

October 30, 2020

Ms. Linda Bassi Colorado Water Conservation Board 1313 Sherman Street Denver, CO 80203

Dear Ms. Bassi,

High Country Conservation Advocates (HCCA), with support from the Bureau of Land Management (BLM), submits this instream flow recommendation for Wildcat Creek, located in Gunnison County, Water Division 4.

HCCA's mission is to protect the health and natural beauty of the land, rivers, and wildlife in and around Gunnison County. Many of our members live and work here and enjoy recreational opportunities and a quality of life that is preserved by our valley's wildlife, habitat, and water resources. HCCA's 27 year-old water program has a long history of protecting waters in the Upper Gunnison Basin and in developing an environmental voice within key regional and state forums. In recent years, HCCA has partnered with the BLM to support instream flow proposals on the Slate River and Oh-Be-Joyful Creek. In 2016 HCCA submitted proposals to protect updated instream flows for Coal Creek and Brush Creek. HCCA partnered with Western Resource Advocates in 2017 to submit an instream flow proposal on Dutchman Creek. Most recently, HCCA submitted instream flow proposals for Gold Creek, Cement Creek and Spring Creek, all in Division 4.

The headwaters of Wildcat Creek originate on United States Forest Service (USFS) lands in Gunnison County. The Wildcat Creek riparian area consists primarily of mixed pine forest. Stream sampling conducted by Colorado Parks and Wildlife (CPW) in 2008 recorded a healthy population of cutthroat trout of unknown lineage. Wildcat Creek does not have an existing instream flow protection. From the headwaters of Wildcat Creek at Green Lake to its confluence with Coal Creek is approximately 2.6 miles.

HCCA has coordinated with local consultants and BLM staff to arrive at an instream flow recommendation that will protect the Wildcat Creek natural environment. This proposed instream flow would protect a reach that is currently unprotected. In considering this application, the Colorado Water Conservation Board (CWCB) has an opportunity to protect a headwaters cutthroat trout fishery and important stream ecosystem by moving forward with an instream flow that would preserve the natural environment to a reasonable degree.

Enclosed you will find copies of data sheets from CPW reflecting the Wildcat Creek aquatic environment. We have attached R2Cross modeling runs, stream photos, and maps of the relevant reach. If you have any further questions regarding this recommendation, please feel free to contact Julie Nania at (509) 999-0012.

HCCA thanks BLM, CPW and the CWCB for their support in developing this recommendation.

Sincerely,

Julie Nania

High Country Conservation Advocates

Water Director

ENCLOSURE - INSTREAM FLOW RECOMMENDATIONS FOR WILDCAT CREEK

Below is a description of the proposed instream flow. Additional details can be found in Attachments A-F.

Location

Wildcat Creek is located within the Coal Creek watershed (HUC-12: 140200010204) in Gunnison County, Water Division 4 (Attachment A). The headwaters originate on the flank of Mount Axtell, immediately above Green Lake. Wildcat Creek flows north to the confluence with Coal Creek approximately 1.4 miles west of the Town of Crested Butte. The Wildcat Creek watershed is about 3.3 square miles and is on the Mt. Axtell United States Geologic Survey (USGS) quad map (Attachment F).

The stream segment identified for the proposed instream flow appropriation is approximately 2.6 miles and starts at Green Lake and terminates at the confluence of Wildcat Creek and Coal Creek.

Table 1. Land Status in the Wildcat Creek Watershed.

		Total	Land Ow	Riparian Corridor 41% Watershed Composition		
Upper Terminus ¹	Lower Terminus	Length (miles)	Riparian Riparian Corridor Corridor 59% 41% Watershed Watershed			
Headwaters at	Confluence with	2.6	Corridor ³	Corridor		
Green Lake	Coal Creek	2.0	Watershed Composition	Watershed Composition		

^{1.} The terminus for the proposed instream flow water right may need to be adjusted based upon physical and legal availability. HCCA will work with CWCB staff to identify the most suitable terminus for the reach.

The Wildcat Creek watershed is 87% public land managed by the United States Forest Service (USFS) and the Bureau of Land Management (BLM). The riparian corridor of the proposed segment is 41 percent public land managed by the USFS and BLM.

Existing Instream Flow Right

Wildcat Creek does not have an existing instream flow water right.

^{2.} The public land in the Wildcat Creek Watershed is managed by the USFS and BLM.

^{3.} The riparian corridor ownership percentages were calculated using stream length.

Water Availability

Physical Availability

There is no stream gage on Wildcat Creek. To assess physical availability HCCA relied on R2Cross assessments and StreamStats. StreamStats is an online program developed by the USGS in collaboration with the CWCB. StreamStats uses a regionally specific regression equation based on nearby active and historical stream gages to estimate stream flows at user-selected locations (Attachment D).

The R2Cross results support a four-tier instream flow water right. The proposed instream flow rates are consistent with the mean monthly flows estimated by StreamStats (Attachment D).

Legal Availability

There is one existing diversion on Wildcat Creek owned by the Town of Crested Butte. This diversion serves as a backup drinking water supply for the Town of Crested Butte. The diversion is included on the attached map (Attachment A). Attachment E identifies major water rights on Wildcat Creek that may impact water availability and provides CDSS records of all water rights on Wildcat Creek.

HCCA will work with the Natural Streams and Lake Protection Unit to verify whether there is sufficient water legally available to create a new instream flow protection on Wildcat Creek.

Biological Summary

Wildcat Creek is a cold-water, high gradient stream located in Gunnison County, Colorado. The stream substrate ranges from small gravels to large cobbles, along with boulders. There is substantial woody debris which forms a mixture of riffles and small pools. The stream is steep and has many pool-drop features.

Wildcat Creek supports a healthy aquatic ecosystem. In 2008, Colorado Parks and Wildlife conducted fish sampling and identified a substantial cutthroat fishery. Data entry notes explained that "Cutthroats are of unknown lineage. Fin clips from 16 cutthroats were collected for genetic purity assessment on 11-3-08. Possible that fish were established from Pikes Peak Natives or other cutthroats which were stocked in Green Lake at the headwaters of Wildcat Creek." See Attachment B at row 3.

In addition to supporting a healthy aquatic ecosystem, flows in Wildcat Creek support a robust riparian area that is frequented by a range of wildlife. While conducting our R2Cross assessment, the proponent and Alpine Environmental Consultants noted an abundance of wildlife tracks and sign in the riparian area. The riparian community is primarily a pine/spruce

forest. The riparian zone is in good condition and provides shade and cover for the extant fish community.

Preliminary R2CROSS Analysis

HCCA has relied on the expertise of Alpine Environmental Consultants to interpret output from the R2Cross model and develop a preliminary instream flow recommendation that will protect Wildcat Creek's natural environment to a reasonable degree.

One R2Cross field survey was completed on October 9, 2019. Two additional R2Cross field surveys were completed on June 24, 2020. R2Cross data entry, analysis, and interpretation were completed following fieldwork. Table 2 summarizes the R2Cross output from all three cross-sections. The R2Cross output and field forms are attached for review (Attachment C).

Table 2. R2CROSS analysis summary.

Cross Section (Location & Date)	Measured Discharge (cfs)	Bankfull Top Width (ft)	Flow where 2 of 3 criteria met (cfs)	Flow where 3 of 3 criteria met (cfs)
Wildcat Creek #1 (10-9-19)	0.28	10.4	0.36	Out of range
Wildcat Creek #2 (6-24-20)	2.71	8.2	Out of range	2.44
Wildcat Creek #3 (6-24-20)	2.77	11.45	1.38	1.79

Based the R2Cross (Table 2; and Attachment C) and StreamStats (Attachment D), a four-tier instream flow water right is recommended. Table 3 presents the preliminary instream flow rates and seasons. If needed, the dates may be revised following a more detailed review of physical and legal water availability.

Table 2. Preliminary instream flow recommendations.

Date Range:	12/1 to 3/31	4/1 to 4/30	5/1 to 8/31	9/1 to 11/30
ISF Rate (cfs):	0.36	0.70	2.1	0.65

Photographs

Photo 1. Wildcat Creek cross-section #1 looking upstream.

Photo 2. Wildcat Creek cross-section #2 looking downstream.

Photo 3. Wildcat Creek cross-section #1 view from the river-left bank.

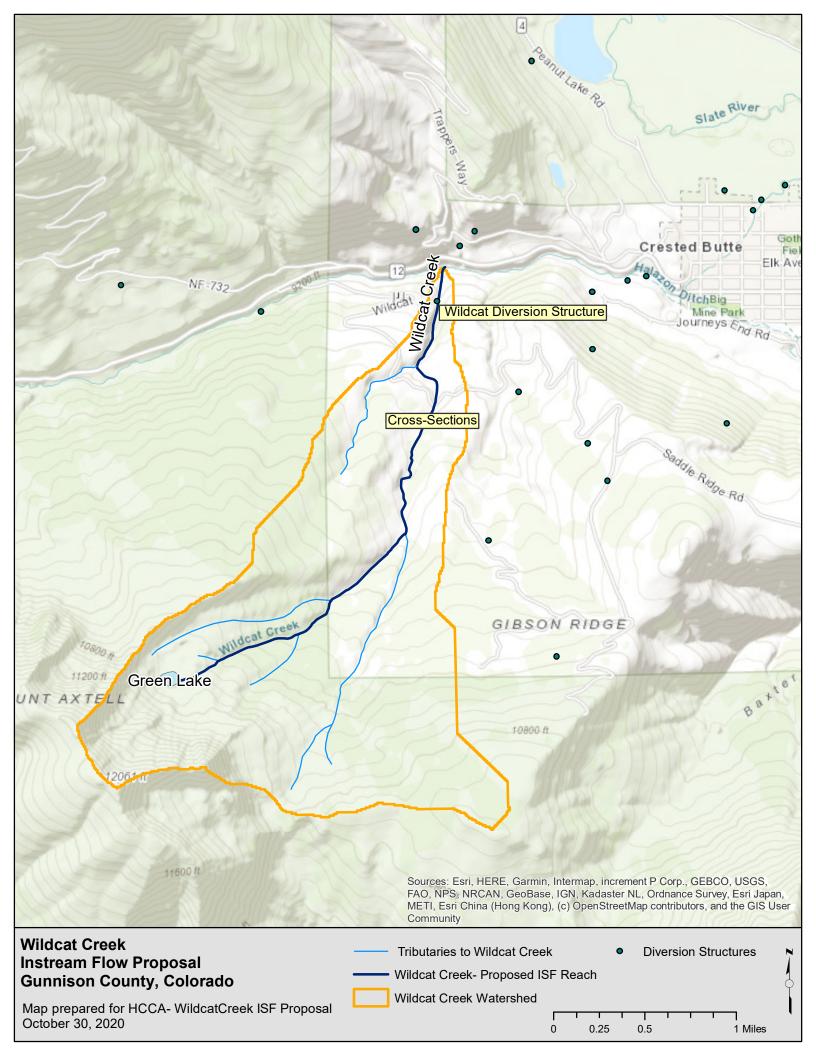


Photo 4. Wildcat Creek cross-section #2 view form the river-right bank.

Relationship to Existing State Policy

HCCA is proposing this instream flow to the CWCB in furtherance of the State of Colorado's policy "that the wildlife and their environment are to be protected, preserved enhanced, and managed for the use, benefit, and enjoyment of the people of this state and its visitors... and that, to carry out such program and policy, there shall be a continuous operation of planning, acquisition, and development of wildlife habitats and facilities for wildlife-related opportunities." C.R.S. 33-1-101(1).

Attachment A- Watershed Map

Attachment B- Biological Data

Requestee: Julie Nania

Affiliation: High Country Conservation Advocates

Appoved By: John Alves

<u>Conditions:</u> Watercodes: 38166,38166,39962,39974,39328,38169,41323,48155,45135

<u>Details:</u> no sampling data for Deer Creek or Bear Creek; All location information removed from surveys associated with private property as per Colorado Statute

<u>Date Extracted:</u> Tuesday, September 10, 2019

Data Request Disclaimer

Colorado Parks and Wildlife ("CPW") collects aquatic data from both internal sources and a variety of external governmental and non-governmental agencies. CPW provides this data, upon request, solely as a public service. As a significant proportion of this data comes from an outside agency, over which CPW lacks the ability to verify the protocols and data collection procedures, CPW makes no warranty, representation, or guarantee as to the content, accuracy or completeness of any of the data provided. CPW makes this data available on an "as is" basis and explicitly disclaims any representations and warranties, including, without limitation, the implied warranties of merchantability and fitness for a particular purpose. The CPW shall assume no liability for: 1. any errors, omissions, or inaccuracies in the data provided, regardless how it was caused; or, 2. any decision made or action taken or not taken by anyone using or relying upon data provided.

Use of Data

CPW may require a user of this data to terminate any and all display, distribution or other use of any or all of the data for any reason including, without limitation, violation of these Terms of Use.

<u>CalYear</u> S	SurveyID Region	<u>Drainage</u>	<u>WaterType</u>	WaterId WaterName	<u>StationID</u>	Station	<u>SiteName</u>	<u>Location</u>
1977	11050 Southwest	Gunnison River	Stream	38169 Wildcat Creek	3545	GU1401	Private Property	Private Property
2008	11051 Southwest	Gunnison River	Stream	38169 Wildcat Creek	3545	GU1401	Private Property	Private Property

<u>Elevation Lat Lon UTMX UTMY HUC12 County AreaBio SampleDate Survey Purpose</u>
9591 NULL NULL NULL NULL NULL 140200010204 Gunnison Dan Brauch 6/23/1977 Standard Survey or Population Estimate

9591 NULL NULL NULL NULL 140200010204 Gunnison Dan Brauch 9/11/2008 NULL

<u>Protocol</u>	<u>Gear</u>	<u>NumNets</u>	<u>NumPasses</u>	<u>NumAnglers</u>	StationLength	<u>StationAsMiles</u>	<u>StationAsKilometers</u>	<u>AvgWidth</u>
PRESENCE/ABSENCE	BPEF	NULL	NULL	NULL	300	0.056818	0.09144	4
TWO-PASS REMOVAL	NOT LISTED	NULL	2	NULL	328	0.062121	0.099974	7.9

StationAsAcres	StationAsHectares	<u>TotalCatch</u> <u>TotalWe</u>	eight <u>ElecEffort</u>	<u>GillEffort</u>	<u>TrapEffort</u>	<u>SeinEffort</u>	TotalEffort EffortMetric
0.027548208	0.011148365	0 NULL	:	1 NULL	NULL	NULL	1 PASS
0.059485764	0.024073036	32	928 NULL	NULL	NULL	NULL	2 PASS

<u>SpeciesID</u>	<u>SpeciesCode</u>	<u>CommonName</u>	<u>SpeciesMethod</u>	SpeciesCatch RelAbun	<u>Thresh</u>	old	NumBlwThreshold PercentCa	<u>tch</u>
NULL	XXX	No Fish Caught	Counts	0 NULL	NULL		0 NULL	
142	NAT	CUTTHROAT TROUT (S.S.U.)	Seber Lecren	32	1	150	16	100

<u>FirstCa</u>	<u>atch</u>	<u>SecondCatch</u>	ThirdCatch	<u>AdditionalCatch</u>	Marked	Recaptured	Captured	SpeciesWeight	Weighed	WeightCalcd	<u>FirstWeig</u>	ght
NULL		NULL	NULL	NULL	NULL	NULL	NULL	NULL	0	C	NULL	
	30)	2 NULL	NULL	NULL	NULL	NULL	1203	16	C)	997

SecondWeight	ThirdWeight	MarkedWeight	RecapturedWeight	CapturedWeight	MeanWeight	WeightRange	<u>AvgWr</u>	Measured	
NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	
206	6 NULL	NULL	NULL	NULL	58	3 30 - 136	95.59	32	1

MeanLength	<u>LengthRange</u>	ProbabilityOfCapture	<u>PopulationEstimate</u>	POP_Variance	LOWER_POP_CI	UPPER_POP_CI
NULL	NULL	NULL	C	NULL	NULL	NULL
147.63	96 - 233	0.9333	32.1429	0.187421908	31.2944	32.9914

<u>EstimatedSpeciesWeig</u>	ght <u>Numbe</u>	rPerAcre	<u>PoundsPerAcre</u>	<u>Numbe</u>	<u>rPerMile</u>	<u>PoundsP</u>	<u>PerMile</u>	<u>NumberPe</u>	<u>erHectare</u>	<u>kilograms</u> l	<u>PerHectare</u>
NULL	NULL		NULL	NULL		NULL		NULL		NULL	
	1774	540.3461	. 65.746	8	517.4241	l	62.9578	3	1335.2242	<u>)</u>	73.6924

NumberPerkilometer	<u>kilogramsPerkilometer</u>	CPUE	CPUEMetric	WPUE	WPUEMetric	<u>PSD</u>	<u>SRSD</u>	QRSD	PRSD	MRSD	<u>TRSD</u>
NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL
321.5126	5 17.744	6 NULL	NULL	NULL	NULL	C	100	NULL	NULL	NULL	NULL

<u>DataSource</u>	<u>SciColl</u>	<u>Surveyors</u>
Stream and lake databank	NULL	WEILER, SMITH
Southwest Region Fisheries Management	NULL	CAPPS, HAUER, CAMEN, CALLAWAY

Comments

One trout seen swimming, one trout found dead- unable to identify

Cutthroats are of unknown lineage. Fin clips from 16 cutthroats collected for genetic purity assessment on 11-3-08. Possible that fish were established fr

<u>CreatedBy</u>	<u>CreatedWhen</u>	<u>ModifiedBy</u>	<u>ModifiedWhen</u>	<u>timestamp</u>	<u>TableLastUpdated</u>	<u>SurveyFlag</u>	SpeciesFlag
stauffera	00:00.0) RivermanC	30:54.	3 0x000000000006DAF6	00:30.7	Private Property	NULL
brauchd	53:25.0) RivermanC	17:00.9	9 0x000000000006DAE8	00:30.7	Private Property	NULL

SPCNStatus

NULL

NULL

THERE ARE NO CREEL DATA FOR THE SPECIFIED WATERCODES

Attachment C- R2CROSS Analysis and Field Forms

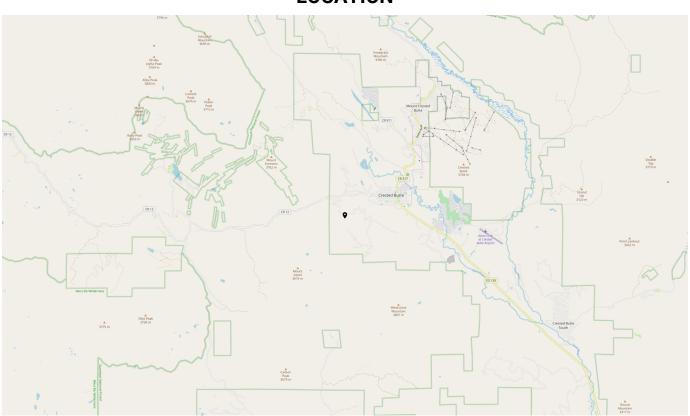
R2Cross RESULTS

Stream Name: Wildcat Creek

Stream Locations: Wildcat Creek upstream of Wildcat Trail Road.

Fieldwork Date: 10/09/2019

Cross-section: 1 Observers: JN, AJB

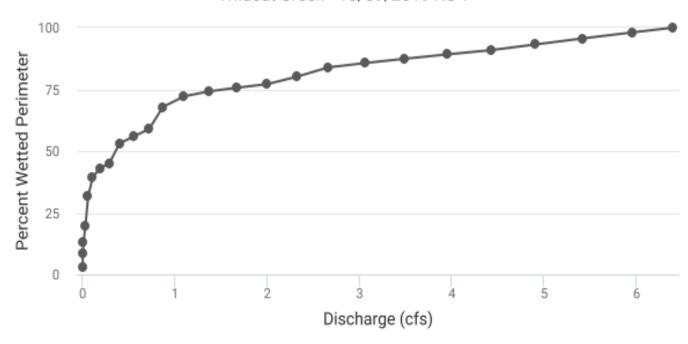

Coordinate System: UTM Zone 13 X (easting): 325585 Y (northing): 4303232 **Date Processed:** 11/29/2019

Slope: 0.0333

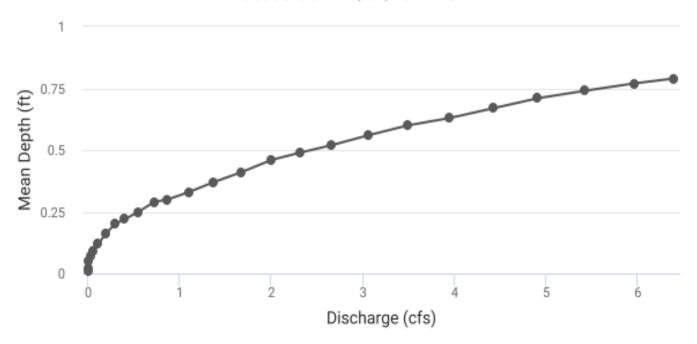
Computation method: Manning's n R2Cross data filename: R2Cross Wildcat 10-9-19.xlsx

R2Cross version: 1.0.10

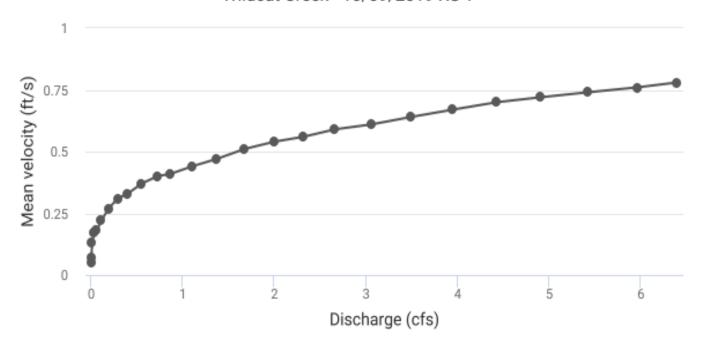
LOCATION


ANALYSIS RESULTS

Habitat Criteria Results

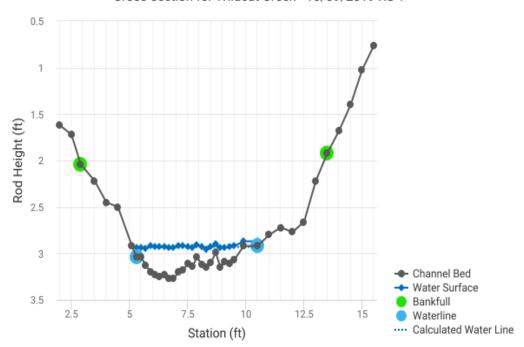

Bankfull top width (ft) = 10.4

	Habitat Criteria	Discharge (cfs) Meeting Criteria
Mean Depth (ft)	0.2	0.3
Percent Wetted Perimeter (%)	50.0	0.36
Mean Velocity (ft/s)	NA	NA


Wildcat Creek - 10/09/2019 XS 1

Wildcat Creek - 10/09/2019 XS 1

STAGING TABLE

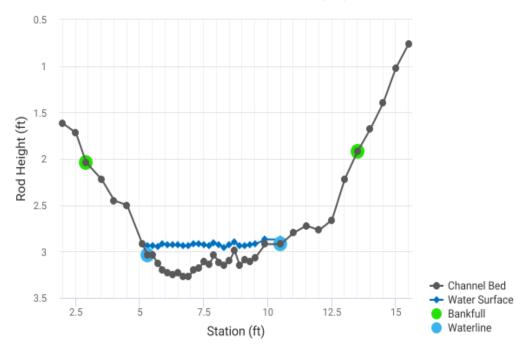

Feature	Distance to Water (ft)	Top Width (ft)	Mean Depth (ft)	Maximum Depth (ft)	Area (SQ ft)	Wetted Perimeter (ft)	Percent Wetted Perimeter	Hydraulic Radius (ft)	Mean Velocity (ft/s)	Discharge (cfs)
Bankfull	2.04	10.4	0.79	1.23	8.25	11.13	100.00%	0.74	0.78	6.4
	2.08	10.2	0.77	1.19	7.84	10.92	98.08%	0.72	0.76	5.96
	2.13	9.95	0.74	1.14	7.34	10.65	95.64%	0.69	0.74	5.42
	2.18	9.7	0.71	1.09	6.85	10.38	93.21%	0.66	0.72	4.91
	2.23	9.47	0.67	1.04	6.37	10.12	90.90%	0.63	0.7	4.43
	2.28	9.3	0.63	0.99	5.9	9.93	89.15%	0.59	0.67	3.95
	2.33	9.14	0.6	0.94	5.44	9.73	87.39%	0.56	0.64	3.49
	2.38	8.97	0.56	0.89	4.99	9.54	85.64%	0.52	0.61	3.06
	2.43	8.81	0.52	0.84	4.54	9.34	83.89%	0.49	0.59	2.66
	2.48	8.41	0.49	0.79	4.11	8.92	80.11%	0.46	0.56	2.32
	2.53	8.11	0.46	0.74	3.7	8.59	77.11%	0.43	0.54	2.0
	2.58	7.98	0.41	0.69	3.3	8.42	75.65%	0.39	0.51	1.67
	2.63	7.85	0.37	0.64	2.9	8.26	74.18%	0.35	0.47	1.37
	2.68	7.66	0.33	0.59	2.51	8.04	72.17%	0.31	0.44	1.1
	2.73	7.2	0.3	0.54	2.14	7.56	67.92%	0.28	0.41	0.87
	2.78	6.23	0.29	0.49	1.8	6.56	58.93%	0.27	0.4	0.72
	2.83	5.91	0.25	0.44	1.5	6.22	55.85%	0.24	0.37	0.55
	2.88	5.63	0.22	0.39	1.21	5.92	53.14%	0.2	0.33	0.4
Waterline	2.93	4.76	0.2	0.34	0.94	5.03	45.15%	0.19	0.31	0.29
	2.98	4.54	0.16	0.29	0.71	4.79	43.00%	0.15	0.27	0.19
	3.03	4.2	0.12	0.24	0.49	4.4	39.54%	0.11	0.22	0.11
	3.08	3.41	0.09	0.19	0.3	3.55	31.84%	0.09	0.18	0.06
	3.13	2.15	0.07	0.14	0.16	2.21	19.86%	0.07	0.17	0.03
	3.18	1.46	0.05	0.09	0.08	1.49	13.37%	0.05	0.13	0.01
	3.23	0.93	0.02	0.04	0.02	0.94	8.47%	0.02	0.07	0.0

3.25	0.32	0.01	0.02	0.0	0.32	2.89%	0.01	0.05	0.0

MODEL SUMMARY

Measured Flow (Qm) =	0.28
Calculated Flow (Qc) =	0.29
(Qm-Qc)/Qm * 100 =	-5.39%
Measured Waterline (WLm) =	2.98
Calculated Waterline (WLc) =	2.93
(WLm-WLc)/WLm * 100 =	1.70%
Max Measured Depth (Dm) =	0.33
Max Calculated Depth (Dc) =	0.34
(Dm-Dc)/Dm * 100 =	-3.21%
Mean Velocity =	0.31
Manning's n =	0.286
0.4 * Qm =	0.11
2.5 * Qm =	0.7

Cross-section for Wildcat Creek - 10/09/2019 XS 1



FIELD DATA

5.5 3.04 0.1 -0.0 5.7 3.13 0.18 0 5.9 3.2 0.28 0.0 6.1 3.23 0.3 0.1 6.3 3.25 0.32 0.3 6.5 3.23 0.3 0.2 6.7 3.27 0.33 0.2 6.9 3.27 0.33 0.3 7.1 3.2 0.28 0.9 7.3 3.18 0.26 0.4 7.5 3.11 0.18 0.4 7.7 3.14 0.2 0.2 7.9 3.04 0.13 0.2 8.1 3.12 0.19 0.2 8.3 3.15 0.19 0.2 8.5 3.1 0.17 0.1 8.7 2.99 0.09 0.2 8.9 3.15 0.21 0.2 9.1 3.09 0.15 0.1 9.3 3.11 0.18 0.1	Feature	Station (ft)	Rod Height (ft)	Water depth (ft)	Velocity (ft/s)
Bankfull 2.9 2.04 3.5 2.22 4 2.45 4.5 2.5 5.1 2.92 Waterline 5.3 3.04 0.1 0.0 5.5 3.04 0.1 -0.0 5.7 3.13 0.18 0 5.9 3.2 0.28 0.0 6.1 3.23 0.3 0.1 6.3 3.25 0.32 0.3 6.5 3.23 0.3 0.2 6.7 3.27 0.33 0.2 6.9 3.27 0.33 0.3 7.1 3.2 0.28 0.9 7.3 3.18 0.26 0.4 7.5 3.11 0.18 0.2 7.9 3.04 0.13 0.2 8.1 3.12 0.19 0.2 8.3 3.15 0.19 0.2 8.5 3.1 0.17 0.1 8.7 2.99 0.09 0.2 8.9 3.15 <td< td=""><td></td><td>2</td><td>1.62</td><td></td><td></td></td<>		2	1.62		
3.5 2.22 4 2.45 4.5 2.5 5.1 2.92 Waterline 5.3 3.04 0.1 0.1 5.5 3.04 0.1 -0.0 5.7 3.13 0.18 0 5.9 3.2 0.28 0.0 6.1 3.23 0.3 0.1 6.3 3.25 0.32 0.3 6.5 3.23 0.3 0.2 6.7 3.27 0.33 0.2 6.9 3.27 0.33 0.2 6.9 3.27 0.33 0.3 7.1 3.2 0.28 0.9 7.3 3.18 0.26 0.4 7.5 3.11 0.18 0.2 7.9 3.04 0.13 0.2 7.9 3.04 0.13 0.2 8.1 3.12 0.19 0.2 8.3 3.15 0.19 0.2 8.5 3.1 0.17 0.1 8.7 2.99 0.09 0.2 8.9 3.15 0.21 0.2 9.1 3.09 0.15 0.1		2.5	1.72		
4 2.45 4.5 2.5 5.1 2.92 Waterline 5.3 3.04 0.1 0.1 5.5 3.04 0.1 -0.0 5.7 3.13 0.18 0 5.9 3.2 0.28 0.0 6.1 3.23 0.3 0.1 6.3 3.25 0.32 0.3 6.5 3.23 0.3 0.2 6.7 3.27 0.33 0.2 6.9 3.27 0.33 0.2 6.9 3.27 0.33 0.3 7.1 3.2 0.28 0.9 7.3 3.18 0.26 0.4 7.5 3.11 0.18 0.4 7.7 3.14 0.2 0.2 7.9 3.04 0.13 0.2 8.1 3.12 0.19 0.2 8.3 3.15 0.19 0.2 8.5 3.1 0.17 0.1 8.7 2.99 0.09 0.2 9.1 3.09 0.15 0.1 9.3 3.11 0.18 0.1	Bankfull	2.9	2.04		
4.5 2.5 5.1 2.92 Waterline 5.3 3.04 0.1 0 5.5 3.04 0.1 -0.0 5.7 3.13 0.18 0 5.9 3.2 0.28 0.0 6.1 3.23 0.3 0.1 6.3 3.25 0.32 0.3 6.5 3.23 0.3 0.2 6.7 3.27 0.33 0.2 6.9 3.27 0.33 0.3 7.1 3.2 0.28 0.9 7.3 3.18 0.26 0.4 7.5 3.11 0.18 0.4 7.7 3.14 0.2 0.2 7.9 3.04 0.13 0.2 8.1 3.12 0.19 0.2 8.3 3.15 0.19 0.2 8.5 3.1 0.17 0.1 8.7 2.99 0.09 0.2 8.9 3.15 0.21 0.2 9.1 3.09 0.15		3.5	2.22		
5.1 2.92 Waterline 5.3 3.04 0.1 0 5.5 3.04 0.1 -0.0 5.7 3.13 0.18 0 5.9 3.2 0.28 0.0 6.1 3.23 0.3 0.1 6.3 3.25 0.32 0.3 6.5 3.23 0.3 0.2 6.7 3.27 0.33 0.2 6.9 3.27 0.33 0.2 7.1 3.2 0.28 0.9 7.3 3.18 0.26 0.4 7.5 3.11 0.18 0.4 7.7 3.14 0.2 0.2 7.9 3.04 0.13 0.2 8.1 3.12 0.19 0.2 8.5 3.1 0.17 0.1 8.7 2.99 0.09 0.2 8.9 3.15 0.21 0.2 9.1 3.09 0.15 0.1 9.3 3.11 0.18 0.1		4	2.45		
Waterline 5.3 3.04 0.1 0 5.5 3.04 0.1 -0.0 5.7 3.13 0.18 0 5.9 3.2 0.28 0.0 6.1 3.23 0.3 0.1 6.3 3.25 0.32 0.3 6.5 3.23 0.3 0.2 6.7 3.27 0.33 0.2 6.9 3.27 0.33 0.3 7.1 3.2 0.28 0.9 7.3 3.18 0.26 0.4 7.5 3.11 0.18 0.4 7.7 3.14 0.2 0.2 7.9 3.04 0.13 0.2 8.1 3.12 0.19 0.2 8.5 3.1 0.17 0.1 8.7 2.99 0.09 0.2 8.9 3.15 0.21 0.2 9.1 3.09 0.15 0.1 9.3 3.11 0.18 0.1		4.5	2.5		
5.5 3.04 0.1 -0.0 5.7 3.13 0.18 0 5.9 3.2 0.28 0.0 6.1 3.23 0.3 0.1 6.3 3.25 0.32 0.3 6.5 3.23 0.3 0.2 6.7 3.27 0.33 0.2 6.9 3.27 0.33 0.3 7.1 3.2 0.28 0.9 7.3 3.18 0.26 0.4 7.5 3.11 0.18 0.4 7.7 3.14 0.2 0.2 7.9 3.04 0.13 0.2 8.1 3.12 0.19 0.2 8.3 3.15 0.19 0.2 8.5 3.1 0.17 0.1 8.7 2.99 0.09 0.2 8.9 3.15 0.21 0.2 9.1 3.09 0.15 0.1 9.3 3.11 0.18 0.1		5.1	2.92		
5.7 3.13 0.18 0 5.9 3.2 0.28 0.0 6.1 3.23 0.3 0.1 6.3 3.25 0.32 0.3 6.5 3.23 0.3 0.2 6.9 3.27 0.33 0.2 6.9 3.27 0.33 0.8 7.1 3.2 0.28 0.9 7.3 3.18 0.26 0.4 7.5 3.11 0.18 0.4 7.7 3.14 0.2 0.2 7.9 3.04 0.13 0.2 8.1 3.12 0.19 0.2 8.3 3.15 0.19 0.2 8.5 3.1 0.17 0.1 8.7 2.99 0.09 0.2 8.9 3.15 0.21 0.2 9.1 3.09 0.15 0.1 9.3 3.11 0.18 0.1	Waterline	5.3	3.04	0.1	0
5.9 3.2 0.28 0.0 6.1 3.23 0.3 0.1 6.3 3.25 0.32 0.3 6.5 3.23 0.3 0.2 6.7 3.27 0.33 0.2 6.9 3.27 0.33 0.8 7.1 3.2 0.28 0.9 7.3 3.18 0.26 0.4 7.5 3.11 0.18 0.4 7.7 3.14 0.2 0.2 7.9 3.04 0.13 0.2 8.1 3.12 0.19 0.2 8.3 3.15 0.19 0.2 8.5 3.1 0.17 0.1 8.7 2.99 0.09 0.2 8.9 3.15 0.21 0.2 9.1 3.09 0.15 0.1 9.3 3.11 0.18 0.1		5.5	3.04	0.1	-0.04
6.1 3.23 0.3 0.1 6.3 3.25 0.32 0.3 6.5 3.23 0.3 0.2 6.7 3.27 0.33 0.2 6.9 3.27 0.33 0.8 7.1 3.2 0.28 0.9 7.3 3.18 0.26 0.4 7.5 3.11 0.18 0.4 7.7 3.14 0.2 0.2 7.9 3.04 0.13 0.2 8.1 3.12 0.19 0.2 8.3 3.15 0.19 0.2 8.5 3.1 0.17 0.1 8.7 2.99 0.09 0.2 8.9 3.15 0.21 0.2 9.1 3.09 0.15 0.1 9.3 3.11 0.18 0.1		5.7	3.13	0.18	0
6.3 3.25 0.32 0.3 6.5 3.23 0.3 0.2 6.7 3.27 0.33 0.2 6.9 3.27 0.33 0.3 7.1 3.2 0.28 0.9 7.3 3.18 0.26 0.4 7.5 3.11 0.18 0.4 7.7 3.14 0.2 0.2 7.9 3.04 0.13 0.2 8.1 3.12 0.19 0.2 8.3 3.15 0.19 0.2 8.5 3.1 0.17 0.1 8.7 2.99 0.09 0.2 8.9 3.15 0.21 0.2 9.1 3.09 0.15 0.1 9.3 3.11 0.18 0.1		5.9	3.2	0.28	0.02
6.5 3.23 0.3 0.2 6.7 3.27 0.33 0.2 6.9 3.27 0.33 0.8 7.1 3.2 0.28 0.9 7.3 3.18 0.26 0.4 7.5 3.11 0.18 0.4 7.7 3.14 0.2 0.2 7.9 3.04 0.13 0.2 8.1 3.12 0.19 0.2 8.3 3.15 0.19 0.2 8.5 3.1 0.17 0.1 8.7 2.99 0.09 0.2 8.9 3.15 0.21 0.2 9.1 3.09 0.15 0.1 9.3 3.11 0.18 0.1		6.1	3.23	0.3	0.14
6.7 3.27 0.33 0.2 6.9 3.27 0.33 0.8 7.1 3.2 0.28 0.9 7.3 3.18 0.26 0.4 7.5 3.11 0.18 0.4 7.7 3.14 0.2 0.2 7.9 3.04 0.13 0.2 8.1 3.12 0.19 0.2 8.3 3.15 0.19 0.2 8.5 3.1 0.17 0.1 8.7 2.99 0.09 0.2 8.9 3.15 0.21 0.2 9.1 3.09 0.15 0.1 9.3 3.11 0.18 0.1		6.3	3.25	0.32	0.38
6.9 3.27 0.33 0.8 7.1 3.2 0.28 0.9 7.3 3.18 0.26 0.4 7.5 3.11 0.18 0.4 7.7 3.14 0.2 0.2 7.9 3.04 0.13 0.2 8.1 3.12 0.19 0.2 8.3 3.15 0.19 0.2 8.5 3.1 0.17 0.1 8.7 2.99 0.09 0.2 8.9 3.15 0.21 0.2 9.1 3.09 0.15 0.1 9.3 3.11 0.18 0.1		6.5	3.23	0.3	0.23
7.1 3.2 0.28 0.9 7.3 3.18 0.26 0.4 7.5 3.11 0.18 0.4 7.7 3.14 0.2 0.2 7.9 3.04 0.13 0.2 8.1 3.12 0.19 0.2 8.3 3.15 0.19 0.2 8.5 3.1 0.17 0.1 8.7 2.99 0.09 0.2 8.9 3.15 0.21 0.2 9.1 3.09 0.15 0.1 9.3 3.11 0.18 0.1		6.7	3.27	0.33	0.29
7.3 3.18 0.26 0.4 7.5 3.11 0.18 0.4 7.7 3.14 0.2 0.2 7.9 3.04 0.13 0.2 8.1 3.12 0.19 0.2 8.3 3.15 0.19 0.2 8.5 3.1 0.17 0.1 8.7 2.99 0.09 0.2 8.9 3.15 0.21 0.2 9.1 3.09 0.15 0.1 9.3 3.11 0.18 0.1		6.9	3.27	0.33	0.8
7.5 3.11 0.18 0.4 7.7 3.14 0.2 0.2 7.9 3.04 0.13 0.2 8.1 3.12 0.19 0.2 8.3 3.15 0.19 0.2 8.5 3.1 0.17 0.1 8.7 2.99 0.09 0.2 8.9 3.15 0.21 0.2 9.1 3.09 0.15 0.1 9.3 3.11 0.18 0.1		7.1	3.2	0.28	0.98
7.7 3.14 0.2 0.2 7.9 3.04 0.13 0.2 8.1 3.12 0.19 0.2 8.3 3.15 0.19 0.2 8.5 3.1 0.17 0.1 8.7 2.99 0.09 0.2 8.9 3.15 0.21 0.2 9.1 3.09 0.15 0.1 9.3 3.11 0.18 0.1		7.3	3.18	0.26	0.45
7.9 3.04 0.13 0.2 8.1 3.12 0.19 0.2 8.3 3.15 0.19 0.2 8.5 3.1 0.17 0.1 8.7 2.99 0.09 0.2 8.9 3.15 0.21 0.2 9.1 3.09 0.15 0.1 9.3 3.11 0.18 0.1		7.5	3.11	0.18	0.4
8.1 3.12 0.19 0.2 8.3 3.15 0.19 0.2 8.5 3.1 0.17 0.1 8.7 2.99 0.09 0.2 8.9 3.15 0.21 0.2 9.1 3.09 0.15 0.1 9.3 3.11 0.18 0.1		7.7	3.14	0.2	0.26
8.3 3.15 0.19 0.2 8.5 3.1 0.17 0.1 8.7 2.99 0.09 0.2 8.9 3.15 0.21 0.2 9.1 3.09 0.15 0.1 9.3 3.11 0.18 0.1		7.9	3.04	0.13	0.28
8.5 3.1 0.17 0.1 8.7 2.99 0.09 0.2 8.9 3.15 0.21 0.2 9.1 3.09 0.15 0.1 9.3 3.11 0.18 0.1		8.1	3.12	0.19	0.21
8.7 2.99 0.09 0.2 8.9 3.15 0.21 0.2 9.1 3.09 0.15 0.1 9.3 3.11 0.18 0.1		8.3	3.15	0.19	0.24
8.9 3.15 0.21 0.2 9.1 3.09 0.15 0.1 9.3 3.11 0.18 0.1		8.5	3.1	0.17	0.18
9.1 3.09 0.15 0.1 9.3 3.11 0.18 0.1		8.7	2.99	0.09	0.23
9.3 3.11 0.18 0.1		8.9	3.15	0.21	0.26
		9.1	3.09	0.15	0.19
9.5 3.07 0.15 0		9.3	3.11	0.18	0.14
		9.5	3.07	0.15	0
9.9 2.92 0.05 0		9.9	2.92	0.05	0

Waterline	10.5	2.92	0.05	0
	11	2.8		
	11.5	2.72		
	12	2.77		
	12.5	2.66		
	13	2.22		
Bankfull	13.5	1.92		
	14	1.68		
	14.5	1.4		
	15	1.02		
	15.5	0.76		

Cross-section for Wildcat Creek - 10/09/2019 XS 1

COMPUTED FROM MEASURED FIELD DATA

Wetted Perimeter (ft)	Water Depth (ft)	Area (SQ ft)	Discharge (cfs)	Percent Discharge
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0.2	0.1	0.02	0	-0.29
0.22	0.18	0.04	0	0
0.21	0.28	0.06	0	0.4
0.2	0.3	0.06	0.01	3.02
0.2	0.32	0.06	0.02	8.74
0.2	0.3	0.06	0.01	4.96
0.2	0.33	0.07	0.02	6.88
0.2	0.33	0.07	0.05	18.98
0.21	0.28	0.06	0.05	19.73
0.2	0.26	0.05	0.02	8.41
0.21	0.18	0.04	0.01	5.18
0.2	0.2	0.04	0.01	3.74
0.22	0.13	0.03	0.01	2.62
0.22	0.19	0.04	0.01	2.87
0.2	0.19	0.04	0.01	3.28
0.21	0.17	0.03	0.01	2.2
0.23	0.09	0.02	0	1.49
0.26	0.21	0.04	0.01	3.93
0.21	0.15	0.03	0.01	2.05
0.2	0.18	0.04	0.01	1.81
0.2	0.15	0.04	0	0
0.43	0.05	0.03	0	0

0.6	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

DISCLAIMER

"The Colorado Water Conservation Board makes no representations about the use of the software contained in the R2Cross platform for any purpose besides that for which it was designed. To the maximum extent permitted by applicable law, all information, modeling results, and software are provided "as is" without warranty or condition of any kind, including all implied warranties or conditions of merchantability, or fitness for a particular purpose. The user assumes all responsibility for the accuracy and suitability of this program for a specific application. In no event shall the Colorado Water Conservation Board or any state agency, official or employee be liable for any direct, indirect, punitive, incidental, special, consequential damages or any damages whatsoever including, without limitation, damages for loss of use, data, profits, or savings arising from the implementation, reliance on, or use of or inability to use the R2Cross platform.

R2Cross RESULTS

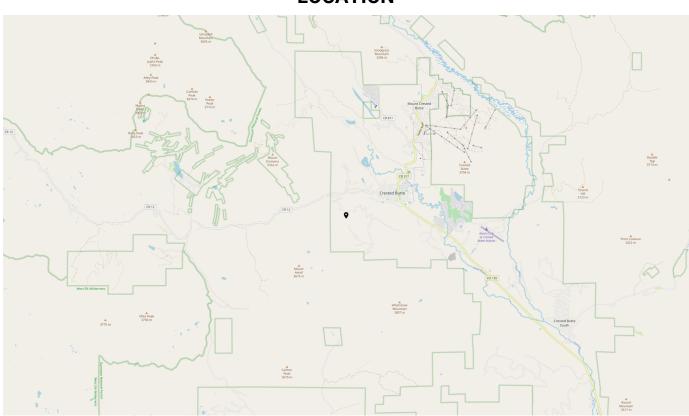
Stream Name: Wildcat Creek

Stream Locations: Wildcat Creek approximately 500' upstream of Wildcat Trail Road

Fieldwork Date: 06/24/2020

Cross-section: 2 Observers: R. Smith

Coordinate System: UTM Zone 13 X (easting): 325622 Y (northing): 4303191 **Date Processed:** 09/19/2020


Slope: 0.0377

Computation method: Manning's n

R2Cross data filename: R2Cross_Wildcat #2_6-24-20.xlsx

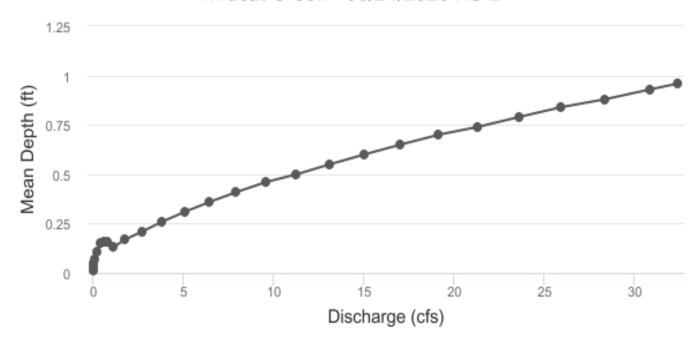
R2Cross version: 1.0.24

LOCATION

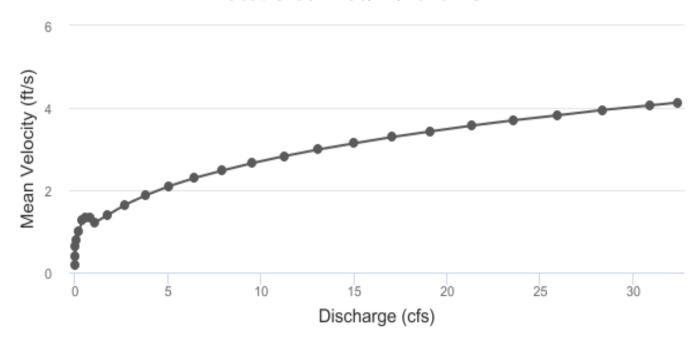

ANALYSIS RESULTS


Habitat Criteria Results

Bankfull top width (ft) = 8.2

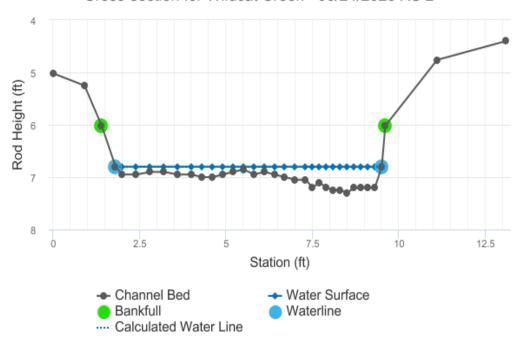

	Habitat Criteria	Discharge (cfs) Meeting Criteria
Mean Depth (ft)	0.2	2.44
Percent Wetted Perimeter (%) **	50.0	0.88
Mean Velocity (ft/s) **	1.0	0.21

^{**}Values highlighted in yellow indicate that the discharge is less than 40% of measured Q or greater than 250% of measured Q.



Wildcat Creek - 06/24/2020 XS 2

STAGING TABLE

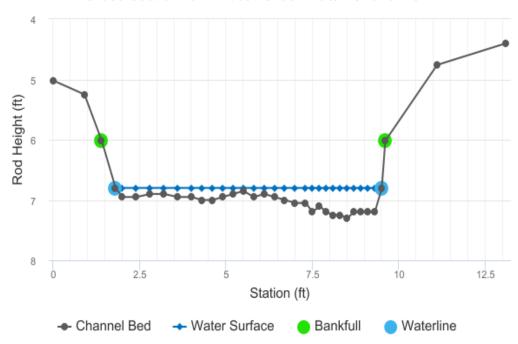

Feature	Distance to Water (ft)	Top Width (ft)	Mean Depth (ft)	Maximum Depth (ft)	Area (SQ ft)	Wetted Perimeter (ft)	Percent Wetted Perimeter	Hydraulic Radius (ft)	Mean Velocity (ft/s)	Discharge (cfs)
Bankfull	6.02	8.2	0.96	1.28	7.85	9.85	100.00%	8.0	4.13	32.42
	6.05	8.18	0.93	1.25	7.6	9.78	99.35%	0.78	4.06	30.88
	6.1	8.15	0.88	1.2	7.19	9.68	98.27%	0.74	3.95	28.37
	6.15	8.12	0.84	1.15	6.79	9.57	97.19%	0.71	3.82	25.94
	6.2	8.08	0.79	1.1	6.38	9.47	96.10%	0.67	3.7	23.59
	6.25	8.05	0.74	1.05	5.98	9.36	95.02%	0.64	3.57	21.32
	6.3	8.02	0.7	1.0	5.58	9.25	93.94%	0.6	3.43	19.13
	6.35	7.99	0.65	0.95	5.18	9.15	92.86%	0.57	3.29	17.02
	6.4	7.96	0.6	0.9	4.78	9.04	91.77%	0.53	3.14	15.01
	6.45	7.92	0.55	0.85	4.38	8.93	90.69%	0.49	2.99	13.09
	6.5	7.89	0.5	0.8	3.98	8.83	89.61%	0.45	2.83	11.27
	6.55	7.86	0.46	0.75	3.59	8.72	88.53%	0.41	2.66	9.55
	6.6	7.83	0.41	0.7	3.2	8.61	87.44%	0.37	2.48	7.94
	6.65	7.8	0.36	0.65	2.81	8.51	86.36%	0.33	2.3	6.45
	6.7	7.76	0.31	0.6	2.42	8.4	85.28%	0.29	2.1	5.07
	6.75	7.73	0.26	0.55	2.03	8.29	84.20%	0.24	1.88	3.82
Waterline	6.8	7.7	0.21	0.5	1.65	8.19	83.12%	0.2	1.65	2.71
	6.85	7.61	0.17	0.45	1.26	8.05	81.70%	0.16	1.4	1.77
	6.9	6.67	0.13	0.4	0.9	7.05	71.54%	0.13	1.22	1.09
	6.95	3.93	0.16	0.35	0.61	4.23	42.94%	0.14	1.32	0.81
	7.0	2.7	0.16	0.3	0.44	2.96	30.06%	0.15	1.34	0.59
	7.05	2.08	0.15	0.25	0.31	2.3	23.36%	0.14	1.27	0.39
	7.1	1.98	0.11	0.2	0.21	2.16	21.95%	0.1	1.01	0.21
	7.15	1.69	0.07	0.15	0.12	1.8	18.26%	0.07	0.78	0.09
	7.2	0.8	0.05	0.1	0.04	0.84	8.49%	0.05	0.63	0.03

7.25	0.3	0.03	0.05	0.01	0.32	3.23%	0.02	0.4	0.0
7.29	0.09	0.01	0.01	0.0	0.1	0.97%	0.01	0.18	0.0

MODEL SUMMARY

Measured Flow (Qm) = 2.71 Calculated Flow (Qc) = 2.71 (Qm-Qc)/Qm * 100 =-0.01% Measured Waterline (WLm) = 6.8 Calculated Waterline (WLc) = 6.8 (WLm-WLc)/WLm * 100 = 0.00% Max Measured Depth (Dm) = 0.5 Max Calculated Depth (Dc) = 0.5 (Dm-Dc)/Dm * 100 =-0.00% Mean Velocity = 1.65 0.06 Manning's n = 0.4 * Qm =1.09 2.5 * Qm =6.78

Cross-section for Wildcat Creek - 06/24/2020 XS 2



FIELD DATA

Feature	Station (ft)	Rod Height (ft)	Water depth (ft)	Velocity (ft/s)
	0	5.02		
	0.9	5.25		
Bankfull	1.4	6.02		
Waterline	1.8	6.8	0	0
	2	6.95	0.15	0.21
	2.4	6.95	0.15	0.25
	2.8	6.9	0.1	0.86
	3.2	6.9	0.1	0.84
	3.6	6.95	0.15	2.1
	4	6.95	0.15	2.19
	4.3	7	0.2	1.68
	4.6	7	0.2	1.18
	4.9	6.95	0.15	1.06
	5.2	6.9	0.1	0.71
	5.5	6.85	0.05	1.83
	5.8	6.95	0.15	1.51
	6.1	6.9	0.1	1.57
	6.4	6.95	0.15	1.9
	6.7	7	0.2	1.49
	7	7.05	0.25	1.71
	7.3	7.05	0.25	1.46
	7.5	7.2	0.4	1.86
	7.7	7.1	0.3	2.28
	7.9	7.2	0.4	2.6
	8.1	7.25	0.45	2.65
	8.3	7.25	0.45	2.46
	8.5	7.3	0.5	2.39
	8.7	7.2	0.4	2.22
	8.9	7.2	0.4	1.94
	9.1	7.2	0.4	0.9

	9.3	7.2	0.4	0.07
Waterline	9.5	6.8	0	0
Bankfull	9.6	6.02		
	11.1	4.76		
	13.1	4.4		

Cross-section for Wildcat Creek - 06/24/2020 XS 2

COMPUTED FROM MEASURED FIELD DATA

Wetted Perimeter (ft)	Water Depth (ft)	Area (SQ ft)	Discharge (cfs)	Percent Discharge
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0.25	0.15	0.04	0.01	0.35
0.4	0.15	0.06	0.01	0.55
0.4	0.1	0.04	0.03	1.27
0.4	0.1	0.04	0.03	1.24
0.4	0.15	0.06	0.13	4.64
0.4	0.15	0.05	0.11	4.24
0.3	0.2	0.06	0.1	3.71
0.3	0.2	0.06	0.07	2.61
0.3	0.15	0.04	0.05	1.76
0.3	0.1	0.03	0.02	0.78
0.3	0.05	0.01	0.03	1.01
0.32	0.15	0.04	0.07	2.5
0.3	0.1	0.03	0.05	1.74
0.3	0.15	0.04	0.09	3.15
0.3	0.2	0.06	0.09	3.29
0.3	0.25	0.07	0.13	4.73
0.3	0.25	0.06	0.09	3.36
0.25	0.4	0.08	0.15	5.48
0.22	0.3	0.06	0.14	5.04
0.22	0.4	0.08	0.21	7.66
0.21	0.45	0.09	0.24	8.79
0.2	0.45	0.09	0.22	8.16
0.21	0.5	0.1	0.24	8.81
0.22	0.4	0.08	0.18	6.54
0.2	0.4	0.08	0.16	5.72
0.2	0.4	0.08	0.07	2.65

0.2	0.4	0.08	0.01	0.21
0.45	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

DISCLAIMER

"The Colorado Water Conservation Board makes no representations about the use of the software contained in the R2Cross platform for any purpose besides that for which it was designed. To the maximum extent permitted by applicable law, all information, modeling results, and software are provided "as is" without warranty or condition of any kind, including all implied warranties or conditions of merchantability, or fitness for a particular purpose. The user assumes all responsibility for the accuracy and suitability of this program for a specific application. In no event shall the Colorado Water Conservation Board or any state agency, official or employee be liable for any direct, indirect, punitive, incidental, special, consequential damages or any damages whatsoever including, without limitation, damages for loss of use, data, profits, or savings arising from the implementation, reliance on, or use of or inability to use the R2Cross platform.

R2Cross RESULTS

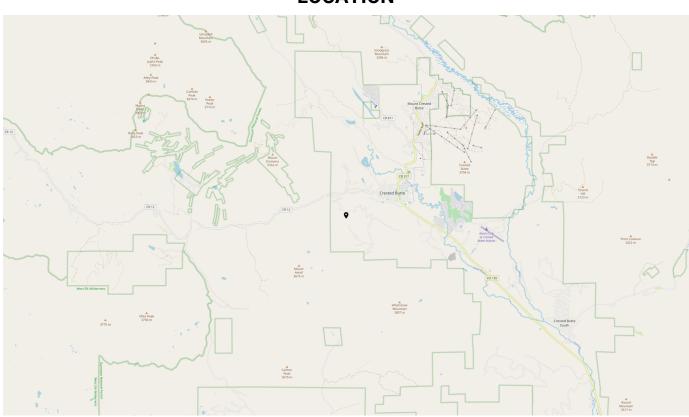
Stream Name: Wildcat Creek

Stream Locations: Approximately 600' upstream from Wildcat Trail Road

Fieldwork Date: 06/24/2020

Cross-section: 3 Observers: R. Smith

Coordinate System: UTM Zone 13 X (easting): 325600 Y (northing): 4303133 **Date Processed:** 09/19/2020


Slope: 0.017

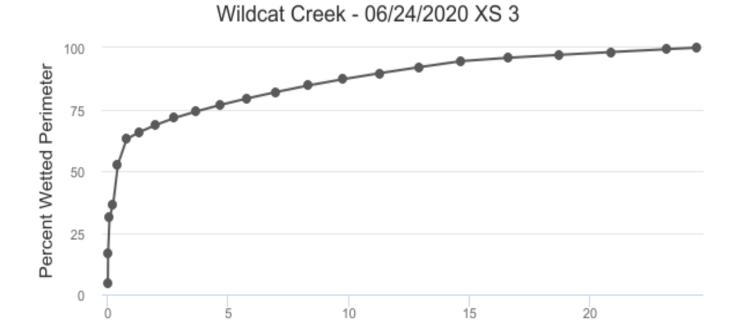
Computation method: Manning's n

R2Cross data filename: R2Cross_Wildcat #3_6-24-20.xlsx

R2Cross version: 1.0.24

LOCATION

ANALYSIS RESULTS


Habitat Criteria Results

Bankfull top width (ft) = 11.45

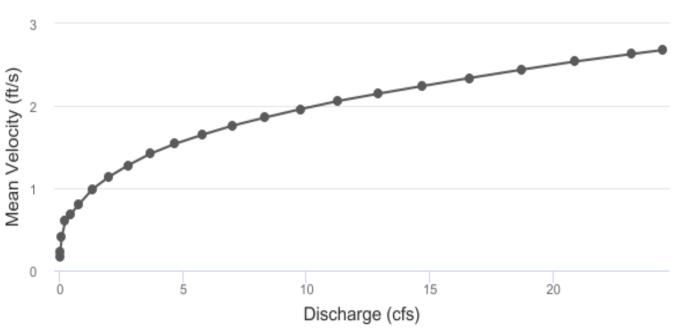
5

	Habitat Criteria	Discharge (cfs) Meeting Criteria
Mean Depth (ft)	0.2	1.79
Percent Wetted Perimeter (%) **	50.0	0.39
Mean Velocity (ft/s)	1.0	1.38

^{**}Values highlighted in yellow indicate that the discharge is less than 40% of measured Q or greater than 250% of measured Q.

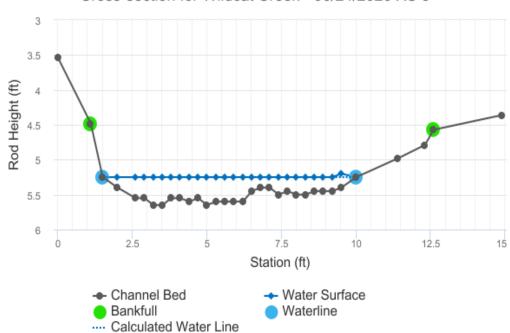


Discharge (cfs)


15

20

Wildcat Creek - 06/24/2020 XS 3

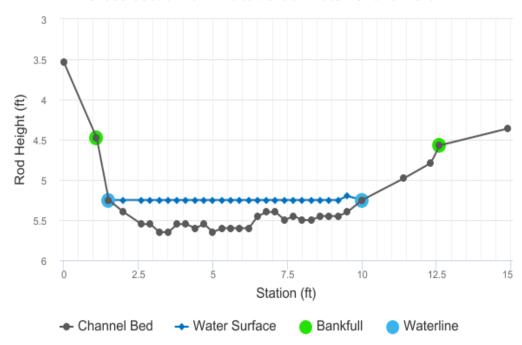

STAGING TABLE

Feature	Distance to Water (ft)	Top Width (ft)	Mean Depth (ft)	Maximum Depth (ft)	Area (SQ ft)	Wetted Perimeter (ft)	Percent Wetted Perimeter	Hydraulic Radius (ft)	Mean Velocity (ft/s)	Discharge (cfs)
Bankfull	4.57	11.45	0.8	1.08	9.12	12.18	100.00%	0.75	2.68	24.46
	4.6	11.4	0.77	1.05	8.8	12.1	99.36%	0.73	2.63	23.17
	4.65	11.31	0.73	1.0	8.23	11.96	98.20%	0.69	2.54	20.89
	4.7	11.21	0.68	0.95	7.67	11.82	97.05%	0.65	2.44	18.71
	4.75	11.12	0.64	0.9	7.11	11.68	95.89%	0.61	2.34	16.63
	4.8	11.0	0.6	0.85	6.56	11.51	94.54%	0.57	2.24	14.67
	4.85	10.74	0.56	0.8	6.02	11.22	92.09%	0.54	2.15	12.93
	4.9	10.47	0.52	0.75	5.49	10.92	89.64%	0.5	2.06	11.28
	4.95	10.21	0.49	0.7	4.97	10.62	87.19%	0.47	1.96	9.75
	5.0	9.94	0.45	0.65	4.46	10.31	84.67%	0.43	1.86	8.32
	5.05	9.65	0.41	0.6	3.97	9.99	82.04%	0.4	1.76	7.0
	5.1	9.37	0.37	0.55	3.5	9.67	79.41%	0.36	1.65	5.78
	5.15	9.08	0.33	0.5	3.04	9.35	76.78%	0.32	1.54	4.67
	5.2	8.8	0.29	0.45	2.59	9.03	74.15%	0.29	1.42	3.67
Waterline	5.25	8.51	0.25	0.4	2.16	8.71	71.52%	0.25	1.28	2.77
	5.3	8.18	0.21	0.35	1.74	8.36	68.67%	0.21	1.14	1.99
	5.35	7.85	0.17	0.3	1.34	8.02	65.82%	0.17	0.99	1.32
	5.4	7.52	0.13	0.25	0.96	7.67	62.96%	0.12	0.81	0.78
	5.45	6.3	0.1	0.2	0.62	6.43	52.76%	0.1	0.68	0.42
	5.5	4.36	0.08	0.15	0.36	4.46	36.59%	0.08	0.61	0.22
	5.55	3.71	0.05	0.1	0.17	3.79	31.10%	0.04	0.41	0.07
	5.6	2.0	0.02	0.05	0.04	2.04	16.71%	0.02	0.23	0.01
	5.63	0.52	0.01	0.01	0.01	0.53	4.38%	0.01	0.17	0.0

MODEL SUMMARY

Measured Flow (Qm) =	2.77
Calculated Flow (Qc) =	2.77
(Qm-Qc)/Qm * 100 =	0.10%
Measured Waterline (WLm) =	5.25
Calculated Waterline (WLc) =	5.25
(WLm-WLc)/WLm * 100 =	0.05%
Max Measured Depth (Dm) =	0.4
Max Calculated Depth (Dc) =	0.4
(Dm-Dc)/Dm * 100 =	-0.60%
Mean Velocity =	1.28
Manning's n =	0.06
0.4 * Qm =	1.11
2.5 * Qm =	6.93

Cross-section for Wildcat Creek - 06/24/2020 XS 3



FIELD DATA

Feature	Station (ft)	Rod Height (ft)	Water depth (ft)	Velocity (ft/s)
	0	3.54		
Bankfull	1.1	4.48		
Waterline	1.5	5.25	0	0
	2	5.4	0.15	0
	2.6	5.55	0.3	0.87
	2.9	5.55	0.3	1.18
	3.2	5.65	0.4	1.15
	3.5	5.65	0.4	1.57
	3.8	5.55	0.3	1.51
	4.1	5.55	0.3	1.67
	4.4	5.6	0.35	0.77
	4.7	5.55	0.3	1.24
	5	5.65	0.4	1.69
	5.3	5.6	0.35	2.05
	5.6	5.6	0.35	1.79
	5.9	5.6	0.35	1.64
	6.2	5.6	0.35	1.43
	6.5	5.45	0.2	1.58
	6.8	5.4	0.15	1.54
	7.1	5.4	0.15	0.65
	7.4	5.5	0.25	1.18
	7.7	5.45	0.2	1.58
	8	5.5	0.25	1.65
	8.3	5.5	0.25	1.27
	8.6	5.45	0.2	1.07
	8.9	5.45	0.2	1.04
	9.2	5.45	0.2	0.77
	9.5	5.4	0.2	0.59
Waterline	10	5.25	0	0
	11.4	4.98		

	12.3	4.79	
Bankfull	12.6	4.57	
	14.9	4.36	

Cross-section for Wildcat Creek - 06/24/2020 XS 3

COMPUTED FROM MEASURED FIELD DATA

Wetted Perimeter (ft)	Water Depth (ft)	Area (SQ ft)	Discharge (cfs)	Percent Discharge
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0.52	0.15	0.08	0	0
0.62	0.3	0.14	0.12	4.24
0.3	0.3	0.09	0.11	3.83
0.32	0.4	0.12	0.14	4.98
0.3	0.4	0.12	0.19	6.79
0.32	0.3	0.09	0.14	4.9
0.3	0.3	0.09	0.15	5.42
0.3	0.35	0.1	0.08	2.92
0.3	0.3	0.09	0.11	4.03
0.32	0.4	0.12	0.2	7.31
0.3	0.35	0.1	0.22	7.76
0.3	0.35	0.1	0.19	6.78
0.3	0.35	0.1	0.17	6.21
0.3	0.35	0.1	0.15	5.42
0.34	0.2	0.06	0.09	3.42
0.3	0.15	0.04	0.07	2.5
0.3	0.15	0.04	0.03	1.05
0.32	0.25	0.08	0.09	3.19
0.3	0.2	0.06	0.09	3.42
0.3	0.25	0.08	0.12	4.46
0.3	0.25	0.07	0.1	3.44
0.3	0.2	0.06	0.06	2.31
0.3	0.2	0.06	0.06	2.25
0.3	0.2	0.06	0.05	1.67
0.3	0.2	0.08	0.05	1.7
0.52	0	0	0	0
0	0	0	0	0

0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

DISCLAIMER

"The Colorado Water Conservation Board makes no representations about the use of the software contained in the R2Cross platform for any purpose besides that for which it was designed. To the maximum extent permitted by applicable law, all information, modeling results, and software are provided "as is" without warranty or condition of any kind, including all implied warranties or conditions of merchantability, or fitness for a particular purpose. The user assumes all responsibility for the accuracy and suitability of this program for a specific application. In no event shall the Colorado Water Conservation Board or any state agency, official or employee be liable for any direct, indirect, punitive, incidental, special, consequential damages or any damages whatsoever including, without limitation, damages for loss of use, data, profits, or savings arising from the implementation, reliance on, or use of or inability to use the R2Cross platform.

FIELD DATA FOR INSTREAM FLOW DETERMINATIONS

LOCATION INFORMATION

ROSS-SECTION LOCATION:	ypstream	n of	ماليا	lct	Ro	(_	WC	AT	1	GK	5							
ATE: A A A A OBSE	RVERS: (1-1-1		.)		- 1	7 (0,	,	TI	h.e.	1		-						
10/9/19	usna	SECTION:		Der		(flo	- de	Juli	e Nav	0	Crib	e)		-	A PI	vi:		
ESCRIPTION		V						ER DIVI	N/S	3		_	1.0	E/		OF:		
Sunnison	WATE	ASHED:	rel	/			WAI	EH DIVI	4			120		OW WA	ii En CC	,U.C.		
USGS:		ana sy																
MAP(S):																	764	
				SUP	PLE	MEN	ITAL	DAT	A							-		
AG TAPE SECTION SAME AS	YES/NO	METER TY	PE: HA	ich o	150	AEC												
ETER NUMBER: NA	DAT	E RATED:		,	CALIB	and the same of		1A 80	c T	APE WE	IGHT		/4_ ID:	s/foot	TAPE	TENSIC	N: NA	lbs
HANNEL BED MATERIAL SIZE	E RANGE:				orial b				STAKE			-	UMBE	ROFP	HOTOG	RAPHS		
			_		-			-		0.4	-			Marie Control Marie Control	The state of the s	6 - W - G	-	
				CHA	NNE	L PF	ROF	LE C	ATA	23	Add	addit	ional	notes	onp	hotos	on b	pack
STATION	DISTANCE FROM TA	CE (H)	T	ROD	READI	NG (H)	T		,			S	h				L	EGEND
Tape @ Stake LB	0.0	12.0'	1	8.75				_					4)				Sta	ke 🕱
Tape & Stake RB	0.0	/15.5'	9.	.5"			S										1	tion (1)
1) WS @ Tape LB/RB	0.0		LEI 35	N 25"	/	W .25"	1	1		1	>>	TAPE	\leftarrow	2				oto ①
2 WS Upstream	9.5	1		4.0		17							←	 FI	w		-	
3 WS Downstream	[31			5,4	11	100		-					3				Direc	tion of F
SLOPE	0-	75/ 22.5	o'= 0.	033								S)		-			-
			AC	UAT	IC S	AME	LIN	G SL	MM	ARY								
STREAM ELECTROFISHED:	YES/NO DIS	STANCE ELEC			-				UGHT			+	WATE	RCHEM	HISTRY	SAMPL	ED: YES	S/NO
		ENGTH - FREC					-			-		.0-2.9,	ETC.)			-		-
	-	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	>15	TOTAL
SPECIES (FILL IN)																		
SPECIES (FILL IN)			1	1					1						_	_		
SPECIES (FILL IN)							-											
SPECIES (FILL IN)													_	+-	-		-	
	AL SECTION DV CO	1	IENTIF'	C CBC	ED NAS	AE -							1	+-	Lily-1	. 1	- +	دماع
AQUATIC INSECTS IN STREA	A CONTRACTOR OF THE PROPERTY O				ER NAM	AE D	id n	ot ob	Servi	, wa	croi	nver	cer	ates,	likel	y dv	eto	cold
AQUATIC INSECTS IN STREA	m section by co					_			SQVVI	, wa	croi	nvert	ckr	ates,	likel	y dv	eto	cold
AQUATIC INSECTS IN STREA	itures and	late in S	easov	2	C	OMN	IEN.	rs					-					
AQUATIC INSECTS IN STREA	itures and		easov	2	C	OMN	IEN.	rs					-					
AQUATIC INSECTS IN STREA	tures and *Confi	late in S	eason	relocit	Ci	om w	IEN.	r s e, sta	tions	s. No	ted	W/	2 × o	or 3)	c fo	r 2		

Photos on cross-section (ATB's phone)

1: Upstream toward X-section

2: downstream toward X-section

* 3: Left stake, across X-Section

4: Right stake, across x-section.

3 x landscape Julie phone

DISCHARGE/CROSS SECTION NOTES

STREAM NAME:	Wildca	t Creek				CRO	SS-SECTION	I NO	DATE 0-9-19	SHEE	TOF
EGINNING OF M	EASUREMEN	EDGE OF 1	WATER LOOKING I IKE)	OOWNSTREAM:	LEFT / RIGHT	Gage R	eading:	1t	TIME 10:45		
Stake (S) Grassline (G)	Distance	Width	Total	Water	Depth R	evolutions		-	ty (ft/sec)		T
Stake (S) Grassline (G) Waterline (W) Rock (R)	From Initial Point (ft)	(ft)	Vertical Depth From Tape/inst (ft)	Depth (ft)	Observation (ft)		Time (sec)	At Point	Mean in Vertical	Area (it ²)	Discharge (cfs)
-(5)	-3.	2	1.62								
7/10		2.5	1.72								
(B)		2.9	2.04	45.							
		3.5	2.04			Seculis 2 in the second					
		4.0	2.45								
		4.5	2.50								
W		501	2.92								
(W)		5.3	3.04	./				TSTN			
		5.5	3.04	01			-	-0.04	(3x)		-
		5.7	3.13	. 18				Ø (3X)			
		5.9	3.20	28			1	0.02			
		601	3.23	.3			-	0.14	(2)		
		6.3	3.25	.32			+		-		
		6.5	3.23	03			-	0.38			
		6.7	3027	033			 -	0.23			
		6.9	3.27	•33			-	0.29	112.3		
		7.1	3.2				-	0.8	(2x)		-
		7.3	3.18	.28		-	-	0.98	(2x)		
		7.5		026			-	0.45	(2x)		
		7.7	3.14	.18			-	0.40			
		7.9	3.04	.13				0.26	-		-
-							-	0.28			
		8.1	3.12	019				0.21			
		8.3	3.15	.19				0.24			
		8.5	3010	017				0.18			
		8.7	2.99	.09				0.23			
		8.9	3.15	.21				0.19			
		9.1	3.09	.15				0.19			
		9.3	3.11	.18				0.14			
71		9.5	3.07	0.15				TSTN	1		
(1)		9.9	2.92	0.05			-	TSTN			
(W)	-	10.5	2090	\$.05		enn out out out		TSTN	1		
		11 =	2.72				1				-
		11.5	dota	<u> </u>							-
		12	2.77								
		12.5	2.66				+				
(B)		13.5	1.92				-				
(4)		14	1.68								
		14.5	1.4				-		-		
		15	1.02				-				1
(3)	*********	15.5	0.76				+		1		
(2)	Da.	1000	0.70				-			-	-
TOTALS											
End of Measur		ime: 1(:40	Gage Readin		CALCULATION		ED BY:		CALCULATIONS	L SUPERIOR ST	AJB

Cross-section: Wild Cat Creek # 1
Date: 10/9/19
Name: Julie Nama
Riffle Pebble Count Actual Measurements (mm) (cm)

							_	
16.3	26	5.9	51	901.	76	3.2		
2 4.8	27	7.5	52	Sandfive	77	9.7		
3 11.3	28	4.4	53	Sand/fine	78	Co. Co		
4 4.7	29	3.4	54	12.4 E	79	308		
5 249	30	8.1	55	3.9	80	13.4	101	21
6 10.4	31	3,2	56	12.6E	81	706	102	5.4
7 12.0	32	5.9	57	1.9	82	4.9	103	1.5
8 13,1 E	33	6.8	58	14.1 F	83	2.3	104	4.4
9 3.6	34	9.7	59	9.5	84	4.9	105	
10 465	35	13.4	60	4.1	85	5.9	106	
11 367	36	14	61	4.8	86	17.2	107	
12 704	37	Sand	62	Sand King	87	30	108	
13 3.9	38	12.4	63	GE	88	0.7	109	
14 6.8	39	10.4	64	SandFig	<i>p</i> 89	6.	110	
15 6.1	40	8.3	65	4.5	90	7.3	111	
16 3.2	41	3.4	66	Sand/Fine	91	12.2	112	
17 5.9	42	4.5	67	7.2	92	12.9	113	
18 13.7	43	6.9	68	11	93	3.5	114	
19 5.6	44	8.9	69	Sand Ain	94	3.2	115	
20 7		6.8	70	18.5	95	4.6		
21 9.8	46	7.7	71	12.5E	96	11.3		5 5
22 9.9	47	607	72	12.7	97	3.7		
23 6.5	48	3.3	73	fine/som	98	10.9		
24 5.3	49	2.7	74	3.8	99	10		
25 3	50	9.6	75	306	100	18		

^{**}Please be sure to measure at least 100 pebbles (10 in 10 transects or 5 in 20 transects-depending on stream size, for accurate distributional representation.** **EMBEDDEDNESS:**

If intermediate particle axis is less than 32 mm chose the nearest cobble for embeddedness. If no cobble >32 mm is present without taking a step, record 100% embedded.

	R	andom p	ebble f	or Perc	ent Em	bedded	lness (d	ne per	transect	.)
5	7	10	9	3	8	5	2	1	7	#
		3 3.								D(e)/ D(t)

ample endemie of elk/deer X sec

FIELD DATA FOR INSTREAM FLOW DETERMINATIONS

LOCATION INFORMATION

CONSERVA	ATION B	OARD					LUCI	4110	114 111	IFUI	ZIALW	ITON	1923001								
STREAM NAI	ME:	Jile	100	+ C	100	1	9											C	ROSS-8	SECTION	€ NO.:
CROSS-SECT	TION LOCA	TION:	A	BOTC	У.	50	0	4,	Uy	05	ne	aw.	m	OW	ے ما	201	IN	V Y	bo	d	
	_				105	8	M											J			
DATE: 6-Z	4-20	OBSEF	EVERS:	2. Sn	MAL		7														
LEGAL DESCRIPTION		% SECT	ION:	NW	SECTION	N:	C	TC	OWNSH	IP:	. 1	4:N/	s)	RANGE	3	9	36E	/W	PM:	(O !	1
COUNTY:	Gun	nisa	> N	WATERSI	HÉD:	ila	te (2,5	ښو	WA	TER DI	VISION:		4	al-r		DOW V	VATER (ODE:		
111000	USGS:							31.575 - 17			20.00	3	80	151	.(0)	Da	12				
MAP(S):	USFS:											10	70	C	. 5	85	07				
							SUF	PPLE	ME	NTA	L DA	TA									
SAG TAPE SE		ME AS	YES/N	0	METER T	YPE:	1 -	M								,		.,			7
METER NUME	DER:	ų		DATE RA	ATED:			CALIE	3/SPIN:			sec	TAPE W	EIGHT:	ey.	20	ss/foot		ETENS	Vey	ed lbs
CHANNEL BE		AL SIZE	RANGE:	2004	ho	4(4	hora	50	11	РНОТО		HS TAKE	or	7					GRAPH		;
-CAVEN		00	1 - 0	COVI	77.0	CITCA	-		EL P	ROF	ILE	DAT	A .								
		T	D	STANCE		1 .				_						_	_		_	_	LEGEND:
STATI	ON Stake LB			OM TAPE	(ft)	-			ING (H	귀					•						
^	Stake RB		E 95	0.0		-	=		ye	\mathcal{H}	s -										ske 🛞
	Tape LB/RE	в		0.0		6	- 100	n//	9.9		K E T	12	>-7		TAPE			2	D		ation (1)
2 WS Ups	stream		7	1.0				.52			H	V/				5	_			-	noto ()
	wnstream		2				6		2		-					12	, 7			- Dire	ction of Flow
SLOPE	6	.34	10		F	0,	38								()	9)		
						AC	UAT	ic s	AMF	LIN	G SI	JMM	ARY								
STREAM ELI	ECTAOFISI	HED: YE	E(NO)	DISTAN	ICE ELEC	TROFIS	HED:_	ft		F	ISH CA	UGHT:	YES/NC			WATE	RCHEA	AISTRY	SAMPL	ED FE	on
			T.	LENGI	TH - FREC	DUENC	Y DISTR	IBUTIO	ON BY C	DN E-IN	CH SIZ	E GRO	JPS (1.0)-1.9, <u>2</u>	.0-2.9,	ETC.)					
SPECIES (FI	LL IN)	•			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	>15	TOTAL
					-													-	 	-	
																	-			 	
																		•			
AQUATIC INS	SECTS IN S	TREAM	SECTION B	Y COMMO	IN OR SC	ENTIFI	C ORDE	R NAM	E	Team'r										- 1	
					213		-161								_	7					
				-180-1707		355		CC	MM	ENT	'S	maree -				V			desa		3943
10H	n= (0,8	5								M	TU!	74		bu	Ivel	911	4			
Can	==	56	3				- 60					0.	11	1 	290	No	HY	,			
Sall	mide:	<u> </u>)														/				
10	UND =	9	,50 (C																	

DISCHARGE/CROSS SECTION NOTES

STREAM NAME:	WII	draf	Creek				CROSS-	SECTION	NO.	DATE: 0-24-	ZC SHE	ETOF
BEGINNING OF N			ATER LOOKING E		LEFT/RIGI	IT Gas	ge Read	ding:	n	TIME:)\; ()3	
Stake (S)	Distance	V/idth	Total	Water Depth	Depth	Revolution	ons			y (ft/sec)		
Stake (S) Grassline (G): Waterline (W) Flock (R)	From Initial Point (ft)	(11)	Vertical Depth From Tape/Inst (ft)	Depth (It)	of Obser- vation (ft)			Time (sec.)	At Point	Mean in Vertical	Area (ft ²)	Discharge (cfs)
145	0.0		5.02									
	0,9		5.25									
G	1,4		6,02									
[W)	19		6,90	0 17					A 71.		<u> </u>	-
<u> </u>	7.0		10.95	0.12					0.211		ļ	
	7_4	'	6.95	0.15	- 1				0.75			4)
	7.8		6.9	0.10					0.86	-		
	3.7		6.9	0.10					0.84			
	3.6		6.95	0.15	-				7.10		 	
	4.0		6.95				-+		1.68	+	 	
-			7.0	6.70 6.20			-		81-1		· ·	
	4.6		6.95	6.15					1.06			-
	5.2		6.73	0.10					0.71		1	
—	5.5		6,95						1.83			
	5. h		6.95	0.15					1.51			
	1.1		6.9	0.10				_	1.57			
	1.4		6.95	1.15					1.90	-		
<u> </u>	6.7		7,0	0.70					1.49	-	1	
	7.0		7.05	0-25					1.11		<u> </u>	1
	7.3		7.05	0.75					1.46		 	_
	7.5		7.20	i i					1.86		-	
<u> </u>	7.7		7.10	6.30			-		7.78			
-	7.9		7, 70	0.40					7.60	-		
	8.3		7.25	1 1			-		7.46			
	8.5		7,75						7.39			
	8.7		7,20				-		2.22		1	-
	99		7,70						1.94			
	9.1		7,20						0.90			
	9.5		7,20						6.07			
	9.5		7,15						6.67			
	9.7]	7,15	0.35					0.05	<u> </u>		
											-	
11)	9.5		6.02									
9	9,6		6.07									
	11,1		4.76									
LS	13.1		4,40		l .							10
	-		- 12							-		
TOTALS:												
					CALCULAT	IONS PERF	ORMED	BY:		CALCULATIONS	CHECKED	BY:
End of Measu	rement T	ime;	Gage Readin	ig: t	1							si''

FIELD DATA FOR INSTREAM FLOW DETERMINATIONS

LOCATION INFORMATION

CONSERVATION BOAR				-			101200						200					ALC: UNKNOWN	
STREAM NAME:	dec	14 (100	ek											321 1	C	ROSS-	SECTIO	NO.:
CROSS-SECTION LOCATION:	·AA	XOYON	, (00	01	FL,	V	05	po	ои	A.,	de	m	C	21/	MN	I V	04	1
		and	99	HL							99 - 2 8	A 32-2		弄龙		V			
DATE: 6 -24-2 OBS	ERVERS:	12,8	=w	14/	4									-77500		00000	2000000		,
LEGAL % SEC DESCRIPTION	TION:	NW	ECTIO	N:	.0	71	OWNSH	IP:	1	4 N	(S)	RANG	:	4	66 E	:/W	РМ:	61-	
COUNTY: GLYNNI	50K	WATERSHI	ED:	da.	(2)	re	۲_	W/	ATER D	VÍSION	4				DOW V	VATER (CODE:		
USGS:			100	10	200			_	2	130	5	07	32	56	000)			
MAP(S):	J-R					ZOWEN						43	303	31.	33	3			
					SUI	PPLE	EME	NTA	L DA	TA									
	_	To		vec.	N 1	16.	_							_	_				
SAG TAPE SECTION SAME AS DISCHARGE SECTION:	(FES)	10	ETER T	TPE:	M	-1	1		-			นท	1901	JEY .			5778	<u> </u>	IEA .
METER NUMBER:		DATE RAT	ED:			CALI	B/SPIN:	_		sec	TAPE V	VEIGHT	-		os/foot	TAPE	E TENS	ION:	ibs
CHANNEL BED MATERIALISIZ	E BANGE	dot)	90	<u> 11d</u>	er,	3		PHOTO	OGRAP	HS TAKI	EN VE	ONG		NUMB	ER OF I	РНОТО	3RAPH	3	
U					CHA	NN	EL P	ROF	ILE	DAT	A								
		10711105						_	1						=0.				
STATION STATE IS	FF	101111111111111111111111111111111111111	(ft)	+			ING (ft	-					(9					LEGEND:
X Tape © Stake LB X Tape © Stake RB	70	0.0		4			VPC	1	s									- St	ake 🕱
		0.0		- 5	2()	MR	/	1	κİ		7=	> ~	, m	1	77			Ste	ation (1)
① WS @ Tape LB/RB		0.0	10,0	5		7		5-	E C H	.5	4	7-1	TAPE		1			Pt	noto (1)
2 WS Upstream		0,9		-		5 /	3	\dashv	_					12	7			- Dira	ction of Flow
3 WS Downstream		7.0			77.00	5,4		_		(1			(()				(
SLOPE 0,6	2 / / 1	5,9	4	=_	0	, 17				()									
				AC	TAU	ic s	AMF	LIN	G SI	JMM	ARY	•							
STREAM ELECTROFISHED:	res/10	DISTANC	E ELEC	TROFIS	HED:_	f:		F	ISH CA	UGHT:	YES/NO	,		WATE	R CHEN	AISTRY	SAMPL	ED YES	SINO
		LENGTH	I - FREC	DUENC	Y DISTR	RIBUTIO	ON BY (DNEIN	ICH SIZ	E GRO	UPS (1.	0-1,9,2	2.0-2.9,	ETC.)	-				
SPECIES (FILL IN)			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	>15	TOTAL
								ia., .											ν
						_										₽	 	-	
	-		\vdash		-	-									-			-	
AQUATIC INSECTS IN STREAM	A SECTION 6	BY COMMON	OR SC	ENTIF	C ORDI	ER NAM	AE.												
mayfly,	000	indo	w	- 6	SK	2140	201												
0 /1		780				~	OMM	FNI								127 %).		
1 / 6	-						J 191	-14		-	_			_					
ph = 6.85	-0		=.000			_		101117-1						- 10		10		11.	
CHOVAD. TO	12																		

DISCHARGE/CROSS SECTION NOTES

STREAM NAME:	1.121.	deat	Cree	l.	ngL/Ch	OSS SECT	S-SECTION		DATE: (6-24-	70	•
BEGINNING OF 1		EDGE GE	VATER LOOKING I		l: LEFT/RIC	Gage Re	ading:		, '1	SHEE	OF
S State (E)	DIETZDEO	Width	Total	Water	Depth	Revolutions	Eding.		ty (ft/sec)	DOM .	
Stake (S) Grassline (G) Waterline (W) Rock (R)	Point (h)	(ft)	Vertical Depth From Tape/Inst (ft)	Depth (II)	of Obser- vation (ft)	VEAQUATIONS	Time (sec)	(At Point	Mean in Vertical	Area (ft ²)	Discharge (cfs)
115	0.0		3.54								- 8
6	1,1		4,48								
W	1.5		5,25 5,4 5,55	Φ				Ø			
	7-6	-	5,4	0.121				0.0			
	2.9			0.30		^		6.87			
			5.55	0.30		<u> </u>		1.18			
	3.7		5.65	0.40				1.15			
	3.5		5.65	0.40				1.57			
	3.8		<i>6,55</i>	0.30		13		1.51			
	4.1		<i>5,55</i>	0.30				167			
<u> </u>	4.4		5,6	0.35				0.77			
	U.7		5 55	0.30				1.24			
	5.0		5.65	0.40				1.69			
	5.6		5.6	0.35				2.05 1.77			<u> </u>
	5,9		5.6	0:35				1.64			
	6.2		5,60	0.35				1.43			
	6.5		5.45	6.79				1.58			
	8.0)		5.4	0.15				1.54			
	7.1		5.4	0.15				0.65			
	7.4		5.5	0.25				1.18			
	7,7		5,45	6.70				1.58			
	8.0		5.5	0.25				1.65			•
	8.3		5.5	0.75				1.27			
	8.6		5,45	0.20				1.07			
	8.9		5 ,45	0.20				1.04			
	9.2		5,45	0.70				0.77			
	9.5		5.43	0 20				0.59			
W	10.0		5.25 4.98	0				φ			
27 G ^{MI}	11.4		4.98					,			
	12.2		4.79								
G	126		4.57								
TOTALS:	14.7		4-36							17.	
					CALCULAT	IONS PERFORME) BV-				
End of Measur	ement Tir	ne:	Gage Reading):n	CAECULAI	ONS PERFURME	, D1;		CALCULATIONS C	HEUKEU BY	

WOLMAN FORM

Page: _____ of ____ R6-2500/2600-32

(Revised for use by Oregon NRCS)

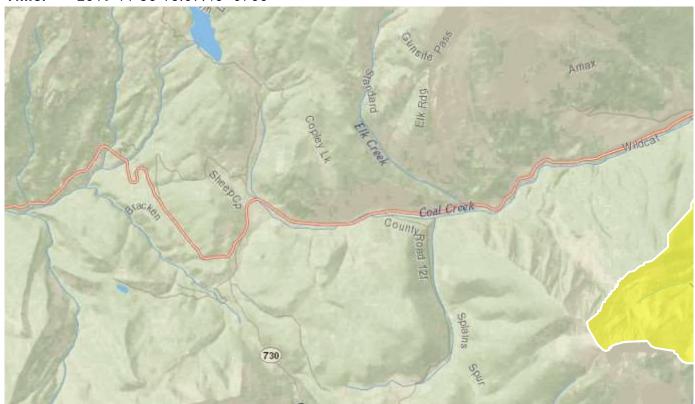
A.	County Gunnism B. Basin	C. Service Center	
E.	Stream Name Wildcat Orcel / Jule	Namia	'
F.	4 th HUC Code,,, 5 th	6 th	
G.	USGS Quad		
H.	Survey Date 06 / 24 / 2020		
	MM / DD / YYYY		

PEBBLE COUNT									
Stream Ord	ler #:	Habitat Unit #		# of Transects: 7					
Surveyor:	Paul Ray	mond			Reach:				
Inches	PARTICLE	Millimeters		Parti	cie Count	Total #	Item %	% Cum	
<.08	Sand	< 2	S/C/S	417		5			
.0816	Very Fine	2 -4							
.1622	Fine	4 -5.7	G	14		2			
.2231	Fine	5.7 - 8	R			1			
.3144	Medium	8 -11.3	A	1/	-	2		,	
.4463	Medium	11.3 - 16	V,	HY 11		7			
.6389	Coarse	16 -22.6	E	H	W///	13			
.89 - 1.26	Coarse	22.6 - 32	L	JHTJA	4///	13			
1,26 - 1.77	Vry Coarse	32 - 45	s	王王	(Wil.	17			
1.77 -2.5	Vry Coarse	45 - 64	±12	MA	HUH	15			
2.5 - 3.5	Small	64 - 90	С	WW	I JH	15			
3.5 - 5.0	Small	90 - 128	0	WI	H	9		<u> </u>	
5.0 - 7.1	Large	128 - 180	В	Till I		1			
7.1 - 10.1	Large	180 - 256	В						
10.1 - 14.3	Small	256 - 362	В						
14.3 - 20	Small	362 - 512	L						
20 - 40	Medium	512 - 1024	D						
40 - 80	Large	1024 -2048	R					(2)	
80 - 160	Vry Large	2048 -4096	S						
	Bedrock		BDRK						
				Т	otals:				
	Total Tally: 100								

Sawmang ept taxa and caddis fly hatches.

Attachment D- StreamStats

11/30/2019 StreamStats


StreamStats Report

Region ID: CO

Workspace ID: CO20191130220726363000

Clicked Point (Latitude, Longitude): 38.86942, -107.00939

Time: 2019-11-30 15:07:40 -0700

Prepared for instream flow proposal on November 30, 2019.

Basin Characteristics							
Parameter Description	Value	Unit					
Area that drains to a point on a stream	2	square					
Mean basin slope computed from 10 m DEM	28	percent					
Mean Annual Precipitation	31.12	inches					
Mean Basin Elevation	10370	feet					
	Parameter Description Area that drains to a point on a stream Mean basin slope computed from 10 m DEM Mean Annual Precipitation	Parameter DescriptionValueArea that drains to a point on a stream2Mean basin slope computed from 10 m DEM28Mean Annual Precipitation31.12					

Parameter Code	Parameter Description	Value	Unit
CSL1085LFP	Change in elevation divided by length between points 10 and 85 percent of distance along the longest flow path to the basin divide, LFP from 2D grid	569.8	feet pe
EL7500	Percent of area above 7500 ft	100	percent
ELEVMAX	Maximum basin elevation	12100	feet
I24H100Y	Maximum 24-hour precipitation that occurs on average once in 100 years	3.61	inches
124H2Y	Maximum 24-hour precipitation that occurs on average once in 2 years - Equivalent to precipitation intensity index	1.69	inches
I6H100Y	6-hour precipitation that is expected to occur on average once in 100 years	1	inches
I6H2Y	Maximum 6-hour precipitation that occurs on average once in 2 years	0.91	inches
LAT_OUT	Latitude of Basin Outlet	38.869421	degrees
LC11BARE	Percentage of barren from NLCD 2011 class 31	9.4	percent
LC11CRPHAY	Percentage of cultivated crops and hay, classes 81 and 82, from NLCD 2011	0	percent
LC11DEV	Percentage of developed (urban) land from NLCD 2011 classes 21-24	0	percent
LC11FOREST	Percentage of forest from NLCD 2011 classes 41-43	80.4	percent
LC11GRASS	Percent of area covered by grassland/herbaceous using 2011 NLCD	8.8	percent
LC11IMP	Average percentage of impervious area determined from NLCD 2011 impervious dataset	0	percent
LC11SHRUB	Percent of area covered by shrubland using 2011 NLCD	0	percent
LC11SNOIC	Percent snow and ice from NLCD 2011 class 12	0	percent
LC11WATER	Percent of open water, class 11, from NLCD 2011	0.2	percent
LC11WETLND	Percentage of wetlands, classes 90 and 95, from NLCD 2011	1.2	percent
LFPLENGTH	Length of longest flow path	3.21	miles
LONG_OUT	Longitude of Basin Outlet	-107.009406	degrees
MINBELEV	Minimum basin elevation	9080	feet

Parameter Code	Parameter Description	Value	Unit
OUTLETELEV	Elevation of the stream outlet in thousands of feet above NAVD88.	9083	feet
RCN	Runoff-curve number as defined by NRCS (http://policy.nrcs.usda.gov/OpenNonWebContent.aspx? content=17758.wba)	72.57	dimens
RUNCO_CO	Soil runoff coefficient as defined by Verdin and Gross (2017)	0.44	dimens
SSURGOA	Percentage of area of Hydrologic Soil Type A from SSURGO	0.00386	percent
SSURGOB	Percentage of area of Hydrologic Soil Type B from SSURGO	5.16	percent
SSURGOC	Percentage of area of Hydrologic Soil Type C from SSURGO	63.6	percent
SSURGOD	Percentage of area of Hydrologic Soil Type D from SSURGO	26.3	percent
STATSCLAY	Percentage of clay soils from STATSGO	31.11	percent
STORNHD	Percent storage (wetlands and waterbodies) determined from 1:24K NHD	0.2	percent
TOC	Time of concentration in hours	1.2	hours

Peak-Flow Statistics	Parameters[Mountain Region Peak Flow]
----------------------	---------------------------------------

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	2	square miles	1	1060
BSLDEM10M	Mean Basin Slope from 10m DEM	28	percent	7.6	60.2
PRECIP	Mean Annual Precipitation	31.12	inches	18	47

Peak-Flow Statistics Flow Report[Mountain Region Peak Flow]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp

Statistic	Value	Unit	SEp
2 Year Peak Flood	36.8	ft^3/s	49
5 Year Peak Flood	51.9	ft^3/s	44
10 Year Peak Flood	61.3	ft^3/s	41
25 Year Peak Flood	74.4	ft^3/s	40
50 Year Peak Flood	87.5	ft^3/s	39
100 Year Peak Flood	96.4	ft^3/s	36
200 Year Peak Flood	104	ft^3/s	36
500 Year Peak Flood	121	ft^3/s	33

Peak-Flow Statistics Citations

Capesius, J.P., and Stephens, V. C.,2009, Regional Regression Equations for Estimation of Natural Streamflow Statistics in Colorado: U. S. Geological Survey Scientific Investigations Report 2009-5136, 32 p.

(http://pubs.usgs.gov/sir/2009/5136/http://pubs.usgs.gov/sir/2009/5136/)

Monthly Flow Statistics Parameters[Mountain Region Mean Flow]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	2	square miles	1	1060
PRECIP	Mean Annual Precipitation	31.12	inches	18	47

Monthly Flow Statistics Flow Report[Mountain Region Mean Flow]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
January Mean Flow	0.399	ft^3/s	50
February Mean Flow	0.369	ft^3/s	51
March Mean Flow	0.371	ft^3/s	49
April Mean Flow	0.695	ft^3/s	44
May Mean Flow	6.81	ft^3/s	46
June Mean Flow	16.8	ft^3/s	46
July Mean Flow	6.06	ft^3/s	76
August Mean Flow	2.39	ft^3/s	80

Statistic	Value	Unit	SEp
September Mean Flow	1.24	ft^3/s	59
October Mean Flow	0.908	ft^3/s	45
November Mean Flow	0.65	ft^3/s	46
December Mean Flow	0.468	ft^3/s	47

Monthly Flow Statistics Citations

Capesius, J.P., and Stephens, V. C.,2009, Regional Regression Equations for Estimation of Natural Streamflow Statistics in Colorado: U. S. Geological Survey Scientific Investigations Report 2009-5136, 32 p.

(http://pubs.usgs.gov/sir/2009/5136/http://pubs.usgs.gov/sir/2009/5136/)

Annual Flow Statistics Parameters[Mountain Region Mean Flow]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	2	square miles	1	1060
PRECIP	Mean Annual Precipitation	31.12	inches	18	47

Annual Flow Statistics Flow Report[Mountain Region Mean Flow]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
Mean Annual Flow	3.22	ft^3/s	33

Annual Flow Statistics Citations

Capesius, J.P., and Stephens, V. C.,2009, Regional Regression Equations for Estimation of Natural Streamflow Statistics in Colorado: U. S. Geological Survey Scientific Investigations Report 2009-5136, 32 p.

(http://pubs.usgs.gov/sir/2009/5136/http://pubs.usgs.gov/sir/2009/5136/)

Low-Flow Statistics Parameters[Mountain Region Min Flow]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	2	square miles	1	1060
PRECIP	Mean Annual Precipitation	31.12	inches	18	47

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
ELEV	Mean Basin Elevation	10370	feet	8600	12000

Low-Flow Statistics Flow Report[Mountain Region Min Flow]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
7 Day 2 Year Low Flow	0.142	ft^3/s	89
7 Day 10 Year Low Flow	0.0748	ft^3/s	153
7 Day 50 Year Low Flow	0.0734	ft^3/s	126

Low-Flow Statistics Citations

Capesius, J.P., and Stephens, V. C.,2009, Regional Regression Equations for Estimation of Natural Streamflow Statistics in Colorado: U. S. Geological Survey Scientific Investigations Report 2009-5136, 32 p.

(http://pubs.usgs.gov/sir/2009/5136/http://pubs.usgs.gov/sir/2009/5136/)

Flood-Volume Statistics Parameters[Mountain Region Max Flow]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	2	square miles	1	1060
PRECIP	Mean Annual Precipitation	31.12	inches	18	47

Flood-Volume Statistics Flow Report[Mountain Region Max Flow]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
7 Day 2 Year Maximum	23	ft^3/s	46
7 Day 10 Year Maximum	34.2	ft^3/s	35
7 Day 50 Year Maximum	45.7	ft^3/s	31

Flood-Volume Statistics Citations

Capesius, J.P., and Stephens, V. C.,2009, Regional Regression Equations for Estimation of Natural Streamflow Statistics in Colorado: U. S. Geological Survey Scientific Investigations Report 2009-5136, 32 p.

(http://pubs.usgs.gov/sir/2009/5136/http://pubs.usgs.gov/sir/2009/5136/)

Flow-Duration Statistics Parameters[Mountain Region Flow Duration]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	2	square miles	1	1060
PRECIP	Mean Annual Precipitation	31.12	inches	18	47

Flow-Duration Statistics Flow Report[Mountain Region Flow Duration]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
10 Percent Duration	8.76	ft^3/s	45
25 Percent Duration	1.98	ft^3/s	55
50 Percent Duration	0.676	ft^3/s	55
75 Percent Duration	0.35	ft^3/s	64
90 Percent Duration	0.176	ft^3/s	85

Flow-Duration Statistics Citations

Capesius, J.P., and Stephens, V. C.,2009, Regional Regression Equations for Estimation of Natural Streamflow Statistics in Colorado: U. S. Geological Survey Scientific Investigations Report 2009-5136, 32 p.

(http://pubs.usgs.gov/sir/2009/5136/http://pubs.usgs.gov/sir/2009/5136/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.3.11

Attachment E- Water Availability Analysis

WATER DISTRICT NO. 50

CRESTED BUTTE WATER DITCH AND WILD CAR PIPE LINE
PIPE LINE AND/OR DITCH NO. 6 PRIORITY NO. 5

That said pipe line and/or ditch is entitled to priority No. 5.

That said pipe line and/or ditch is claimed by the Town of Crested Butte, Gunnison County, Colorado, which town is a municipal corporation organised and existing under and by wirtue of the laws of the State of Colorado.

That the Crested Butte Water Ditch and the Wild Cat Pipe Line constitute one system of direct water diversion, that the Crested Butte Water Ditch takes its supply of water from Coal Creek, a tributary of Slate River, which is a tributary of East River, which is, in turn, a tributary of the Guznison River, and the Wild Cat Pipe Line takes its supply of water from Wild Cat Creek, which is a tributary of Coal Creek, a tributary of Slate River, a tributary of East River, which latter river is a tributary of the Gunnison River; that the Wild Cat Pipe Line delivers its supply of water into the pipe line of the Grested Butte Water Ditch at a point where the Wild Cat Creek enters Coal Creek, and that the pipe line from said latter point to the Crested Butte town reservoir is a common pipe line; and the supply of water from Wild Cat Creek and the pipe line out of Coal Creek supplement each other and are used for the purpose of supplying a constant flow of water so far as possible through the postion of pipe line used in common from said two sources of water to the Crested Butte town reservoir which is located on a high point immediately above the Town of Crested Butte, and from said

18

reservoir the water is immediately taken for use as hereinafter stated.

That the headgate of the Grested Butte Nater Ditch, being the intake of the pipe line known as the Grested Butte Water Ditch, is located at a point on the south bank of Goal Greek, whence the Mortheast Corner of Section 5, Township 14 South, Range 86 West, bears North 50°58° East, 2,998 feet, from which said point said pipe line runs in a general easterly direction. The length of said pipe line is 8,585 feet, its diameter is 14 inches, and its grade is 8,50 feet per one hundred feet, and its earrying capacity is 6.0 cubic feet of water per second of time.

on the right bank of Wild Cat Greek, a tributary of Coak Creek, etc., whence the Northeast Corner of Section 4, Township 14 South, Range 86 West, 6th P. M., bears North 58°10° Rast 3,260 feet, from which point said pipe line runs in a general mortherly direction to a point where it jdns and becomes a part of the pipe line of the Grested Butte Water Ditch. That the water of Wild Cat Creek through the Wild Cat Pipe Line is conveyed through an 8 inch pipe and discharges into the Grested Butte Water Ditch pipe line; it has a grade of 20 feet per 100 feet, a carrying capacity of 5.76 cubic feet of water per second of time.

That the Crested Butte Water Ditch and the Wild Cat Pipe Line are used as one system for the diversion of water at Two points, taking their supplies of water from the streams above nesed, for domestic and power purposes for the inhabitants of the Town of Crested Butte, Colorado.

494

CREED That there be allowed to flow into the Crested Butte Water Ditch from Goal Greek, a tributary of Slate River, which is a tributary of East River, which is, in turn, a tributary of the Gunnison River, and into the Wild Cat Pipe Line, from Wild Gat Greek, a tributary of Coal Greek, a tributary of Slate River, a tributary of East River, which is a tributary of the Gunnison River, for the uses aforesaid, for the benefit of the party lawfully entitled thereto under and by virtue of said construction and appropriation, under priority No. 5 not to exceed 6, cubic feet of water per second of time, subject, however, to any other priorities, if any, heretofore fixed, determined and decreed.

Attachment F- USGS Topographic Quadrangle Map

