

To: Emily Lowell, PE Arapahoe County Water and Wastewater Authority

CC: John Sikora Christopher Rey AECOM, Glenwood Springs, CO

Memo

AECOM 401 West A Street Suite 120 San Diego, CA 92101 aecom.com

Project Name: Chambers Reservior ReconstructionI

Project ref: 60606415

From: Paul Burge INCE Bd.Cert

Date: July 24, 2019

Subject: Chambers Reservoir Reconstruction, Construction Vibration Analysis and Assessment

Introduction

AECOM is involved with a reconstruction project for the Chambers terminal water supply reservoir near Parker, CO. Due to the proximity of the construction activity to nearby homes, AECOM was requested to conduct a screening level analysis to determine if construction-related ground vibration could result in possible damage to nearby structures or result in annoyance to area residents. This technical memo summarizes the construction vibration analysis and results.

Project Description and Understanding

The Chambers Reservoir project is located just to the West of Parker, CO, about 1200 feet south of the E-470/Chambers Road interchange. It is a terminal water supply reservoir that experienced a slope failure. To remedy the slope failure, the reservoir is being reshaped with material being importing to raise the bottom of the reservoir above groundwater level. In all approximately 300,000 cubic yard of material is being added. A requirement for local permitting was to conduct a vibration analysis because some construction equipment is expected to be operating within 15 feet of the property line of adjacent residential structures.

As part of the construction project, several pieces of heavy equipment are planned to be used, both working on the reservoir slope sections, and traveling on the service road along the edges of the reservoir.

A list of the construction equipment to be used for the project includes the following:

- CAT 627F or 627G scrapers
- CAT 825C sheep foot compactor
- Cat D9T Dozer
- CAT AWT 740 water tanker truck (holds 7,500 gallons)
- CAT 330 excavator

• John Deere 9520 farm tractor (pulls the disc) The Extents of the reservoir and several nearby analysis locations are shown in Figure 1.

Figure I. Project Area

Construction Vibration Analysis Methodology

The methodology for describing, predicting and assessing potential impacts from ground-borne vibration from construction activity for this analysis follows the technical procedures and reference material provided in the Federal Transit Administration's Transit Noise and Vibration Impact Assessment Manual (September 2018), primarily from information provided in Section 5 (vibration metrics and annoyance thresholds) and Section 7 (construction vibration prediction and assessment).

Ground-Borne Vibration Metrics

Peak particle velocity (PPV) – PPV is the maximum instantaneous positive or negative peak of the vibration signal. PPV is often used in monitoring of construction vibration (such as blasting) since it is related to the stresses that are experienced by buildings and is not used to evaluate human response.

Root mean square (rms) velocity – Because the net average of a vibration signal is zero, the rms amplitude is used to describe smoothed vibration amplitude. The rms of a signal is the square root of the average of the squared amplitude of the signal. The average is typically calculated over a one-second period. The rms amplitude is always less than the PPV and is always positive. The rms amplitude is used to convey the magnitude of the vibration signal felt by the human body, in inches/second.

Vibration Velocity Level (VdB or L_v) – L_v is a logarithmic quantity expressing the amplitude of the vibration velocity, calculated by the following expression:

$$L_v = 20 Log(v/v_{ref})$$

Where:

 L_v = velocity level, VdB

v = rms velocity amplitude

 v_{ref} = vibration velocity reference level (1 x 10⁻⁶ in/sec in the USA)

The L_v is often used to assess human annoyance from ground-born vibration.

The ratio of PPV to maximum rms amplitude is defined as the crest factor for the signal. The crest factor is typically greater than 1.41, although a crest factor of 8 or more is not unusual for impulsive signals. For ground-borne vibration from construction activity, the crest factor is usually 4 to 5. Therefore, when converting from PPV to Lv the following relationship is used:

 $Lv = 20log((PPV*10^{6})/4)$

Where:

PPV is the predicted peak particle velocity at the receiver location in inch/sec

Ground Vibration Impact Criteria

There are two separate areas of concern related to ground-borne vibration, annoyance and potential building damage. The impact criteria for these are presented in Tables 1 and 2, respectively

Land Use Category	GBV Impact Levels (VdB re I micro-inch /sec)			GBN Impact Levels (dBA re 20 micro Pascals)			
Land Ose Category	Frequent Events	Occasional Events	Infrequent Events	Frequent Events	Occasional Events	Infrequent Events	
Category I : Buildings where vibration would interfere with interior operations.	65 VdB*	65 VdB*	65 VdB [*]	N/A**	N/A ^{***}	N/A**	
Category 2 : Residences and buildings where people normally sleep.	72 VdB	75 VdB	80 VdB	35 dBA	38 dBA	43 dBA	
Category 3 : Institutional land uses with primarily daytime use.	75 VdB	78 VdB	83 VdB	40 dBA	43 dBA	48 dBA	

Table I. Indoor Ground-Borne Vibration Impact Criteria

* This criterion limit is based on levels that are acceptable for most moderately sensitive equipment such as optical microscopes. For equipment that is more sensitive, a Detailed Vibration Analysis must be performed.

** Vibration-sensitive equipment is generally not sensitive to ground-borne noise; however, the manufacturer's specifications should be reviewed for acoustic and vibration sensitivity.

Source FTA 2018, Table 6-3

Table 2. Construction Vibration Damage Criteria

Building/ Structural Category	PPV, in/sec	Approximate L _v *		
I. Reinforced-concrete, steel or timber (no plaster)	0.5	102		
II. Engineered concrete and masonry (no plaster)	0.3	98		
III. Non-engineered timber and masonry buildings	0.2	94		
IV. Buildings extremely susceptible to vibration damage	0.12	90		
*RMS velocity in decibels, VdB re 1 micro-in/sec	•	•		

Source: FTA 2018, Table 7-5

Assuming that the structures of concern are primarily single-family residences of wood framed and/or masonry construction, and vibration events would be considered "infrequent" (less than 70 event/day), the impact criteria for this analysis would be 80 VdB vibration velocity level for indoor human annoyance and 0.2 PPV in/sec for potential building damage.

Ground-Borne Vibration Level Prediction

Section 7.2 of the FTA manual provides the following method for predicting ground-borne vibration levels for construction activity. The basic procedure is to select an appropriate representative type of equipment from the reference equipment list and apply the distance correction formula for the distance of the desired prediction location. Table 3 presents the list of reference vibration levels for common vibration-generating construction equipment.

Equipment		PPV at 25	Approximate			
Equipment		ft, in/sec	Lv [*] at 25 ft			
Pilo Driver (impact)	upper range	1.518	112			
File Driver (impact)	typical	0.644	104			
Pile Driver (conic)	upper range	0.734	105			
File Driver (solic)	typical	0.17	93			
Clam shovel drop (slur	ry wall)	0.202	94			
Hydromill (slurry	in soil	0.008	66			
wall)	in rock	0.017	75			
Vibratory Roller		0.21	94			
Hoe Ram		0.089	87			
Large bulldozer		0.089	87			
Caisson drilling		0.089	87			
Loaded trucks		0.076	86			
Jackhammer		0.035	79			
Small bulldozer		0.003 58				
* RMS velocity in decibels, VdB re I micro-in/sec						

Table 3.	Reference	vibration	levels for	common	construction	equipment
Table J.	Neierence	VIDIALIUII		CONTINUE	construction	equipment

Source: FTA 2018, Table 7-4

The distance correction is applied with the following expression:

 $PPV_{equip} = PPV_{ref} * (25/D)^{1.5}$

Where:

PPV_{equip}	= the peak particle velocity of the equipment adjusted for distance, in/sec
PPV _{ref}	= the source reference peak particle velocity at 25 feet in in/sec (from Table 3)
D	= distance from the equipment to the receiver, in feet.

The resulting PPV value can then be compared to the appropriate potential damage criterion (from Table 2), and converted to an L_v value and compared to human annoyance impact criterion (from Table 1).

Vibration Prediction Results and Impact Assessment

For this analysis, two different operations were considered for potential vibration impacts: vibration from heavy equipment traveling along the reservoir's service road (SR) and equipment operating on the reservoir slope. The analysis assumptions used for the construction vibration prediction and impact assessment are presented in Table 4 below.

Table 4. Construction Vibration Analysis Assumptions

Activity	Equipment	PPV @ 25 feet	Lv @ 25 feet			
Maximum vibration from equipment moving on Service Road	Dozer	0.089 in/sec	87 VdB			
Maximum vibration from equipment operating on slope	Compactor/Roller	0.21in/sec	94 VdB			
Impact Thresholds						
Potential Building Damage (non-engineer	0.20 in/sec, PPV	94 VdB				
Potential Human Annoyance (residences,	0.04 in/sec, PPV	80 VdB				

For several adjacent residential properties, there appeared to be primary residential structure and a secondary structure which was generally assumed to be a garage, barn or shop. In these cases, a vibration level was calculated from each. For impact assessment, the potential damage criterion (0.20 in/sec PPV) would be applied to either structure, but the human annoyance impact criterion (80 VdB) would only be applied at the primary residence, not for garages, barns or shops since these are not normally considered to be vibration-sensitive uses for human annoyance. The receiver distances and predicted vibration levels for both residential and secondary structures are presented in Table 5.

Table 5. Predicted Vibration Levels at Nearby Homes

	Approximate	proximate		Distances (ft)		Vehicles on SR		Work on Slope	
ID	Address/Location	Structure	Service Rd	Reservoir	PPV	Lv	PPV	Lv	
R-1	12870 N 6th Street	Home	340	360	0.002	52.9	0.004	59.7	
		Barn/shop	235	255	0.003	57.8	0.006	64.1	
R-2	12830 N 6th	Garage	170	190	0.005	62.0	0.010	68.0	
	(NE Corner 6th & Elm)	Home	100	120	0.011	68.9	0.020	74.0	
R-3	12790 N 6th	Home	100	120	0.011	68.9	0.020	74.0	
	(SE Corner 6th & Elm)	Shop	35	55	0.054	82.6	0.064	84.1	
R-4	12750 N 6th	Home	200	220	0.004	59.9	0.008	66.1	
		Barn/shop	45	65	0.037	79.3	0.050	82.0	
R-5	12710 N 6th	Home	145	165	0.006	64.0	0.012	69.8	
		Shop	50	70	0.031	77.9	0.045	81.0	
R-6	12670 N 6th	Home	140	160	0.007	64.5	0.013	70.2	
		Shop	50	75	0.031	77.9	0.040	80.1	
R-7	12630 N 6 th (NE Corner of	Home	180	200	0.005	61.2	0.009	67.3	
	6th & Dogwood)								
R-8	3946 Dogwood (SE corner	Home	185	205	0.004	60.9	0.009	67.0	
	of 6th & Dogwood)	Shop	120	140	0.008	66.5	0.016	72.0	
R-9	12540 N 6th	Home	230	250	0.003	58.0	0.007	64.4	
		Garage/Shop	60	80	0.024	75.5	0.037	79.2	
R-10	Homes on Longstone	Min dist.	167	205	0.005	62.2	0.009	67.0	
	Drive	Max dist.	245	275	0.003	57.2	0.006	63.2	

DRAFT

Potential Vibration Impacts

Reviewing the results presented in Table 5, it can be seen that at no analyzed location does the predicted PPV value approach or exceed the potential damage threshold of 0.2 inch/sec. The highest predicted PPV value is 0.064 at the rear structure at receiver location R-3 for slope work.

It can also be seen that the predicted vibration velocity level (L_v) does not approach or exceed the human annoyance threshold of 80 VdB at any of the analyzed residential structures. The 80 VdB level is exceeded at a few of the closer secondary structures (e.g., 84.1 VdB at the R-3 shop structure), but these structures are not considered vibration-sensitive for human annoyance.

Conclusions

No potential vibration impacts were found to exist at residential or other structures in the vicinity of the Chambers Reservoir as a result of the proposed construction activity; therefore, no vibration mitigation is recommended.

References

Federal Transit Administration Noise and Vibration Impact Assessment Manual (2018): https://www.transit.dot.gov/regulations-and-guidance/environmental-programs/noise-and-vibration