 2.1 400 1,000 1,600 7.3 1.2 500	51 23 18 16 10 2.6 2.7 17 20 19.5 5.1 3.5	6 68 58 121 . 6 . 8 146 61 77 . 4 . 2	20, 000 200, 000 200, 000 450, 000 900 1, 200 300, 000 200, 000 300, 000 3, 000 1, 400 130, 000	3,000 4,000 10,000 	3,000 10,000 3,000 5,000	860 2,500 800 1,240 2,000	0. 2 .1 .001 .001 .1 .2 .2	58 58 59 58 61 59 57 58 61 59	11-11-57 11-12-57 10-21-57 10-24-57 10-12-67 8-22-57 11-6-57 10-15-57 9-2-58 10-12-57 10-17-57 4-7-54	Flowing well. Do. Basic data obtained by city of Lamar personnel.

Groundwater Zones: WD14 North, WD 17 North, WD17, HIM Alluvial Aquifer-WD17, Horse, HIM Alluvial Aquifer-WD14, WD14, and Purgatoire River-Below Thatcher

	Field determinations	Laboratory determinations
Number of determinations	18	22
Coefficient of permeability(gpd per sq ft)dodo		25–7, 800 1, 280
Coefficient of storageAverage	0. 03-0. 17	0. 14-0. 32 . 25

Table 4.—Summary of the results of aquifer tests

[Principal aquifer: Kpc, Cheyenne Sandstone Member of the Purgatoire Formation; Kd, Dakota Sandstone; Knf, Fort Hays Limestone Member of the Niobrara Formation; Qtw, Wisconsin terrace]

Location	Owner or user	Prin- cipal aqui- fer	Depth of well (feet)	Total satu- rated thick- ness (feet)	Distance to water level below or above (+) land surface (feet)	Average pumping rate (gpm)	Draw- down (feet)	Spe- cific capac- ity (gpm per ft of draw- down)	Dura- tion of pump- ing (hours)	Coeffi- cient of trans- missi- bility (gpd per ft)	Coeffi- cient of permea- bility of entire aquifer (gpd per sq ft)	Apparent coeffi- cient of stor- age	Apparent radius of in- fluence (feet)	Tem- pera- ture (°F)	Specific conduct- ance in micro- mhos at 25°C (field determi- nation)	Kilo- watt- hours per acre- foot of water	Date of test
C21-56- 2bdb C21-58-22sab 22daa 27daa C22-54-17ddd C22-58-28cac	F. Hagan. L. Kiefer. W. Bronner F. Tanabe O. Bay The Valley Water Co.	Qvf Qvf Qvf Qvf Qvf Kd, Kpc	28.7 32.2 28.7 41.0 46.4 1,506	20 21 18 29 20 220	8. 5 11. 3 10. 2 11. 8 30. 1 85	440 420 160 120 300 40	10 9 6 17 7 198	44 47 27 7 43 .20	4 3 3 25 96 48	30, 000 50, 000 30, 000 15, 000 50, 000 120	1,500 2,400 1,700 520 2,500	0.15 .13	170 900	60 58 58 57 82	6, 300 2, 300 2, 100 3, 000 2, 700	53 47 85 167 90	9-27-60 9-26-60 9-27-60 9-26-60 8-26-60 2-10-62
C22-59- 7daa 16acb 16dcc C23-54-13bac 20aac	E. Jensen C. Stauder do J. Dutton Bent's Fort Water Co.	Qtw Qtw Qtw Qtw Kd, Kpc	35.3 39.8 30.6 32 1 800	24 29 9 19 227	10.8 11.2 21.3 9.8 69.0	430 940 310 490 75	8 19 8 17 550	54 49 39 29 . 14	33 28 10 16 25	120, 000 160, 000 80, 000 80, 000 110	5,000 5,500 8,900 4,200	. 12	800 300	55 56 57 58 70	3, 700 2, 200 2, 400 2, 400	106 69 71	9-25-60 9-15-60 9-16-60 8- 3-60 3- 4-61
29daa 30edd C23-55-30bcc	J. Dutton W. Glasco	Qtw Qtw Qtw	32 4 34 5 34 0	24 23 28	8.3 11.0 6.1	730 620 670	12 7 15	61 89 45	23 10 94	90, 000 200, 000 120, 000	3, 800 8, 700 4, 300	2 . 11 2 . 17	600 1,700	56 56 56	3, 300 3, 600 3, 500	57 50	8- 4-60 8- 3-60 9- 9-60
33bad 36bbc	A. Bair Bent'sFort Water Co.	Qtw Kd, Kpe	36.1 820	31 202	7. 2 91	690 47	16 488	43 . 10	5 24	100, 000 150	3, 200 . 7	.0001	500	55 57	1,700 2,000	52 89	8- 6-60 8- 8-60
36bda C23-56- 8dde C23-57- 2dde C24-56- 4cde 12abb 18acb C24-58-19abd	Wunsch Bros. D. Reynolds. W. Woodside. B. Malott. C. Lusk. W. Caldwell. Arnold-Harriman Co., Inc.	Qtw Qtw Qtw Qvf Knf Qvf Kd, Kpe	40.2 32.2 34.7 41.7 41 47.4	16 18 12 20 30 20 102	24. 0 13. 7 22. 6 21. 0 10. 6 27. 4 +84	760 400 200 500 125 700 9, 4	10 11 7.5 13 19 13 84	76 36 27 38 7 54	12 25 48 5 69 20 3	140, 000 50, 000 50, 000 80, 000 10, 000 110, 000 800	8, 800 2, 800 4, 200 4, 000 330 5, 500	.009	2,500 1,200	57 56 55 54 55 77	2,000 2,800 2,200 2,200 4,200 3,200 1,200	89 59 100 70 63 96	8- 8-60 9- 1-60 8-30-60 8-10-60 8-26-60 9-12-60 9-28-60

Casing perforated 450 to 800 ft.
 Coefficient of storage projected for 20 days may exceed 0.25.
 Casing perforated 1,110 to 1,130 ft.

- Relevant pages: 33, 37. & 38
- Plate 3 in folder shows the well locations on cross sections; did not copy as Plate is large and would not be intelligible in a word document

Table 5.—Summary of laboratory-analysis data

[Analyses by the Hydrol. Lab. of the U.S. Geol. Survey, Denver, Colo.]

Geologic source: Qn, Nebraskan deposits; Qtw, Wisconsin terrace deposits; Qvf, valley-fill deposits.

Specific retention: The ratio of the volume of water retained after a saturated rock has been drained by gravity to the bulk volume of the rock.

Porosity: Ratio of the aggregate volume of the voids in a rock or soil to its bulk volume.

Specific yield: The ratio of the volume of water in a saturated rock that will drain by gravity to the bulk volume of the rock. Porosity minus specific retention equals specific yield.

Coefficient of permeability: Amount of water that will flow through a unit cross section of material in a unit of time under a unit hydraulic gradient at a given temperature. The tabulated values are for a temperature of 60°F.

									perasure.			varges a					
			Clay		Sand siz	Sizes (milli	of grain	(percent			sizes (mil	limeters)		Specific			Coeffi-
Location	Depth (feet)	Geo- logic source	and sllt sizes (milli- meter less than 0.0625)	Very fine (0.0625- 0.125)	Fine (0.125 0.25)	Me- dium (0.25- 0.5)	Coarse (0.5- 1.0)	Very coarse (1.0- 2.0)	Very fine (2.0- 4.0)	Fine (4. 0 8.0)	Me- dium (8.0- 16.0)	Coarse (16.0- 32.0)	Very coarse (32.0- 64.0)	reten- t:on (per- cent)	Poros- ity	Specific yield 1 2 28.7 8 28.0 1 2 24.6 1 27.8 3 27.1 8 26.5 6 27.2 23.1 2 27.9	cient of perme- ability
C21-58-36ccc. C21-60-25aaa. C22-57-26dad. 36bbb. C22-58-32dbb. C22-59-34caa. C23-54-13add. 20add. 28cbc. 20aas. C23-56-11bcc. 16dda. 21daa. 21daa. 22dba. 24cdd. 26ccc. 36acb. C23-57-2aaa. 11add. C24-55-2aab. C24-56-8cdd.	35- 46 3- 19 30- 55	QviQtwQvi	8.26 1.20 5.77 .33 1.18 6.19 2.55 1.20 1.49 5.54	1.0 .3 .1 .8 1.5 .4 .0 .1 .3 1.9 .6 .3 .3 .4 .7 .7 .1 .1	2. 7 .6 .5 .3 3. 7 1. 6 .2 .3 1. 0 4. 1 17 1. 4 .2 2. 4 2. 5 1. 6 .6	4. 7 1. 9 4. 0 3. 0 5. 8 5. 3 11. 6 1. 0 1. 9 16. 1 9. 5 3. 2 6. 9 7. 7 7. 7 3. 4 0 9. 0 11. 0 9. 0 9. 0 9. 0 9. 0 9. 0 9. 0 9. 0 9	14. 8 4. 6 10. 5 12. 3 8. 5 3. 8 21. 0 4. 8 9. 8 9. 8 22. 9 31. 0 19. 9 9. 3 22. 7 10. 3 5. 6 9. 11. 7 2. 0	24. 0 12. 6 13. 7 15. 4 2. 6 22. 3 9. 1 24. 5 16. 5 29. 9 30. 5 24. 5 29. 9 30. 0 32. 5 30. 0 32. 3 30. 3 3 30. 3 30. 3 3 30. 3 30.	27. 8 25. 1 23. 4 19. 7 40. 0 6. 2 25. 1 14. 7 20. 2 33. 9 15. 5 24. 9 32. 0 24. 9 32. 0 34. 1 10. 4	11. 3 37. 6 37. 2 15. 7 26. 0 13. 2 21. 5 7. 3 8. 0 23. 1 12. 3 4. 3 22. 1 33. 6 6. 1 15. 2 6. 1 21. 3	3. 0 16. 7 9. 4 33. 5 1. 6 39. 5 3. 9 46. 5 8. 9 1. 5 3. 0 3. 2 11. 2 2 5. 6 9 19. 5 43. 3	6.2		7. 51 5. 26 8. 51 2. 05 7. 62 14. 42 5. 09 3. 29 4. 81 6. 44 8. 09 7. 29 4. 8. 09 7. 79 6. 37 7. 79 6. 16 6. 16 6. 10 8.	36. 2 33. 8 33. 1 28. 2 29. 7 39. 8 31. 2 29. 8 31. 2 35. 6 32. 6 32. 6 32. 6 32. 6 32. 6 32. 4 34. 1	29. 0 24. 6 26. 1 27. 8 15. 3 27. 1 26. 5 27. 2 27. 2 28. 1	150 1, 360 700 1, 600 205 1, 300 7, 800 1, 950 1, 980 1, 920 2, 120 230 630 170 2, 320 500

Groundwater Zones: WD67 Northwest, HIM Alluvial Aquifer-WD67, Big Sandy, and Rush REF NUM: 61

Relevant Pages: 24; see plate 1 for locations of wells

Well	Owner	Depth of well (feet)	Depth to bedrock (feet)		Saturated thickness (feet)	Duration of pumping (minutes)	Avera pumpi rate (gpm
C10-55-27cca	B. Hallowell	36	36	6. 4	30	2,910	

Table 2.—Summary of the results of pumping tests in valley-fill deposits

		(feet)	(feet)	(feet)		minutes)	(gpm)
C10-55-27cca C14-51-6ddd C17-45-30cbd 46-18cdd	B. Hallowell V. George E. Rutledge Town of Eads	36 16 23 46	36 20 28 46	6. 4 6. 6 6. 6 10. 9	30 13 21 35	2, 910 1, 425 1, 440 2, 880	117 53 78 565
		Draw- down in pumped well at end of pumping (feet)	Specific capacity (gpm per ft of draw- down)	Coefficient of trans- missibility (gpd per ft	of perme- ability	of obser- vation	Date
C10-55-27cca	B. Hallowell V. George E. Rutledge Town of Eads	5. 3 4. 2 4. 5 32. 0	22 13 17 18	40, 000 45, 000 55, 000 48, 000	3,500	1 1	7-15-60 7-20-60 7-29-60 7-23-55

Groundwater Zones: WD14 North, WD17 North, Upper Big Sandy DB, Rush, Horse, Chico WD14, Chico WD10, Fountain Creek Reach 1-4, Upper Black Squirrel Creek DB

REF NUM: 162

Hydraulic Conductivity - 100-2,000 ft/day Map showing Transmissivity

Useful pages: 28, 29

Groundwater Zones: Cimarron River, WD67 Northeast, WD67 South, Southern High Plains DB-WD66, Southern High Plains DB-WD67, Northern High Plains DB, HIM Alluvial Aquifer-WD67, Big Sandy, Purgatoire River-Below Thatcher, and Two Butte Creek

REF NUM: 164

No useful information

Groundwater Zones: WD14 North, WD12, WD17 North, Upper Big Sandy DB, Rush, Horse, Chico WD10, Chico WD14, Fountain Creek Reach 1-4, Upper Black Squirrel Creek DB, and Pueblo Res REF NUM: 128

Relevant pages: 9-11 (show maps of each aquifer and study sites); table taken from page 13; contains information about artificial recharge

Table 1.--Summary of alluvial aquifer characteristics

Aquifer location	Area (square) miles)	Average depth to water below land surface in spring 1974 (feet)	Hydraulic conduc- tivity (feet per day)	Spe- cific yield	Dissolved- solids con- centration (milligrams per liter)
Upper Black Squirrel Creek basin	- 101.3	29	127	0.20	<400
Jimmy Camp Valley	- 13.5	20	135	.1	1500-3,000
Fountain Valley (Widefield aquifer)	- 3.3	33	757	.25	500

Groundwater Zones: WD79, WD12, Hardscrabble Creek, WD13, WD15, and Coaldale REF NUM: 143

No useful information

Groundwater Zones: WD14 North, WD17 North, Adobe, HIM Alluvial Aquifer-WD17, HIM Alluvial Aquifer-WD14, Horse, WD14

REF NUM: 148

No useful information

Groundwater Zones: WD14 North, WD17 North, Upper Big Sandy DB, Rush, Horse, Chico WD14, Chico WD10, Fountain Creek Reach 1-4, and Upper Black Squirrel Creek DB

REF NUM: 183

Only contains depth to water information in the alluvial aquifers after pg. 351

Groundwater Zones: WD12, Fountain Creek Reach 1-5, Pueblo Res, Florence, and Canon City-Penrose REF NUM: 189

No useful information

Groundwater Zones: WD79, WD12, Leadville, Buena Vista, HIM Alluvial Aquifer-WD14, Fountain Creek Reach 1,3-5, Salt Creek-Arkansas River, Hardscrabble Creek, WD13, WD15, Pueblo Res, Florence, Canon City-Penrose, Coaldale, and Salida REF NUM: 198

50-500 gal/min, but up to 1,000 gal/min (pg. 13)


Groundwater Zones: Fountain Creek Reach 4-5, WD12, Hardscrabble Creek, Florence, Cannon City-Penrose, WD14 North, HIM Alluvial Aquifer-WD14, WD14, Chico WD14, Salt Creek-Arkansas River, Pueblo Res, WD15, WD16, WD17 North, WD17, Adobe, HIM Alluvial Aquifer-WD17, Horse, Purgatoire River-Below Thatcher, WD67 Northwest, WD67 Northeast, WD67 South, Southern High Plains DB-WD67, Northern High Plains DB, HIM Alluvial Aquifer-WD67, Big Sandy, Two Butte Creek, WD79

REF NUM: 223

mainly concerned with specific conductance; no information about other aquifer properties

Groundwater Zones: WD17 North, WD17, Adobe, HIM Alluvial Aquifer-WD17, Horse, Purgatoire River-Below Thatcher, WD67 Northwest, WD67 South, HIM Alluvial Aquifer-WD67, and Big Sandy REF NUM: 266

no useful information

Groundwater Zones: Fountain Creek Reach 4-5, WD12, Hardscrabble Creek, Florence, Canon City-Penrose, WD14 North, HIM Alluvial Aquifer-WD14, WD14, Chico WD14, Salt Creek-Arkansas River, Pueblo Res, WD15, WD16, WD17 North, WD17, Adobe, HIM Alluvial Aquifer-WD17, Horse, Purgatoire River-Below Thatcher, WD67 Northwest, WD67 Northeast, WD67 South, Southern High Plains DB-WD67, Northern High Plains DB, HIM Alluvial Aquifer-WD67, Big Sandy, Two Butte Creek, and WD79

REF NUM: 285

T (aquifer)= $9.3 \times 10^{-3} \text{ m}^2/\text{s}$ (pg.4; Konikow and Person, 1985) Effective porosity = .2 This paper (Goff) T (stream bed) = $4.7 \text{ m}^2/\text{s}$ to .02 m²/s (pg.5)

This paper (Goff) T (stream bed) = 4.7 m/s to .02 m/s (pg. 5) This paper (Goff) T (canal bed) = $1.9 \times 10^{-3} \text{ m}^2/\text{s}$ to .01 m²/s (pg. 5)

Groundwater Zones: Fountain Creek Reach 1-5, Upper Black Squirrel Creek DB, WD12, HIM Alluvial Aquifer WD14, Chico WD14, Salt Creek-Arkansas River, Pueblo Res, and WD15

REF NUM: 327

relevant pages: 3, 12

Table 3. Characteristics of subreaches in the Monument Creek study.

Subreach number (fig. 2)	Channel length (miles)	Aquifer length (miles)	Average width of aquifer¹ (feet)	Average transmissivity (feet squared per day)	Average storage coefficient	Cumulative channel length (miles)
MSR1	1.36	1.23	730	7,000	0.20	1.36
MSR2	.48	.42	540	6,000	.20	1.84
MSR3	1.00	.84	180	2,000	.20	2.84
MSR4	1.98	1.59	120	2,000	.20	4.82
MSR5	1.46	1.17	240	3,000	.20	6.28
MSR6	1.53	.89	270	4,000	.20	7.81
MSR7	5.48	3.67	160	3,000	.20	13.29
MSR8	1.77	1.61	170	2,000	.20	15.06
MSR9	3.28	2.44	200	4,000	.20	18.34
MSR10	.80	.57	300	3,000	.20	19.14
MSR11	2.25	2.08	240	3,000	.20	21.39
MSR12	4.23	3.79	230	5,000	.20	25.62
MSR13	.71	.68	1,600	9,000	.20	26.33
MSR14	1.28	1.25	1,250	9,000 .20		27.61
MSR15	.67	.60	3,000	12,000	.20	28.28

¹One-half of average aquifer width is used for input to stream-aquifer model.

4 Application of a Stream-Aquifer Model to Monument Creek for Development of Methods to Estimate Transit Losses

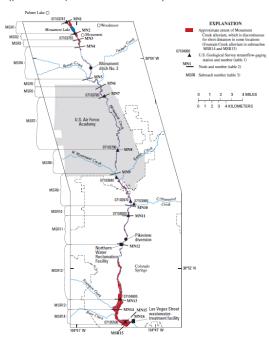


Figure 2. Monument Creek study reach and adjacent area used in application of stream-aquifer model to estimate transit losses for reusable water.

Groundwater Zones: Fountain Creek Reach 1-4, Upper Black Squirrel Creek DB, WD12, Chico WD14, and Pueblo Res REF NUM: 138

No useful information; only water level data and spring seepage

Groundwater Zones: Fountain Creek Reach 1-5, Chico WD14, Salt Creek-Arkansas River, and Pueblo Res REF NUM: 211

Hydraulic Conductivity: 400 – 1,600 ft/day (pg. 10)

Specific Yield= .2 - .3 (pg. 10)

Groundwater flow averages 20 ft/day and ranges from 10-40 ft/day

Well Yield: 400 – 700 gal/min, but yields of over 3000 gal/min have been reported

Relevant pages: 10, 13

Table 1.--Summary of gain-loss data for Fountain Creek, 1973-77

		or loss et per second)	Maximum loss	Maximum gain	Number	of
Gain-loss reach	Mean	Standard deviation	(cubic feet per second)	(cubic feet per second)	investi	gations Gain
1	-11.0	9.2	-25	3.0	8	2
2	3.2	B.2	-14	15	2	9
3	1.2	11.5	-27	23	5	9
4	6.3	18.1	-24	34	3	10
5	5	11.1	-22	27	7	6
5	-3.6	4.6	-12	3.8	10	3
7	3	7.9	-18	16	6	7
-8	1.3	8.9	-6.5	28	7	6

Groundwater Zones: WD12, Florence, Canon City-Penrose

only water level measurements

Groundwater Zones: Buena Vista, Salida, and WD12

REF NUM: 323

[<, less than]

Table 2. Lithologic description and estimated range of porosity, hydraulic conductivity, and specific yield, and reported well yields of the alluvial-outwash, till, basin-fill, and bedrock aquifers.

Aquifer	Lithologic description	Porosity (percent)	Hydraulic conductivity (feet per day)	Specific yield (percent)	Reported well yield (gallons per minute)
Alluvial outwash	Poorly stratified and poorly to well sorted silty sand and gravel. Locally contains cobbles and boulders.	15 to 40	2.8 to 1,500	12 to 34	0.01 to 1,500
Till	Non-sorted, non-stratified, moderately to firmly compacted sandy boulder tills.	110 to 20	¹ 1.6 to 98	¹ 5 to 15	0.03 to 60
Basin fill	Unconsolidated to poorly consolidated sand, gravel, and cobbles, with interbedded coherent siltstones and friable sandstones, and volcanic ash beds.	15 to 40	0.0007 to 280	<2 to 34	0.01 to 1,500
Bedrock	Fractured crystalline rocks.	2< 1 to 10	² <130	² <10	3< 1 to 10
	Unfractured crystalline rocks.	2<1 to 5	² <0.0001	² <5	3<1 to 10
	Tuff.	141	10.2	16 to 16	3<1 to 18

¹Todd (1980, tables 2.1, 2.5, and 3.1).

³Crouch and others (1984, table 1).

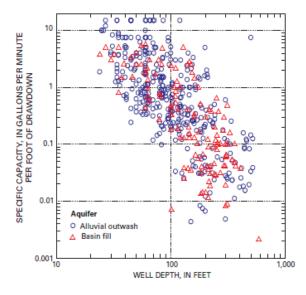


Figure 5. Relation between well depth and estimated specific capacity of wells in the alluvial-outwash and basin-fill aquifers in the study area.

Groundwater Zones: Fountain Creek Reach 4-5, WD12, Hardscrabble Creek, Florence, Canon City-Penrose, WD14 North, HIM Alluvial Aquifer-WD14, WD14, Chico WD14, Salt Creek-Arkansas River, Pueblo Res, WD15, WD16, WD17 North, WD17, Adobe, HIM Alluvial Aquifer-WD17, Horse, Purgatoire River-Below Thatcher, WD67 Northwest, WD67 Northeast, WD67 South, Southern High Plains DB-WD67, Northern High Plains DB, HIM Alluvial Aquifer-WD67, Big Sandy, Two Butte Creek, and WD79

REF NUM: 86

²Freeze and Cherry (1979, tables 2.2 and 2.4).

No useful information

Groundwater Zones: Fountain Creek Reach 4-5, Hardscrabble Creek, WD14 North, HIM Alluvial Aquifer-WD14, WD14, Chico WD17, Salt Creek-Arkansas River, Pueblo Res, WD15, WD16, WD17 North, WD17, Adobe, HIM Alluvial Aquifer-WD17, Horse, Purgatoire River-Below Thatcher, WD67 Northwest, WD67 Northeast, WD67 South, Southern High Plains DB-WD67, Northern High Plains DB, HIM Alluvial

Aquifer-WD67, Big Sandy, Two Butte Creek, and WD79 REF NUM: 98

Information is exclusively about soil moisture (specific yield, etc.) not about the alluvial aquifer

Groundwater Zones: Fountain Creek Reach 1-4, Chico-WD14, and Pueblo Res REF NUM: 40

Table 2.—Summary of the results of aquifer tests in Fountain and Jimmy Camp Valleys [Principal aquifer: AF, alluvium of Fountain Valley; AJ, alluvium of Jimmy Camp Valley; AS, alluvium of Sand Creek]

Well location	Owner	Prin- cipal aquifer	Depth of well (feet)	Depth to bed- rock (feet)	Depth to water below meas- uring	Total satu- rated thick- ness	Dura- tion of pump- ing	Aver- age pump- ing rate	Draw- down (feet)	Spe- cific capac- ity (gpm	Coeffi- cient of trans- missi- bility	Aver- age coeffi- cient of perme- ability	Radius of in- fluence at end of pump-	Spe- cific yield (per-	Water tem- pera- ture	Date
					point (feet)	(feet)	(hours)	(gpm)		per ft)	(gpd per ft)	(gpd per sq ft)	ing period (feet)	cent)	(°F)	
14-65-27ddb1	Banning-Lewis Ranches.	AJ	80.8	80	27,3	53	7	330	35	9	40,000	750	1,000		55	3-18-55
34aacl	do. K. J. M. Cormack Janitell Farms H. W. Houf Security Village T. L. Bender Rufus Marshall	AF AF AF AF	82 97 61.8 76.0 55.7 59.9 52.3 37.3 28.8	82 88 66 87 74 55 60 49 37 29	25.9 72.9 23.3 23.8 42.3 26.8 45.2 24.4 13.5 14.3	57 16 44 64 34 29 17 27 24 15	24 5 96 24 690 56 10 79 51 76 600	300 78 275 690 500 670 495 525 460 280	38 10 29 22 15 10 13 14 17 10 19	8 8 9 31 33 67 38 38 27 28 47	20,000 10,000 60,000 100,000 220,000 140,000 150,000 120,000 150,000 180,000	350 620 1, 360 1, 560 6, 500 4, 800 11, 800 5, 500 3, 300 7, 200	2,000 1,200 700 3,000 500 1,200 700 2,500	20	55 54 54 55 55 55 55 55 54 63	3-17-55 7-29-55 4-11-55 5-19-56 9-10-54 7-19-54 10-20-54 11-1-54 10-6-54 10-22-54

¹ Average battery of 2 wells.

Table 3.—Summary of laboratory determinations of hydrologic properties of alluvial sediments

Location	Depth of sample (feet)	Specific reten- tion (percent)	Porosity (percent)	Specific yield (percent)	Coefficient of permeability (gpd per sq ft)
15-66-3acc 15-66-10aab	35–45 15 25	9.4	37.4	28.0	4, 200 3, 600 1, 700
15-66-11bed	35	1.6	31. 3	29.7	3,500
	45	2.1	30. 5	28.4	1,300
	42	1.2	28. 7	27.5	3,100
	52	.7	30. 2	29.5	5,800
	62	1.2	30. 5	29, 9	5, 900
	72	3.0	30. 5	29, 3	8, 600
	79	6.3	29. 8	26, 8	5, 200
15-66-14aac1	38 70	2.0	32.1 34.0	25. 8 32. 0	6, 500 1, 800
15-66-14aac2	60	4.3	39. 6	35.3	10,000
16-65-16bbb2		11.9	35. 8	23.9	1,300
16-65-17aaa3	16-19	11.6	35. 5	23.9	860
17-65-3cdb1		12.0	30. 6	18.6	1, 300
17-65-4dda 18-65-1bba	24-26 7	5. 4	35, 1	29, 7	4, 800 8, 000

pg. 24

Comparison of laboratory and field determinations

	Thickness	Coefficient of	Laboratory de- terminations	Field deter- mination
Saturated interval	(feet)	permeability (gpd per sq ft)	Coefficient of transmissibility (gpd per ft)	Coefficient of transmissibility (gpd per ft)
42-49	7 16 11	6, 500 10, 000 1, 800	45, 500 169, 000 19, 800	
Total section	34		225, 300	220,000

pg.25

Groundwater Zones: HIM Alluvial Aquifer-WD14, Chico WD14, Salt Creek-Arkansas River, Pueblo Res, and WD15 REF NUM: 127

hydraulic conductivity: 8.2 m/d

transmissivity: 25.1 m²/d

maximum pumping rate: .6 l/s (pg. 5)

Groundwater Zones: WD14 North, HIM Alluvial Aquifer-WD14, and Chico WD14 REF NUM: 239

specific yield ~ .15-.2

hydraulic conductivity: 65 ft/day (pg. 43)

Groundwater Zones: Fountain Creek 1-3

REF NUM: 263

Useful pages: plate 3

Table 2. -- Selected aquifer characteristics and estimated ground-water flow across hydrogeologic sections of the alluvial aquifer, October 1991.

Trace of hydrogeologic section name	Weighted mean hydraulic conductivity ¹ (feet per day)	Weighted mean hydraulic gradient ²	of hydrogeologic section (square feet)	Flow rate (cubic feet per second)	Flow rate (acre-feet per day)
		Ir	flow		
A-A	250	0.012	25,250	0.9	1.74
A-A"	200	.013	106,250	3.2	6.34
B-B'	70	.025	72,800	1.5	2.92
B'-B"	48	.033	87,750	1.6	3.19
C-C'	52	.027	147,300	2.4	4.75
C'-C"	16	.035	81,900	0.5	1.05
		<u>O</u> ı	utflow		
D-D'	215	.004	96,500	1.0	1.98

Weighted mean hydraulic conductivity is the mean hydraulic conductivity weighted by saturated area of hydrogeologic section

² Mean hydraulic gradient is weighted by the saturated area of the hydrogeologic section

Table 1. -- Estimated hydraulic-conductivity values for the alluvial aquifer

Well location ¹	Estimated hydraulic conductivity (feet per day)		
SW, NW, SE, 19, 14S, 66W	48		
SW, SW, SW, 34, 14S, 66W	9.5		
SE, NW, NW, 1, 15S, 66W	330		
NW, NW, NW, 2, 15S, 66W	66		
SW, SE, NW, 2, 15S, 66W	330		
SW, SW, SW, 2, 15S, 66W	320		
NE, NW, NE, 3, 15S, 66W	480		
SW. NW. NW, 3, 15S, 66W	21		
NE, NE, NE, 4, 15S, 66W	91		
NE, NW, NE, 4, 15S, 66W	180		
NW, SE, NE, 10, 15S, 66W	86		
NW, SE, NE, 10, 15S, 66W	18		
SE, SE, NE, 13, 15S, 66W	16		
NW, NE, SE, 24, 15S, 66W	270		
SE, NW, SE, 24, 15S, 66W	110		
NW, NE, SE, 29, 14S, 66W	1,300		
NE, SE, NE, 32, 14S, 66W	5.3		
NE, NE, NE, 32, 14S, 66W	600		
SE, NE, SW, 33, 14S, 66W	43		
SW, NE, SE, 33, 14S, 66W	68		
SW, NE, SE, 33, 14S, 66W	100		
SE, SW, SW, 34, 14S, 66W	400		
NE, NE, SW, 35, 14S, 66W	330		
NW, SW, NW, 19, 15S, 65W	120		
SW, NE, NW, 3, 15S, 66W	43		
NE, SW, NE, 4, 15S, 66W	510		
SW, NW, NE, 11, 15S, 66W	830		
SE, SW, NE, 11, 15S, 66W	1.4		
SW, SE, SW, 12, 15S, 66W	380		
SW, SE, SE, 13, 15S, 66W	140		

Well location is an abbreviated description of the 10-acre tract in

which the well is located; it is described as follows: 1/4 section of the 1/4 section of t he 1/4 section of the section, township, and range. For example, NE,

SW, NE, 4,15S, 66W is NE 1/4, SW 1/4, NE 1/4 sec. 4, T.15.S, R.66.W, of the

Groundwater Zones: WD14 North, HIM Alluvial Aquifer-WD14, and Chico WD14 **REF NUM: 273**

Table 1. Values of hydraulic conductivity of the alluvial aquifers at the Pueblo Depot Activity

[Areas and solitary wells are shown in figure 4]

Well name	Local well number	Depth of screen (feet below land surface)		Hydraulic conductivity, K — (feet per day)	Source of data	
		Тор	Bottom	(lest per day)		
		1-Terrace alluvia				
ZNMW-01	SC02006205BCD	30	45	19	(2)	
ZNMW-03	SC02006205CCB	20	30	10	(2)	
		2—Terrace alluvia				
RFNAMW-01	SC02006212DBC	45.3	60.3	54	(2)	
RFNAMW-02	SC02006212DBC	45.0	65.0	54	(2)	
RFNAMW-03	SC02006212DBC	45.0	65.0	10	(2)	
TNTMW-01	SC02006220BBD	3—Terrace alluvia	al aquifer 28	130	(1)	
TNTMW-02	SC02006220BBD SC02006220DBC	6	28	26	(1) (1)	
TNTMW-02	SC02006220DBC SC02006220DBC	10	25	57	(I)	
TNTMW-04	SC02006220DBC	8	13	2.5	(1)	
TNTMW-06	SC02006220CAD SC02006220DCB	23	38	23	(I)	
114114141-00		4—Terrace alluvia		2.5	(1)	
LABMW-01	SC02006223BBA	11.9	26.8	6.2	(2)	
LABMW-02A	SC02006223BBA	13.3	23.3	14	(2)	
LABMW-02B	SC02006223BBA	26.3	41.3	7.9	(2)	
LABMW-03A	SC02006223BAC	11.5	26.5	22	(2)	
LABMW-03B	SC02006223BAC	26.5	46.5	8.2	(2)	
LABMW-04	SC02006214CCD	14.0	23.5	25	(2)	
LABMW-05A	SC02006223BAB	13.0	23.0	7.7	(2)	
LABMW-06A	SC02006223BBC	14.0	29.0	57	(2)	
		5—Terrace alluvia	al aquifer		4-7	
GMWMW-01	SC02006224CBC	40.0	50.0	7.9	(2)	
GMWMW-02	SC02006224CBC	45.0	55.0	18	(2)	
	Area	6-Terrace altuvia	al aquifer			
VMBMW-01	SC02006228AAA	38.0	58.0	27	(2)	
VMBMW-02	SC02006228AAD	30.0	40.0	19	(2)	
VMBMW-03	SC02006228AAD	29.9	39.9	20	(2)	
VMBMW-04	SC02006228AAD	30.0	40.0	34	(2)	
	Area	7-Terrace alluvia	al aquifer			
DDMW-01	SC02006228ADD	30.5	45.5	2.8	(1)	
DDMW-02	SC02006228DAA	36.7	51.7	15	(1)	
DDMW-03	SC02006227CBA	31.0	36.0	36	(1)	
DDMW-04	SC02006227CCB	33.0	48.0	7.0	(1)	
DDMW-05	SC02006227CBD	38.0	53.0	27	(1)	
DDMW-06	SC02006227CAA	32.0	77.0	91	(1)	
FCVMW-01A	SC02006228ACC	29.0	39.0	18	(2)	
FCVMW-01B	SC02006228ACC	42.0	57.0	12	(2)	
FCVMW-02	SC02006228ACC	31.4	51.4	31	(2)	
510MW-06	SC02006228DBA	23.7	33.2	128	(2)	
510MW-07	SC02006228DAB	24.0	33.5	49	(2)	
510MW-08	SC02006228DBA	22.5	32.0	78	(2)	
Area 8—Terrace alluvial aquifer						
74MW-01	SC02006228CDA	43.0	52.5	32	(2)	
74MW-02	SC02006228CDD	43.0	52.5	41	(2)	
74MW-03	SC02006228CDD	43.0	52.5	37	(2)	
74MW-04	SC02006228CDD	44.0	53.5	70	(2)	

Relevant pages: 14, 15, 16

Well	Local well	(feet	of screen below surface)	Hydraulic conductivity, K	Source of data
	number	Тор	Bottom	(feet per day)	
	Area	9-Terrace aliuvia	il aquifer		
109MW-01	SC02006233ABB	33.2	42.7	21	(2)
109MW-02	SC02006233ABB	32.3	41.8	75	(2)
109MW-03	SC02006233ABB	29.5	39.0	108	(2)
		10—Terrace alluvi			
LFMW-13	SC02006234BCC	8.0	23.0	26	(1)
LFMW-14	SC02006233ADC	34.0	51.0	100	(1)
LFMW-15	SC02006233AAD	27.3	42.8	140	(1)
LFMW-16	SC02006234BCD	14.0	24.0	67	(1)
OLFMW-01	SC02006233DAA	6.0	16.0	220	(1)
OLFMW-02	SC02006233DAB	31.4	36.4	400	(1)
OLFMW-03	SC02006233DDB	19.0	29.0	190	(1)
	Area 11-	-Chico Creek allu	vial aquifer		
ODMW-02	SC01906231DAC	8	23	130	(1)
ODMW-03	SC01906231DAB	13	28	290	(1)
ODMW-04	SC01906231DAC	13	18	310	(1)
ODMW-06	SC01906231DAC	10	2.5	19	(1)
ODMW-07	SC01906231DAB	8	23	240	(1)
ODMW-08	SC01906231DDA	25	40	46	(1)
		-Chico Creek allu			
ODMW-10	SC02006206DCB	9.5	24.5	39	(1)
ODMW-11	SC02006206DBB	14	29	45	(1)
ODMW-12	SC02006206DCC	8	23	23	(1)
ODMW-13	SC02006207ABA	13	33	17	(1)
ODMW-14	SC02006206DCC	13	28	18	(1)
		wells—Terrace all			
ODMW-01	SC01906232BCC	8.0	18.0	90	(1)
ATMW-01	SC01906234ABA	20.0	39.0	14	(3)
ATMW-02	SC02006208BAC	39.5	48.6	79	(3)
ATMW-03	SC02006209CAA	47.4	67.4	2.1	(3)
ATMW-04	SC02006215DDA	17.5	22.5	22	(3)
ATMW-05	SC02006217DCD	40.0	44.0	1.0	(3)
EBMW-01	SC02006212BCB	55.0	60.0	0.4	(3)
EBMW-02	SC02006224DCD	73.3	93.3	5.6	(3)
599MW-05	SC02006227BAB	39.0	38.5	92	(2)
FIMW-01	SC02006233AAB	22.3	32.3	74	(2)
		lls-Chica Creek a			
CAMW-01	SC02006219CBD	17.0	21.2	15	(3)
CAMW-02	SC02006231AAC	29.5	34.0	14	(3)
TNTMW-05	SC02006219DDD	22.7	32.7	84	(1)

Groundwater Zones: Fountain Creek Reach 2-3 REF NUM: 241

powerpoint contains minimal water level information pg. 14

Darriel Bookshire, Engineering-Science, Inc., written commun, 1890.

Thereas Bookshire, Engineering-Science, Inc., written commun, 1890.

Thereas Bookshire, Engineering-Science and Technology Copp., written commun, 1994.

3U.S. Geological Survey, data collected for this study, 1993.

Table A: Spatial Bibliography documents used, ordered by reference number

REF NO	TITLE OF PUBLICATION	AUTHOR(S)
35	The role of ground water in the national water situation	McGuinness, C.L.
40	Ground water in Fountain and Jimmy Camp Valleys, El Paso County, Colorado	Jenkins, E.D.
46	Geology and ground-water resources of Prowers County, Colorado	Voegeli, P.T., Hershey, L.A.
48	Geology and occurrence of ground water in Otero County, and the southern part of Crowley County, Colorado	Weist, W.G., Jr., Jenkins, E.D.; Horr, C.A.
61	Geology and ground-water resources of the Big Sandy creek valley, Lincoln, Cheyenne, and Kiowa counties, Colorado; with a section on chemical quality of the ground water	Coffin, D.L., Horr, C.A.
86	Stream depletion factors, Arkansas River Valley, southeastern Colorado; A basis for evaluating plans for conjunctive use of ground and surface water	Jenkins, C.T., Taylor, O.J.
98	Use of finite-difference arrays of observation wells to estimate evapotranspiration from ground water in the Arkansas River Valley, Colorado	Weeks, E.P., Sorey, M.L.
127	Waterlogging in an alluvial aquifer near Lake Minnequa, Pueblo, Colorado	Emmons, P.J.
128	Artificial-recharge tests in upper Black Squirrel Creek basin, Jimmy Camp Valley, and Fountain Valley, El Paso County, Colorado	Emmons, P.J.
138	Hydrologic data for water-table aquifers in the Colorado Springs-Castle Rock area, Front Range Urban Corridor, Colorado	Hutchinson, E.C., Hillier, D.E.
143	Water-resources appraisal of the Wet Mountain Valley, in parts of Custer and Fremont Counties, Colorado	Londquist, C.J., Livingston, R.K.
148	Ground-water resources of Crowley County	Ryan, B.J., Cain, D.L., Emmons, P.J.
162	Alluvial and bedrock aquifers of the Denver Basin - Eastern Colorado's dual ground-water resource	Robson, S.G.
164	Bedrock geology, altitude of base, and 1980 saturated thickness of the high plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas and Wyoming	Weeks, J. B., Gutentag, E.D.
183	Hydrogeologic data from parts of the Denver Basin, Colorado	Major, T.J., Robson, S.G., Romero, J.C., Zawistowski, S.
189	Assessment of water resources at Fort Carson Military Reservation near Colorado Springs, CO	Leonard, G.J.
198	Water-resources appraisal of the upper Arkansas River Basin from Leadville to Pueblo, Colorado	Crouch, T.M., Cain, D., Abbott, P.O., Penley, R.D., Hurr, T.R.
211	A reconnaissance water-quality appraisal of the Fountain Creek alluvial aquifer between Colorado Springs and Pueblo, Colorado, including trace elements and organic constituents	Cain, D., Edelmann, P.
220	Ground-water flow and quality near Canon City, Colorado	Hearne, G.A., Litke, D.W.

223	Relations of specific conductance to streamflow and selected water-quality characteristics of the Arkansas River basin, Colorado	Cain, D.
239	Geohydrology and ground-water quality at the Pueblo Depot Activity landfill near Pueblo, Colorado	Watts, K.R., Ortiz, R.F.
241	The Widefield Aquifer Management Program	Thompson, G.B.
263	Hydrogeologic characteristics of the alluvial aquifer and adjacent deposits of the Fountain Creek Valley, El Paso	Radell, M.J., Lewis, M.E., Watts, K.R.
266	Irrigation water for the Fort Lyon Canal, southeastern Colorado, 1989-90	Dash, R.G.
273	Hydrogeology of the alluvial aquifers at the Pueblo Depot Activity near Pueblo, Colorado	Chafin, D.T.
285	Simulated effects of irrigation on salinity in the Arkansas River valley in Colorado	Goff, K., Lewis, M.E., Person, M.A., Konikow, L.F.
323	Hydrogeology and quality of ground water in the upper Arkansas River Basin from Buena Vista to Salida, Colorado, 2000-2003	Watts, K. R.
327	Application of a stream-aquifer model to Monument Creek for development of a method to estimate transit losses for reusable water, El Paso County, Colorado	Kuhn, G., Arnold, R. L.
		<u> </u>