

Consulting Engineers and Scientists

Upper Black Creek Reservoir Spillway Reconstruction Project

Feasibility Study/Design Report Dam ID: 360127 Filing No: C-XXXX

Submitted to: Blue Lake Reservoir Company Summit Trust Vail, CO 81657

Submitted by: **GEI Consultants, Inc.** 4601 DTC Boulevard, Suite 900 Denver, CO 80237

April 2020 Project 1801834

Chad Masching, PE Project Manager

Paul Eggers, PE Reviewer

Exe	cutive	Summary	1
1.	Intro	oduction	3
	1.1	Project Overview and Objectives	
	1.2	Overview of Previous Work	4
	1.3	Description of Facilities	5
	1.4	Design Team	5
	1.5	Related Documents	6
2.	Site	Conditions	7
	2.1	Geology	7
	2.2	Seismic Setting	7
		2.1.1 Design Seismic Accelerations	8
	2.2	Hydrology	9
	2.3	Subsurface and Groundwater Conditions	12
		2.3.1 Subsurface Conditions	12
		2.3.2 Groundwater Conditions	12
	2.4	Site Survey	13
3.	Des	ign Criteria	15
	3.1	General	15
		3.1.1 Applicable Codes and Standards	15
	3.2	Hazard Classification	15
	3.3	Hydrologic Hazard	16
	3.4	Seismic Design Criteria	16
	3.5	Operational Criteria	17
	3.6	Material Properties	17
		3.6.1 Soil	17
		3.6.2 Concrete	18
		3.6.3 Other Material Properties	19
4.	Fea	sibility Alternatives	20
	4.1	Alternative 1: Repair Existing Spillway	20
	4.2	Alternative 2: Replace Existing Spillway (No dam raise)	21
	4.3	Alternative 3: Replace Existing Spillway (1.0 foot dam raise)	21
5.	Des	ign of Spillway	23
	5.1	General Description	23
	5.2	Hydraulic Analysis and Design	23
		5.2.1 Outlet Works	23

		5.2.2	Spillway Structure	
	5.3	Geote	chnical Analysis and Design	
		5.3.1	Seepage and Stability Analyses	
		5.3.2	Seismic Deformations	
		5.3.3	Filter Compatibility	
		5.3.4	Underdrain System	
	5.4	Structu	ural Analysis and Modeling	
		5.4.1	Design of Spillway Slab	
		5.4.2	Design of Spillway Training Walls	
	5.5	Outlet	Channel Protection	
6.	Opin	ion of	Probable Construction Costs (OPCC)	
7	Porm	itting		34
1.		intung .		
8.	Conc	lusion	S	
9.	Refe	rences		
9. List o	Refei f Tabl	rences es		
9. List o Table 1	Refe f Tabl	r ences es r Black C	Creek Reservoir Dam Pertinent Information	36
9. List o Table 1 Table 2	Refer	rences es r Black C n Team	Creek Reservoir Dam Pertinent Information	36 3
9. List o Table 1 Table 2 Table 3	Refei f Tabl I. Upper 2. Desig 3. Other	rences es r Black C n Team Reports	Creek Reservoir Dam Pertinent Information	36 3 6 6
9. List o Table 1 Table 2 Table 3 Table 4	Refer f Tabl . Upper 2. Desig 3. Other I. Upper	rences es r Black C n Team Reports r Black C	Creek Reservoir Dam Pertinent Information Creek Sub-Basin Runoff Results	
9. List o Table 1 Table 2 Table 3 Table 4 Table 5	Refer f Tabl . Upper 2. Desig 3. Other 5. Lowe	rences es r Black C n Team Reports r Black C r Black C	Creek Reservoir Dam Pertinent Information Creek Sub-Basin Runoff Results Creek Sub-Basin Runoff Results	
9. List o Table 1 Table 2 Table 3 Table 4 Table 5 Table 6	Refer	rences es r Black C n Team Reports r Black C r Black C ur Local S	Creek Reservoir Dam Pertinent Information Creek Sub-Basin Runoff Results Creek Sub-Basin Runoff Results Storm Reservoir Routing Results	
9. Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7	Refer	rences es r Black C n Team Reports r Black C r Black C ur Local S ur Local S	Creek Reservoir Dam Pertinent Information Creek Sub-Basin Runoff Results Creek Sub-Basin Runoff Results Storm Reservoir Routing Results Storm Reservoir Routing Results	
9. List o Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8	Refer	rences es r Black C n Team Reports r Black C r Black C ur Local S our Gene	Creek Reservoir Dam Pertinent Information Creek Sub-Basin Runoff Results Creek Sub-Basin Runoff Results Storm Reservoir Routing Results Storm Reservoir Routing Results eral Storm Reservoir Routing Results	
9. Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9	Refer	rences es r Black C n Team Reports r Black C r Black C ir Local S our Gene ill Materi	Creek Reservoir Dam Pertinent Information Creek Sub-Basin Runoff Results Creek Sub-Basin Runoff Results Storm Reservoir Routing Results Storm Reservoir Routing Results Storm Reservoir Routing Results eral Storm Reservoir Routing Results	

Table 1. Upper Black Creek Reservoir Dam Pertinent Information	3
Table 2. Design Team	6
Table 3. Other Reports	6
Table 4. Upper Black Creek Sub-Basin Runoff Results	10
Table 5. Lower Black Creek Sub-Basin Runoff Results	10
Table 6. 2-Hour Local Storm Reservoir Routing Results	11
Table 7. 6-Hour Local Storm Reservoir Routing Results	11
Table 8. 48-Hour General Storm Reservoir Routing Results	11
Table 9. Soil Fill Material Strength Parameters for Design	18
Table 10. Soil Material Hydraulic Conductivity Parameters for Design	18
Table 11. Comparison of Advantages and Disadvantages for Alternative 1	
Table 12. Comparison of Advantages and Disadvantages for Alternative 2	21
Table 13. Comparison of Advantages and Disadvantages for Alternative 3	22
Table 14. 6-hour Local Storm Reservoir Routing Results	25
Table 15. Summary of Stilling Basin Design Parameters	
Table 16. Engineer's Estimate of Construction Cost – Alternative 2	

List of Appendices

- Upper Black Creek Reservoir Spillway Replacement Design Drawings Appendix A:
- Appendix B: Hydraulic Calculations
- Appendix C: Geotechnical Calculations

Appendix D: Structural Calculations

Several deficiencies have been identified with the existing spillway at the Upper Black Creek Reservoir (UBCR), including inadequate spillway sizing to safely pass the inflow design flood (IDF) and deterioration of the spillway chute slab. Following the results of previous work, including a hydrology study and an evaluation of the concrete spillway structure, the Colorado Office of the State Engineer (SEO) ordered a storage restriction on the reservoir until improvements to the spillway could be made.

In December 2017, GEI Consultants, Inc. (GEI) drilled 4 borings at UBCR. One boring was advanced through the left abutment of the spillway and one advanced upstream of the concrete spillway apron. Two core holes were drilled in the middle third of the spillway chute concrete slab. The borings were advanced to characterize the foundation in terms of depth to bedrock, soil type, and to evaluate material strength and competency.

In February 2019, GEI completed a hydrology study to develop and evaluate three rainfall events to determine the critical IDF to be used to bring the spillway back into compliance with SEO Regulations. The three rainfall events evaluated were the 2-hour Local Storm, 6-hour Local Storm, and 48-hour Mid-Latitude Cyclone (MLC) General Storm. The model results indicated that the 6-hour Local Storm resulted in the highest water surface elevation in the UBCR with less than the required foot residual freeboard. Thus, the 6-hour local storm is the IDF for the UBCR Project and was used for evaluation for the alternatives considered for the project.

This further analysis performed on the UBCR Dam was used to develop a recommended preferred alternative for providing a spillway which meets the flood routing requirements of the SEO *Rules and Regulations for Dam Safety and Construction*. As part of the Feasibility Study, three alternatives to bring the UBCR back into compliance with SEO Regulations were considered. These alternatives included: 1) repairing the existing spillway; 2) replacing the existing spillway without a dam raise; and 3) replacing the existing spillway with a dam raise. GEI recommended replacing the spillway without raising the dam as this option provides a structure with a long life expectancy that meets SEO criteria and does not put additional loading on the dam during large flood events.

The proposed design for the replacement spillway is similar to that of the existing spillway with a concrete chute, an approach channel, concrete weir, and stilling basin. The replacement spillway is designed as a concrete overflow structure and maintains the normal reservoir surface elevation (El.) 8748.0. The spillway chute is 38 feet wide at the spillway crest and then contract to a width of 32 feet at the stilling basin. The spillway walls vary in height, with 13-foot-high walls in the stilling basin and 9.5-foot-high chute walls. The stilling basin is designed to dissipate much of the hydraulic energy from the drop in elevation from

the spillway crest to the toe of the structure. The channel downstream of the spillway structure will be armored with 25 feet of riprap to provide protection against scour and undermining of the concrete structure.

1. Introduction

This Feasibility Study and Design Summary Report summarize the analyses that have been performed on the Upper Black Creek Reservoir (UBCR) Dam to develop recommendations for a preferred alternative for providing a spillway which meets the flood routing requirements of the Colorado Office of the State Engineer, Dam Safety Branch (SEO) *Rules and Regulations for Dam Safety and Construction* (referred to herein as current SEO Regulations) (SEO, 2020). The owner of the reservoir is receiving a matching grant through the Colorado Water Conservation Board to perform this work. This report provides the technical evaluations conducted by the design team, including the disciplines of civil, geotechnical, and structural engineering, hydrology and hydraulics, and construction. Project permitting for construction was also performed.

1.1 Project Overview and Objectives

Black Lake and the UBCR are located approximately 24 miles northwest of Silverthorne, in Summit County, Colorado. The reservoirs are owned and operated by the Blue Lake Reservoir Company (Owner) and are used for domestic water consumption, wildlife habitat, and recreation purposes. The dams are located in series on Black Creek, which is a tributary to the Blue River. Pertinent data for UBCR is provided in **Table 1**.

Design Parameter	UBCR Dam	
Storage at Dam Crest (ac-ft)	655.0	
Storage at spillway (ac-ft)	428.0	
Dam Crest El. (ft)	8,755.5	
Natural Streambed EI. (ft)	8,719	
Dam Height (ft)	29.0	
Spillway Type	Fixed Crest (concrete)	
Spillway Location	Right Abutment	
Spillway Crest El. (ft)	8,748.0	
Normal Pool El. (ft)	8,748.0	
Spillway Width (ft)	28.0	
Freeboard at Normal Pool (ft)	7.5	
SEO Jurisdictional Dam (Y/N)	Y	
SEO Size Classification	Significant	

 Table 1.

 Upper Black Creek Reservoir Dam Pertinent Information

Following the results of previous work, including a hydrology study and an evaluation of the condition of the concrete spillway structure, the SEO ordered a storage restriction on the reservoir until improvements to the spillway could be made. In addition, the SEO recommended that the hydrology study be updated following the formalization of the

Colorado-New Mexico Regional Extreme Precipitation Study and recommended that a geotechnical investigation be performed to assist in the assessment of the spillway. GEI completed a geotechnical exploration at UBCR on December 28, 2017. On February 16, 2018, a memorandum summarizing the results of the exploration and associated laboratory testing program was finalized. The recommended hydrology report and plans to bring the project back into compliance with the SEO Regulations was completed by GEI in February 2019. This report documents the critical Inflow Design Flood (IDF) for UBCR and recommends a preferred alternative for providing a spillway which meets the flood routing requirements of the SEO based on evaluations of previous work and work performed by GEI.

1.2 Overview of Previous Work

In 2011, the Owner's previous engineer, Resource Engineering, Inc., prepared and submitted a hydrology study to the SEO performed to determine the adequacy of the existing spillway to meet the SEO's 2007 *Rules and Regulations for Dam Safety and Dam Construction* (referred to herein as previous SEO Regulations). The hydrology study was reviewed by the SEO and generated comments that required additional analysis. However, the Owner terminated the contract with Resource Engineering before the comments could be addressed, and they remain unresolved.

In August 2017, the Owner hired a contractor, Restruction Corporation, to conduct a field investigation and analysis of the existing spillway and provide recommendations for repairs of previously identified concrete deterioration. The exploration was conducted in August 2017. It was reported that during concrete coring on the lower portion of the spillway slab, pressurized muddy water was encountered in addition to an apparent 2.75-inch-deep void beneath the slab, indicating a build-up of hydrostatic pressure under the slab. The presence of voids under the spillway combined with uplift pressure presented a hazard for internal erosion of the spillway foundation and the potential for movement of the slab during spillway operation due to the net weight of the concrete being reduced and no anchorage of the spillway slab to the foundation rock. Additionally, the water under the slab could lead to freeze/thaw heave of the structure. The SEO met with Restruction and the Owner's dam tender in November 2017 to discuss the observed spillway condition and the results of the concrete evaluation. Following this meeting, the SEO recommended that a geotechnical investigation be performed to assist in the assessment of the spillway. Restruction contracted with GEI to perform the geotechnical study aimed to aid in evaluating the spillway subsurface conditions, in addition to the results of the concrete evaluation of the spillway.

In January 2018, based on the information in the 2011 hydrology study prepared by Resource Engineering and subsequent comments generated by the SEO dam safety engineer at the time, the SEO performed a hydrologic and hydraulic analysis to determine the safe reservoir storage level to mitigate the dam safety hazards present at the site. The 2018 SEO analysis performed the following to address the 2011 SEO comments:

- updated the flood routing methodology;
- modeled time steps; unit hydrographs; loss rates; storm events; rainfall depths; rainfall durations; temporal rainfall distributions; and,
- developed spillway weir coefficients and spillway rating curves.

It was determined from the modeling results estimated by the SEO that the spillway for the UBCR could not safely pass the IDF, resulting in approximately 0.6 feet of overtopping the earthen embankment. From these results, in addition to the results of the concrete evaluation of the spillway, a reservoir restriction to elevation (El.) 8739.0 was set by the SEO until improvements to the spillway could be made. The reservoir restriction is 9 feet below the spillway crest El. 8748.0. Following this analysis, the SEO recommended that the hydrology study be updated following the formalization of the Colorado-New Mexico Regional Extreme Precipitation Study and current SEO Regulations. If the new regulations and design tools would have significantly reduced the storm routing requirements and the spillway could be shown to pass the required storm inflow, options to rehabilitate the current spillway could have been considered. This hydrology study was included in GEI's Scope of Work.

1.3 **Description of Facilities**

Upper Black Creek Dam is a 650-foot-long earth fill embankment dam. The embankment has an irregular L-shape configuration with the long axis running approximately east-went, with a reported nominal crest El. 8755.5, crest width of 12 feet, and a structural height of about 29 feet. The existing spillway is a 28-foot-wide concrete control structure located on the right abutment of the dam with a crest El. 8748.0. The existing capacity is approximately 1,440 cubic feet per second (cfs) with 1 foot of residual freeboard. The dam has an outlet works conduit with an upstream control gate for regulating the reservoir water level and providing required downstream releases. The reservoir is currently on a storage restriction at 9 feet below the spillway crest.

1.4 Design Team

The team responsible for performing the engineering analyses and design includes project personnel from GEI. **Table 2** provides the project personnel and their roles and responsibilities on the Project.

	9
Individual	Project Role
Chad Masching, PE	Project Manager; Engineer of Record
Margaret Provencher, PE	Structural Engineer
Cassidy Diebold, El	Project Engineer
Paul Eggers, PE, PMP	Project Reviewer
Paul Drew, PE (WI)	Hydraulics and Hydrology
Gillian Williams, PE	Geotechnical Engineer

Table 2. Design Team

1.5 Related Documents

This report references additional reports that document certain aspects and decision points of the Project in greater detail. Many of the documents are provided as appendices to this report. The reader should refer to the companion documents for more information regarding Project elements or design recommendations. Reports and Technical Memoranda that were instrumental in design of the Project but are not part of this report are provided in **Table 3**.

Table 3. Other Reports

Title	Author	Status	Date Issued
Upper Black Creek Spillway Geotechnical Investigation	GEI	Final	February 16, 2018
Upper Black Creek Reservoir Reconstruction Project Hydrology Report	GEI	Final	July 2019

2. Site Conditions

2.1 Geology

UBCR is situated in a valley on the eastern side of the Gore Mountains in the Southern Rocky Mountains of Colorado. The Gore Mountains are a prominent northwest-southeast trending range with peak elevations between 12,500 and 13,500 feet. The range is fault bounded and is composed of old and resistant Precambrian basement rocks that have been uplifted during the Laramide orogeny. On the east side of the Gore Range, the lower flanks contain a sequence of Cretaceous sedimentary units deposited prior to the Laramide uplift, including the Pierre Shale and the Dakota Formation. The UBCR is situated between the upper peaks and the lower sedimentary units where the bedrock is composed of the Paleoproterozoic gneiss or granite, but these units are covered by a thick sequence of surficial glacial and landslide deposits.

The landslide deposits are mostly present within the impoundment area, and the glacial deposits are present at the embankment. The landslide features are likely glacial deposits that became unstable due to steep slopes. The glacial deposits are Pinedale in age, and are composed of non-sorted and non-stratified, matrix supported cobbles and boulders. The matrix is mostly poorly sorted sand but also contains some silt and clay. The thickness of the glacial deposits varies significantly; the unit can be as much as 100 feet thick in places.

2.2 Seismic Setting

UBCR is located along the northernmost reaches of the Rio Grande rift. The tectonic conditions that resulted in the uplift of the Gore Range and the Southern Rocky Mountains have been debated for several years because this high elevation region is far from subduction zones and seismic areas that typically result in mountain building. Although many questions remain outstanding regarding the mechanism of uplift of the Gore Range, the faults that bound the range are considered active and are the primary source of the seismic hazards at UBCR. The Gore fault is located on the west side of the range and the Blue River fault (also known as the Frontal fault) is located on the east side of the range. Several other associated faults have been mapped in the area and the Williams Range Thrust Fault is approximately 8 miles to the northeast on the opposite side of the valley from the Gore Range and UBCR.

UBCR is located between the Blue River fault and a fault splay to the northeast, approximately 1-mile from both mapped fault traces. An excerpt from the *Geologic Map of the Eastern Half of the Vail 30' x60' Quadrangle, Eagle, Summit, and Grand Counties, Colorado* (USGS, 2011) is shown in **Figure 1** and demonstrates the proximity to the faults.

7

Figure 1. Excerpt of USGS geologic map showing position of UBCR in relation to the Blue River Normal Fault and the fault splay to the northeast.

2.1.1 Design Seismic Accelerations

Seismic loads used in the design of the replacement spillway were generated using the online USGS Unified Hazard tool and hazard curves developed for the National Seismic Hazard Mapping Project. An earthquake with a 1/10,000 Annual Exceedance Probability was selected as the design earthquake, which corresponds with a peak ground motion of 0.497g. Output from the Unified Hazard Tool is contained in **Appendix C.1**, which shows the hazard curves, uniform response spectra, and deaggregated data.

2.2 Hydrology

The UBCR is approximately 0.5 miles downstream from Black Lake; Black Creek conveys the discharge from Black Lake into the reservoir. Black Lake has a drainage area that is approximately 14.3 square miles. Black Lake is impounded by Black Lake Dam, which is a fixed crest rock crib located at the east end of the lake that also acts as the spillway. UBCR has a total drainage area of approximately 15.2 square miles and is impounded by the UBCR Dam. According to the current hazard categories provided by the SEO, UBCR Dam is classified as a Significant Hazard dam (SEO, 2020). The dam also should classify with a Hydrologic Hazard as "Significant" based on the fact that no life loss potential is expected to occur during a failure of the dam. The inflow design storm (IDF) for a Significant Hydraulic Hazard Dam is the 0.1% Annual Exceedence Probability (AEP) or the 1 in 1000 year event (SEO, 2020). Previous spillway sizing studies were based on the previous SEO Rules, requiring the spillway to be sized for 45 percent of the Probably Maximum Precipitation (PMP). GEI submitted a hydrology report to the SEO in July 2019, and the report was accepted in September 2019.

GEI developed and evaluated three rainfall events (2-hour Local Storm, 6-hour Local Storm, and 48-hour MLC General Storm) to determine the critical IDF for the UBCR Project. All storms evaluated were developed in accordance with the current SEO Regulations (SEO, 2020). The evaluation was accomplished by identifying the properties of key components necessary to developing the IDF for UBCR, including: basin delineation; design rainfall; rainfall loss rates; baseflow; unit hydrographs; channel routing; and reservoir routing.

The total watershed for the UBCR was modeled with two sub-basins, Upper Black Creek Basin and Lower Black Creek Basin. The basin boundaries were delineated and physical basin parameters were calculated using ESRI GIS software and 10-meter resolution United States Geological Survey (USGS) Digital Elevation Models (DEMs). GEI utilized the Colorado-New Mexico Regional Extreme Precipitation Study Precipitation Frequency (PF) tool to develop rainfall data for the contributing watershed. The SEO provided GEI with three different 1,000-year design storm rainfall depths and temporal rainfall distributions to assist in evaluating the IDF for the Project.

After review of the UBCR watersheds' unit hydrographs provided by the SEO, GEI observed that the total runoff volumes were consistently less than the recommended ratio of 1.0 and developed two new unit hydrographs using the United States Bureau of Reclamation (USBR) synthetic unit hydrograph method in accordance with the SEO Regulations. Two USBR Rocky Mountain region synthetic unit hydrographs were developed and included a general-storm unit hydrograph and a local-storm (thunderstorm) unit hydrograph. These hydrographs can be viewed in **Appendix B**.

The U.S. Army Corps of Engineers (USACE) HEC-HMS Version 4.2.1 computer model was used to estimate the IDF inflows and outflow hydrograph at Black Lake and UBCR. A 1-

minute time step was selected to model the local-storm and a 5-minute time step was selected to model the general storm IDF. The selected time steps meet standard criteria for adequately defining the peak of the unit hydrograph and the IDF. The various parameters selected for the IDF modeling were generally considered appropriate for the site-specific conditions. GEI developed and evaluated three rainfall events to determine the critical IDF for the Project. All storms evaluated were developed in accordance with the current SEO Regulations. The modeling results for the storms evaluated as part of the study are summarized in **Table 4** to **Table 8**.

opper black creek Sub-basin Kunon Results				
Parameter of Modeling Result	2-hour Local Storm	6-hour MEC Local Storm	48-hour MLC General Storm	
Storm Depth (in)	1.84	2.39	5.30	
Rainfall Duration (hr)	2	6	48	
Losses (in)	1.05	1.33	3.31	
Storm Runoff (in)	0.79	1.06	1.99	
Storm Runoff Percent (%)	43	44	38	
Storm Runoff Volume (ac-ft)	600	810	1,520	
Peak Discharge (cfs)	4,910	5,810	930	

Table 4. Upper Black Creek Sub-Basin Runoff Results

Table 5.
Lower Black Creek Sub-Basin Runoff Results

Parameter of Modeling Result	2-hour Local Storm	6-hour Local Storm	48-hour MLC General Storm
Storm Depth (in)	1.84	2.39	5.30
Rainfall Duration (hr)	2	6	48
Losses (in)	1.72	2.10	5.12
Storm Runoff (in)	0.12	0.29	0.18
Storm Runoff Percent (%)	6	12	3
Storm Runoff Volume (ac-ft)	5.6	13.9	8.7
Peak Discharge (cfs)	115	315	10

		-
Parameter	Black Lake	UBCR
Initial Water Surface El. (ft)	8,895.2	8,748.0
Peak Inflow (cfs)	4,910	1,415
Storm Runoff Volume (ac-ft)	600	585
Peak Outflow (cfs)	1,415	1,065
Peak Water Surface El. (ft)	8,899.1	8,753.3
Freeboard (ft)	-	2.2

Table 6. 2-Hour Local Storm Reservoir Routing Results

6-Hour Local Storm Reservoir Routing Results				
Parameter	Black Lake	UBCR		
Initial Water Surface El. (ft)	8,895.2	8,748.0		
Peak Inflow (cfs)	5,810	1,940		
Storm Runoff Volume (ac-ft)	810	800		
Peak Outflow (cfs)	1,935	1,480		
Peak Water Surface El. (ft)	8,900.0	8,754.6		
Freeboard (ft)	-	0.9		

Table 7.
6-Hour Local Storm Reservoir Routing Results

48-Hour General Storm Reservoir Routing Results				
Parameter	Black Lake	UBCR		
Initial Water Surface El. (ft)	8,895.2	8,748.0		
Peak Inflow (cfs)	930	800		
Storm Runoff Volume (ac-ft)	1,520	1,525		
Peak Outflow (cfs)	795	780		
Peak Water Surface El. (ft)	8,897.8	8,752.3		
Freeboard (ft)	-	3.2		

Table 8.

SEO Regulations require the UBCR to retain a 1-foot residual freeboard during the IDF storm. As shown in Table 6, the model results indicate that the 6-hour local storm results in the highest water surface elevation in the UBCR, resulting in less than the required one foot of residual freeboard. Therefore, the 6-hour local storm was selected as the IDF. Based on these results, GEI recommended that the UBCR spillway be reconstructed with the spillway discharge capacity to safely pass the SEO required IDF (1,000-year, 6-hour Local Storm) while providing a minimum of 1.0-foot of freeboard.

2.3 Subsurface and Groundwater Conditions

2.3.1 Subsurface Conditions

Subsurface conditions at the UBCR site were developed from results of the 2017 geotechnical exploration conducted by GEI and the associated laboratory testing program. The exploration program included 4 locations. Two borings were advanced using hollow stem augers and rotary drilling methods at the left spillway abutment (B-1) and upstream of the concrete spillway apron (B-2). Two core holes were drilled in the middle third of the spillway chute concrete slab, advancing to a depth of about 2 feet below the bottom of the slab. GEI used a hand auger to collect soil samples at these two slab locations. Bedrock was not encountered in any of the boreholes to the termination depths.

Borehole B-1 at the left spillway abutment was drilled to a depth of 12 feet before hitting refusal. The material was predominantly granular fill with 15 to 43 percent non- to medium plastic fines, classifying as SC, GC, and SM based on the Unified Soil Classification System (USCS). Cobbles were identified within the soil matrix. Large cobbles were also observed along the edge of the spillway and downstream of the stilling basin. Based on Standard Penetration Test (SPT) blow counts performed during the sampling, the clayey sand was judged to be medium dense. However, the upper 4 feet of fill had zones with lower density clayey sand.

The borehole drilled upstream of the spillway recovered foundation soils consisting of a combination of medium dense to dense, clayey and silty sand (SC, SM) with a large proportion of cobbles. Cobbles up to 6 inches in diameter were observed in the auger cuttings during drilling. Similar material was extracted from the two hand auger boreholes within the spillway chute, except more gravel was observed within the soil matrix beneath the spillway chute. Samples retrieved at the two locations consisted of silty sands with gravels to clayey sands with gravels, with cobbles up to 4 inches also found. Zones of clean sand were observed at these locations, which could indicate piping of fine clay and silt particles during the prolonged periods of seepage below the concrete slab. It should be assumed that cobbles exist throughout the spillway backfill and native foundation soils.

2.3.2 Groundwater Conditions

Groundwater was encountered while drilling the borehole upstream from the spillway concrete apron during the GEI geotechnical investigation. Water level depth was reported to be 16.0 feet below the ground surface. No groundwater was encountered at the boring near the left abutment of the spillway. However, this hole was only advanced to a depth of 12 feet below the ground surface before auger refusal was encountered.

The groundwater level measurement represents conditions at the time and location of the investigation. Fluctuations in groundwater levels should be expected seasonally and annually due to variations in precipitation, evaporation, and ground surface runoff.

According to the United States Department of Agriculture (USDA) Custom Soil Resource Report prepared for the area of Upper Black Creek, the five types of soil delineated on the soil map for the area all report a depth to water table of more than 80 inches.

2.4 Site Survey

GEI performed field mapping on July 19, 2018, of the Upper Black Creek Dam, reservoir and surrounding area using Unmanned Aerial System (UAS) flights that captured geo-oriented photography. The geo-oriented photographs were used to generate photogrammetric models that enabled the formation of dam face orthoplanes, topographic contours, and elevation models of the existing conditions. All UAS flights were performed in accordance with Federal Aviation Administration (FAA) regulations by a licensed remote pilot. Multiple automated and manual flights were necessary to obtain the required photographs to generate necessary data for analyses.

A total of 20 ground control points (GCPs), visually discernable marks on the ground made with marking paint were established at the time of the aerial survey. The GCPs assisted with rectifying the photogrammetric models and provided reference benchmarks that assisted with scaling, positioning, and orienting the models.

A total of 5 separate flights were made with the UAS. DroneDeploy application software was used for 3 of the flights to automatically perform pre-planned flight grids over the area. Two manual flights were conducted to capture oblique imagery of the dam, spillway, and surrounding area upstream and downstream of the dam. The manual flights assisted with three-dimensional (3D) modelling and enabled access to areas difficult to image from a nadir perspective (directly below the UAS). The automated flights paths occurred at elevations between 150 and 250 feet above ground level, and the manual flights included lower elevation flights to obtain photos to be used to assist with wetland delineation. The average ground sampling distance (GSD) of the 3D model is 1.73 cm. The GSD is the distance between two successive pixel centers measured on the ground surface.

After the site visit, GEI uploaded 1,148 photos covering an area of approximately 44 acres of the dam and surrounding area into Pix4D software for the generation of photogrammetric models. Pix4D uses matching keypoints in overlapping photographs to tie topographic information together and develop a three-dimensional (3D) mosaic by using geo-oriented photographs. The photogrammetric 3D model was used to generate orthomosaic images in addition to elevation contours, and elevation models which were exported for use in AutoCAD Civil3D. These elevation models were used to develop representative site topography.

Site elevations were adjusted based on a spillway crest El. 8748.0 so that previous studies and documentation would reference the same vertical elevation datum. A bathymetric survey was completed by Resource Engineering in 2007. This survey was also completed with a referenced "zero" elevation at the spillway crest. GEI merged bathymetric contour data with the UAV contour data to create a composite site contour map. The UAV survey was completed at a lower water level than the bathymetric survey, resulting in overlapping contours between the two surfaces. GEI manually adjusted the contours within the overlapping area so that contour lines did not cross, with a greater level of accuracy assumed for the elevation data from the UAV survey.

Three control points were set in the vicinity of the dam to facilitate layout of the work. These include a chiseled and painted "X" on a large boulder to the west of Black Creek Road near the dam crest, rebar at the outlet works valve house, and rebar to the south of the spillway.

3. Design Criteria

3.1 General

UBCR Dam is a jurisdictional dam (CO Dam ID 360127) subject to regulatory authority of the SEO. Design of the Project must conform to applicable SEO statutes pertaining to dams and appurtenant structures. The primary requirements that will govern the design of the Project are the current SEO Regulations. Additional design guidance was employed in the design, including:

- Reclamation Design Standards No. 14: Appurtenant Structures for Dams (Spillway and Outlet Works); and
- Corps Engineer Manuals (EM), Engineer Regulations (ER), and Engineer Technical Letters (ETL)

3.1.1 Applicable Codes and Standards

In addition to the SEO statutes and the design standards listed in Section 3.1, the following codes, standards, and specifications are included as part of the overall Project design criteria. The applicable version of each document was the latest edition in force at the time the Project design was originally authorized, unless noted otherwise. References to specific codes and standards will be included in the applicable specifications provided within the construction drawings.

The civil and structural design, engineering, materials, equipment, and construction will conform to the applicable specified codes and standards of the following organizations:

- ACI American Concrete Institute
- AISC American Institute of Steel Construction
- ANSI American National Standards Institute
- ASCE American Society of Civil Engineers
- ASTM ASTM International
- AWWA American Water Works Association
- ICC International Code Council

3.2 Hazard Classification

SEO Rule 4.13 states the "Hazard Classification" falls into one of four categories based on the hazard potential derived from an evaluation of sunny day failure of the dam. The four hazard categories include:

- High Hazard: a dam for which loss of human life is expected to result from failure of the dam.
- Significant Hazard: A dam for which significant damage, but no life loss is expected to result from failure of the dam.
- Low Hazard: A dam for which neither life loss nor significant damage as defined for a Significant Hazard dam are expected to result from failure of the dam.
- No Public Hazard (NPH): A dam for which minimal damage, with no life loss, is expected to result from failure of the dam.

The SEO classifies the UBCR Dam as a "Significant Hazard" structure.

3.3 Hydrologic Hazard

The spillway sizing is driven by the "Hydrologic Hazard" of the dam, which is defined in Rule 4.15 by the consequences of dam failure due to an overtopping event. The Hydrologic Hazards are ranked as follows:

- Extreme: Life loss potential of 1 or more.
- High: Life Loss potential of less than 1.
- Significant: No life loss potential but significant damage is expected to occur.
- Low: No life loss potential or significant damage is expected to occur.

The UBCR Dam was judged to be a Significant Hydrologic Hazard structure, requiring IDF to be the 0.1% AEP, per Rule 7.2.1.

3.4 Seismic Design Criteria

Performance criteria of Upper Black Creek Dam and Reservoir is in general conformance with rule 7.6 of the SEO *Rules and Regulations for Dam Safety and Dam Construction*.

The seismic design criteria for the spillway follows the guidelines established in the US Army Corps of Engineers manual EM 1110-2-2104 - *Strength Design for Reinforced Concrete Hydraulic Structures* for strength and serviceability criteria and EM 1110-2-2100 – *Stability Analysis of Concrete Structures* for stability criteria. The coefficient of dynamic earth pressure was developed using *Seismic Earth Pressures on Retaining Structures with Cohesive Backfills* (Agusti, 2013).

3.5 Operational Criteria

The spillway is designed to convey all inflows, up to the IDF with at least 1-foot of freeboard. Operational design criteria for the spillway are summarized below:

- Spillway must operate without the need to adjust gates or valves
- The spillway must have an underdrain system that is accessible for cleaning and closed-circuit television (CCTV) inspection when necessary

3.6 Material Properties

Materials that will be used or need to be considered for the Project include embankment fill, filter sand, drain gravel, PVC piping, concrete, reinforcing steel, sheet pile, and riprap.

3.6.1 Soil

For project design, material properties were generally developed through laboratory testing of collected samples, empirical correlations, and engineering judgement.

3.6.1.1 Strength Properties

Material properties used for the slope stability analyses include the unit weight, drained shear strength (φ ', c'), and undrained shear strength (φ , c). Materials modeled in the analyses include the silty/clayey sand foundation soils, embankment fill, filter materials, and concrete.

Embankment fill was assumed to consist of stockpiled and re-worked silty/clayey sand excavated during construction. The embankment fill will be placed and compacted in lifts. The unit weight for the embankment fill and silty/clayey sand were estimated to correlate with mixed-grained, medium dense to dense sand using published correlations. Drained shear strength parameters for the silty/clayey sand were based on correlations between N-values and friction angle. The embankment fill was assumed to have the same strength properties as the silty/clayey sand. The silty/clayey sand and embankment fill consist of predominately sand and have low to non-plastic fines; therefore, we have assumed the undrained strengths are the same as the drained strengths.

Filter material properties (filter sand and drain gravel) were assumed based on our experience on other projects. The concrete spillway was modeled with a high strength to prevent slip surface failures through the concrete. Error! Reference source not found.9 summarizes assumed material strength parameters used for design. Material properties are included in **Appendix C.2.**

	Unit	Drained Shear Strength		Undrained Shear Strength		
Materials	Weight (pcf)	Friction Angle φ' (degrees)	Cohesion c' (psf)	Friction Angle φ (degrees)	Cohesion c (psf)	
Embankment Fill	130	35	0	35	0	
Silty Clayey Sand	130	35	0	35	0	
Filter Material	125	32	0	32	0	
Concrete	150	0	10,000	0	10,000	

 Table 9.

 Soil Fill Material Strength Parameters for Design

3.6.1.2 Hydraulic Conductivity

Material properties used for the seepage analyses include the horizontal hydraulic conductivity (Kx), the vertical hydraulic conductivity (Ky), and the anisotropy ratio (the ratio of Kx to Ky). Materials modeled in the seepage analyses include the silty/clayey sand foundation soil, embankment fill, filter materials, concrete, and the sheet pile. Hydraulic conductivities and anisotropy ratios for the embankment fill and silty/clayey sand were estimated based on industry accepted published correlations for similar materials and engineering judgment.

Hydraulic conductivity for the sheet pile was calculated assuming the sheet pile has water sealing joints. From manufacturer data, the permeability of the joints ranges from 3.8×10^{-8} to 1×10^{-10} cm/sec. We assumed a sheet pile panel width of about 2 ft and calculated the equivalent hydraulic conductivity based on a modeled sheet pile thickness of 0.375-inch. The hydraulic conductivity of the concrete was assumed based on new concrete with waterstop joints. Error! Reference source not found.10 summarizes assumed material hydraulic conductivity parameters used for design. Material properties are included in **Appendix C.2.**

Material Type	Horizontal Hydraulic Conductivity, K _x (cm/sec)	Horizontal Hydraulic Conductivity, K _x (ft/sec)	Anisotropy Ratio (K _x /K _y)			
Silty/Clayey Sand	1.00x10 ⁻⁵	3.28x10 ⁻⁷	10			
Embankment Fill	1.00x10 ⁻⁵	3.28x10 ⁻⁷	4			
Filter Material	1.00x10 ⁻²	3.28x10 ⁻⁴	4			
Sheet Pile	4.75x10 ⁻¹⁰	1.56x10 ⁻¹¹	1			
Concrete	1.00x10 ⁻⁷	3.28x10 ⁻⁹	1			

Table 10.Soil Material Hydraulic Conductivity Parameters for Design

3.6.2 Concrete

The concrete mix specified for the spillway was designed for several conditions beyond structural loading requirements. Design conditions including weather (freeze-thaw, hot weather concreting, cold weather concreting) and hydraulic flow conditions (velocity and duration) were considered.

The recommended concrete design will have a 4,500 pounds per square inch (psi) minimum compressive strength, a maximum water/cement ratio of 0.45, and a unit weight of 150 pounds per cubic foot (pcf). The concrete properties are based on empirical relationships and equations presented in ACI 318.

3.6.3 Other Material Properties

Other materials that will be used or need to be considered for the Project include reinforcing steel and riprap.

3.6.3.1 Reinforcing Steel Properties

All reinforcing steel will be standard ASTM A615 Grade 60 reinforcement, with minimum yield stress of 60,000 psi and minimum tensile stress of 90,000 psi.

3.6.3.2 Riprap Properties

The riprap used on the project will be specified to meet the requirements of Colorado Department of Transportation Standard Specifications for Road and Bridge Construction, Section 506: Riprap.

3.6.3.3 Sheet Pile Properties

Steel sheet pile sections were selected based on drivability. Steel sheet piles shall conform to ASTM A328 and shall have minimum yield strength of 50,000 psi. Sheet pile joints will be treated to increase the water-tightness of the joint. The sheet piling has been included as an additional protective measure against seepage under the spillway structure. However, sheet piles do have a finite life, which can vary due to corrosivity of the soil and groundwater among other things. The service life for the sheet piling is assumed to be 50 years. Replacement of the sheet pile barrier may be required after this point, depending on the performance of the structure.

4. Feasibility Alternatives

GEI considered 3 alternatives for modifications to the dam and spillway to meet the SEO flood routing criteria and reduce overall risk of dam or spillway failure.

4.1 Alternative 1: Repair Existing Spillway

This alternative consists of selective demolition of the existing spillway slab, installing underdrains below the concrete slab, and repairing the existing concrete as necessary. **Table 11** summarizes the advantages and disadvantages of this spillway alternative.

Advantages	Disadvantages			
 Advantages Excavations can be minimized by utilizing the existing spillway walls to form the structure. The overall cost of repairing the structure may be less than a full replacement. 	 Disadvantages The existing spillway is not wide enough to route the IDF with 1-foot of freeboard. A dam raise would be required to meet freeboard criteria. The cost for repairing an existing structure would be a high percentage of the cost to replace the structure. Life expectancy for the repairs should be assumed to be 10 to 20 years. A dam raise would likely require additional geotechnical investigation and analysis which could result in potential modifications to the dam. There is additional risk of additional construction requirements due to unknowns with the existing spillway 			
	unknowns with the existing spillway.			

 Table 11.

 Comparison of Advantages and Disadvantages for Alternative 1

Alternative 1 was not developed because a repaired spillway could not route the IDF and meet SEO freeboard criteria without raising the dam. A significant dam raise will require additional geotechnical exploration on the dam and stability analysis of the raised embankment.

4.2 Alternative 2: Replace Existing Spillway (No dam raise)

This alternative consists of demolishing the existing spillway structure and constructing a new reinforced concrete spillway with a 38-foot-wide crest. The spillway chute would converge down to 32 feet wide. A new underdrain system would be constructed under the slab and adjacent to the spillway walls. A sheet pile cutoff would be constructed on the upstream side of the structure to reduce the potential for under-seepage. **Table 12** summarizes the advantages and disadvantages of this spillway alternative.

Advantages	Disadvantages
• Spillway modifications can be made	• This project cost is potentially the
with only nominal crest grading on	highest cost of all three alternatives.
the dam to maintain the design crest	
elevation (El. 8755.5).	• The sheet-pile cutoff is susceptible to corrosion over the life of the structure
• The entire spillway would be	and may require replacement. A 50-year
reconstructed with a design life of	life span is estimated for the cutoff.
50 years or greater.	
• Underdrain provisions and "state-of- the-practice" construction would provide for safe spillway operation at all design flows.	
• This alternative was presented to the US Army Corps of Engineers for permitting and has been accepted as a Nation Wide Permit No. 3.	

Table 12.Comparison of Advantages and Disadvantages for Alternative 2

Alternative 2 was fully developed. This alternative meets SEO design criteria and provides a robust structure with low maintenance and a long life.

4.3 Alternative 3: Replace Existing Spillway (1.0 foot dam raise)

This alternative consists of demolishing the existing spillway structure and constructing a new reinforced concrete spillway with a 32-foot-wide crest. The bottom width of the stilling basin would still be required to be 32 feet for energy dissipation. A new underdrain system would be constructed under the slab and adjacent to the spillway walls. A sheet pile cutoff would be constructed on the upstream side of the structure to reduce the potential for underseepage. The dam crest would require a nominal 1.0 foot raise above the existing design crest

elevation to achieve the required flood routing capacity. **Table 13** summarizes the advantages and disadvantages of this spillway alternative.

Advantages	Disadvantages			
 The entire spillway would be reconstructed with a design life of 50 years or greater. The reduction in spillway crest 	 This project cost is similar to Alternative 2. An additional geotechnical investigation The sheet rile superfile suggestible to 			
width compared to Alternative 2 would result in approximately 22 cubic yards less concrete.	• The sheet-pile cutoff is susceptible to corrosion over the life of the structure and may require replacement. A 50-year life span is estimated for the cutoff.			
• Underdrain provisions and "state-of- the-practice" construction would provide for safe spillway operation at all design flows.	• A dam raise would likely require an additional geotechnical investigation and additional stability analysis for the which could result in potential modifications to the dam.			

Table 13.Comparison of Advantages and Disadvantages for Alternative 3

Pricing for Alternative 3 was developed as a scaled factor of Alternative 2. This alternative would meet SEO design criteria for spillway routing and provides a robust structure with low maintenance and a long life. However, there is a risk in modifying the existing dam.

5. Design of Spillway

5.1 General Description

The existing 28-foot-wide spillway at UBCR is insufficient to safely pass both the previous and current SEO required IDF while also providing a minimum of 1.0-foot of freeboard. The spillway flood routing criteria could be met with spillway improvements with the existing configurations along with a minor dam crest raise. However, based on the results of the Hydrology Study (GEI, 2019), GEI developed a new spillway configuration which would allow the spillway at UBCR to safely pass the IDF for a Significant Hazard dam classification. Constructing a new replacement spillway at UBCR was determined to be the most economic approach to accomplish this.

The designed configuration of the replacement spillway is similar to that of the existing spillway, with a concrete chute, an approach channel, concrete weir, and stilling basin. The invert elevation of the spillway is at the existing normal pool El. 8748.0. The concrete chute of the replacement spillway contracts in width along its length; it is 38 feet wide on the upstream side of the spillway, with a 15:1 contraction along the inclined portion of the training walls, resulting in a 32-foot-wide concrete chute on the downstream side. The designed training walls vary in height along the length of the spillway, with the maximum height being 13 feet and the minimum height being 9.5 feet. A typical plan and profile view of the replacement spillway is shown in UBCR Spillway Replacement Drawing 10.

5.2 Hydraulic Analysis and Design

5.2.1 Outlet Works

The existing low-level outlet works will remain unchanged during the spillway reconstruction project. The low-level outlet works consists of a 24-inch-diameter pipe at invert El. 8720.0 and is used to control the normal pool at El. 8748.0. In 2018, the SEO determined that the discharge capacity of the low-level outlet works at normal pool was approximately 65 cfs.

5.2.2 Spillway Structure

GEI developed a proposed spillway configuration to safely pass the significant hazard 6-hour local-storm IDF while providing a minimum of 1.0-foot of freeboard below the dam crest El. 8755.5. The proposed spillway structure will be an uncontrolled 38-foot wide broad crested concrete weir at invert El. 8748.0 that discharges through a (2H:1V) spillway chute and United States Bureau of Reclamation (USBR) Type III stilling basin. The rectangular spillway chute width transitions from 38 feet wide at the crest to 32 feet wide at the stilling basin using a maximum 1:15 (horizontal to longitudinal) wall flare as recommended in the

USACE Engineering Manual EM 1110-2-1601 (USACE, 1994). The left and right spillway training walls retain the embankment fill. The spillway walls vary in height from a minimum of 8 feet at the weir, 9.5 feet in the spillway chute, and 13 feet in the stilling basin. The following sub-sections summarize the hydraulic calculations and modeling used to determine the spillway structure geometry.

5.2.2.1 Spillway Discharge Rating Curve

The proposed spillway discharge capacity was evaluated using the USACE Hydrologic Engineering Center – River Analysis System (HEC-RAS) Version 5.0.7. The HEC-RAS model was developed to estimate the reservoir elevations for various discharges through the spillway. The spillway geometry was modeled using a series of rectangular cross sections with a bottom width ranging from 38- to 50-feet, an upstream invert El. 8748.0 and stilling basin floor El. 8724.0. Cross sections were placed along the spillway chute at 1 foot intervals in order to model the transition from subcritical to supercritical flow. Several cross sections were placed within the stilling basin in order to estimate where the hydraulic jump would occur. A Manning's n value of 0.05 was used in the stilling basin to account for the additional energy loss due to the rows of chute blocks and baffle piers that exist in the stilling basin but were not added into the HEC-RAS cross sections. In all other cross sections within the spillway the Manning's n-values were set to 0.03.

The spillway discharge coefficient was determined using the procedures described in the United States Geologic Survey (USGS) *Circular 397 Discharge Characteristics of Broad Crested Weirs* (USGS, 1957) assuming an upstream and downstream slope equal to 2H:1V. The computed spillway discharge rating curve for the proposed spillway is provided in **Figure B.3** in **Appendix B**. A summary of HEC-RAS Model setup and results is provided in **Appendix B**.

The spillway rating curve was then input into HEC-HMS described in Section xx.0 as the primary spillway to determine final routing results. The significant hazard 6-hour local-storm IDF results in a peak inflow into UBCR of 2,160 cfs, a peak water surface El. 8,754.4, and a total peak discharge of 1,895 cfs. During this flood, the residual freeboard below the dam crest is approximately 1.1 feet. Modeling results for the 6-hour local storm are summarized in Table 1. The proposed IDF hydrographs are included in **Figure B.4** in **Appendix B**.

Parameter	Black Lake	UBCR			
Initial Water Surface El. (ft)	8,890.2	8,748.2			
Peak Inflow (cfs)	6,990	2,160			
Peak Outflow (cfs)	2,070	1,895			
Peak Water Surface El. (ft)	8,895.2	8,754.4			
Freeboard (ft)	-	1.1			

Table 14.6-hour Local Storm Reservoir Routing Results

5.2.2.2 Spillway Training Walls Freeboard

Flow rates ranging from 100 to 2,000 cfs were routed through the HEC-RAS model to check the freeboard below the spillway chute and stilling basin training walls for various discharges up to the IDF. The freeboard check accounts for wave action, air bulking, splash and spray above the HEC-RAS calculated water surface elevations. We developed a spreadsheet tool to estimate the required minimum freeboard using the USBR Design Standard No. 14 *Appurtenant Structures for Dams (Spillways and Outlet Works)*. **Figure B.5** in **Appendix B** illustrates that the IDF discharge of approximately 1,900 cfs results in a minimum freeboard of approximately 2.4 feet.

5.2.2.3 Stilling Basin Hydraulic Analysis

Flow rates ranging from 100 to 2,000 cfs were also routed through the HEC-RAS model to determine the discharge, flow depths and velocities within the stilling basin and downstream tailwater. The maximum depth, velocity and Froude number in the spillway chute upstream of the stilling basin were 1.8 ft, 34.0 ft/s and 5.6 respectively. These values were used as input into a spreadsheet tool based on the methods described in the USBR *Hydraulic Design of Stilling Basins and Energy Dissipators – EM No. 25* (USBR 1984) to determine the stilling basin geometry and analyze performance.

The selected stilling basin structure is a horizontal basin style Type III basin (USBR, 1978). Type III basins are shallow concrete basins with chute blocks at the interface of the spillway chute and stilling basin floor, followed by baffle piers and sill at the downstream end. These basins perform well for velocities up to 50 ft/sec and Froude numbers above 4.0. A summary of the stilling basin design parameters is provided in Table 2. A summary of stilling basin design calculations is provided in **Appendix B**.

Stilling Basin Parameters				
Maximum Froude #,Fr1	5.6			
Maximum Upstream Depth, D1 (ft)	1.8			
Maximum Upstream Velocity, V1 (ft/sec)	34.0			
Maximum Downstream Depth, D ₂ (ft)	10.5			
Ratio L/D ₂ (Figure 12 EM-25)	2.4			
Basin Length, L (ft)	26.0			

 Table 15.

 Summary of Stilling Basin Design Parameters

To prevent retention of stagnant water within the basin, several slots will be formed in the end sill to allow water to drain following a rainfall event. Flow velocity at the end of the stilling basin is estimated to be about 8 ft/sec. Protection against undermining of the stilling basin during the IDF is provided by a riprap apron and concrete cutoff wall beneath the end sill which is keyed into the foundation layer. We used the methods outlined in the USACE Engineering Manual EM 1110-2-1601 (USACE, 1994) to evaluate the riprap size required to protect the stilling basin against undermining. Based on Plates B-29 and B-30, Stone Stability, Velocity vs. Stone Diameter for High Turbulence Stilling basins, riprap with a D₅₀ of 1.0 feet would be expected to resist erosive forces from velocities between 8 and 10 ft/s. The riprap apron extends the full width of the stilling basin and 25feet downstream. The riprap will be sloped from the end of the dentated sill at El. 8724.0 and slope down to match existing grade at approximate El. 8723.5. A 2-foot-thick layer of CDOT Moderately Heavy riprap (D₅₀ = 12 inches, D_{max} = 24 inches) will be placed over riprap bedding.

5.3 Geotechnical Analysis and Design

5.3.1 Seepage and Stability Analyses

5.3.1.1 Seepage Analysis

A two-dimensional steady-state seepage analysis was performed to model the phreatic surface along the proposed spillway. The seepage analysis was performed using the finite element program SEEP/W, GeoStudio 2019 by Geo-Slope, International.

The seepage analysis was performed along the spillway centerline and includes the proposed sheet pile cutoff and three drainage pipes located at about 10-foot vertical intervals beneath the spillway. The sheet pile was modeled extending to about El. 8713.

The steady-state seepage loading condition represents the long-term stability of the spillway under normal reservoir pool steady-state seepage conditions. The reservoir was modeled at El. 8478, and the downstream head elevation was modeled at El. 8724, which is the downstream ground surface elevation.

5.3.1.2 Stability Analyses

Stability analyses were performed using SLOPE/W, GeoStudio 2019 by Geo-Slope, International. The Spencer method, which satisfies both force and moment equilibrium, was used in the analyses.

The spillway stability was analyzed for the steady-state seepage condition with normal reservoir water surface El. 8748. Rapid drawdown was not considered because the slope is relatively flat upstream of the spillway control structure. A pseudo-static analysis was also performed to estimate the yield acceleration. The yield acceleration was evaluated from a slope stability analysis using the spillway geometry and the selected shear strengths of the foundation and fill materials. The yield acceleration is the horizontal acceleration at which the critical failure mass through the embankment has a factor of safety of 1.0. The yield acceleration was utilized in the seismic deformation analysis discussed in Section 5.3.2.

5.3.1.3 Results

Seepage and stability results are presented in **Appendix C.3**. The steady-state stability analysis indicates a calculated factor of safety of 1.9, which is greater than the minimum factor of safety of 1.5 required by the SEO.

The yield acceleration was calculated to be 0.235g, which is less than the PGA of 0.5g for the 10,000-year return interval; therefore, a deformation analysis was performed as discussed in Section 5.3.2.

5.3.2 Seismic Deformations

The seismic deformation of the spillway was estimated using the empirical method developed by Makdisi & Seed (1978). This method is commonly used for simplified analyses of seismic deformations. The seismic deformation analysis calculations and supporting information are presented in **Appendix C.4**.

The analysis is based on the Newmark sliding block analogy, and the input parameters include the earthquake magnitude, firm rock peak ground acceleration (PGA), PGA at the base of the spillway, PGA at the crest of the spillway, yield acceleration, and the ratio of the height of the failure mass and the embankment height. Permanent deformation generally

Based on the calculations, seismic deformation of the spillway was considered to be negligible.

5.3.3 Filter Compatibility

The USDA, National Engineering Handbook, Chapter 26 methodology was used for the filter compatibility analysis to select the materials for the filter diaphragms. The USDA method involves developing a set of minimum and maximum control points which are calculated

based upon the gradation of the base soil. These control points represent limits for the gradations of possible filter materials. A material is considered adequate for use in filtering the base soil if the filter's gradation is located within the band developed between the maximum and minimum control points.

The goal of the filter compatibility analyses was to develop a gradation band that meets the USDA filter requirements, is coarse enough to reduce the amount of filter layers required between the foundation and filter sand and can be efficiently produced from nearby suppliers. Required maximum and minimum filter control points were developed using the USDA guidance. A gradation band for the filter material was developed using the coarse (maximum) particle control points as a guide for the coarse side of the filter band, and criteria for prevention of gap grading for the fine side of the filter band. This allows for the development of the coarsest gradation band that meets filtering criteria so the amount of filter layers can be minimized. Once gradation limits were established, filter material compatible with the gradation limits were selected for design.

The gradation band for the filter sand developed using the USDA methodology was compared to ASTM C-33 filter sand and was determined to be acceptable. Filter compatibility calculations and gradation curves are included in **Appendix C.5**.

5.3.4 Underdrain System

An underdrain system will be installed in three locations below the spillway to reduce uplift pressures on the spillway slab and capture any seepage through the foundation. The underdrain system will be installed adjacent to each of the three keyed transverse construction joints. The underdrain system is designed as a two-stage filter system consisting of a 6-inch diameter slotted PVC pipe, bedded in a 6-inch layer of drainage gravel and surrounded by a 6-inch layer of filter sand. Lateral spacing of the underdrain pipes is designed to be spaced approximately 20 feet apart.

In addition to the spillway slab underdrains, drains will be constructed above the spillway footings to reduce external hydrostatic loading on the spillway walls.

Filter compatibility was evaluated between the native soil and filter sand and between the filter sand and drainage gravel. Based on filter compatibility evaluations, ASTM C33 fine aggregate (concrete sand) is recommended for use as the filter sand and No. 89 coarse aggregate (pea gravel) is recommended to be used as the drainage gravel.

The underdrain system plan and details are shown on UBCR Spillway Replacement Drawing 10 and 12, respectively. Filter compatibility calculations are contained in **Appendix C.5**.

5.4 Structural Analysis and Modeling

The replacement spillway at UBCR was separated into two components for design: the concrete slab and the training walls. Both components were designed for two controlling locations: the stilling basin, which is the location of the tallest wall section of the spillway, and the inclined portion of the spillway, which is the location of the shortest wall section of the spillway.

Reinforced concrete elements were designed in accordance with the requirements of the American Concrete Institute's *Building Code Requirements for Structural Concrete* [ACI 318-14] and *Code Requirements for Environmental Engineering Concrete Structures* [ACI 350-06]. Additional guidance was provided from the US Army Corps of Engineers' *Strength Design of Reinforced Concrete Hydraulic Structures* (USACE, 2003) and *Engineering and Design: Retaining and Flood Walls* (USACE, 1989). Structural stability loading conditions were analyzed in accordance with the American Society of Civil Engineer's *Minimum Design Loads for Buildings and Other Structures* [ASCE 7-10], US Army Corps of Engineers' *Strength Design of Reinforced Concrete Hydraulic Structures* (USACE, 2003) Table E-1, and G.C. Agusti and Nicholas Sitar's *Seismic Earth Pressures on Retaining Structures in Cohesive Soils* (UCB GT 12-02, 2013).

Structural calculations for the concrete slab and training walls of the replacement spillway are provided in **Appendix C**.

5.4.1 Design of Spillway Slab

The spillway concrete slab was modeled as a simple beam assumed to be pinned at a distance of 5 feet. It was assumed that the minimal unsupported length of the slab is 5 feet, which would allow for some erosion under the spillway slab. Shear and moment were checked across the slab to determine the maximum shear and moment load on the slab. Temperature and shrinkage steel controlled the design, and #7 bars at 12 inch spacing were determined to be sufficient for both controlling locations along the spillway.

Thickness of the slab was designed to be 1 foot at the inclined portion and 2 feet at the stilling basin portion of the spillway. The thickness was increased at the stilling basin to provide more support for the design loading conditions on the spillway training wall at that location.

5.4.2 Design of Spillway Training Walls

The spillway walls were designed as cantilevered retaining walls with soil and seismic loads. The strength/capacity checks were performed using the one-foot strip. Two load cases were analyzed for the spillway wall: a usual condition and an extreme condition. USACE and ACI strength/service load combinations were applied to develop the loading conditions. The spillway wall stem was analyzed as a cantilever beam with fixity provided at the footing. It was assumed that the groundwater table is below the wall section for both loading conditions. For Load Case 1, or the usual condition, the cantilever beam is subject to lateral forces due to at-rest earth forces from fill and construction live loads. For Load Case 2, or the extreme condition, the cantilever beam is subject to lateral forces due to seismic inertial forces due to self-weight and dynamic fill loads. Diagrams of the load cases are available in the structural calculations presented in **Appendix C**. Refer to UBCR Replacement Spillway Drawings 10 and 12 for a plan and profile view of the spillway walls and details of the walls, respectively.

5.4.2.1 Global Stability

A conventional stability analysis of the proposed spillway walls was performed for both load cases at both controlling locations analyzed in the design. Both overturning and sliding stability were considered, but it was assumed that the spillway was constrained from transverse sliding due to the connection with the slab and wall on the opposite side.

5.4.2.2 Strength and Serviceability Design

The spillway walls were designed for strength and serviceability using the loads, load cases, and load combination guidelines developed as per ASCE 7-10, USACE EM 1110-2-2104, ACI 318-14, and ACI 350-06.

5.4.2.2.1 Inclined Portion of the Spillway Wall

Based on the analysis, the spillway wall along the inclined portion will have a footing thickness of 2 feet and will extend 3.5 feet into the spillway chute, where it ties into the 1-foot-thick concrete chute slab. The heel will be 3 feet long, for a total footing length of 8 feet. This section of the training wall will be 9.5 feet tall, and support fill material beside the channel with 1 foot gap between the top of the wall and the top of the fill. The spillway wall along the inclined portion is 1 foot thick at the top of the wall, and 1.5 feet thick at the bottom of the wall.

The spillway wall and footing will be reinforced for the controlling shear and moment produced from the load cases that were analyzed. The spillway walls will be reinforced vertically with #7 bars at 12 inch spacing and horizontally with #5 bars at 12 inch spacing, with 3 inch clear cover on all sides. The footing will be reinforced with #9 bars at 12 inch spacing on both faces perpendicular to the spillway wall, and #7 bars at 12 inch spacing on the top and bottom face parallel to the spillway wall. A 3 inch cover will exist on the top of the footing, and 4 inch cover on the bottom.

5.4.2.2.2 Stilling Basin Portion of the Spillway Wall

Based on the analysis, the spillway wall along the stilling basin portion will have a footing thickness of 2 feet and will extend 3.5 feet into the spillway chute, where it ties into the 2-foot-thick concrete chute slab. The heel will be 3 feet long, for a total footing length of 8 feet. This section of the training wall will be 13 feet tall, and support fill material beside the

channel with a 5 foot gap between the top of the wall and the top of the fill. The spillway wall along the stilling basin is 1 foot thick at the top of the wall, and 1.5 feet thick at the bottom of the wall.

The spillway wall and footing will be reinforced for the controlling shear and moment produced from the load cases that were analyzed. The spillway walls will be reinforced vertically with #7 bars at 12-inch-spacing and horizontally with #5 bars at 12 inch spacing, with 3 inch clear cover on all sides. The footing will be reinforced with #9 bars at 12 inch spacing on both faces perpendicular to the spillway wall, and #7 bars at 12 inch spacing on the top and bottom face parallel to the spillway wall. A 3 inch cover will exist on the top of the footing, and 4 inch cover on the bottom.

5.5 Outlet Channel Protection

Protection against erosion at the outlet and undermining of the spillway is provided by a stilling basin and installation of a riprap channel downstream of the stilling basin. The 26-foot-long stilling basin is equipped with chute blocks, baffle piers, and a sloped endsill. These features reduce the energy of the flow discharging from the outlet of the spillway and allow water to exit into the outlet channel at a reduced velocity. Protection against erosion of the outlet channel from water exiting the stilling basin is provided by a 2-foot-thick layer of CDOT Type M riprap placed on a 6-inch-thick layer of bedding stone. This riprap channel continues at El. 8724.0 for approximately 25 feet downstream of the stilling basin and, along with the stilling basin, extends the entire width of the concrete chute of the spillway at the downstream end.

This project OPCC is meant to assist Blue Lake Reservoir Company in the assessment of project costs. The The current developed expected construction cost is approximately \$1,030,000 with an additional \$150,000 reserved for construction contingencies. reflective of a competitive bid procurement process. Table 16 summarizes the estimated quantities and the breakdown of construction cost items.

No.	Construct	tion Item	Estimated Quantity	Units	U (B	Init Cost id Price)	Estir	nated Total Cost
1	Site Work							
		Reclamation and Revegatation	1	LS	\$	5,000.00	\$	5,000
	Subtotal						\$	5,000
2	Water Co	ntrol						
		Dewatering and Unwatering	1	LS	\$	20,000.00	\$	20,000
		Cofferdam	1	LS	\$	10,000.00	\$	10,000
	Subtotal						\$	30,000
3	Erosion a	nd Sediment Control						
		Silt Fence	1,635	LF	\$	10.00	\$	16,350
	Subtotal						\$	16,350
4	Spillway	Construction						
		Existing Spillway Concrete Demolition	280	CY	\$	100.00	\$	28,000
		Excavation	1	LS	\$	40,000.00	\$	40,000
		Backfill	1	LS	\$	25,000.00	\$	25,000
		Spillway Concrete	490	CY	\$	1,100.00	\$	539,000
		Sheet Pile	2,300	SF	\$	60.00	\$	138,000
		Drain Pipe (6" Slotted PVC Pipe)	450	LF	\$	80.00	\$	36,000
		Filter and Drain Aggregate	100	CY	\$	150.00	\$	15,000
		Riprap	100	CY	\$	140.00	\$	14,000
		Riprap Bedding	25	CY	\$	140.00	\$	3,500
		Road Base	35	CY	\$	120.00	\$	4,200
	Subtotal						\$	842,700
							•	
BAS	E CONSTR	UCTION SUBTOTAL (BCS)					\$	894,100
		Mobilization and Demobilization @ 10% BCS					\$	80 400
							\$	44 700
FSTI							¢	1 028 200
2011							Ψ	1,020,200
		Contingency Allowance @ 15% of Total Cons	truction Cost				\$	147,500

Table 16.Engineer's Estimate of Construction Cost – Alternative 2

The major cost items for this work include the cost for structural concrete and the sheet pile wall. Unit prices for structural concrete can vary from about \$800 to \$1,500 per cubic yard depending on the bidding environment. Additionally, the sheet pile upstream cutoff is a high dollar item. An upstream cutoff is highly recommended for the spillway based on the observed higher permeability sandy layers below the spillway and the potential that a preferred seepage pathway in the ground below the spillway has already been established.

As mentioned in Section 4, Alternative 3 included constructing a narrower spillway channel coupled with a dam crest raise. We estimated that the crest width could be decreased to 32 feet with a 1 foot crest raise while maintaining the required freeboard during flood routing. Instead of having the tapered side walls of the spillway chute, this concept would maintain a fixed 32 foot width along the entire spillway. The dam crest would be raised with 1 foot of aggregate base course over a 20 foot crest width. The cost for this alternative would be \$10,000 to \$30,000 less than the proposed Alternative 2. However, additional geotechnical studies would likely be required which may negate any cost savings.
7. Permitting

GEI supported the Blue Lake Reservoir Company with steps towards an acquisition of a Nationwide Permit (NWP) from the U.S. Army Corps of Engineers, Sacramento District, Grand Junction Regulatory Office (USACE) for the spillway rehabilitation of the spillway. GEI's work included efforts to move the project forward via a Maintenance Exemption, and while this was not approved by the USACE due to the extent of repairs necessary, materials used to propose this alternative permitting strategy were repurposed for submission of a Pre-Construction Notification (PCN) to the USACE for completion of work under a NWP 3(a): *Maintenance - repair, rehabilitation, or replacement of previously authorized, currently serviceable structures or fills.* While the permit has not yet been finalized by the USACE, it is anticipated to be issued pending review by the Office of Archaeology and Historic Preservation's (OAHP) State Historic Preservation Officer (SHPO) for cultural resources. Additionally, GEI was were informed that the USACE will not require consultation with U.S. Fish and Wildlife Service for depletions. We expect that a final permit will be issued in May 2020.

The following tasks were completed in order to support the permit application for SPK-2020-00022:

- Desktop evaluation of sensitive species potentially impacted as a result of the project.
- Desktop evaluation of aquatic resources within the project footprint and calculation of both temporary and permanent impacts.
- Assessment of potential depletions and cultural resources impacted as a result of the project.
- Formulation of final permit report and PCN.
- Preparation of supplemental materials to support consultation with the SHPO.
- General coordination and communication with the USACE to facilitate acquisition of the final permit (pending).

Please note that upon receipt of the permit verification for SPK-2020-00022, a Compliance Certificate will be attached. This Compliance Certificate will need to be completed and returned to the USACE once all work is finished.

8. Conclusions

The existing spillway at UBCR is inadequate to pass the IDF required by the SEO Regulations and is presently showing serious signs of concrete deterioration. It is recommended that the existing spillway be reconstructed to provide a discharge capacity to safely pass the SEO required IDF while also providing a minimum 1.0-foot of freeboard. This is considered the most economic approach with bringing the reservoir back into compliance with SEO regulations.

The proposed design for the replacement spillway is similar to that of the existing spillway with a concrete chute, an approach channel, concrete weir, and stilling basin. The existing spillway is 28 feet wide at the upstream side, while the replacement spillway is designed to be 38 feet wide at the spillway crest and then contract to a width of 32 feet at the stilling basin. Underdrains will be installed adjacent to the construction joints along the spillway slab to assist with proper drainage of seepage through the foundation. The current spillway has no drains installed, which likely aided in the deterioration of the existing spillway slab. A riprap channel will be installed downstream of the stilling basin. This proposed design for the replacement spillway will have the capability of safely passing the IDF at UBCR and will bring the structure back into compliance with SEO Regulations.

- Agusti, Gabriel C. and Sitar, Nicholas (2013). Seismic Earth Pressures on Retaining structures in Cohesive Soils, Report No. UCB GT 13-02, Berkeley, California.
- American Concrete Institute (ACI) (2014). Building Code Requirements for Structural Concrete (318-14), ACI 318-14, Farmington Hills, Michigan.
- American Concrete Institute (ACI) (2006). Code Requirements for Environmental Engineering Concrete Structures (350-06), ACI 350-06, Farmington Hills, Michigan.
- American Institute of Steel Construction (AISC) (2011). Steel Construction Manual, Fourteenth Ed., USA.
- American Society of Civil Engineers (ASCE) (2013). *Minimum Design Loads for Buildings and Other Structures*, ASCE 7-10, Reston, Virginia.
- Geo-Slope International, Ltd. SEEP/W and SLOPE/W Part of GeoStudio 2012, Version 8.14.1.10087. Calgary, Alberta, Canada.
- National Oceanic and Atmospheric Administration (NOAA), National Water Service (NWS), U.S. Department of Commerce, 2013. NOAA Atlas No. 14 Precipitation-Frequency Atlas of the United States, Volume 8–Version 2.0, Midwestern States, Silver Springs, Maryland.
- State Engineer's Office (SEO) (2020). Dam Safety Branch, Division of Water Resources, Department of Natural Resources, *Rules and Regulations for Dam Safety and Dam Construction*. Denver, Colorado. January 1.
- U.S. Army Corps of Engineers (USACE). Hydraulic Engineering Center, *Hydrologic* Modeling System HEC-HMS User's Manual, Version 3.5. August 2010.
- U.S. Army Corps of Engineers (USACE) (2005). Stability Analysis of Concrete Structures, EM 1110-2-2100.
- U.S. Army Corps of Engineers (USACE) (2016). Strength Design of Reinforced Concrete Hydraulic Structures, EM 1110-2-2104. June.
- U.S. Bureau of Reclamation (USBR) (1987). *Design of Small Dams*, A Water Resource Technical Publication, Third Edition. Denver, CO.
- U.S. Bureau of Reclamation (USBR) (1978). *Design of Small Canal Structures*, A Water Resource Technical Publication. Denver, CO.

- U.S. Bureau of Reclamation (USBR) (1984). Engineering Monograph (EM) No. 25: Hydraulic Design of Stilling Basins and Energy Dissipator. U.S. Department of the Interior, Denver, Colorado. May 1984.
- U.S. Department of the Interior, U.S. Geological Survey (2010). Geologic Map of the Fraser 7.5-Minute Quadrangle, Grand County, Colorado.

UPPER BLACK CREEK RESERVOIR SPILLWAY REPLACEMENT

DRAWING LIST

SHEET NO.	DWG. NO.	TITLE
1	1	COVER SHEET
2	2	DRAWING LIST, GENERAL NOTES, LEGEND, AND ABBREVIATIONS
3	3	HYDRAULIC AND GEOTECHNICAL INFORMATION
4	4	PLAN OF EXISTING CONDITIONS AND SURVEY CONTROL
5	5	EROSION CONTROL AND LIMITS OF WORK
6	6	EXISTING SPILLWAY PLAN AND SECTION
7	7	PLAN OF MODIFICATIONS
8	8	EXCAVATION AND DEMOLITION PLAN
9	9	EXCAVATION SECTIONS
10	10	SPILLWAY PLAN AND SECTION
11	11	SPILLWAY SECTIONS AND DETAILS (1 OF 2)
12	12	SPILLWAY SECTIONS AND DETAILS (2 OF 2)
13	13	STRUCTURAL NOTES AND DETAILS

ABBRE	VIAT	ΓΙΟΝ	١S

@	=	AT
AC-FT	=	ACRE-FEET
APP	=	APPROVED, APPROVAL
APPROX.	=	APPROXIMATE
ΑΜΜΑ	=	AMERICAN WATER WORKS
ASSOCIATION		
PA	_	
BA BO	-	
B.U.	-	BOTTOM
601	-	
CJ	=	CONSTRUCTION JOINT
CL, L	=	CENTERLINE
CLR	=	CLEAR
CNTR, CTR	=	CENTER
CONT	=	CONTINUOUS
CP	=	CONTROL POINT
CRJ	=	CONTRACTION JOINT
CTR(D)	=	CENTER(ED)
DIA. Ø	=	DIAMETER
DWG DWGS	=	DRAWING OR DRAWINGS
FF	=	FACH FACE
EL ELEV	=	ELEVATION
EO SPC	_	
	-	EQUALLY SPACED ON EQUAL
SFACES	_	FACILIMAY
EVV	-	
FI	=	
GALV	=	GALVANIZED
H, HORZ	=	HORIZONTAL
H:V	=	HORIZONTAL:VERTICAL
I.E.	=	INVERT ELEVATION
IF	=	INSIDE FACE
INV	=	INVERT
MAX	=	MAXIMUM
MIN	=	MINIMUM
NO	=	NUMBER
NTS	=	NOT TO SCALE
NWS	=	NORMAL WATER SURFACE
OPT	=	OPTION
OW	=	OUTLET WORKS
BV/C	_	
PEOD	-	
REQ D		
SEU	-	STATE ENGINEERS OFFICE
SIM	=	SIMILAR
J.	=	STATION
1.0.	=	TOP OF
TYP	=	TYPICAL
UNO	=	UNLESS NOTED OTHERWISE
V, VERT	=	VERTICAL
VIF	=	VERIFY IN FIELD
WSE	=	WATER SURFACE ELEVATION
W/	=	WITH
CRJ	=	CONTRACTION JOINT
OHWM	=	ORDINARY HIGH WATER MARK

GENERAL NOTES

1. GENERAL:

- 1.1. THE TOPOGRAPHIC BASE MAP WAS GENERATED BY GEI CONSULTANTS USING A COMBINATION OF UNMANNED AERIAL VEHICLE SURVEY FLOWN BY GEI IN JULY 2018 AND 2007 BATHYMETRIC DATA PROVIDED BY RESOURCE ENGINEERING, INC. BATHYMETRIC DATA WAS RECORDED RELATIVE TO THE EXISTING SPILLWAY CREST.
- HORIZONTAL DATUM: NAD 83 (2014), COLORADO STATE PLANE COORDINATE SYSTEM, CENTRAL ZONE, U.S. SURVEY FEET.
 VERTICAL DATUM: NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88)
 HIESE NOTES SUPPLEMENT THE SPECIFICATIONS, WHICH SHALL BE REFERENCED FOR ADDITIONAL REQUIREMENTS.
- 1.5. THE CONTRACTOR SHALL VERIFY LOCATIONS OF ALL UTILITIES PRIOR TO COMMENCING WORK. REPRESENTATIVES FROM THE RESPECTIVE UTILITY
- COMPANIES MUST BE NOTIFIED IN ACCORDANCE WITH STATE LAW. CALL UNDERGROUND SERVICE ALERT TOLL FREE 1-800-922-1987 TWO WORKING DAYS BEFORE YOU DIG.
- 1.6. PLANS AND SPECIFICATIONS MAY NOT BE MATERIALLY CHANGED, EXCEPT WITH THE PRIOR WRITTEN CONSENT OF THE STATE ENGINEER.

2. EXISTING UNDERGROUND OR EXPOSED STRUCTURES AND UTILITIES:

- 2.1.CONTRACT DOCUMENTS HAVE BEEN PREPARED USING AVAILABLE DRAWINGS AND SITE OBSERVATION AND ARE NOT WARRANTED TO BE EXACT. 2.2 DURING CONSTRUCTION, THE CONTRACTOR MAY ENCOUNTER EXISTING CONDITIONS WHICH ARE NOT NOW KNOWN OR ARE AT VARIANCE WITH PROJECT DOCUMENTATION. CONTRACTOR SHALL NOTIFY THE ENGINEER OF ALL CONDITIONS NOT PER THE CONTRACT DOCUMENTS. EXAMPLES INCLUDE:
- SIZES, DIMENSIONS, OR ELEVATIONS OTHER THAN THOSE SHOWN
- DAMAGE OR DETERIORATION TO MATERIALS AND COMPONENTS
- CONDITIONS OF INSTABILITY OR LACK OF SUPPORT
- ITEMS NOTED AS EXISTING ON THE DRAWINGS BUT NOT FOUND IN THE FIELD
- 2.3. PREPARE DIMENSIONAL DRAWINGS OF ALL DISCOVERED ITEMS.
- 2.4. CONTRACTOR SHALL FIELD VERIFY ALL EXISTING STRUCTURAL AND UTILITIES CONDITIONS PRIOR TO SUBMITTING AS-BUILT DRAWINGS.
- 2.5. CONTRACTOR SHALL MAKE ALLOWANCE FOR THE RESOLUTION OF SUCH DISCOVERIES IN THE CONSTRUCTION SCHEDULE.
- 3. USE OF DRAWINGS:
- 3.1.DO NOT SCALE DRAWINGS. 3.2. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES AND SPECIFICATIONS, THE MORE STRINGENT REQUIREMENTS SHALL
- GOVERN. DETAILS ON DRAWINGS TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. DETAILS NOTED TYPICAL APPLY TO ALL SIMILAR CONDITIONS. WHERE NO SPECIFIC DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ELSEWHERE ON THE PROJECT.

LEGEND

	DETAIL 1 TYPICAL DRAIN 8	DETAIL TITLE. THE NUMBER "1" REFERS TO THE L THE NUMBER "8" REFERS TO THE DRAWING NUME DETAIL IS CALLED OUT.	DETAIL DESIGNATION. BER WHERE THE		
	SECTION A STA. 10+00 8	SECTION TITLE. THE LETTER "A" REFERS TO THE THE NUMBER "8" REFERS TO THE DRAWING NUME SECTION IS CALLED OUT.	SECTION DESIGNATION BER WHERE THE		
EXISTING CONCRETE COARSE AGGREGATE EARTH		SECTION LOCATION. THE LETTER "A" REFERS TO DESIGNATION. THE NUMBER "8" REFERS TO THE WHERE THE SECTION IS SHOWN.	THE SECTION DRAWING NUMBER	PLAN DAM MODIFICATIONS	MAIN TITLE
				0 30 60 SCALE, FEET	DRAWING SCALE IN UNITS SPECIFIED
STABILIZED CONSTRUCTION ENTRANCE		DETAIL LOCATION. THE NUMBER "1" REFERS TO DETAIL DESIGNATION. THE NUMBER "8" REFERS TO THE DRAWING NUMBER WHERE THE DETAIL IS	THE SHOWN.	A 7	ELEVATION LOCATION. DESIGNATION. THE NL
SILT FENCE	Attention				
CONTRACTOR WORK LIMITS CUT/FILL SLOPE	0 1"			Checked: C MASCHING	
— — — — STAGING AREA BOUNDARY			CONSTRUCTION	Drawn: E. BLOOM	
	If this scale bar does not measure		REVIEW	Approved By: C. MASCHING	
	1" then drawing is not original scale.	SEO REVIEW CMM	SUBMITIAL		4601 DTC Boulevard Denver, Colorado 80237
	NO. DATE			Approval Date: 04/27/2020	303-002-0100

THE LETTER "A" REFERS TO THE SECTION MBER "7" REFERS TO THE DRAWING NUMBER

> C-XXXX UPPER BLACK CREEK RESERVOIR DWG. NO Blue Lake Reservoir Company SPILLWAY REPLACEMENT 2 Summit County, Colorado DRAWING LIST, GENERAL SHEET NO NOTES, LEGEND, AND 2 of 13 GEI Project 1801834 ABBREVIATIONS

RESERVOIR ELEVATION-STORAGE CAPACITY CURVE

RESERVOIF	R ELEVATION-		RESERVOIF	R ELEVAT
STORAGE	CAPACITY		STORAGE	CAPACI
ELEVATION	STORAGE		ELEVATION	STOR
(FT)	(ACRE-FT)		(FT)	(ACRE
8713.2	0.0	1	8733.2	152
8714.2	0.0	1	8734.2	167
8715.2	0.2	1	8735.2	183
8716.2	1.2	1	8736.2	199
8717.2	3.4	1	8737.2	216
8718.2	6.5	1	8738.2	233
8719.2	10.7	1	8739.2	251
8720.2	16.3	1	8740.2	269
8721.2	22.8	1	8741.2	287
8722.2	29.8	1	8742.2	306
8723.2	37.5	1	8743.2	326
8724.2	45.6	1	8744.2	345
8725.2	54.5	1	8745.2	366
8726.2	64.1	1	8746.2	386
8727.2	74.3	1	8747.2	407
8728.2	85.4	1	8748.0	428
8729.2	97.3	1	8748.7	445
8730.2	110.1	1	8751.2	502
8731.2	123.6	1	8753.2	554
8732.2	137.7	1	8755.2	604

8,756.0 T Zero-Freeboard El. 8,755.5 ________ 8,755.0 8,754.0 £ 8,753.0 8,752.0 **B** 8,751.0 8,750.0

500

8,749.0

8,748.0

1,000-YEAR, 6-HOUR LOCAL STORM

ſ	Attention:						Designed:	E. BLOOM		
	0 1"					NOT FOR	Checked:	C. MASCHING		
						CONSTRUCTION	Drawn:	E. BLOOM		
	If this scale bar					REVIEW	Approved By:	C. MASCHING	ULI Sensultants	
	1" then drawing is	0	04/27/2020	SEO REVIEW	CMM	SUBMITTAL			4601 DTC Boulevard Denver, Colorado, 80237	
	not original scale.	NO.	DATE	ISSUE/REVISION	APP		Approval Date	: 04/27/2020	303-662-0100	

SPILLWAY DISCHARGE RATING CURVE

		C-XX	XX
Blue Lake Reservoir Company	UPPER BLACK CREEK SPILLWAY REPLAC	RESERVOIR CEMENT	dwg. no. 3
Summit County, Colorado			SHEET NO.
GEI Project 1801834	GEOTECHNICAL INF	ORIVIATION	0 0110

CONTROL POINT TABLE								
POINT	NORTHING	EASTING	ELEVATION					
CP-1	1719130.13	2785064.95	8756.00					
CP-2	1719181.19	2785358.22	8755.50					
CP-3	1718926.04	2785654.21	8759.00					

NOTES:

8770

H 8760

8750 BILEVATIO

8740 -

0+00

1. DAM AND OUTLET WORKS CENTERLINES AND STATIONING ARE APPROXIMATE. CONTRACTOR TO VERIFY.

CONTRACTOR TO DEVELOP AND SUBMIT FOR APPROVAL ALL STREAM DIVERSION AND FLOOD CONTROL MEASURES AS SPECIFIED.

- 2. DIRECT SURFACE FLOWS TOWARDS AREAS THAT HAVE SILT FENCE USING SMALL EARTHEN BERMS OR OTHER MEANS AS NECESSARY.
- 3. ALL DISTURBED AREAS REQUIRING SEEDING WILL BE RECLAIMED AND RESTORED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS.
- 4. CONTRACTOR TO DEVELOP AND SUBMIT FOR APPROVAL STABILIZED CONSTRUCTION ENTRANCE METHODS AND DETAILS.
- INSTALL, MAINTAIN AND REMOVE SOIL EROSION AND SEDIMENT CONTROL MEASURES (EROSION CONTROL MEASURES) IN ACCORDANCE WITH APPROVED EROSION PROTECTION AND SEDIMENT CONTROL PLAN AND WITH THE PROJECT SPECIFICATIONS.
- 6. COMPLY WITH APPLICABLE REQUIREMENTS OF PROJECT PERMITS.
- 7. EROSION CONTROL MEASURES MAY BE PHASED CONSISTENT WITH OVERALL CONSTRUCTION SEQUENCING. INCLUDE PHASING PROVISIONS IN EROSION PROTECTION AND SEDIMENT CONTROL PLAN. PHASING OF EROSION CONTROL MEASURES THAT ARE NOT DESCRIBED IN THE APPROVED EROSION PROTECTION AND SEDIMENT CONTROL PLAN WILL NOT BE ALLOWED.
- 3. AS A MINIMUM, INSTALL AND MAINTAIN EROSION CONTROL MEASURES AS SHOWN. INSTALL AND MAINTAIN ADDITIONAL EROSION CONTROL MEASURES AS NECESSARY TO COMPLY WITH PROJECT SPECIFICATIONS AND PERMIT REQUIREMENTS. LOCATIONS OF SPECIFIC EROSION CONTROL FEATURES SHOWN ON DRAWINGS ARE APPROXIMATE. FINAL LOCATIONS SHALL BE DETERMINED BY CONTRACTOR AND INCLUDED IN EROSION PROTECTION AND SEDIMENT CONTROL PLAN.
- 9. REMOVE ACCUMULATED SEDIMENT AS NECESSARY TO MAINTAIN PROPER FUNCTIONING OF EROSION CONTROL MEASURES. DISPOSE OF SEDIMENT IN ACCORDANCE WITH THE APPROVED EROSION PROTECTION AND SEDIMENT CONTROL PLAN.

		C-XX	XX
Blue Lake Reservoir Company	UPPER BLACK CREEK SPILLWAY REPLAC	RESERVOIR CEMENT	dwg. no. 5
Summit County, Colorado	EROSION CONTROL AND		SHEET NO.
GEI Project 1801834		JKK	5 01 15

CONCRETE NOTES

1. GENERAL

- 1.A. ALL WORK SHALL CONFORM TO ACI 301, LATEST EDITION, UNLESS NOTED OTHERWISE IN DRAWINGS OR PROJECT SPECIFICATIONS.
- 1.B. DETAILING SHALL FOLLOW THE RECOMMENDATIONS OF ACI 315 UNLESS OTHERWISE NO CHANGES SHALL BE MADE WITHOUT PRIOR APPROVAL.
- 1.C. DETAIL BARS IN ACCORDANCE WITH THE LATEST EDITIONS OF PUBLICATION SP-66: "ACI DETAILING MANUAL" WITH ADDED REQUIREMENTS OF THE PROJECT SPECIFICATION AND ACI 318: "BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE."
- 1.D. BEFORE PLACING CONCRETE, CHECK ALL APPLICABLE DRAWINGS RELEASED AS SUITABLE FOR CONSTRUCTION INCLUDING MANUFACTURER'S DRAWINGS TO VERIFY THE PRESENCE OF ALL EMBEDDED MATERIAL REQUIRED IN THE PLACEMENT.

2. DIMENSIONS

- 2.A. DIMENSIONS ARE TO THE CENTERLINES OF THE BARS UNLESS OTHERWISE SHOWN. CLEAR COVER DIMENSIONS ARE MARKED "CLR". ALL DIMENSIONS TO A JOINT ARE TO THE CENTERLINE OF THE JOINT. BEAMS AND WALLS ARE CENTERED ON REFERENCED LINES UNLESS SHOWN OTHERWISE.
- 2.B. THICKNESSES SHOWN FOR WALLS AND SLABS ADJACENT TO UNDISTURBED SOIL OR ROCK ARE MINIMUM DIMENSIONS

3. STRUCTURAL CONCRETE MIX REQUIREMENTS

3.A. SEE SPECIFICATIONS SECTION 03 30 00.

4. SLAB-ON-GRADE

- 4 A TAKE PRECAUTIONS TO MINIMIZE SLAB CURLING, GRIND SLAB OR USE LEVELING COMPOUND IF FLOOR FLATNESS AND LEVELNESS VALUES ARE NOT ACCEPTABLE TO THE CONTRACTING OFFICER
- 4.B. SEE SPECIFICATIONS SECTION 03 30 00 FOR FLOOR FLATNESS AND LEVELNESS REQUIREMENTS

5. NON-SHRINK GROUT

5.A. SEE SPECIFICATIONS SECTION 03 62 00.

6. REINFORCING MATERIALS

- 6.A. TYPICAL REINFORCING SHALL BE ASTM A615, GRADE 60.
- 6.B. FIELD BENT REINFORCING SHALL BE ASTM A706, GRADE 60.

7. REINFORCING FABRICATION

- 7.A. SPLICES
- NO SPLICING OF REINFORCEMENT PERMITTED EXCEPT AS NOTED ON DRAWINGS. MAKE BARS CONTINUOUS AROUND CORNERS. WHERE PERMITTED, SPLICES MAY BE MADE BY CONTACT LAPS OR MECHANICAL CONNECTORS. - SPLICES ARE TO BE MADE SO THAT GIVEN CLEAR DISTANCES TO THE FACE OF CONCRETE WILL BE MAINTAINED.
- SEE 'LAP SPLICE SCHEDULE' FOR LAP LENGTHS.
- 7.B. HOOK EMBEDMENT NOTES
- SIDE COVER IS 2 1/2 INCHES OR GREATER
- COVER BEYOND IS 2 INCHES OR GREATER
- IF SIDE COVER IS LESS THAN 2 1/2 INCHES, INCREASE LENGTHS BY 40%

8. PLACING REINFORCEMENT

- 8.A. PLACE REINFORCEMENT IN ACCORDANCE WITH APPROVED REINFORCEMENT SHOP DRAWINGS, IN THE EVENT OF A CONFLICT BETWEEN THESE DRAWINGS AND THE APPROVED SHOP DRAWINGS. THE APPROVED SHOP DRAWINGS SHALL GOVERN.
- 8.B. SEE ACI 318-11 7.5 AND ACI 301, SECTION 6.3 FOR REINFORCEMENT PLACING TOLERANCES AND ACI 117 FOR ADDITIONAL REQUIREMENTS.
- 8.C. THE FIRST AND LAST BARS IN SLABS AND WALLS, AND STIRRUPS IN BEAMS ARE TO START AND END AT A MAXIMUM OF ONE HALF THE ADJACENT BAR SPACING. ALL REINFORCING TO BE EQUALLY SPACED UNLESS OTHERWISE SHOWN ON THE DRAWINGS.
- 8.D. WHERE POSSIBLE, REINFORCEMENT SHALL BE PLACED TO MAINTAIN A CLEAR DISTANCE OF AT LEAST 1 INCH BETWEEN OTHER REINFORCEMENT, ANCHOR BOLTS, FORM TIES, OR OTHER EMBEDDED METALWORK, REINFORCEMENT PARALLEL TO ANCHOR BOLTS OR OTHER EMBEDDED METAL WORKS SHALL BE PLACED TO MAINTAIN A CLEAR DISTANCE OF AT LEAST 1-1/3 TIMES THE MAXIMUM SIZE AGGREGATE TO BE USED.
- 8.E. REINFORCEMENT PROTECTION:

- SEE 'CONCRETE COVER TABLE

FOR ADDITIONAL REQUIREMENTS

- SEE ACI 318-05 7.5 FOR REINFORCEMENT PLACING TOLERANCES AND ACI 117

8.F. PROVIDE ACCESSORIES NECESSARY TO PROPERLY SUPPORT REINFORCING AT

POSITIONS SHOWN ON PLANS ALL REINFORCING DOWELS BOLTS AND EMBEDDED PLATES SHALL BE SET AND TIED IN PLACE BEFORE THE CONCRETE IS POURED. "STABBING" INTO PREVIOUSLY PLACED CONCRETE IS NOT PERMITTED

- 8.G. PROVIDE ADDITIONAL BARS OR STIRRUPS REQUIRED TO SECURE REINFORCING IN PLACE DURING CONCRETE PLACEMENT
- 8.H. REINFORCEMENT MAY BE ADJUSTED IN THE FIELD TO CLEAR FORM TIES AND ANCHOR BARS, IN SUCH CASES, RELOCATION OF THE EMBEDDED MATERIALS MUST BE CONSIDERED, IN NO CASE SHOULD BARS BE BENT IN THE FIELD.

9. MISCELLANEOUS REINFORCING REQUIREMENTS:

- 9.A. MAKE ALL REINFORCING BAR BENDS IN THE FABRICATOR'S SHOP UNLESS NOTED.
- 9.B. NO WELDING OF REINFORCING PERMITTED UNLESS NOTED ON DRAWINGS. WHERE PERMITTED, PERFORM WELDING IN ACCORDANCE WITH AWS D1.4, LATEST EDITION.
- 9.C. PROVIDE ADDED REINFORCING TO TRIM ALL OPENINGS, NOTCHES, AND REENTRANT CORNERS AS NOTED IN TYPICAL DETAILS.

10.CONSTRUCTION/CONTROL JOINTS

- 10.A. SUBMIT DRAWINGS SHOWING CONSTRUCTION AND CONTROL JOINT LOCATIONS ALONG WITH THE SEQUENCE OF PLACEMENTS. CONSTRUCTION JOINT LOCATIONS AND CASTING SEQUENCE SHALL BE ARRANGED TO MINIMIZE THE EFFECTS OF ELASTIC AND LONG-TERM SHORTENING/SHRINKAGE. NO OTHER JOINTS SHALL BE INTRODUCED UNLESS APPROVED BY THE SOE BEFORE CONCRETE IS PLACED.
- 10.B. CONTROL JOINTS SHALL CONFORM TO DETAILS PROVIDED ON DRAWINGS. IMMEDIATELY BEFORE THE SECOND CONCRETE PLACEMENT, THE PROJECTING HALF OF THE DOWEL SHALL BE GREASED TO PREVENT BOND TO THE CONCRETE.
- 10.C. CONSTRUCTION JOINTS IN SLABS-ON-GRADE, AND STRUCTURAL SLABS SHALL BE LOCATED TO ACCOMMODATE THE MAXIMUM LENGTH AND AREA THE CONTRACTOR CAN REASONABLY POUR, FINISH, AND JOINT IN THE SAME DAY, BUT SHALL NOT EXCEED A LENGTH OF 150 FEET WITH A MAXIMUM AREA OF 15,000 SQUARE FEET UNLESS APPROVED BY THE ENGINEER.
- 10.D. SHEAR FRICTION JOINTS: WHERE CONSTRUCTION JOINTS ARE LABELED AS "ROUGHENED" ON THE DRAWINGS, THE ENTIRE JOINT SURFACE SHALL BE MECHANICALLY ROUGHENED TO A 1/4" AMPLITUDE AND THOROUGHLY CLEANED. EXPOSE THE COURSE AGGREGATE IN THE HARDENED CONCRETE AND REMOVE ALL LOOSE MATERIAL

11.FINISHING

- 11.A. SEE SPECIFICATIONS SECTION 03 33 00.
- 11.B. UNLESS OTHERWISE INDICATED, CHAMFER EDGES OF ALL PERMANENTLY EXPOSED CONCRETE SURFACES WITH A 45 DEGREE BEVEL, 3/4 INCH X 3/4 INCH. CHAMFER STRIP MAY NOT BE SHOWN ON THE DESIGN DRAWINGS.

12.MEP AND OTHER OPENINGS AND EMBEDMENTS:

- 12.A. PROVIDE SLEEVES AT OPENINGS (SUCH AS THOSE REQUIRED FOR PLUMBING AND ELECTRICAL PENETRATIONS) BEFORE PLACING CONCRETE. DO NOT CUT REINFORCING WHICH MAY CONFLICT. CORING OF CONCRETE IS NOT PERMITTED.
- 12.B. REFER TO TYPICAL DETAILS FOR SPACING LIMITS ON SLEEVES AND FOR REQUIREMENTS FOR EMBEDDED CONDUIT AND PIPE

13.PRECAST CONCRETE:

- 13.A. THE STRUCTURAL DRAWINGS SHOW THE INTENT OF THE PRECAST CONCRETE FRAMING, REINFORCING SHOWN BUT NOT CALLED OUT IS CONCEPTUAL AND SHALL BE DESIGNED BY THE PRECAST MANUFACTURER. REINFORCING CALLED OUT ON DRAWINGS IS A MINIMUM FOR FINAL INPLACE CONDITIONS.
- 13.B. SIZE OF PRECAST MEMBERS SHALL NOT BE CHANGED UNLESS ACCEPTED BY THE CONTRACTING OFFICER.
- 13.C. PROVIDE RANDOM ORIENTED FIBER REINFORCED BEARING PADS UNLESS NOTED OTHERWISE. MINIMUM PAD ALLOWABLE COMPRESSION STRESS SHALL BE 1500 PSI.
- 13.D. PROVIDE MEMBER CONNECTIONS DETAILED ON THE DRAWINGS WITHOUT VARIATION. CONNECTIONS CONCEPTUALLY SHOWN OR NOT SHOWN SHALL BE DESIGNED BY THE PRECAST MANUFACTURER TO TRANSFER LOADS FROM ERECTION AND FINAL CONDITIONS.

MASONRY NOTES

1. DEFINITIONS

1.A. STRUCTURAL MASONRY IS DEFINED AS BEING EITHER LOAD BEARING AND/OR SERVING AS PART OF THE LATERAL LOAD RESISTING SYSTEM. STRUCTURAL MASONRY IS SHOWN ON THE STRUCTURAL PLANS AND DEFINED IN SCHEDULES AND DETAILS ON THE STRUCTURAL DRAWINGS.

2. DESIGN STRENGTH

- 2.A. DEVELOP 1800 PSI COMPRESSIVE STRENGTH (F'M) IN 28 DAYS.
- 2.B. STEEL REINFORCING:
- PRIMARY REINFORCING: ASTM A615, 60 KSI
- HORIZONTAL JOINT REINFORCING: ASTM A82, PREFABRICATED, LADDER TYPE

3. SPLICES

3.A. SEE MASONRY LAP SPLICE SCHEDULE FOR LAP LENGTHS

4. INSTALLATION REQUIREMENTS

4.A. GROUT SOLID ALL CELLS CONTAINING REINFORCING, EMBEDDED ITEMS, AND ALL OTHER CELLS NOTED ON THE CONTRACT DOCUMENTS.

LAP SPLICE AND DEVELOPMENT LENGTH SCHEDULE (INCHES)										
US)	۲		F'c = 4500 PSI							
ZE (AR ETE	со	MP		т	ENSIC	N			
BAR SI	DIAM	LCE	rcs	ГDH	LTE TOP	LTE	LTS TOP	LTS		
#3	0.375	8	12	6	17	13	23	17		
#4	0.500	9	15	6	23	17	30	23		
#5	0.625	11	18	8	29	22	38	29		
#6	0.750	13	22	9	34	26	45	35		
#7	0.875	15	26	11	50	39	66	51		
#8	1.000	18	30	13	58	44	76	58		
#9	1.128	20	33	14	65	50	85	66		
#10	1.270	22	38	16	73	56	96	74		
#11	1.410	25	42	18	82	63	107	82		

SPLICE SCHEDULE NOTES

- 1. 'LCE' COMPRESSION EMBEDMENT LENGTH, 'LCS' = COMPRESSION LAP SPLICE LENGTH 'LDH' = HOOK DEVELOPMENT LENGTH, 'LTE' = TENSION EMBEDMENT LENGTH, 'LTS' TENSION LAP SPLICE LENGTH
- 2. 'TOP' BARS ARE HORIZONTAL BARS PLACED WITH MORE THAN 12 INCHES OF FRESH CONCRETE IS CAST BELOW THE BAR.
- 3. ALL SPLICES SHALL BE WIRED IN CONTACT AND STACKED VERTICALLY.
- 4. ALL SPLICES ARE 'LTS' UNLESS NOTED OTHERWISE
- 5. SMALLER BAR LAP LENGTH SHALL BE USED WHEN SPLICING DIFFERENT SIZED BARS 6. LAP LENGTHS SPECIFICALLY DETAILED ON DRAWINGS SHALL GOVERN IN LIEU OF LAP LENGTHS SCHEDULE
- 7. SCHEDULE LAP LENGTHS ASSUMPTIONS:
- CLEAR COVER IS GREATER THAN BAR DIAMETER, AND NOT LESS THAN 3/4".
- CLEAR SPACING BETWEEN BARS IS GREATER THAN 2 BAR DIAMETERS. - IF EITHER CONDITION ABOVE IS NOT MET FOR A GIVERN BAR, INCREASE LENGTH BY 50%.
- 8. SPLICE LENGTHS NOTED BASED ON FY = 60.000 PSI. FOR OTHER YIELD STRENGTHS. MULTIPLY SPLICE LENGTHS NOTED BY FY/60,000.

STEEL NOTES

1. GENERAL

1.A. FABRICATION AND ERECTION OF STRUCTURAL STEEL SHALL CONFORM TO CURRENT AISC MANUAL OF STEEL CONSTRUCTION.

2. BOLTED CONNECTIONS

2.A. ANCHORS AND STRUCTURAL BOLTS SHALL BE STRUCTURAL STEEL, ASTM A 325, STRUCTURAL NUTS SHALL BE STRUCTURAL STEEL ASTM A563, ALL BOLTED STRUCTURAL CONNECTIONS SHALL CONFORM TO THE AISC SPECIFICATION FOR STRUCTURAL JOINTS. ALL STRUCTURAL BOLTED CONNECTIONS SHALL BE BEARING-TYPE CONNECTIONS.

3. ANCHOR BOLTS AND EMBEDDED THREADED RODS

3.A. ANCHOR BOLTS AND EMBEDDED THREADED RODS SHALL BE STRUCTURAL STEEL, ASTM F 1554, GRADE 55.

4. WELDING REQUIREMENTS:

- 4.A. WELDERS: HAVE IN POSSESSION CURRENT EVIDENCE OF PASSING THE APPROPRIATE AWS QUALIFICATION TESTS.
- 4.B. MINIMUM WELDS: AISC SPECIFICATION, NOT LESS THAN 3/16-INCH FILLET, CONTINUOUS UNLESS OTHERWISE NOTED.
- 4.C. WELD SIZES AND LENGTHS CALLED FOR ON THE DRAWINGS ARE THE NET EFFECTIVE REQUIRED. INCREASE WELD SIZE IF GAPS EXIST AT THE FAYING SURFACE.
- 4.D. WELD SIZES SHALL BE AS SHOWN UNLESS A GREATER SIZE IS REQUIRED BY ANSI/AISC 360-05 TABLES J2.3 AND J2.4.
- 4.E. ALL GROOVE WELDS SHALL BE COMPLETE PENETRATION UNLESS NOTED
- 4.F. FIELD WELDING SYMBOLS INDICATE SUGGESTED CONSTRUCTION PROCEDURES
- 4.G. WELDING ELECTRODES FOR PLAIN STRUCTURAL STEEL SHALL BE AWS SERIES E-70.WELDING ELECTRODES FOR GALVANIZED STEEL SHALL BE AWS SERIES E6010 OR F6011

5. STRUCTURAL STEEL INSTALLATION:

5.A. ALL BOLTS USED IN CONNECTIONS SHALL BE INSTALLED SNUG TIGHT AS DEFINED BY AISC. UNLESS NOTED OTHERWISE

ſ	Attention:						Designed:	C. DIEBOLD		
	0 1"					NOT FOR	Checked:	M. PROVENCHER		
						CONSTRUCTION	Drawn:	C. DIEBOLD		
	If this scale bar					REVIEW	Approved By:	C. MASCHING	ULI Kunsultants	
	1" then drawing is	0	04/27/2020	SEO REVIEW	CMM	SUBMITTAL			4601 DTC Boulevard	
	not original scale.	NO.	DATE	ISSUE/REVISION	APP		Approval Date.	04/27/2020	303-662-0100	Γ

		C-XX	XX
Blue Lake Reservoir Company	UPPER BLACK CREEK SPILLWAY REPLA	RESERVOIR CEMENT	dwg. no. 13
Summit Soundy, Solorado	STRUCTURAL NO	TES AND	SHEET NO
GEI Project 1801834	DETAILS		13 01 13

L:\Working\Blue Lake Reservoir Company\CAD\Spillway_Chute

ENT.	Plue Lake Reser	woir Company								
OJECT:	Upper Black Cre	ek Reservoir Re	construction				Project:	1801834	Pages:	
BJECT:	Type III Stilling E	asin Design					Date:	8/26/2019	By:	P. Drew
							Checked:		By:	N. Miller
							Approved:		By:	C. Masching
rpose:	Design chute a	nd stilling bas	in structure requ	uired at Upper E	Black Creek Spi	llway				
ocedure:	Follow design	steps presente	d in <i>Design of</i> S	Small Canals - (Ch. II Conveyar	nce Structures -	F. Chutes.			
ferences:	USBR (1978). USBR (1984).	Design of Sma Engineering M	all Canal Structu onograph No. 2	ures. 25, Hydraulic De	esign of Stilling	Basins and Ene	ergy Dissipators	i.		
out Variables:										
Downstrea	Start Invert EI.: am Channel EI.: Chute Slope: Chute Width, B:	8,748.0 8,724.0 2.0 32.0	ft ft H:1V ft							
Process:	Iterate end sill assumed that t	height to obtai he depth of tai	n a tailwater de lwater is equal f	pth that is grea to the sill heigh	ter than or equa t plus the critica	I to the conjuga I depth of flow	te depth of the over the end sill	hydraulic jump	o, for all expecte	ed flows. It i
End Sill Heigh	nt Above Basin Floor:	2.5	ft	T	1	Γ	Velocity		T	I
		Upstream	Upstream		Unit	Downstream	Downstream.	Sill Depth.	Tailwater	Tailwate
	Discharge, Q	Depth. D1	Velocity, V1	Upstream	Discharge, g	Depth. D2	V2	Ys	Depth. Yt	Velocity.
	(cfs)	(ft)	(ft/sec)	Froude #. F1	(cfs/ft)	(ft)	(ft/sec)	(ft)	(ft)	(ft/sec)
	100	0.30	13.0	4.2	3.1	1.6	1.9	0.7	3.2	4.7
	200	0.40	17.3	4.8	6.3	2.5	2.5	1.1	3.6	5.9
	300	0.50	20.3	5.1	9.4	3.3	2.8	1.4	3.9	6.7
	400	0.60	22.3	5.1	12.5	4.0	3.1	1.7	4.2	7.4
	500	0.60	24.6	5.6	15.6	4.5	3.5	2.0	4.5	8.0
	600	0.80	24.4	4.8	18.8	5.1	37	22	47	8.5
	700	0.80	26.3	52	21.9	5.5	4.0	2.5	5.0	8.9
	800	0.90	27.4	51	25.0	6.0	4 1	2.0	52	9.3
	000	1 00	28.2	50	28.1	6.5	4.3	29	54	9.7
	MILL	1.00	20.2	5.0	31.3	7.2	4.3	3.1	5.6	10.0
	900	1 10	23.0	5.0	34.4	7.4	4.5	3.3	5.8	10.0
	1,000	1.10	20.2		04.4	7.4	4.7	3.3	5.0	10.3
	1,000 1,100	1.10 1.10	30.2	5.1	27.5	7.0	4.0	2 5	<u> </u>	
	1,000 1,100 1,200	1.10 1.10 1.20	30.2 30.9	5.0	37.5	7.9	4.8	3.5	6.0	10.6
	900 1,000 1,100 1,200 1,300	1.10 1.10 1.20 1.30	30.2 30.9 30.7	5.0 4.7	37.5 40.6	7.9 8.1	4.8 5.0	3.5 3.7	6.0 6.2	10.8
	1,000 1,100 1,200 1,300 1,400	1.10 1.10 1.20 1.30 1.40	30.2 30.9 30.7 31.4	5.0 4.7 4.7	37.5 40.6 43.8	7.9 8.1 8.6	4.8 5.0 5.1	3.5 3.7 3.9	6.0 6.2 6.4	10.8 10.9 11.2
	1,000 1,100 1,200 1,300 1,400 1,500	1.10 1.10 1.20 1.30 1.40 1.40	30.2 30.9 30.7 31.4 32.1	5.0 4.7 4.7 4.8	37.5 40.6 43.8 46.9	7.9 8.1 8.6 8.8	4.8 5.0 5.1 5.3	3.5 3.7 3.9 4.1	6.0 6.2 6.4 6.6	10.0 10.9 11.2 11.5
	1,000 1,100 1,200 1,300 1,400 1,500 1,600	1.10 1.10 1.20 1.30 1.40 1.40 1.50	30.2 30.9 30.7 31.4 32.1 32.6	5.0 4.7 4.7 4.8 4.7	37.5 40.6 43.8 46.9 50.0	7.9 8.1 8.6 8.8 9.2	4.8 5.0 5.1 5.3 5.4	3.5 3.7 3.9 4.1 4.3	6.0 6.2 6.4 6.6 6.8	10.8 10.9 11.2 11.5 11.7
	1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700	1.10 1.10 1.20 1.30 1.40 1.40 1.50 1.60	30.2 30.9 30.7 31.4 32.1 32.6 33.0	5.0 4.7 4.7 4.8 4.7 4.6	37.5 40.6 43.8 46.9 50.0 53.1	7.9 8.1 8.6 8.8 9.2 9.6	4.8 5.0 5.1 5.3 5.4 5.5	3.5 3.7 3.9 4.1 4.3 4.4	6.0 6.2 6.4 6.6 6.8 6.9	10.6 10.9 11.2 11.5 11.7 12.0
	900 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700 1,800	1.10 1.20 1.30 1.40 1.40 1.50 1.60 1.70	30.2 30.9 30.7 31.4 32.1 32.6 33.0 33.3	5.0 4.7 4.7 4.8 4.7 4.6 4.5	37.5 40.6 43.8 46.9 50.0 53.1 56.3	7.9 8.1 8.6 9.2 9.6 10.0	4.8 5.0 5.1 5.3 5.4 5.5 5.6	3.5 3.7 3.9 4.1 4.3 4.4 4.6	6.0 6.2 6.4 6.6 6.8 6.9 7.1	10.0 10.9 11.2 11.5 11.7 12.0 12.2
	900 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700 1,800 1,900	1.10 1.20 1.30 1.40 1.40 1.50 1.60 1.70 1.70	30.2 30.9 30.7 31.4 32.1 32.6 33.0 33.3 33.6	5.0 4.7 4.7 4.8 4.7 4.6 4.5 4.5	37.5 40.6 43.8 46.9 50.0 53.1 56.3 59.4	7.9 8.1 8.6 9.2 9.6 10.0 10.1	4.8 5.0 5.1 5.3 5.4 5.5 5.6 5.9	3.5 3.7 3.9 4.1 4.3 4.4 4.6 4.8	6.0 6.2 6.4 6.6 6.8 6.9 7.1 7.3	10.6 10.9 11.2 11.5 11.7 12.0 12.2 12.4
	900 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700 1,800 1,900 2,000	1.10 1.10 1.20 1.30 1.40 1.40 1.50 1.60 1.70 1.70 1.70 1.80	30.2 30.9 30.7 31.4 32.1 32.6 33.0 33.3 33.6 34.0	$5.1 \\ 5.0 \\ 4.7 \\ 4.7 \\ 4.8 \\ 4.7 \\ 4.6 \\ 4.5 $	37.5 40.6 43.8 46.9 50.0 53.1 56.3 59.4 62.5	7.9 8.1 8.6 9.2 9.6 10.0 10.1 10.5	4.8 5.0 5.1 5.3 5.4 5.5 5.6 5.9 6.0	3.5 3.7 3.9 4.1 4.3 4.4 4.6 4.8 5.0	6.0 6.2 6.4 6.6 6.8 6.9 7.1 7.3 7.5	10.6 10.9 11.2 11.5 11.7 12.0 12.2 12.4 12.6
	900 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,600 1,700 1,800 1,900 2,000	1.10 1.10 1.20 1.30 1.40 1.40 1.50 1.60 1.70 1.70 1.70 1.80	30.2 30.9 30.7 31.4 32.1 32.6 33.0 33.3 33.6 34.0	5.0 4.7 4.7 4.8 4.7 4.6 4.5 4.5 4.5	37.5 40.6 43.8 50.0 53.1 56.3 59.4 62.5	7.9 8.1 8.6 9.2 9.6 10.0 10.1 10.5	4.8 5.0 5.1 5.3 5.4 5.5 5.6 5.9 6.0	3.5 3.7 3.9 4.1 4.3 4.4 4.6 4.8 5.0	6.0 6.2 6.4 6.6 6.8 6.9 7.1 7.3 7.5	10.6 10.9 11.2 11.5 11.7 12.0 12.2 12.4 12.6
	900 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700 1,800 2,000	1.10 1.10 1.20 1.30 1.40 1.40 1.50 1.60 1.70 1.70 1.80	30.2 30.9 30.7 31.4 32.1 32.6 33.0 33.3 33.6 34.0	5.1 5.0 4.7 4.7 4.8 4.7 4.6 4.5 4.5 4.5 4.5	37.5 40.6 43.8 46.9 50.0 53.1 56.3 59.4 62.5	7.9 8.1 8.6 9.2 9.6 10.0 10.1 10.5	4.8 5.0 5.1 5.3 5.4 5.5 5.6 5.9 6.0	3.5 3.7 3.9 4.1 4.3 4.4 4.6 4.8 5.0	6.0 6.2 6.4 6.6 6.8 6.9 7.1 7.3 7.5	10.6 10.9 11.2 11.5 11.7 12.0 12.2 12.4 12.6
	300 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700 1,800 1,900 2,000	1.10 1.10 1.20 1.30 1.40 1.40 1.50 1.60 1.70 1.70 1.70 1.80	30.2 30.9 30.7 31.4 32.1 32.6 33.0 33.3 33.6 34.0	5.0 4.7 4.7 4.8 4.7 4.6 4.5 4.5 4.5	37.5 40.6 43.8 46.9 50.0 53.1 56.3 59.4 62.5	7.9 8.1 8.6 9.2 9.6 10.0 10.1 10.5	4.8 5.0 5.1 5.3 5.4 5.5 5.6 5.9 6.0	3.5 3.7 3.9 4.1 4.3 4.4 4.6 4.8 5.0	6.0 6.2 6.4 6.6 6.8 6.9 7.1 7.3 7.5	10.6 10.9 11.2 11.5 11.7 12.0 12.2 12.4 12.6
	300 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700 1,800 2,000 11.0 10.0	1.10 1.10 1.20 1.30 1.40 1.40 1.50 1.60 1.70 1.70 1.80	30.2 30.9 30.7 31.4 32.6 33.0 33.3 33.6 34.0	5.0 4.7 4.7 4.8 4.7 4.6 4.5 4.5 4.5	37.5 40.6 43.8 46.9 50.0 53.1 59.4 62.5	7.9 8.1 8.6 9.2 9.6 10.0 10.1 10.5	4.8 5.0 5.1 5.3 5.4 5.5 5.6 5.9 6.0	3.5 3.7 3.9 4.1 4.3 4.4 4.6 4.8 5.0	6.0 6.2 6.4 6.6 6.8 6.9 7.1 7.3 7.5	10.8 10.9 11.2 11.5 11.7 12.0 12.2 12.4 12.6
	900 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700 1,800 2,000 11.0 10.0 9,0	1.10 1.10 1.20 1.30 1.40 1.40 1.60 1.60 1.70 1.80	30.2 30.9 30.7 31.4 32.1 32.6 33.0 33.3 33.6 34.0	5.0 4.7 4.8 4.7 4.6 4.5 4.5	37.5 40.6 43.8 46.9 50.0 53.1 56.3 59.4 62.5	7.9 8.1 8.6 9.2 9.6 10.0 10.1 10.5	4.8 5.0 5.1 5.3 5.4 5.5 5.6 5.9 6.0	3.5 3.7 3.9 4.1 4.3 4.4 4.6 4.8 5.0	6.0 6.2 6.4 6.6 6.8 6.9 7.1 7.3 7.5	10.6 10.9 11.2 11.5 11.7 12.0 12.2 12.4 12.6
	900 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700 1,800 1,900 2,000 11.0 10.0 9.0 2.80	1.10 1.10 1.20 1.30 1.40 1.40 1.50 1.60 1.70 1.70 1.80	30.2 30.9 30.7 31.4 32.6 33.0 33.3 33.6 34.0	5.0 4.7 4.7 4.8 4.7 4.6 4.5 4.5 4.5	37.5 40.6 43.8 46.9 50.0 53.1 56.3 59.4 62.5	7.9 8.1 8.6 9.2 9.6 10.0 10.1 10.5	4.8 5.0 5.1 5.3 5.4 5.5 5.6 5.9 6.0	3.5 3.7 3.9 4.1 4.3 4.4 4.6 4.8 5.0	6.0 6.2 6.4 6.6 6.8 6.9 7.1 7.3 7.5	10.9 10.9 11.2 11.5 11.7 12.0 12.2 12.4 12.6
	300 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700 1,800 1,900 2,000 12.0 11.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	1.10 1.10 1.20 1.30 1.40 1.40 1.50 1.60 1.70 1.70 1.70 1.80	30.2 30.9 30.7 31.4 32.1 32.6 33.0 33.3 33.6 34.0	5.0 4.7 4.7 4.8 4.7 4.6 4.5 4.5 4.5	37.5 40.6 43.8 46.9 50.0 53.1 56.3 59.4 62.5	7.9 8.1 8.6 9.2 9.6 10.0 10.1 10.5	4.8 5.0 5.1 5.3 5.4 5.5 5.6 5.9 6.0	3.5 3.7 3.9 4.1 4.3 4.4 4.6 4.8 5.0	6.0 6.2 6.4 6.6 6.8 6.9 7.1 7.3 7.5	10.9 10.9 11.2 11.5 11.7 12.0 12.2 12.4 12.6
	300 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700 1,800 2,000 11.0 10.0 9.0 11.0 10.0 9.0 11.0 10.0 9.0 11.0 10.0 9.0 11.0	1.10 1.10 1.20 1.30 1.40 1.40 1.50 1.60 1.70 1.70 1.70 1.80	30.2 30.9 30.7 31.4 32.6 33.0 33.3 33.6 34.0	5.0 4.7 4.7 4.8 4.7 4.6 4.5 4.5 4.5	37.5 40.6 43.8 46.9 50.0 53.1 59.4 62.5	7.9 8.1 8.6 9.2 9.6 10.0 10.1 10.5	4.8 5.0 5.1 5.3 5.4 5.5 5.6 5.9 6.0	3.5 3.7 3.9 4.1 4.3 4.4 4.6 4.8 5.0	6.0 6.2 6.4 6.6 6.8 6.9 7.1 7.3 7.5	10.6 10.9 11.2 11.5 11.7 12.0 12.2 12.4 12.6
	300 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700 1,800 1,900 2,000 11.0 10.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	1.10 1.10 1.20 1.30 1.40 1.40 1.50 1.60 1.70 1.80	30.2 30.9 30.7 31.4 32.6 33.0 33.3 33.6 34.0	5.0 4.7 4.7 4.8 4.7 4.6 4.5 4.5 4.5 4.5 4.5	37.5 40.6 43.8 46.9 50.0 53.1 56.3 59.4 62.5	7.9 8.1 8.6 8.8 9.2 9.6 10.0 10.1 10.5	4.8 5.0 5.1 5.3 5.4 5.5 5.6 5.9 6.0	3.5 3.7 3.9 4.1 4.3 4.4 4.6 4.8 5.0	6.0 6.2 6.4 6.6 6.8 6.9 7.1 7.3 7.5	10.8 10.9 11.2 11.5 11.7 12.0 12.2 12.4 12.6
	300 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700 1,800 1,900 2,000 11.0 10.0 9.0 (1),00 9.0 (1),00 9.0 (1),00 9.0 (1),00 9.0 (1),00 9.0 (1),00 9.0 (1),00 9.0 (1),00 9.0 (1),00 9.0 (1),00 9.0 (1),00 9.0 (1),00 9.0 (1),00 9.0 (1),00 9.0 (1),00 10,00 10,00 10,00 10,00 10,00 <	1.10 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.70 1.80	30.2 30.9 30.7 31.4 32.6 33.0 33.3 33.6 34.0	5.0 4.7 4.7 4.8 4.7 4.6 4.5 4.5 4.5	37.5 40.6 43.8 46.9 50.0 53.1 56.3 59.4 62.5	7.9 8.1 8.6 9.2 9.6 10.0 10.1 10.5	4.8 5.0 5.1 5.3 5.4 5.5 5.6 5.9 6.0	3.5 3.7 3.9 4.1 4.3 4.4 4.6 4.8 5.0	6.0 6.2 6.4 6.6 6.8 6.9 7.1 7.3 7.5	10.9 10.9 11.2 11.5 11.7 12.0 12.2 12.4 12.6
	300 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,600 1,600 1,600 1,600 1,800 1,900 2,000 12.0 11.0 10.0 9.0 (1) 10.0 9.0 4.0	1.10 1.10 1.20 1.30 1.40 1.40 1.50 1.60 1.70 1.70 1.80	30.2 30.9 30.7 31.4 32.1 32.6 33.0 33.3 33.6 34.0	5.0 4.7 4.7 4.8 4.7 4.6 4.5 4.5 4.5 4.5	37.5 40.6 43.8 46.9 50.0 53.1 56.3 59.4 62.5	7.9 8.1 8.6 9.2 9.6 10.0 10.1 10.5	4.8 5.0 5.1 5.3 5.4 5.5 5.6 5.9 6.0	3.5 3.7 3.9 4.1 4.3 4.4 4.6 4.8 5.0	6.0 6.2 6.4 6.6 6.8 6.9 7.1 7.3 7.5	10.8 10.9 11.2 11.5 11.7 12.0 12.2 12.4 12.6
	300 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700 1,800 2,000 11.0 10.0 9.0 11.0 10.0 9.0 11.0 10.0 9.0 11.0 10.0 9.0 11.0 10.0 9.0 11.0 10.0 9.0 11.0 10.0 9.0 11.0 10.0 9.0 11.0 11.0 10.0 9.0 11.0 11.0 10.0 9.0 11.0 11.0 11.0 11.0 11.0 11.0 10.0 <	1.10 1.10 1.20 1.30 1.40 1.40 1.50 1.60 1.70 1.70 1.70 1.80	30.2 30.9 30.7 31.4 32.6 33.0 33.3 33.6 34.0	5.0 4.7 4.7 4.8 4.7 4.6 4.5 4.5 4.5 4.5 4.5	37.5 40.6 43.8 46.9 50.0 53.1 56.3 59.4 62.5	7.9 8.1 8.6 9.2 9.6 10.0 10.1 10.5	4.8 5.0 5.1 5.3 5.4 5.5 5.6 5.9 6.0	3.5 3.7 3.9 4.1 4.3 4.4 4.6 4.8 5.0	6.0 6.2 6.4 6.6 6.8 6.9 7.1 7.3 7.5	10.8 10.9 11.2 11.5 11.7 12.0 12.2 12.4 12.6
	1,000 1,100 1,200 1,300 1,500 1,500 1,600 1,500 1,600 1,700 1,800 1,900 2,000 11.0 10.0 9.0 (1) 8.0 1,00 1,	1.10 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80	30.2 30.9 30.7 31.4 32.6 33.0 33.3 33.6 34.0	5.0 4.7 4.7 4.8 4.7 4.6 4.5 4.5 4.5 4.5 4.5	37.5 40.6 43.8 46.9 50.0 53.1 56.3 59.4 62.5	7.9 8.1 8.6 8.8 9.2 9.6 10.0 10.1 10.5	4.8 5.0 5.1 5.3 5.4 5.5 5.6 5.9 6.0	3.5 3.7 3.9 4.1 4.3 4.4 4.6 4.8 5.0	6.0 6.2 6.4 6.6 6.8 6.9 7.1 7.3 7.5	10.8 10.9 11.2 11.5 11.7 12.0 12.2 12.4 12.6
	1,000 1,100 1,200 1,300 1,500 1,600 1,500 1,600 1,500 1,600 1,700 1,800 1,900 2,000 11.0 10.0 9.0 (1) 1 ,00 1 ,000 1 ,000 1 ,000 1 ,000 1 ,000 1 ,00	1.10 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.70 1.80	30.2 30.9 30.7 31.4 32.6 33.0 33.3 33.6 34.0	5.1 5.0 4.7 4.7 4.8 4.7 4.6 4.5 4.5 4.5 4.5	37.5 40.6 43.8 46.9 50.0 53.1 56.3 59.4 62.5	7.9 8.1 8.6 8.8 9.2 9.6 10.0 10.1 10.5	4.8 5.0 5.1 5.3 5.4 5.5 5.6 5.9 6.0	3.5 3.7 3.9 4.1 4.3 4.4 4.6 4.8 5.0	6.0 6.2 6.4 6.6 6.8 6.9 7.1 7.3 7.5 7.5	10.8 10.9 11.2 11.5 11.7 12.0 12.2 12.4 12.6
	300 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,600 1,600 1,600 1,700 1,800 1,900 2,000 11.0 10.0 9.0 (11.0 10.0 9.0 (11.0 10.0 9.0 (12.0 11.0 10.0 9.0 (1.0 0.0	1.10 1.10 1.20 1.30 1.40 1.40 1.50 1.60 1.70 1.70 1.80	30.2 30.9 30.7 31.4 32.1 32.6 33.0 33.3 33.6 34.0	5.0 4.7 4.7 4.8 4.7 4.6 4.5 4.5 4.5 4.5 4.5	37.5 40.6 43.8 46.9 50.0 53.1 56.3 59.4 62.5	7.9 8.1 8.6 9.2 9.6 10.0 10.1 10.5	4.8 5.0 5.1 5.3 5.4 5.5 5.6 5.9 6.0	3.5 3.7 3.9 4.1 4.3 4.4 4.8 5.0	6.0 6.2 6.4 6.6 6.8 6.9 7.1 7.3 7.5 7.5 vnstream Depth, Yt	10.8 10.9 11.2 11.5 11.7 12.0 12.2 12.4 12.6
	1,000 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,600 1,600 1,600 1,600 1,600 1,000 2,000 12.0 11.0 10.0 9.0 (11.0 10.	1.10 1.10 1.20 1.30 1.40 1.40 1.50 1.60 1.70 1.80 1.80 200	30.2 30.9 30.7 31.4 32.1 32.6 33.0 33.3 33.6 34.0	600	37.5 40.6 43.8 46.9 50.0 53.1 56.3 59.4 62.5	7.9 8.1 8.6 9.2 9.6 10.0 10.1 10.5	4.8 5.0 5.1 5.3 5.4 5.5 5.6 5.9 6.0	3.5 3.7 3.9 4.1 4.3 4.4 4.8 5.0	6.0 6.2 6.4 6.6 6.8 6.9 7.1 7.3 7.5 7.5 vnstream Depth, Yt	10.9 10.9 11.2 11.5 11.7 12.0 12.2 12.4 12.4 12.6
n 2. Determ	1,000 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,600 1,600 1,600 1,600 1,000 2,000 12.0 11.0 10.0 9.0 (1) 8.0 10.0 1	1.10 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.70 1.80 200 nath I	30.2 30.9 30.7 31.4 32.1 32.6 33.0 33.3 33.6 34.0	5.0 4.7 4.7 4.8 4.7 4.6 4.5 4.5 4.5 4.5 600	37.5 40.6 43.8 46.9 50.0 53.1 56.3 59.4 62.5	7.9 8.1 8.6 9.2 9.6 10.0 10.1 10.5	4.8 5.0 5.1 5.3 5.4 5.5 5.6 5.9 6.0	3.5 3.7 3.9 4.1 4.3 4.4 4.8 5.0	6.0 6.2 6.4 6.6 6.8 6.9 7.1 7.3 7.5 7.5 vnstream Depth, Yt 1,800	10.8 10.9 11.2 11.5 11.7 12.0 12.2 12.4 12.4 12.6
e p 2: Determ Maximum	300 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,600 1,600 1,600 1,800 1,900 2,000 11.0 10.0 9.0 (11.0 10.0 9.0 (11.0 10.0 9.0 (1.0 0.0 0 state 1.0 0 0	1.10 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 0 0 0 0 0 0 0 0 0 0 0 0 0	30.2 30.9 30.7 31.4 32.1 32.6 33.0 33.3 33.6 34.0	5.0 4.7 4.7 4.8 4.7 4.6 4.5 4.5 4.5 4.5 600	37.5 40.6 43.8 46.9 50.0 53.1 56.3 59.4 62.5	7.9 8.1 8.6 9.2 9.6 10.0 10.1 10.5	4.8 5.0 5.1 5.3 5.4 5.5 5.6 5.9 6.0	3.5 3.7 3.9 4.1 4.3 4.4 4.8 5.0	6.0 6.2 6.4 6.6 6.8 6.9 7.1 7.3 7.5 7.5 vnstream Depth, Yt 1,800	10.8 10.9 11.2 11.5 11.7 12.0 12.2 12.4 12.4 12.6
ı <u>p 2: Determ</u> Maximun	300 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700 1,800 1,900 2,000 11.0 10.0 9.0 11.0 10.0 9.0 11.0 10.0 9.0 11.0 10.0 9.0 11.0 0.0 0 10.0 0 0 0	1.10 1.10 1.20 1.30 1.40 1.40 1.50 1.60 1.70 1.70 1.80 200 ngth, L. 5.6 10.50	30.2 30.9 30.7 31.4 32.6 33.0 33.3 33.6 34.0	5.0 4.7 4.7 4.8 4.7 4.6 4.5 4.5 4.5 4.5 4.5 600	37.5 40.6 43.8 46.9 50.0 53.1 59.4 62.5 62.5 800 Discl	7.9 8.1 8.6 9.2 9.6 10.0 10.1 10.5	4.8 5.0 5.1 5.3 5.4 5.5 5.6 5.9 6.0	3.5 3.7 3.9 4.1 4.3 4.4 4.6 4.8 5.0	6.0 6.2 6.4 6.6 6.8 6.9 7.1 7.3 7.5 7.5 vnstream Depth, water Depth, Yt	10.8 10.9 11.2 11.5 11.7 12.0 12.2 12.4 12.4 12.6

CLIENT:	Blue Lake Reservoir Company		
PROJECT:	Upper Black Creek Reservoir Reconstruction	Project: 1801834	Pages:
SUBJECT:	Type III Stilling Basin Design	Date: 8/26/2019	By: P. Drew
		Checked:	By: N. Miller
		Approved:	By: C. Masching

Step 3: Determine Chute Blocks and Baffle Pier Dimensions.

Chute Blocks:			
Height:	21.6	inches	=D1 at max. flow, Min. = 8"
Width:	21.6	inches	=D1 at max. flow, Min. = 8"
Spacing:	21.6	inches	=D1 at max. flow, Min. = 8"
# of Full Blocks:	9.0		
Partial Blocks:	0.0		
Baffle Piers:			
Maximum Froude #, Fr1:	5.6		
Maximum D1:	1.80	ft	
Ratio H3/D1:	1.5	(from chart)	
Baffle Piers Height, H3:	33.4	inches	
Use Baffle Peir Height, H3:	40.0	inches	
Baffle Peir Width, Pw:	30.0	inches	=0.75(H3)
Top Width:	8.0	inches	=0.20(H3)
Spacing, Ps:	30.0	inches	=0.75(H3)
# of Blocks:	7.0		. ,
Distance to Baffle Face:	8.40	ft	=0.8(D2)
Step 4: Determine End Sill D	imensio	ns.	
Maximum Froude #, Fr1:	5.6		

Maximum Froude #, Fr1:	5.6		
Maximum D1:	1.80	ft	
Ratio H4/D1:	1.3	(from chart)	
End Sill Minimum Height, H4:	28.3	inches	
Top Width:	6.0	inches	
US Slope of Sill:	2.0	H:1V	
Use End Sill Height,H4:	2.50	ft	
Drop to DS Channel:	0.0	ft	
Final Basin Floor El.:	8724.0	ft	=(Int El.)-H4+Drop

Step 5: Wall Heights

Inlet Structure Wall Height:	8	ft	
Chute Wall Height:	9.5	ft	
Basin Freeboard:	2.0	ft	
Basin Wall Height:	13.0	ft	
Wing Wall Length:	10.0	ft	=0.75*(basin wall height)

Reach	River Sta	Profile	Q Total	W.S. Elev	Vel Total	Min Ch El	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # XS
			(cfs)	(ft)	(ft/s)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Reach 1	933.09 24	100	100	8748.9	0.0	8713.2	8713.3	8748.9	0.0000	0.0	28791	932	0.0
Reach 1	933.09 24	200	200	8749.4	0.0	8713.2	8713.4	8749.4	0.0000	0.0	29275	934	0.0
Reach 1	933.09 24	300	300	8749.8	0.0	8713.2	8713.4	8749.8	0.0000	0.0	29694	935	0.0
Reach 1	933.09 24	400	400	8750.2	0.0	8713.2	8713.4	8750.2	0.0000	0.0	30078	937	0.0
Reach 1	933.09 24	500	500	8750.6	0.0	8713.2	8713.5	8750.6	0.0000	0.0	30436	938	0.0
Reach 1	933.09 24	600	600	8751.0	0.0	8713.2	8713.5	8751.0	0.0000	0.0	30770	940	0.0
Reach 1	933.09 24	700	700	8751.3	0.0	8713.2	8713.5	8751.3	0.0000	0.0	31089	941	0.0
Reach 1	933.09 24	800	800	8751.6	0.0	8713.2	8713.6	8751.6	0.0000	0.0	31388	942	0.0
Reach 1	933.09 24	900	900	8751.9	0.0	8713.2	8713.6	8751.9	0.0000	0.0	31677	943	0.0
Reach 1	933.09 24	1000	1000	8752.2	0.0	8713.2	8713.6	8752.2	0.0000	0.0	31954	945	0.0
Reach 1	933.09 24	1100	1100	8752.5	0.0	8713.2	8713.6	8752.5	0.0000	0.0	32225	949	0.0
Reach 1	933.09 24	1200	1200	8752.8	0.0	8713.2	8713.7	8752.8	0.0000	0.0	32488	953	0.0
Reach 1	933.09 24	1300	1300	8753.1	0.0	8713.2	8713.7	8753.1	0.0000	0.0	32745	957	0.0
Reach 1	933.09 24	1400	1400	8753.3	0.0	8713.2	8713.7	8753.3	0.0000	0.0	33001	961	0.0
Reach 1	933.09 24	1500	1500	8753.6	0.0	8713.2	8713.7	8753.6	0.0000	0.0	33249	965	0.0
Reach 1	933.09 24	1600	1600	8753.8	0.0	8713.2	8713.8	8753.8	0.0000	0.0	33493	969	0.0
Reach 1	933.09 24	1700	1700	8754.1	0.1	8713.2	8713.8	8754.1	0.0000	0.1	33727	973	0.0
Reach 1	933.09 24	1800	1800	8754.3	0.1	8713.2	8713.8	8754.3	0.0000	0.1	33963	979	0.0
Reach 1	933.09 24	1900	1900	8754.6	0.1	8713.2	8713.8	8754.6	0.0000	0.1	34197	981	0.0
Reach 1	933.09 24	2000	2000	8754.8	0.1	8713.2	8713.8	8754.8	0.0000	0.1	34424	983	0.0
Reach 1	933.09 24	2100	2100	8755.0	0.1	8713.2	8713.9	8755.0	0.0000	0.1	34646	984	0.0
Reach 1	933.09 24	2200	2200	8755.2	0.1	8713.2	8713.9	8755.2	0.0000	0.1	34869	985	0.0
Reach 1	933.09 24	2300	2300	8755.5	0.1	8713.2	8713.9	8755.5	0.0000	0.1	35089	987	0.0
Reach 1	933.09 24	2400	2400	8755.7	0.1	8713.2	8713.9	8755.7	0.0000	0.1	35301	988	0.0
Reach 1	933.09 24	2500	2500	8755.9	0.1	8713.2	8713.9	8755.9	0.0000	0.1	35513	989	0.0

HEC-RAS Plan: IDF River: Black Creek Reach: Reach 1

Reach	River Sta	Profile	Q Total	W.S. Elev	Vel Total	Min Ch El	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # XS
			(cfs)	(ft)	(ft/s)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Reach 1	933.09 24	1900	1900	8754.6	0.1	8713.2	8713.8	8754.6	0.0000	0.1	34197	981	0.0
Reach 1	830.29 23	1900	1900	8754.6	0.1	8713.2	8713.8	8754.6	0.0000	0.1	34614	955	0.0
Reach 1	724.89 22	1900	1900	8754.6	0.1	8713.2	8713.8	8754.6	0.0000	0.1	36921	1043	0.0
Reach 1	621.99 21	1900	1900	8754.6	0.1	8713.2	8714.5	8754.6	0.0000	0.1	26122	1012	0.0
Reach 1	511.49 20	1900	1900	8754.4	2.7	8744.9	8748.9	8754.5	0.0003	2.9	711	179	0.3
Reach 1	491.19 19	1900	1900	8754.2	4.0	8745.4	8749.9	8754.5	0.0007	4.5	479	74	0.3
Reach 1	482.99 18	1900	1900	8754.2	4.1	8745.0	8748.6	8754.5	0.0000	4.1	464	50	0.2
Reach 1	477.09 17	1900	1900	8754.0	5.6	8745.0	8749.3	8754.5	0.0001	5.6	341	38	0.3
Reach 1	471.49 16	1900	1900	8752.8	10.2	8747.8	8752.1	8754.4	0.0008	10.2	187	38	0.8
Reach 1	470		Inl Struct										
Reach 1	468.49 15	1900	1900	8752.1	11.6	8747.8	8752.1	8754.2	0.0103	11.6	163	38	1.0
Reach 1	465.50 14	1900	1900	8749.3	17.2	8746.4	8750.7	8753.9	0.0352	17.2	110	38	1.8
Reach 1	427.58 13	1900	1900	8729.2	33.6	8727.5	8732.3	8746.8	0.2554	33.6	56	33	4.5
Reach 1	420.60 12	1900	1900	8725.8	34.8	8724.0	8728.9	8744.6	0.2758	34.8	55	32	4.7
Reach 1	399.38 11	1900	1900	8734.1	5.9	8724.0	8728.9	8734.6	0.0028	5.9	322	32	0.3
Reach 1	394.07 10	1900	1900	8733.3	8.7	8726.5	8731.4	8734.5	0.0102	8.7	218	32	0.6
Reach 1	393.01 9	1900	1900	8733.3	8.7	8726.5	8731.4	8734.5	0.0107	8.7	218	32	0.6
Reach 1	372.35 8	1900	1900	8733.7	5.1	8723.6	8729.4	8734.2	0.0023	5.7	372	57	0.4
Reach 1	347.15 7	1900	1900	8733.6	5.1	8723.3	8729.8	8734.1	0.0027	5.8	370	65	0.4
Reach 1	307.63 6	1900	1900	8731.2	12.5	8723.3	8731.2	8733.6	0.0263	12.6	151	32	1.0
Reach 1	275.35 5	1900	1900	8729.1	13.9	8722.4	8729.8	8732.2	0.0416	14.0	136	38	1.3
Reach 1	242.23 4	1900	1900	8727.0	14.4	8722.5	8728.0	8730.3	0.0632	14.5	132	52	1.6
Reach 1	200.62 3	1900	1900	8723.9	14.7	8719.8	8724.9	8727.3	0.0752	14.8	129	53	1.7
Reach 1	106.02 2	1900	1900	8722.7	9.3	8717.9	8722.2	8724.0	0.0179	9.3	204	54	0.8
Reach 1	0.00 1	1900	1900	8719.8	10.3	8715.3	8720.0	8721.5	0.0323	10.3	185	68	1.1

HEC-RAS Plan: IDF River: Black Creek Reach: Reach 1 Profile: 1900

U.S. Geological Survey - Earthquake Hazards Program

Unified Hazard Tool

Please do not use this tool to obtain ground motion parameter values for the design code reference documents covered by the <u>U.S. Seismic Design Maps web tools</u> (e.g., the International Building Code and the ASCE 7 or 41 Standard). The values returned by the two applications are not identical.

∧ Input	
Edition	Spectral Period
Dynamic: Conterminous U.S. 2014 (upda	Peak Ground Acceleration
Latitude	Time Horizon
Decimal degrees	Return period in years
39.804	10000
Longitude	
Decimal degrees, negative values for western longitudes	
-106.264	
Site Class	
760 m/s (B/C boundary)	

Component

Summary statistics for, Deaggreg	ation: Total
Deaggregation targets	Recovered targets
Return period: 10000 yrs	Return period: 9938.763 yrs
Exceedance rate: 0.0001 yr ⁻¹ PGA ground motion: 0.49721063 g	Exceedance rate: 0.00010061614 yr ⁻¹
Totals	Mean (over all sources)
Binned: 100 %	m: 6.08
Residual: 0 %	r: 11.9 km
Trace: 0.52 %	ε ₀ : 0.43 σ
Mode (largest m-r bin)	Mode (largest $m-r-\varepsilon_0$ bin)
m: 6.9	m: 6.9
r: 2.82 km	r: 2.28 km
ε ₀ : -0.04 σ	ε ₀ : -0.19 σ
Contribution: 13.04 %	Contribution: 7.85 %
Discretization	Epsilon keys
r: min = 0.0, max = 1000.0, ∆ = 20.0 km	ε0: [-∞2.5)
m: min = 4.4, max = 9.4, Δ = 0.2	ε1: [-2.52.0)
ε: min = -3.0, max = 3.0, Δ = 0.5 σ	ε2: [-2.01.5)
	ε3: [-1.51.0]
	ε4: [-1.00.5) ε5: [-0.500]
	ε6: [0.00.5]
	ε7: [0.5 1.0)
	ε8: [1.01.5)
	ε9: [1.52.0)
	ε10: [2.02.5)
	ε11: [2.5+∞]

Deaggregation Contributors

Source Set 😝 Source	Туре	r	m	ε ₀	lon	lat	az	%
SSCn Fixed Smoothing Zone 9 (opt)	Grid							20.46
PointSourceFinite: -106.264, 39.916		12.82	5.48	0.47	106.264°W	39.916°N	0.00	6.59
PointSourceFinite: -106.264, 39.826		5.56	5.22	-0.32	106.264°W	39.826°N	0.00	4.05
PointSourceFinite: -106.264, 39.871		8.77	5.31	0.11	106.264°W	39.871°N	0.00	2.40
PointSourceFinite: -106.264, 40.006		21.09	5.89	0.83	106.264°W	40.006°N	0.00	2.30
PointSourceFinite: -106.264, 39.961		16.97	5.68	0.70	106.264°W	39.961°N	0.00	1.94
USGS Fixed Smoothing Zone 3 (opt)	Grid							20.46
PointSourceFinite: -106.264, 39.916		12.82	5.48	0.47	106.264°W	39.916°N	0.00	6.59
PointSourceFinite: -106.264, 39.826		5.56	5.22	-0.32	106.264°W	39.826°N	0.00	4.05
PointSourceFinite: -106.264, 39.871		8.77	5.31	0.11	106.264°W	39.871°N	0.00	2.40
PointSourceFinite: -106.264, 40.006		21.09	5.89	0.83	106.264°W	40.006°N	0.00	2.30
PointSourceFinite: -106.264, 39.961		16.97	5.68	0.70	106.264°W	39.961°N	0.00	1.94
Geologic Model Full Rupture	Fault							14.09
Gore Range frontal 50		2.06	6.95	-0.04	106.295°W	39.797°N	253.81	6.21
Williams Fork Mountains 50		10.86	6.53	1.71	106.154°W	39.854°N	59.16	2.27
Gore Range frontal 35		1.56	6.95	-0.15	106.295°W	39.797°N	253.81	2.23
Gore Range frontal 65		2.43	6.95	0.09	106.295°W	39.797°N	253.81	1.88
Geologic Model Partial Rupture	Fault							11.79
Gore Range frontal 50		2.54	6.71	0.16	106.295°W	39.797°N	253.81	6.22
Gore Range frontal 65		2.92	6.71	0.21	106.295°W	39.797°N	253.81	2.01
Gore Range frontal 35		2.34	6.71	0.18	106.295°W	39.797°N	253.81	1.96
SSCn Adaptive Smoothing Zone 9 (opt)	Grid							9.78
PointSourceFinite: -106.264, 39.916		12.82	5.48	0.47	106.264°W	39.916°N	0.00	2.97
PointSourceFinite: -106.264, 39.826		5.56	5.22	-0.32	106.264°W	39.826°N	0.00	1.87
PointSourceFinite: -106.264, 40.006		21.09	5.89	0.83	106.264°W	40.006°N	0.00	1.11
PointSourceFinite: -106.264, 39.871		8.77	5.31	0.11	106.264°W	39.871°N	0.00	1.02
USGS Adaptive Smoothing Zone 3 (opt)	Grid							9.78
PointSourceFinite: -106.264, 39.916		12.82	5.48	0.47	106.264°W	39.916°N	0.00	2.97
PointSourceFinite: -106.264, 39.826		5.56	5.22	-0.32	106.264°W	39.826°N	0.00	1.87
PointSourceFinite: -106.264, 40.006		21.09	5.89	0.83	106.264°W	40.006°N	0.00	1.11
PointSourceFinite: -106.264, 39.871		8.77	5.31	0.11	106.264°W	39.871°N	0.00	1.02
Bird Model Full Rupture	Fault							5.25
Gore Range frontal 50		2.06	6.95	-0.04	106.295°W	39.797°N	253.81	2.68
Bird Model Partial Rupture	Fault							4.73
Gore Range frontal 50		2.54	6.71	0.16	106.295°W	39.797°N	253.81	2.68
Zeng Model Full Rupture	Fault							1.92
Zeng Model Partial Rupture	Fault							1.65

	\square	Client	BLUE LA	LE RESERV	M2 CO.	Page	10F2
	\bigcirc	Project	UPPER BL	ACK CREE	et res.	Pg. Rev.	
		Ву	A. STEIN	Chk.	G. Williams	App.	
	nsultants	Date	4/23/20	Date	4/24/20	Date	
Project No.	18018	34	Document N	o.			
Subject	SEEPI	AGE MA	MERIAL	PROPER	Nes		
OBJECTIVE	E: De ro	ternin tios be	e hydrai	ilic Cone als 111 t	ductuations , the seepag	and an e anali	isotropic Isis.
REFERENC	ES: E (f	iET Gie Includ (SBR D Das Prin Peak, Ha 2nd	otechnica ding Menu lesign do nciples d nson, Tho Ed.	1 Invest o, boving Small I F Found onburn	rgation dat logs, and Damo, 3rd atron Engu Foundation	ted Feb lab da Ed. 195 reering, n Engin	o, 16, 2018 ta 87 Sth Eol veoring,
FROM BOY LOGS: Native So	21NG il	Bovi Bovi Both San 1.5	ng B-1 lo ng B-2 lo nughly 5 bovings ds, silty s to 5.5	cated on bated in baset in have vio angles and beet this	Lett abut centerlin pstream of unjing lai d gravel r ck. With 2	ment of c of spi spillwa jers of anging 1-43°	f Spillway. Il way is apron. claugeg from To bines.
Conside highe	n a n pe	homa	jeneous ility.	nateria	4 06 SM	-se	with
FROM DESIG	SN OF	SMALL B' to	DAMS: 1×10-8	COEFFICI Avg≃	ENT OF P	ERMENE I sea	sury, k
SC	×10-	s to	5×10-8	Avg~	X 10 ⁻⁵ cn	r/sec	
SC FROM FOU Mixt [x]0	1×10- INDAT hures -4 f	of sa	SX10-8 UGINEERIN ad grav	Avg~ sq: rel ane	1×10 ⁻⁵ cu	sands	, fines

	Project	Page
Client Blue Lake Reservoir Co	By G. Williams	Date 4/22/2020
Subject	Checked A. Stein	Date 4/24/2020
	Approved	Date
Estmate Sneet Pile hydra From Manufacturer for	ulic conductivity water proofing join	j t3
$P = 1 \times from$	10-8 to 1x10-10 cm cutached 3x10-8 cm	loec loec
$^{1}\text{S}_{d} = P_{b}$	K= hydraulic c for mode	and ucts vity
use d= 0.375 inch = 0.0095 m	d = Model thick	ness
$p = 3 \times 10^{-8}$ cm/sec = 3×10^{-10} m/sec	P = from many b = width of	parel, say 2.0fz
b = 2.0 fz = 0.0 m	10 12	
K = 0.0095 ($(0,6) = 41,75 \times 10^{-12} m$	$1/5 = 4.75 \times 10^{-10} \text{ cm/s}$
USE: K= H.75×10-10 cm/sec =	1.56×10-11 Ft/sec	
d= 0.375 m	$ch = 0.03125 \ fz$	

3. In situ measurements

In order to allow the design engineer to make practical use of equation (3) Delft Geotechnics and ProfilARBED have carried out field tests on a large number of filler materials. The results of these tests yield values for p.

To expose the filler material to extreme site conditions, the sheet piles for the test wall have been driven in by vibrohammer. Each filler material has been applied in several joints.

The discharge through each joint was measured as a function of the applied pressure drop using a special test apparatus, see Fig. 4. The time dependent behaviour is monitored by taking readings at specific time intervals.

Table 1 shows the relevant criteria for selecting a water sealing system for an SSP wall and the range of values obtained from the tests for different types of filler matrials (bituminous ones as well as water swelling products); the results of the empty joints are also shown. It is most important to note that the r-values obtained for empty joints strongly depend on the soil properties, the variations being very large.

The test results are plotted in Fig. 5 which generally confirms that the hypothesis which leads up to formula (3) is well-founded (see also Fig. 3), at least for a certain pressure range.

The testing programme carried out by Delft Geotechnics and ProfilARBED, clearly demonstrates that the use of filler products in the joints of a SSP wall considerably reduces the seepage rate.

In addition it transpires that the filler material in the joints remains in place, even after the application of a vibrohammer - provided the manufacturer's specifications are strictly adhered to and the special tools, as developed by ProfilARBED for the implantation of the filler materials, are deployed.

]			1	Table 1
		ρ[] φ	0 ⁻⁹ m/s]		
_	WATERTIGHTENING SYSTEM	100kPa	200kPa	APPLICATION OF THE SYSTEM	COSTS RATIO **
	EMPTY JOINTS	>100	*	-	0
	BITUMINOUS FILLER MATERIAL	< 60	not recommended	EASY	1
	WATERSWELLING PRODUCT	0.3	0.3	WITH CARE	2
	Welding of the joints	0	0	ONLY AFTER EXCAVATION FOR THE INTERLOCK TO BE THREADED ON JOBSITE	5

* VALUE AVAILABLE ONLY AT 150 kPa: < 450

** The costs ratio = Costs of the watertightening system Costs of the bituminous filler material solution

Note: See table inside rear cover for values to be used for a first order design approach.

For waterswelling product = 0.3 * 10-9 m/s = 3e-8 cm/sec

Waterloo indicates 1e-8 to 1e-10 cm/sec and panels are 2' wide.

4.2. Comparison with porous media flow

In everyday practice the design engineer often needs to compare the performance (seepage resistance) of a SSP wall with other types of wall design, such as a slurry wall (SW); a cut-off wall is an example where such a comparison is relevant. The slurry wall may be considered as a porous medium and the flow is governed by Darcy's law.

The comparison between the SSP wall and the slurry wall can be carried out by **assuming that the discharge per unit wall area is the same.** With the definitions given in fig. 7, Darcy's law (reference 2 and 4) yields a specific discharge:

$$\mathbf{Q}_{sw} = \mathbf{K} \cdot (\Delta \mathbf{p} / \gamma) / \mathbf{d}$$
(8)

where

- **d** : thickness of the slurry wall, [m]
- **K** : permeability of the wall in horizontal direction, [m/s]
- **p** : pressure drop on both sides of the wall, [kPa]

The specific discharge for a SSP wall (Fig. 7) follows from (3), (6) and (7) with L = 1 m:

$$\mathbf{Q}_{ssp} = (\mathbf{1} / \mathbf{b}) \bullet \rho \bullet (\mathbf{p} / \gamma) \quad (9)$$

Both specific discharges are equal:

$$\mathbf{Q}_{sw} = \mathbf{Q}_{ssp} \tag{10}$$

This condition yields:

$$(K / d) = (\rho / b)$$
 (11)

For a given SSP wall relation (11) permits the calculation of the properties of a slurry wall with the same seepage properties. Assuming a slurry wall of a thickness d = 1m, the equivalent K-value is:

$$\mathbf{K}_{\mathbf{e}} = \rho \bullet (\mathbf{1m}) / \mathbf{b} \tag{12}$$

It must be kept in mind however that the nature of the two flows is quite different!

	Project 80834	Page
Client Blue Lake Manachan (D	By G. Williams	Date 4/22/2020
Subject	Checked A. Stein	Date 4/24/2020
	Approved	Date
Estimate reat Property S	strengths for Slope	\sim
Existing silty dayly Sand		
Avg N-value	1 - 1 = 29.1	
	Medicin = 29.5	-
from Foundation Eng	(Real et al) O = 3	° al
PI from lab results =	8,11 and NP	
Say P1 = 10		
from lambe 3 Whitman D = 3	5 to 36°	
Say 0 = 35 °		
from Fondation Eng		
	Vd Vsut	
mixed grain, loose	99 124	
mixed grain, dense	116 135	
Use On Q	= 130 pcf = 350 pcf	
Embankment fill is i	ewonied sety/cla	yey sand
that will be F	laced and compact	d in
ligts : use a	same material pr	openties

BORI	NG INFO	ORMATIO	N								
STATI	ON:					OFFSET:			BOUING		
GROU	ND SURI	FACE EL. (1	ft): <u>NM</u>			DATE START/END: _1	2/28/2	2017 - 12/28/2017	PJ		
VERTI		TUM:	0			DRILLING COMPANY:	Leite Drilling Services, LLC DZ				
	LOGGED BY: Joel Jackson RIG TYPE: CME 850										
2000			0011				Tuok		PAGE 1 of 2		
DRILL	ING IN	ORMATI	<u>ON</u>								
HAMM	IER TYP	E: Auton	natic			CASING I.D./O.D.: NA	V NA	CORE BAR	REL TYPE:		
AUGE	R I.D./O.I	D.: <u>4.25</u>	inch / 7.62	25 inch		DRILL ROD O.D.: NN		CORE BARI	REL I.D/O.D: <u>NA / NA</u>		
	R I FVFI	DEPTHS	(ff)· ▼ 1	n Auger 16.0 12/28	/2017						
			(. .). <u>-</u>	1010 12/20	2011						
ABBR	EVIATIO	NS: Pen. Rec.	= Penetrati	ion Length / Length		S = Split Spoon Sample C = Core Sample		Qp = Pocket Penetrometer Strength Sy = Pocket Torvane Shear Strength	NA, NM = Not Applicable, Not Measured		
		RQD	= Rock Qu	ality Design	ation	U = Undisturbed Sample		LL = Liquid Limit	30 inches to drive a 2-inch-O.D.		
		WOF	R = Weight	of Rods	2574 III / Peli	DP = Direct Push Sample		PI = Plasticity index PID = Photoionization Detector	split spoon sampler.		
		WO	H = Weight	of Hammer		HSA = Hollow-Stem Auger		I.D./O.D.= Inside Diameter/Outside Dia	ameter OVM = Organic Vapor Meter		
		S	ample Inf	formation			bo-				
Elev.	Depth	Sample	Depth	Pen./	Blows	Drilling Remarks/	hic	Soil and F	Rock Description		
(11)	(11)	No.	(ft)	Rec.	per 6 in.	Field Test Data	Grap				
				(11)	UINQD						
		S1*	0 to	24/18	16-13-			SILTY SAND (SM): moist, bro	wn, 70% fine-med sand, 30% low		
			2		13-10			CLAYEY SAND W/ GRAVEL (SC): moist, dark brown, 25%		
	- 2		2	0.4/7	40.05			fine-coarse gravel, 45% fine s			
	- 3	S2^	to	24/7	13-25-	Rig chatter observed in the	60	POORLY GRADED GRAVEL	w/ SILT (GP-GM): moist, 80% coarse sand 10% fines		
	Ĵ		-			ft		Coarse gravel in shoe (possib	ly a cobble that was drilled through)		
	- 4	S3*	4	16/12	5-6-50/4"			CLAYEY SAND (SC): moist, d	ark brown, 16% fine gravel, 58%		
	- 5		to 5.3			Cuttings observed contained cobbles up to 6 inches in		fine-med sand, 26% med plas Moisture=8.3%	tic fines, LL=23, PI= 8,		
	6					size. Shoe material was		Shoe material transitioned into	silty sands, tip was small granite		
		S1	6 to	24/15	21-17-	(SM) and the tip was coated		Auger refusal at 6.5'	/ //		
	- 7		8		11-11	with granite powder.		COBBLE fragments			
	- 8							SILTY SAND w/ GRAVEL (SM 55% fine to med sand. 20% r	1): moist, brown, 25% fine gravel, ion-plastic fines.		
		S2	to	24/19	7-12-12- 9	further upstream and begain		Interbedded lenses of coarse	gravel approximately 2" thick		
	- 9		10		J J	sampling again at 6'			fine cond 00% low plastic fines		
	- 10	62	10	24/24	5 12 22			SILT (IVIL): MOISI, Drown, 10%	line sand, 90% low plastic lines		
	- 11	00	to 12	24/24	7	PP = 1.75		SILTY SAND (SM): brown, mo	ist, 20% fine-coarse gravel up to 1"		
	10							@ 11': SILTY SAND as above	except 18% fine-coarse gravel, 60%		
	- 12	S4	12	24/20	11-8-9-9			fine-coarse sand, 22% non-pla	astic fines, Moisture= 7.3%		
	- 13		14					Saturated at 14'			
	- 14										
		S5	14 to	24/16	7-9-9-10						
	- 15		16								
	- 16		16	24/44	7 4 4 4 7			CLAYEY SAND (SC), wet bro	wn. 20% fine-coarse gravel 55%		
	- 17	50	to 18	24/11	12			fine-med sand, 25% low-med	plastic fines		
								18' - 20' CLAYEY SAND (SC)	: 10% fine gravel, 60% fine-med		
	- 18	S7	18	24/14	13-12-			sand, 30% low-med plastic fin	es		
	- 19		to 20		21-22			20' - 20.5' CLAYEY SAND (S	C): 5% fine gravel, 60% sand,		
	20							35% low-med plastic fines			
	20	S8	20 to	24/21	18-18-			SILTY SAND (SM); moiet do	rk brown 5% fine subrounded		
	- 21		22		22-22			gravel, 55% fine-coarse sand	I, 40% non to low plastic fines		
	- 22	_						21.6' - 21.75' Coarse gravel. s	ubrounded		
	2	_							excent: wet 70% fine mod		
	- 23	S9	22.9 to	11/11	22-50/5"			sand, 30% non to low plastic	fines		
NOTES	 S:	1	ħ	1	1	1	PRO-	IECT NAME: Upper Black Creek			
	-						~~~				
							CITY/	STATE: Heeney, Colorado			
							GEI F	RUJECI NUMBER: 1/05095	ULI Consultants		

GEI WOBURN STD 4-STA.-OFFS.-GRAPHIC LOG 7705095 - UBC BORING LOGS.GPJ 7/22/18

Foundation Engineering

SECOND EDITION

RALPH B. PECK Professor of Foundation Engineering University of Illinois at Urbana-Champaign

WALTER E. HANSON Consulting Engineer and Senior Partner Hanson Engineers Incorporated, Springfield, Illinois

THOMAS H. THORNBURN Professor of Civil Engineering University of Illinois at Urbana-Champaign

JOHN WILKY & SONS

New York . Chichester . Brisbane . Toronto . Singapore

Table 1.4	Poresity,	Void Ratio	and Unit	Weight	of Typical	Soils in	Natural Stat	
-----------	-----------	------------	----------	--------	------------	----------	--------------	--

		Void	Water	Unit Weight				
Description	Porosity (n)	ity Ratio	Content	g/cu cm		lb/cu ft		
			(@)-	Yeb	Yest"	76	7==1	
1. Uniform sand, loose	0.46	0.85	32	1.43	1.89	90	118	
2. Uniform sand, dense	0.34	0.51	19	1.75	2.09	109	130	
3. Mixed-grained sand, loose	0.40	0.67	25	1.59	1.99	99	124	
4. Mixed-grained sand, dense	0.30	0.43	16	1.86	2.16	116	135	
5. Windblown silt (locss)	0.50	0.99	21	1.36	1.86	85	116	
6. Glacial till, very mixed-grained	0.20	0.25	9	2.12	2.32	1.32	145	
7. Soft glacial clay	0.55	1.2	45	1.22	1.77	76	110	
8. Stiff glacial clay	0.37	0.6	22	1.70	2.07	106	120	
9. Soft slightly organic clay	0.66	1.9	70	0.93	1.58	58	08	
10. Soft very organic clay	0.75	3.0	110	0.68	1.43	49	80	
11. Soft montmorillonitic clay (calcium bentonite)	0.84	5.2	194	0.43	1.27	27	8 0	

" w = water content when saturated, in per cent of dry weight.

 $\gamma_d = dry unit weight.$

 $\gamma_{sat} = saturated unit weight.$

where γ_w is the unit weight of water, taken as 1 g/cu cm in the metric system or 62.5 lb/cu ft in the English system. The value of γ , or G may be determined by test in the laboratory, but it can usually be estimated with sufficient accuracy. For routine computations, the value of G for sands may be taken as 2.65. Tests on a large number of clay soils have indicated that the value of G usually falls in the range from 2.5 to 2.9 with an average value of about 2.7.

Table 1.3 gives the specific gravity of the most important soil constituents. It may be of assistance in estimating the value of G for a soil of known mineral composition.

Typical values of porosity, void ratio, and unit weight of various soils are listed in Table 1.4.

Density of Soil Aggregate. The behavior of any soil is influenced to a considerable extent by its relative looseness or denseness. In this respect, however, a distinction is necessary between coarse-grained cohesionless soils and cohesive materials. In a mass of coarsegrained soil most of the grains touch several others in point-to-point contact and efforts

Wintering and some state of the last

to densify the mass can reduce the void ratio only through rearrangement or crushing of the particles. On the other hand, the densification of fine-grained soil, especially clay, depends on other factors such as cohesion and the presence of water films on the particle surfaces.

The void ratio or porosity of any soil usually does not in itself furnish a direct indication of its behavior under load or during excavation. Of two coarse-grained soils at the same void ratio, one soil may be in a dense state whereas the other may be loose. Thus, the relative density of a coarsegrained material is much more significant than the void ratio alone. The relative density can be expressed numerically by the density index, I_d , defined as

Density index,
$$I_d = \frac{e_{\max} - e}{e_{\max} - e_{\min}}$$
 1.10

in which e_{max} is the void ratio of the soil in its loosest state, e is the actual void ratio, and e_{min} is the void ratio in the densest possible state. Hence, $I_d = 1.0$ for a very dense soil and 0 for a very loose soil.

13

19/Foundations on Sand and Nonplastic Silt

within which the sand cannot slip with respect to the base of the footing because of the roughness of the base, moves downward as a unit. As it moves it displaces the adjacent material. Consequently, the sand in two symmetrical zones aO'bds, one of which is illustrated on the left side of Fig. 19.4, is subjected to severe shearing distortions and slides outward and upward along the boundaries O'bd. The movement is resisted by the shearing strength of the sand along O'bd and the weight of the sand in the sliding masses.

No completely adequate rigorous theory exists for calculating the ultimate capacity of a footing under such circumstances, but satisfactory approximate solutions have been obtained on the basis of various simplifying assumptions (Terzaghi, 1943; Meyerhof, 1955). It is assumed, as illustrated on the right half of Fig. 19.4, that the influence of the soil above the base level of the footing can be replaced by a uniform surcharge γD_f . Theory and experiment then indicate that the surface of sliding consists of a curved portion O'c' and a straight section c'b' that rises at an angle of $45^\circ - \phi/2$ with the horizontal. The load q_d' on the footing, the surcharge γD_{f} , and the weight W of the sliding mass all produce normal stresses across the surface of sliding O'c'b', which, in turn, develop frictional shearing resistance along the surface of sliding. When the mass is on the verge of sliding the resultant R of the normal and shearing stresses at any point such as f on the surface of sliding is inclined at the angle ϕ to the normal to the surface of sliding. The wedge 0'c'b'a'may be considered as a free body and its equilibrium investigated to evaluate q_d' . Various trials must be made to find the surface of sliding corresponding to the least value of q_{d} that can be developed. This least value is designated the gross ultimate bearing capacity.

The results of such studies indicate that the gross ultimate bearing capacity may be expressed as

$$q_{d}' = \frac{1}{2} B \gamma N_{\gamma} + \gamma D_{f} N_{g} \qquad 19.1$$

and the net ultimate bearing capacity as

$$q_{\delta} = q_{\delta}' - \gamma D_f$$

= $\frac{1}{2} B \gamma N_{\gamma} + \gamma D_f (N_q - 1)$ 19.2

In these equations, N_{γ} and N_{q} are dimensionless bearing-capacity factors depending primarily on ϕ . They may be evaluated by means of the chart, Fig. 19.5.

Equation 19.2 demonstrates that the bearing capacity of a footing on sand is derived from two sources: the frictional resistance due to the weight of the sand below the level of the footing and the frictional resistance due to the weight of the surrounding surcharge or backfill.

The unit weights of most sands, whether dry, moist, or saturated, lie within a fairly narrow range. Therefore, the unit weight of the sand is in itself not an important variable in the determination of the bearing capacity of a footing. However, if the sand is located below the free water surface, only its submerged weight is effective in pro-

FIGURE 19.5. Curves showing the relationship between bearing-capacity factors and ϕ , as determined by theory, and rough empirical relationship between bearing capacity factors or ϕ and values of standard penetration resistance N.

310

Soil Mechanics

T. William Lambe • Robert V. Whitman

Massachusetts Institute of Technology

1969

JOHN WILEY & SONS, New York • Chichester • Brisbane • Toronto • Singapore

Fig. 21.4 Relationship between sin ϕ and plasticity index for normally consolidated soils (From Kenney, 1959).

same line obtained from tests on normally consolidated specimens. For lower \bar{p}_f the points fall above the relation from normally consolidated tests. Thus preconsolidation affects the effective stress-strength relation and tends to make the sample stronger at a given \bar{p}_f . This preconsolidation effect is difficult to see when results are plotted to the scale of Fig. 21.5*a*, hence the portion of this plot near the origin is magnified in the lower portion of the figure.

Example 21.1

Aspecimen of Weald clay is consolidated to 100 lb/in.², and is then failed by decreasing $\bar{\sigma}_3$ while $\bar{\sigma}_1$ is held constant. Find In \bar{p}_7 , and w_7 .

Solution. On part (c) of Fig. 21.1 draw the effective stress

Path for this loading until it intersects the $q_f - \bar{p}_f$ relation (see Fig. E21.1). The point of intersection gives q_f and \bar{p}_f . Then so to Fig. 21.3, enter with either q_f or \bar{p}_f , and read w_f .

Answers. $q_f = 27 \text{ lb/in.}^2$, $\bar{p}_f = 73 \text{ lb/in.}^2$, $w_f = 19.2\%$. Note that w increased slightly during shear.

Fig. 21.5 Results of CD tests on overconsolidated Weald clay. $\bar{p}_m = 120 \text{ lb/in.}^2$

GEI	Consultants	Project 801834	Page
Client	BLY LAKE RODERINGIA CO	By G. Williams	Date 4/22/2020
Subject	Dive late read of our an	Checked M. Paster	Date 4/23/20
Subject		Approved C. Masching	Date 4/27/2020
	Estimate Deformations for	spilway (Mardu	si 5 Seed 78)
	for 10000 yr return i'r	Herver PBA= 0.50	g (usas)
	Earthqu	ate M = 6,9, say	7.0
	Ky = 0.235g (see S	eepw results)	
	Ümax = 0.7 (Handen ((91) For PGABase =	0.55)
	for 0/H=1, Kmax(Ur	max = 0.35 [Fig	7)
	$K_{max} = 0.7 \times 0.35 =$	0.2459	
	Ky/Kmax = 0,2359/0.	245 g = 0.96	
	for M7,0 > <1,0	cm (Fig 10)	

* Call assumes PGA @ rock = PGA @ base of dam OK based on Seed, Chang, Dickenson, Bray 1997

13898

JOURNAL OF THE GEOTECHNICAL ENGINEERING DIVISION

SIMPLIFIED PROCEDURE FOR ESTIMATING DAM AND EMBANKMENT EARTHQUAKE-INDUCED DEFORMATIONS

By Faiz I. Makdisi,¹ A. M. ASCE and H. Bolton Seed,² F. ASCE

INTRODUCTION

In the past decade major advances have been achieved in analyzing the stability of dams and embankments during earthquake loading. Newmark (13) and Seed (18) proposed methods of analysis for predicting the permanent displacements of dams subjected to earthquake shaking and suggested this as a criterion of performance as opposed to the concept of a factor of safety based on limit equilibrium principles. Seed and Martin (26) used the shear beam analysis to study the dynamic response of embankments to seismic loads and presented a rational method for the calculation of dynamic seismic coefficients for earth dams. Ambraseys and Sarma (1) adopted the same procedure to study the response of embankments to a variety of earthquake motions.

Later the finite element method was introduced to study the two-dimensional response of embankments (5,7) and the equivalent linear method (21) was used successfully to represent the strain-dependent nonlinear behavior of soils. In addition the nature of the behavior of soils during cyclic loading has been the subject of extensive research (10,20,23,29). Both the improvement in the analytical tools to study the response of embankments and the knowledge of material behavior during cyclic loading led to the development of a more rational approach to the study of stability of embankments during seismic loading. Such an approach was used successfully to analyze the Sheffield Dam failure during the 1925 Santa Barbara earthquake (24) and the behavior of the San Fernando Dams during the 1971 earthquake (25). This method has since been used extensively in the design and analysis of many large dams in the State of California and elsewhere.

Project Engr., Woodward-Clyde Consultants, San Francisco, Calif.

²Prof. of Civ. Engrg., Univ. of California, Berkeley, Calif.

Note.—Discussion open until December 1, 1978. To extend the closing date one month, a written request must be filed with the Editor of Technical Publications, ASCE. This paper is part of the copyrighted Journal of the Geotechnical Engineering Division, Proceedings of the American Society of Civil Engineers, Vol. 104, No. GT7, July, 1978. Manuscript was submitted for review for possible publication on August 30, 1977.

average acceleration for a potential sliding mass extending to a specified depth, y.

It would be desirable to establish a relationship showing the variation of the maximum acceleration ratio, k_{max}/\ddot{u}_{max} , with depth for a range of embankments and earthquake loading conditions. It would then be sufficient, for design purposes, to estimate the maximum crest acceleration in a given embankment due to a specified earthquake and use this relationship to determine the maximum average acceleration for any depth of the potential sliding mass. A simplified procedure to estimate the maximum crest acceleration and the natural period

FIG. 5.—El Centro Record (12): (a) Variation of Maximum Average Acceleration with Depth of Sliding; (b) Variation of Ratio of Average Acceleration to Maximum Crest Acceleration with Depth of Sliding Surface

FIG. 6.—Average of Eight Strong Motion Records (1): (a) Variation of Maximum Average Acceleration with Depth of Sliding Mass; (b) Variation of Ratio of Maximum Average Acceleration to Maximum Crest Acceleration with Depth of Sliding Surface

of an embankment subjected to a given base motion is described in Appendix A of Ref. 11.

To determine the variation of maximum acceleration ratio with depth, use was made of published results of response computations using the one-dimensional shear slice method with visco-elastic material properties (1,26). Martin (12) calculated the response of embankments ranging in height between 100 ft-600 ft (30 m-180 m) and with shear wave velocities between 300 fps-1,000 fps (92 m/s-300 m/s). Using a constant shear modulus and a damping factor of 0.2,

DEFORMATIONS

the average acceleration histories for various levels were computed for embankments subjected to ground accelerations recorded in the El Centro earthquake of 1940. The variation of the maximum average acceleration, k_{\max} , with depth for these embankments with natural periods ranging between 0.26 sec-5.22 sec is presented in Fig. 5(a). The maximum average acceleration in Fig. 5(a) is normalized with respect to the maximum crest acceleration and the ratio, k_{\max}/\ddot{u}_{\max} , plotted as a function of the depth of the sliding mass is presented in Fig. 5(b).

Ambraseys and Sarma (1) used essentially the same method reported by Seed and Martin (26) and calculated the response of embankments with natural periods ranging between 0.25 sec and 3.0 sec. They presented their results in terms of average response for eight strong motion records. The variation of maximum average acceleration with depth based on the results reported by Ambraseys and Sarma (1) is shown in Fig. 6(a) and that for the maximum acceleration ratio, k_{max}/\ddot{u}_{max} , is shown in Fig. 6(b). A summary of the results obtained

from the different shear slice response calculations mentioned previously is presented in Fig. 7 together with results obtained from finite element calculations made in the present study. As can be seen from Fig. 7 the shape of the curves obtained using the shear slice method and the finite element method are very similar. The dashed curve in Fig. 7 is an average relationship of all data considered. The maximum difference between the envelope of all data and the average relationship ranges from $\pm 10\%$ to $\pm 20\%$ for the upper portion of the embankment and from $\pm 20\%$ to $\pm 30\%$ for the lower portion of the embankment.

Considering the approximate nature of the proposed method of analysis, the use of the average relationship shown in Fig. 7 for determining the maximum average acceleration for a potential sliding mass based on the maximum crest acceleration is considered accurate enough for practical purposes. For design computations where a conservative estimate of the accelerations is desired the upper bound curve shown in Fig. 7 may be used leading to values that are 10%-30% higher than those estimated using the average relationship.

permanent displacements are shown in Fig. 9(b). For a ratio of $k_y/k_{\rm max}$ of 0.2 the calculated displacements in this case ranged between 30 cm-200 cm (12 in.-80 in.), and for ratios greater than 0.5 the displacements were less than 25 cm (0.8 ft).

In the cases analyzed for the 8-1/4 magnitude earthquake, an artificial accelerogram proposed by Seed and Idriss (21) was used with maximum base accelerations of 0.4 g and 0.75 g. Two embankments were analyzed in this case and their calculated natural periods ranged between 0.8 sec and 1.5 sec. Table 4 shows the details of the calculations and in Fig. 10(a) the results of the permanent displacement computations are presented. As can be seen from Fig. 10(a) the permanent displacements computed for a ratio of k_y/k_{max} of 0.2 ranged between 200 cm-700 cm (80 in.-28 in.), and for ratios higher than 0.5 the values were less than 100 cm (40 in.). Note in this case that values of deformations calculated for a yield ratio less than 0.2 may not be realistic.

An envelope of the results obtained for each of the three earthquake loading

FIG. 10.—Variation of Permanent Displacement with Yield Acceleration: (a) Magnitude 8-1/4 Earthquake; (b) Summary of All Data

conditions is presented in Fig. 10(b) and reveals a large scatter in the computed results reaching, in the case of the magnitude 6-1/2 earthquake, about one order of magnitude.

It can reasonably be expected that for a potential sliding mass with a specified yield acceleration, the magnitude of the permanent deformation induced by a certain earthquake loading is controlled by the following factors: (1) The amplitude of induced average accelerations, which is a function of the base motion, the amplifying characteristics of the embankment, and the location of the sliding mass within the embankment; (2) the frequency content of the average acceleration time history, which is governed by the embankment height and stiffness characteristics, and is usually dominated by the first natural frequency of the embankment; and (3) the duration of significant shaking, which is a function of the magnitude of the specified earthquake.

Thus to reduce the large scatter exhibited in the data in Fig. 10(b), the permanent

GT7

DEFORMATIONS

displacements for each embankment were normalized with respect to its calculated first natural period, T_0 , and with respect to the maximum value, $k_{\rm max}$, of the average acceleration time history used in the computation. The resulting normalized permanent displacements for the three different earthquakes are presented in Fig. 11(a). It may be seen that a substantial reduction in the scatter of the data is achieved by this normalization procedure as evidenced by comparing the results in Figs. 10(b) and 11(a). This shows that for the ranges of embankment heights considered in this study [75 ft-150 ft (50 m-65 m)] the first natural period of the embankment and the maximum value of acceleration time history may be considered as two of the parameters having a major influence on the calculated permanent displacements. Average curves for the normalized permanent displacements based on the results in Fig. 11(a) are presented in Fig. 11(b). Although some scatter still exists in the results as shown in Fig. 11(a), the average curves presented in Fig. 11(b) are considered adequate to provide an order of magnitude of the induced permanent displacements for different

FIG. 11.—Variation of Yield Acceleration with: (a) Normalized Permanent Displacement—Summary of All Data; and (b) Average Normalized Displacement

magnitude earthquakes. At yield acceleration ratios less than 0.2 the average curves are shown as dashed lines since, as mentioned earlier, the calculated displacements at these low ratios may be unrealistic.

Thus, to calculate the permanent deformation in an embankment constructed of a soil that does not change in strength significantly during an earthquake, it is sufficient to determine its maximum crest acceleration, \ddot{u}_{max} , and first natural period, T_0 , due to a specified earthquake. Then by the use of the relationship presented in Fig. 7, the maximum value of average acceleration history, k_{max} , for any level of the specified sliding mass may be determined. Entering the curves in Fig. 11(b) with the appropriate values of k_{max} and T_0 , the permanent displacements can be determined for any value of yield acceleration associated with that particular sliding surface.

It has been assumed earlier in this paper that in the majority of embankments, permanent deformations usually occur due to slip of a sliding mass on a horizontal failure plane. For those few instances where sliding might occur on an inclined Proceedings: Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, March 11-15, 1991, St. Louis, Missouri, Paper No. LP05

Performance of Earth Dams During the Loma Prieta Earthquake

_eslie F. Harder, Jr.

Supervising Engineer, California Department of Water Resources

SYNOPSIS: The October 17, 1989 Loma Prieta Earthquake shook a large number of earth and rockfill dams. There were actually more than 100 dams within 50 miles of the fault rupture associated with this event. Although more than half of these embankments were less than 60 feet in height, a number of major dams were strongly shaken. In general, the dams performed satisfactory with one major dam and one minor dam developing moderate damage. A small number also developed minor to moderate cracking which required repairs. The great majority, however, sustained no significant damage. Although this result is quite encouraging, this thought should be tempered by the fact that the reservoirs in many of these dams were quite low at the time of the earthquake. Thus, the 1989 Loma Prieta Earthquake was not the full test of these structures.

INTRODUCTION

The Loma Prieta Earthquake of October 17, 1989 resulted from a rupture of a segment of the San Andreas Fault near Santa Cruz, California. The rupture was initiated about 15 seconds past 5:04 p.m. local time and at a depth of approximately 11.5 miles. During the next 7 to 10 seconds, the rupture proceeded about 12 miles to the northwest and about 12 miles to the southeast. The fault also ruptured upward, but apparently stopped about 3 to 4 miles below the ground surface. Fault plane solutions for the numerous aftershocks indicated that the fault in the vicinity of this rupture dips to the southwest at an angle of approximately 70 degrees.

This rupture produced an earthquake with a Richter Magnitude $M_{\rm L}$ of 7.0 (assessed by the Seismographic Station at the University of California, Berkeley) and a surface wave magnitude $M_{\rm S}$ = 7.1 (assessed by the U. S. Geological Survey). It represented the largest earthquake in the San Franciso/Santa Cruz area since the great 1906 San Francisco Earthquake of magnitude 8+. The 1989 fault rupture occurred along a portion of the San Andreas Fault segment which ruptured during the 1906 earthquake.

The duration of strong shaking for this earthquake was generally between 7 and 10 seconds, considerably less than that usually associated with a magnitude 7 event. It has been speculated that this short duration was a result of the central location of the earthquake's focal point and its bi-directional rupture pattern (see Seed et al., 1990). highest horizonal acceleration recorded The was 0.64g and was measured at the Corralitos station located adjacent to the surface expression of the fault and only a few miles from the opigenter formation the adjacenter Seismographs in the epicentral area epicenter. recorded relatively high vertical also accelerations that were comparable to those At the recorded in the horizontal direction. Capitola recording station, the peak vertical acceleration was 0.60g whereas the peak horizontal acceleration was 0.54g.

CHARACTERISTICS OF AFFECTED EARTH DAMS

Presented in Figure 1 is a plot showing the epicenter and fault rupture associated with the 1989 Loma Prieta Earthquake. Also shown in this figure are the locations of 111 earth dams found within 50 miles of the fault rupture. The majority of these dams are essentially homogeneous earth dams. The heights and completion dates for these dams are presented in Tables 1 and 2.

Table 1: Maximum Heights of Affected Earth Dams

Maximum Height (feet)	1	Number of Dams
< 10	1	1
11 - 20	1	7
21 - 40]	31
41 - 60	1	24
61 - 80	1	16
81 - 100	1	8
101 - 150		14
151 - 200	1	5
201 - 250	ł	4
251 - 300	ļ	0
301 - 350	1	1

TOTAL 111 dams

The final step in the process was to calculate a safety against triggering F_1 , using the results from factor of liquefaction, F_1 , using the results from Equations 1 and 2 as shown below in Equation 3:

$$F_{L} = \frac{(\tau/\sigma_{0}')_{L}}{(\tau/\sigma_{0}')_{avg}}$$
(3)

The application of these equations are illustrated in Table 5 for the two suspect sites. As shown in this table, the calculated against triggering safety factors of liquefaction are between 1.2 and 1.5. These predicted factors of safety correspond very well with the observation of no damage at this dam.

Predicted Factors of Safety Against Table 5: Triggering Liquefaction at O'Neill Dam

STATION 100 SITE: CRITICAL DEPTH = 9 FEET DEPTH TO WATER = 3 FEET

AVERAGE CORRECTED SPT (N1)60	FINES CONTENT (%)	σ _o (psf)	σ ₀ ' (psf)	(*/go') _{M=7.5}	(7/0 ₀ ')	(*/°°') _{avg}	FL
8	15	1125	751	0.135	0.161	0.105	1.53

STATION 133 SITE: CRITICAL DEPTH = 7.5 FEET DEPTH TO WATER = 2 FEET

AVERAGE CORRECTED SPT (N1)60	FINES CONTENT (%)	σ _ο σ _ο ' (psf) (psf		(7/0°)M=7.5	(<i>۲/σ</i> °,)۲	(*/o_') _{avg}	۴L	
10	5	938	594	0.110	0.131	0.111	1.18	

STRONG MOTIONS RECORDED ON EMBANKMENT DAMS

The 1989 Loma Prieta Earthquake provided an excellent opportunity to calibrate dynamic response techniques. As illustrated in Table 6, strong motion records were recorded at eight embankment dams.

Presented in Figure 19 is a plot comparing the peak transverse accelerations measured at both the base and crest of several earth and rockfill These measurements include those made dams. during the Loma Prieta earthquake as well as those made during previous events. As may be observed, the points indicate that at low amplification through accelerations, the embankment dams is relatively large. However, as the peak base accelerations become larger, the amount of amplification is relatively low, possibly a result of increased damping or yielding of embankment materials. Also shown in Figure 19 is a tentative upper bound curve. This curve should not necessarily be used for design purposes, but it may be useful as a verification tool in the performance of dynamic response analyses.

Peak Accelerations Measured on Earth Table 6: Dams During the Loma Prieta Earthquak

 [MAX.	PEAK ACCELERATIONS (g)																	
DAM	HEIGHT	SHT BA			BASE	SE			ABUTMENT				1	CREST					
]	(feet)	Ī	Т	1	L	1	V	I	T	T	L	1	v	1	T	1	L		v
	205	1	-	1	-	1	-	I	.45	ŧ	.41	I	.15	I	.39	I	.40	I	.22
LEAINGTON	205	i	-	Ì	-	Ì	-	ł	-	1	•	I	-	1	.45	l	.34	I	. 20
SAN JUSTO*	135	ł	. 26	1	. 16	1	-	I	-	I	-	l	-	I	.50	I	. 39	1	.32
		1	.26	1	.25	I	.17	1	.07	1	.08	1	.05	1	.39	1	. 26	I	. 19
LEROY ANDERSON*	235	I	.23	1	.18	1	.16	ł	-	1	-	I	-	1	.43	1	.32	T	.16
		Ì	-	ł	-	İ	-	l	-	Ì	-	I	-	I	.38	1	.32	1	.23
	242	1	.04	I	.06	1	.02	1	-	1		1	-	1	.26	1	. 18	1	.04
SAN LUIS		ł	-09	1	.09	I	.03	I	-	1	-	ļ	-	I	. 14	I	. 17	ł	.05
	1 70	1	.08	1	.11	1	.06	ł	-	I	-	I	-	1	.12	1	. 14	1	.06
O'NEILL	1	i	-	i	-	i	-	i	-	i	•	İ	•	i	.15	Ì	.10	I	.06
MARTINEZ	54	1	.09	1	.07	t	.02	1	-	1	-	١	•	I	.13	j	.15	1	.03
DEL VALLE	222	I	.04	I	.06	1	.03	1	-	1	•	1	-	1	.08	I	.08	1	.07
CONTRA LOMA] 88	I	•	1	-	I	-	1	-	I	-	1	•	1	.07	1	.05	ł	.03

NOTES: * DENOTES THAT OTHER RECORDS ARE AVAILABLE AT THIS DAM

T DENOTES TRANSVERSE DIRECTION

L DENOTES LONGITUDINAL DIRECTION DENOTES VERTICAL DIRECTION v

Transverse Accelerations Measured ai Earth Dams (from Harder et al, 1990)

Site-Dependent Seismic Response Including Recent Strong Motion Data

R.B. Seed University of California at Berkeley, USA

S.W. Chang Washington State University, Pullman, USA

S.E. Dickenson Oregon State University, USA

J.D. Bray

1

University of California at Berkeley, USA

Seed, R. B., Chang, S. W., Dickenson, S. E., and Bray, J. D. (1997) "Site-Dependent Seismic Response Including Recent Strong Motion Data." Proc., Special Session on Earthquake Geotechnical Engineering, XIV International Conf. On Soil Mechanics and Foundtion Engineering, Hamburg, Germany, A. A. Balkema Publ., Sept. 6-12, pp. 125-134.

ABSTRACT: This paper presents a brief summary of recently completed studies of site-dependent seismic site response incorporating the wealth of strong motion data provided by recent earthquakes. The empirical data, results of back analyses of various strong motions recording sites, and analyses of the response of sites to various design levels of shaking are combined to develop recommendations for site classification, prediction of site-dependent amplification, and site-dependent design spectra. The adequacy of current U.S. building codes and provisions in addressing site-dependent site response is assessed in light of the strong motion data from these recent earthquakes.

INTRODUCTION

In recent years, the importance of site effects on seismic site response has been repeatedly demonstrated during earthquakes such as Mexico City (1985), Armenia (1988), Loma Prieta (1989), the Philippines (1990), Northridge (1994), and Hyogo-ken Nanbu (1995). This paper presents a brief overview of recently completed studies on the seismic response of (a) soft cohesive sites (b) deep, stiff cohesive sites, and (c) deep, stiff cohesionless soil sites which incorporate the wealth of empirical data and analytical results, principally from the Loma Prieta and Northridge Earthquakes (Chang, 1996 and Dickenson, 1994).

The results of these studies were used to develop recommendations for site classifications and sitedependent design spectra for code-based design. The resulting recommendations are then compared with the design levels recommended by the 1994 Uniform Building Code (UBC) and the 1994 National Earthquake Hazards Reduction Program (NEHRP) Provisions.

Maps of the areas affected by the Loma Prieta and Northridge earthquakes are presented in Figure 1 and Figure 2, respectively. The locations of strong motion stations are shown, along with a simplified overview of the regional geology. In Figure 1, soft and deep cohesive soil sites are primarily located along the San Francisco Bay margins; deep stiff soil sites of interest are generally located in the East Bay (Oakland) area. The soil sites in Figure 2 are predominantly deep stiff soil sites.

2 SOFT AND DEEP COHESIVE SOILS

Strong motion records were obtained at ten soft and/or deep cohesive soil sites throughout the San Francisco Bay region during the Loma Prieta earthquake for moderate levels of shaking (A_{max} = 0.14g to 0.33g). Dickenson (1994) back-analyzed these sites and developed one-dimensional site response models using both equivalent linear (SHAKE90) and fully nonlinear (MARDESRA) analysis methods. SHAKE90 is a slightly modified version of the original SHAKE (Schnabel et al., 1972), and MARDESRA is similar to DESRA-2 (Lee and Finn, 1978) except that the dynamic properties of the soil are represented by the Martin-Davidenkov (Martin, 1975) model. The predictive capabilities of these methods can be excellent, as illustrated in the following analysis of Treasure Island, one of the ten soft and/or deep cohesive soil sites of interest.

The generalized soil profile for Treasure Island (TI), shown in Figure 3, indicates that the site consist, cf loose sandy fill and loose silty sand Table1: Proposed Site Classification System

Class	Condition	General Description	Site Characteristics
(A_0)	A	Very hard rock	V_{s} (avg.) > 5,000 ft/s in top 50 ft.
Α	Α,	Competent rock with little or no soil and/or weathered rock veneer.	2,500 ft/s \leq V _s (rock) \leq 5,000 ft/s, and Hsoil+weathered rock \leq 40 ft with V _s $>$ 800 (in all but the top few feet ³).
AB	AB	Soft, fractured and/or weathered rock.	For both AB ₁ and AB ₂ : 40 ft \leq Hsoil+weathered rook \leq 150 ft and
	AB ₂	Stiff, very shallow soil over rock and/or weathered rock.	$V_s \ge 800$ ft/s (in all but the top few feet ³).
В	B ₁	Deep, primarily cohesionless 4 soils. (H _{soil} \leq 300 ft.)	No "soft clay" (see Note 5), and Hephenive soil ≤ 0.2 Hephenively soil
1	B ₂	Medium depth, stiff cohesive soils and/or mix of cohesionless with stiff cohesive soils; no "soft clay".	Hall soils ≤ 200 ft, and V _s (cohesive soils) > 500 ft/s (see Note 5).
•	Cı	Medium depth, stiff cohesive soils and/or mix of cohesionless with stiff cohesive soils; thin layer(s) of soft clay.	Same as B_2 above, except 0 ft < $H_{soft clay} \le 10$ ft (see Note 5).
С	C ₂	Very deep, primarily cohesionless soils.	Same as B ₁ above, except H _{soil} > 300 ft.
inder Busce	C ₃	Deep, stiff cohesive soils and/or mix of cohesionless with stiff cohesive soils; no "soft clay".	$H_{soil} > 200 \text{ ft, and}$ V _s (cohesive soils) > 500 ft/s
i loss	C ₄	Soft, cohesive soil at small to moderate levels of shaking.	10 ft \leq H _{soft clay} \leq 100 ft, and A _{max,rock} \leq 0.25 g
D	D ₁	Soft, cohesive soil at medium to strong levels of shaking.	10 ft \leq H _{soft clay} \leq 100 ft, and 0.25 g $<$ A _{max,rock} \leq 0.45 g, or (0.25 g $<$ A _{max,rock} \leq 0.55 g and M \leq 7-1/
11: 19	E ₁	Very deep, soft cohesive soil.	$H_{soft clay} > 100 \text{ ft}$ (see Note 5).
(E) ⁶	E ₂	Soft, cohesive soil and very strong shaking.	H _{soft clay} > 10 ft and either: A _{max,rock} > 0.55 g, or A _{max,rock} > 0.45 g and M > 7-1/4
	E ₃	Very high plasticity clays.	$H_{clay} > 30$ ft with PI > 75% and $V_s < 800$ ft/s
hores	F	Highly organic and/or peaty soils.	H > 20 ft of peat and/or highly, organic soils
(F) ⁷	F ₂	Sites likely to suffer ground failure due either to significant soil liquefaction or other potential modes of ground instability.	Liquefaction and/or other types of ground failure analysis required.

1. H= total (vertical) depth of soils of the type or types referred to.

2. V_s=seismic shear wave velocity (ft/sec) at small shear strains (shear strain ~ 10⁻⁴%)

3. If surface soils are cohesionless, V, may be less than 800 ft/sec in top 10 feet.

4. "Cohesionless soils" = soils with less than 30% "fines" by dry weight. "Cohesive soils" = soils with more than 30% "fines" by dry weight, and 15% < PI (fines) < 90%. Soils with more than 30% fines, and PI (fines) < 15% are considered "silty" soils herein, and these should be (conservatively) treated as "cohesive" soils for site classification purposes in this Table.</p>

5. "Soft Clay" is defined as cohesive soil with: (a) Fines content $\geq 30\%$, (b) PI(fines) $\geq 20\%$, and (c) V_s ≤ 500 ft/s.

6. Site-specific geotechnical investigations and dynamic site response analyses are strongly recommended for these conditions. Response characteristics within this Class (E) of sites tends to be more highly variable than for Classes A_o through D, and the response projections herein should be applied conservatively in the absence of (strongly recommended) site-specific studies.

7. Site-specific geotechnical investigations and dynamic site response analyses are *required* for these conditions. Potentially significant ground failure must be mitigated, and/or it must be demonstrated that the proposed structure/facility can be engineered to satisfactorily withstand such ground failure.

Figure 11: Relationship for A_{max}, vs. A_{max, rock} for deep stiff soil sites based on available empirical data from the Loma Prieta and Northridge Earthquakes and calculations using both equivalent linear and fully nonlinear site response methods (modified from Chang, 1996).

U.S. Geological Survey - Earthquake Hazards Program

Unified Hazard Tool

Please do not use this tool to obtain ground motion parameter values for the design code reference documents covered by the <u>U.S. Seismic Design Maps web tools</u> (e.g., the International Building Code and the ASCE 7 or 41 Standard). The values returned by the two applications are not identical.

∧ Input	
Edition	Spectral Period
Dynamic: Conterminous U.S. 2014 (upda	Peak Ground Acceleration
Latitude	Time Horizon
Decimal degrees	Return period in years
39.804	10000
Longitude	
Decimal degrees, negative values for western longitudes	
-106.264	
Site Class	
760 m/s (B/C boundary)	

Component

Summary statistics for, Deaggreg	ation: Total
Deaggregation targets	Recovered targets
Return period: 10000 yrs	Return period: 9938.763 yrs
Exceedance rate: 0.0001 yr ⁻¹ PGA ground motion: 0.49721063 g	Exceedance rate: 0.00010061614 yr ⁻¹
Totals	Mean (over all sources)
Binned: 100 %	m: 6.08
Residual: 0 %	r: 11.9 km
Trace: 0.52 %	ε ₀ : 0.43 σ
Mode (largest m-r bin)	Mode (largest $m-r-\varepsilon_0$ bin)
m: 6.9	m: 6.9
r: 2.82 km	r: 2.28 km
ε ₀ : -0.04 σ	ε ₀ : -0.19 σ
Contribution: 13.04 %	Contribution: 7.85 %
Discretization	Epsilon keys
r: min = 0.0, max = 1000.0, ∆ = 20.0 km	ε0: [-∞2.5)
m: min = 4.4, max = 9.4, Δ = 0.2	ε1: [-2.52.0)
ε: min = -3.0, max = 3.0, Δ = 0.5 σ	ε2: [-2.01.5)
	ε3: [-1.51.0]
	E4: [-1.00.5) s5: [-0.500]
	ε6: [0.00.5]
	ε7: [0.5 1.0)
	ε8: [1.01.5)
	ε9: [1.52.0)
	ε10: [2.02.5)
	ε11: [2.5+∞]

Deaggregation Contributors

Source Set 😝 Source	Туре	r	m	ε ₀	lon	lat	az	%
SSCn Fixed Smoothing Zone 9 (opt)	Grid							20.46
PointSourceFinite: -106.264, 39.916		12.82	5.48	0.47	106.264°W	39.916°N	0.00	6.59
PointSourceFinite: -106.264, 39.826		5.56	5.22	-0.32	106.264°W	39.826°N	0.00	4.05
PointSourceFinite: -106.264, 39.871		8.77	5.31	0.11	106.264°W	39.871°N	0.00	2.40
PointSourceFinite: -106.264, 40.006		21.09	5.89	0.83	106.264°W	40.006°N	0.00	2.30
PointSourceFinite: -106.264, 39.961		16.97	5.68	0.70	106.264°W	39.961°N	0.00	1.94
USGS Fixed Smoothing Zone 3 (opt)	Grid							20.46
PointSourceFinite: -106.264, 39.916		12.82	5.48	0.47	106.264°W	39.916°N	0.00	6.59
PointSourceFinite: -106.264, 39.826		5.56	5.22	-0.32	106.264°W	39.826°N	0.00	4.05
PointSourceFinite: -106.264, 39.871		8.77	5.31	0.11	106.264°W	39.871°N	0.00	2.40
PointSourceFinite: -106.264, 40.006		21.09	5.89	0.83	106.264°W	40.006°N	0.00	2.30
PointSourceFinite: -106.264, 39.961		16.97	5.68	0.70	106.264°W	39.961°N	0.00	1.94
Geologic Model Full Rupture	Fault							14.09
Gore Range frontal 50		2.06	6.95	-0.04	106.295°W	39.797°N	253.81	6.21
Williams Fork Mountains 50		10.86	6.53	1.71	106.154°W	39.854°N	59.16	2.27
Gore Range frontal 35		1.56	6.95	-0.15	106.295°W	39.797°N	253.81	2.23
Gore Range frontal 65		2.43	6.95	0.09	106.295°W	39.797°N	253.81	1.88
Geologic Model Partial Rupture	Fault							11.79
Gore Range frontal 50		2.54	6.71	0.16	106.295°W	39.797°N	253.81	6.22
Gore Range frontal 65		2.92	6.71	0.21	106.295°W	39.797°N	253.81	2.01
Gore Range frontal 35		2.34	6.71	0.18	106.295°W	39.797°N	253.81	1.96
SSCn Adaptive Smoothing Zone 9 (opt)	Grid							9.78
PointSourceFinite: -106.264, 39.916		12.82	5.48	0.47	106.264°W	39.916°N	0.00	2.97
PointSourceFinite: -106.264, 39.826		5.56	5.22	-0.32	106.264°W	39.826°N	0.00	1.87
PointSourceFinite: -106.264, 40.006		21.09	5.89	0.83	106.264°W	40.006°N	0.00	1.11
PointSourceFinite: -106.264, 39.871		8.77	5.31	0.11	106.264°W	39.871°N	0.00	1.02
USGS Adaptive Smoothing Zone 3 (opt)	Grid							9.78
PointSourceFinite: -106.264, 39.916		12.82	5.48	0.47	106.264°W	39.916°N	0.00	2.97
PointSourceFinite: -106.264, 39.826		5.56	5.22	-0.32	106.264°W	39.826°N	0.00	1.87
PointSourceFinite: -106.264, 40.006		21.09	5.89	0.83	106.264°W	40.006°N	0.00	1.11
PointSourceFinite: -106.264, 39.871		8.77	5.31	0.11	106.264°W	39.871°N	0.00	1.02
Bird Model Full Rupture	Fault							5.25
Gore Range frontal 50		2.06	6.95	-0.04	106.295°W	39.797°N	253.81	2.68
Bird Model Partial Rupture	Fault							4.73
Gore Range frontal 50		2.54	6.71	0.16	106.295°W	39.797°N	253.81	2.68
Zeng Model Full Rupture	Fault							1.92
Zeng Model Partial Rupture	Fault							1.65

Memo

To:	Bruce Collins, Restruction Corporation
From:	Chad Masching, P.E., Project Manager
	Jim Niehoff, P.E., Reviewer
CC:	Summit Trust
Date:	February 16, 2018
Re:	Upper Black Creek Spillway Geotechnical Investigation

GEI Consultants, Inc. (GEI) completed a geotechnical exploration at the Upper Black Creek Reservoir on December 28, 2017. The field work included subsurface drilling adjacent to and upstream of the spillway. Restruction Corporation (Restruction) was onsite to oversee the subsurface study and provided coring assistance through the spillway concrete slab to allow extraction of soil samples below the slab. This document summarizes the results of the exploration and associated laboratory testing program.

1. Background

The Upper Black Creek Reservoir is located approximately 24 miles northwest of Silverthorne, in Summit County, Colorado. Restruction, under contract to Summit Trust (Trust), was tasked with evaluating the condition of the concrete spillway structure and with developing options for restoration or replacement of the spillway. As part of the evaluation, Restruction evaluated the condition of the concrete by coring through the spillway concrete slab at five locations. Two cores were extracted from the upper portion of the spillway, two cores were extracted from the middle third of the structure, and one core was removed from near the bottom of the slab. After completing the lowest core, seepage exiting the core hole was noted, indicating a build-up of hydrostatic pressure under the slab.

The State Engineer's Office (SEO) met with Restruction and the Trust's dam tender on November 3, 2017 to discuss the observed spillway condition and the results of the concrete evaluation. Following this meeting, the SEO placed a storage restriction on the reservoir until improvements to the spillway could be made and recommended that a geotechnical investigation be performed to assist in the assessment of the spillway. Restruction contracted with GEI to perform the geotechnical study to aid in evaluating the spillway sub-surface condition.

2. Subsurface Exploration

2.1 Methods

GEI employed the services of Elite Drilling Services, LLC (Elite) to advance Hollow Stem Auger (HSA) borings through the spillway abutment and upstream of the spillway under the direction of the GEI geotechnical engineer. The exploration program included 4 locations, shown in Figure 1 below.

Figure 1: Approximate investigation locations (image by Google Earth, 2017)

Elite used a track-mounted CME 850 drill rig to advance the borings and collected continuous samples using Standard Penetration Tests (SPT) following ASTM D 1586-11. The boreholes were advanced to the depths of auger refusal, then were backfilled with bentonite chips above groundwater or coated bentonite pellets below the water table. Photo 1 shows drilling activities upstream of the spillway apron.

Photo 1: Track rig set up at borehole B2 upstream of the spillway apron

Restruction subsequently cored through two of the previous core holes located in the middle third of the spillway chute, known in the original Restruction report as Core Holes 3 and 4. GEI used a hand auger to collect soil samples from below the concrete slab at these locations. Photo 2 shows the difficult conditions encountered during the concrete coring.

Photo 2: Coring through concrete slab

2.2 Exploration Results

Boring B-1 was advanced through the left abutment (facing downstream) of the spillway, offset about 7 feet from the spillway walls to reduce the risk of intercepting the concrete wall footing. The hole was continuously sampled to a depth of 12 feet before auger refusal was encountered. Elite backfilled the borehole with bentonite chips and moved left (north) about 3 feet in an attempt to extend the boring to greater depth. The second attempt was planned to auger down to 12 feet before resuming sampling. However, auger refusal was encountered at 3 feet below ground surface (bgs). Due to the time of day and limited area to target another borehole in the abutment, it was decided to halt the drilling in the abutment and begin drilling upstream of the spillway.

Boring B-2 was located about 5 feet upstream of the concrete spillway apron. Continuous sampling was performed until refusal was encountered at a depth of 6 feet bgs. The test location was shifted an additional 5 feet upstream and continuous sampling was restarted at 6 feet and continued to a depth of 24 feet bgs. Both holes were abandoned using bentonite chips, with coated bentonite pellets used below the water table.

Both hand auger holes were advanced to a depth of about 2 feet below the bottom of concrete before encountering auger refusal. These core holes were filled with bentonite chips up to the bottom of the concrete. A repair concrete was utilized by Restruction to backfill the concrete section through the slab.

2.3 Subsurface Conditions

Based on the soil recovered in borehole B-1 located on the left spillway abutment, the spillway side walls appear to have been backfilled with a clayey sand material with cobbles within the soil matrix. Large cobbles were also observed along the edge of the spillway and downstream of the stilling basin. The clayey sand was judged to be medium dense, based on Standard Penetration Test (SPT) blow counts during the sampling. A loose zone of clayey sand was noted between 2 and 4 feet below the top of the dam.

Borehole B-2, drilled upstream of the spillway, recovered foundation soils consisting of a combination of medium dense to dense, clayey and silty sand with a large proportion of cobbles. During the drilling, cobbles up to 6 inches in diameter were observed in the auger cuttings.

Soils extracted in the two hand auger boreholes within the spillway chute were similar in composition to that encountered in borehole B-2, except more gravel was observed within the soil matrix. Samples retrieved at these two locations consisted of silty sands with gravels to clayey sands with gravels. Cobbles up to four inches were removed from both core holes. The concrete thickness was 12 to 13 inches.

At the Core Hole 3 location, a potential 3-inch void was noted under the spillway concrete. The concrete core removed at this location also had a "mushroom" shape, suggesting that the concrete replacing Restruction's initial core hole may have filled this void (see Photo 3). However, because Restruction did not note any voiding below the slab during their concrete investigation, the void observed by GEI could have been the result of multiple core extractions at the core location.

Photo 3. View of the mushroom shape of the concrete core removed from Core Hole 3

Logs of the geotechnical investigation are provided in Attachment 1.

2.4 Laboratory Testing

Representative soil samples from the geotechnical exploration were selected for laboratory testing, which was completed by Hollingsworth Associates, Inc under contract to GEI. Five samples were selected to characterize the range of soil types and properties of the materials encountered in the foundation and adjacent to the spillway. Tests included Grain Size Analysis (ASTM D 6913) and Atterberg Limits (ASTM D 4318 Method A). Soils were generally classified as clayey sands and silty sands. These test results are summarized in Table 1 and are provided in Attachment 2.

Sample L	ocation	Natural		Gradation		Atterbe	erg Limits
Boring	Depth (feet bgs)	Moisture Content (%)	Gravel (%)	Sand (%)	Fines (%)	Liquid Limit	Plasticity Index
B1	6-8	5	13	44	43	27	11
B2	4-5	8.3	16	58	26	23	8
B2	10.9-12.6	7.3	18	60	22		NP
Core Hole 3	1.3-1.8	18.2*	23	49	28		NP
Core Hole 4	1.8-2.5	8.6	19	60	21		NP

Table 1. Summary of Laboratory Testing

*Sample from Core Hole 3 was saturated, potentially as a result of coring activities

It should be noted that the split barrel sampler could not retrieve cobbles or large gravel. Consequently, the grain size analyses likely under-estimates the coarser constituents of the soil.

3. Conclusions

The encountered spillway soils consisted primarily of clayey sands or silty sands. Cobbles were encountered in all investigation locations and should be assumed to exist throughout the spillway backfill and native foundation soils. Bedrock was not encountered in any of the boreholes to the termination depths. Zones of clean sand (little silt or clay) were observed at the hand auger locations beneath the spillway chute slab. This clean sand could indicate that fine clay and silt particles have washed out due to prolonged periods of seepage below the concrete slab.

During Restruction's concrete coring investigation, water was observed to emanate from the lowest concrete corehole in the spillway chute. This flowing water indicates a build-up of hydrostatic pressure below the slab. This water could be the result of development of preferential seepage paths below the spillway or could be attributed to the sandy nature of the foundation soils. Because the spillway slab is not anchored into the foundation rock, this uplift pressure reduces the net weight of the concrete and could lead to movement of the slab during spillway operations. Additionally, the water under the slab can lead to freeze/thaw

heave of the structure. Spillway modifications should be completed which include construction of drainage provisions under the concrete slab.

The SEO has assisted the Trust in refining the previously completed hydrology study. This study indicated that the existing spillway does not have adequate capacity to pass the current Inflow Design Flood. GEI understands that the SEO is currently updating its hydrologic methodologies for high elevation dams. We recommend that the adequacy of the spillway to pass the Inflow Design Flood be reassessed once these SEO updates are available. If the new regulations significantly reduce the storm routing requirements and the spillway can be shown to pass the required storm inflow, options to rehabilitate the current spillway can be considered. If the spillway is still shown to be deficient in hydraulic capacity with these new guidelines, a replacement structure with a larger or more efficient spillway section should be assumed.

The soil properties obtained during the 2017 geotechnical investigation can be used for determining the adequacy of the existing upstream cutoff, designing underdrains, and for assessing the stability of the existing or proposed structure.

Attachment 1 Upper Black Creek Geotechnical Investigation Boring Logs

BORI	NG II	NFC	RMATI	ON						RODING
STATI	ON:						OFFSET:			DURING
GROU	ND S	URF	ACE EL	. (ft):NM			DATE START/END:	12/28/	2017 - 12/28/2017	D 4
VERTI	CAL	DAT	'UM:				DRILLING COMPANY:	Elit	e Drilling Services, LLC	B-1
TOTAL		PTH	(ft): <u>1</u>	2.4				an Wes	stbrook	_
LUGG	ED B	Υ:	Joel Ja	CKSON			KIG I YPE: CME 850	I FACK		PAGE 1 of 1
DRILL	ING	INF	ORMA	ΓΙΟΝ						
HAMM	IER T	TYPE	: Auto	omatic			CASING I.D./O.D.: N	IA/ NA	CORE BAR	REL TYPE:
AUGE	R I.D.	./0.0).: 4.2	5 inch / 7.6	25 inch		DRILL ROD O.D.: N	М	CORE BAR	RREL I.D/O.D: NA / NA
DRILL	ING	MET	HOD:	Hollow Ste	m Auger					
WATE	R LE	VEL	DEPTH	5 (ft): No	t measured	ł				
ABBR	EVIA [.]	TION	IS: Pe Re R(n. = Penetral c. = Recover QD = Rock Qu = Length o OR = Weight	tion Length y Length uality Design f Sound Core of Rods	ation es>4 in / Pen	S = Split Spoon Sample C = Core Sample U = Undisturbed Sample B = Bag Sample DP = Direct Push Sample		Qp = Pocket Penetrometer Strength Sv = Pocket Torvane Shear Strength LL = Liquid Limit PI = Plasticity Index PID = Photoionization Detector	NA, NM = Not Applicable, Not Measur Blows per 6 in.: 140-lb hammer falling 30 inches to drive a 2-inch-O.D. split spoon sampler.
		-	W	OH = Weight	of Hammer		HSA = Hollow-Stem Auge	r I	I.D./O.D.= Inside Diameter/Outside D	iameter OVM = Organic Vapor Meter
				Sample In	Tormation		-	Log		
Elev. (ft)	Dep (ft	oth t)	Sample No.	e Depth (ft)	Pen./ Rec. (in)	Blows per 6 in. or RQD	Drilling Remarks/ Field Test Data	Graphic	Soil and	Rock Description
	_	1	S1	0 to 2	24/13	15-8-5-4	PP = 4.25 Then Sample Broke		CLAYEY SAND (SC): brown, med plastic fines, organics (r CLAYEY GRAVEL (GC): bro 20% fine-med sand, 15% me	moist, 65% fine-coarse sand, 35% oots up to 1/8" diameter) wn, moist, 65% fine-coarse gravel, ed plastic fines
	F	3	S2	2 to 4	24/15	5-4-3-6			CLAYEY SAND (SC): brown, med plastic fines CLAYEY GRAVEL (GC): brown	moist, 65% fine-coarse sand, 35%
	-	4		4	24/14	12-12-8-	-		20% fine-med sand, 15% me CLAYEY SAND (SC): brown,	d plastic fines moist, 65% fine-coarse sand, 35%
	-	5		to 6		6			med plastic fines SILTY SAND (SM): brown, m non-plastic fines	oist, 75% fine-med sand, 25%
	F	6	S4	6	24/13	7-8-4-4	1		Coarse Gravel or Cobble Pie	ces
	F	7		to 8					CLAYEY SAND (SC): brown, sand, 43% low plastic fines, l CLAYEY GRAVEL (GC) lens	moist, 13% gravel, 44% fine-med L=27, PI= 11, Moisture= 5.0% e: white, moist, 85% coarse gravel.
		9	S5	8 to	24/11	11-28- 15-7			1 15% low plastic fines CLAYEY SAND (SC) as above	
		10		10			4		Coarse Gravel or Cobble Pie SILTY SAND (SM): brown, m	ces oist, 75% fine-med sand, 25% non to
	L	11	<u></u>	-1 to	5/5	50/5"	Nails and metal fragments	<u>7.7.73</u>	Low-plastic fines	moist. 10% fine gravel 65% fine-mer
	Γ	11		10.4	1		were recovered in sample.		sand, 25% low plastic fines	
	F	12					formwork used to construct			
	F	13					the spillway. No concrete fragments were observed.		Auger Refusal at 12', Driller f couldn't advance past.	elt he was on a cobble/boulder that he
	F	14								
	-	15								
	F	16								
		17								
		10								
		20								
		21								
		22								
	-	23								
NOTES	 S:							PRO.	JECT NAME: Upper Black Cree	ĸ
								CITY GEI I	/STATE: Heeney, Colorado PROJECT NUMBER: 1705095	

BORI	NG INFO	ORMATIO	N						
STATI	ON:					OFFSET:			BOUING
GROU	ND SURI	FACE EL. (1	ft): <u>NM</u>			DATE START/END: _1	2/28/2	2017 - 12/28/2017	PJ
VERTI		TUM:	0			DRILLING COMPANY:	Elite	brilling Services, LLC	BZ
		loel lack	9 (son			DRILLER NAME:	rack	SLDTOOK	
2000			0011				Tuok		PAGE 1 of 2
DRILL	ING IN	ORMATI	<u>ON</u>						
HAMM	IER TYP	E: Auton	natic			CASING I.D./O.D.: NA	V NA	CORE BAR	REL TYPE:
AUGE	R I.D./O.I	D.: <u>4.25</u>	inch / 7.62	25 inch		DRILL ROD O.D.: NN		CORE BARI	REL I.D/O.D: <u>NA / NA</u>
	R I FVFI	DEPTHS	(ff)· ▼ 1	n Auger 16.0 12/28	/2017				
			(. .). <u>-</u>	1010 12/20	2011				
ABBR	EVIATIO	NS: Pen. Rec.	= Penetrati	ion Length / Length		S = Split Spoon Sample C = Core Sample		Qp = Pocket Penetrometer Strength Sy = Pocket Torvane Shear Strength	NA, NM = Not Applicable, Not Measured
		RQD	= Rock Qu	ality Design	ation	U = Undisturbed Sample		LL = Liquid Limit	30 inches to drive a 2-inch-O.D.
		WOF	R = Weight	of Rods	2574 III / Peli	DP = Direct Push Sample		PI = Plasticity index PID = Photoionization Detector	split spoon sampler.
		WO	H = Weight	of Hammer		HSA = Hollow-Stem Auger		I.D./O.D.= Inside Diameter/Outside Dia	ameter OVM = Organic Vapor Meter
		S	ample Inf	formation			bo-		
Elev.	Depth	Sample	Depth	Pen./	Blows	Drilling Remarks/	hic	Soil and F	Rock Description
(11)	(11)	No.	(ft)	Rec.	per 6 in.	Field Test Data	Grap		
				(11)	UINQD				
		S1*	0 to	24/18	16-13-			SILTY SAND (SM): moist, bro	wn, 70% fine-med sand, 30% low
			2		13-10			CLAYEY SAND W/ GRAVEL (SC): moist, dark brown, 25%
	- 2		2	0.4/7	40.05			fine-coarse gravel, 45% fine s	
	- 3	S2^	to	24/7	13-25-	Rig chatter observed in the	60	POORLY GRADED GRAVEL	w/ SILT (GP-GM): moist, 80% coarse sand 10% fines
	Ĵ		-			ft		Coarse gravel in shoe (possib	ly a cobble that was drilled through)
	- 4	S3*	4	16/12	5-6-50/4"			CLAYEY SAND (SC): moist, d	ark brown, 16% fine gravel, 58%
	- 5		to 5.3			Cuttings observed contained cobbles up to 6 inches in		fine-med sand, 26% med plas Moisture=8.3%	tic fines, LL=23, PI= 8,
	6					size. Shoe material was		Shoe material transitioned into	silty sands, tip was small granite
		S1	6 to	24/15	21-17-	(SM) and the tip was coated		Auger refusal at 6.5'	/ //
	- 7		8		11-11	with granite powder.		COBBLE fragments	
	- 8							SILTY SAND w/ GRAVEL (SM 55% fine to med sand. 20% r	1): moist, brown, 25% fine gravel, ion-plastic fines.
		S2	to	24/19	7-12-12- 9	further upstream and begain		Interbedded lenses of coarse	gravel approximately 2" thick
	- 9		10		J J	sampling again at 6'			fine cond 00% low plastic fines
	- 10	62	10	24/24	5 12 22			SILT (IVIL): MOISI, Drown, 10%	line sand, 90% low plastic lines
	- 11	00	to 12	24/24	7	PP = 1.75		SILTY SAND (SM): brown, mo	bist, 20% fine-coarse gravel up to 1"
	10							@ 11': SILTY SAND as above	except 18% fine-coarse gravel, 60%
	- 12	S4	12	24/20	11-8-9-9			fine-coarse sand, 22% non-pla	astic fines, Moisture= 7.3%
	- 13		14					Saturated at 14'	
	- 14								
		S5	14 to	24/16	7-9-9-10				
	- 15		16						
	- 16		16	24/44	7 4 4 4 7			CLAYEY SAND (SC), wet bro	wn. 20% fine-coarse gravel 55%
	- 17	50	to 18	24/11	12			fine-med sand, 25% low-med	plastic fines
								18' - 20' CLAYEY SAND (SC)	: 10% fine gravel, 60% fine-med
	- 18	S7	18	24/14	13-12-			sand, 30% low-med plastic fin	es
	- 19		to 20		21-22			20' - 20.5' CLAYEY SAND (S	C): 5% fine gravel, 60% sand,
	20							35% low-med plastic fines	
	20	S8	20 to	24/21	18-18-			SILTY SAND (SM); moiet do	rk brown 5% fine subrounded
	- 21		22		22-22			gravel, 55% fine-coarse sand	I, 40% non to low plastic fines
	- 22	_						21.6' - 21.75' Coarse gravel. s	ubrounded
	2	_							excent: wet 70% fine mod
	- 23	S9	22.9 to	11/11	22-50/5"			sand, 30% non to low plastic	fines
NOTES	 S:	1	ħ	1	1	1	PRO-	IECT NAME: Upper Black Creek	
	-						~~~		
							CITY/	STATE: Heeney, Colorado	
							GEI F	RUJECI NUMBER: 1/05095	ULI Consultants

GEI WOBURN STD 4-STA.-OFFS.-GRAPHIC LOG 7705095 - UBC BORING LOGS.GPJ 7/22/18

STATION:	OFFSET:	BORING
GROUND SURFACE EL. (ft):	DATE START/END: 12/28/2017 - 12/28/2017	B-2
VERTICAL DATUM:	DRILLING COMPANY: Elite Drilling Services, LLC	

PAGE 2 of 2

									PAGE 2 OF 2
		S	ample Inf	ormation			bo		
Elev. (ft)	Depth (ft)	Sample No.	Depth (ft)	Pen./ Rec. (in)	Blows per 6 in. or RQD	Drilling Remarks/ Field Test Data	Graphic L	Soil and	Rock Description
			23.8					Igneous rock fragments, dark	c grey up to 2' diameter, unclear if it is
	- 25							Log is a compilation of two h	noles drilled in close proximity.
	- 26								
	- 27								
	- 28								
	- 29								
	- 30								
	- 31								
	- 32								
	- 33								
	- 34								
	- 35								
	- 36								
	- 37								
	- 39								
	- 41								
_	42								
1/22/1									
GPJ									
LOGS	16								
DNING	40								
JBC BL	- 48								
- CR0	- 49								
GU/1	- 50								
50 1	- 51								
KAPHI	- 52								
٩. ١.	- 53								
IAO	- 54								
Ч Ч Ч	- 55								
	S:		1	1			PROJ CITY/ GEI P	ECT NAME: Upper Black Cree STATE: Heeney, Colorado ROJECT NUMBER: 1705095	K GEI Onsultants

BORI	NG INF	ORMATIO	N			0550-5			BORING
STAT			F+). NIN4				10/00/	2017 12/28/2017	
GROU		FACE EL. (1 TUM:	π): <u>NM</u>			_ DATE START/END: _	12/28/2	2017 - 12/28/2017	Coro 3
TOTA		IUWI						nto	COIE 5
LOGG	ED BY	Ben Kuch	nta			RIG TYPE: Hand Auc	ier	104	
2000	20 01.	Bonnadi					01		PAGE 1 of 1
DRIL	LING IN	FORMATI	<u>NC</u>						
HAMN	IER TYP	E: NA				CASING I.D./O.D.: N	IA/ NA	CORE BAR	REL TYPE:
AUGE	R I.D./O.	D.: NA /	3 inch			DRILL ROD O.D.: N	М	CORE BAR	REL I.D/O.D: NA / NA
DRILL	ING ME	THOD: H	and Auger	r					
WATE	RLEVE	LDEPTHS	π): Νοι	measured	1				
ABBR	EVIATIO	NS: Pen. Rec. RQD WOF	= Penetrati = Recovery = Rock Qu = Length of R = Weight	on Length / Length ality Designa Sound Core of Rods	ation es>4 in / Pen.,	S = Split Spoon Sample C = Core Sample U = Undisturbed Sample B = Bag Sample DP = Direct Push Sample		Qp = Pocket Penetrometer Strength Sv = Pocket Torvane Shear Strength LL = Liquid Limit PI = Plasticity Index PID = Photoionization Detector	NA, NM = Not Applicable, Not Measured Blows per 6 in.: 140-lb hammer falling 30 inches to drive a 2-inch-O.D. split spoon sampler.
		S	ample Inf	ormation		HSA - HUIUW-Stelli Auge	0		ameter Ovin – Organic vapor meter
Flov	Dopth			_ /		Drilling Pomarke/	Lo(
(ft)	(ft)	Sample No.	Depth (ft)	Pen./ Rec. (in)	Blows per 6 in. or RQD	Field Test Data	Graphic	Soil and	Rock Description
								CONCRETE	
	- 1	S1 S2						Possible void up to 3". Conc have washed out this materi mushroom shape on the bot	rete coring utilized water that could al. Removed concrete had a tom
	- 3							SILTY SAND (SM): brown,	saturated (possibly due to water
	- 4							gravel, 49% fine-coarse sa non-plastic fines	arse subrounded to subangular nd (predominately fine-med), 2%
	- 5							CLAYEY SAND (SC): brown, coring), 10% fine-coarse suba	saturated (likely impacted from water angular gravel, 55% fine-coarse
	- 7							2.1' refusal with the hand	auger. Sampled with hand, fine to
	- 8							coarse gravel, finer parts o away due to 4" of standing v Hand auger refusal at 2'	f the soil could have been washed water in hole.
	- 9								
	- 10								
2	- 11								
	- 13								
	- 14								
	- 15								
	- 16								
-	- 17								
	- 20								
	- 21								
	- 22								
:) -	- 23								
NOTE	S: Norm	I I to spillwa	ıy	<u> </u>			PROJ	I IECT NAME: Upper Black Creel	
							CITY/ GEI F	STATE: Heeney, Colorado PROJECT NUMBER: 1705095	GEI Consultants

BORIN	NG INFO	ORMATION	1			05505-			BORING
STATI			4). NIM				2/20/1	0017 12/28/2017	
VERTIN		FACE EL. (1 FUM·	y. <u>NIVI</u>				212012 GEI	.011 - 12/20/2017	Core 4
TOTAL	. DEPTH	(ft): 2.6				DRILLER NAME: Ben	Kuch	ta	0010 4
LOGG	ED BY:	Ben Kuch	ita			RIG TYPE: Hand Auge	r		PAGE 1 of 1
	ED TVD						/ NIA		
AUGE	R I.D./O.I	D.: NA/;	3 inch			DRILL ROD O.D.: NM	VINA	CORE BAR	REL I.D/O.D: NA / NA
DRILLI	NG MET	HOD: H	and Auge	r					
WATE	R LEVEL	DEPTHS (ft): Not	measured	1				
ABBRI	Eviatio	NS: Pen. Rec. RQD WOF	= Penetrati = Recovery = Rock Qu = Length of R = Weight	on Length Length ality Design Sound Core of Rods of Hammer	ation es>4 in / Pen.,%	S = Split Spoon Sample C = Core Sample U = Undisturbed Sample B = Bag Sample DP = Direct Push Sample HSA = Hollow-Stem Auger		Qp = Pocket Penetrometer Strength Sv = Pocket Torvane Shear Strength LL = Liquid Limit PI = Plasticity Index PID = Photoionization Detector I D //O D = Inside Diameter/Outside Di	NA, NM = Not Applicable, Not Measure Blows per 6 in.: 140-lb hammer falling 30 inches to drive a 2-inch-O.D. split spoon sampler. ameter OVM = Organic Vapor Meter
		S	ample Inf	ormation					
-	Denth	5	ampie ini				Log		
(ft)	(ft)	Sample No.	Depth (ft)	Pen./ Rec. (in)	Blows per 6 in. or RQD	Field Test Data	Graphic	Soil and I	Rock Description
								CONCRETE	
	- 1							CLAYEY SAND W/ GRAVFI	SC): brown, moist. 35% fine-coarse
	- 2	S1						subrounded-subangular grave	el, up to 1.5" diameter, 50% fine-med
	_ 3	S2			+				
	5	S4						SILTY SAND (SM). brown me	approximately 2' pist, 19% fine-coarse, subrounded
	- 4							gravel up to 1 inch in diamete	r, 60% fine-med sand, 21%
	- 5							SILTY SAND (SM) as above e	except 5% fine gravel, 70% fine-med
	- 6							sand, 25% non-low plastic fir Hand auger refusal at 2 6	nes
	1								
	- 8								
	- 9								
	- 10								
	_ 11								
	- 12								
	- 13								
	- 14								
	15								
	13								
	- 16								
	- 17								
	- 18								
	_ 10								
	19								
	- 20								
	- 21								
	- 22								
	- 22								
	20								
NOTES	: Norm	al to spillwa	y		. 1		PROJ	ECT NAME: Upper Black Creek	
							CITY/ GEI P	STATE: Heeney, Colorado ROJECT NUMBER: 1705095	GEI Consultants

Attachment 2

Upper Black Creek Geotechnical Investigation Laboratory Testing

Hollingsworth Associates, Inc.

Job No.: <u>18-26</u>

TABLE I SUMMARY OF LABORATORY TEST RESULTS

less in the second seco		-	_	_	_	-	_	_	_		 _	_	-
	Soil Type												
g Limits	Plasticity Index (%)	11		80		NP		NP		NP			
Atterber	Liquid Limit (%)	27		23									
	Minus No. 200 Sieve (%)	43		26		22		28		21			
Gradation	Sand - No. 4 + No. 200 (%)	44		58		60		49		60			
	Gravel + No.4 (%)	13		16		18		23		19			
	Natural Dry Density (pcf)												
	Natural Moisture Content (%)	5.0		8.3		7.3		18.2		8.6			
cation	Sample No.	S4A&S4C		S3		S3B&S4A		S1&S2		S2&S3			
Sample Lo	Boring	B1		B2		B2A		Core Hole 3		Core Hole 4			

MOISTURE-DENSITY RELATIONSHIP

Job Number:	18-26		Prep By	BW	Run By: E	SW Calc by:	TH
Client/Location:	GEI Consultants -	Upper Black Creek	Date	: 1/12	Date: 1	/12 Date:	1/15/18
2	Project No. 17050	95					
Boring:	B-1	Boring:	B-2	Boring:	B-2A	Boring:	Core Hole 3
Sample: Blow Count:	S4A&S4C	Sample: Blow Count:	S3	Sample: Blow Count-	S3B&S4A	Sample: Blow Count:	S1&S2
Soil Classificatior	ä	Soil Classification:		Soil Classification:		Soil Classification:	
Remarks:		Remarks:		Remarks:		Remarks:	
	Density		Density		Density		Density
Length:	Ŀ	Length:	.ш	Length:	in	Length:	i
Diameter:	,Ľ	Diameter:	. <u>c</u>	Diameter:	Ľ.	Diameter:	ü
Volume:	ft ³	Volume:	ft ³	Volume:	ft ³	Volume:	ft ³
Wet Soil+Liner:	gm	Wet Soil+Liner:	gm	Wet Soil+Liner:	gm	Wet Soil+Liner:	gm
Liner:	gm	Liner:	gm	Liner:	gm	Liner:	gm
Wet Soil Wt:	gm	Wet Soil Wt:	gm	Wet Soil Wt:	gm	Wet Soil Wt:	gm
Dry Soil Wt:	gm	Dry Soil Wt:	gm	Dry Soil Wt:	gm	Dry Soil Wt:	gm
Dry Density:	bcf	Dry Density:	bcf	Dry Density:	pcf	Dry Density:	pcf
	Moisture		Moisture		<u>Moisture</u>		Moisture
Dish Name:	MT	Dish Name:	PC	Dish Name:	AZ4	Dish Name:	ZΥ
Wet Soil+Dish:	355.77 gm	Wet Soil+Dish:	352.86 gm	Wet Soil+Dish:	355.57 gm	Wet Soil+Dish:	575.49 gm
Dry Soil+Dish:	349.12 gm	Dry Soil+Dish:	343.96 gm	Dry Soil+Dish:	345.97 gm	Dry Soil+Dish:	520.09 gm
Dish Wt.	216.15 gm	Dish Wt.	236.15 gm	Dish Wt.	214.04 gm	Dish Wt.	215.26 gm
Wt of Water:	6.65 gm	Wt of Water:	8.90 gm	Wt of Water:	9.60 gm	Wt of Water:	55.40 gm
Wt of Dry Soil:	132.97 gm	Wt of Dry Soil:	107.81 gm	Wt of Dry Soil:	131.93 gm	Wt of Dry Soil:	304.83 gm
Moisture:	5.0 %	Moisture:	8.3 %	Moisture:	7.3 %	Moisture:	18.2 %

MOISTURE-DENSITY RELATIONSHIP

	_																						
TH	1/15/18						Density	i	Ľ.	ft ³	gm	ш	gm	gm	pcf	Moisture		gm	gm	gm	gm	gm	%
Calc by:	Date:		oring:	ample: low Count:	oil Classification:	emarks:		Length:	Diameter:	Volume:	Wet Soil+Liner:	Liner:	Wet Soil Wt:	Dry Soil Wt:	Dry Density:		Dish Name:	Wet Soil+Dish:	Dry Soil+Dish:	Dish Wt.	Wt of Water:	Wt of Dry Soil:	Moisture:
BW	1/12		ă d		ŭ	R					-	_	-	-	4-				_	_	_		
Run By:	Date:						Density	.ш	. <u>c</u>	ft ³	du	du	gr	gr	bc	Moisture		du	gn	gr	du	gr	%
/: BW	9: 1/12		Boring:	Sample: Blow Count:	Soil Classification:	Remarks:		Length:	Diameter:	Volume:	Wet Soil+Liner:	Liner:	Wet Soil Wt:	Dry Soil Wt:	Dry Density:		Dish Name:	Wet Soil+Dish:	Dry Soil+Dish:	Dish Wt.	Wt of Water:	Wt of Dry Soil:	Moisture:
Prep B)	Date						Density	Ľ	Ē	ft ³	gm	gm	gm	gm	pcf	Moisture		gm	gm	gm	gm	gm	%
	Upper Black Creek		Boring:	Blow Count:	Soil Classification:	Remarks:		Length:	Diameter:	Volume:	Wet Soil+Liner:	Liner:	Wet Soil Wt:	Dry Soil Wt:	Dry Density:	2	Dish Name:	Wet Soil+Dish:	Dry Soil+Dish:	Dish Wt.	Wt of Water:	Wt of Dry Soil:	Moisture:
18-26	GEI Consultants - Proiect No. 17050		Core Hole 4	02020			Density	Ë	,ci	ft ³	gm	gm	gm	gm	pcf	Moisture	BOB	426.73 gm	411.08 gm	229.95 gm	15.65 gm	181.13 gm	8.6 %
Job Number:	Client/Location:		Boring:	Blow Count:	Soil Classification	Remarks:		Length:	Diameter:	Volume:	Wet Soil+Liner:	Liner:	Wet Soil Wt:	Dry Soil Wt:	Dry Density:		Dish Name:	Wet Soil+Dish:	Dry Soil+Dish:	Dish Wt.	Wt of Water:	Wt of Dry Soil:	Moisture:

GRADATION ANALYSIS

Job Number:	18-26	IJ				Prep By:	BW	Run By:	BW	Calc by:	H
Client/Location:	GEI Consu	<u> ultants - Upp</u>	ber Black Creek,	Project No.	1705095	Date:	1/12	Date:	1/16	Date:	1/16/18
Boring:	à	1	Boring:	B-2	0	Boring:	B-2/	A	Boring:	Core H	lole 3
Sample:	S4A &	S4C	Sample:	S3		Sample:	S3B &	S4A	Sample:	S1 &	S2
Blow Count:			Blow Count:			Blow Count:			Blow Count:		
Soil Classifice	tion:		Soil Classifica	tion:		Soil Classificat	tion:		Soil Classificat	tion:	
Dish No.:	MT		Dish No.:	РС		Dish No.:	AZ4		Dish No.:	ZΥ	
Dry Soil & Dish:	349.12	gm	Dry Soil & Dish:	343.96	gm	Dry Soil & Dish:	345.97	gm	Dry Soil & Dish:	520.09	m
-200 Soil & Dish:	292.61	gm	-200 Soil & Dish:	316.16	gm	-200 Soil & Dish:	317.61	gm	-200 Soil & Dish:	436.59	m
Dish Weight:	216.15	gm	Dish Weight:	236.15	gm	Dish Weight:	214.04	gm	Dish Weight:	215.26	m
Dry Soil Weight:	132.97	gm	Dry Soil Weight:	107.81	gm	Dry Soil Weight:	131.93	gm	Dry Soil Weight:	304.83	m
Sieve	Cum Wt	Percent	Sieve	Cum Wt	Percent	Sieve	Cum Wt	Percent	Sieve	Cum Wt	Percent
Size	Retained	Passing	Size	Retained	Passing	Size	Retained	Passing	Size	Retained	Passing
9		100.0	9		100.0	9		100.0	9		100.0
e		100.0	n		100.0	3		100.0	з		100.0
1.5		100.0	1.5		100.0	1.5		100.0	1	23.16	92.4
3/4		100.0	3/4		100.0	3/4		100.0	3/4	23.16	92.4
3/8	8.36	93.7	3/8	7.51	93.0	3/8	10.88	91.8	3/8	47.12	84.5
4	17.53	86.8	4	17.03	84.2	4	23.84	81.9	4	69.94	77.1
ω	28.00	78.9	ω	28.60	73.5	80	40.96	69.0	8	96.49	68.3
16	38.87	70.8	16	39.08	63.8	16	56.77	57.0	16	121.15	60.3
30	49.14	63.0	30	50.21	53.4	30	69.98	47.0	30	143.74	52.8
50	59.27	55.4	50	61.38	43.1	50	81.79	38.0	50	167.87	44.9
100	69.36	47.8	100	72.96	32.3	100	93.83	28.9	100	198.58	34.9
200	76.08	42.8	200	79.63	26.1	200	102.86	22.0	200	220.02	27.8
PAN	76.52	42.5	PAN	80.01	25.8	PAN	103.56	21.5	PAN	221.36	27.4
Gravel %		13.2	Gravel %		15.8	Gravel %		18.1	Gravel %		22.9
Sand %		44.0	Sand %		58.1	Sand %		59.9	Sand %		49.2
Clay-Silt %		42.8	Clay-Silt %		26.1	Clay-Silt %		22.0	Clay-Silt %		27.8

GRADATION ANALYSIS

Calc by: TH Date: 1/16/18	unt: sification:	Dish: gm Dish: gm it: gm sight: gm	e Cum Wt Percent Retained Passing
CM 1/16	Boring: Sample: Blow Cou Soil Clas	Dish No.: Dry Soil & C -200 Soil & Dish Weigh Dry Soil We	Sieve Size 3 3 1.5 3/4 3/4 4 4 4 4 4 100 50 200 200 200 200 200 Clay-Sill
Run By: Date:		E E E E E E E E E E E E E E E E E E E	Percent Passing
BW 1/12	tion:		Cum Wt Retained
Prep By: _ Date: _	Boring: Sample: Blow Count: Soil Classificat	Dish No.: Dry Soil & Dish: -200 Soil & Dish: Dish Weight: Dry Soil Weight:	Sieve Size 6 3 1.5 3/4 3/4 3/4 3/4 4 4 8 8 16 50 50 100 50 700 50 700 50 700 50 700 50 700 50 700 50 700 50 700 50 700 50 700 70
1705095		mg gm gm gm gm gm gm gm gm gm gm gm gm g	Percent Passing
Project No.	tion:		Cum Wt Retained
er Black Creek,	Boring: Sample: Blow Count: Soil Classifica	Dish No.: Dry Soil & Dish: -200 Soil & Dish: Dish Weight: Dry Soil Weight:	Sieve Size 6 3 3/4 3/4 3/8 3/8 3/4 3/4 3/4 3/4 6 3/4 3/8 3/4 200 100 100 100 200 PAN Sand % Clay-Silt %
ltants - Upp	S3 S3		Percent Passing 100.0 100.0 100.0 100.0 100.0 33.1 81.1 81.1 81.1 81.1 81.1 81.1 81.1
18-26 GEI Consul	Core H S2 & Ition:	BOB 411.08 373.55 229.95 181.13	Cum Wt Retained 12.47 34.25 48.05 61.20 75.84 98.33 128.72 144.13 144.13
Job Number: _	Boring: Sample: Blow Count: Soil Classificat	Dish No.: Dry Soil & Dish: -200 Soil & Dish: Dish Weight: Dry Soil Weight:	Sieve Size 6 3 3/4 3/4 3/4 3/4 4 4 4 4 4 8 8 30 50 50 100 200 PAN Clay-Silt %

ATTERBERG LIMITS

Job Number:	18-26			Prep By:		Run By:	Calc by:	LG
Client/Location:	GEI Consultants		Date:		Date:	Date:	1/16/18	
	Upper Black Creek		-					
Boring: B-	1	Depth:	S4A, C	_ Blo	w Count:	Sa	mple No.: _	
Soil Classification:								
Lic	uid Lim	it Deterr	ninatior	 ו				
Dish Name:	C4	C7	C8					
Wet Soil & Dish:	35.07	33.52	32.54					
Dry Soil & Dish:	32.90	31.40	30.73			Liquid Limit, LL	27	
Dish Weight:	25.78	23.88	23.91			Plastic Limit, PL	16	
Wt. Of Water:	2.17	2.12	1.81			Plasticity Index, Pl	11	
Wt. Of Dry Soil:	7.12	7.52	6.82					
Water Content, %	30.48	28.19	26.54					
No. of Blows, N	12	23	33					
60 55 50 45 40 35 20 15 10 10	I I I I I I I I I I I I I I I I I I I			100	80 70 60 50 70 60 50 70 60 50 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 70 70 70 70 70 70 70 70 70 70 70 70	CL-ML ML 10 20 30 40 50 60 LL	U-Line CH A-Lin MH 70 80 90	100 110 120
Pla	astic Lim	it Deter	minatio	n				
Dish Name:	SS	SC						
Wet Soil & Dish:	22.02	22.05						
Dry Soil & Dish:	20.85	20.89						
Dish Weight:	13.63	13.63						
Wt. Of Water:	1.17	1.16						
Wt. Of Dry Soil:	7.22	7.26						
Water Content, %:	16.2	16.0						

ATTERBERG LIMITS

Job Number:	18-26	oultanta		Prep By:		Run By:	Calc by:	LG
Client/Location:	GEI COr	Isultants	ok.	Date		Date:	- Date:	1/10/18
Boring: B2		Denth:	S3	– Blow Ce	ount:	Sa	ample No.:	
Soil Classification:		. Bopul.			· ·		-	
Soli Classification.								
Liq	uid Lim	it Deterr	ninatio	n				
Dish Name:	MJ	PF	SAC	ļ				
Wet Soil & Dish:	21.13	20.10	22.81	ļ				12
Dry Soil & Dish:	19.61	18.88	21.23			Liquid Limit, LL	23	
Dish Weight:	13.63	13.65	13.64			Plastic Limit, PL	15	
Wt. Of Water:	1.52	1.22	1.58			Plasticity Index, Pl	8	
Wt. Of Dry Soil:	5.98	5.23	7.59	<u> </u>				
Water Content, %:	25.42	23.33	20.82	ļ				
No. of Blows, N	12	22	33					
60 55 50 45 40 35 20 15 10 10	I I I I I I I I I I I I I I I I I I I			α 100		CL-ML ML 10 20 30 40 50 60 LL	U-Line CH A-Lin MH 70 80 90	100 110 120
Pla	stic Lim	it Deter	minatio	n				
Dish Name:	QT	AJ						
Wet Soil & Dish:	23.12	23.13						
Dry Soil & Dish:	21.91	21.92						
Dish Weight:	13.62	13.60						
Wt. Of Water:	1.21	1.21						
Wt. Of Dry Soil:	8.29	8.32						
Water Content, %:	14.6	14.5						

HOLLINGSWORTH ASSOCIATES Geotechnical/Environmental Engineers ATTERBERG LIMITS

 Job Number:
 18-26
 Prep By:
 Run By:
 Calc by:
 LG

 Client/Location:
 GEI Consultants
 Date:
 Date:
 Date:
 1/16/18

 Upper Black Creek Boring: B2A Depth: S3&S4A Blow Count: Sample No.: Soil Classification: Liquid Limit Determination **Dish Name:** Wet Soil & Dish: Liquid Limit, LL Dry Soil & Dish: Plastic Limit, PL Dish Weight: Plasticity Index, PI NP Wt. Of Water: Wt. Of Dry Soil: Water Content, %: No. of Blows, N 80 60 55 70 U-Line 50 60 45 Water Content,% 50 40 СН ā. 40 35 30 30 25 MH CL 20 20 10 MI CL-ML 15 0 10 0 25 10 100 LL No. of Blows **Plastic Limit Determination** Dish Name: Wet Soil & Dish: Dry Soil & Dish: Dish Weight: Wt. Of Water: Wt. Of Dry Soil:

Water Content, %:

HOLLINGSWORTH ASSOCIATES Geotechnical/Environmental Engineers ATTERBERG LIMITS
 Job Number:
 18-26
 Prep By:
 Run By:
 Calc by:
 LG

 Client/Location:
 GEI Consultants
 Date:
 Date:
 Date:
 1/16/18
 Upper Black Creek Boring: CORE HOLE 3 Depth: S1&S2 Blow Count: Sample No.: Soil Classification: Liquid Limit Determination **Dish Name:** Wet Soil & Dish: Liquid Limit, LL Dry Soil & Dish: Plastic Limit, PL Dish Weight: Plasticity Index, PI NP Wt. Of Water: Wt. Of Dry Soil: Water Content, %: No. of Blows, N 80 60 55 70 U-Line 50 60 45 Water Content,% 50 40 CH ā. 40 35 30 30 25 CL MH 20 20 10 ML CL-ML 15 0 10 0 25 10 100 LL No. of Blows **Plastic Limit Determination** Dish Name: Wet Soil & Dish: Dry Soil & Dish: Dish Weight: Wt. Of Water:

Wt. Of Dry Soil: Water Content, %:

ATTERBERG LIMITS

Job Number: Client/Location:	18-26 GEI Consu Upper Blac	ultants ck Creek	Prep By: Date:	Run By: Calc by: Date: Date:	LG 1/16/18
Boring: CORE I	HOLE 4	Depth: <u>S2&S3</u>	Blow Count:	Sample No.:	
Soil Classification:				-	
Lic Dish Name: Wet Soil & Dish: Dry Soil & Dish: Dish Weight: Wt. Of Water: Wt. Of Dry Soil: Water Content, % No. of Blows, N	quid Limit I		n	Liquid Limit, LL Plastic Limit, PL Plasticity Index, PI <u>NP</u>	
60 55 50 45 40 35 30 25 20 15 10 10	I I I I I I I I I I I I I I I I I I I		80 70 60 50 50 50 50 50 50 50 50 50 50 50 50 50	U-Line CH CH A-Li CL-ML ML LL	
Pla Dish Name: Wet Soil & Dish: Dry Soil & Dish: Dish Weight: Wt. Of Water: Wt. Of Dry Soil: Water Content, %	astic Limit	Determinatio	n 		

		Client	Blue Lake Reserv	oir Compa	ny	Page	
		Project	Upper Black Cree	k Reservoi	r	Pg. Rev.	
GEI Consultants		Ву	M. Provencher	Chk.	C. Diebold	Арр.	C. Masching
		Date	04/23/2020	Date	04/23/2020	Date	04/23/2020
Project No.	180183	4	Document No.	N/A			
Subject Design		of Spillway	- Head Wall				

Spillway Wall (Head Wall) - Upper Black Creek Reservoir

Codes References

- 1) American Concrete Institute (ACI). Building Code Requirements for Structural Concrete (ACI 318-14), (2014).
- 2) ACI (American Concrete Institute), 2006. Code Requirements for Environmental Engineering Concrete Structures (ACI 350-06).
- *3)* American Society of Civil Engineers (ASCE). Minimum Design Loads for Buildings and Other Structures (ASCE 7-10), (2013).
- 4) U.S. Army Corps of Engineers (USACE). 2005 "Stability Analysis of Concrete Structures." EM 1110-2-2502.
- *5)* U.S. Army Corps of Engineers (USACE). 2003 "Strength Design for Reinforced-Concrete Hydraulic Structures." EM 1110-2-2104-Appendix E: Table E-1.
- *6)* Agusti, G. C. and Sitar. 2013. UCB GT 13-02 "Seismic Earth Pressures on Retaining Structures with Cohesive Backfills." UCB GT 13-02.

Structural Design

The following design calculates the applied loads and design strength for the Upper Black Creek Reservoir Spillway Head Wall. The wall is designed as a cantilevered retaining wall with soil and seismic loads. The strength/capacity checks are performed using the one foot strip method and code requirements in ACI 318-14, ACI 350-06 and USACE EM 1110-2-2104.

Design Loads (Forces)

The applied loads and load cases for the wall are calculated using guidelines from the documents referenced above. USACE and ACI strength/service load combinations are applied and the resulting combinations are shown below.

Wall Reinforcement Summary

Vertical Reinforcement

Tension Face = #7 at 12" O.C.

Compression Face = #7 at 12" O.C.

Horizontal Reinforcement

Channel = #5 at 12" O.C.

Embankment = #5 at 12" O.C.

Foundation Dowels

Full height bars, mechanical splices or slab tension splices will be allowed. Bars must be developed at wall/foundation joint.

Counterforts

None

	\bigcirc	Client	Blue Lake Res	serv	oir Compai	ηγ	Page	
	\bigcirc	Project	Upper Black C	Jpper Black Creek Reservoir				
GEI	Ľ	Ву	M. Provenche	er	Chk.	C. Diebold	Арр.	C. Masching
	nsultants	Date	04/23/2020		Date	04/23/2020	Date	04/23/2020
Project No.	180183	34	Document No	0.	N/A			
Subject	Design	of Spillway	/ - Head Wall					
Footing Reinford	ement Si	ummarv						
Perpendicular	r to Wall							
Tension Fa	ce = #9 at	: 12" O.C.						
Compressi	on Face =	#9 at 12" O).C.					
Parallel to Wa	all							
Top = #7 at	t 12" O.C.							
Bottom = #	‡7 at 12"	O.C.						
Wall Design Prop	perties:							
Top of Wall El	evation:			Elto	p := 8756ft	t i i i i i i i i i i i i i i i i i i i		
Bottom of Wa	all Elevati	on:		Elbo	ot := 8745ft			
Wall Height:				H _{wa}	all := El _{top}	– El _{bot} = 11.00 ft		
Bottom Wall	Thickness	:		t _{wa}	II.B ^{:=} 1ft +	- 6in		
Top Wall Thic	kness:			t _{wa}	II.T := 1ft +	- Oin		
Footing width	1:			B :=	= 10.0ft			
Toe projection	1:			Тое	:= 3.5ft			
Heel projectio	n:			Hee	el := B – To	$e - t_{wall.B} = 5.00$	ft	
Footing thickr	ness:			t _{bas}	se := 2.0ft			
Key depth bel	ow slab:			d _{ke}	<mark>y</mark> := 3.0ft			
Design Width	:			b _w	:= 12in			
Unit weight o	f concrete	2:		γ_{co}	nc := 150∙∣	pcf		
Distance betw	een Cont	rol Joints:		L _{CJ}	<mark>:= 25ft</mark>			
Specified Compressive Strength of Concrete: f' _c := 4500psi								
Water Surface El	evations	and Propert	ies:					
Elevation of n (Assumed at I	ormal wa base of st	iter surface: ructure)		Elnv	ws := El _{bot}	$-t_{base} + 0ft = 8$	743.00 ft	
Water Unit W	eight:			$\gamma_{\mathbf{w}}$:= 62.4pcf			

		Client	Blue Lake Reserv	oir Compa	Page		
	\bigcirc	Project	Upper Black Cree	k Reservoi	r	Pg. Rev.	
GEI Consultants		Ву	M. Provencher	Chk.	C. Diebold	Арр.	C. Masching
		Date	04/23/2020	Date	04/23/2020	Date	04/23/2020
Project No.	180183	4	Document No.	N/A			
Subject Design of Spillwa			- Head Wall				

Fill Elevations and Properties:

Reference:

Elevation of fill material beside channel:	El _{fill} := 8755ft
Minimum elevation of fill material upstream of wall:	El _{fill.up} := El _{bot} = 8745.00 ft
Fill Properties (Soil type: SM)	
Angle of internal friction:	$\phi_{f} := 30 \cdot deg$
Unit weight:	<mark>γ_f ≔ 130pcf</mark>
Angle of inclined backfill:	$\alpha_{f} := 0 \text{deg}$
At-rest earth pressure coefficient:	$k_0 := 1 - sin(\varphi_f) = 0.50$
Active earth pressure coefficient:	$k_a := tan(45deg - 0.5 \cdot \phi_f)^2 = 0.33$
Passive earth pressure coefficient:	$k_{p} := tan(45deg + 0.5 \cdot \phi_{f})^{2} = 3.00$
Friction factor for mass concrete on sound rock:	$\delta_1 := 0.7$ [NAVFAC p7.2-63]
Seismic Properties:	
10,000yr Horizontal Seismic Coefficient:	k _h := 0.4972 [USGS Unified Hazard Tool]
Earth Pressure Coefficient:	$K_{ae} := 0.42 \cdot k_{h} = 0.21$ [Augusti: UCB GT 13-02: Eq. 4.3]

Other Properties:

Construction Surcharge:

 $q_{c} := 200 psf$

		Client	Blue Lake Reserv	oir Compa	Page		
	\bigcirc	Project	Upper Black Cree	k Reservoi	r	Pg. Rev.	
GEI Consultants		Ву	M. Provencher	Chk.	C. Diebold	Арр.	C. Masching
		Date	04/23/2020	Date	04/23/2020	Date	04/23/2020
Project No.	180183	4	Document No.	N/A			
Subject Design of Spillway			- Head Wall				

1.) LOAD CASE 1 (Usual Condition) - Spillway Wall Loading:

LOAD CASE 1-Applied Loads: Static

Active Earth Pressure

Base Shear:

Footing Shear:

$$V_{F1a} := 0.5 \cdot k_a \gamma_f \cdot \left(EI_{fill} - EI_{bot} \right)^2 b_w = 2.17 \cdot kip$$
$$V_{F1b} := \left[k_a \gamma_f \cdot \left(EI_{fill} - EI_{bot} \right) \cdot t_{base} + 0.5 \cdot k_a \cdot \gamma_f \cdot t_{base}^2 \right] \cdot b_w = 0.95 \cdot kip$$

Shear as at a Distance 'y' From Base of Wall:

$$V_{F.1}(El_{nws} - El_{bot}) = 3.12 \cdot kip$$
 $V_{F.1}(Oft) = 2.17 \cdot kip$

Base Moment:

$$M_{F.1.b} := V_{F1a} \cdot \left[0.33 \left(EI_{fill} - EI_{nws} \right) + \left(EI_{nws} - EI_{bot} \right) \right] = 4.25 \text{ ft} \cdot \text{kip}$$

Moment as at a Distance 'y' From Base of Wall:

$$\begin{split} \mathsf{M}_{F.1}(\mathsf{y}) &:= 0.5 \cdot \mathsf{k}_{\mathsf{a}} \cdot \gamma_{\mathsf{f}} \cdot \left(\mathsf{El}_{\mathsf{fill}} - \mathsf{El}_{\mathsf{bot}} - \mathsf{y}\right)^2 \cdot \mathsf{b}_{\mathsf{w}} 0.33 \left(\mathsf{El}_{\mathsf{fill}} - \mathsf{El}_{\mathsf{bot}} - \mathsf{y}\right) \\ \mathsf{M}_{F.1} \left(\mathsf{El}_{\mathsf{nws}} - \mathsf{El}_{\mathsf{bot}}\right) &= 12.36 \cdot \mathsf{kip} \cdot \mathsf{ft} \\ \end{split}$$

Passive Earth Pressure

Resistance to bottom of slab:	$F_{F.2}\coloneqq 0.5\cdotk_{p}\cdot\gamma_{f}\cdot\left(t_{base}\right)^{2}\cdot1ft=0.78\cdotkip$
Resistance to bottom of key:	$F_{F,T2} := 0.5 \cdot k_p \cdot \gamma_f \cdot \left(t_{base} + d_{key} \right)^2 \cdot 1 ft = 4.87 \cdot kip$

Vertical Forces

Weight of stem:	$W_{1} := \gamma_{conc} \cdot (El_{top} - El_{bot}) \cdot 0.5 (t_{wall.B} + t_{wall.T}) \cdot 1ft = 2.06 \cdot kip$
Weight of footing:	$W_2 := \gamma_{conc} \cdot B \cdot t_{base} \cdot 1 ft = 3.00 \cdot kip$
Weight of fill over heel:	$W_{3} := \gamma_{f} \cdot \left[\text{Heel} + 0.5 \cdot \left(t_{wall.B} - t_{wall.T} \right) \right] \cdot \left(\text{El}_{fill} - \text{El}_{bot} \right) \cdot 1 \text{ft} = 6.83 \cdot \text{kip}$

		Client	Blue Lake Reserv	oir Compa	Page		
	\bigcirc	Project	Upper Black Creek Reservoir			Pg. Rev.	
	$\underline{\mathcal{S}}$	Ву	M. Provencher Chk. C. Diebold			Арр.	C. Masching
ULI Consultants		Date	04/23/2020	Date	04/23/2020	Date	04/23/2020
Project No.	1801834		Document No.	N/A			
Subject	Design	of Spillway	- Head Wall				

1.) LOAD CASE 1 (Usual Condition) Cont'd

LOAD CASE 1-Applied Loads: Static

Construction Surcharge

Base Shear:

$$V_{\texttt{Cla}} \coloneqq k_{a} \cdot q_{c} \cdot \left(\texttt{El}_{fill} - \texttt{El}_{bot} \right) \cdot b_{w} = 0.67 \cdot kip$$

Shear as at a Distance 'y' From Base of Wall:

$$V_{C}(y) := \begin{cases} V_{C1a} \cdot \frac{\left(EI_{fill} - EI_{bot} - y\right)}{\left(EI_{fill} - EI_{bot}\right)} & \text{if } y < \left(EI_{fill} - EI_{bot}\right) \end{cases}$$

0 otherwise

$$V_{C}(El_{nws} - El_{bot}) = 0.80 \cdot kip$$
 $V_{C}(Oft) = 0.67 \cdot kip$

Footing Shear:

Base Moment:

$$\begin{split} \mathsf{M}_{\mathsf{C}} &\coloneqq 0.5 \cdot \mathsf{V}_{\mathsf{C1a}} \cdot \left(\mathsf{EI}_{\mathsf{fill}} - \mathsf{EI}_{\mathsf{bot}}\right) = 3.33 \, \mathsf{ft} \cdot \mathsf{kip} \\ \mathsf{M}_{\mathsf{C}}(\mathsf{y}) &\coloneqq 0.5 \cdot \mathsf{V}_{\mathsf{C}}(\mathsf{y}) \cdot \frac{\left(\mathsf{EI}_{\mathsf{fill}} - \mathsf{EI}_{\mathsf{bot}} - \mathsf{y}\right)^2}{\left(\mathsf{EI}_{\mathsf{fill}} - \mathsf{EI}_{\mathsf{bot}}\right)} \end{split}$$

 $V_{C1b} := k_a \cdot q_c \cdot t_{base} \cdot b_w = 0.13 \cdot kip$

Moment as at a Distance 'y' From Base of Wall:

GEI Consultants		Client	Blue Lake Reservoir Company			Page				
		Project	Upper Black Creek Reservoir			Pg. Rev.				
		Ву	M. Provencher	Chk.	C. Diebold	Арр.	C. Masching			
		Date	04/23/2020	Date	04/23/2020	Date	04/23/2020			
Project No.	Project No. 1801834		Document No.	N/A						
Subject	Design	of Spillway	- Head Wall							
1.) LOAD CASE 1: (Usual Condition) Cont'd - Global Stability ChecksCHECK SLIDING STABILITYSummation of vertical forces: $V_{sum} := W_1 + W_2 + W_3 = 11.89 \cdot kip$ Summation of horizontal driving forces: $H_{sum.1} := max (V_{F1a} + V_{F1b} + V_{C1a} + V_{C1b} - F_{F.T2}, 0.01kip) = 0.01 \cdot kip$ Factor of safety against sliding: $FS_{sl.1} := \frac{V_{sum} \cdot \delta_1}{H_{sum.1}} = 832.13$ Sliding stability check: $Check_{sl.1} := LC1 Sliding Stability OK if FS_{sl.1} \ge 2.0• EM 1110-2-2100, Critical StructureCheck_{sl.1} := LC1 Sliding Stability Unacceptable otherwiseCheck_{sl.1} = LC1 Sliding Stability OK $										
			sl.1 - LCI	Shung Stat						
		Client	Blue Lake Rese	rvoir Compa	iny	Page				
---	-----------	-------------	-----------------------------	--	---	---------------------------------------	--	--	--	--
		Project	Upper Black Cr	eek Reservo	ir	Pg. Rev.				
GEI	Ľ	Ву	M. Provencher	Chk.	C. Diebold	Арр.	C. Masching			
	sultants	Date	04/23/2020	Date	04/23/2020	Date	04/23/2020			
Project No.	180183	4	Document No.	N/A			·			
Subject	Design	of Spillway	y - Head Wall							
1.) Lo	oad C/	ASE 1: (U	sual Condition	n) Cont'd -	Global Stability	Checks				
CHECK OVERTUR	NING ST/	ABILITY								
Moment Calculat	tions			. (г.		г ээ н				
Horizontal for	æ mome	nt arms:	y ₁	La ^{:=} (^{EI} fill ⁻	$\frac{1}{2}$ bot) $\frac{1}{2}$ $\frac{3}{2}$ + $\frac{1}{2}$ base	p = 5.33 IL				
$y_{1b} := 0.5 \cdot t_{base} = 1.00 \text{ft}$										
$y_{c1a} := (El_{fill} - El_{bot}) \div 2 + t_{base} = 7.00 \text{ ft}$										
$y_{c1b} := 0.5 \cdot t_{base} = 1.00 \text{ft}$										
$y_{FFT2} \coloneqq 0.33(t_{base}) = 0.66 \text{ft}$										
Vertical force r	noment	arms:	X	L := Toe + t	wall.T + 0.33 $\cdot (t_{wall})$	I.B ^{– t} wall. ⁻	(f) = 4.66 ft			
			x	$\underline{b} := B \div 2 =$	5.00 ft					
			x	$_{3} := B - Hee$	$1 \div 2 = 7.50 \text{ft}$					
Summation of	fvertical	forces:	V	sum := W ₁ +	$-W_2 + W_3 = 11.89$	€∙kip				
			M _{o.}	ı ≔ V _{F1a} ·y ₁	$a + V_{F1b} \cdot y_{1b} + V_{c}$	Cla ^{.y} cla	$. = 17.31 \cdot \text{kip} \cdot \text{ft}$			
Overturning N	1oment:			$+ V_{C1b}$	·y _{c1b}					
Resisting Mon	nent:		M _r :	$= W_1 \cdot x_1 + V_1$	$W_2 \cdot x_2 + W_3 \cdot x_3 + F$	F.2 ^{.y} FFT2	= 76.32·kip·ft			
				M _r	– M _{0.1}					
Location of res	sultant:		x	par.1 ^{:=} V	= 4.96 ft 'sum					
Eccentricity of	the resul	tant:	e	$cc_1 := \frac{B}{2} - x$	bar.1 = 0.04 ft					
Overturning d	neck:	Cl	heck _{ot.1} := "L	C1 Overturni	ng Stability OK" i	$f = \frac{1}{3} \cdot B \le x$	$K_{\text{bar.1}} \leq \frac{2}{3}B$			
"STOP - LC1 Overturning Stability Unacceptable" otherwise										
		Cl	heck _{ot.1} = "LC1	Overturning	$\frac{1}{3} \cdot B$	= 3.33 ft	$\frac{2}{3} \cdot B = 6.67 \text{ft}$			

	\frown	Client	Blue Lake Reserv	oir Compa	ny	Page	
	\bigcirc	Project	Upper Black Cree	k Reservo	ir	Pg. Rev.	
GFI	${ > }$	Ву	M. Provencher	Chk.	C. Diebold	Арр.	C. Masching
	sultants	Date	04/23/2020	Date	04/23/2020	Date	04/23/2020
Project No.	180183	4	Document No.	N/A			
Subject	Design	of Spillway	/ - Head Wall				
		1.) LO	AD CASE 1 (Usu	al Condit	ion) Cont'd		
LOAD CASE 1-Loa	ading Cor	nditions & C	Combinations:				
Unfactored Shear	At Base	of Wall:	V _{LC}	1(y) := V _F	$1_{1}(y) + V_{C}(y)$		
Ultimate Shear At	t Base of	Wall:					
EM 1110-2-21	104 Servi	ceability Loa V _{uLC1.1} (y	ad Combination: 2.2) := $2.2 \cdot (V_{F.1}(y) +$	(EH + Hs + L - V _C (y)))	[Table E-9, Lo	oad Case 1A]
ASCE Load Co	mbinatio	n 1: 1.4 (D V _{uLC1.2} (y	+F) +1.6 H) := 1.6·V _{F.1} (γ)				
ASCE Load Co	mbinatio	n 2: 1.2 (D ^V uLC1.3 (y	+ F) + 1.6 (L) + 1.6 (H) := 1.6 · V _C (y) + 1.) .6·V _{F.1} (y)			
Controlling Case:		V _{uLC1} (y) V _{uLC1} (Oft	:= max(V _{uLC1.1} (y)) = 6.23 · kip	^{, V} uLC1.2 / _{uLC1.1} (0f	$(y), V_{uLC1.3}(y))$ t) = 6.23 · kip		
Unfactored Mom	ent At Ba	se of Wall:	MLG	_{C1} (y) := M	F.1(y) + M _C (y)		
Ultimate Momen	it At Base	of Wall:					
EM 1110-2-21	104 Servi	ceability Loa M _{uLC1.1} ('	ad Combination: 2.2 y) := $2.2 \cdot (M_{F,1}(y))$	$(EH + Hs + L + M_C(y))$)		
ASCE Load Co	mbinatio	n 1: 1.4 (D ^M uLC1.2 ⁽	+F)+1.6H y) := 1.6·M _{F.1} (y)				
ASCE Load Co	mbinatio	n 2: 1.2 (D M _{uLC1.3} ()	+ F) + 1.6 (L) + 1.6 (H y) := 1.6 · M _C (y) +) 1.6·M _{F.1} ('	y)		
Controlling Case:		M _{uLC1} (y) M _{uLC1} (0f	$:= \max(M_{uLC1.1}(t)) = 23.06 \cdot kip \cdot ft$	y) , M _{uLC1} M _{uLC1}	$M_{1}(y)$, $M_{uLC1.3}(y)$ $M_{1}(0ft) = 23.06 ft$	/)) -·kip	

		Client	Blue Lake Reser	voir Compa	iny		Page		
	\bigcirc	Project	Upper Black Cre	ek Reservo	ir		Pg. Rev.		
GFI	I I I I I I I I I I I I I I I I I I I	Ву	M. Provencher	Chk.	C. Diebo	old	Арр.	C. Masching	
	sultants	Date	04/23/2020	Date	04/23/2	020	Date	04/23/2020	
Project No.	180183	4	Document No.	N/A					
Subject	Design	of Spillway	· - Head Wall						
1.) LOAD CASE 1 (Usual Condition) Cont'd Environmental Durability Factor (ACI 350-06) Note: Required for Tension Controlled structure to encourage durability and liquid-tightness. Per section 21.2.1.8.a, the environmental durability factor need not be applied to load combinations that include earthquake loads. The durability factor is applied to service loads only.									
Specified Yield St	rength of	Reinforæm	ent: f _y	:= 60ksi					
Permissible Tensi	le Stress:								
Shear stress ir	normal	conditions: 9	9.2.6.4 <mark>f_{s.}</mark>	ss := 24000	psi	S _{d.ss} := r	$\max\left(\frac{f_y}{f_{s.ss}}\right)$	1.0) = 2.50	
Flexure in nor - One way ele	mal cond ement, Ba	litions: R10.0 Ir at 6" spaci	5.4 <mark>f_{s.}</mark> ng	<mark>f := 34000p</mark>	osi	S _{d.f} := m	$ \max\left(\frac{f_{y}}{f_{s.f}}, 1.\right) $	0) = 1.76	
Shear in Wall:									
V _{LC1.ED} (y)	= S _{d.ss} .	$(V_{F.1}(y) +$	$V_{C}(y)$	C1.ED ^(Oft)	= 7∙kip	>	V _{uLC1.1} (0	ft) = $6 \cdot kip$	
Moment in Wall:									
$M_{LC1.ED}(y) := S_{d.f} \cdot \left(M_{F.1}(y) + M_{C}(y)\right) \qquad M_{LC1.ED}(0ft) = 19 \cdot kip \cdot ft \qquad < \qquad M_{uLC1.1}(0ft) = 23 \cdot kip \cdot ft$									

		Client	Blue Lake Reserv	oir Compa	ny	Page	
	\bigcirc	Project	Upper Black Cree	k Reservoi	r	Pg. Rev.	
GEIConsultantsProject No.180183SubjectDesign		Ву	M. Provencher	Chk.	C. Masching		
		Date	04/23/2020	Date	04/23/2020	Date	04/23/2020
		4	Document No.	N/A			
		of Spillway	- Head Wall				

2.) LOAD CASE 2 (Extreme Condition) - Spillway Wall Loading:

Note: The retaining wall stem is analyzed as a cantilever beam with fixity provided at the footing. Beam is subject to lateral forces due to seismic inertial forces due to self-weight and dynamic fill loads. Groundwater table is assumed below the wall section.

		Client	Blue Lake Reserve	oir Compa	nγ	Page	
	\bigcirc	Project	Upper Black Cree	k Reservoi	r	Pg. Rev.	
GFI	Ľ	Ву	M. Provencher	Chk.	C. Diebold	Арр.	C. Masching
	nsultants	Date	04/23/2020	Date	04/23/2020	Date	04/23/2020
Project No.	180183	4	Document No.	N/A			
Subject	Design	of Spillway	- Head Wall				
	•					-	
2	.) LOAD	CASE 2	(Extreme Condi	tion) - Sp	oillway Wall Loa	ding:	
LOAD CASE 2-Ap	plied Loa	ds: Seismic					
Seismic Increme	ntal Force	of Earth Pre	essure		_		
Base Shear:		v _{Ea} :=	0.5K _{ae} ·b _w ·[γ _f ·(El	fill – El _{bot})	$\left[2\right] = 1.36 \cdot kip$	7	
		V _{Eb} :=	$K_{ae} \gamma_{f} \cdot (El_{fill} - El_{bl})$	ot) · t _{base} -	⊢ 0.5·K _{ae} ·γ _f ·t _{base}	$\begin{bmatrix} 2 \\ b \end{bmatrix} \cdot b_W = 0$.60∙kip
Shear as at a l	Distance '	y' From Base	e of Wall:				
		∨ _E (y) :=	= 0.5 · K _{ae} · γ_{f} · (El _{fill}	– El _{bot} –	$(y)^2 \cdot b_w = V_E(0ft)$	= 1.4 · kip	
Base Moment	t:	Μ _E := \	/ _{Ea} ·[0.33(El _{fill} – E	l _{bot}] = 4.	48 ft∙kip		
Moment at a	Distance '	y' From Bas	e of Wall:				
		М _Е (у):	$= 0.5 \cdot K_{ae} \cdot \gamma_{f} \cdot (El_{fi})$	I – El _{bot} –	$y)^2 \cdot b_w 0.33 (EI_{fill} -$	- El _{bot} - y)
Inertial Forces						M _E (0ft)	= 4.5 · kip · ft
Wall Base She	ear:	V _{la} := k	$w_{\rm h} \cdot W_{\rm 1} = 1.03 \cdot kip$				
Shear as at a l	Distance '	y' From Base	e of Wall:				
		V ₁ (y) :=	$k_{\rm h} \cdot \gamma_{\rm conc} \cdot \left[{}^{\rm t}_{\rm wall.1} \right]$	$+\frac{0.5 \cdot (t_w)}{1}$	$\frac{t_{wall.B} - t_{wall.T} \cdot (H)}{(H_{wall})}$	$\frac{\text{wall} - y}{}$.	$(H_{wall} - y) \cdot b_w$
Base Moment	t:	M _I := V	$J_{Ia} \cdot \left[\frac{H_{wall} \cdot (2t_{wall})}{3(t_{wall}) + 1} + 1 \right]$	T ^{+ t} wall.B ^t wall.T)	$\left - \right = 5.26 \cdot \text{kip} \cdot \text{ft}$		
Moment at a	Distance '	y' From Bas	e of Wall:	_			
		M ₁ (y) :=	$v_{I}(y) \cdot \frac{(H_{wall} - y)}{s_{I}t_{w}}$	$\left[\frac{2t_{wall.T}}{2t_{wall.T}}\right]$	$\frac{1}{t_{wall.T} + \frac{(t_{wall.T})}{u_{wall.B} - t_{wall.T}) \cdot (H_{vall})}$	$\frac{B^{-t}wall.T}{H_{wall}}$ $\frac{H_{wall}}{wall - y} + $)·(H _{wall} – y) I twall.T
		., .			-		

Footing Shear: $V_{1b} := k_h \cdot W_2 = 1.49 \cdot kip$

Soil over Footing Shear: $V_{1.3} := k_h \cdot W_3 = 3.39 \cdot kip$

		Client	Blue Lake Res	ervoir Compa	ny		Page			
	\bigcirc	Project	Upper Black C	reek Reservoi	r		Pg. Rev.			
GEI	$\underline{\mathcal{S}}$	Ву	M. Provenche	r Chk.	C. Diebolo	t t	Арр.	C. Masching		
	sultants	Date	04/23/2020	Date	Date 04/23/2020 Date 04/23/2020					
Project No.	180183	4	Document No	D. N/A						
Subject	Design	of Spillway	/ - Head Wall							
)AD CA	SE 2 (Ext	reme Condit	ion) Cont'd	-Global S	tability	y Checks			
Summation of		iorces:		^v sum ^{:=} ^{vv} 1 ⁺	^w 2 + ^w 3	= 11.89	⊷кір			
Summation of	f horizon	tal driving fo	Drces:	H _{sum.2} := V _{F2} + \	.a ^{+ V} F1b ⁻ ′ _{Ia} + V _{Ib} +	+ V _{Ea} + V _{I.3} – F	V _{Eb} = 0 F.T2	6.11 · kip		
Factor of safet	y against	sliding:	I	$FS_{sl.2} := \frac{V_{sun}}{H_{sun}}$	$\frac{n \cdot \delta_1}{n.2} = 1.3$	6				
Sliding stabilit	y check:		Check _{sl.2} :=	"LC2 Sliding Stability OK" if $FS_{Sl,2} \ge 1.3$						
EM 1110-2-2100: - Critical Structure,				'STOP - LC2 Sli	ding Stabili	ty Unaco	ceptable"	otherwise		
- Extreme Seismic Case not based on detailed			Check _{sl.2} = "LC	2 Sliding Stabil	ity OK"					
site-specific	site-specific data									

		Client	Blue Lake Rese	rvoir Compa	iny	Page				
Projec		Project	Upper Black Cr	eek Reservo	ir	Pg. Rev.				
GEI	Ľ	Ву	M. Provencher	Chk.	C. Diebold	Арр.	C. Masching			
	nsultants	Date	04/23/2020	Date	04/23/2020	Date	04/23/2020			
Project No.	180183	4	Document No.	N/A	-					
Subject	Design	of Spillway	y - Head Wall							
2.) L(DAD CA	SE 2 (Ext	reme Conditi	on) Cont'd	-Global Stabili	ity Checks				
- CHECK OVERTUR	NING ST	ABILITY		•		•				
Moment Calcula	tions									
Horizontal for	ce mome	ent arms:	Vi		El_{hot} ÷ 2 + t_{hos}	$_{0} = 7.00 \text{ft}$				
			yı Vi	a (111 _h := 0.5 · t _{ha}	b00) = 1.00 ft	C				
$y_{12} := y_{12} = 7.00 \text{ ft}$										
<i></i>	$y_{13} - y_{1a} - 7.00$ r $y_{aa} := 0.4(Fl_{aa} - Fl_{aa}) + t_{aa} = 6.00$ ft									
[Augusti: C	JCB GT 1:	3-02]	V	-a (1 sh := 0.4 · th	$D_{000} = 0.80 \text{ft}$	e				
Currentian	- f		· e							
Summation	of vertica	al torces:		v _{sum} := w ₁	$+ w_2 + w_3 = 11$	1.89∙кір				
Ovorturning	Momont		M _{0.2}	$v_2 := V_{F1a} \cdot v_1$	$a + V_{F1b} \cdot Y_{1b} \cdots$	= 53	3.55∙kip∙ft			
Overturning	WOMEN			+ V _{Ea} .	v _{ea} + v _{Eb} ·y _{eb}					
				+ v _{la} ·y	$ a + V_{ b} \cdot y_{ b} + V_{ .3}$	3 ^{. y} I3				
Resisting Mo	oment:		M _r :	$= W_1 \cdot x_1 + V_1$	$W_2 \cdot x_2 + W_3 \cdot x_3 + W_3 + W_3 \cdot x_3 + \mathsf$	F _{F.2} ·y _{FFT2}	$= 76.32 \cdot kip \cdot ft$			
Location of	rosultant.		v.	M _r	$-M_{0.2}$ - 1.92 ft					
Location of	countant.		^t	bar.2 ·- V	sum					
Eccentricity	of the res	ultant:	eo	$cc_2 := \frac{B}{2} - x$	5 bar.2 = 3.08 ft					
Overturning check: Check _{ot.2} := $ $ "LC2 Overturning Stability OK" if $0 \le x_{bar.2} \le B$										
			"	STOP - LC2 C)verturning Stabili	ty Unaccept	able" otherwise			
			Check _{ot.2} = "LC2	2 Overturnin	g Stability OK"		B = 10.00 ft			

		Client	Blue Lake Reserve	oir Compa	ny	Page	
	\bigcirc	Project	Upper Black Cree	k Reservo	ir	Pg. Rev.	
GEI	$\underline{\mathcal{S}}$	Ву	M. Provencher	Chk.	C. Diebold	Арр.	C. Masching
	sultants	Date	04/23/2020	Date	04/23/2020	Date	04/23/2020
Project No.	180183	4	Document No.	N/A			
Subject	Design	of Spillway	· - Head Wall				
		2.) LOAI	D CASE 2 (Extre	me Cond	lition) Cont'd		
LOAD CASE 2-Lo	ading Co	nditions & (Combinations:				
Unfactored Sh	ear At Ba	se of Wall:	V _{LC}	2(y) := V _F	$1(y) + V_{E}(y) + V_{I}$	(y)	
Ultimate Shea	r At Base	of Wall:					
EM 1110-2	-2104 St	rength Load	Combination: 1.0 El	H + 1.0 Hs +	1.0 EQ	[Table	E-9, Load Case 1A]
		V _{uLC2.1}	L(y) := V _{F.1} (y) + V	E() + VI()	y)		
ASCE Load	Combina	ation 5: 1.2	(D + F) + 1.0 E + 1.6 H	1			
		V _{uLC2.2}	$\underline{\mathbf{v}}_{2}(\mathbf{y}) := \left(V_{E}(\mathbf{y}) + V_{I}\right)$	(y)) + 1.6·	V _{F.1} (y)		
Controlling Ca	se:	V _{uLC2} (y) := max(V _{uLC2.1}	(y),V _{uLC2}	2.2(y))		
		V _{uLC2} (Oft) = $5.85 \cdot kip$	V	$uLC2.2^{(Oft)} = 5.85$	5·kip	
Unfactored Me	oment At	Base of Wa	II: M _{LC}	_{C3} (y) := M	$F.1(y) + M_E(y) +$	М _I (у)	
EM 1110-2	-2014 St	rength Load	Combination: 1.0 El	H + 1.0 Hs +	1.0 (EQ)		
		^M uLC2.	$1(y) := M_{F.1}(y) +$	™ _E (y) + №	η _Ι (γ)		
ASCE Load	Combina	ation 5: 1.2	(D + F) + 1.0 E + 1.6 H	1			
		M _{uLC2} .	$_{2}(y) := \left(M_{E}(y) + N\right)$	И _I (у)) + 1.	6∙M _{F.1} (y)		
Controlling Ca	se:	M _{uLC2}	(y) := max(M _{uLC2} .	1(y), M _{uL}	C2.2(Y))		
		M _{uLC2}	$(Oft) = 21.18 \cdot kip \cdot f$	t	$M_{uLC2.2}(Oft) = 2$	1.18 ft∙kip	

	\frown	Client	Blue Lake Reser	voir Compa	ny	Page			
	\bigcirc	Project	Upper Black Cre	ek Reservo	ir	Pg. Rev.			
GEI	$\underline{\mathcal{S}}$	Ву	M. Provencher	Chk.	C. Diebold	Арр.	C. Masching		
	sultants	Date	04/23/2020	Date	04/23/2020	Date	04/23/2020		
Project No.	180183	4	Document No.	N/A					
Subject	Design	of Spillway	· - Head Wall						
		4.) Wa	ll Concrete & I	Rebar Stre	ength Design				
Concrete Propert	ies:								
Specified Com	pressive	Strength of	Concrete:		$f'_{C} = 4500 ps$	si			
Specified Yield	l Strength	of Reinford	em ent:		f _y := 60ksi				
Strength Redu	ction Fac	tor for Tensi	on-Controlled Sect	ions:	$\phi_t \coloneqq 0.90$	(ACI 318	8-14, Table 2 1. 2. 1		
Strength Redu	ction Fac	tor for Shea	r:		$\phi_{V} \coloneqq 0.75$	(ACI 318	8-14, Table 2 1. 2. 2)		
Whitney Stress Block Factor:									
$\beta_1 := 0$).85 if	$f'_{C} \le 400$	Opsi		$\beta_1 = 0.83$	(ACI 318-14	4, Table 2 2. 2. 2. 4. 3)		
C).65 if	f' _C > 800	Opsi						
$f'_{c} - 4000psi$ 0.85 - 0.05									
Horizontal Reinfo	orcement	:	Jhzi						
Bar Size and S (Channel & En	pacing: nbankme	ent)	Siz	e _{SH} := 5	sSH	:= 12in			
Reinforcement	t Clear Co	over:	clr	<mark>S := 3in</mark>					
Diameter 8	k Cross-Se	ectional Area	a of Bars:	SH := d _{bsiz}	= 0.63 · in Ab	SH := Ah	$= 0.31 \cdot in^2$		
Area of Rei	nforceme	ent:		5120	⁻ SH	Siz	^e SH		
			As	SH := AbSH	$\cdot \frac{12 \text{III}}{\text{sSH}} = 0.31 \cdot \text{in}^2$				
			m	$:= (t_{wall.T})$	- t _{wall.B}) ÷ H _{wall}	= -0.05			
Section Dep	oth at a H	leight 'y' fro	m the base: t _w	_{/all} (y) := t _w	all.B ^{+ m} ·y				
Depth to Co	entroid o	f Embankm	ent Reinf: d _S	H(y) := t _{wa}	(y) — clrS — 0.5 · a	dbSH			
Reinforcem	ient Ratio):	ρς	s _H (y) := A _{sS}	$H \div (b_W d_{SH}(y))$				

		Client	Blue Lake Rese	rvoir Compa	ny	Page				
	\bigcirc	Project	Upper Black Cr	eek Reservoi	ir	Pg. Rev.				
GEI	Ľ	Ву	M. Provencher	Chk.	C. Diebold	Арр.	C. Masching			
	isultants	Date	04/23/2020	Date 04/23/2020 Date 04/23/2020						
Project No.	180183	4	Document No.	N/A						
Subject	Design	of Spillway	- Head Wall							
	4	.) Wall Co	ncrete & Reb	ar Strengt	h Design Cont'c	ł				
Vertical Reinforce	ement:									
Bar Size and Space	cing: (Em	bankment)	Si	ze _{SE} := 7	sSE :	<mark>= 12in</mark>				
Diameter & Cross-Sectional Area of Bars:				dbSE := $d_{b_{Size_{SE}}} = 0.88 \cdot in$ AbSE := $A_{b_{Size_{SE}}} = 0.60 \cdot in^2$						
Area of Tensic	on Reinfo	rcement:	A	sse := Abse∙	$\frac{12in}{sSE} = 0.60 \cdot in^2$		-			
			m	$:= (t_{wall.T})^{-1}$	$(-t_{wall.B}) \div H_{wall}$	= -0.05				
Section Depth	at a Heig	ght 'y' from t	he base: t _v	$t_{wall}(y) := t_{wall.B} + m \cdot y$						
Depth to Cent	roid of R	einforæmen	t: de	$d_{SE}(y) := t_{wall}(y) - clrS - dbSH - 0.5 \cdot dbSE$						
Reinforcemen	t Ratio:		ρ	_{SE} (y) := A _{SSE}	$= \div \left(b_{W} d_{SE}(y) \right)$					
Bar Size and Space	cing: (Cha	innel)	Si	ze _{SC} := 7	sSC :	<mark>= 12in</mark>				
Diameter & Ci	ross-Secti	ional Area of	Bars: dl	$dbSC := d_{b_{Size_{SC}}} = 0.88 \cdot in AbSC := A_{b_{Size_{SC}}} = 0.60 \cdot in^{2}$						
Area of Tension Reinforcement:				$A_{sSC} := AbSC \cdot \frac{12in}{sSC} = 0.60 \cdot in^2$						
Depth to Centroid of Reinforæment:				$d_{SC}(y) := t_{wall}(y) - clrS - dbSH - 0.5 \cdot dbSC$						
Reinforcemen	t Ratio:		ρ	$SC(y) := A_{SS}(y)$	$c \div (b_w d_{SC}(y))$					

		Client	Blue Lake Rese	rvoir Compa	any	Page		
	\mathcal{Y}	Project	Upper Black Cr	eek Reservo	pir	Pg. Rev.		
GFI	2	Ву	M. Provencher	Chk.	C. Diebold	Арр.	C. Masching	
Consul	ltants	Date	04/23/2020	Date	04/23/2020	Date	04/23/2020	
Project No. 18	80183	4	Document No.	N/A				
Subject De	esign o	of Spillway	- Head Wall					
			6.) Wall F	Rebar Des	ign			
Shrinkage and Temp	peratur	re Reinforce	ment (S&T): ACI 3	18-14 & US/ _	AŒ §2-8	``````````````````````````````````````	_	
Maximum Spaci (ACI 318-14, §7.	ng: <i>7.6.2.1</i>)	S	= min 18in	$1, 5.0.5(t_{wall.B} + t)$	wall.T) , 12ii	$n = 12.00 \cdot in$	
Minimum Area c (ACI 318-14, Tab	of Steel bl <i>e</i> 7.6.	Ratio: 1 <i>.</i> 1)						
$ \rho_{ACI} := 0.0020 \text{ if } f_{\gamma} < 60 \text{ksi} = 0.0012 $								
				max[(0.002	$18 \cdot 60$ ksi ÷ f _y), 0.00	014 other	wise	
	6 a		ρ	JSACE ^{:=}	0.003 if $L_{CJ} < 3$	30ft	= 0.0030	
Minimum Area o (USACE §2-8)	of Steel	Ratio:			0.004 if $30ft \leq$	$L_{CI} \le 40$ ft		
					0.005 otherwise			
Minimum Area d	of Steel	Ratio:	ρ	• max := max	$(\rho_{ACL}, \rho_{USACE}) =$	0.0030		
Minimum Steel A	Area:						2	
(USACE §2-8)			A	s.min ^{:=} ρ _m	hax ^{•b} w ^{•0.5} •(^t wall.I	3 + twall.T)	= 0.54 · in ⁻	
Shrinkage and Tem	peratur	re Reinforce	ment (S&T): ACI 3	18-14 & US	AŒ §2-8			
Vertical Reinforcem	ient:							
Bar Size and Spa (Embankment)	cing of	Reinforcem	ent: Si	$ze_{SE} = 7.00$	sSE	$E = 12.00 \cdot ir$	1	
Diameter & Cros	s-Sectio	onal Area of	Bars: dl	DSE = 0.88	in Ab	$SE = 0.60 \cdot i$	n ²	
Area of Reinforce	ement:		A	SE = 0.60·	in ²			
Bar Size and Space (Channel)	cing of	Reinforcem	ent: Si	ze _{SC} = 7.00) sSC	C = 12.00∙ir	1	
Diameter & Cros	s-Sectio	onal Area of	Bars: dl	oSC = 0.88·	in Ab	SC = 0.60∙i	n ²	
Area of Reinforce	ement:		A	SC = 0.60.	in ²			
$\frac{A_{s.min}}{A_{sSC} + A_{sSE}} = 0.45$ 								

		Client	Blue Lake Re	eserv	oir Compa	iny		Page	
	\bigcirc	Project	Upper Black	Cree	k Reservo	ir		Pg. Rev.	
GEI	Ľ	Ву	M. Provench	ner	Chk.	C. Dieb	old	Арр.	C. Masching
	isultants	Date	04/23/2020		Date	04/23/2	2020	Date	04/23/2020
Project No.	180183	4	Document I	No.	N/A				
Subject	Design	of Spillway	y - Head Wall						
			6.) Wall Re	ebar	Design (Cont'd			
Shrinkage and Te	mperatu	re Reinforce	ement (S&T): A	CI 31	8-14 & USA	NCE §2-8			
Horizontal Reinfo	orcement	:					_		
Wall is reinforced spacing of that a	l with two fter 20-fe	o sections. [•] et.	The top 20-feet	from	the top of t	he wall us:	se reinforcir	ng at half the	9
Bar Size and S (Embankmen	pacing of t & Chanı	^F Reinforcem nel)	nent:	Size	SH = 5.00		sS	H = 12.00·	in
Diameter & Ci	ross-Secti	onal Area o	f Bars:	dbS	$H=0.63\cdot$	in	Ab	SH = 0.31	$\cdot in^2$
Area of Reinfo	prcement	:		A _{sS}	H = 0.31∙i	in ²			
				A _{s.}	min				
				2 · A	—— = 0.8 [\] sSH	57 <u>< 1.(</u>	0 therefore	okay	
	el Cto els	(ACL210 1)	1 60 C 1 2)	L]			
Vortical Poinform	mont.	(ACI 518-14	+, 99.0.1.2)						
	(3)	f' nsi			2	00. nsi. h	.min(da	-(0ft) da -	(0ft)))
ا ≔ ۱ sv.min	min $\left \frac{3\sqrt{3}}{\sqrt{3}} \right $	f _v	v∙min(d _{SE} (0ft	t),d _S	_C (Oft)), –		<u>w ۱۰۰۰۰(۵</u> ۵۱ f,		$\left = 0.56 \cdot \text{in}^2 \right $
		у		Α.,			у)
				^s\ ∧	$\frac{1}{2}$ = 0.	93 <	1.0 therefor	e okay	
				A	sSE				

		Client	Blue Lake Reserv	oir Compa	ny	Page	
	\bigcirc	Project	Upper Black Cree	ek Reservoi	r	Pg. Rev.	
GEI	Ľ	Ву	M. Provencher	Chk.	C. Diebold	Арр.	C. Masching
	isultants	Date	04/23/2020	Date	04/23/2020	Date	04/23/2020
Project No.	180183	4	Document No.	N/A			
Subject	Design	of Spillway	/ - Head Wall				
			6.) Wall Rebar	Design C	Cont'd		
Ductility Check: (ACI 318-	14, §7.3.3.1	. & §9.3.3.1)				
Reinforcemen (Vertical)	t Ratio Pr	ovided: E	Embankment: $ ho_{p}$	$r_{E} := \frac{A}{d_{SE}(0)}$	$\frac{\text{sSE}}{\text{Oft}) \cdot \text{b}_{W}} = 0.0036$		
		C	Channel: ^P p	∕C ^{:=}	$\frac{\text{sSE}}{\text{Oft}) \cdot \text{b}_{W}} = 0.0036$		
Reinforcemen (Horizontal)	t Ratio Pr	ovided:	ρ _ρ ι	$H := \frac{A_s}{d_{SH}(0)}$	$\frac{SH}{ft) \cdot b_W} = 0.0018$		
Depth to Neu (Vertical)	tral Axis:		cVE	$f := \frac{\rho_{pVE^{-1}}}{0.85}$ $f := \frac{\rho_{pVC^{-1}}}{0.85}$	$\frac{f_{y} \cdot d_{SE}(0ft)}{f_{y} \cdot d_{SC}(0ft)} = 0.95$ $f_{y} \cdot d_{SC}(0ft)$ $f_{y} \cdot d_{SC}(0ft) = 0.95$	• in	
Depth to Neu (Horizontal)	tral Axis:		сН	$:= \frac{\rho_{pH} \cdot f_{y}}{0.85}$	$\frac{d_{SH}(0ft)}{\beta_1 \cdot f'_c} = 0.49 \cdot i$	n	
Minimum Stra Calculated Stra Steel at Nomin (Vertical) (Horizontal)	ain in Ten ain in Ten nal Streng	sion Steel at sion gth: ^ε tV ^ε tH	t Nominal Strength: $r_E := 0.003 \cdot \left(\frac{d_{SE}(0)}{cV_{II}} \right)$ $r_I := 0.003 \cdot \left(\frac{d_{SH}(0)}{cH_{II}} \right)$	$\varepsilon_{t.m}$ $\left(\frac{Dft}{E} - 1\right) = \frac{ft}{E} - 1 = 1$	in := 0.004 0.04 ε _{tVC} := 0.0 0.09	$003 \cdot \left(\frac{d_{SC}}{cV}\right)$	$\frac{\text{Oft)}}{\text{C}} - 1 = 0.04$
$\frac{\varepsilon_{t}}{\varepsilon}$.min tVE	0.10	$\frac{\varepsilon_{t.min}}{\varepsilon_{tVC}} = 0.10$	$\frac{\varepsilon_{t.min}}{\varepsilon_{tH}} =$	= 0.05 < 1.0 th	ierefore oka	y

		Client	Blue Lake Res	servoir Co	mpar	y	Page	
	\bigcirc	Project	Upper Black C	Creek Res	ervoir	•	Pg. Rev.	
GEI	Y	Ву	M. Provenche	er Chk.		C. Diebold	Арр.	C. Masching
	sultants	Date	04/23/2020	Date	•	04/23/2020	Date	04/23/2020
Project No.	180183	4	Document No	o. N/A			·	
Subject	Design	of Spillway	- Head Wall					
		7.) Footi	ng Concrete	& Reba	r Stre	ength Design		
Concrete Propert	ies:							
Specified Com	pressive	Strength of	Concrete:			f' _c = 4500 p	si	
Specified Yield	l Strength	n of Reinford	em ent:			f _y := 60ksi		
Strength Redu	ction Fac	tor for Tensi	on-Controlled Se	ections:		$\phi_t \coloneqq 0.90$	(ACI 318	14, Table 2 1. 2. 1)
Strength Redu Whitney Stres	ction Fac s Block F	tor for Shea actor:	r:			$\varphi_{V} \coloneqq 0.75$	(ACI 318	14, Table 2 1. 2. 2)
β ₁ := 0).85 if	$f'_{C} \le 400$	Opsi			$\beta_1 = 0.83$	(ACI 318-14	4, Table 2 2. 2. 2. 4. 3)
().65 if	f' _C > 800	Opsi					
C).85 – 0.	$.05 \cdot \frac{f'_{C} - 40}{1000}$	000psi otherv 0psi	wise				
Reinforcement Po	arallel to	Wall:						
Heel Reinforceme	ent:							
Bar Size and S	pacing (T	op):		Size _{HTP} :=	<mark>= 7</mark>	sHTP :=	12in	
Diameter 8	k Cross-S	ectional Area	a of Bars:	dbHTP :=	d _{bsiz}	= 0.88 · in		
				AbHTP :=	A _b _{Siz}	°HTP = 0.60∙in ² ^e HTP	2	
Area of Rei	nforceme	ent:		A _{sHTP} :=	AbHT	$P \cdot \frac{12in}{sHTP} = 0.60$	in ²	
Depth to C	entroid o	f Tension Re	inforcement:	d _{HTP} := t	base	$-0.5 \cdot dbHTP = 3$	1.96 ft	
Reinforcem	ent Ratio):		$\rho_{HTP} := A$	A _{shtp}	$\div \left({{{b}_{W}}{d}_{HTP}} \right) =$	0.00212	
Bar Size and S	pacing (B	ottom):		Size _{HBP} :	= 7	sHBP :=	<mark>12in</mark>	
Diameter &	k Cross-S	ectional Area	a of Bars:	dbHBP :=	d _b Siz	= 0.88∙in ^e HBP		
				AbHBP :=	Ab Siz	= 0.60∙in ^e HBP	2	
Area of Rei	nforceme	ent:		A _{sHBP} :=	AbHE	$3P \cdot \frac{12in}{sHBP} = 0.60$	∙in ²	

		Client	Blue Lake Re	serv	oir Compa	ny		Page	
	\bigcirc	Project	Upper Black	Cree	k Reservoi	r		Pg. Rev.	
GEI	Ľ	Ву	M. Provench	er	Chk.	C. Dieb	old	Арр.	C. Masching
	nsultants	Date	04/23/2020		Date	04/23/	2020	Date	04/23/2020
Project No.	180183	4	Document N	lo.	N/A				
Subject	Design	of Spillway	· - Head Wall						
	7.)	Footing C	Concrete & I	Reb	ar Streng	th Des	ign Cont'	d	
Reinforcement Po	arallel to	Wall:							
Toe Reinforceme	nt:								
Bar Size and S	pacing (To	op):		Size	TTP := 7		sttp := 1	<mark>2in</mark>	
Diameter &	& Cross-Se	ectional Area	a of Bars:	dbT	TP := d _b _{Siz}	= ^e TTP	0.88∙in		
				AbT	TP := A _b _{Siz}	e _{TTP} =	0.60 · in ²		
Area of Rei	inforceme	ent:		A _{sT}	TP := AbTT	$P \cdot \frac{12in}{sTTP}$	= 0.60 · in	2	
Bar Size and S	pacing (B	ottom):		Size	TBP := 7		sTBP := 1	. <mark>2in</mark>	
Diameter 8	& Cross-Se	ectional Area	a of Bars:	dbT	BP := d _b _{Siz}	eter ^{eter}	0.88 · in		
				AbT	BP := A _b	= ^{ze} TBP	0.60 · in ²		
Area of Rei	inforceme	ent:		A _{sT}	_{BP} := Abte	3P. <u>12in</u> sTBP			
Reinforcement Po	erpendicı	ılar to Wall:							
Heel Reinforceme	ent:								
Bar Size and S	pacing (To	op):		Size	<mark>нт := 9</mark>		sHT := 12	2in	
Reinforcem	nent Clear	r Cover:		clrH	IT := 3in				
Diameter &	& Cross-Se	ectional Area	a of Bars:	db⊦	IT := d _b Size	= 1. HT	13∙in Ab⊦	IT := A _b _{Size}	= 1.00 · in ² ^e HT
Area of Ter	nsion Reir	nforcement:		A _{sH}	T := AbHT	$\frac{12in}{sHT} =$	$1.00 \cdot in^2$		
Section De	pth:			t _{foc}	ot ^{:= t} base	= 2.00 f	ťt		
Depth to C	entroid o	f Tension Re	inforcement:	d _{HT}	· := t _{foot} -	clrHT –	(0.5 · dbH	T) $= 1.70 \text{ft}$:
Reinforcem	nent Ratio):		ρ _{ΗI}	- := A _{sHT} ÷	- (b _w d _H	T) = 0.004	108	

		Client	Blue Lake Re	serv	oir Compa	ıγ	Page			
	\bigcirc	Project	Upper Black	Cree	k Reservoi	r	Pg. Rev.			
GEI	$\underline{\mathcal{S}}$	Ву	M. Provench	er	Chk.	C. Diebold	Арр.	C. Masching		
	isultants	Date	04/23/2020		Date	04/23/2020	Date	04/23/2020		
Project No.	180183	4	Document N	lo.	N/A					
Subject	Design	of Spillway	- Head Wall							
	7.)	Footing C	Concrete & I	Reba	ar Streng	th Design Cont	'd			
Reinforcement Pe	erpendicu	ılar to Wall:								
Heel Reinforceme	ent:									
Bar Size and S	pacing (B	ottom):		Size	<mark>НВ := 9</mark>	sHB := 1	2in			
Reinforcem	nent Clear	r Cover:		<mark>clrH</mark>	I <mark>B := 4in</mark>					
Diameter 8	& Cross-Se	ectional Area	a of Bars:	dbH	IB := d _b Size	= 1.13∙in Abŀ HB	HB := A _b _{Siz}	= 1.00 · in ² [₽] HB		
Area of Ter	nsion Reir	nforcement:		$A_{sHB} := AbHB \cdot \frac{12in}{sHB} = 1.00 \cdot in^2$						
Depth to C Reinforcem	entroid o 1ent:	f Compressi	on	d _{HB}	s := t _{foot} -	clrHB − 0.5 · dbHE	8 = 1.62 ft			
Toe Reinforceme	nt:									
Bar Size and S	pacing (Te	op):		Size	тт := 9	sTT := 12	2in			
Reinforcem	nent Clear	r Cover:		clrT	T := 3in					
Diameter 8	& Cross-Se	ectional Area	a of Bars:	dbT	T := d _b Size	= 1.13 · in AbT	T := A _b Size	= 1.00 · in ²		
Area of Ter	nsion Reir	nforcement:		A _{sT}	T := AbTT∙	$\frac{12in}{sTT} = 1.00 \cdot in^2$				
Depth to C	entroid o	f Tension Re	inforcement:	d _{TT}	:= t _{foot} -	clrTT – (0.5 · dbTT) = 1.70 ft			
Reinforcem	nent Ratio):		ρττ	:= A _{STT} ÷	$\left(b_{W} d_{TT}\right) = 0.004$	08			
Bar Size and S	pacing (B	ottom):		Size	т <mark>в := 9</mark>	sTB := 12	2in			
Reinforcem	nent Clear	r Cover:		clrT	<mark>B := 4in</mark>					
Diameter 8	& Cross-Se	ectional Area	a of Bars:	dbT	B := d _b _{Size}	= 1.13∙in Abl TB	⁻B := A _b _{Size}	= 1.00 · in ² ² TB		
Area of Ter	nsion Reir	nforcement:		A _{st}	B := AbTB∙	$\frac{12in}{sTB} = 1.00 \cdot in^2$				
Depth to C Reinforcem Reinforcem	entroid o nent: nent Ratic	f Compressi o:	on	d _{TB} ρ _{TB}	:= t _{foot} - := A _{sTB} ÷	$cIrTB - 0.5 \cdot dbTB$ $\left(b_{W} d_{TB}\right) = 0.004$	= 1.62 ft 29			

Import the construction of the property of the pr			Client	Blue Lake Res	ervoir Co	mpany	Page	
GENERATIONBy Date M. Provencher (Chk.C. DieboldApp. (App.) C. Masching (04/23/2020) Project No.1801834Document No.N/ASubject Design of Spillway - Head Wall R.) Footing Strength CapacityBearing Pressure:BuR.) Footing Strength CapacityBearing Pressure: Maximum Eccentricity:ecc := max(ecc1, ecc2) = 3.08 ftUnfactored Shear: $V := (W_1 + W_2 + W_3) = 11.89 \cdot kip$ Factored Shear: $V_u := 1.2 \cdot (W_1 + W_2) + 1.6 \cdot W_3 = 17.00 \cdot kip$ IASCE 7-10, 2.3.2 Eqtn 2: $U_u := 1.2 \cdot (W_1 + W_2) + 1.6 \cdot W_3 = 17.00 \cdot kip$ Unfactored bearing pressure at heel: $q_{heel.ED} := \frac{V}{B \cdot b_W} \cdot \left[1 - \frac{(6 \cdot ecc1)}{B}\right] = 1.16 \cdot \frac{kip}{ft^2}$ Unfactored bearing pressure at heel: $q_{u.heel} := \frac{V}{B \cdot b_W} \cdot \left[1 - \frac{(6 \cdot ecc1)}{B}\right] = 1.21 \cdot \frac{kip}{ft^2}$ Factored bearing pressure at heel: $q_{u.heel} := \frac{V_u}{B \cdot b_W} \cdot \left[1 - \frac{(6 \cdot ecc1)}{B}\right] = 4.84 \cdot \frac{kip}{ft^2}$ Factored bearing pressure at heel: $q_{u.heel} := \frac{V_u}{B \cdot b_W} \cdot \left[1 + \frac{(6 \cdot ecc1)}{B}\right] = 4.84 \cdot \frac{kip}{ft^2}$ Factored bearing pressure at heel: $q_{u.heel} := \frac{V_u}{B \cdot b_W} \cdot \left[1 + \frac{(6 \cdot ecc1)}{B}\right] = 4.84 \cdot \frac{kip}{ft^2}$ Factored bearing pressure at heel: $q_{u.heel} := \frac{V_u}{B \cdot b_W} \cdot \left[1 + \frac{(6 \cdot ecc1)}{B}\right] = 4.84 \cdot \frac{kip}{ft^2}$ Factored bearing pressure at heel: $q_{u.heel} := \frac{W_u}{B \cdot b_W} \cdot \left[1 + \frac{(6 \cdot ecc1)}{B}\right] = 4.84 \cdot \frac{kip}{ft^2}$ Factored bearing pressure at heel: $q_{u.heel} := \frac{W_u}{B \cdot b_W} \cdot \left[1 + \frac{(6 \cdot ecc1)}{B}\right] = 4.84 \cdot \frac{kip}{ft^2}$ Factored bearing pressure at heel: $q_{u.hee$		\bigcirc	Project	Upper Black C	reek Res	ervoir	Pq. Rev	
ConsultantsDate04/23/2020Date04/23/2020Date04/23/2020Project No.1801834Document No.N/ASubjectDesign of Spillway - Head Wall 8.) Footing Strength Capacity Bearing Pressure:Maximum Eccentricity:ecc := max(ecc1, ecc2) = 3.08 ftUnfactored Shear:V := $(W_1 + W_2 + W_3) = 11.89 \cdot kip$ Factored Shear:V := $(W_1 + W_2 + W_3) = 11.89 \cdot kip$ Image: Consult of the pressure of bulk materials factor]Unfactored bearing pressure at heel:Unfactored bearing pressure at toe: $q_{heel.ED} := \frac{V}{B \cdot b_W} \cdot \left[1 - \frac{(6 \cdot ecc1)}{B}\right] = 1.16 \cdot \frac{kip}{ft^2}$ Factored bearing pressure at heel: $q_{u.heel} := \frac{V_u}{B \cdot b_W} \cdot \left[1 - \frac{(6 \cdot ecc1)}{B}\right] = 1.21 \cdot \frac{kip}{ft^2}$ Factored bearing pressure at toe: $q_{u.heel} := \frac{V_u}{B \cdot b_W} \cdot \left[1 - \frac{(6 \cdot ecc1)}{B}\right] = -1.45 \cdot \frac{kip}{ft^2}$ Factored bearing pressure at toe: $q_{u.toe} := \frac{V_u}{B \cdot b_W} \cdot \left[1 + \frac{(6 \cdot ecc1)}{B}\right] = 4.84 \cdot \frac{kip}{ft^2}$ Factored bearing pressure at toe: $q_{u.toe} := \frac{V_u}{B \cdot b_W} \cdot \left[1 + \frac{(6 \cdot ecc1)}{B}\right] = 4.84 \cdot ksf$			By	M. Provenche	r Chk.	C. Diebold	App.	C. Masching
Project No.1801834Document No.N/ASubjectDesign of Spillway - Head Wall8.) Footing Strength CapacityBearing Pressure:Maximum Eccentricity:ecc := max(ecc1, ecc2) = 3.08 ftMaximum Eccentricity:ecc := max(ecc1, ecc2) = 3.08 ftUnfactored Shear:V := $(W_1 + W_2 + W_3) = 11.89 \cdot kip$ Factored Shear:V := $(W_1 + W_2) + 1.6 \cdot W_3 = 17.00 \cdot kip$ [ASCE 7-10, 2.3.2 Eqtn 2:DL & pressure of bulk materials factor]Unfactored bearing pressure at heel: $V_u := 1.2 \cdot (W_1 + W_2) + 1.6 \cdot W_3 = 17.00 \cdot kip$ Unfactored bearing pressure at heel: $q_{heel.ED} := \frac{V}{B \cdot b_W} \cdot \left[1 - \frac{(6 \cdot ecc1)}{B}\right] = 1.16 \cdot \frac{kip}{ft^2}$ Unfactored bearing pressure at toe: $q_{u.heel} := \frac{V}{B \cdot b_W} \cdot \left[1 + \frac{(6 \cdot ecc1)}{B}\right] = 1.21 \cdot \frac{kip}{ft^2}$ Factored bearing pressure at toe: $q_{u.heel} := \frac{V_u}{B \cdot b_W} \cdot \left[1 - \frac{(6 \cdot ecc1)}{B}\right] = -1.45 \cdot \frac{kip}{ft^2}$ Factored bearing pressure at toe: $q_{u.heel} := \frac{V_u}{B \cdot b_W} \cdot \left[1 + \frac{(6 \cdot ecc1)}{B}\right] = 4.84 \cdot \frac{kip}{ft^2}$ Factored bearing pressure at toe: $q_{u.toe} := \frac{V_u}{B \cdot b_W} \cdot \left[1 + \frac{(6 \cdot ecc1)}{B}\right] = 4.84 \cdot ksf$		nsultants	Date	04/23/2020	Date	04/23/2020	Date	04/23/2020
SubjectDesign of Spillway - Head Wall 8.) Footing Strength CapacityBearing Pressure:Maximum Eccentricity:ecc := max(ecc1, ecc2) = 3.08 ftUnfactored Shear: $V := (W_1 + W_2 + W_3) = 11.89 \cdot kip$ Factored Shear: $V := (W_1 + W_2 + W_3) = 11.89 \cdot kip$ Factored Shear: $V_u := 1.2 \cdot (W_1 + W_2) + 1.6 \cdot W_3 = 17.00 \cdot kip$ [ASCE 7-10, 2.3.2 Eqtn 2: $U_u := 1.2 \cdot (W_1 + W_2) + 1.6 \cdot W_3 = 17.00 \cdot kip$ Unfactored bearing pressure at heel: $q_{heel.ED} := \frac{V}{B \cdot b_W} \cdot \left[1 - \frac{(6 \cdot ecc_1)}{B}\right] = 1.16 \cdot \frac{kip}{ft^2}$ Unfactored bearing pressure at toe: $q_{u.heel} := \frac{V}{B \cdot b_W} \cdot \left[1 + \frac{(6 \cdot ecc_1)}{B}\right] = 1.21 \cdot \frac{kip}{ft^2}$ Factored bearing pressure at heel: $q_{u.heel} := \frac{V_u}{B \cdot b_W} \cdot \left[1 - \frac{(6 \cdot ecc)}{B}\right] = -1.45 \cdot \frac{kip}{ft^2}$ Factored bearing pressure at toe: $q_{u.heel} := \frac{V_u}{B \cdot b_W} \cdot \left[1 + \frac{(6 \cdot ecc)}{B}\right] = 4.84 \cdot \frac{kip}{ft^2}$ Factored bearing pressure at toe: $q_{u.heel} := \frac{W_u}{B \cdot b_W} \cdot \left[1 + \frac{(6 \cdot ecc)}{B}\right] = 4.84 \cdot \frac{kip}{ft^2}$ Factored bearing pressure at toe: $q_{u.heel} := max(q_{u.heel}, q_{u.toe}) = 4.84 \cdot ksf$	Project No.	180183	34	Document No	D. N/A		I	
8.) Footing Strength CapacityBearing Pressure:Maximum Eccentricity:ecc := $max(ecc_1, ecc_2) = 3.08 \text{ ft}$ Unfactored Shear: $V := (W_1 + W_2 + W_3) = 11.89 \cdot \text{kip}$ Factored Shear: $V := (W_1 + W_2 + W_3) = 11.89 \cdot \text{kip}$ [ASCE 7-10, 2.3.2 Eqtn 2: $V_u := 1.2 \cdot (W_1 + W_2) + 1.6 \cdot W_3 = 17.00 \cdot \text{kip}$ DL & pressure of bulk materials factor] $u_{\text{heel.ED}} := \frac{V}{B \cdot b_W} \cdot \left[1 - \frac{(6 \cdot ecc_1)}{B}\right] = 1.16 \cdot \frac{\text{kip}}{\text{ft}^2}$ Unfactored bearing pressure at heel: $q_{\text{toe.ED}} := \frac{V}{B \cdot b_W} \cdot \left[1 + \frac{(6 \cdot ecc_1)}{B}\right] = 1.21 \cdot \frac{\text{kip}}{\text{ft}^2}$ Factored bearing pressure at heel: $q_{u.\text{heel}} := \frac{V_u}{B \cdot b_W} \cdot \left[1 - \frac{(6 \cdot ecc)}{B}\right] = -1.45 \cdot \frac{\text{kip}}{\text{ft}^2}$ Factored bearing pressure at heel: $q_{u.\text{heel}} := \frac{V_u}{B \cdot b_W} \cdot \left[1 + \frac{(6 \cdot ecc)}{B}\right] = -1.45 \cdot \frac{\text{kip}}{\text{ft}^2}$ Factored bearing pressure at heel: $q_{u.\text{heel}} := \frac{V_u}{B \cdot b_W} \cdot \left[1 + \frac{(6 \cdot ecc)}{B}\right] = 4.84 \cdot \frac{\text{kip}}{\text{ft}^2}$ $q_{u.\text{toe}} := \frac{W_u}{B \cdot b_W} \cdot \left[1 + \frac{(6 \cdot ecc)}{B}\right] = 4.84 \cdot \frac{\text{kip}}{\text{ft}^2}$ $q_{u.\text{max}} := \max(q_{u.\text{heel}}, q_{u.\text{toe}}) = 4.84 \cdot \text{ksf}$	Subject	Design	of Spillwa	y - Head Wall				
Bearing Pressure:Maximum Eccentricity:ecc := max(ecc1, ecc2) = 3.08 ftUnfactored Shear: $V := (W_1 + W_2 + W_3) = 11.89 \cdot kip$ Factored Shear: $V_u := 1.2 \cdot (W_1 + W_2) + 1.6 \cdot W_3 = 17.00 \cdot kip$ [ASCE 7-10, 2.3.2 Eqtn 2: $V_u := 1.2 \cdot (W_1 + W_2) + 1.6 \cdot W_3 = 17.00 \cdot kip$ Unfactored bearing pressure at heel: $q_{heel.ED} := \frac{V}{B \cdot b_W} \cdot \left[1 - \frac{(6 \cdot ecc_1)}{B}\right] = 1.16 \cdot \frac{kip}{ft^2}$ Unfactored bearing pressure at toe: $q_{toe.ED} := \frac{V}{B \cdot b_W} \cdot \left[1 + \frac{(6 \cdot ecc_1)}{B}\right] = 1.21 \cdot \frac{kip}{ft^2}$ Factored bearing pressure at heel: $q_{u.heel} := \frac{V_u}{B \cdot b_W} \cdot \left[1 - \frac{(6 \cdot ecc)}{B}\right] = -1.45 \cdot \frac{kip}{ft^2}$ Factored bearing pressure at toe: $q_{u.heel} := \frac{V_u}{B \cdot b_W} \cdot \left[1 + \frac{(6 \cdot ecc)}{B}\right] = 4.84 \cdot \frac{kip}{ft^2}$ Factored bearing pressure at toe: $q_{u.toe} := \frac{V_u}{B \cdot b_W} \cdot \left[1 + \frac{(6 \cdot ecc)}{B}\right] = 4.84 \cdot \frac{kip}{ft^2}$ $q_{u.max} := max(q_{u.heel}, q_{u.toe}) = 4.84 \cdot ksf$				8.) Footing S	Strength	Capacity		
Maximum Eccentricity:ecc := $max(ecc_1, ecc_2) = 3.08 \text{ ft}$ Unfactored Shear: $V := (W_1 + W_2 + W_3) = 11.89 \cdot \text{kip}$ Factored Shear: $V := (W_1 + W_2 + W_3) = 11.89 \cdot \text{kip}$ [ASCE 7-10, 2.3.2 Eqtn 2: $V_u := 1.2 \cdot (W_1 + W_2) + 1.6 \cdot W_3 = 17.00 \cdot \text{kip}$ Unfactored bearing pressure of bulk materials factor] $q_{\text{heel}.\text{ED}} := \frac{V}{B \cdot b_W} \cdot \left[1 - \frac{(6 \cdot ecc_1)}{B}\right] = 1.16 \cdot \frac{\text{kip}}{\text{ft}^2}$ Unfactored bearing pressure at heel: $q_{\text{toe}.\text{ED}} := \frac{V}{B \cdot b_W} \cdot \left[1 + \frac{(6 \cdot ecc_1)}{B}\right] = 1.21 \cdot \frac{\text{kip}}{\text{ft}^2}$ Factored bearing pressure at heel: $q_{u.\text{heel}} := \frac{V_u}{B \cdot b_W} \cdot \left[1 - \frac{(6 \cdot ecc_1)}{B}\right] = 1.21 \cdot \frac{\text{kip}}{\text{ft}^2}$ Factored bearing pressure at heel: $q_{u.\text{heel}} := \frac{V_u}{B \cdot b_W} \cdot \left[1 - \frac{(6 \cdot ecc)}{B}\right] = -1.45 \cdot \frac{\text{kip}}{\text{ft}^2}$ Factored bearing pressure at heel: $q_{u.\text{heel}} := \frac{V_u}{B \cdot b_W} \cdot \left[1 + \frac{(6 \cdot ecc)}{B}\right] = 4.84 \cdot \frac{\text{kip}}{\text{ft}^2}$ $q_{u.\text{toe}} := \frac{W_u}{B \cdot b_W} \cdot \left[1 + \frac{(6 \cdot ecc)}{B}\right] = 4.84 \cdot \frac{\text{kip}}{\text{ft}^2}$ $q_{u.\text{max}} := \max(q_{u.\text{heel}}, q_{u.\text{toe}}) = 4.84 \cdot \text{ksf}$	Bearing Pressure	2:						
Unfactored Shear: $V := (W_1 + W_2 + W_3) = 11.89 \cdot kip$ Factored Shear: [ASCE 7-10, 2.3.2 Eqtn 2: DL & pressure of bulk materials factor] $V_u := 1.2 \cdot (W_1 + W_2) + 1.6 \cdot W_3 = 17.00 \cdot kip$ Unfactored bearing pressure at heel: $q_{heel.ED} := \frac{V}{B \cdot b_W} \cdot \left[1 - \frac{(6 \cdot ecc_1)}{B}\right] = 1.16 \cdot \frac{kip}{ft^2}$ Unfactored bearing pressure at toe: $q_{toe.ED} := \frac{V}{B \cdot b_W} \cdot \left[1 + \frac{(6 \cdot ecc_1)}{B}\right] = 1.21 \cdot \frac{kip}{ft^2}$ Factored bearing pressure at heel: $q_{u.heel} := \frac{V_u}{B \cdot b_W} \cdot \left[1 - \frac{(6 \cdot ecc)}{B}\right] = -1.45 \cdot \frac{kip}{ft^2}$ Factored bearing pressure at toe: $q_{u.heel} := \frac{V_u}{B \cdot b_W} \cdot \left[1 + \frac{(6 \cdot ecc)}{B}\right] = 4.84 \cdot \frac{kip}{ft^2}$ Factored bearing pressure at toe: $q_{u.toe} := \frac{V_u}{B \cdot b_W} \cdot \left[1 + \frac{(6 \cdot ecc)}{B}\right] = 4.84 \cdot \frac{kip}{ft^2}$ Factored bearing pressure at toe: $q_{u.toe} := \frac{W_u}{B \cdot b_W} \cdot \left[1 + \frac{(6 \cdot ecc)}{B}\right] = 4.84 \cdot \frac{kip}{ft^2}$ Factored bearing pressure at toe: $q_{u.toe} := \frac{W_u}{B \cdot b_W} \cdot \left[1 + \frac{(6 \cdot ecc)}{B}\right] = 4.84 \cdot \frac{kip}{ft^2}$ Factored bearing pressure at toe: $q_{u.toe} := \frac{W_u}{B \cdot b_W} \cdot \left[1 + \frac{(6 \cdot ecc)}{B}\right] = 4.84 \cdot \frac{kip}{ft^2}$	Maximum Ec	centricity	:	(ecc := ma	$\exp(\operatorname{ecc}_1, \operatorname{ecc}_2) = 3.08$	3 ft	
Factored Shear: [ASCE 7-10, 2.3.2 Eqtn 2: DL & pressure of bulk materials factor] $V_u := 1.2 \cdot (W_1 + W_2) + 1.6 \cdot W_3 = 17.00 \cdot kip$ Unfactored bearing pressure at heel: $q_{heel.ED} := \frac{V}{B \cdot b_W} \cdot \left[1 - \frac{(6 \cdot ecc_1)}{B}\right] = 1.16 \cdot \frac{kip}{ft^2}$ Unfactored bearing pressure at toe: $q_{toe.ED} := \frac{V}{B \cdot b_W} \cdot \left[1 + \frac{(6 \cdot ecc_1)}{B}\right] = 1.21 \cdot \frac{kip}{ft^2}$ Factored bearing pressure at heel: $q_{u.heel} := \frac{V_u}{B \cdot b_W} \cdot \left[1 - \frac{(6 \cdot ecc)}{B}\right] = -1.45 \cdot \frac{kip}{ft^2}$ Factored bearing pressure at toe: $q_{u.heel} := \frac{V_u}{B \cdot b_W} \cdot \left[1 + \frac{(6 \cdot ecc)}{B}\right] = 4.84 \cdot \frac{kip}{ft^2}$ Factored bearing pressure at toe: $q_{u.toe} := \frac{V_u}{B \cdot b_W} \cdot \left[1 + \frac{(6 \cdot ecc)}{B}\right] = 4.84 \cdot \frac{kip}{ft^2}$ $q_{u.max} := max(q_{u.heel}, q_{u.toe}) = 4.84 \cdot ksf$	Unfactored Sh	near:		Ň	$v := (w_1$	$+W_2 + W_3 = 11.89$)∙kip	
Unfactored bearing pressure at heel: $q_{heel.ED} := \frac{V}{B \cdot b_W} \cdot \left[1 - \frac{(6 \cdot ecc_1)}{B}\right] = 1.16 \cdot \frac{kip}{ft^2}$ Unfactored bearing pressure at toe: $q_{toe.ED} := \frac{V}{B \cdot b_W} \cdot \left[1 + \frac{(6 \cdot ecc_1)}{B}\right] = 1.21 \cdot \frac{kip}{ft^2}$ Factored bearing pressure at heel: $q_{u.heel} := \frac{V_u}{B \cdot b_W} \cdot \left[1 - \frac{(6 \cdot ecc)}{B}\right] = -1.45 \cdot \frac{kip}{ft^2}$ Factored bearing pressure at toe: $q_{u.heel} := \frac{V_u}{B \cdot b_W} \cdot \left[1 - \frac{(6 \cdot ecc)}{B}\right] = 4.84 \cdot \frac{kip}{ft^2}$ Factored bearing pressure at toe: $q_{u.toe} := \frac{V_u}{B \cdot b_W} \cdot \left[1 + \frac{(6 \cdot ecc)}{B}\right] = 4.84 \cdot \frac{kip}{ft^2}$ $q_{u.max} := max(q_{u.heel}, q_{u.toe}) = 4.84 \cdot ksf$	Factored Shea [ASCE 7-10, 2 DL & pressure	ar: 2.3.2 Eqtn e of bulk i	12: materials fac	tor]	V _u := 1.2	$\cdot \left(W_1 + W_2 \right) + 1.6 \cdot W$	' ₃ = 17.00∙	kip
Unfactored bearing pressure at toe: $q_{toe.ED} := \frac{V}{B \cdot b_W} \cdot \left[1 + \frac{(6 \cdot ecc_1)}{B}\right] = 1.21 \cdot \frac{kip}{ft^2}$ Factored bearing pressure at heel: $q_{u.heel} := \frac{V_u}{B \cdot b_W} \cdot \left[1 - \frac{(6 \cdot ecc)}{B}\right] = -1.45 \cdot \frac{kip}{ft^2}$ Factored bearing pressure at toe: $q_{u.toe} := \frac{V_u}{B \cdot b_W} \cdot \left[1 + \frac{(6 \cdot ecc)}{B}\right] = 4.84 \cdot \frac{kip}{ft^2}$ $q_{u.max} := max(q_{u.heel}, q_{u.toe}) = 4.84 \cdot ksf$	Unfactored be	earing pre	essure at hee	el: (^q heel.ED [:]	$= \frac{V}{B \cdot b_{W}} \cdot \left[1 - \frac{\left(6 \cdot e c d \right)}{B} \right]$	$\left[\frac{21}{2}\right] = 1.16$	$\frac{kip}{ft^2}$
Factored bearing pressure at heel: $q_{u.heel} := \frac{V_u}{B \cdot b_W} \cdot \left[1 - \frac{(6 \cdot ecc)}{B}\right] = -1.45 \cdot \frac{kip}{ft^2}$ Factored bearing pressure at toe: $q_{u.toe} := \frac{V_u}{B \cdot b_W} \cdot \left[1 + \frac{(6 \cdot ecc)}{B}\right] = 4.84 \cdot \frac{kip}{ft^2}$ $q_{u.max} := max(q_{u.heel}, q_{u.toe}) = 4.84 \cdot ksf$	Unfactored be	earing pre	essure at toe	::	q _{toe.ED} :=	$= \frac{V}{B \cdot b_{W}} \cdot \left[1 + \frac{\left(6 \cdot ecc\right)}{B}\right]$	$\left(\frac{1}{2}\right) = 1.21$	$\frac{kip}{ft^2}$
Factored bearing pressure at toe: $q_{u.toe} := \frac{V_u}{B \cdot b_w} \cdot \left[1 + \frac{(6 \cdot ecc)}{B}\right] = 4.84 \cdot \frac{kip}{ft^2}$ $q_{u.max} := max(q_{u.heel}, q_{u.toe}) = 4.84 \cdot ksf$	Factored bear	ing press	ure at heel:	(q _{u.heel} :=	$= \frac{V_u}{B \cdot b_W} \cdot \left[1 - \frac{(6 \cdot ecc)}{B}\right]$	$\left[= -1.45 \right]$	$\frac{kip}{ft^2}$
$q_{u.max} := max(q_{u.heel}, q_{u.toe}) = 4.84 \cdot ksf$	Factored bear	ing press	ure at toe:	(q _{u.toe} :=	$\frac{V_{u}}{B \cdot b_{W}} \cdot \left[1 + \frac{(6 \cdot ecc)}{B}\right]$	$= 4.84 \cdot \frac{ki}{ft}$	<u>p</u> 2
				(q _{u.max} :=	a max(q _{u.heel} , q _{u.to}	e = 4.84 · k	sf

	GEI Consultants		Blue Lake Reserv	oir Compa	ny	Page	
GEI Consultants	Project	Upper Black Cree	k Reservo	ir	Pg. Rev.		
GFI	Ľ	Ву	M. Provencher	Chk.	C. Diebold	Арр.	C. Masching
	nsultants	Date	04/23/2020	Date	04/23/2020	Date	04/23/2020
Project No.	180183	4	Document No.	N/A			
Subject	Design	of Spillway	y - Head Wall				

8.) Footing Strength Capacity Cont'd

Note: The heel slab is designed as a cantilever beam with downward pressure from soil + slab and upward pressure from bearing. The toe slab is designed as a cantilever beam with downward pressure from slab and upward pressure from bearing.

Net Forces on Footings:

Downward weight of heel slab: (unfactored)

Downward weight of toe slab: (unfactored)

Downward weight of fill over heel slab: (unfactored)

Downward weight of heel slab:

Downward weight of toe slab:

Downward weight of fill over heel slab:

$$\begin{split} & \mathsf{W}_{heel} \coloneqq \gamma_{conc} \cdot \mathsf{t}_{base} \cdot \mathsf{1ft} = 0.30 \cdot \frac{\mathsf{kip}}{\mathsf{ft}} \\ & \mathsf{W}_{toe} \coloneqq \gamma_{conc} \cdot \mathsf{t}_{base} \cdot \mathsf{1ft} = 0.30 \cdot \frac{\mathsf{kip}}{\mathsf{ft}} \\ & \mathsf{W}_{heelfill} \coloneqq \gamma_{f} \cdot \left(\mathsf{El}_{fill} - \mathsf{El}_{bot}\right) \cdot \mathsf{1ft} = 1.30 \cdot \frac{\mathsf{kip}}{\mathsf{ft}} \\ & \mathsf{W}_{u.heel} \coloneqq \mathsf{1.2W}_{heel} = 0.36 \cdot \frac{\mathsf{kip}}{\mathsf{ft}} \\ & \mathsf{W}_{u.toe} \coloneqq \mathsf{1.2W}_{toe} = 0.36 \cdot \frac{\mathsf{kip}}{\mathsf{ft}} \\ & \mathsf{W}_{u.heelfill} \coloneqq \mathsf{1.6W}_{heelfill} = 2.08 \cdot \frac{\mathsf{kip}}{\mathsf{ft}} \end{split}$$

Net downward force on heel (Unfactored-Load Case 1):

$$p_{h.ED1} := W_{heel} + W_{heelfill} - b_{w} \cdot \left[q_{heel.ED} + 0.5 \cdot \left(\frac{q_{toe.ED} - q_{heel.ED}}{B} \right) \cdot \left(Heel - \frac{d_{HT}}{2} \right) \right] = 0.43 \cdot \frac{kip}{ft}$$

Net downward force on toe (Unfactored-Load Case 1):

$$p_{h.ED2} := W_{toe} - b_{w} \cdot \left[q_{toe.ED} + 0.5 \cdot \left(\frac{q_{heel.ED} - q_{toe.ED}}{B} \right) \cdot \left(Toe - \frac{d_{TT}}{2} \right) \right] = -0.91 \cdot \frac{kip}{ft}$$

Net downward force on heel (Factored-Max):

$$p_{h} := W_{u.heel} + W_{u.heelfill} - b_{w} \cdot \left[q_{u.heel} + 0.5 \cdot \left(\frac{q_{u.toe} - q_{u.heel}}{B} \right) \cdot \left(Heel - \frac{d_{HT}}{2} \right) \right] = 2.58 \cdot \frac{kip}{ft}$$

Net downward force on toe (Factored-Max):

$$p_{h2} := W_{u.toe} - b_w \cdot \left[q_{u.toe} + 0.5 \cdot \left(\frac{q_{u.heel} - q_{u.toe}}{B} \right) \cdot \left(Toe - \frac{d_{TT}}{2} \right) \right] = -3.65 \cdot \frac{kip}{ft}$$

Tension on Bottom

Tension on Bottom

	\bigcirc	Client	Blue Lake Reser	voir Compa	any	Page	
	())	Project	Upper Black Cre	ek Reservo	bir	Pg. Rev.	
GEI	Y	Ву	M. Provencher	Chk.	C. Diebold	Арр.	C. Masching
	onsultants	Date	04/23/2020	Date	04/23/2020	Date	04/23/2020
Project No.	180183	34	Document No.	N/A			
Subject	Design	of Spillway	/ - Head Wall				
		8.)	Footing Streng	th Capaci	ty Cont'd		
Environmental	Durability	Factor (ACI	350-06)				
Note: Required Per section 21.2 include earthqu	for Tensio 2.1.8.a, the eake loads	n Controlle e environme . The durab	d structure to encou ental durability factu ility factor is applie	urage durab or need not l d to service l	ility and liquid-tigh be applied to load loads only.	htness. combinations	that
Permissible 7	ēnsile Stre	ess:					
Shear stre	ss in norm	nal condition	ns: 9.2.6.4 f <mark>s.</mark>	_{ss} := 24000	o <mark>psi</mark> S _{d.ss} := n	$nax\left(rac{f_{\gamma}}{f_{s.ss}}, 1. ight)$	$\left(0\right) = 2.50$
Flexure in - One wa	normal co y element	onditions: R , bar ar 6" sp	10.6.4 f _{s.} bacing	::= 34000p	S _{d.f} := ma	$ax\left(\frac{f_{\gamma}}{f_{s.f}}, 1.0\right)$	= 1.76
EDF Shear:			V _h	eel.ED ^{:=} S	d.ss ^p h.ED1 · He	el = 5.33 · kij	0
			v _t	pe.ED ^{:= S} d	l.ss ^p h.ED2 · Toe	e = 7.94 · kip	
EDF Moment:			M		Sd f Ph ED1 · Hee	$el^2 \div 2 = 9.4$	0·kip·ft
			M	$soe.ED := S_0$	d.f ^p h.ED2 · Toe	² ÷ 2 = 9.81	· kip · ft
Ultimate Shear-	Cantilever	ed Section:	V.	hool := p	. Heel = 12.91	kip	
			v _u	.toe ^{:=} p _h	$2 \cdot \text{Toe} = 12.78 \cdot$	kip	
Ultimate Mome	nt-Cantile	vered Sectio	n: M	u.heel ^{:=} r	$ h \cdot \text{Heel}^2 \div 2 = 2$	32.26∙kip∙ft	
			M	u.toe := p	$ 12 \cdot \text{Toe}^2 \div 2 = 2$	22.37 · kip · ft	

		Client	Blue Lake Reserve	oir Compa	ny	Page	
	\bigcirc	Project	Upper Black Cree	k Reservoi	ir	Pg. Rev.	
GEI	I I I I I I I I I I I I I I I I I I I	Ву	M. Provencher	Chk.	C. Diebold	Арр.	C. Masching
	nsultants	Date	04/23/2020	Date	04/23/2020	Date	04/23/2020
Project No.	180183	4	Document No.	N/A	·		
Subject	Design	of Spillway	/ - Head Wall				
		8.)	Footing Strengt	h Capacit	ty Cont'd		
Footing Capacity	(1-foot E	Design Strip) - SHEAR CAPACITY:				
One Way Shea (<i>ACI 318-14,</i> s	ar Strengt §22.5.5.1	h:)	V _c :	$= 2\sqrt{f'_{C} \cdot p}$	$\overline{si} \cdot b_{W} \cdot d_{HT} = 32$.90∙kip	
Design Shear	Capacity:		φ۷r	$ = \phi_{\mathbf{V}} \cdot (\mathbf{V}_{\mathbf{V}}) $	c) = 24.68 · kip		
			V _{u.ł}	neel = 12.9	91·kip	V _{heel.ED} = 5	5.33 · kip
Demand Capa	асіту капс)-Heei: 	$DCR_{H} := \frac{max(V_{u.h})}{max(V_{u.h})}$	eel ^{, v} heel ϕV_n	.ED) = 0.52	< 1.0 therefo okay for shear	re section is strength
Demand Capa	acity Ratic	o-Toe:	$DCR_{F,T} := \frac{W_{u,t}}{W_{u}}$	toe = 12.75 toe, V _{toe} . ϕV_n	$\frac{\text{ED}}{\text{ED}} = 0.52$	$V_{toe,ED} = 7.$ < 1.0 therefor bkay for shear	94 · kip re section is strength
Footing Capacity	(1-foot D	Design Strip)	- MOMENT CAPACI	TY:			
Tension Face N (ACI 318-14)	Nominal S	Strength:	M _n	:= ρ _{HT} ·f _y	$\cdot b_{W} \cdot d_{HT}^{2} \cdot \left(1 - 0\right)$	0.59·ρ _{ΗT} · <mark>f</mark> y	-
Design Mome	ent Capaci	ity:	φM	n ≔ ¢ _t ∙M	n = 89.01 ft · kip		.)
Demand Capa	acity Ratic)-Heel:	$M_{u.}$ $DCR_{H} := \frac{max(M_{u.})}{max(M_{u.})}$	heel = 32. heel $, M$ hee ϕM_n	$\frac{26 \text{ft} \cdot \text{kip}}{\text{el.ED}} = 0.36$	M _{heel.ED} = <1.0 there pkay for flexe	■ 9.40 ft · kip fore section is ural strength
Demand Capa	acity Ratic	o-Toe:	$\frac{M_{u.t}}{DCR_{T} := \frac{max(M_{u.t})}{c}$	$\frac{1}{100} = 22.3$ $\frac{1}{100} \frac{1}{100} \frac{M_{100}}{M_{100}}$	$B7 \text{ ft} \cdot \text{kip}$ $ED = 0.25$	$M_{toe.ED} =$ < 1.0 there pkay for flexi	9.81 ft · kip fore section is ural strength

		Client	Blue Lake Re	eserv	oir Comp	any		Page	
	\bigcirc	Project	Upper Black	Cree	ek Reservo	oir		Pg. Rev.	
GEI	$\underline{\mathcal{S}}$	Ву	M. Provench	ner	Chk.	C. Dieb	old	Арр.	C. Masching
	sultants	Date	04/23/2020		Date	04/23/	2020	Date	04/23/2020
Project No.	180183	34	Document N	No.	N/A				
Subject	Design	of Spillwa	y - Head Wall						
			9.) Footi	ing F	Rebar De	esign			
Shrinkage and Te	mperatu	re Reinforo	ement (S&T): A	CI 31	8-14 & US	ACE §2-8			_
Maximum Spa (ACI 318-14, §	acing: §7.7.6.2.1	1)		s :=	min[18ir	n,5·0.5(t	wall.B ^{+ t} v	wall.T $)$, 12i	n] = 12.00 · in
Minimum Are <i>(ACI 318-14, 1</i>	a of Stee Table 7.6	l Ratio: .1.1)							
			ρ _{ACI} :=	= 0	.0020 if	$f_y < 60$	lksi		= 0.0018
				n	nax[(0.00	18 · 60ksi	(f_y) , 0.00	14] othe	rwise
Minimum Are	a of Stee	l Ratio:		ρυ	SACE :=	0.003	if L _{CJ} < 3	BOft	= 0.0030
(USACE §2-8)						0.004	if 30 ft \leq	$L_{CI} \le 40$ ft	
						0.005	otherwise		
Minimum Are	a of Stee	l Ratio:		ρ_{m}	ax := max	(ρ _{ACI} ,ρ	USACE) =	0.0030	
Minimum Stee	el Area:			Α	min taa :=	0 max · b	thaca =	0.86 · in ²	
(USACE §2-8)				5.1	nin.toe	' IIIdX		0.86 in ²	
				As.r	nin.heel [:]	= p _{max} .	^b w ^{· t} base ⁼	= 0.86 · m	
Reinforcement pe	erpendicu	ular to Wall	:						
Bar Size and	d Spacing	g of Reinfor	cement:	Size	ett = 9.00)	sTT = 1.0	00 ft	
				Size	$e_{\rm TB} = 9.00$)	sTB = 1.0	00 ft	
Area of Rei	nforceme	ent:		Α _{sT}	T = 1.00·	in ²	A _{stb} = 1	00 · in ²	
				A _s A _{sT}	.min.toe T ^{+ A} sTB	= 0.43	< 1.0 the	refore okay	
Bar Size and	d Spacing	g of Reinfor	cement:	Size	HT = 9.00	D	sHT = 1.0	00 ft	
				Size	HB = 9.00	D	sHB = 1.	00 ft	
Area of Rei	nforceme	ent:		A _{sH}	IT = 1.00∙	in ²	A _{sHB} = 1	L.00∙in ²	
				A _s A _{st}	.min.heel IT ^{+ A} sHB	- = 0.43	< 1.0 the	refore okay	

		Client	Blue Lake Re	serv	oir Compai	ıy		Page	
))	Project	Upper Black	Cree	k Reservoi	r		Pg. Rev.	
G FI N	I show the second secon	Ву	M. Provench	er	Chk.	C. Diebol	d	Арр.	C. Masching
	sultants	Date	04/23/2020		Date	04/23/20	20	Date	04/23/2020
Project No.	180183	4	Document N	lo.	N/A				
Subject	Design	of Spillway	- Head Wall						
		9	.) Footing R	leba	r Design	Cont'd			
Reinforcement pa	rallel to	Wall:							
Toe:									
Bar Size and	d Spacing	g of Reinford	ement:	Size	TTP = 7.00	S	TTP = 1.	00 ft	
				Size	TBP = 7.00) s ⁻	TBP = 1 .	00 ft	
Area of Rei	nforceme	ent:		A _{sT} -	TP = 0.60 ·	n ² A	stbp = (0.60 · in ²	
				A	s.min.toe	- 0 72	- 1 0 th	oroforo oka	4
				A _{sT}	TP ^{+ A} stbf	- = 0.72	<u> 1.0 ui</u>	ereiore okay	/
Heel:									
Bar Size and	d Spacing	g of Reinforc	ement:	Size	HTP = 7.00) sl	HTP = 1.	.00 ft	
				Size	HBP = 7.00) sl	HBP = 1	.00 ft	
Area of Rei	nforceme	ent:		A _{sH}	TP = 0.60∙	in ² A	sHBP =	0.60∙in ²	
				A _{sH}	s.min.heel ITP ^{+ A} sHB	– = 0.72 P	<pre> < 1.0 t</pre>	herefore ok	ау
Minimum Flexur	al Steel: ((ACI 318-14	, §9.6.1.2)						
Perpendicular	to Wall								
Heel: A _{s.}	min ^{:= I}	$\min\left(\frac{3\sqrt{f'_{0}}}{f_{y}}\right)$	<u>c∙psi</u> , ,	, <u></u>	D∙psi∙b _w ∙d ^f y	$\left(\frac{\text{HT}}{\text{HT}}\right) = 0.8$	32∙in ²		
Toe: A _{S.}	i ^{= ا}	$\min\left(\frac{3\sqrt{f'_0}}{f_y}\right)$	<mark>c∙psi</mark> , ,	, <u>200</u>)∙psi∙b _w ∙d ^f y	$\left(\frac{TB}{TB}\right) = 0.78$	8∙in ²		
$\frac{A_{s}}{A_{s}}$.min sHT	0.78	$\frac{A_{s.min}}{A_{sTB}} = 0.7$	78	< 1.0 there	fore okay			

	\bigcirc	Client	Blue Lake Reserv	oir Compa	any	Page	
	\bigcirc	Project	Upper Black Cree	ek Reservo	bir	Pg. Rev.	
GFI	${ > }$	Ву	M. Provencher	Chk.	C. Diebold	Арр.	C. Masching
	nsultants	Date	04/23/2020	Date	04/23/2020	Date	04/23/2020
Project No.	180183	34	Document No.	N/A			
Subject	Design	of Spillwa	y - Head Wall				
		9	9.) Footing Reba	ar Desigr	n Cont'd		
Ductility Check:	(ACI 318-	-14, §7.3.3.	1 & §9.3.3.1)				
Minimum Str	ain in Ten	ision Steel a	at Nominal Strength:	^ε t.n	nin := 0.004		
Perpendicula	r to Wall						
Reinforcen	nent Ratio	o Provided:		AbHT	0.0044		
			$ ho_{p}$	≔ d_{HT}.p′	- = 0.0041 w		
Depth to N	Neutral Ax	kis:	A :	$\rho_p \cdot f_y \cdot d$	HT _ 1 59 in		
			C .=	0.85·β ₁	$\frac{1}{f'_c} = 1.58 \cdot 11$		
Calculated	Strain in	Tension	e. •	- 0.003.	$\left(\frac{d_{HT}}{d_{HT}}-1\right) = 0.04$		
Steer at INC		rengui.	<u> </u>	- 0.005 (
			$\frac{\varepsilon_{t.}}{\varepsilon_{t.}}$	$\frac{\min}{1} = 0.1$	1 < 1.0 Th	erefore Okav	
			ε	t			

	Client	Blue Lake Reserv	oir Compa	ny	Page	
	Project	Upper Black Cree	ek Reservoi	ir	Pg. Rev.	
	Ву	M. Provencher	Chk.	C. Diebold	Арр.	C. Masching
ULI Consultan	^s Date	04/23/2020	Date	04/23/2020	Date	04/23/2020
Project No. 1801	834	Document No.	N/A			
Subject Desig	n of Spillwa	y - Head Wall				
		9.) Kev	Design			
Shear at the Top of the	Key:	- , - ,				
Summation of horizont	al driving forc	es:				
Case 1: H _{sum 1}	:= max(V _{F1} ;	$+ V_{F1b} + V_{C1a} +$	V _{C1b} – F _F	(2, 0.01 kip) = 3.14	1∙kip	
Case 2: H _{sum.2}	:= V _{F1a} + V _l	$F_{1b} + V_{Ea} + V_{Eb} + V_{Eb}$	V _{Ia} + V _{Ib} +	- ⊦ V _{I.3} – F _{F.2} = 10	.21 · kip	
		v _u	:= max(H _{si}	um.1 , H _{sum.2}) =	10.21 · kip	
Key Capacity (1-foot De	esign Strip) - S	HEAR CAPACITY:	X	,		
Thickness at the Top	of Key:	t _{key}	y := 1.5ft			
Depth to Centroid of	Reinforæme	nt: d _{SK}	$:= t_{key} -$	clrS − d _{b4} − 0.5 · c	l _{b4} = 1.191	ft
One Way Shear Stre ACI 318-14, §22.5.5	ngth: .1)	V _c :	$= 2\sqrt{f'_{C} \cdot p}$	$\overline{si} \cdot b_W \cdot d_{SK} = 22.9$	4∙kip	
Design Shear Capaci	ty:	φV	$h := \phi_{V} \cdot V_{C}$			
Demand Capacity Ra	ntio:	DCF	$R_{V} := \frac{V_{u}}{\varphi V_{n}}$			
		DCF	R _V = 0.59	<1 pka	.0 therefore y for shear s	e section is trength

		Client	Blue Lake Reservoir Company			Page		
$\mathbb{N}_{\mathbb{C}}$	\bigcirc	Project	Upper Black Creek Reservoir			Pg. Rev.		
GEI Consultants		Ву	M. Provencher	Chk.	C. Diebold	Арр.	C. Masching	
		Date	04/24/2020	Date	04/24/2020	Date	04/24/2020	
Project No. 180183		4	Document No.	N/A				
Subject Design of Spillway			- Head Wall					

Spillway Headwall Key - Upper Black Creek Reservoir

Codes References

- 1) American Concrete Institute (ACI). Building Code Requirements for Structural Concrete (ACI 318-14), (2014).
- 2) ACI (American Concrete Institute), 2006. Code Requirements for Environmental Engineering Concrete Structures (ACI 350-06).
- *3)* U.S. Army Corps of Engineers (USACE). 2003 "Strength Design for Reinforced-Concrete Hydraulic Structures." EM 1110-2-2104-Appendix E: Table E-1.

Structural Design

The following design calculates the design strength for the Upper Black Creek Reservoir Spillway Headwall Key necessary to develop the full passive resistance at the base of the slab. The key is designed as a cantilevered beam with soil loads. The strength/capacity checks are performed using the one foot strip method and code requirements in ACI 318-14, ACI 350-06 and USACE EM 1110-2-2104.

Design Loads (Forces)

The applied loads and load cases for the key are calculated using guidelines from the documents referenced above. USACE and ACI strength/service load combinations are applied and the resulting combinations are shown below.

Key Reinforcement Summary						
Vertical Reinforcement	Tension Face = #4 at 6" O.C.					
Horizontal Reinforcement	Channel = #4 at 6" O.C.					
Key Design Properties:						
Key Height:	H _{key} := 3ft					
Bottom Key Thickness:	t _{key.B} := 2ft + 0in	Thickness provided for				
Top Key Thickness:	t _{key.T} := 2ft + 0in	connection to cutoff wall				
Angle of Chute Indination:	θ := 26.57deg					
Slab thickness:	t _{slab} := 2.0ft					
Key depth below slab:	d _{key} := 3.0ft					
Design Width:	b _w := 12in					
Unit weight of concrete:	$\gamma_{\text{conc}} \coloneqq 150 \cdot \text{pcf}$					
Distance between Control Joints:	L _{CJ} := 30ft					
Specified Compressive Strength of Concrete:	f' _c := 4500psi					

		Client	Blue Lake Reserv	oir Compa	Page		
	\bigcirc	Project	Upper Black Creek Reservoir			Pg. Rev.	
GEIByConsultantsDateProject No.1801834		Ву	M. Provencher	Chk.	C. Diebold	Арр.	C. Masching
		Date	04/24/2020	Date	04/24/2020	Date	04/24/2020
		4	Document No.	N/A			
Subject Design of Spillway		- Head Wall					

Fill Properties:

Fill Properties

Angle of internal friction:	φ _f := 30·deg
Unit weight:	γ _f := 130pcf
Active earth pressure coefficient:	$k_a := tan \Big(45 deg - 0.5 \cdot \varphi_f \Big)^2 = 0.33$
Passive earth pressure coefficient:	$k_p := tan \left(45 deg + 0.5 \cdot \varphi_f \right)^2 = 3.00$

Applied Loads: Static

Passive Earth Pressure

Active Pressure on the upstream side of key is conservatively ignored for shear.

Shear at Top of Key:

$$F := k_{p} \cdot \left[\gamma_{f} \cdot t_{slab} \cdot H_{key} + 0.5 \cdot \gamma_{f} \cdot \left(H_{key} \right)^{2} \right] \cdot b_{w} = 4.09 \cdot kip$$

Shear as at a Distance 'y' From Base of Key:

$$V_{\mathsf{F}}(y) := \begin{bmatrix} \mathsf{F} - \mathsf{k}_{p} \cdot \left[\gamma_{\mathsf{f}} \cdot \mathsf{t}_{\mathsf{slab}} \cdot \left(\mathsf{H}_{\mathsf{key}} - y \right) + 0.5 \cdot \gamma_{\mathsf{f}} \cdot \left(\mathsf{H}_{\mathsf{key}} - y \right)^{2} \right] \cdot \mathsf{b}_{\mathsf{W}} & \text{if } y \leq \mathsf{H}_{\mathsf{key}} \\ 0 & \text{otherwise} \end{bmatrix}$$

 $V_F(H_{key}) = 4.09 \cdot kip$ $V_F(0ft) = 0.00 \cdot kip$

Moment at Top of Key:

$$M_{F} := \left(k_{p} - k_{a}\right) \cdot \left[\gamma_{f} \cdot t_{slab} \cdot 0.5 \left(H_{key}\right)^{2} + 0.5 \cdot \gamma_{f} \cdot \frac{2}{3} \left(H_{key}\right)^{3}\right] \cdot b_{w} = 6.24 \cdot kip \cdot ft$$

Moment as at a Distance 'y' From Base of Key:

$$\begin{split} \mathsf{M}_F(y) &:= \begin{bmatrix} \left(k_p - k_a\right) \cdot \left[\gamma_f \cdot t_{slab} \cdot 0.5 \left(y\right)^2 + 0.5 \cdot \gamma_f \cdot \frac{2}{3} \left(y\right)^3\right] \cdot \mathsf{b}_W \quad \text{if} \quad y \leq \mathsf{H}_{key} \\ 0 \quad \text{otherwise} \\ \mathsf{M}_F \Big(\mathsf{H}_{key}\Big) &= 6.24 \cdot kip \cdot ft \qquad \mathsf{M}_F(0ft) = 0.0 \cdot kip \cdot ft \end{split}$$

		Client	Blue Lake Reserv	oir Compa	Page		
		Project	Upper Black Creek Reservoir			Pg. Rev.	
		Ву	M. Provencher	Chk.	C. Diebold	Арр.	C. Masching
	isultants	Date	04/24/2020	Date	04/24/2020	Date	04/24/2020
Project No.	180183	34	Document No.	N/A	•	•	
Subject	Design	of Spillway	/ - Head Wall				
LOAD CASE 1-Loa Unfactored Shear Ultimate Shear A	ading Con • At Top c t Top of k	n ditions & C of Key: Key:	Combinations: V(y) := V _F (y)			
EM 1110-2-2	104 Servi	iceability Loa V _{u.1} (y) :=	ad Combination: 2.2 $2.2 \cdot (V_F(y))$	(EH + Hs + L)	[Table E-9, Lo	oad Case 1A]
ASCE Load Co	mbinatic	on 1: 1.4 (D - V _{u.2} (y) :=	+ F) + 1.6 H = 1.6 · V _F (y)				
Controlling Case:		$V_u(y) := n$ $V_u(H_{kev})$	$\max(V_{u.1}(y), V_{u.2}(y)) = 9.01 \cdot kip$	y)) /u.1 ^{(H} key)	= 9.01 · kip		
Unfactored Mom	ent At To	op of Kev:	L M()	$(1) := M_{r}(v)$)		
Ultimate Momer	t At Top	of Kev:		,, · · ···F())	,		
EM 1110-2-23	104 Servi	, iceability Loa M _{u.1} (y) :=	ad Combination: 2.2 = $2.2 \cdot (M_F(y))$	(EH + Hs + L)		
ASCE Load Co	mbinatic	on 1: 1.4 (D - M _{u.2} (y) :=	+ F) + 1.6 H = 1.6 · M _F (y)				
Controlling Case:		$M_u(y) := M_u(H_{key})$	max(M _{u.1} (y) , M _{u.} = 13.73 · kip · ft	2(y)) M _{u.1} (⊢	H_{key} = 13.73 ft · k	ip	

	\frown	Client	Blue Lake Rese	ervo	oir Compa	ny	Page	
Proj		Project	Upper Black Creek Rese		< Reservoi	r	Pg. Rev.	
GEI	Y	Ву	M. Provenche	er	Chk.	C. Diebold	Арр.	C. Masching
	sultants	Date	04/24/2020		Date	04/24/2020	Date	04/24/2020
Project No.	180183	4	Document No) .	N/A			
Subject	Design	of Spillway	- Head Wall					
		Key	Concrete & R	Reba	ar Streng	gth Design		
Concrete Propert	ies:							
Specified Com	pressive	Strength of	Concrete:			$f'_{C} = 4500 ps$	si	
Specified Yield	l Strength	of Reinford	em ent:			f _y := 60ksi		
Strength Redu	ction Fac	tor for Tensi	on-Controlled Se	ection	is:	$\varphi_{\texttt{t}}\coloneqq\texttt{0.90}$	(ACI 318	8-14, Table 2 1. 2. 1
Strength Redu	ction Fac	tor for Shea	r:			$\phi_{V} \coloneqq 0.75$	(ACI 318	8-14, Table 2 1. 2. 2)
Whitney Stres	s Block Fa	actor:						
β ₁ := 0).85 if	$f'_{C} \le 400$	Opsi			$\beta_1 = 0.83$	(ACI 318-14	4, Table 2 2.2.2.4.3)
C).65 if	f' _C > 800	Opsi					
C).85 – 0.	$05 \cdot \frac{f'_{c} - 40}{1000}$	000psi otherw 0psi	vise				
Horizontal Reinfo	orcement	:						
Bar Size and S (Channel & En	pacing: nbankme	ent)	S	Size _S	6 <mark>H := 5</mark>	sSH	:= 6in	
Reinforcemen	t Clear Co	over:	C	clrS :	<mark>:= 3in</mark>			
Diameter 8	k Cross-Se	ectional Area	a of Bars:	dbSH	I := d _b Size	= 0.63 · in Ab	SH := A _{be} .	$= 0.31 \cdot in^2$
Area of Rei	nforceme	ent:	ŀ	$A_{sSH} := AbSH \cdot \frac{12in}{sSH} = 0.62 \cdot in^2$				
			r	m :=	(thou p -	$(t_{kov}, \tau) \div H_{kov} =$	= 0.00	
Section De	pth at a H	leight 'y' fro	m the base: t	thou	$(\mathbf{y}) := \mathbf{t}_{\mathbf{k}\mathbf{o}}$	$r + m \cdot y$		
Depth to C	entroid o	f Embankm	ent Reinf: d	$d_{SH}(y) := t_{key}(y) - clrS - 0.5 \cdot dbSH$				
Reinforcem	ient Ratio):	ſ	ρ _{SH} ((y) := A _{sSI}	$H \div (b_w d_{SH}(y))$		
						()		

		Client	Blue Lake Reserv	oir Compa	Page		
	\bigcirc	Project	Upper Black Creek Reservoir			Pg. Rev.	
GEI Consultants		Ву	M. Provencher	Chk.	C. Diebold	Арр.	C. Masching
		Date	04/24/2020	Date	04/24/2020	Date	04/24/2020
Project No. 1801834		Document No.	N/A				
Subject Design of Spillway - Head Wall							

Key Concrete & Rebar Strength Design Cont'd

Vertical Reinforcement:

Bar Size and Spacing: (Embankment)Size_{SV} := 5sSV := 6inDiameter & Cross-Sectional Area of Bars: $dbSV := db_{Size_{SV}} = 0.63 \cdot in AbSV := Ab_{Size_{SV}} = 0.31 \cdot in^2$ Area of Tension Reinforcement: $A_{SSV} := AbSV \cdot \frac{12in}{sSV} = 0.62 \cdot in^2$ $m := (t_{key.T} - t_{key.B}) \div H_{key} = 0.00$ Section Depth at a Height 'y' from the base: $t_{key}(y) := t_{key.B} + m \cdot y$ Depth to Centroid of Reinforcement: $d_{SV}(y) := t_{key}(y) - cIrS - dbSH - 0.5 \cdot dbSV$ Reinforcement Ratio: $\rho_{SV}(y) := A_{SSV} \div (b_W d_{SV}(y))$

		Client	Blue Lake Re	eserv	oir Compa	iny	Page						
))	Project	Upper Black	Cree	k Reservo	ir	Pg. Rev.						
GFI	9	Ву	M. Provench	ner	Chk.	C. Diebold	Арр.	C. Masching					
	sultants	Date	04/24/2020		Date	04/24/2020	Date	04/24/2020					
Project No.	180183	4	Document N	No.	N/A								
Subject	Design	of Spillway	· - Head Wall										
			Кеу	Reb	ar Desig	n							
Shrinkage and Ter	Shrinkage and Temperature Reinforcement (S&T): ACI 318-14 & USACE §2-8												
Maximum Spacing: $s := \min[18in, 5 \cdot 0.5(t_{key.B} + t_{key.T}), 12in] = 12.00 \cdot in$ (ACI 318-14, §7.7.6.2.1)													
Minimum Area (ACI 318-14, Ta	a of Stee 2 <i>ble 7.6.</i>	l Ratio: <i>1.1)</i>											
			^ρ ΑCI ^{:=}	= 0	.0020 if	f _y < 60ksi		= 0.0018					
				n	nax[(0.001	$8 \cdot 60$ ksi ÷ f _y), 0.00	014 other	wise					
	6.01			ρυς	SACE :=	0.003 if L _{CJ} < 3	30ft	= 0.0040					
(USACE §2-8)	a of Stee	I Ratio:				0.004 if 30 ft \leq	$L_{CI} \le 40$ ft						
				0.005 otherwise									
Minimum Area	a of Stee	l Ratio:		ρ _m	ax := max	$(\rho_{ACI}, \rho_{USACE}) =$	0.0040						
Minimum Stee (USACE §2-8)	el Area:			A _{s.r}	min $:= \rho_m$	ax ^{·b} w ^{·0.5} ·(t _{key.B}	+ t _{key.T}) =	= 1.15 · in ²					
Shrinkage and Ter	mperatu	re Reinforce	ement (S&T): A	CI 31	8-14 & USA	ACE §2-8							
Vertical Reinforce	ment:												
Bar Size and Sp	bacing of	Reinforcem	ent:	Size	_{SV} = 5.00	sSV	$r = 6.00 \cdot in$						
Diameter & Cro	oss-Secti	onal Area of	Bars:	dbS	V = 0.63∙i	in Ab	SV = 0.31∙i	n ²					
Area of Reinfor	rcement:			A _{ss}	V = 0.62∙i	n ²							
					$\frac{A_{s.min}}{2A_{sSV}} = 0.93$ < 1.0 therefore okay								
Horizontal Reinfo	rcement	:											
Bar Size and Sp	bacing of	Reinforcem	ent:	Size	SH = 5.00	sS	6H = 6.00∙i	n					
Diameter & Cro	oss-Secti	onal Area of	Bars:	dbS	H = 0.63·	in A	bSH = 0.31	∙in ²					
Area of Reinfor	rcement:			$A_{sSH} = 0.62 \cdot in^2$									
				A _{s.} 2 · A	min sSH	3 < 1.0 therefore	okay						

	\sim	Client	Blue Lake Rese	rvoir Com	bany		Page	
	\bigcirc	Project	Upper Black Cr	eek Reserv		Pg. Rev.		
GEL	Ľ	Ву	M. Provencher	Арр.	C. Masching			
	sultants	Date	04/24/2020	Date	04/24/2	2020	Date	04/24/2020
Project No.	180183	4	Document No.	N/A				
Subject	Design	of Spillway	/ - Head Wall					
			Key Rebar	Design (Cont'd			
Ductility Check: (ACI 318-	14, §7.3.3.1	& §9.3.3.1)					
Reinforcemen (Vertical)	t Ratio Pr	ovided:	ρ _l	pV ≔ d _{SV}	A _{sSV} (H _{key})∙b _w	= 0.0026		
Reinforcemen (Horizontal)	t Ratio Pr	ovided:	ρ _l	pH [∶] =	A _{sSH} (H _{key})⋅b _w	= 0.0025		
Depth to Neut (Vertical)	tral Axis:		c١	$V := \frac{\rho_{p} V^{f}}{0.1}$	$y \cdot d_{SV} (H_{kev})$ 85 · $\beta_1 \cdot f'_c$	$\frac{y}{y} = 0.98$	in	
Depth to Neut (Horizontal)	tral Axis:		cł	$H := \frac{\rho_{p}H}{0}$	$f_{y} \cdot d_{SH} (H_{ke})$ 85 · $\beta_{1} \cdot f'_{c}$	$\left(\frac{y}{y}\right) = 0.98$	∙in	
Minimum Stra	ain in Ten	sion Steel at	t Nominal Strength	n: ε _t		04		
Calculated Stra Steel at Nomin (Vertical)	ain in Ten nal Stren	sion gth:	ε	tv := 0.003	$\frac{d_{SV}(H_{ke})}{cV}$	$\left(\frac{2\gamma}{2}\right) - 1 =$	• 0.06	
(Horizontal)			ε	tH := 0.003	$3 \cdot \left(\frac{d_{SH}(Oft)}{cH} \right)$	$\left(\frac{1}{2} - 1 \right) = 0$).06	
			$\frac{\varepsilon_{\text{t.min}}}{\varepsilon_{\text{tV}}} = 0.07$	[€] t.mir [€] tH	- = 0.07	< 1.0 the	erefore oka	V

		Client	Blue Lake Reserv	oir Compa	Page			
	\bigcirc	Project	Upper Black Cree	ek Reservoi	Pg. Rev.			
	Ľ	Ву	C. Diebold	Chk.	Арр.	C. Masching		
ULI Consultants		Date	11/27/2019	Date 11/27/2019		Date	11/27/2020	
Project No. 18018		34	Document No.	N/A				
Subject	Design	of Spillway	- Inclined Portion	1				

Spillway Wall (Inclined) - Upper Black Creek Reservoir

Codes References

- 1) American Concrete Institute (ACI). Building Code Requirements for Structural Concrete (ACI 318-14), (2014).
- 2) ACI (American Concrete Institute), 2006. Code Requirements for Environmental Engineering Concrete Structures (ACI 350-06).
- *3)* American Society of Civil Engineers (ASCE). Minimum Design Loads for Buildings and Other Structures (ASCE 7-10), (2013).
- 4) U.S. Army Corps of Engineers (USACE). Engineering and Design: Retaining and Flood Walls, (1989). EM 1110-2-2502.
- *5)* U.S. Army Corps of Engineers (USACE). 2003 "Strength Design for Reinforced-Concrete Hydraulic Structures." EM 1110-2-2104-Appendix E: Table E-1.
- *6)* Agusti, G. C. and Sitar. 2013. UCB GT 13-02 "Seismic Earth Pressures on Retaining Structures with Cohesive Backfills." UCB GT 13-02.

Structural Design

The following design calculates the applied loads and design strength for the Upper Black Creek Reservoir spillway wall. The wall is designed as a cantilevered retaining wall with soil and seismic loads. The strength/capacity checks are performed using the one foot strip method and code requirements in ACI 318-14, ACI 350-06 and USACE EM 1110-2-2104.

Design Loads (Forces)

The applied loads and load cases for the wall are calculated using guidelines from the documents referenced above. USACE and ACI strength/service load combinations are applied and the resulting combinations are shown below.

Wall Reinforcement Summary

Vertical Reinforcement

Tension Face = #7 at 12" O.C.

Compression Face = #7 at 12" O.C.

Horizontal Reinforcement

Channel = #5 at 12" O.C.

Embankment = #5 at 12" O.C.

Foundation Dowels

Full height bars, mechanical splices or slab tension splices will be allowed. Bars must be developed at wall/foundation joint.

Counterforts

None

		Client	Blue Lake Res	ervoir (Compar	ny		Page			
	\bigcirc	Project	ct Upper Black Creek Reservoir Pg. Rev.								
GEI	$\underline{\mathcal{S}}$	Ву	C. Diebold	Ch	ık.	M. Prov	encher	Арр.	C. Masching		
Con	sultants	Date	11/27/2019	Da	nte	11/27/2	019	Date	11/27/2020		
Project No.	180183	4	Document No	o. N/	A						
Subject	Design	of Spillway	- Inclined Por	tion							
Footing Reinforce	ement Su	ummary									
Perpendicular	to Wall										
Tension Fac	:e = #9 at	12" O.C.									
Compressio	on Face =	#9 at 12" O	.C.								
Parallel to Wa	ll -										
Top = #7 at	Top = #7 at 12" O.C.										
Bottom = #	Bottom = #7 at 12" O.C.										
Wall Design Prop	erties:										
Top of Wall Ele	evation:			El _{top} :=	= 8756ft	t i i i i i i i i i i i i i i i i i i i					
Bottom of Wa	ll Elevatio	on:		El _{bot} :=	= 8746.5	5ft					
Wall Height:				H _{wall} :=	= El _{top}	– El _{bot} =	= 9.50 ft				
Bottom Wall T	hickness	:		^t wall.B	:= 1ft +	- 6in					
Top Wall Thick	iness:			t _{wall.T} := 1ft + 0in							
Footing width	:			B := 8.0ft							
Toe projection	:			Toe := 3.5ft							
Heel projection	n:			Heel :=	в — То	e – t _{wall}	. _B = 3.00	ft			
Footing thickn	ess:			t _{base} :=	= 2.0ft						
Slab thickness	:			t _{slab} :=	= 1.0ft						
Design Width:				b _w := 1	12in						
Unit weight of	concrete	2:		γ_{conc} :	:= 150·I	pcf					
Distance betw	een Cont	rol Joints:		L _{CJ} := 2	25ft						
Specified Com	pressive	Strength of	Concrete:	f' _c := 4	500psi						
Minimum Ten	sile Stren	ngth of Conc	rete:	f _t := 0.:	$1 \cdot f'_{C} =$	450 psi		[ACI R2	22.2.2.2]		
Water Surface Ele	vations	and Propert	<u>ies:</u>								
Elevation of no (Assumed at b	ormal wa base of st	iter surface: ructure)		El _{nws} :	= El _{bot}	– t _{base} -	+ 0ft = 87	744.50 ft			
Water Unit We	eight:	-,		$\gamma_{\sf W} := 0$	62.4pcf						

		Client	Blue Lake Re	serv	oir Compai	ıγ	Page		
	\bigcirc	Project	Upper Black	Cree	k Reservoi	r	Pg. Rev	<i>I</i> .	
GEI	$\underline{\mathcal{S}}$	Ву	C. Diebold		Chk.	M. Provench	er App .	C. Masching	
	Date				Date	11/27/2019	Date	11/27/2020	
Project No.	180183	4	Document N	lo.	N/A				
Subject	Design	of Spillway	- Inclined Po	rtion	l				
Fill Elevations an	d Proper	ties:							
Reference:									
Elevation of fi	ll materia	l beside cha	nnel:	El _{fil}	<mark> </mark> := 8755ft				
Fill Properties	(Soil type	e: SM)							
Angle of in	ternal fri	ction:		φ _f :	<mark>= 30∙deg</mark>				
Unit weigh	t:			γ_{f} :	= 130pcf				
Angle of in	clined ba	ckfill:		<mark>ထ_f := 0deg</mark>					
At-rest eart	h pressu	re coefficient		$k_0 := 1 - \sin(\varphi_f) = 0.50$					
Active eart	h pressur	e œefficient	:	$k_a := tan(45deg - 0.5 \cdot \varphi_f)^2 = 0.33$					
Passive ear	th pressu	re coefficier	t:	k _p :	= tan(45de	$(eg + 0.5 \cdot \phi_f)^2$	= 3.00		
Friction factor for mass concrete on sound rock:					= 0.7	,	[N.	AVFAC p7.2-63]	
Seismic Properti	es:								
10,000yr Horizontal Seismic Coefficient:				k _h :	<mark>= 0.4972</mark>		USGS Unified	Hazard Tool]	
Earth Pressure	e Coefficie	ent:		К _{ае}	:= 0.42 · k _h	= 0.21	[Augusti: UCE	3 GT 13-02: Eq. 4.3]	

Other Properties:

Construction Surcharge:

 $q_C := 200 psf$

		Client	Blue Lake Reserv	oir Compa	Page			
	\bigcirc	Project	Upper Black Cree	ek Reservoi	Pg. Rev.			
	Ву	C. Diebold	Chk.	Арр.	C. Masching			
ULI Consultants		Date	11/27/2019	Date	11/27/2019	Date	11/27/2020	
Project No. 18018		4	Document No. N/A					
Subject	Design	of Spillway	- Inclined Portion					

1.) LOAD CASE 1 (Usual Condition) - Spillway Wall Loading:

LOAD CASE 1-Applied Loads: Static

Active Earth Pressure

Base Shear:

Footing Shear:

$$V_{F1a} := 0.5 \cdot k_a \gamma_f \cdot \left(EI_{fill} - EI_{bot} \right)^2 b_w = 1.57 \cdot kip$$
$$V_{F1b} := \left[k_a \gamma_f \cdot \left(EI_{fill} - EI_{bot} \right) \cdot t_{base} + 0.5 \cdot k_a \cdot \gamma_f \cdot t_{base}^2 \right] \cdot b_w = 0.82 \cdot kip$$

Shear as at a Distance 'y' From Base of Wall:

$$V_{F.1}(y) := \begin{bmatrix} 0.5 \cdot k_a \cdot \gamma_f \cdot (El_{fill} - El_{bot} - y)^2 \cdot b_w \end{bmatrix} \text{ if } y < (El_{fill} - El_{bot}) \\ 0 \text{ otherwise} \end{bmatrix}$$

$$V_{F.1}(EI_{nws} - EI_{bot}) = 2.39 \cdot kip$$
 $V_{F.1}(Oft) = 1.57 \cdot kip$

Base Moment:

$$M_{F.1.b} := V_{F1a} \cdot \left[0.33 \left(EI_{fill} - EI_{nws} \right) + \left(EI_{nws} - EI_{bot} \right) \right] = 2.29 \text{ ft} \cdot \text{kip}$$

Moment as at a Distance 'y' From Base of Wall:

$$\begin{split} \mathsf{M}_{\mathsf{F.1}}(\mathsf{y}) &:= 0.5 \cdot \mathsf{k}_{\mathsf{a}} \cdot \gamma_{\mathsf{f}} \cdot \left(\mathsf{EI}_{\mathsf{fill}} - \mathsf{EI}_{\mathsf{bot}} - \mathsf{y}\right)^2 \cdot \mathsf{b}_{\mathsf{w}} 0.33 \left(\mathsf{EI}_{\mathsf{fill}} - \mathsf{EI}_{\mathsf{bot}} - \mathsf{y}\right) \\ \mathsf{M}_{\mathsf{F.1}} \left(\mathsf{EI}_{\mathsf{nws}} - \mathsf{EI}_{\mathsf{bot}}\right) &= 8.28 \cdot \mathsf{kip} \cdot \mathsf{ft} \\ \mathsf{M}_{\mathsf{F.1}}(\mathsf{Oft}) &= 4.4 \cdot \mathsf{kip} \cdot \mathsf{ft} \end{split}$$

Passive Earth Pressure

Rock to Interior:

$$\begin{split} \mathsf{V}_{\mathsf{F4}} &\coloneqq \mathsf{0.5} \cdot \mathsf{k}_{\mathsf{p}} \cdot \gamma_{\mathsf{f}} \cdot \left(\mathsf{t}_{\mathsf{base}} - \mathsf{t}_{\mathsf{slab}} \right)^2 \cdot \mathsf{1ft} = \mathsf{0.20} \cdot \mathsf{kip} \\ \mathsf{V}_{\mathsf{F5}} &\coloneqq \mathsf{k}_{\mathsf{p}} \cdot \gamma_{\mathsf{conc}} \cdot \mathsf{t}_{\mathsf{slab}} \cdot \left(\mathsf{t}_{\mathsf{base}} - \mathsf{t}_{\mathsf{slab}} \right) \cdot \mathsf{1ft} = \mathsf{0.45} \cdot \mathsf{kip} \\ \mathsf{F}_{\mathsf{F.T2}} &\coloneqq \mathsf{V}_{\mathsf{F4}} + \mathsf{V}_{\mathsf{F5}} = \mathsf{0.64} \cdot \mathsf{kip} \end{split}$$

Vertical Forces

Weight of stem:	$W_{1} := \gamma_{conc} \cdot (El_{top} - El_{bot}) \cdot 0.5 (t_{wall.B} + t_{wall.T}) \cdot 1ft = 1.78 \cdot kip$
Weight of footing:	$W_2 := \gamma_{conc} \cdot B \cdot t_{base} \cdot 1 ft = 2.40 \cdot kip$
Weight of fill over heel:	$W_{3} \coloneqq \gamma_{f} \cdot \left[Heel + 0.5 \cdot \left(t_{wall.B} - t_{wall.T} \right) \right] \cdot \left(El_{fill} - El_{bot} \right) \cdot 1ft = 3.59 \cdot kip$

		Client	Blue Lake Reserv	oir Compa	Page			
GEI Consultants	Project	Upper Black Cree	k Reservoi	r	Pg. Rev.			
	Ву	C. Diebold	Chk.	Арр.	C. Masching			
	nsultants	Date	11/27/2019	Date	11/27/2019	Date	11/27/2020	
Project No. 180183		4	Document No.	N/A				
Subject	Design	of Spillway - Inclined Portion						

1.) LOAD CASE 1 (Usual Condition) Cont'd

LOAD CASE 1-Applied Loads: Static

Construction Surcharge

Base Shear:

$$V_{\texttt{C1a}} \coloneqq k_{a} \cdot q_{c} \cdot \left(\texttt{El}_{fill} - \texttt{El}_{bot} \right) \cdot b_{w} = 0.57 \cdot kip$$

Shear as at a Distance 'y' From Base of Wall:

$$V_{C}(y) := \begin{cases} V_{C1a} \cdot \frac{\left(EI_{fill} - EI_{bot} - y\right)}{\left(EI_{fill} - EI_{bot}\right)} & \text{if } y < \left(EI_{fill} - EI_{bot}\right) \end{cases}$$

0 otherwise

$$V_{C}(EI_{nws} - EI_{bot}) = 0.70 \cdot kip$$
 $V_{C}(Oft) = 0.57 \cdot kip$

Footing Shear:

Base Moment:

$$M_{C} := 0.5 \cdot V_{C1a} \cdot \left(EI_{fill} - EI_{bot} \right) = 2.41 \text{ ft} \cdot \text{kip}$$
$$M_{C}(y) := 0.5 \cdot V_{C}(y) \cdot \frac{\left(EI_{fill} - EI_{bot} - y \right)^{2}}{\left(EI_{fill} - EI_{bot} - y \right)^{2}}$$

Moment as at a Distance 'y' From Base of Wall:

 $M_{C}(y) := 0.5 \cdot v_{C}(y) \cdot (El_{fill} - El_{bot})$

 $V_{C1b} := k_a \cdot q_c \cdot t_{base} \cdot b_w = 0.13 \cdot kip$

		Client	Blue Lake Re	eservo	oir Compa	ny	Page	
))	Project	Upper Black	Cree	k Reservoi	r	Pg. Rev.	
GEI	$\underline{\mathbb{S}}$	Ву	C. Diebold		Chk.	M. Provencher	Арр.	C. Masching
	sultants	Date	11/27/2019		Date	11/27/2019	Date	11/27/2020
Project No.	180183	4	Document N	lo.	N/A			
Subject	Design	of Spillway	- Inclined Po	rtion				
1.) LO	dad C/	ASE 1: (U	sual Conditi	ion)	Cont'd - (Global Stability	Checks	
CHECK SLIDING S	<u>TABILITY</u>							
Assume struct the spillway w	ure is cor all is not	nstrained fro allowed to r	om transverse sl nove freely and	liding. d is as:	Due to con sumed to n	nection with the slak ot slide.),	
CHECK OVERTUR	NING ST/	ABILITY						
Moment Calculat	tions				. (г.		4 02 ft	
Horizontal force	æ mome	nt arms:		y _{1a}	:= (^{E1} fill -	$(\text{Elbot}) \div 3 + (\text{base})$	$e^{2} = 4.83 \text{IL}$	
				y1b	·= (Flow -	se = 1.00 R	= 6 25 ft	
				V-14	i · (⊂'†ill . := 0.5 · t ⊾	$(100t) \cdot 2 + cbas$ = 1.00 ft	e 0.23 R	
				, CTC ALC		$t_{haco} - t_{clab} = 0$.33 ft	
				' ר ר ו	2 · · · · (base slab)		
Vertical force n	noment a	arms:		× ₁ :=	= loe + t _w	vall.T ^{+ 0.33} · (^t wall	.B ^{– t} wall.	r) = 4.66 ft
				×2 :=	= B ÷ Z = -	$4.00 \mathrm{m}$		
				×3 .=	= в – пееі	$\div 2 = 0.50 \mathrm{ft}$		
Summation of	vertical	forces:		V _{sur}	m := W ₁ +	$W_2 + W_3 = 7.77$	kip	
			Μ	¹ 0.1 [:]	= V _{F1a} ·y _{1a}	$a + V_{F1b} \cdot y_{1b} + V_{C}$	Cla ^{.y} cla	$. = 12.06 \cdot kip \cdot ft$
Overturning N	loment:				+ V _{C1b} .	y _{c1b}		
Resisting Morr	nent:		Μ	1 _r := '	$W_1 \cdot x_1 + W_1$	$V_2 \cdot x_2 + W_3 \cdot x_3 + F$	F.T2 ^{·y} FFT2	$2 = 41.47 \cdot \text{kip} \cdot \text{ft}$
Location of res	sultant:			× _{bar}	$M_{r.1} := \frac{M_r}{V_s}$	$\frac{-M_{0.1}}{-M_{0.1}} = 3.78 \text{ft}$		
Eccentricity of	the resul	tant:		ecc ₁	$= \frac{B}{2} - x_{\mu}$	oar.1 = 0.22 ft		
Overturning ch	neck:	Cł	neck _{ot.1} :=	"LC1	Overturnir	ng Stability OK" in	$f = \frac{1}{3} \cdot B \le x$	$K_{bar.1} \leq \frac{2}{3}B$
		Cł	neck _{ot.1} = "LC	"STO C1 Ov	P - LC1 Ove	erturning Stability Stability OK" $\frac{1}{3} \cdot B$	Unacceptal = 2.67 ft	ble" otherwise $\frac{2}{3} \cdot B = 5.33 \text{ft}$

	\frown	Client	Blue Lake Reserv	oir Compa	ny	Page				
))	Project	Upper Black Cree	k Reservoi	r	Pg. Rev.				
GEI	$\underline{\mathcal{S}}$	Ву	C. Diebold	Chk.	M. Provencher	Арр.	C. Masching			
	sultants	Date	11/27/2019	Date	11/27/2019	Date	11/27/2020			
Project No.	180183	4	Document No.	N/A		·				
Subject	Design	of Spillway	y - Inclined Portion	l						
		1.) LO	AD CASE 1 (Usu	al Condit	ion) Cont'd					
LOAD CASE 1-Loa	ding Cor	nditions & C	Combinations:							
Unfactored Shear	At Base	of Wall:	V _{LC}	1(y) := ∨ _F	$_{1}(y) + V_{C}(y)$					
Ultimate Shear At	: Base of	Wall:								
EM 1110-2-21	LO4 Servi	ceability Loa V _{uLC1.1} (y	ad Combination: 2.2 $V := 2.2 \cdot (V_{F.1}(y) + y)$	(EH + Hs + L · V _C (y))) [Table E-9, Lo	oad Case 1A]			
ASCE Load Cor	mbinatio	n 1: 1.4 (D V _{uLC1.2} (y	+F) + 1.6 Η) := 1.6·V _{F.1} (γ)							
ASCE Load Combination 2: 1.2 (D + F) + 1.6 (L) + 1.6 (H) $V_{uLC1.3}(y) := 1.6 \cdot V_C(y) + 1.6 \cdot V_{F.1}(y)$										
Controlling Case:		V _{uLC1} (y) V _{uLC1} (Oft	$:= \max \left(V_{uLC1.1}(y) \right) = 4.69 \cdot kip $, V _{uLC1.2} (/ _{uLC1.1} (0ft	y), $V_{uLC1.3}(y)$ = 4.69·kip					
Unfactored Mom	ent At Ba	ase of Wall:	M _{LC}	_{C1} (y) := M	F.1(y) + M _C (y)					
Ultimate Momen	t At Base	of Wall:								
EM 1110-2-21	.04 Servi	ceability Loa M _{uLC1.1} ('	ad Combination: 2.2 y) := $2.2 \cdot (M_{F,1}(y))$	(EH + Hs + L + M _C (y)))					
ASCE Load Cor	mbinatio	n 1: 1.4 (D M _{uLC1.2} ()	+F) + 1.6 H y) := 1.6 · M _{F.1} (y)							
ASCE Load Cor	mbinatio	n 2: 1.2 (D M _{uLC1.3} ()	+ F) + 1.6 (L) + 1.6 (H y) := 1.6 · M _C (y) +) 1.6·M _{F.1} ()	()					
Controlling Case:		M _{uLC1} (y) M _{uLC1} (Of	:= max(M _{uLC1.1} ([*] t) = 14.96·kip·ft	y) , M _{uLC1.} M _{uLC1.}	$\frac{2(y)}{1}$, M _{uLC1.3} (y) $\frac{1}{1}$ (0ft) = 14.96 ft·) kip				

		Client	Blue Lake Reserv	oir Compa	ny	Page					
	\bigcirc	Project	Upper Black Cre	ek Reservo	ir	Pg. Rev.					
GEI Consultants		Ву	C. Diebold	Chk.	M. Provencher	Арр.	C. Masching				
	isultants	Date	11/27/2019	Date	11/27/2019	Date	11/27/2020				
Project No.	180183	4	Document No.	N/A							
Subject	Design	of Spillway									
1.) LOAD CASE 1 (Usual Condition) Cont'd											
Environmental Durability Factor (ACI 350-06)											
Note: Required for Tension Controlled structure to encourage durability and liquid-tightness. Per section 21.2.1.8.a, the environmental durability factor need not be applied to load combinations that include earthquake loads. The durability factor is applied to service loads only.											
Specified Yield St	rength of	Reinforæm	ent: f _y :	= 60ksi							
Permissible Tensi	le Stress:										
Shear stress ir	normal (conditions: 9	9.2.6.4 <mark>f_{s.s}</mark>	<mark>s</mark> := 24000	psi S _{d.ss} :=	$max\left(rac{f_{\gamma}}{f_{s.ss}}\right)$	1.0) = 2.50				
Flexure in nor - One way ele	mal cond ement, Ba	itions: R10.6 Ir at 6" spaci	5.4 <mark>f</mark> s.f ng	:= 34000p	si S _{d.f} := n	$\max\left(\frac{f_{y}}{f_{s.f}}, 1.\right)$	0) = 1.76				
Shear in Wall:							,				
V _{LC1.ED} (y)	= S _{d.ss} .	(V _{F.1} (y) +	$V_{C}(y)$	C1.ED ^{(Oft) =}	= 5·kip >	V _{uLC1.1} (0	ft) = $5 \cdot kip$				
Moment in Wall:											
M _{LC1.ED} (y)	$:= S_{d.f}$	(M _{F.1} (y) +	M _C (y)	C1.ED ^(Oft)	= 12·kip·ft <	M _{uLC1.1} (Oft) = 15∙kip∙ft				

		Client	Blue Lake Reserv	oir Compa	ny	Page			
	Project	Upper Black Cree	ek Reservo	Pg. Rev.					
	Ву	C. Diebold	Chk.	M. Provencher	Арр.	C. Masching			
ULI Consultants		Date	11/27/2019	Date	11/27/2019	Date	11/27/2020		
Project No. 180183		4	Document No.	N/A					
Subject	Design	of Spillway	- Inclined Portion	1					

2.) LOAD CASE 2 (Extreme Condition) - Spillway Wall Loading:

Note: The retaining wall stem is analyzed as a cantilever beam with fixity provided at the footing. Beam is subject to lateral forces due to seismic inertial forces due to self-weight and dynamic fill loads. Groundwater table is assumed below the wall section.

		Client	Blue Lake Reserve	oir Compai	ıy	Page	
	Project By		Upper Black Cree	k Reservoi	r	Pg. Rev.	
GEI	I solution of the solution of	Ву	C. Diebold	Chk.	M. Provencher	Арр.	C. Masching
	sultants	Date	11/27/2019	Date	11/27/2019	Date	11/27/2020
Project No.	180183	4	Document No.	N/A			
Subject	Design	of Spillway	- Inclined Portion				
2	.) Load	CASE 2	(Extreme Condi	tion) - Sp	illway Wall Loa	ding:	
LOAD CASE 2-Ap	plied Loa	ds: Seismic					
Seismic Incremen	tal Force	of Earth Pre	essure				
Base Shear:		Vra :=	0.5K_~ · b \ \	fill – Elbot)	$2 = 0.98 \cdot kip$		
		Ed				2].	
		v _{Eb} :=	$_{\text{ae}}^{\text{K}} \gamma_{\text{f}} (^{\text{EI}} \text{fill} - ^{\text{EI}} \text{b})$	ot) ^{•t} base ⁻	+ 0.5 · K _{ae} · γ f · t base	e]·b _w = 0	.52-кір
Shear as at a D	a Distance 'y' From Base of Wall:						
		∨ _E (y) :=	= 0.5 · K _{ae} · γ_{f} · (El _{fill}	– El _{bot} –	$(y)^2 \cdot b_w = V_E(0ft)$	= 1.0 · kip	
Base Moment		Μ _E := \	/ _{Ea} ·[0.33(El _{fill} – E	I_{bot} = 2.7	75 ft∙kip		
Moment at a	Distance '	y' From Bas	e of Wall:				
		М _Е (у):	$= 0.5 \cdot K_{ae} \cdot \gamma_{f} \cdot (El_{fil})$	I – El _{bot} –	$y)^2 \cdot b_w 0.33 (EI_{fill} -$	- El _{bot} - y)
						M _E (Oft)	= 2.8·kip·ft
Inertial Forces							
Wall Base She	ar:	V _{Ia} ≔ k	$h \cdot W_1 = 0.89 \cdot kip$				
Shear as at a D	Distance 'y	/' From Base	e of Wall:				
		V _I (y) :=	$k_{h} \cdot \gamma_{conc} \cdot \begin{bmatrix} t_{wall.1} \end{bmatrix}$	$+\frac{0.5 \cdot (t_w)}{1}$	$\frac{t_{wall.B} - t_{wall.T}) \cdot (H)}{(H_{wall})}$	$\frac{ wall - y)}{ }$	$(H_{wall} - y) \cdot b_w$
Base Moment	:	M _I := V	$I_{a} \cdot \left[\frac{H_{wall} \cdot (2t_{wall})}{3(t_{wall}) + 1} \right]$	T ^{+ t} wall.B	$\left[- \right] = 3.93 \cdot \text{kip} \cdot \text{ft}$		
Moment at a	Distance '	y' From Bas	e of Wall:				
		М _I (у) :=	$v_{I}(y) \cdot \frac{(H_{wall} - y)}{3 t_{w}}$	$\begin{bmatrix} 2t_{wall.T} + \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\frac{1}{\frac{t_{wall.T} + \frac{(t_{wall.T})}{t_{wall.T} + \frac{t_{wall.T}}{t_{wall.T} + \frac{t_{wall.T}}{t_{wall}}}}$	$\frac{B^{-t}wall.T}{H_{wall}}$ $\frac{W_{wall}^{-y}}{W_{wall}^{-y}} + \frac{W_{wall}^{-y}}{W_{wall}^{-y}}$)·(H _{wall} – y) I
Footing Shear	r:	V _{Ib} := k	$h \cdot W_2 = 1.19 \cdot kip$		wan		L

Soil over Footing Shear: $V_{1.3} := k_h \cdot W_3 = 1.79 \cdot kip$

		Client	Blue Lake Rese	rvoir Compa	ny	Page					
	\bigcirc	Project	Upper Black Cre	eek Reservoi	Pg. Rev.						
GEL	Y	Ву	C. Diebold Chk. M. Provencher App. C. Maschir								
	nsultants	Date	11/27/2019	Date	11/27/2019	Date	11/27/2020				
Project No.	180183	4	Document No.	N/A							
Subject	Design	of Spillway	y - Inclined Portio	on							
_		_									
2.) L(DAD CA	SE 2 (Ext	treme Conditio	on) Cont'd	-Global Stability	y Checks					
CHECK SLIDING S	TABILITY										
Assume struc	ture is con	nstrained fro	om transverse slidir move freely and is	ng. Due to con	nection with the slat	ο,					
	RNING ST										
Moment Calculations											
Horizontal for	Horizontal force moment arms: $y := (El_{1}, El_{2}) + 2 + t_{2} = 6.25 \text{ ft}$										
			9 <u> </u>	a · (⁻'тш ⊾ '= 0 5 · t⊾ -	= 1.00 ft	0.2010					
			9] 	$b = v_1 = 6$	se = 1.00 m						
		_	У., У.,	$3 \cdot 7a = 0.4$ (Flow	u = F[u, v] + tu = v	= 5 40 ft					
[Augusti: l	JCB GT 13	3-02]	y _e	$a \cdot 0 \cdot 1 = 0 \cdot 1 \cdot 1$	= 0.80 ft	511010					
	6		'e		se						
Summation	of vertica	al torces:	Ň	v _{sum} := W ₁	$+ W_2 + W_3 = 7.72$	7∙kip					
			M _{0.2}	$\mathbf{v} := \mathbf{v}_{F1a} \cdot \mathbf{v}_{1}$	a ^{+ V} F1b ^{·y} 1b …	= 31	L.99∙kip∙ft				
Overturning	Noment	:		+ V _{Ea} ∙y	ea ^{+ V} Eb [·] y _{eb}						
				+ V _{la} ·y _l	$a + V_{Ib} \cdot y_{Ib} + V_{I.3}$	y _{I3}					
Resisting Me	oment:		M _r :	$= W_1 \cdot x_1 + V$	$V_2 \cdot x_2 + W_3 \cdot x_3 + F$	F.T2 ^{·y} FFT2	= 41.47 · kip · ft				
location of	rocultanti		v	M _r -	- M _{0.2}						
LOCATION	Location of resultant: $x_{bar.2} := \frac{1.22 \pi}{V_{sum}}$										
Fccentricity	of the res	ultant:	0	$\mathbf{x}_{\mathbf{a}} := \frac{\mathbf{B}}{\mathbf{a}} = \mathbf{x}_{\mathbf{a}}$	2 78 ft						
Lecentricity		andine.		2 2	bar.2 - 2.78 ft						
Overturning	check:		Check _{ot.2} := "	LC2 Overturn	iing Stability OK"	if $0 \le x_b$	ar.2 \leq B				
				STOP - LC2 O	verturning Stability	/ Unaccepta	able" otherwise				
			Check _{ot.2} = "LC2	Overturning	Stability OK"		B = 8.00 ft				

	\frown	Client	Blue Lake Reserv	oir Compa	ny	Page	
	Project By		Upper Black Cree	k Reservoi	r	Pg. Rev.	
GEL	$\underline{\mathcal{S}}$	Ву	C. Diebold	Chk.	M. Provencher	Арр.	C. Masching
	isultants	Date	11/27/2019	Date	11/27/2019	Date	11/27/2020
Project No.	180183	4	Document No.	N/A			
Subject	Design	of Spillway	- Inclined Portion				
		2.) LOAI	D CASE 2 (Extre	me Cond	ition) Cont'd		
LOAD CASE 2-Lo	ading Co	nditions & (Combinations:				
Unfactored Sh	ear At Ba	se of Wall:	V _{LC}	2(y) := V _F .	$1(y) + V_{E}(y) + V_{I}(y)$	(y)	
Ultimate Shea	r At Base	of Wall:					
EM 1110-2	2-2104 St	rength Load	Combination: 1.0 El	H + 1.0 Hs +	1.0 EQ	[Table l	E-9, Load Case 1A]
		V _{uLC2.1}	$V_{F.1}(y) := V_{F.1}(y) + V_{F.1}(y)$	$E(y) + V_{I}(y)$	/)		
ASCE Load	Combina	ation 5: 1.2	(D + F) + 1.0 E + 1.6 H	1			
		V _{uLC2.2}	$\underline{P}(y) := (V_{E}(y) + V_{I})$	(y)) + 1.6·	V _{F.1} (y)		
Controlling Ca	ise:	V _{uLC2} (y) := max(V _{uLC2.1}	(y), V _{uLC2}	2(y))		
		V _{uLC2} (0ft) = 4.37 · kip	V	uLC2.2 ^(Oft) = 4.37	·kip	
Unfactored M	oment At	Base of Wa	ll: M _{LC}	_{C3} (y) := M	F.1(y) + M _E (y) + N	М _I (у)	
Ultimate Mon	nent At Ba	ase of Wall:			(==)		
EM 1110-2	2-2014 St	rength Load	Combination: 1.0 El	H + 1.0 Hs +	1.0 (EQ)		
		^M uLC2.	$_{1}(y) := M_{F.1}(y) +$	$M_{E}(y) + N$	1 _Ι (γ)		
ASCE Load	Combina	ation 5: 1.2	(D + F) + 1.0 E + 1.6 H	1			
		M _{uLC2} .	$_{2}(y) := (M_{E}(y) + N_{E}(y))$	И _I (у)) + 1.	6·М _{F.1} (у)		
Controlling Ca	ise:		M _{uLC2} (y) := ma	x(M _{uLC2.1}	(y), M _{uLC2.2} (y))		
			$M_{uLC2}(Oft) = 13$	3.70∙kip∙ft	M _{uLC2.2}	(Oft) = 13.7	70 ft∙kip

		Client	Blue Lake Rese	ervoir Compa	ny	Page	
	\bigcirc	Project	Upper Black Cr	eek Reservo	ir	Pg. Rev.	
GFI	I solution	Ву	C. Diebold	Chk.	M. Provencher	Арр.	C. Masching
	nsultants	Date	11/27/2019	Date	11/27/2019	Date	11/27/2020
Project No.	180183	4	Document No.	. N/A			
Subject	Design	of Spillway	 Inclined Porti 	on			
		4.) Wa	ll Concrete &	Rebar Stre	ength Design		
Concrete Propert	ties:						
Specified Com	npressive	Strength of	Concrete:		$f'_{C} = 4500 \text{ps}$	si	
Specified Yield	d Strength	of Reinford	em ent:		f _y := 60ksi		
Strength Redu	iction Fac	tor for Tensi	on-Controlled Sec	tions:	$\phi_t \coloneqq 0.90$	(ACI 318	8-14, Table 2 1. 2. 1
Strength Redu	iction Fac	tor for Shea	r:		$\phi_V \coloneqq 0.75$	(ACI 318	8-14, Table 2 1. 2. 2)
Whitney Stres	s Block Fa	actor:					
β ₁ := 0	0.85 if	$f'_{C} \le 400$	Opsi		$\beta_1 = 0.83$	(ACI 318-14	4, Table 2 2.2.2.4.3)
(0.65 if	f' _C > 800	Opsi				
$0.85 - 0.05 \cdot \frac{f'_{c} - 4000psi}{1000psi} \text{otherwise}$							
Horizontal Reinfo	orcement	:					
Bar Size and S (Channel & Er	pacing: nbankme	ent)	S	ize _{SH} := 5	sSH	:= 12in	
Reinforcemen	t Clear Co	over:	cl	<mark>lrS := 3in</mark>			
Diameter &	& Cross-Se	ectional Area	a of Bars: d	bSH := d _b	= 0.63 · in Ab	SH := A _b	$= 0.31 \cdot in^2$
Area of Rei	inforceme	ent:			12in 2	~Siz	^е SН
			A	sSH := AbSH	$\cdot \frac{1}{\text{sSH}} = 0.31 \cdot \text{in}^2$		
			m	$n := (t_{wall.T})^{-1}$	$(-t_{wall.B}) \div H_{wall}$	= -0.05	
Section De	pth at a F	leight 'y' fro	m the base: t	$wall(y) := t_w$	all.B ⁺ m·y		
Depth to C	entroid o	f Embankm	ent Reinf: d	_{SH} (y) := t _{wa}	(y) – clrS – 0.5 ⋅ 0	dbSH	
Reinforcem	nent Ratio):	ρ	SH(y) := A _{ss}	$H \div (b_w d_{SH}(y))$		

		Client	Blue Lake Reser	voir Compa	nγ	Page			
	\bigcirc	Project	Upper Black Cre	ek Reservoi	r	Pg. Rev.			
GEI	Ľ	Ву	C. Diebold	Chk.	M. Provencher	Арр.	C. Masching		
	isultants	Date	11/27/2019	Date	11/27/2019	Date	11/27/2020		
Project No.	180183	4	Document No.	N/A					
Subject	Design	of Spillway	- Inclined Portio	n					
	4	.) Wall Co	ncrete & Reb	ar Strengtl	n Design Cont'd	l			
Vertical Reinforce	ement:								
Bar Size and Space	Bar Size and Spacing: (Embankment) Size _{SE} := 7 sSE := 12in								
Diameter & Ci	ross-Secti	onal Area of	Bars: db	dbSE := $d_{b_{Size_{SE}}} = 0.88 \cdot in AbSE := A_{b_{Size_{SE}}} = 0.60 \cdot in^{2}$					
Area of Tensic	on Reinfo	rcement:	A _S	se ≔ Abse∙	$\frac{12in}{sSE} = 0.60 \cdot in^2$	-			
			m	$:= (t_{wall.T} -$	$t_{wall.B} \div H_{wall}$	= -0.05			
Section Depth	at a Heig	ght 'y' from t	he base: t _w	_{all} (y) := t _{wa}	all.B ⁺ m·y				
Depth to Cent	roid of R	einforæmen	t: d _S	$d_{SE}(y) := t_{wall}(y) - clrS - dbSH - 0.5 \cdot dbSE$					
Reinforcemen	t Ratio:		ρς	_E (y) := A _{sSE}	$\div \left(b_{W} d_{SE}(y) \right)$				
Bar Size and Space	cing: (Cha	innel)	Siz	e _{SC} := 7	sSC :=	<mark>= 12in</mark>			
Diameter & Ci	ross-Secti	onal Area of	Bars: db	SC := d _b Size	$= 0.88 \cdot in$ AbSC	:= A _b Sizes	$= 0.60 \cdot in^2$		
Area of Tensic	on Reinfo	rcement:	A _S	SC := AbSC∙	$\frac{12in}{sSC} = 0.60 \cdot in^2$	J	-		
Depth to Centroid of Reinforcement: $d_{SC}(y) := t_{wall}(y) - clrS - dbSH - 0.5 \cdot dbSC$									
Reinforcemen	t Ratio:		ρ	$_{C}(y) := A_{sSG}$	$c \div (b_w d_{SC}(y))$				

		Client	Blue Lake Reser	oir Comp	any	Page				
))	Project	Upper Black Cre	ek Reservo	pir	Pg. Rev.				
GFI 🌄	9	Ву	C. Diebold	Chk.	M. Provencher	Арр.	C. Masching			
DLI Cons	ultants	Date	11/27/2019	Date	11/27/2019	Date	11/27/2020			
Project No.	180183	4	Document No.	N/A						
Subject [Design	of Spillway	/ - Inclined Portio	n						
			6.) Wall R	ebar Des	ign					
Shrinkage and Ten	nperatu	re Reinforce	ement (S&T): ACI 31	.8-14 & US	ACE §2-8	,	_			
Maximum Spac (ACI 318-14, §7	cing: 7.7.6.2.1	!)	S :=	= min[18ir	$t, 5.0.5(t_{wall.B} + t_{t})$	wall.T) , 12i	n] = 12.00 · in			
Minimum Area (ACI 318-14, Ta	of Stee ble7.6.	l Ratio: <i>1.1)</i>								
			$\rho_{ACI} :=$	0.0020 if	f _y < 60ksi		= 0.0018			
	$\max\left[\left(0.0018 \cdot 60 \text{ksi} \div f_{y}\right), 0.0014\right]$ otherwise									
	6 a .		ρυ	SACE :=	0.003 if $L_{CJ} <$	30ft	= 0.0030			
(USACE §2-8)	of Stee	l Ratio:			0.004 if 30ft ≤	$L_{CI} \le 40$ ft				
					0.005 otherwise					
Minimum Area	of Stee	l Ratio:	ρη	hax := max	$(\rho_{ACL}, \rho_{LISACE}) =$	0.0030				
Minimum Stee	Ι Δroa·			ιαλ		,	2			
(USACE §2-8)	i Alca.		A _s	min $:= \rho_{m}$	$hax \cdot b_w \cdot 0.5 \cdot (t_{wall})$	B ^{+ t} wall.T)	= 0.54 · in ²			
Shrinkage and Ten	nperatu	re Reinforce	ement (S&T): ACI 31	.8-14 & US	ACE §2-8					
Vertical Reinforcer	ment:									
Bar Size and Sp (Embankment)	acing of	Reinforcem	ient: Siz	e _{SE} = 7.00	sSI	$E = 12.00 \cdot i$	n			
Diameter & Cro	oss-Secti	onal Area o [.]	f Bars: db	SE = 0.88·	in Ab	SE = 0.60∙i	in ²			
Area of Reinfor	cement:		A _{s:}	SE = 0.60·	in ²					
Bar Size and Sp (Channel)	acing of	Reinforcem	ient: Siz	e _{SC} = 7.00) sS(C = 12.00·i	n			
Diameter & Cro	oss-Secti	onal Area o	f Bars: db	SC = 0.88·	in Ab	SC = 0.60∙i	in ²			
Area of Reinfor	cement:		A _{st}	SC = 0.60·	in ²					
			A _S	A _{s.min} SC ^{+ A} sSE	= 0.45	erefore okay				

	Client	Blue Lake Re	eserv	oir Compa	ny	Page	
	FI Project By	Upper Black	Cree	k Reservo	r	Pg. Rev.	
GFI	Ву	C. Diebold		Chk.	M. Provencher	Арр.	C. Masching
Consulta	^{nts} Date	11/27/2019		Date	11/27/2019	Date	11/27/2020
Project No. 180	1834	Document N	No.	N/A			
Subject Des	ign of Spillway	/ - Inclined Po	ortion	1			
		6.) Wall Re	ebar	Design (Cont'd		
Shrinkage and Tempe	erature Reinforce	ement (S&T): A	CI 318	8-14 & USA	Œ §2-8		
Horizontal Reinforcen	nent:						
Wall is reinforced with spacing of that after 2	n two sections. O-feet.	The top 20-feet	from	the top of t	he wall use reinforc	ng at half the	5
Bar Size and Spacir (Embankment & C	ng of Reinforcem hannel)	ient:	Size	SH = 5.00	S.	SH = 12.00∙	in
Diameter & Cross-S	Sectional Area o	f Bars:	dbS	H = 0.63∙i	n A	bSH = 0.31	$\cdot in^2$
Area of Reinforcem	Reinforcement:			_H = 0.31∙i	n ²		
			A _{s.}	min		- alian	
			2 · A	= 0.8 \sSH	7 K 1.0 therefore	Окау	
Minimum Flexural St	eel: (ACI 318-14	l. §9.6.1.2)					
Vertical Reinforcemen	t:	,,					
$A_{cv} = min$	$\int \frac{3\sqrt{f'_{C} \cdot psi}}{\cdots \cdot b}$	min(d₅⊏(0ft	t) . dc	20 c (0ft)) . —	00∙psi∙b _w ∙min(d _s	E(Oft) , d _{SC}	(Oft)) = 0.56 · in ²
sv.min · · ····(fy fy	V(-SEV-	.,	,(((()))),	fy)
			A _{sv}	/.min			
			A	= 0.9 sSE	< 1.0 therefo	re okay	

	\frown	Client	Blue Lake Re	serv	oir Compa	ny	Page		
	\bigcirc	Project	Upper Black	Cree	k Reservoi	r	Pg. Rev.		
GEI	Ľ	Ву	C. Diebold		Chk.	M. Provencher	Арр.	C. Masching	
	nsultants	Date	11/27/2019		Date	11/27/2019	Date	11/27/2020	
Project No.	180183	4	Document N	0.	N/A				
Subject	Design	of Spillway	/ - Inclined Por	rtion					
			6.) Wall Re	bar	Design C	Cont'd			
Ductility Check:	(ACI 318-	14, §7.3.3.1	. & §9.3.3.1)						
Reinforcemen (Vertical)	t Ratio Pr	ovided: E	Embankment:	ρ _{pv}	$r_{\rm E} := \frac{{\sf A}}{{\sf d}_{\rm SE}({\sf C})}$	$\frac{\text{sSE}}{\text{Oft}) \cdot \text{b}_{W}} = 0.0036$			
		(Channel:	ρ _{pv}	$v_{\rm C} := \frac{{\sf A}}{{\sf d}_{\sf SE}({\sf G})}$	$\frac{\text{sSE}}{\text{Oft}) \cdot b_{W}} = 0.0036$			
Reinforcement Ratio Provided: (Horizontal) $\rho_{pH} := \frac{A_{sSH}}{d_{sH}(0ft) \cdot b_{w}} = 0.0018$									
Depth to Neu (Vertical)	tral Axis:			cVE cVC	$:= \frac{\rho_{pVE} \cdot f}{0.85}$ $:= \frac{\rho_{pVC} \cdot f}{0.85}$	$\frac{f_{y} \cdot d_{SE}(0ft)}{f_{y} \cdot d_{SC}(0ft)} = 0.95$ $\frac{f_{y} \cdot d_{SC}(0ft)}{f_{y} \cdot d_{SC}(0ft)} = 0.95$.∙in 5∙in		
Depth to Neu (Horizontal)	tral Axis:			cH :	$= \frac{\rho_{\text{pH}} \cdot f_{\text{y}}}{0.85}$	$\frac{d_{SH}(0ft)}{\beta_1 \cdot f'_c} = 0.49 \cdot i$	n		
Minimum Stra Calculated Stra Steel at Nomi (Vertical)	ain in Ten ain in Ten nal Stren	sion Steel a sion gth: ^E tV	t Nominal Streng $T_{\rm E} := 0.003 \cdot \left(\frac{{\rm d}}{-} \right)$	gth: SE(O cVE	$\frac{\varepsilon_{\text{t.m}}}{1} = 1$	in := 0.004 0.04 ε _{tVC} := 0.	$003 \cdot \left(\frac{d_{SC}}{cV}\right)$	$\frac{\text{Oft)}}{\text{C}} - 1 = 0.04$	
(Horizontal) ε _t ε	tVE	[€] t⊦ 0.10	$\frac{\varepsilon_{\text{t.min}}}{\varepsilon_{\text{tVC}}} = 0.10$	cH	$\frac{\varepsilon_{t,min}}{\varepsilon_{tH}} = \frac{\varepsilon_{t,min}}{\varepsilon_{tH}} = \frac{\varepsilon_{t}}{\varepsilon_{t}}$	0.09 = 0.05 < <u>1.0 t</u>	nerefore oka	Y	

		Client	Blue Lake Res	serv	oir Compai	ny		Page	
	\bigcirc	Project	Upper Black (Cree	k Reservoi	r		Pg. Rev.	
GEL	Ľ	Ву	C. Diebold		Chk.	M. Pro	vencher	Арр.	C. Masching
	nsultants	Date	11/27/2019		Date	11/27/	2019	Date	11/27/2020
Project No.	180183	34	Document N	0.	N/A			·	
Subject	Design	of Spillway	- Inclined Por	rtion					
		7.) Footi	ng Concrete	& I	Rebar Str	ength	Design		
Concrete Propert	ties:								
Specified Con	npressive	Strength of	Concrete:			f'c	= 4500 psi	i	
Specified Yield	d Strength	n of Reinford	em ent:			fy	= 60ksi		
Strength Redu	uction Fac	tor for Tensi	on-Controlled Se	ectio	ns:	ϕ_t	:= 0.90	(ACI 318-1	14, Table 2 1. 2. 1)
Strength Redu Whitney Stres	uction Fac ss Block F	tor for Shea actor:	r:			φ _v	:= 0.75	(ACI 318-1	14, Table 2 1.2.2)
β ₁ :=	0.85 if	f' _c ≤ 400	Opsi			β ₁	= 0.83	(ACI 318-14	1, Table 2 2. 2. 2. 4. 3)
	0.65 if	f' _c > 800	Opsi			_			
		f' _c – 4	000psi						
	0.85 – 0.	.05	other Opsi	wise					
Reinforcement P	arallel to	Wall:							
Heel Reinforcem	ent:								
Bar Size and S	Spacing (T	op):		Size	<mark>нтр := 7</mark>		sHTP := 2	<mark>12in</mark>	
Diameter 8	& Cross-S	ectional Area	a of Bars:	dbH	ITP := d _{ba}	=	0.88∙in		
					Siz	^е НТР	2		
				Ab⊦	ITP := ^A b _{Si}	= ^{ze} HTP	0.60 · in [*]		
Area of Re	inforceme	ent:		A _{sH}	TP := AbH	rP · <u>12in</u> sHTF	- = 0.60∙iı	n ²	
Depth to C	Centroid o	f Tension Re	inforcement:	d _{HT}	P := t _{base}	– 0.5 · d	bHTP = 1.	96 ft	
Reinforcen	nent Ratio):		ρ _{HT}	P := A _{shti}	$b \div (b_W$	$d_{HTP} = 0$.00212	
Bar Size and S	pacing (B	Bottom):		Size	HBP := 7		sHBP := 3	<mark>12in</mark>	
Diameter 8	& Cross-S	ectional Area	a of Bars:	dbH	IBP := d _b _{Siz}	e _{HBP} =	0.88 · in		
				Ab⊦	IBP := A _b _{Si}	= ^{ze} HBP	= 0.60 · in ²		
Area of Re	inforceme	ent:		A _{sH}	BP := AbHI	3P · 12ir sHB	n - P = 0.60∙i	n ²	

		Client	Blue Lake Re	serv	oir Compa	ny	Page	
	\bigcirc	Project	Upper Black	Pg. Rev.				
GEI	Y	Ву	C. Diebold		Chk.	M. Provencher	Арр.	C. Masching
	nsultants	Date	11/27/2019		Date	11/27/2019	Date	11/27/2020
Project No.	180183	4	Document N	lo.	N/A			
Subject	Design	of Spillway	- Inclined Po	rtion	l			
	7.)	Footing C	oncrete &	Reba	ar Streng	th Design Cont	'd	
Reinforcement P	arallel to	Wall:						
Toe Reinforceme	nt:							
Bar Size and S	pacing (To	op):		Size	<mark>ТТР := 7</mark>	sttp := 2	<mark>L2in</mark>	
Diameter 8	& Cross-Se	ectional Area	a of Bars:	dbT	TP := d _b _{Siz}	= 0.88 · in ^e TTP		
				AbT	TP := A _b _{Siz}	$= 0.60 \cdot \text{in}^2$		
Area of Rei	inforceme	ent:		A _{sT}	TP := AbTT	$P \cdot \frac{12in}{sTTP} = 0.60 \cdot in$	2	
Bar Size and S	pacing (B	ottom):		Size	TBP := 7	sTBP := 3	<mark>12in</mark>	
Diameter 8	& Cross-Se	ectional Area	a of Bars:	dbT	$BP := d_{b_{Siz}}$	= 0.88∙in ^e TBP		
				AbT	BP := A _b si	$= 0.60 \cdot \text{in}^2$		
Area of Rei	inforceme	ent:		Α _{sT}	_{BP} := Abte	sp. <u>12in</u> sTBP		
Reinforcement Po	erpendicu	ılar to Wall:						
Heel Reinforceme	ent:							
Bar Size and S	pacing (To	op):		Size	<mark>нт := 9</mark>	sHT := 1	2in	
Reinforcem	nent Clear	r Cover:		clrH	IT := 3in			
Diameter 8	& Cross-Se	ectional Area	a of Bars:	db⊦	IT := d _b _{Size}	= 1.13∙in Abl HT	HT := A _b _{Size}	= 1.00 · in ² ² HT
Area of Ter	nsion Reir	nforcement:		A _{sH}	T := AbHT∙	$\frac{12in}{sHT} = 1.00 \cdot in^2$		
Section De	pth:			t _{foc}	ot := t _{base}	= 2.00 ft		
Depth to C	entroid o	f Tension Re	inforcement:	d _{HT}	· := t _{foot} -	clrHT – (0.5 · dbH	T) = 1.70ft	:
Reinforcem	nent Ratio):		ρ _{Η1}	- := A _{sHT} ÷	$-\left(b_{W}d_{HT}\right) = 0.004$	408	

		Client	Blue Lake Re	eserv	oir Compai	ıy	Page					
	\bigcirc	Project	Upper Black									
GEI	$\underline{\mathcal{S}}$	Ву	C. Diebold Chk. M. Provencher App. C. Maschi Ite 11/27/2019 Date 11/27/2019 Date 11/27/2019									
	isultants	Date	11/27/2019		Date	11/27/2019	Date	11/27/2020				
Project No.	180183	4	Document N	lo.	N/A							
Subject	Design	of Spillway	- Inclined Po	rtion								
	7.)	Footing C	Concrete & I	Reba	ar Streng	th Design Cont'	d					
Reinforcement Pe	erpendicu	ılar to Wall:										
Heel Reinforceme	ent:											
Bar Size and S	pacing (B	ottom):		Size	<mark>нв := 9</mark>	sHB := 12	2in					
Reinforcem	nent Clear	Cover:		clrH	<mark>B := 4in</mark>							
Diameter 8	Diameter & Cross-Sectional Area of Bars:					= 1.13∙in Ab⊦ HB	IB := A _b _{Siz}	= 1.00 · in ² [₽] HB				
Area of Ter	nsion Reir	nforcement:		A _{sH}	_B := AbHB	$\frac{12in}{sHB} = 1.00 \cdot in^2$						
Depth to C Reinforcem	Depth to Centroid of Compression Reinforcement:					clrHB − 0.5 · dbHB	= 1.62 ft					
Toe Reinforceme	nt:											
Bar Size and S	pacing (To	op):		Size	<mark>тт := 9</mark>	sTT := 12	in					
Reinforcem	nent Clear	Cover:		clrT	T := 3in							
Diameter 8	& Cross-Se	ectional Area	a of Bars:	dbT	T := d _b Size	= 1.13 · in AbT	T := A _b Size	= 1.00 · in ²				
Area of Ter	nsion Reir	nforcement:		$A_{STT} := AbTT \cdot \frac{12in}{STT} = 1.00 \cdot in^2$								
Depth to C	entroid o	f Tension Re	inforcement:	$d_{TT} := t_{foot} - clrTT - (0.5 \cdot dbTT) = 1.70 ft$								
Reinforcem	nent Ratio):		ρττ	:= A _{STT} ÷	$\left(b_{W} d_{TT}\right) = 0.0040$	08					
Bar Size and S	pacing (B	ottom):		Size	<mark>тв := 9</mark>	sTB := 12	<mark>!in</mark>					
Reinforcem	nent Clear	Cover:		clrT	B := 4in							
Diameter 8	& Cross-Se	ectional Area	a of Bars:	dbT	B := d _b Size	= 1.13∙in AbT TB	B := A _b _{Size}	= 1.00 · in ² ² TB				
Area of Ter	nsion Reir	nforcement:		A _{st}	B := Aple.	$\frac{12in}{sTB} = 1.00 \cdot in^2$						
Depth to C Reinforcem Reinforcem	entroid o nent: nent Ratic	f Compressi o:	on	d _{TB} ρ _{TB}	:= t _{foot} - := A _{sTB} ÷	$cIrTB - 0.5 \cdot dbTB = (b_w d_{TB}) = 0.0042$	= 1.62 ft 29					

		Client	Blue Lake Reserv	oir Compa	nv	Page	
	\bigcirc	Project	Upper Black Cree	ek Reservo	, ir	Pg. Rev.	
	Y	By	C. Diebold	Chk.	M. Provencher	Арр.	C. Masching
	nsultants	Date	11/27/2019	Date	11/27/2019	Date	11/27/2020
Project No.	180183	4	Document No.	N/A			
Subject	Design	of Spillway	/ - Inclined Portior	1			
			8.) Footing Str	ength Cap	pacity		
Bearing Pressure	:						
Maximum Ec	centricity:	:	ecc	:= max(eo	$(c_1, ecc_2) = 2.78 f$	ť	
Unfactored Sh	near:		V :=	$= (W_1 + W)$	$(2 + W_3) = 7.77 \cdot k$	ip	
Factored Shea [ASCE 7-10, 2 DL & pressure	ir: 3.2 Eqtn e of bulk r	2: naterials fac	V _u tor]	:= 1.2·(W ₁	$(1 + W_2) + 1.6 \cdot W_3$	= 10.76·k	sip
Unfactored be	earing pre	essure at hee	ıl: 9 _{he}	eel.ED ^{:=} — B	$\frac{V}{\cdot b_{W}} \cdot \left[1 - \frac{\left(6 \cdot ecc_{1}\right)}{B}\right]$	$\left \begin{array}{c} \\ \end{array} \right = 0.81$	$\frac{kip}{ft^2}$
Unfactored be	earing pre	essure at toe	: q _{to}	e.ED := $\frac{1}{B}$	$\frac{V}{b_{w}} \cdot \left[1 + \frac{\left(6 \cdot ecc_{1}\right)}{B}\right]$	= 1.13	kip ft ²
Factored bear	ing pressi	ure at heel:	q _{u.}	heel := $\frac{V}{B \cdot I}$	$\frac{u}{b_{W}} \cdot \left[1 - \frac{(6 \cdot ecc)}{B}\right]$	= -1.46.	kip ft ²
Factored bear	ing pressi	ure at toe:	q _{u.}	$toe \coloneqq \frac{V_{L}}{B \cdot b}$	$\frac{1}{W} \cdot \left[1 + \frac{(6 \cdot \text{ecc})}{B} \right] =$	$= 4.15 \cdot \frac{\text{kip}}{\text{ft}^2}$	<u>)</u>
			q _{u.}	max := ma	x(q _{u.heel} , q _{u.toe})	= 4.15 · k	sf
l							

	\sim	Client	Blue Lake Reserv	oir Compa	Page				
	Project	Upper Black Cree	ek Reservo	Pg. Rev.					
GEI	I I I I I I I I I I I I I I I I I I I	Ву	C. Diebold	Chk.	M. Provencher	Арр.	C. Masching		
ULI Consultants		Date	11/27/2019	Date	11/27/2019	Date	11/27/2020		
Project No. 1801834		34	Document No.	N/A					
Subject Design of Spillway			- Inclined Portior	1					

8.) Footing Strength Capacity Cont'd

Note: The heel slab is designed as a cantilever beam with downward pressure from soil + slab and upward pressure from bearing. The toe slab is designed as a cantilever beam with downward pressure from slab and upward pressure from bearing.

Net Forces on Footings:

Downward weight of heel slab: (unfactored)

Downward weight of toe slab: (unfactored)

Downward weight of fill over heel slab: (unfactored)

Downward weight of heel slab:

Downward weight of toe slab:

Downward weight of fill over heel slab:

 $W_{heel} := \gamma_{conc} \cdot t_{base} \cdot 1ft = 0.30 \cdot \frac{kip}{ft}$ $W_{\text{toe}} \coloneqq \gamma_{\text{conc}} \cdot t_{\text{base}} \cdot 1 \text{ft} = 0.30 \cdot \frac{\text{kip}}{\text{ft}}$ $W_{\text{heelfill}} := \gamma_{f} \cdot \left(\mathsf{El}_{fill} - \mathsf{El}_{\text{bot}} \right) \cdot \mathsf{1ft} = 1.11 \cdot \frac{\mathsf{kip}}{\mathsf{ft}}$ $W_{u,heel} := 1.2W_{heel} = 0.36 \cdot \frac{kip}{ft}$ $W_{u.toe} := 1.2W_{toe} = 0.36 \cdot \frac{kip}{ft}$ $W_{u,heelfill} := 1.6W_{heelfill} = 1.77 \cdot \frac{kip}{ft}$

Net downward force on heel (Unfactored-Load Case 1):

$$p_{h.ED1} := W_{heel} + W_{heelfill} - b_{w} \cdot \left[q_{heel.ED} + 0.5 \cdot \left(\frac{q_{toe.ED} - q_{heel.ED}}{B} \right) \cdot \left(Heel - \frac{d_{HT}}{2} \right) \right] = 0.55 \cdot \frac{kip}{ft}$$

Net downward force on toe (Unfactored-Load Case 1):

$$p_{h.ED2} := W_{toe} - b_{w} \cdot \left[q_{toe.ED} + 0.5 \cdot \left(\frac{q_{heel.ED} - q_{toe.ED}}{B} \right) \cdot \left(Toe - \frac{d_{TT}}{2} \right) \right] = -0.78 \cdot \frac{kip}{ft}$$

Net downward force on heel (Factored-Max):

$$p_{h} := W_{u.heel} + W_{u.heelfill} - b_{w} \cdot \left[q_{u.heel} + 0.5 \cdot \left(\frac{q_{u.toe} - q_{u.heel}}{B} \right) \cdot \left(Heel - \frac{d_{HT}}{2} \right) \right] = 2.83 \cdot \frac{kip}{ft}$$

Net downward force on toe (Factored-Max):

$$p_{h2} := W_{u.toe} - b_w \cdot \left[q_{u.toe} + 0.5 \cdot \left(\frac{q_{u.heel} - q_{u.toe}}{B} \right) \cdot \left(Toe - \frac{d_{TT}}{2} \right) \right] = -2.86 \cdot \frac{kip}{ft}$$

Tension on Bottom

Tension on Bottom

		Client	Blue Lake R	eserv	oir Compa	ny	Page	
	(\bigcirc)	Project	Upper Black	Cree	k Reservoi	r	Pg. Rev.	
GFI		Ву	C. Diebold		Chk.	M. Provencher	Арр.	C. Masching
	onsultants	Date	11/27/2019)	Date	11/27/2019	Date	11/27/2020
Project No.	180183	84	Document	No.	N/A			·
Subject	Design	of Spillwa	y - Inclined Po	ortion	l			
		8.)	Footing Str	engt	h Capacit	y Cont'd		
Environmental	Durability	Factor (ACI	350-06)					
Note: Required Per section 21 include earthq	l for Tensio .2.1.8.a, the uake loads	n Controlle e environm s. The dural	ed structure to e ental durability pility factor is aj	encour factor pplied	rage durabi r need not b ' to service la	lity and liquid-tighti e applied to load co oads only.	ness. ombinations	that
Permissible	Tensile Stre	ess:						
Shear str	ess in norm	nal conditio	ns: 9.2.6.4	f _{s.ss}	<mark>; := 24000</mark>	psi S _{d.ss} := ma	$ax\left(\frac{f_y}{f_{s.ss}}, 1\right)$	$\left(0\right) = 2.50$
Flexure in - One w	n normal co ay element	onditions: R , bar ar 6" s	10.6.4 pacing	f _{s.f}	<mark>:= 34000p</mark> :	si S _{d.f} := max	$\left(\frac{f_{\gamma}}{f_{s.f}}, 1.0\right)$	= 1.76
EDF Shear:				V _{he}	el.ED := S _c	l.ss p _{h.ED1} · Hee	l = 4.12∙kiµ	0
				V _{to}	e.ED ^{:=} Sd.	ss p _{h.ED2} · Toe =	= 6.80 · kip	
EDF Moment:							2	
				Mh	eel.ED ^{:= S}	d.f ^p h.ED1 · ^{Heel}	$\div 2 = 4.3$	6 · kip · ft
				M _{to}	be.ED := Sd	l.f ^p h.ED2 ·Toe ²	÷ 2 = 8.40	∙kip∙ft
Ultimate Shear	-Cantilever	ed Section:		V _{u.l}	heel := ph	\cdot Heel = 8.50 \cdot kip	D	
				V _{u.1}	toe := p _{h2}	$\frac{1}{2}$ · Toe = 10.02 · ki	р	
Ultimate Mom	ent-Cantile	vered Sectio	on:	M _u	heel := p	$ h \cdot \text{Heel}^2 \div 2 = 12$	2.76∙kip∙ft	
				Mu	toe := p _h	$2 \cdot \text{Toe}^2 \div 2 = 17$.53∙kip∙ft	
					·			

Client			Blue Lake Reserve	oir Compa	Page					
	Project		Upper Black Cree	k Reservoi	r	Pg. Rev.				
GEI	I solution	Ву	C. Diebold	Chk.	M. Provencher	Арр.	C. Masching			
	nsultants	Date	11/27/2019	Date	11/27/2019	Date	11/27/2020			
Project No.	180183	4	Document No.	N/A						
Subject	ubject Design of Spillway - Inclined Portion									
		8.)	Footing Strengt	h Capacit	y Cont'd					
Footing Capacity	<u>(1-foot E</u>	Design Strip)	- SHEAR CAPACITY:							
One Way Shea (<i>ACl 318-14,</i> s	ar Strengt §22.5.5.1	h:)	V _c :	$= 2\sqrt{f'_{\rm C} \cdot p}$	$\overline{si} \cdot b_W \cdot d_{HT} = 32.9$	00∙kip				
Design Shear	Capacity:		φ۷r	$h := \Phi_{\mathbf{V}} \cdot (\mathbf{V}_{0})$	c) = 24.68 · kip					
5			V _{u.ł}	neel = 8.50)∙kip V	$V_{heel.ED} = 4.12 \cdot kip$				
Demand Capacity Ratio-Heel:			$DCR_{H} := \frac{max(V_{u,h})}{max(V_{u,h})}$	eel ^{, V} heel φV _n	.ED) = 0.34 of	< 1.0 therefore section is okay for shear strength				
Demand Capacity Ratio-Toe:			$eq:def_def_def_def_def_def_def_def_def_def_$			$V_{toe,ED} = 6.80 \cdot kip$ < 1.0 therefore section is okay for shear strength				
Footing Capacity	(1-foot D	Design Strip)	- MOMENT CAPACI	TY:						
Tension Face N (ACI 318-14)	Nominal S	Strength:	M _n	$:= \rho_{HT} \cdot f_y$	$b_{W} \cdot d_{HT}^{2} \cdot \left(1 - 0\right)$	59·ρ _{ΗT} · <mark>f</mark> γ				
Design Mome	ent Capaci	ity:	φM	$n \coloneqq \varphi_t \cdot M$	· c)					
Demand Capa	acity Ratic)-Heel:	$DCR_{H} := \frac{\max(M_{u,l})}{M_{u,l}}$	heel = 12. heel, Mhee ϕM_n	$\frac{21.ED}{21.ED} = 0.14$	M _{heel.ED} = < 1.0 theref okay for flexu	• 4.36 ft · kip ore section is ural strength 8.40 ft - kip			
Demand Capa	acity Ratic	o-Toe:	$DCR_{T} := \frac{\max(M_{u.t})}{c}$	toe [–] 17.5 coe ^{, M} toe.I ÞM _n	$\frac{ED}{ED} = 0.20$	<pre>'''toe.ED = < 1.0 theref bkay for flexu</pre>	ore section is anal strength			

		Client	Blue Lake Reservoir Company					Page				
		Project	Upper Black	Cree	k Reservo	bir		Pg. Rev.				
GFI	$\underline{\mathcal{S}}$	Ву	C. Diebold		Chk.	M. Pro	vencher	Арр.	C. Masching			
	sultants	Date	11/27/2019		Date	11/27/	2019	Date	11/27/2020			
Project No.	180183	4	Document N	lo.	N/A							
Subject	Design	of Spillway	/ - Inclined Po	rtion								
9.) Footing Rebar Design												
Shrinkage and Te	mperatu	re Reinforce	ement (S&T): A0	CI 318	8-14 & US/	ace §2-8						
Maximum Spacing: $s := \min[18in, 5 \cdot 0.5(t_{wall.B} + t_{wall.T}), 12in] = 12.00 \cdot in$ (ACI 318-14, §7.7.6.2.1)												
Minimum Area (ACI 318-14, T	a of Stee ā <i>ble 7.6</i> .	l Ratio: .1.1)										
			$\rho_{ACI} :=$	0	.0020 if	f _y < 60	ksi		= 0.0018			
				n	nax[(0.002	18 · 60ksi ·	÷ f _y), 0.00	14] othe	rwise			
Minimum Area	a of Stee	l Ratio:		$\rho_{\text{USACE}} \coloneqq \begin{array}{c} \text{0.003} \text{if} \text{L}_{\text{CJ}} < \text{30ft} \\ \end{array} = 0.0030$								
(USACE 92-8)						0.004 i	f 30ft ≤	$L_{CJ} \le 40 ft$				
				0.005 otherwise								
Minimum Area	a of Stee	l Ratio:		ρm		PACIO	usace) =	0.0030				
Minimum Stee	el Area:			• • • • • •	3X		USACE)	0.00 in ²				
(USACE §2-8)				Cs.min.toe - Pmax' w' base - 0.00 m								
				$A_{s.min.heel} := \rho_{max} \cdot b_{w} \cdot t_{base} = 0.86 \cdot in^2$								
Reinforcement pe	rpendicu	ılar to Wall	:									
Bar Size and	d Spacing	g of Reinford	ement:	Size _{TT} = 9.00 sTT =			sTT = 1.0	00 ft				
				Size _{TB} = 9.00 sTB				sTB = 1.00 ft				
Area of Reir	nforceme	ent:		$A_{\text{STT}} = 1.00 \cdot \text{in}^2 \qquad A_{\text{STB}} =$			A _{sTB} = 1	00 · in ²				
				A _s A _{sT}	.min.toe T ^{+ A} sTB	= 0.43	< 1.0 the	erefore okay				
Bar Size and	d Spacing	g of Reinford	ement:	Size	HT = 9.00	ט	sHT = 1.	00 ft				
				Size	HB = 9.00	כ	sHB = 1.	00 ft				
Area of Reir	nforceme	ent:		A _{sH}	T = 1.00∙	in ²	A _{shb} = 2	1.00∙in ²				
				A _{s.} A _{sh}	min.heel IT ^{+ A} sHB	· = 0.43	< 1.0 the	erefore okay				

		Client	Blue Lake Re	serv	oir Compa	ny		Page	
	\bigcirc	Project	Upper Black	Cree	k Reservo	ir		Pg. Rev.	
GEL	Y	Ву	C. Diebold		Chk.	M. Prov	encher	Арр.	C. Masching
	sultants	Date	11/27/2019		Date	11/27/2	019	Date	11/27/2020
Project No.	180183	4	Document N	lo.	N/A				
Subject	Design	of Spillway	- Inclined Po	rtion					
		9).) Footing F	Reba	r Design	Cont'd			
Reinforcement po	arallel to	Wall:							
Toe:									
Bar Size an	d Spacing	g of Reinford	ement:	Size	TTP = 7.00	D	sTTP = 1	00 ft	
				Size	TBP = 7.0	0	sTBP = 1	00 ft	
Area of Rei	nforceme	ent:		A _{sT}	TP = 0.60·	in ²	A _{stbp} =	0.60 · in ²	
				A A _{sT}	s.min.toe TP ^{+ A} sTB	- = 0.72 P	< 1.0 tł	nerefore oka	у
Heel:				·					
Bar Size an	d Spacing	g of Reinford	ement:	Size	_{НТР} = 7.0	0	sHTP = 1	L.00 ft	
				Size	ни _{НВР} = 7.0	0	sHBP = 1	1.00 ft	
Area of Rei	nforceme	ent:		A _{sH}	TP = 0.60	∙in ²	A _{shbp} =	0.60 · in ²	
				A A _{sh}	s.min.heel ITP ^{+ A} sHE	— = 0.72 3P	< 1.0	therefore ok	ау
Minimum Flexur	al Steel: (ACI 318-14	, §9.6.1.2)						
Perpendicular	to Wall								
Heel: A _{S,}	.min ^{:= I}	$\min\left(\frac{3\sqrt{f'_{0}}}{f_{y}}\right)$	<mark>c∙psi</mark> vb _w ∙d _{HT}	, <u>20</u>	0∙psi∙b _w ∙o ^f y	$\left(\frac{\mathrm{D}H^{2}}{\mathrm{D}}\right) = 0$.82∙in ²		
Toe: A _{S.}	.min ^{:= 1}	$\min\left(\frac{3\sqrt{f'_{0}}}{f_{y}}\right)$	<u>c^{. psi}</u> ⋅b _w ⋅d _{TB}	, <u></u>)∙psi∙b _w ∙d f _y	$\frac{\mathbf{H}_{TB}}{\mathbf{B}} = 0.$	78∙in ²		
$\frac{A_{s}}{A}$.min sHT	0.78	$\frac{A_{s.min}}{A_{sTB}} = 0.7$	78	< 1.0 ther	efore okay			

	\frown	Client	Blue Lake Reserv	oir Compa	iny	Page	
	\bigcirc	Project	Upper Black Cree	ek Reservo	ir	Pg. Rev.	
GFI	\mathcal{D}	Ву	C. Diebold	Chk.	M. Provencher	Арр.	C. Masching
	sultants	Date	11/27/2019	Date	11/27/2019	Date	11/27/2020
Project No.	180183	34	Document No.	N/A			
Subject	Design	of Spillwa	y - Inclined Portior	ו			
		9	9.) Footing Reba	ar Design	Cont'd		
Ductility Check: (ACI 318-	14, §7.3.3.	1 & §9.3.3.1)				
Minimum Stra	ain in Ten	sion Steel a	t Nominal Strength:	[€] t.m	nin := 0.004		
Perpendicular	to Wall						
Reinforcem	ient Ratio	o Provided :		AbHT	0.0014		
			ρ _p	≔ d _{HT} ·b _v	- = 0.0041 v		
Depth to N	eutral Ax	cis:		ρ _p ∙f _y ∙d _ł	HT 1.50 .		
			C :=	$\overline{0.85 \cdot \beta_1}$	$f'_{c} = 1.58 \cdot In$		
Calculated	Strain in	Tension	<u> </u>	- 0.002	d_{HT}		
Steel at NO		length.	^e t ·	_ 0.003.	$\frac{c}{c} = 1 = 0.04$		
			ε _{t.ı}	$\frac{\min}{1} = 0.1^{\circ}$	1 < 1 0 The	erefore Okav	7
			ε	 t			

		Olioset				Dest	1		
	\bigcirc	Client	Blue Lake Reserv	oir Compa	ny	Page			
	\bigcirc	Project	Upper Black Cree	ek Reservoi	ir	Pg. Rev.			
(Ву	C. Diebold	Chk.	M. Provencher	Арр.	C. Masching		
	Insultants	Date	11/26/2019	Date	11/26/2020	Date	11/26/2020		
Project No.	180183	34	Document No.	N/A					
Subject	Design	of Spillway	Inclined Portior	ו					
	Spil	lway Slab	(Stilling Basin)	- Upper l	Black Creek Re	servoir			
Problem	tatement:	Check shear	and moment canac	ity across the	e slab. Assume the	slah is			
pinned at	the two lo	ongitudinal j	oints spaced at 25 ft	apart.	e slab. Assume the	5100 15			
References									
-ACI 318-	14, Buildir	ng Code Req	uirements for Structu	ural Concrete	2				
-EM 1110	-2-2104, 9	Strength Des	ign for Reinforced Co	oncrete Hydr	aulic Structures				
Constants									
Unit Weig	ht of Wate	er: γ _w ∷	= 62.4pcf	Unit We	eight of Concrete:	$\gamma_{conc} := 2$	150pcf		
Specificieo	d Compres	sive Strengtl	n of Concrete:	f' _c := 4	<mark>1500psi</mark>				
Specified	Yield Stren	ght of Reinf	orcement:	f _v := 6	Oksi				
Strength F	eduction I	Factor for Sh	ear:	$\phi_{v} :=$	<mark>0.75</mark>	ACI 318-14	8-14, §21.2.1		
Strength F	eduction I	Factor of Mo	oment:	φ _m :=	0.9	ACI 318-14, §21.2.1			
Load Facto	or for Strer	ngth Design:		U ₁ :=	<mark>1.6</mark>	EM 1110-2-	?-2104,		
Dimensions	R. Rainford	ement		_		Table E-9, L	oad Case		
Flevation	of PM/S du			FL	· 8748ft	18			
Lievation				PWS	074010				
Top of Sla	b Elevatior	ו:		TOS :=	8745ft				
Thickness	of Slab			t _{slab} :	= 12in				
Assume 1	' wide strij	o of slab:		b _w :=	12in				
Maximum	n distance	between cor	ntrol joints:	L _{CJ} :=	31ft				
Distance a	cross slab:	:		Dist :=	5ft				
Concrete C	Cover:	ng.		Cov :=	4in				
Assumer		ing.	Densie 7	sp := 1	2000 ·	A . A	0.00 1 2		
Assume a	Bar Size:		Barsize := /	ваг := d _b	= 0.88 · In arsize	Ap := ApB	= 0.60 · in arsize		
		Client	Blue Lake Reserv	oir Compa	ny	Page			
-----------------	---	----------------	---	---------------------	--	---------------	--	--	--
K))	Project	Upper Black Cree	k Reservo	r	Pg. Rev.			
GEI	Ľ	Ву	C. Diebold	Chk.	M. Provencher	Арр.	C. Masching		
	sultants	Date	11/26/2019	Date	11/26/2020	Date	11/26/2020		
Project No.	180183	4	Document No.	N/A					
Subject	Design	of Spillway	 Inclined Portion 						
Calculations									
Height of Wa	ater Colu	ımn for upli	ft: H _{max} := El	-PWS – TO	$S + t_{slab} = 4.00 ft$				
Max case =	IDF con	ditions, vert	iæl seismic does not	control					
Hydrostratic	uplift pe	er unit slab v	vidth:	p _{max} :	= $H_{max} \cdot b_w \cdot \gamma_w =$	= 0.25 · klf			
Dead Load o	of slab pe	er unit slab v	vidth:	w _d :=	t _{slab} ·b _w ·γ _{conc} =	= 0.15 · klf			
Depth to Ce	Depth to Centroid of Reinforcement: $d_{rebar} := t_{slab} - Cov - Bar - \frac{Bar}{2} = 6.69 \cdot in$								
Eroo Body Diag	rom of S		nillwov						
Fiee bouy biag	jiani Ui S		pinway						
V			4 4		۵. 	A			
a T	4 ·	• _ • _ △				•			
Ť									
		R1	Dist		R2				
Calculate React	ion Forc	es R1 and R	2		-1				
Sum Forces	Vertically	to find read	- tion and or Loads R	1 and R2	(Pmax - Wd) · Dist – R1	$-R_2 = \mathbf{I} \cdot 0^{\mathbf{I}}$		
			· (pm - wa)	Dist	(rmax ru)			
Reaction For	rce 1:	R ₁	$:=\frac{\left\lfloor \left(-\max \right)^{2}\right\rfloor }{2}$			$R_1 = 0.25$	· kip		
Reaction For	rce 1:	R ₂	:= R ₁			$R_2 = 0.25$	· kip		
Model Slab as	a simple	beam and	define locations alo	ng x-axis for	Shear & Moment D	Diagrams			
Beginning of	f Beam:			× _{min} :	= Oft				
End of Beam	า:			× _{max} :	= Dist = 5.00 ft				
Location of I	Reaction	Anchor 1:		x _a := >	$\alpha_{\min} = 0.00 \cdot ft$				
Location of I	Reaction	Anchor 2:		×b := >	$x_{max} = 5.00 \text{ft}$				

		Client	Blue Lake Reserv	oir Compa	ıy	Page			
	Project Upper Black Creek Reservoir Pg. Rev.								
GFI	$\underline{\mathcal{S}}$	Ву	C. Diebold	Chk.	M. Provencher	Арр.	C. Masching		
	sultants	Date	11/26/2019	Date	11/26/2020	Date	11/26/2020		
Project No.	180183	4	Document No.	N/A					
Subject	Design	of Spillway	 Inclined Portion 						
Define Mome	nt for ea	ch Conditio	n along Beam as a fu	nction of x					
From x _{min} to	o x _a :	m ₁ (x	$) := (p_{max} - w_d)$	$x \cdot \frac{1}{2}x$					
From x _a to a	x _b :	m ₂ (x	$) := (p_{max} - w_d)$	$x \cdot \frac{1}{2}x - R_1$	$\left(\mathbf{x}-\mathbf{x}_{a} ight)$				
From x _b to	x _{max} :	m ₃ (x	$) := (p_{max} - w_d)$	$x \cdot \frac{1}{2}x - R_1$	$(x - x_a) - R_2 \cdot (x - x_a)$	- x _a – Dist			
Calculate Max	Momen	t and Plot N	loment Diagram						
Conditional M	oment Ec	qn: M(x)	:= m ₁ (x) if x	$x_{min} \le x \le x$	× _a				
			m ₂ (x) if >	x _a < x ≤ x _t					
			$m_{2}(x)$ if x	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
			0 otherwise	5 D	nax				
		10	Moment Dia	gram					
	ft)	10	1 1	I I					
	(kip-t	x) 5							
	tian kip	$\frac{n}{2}$ 0							
	Mon	- 5 -			-				
		- 10							
		0	1 2 X	5 4	5				
			Distance, x (feet)					
		Ch	eck1 := $M\left(\frac{\text{Dist}}{2}\right)$	= −0.31 ft·	kip				
		M	max := Check1 =	= 0.31 ft∙kiµ)				

		Client	Blue Lake Reserv	oir Compa	ny	Page	
))	Project	Upper Black Cree	k Reservoi	r	Pg. Rev.	
GEI	Ľ	Ву	C. Diebold	Chk.	M. Provencher	Арр.	C. Masching
	sultants	Date	11/26/2019	Date	11/26/2020	Date	11/26/2020
Project No.	180183	4	Document No.	N/A			
Subject	Design	of Spillway	- Inclined Portion	l			
	والمعماء						
	a Loga:	h · Factor (A (
Environmental	Durabili	ty Factor (At	.1 350-06):	~~ dumbilita	and liquid tightness	_	
Per section 2 that include	earthqu	a, the enviro ake loads.	onmental durability f	actor need r	not be applied to loa	s. Id combinat	ions
Specified Yie	eld Stren	gth of Reinfo	præm ent:	$f_y = 60 \cdot k$	si		
Permissible	Tensile S	tress:					
Shear stre	ess in no	ormal condit	ions: 9.2.6.4	f _{s.ss} := 24	4000psi		
				S _{d.ss} ≔ r	$nax\left(\frac{f_{y}}{f_{s.ss}}, 1.0\right) =$	2.50	
Flexure ir - One wa	n normal ay eleme	l conditions: ent, bar ar 12	R10.6.4 " spacing	^f s.f.12 ^{:=}	<mark>21000psi</mark>		
				S _{d.f.12} :=	$\max\left(\frac{f_{\gamma}}{f_{s.f.12}}, 1.0\right)$) = 2.86	
Check Shear Ca	apacity A	cross Slab					
Factored she	ear load:		$V_u := max(U_1 \cdot V_1)$	max ^{, S} d.ss	$\cdot V_{max} = 0.62 \cdot kir$)	
Allowable Sl	hear Loa	d:	$V_{all} := \left(\varphi_{V} \cdot 2 \cdot \sqrt{2} \right)$	f' _c ∙psi∙b _w ∙	$d_{rebar} = 8.1 \text{ft} \cdot \frac{k}{2}$	ip ACI 3: ft	18-14, §22.5.5.1
Find the Der	mand/Ca	apacity Ratic	y:	DC _{vrat}	$_{io} := \frac{V_u}{V_{all}} = 0.08$]	
	che	eck := "S	ihear Capacity > De	emand, She	ar Design Okay"	if $V_u < V$	all
		"5	bhear Capacity < De	emand, Red	esign" if V _U >	v _{all}	
		ch	eck = "Shear Capa	city > Dem	and, Shear Design	Okay"	

		Client	Blue Lake Reserv	oir Compa	าง	Page				
	\bigcirc	Project	Upper Black Cree	pper Black Creek Reservoir Pg. Rev.						
	Ľ	Bv	C. Diebold	Chk.	M. Provencher	App.	C. Masching			
	sultants	Date	11/26/2019	Date	11/26/2020	Date	11/26/2020			
Project No.	180183	4	Document No.	N/A	,,		,,			
Subject	Design	of Spillway	/ - Inclined Portion	,						
Check Momen	t Canaci	hy Across Sla	ab							
Factored Mc	oment:	.,	M _u := max(U ₁ ·I	M _{max} , S _{d.f}	$(12 \cdot M_{max}) = 0.89$	9∙kip∙ft				
Tension Reir	nforceme	ent Area:	$A_s := A_b \div sp \cdot b_v$	v = 0.60∙ir	2					
Find the equ Rectangular Block:	uivalent Compre	ssion	$a_{c} := \frac{A_{s} \cdot f_{y}}{\left(0.85 \cdot f'_{c} \cdot b\right)}$	$\overline{p_w} = 0.78$	·in					
Allowable M	Noment:		$M_{all} \coloneqq \varphi_{m} \cdot A_{s} \cdot f$	y d _{rebar}	$\left(-\frac{a_{c}}{2}\right) = 17 \cdot ft \cdot kip$)				
Find the De	mand/Ca	apacity Ratic):	DC _{mra}	$tio := \frac{M_u}{M_{all}} = 0.01$	5				
	che	eck := "F "F	Flexural Capacity > Flexural Capacity <	Demand, M Demand, R	Ioment Design Ok edesign" if M _u	ay" if M _I > M _{all}	1 _u < M _{all}			
		ch	eck = "Flexural Ca	pacity > De	mand, Moment De	esign Okay'				

		Client	Blue Lake Re	servoir	Compa	iny		Page	
	\bigcirc	Project	Upper Black	Creek F	Reservo	ir		Pg. Rev.	
GEI	٣	Ву	C. Diebold	C	hk.	M. Prov	rencher	Арр.	C. Masching
	sultants	Date	11/26/2019	D	ate	11/26/2	2020	Date	11/26/2020
Project No.	180183	4	Document N	o . N	/A				
Subject	Design	of Spillway	- Inclined Por	rtion					
Check Shearing	g of Dow	els Betwee	n Wall and Slab	:					
Compression (ACI 318-11,	Face She §11.4)	ar Strength:	Note: When Additional	re shear design ⁻	r reinford will be co	cement per onducted v	rpendiculat with future	r to axis of 1 submittal.	member is used.
			V _C := -	A _s ∙f _y ∙d sp	l _{rebar} =	= 20.06 · ki	ip		
Design Shea	ar Capacit	y:	φv _n ≔	¢γ·ν ₍	_C = 15.0)5∙kip			
Demand Capacity Ratio: $DCR_V := \frac{V_u}{\varphi V_n} = 0.04 $ 									
Shrinkage and Ter	nperatur	e Reinforce	ment (S&T): AC	1318-1 :	1, §7.12	& USACE §	§2-8		
Maximum Spa (ACI 318-11, §	cing: 7.12.2.2))		s := mi	in[18in	, 5∙0.5(t _{sl}	$\left ab\right), 12$ in] = 12.00 ·	in
Minimum Area (ACI §7.12.2.1)	a of Steel	Ratio:		^ρ ΑCI ^{:=}	= 0.0018	3			
Minimum Area (USACE §2-8)	a of Steel	Ratio:		^ρ USAC	E := (0.003 if	L _{CJ} < 30	Oft :	= 0.0040
					(0.004 if	30ft ≤ L	$CJ \leq 40$ ft	
					0	0.005 ot	herwise		
Minimum Area	a of Steel	Ratio:		ρ _{max} :	= max(ρ _{ACI} ,ρυ	SACE = 0	0.0040	
Minimum Stee (USACE §2-8)	l Area:			A _{s.min}	:=	ax ^{∙b} w ^{∙t} sla	ab = 0.58	·in ²	
Bar Size and Sp	acing of	Reinforceme	ent:	Barsize	e = 7	:	sp = 12.00	0∙in	
Area of Reinfor	cement:			A _s := A	$h_b \cdot \frac{12in}{s}$	= 0.60·i	n ²		
				A _{s.min} 2·A _s	0- - = 0.48	3	< 1.0 theref	fore okay	

		Client	Blue Lake Reserv	oir Compa	ny	Page	
	\bigcirc	Project	Upper Black Cree	k Reservoi	Pg. Rev.		
		Ву	C. Diebold	Chk.	M. Provencher	Арр.	C. Masching
	nsultants	Date	11/27/2019	Date	11/27/2019	Date	11/27/2019
Project No. 180183		34	Document No.	nent No. N/A			
Subject	Design	of Spillway	 Stilling Basin 				

Spillway Wall (Stilling Basin) - Upper Black Creek Reservoir

Codes References

- 1) American Concrete Institute (ACI). Building Code Requirements for Structural Concrete (ACI 318-14), (2014).
- 2) ACI (American Concrete Institute), 2006. Code Requirements for Environmental Engineering Concrete Structures (ACI 350-06).
- *3)* American Society of Civil Engineers (ASCE). Minimum Design Loads for Buildings and Other Structures (ASCE 7-10), (2013).
- **4)** U.S. Army Corps of Engineers (USACE). Engineering and Design: Retaining and Flood Walls, (1989). EM 1110-2-2502.
- *5)* U.S. Army Corps of Engineers (USACE). 2003 "Strength Design for Reinforced-Concrete Hydraulic Structures." EM 1110-2-2104-Appendix E: Table E-1.
- *6)* Agusti, G. C. and Sitar. 2013. UCB GT 13-02 "Seismic Earth Pressures on Retaining Structures with Cohesive Backfills." UCB GT 13-02.

Structural Design

The following design calculates the applied loads and design strength for the Upper Black Creek Reservoir spillway wall. The wall is designed as a cantilevered retaining wall with soil and seismic loads. The strength/capacity checks are performed using the one foot strip method and code requirements in ACI 318-14, ACI 350-06 and USACE EM 1110-2-2104.

Design Loads (Forces)

The applied loads and load cases for the wall are calculated using guidelines from the documents referenced above. USACE and ACI strength/service load combinations are applied and the resulting combinations are shown below.

Wall Reinforcement Summary

Vertical Reinforcement

Tension Face = #7 at 12" O.C.

Compression Face = #7 at 12" O.C.

Horizontal Reinforcement

Channel = #5 at 12" O.C.

Embankment = #5 at 12" O.C.

Foundation Dowels

Full height bars, mechanical splices or slab tension splices will be allowed. Bars must be developed at wall/foundation joint.

Counterforts

None

	\bigcirc	Client	Blue Lake Rese	ervoir Compa	ny		Page		
	\bigcirc	Project	Upper Black C	reek Reservoi	r		Pg. Rev.		
GFI	Ľ	Ву	C. Diebold	Chk.	M. Prov	encher	Арр.	C. Masching	
	nsultants	Date	11/27/2019	Date	11/27/2	019	Date	11/27/2019	
Project No.	180183	34	Document No	. N/A					
Subject	Design	of Spillway							
Footing Reinford	ement Su	ummary							
Perpendicula	r to Wall								
Tension Fa	ce = #9 at	:12" O.C.							
Compressi	on Face =	:#9 at 12" O).C.						
Parallel to We	all								
Top = #7 at	t 12" O.C.								
Bottom = #7 at 12" O.C.									
Wall Design Prop	perties:								
Top of Wall El	evation:		E	l _{top} := 8737f	t				
Bottom of Wa	all Elevati	on:	E	l _{bot} := 8724f	t				
Wall Height:			ŀ	H _{wall} := El _{top}	– El _{bot} =	= 13.00 ft			
Bottom Wall	Thickness	:	t	wall.B := 1ft -	<mark>⊦ 6in</mark>				
Top Wall Thick	kness:		t	t _{wall.T} := 1ft + 0in					
Footing width	1:		E	B := 8ft					
Toe projection	n:		٦	⁻ oe := 3.5ft					
Heel projectio	n:		ŀ	leel := B – To	e – t _{wall}	. _B = 3.00	ft		
Footing thick	ness:		t	base := 2.0ft					
Slab thickness	5:		t	slab := 2.0ft					
Design Width	:		k	o _w := 12in					
Unit weight o	f concrete	2:	~	γ _{conc} := 150·	pcf				
Distance betw	æen Cont	rol Joints:	L	CJ := 25ft					
Specified Con	npressive	Strength of	Concrete: <mark>f</mark>	' <mark>c := 4500psi</mark>					
Minimum Tensile Strength of Concrete: $f_t := 0.1 \cdot f'_c = 450 \text{ psi}$ [ACI R22.2.2.2]							2.2.2.2]		
Water Surface El	Nater Surface Elevations and Properties:								
Elevation of n (Assumed at	ormal wa base of st	ater surface: ructure)	E	^{El} nws := El _{bot}	- t _{base} -	+ Oft = 87	722.00 ft		
Water Unit W	eight:		~	γ _w := 62.4pcf					

		Client	Blue Lake Re	serv	oir Compai	nγ	Page	
	\bigcirc	Project	Upper Black	Cree	k Reservoi	r	Pg. Rev.	
GEI	Ľ	Ву	C. Diebold	C. Diebold		M. Provencher	Арр.	C. Masching
	nsultants	Date	11/27/2019		Date	11/27/2019	Date	11/27/2019
Project No.	180183	4	Document N	ocument No. N/A				
Subject	Design	of Spillway	· - Stilling Basi	n				
Fill Elevations ar	d Proper	ties:						
Reference:								
Elevation of f	ill materia	I beside cha	nnel:	Elfil	<mark> := 8732ft</mark>			
Fill Properties	(Soil type	e: SM)						
Angle of ir	iternal frie	ction:		φ _f :	= 30·deg			
Unit weigh	t:			γ _f := 130pcf				
Angle of ir	iclined ba	ckfill:		α_{f} :	= Odeg			
At-rest ear	th pressu	re coefficient	t:	k ₀ :	= 1 - sin(d	$(\mathbf{p}_{f}) = 0.50$		
Active earth pressure coefficient:				k _a :	$= \tan(45de)$	$\left(eg - 0.5 \cdot \varphi_f \right)^2 = 0.$	33	
Passive earth pressure coefficient:			it:	k _p :	= tan(45de	$\left(eg + 0.5 \cdot \varphi_f \right)^2 = 3.$	00	
Friction factor on sound roc	for mass <:	concrete		δ ₁ :	= 0.7	-)	[NAV	FAC p7.2-63]

Seismic Properties:

10,000yr Horizontal Seismic Coefficient: $k_h := 0.4972$ [USGS Unified Hazard Tool]Earth Pressure Coefficient: $K_{ae} := 0.42 \cdot k_h = 0.21$ [Augusti: UCB GT 13-02: Eq. 4.3]Other Properties:

Construction Surcharge:

 $q_C := 200 psf$

		Client	Blue Lake Reserv	oir Compa	Page		
	\bigcirc	Project	Upper Black Cree	k Reservoi	Pg. Rev.		
	$\underline{\mathcal{S}}$	Ву	C. Diebold	Chk. M. Provencher		Арр.	C. Masching
ULI Consultants		Date	11/27/2019	Date	11/27/2019	Date	11/27/2019
Project No. 180183		4	Document No.	N/A			
Subject	Design	of Spillway	 Stilling Basin 				

1.) LOAD CASE 1 (Usual Condition) - Spillway Wall Loading:

LOAD CASE 1-Applied Loads: Static

Active Earth Pressure

Base Shear:

Footing Shear:

$$V_{F1a} := 0.5 \cdot k_a \gamma_f \cdot \left(EI_{fill} - EI_{bot} \right)^2 b_w = 1.39 \cdot kip$$
$$V_{F1b} := \left[k_a \gamma_f \cdot \left(EI_{fill} - EI_{bot} \right) \cdot t_{base} + 0.5 \cdot k_a \cdot \gamma_f \cdot t_{base}^2 \right] \cdot b_w = 0.78 \cdot kip$$

Shear as at a Distance 'y' From Base of Wall:

$$V_{F.1}(y) := \begin{bmatrix} 0.5 \cdot k_a \cdot \gamma_f \cdot \left(EI_{fill} - EI_{bot} - y \right)^2 \cdot b_w \end{bmatrix} \text{ if } y < \left(EI_{fill} - EI_{bot} \right) \\ 0 \text{ otherwise}$$

$$V_{F.1}(El_{nws} - El_{bot}) = 2.17 \cdot kip$$
 $V_{F.1}(Oft) = 1.39 \cdot kip$

Base Moment:

$$M_{F.1.b} := V_{F1a} \cdot \left[0.33 \left(EI_{fIII} - EI_{nws} \right) + \left(EI_{nws} - EI_{bot} \right) \right] = 1.80 \, \text{ft} \cdot \text{kip}$$

Moment as at a Distance 'y' From Base of Wall:

$$\begin{split} \mathsf{M}_{F.1}(\mathsf{y}) &\coloneqq 0.5 \cdot \mathsf{k}_{\mathsf{a}} \cdot \gamma_{\mathsf{f}} \cdot \left(\mathsf{El}_{\mathsf{fill}} - \mathsf{El}_{\mathsf{bot}} - \mathsf{y}\right)^2 \cdot \mathsf{b}_{\mathsf{w}} 0.33 \left(\mathsf{El}_{\mathsf{fill}} - \mathsf{El}_{\mathsf{bot}} - \mathsf{y}\right) \\ \mathsf{M}_{F.1} \left(\mathsf{El}_{\mathsf{nws}} - \mathsf{El}_{\mathsf{bot}}\right) &= 7.15 \cdot \mathsf{kip} \cdot \mathsf{ft} \\ \mathsf{M}_{F.1}(\mathsf{Oft}) &= 3.7 \cdot \mathsf{kip} \cdot \mathsf{ft} \end{split}$$

Passive Earth Pressure

Rock to Interior:

$$\begin{split} \mathsf{V}_{\mathsf{F4}} &\coloneqq \mathsf{0.5} \cdot \mathsf{k}_{p} \cdot \gamma_{\mathsf{f}} \cdot \left(\mathsf{t}_{\mathsf{base}} - \mathsf{t}_{\mathsf{slab}} \right)^{2} \cdot \mathsf{1ft} = \mathsf{0.00} \cdot \mathsf{kip} \\ \mathsf{V}_{\mathsf{F5}} &\coloneqq \mathsf{k}_{p} \cdot \gamma_{\mathsf{conc}} \cdot \mathsf{t}_{\mathsf{slab}} \cdot \left(\mathsf{t}_{\mathsf{base}} - \mathsf{t}_{\mathsf{slab}} \right) \cdot \mathsf{1ft} = \mathsf{0.00} \cdot \mathsf{kip} \\ \mathsf{F}_{\mathsf{F},\mathsf{T2}} &\coloneqq \mathsf{V}_{\mathsf{F4}} + \mathsf{V}_{\mathsf{F5}} = \mathsf{0.00} \cdot \mathsf{kip} \end{split}$$

Vertical Forces

Weight of stem:	$W_{1} := \gamma_{conc} \cdot (El_{top} - El_{bot}) \cdot 0.5 (t_{wall.B} + t_{wall.T}) \cdot 1ft = 2.44 \cdot kip$
Weight of footing:	$W_2 := \gamma_{conc} \cdot B \cdot t_{base} \cdot 1 ft = 2.40 \cdot kip$
Weight of fill over heel:	$W_{3} := \gamma_{f} \cdot \left[\text{Heel} + 0.5 \cdot \left(t_{wall.B} - t_{wall.T} \right) \right] \cdot \left(\text{El}_{fill} - \text{El}_{bot} \right) \cdot 1 \text{ft} = 3.38 \cdot \text{kip}$

		Client	Blue Lake Reserv	oir Compa	Page			
	\bigcirc	Project	Upper Black Cree	k Reservoi	Pg. Rev.			
	$\underline{\mathcal{S}}$	Ву	C. Diebold	Chk. M. Provencher		Арр.	C. Masching	
ULI Consultants		Date	11/27/2019	Date	11/27/2019	Date	11/27/2019	
Project No. 1801834		4	Document No.	N/A				
Subject	Design	of Spillway	- Stilling Basin					

1.) LOAD CASE 1 (Usual Condition) Cont'd

LOAD CASE 1-Applied Loads: Static

Construction Surcharge

Base Shear:

$$V_{\texttt{C1a}} \coloneqq k_{a} \cdot q_{c} \cdot \left(\texttt{El}_{fill} - \texttt{El}_{bot} \right) \cdot b_{w} = 0.53 \cdot kip$$

Shear as at a Distance 'y' From Base of Wall:

$$V_{C}(y) := \begin{cases} V_{C1a} \cdot \frac{\left(EI_{fill} - EI_{bot} - y\right)}{\left(EI_{fill} - EI_{bot}\right)} & \text{if } y < \left(EI_{fill} - EI_{bot}\right) \end{cases}$$

0 otherwise

$$V_{C}(EI_{nws} - EI_{bot}) = 0.67 \cdot kip$$
 $V_{C}(Oft) = 0.53 \cdot kip$

Footing Shear:

 $V_{C1b} := k_a \cdot q_c \cdot t_{base} \cdot b_w = 0.13 \cdot kip$

Base Moment:

$$\begin{split} \mathsf{M}_{\mathsf{C}} &\coloneqq 0.5 \cdot \mathsf{V}_{\mathsf{C1a}} \cdot \left(\mathsf{EI}_{\mathsf{fill}} - \mathsf{EI}_{\mathsf{bot}}\right) = 2.13 \, \mathsf{ft} \cdot \mathsf{kip} \\ \mathsf{M}_{\mathsf{C}}(\mathsf{y}) &\coloneqq 0.5 \cdot \mathsf{V}_{\mathsf{C}}(\mathsf{y}) \cdot \frac{\left(\mathsf{EI}_{\mathsf{fill}} - \mathsf{EI}_{\mathsf{bot}} - \mathsf{y}\right)^2}{\left(\mathsf{EI}_{\mathsf{fill}} - \mathsf{EI}_{\mathsf{bot}}\right)} \end{split}$$

Moment as at a Distance 'y' From Base of Wall:

		Client	Blue Lake Res	ervoir Compa	any	Page	
	\bigcirc	Project	Upper Black C	Creek Reservo	bir	Pg. Rev.	
GEL	Y	Ву	C. Diebold	Chk.	M. Provencher	Арр.	C. Masching
	nsultants	Date	11/27/2019	Date	11/27/2019	Date	11/27/2019
Project No.	180183	4	Document No	D. N/A			
Subject	Design	of Spillway	/ - Stilling Basin	1			
	•	_					
1.) L	OAD C	ASE 1: (U	sual Conditio	on) Cont'd -	Global Stability	Checks	
CHECK SLIDING S	TABILITY						
Assume struc the spillway w	ture is co vall is not	nstrained fro allowed to r	om transverse slic move freely and i	ling. Due to cor is assumed to r	nnection with the sla not slide.	b	
CHECK OVERTUR	RNING ST	ABILITY					
Moment Calcula	tions			,	``		
Horizontal for	rce mome	ent arms:		y _{1a} := (El _{fill} −	$- El_{bot} \div 3 + t_{base}$	e = 4.67 ft	
				y _{1b} := 0.5 · t _b ;	ase = 1.00 ft		
				y _{c1a} ≔ (El _{fill}	$- El_{bot} \div 2 + t_{bas}$	_{se} = 6.00 ft	
			,	y _{c1b} := 0.5·t _k	base = 1.00 ft		
			,	y _{FFT2} := 0.33	$\left(t_{base} - t_{slab}\right) = 0$	0.00 ft	
Vertical force	moment	arms:	:	x ₁ := Toe + t	wall.T + $0.33 \cdot (t_{wal}$	I.B ^{— t} wall. [·]	(T) = 4.66 ft
			2	x ₂ := B ÷ 2 =	4.00 ft		,
			1	х ₃ := В – Нее	$e! \div 2 = 6.50 ft$		
Summation o	of vertical	forces:	•	V _{sum} := W ₁ -	$+ W_2 + W_3 = 8.22$	· kip	
Overturning N	Noment:		M _c	$v_{\text{D.1}} := V_{\text{F1a}} \cdot y_{1}$ + V_{C1b}	la ^{+ V} F1b [·] Y1b ^{+ V} 0 ^{· y} c1b	C1a ^{.y} c1a	. = 10.58 · kip · ft
Resisting Mor	nent:		M _r	$:= W_1 \cdot x_1 + V_1$	$W_2 \cdot x_2 + W_3 \cdot x_3 + V_3 + V_3 \cdot x_3 + V_3 \cdot x_3 + V_3 $	F _{F.T2} ·y _{FFT2}	$p_2 = 42.94 \cdot \text{kip} \cdot \text{ft}$
Location of re	sultant:		2	$x_{bar.1} := \frac{M_r}{N}$	$\frac{-M_{0.1}}{sum} = 3.94 \text{ft}$		
Eccentricity of	the resul	ltant:		$\operatorname{ecc}_1 := \frac{B}{2} - X$	$x_{bar.1} = 0.06 \text{ft}$		
Overturning c	heck:	(Check _{ot.1} :=	"LC1 Overtur	ning Stability OK"	if $\frac{1}{3} \cdot B \leq$	$x_{bar.1} \leq \frac{2}{3}B$
		_		"STOP - LC1 C	Overturning Stabilit	y Unaccept	able" otherwise
		Cł	neck _{ot.1} = "LC1	1 Overturning	Stability OK" $\frac{1}{3} \cdot B$	= 2.67 ft	$\frac{2}{3} \cdot B = 5.33 \text{ft}$

	\frown	Client	Blue Lake Reserv	oir Compa	ny	Page	
	\bigcirc	Project	Upper Black Cree	k Reservo	ir	Pg. Rev.	
GEI	$\underline{\mathcal{S}}$	Ву	C. Diebold	Chk.	M. Provencher	Арр.	C. Masching
	sultants	Date	11/27/2019	Date	11/27/2019	Date	11/27/2019
Project No.	180183	4	Document No.	N/A			
Subject	Design	of Spillway	/ - Stilling Basin				
		1.) LO	AD CASE 1 (Usu	al Condit	ion) Cont'd		
LOAD CASE 1-Loa	ading Cor	nditions & C	Combinations:				
Unfactored Shear	At Base	of Wall:	V _{LC}	$v_{1}(y) := V_{F_{1}}$	$_{1}(y) + V_{C}(y)$		
Ultimate Shear At	t Base of	Wall:					
EM 1110-2-21	104 Servi	ceability Loa V _{uLC1.1} (y	ad Combination: 2.2) := $2.2 \cdot (V_{F.1}(y) +$	(EH + Hs + L - V _C (y))) [Table E-9, Lo	oad Case 1A]
ASCE Load Co	mbinatio	n 1: 1.4 (D - V _{uLC1.2} (y	+F) +1.6 H) := 1.6·V _{F.1} (γ)				
ASCE Load Co	mbinatio	n 2: 1.2 (D - V _{uLC1.3} (y	+ F) + 1.6 (L) + 1.6 (H) := $1.6 \cdot V_{C}(y) + 1.0$) .6·V _{F.1} (y)			
Controlling Case:		V _{uLC1} (y) V _{uLC1} (0ft	$:= \max \left(V_{uLC1.1}(y) \right) = 4.22 \cdot kip $, V _{uLC1.2} (/ _{uLC1.1} (0ft	$(y), V_{uLC1.3}(y)$ = 4.22 · kip		
Unfactored Mom	ent At Ba	se of Wall:	MLC	_{C1} (y) := M	F.1(y) + M _C (y)		
Ultimate Momen	it At Base	of Wall:					
EM 1110-2-21	104 Servi	ceability Loa M _{uLC1.1} ()	ad Combination: 2.2 y) := $2.2 \cdot (M_{F,1}(y))$	(EH + Hs + L + M _C (y)))		
ASCE Load Co	mbinatio	n 1: 1.4 (D - M _{uLC1.2} ()	+F)+1.6H y) := 1.6·M _{F.1} (y)				
ASCE Load Co	mbinatio	n 2: 1.2 (D - M _{uLC1.3} ()	+F)+1.6(L)+1.6(H y) := 1.6·M _C (y)+) 1.6·M _{F.1} ()	/)		
Controlling Case:		M _{uLC1} (y) M _{uLC1} (Of	:= max(M _{uLC1.1} (t) = 12.75 · kip · ft	y) , M _{uLC1.} M _{uLC1.}	$\frac{2(y)}{1}$, M _{uLC1.3} (y) $\frac{1}{1}$ (0ft) = 12.75 ft · 1) kip	

		Client	Blue Lake Reserv	voir Compa	ny	Page				
GEI Consultants		Project	Upper Black Cre	ek Reservoi	r	Pg. Rev.				
		Ву	C. Diebold	Chk.	M. Provencher	Арр.	C. Masching			
	sultants	Date	11/27/2019	Date	11/27/2019	Date	11/27/2019			
Project No.	180183	4	Document No.	N/A						
Subject	Design	of Spillway	- Stilling Basin							
		1)10/		ual Candit	ion) Cont'd					
1.) LOAD CASE 1 (Usual Condition) Cont [*] d										
Environmental D	urability	Factor (ACI 3	50-06)							
Note: Required f Per section 21.2. include earthqua	Note: Required for Tension Controlled structure to encourage durability and liquid-tightness. Per section 21.2.1.8.a, the environmental durability factor need not be applied to load combinations that include earthquake loads. The durability factor is applied to service loads only.									
Specified Yield St	rength of	Reinforæm	ent: f _y	= 60ksi						
Permissible Tensi	le Stress:									
Shear stress in	normal	conditions: 9	9.2.6.4 <mark>f_{s.s}</mark>	_{ss} := 24000	psi S _{d.ss} := ۱	$\max\left(\frac{f_{\gamma}}{f_{s.ss}}\right)$	1.0) = 2.50			
Flexure in nor - One way ele	mal cond ement, Ba	itions: R10.6 Ir at 6" spaci	5.4 <mark>f_{s.1}</mark> ng	:= 34000p	si S _{d.f} := m	$ ax\left(\frac{f_y}{f_{s.f}}, 1.\right) $	0) = 1.76			
Shear in Wall:							/			
V _{LC1.ED} (y) :	= S _{d.ss} .	(V _{F.1} (y) +	V _C (y)	C1.ED ^{(Oft) =}	= 5·kip >	V _{uLC1.1} (0	ft) = $4 \cdot kip$			
Moment in Wall:										
M _{LC1.ED} (y)	$:= S_{d.f}$	(M _{F.1} (y) +	М _С (у))	C1.ED ^(Oft)	= 10·kip·ft <	M _{uLC1.1} ((Dft) = 13∙kip∙ft			

	\bigcirc	Client	Blue Lake Reserv	oir Compa	ny	Page		
	\bigcirc	Project	Upper Black Cree	ek Reservoi	ir	Pg. Rev.		
	Ľ	Ву	C. Diebold	Chk.	Арр.	C. Masching		
	nsultants	Date	11/27/2019	Date	11/27/2019	Date	11/27/2019	
Project No. 1801		4	Document No.	Document No. N/A				
Subject	Design	of Spillway	 Stilling Basin 					

2.) LOAD CASE 2 (Extreme Condition) - Spillway Wall Loading:

Note: The retaining wall stem is analyzed as a cantilever beam with fixity provided at the footing. Beam is subject to lateral forces due to seismic inertial forces due to self-weight and dynamic fill loads. Groundwater table is assumed below the wall section.

		Client	Blue Lake Reserve	oir Compai	ıγ	Page			
	\bigcirc	Project	Upper Black Cree	k Reservoi	Pg. Rev.				
GEI	I solution	Ву	C. Diebold	Chk.	M. Provencher	Арр.	C. Masching		
	nsultants	Date	11/27/2019	Date	11/27/2019	Date	11/27/2019		
Project No.	180183	4	Document No.	N/A					
Subject	Design	of Spillway	- Stilling Basin						
	•								
2	.) Load	CASE 2	Extreme Condi	tion) - Sp	illway Wall Loa	ding:			
LOAD CASE 2-Ap	plied Loa	ds: Seismic							
Seismic Incremer	ntal Force	of Earth Pre	essure		_				
Base Shear:		V _{Ea} := (0.5K _{ae} ·b _w ·[γ_{f} ·(El	fill – El _{bot})	$\left[2 \right] = 0.87 \cdot kip$	7			
		V _{Eb} :=	$_{-}^{K}$ ae $\gamma_{f} \cdot (El_{fill} - El_{b})$	ot) · ^t base ⁻	⊢ 0.5 · K _{ae} · γf · t _{base}	$\begin{bmatrix} 2 \\ 2 \end{bmatrix} \cdot b_W = 0$.49∙kip		
Shear as at a Distance 'y' From Base of Wall:									
	$V_{E}(y) := 0.5 \cdot K_{ae} \cdot \gamma_{f} \cdot (EI_{fill} - EI_{bot} - y)^{2} \cdot b_{w} V_{E}(Oft) = 0.9 \cdot kip$								
Base Moment		M _E := \	/ _{Ea} ·[0.33(El _{fill} – E	I_{bot} = 2.2	29 ft∙kip				
Moment at a	Distance '	y' From Base	e of Wall:						
		M _E (y):	= $0.5 \cdot K_{ae} \cdot \gamma_{f} \cdot (EI_{fi})$	I – El _{bot} –	$y)^2 \cdot b_w 0.33 (EI_{fill} -$	- El _{bot} - y)		
Inertial Forces						M _E (0ft)	= 2.3 · kip · ft		
Wall Base She	ear:	V _{la} := k	$\mathbf{W}_{1} = 1.21 \cdot \text{kip}$						
Shear as at a [Distance '	/' From Base	e of Wall:						
		V ₁ (y) :=	$^{k}h^{\cdot \gamma}conc \cdot \begin{bmatrix} t \\ wall. T \end{bmatrix}$	$+\frac{0.5 \cdot (t_w)}{1}$	$\frac{1}{(H_{wall},B^{-t}_{wall},T) \cdot (H_{wall})}$	$\frac{ wall - y)}{ }$	$(H_{wall} - y) \cdot b_w$		
Base Moment	::	M _I := V	$\operatorname{Ia} \cdot \left[\frac{H_{wall} \cdot \left(2t_{wall} \right)}{3 \left(t_{wall} \right) + 3 \left(t_{wall} \right) + 3 \left(t_{wall} \right) \right]} \right]$	T ^{+ t} wall.B	$\left[- \right] = 7.35 \cdot \text{kip} \cdot \text{ft}$				
Moment at a	Distance '	y' From Bas	e of Wall:	_	_				
		M ₁ (y) :=	$v_{I}(y) \cdot \frac{(H_{wall} - y)}{3t_{w}}$	$\left[2^{t} \text{wall.T}^{+} \right]$	$-\left[t_{wall.T} + \frac{(t_{wall.T})}{all.B - t_{wall.T}}\right] \cdot \left(H_{wall}\right)$	$\frac{B - t_{wall.T}}{H_{wall}}$ $\frac{H_{wall}}{vall - y} + $	$\frac{\left(H_{wall} - y\right)}{I}$		

Footing Shear: $V_{lb} := k_h \cdot W_2 = 1.19 \cdot kip$

Soil over Footing Shear: $V_{1.3} := k_h \cdot W_3 = 1.68 \cdot kip$

	\bigcirc	Client	Blue Lake Res	ervoir Compa	ny	Page		
	\bigcirc	Project	Upper Black C	Creek Reservoi	r	Pg. Rev.		
GEL	Ľ	Ву	C. Diebold	Chk.	M. Provencher	Арр.	C. Masching	
	nsultants	Date	11/27/2019	Date	11/27/2019	Date	11/27/2019	
Project No.	180183	34	Document No	o. N/A				
Subject	Design	of Spillway	/ - Stilling Basin	I				
2)14								
2.) L(JAD CA	ISE 2 (EXT	reme Condit	don) Cont'd	-Global Stabilit	у спескя		
CHECK SLIDING S	STABILITY							
Assume struc the spillway v	ture is co vall is not	nstrained fro allowed to i	om transverse slic move freely and i	ding. Due to con is assumed to n	nection with the slal ot slide.	b,		
CHECK OVERTUR	RNING ST	ABILITY	,					
Moment Calcula	ations							
Horizontal force moment arms: $y_{la} := (El_{fill} - El_{bot}) \div 2 + t_{base} = 6.00 \text{ ft}$								
$y_{lb} := 0.5 \cdot t_{base} = 1.00 \text{ft}$								
			,	$y_{13} := y_{1a} = 6.$	00 ft			
[Augusti:]	ICB GT 1	2-021	,	y _{ea} := 0.4(El _{fi}	I – El _{bot}) + t _{base}	= 5.20 ft		
[Augusti. (500 01 1	5 02]	,	y _{eb} := 0.4 · t _{ba}	se = 0.80 ft			
Summation	of vertica	al forces:		v _{sum} := w ₁	$+ W_2 + W_3 = 8.22$	2∙kip		
			M	$v_2 := V_{E_{12}} \cdot V_1$	- + VE16.V16	= 30).71·kip·ft	
Overturning	Moment	t:	U	$+ V_{Fa} \cdot y$	ea ^{+ V} Fh [.] Yeh		·	
				+ V _{la} .y	$a^{+}V_{Ib}\cdot y_{Ib} + V_{I.3}$. y _{I3}		
Resisting Me	oment:		M _r	$:= W_1 \cdot x_1 + V$	$V_{2} \cdot x_{2} + W_{3} \cdot x_{3} + F_{3}$	F T2 · YFFT2	$h = 42.94 \cdot \text{kip} \cdot \text{ft}$	
				 M _r -	- M _{0.2}		-	
Location of	resultant:		2	x _{bar.2} :=	$==1.49\mathrm{ft}$			
В								
Eccentricity	of the res	ultant:		$ecc_2 := \frac{-}{2} - x_1$	par.2 = 2.51 ft			
Overturning	check:	(Check _{ot.2} :=	"LC2 Overturn	ing Stability OK"	$\text{if } 0 \leq x_b$	ar.2 \leq B	
				"STOP - LC2 O	verturning Stability	y Unaccepta	able" otherwise	
			Check _{ot.2} = "Lo	C2 Overturning	Stability OK"		B = 8.00 ft	

	\frown	Client	Blue Lake Reserv	oir Compa	ny	Page	
	Project Upper Black Creek Reservoir		r	Pg. Rev.			
GEI	Ľ	Ву	C. Diebold	Chk.	M. Provencher	Арр.	C. Masching
	isultants	Date	11/27/2019	Date	11/27/2019	Date	11/27/2019
Project No.	180183	4	Document No.	N/A			
Subject	Design	of Spillway	· - Stilling Basin				
		2.) Loai	O CASE 2 (Extre	me Cond	ition) Cont'd		
LOAD CASE 2-Lo	ading Co	nditions & (Combinations:				
Unfactored Sh	ear At Ba	se of Wall:	V _{LC}	2(y) := V _F	$1(y) + V_{E}(y) + V_{I}(y)$	(y)	
Ultimate Shea	r At Base	of Wall:					
EM 1110-2	2-2104 St	rength Load	Combination: 1.0 El	H + 1.0 Hs +	1.0 EQ	[Table l	E-9, Load Case 1A]
		V _{uLC2.1}	$V_{F.1}(y) := V_{F.1}(y) + V_{F.1}(y)$	E() + VI()	()		
ASCE Load	Combina	ation 5: 1.2 ((D + F) + 1.0 E + 1.6 H	1			
		V _{uLC2.2}	$\underline{\mathbf{v}}_{2}(\mathbf{y}) := \left(V_{E}(\mathbf{y}) + V_{I} \right)$	(y)) + 1.6·	V _{F.1} (y)		
Controlling Ca	ise:	V _{ul C2} (y) := max(V _{ul C2.1}	(y) , V _{ul C2}	2(y))		
		V _{uLC2} (0ft) = 4.30∙kip	V	$_{\mu LC2.2}(Oft) = 4.30$	·kip	
				L			
Unfactored M	oment At	t Base of Wa	II: M _{LC}	₂₃ (y) := M	$F.1(y) + M_E(y) + N_E(y)$	∕И _I (у)	
Ultimate Mon	nent At B	ase of Wall:					
EM 1110-2	2-2014 St	rength Load	Combination: 1.0 El	H + 1.0 Hs +	1.0 (EQ)		
		M _{uLC2} .	$_{1}(y) := M_{F.1}(y) +$	M _E (y) + M	1 ₁ (y)		
ASCE Load	Combina	ation 5: 1.2 ((D + F) + 1.0 E + 1.6 H	ł			
		M _{uLC2} .	$_{2}(y) := (M_{E}(y) + N_{E}(y))$	$M_{ }(y) + 1.$	6∙M _{F.1} (y)		
Controlling Ca	ise:		M _{uLC2} (y) := ma	x(M _{uLC2.2}	L(y) , M _{uLC2.2} (y)		
			$M_{uLC2}(Oft) = 1$	5.50∙kip∙ft	M _{uLC2.2}	(Oft) = 15.5	50 ft∙kip

		Client	Blue Lake Re	eserv	oir Compa	ny	Page	
					k Reservoi	r	Pg. Rev.	
GEI	Ľ	Ву	C. Diebold		Chk.	M. Provencher	Арр.	C. Masching
	sultants	Date	11/27/2019		Date	11/27/2019	Date	11/27/2019
Project No.	180183	4	Document N	lo.	N/A			
Subject	Design	of Spillway	 Stilling Basi 	in				
		4.) Wa	ll Concrete	& R(ebar Stre	ngth Design		
Concrete Properti	ies:							
Specified Com	pressive	Strength of	Concrete:			$f'_{C} = 4500 ps$	i	
Specified Yield	Strength	of Reinford	em ent:			f _y := 60ksi		
Strength Reduc	tor for Tensi	on-Controlled S	Sectio	ns:	$\boldsymbol{\varphi_t}\coloneqq$ 0.90	(ACI 318-1	14, Table 2 1. 2. 1)	
Strength Reduction Factor for Shear:						$\varphi_{V} \coloneqq 0.75$	(ACI 318-1	14, Table 2 1.2.2)
Whitney Stress Block Factor:								
$\beta_1 := 0.85$ if $f'_c \le 4000$ psi						$\beta_1 = 0.83$	(ACI 318-14	4, Table 2 2.2.2.4.3)
0	.65 if	f' _C > 800	Opsi					
f' _c – 4000psi								
0	.85 – 0.	05.	other Opsi	rwise				
Horizontal Reinfo	rcement:	;						
Bar Size and Sp (Channel & Em	bacing: hbankme	ent)		Size	<mark>SH ^{:= 5}</mark>	sSH	<mark>:= 12in</mark>	
Reinforcement	: Clear Co	over:		clrS	:= 3in			
Diameter &	Cross-Se	ectional Area	a of Bars:	dbS	H := d _b _{Size}	= 0.63 · in SH	SH := A _{bsiz}	$= 0.31 \cdot \text{in}^2$
Area of Reir	nforceme	ent:		A _{sS}	H := AbSH	$\frac{12in}{sSH} = 0.31 \cdot in^2$	0.2	-2H
				m :=	= (t _{wall.T} -	^{- t} wall.B) ÷ H _{wall}	= -0.04	
Section Dep	oth at a H	leight 'y' fro	m the base:	t _{wa}	$(y) := t_{was}$	all.B $+ m \cdot y$		
Depth to Ce	entroid o	f Embankm	ent Reinf:	d _{SH}	(y) := t _{wal}	(y) – clrS – 0.5∙d	dbSH	
Reinforcem	ent Ratic):		ρ _{SH}	(y) := A _{sSI}	$H \div (b_w d_{SH}(y))$		

			Blue Lake Reser	voir Compa	ny	Page				
	\bigcirc	Project	Upper Black Cre	ek Reservoi	r	Pg. Rev.				
GEI	Ľ	Ву	C. Diebold	Chk.	M. Provencher	Арр.	C. Masching			
	isultants	Date	11/27/2019	Date	11/27/2019	Date	11/27/2019			
Project No.	180183	4	Document No.	No. N/A						
Subject	Design	of Spillway	 Stilling Basin 							
	4	.) Wall Co	oncrete & Reb	ar Strengt	n Design Cont'o	ł				
Vertical Reinforce	ement:									
Bar Size and Space	cing: (Em	bankment)	Siz	e _{SE} := 7	sSE :	<mark>= 12in</mark>				
Diameter & Cross-Sectional Area of Bars:				dbSE := $d_{b_{Size_{SE}}} = 0.88 \cdot in AbSE := A_{b_{Size_{SE}}} = 0.60 \cdot in^2$						
Area of Tensic	on Reinfo	rcement:	As	se := AbSE∙	$\frac{12in}{sSE} = 0.60 \cdot in^2$		-			
			m	$:= (t_{wall.T})^{-1}$	$t_{wall.B} \div H_{wall}$	= -0.04				
Section Depth	at a Heig	ght 'y' from t	he base: t _w	$t_{wall}(y) := t_{wall.B} + m \cdot y$						
Depth to Cent	roid of R	einforæm er	t: d _S	$d_{SE}(y) := t_{wall}(y) - clrS - dbSH - 0.5 \cdot dbSE$						
Reinforcemen	t Ratio:		ρ	$\rho_{SE}(\mathbf{y}) := A_{SSE} \div \left(b_{\mathbf{W}} d_{SE}(\mathbf{y})\right)$						
Bar Size and Space	cing: (Cha	innel)	Siz	e _{SC} := 7	sSC :	<mark>= 12in</mark>				
Diameter & Cross-Sectional Area of Bars:				$dbSC := d_{b_{Size_{SC}}} = 0.88 \cdot in AbSC := A_{b_{Size_{SC}}} = 0.60 \cdot in^{2}$						
Area of Tension Reinforcement:				$A_{sSC} := AbSC \cdot \frac{12in}{sSC} = 0.60 \cdot in^2$						
Depth to Centroid of Reinforcement:				$d_{SC}(y) := t_{wall}(y) - clrS - dbSH - 0.5 \cdot dbSC$						
Reinforcemen	t Ratio:		ρς	$\rho_{SC}(y) := A_{SSC} \div \left(b_{W} d_{SC}(y)\right)$						

	\frown	Client	Blue Lake Rese	rvoir Comp	any		Page		
	\bigcirc	Project	Upper Black Cr	eek Reserv	oir		Pg. Rev.		
		Ву	C. Diebold	Chk.	M. Provenc	cher	Арр.	C. Masching	
	isultants	Date	11/27/2019	Date	11/27/2019	9	Date	11/27/2019	
Project No.	180183	34	Document No.	N/A					
Subject	Design	of Spillwa	y - Stilling Basin						
			6.) Wall F	Rebar Des	sign				
Shrinkage and Te	mperatu	re Reinford	ement (S&T): ACI 3	-18-14 & US	ACE §2-8		``````````````````````````````````````	_	
Maximum Spa (ACI 318-14, §	acing: §7.7.6.2.1	1)	S	:= min 18iı	n,5·0.5(t _{wall} .	.B ^{+t} v	vall.T) , 12	$n = 12.00 \cdot in$	
Minimum Are <i>(ACI 318-14,</i> 1	ea of Stee Table 7.6	l Ratio: .1.1)							
			$\rho_{ACI} :=$	0.0020 if	f _y < 60ksi			= 0.0018	
$max[(0.0018 \cdot 60ksi \div f_y), 0.0014]$ otherwi								rwise	
Minimum Are	a of Stee	l Ratio:	ρ	JSACE ^{:=}	0.003 if L	CJ < 3	Oft	= 0.0030	
(USACE §2-8)					0.004 if 3	0ft ≤	$L_{CJ} \le 40 ft$		
					0.005 other	rwise			
Minimum Are	ea of Stee	l Ratio:	ρ	max := max	κ (ρ _{ACI} ,ρ _{USAC}	CE) = (0.0030		
Minimum Ste (USACE §2-8)	el Area:		A	s.min ^{:=} ρ _n	_{nax} ·b _w ·0.5·(t	wall.B	+ t _{wall.T}	$= 0.54 \cdot in^2$	
Shrinkage and Te	mperatu	re Reinford	ement (S&T): ACI 3	18-14 & US	ACE §2-8				
Vertical Reinforce	ement:								
Bar Size and S (Embankmen	pacing of t)	f Reinforcen	nent: Si	ze _{SE} = 7.00)	sSE	= 12.00∙i	n 2	
Diameter & Ci	ross-Secti	ional Area o	f Bars: dl	dbSE = $0.88 \cdot in$ AbSE = $0.60 \cdot in^2$					
Area of Reinfo	orcement	:	A	SE = 0.60	in ²				
Bar Size and S (Channel)	pacing of	f Reinforcen	nent: Si	ze _{SC} = 7.00	D	sSC	= 12.00·i	n	
Diameter & Ci	ross-Secti	ional Area o	f Bars: dl	DSC = 0.88	∙in	AbS	C = 0.60 ·	in ²	
Area of Reinfo	prcement	:	A	_{SSC} = 0.60	in ²				
			Г	A _{s.min}					
			A	sSC ^{+ A} sSE	= 0.45	1.0 the	refore okay		

		Client	Blue Lake Re	eserv	oir Comp	any		Page	
	\bigcirc	Project	Upper Black	Cree	k Reservo	oir		Pg. Rev.	
GEI	GEI Consultants By		C. Diebold		Chk.	M.	. Provencher	Арр.	C. Masching
	nsultants	Date	11/27/2019		Date	11	/27/2019	Date	11/27/2019
Project No.	180183	34	Document I	No.	N/A				
Subject	Design	of Spillwa	y - Stilling Bas	sin					
Shrinkage and Te	mneratu	ure Reinford	6.) Wall Re	ebar	Design	Con	t'd		
Horizontal Reinfo	nrement				0-14 Q 05/		12-0		
Wall is reinforced spacing of that a	l with two fter 20-fe	o sections. et.	The top 20-feet	from	the top of	the v	vall use reinforci	ngat half th	e
Bar Size and S (Embankmen	pacing of t & Chan	f Reinforcen nel)	nent:	Size	SH = 5.00	0	sS	SH = 12.00	·in
Diameter & C	ross-Secti	ional Area o	f Bars:	dbS	H = 0.63	۰in	A	bSH = 0.31	.∙in ²
Area of Reinfo	prcement	:		A _{sS}	H = 0.31·	∙in ²			
				A _{s.} 2 · A	$\frac{\min}{SSH} = 0.3$	87	< 1.0 therefore	okay	
Minimum Flexu	al Steel:	(ACI 318-14	4, §9.6.1.2)						
Vertical Reinforce	ment:								
A _{sV.min} := ∣	$\min\left(\frac{3\sqrt{3}}{\sqrt{2}}\right)$	$\frac{\sqrt{f'_{c} \cdot psi}}{f_{y}} \cdot b_{v}$	_v ∙min(d _{SE} (0f	t),d _S	2 C(0ft)),-	200∙ ¢	osi∙b _w ∙min(d _S	_E (0ft) , d _{SC}	$\frac{(0ft))}{2} = 0.56 \cdot in^2$
				A _{s\} A	$\frac{1}{\text{sSE}} = 0$).93	< 1.0 therefo	re okay	

		Client	Blue Lake Res	ervo	oir Compai	nγ	Page	
	\bigcirc	Project	Upper Black C	ree	k Reservoi	r	Pg. Rev.	
GEI	Ľ	Ву	C. Diebold		Chk.	M. Provencher	Арр.	C. Masching
	nsultants	Date	11/27/2019		Date	11/27/2019	Date	11/27/2019
Project No.	180183	4	Document No).	N/A			
Subject	Design	of Spillway	- Stilling Basin					
			6.) Wall Reb	oar	Design C	ont'd		
Ductility Check:	(ACI 318-	14, §7.3.3.1	& §9.3.3.1)					
Reinforcemen (Vertical)	t Ratio Pr	rovided : E	mbankment: p	^ρ pV	$E := \frac{A_{g}}{d_{SE}(C)}$	$\frac{dSE}{dft) \cdot b_W} = 0.0036$		
		C	Channel:	ρbΛ	$c \coloneqq \frac{A}{d_{SE}(c)}$	$\frac{\text{sSE}}{\text{oft}) \cdot b_{W}} = 0.0036$		
Reinforcement Ratio Provided: (Horizontal) $\rho_{pH} := \frac{A_{sSH}}{d_{sH}(0ft) \cdot b_w} = 0.0018$								
Depth to Neu (Vertical)	tral Axis:		(cVE cVC	$:= \frac{\rho_{pVE} \cdot f}{0.85}$ $:= \frac{\rho_{pVC} \cdot f}{0.85}$	$\frac{\mathbf{y} \cdot \mathbf{d}_{SE}(0ft)}{\mathbf{y} \cdot \mathbf{d}_{SC} \cdot \mathbf{f'_{C}}} = 0.95$ $\frac{\mathbf{y} \cdot \mathbf{d}_{SC}(0ft)}{\mathbf{y} \cdot \mathbf{d}_{SC}(0ft)} = 0.95$	∙in ⊷in	
Depth to Neu (Horizontal)	tral Axis:		(cH :	$=\frac{\rho_{\text{pH}}\cdot f_{\text{y}}}{0.85}$	$\frac{d_{SH}(0ft)}{\beta_1 \cdot f_c} = 0.49 \cdot i$	n	
Minimum Stra	ain in Ten	sion Steel at	Nominal Strengt	th:	[€] t.mi	in := 0.004		
Calculated Str Steel at Nomi (Vertical)	ain in Ten nal Streng	sion gth: ^E tV	$_{\rm E} := 0.003 \cdot \left(\frac{\rm d_S}{\rm d} \right)$	cVE	$\left(\frac{ft}{-}-1\right) =$	0.04 ε _{tVC} := 0.0	$1003 \cdot \left(\frac{d_{SC}}{cV}\right)$	$\frac{\text{Oft)}}{\text{C}} - 1 = 0.04$
(Horizontal)		€tH	$= 0.003 \cdot \left(\frac{d_{SF}}{d_{SF}} \right)$	H(Of cH	$\left(\frac{t}{2}-1\right)=0$	0.09		
$\frac{\varepsilon_{t}}{\varepsilon}$	tve	0.10	$\frac{\varepsilon_{t.min}}{\varepsilon_{tVC}} = 0.10$		$\frac{\varepsilon_{t.min}}{\varepsilon_{tH}} =$	= 0.05 < 1.0 th	erefore okay	/

		Client	Blue Lake Rese	ervoir Compa	ny		Page	
	\bigcirc	Project	Upper Black C	reek Reservo	ir		Pg. Rev.	
GEL	Ľ	Ву	C. Diebold	Chk.	M. Prov	encher	Арр.	C. Masching
	nsultants	Date	11/27/2019	Date	11/27/2	019	Date	11/27/2019
Project No.	180183	4	Document No). N/A			·	
Subject	Design	of Spillway	· - Stilling Basin					
		7.) Footi	ng Concrete	& Rebar Sti	rength D	Design		
Concrete Propert	ies:							
Specified Com	npressive	Strength of	Concrete:		f' _C =	= 4500 psi	i	
Specified Yield Strength of Reinforcement: $f_y := 60ksi$								
Strength Redu	iction Fac	tor for Tensi	on-Controlled See	ctions:	ϕ_t :	= 0.90	(ACI 318-1	14, Table 2 1. 2. 1)
Strength Redu Whitney Stres	tor for Shea actor:	ſ:		φ _v :	= 0.75	(ACI 318-1	14, Table 2 1. 2. 2)	
$\beta_1 := 0.85$ if $f'_c \le 4000$ psi $\beta_1 = 0.83$ (ACI 318-14, Table 22.2.2.							4, Table 2 2. 2. 2. 4. 3)	
(D.65 if	f' _c > 800	Opsi					
	0.85 – 0.	$.05 \cdot \frac{f'_{C} - 4}{1000}$	000psi otherw 0psi	vise				
Reinforcement P	arallel to	Wall:						
Heel Reinforceme	ent:							
Bar Size and S	pacing (T	öp):	S	Size _{HTP} := 7		sHTP := 3	<mark>12in</mark>	
Diameter &	& Cross-S	ectional Area	a of Bars: c	dbHTP := d _b si	= (76).88∙in		
			ŀ	Abhtp := A _b s	^{ize} HTP	0.60 · in ²		
Area of Rei	inforceme	ent:	ŀ	A _{sHTP} := AbH	$TP \cdot \frac{12in}{sHTP}$	= 0.60·iı	n ²	
Depth to C	entroid o	f Tension Re	inforcement: c	HTP := tbase	– 0.5 · db	HTP = 1.	96 ft	
Reinforcem	nent Ratio) :	f	O _{HTP} := A _{sHT}	$P \div (b_W d$	HTP) = 0	.00212	
Bar Size and Spacing (Bottom): Size _{HBP} := 7 SHBP := 12in								
Diameter & Cross-Sectional Area of Bars: $dbHBP := d_b = 0.88 \cdot in$ Size _{HBP}								
			ŀ	AbHBP := A _b	= ^{ize} HBP	0.60 · in ²		
Area of Rei	inforceme	ent:	ļ	A _{sHBP} := AbH	BP· sHBP	= 0.60∙i	n ²	

Clier		Client	Blue Lake Reservoir Company					Page				
	\bigcirc	Project	Upper Black Cree		ek Reservoir			Pg. Rev.				
GEI	Y	Ву	C. Diebold		Chk.	M. Prov	vencher	Арр.	C. Masching			
Consultants		Date	11/27/2019		Date	11/27/2	2019	Date	11/27/2019			
Project No.	180183	4	Document N	lo.	N/A							
Subject	Design	of Spillway										
	7.)	Footing C	Concrete & I	Reb	ar Streng	th Desi	ign Cont'	d				
Reinforcement P	arallel to	Wall:										
Toe Reinforceme	nt:											
Bar Size and S	pacing (To	op):		Size	<mark>ттр := 7</mark>		sTTP := 1	. <mark>2in</mark>				
Diameter &	& Cross-Se	ectional Area	a of Bars:	dbT	TP := d _b _{Siz}	= (²⁰ TTP).88∙in					
				AbT	TP := A _b _{Siz}	= 0 ^{ze} TTP	0.60 · in ²					
Area of Re	inforceme	ent:		$A_{sTTP} := AbTTP \cdot \frac{12in}{sTTP} = 0.60 \cdot in^2$								
Bar Size and Spacing (Bottom):					Size _{TBP} := 7 sTBP := 12in							
Diameter & Cross-Sectional Area of Bars:					dbTBP := $d_{b_{Size_{TBP}}} = 0.88 \cdot in$							
				AbT	BP := A _b si	= ^{ze} TBP	0.60∙in ²					
Area of Rei	inforceme	ent:		$A_{\text{sTBP}} := \text{AbTBP} \cdot \frac{12\text{in}}{\text{sTBP}}$								
Reinforcement P	erpendicu	ılar to Wall:										
Heel Reinforceme	ent:											
Bar Size and S	pacing (To	op):		Size	<mark>нт := 9</mark>		sHT := 12	2 <mark>in</mark>				
Reinforcem	nent Clear	r Cover:		clrHT := 3in								
Diameter &	& Cross-Se	ectional Area	a of Bars:	$dbHT := d_{b_{Size_{HT}}} = 1.13 \cdot in AbHT := A_{b_{Size_{HT}}} = 1.00 \cdot in^2$								
Area of Ter		$A_{SHT} := AbHT \cdot \frac{12in}{SHT} = 1.00 \cdot in^2$										
Section De	pth:			t _{foc}	ot ^{:= t} base	= 2.00 f	t					
Depth to C	$d_{HT} := t_{foot} - clrHT - (0.5 \cdot dbHT) = 1.70 ft$											
Reinforcem	nent Ratio):		ρнι	- := A _{sHT} ÷	- (b _w d _H -	(T) = 0.004	108				
						`	,					

Client Project		Blue Lake Re	eserv	oir Compai	Page							
		Project Upper Black		Cree	k Reservoi	r	Pg. Rev.					
GEL	GEI Consultants		C. Diebold		Chk.	M. Provencher	Арр.	C. Masching				
	isultants	Date	11/27/2019		Date	11/27/2019	Date	11/27/2019				
Project No.	180183	4	Document N	lo.	N/A							
Subject	Design	of Spillway	· - Stilling Basi	in								
	7.)	Footing C	Concrete &	Reba	ar Streng	th Design Cont'	d					
Reinforcement P	erpendicı	ılar to Wall:										
Heel Reinforcement:												
Bar Size and S	pacing (B	ottom):		Size	<mark>нв := 9</mark>	sHB := 12	2in					
Reinforcem	nent Clear	Cover:		clrH	<mark>B := 4in</mark>							
Diameter & Cross-Sectional Area of Bars:					IB := d _b Size	= 1.13∙in Ab⊦ HB	IB := A _b _{Siz}	$= 1.00 \cdot in^2$ ^e HB				
Area of Tension Reinforcement:					$A_{SHB} := AbHB \cdot \frac{12in}{sHB} = 1.00 \cdot in^2$							
Depth to Centroid of Compression Reinforcement:				$d_{HB} := t_{foot} - clrHB - 0.5 \cdot dbHB = 1.62 ft$								
Toe Reinforceme	nt:											
Bar Size and S	pacing (To	op):		Size _{TT} := 9 sTT := 12in								
Reinforcem	nent Clear	Cover:		clrTT := 3in								
Diameter 8	& Cross-Se	ectional Area	a of Bars:	dbTT := $d_{b_{Size_{TT}}} = 1.13 \cdot in AbTT := A_{b_{Size_{TT}}} = 1.00 \cdot in^2$								
Area of Ter	nsion Reir	nforcement:		$A_{sTT} := AbTT \cdot \frac{12in}{sTT} = 1.00 \cdot in^2$								
Depth to C	entroid o	f Tension Re	inforcement:	$d_{TT} := t_{foot} - clrTT - (0.5 \cdot dbTT) = 1.70 ft$								
Reinforcem	nent Ratio):		$\rho_{TT} := A_{STT} \div \left(b_{W} d_{TT}\right) = 0.00408$								
Bar Size and S	pacing (B	ottom):		Size _{TB} := 9 sTB := 12in								
Reinforcem	nent Clear	Cover:		clrTB := 4in								
Diameter 8	Diameter & Cross-Sectional Area of Bars:					$dbTB := d_{b_{Size_{TB}}} = 1.13 \cdot in AbTB := A_{b_{Size_{TB}}} = 1.00 \cdot in^{2}$						
Area of Ter	Area of Tension Reinforcement:					$A_{sTB} := AbTB \cdot \frac{12in}{sTB} = 1.00 \cdot in^2$						
Depth to C Reinforcen Reinforcen	entroid o nent: nent Ratic	f Compressi):	on	$\begin{split} &d_{TB}\coloneqqt_{foot}-clrTB-0.5\cdotdbTB=1.62ft\\ &\rho_{TB}\coloneqqA_{STB}\div\left(b_{W}d_{TB}\right)=0.00429 \end{split}$								

		Client	Blue Lake Rese	rvoir Comp	anv	Page				
	\bigcirc	Project	Upper Black Cro	eek Reservo	Pg. Rev.					
		By	C. Diebold	Chk.	M. Provencher	Арр.	C. Masching			
	nsultants	Date	11/27/2019	Date	11/27/2019	Date	11/27/2019			
Project No.	180183	34	Document No. N/A							
Subject	Design	of Spillwa	of Spillway - Stilling Basin							
			8.) Footing St	rength Ca	pacity					
Bearing Pressure	2:									
Maximum Ec	centricity	:	ec	cc := max(e	$\operatorname{cc}_1, \operatorname{ecc}_2 = 2.51 \mathrm{f}$	ť				
Unfactored Sh	iear:		V	$:= (W_1 + V_1)$	$V_2 + W_3 = 8.22 \cdot k$	ip				
Factored Shea [ASCE 7-10, 2 DL & pressure	ir: 3.2 Eqtn e of bulk r	n 2: materials fao	V _i	$V_{u} := 1.2 \cdot (W_{1} + W_{2}) + 1.6 \cdot W_{3} = 11.21 \cdot kip$						
Unfactored be	earing pre	essure at hee	el: q _i	$q_{heel.ED} := \frac{V}{B \cdot b_{W}} \cdot \left[1 - \frac{\left(6 \cdot ecc_{1}\right)}{B}\right] = 0.98 \cdot \frac{kip}{ft^{2}}$						
Unfactored be	earing pre	essure at toe	e: qt	$q_{toe.ED} := \frac{V}{B \cdot b_{W}} \cdot \left[1 + \frac{(6 \cdot ecc_{1})}{B}\right] = 1.08 \cdot \frac{kip}{ft^{2}}$						
Factored bear	ing pressi	ure at heel:	q	$q_{u.heel} := \frac{V_u}{B \cdot b_w} \cdot \left[1 - \frac{(6 \cdot ecc)}{B}\right] = -1.24 \cdot \frac{kip}{ft^2}$						
Factored bear	ing press	ure at toe:	q	$q_{u.toe} \coloneqq \frac{V_u}{B \cdot b_w} \cdot \left[1 + \frac{(6 \cdot ecc)}{B}\right] = 4.04 \cdot \frac{kip}{ft^2}$						
			q	u.max := m	ax(q _{u.heel} , q _{u.toe})	= 4.04 · ks	f			

		Client	Blue Lake Reserv	oir Compa	Page			
GEI Consultants		Project	Upper Black Cree	k Reservo	Pg. Rev.			
		Ву	C. Diebold	Chk. M. Provencher		Арр.	C. Masching	
		Date	11/27/2019	Date	11/27/2019	Date	11/27/2019	
Project No. 1801834		Document No.	N/A					
Subject	Design	of Spillway	 Stilling Basin 					

8.) Footing Strength Capacity Cont'd

Note: The heel slab is designed as a cantilever beam with downward pressure from soil + slab and upward pressure from bearing. The toe slab is designed as a cantilever beam with downward pressure from slab and upward pressure from bearing.

Net Forces on Footings:

Downward weight of heel slab: (unfactored)

Downward weight of toe slab: (unfactored)

Downward weight of fill over heel slab: (unfactored)

Downward weight of heel slab:

Downward weight of toe slab:

Downward weight of fill over heel slab:

$$\begin{split} & \mathsf{W}_{heel} \coloneqq \gamma_{conc} \cdot \mathsf{t}_{base} \cdot \mathsf{1ft} = 0.30 \cdot \frac{\mathsf{kip}}{\mathsf{ft}} \\ & \mathsf{W}_{toe} \coloneqq \gamma_{conc} \cdot \mathsf{t}_{base} \cdot \mathsf{1ft} = 0.30 \cdot \frac{\mathsf{kip}}{\mathsf{ft}} \\ & \mathsf{W}_{heelfill} \coloneqq \gamma_{f} \cdot \left(\mathsf{El}_{fill} - \mathsf{El}_{bot}\right) \cdot \mathsf{1ft} = 1.04 \cdot \frac{\mathsf{kip}}{\mathsf{ft}} \\ & \mathsf{W}_{u.heel} \coloneqq 1.2\mathsf{W}_{heel} = 0.36 \cdot \frac{\mathsf{kip}}{\mathsf{ft}} \\ & \mathsf{W}_{u.toe} \coloneqq 1.2\mathsf{W}_{toe} = 0.36 \cdot \frac{\mathsf{kip}}{\mathsf{ft}} \\ & \mathsf{W}_{u.heelfill} \coloneqq 1.6\mathsf{W}_{heelfill} = 1.66 \cdot \frac{\mathsf{kip}}{\mathsf{ft}} \end{split}$$

Net downward force on heel (Unfactored-Load Case 1):

$$p_{h.ED1} := W_{heel} + W_{heelfill} - b_{w} \cdot \left[q_{heel.ED} + 0.5 \cdot \left(\frac{q_{toe.ED} - q_{heel.ED}}{B} \right) \cdot \left(Heel - \frac{d_{HT}}{2} \right) \right] = 0.35 \cdot \frac{kip}{ft}$$

Net downward force on toe (Unfactored-Load Case 1):

$$p_{h.ED2} := W_{toe} - b_{w} \cdot \left[q_{toe.ED} + 0.5 \cdot \left(\frac{q_{heel.ED} - q_{toe.ED}}{B} \right) \cdot \left(Toe - \frac{d_{TT}}{2} \right) \right] = -0.76 \cdot \frac{kip}{ft}$$

Net downward force on heel (Factored-Max):

$$p_{h} := W_{u.heel} + W_{u.heelfill} - b_{w} \cdot \left[q_{u.heel} + 0.5 \cdot \left(\frac{q_{u.toe} - q_{u.heel}}{B} \right) \cdot \left(Heel - \frac{d_{HT}}{2} \right) \right] = 2.55 \cdot \frac{kip}{ft}$$

Net downward force on toe (Factored-Max):

$$p_{h2} := W_{u.toe} - b_w \cdot \left[q_{u.toe} + 0.5 \cdot \left(\frac{q_{u.heel} - q_{u.toe}}{B} \right) \cdot \left(Toe - \frac{d_{TT}}{2} \right) \right] = -2.81 \cdot \frac{kip}{ft}$$

Tension on Bottom

Tension on Bottom

		Client	Blue Lake R	eserv	oir Compa	ny	Page			
	(\bigcirc)	Project	Upper Black	< Cree	k Reservoi	ir	Pg. Rev.			
GEL		Ву	C. Diebold		Chk.	M. Provencher	Арр.	C. Masching		
	onsultants	Date	11/27/2019)	Date	11/27/2019	Date	11/27/2019		
Project No.	180183	34	Document	No.	N/A	•		·		
Subject	Design	of Spillwa	- Stilling Basin							
		8.)	Footing Str	engt	h Capacit	y Cont'd				
Environmental	Durability	Factor (ACI	350-06)							
Note: Required Per section 21 include earthq	l for Tensio .2.1.8.a, the uake loads	n Controlle e environm :. The dural	d structure to e ental durability pility factor is a	encour factor pplied	rage durabi r need not b ' to service la	lity and liquid-tigh e applied to load c oads only.	tness. combinations	that		
Permissible	Tensile Stre	ess:								
Shear str	ess in norn	nal conditio	ns: 9.2.6.4	f _{s.ss}	<mark>; := 24000</mark>	psi S _{d.ss} := m	$ax\left(\frac{f_{y}}{f_{s.ss}}, 1\right)$	$\left(0\right) = 2.50$		
Flexure in - One w	n normal co ay element	onditions: R , bar ar 6" s	10.6.4 bacing	fs.f	<mark>:= 34000</mark> p:	si S _{d.f} := ma	$x\left(\frac{f_{y}}{f_{s.f}}, 1.0\right)$	= 1.76		
EDF Shear:				V _{he}	el.FD := So	Lss p _{h.ED1} · Hee	el = 2.61 · kij	0		
				V _{to}	e.ED ^{:=} Sd.	ss p _{h.ED2} · Toe	= 6.64 · kip			
EDF Moment:							.2	.		
				$M_{\text{heel},\text{ED}} := S_{\text{d},\text{f}} p_{\text{h},\text{ED1}} \cdot \text{Heel} \div 2 = 2.76 \cdot \text{kip} \cdot \text{ft}$						
				M _{to}	be.ED := Sd	l.f ^p h.ED2 ·Toe ²	÷ 2 = 8.21	∙kip∙ft		
Ultimate Shear	-Cantilever	ed Section:		$V_{u,heel} := p_h \cdot Heel = 7.66 \cdot kip$						
				V _{u.1}	$toe := p_h $	$2 \cdot \text{Toe} = 9.83 \cdot \text{ki}$	р			
Ultimate Mom	ent-Cantile	vered Sectio	n:	Mu	heel := p	$ h \cdot \text{Heel}^2 \div 2 = 1$.1.49∙kip∙ft			
				Mu	.toe := p _h	$2 \cdot \text{Toe}^2 \div 2 = 1$	7.20∙kip∙ft			

		Client	Blue Lake Reservoir Company			Page			
	Project		Upper Black Cree	k Reservoi	ir	Pg. Rev.			
GEI	I I I I I I I I I I I I I I I I I I I	Ву	C. Diebold	Chk.	M. Provencher	Арр.	C. Masching		
	nsultants	Date	11/27/2019	Date	11/27/2019	Date	11/27/2019		
Project No.	180183	4	Document No.	N/A					
Subject	Design	of Spillwa	y - Stilling Basin						
		8.)	Footing Strengt	h Capacit	ty Cont'd				
Footing Capacity	(1-foot E	Design Strip) - SHEAR CAPACITY:						
One Way She (<i>ACI 318-14,</i> ;	ar Strengt §22.5.5.1	h:)	V _c :	$= 2\sqrt{f'_{C} \cdot p}$	$\overline{si} \cdot b_{W} \cdot d_{HT} = 32.9$	90∙kip			
Design Shear	Capacity:		φV	$h := \phi_{V} \cdot (V_{0})$	c) = 24.68 · kip				
			V _{u.l}	heel = 7.66	5∙kip V	heel.ED = 2	2.61·kip		
Demand Capacity Ratio-Heel:			$DCR_{H} := \frac{max(V_{u.H})}{max(V_{u.H})}$	neel ^{, V} heel	(ED) = 0.31	< 1.0 therefore section is okay for shear strength			
			V _{u.1}	toe = 9.83	· kip V	toe.ED $=$ 6.	64∙kip		
Demand Capa	acity Ratic	o-Toe:	$DCR_{F,T} \coloneqq \frac{max(V_{u})}{u}$.toe ^{, V} toe. φV _n	< 1.0 therefore section is okay for shear strength				
Footing Capacity	(1-foot D	Design Strip) - MOMENT CAPACI	<u>TY:</u>					
Tension Face N (ACI 318-14)	Nominal S	Strength:	$M_{n} \coloneqq \rho_{HT} \cdot f_{y} \cdot b_{w} \cdot d_{HT}^{2} \cdot \left(1 - 0.59 \cdot \rho_{HT} \cdot \frac{f_{y}}{f_{c}'}\right)$						
Design Mome	ent Capaci	ity:	φM						
			M _u	.heel ⁼ 11.	49 ft∙kip	M _{heel.ED} =	= 2.76 ft∙kip		
Demand Capa	acity Ratio	o-Heel:	$DCR_{H} := \frac{max(M_{u})}{max(M_{u})}$	heel ^{, M} hee	$\frac{(el.ED)}{2} = 0.13$	< 1.0 therefor the start	ore section is ural strength		
			M _u	.toe = 17.2	20 ft∙kip	M _{toe.ED} =	8.21 ft∙kip		
Demand Capa	acity Ratio	o-Toe:	$DCR_T \coloneqq \frac{max(M_u,M_u)}{M_u}$	toe ^{, M} toe. ^{φM} n	$\frac{ED}{2} = 0.19$	< 1.0 therefor the start	fore section is ural strength		

		Client	Blue Lake Reservoir Company					Page			
		Project	Upper Black	Cree	k Reservo	oir	Pg. Rev.				
GEI	$\underline{\mathcal{S}}$	Ву	C. Diebold		Chk.	M. Pro	vencher	Арр.	C. Masching		
Con	sultants	Date	11/27/2019		Date	11/27/	2019	Date	11/27/2019		
Project No.	180183	4	Document N	No.	N/A						
Subject	Design	of Spillwa	y - Stilling Bas	in							
9.) Footing Rebar Design											
Shrinkage and Temperature Reinforcement (S&T): ACI 318-14 & USACE §2-8											
Maximum Spacing: $s := \min[18in, 5 \cdot 0.5(t_{wall.B} + t_{wall.T}), 12in] = 12.00 \cdot in$ (ACI 318-14, §7.7.6.2.1)											
Minimum Are <i>(ACI 318-14, 1</i>	a of Stee Table 7.6.	l Ratio: .1.1)									
			^ρ ACl :=	= 0	.0020 if	$f_y < 60$	lksi		= 0.0018		
				n	nax[(0.00	18 · 60ksi	f_{y} , 0.00	014] othe	rwise		
Minimum Are	a of Stee	l Ratio:		$ ho_{\text{USACE}}$:= 0.003 if L _{CJ} < 30ft = 0.0030							
(USACE §2-8)				0.004 if $30ft \le L_{C1} \le 40ft$							
				0.005 otherwise							
Minimum Are	a of Stee	l Ratio:		$\rho_{max} := max(\rho_{ACI}, \rho_{USACE}) = 0.0030$							
Minimum Stee	el Area:			Α,	$A_{s,min,toe} := \rho_{max} \cdot b_w \cdot t_{base} = 0.86 \cdot in^2$						
(USACE §2-8)				A $a_{1} = 0$ $a_{2} = 0$ $b_{1} = 0$ $b_{2} = 0.86 \sin^{2}$							
				As.r	nin.heel ·	^{– P} max [–]	w [°] base	- 0.80*111			
Reinforcement pe	erpendicu	ılar to Wall	:								
Bar Size and	d Spacing	g of Reinford	cement:	Size	rt = 9.00)	sTT = 1.0	00 ft			
				Size	тв = 9.00)	sTB = 1.00 ft				
Area of Rei	nforceme	ent:		Α _{sT}							
			$\frac{A_{s.min.toe}}{A_{sTT} + A_{sTB}} = 0.43$ < 1.0 therefore okay								
Bar Size and	d Spacing	g of Reinford	cement:	Size	HT = 9.00	D	sHT = 1.	00 ft			
				Size	HB = 9.00	D	sHB = 1.	00 ft			
Area of Rei	nforceme	ent:		A _{sH}	T = 1.00·	in ²	A _{sHB} = 1	1.00 · in ²			
				A _s A _{st}	.min.heel IT ^{+ A} sHB	- = 0.43	< 1.0 the	erefore okay			
		Client	Blue Lake Reservoir Company				Page				
--	---------------------	---	--	--	---	--	---------------------	------------------------	-------------		
	\bigcirc	Project	Upper Black	Cree	k Reservoi	r		Pg. Rev.			
GEI	I solution	Ву	C. Diebold		Chk.	M. Prov	encher	Арр.	C. Masching		
	sultants	Date	11/27/2019		Date	11/27/2	019	Date	11/27/2019		
Project No.	180183	4	Document N	Document No. N/A							
Subject	Design	of Spillway	 Stilling Basi 	n							
9.) Footing Rebar Design Cont'd											
Reinforcement po	arallel to	Wall:									
Toe:											
Bar Size and	d Spacing	of Reinforc	ement:	Size	TTP = 7.00		sTTP = 1	.00 ft			
				Size	TBP = 7.00)	sTBP = 1	.00 ft			
Area of Rei	nforceme	ent:		A _{sT}	TP = 0.60·	n ²	A _{stbp} =	0.60 · in ²			
				A	s.min.toe	- = 0.72	k 1.0 th	erefore okay	1		
				A_{ST}	TP ^{+ A} stbf) = 0.72	1.0 0		<u></u>		
Heel:											
Bar Size and	d Spacing	of Reinforc	ement:	Size	HTP = 7.00)	sHTP = 1	.00 ft			
				Size	HBP = 7.00)	sHBP = 1	00 ft			
Area of Rei	nforceme	ent:		A _{sH}	TP = 0.60∙	in ²	A _{sHBP} =	0.60 · in ²			
				$\frac{A_{s.min.heel}}{A_{sHTP} + A_{sHBP}} = 0.72$ < 1.0 therefore okay							
Minimum Flexur	al Steel: (ACI 318-14	, §9.6.1.2)								
Perpendicular	to Wall										
Heel: A _{s.}	min ^{:=} 1	$\min\left(\frac{3\sqrt{f'_{0}}}{f_{y}}\right)$	<u>c∙psi</u> , ,	, <u></u>	D∙psi∙b _w ∙d ^f y	$\left(\frac{\text{HT}}{\text{HT}}\right) = 0$.82∙in ²				
Toe: A _{S.}	min ^{:=} 1	$\min\left(\frac{3\sqrt{f_{y}}}{f_{y}}\right)$	<mark>c · psi</mark> · b _w · d _{TB}	, <u></u>)∙psi∙b _w ∙d f _y	$\left(\frac{TB}{TB}\right) = 0.7$	78∙in ²				
$\frac{A_{s.min}}{A_{sHT}} = 0.78 \qquad \qquad \frac{A_{s.min}}{A_{sTB}} = 0.78 \qquad \qquad \boxed{1.0 \text{ therefore okay}}$											

	Client	Blue Lake Reserv	Blue Lake Reservoir Company				
	Project	Upper Black Cree	Upper Black Creek Reservoir		Pg. Rev.		
GEI	Ву	C. Diebold	Chk.	M. Provencher	Арр.	C. Masching	
ULI Consultant	⁵ Date	11/27/2019	Date	11/27/2019	Date	11/27/2019	
Project No. 1801	334	Document No.	N/A				
Subject Desig	n of Spillwa	ay - Stilling Basin					
9.) Footing Rebar Design Cont'd							
Ductility Check: (ACI 31	8-14, §7.3.3.	.1 & §9.3.3.1)					
Minimum Strain in T	ension Steel a	at Nominal Strength:	[€] t.r	nin := 0.004			
Perpendicular to Wa	//						
Reinforcement Ra	tio Provided:	:	AbHT				
		^ρ p	≔ d _{HT} ·b,	— = 0.0041 w			
Depth to Neutral	Axis:		$\rho_p \cdot f_y \cdot d$	HT 1 FR im			
		С :=	$\overline{0.85 \cdot \beta_1}$	$\frac{1.58 \cdot \text{ln}}{\text{c}}$			
Calculated Strain	n Tension	e .	- 0.003.	$\left[\frac{d_{HT}}{d_{HT}}-1\right] = 0.04$			
Steel at Norminal	Suengui.	ct ·	= 0.003 ($\left(\begin{array}{c} c \\ c \end{array}\right) = 0.04$			
		ε _{t.ı}	$\frac{\min}{1} = 0.1$	1 < 1.0 The	refore Okav		
		ε	t		liciore oraș]	
1							

		Client	Blue Lake Reservoir Company			Page				
	\bigcirc	Project	Upper Black Cree	k Reservoi	r	Pg. Rev.				
GFI	Y	Ву	C. Diebold	Chk.	M. Provencher	Арр.	C. Masching			
	nsultants	Date	11/26/2019	Date	11/26/2019	Date	11/26/2019			
Project No.	oject No. 1801834 Document No. N			N/A						
Subject	Subject Design of Spillway - Stilling Basin									
Spillway Slab (Stilling Basin) - Upper Black Creek Reservoir <u>Problem statement</u> : Check shear and moment capacity across the slab. Assume the slab is pinned between two longitudinal joints spaced at 25 ft apart.										
References										
-ACI 318-1 -EM 1110-2	-ACI 318-14, Building Code Requirements for Structural Concrete -EM 1110-2-2104, Strength Design for Reinforced Concrete Hydraulic Structures									
Linit Weigh	t of Wate	r. ~ ·=	= 62 Ancf	Unit We	ight of Concrete [.]	\sim \cdot = 1	50ncf			
onit weigh			02.400			conc ·- ·	5000			
Specificied	Specificied Compressive Strength of Concrete:				500psi					
Specified Yi	eld Stren	ght of Reinfo	præment:	f _y := 6	Oksi					
Strength Re	duction F	actor for Sh	ear:	$\phi_{V} := 0$	$\Phi_{\rm V} := 0.75$ ACI 318-14, §21.2.1					
Strength Re	duction F	actor of Mo	ment:	¢ _m ≔	0.9	ACI 318-14, §21.2.1				
Load Factor	for Stren	gth Design:		U ₁ := 2	1.6	EM 1110-2-2104, Table E-9, Load Case				
Dimensions &	Reinford	ement			1B					
Elevation o	f PWS du	ring IDF:		EL _{PWS}	EL _{PWS} := 8734ft					
Top of Slab	Elevation	:		TOS :=	<mark>8724ft</mark>					
Thickness c	of Slab			t _{slab} :=	<mark>= 24in</mark>					
Assume 1'	wide strip	o of slab:		b _w :=	b _w := 12in					
Maximum	distance l	oetween con	trol joints:	L _{CJ} :=	L _{CJ} := 31ft					
Distance ac	ross slab:			Dist :=	5ft					
Concrete Co	over:			Cov :=	<mark>4in</mark>					
Assume Re	Assume Rebar Spacing: sp := 12in									
Assume a E	Bar Size:		Barsize := 7	Bar := d _b Ba	$= 0.88 \cdot in$	$A_b := A_b_{Ba}$	$= 0.60 \cdot in^2$			

		Client	lient Blue Lake Reservoir Company			Page	
))	Project	Upper Black Cree	k Reservoi	r	Pg. Rev.	
GFI		Ву	C. Diebold	Chk.	M. Provencher	Арр.	C. Masching
	sultants	Date	11/26/2019	Date	11/26/2019	Date	11/26/2019
Project No.	180183	4	Document No.	N/A			
Subject	Subject Design of Spillway - Stilling Basin						
Define Range \	Variable '	'x" and "Ste	p Size" of Range va	iable			
Vector Step S	Vector Step Size: $d_t := 0.01 ft$						
Define x:		$x := x_{\min} \cdot (x_{\min} + d_t) \cdot x_{\max}$					
Define Shear L	oading fo	or each Cone	dition along Beam a	s a function	of x		
From x _{min} to	o x _a :	v ₁ (x)	$:= (p_{max} - w_d) \cdot x$				
From x _a to x	к _b :	v ₂ (x)	$:= \left(p_{max} - w_d \right) \cdot x$	- R ₁			
From x _b to x	(_{max} :	v ₃ (x)	$:= \left(p_{max} - w_d \right) \cdot x$	$-R_{1} - R_{2}$			
Conditiona	al Shear E	Eqn:	$V(x) := v_1(x)$	if x _{min} :	$\leq x \leq x_a$		
			v ₂ (x)	if x _a < x	$x \le x_b$		
			v ₃ (x)	if x _b < x	i ≤ x _{max}		
			0 oth	erwise			
		10	Shear Dia	gram			
~		10	1 1	I			
(kips	v(x)	5-			-		
ar, <	kip	0			_		
- She		- 5 -			_		
	_	10	_II	1			
		0	1 2	3	4 5		
			x Distance, x	(feet)			
Check for M	lax Shear	Ch	$eck1 := V(x_a + d_t)$	$= -1.12 \cdot k$	ip		
		Ch	$eck2 := V(x_a - d_t)$	= 0.00 · kip)		
		Ch	eck3 := $V(x_a + Dis$	$t - d_t = 1$.12∙kip		
		Ch	$eck4 := V(x_a + Dis$	$t + d_t = 0$.00∙kip		
		v _{rr}	nax := max(Check1	, Check2 ,	Check3 , Check4)		
		۷ _n	$hax = 1.12 \cdot kip$				

		Client	Blue Lake Reservoir Company			Page		
	\bigcirc	Project	Upper Black Cree	k Reservoi	r	Pg. Rev.		
GEI	Y	Ву	C. Diebold	Chk.	M. Provencher	Арр.	C. Masching	
	isultants	Date	11/26/2019	Date	11/26/2019	Date	11/26/2019	
Project No.	180183	4	Document No. N/A					
Subject	Design	of Spillway	- Stilling Basin					
Define Mome	Define Moment for each Condition along Beam as a function of x							
From x _{min} to	From x_{min} to x_a : $m_1(x) := (p_{max} - w_d) \cdot x \cdot \frac{1}{2}x$							
From x _a to a	x _b :	m ₂ (x	$) := (p_{max} - w_d)$	$x \cdot \frac{1}{2}x - R_1$	$(x - x_a)$			
From x _b to	x _{max} :	m ₃ (x	$) := (p_{max} - w_d)$	$x \cdot \frac{1}{2}x - R_1$	$(x - x_a) - R_2 \cdot (x - x_a)$	- x _a – Dist)		
Calculate Max	Momen	t and Plot N	Ioment Diagram					
Conditional M	oment Ec	qn: M(x)	:= m ₁ (x) if >	$x_{\min} \le x \le x$	x _a			
			m ₂ (x) if >	x _a < x ≤ x _h	1			
			$m_{2}(x)$ if x	х к < х < х.				
				•D • • - •r	nax			
			0 otherwise	2				
		40	Moment Dia	gram				
	ť)	40	1 1	1 1				
	(kip-f	20-			-			
	ivi ki	$\frac{\lambda}{2}$ 0						
	Mon 	- 20			-			
		- 40						
		0	1 2 X	3 4	5			
			Distance, x (feet)				
	Check1 := $M\left(\frac{\text{Dist}}{2}\right) = -1.40 \text{ft} \cdot \text{kip}$							
	$M_{max} := Check1 = 1.40 ft \cdot kip$							

		Client	Blue Lake Reservoir Company		ny	Page	
	\bigcirc	Project	Upper Black Cree	k Reservo	r	Pg. Rev.	
GEI	$\underline{\mathbb{S}}$	Ву	C. Diebold	Chk.	M. Provencher	Арр.	C. Masching
	nsultants	Date	11/26/2019	Date	11/26/2019	Date	11/26/2019
Project No.	180183	34	Document No.	N/A			•
Subject	Design	of Spillway	/ - Stilling Basin				
	ed Load:						
Environmenta	Durabili	ty Factor (AC	LI 350-06):		and line in tickets on	_	
Per section that include	21.2.1.8 e earthqu	a, the enviro ake loads.	structure to encourage onmental durability f	actor need r	and liquid-tightness not be applied to loa	s. Id combinat	ions
Specified Yield Strength of Reinforcement: $f_y = 60 \cdot ksi$							
Permissible	e Tensile S	tress:					
Shear stress in normal conditions: 9.2.6.4 $f_{s.ss} := 24000 psi$							
				S _{d.ss} := r	$nax\left(\frac{f_{y}}{f_{s.ss}}, 1.0\right) =$	2.50	
Flexure i - One w	n norma ⁄ay eleme	l conditions: ent, bar ar 12	R10.6.4 2" spacing	^f s.f.12 ^{:=}	21000psi	\ \	
				S _{d.f.12} :=	$\max\left(\frac{f_y}{f_{s.f.12}}, 1.0\right)$) = 2.86	
Check Shear C	apacity A	cross Slab					
Factored sh	ear load:		$V_u := max(U_1 \cdot V_1)$	max ^{, S} d.ss	$\cdot V_{max} = 2.79 \cdot kip$	0	
Allowable	Shear Loa	d:	$V_{all} := \left(\varphi_{V} \cdot 2 \cdot \sqrt{2} \right)$	f' _c ·psi·b _w ·	$d_{rebar} = 22.6 \text{ft} \cdot$	$\frac{\text{kip}}{\text{ft}} ACI 3.$	18-14, §22.5.5.1
Find the De	emand/Ca	apacity Ratic):	DC _{vrat}	$io := \frac{V_u}{V_{all}} = 0.12$]	
	ch	eck := "S	Shear Capacity > De	emand, She	ar Design Okay"	if V _u < V	'all
		"5	Shear Capacity < De	emand, Rec	esign" if V _u >	v _{all}	
		ch	eck = "Shear Capa	city > Dem	and, Shear Design	Okay"	

		Client	Blue Lake Reserv	oir Compa	Page			
K	\bigcirc	Project	Upper Black Creek Reservoir			Pg. Rev.		
	$\underline{\mathcal{D}}$	Ву	C. Diebold	Chk.	M. Provencher	Арр.	C. Masching	
	sultants	Date	11/26/2019	Date	11/26/2019	Date	11/26/2019	
Project No.	180183		Document No.	Document No. N/A				
Subject	Design	of Spillway	/ - Stilling Basin					
Chaola Managa			.					
Factored Moment: $M_u := max(U_1 \cdot M_{max}, S_{d.f.12} \cdot M_{max}) = 4.01 \cdot kip \cdot ft$								
Tension Rei	nforceme	ent Area:	$A_s := A_b \div sp \cdot b_v$	v = 0.60∙ir	12			
Find the eq Rectangular Block:	Find the equivalent Rectangular Compression Block: $a_{c} := \frac{A_{s} \cdot f_{y}}{(0.85 \cdot f'_{c} \cdot b_{w})} = 0.78 \cdot in$							
Allowable	Allowable Moment: $M_{all} := \phi_m \cdot A_s \cdot f_y \cdot \left(d_{rebar} - \frac{a_c}{2} \right) = 49.4 \cdot ft \cdot kip$							
Find the Demand/Capacity Ratio: $DC_{mratio} := \frac{M_{u}}{M_{all}} = 0.08$								
	ch	eck := "I	-lexural Capacity >	Demand, N	/Ioment Design Ok	ay" if №	1 _u < M _{all}	
		"	Flexural Capacity <	Demand, R	edesign" if M _U	$_{\rm H}$ > M _{all}		
		ch	eck = "Flexural Ca	pacity > De	mand, Moment De	esign Okay'		
l								

Client Blue Lake Reserve		ervoir Company			Page						
	\bigcirc	Project	Upper Black	Cree	k Reserv	oir		Pg. Rev.			
GEI	Y	Ву	C. Diebold		Chk.	M. Pro	ovencher	Арр.	C. Masching		
	isultants	Date	11/26/2019		Date	11/26	/2019	Date	11/26/2019		
Project No.	180183	Document			No. N/A						
Subject	Design	of Spillway	· - Stilling Bas ·	in							
Check Shearing o	f Dowels	Between V	Vall and Slab:								
Compression Fa (ACI 318-11, §1	ce Shear : 1.4)	Strength:	Note: Where Additional de	shear esign 1	reinforce will be con	ment perp iducted w	vendicular t ith future su	o axis of mei bmittal.	mber is used.		
			$V_{C} := \frac{A_{s}}{\cdots}$	∙f _y ∙d sp	rebar =	56.06 · kiç)				
Design Shear Capacity: $\varphi V_n := \varphi_v \cdot V_C = 42.05 \cdot kip$											
Demand Capacity Ratio: $DCR_V := \frac{V_u}{\varphi V_n} = 0.07$ k 1.0 therefore okay											
Shrinkage and Te	mperatur	e Reinforce	ment (S&T): A	CI 318	-11, §7.1	2 & USAC	E §2-8				
Maximum Spacing: (ACI 318-11, §7.12.2.2)				$s := min[18in, 5.0.5(t_{slab}), 12in] = 12.00 \cdot in$							
Minimum Are (ACI §7.12.2.1	Minimum Area of Steel Ratio: (ACI §7.12.2.1)				$\rho_{ACI} := 0.0018$						
Minimum Are	a of Steel	Ratio:		$\rho_{USACE} := 0.003$ if $L_{CJ} < 30$ ft $= 0.0040$					= 0.0040		
(USACE §2-8)				0.004 if 30ft ≤				$L_{CJ} \le 40 ft$			
						0.005	6				
Minimum Are	a of Steel	Ratio:		$\rho_{\text{max}} := \max(\rho_{\text{ACI}}, \rho_{\text{USACE}}) = 0.0040$							
Minimum Stee (USACE §2-8)	el Area:			$A_{s.min} := \rho_{max} \cdot b_w \cdot t_{slab} = 1.15 \cdot in^2$							
Bar Size and Sp	bacing of	Reinforcem	ent:	Barsize = 7 $sp = 12.00 \cdot in$							
Area of Reinfo	rcement:			$A_{s} := A_{b} \cdot \frac{12in}{s} = 0.60 \cdot in^{2}$							
				A _{s.r} 2.7	$\frac{nin}{A_s} = 0.9$	96	< 1.0 there	fore okay			

		Client	Blue Lake Reserv	oir Compa	Page				
		Project	Upper Black Cree	ek Reservoi	Pg. Rev.				
GFI	Ľ	Ву	M. Provencher	Chk.	C. Diebold	Арр.	C. Masching		
ULI Consultants		Date	04/24/2020	Date	04/24/2020	Date	04/24/2020		
Project No.	1801834		Document No.	N/A					
Subject	Design of Spillway - Stilling Basin								

Spillway Stilling Basin Key - Upper Black Creek Reservoir

Codes References

- 1) American Concrete Institute (ACI). Building Code Requirements for Structural Concrete (ACI 318-14), (2014).
- 2) ACI (American Concrete Institute), 2006. Code Requirements for Environmental Engineering Concrete Structures (ACI 350-06).
- *3)* U.S. Army Corps of Engineers (USACE). 2003 "Strength Design for Reinforced-Concrete Hydraulic Structures." EM 1110-2-2104-Appendix E: Table E-1.

Structural Design

The following design calculates the design strength for the Upper Black Creek Reservoir Spillway Stilling Basin Key necessary to develop the full passive resistance at the base of the slab. The key is designed as a cantilevered beam with soil loads. The strength/capacity checks are performed using the one foot strip method and code requirements in ACI 318-14, ACI 350-06 and USACE EM 1110-2-2104.

Design Loads (Forces)

The applied loads and load cases for the key are calculated using guidelines from the documents referenced above. USACE and ACI strength/service load combinations are applied and the resulting combinations are shown below.

Key Reinforcement Summary

Vertical Reinforcement	Tension Face = #4 at 6" O.C.			
Horizontal Reinforcement	Channel = #4 at 6" O.C.			
Key Design Properties:				
Key Height:	H _{key} := 3ft			
Bottom Key Thickness: Minimum	t _{key.B} := 1ft + 0in			
Top Key Thickness: Minimum	t _{key.T} := 1ft + 0in			
Angle of Chute Indination:	$\theta := 26.57 \text{deg}$			
Slab thickness:	$t_{slab} := 1.0 ft \div cos(\theta) = 1.12 ft$			
Key depth below slab:	d _{key} := 3.0ft			
Design Width:	b _w := 12in			
Unit weight of concrete:	$\gamma_{conc} \coloneqq 150 \cdot pcf$			
Distance between Control Joints:	L _{CJ} := 30ft			
Specified Compressive Strength of Concrete:	f' _c := 4500psi			

	\sim	Client	Blue Lake Reserv	oir Compa	Page				
		Project	Upper Black Cree	ek Reservoi	Pg. Rev.				
GFI	Ľ	Ву	M. Provencher	Chk.	C. Diebold	Арр.	C. Masching		
ULI Consultants		Date	04/24/2020	Date	04/24/2020	Date	04/24/2020		
Project No.	1801834		Document No.	N/A					
Subject	Design of Spillway - Stilling Basin								

Fill Properties:

Fill Properties

Angle of internal friction:	φ _f := 30·deg
Unit weight:	γ _f := 130pcf
Active earth pressure coefficient:	$k_a \coloneqq tan \Bigl(45 deg - 0.5 \cdot \varphi_f \Bigr)^2 = 0.33$
Passive earth pressure coefficient:	$k_p := tan \left(45 deg + 0.5 \cdot \varphi_f\right)^2 = 3.00$

Applied Loads: Static

Passive Earth Pressure

Active Pressure on the upstream side of key is conservatively ignored.

Shear at Top of Key: $F := k_p \cdot \left[\gamma_{conc} \cdot t_{slab} \cdot H_{key} + 0.5 \cdot \gamma_f \cdot \left(H_{key} \right)^2 \right] \cdot b_w = 3.26 \cdot kip$

Shear as at a Distance 'y' From Base of Key:

$$V_{F}(y) := \begin{bmatrix} F - k_{p} \cdot \left[\gamma_{conc} \cdot t_{slab} \cdot \left(H_{key} - y \right) + 0.5 \cdot \gamma_{f} \cdot \left(H_{key} - y \right)^{2} \right] \cdot b_{w} & \text{if } y \leq H_{key} \\ 0 & \text{otherwise} \end{bmatrix}$$

 $V_F(H_{key}) = 3.26 \cdot kip$ $V_F(Oft) = 0.00 \cdot kip$

Moment at Top of Key:

$$M_{F} := \left(k_{p} - k_{a}\right) \cdot \left[\gamma_{conc} \cdot t_{slab} \cdot 0.5 \left(H_{key}\right)^{2} + 0.5 \cdot \gamma_{f} \cdot \frac{2}{3} \left(H_{key}\right)^{3}\right] \cdot b_{w} = 5.13 \cdot kip \cdot ft$$

Moment as at a Distance 'y' From Base of Key:

$$\begin{split} \mathsf{M}_{\mathsf{F}}(\mathsf{y}) &\coloneqq \left[\begin{pmatrix} \mathsf{k}_{\mathsf{p}} - \mathsf{k}_{\mathsf{a}} \end{pmatrix} \cdot \left[\gamma_{\mathsf{conc}} \cdot \mathsf{t}_{\mathsf{slab}} \cdot 0.5 \left(\mathsf{y} \right)^2 + 0.5 \cdot \gamma_{\mathsf{f}} \cdot \frac{2}{3} \left(\mathsf{y} \right)^3 \right] \cdot \mathsf{b}_{\mathsf{w}} & \text{if } \mathsf{y} \leq \mathsf{H}_{\mathsf{key}} \\ 0 & \text{otherwise} \\ \mathsf{M}_{\mathsf{F}} \Big(\mathsf{H}_{\mathsf{key}} \Big) &= 5.13 \cdot \mathsf{kip} \cdot \mathsf{ft} & \mathsf{M}_{\mathsf{F}}(\mathsf{Oft}) = 0.0 \cdot \mathsf{kip} \cdot \mathsf{ft} \end{split}$$

		Client	Blue Lake Reserv	oir Compa	ny	Page				
K	\bigcirc	Project	Upper Black Creek Reservoir			Pg. Rev.				
	$\underline{\mathbb{P}}$	Ву	M. Provencher	Chk.	C. Diebold	Арр.	C. Masching			
	sultants	Date	04/24/2020	Date	04/24/2020	Date	04/24/2020			
Project No.	180183	4	Document No.	N/A						
Subject Design of Spillway - Stilling Basin										
	ading Cor	nditions & C	ombinations:							
Unfactored Shear	At Top o	if Kev	V(v	$:= V_{r}(v)$						
Ultimate Shear At Top of Key:										
EM 1110-2-2104 Serviceability Load Combination: 2.2 (EH + Hs + L) [Table E-9, Load Case 1A] $V_{u.1}(y) := 2.2 \cdot (V_F(y))$										
ASCE Load Co	mbinatio	on 1: 1.4 (D + V _{u.2} (y) :=	+F)+1.6H 1.6·V _F (y)							
Controlling Case: $V_{11}(y) := \max(V_{111}(y), V_{112}(y))$										
		$V_u(H_{key})$	= 7.18 · kip	/u.1(Hkey)	= 7.18 · kip					
Unfactored Moment At Top of Key: $M(y) := M_{E}(y)$										
Ultimate Momen	t At Top (of Key:		1						
EM 1110-2-21	LO4 Servi	ceability Loa M _{u.1} (y) :=	d Combination: 2.2 = 2.2 · (M _F (y))	(EH + Hs + L)					
ASCE Load Co	mbinatio	n 1: 1.4 (D + M _{u.2} (y) :=	+F) + 1.6 H = 1.6∙M _F (y)							
Controlling Case:		$M_u(y) := M_u(H_{key})$	max(M _{u.1} (y) , M _{u.} = 11.29∙kip∙ft	2(y)) M _{u.1} (H	$(\text{key}) = 11.29 \text{ft} \cdot \text{ki}$	р				

Client			Blue Lake Reservoir Company				Page			
Project		Upper Black C	reek R	eservoi	r	Pg. Rev.				
GEL	I	Ву	M. Provenche	r Ch	ık.	C. Diebold	Арр.	C. Masching		
	onsultants	Date	04/24/2020	Da	ite	04/24/2020	Date	04/24/2020		
Project No.	180183	34	Document No). N/	A					
Subject	Design	of Spillway								
		Key	Concrete & R	Rebar	Streng	th Design				
Concrete Prope	Concrete Properties:									
Specified Compressive Strength of Concrete: $f'_{c} = 4500 \text{ psi}$										
Specified Yie	ld Strength	n of Reinford	em ent:			f _y := 60ksi				
Strength Red	uction Fac	tor for Tensi	on-Controlled Sec	ctions:		$\varphi_{\textbf{t}}\coloneqq\textbf{0.90}$	(ACI 318	8-14, Table 2 1. 2. 1		
Strength Red	uction Fac	tor for Shea	r:			$\varphi_{V} \coloneqq 0.75$	(ACI 318	8-14, Table 2 1. 2. 2)		
Whitney Stress Block Factor:										
$\beta_1 := 0.85$ if $f'_c \le 4000$ psi $\beta_1 = 0.83$ (ACI 318-14, Table 22.2.2)							4, Table 2 2. 2. 2. 4. 3)			
0.65 if f' _C > 8000psi										
$0.85 - 0.05 \cdot \frac{f'_c - 4000psi}{1000psi} \text{otherwise}$										
Horizontal Reing	forcement	:								
Bar Size and (Channel & E	Spacing: Embankme	ent)	S	^{Size} SH	:= 4	sSH	<mark>:= 6in</mark>			
Reinforceme	nt Clear Co	over:	c	clrS :=	<mark>3in</mark>					
Diameter	& Cross-S	ectional Area	a of Bars:	dbSH :=	= d _b size	= 0.50 · in Ab	SH := A _{bc:-}	$= 0.20 \cdot in^2$		
Area of R	einforceme	ent:	ŀ	$A_{SSH} := AbSH \cdot \frac{12in}{sSH} = 0.40 \cdot in^2$						
			r	m := (t	kev.B [–]	t _{kev.T}) ÷ H _{kev} =	= 0.00			
Section D	epth at a H	leight 'y' fro	m the base: t	t _{key} (y)	:= t _{kev}	ν.T ^{+ m} ·y				
Depth to	Centroid o	f Embankm	ent Reinf: c	d _{SH} (y)	:= t _{key}	(y) – clrS – 0.5 · d	lbSH			
Reinforce	ment Ratio):	ŕ	$ \rho_{SH}(y) := A_{SSH} \div \left(b_{W} d_{SH}(y)\right) $						

		Client	Blue Lake Reserv	oir Compa	Page			
	\bigcirc	Project	Upper Black Cree	k Reservoi	Pg. Rev.			
	$\underline{\mathcal{S}}$	Ву	M. Provencher	Chk.	C. Diebold	Арр.	C. Masching	
ULI Consultants		Date	04/24/2020	Date	04/24/2020	Date	04/24/2020	
Project No.	1801834		Document No.	N/A				
Subject	Design of Spillway - Stilling Basin							

Key Concrete & Rebar Strength Design Cont'd

Vertical Reinforcement:

Bar Size and Spacing: (Embankment) Diameter & Cross-Sectional Area of Bars:

Area of Tension Reinforcement:

 $\begin{array}{l} \text{Size}_{\text{SV}} \coloneqq 4 \\ \text{dbSV} \coloneqq d_{\text{b}_{\text{Size}_{\text{SV}}}} = 0.50 \cdot \text{in} \\ \text{AbSV} \coloneqq A_{\text{b}_{\text{Size}_{\text{SV}}}} = 0.20 \cdot \text{in}^2 \end{array}$ $A_{sSV} := AbSV \cdot \frac{12in}{sSV} = 0.40 \cdot in^2$ $m := \left(t_{key.T} - t_{key.B} \right) \div H_{key} = 0.00$ $t_{key}(y) := t_{key.B} + m \cdot y$ $d_{SV}(y) := t_{key}(y) - cIrS - dbSH - 0.5 \cdot dbSV$

Section Depth at a Height 'y' from the base: Depth to Centroid of Reinforcement:

Reinforcement Ratio:

 $\rho_{SV}(\textbf{y}) := \textbf{A}_{SSV} \div \left(\textbf{b}_{W} \, \textbf{d}_{SV}(\textbf{y})\right)$

		Client	Blue Lake Reservoir Company				Page			
	\bigcirc	Project	Upper Black	Cree	k Reservo	r	Pg. Rev.			
GEI	$\underline{\mathcal{S}}$	Ву	M. Provench	er	Chk.	C. Diebold	Арр.	C. Masching		
Consultants		Date	04/24/2020		Date	04/24/2020	Date	04/24/2020		
Project No.	180183	4	Document N	lo.	N/A					
Subject Design of Spillway - Stilling Basin										
			Key l	Reb	ar Desigr	ı				
Shrinkage and Te	mperatu	re Reinforce	ement (S&T): A	CI 318	8-14 & USA	Œ §2-8				
Maximum Spacing: $s := \min[18in, 5 \cdot 0.5(t_{key,B} + t_{key,T}), 12in] = 12.00 \cdot in$ (ACI 318-14, §7.7.6.2.1)										
Minimum Area of Steel Ratio: (ACI 318-14, Table 7.6.1.1)										
			$\rho_{ACI} :=$	0	.0020 if	f _y < 60ksi		= 0.0018		
				n	nax[(0.001	$8 \cdot 60$ ksi ÷ f _y), 0.00	14 other	wise		
	6.01			ρυς	ACE :=	0.003 if L _{CJ} < 3	30ft	= 0.0040		
(USACE §2-8)	a of Stee	I Ratio:		0.004 if 30 ft $\leq L_{CJ} \leq 40$ ft						
						0.005 otherwise				
Minimum Area of Steel Ratio:					ax := max($\rho_{ACI}, \rho_{USACE} =$	0.0040			
Minimum Stee (USACE §2-8)	el Area:			A _{s.r}	nin ≔ ρ _{ma}	ax · bw · 0.5 · (t _{key.B}	+ t _{key.T}) =	= 0.58 · in ²		
Shrinkage and Te	mperatu	re Reinforce	ement (S&T): A	CI 318	8-14 & USA	Œ §2-8				
Vertical Reinforce	ement:									
Bar Size and Sp	pacing of	Reinforcem	ent:	Size	sv = 4.00	sSV	v = 6.00 · in			
Diameter & Cr	oss-Secti	onal Area of	Bars:	$dbSV = 0.50 \cdot in$ $AbSV = 0.20 \cdot in^2$				n ²		
Area of Reinfo	rcement:			$A_{SSV} = 0.40 \cdot in^2$						
				A _{s.1} 2A	$\frac{\min}{SV} = 0.72$	2 < 1.0 the	refore okay			
Horizontal Reinfo	rcement	:								
Bar Size and Sp (Embankment	bacing of & Chanı	Reinforcem	ent:	Size _{SH} = 4.00			sSH = 6.00∙in			
Diameter & Cr	oss-Secti	onal Area of	Bars:	$dbSH = 0.50 \cdot in$ $AbSH = 0.20 \cdot in^2$						
Area of Reinforcement:					$A_{sSH} = 0.40 \cdot in^2$					
				A _{s.} 2·A	min sSH	2 < 1.0 therefore	okay			

		Client	Blue Lake Reservoir Company					Page			
	\bigcirc	Project	Upper Black Creek Reservoir					Pg. Rev.			
GEI	Y	Ву	M. Provenche	er	Chk.	C. Diebol	d	Арр.	C. Masching		
ULI Consultant		Date	04/24/2020		Date	04/24/20	020	Date	04/24/2020		
Project No.	180183	4	Document No	0.	N/A						
Subject	Design	of Spillway	- Stilling Basir	- Stilling Basin							
			Key Reba	nr D	esign Coi	nt'd					
Minimum Flexural Steel: (ACI 318-14, §9.6.1.2)											
Vertical Reinforcement:											
$A_{sV.min} := \min\left(\frac{3\sqrt{f'_{c} \cdot psi}}{f_{y}} \cdot b_{w} \cdot d_{SV}(H_{key}), \frac{200 \cdot psi \cdot b_{w} \cdot d_{SV}(H_{key})}{f_{y}}\right) = 0.33 \cdot in^{2}$ $\boxed{\frac{A_{sV.min}}{A_{v} \cdot r_{v}}} = 0.83$ $\boxed{1.0 \text{ therefore okay}}$											
Ductility Check: (^A sSV Ductility Check: (ACI 318-14, §7.3.3.1 & §9.3.3.1)										
Reinforcement Ratio Provided : (Vertical)				$\rho_{\text{pV}} \coloneqq \frac{A_{\text{sSV}}}{d_{\text{sV}}(H_{\text{key}}) \cdot b_{\text{w}}} = 0.0040$							
Reinforcemen (Horizontal)	t Ratio Pr	ovided:		$\rho_{pH} := \frac{A_{sSH}}{d_{sH}(H_{key}) \cdot b_{w}} = 0.0038$							
Depth to Neu (Vertical)	tral Axis:			$cV := \frac{\rho_{pV} \cdot f_{y} \cdot d_{SV} (H_{key})}{0.85 \cdot \beta_{1} \cdot f_{c}'} = 0.63 \cdot in$							
Depth to Neu (Horizontal)	tral Axis:			cH :	$=\frac{\rho_{pH}\cdotf_{y}}{0.85}$	$d_{SH}(H_{key})$	<u>)</u> = 0.63	∙in			
Minimum Stra	ain in Ten	sion Steel at	Nominal Streng	th:	[€] t.mi	n := 0.004	4				
Calculated Strain in Tension Steel at Nominal Strength: (Vertical)				[€] tV	:= 0.003 ·	d _{SV} (H _{key}	$\left(\frac{1}{2}\right) - 1 = 1$	= 0.04			
(Horizontal)				[€] tH	:= 0.003 ·	d _{SH} (0ft) cH	-1 = 0	0.04			
		ۂ ا	$\frac{\varepsilon_{\text{t.min}}}{\varepsilon_{\text{tV}}} = 0.11$		$\frac{\varepsilon_{t.min}}{\varepsilon_{tH}} =$	0.10	< 1.0 th	erefore okay	<u>,</u>		

		Client	Blue Lake Reservoir Company			Page				
	Project Up			ek Reservo	ir	Pg. Rev.				
GEI	$\underline{\mathcal{D}}$	Ву	C. Diebold	Chk.	M. Provencher	Арр.	C. Masching			
	sultants	Date	04/24/2020	Date	04/24/2020	Date	04/24/2020			
Project No.	180183	34	Document No.	Document No. N/A						
Subject	Design	of Spillway	/ - Sliding Stability	Analysis						
Sp References:	illway	Sliding St	ability Analysis	- Upper	Black Creek Re	servoir				
- Design Drawi	ngs, Upp	er Black Cree	ek Replacement Spill	way, GEI Coi	nsultants, 2020					
- Army Corps of Engineers EM 1110-2-2100, "Stability Analysis of Concrete Structures," Dec 2005										
Structural Analysis Summary										
The following structural analysis checks the sliding stability of the spill way at Upper Black Creek Reservoir Dam. The sliding stability is checked based on the general wedge analysis as prescribed in EM 1110-2-2100. The inclined portion of the spillway downstream from the contraction joint was assumed to be subject to longitudinal sliding. This check was performed for the extreme seismic case, not based on detailed site-specific data.										
Check spillway structure for sliding stability										
Unit weight of concrete:					$\gamma_{conc} := 150pcr$					
Angle of inclination:					6.57deg					
10,000yr Horiz	ontal Sei	smic Coeffic	ient:	k _h := (k _h := 0.4972 [USGS Unified Hazard Tool]					
Fill Properties ((Soil type	e: SM)								
Angle of int	ernal fric	tion:		$\phi_{f} := 1$	$\phi_{f} := 30 \cdot \deg$					
Unit weight	of backf	ill:		$\gamma_{fill} \coloneqq$	= 130pcf					
Angle of Inc		CKTIII:		$\alpha_{f} := 0$	$\alpha_{f} := 0 \text{deg}$					
AFIESLEditi	i pressui	ecoancient		к ₀ .= .	$\kappa_0 := 1 - \sin(\Phi_f) = 0.50$					
Active earth	n pressure	e coefficient:		k _a := 1	$\tan(45 \deg - 0.5 \cdot d)$	$(p_f)^2 = 0.33$				
Passive eart	h pressu	re coefficien	t:	k _p := 1	$tan(45deg + 0.5 \cdot d)$	$(p_f)^2 = 3.00$				
Base/Soil friction	on coeffi	cient:		$\delta := 0$.70 NA	AVFAC, Desig	n Manual 7.2			
Bottom Wall T	hickness:	:		^t wall.E	$_3 := 1$ ft + 6in					
Top Wall Thick	ness:			^t wall.T	- := 1ft + 0in					
Footing width:	Footing width:				B := 8.0ft					
Toe projection:				Toe :=	Toe := 3.5ft					
Heel projectior	1:			Heel :=	Heel := B – Toe – $t_{wall.B} = 3.00 ft$					
Footing thickne	ess:			^t base	t _{base} := 2.0ft					

GEI Consultants		Client	Blue Lake Reserv	oir Compa	Page			
		Project	Upper Black Cree	ek Reservo	Pg. Rev.			
		Ву	C. Diebold	Chk.	M. Provencher	Арр.	C. Masching	
		Date	04/24/2020	Date	04/24/2020	Date	04/24/2020	
Project No.	180183	4	Document No.	N/A				
Subject	Design	of Spillway	 Sliding Stability 	Analysis				
Slab thickness	(inclined	portion):		$t_{slab.1} \coloneqq 1.0 ft \div cos(\theta) = 1.12 ft$				
Slab thickness (stilling basin):				$t_{slab.2} := 2.0 ft$				

Key depth below slab (chute slab):

Key depth below slab (stilling basin):

 $d_{key.slab} := 3.0 ft$

 $d_{key.still} := 3.0 ft$

		Client	Blue Lake Reserve	oir Compai	Page					
	\bigcirc	Project	Upper Black Cree	k Reservoi	r	Pg. Rev.				
GEI	I I I I I I I I I I I I I I I I I I I	Ву	C. Diebold	Chk.	M. Provencher	Арр.	C. Masching			
ULI Consultants		Date	04/24/2020	Date	04/24/2020	Date	04/24/2020			
Project No.	180183	4	Document No.	N/A						
Subject	Design	of Spillway	- Sliding Stability	Stability Analysis						
Calculate vertical loads										
Concrete volume:										
Training Mell Valume: $V_{\rm res} = 2 \left(22.225 + 2.55 \right)^{-1} {\rm wall} {\rm .T} $										
$v_{\text{tw.1}} = 2 \cdot \left(\frac{33.22\pi \cdot 9.5\pi}{2} \right) = 788.98 \cdot \pi$										
			V _{tw.2} :	$= 2 \cdot \left(7 \text{ft} \cdot \frac{9.5 \text{ft} + 13 \text{ft}}{2} \cdot \frac{^{t} \text{wall.B} + ^{t} \text{wall.T}}{2}\right) = 196.87 \cdot \text{ft}^{3}$						
			V _{tw.3} :	$V_{tw.3} := 2 \cdot \left(13 \text{ft} \cdot 26 \text{ft} \cdot \frac{t_{wall.B} + t_{wall.T}}{2} \right) = 845.00 \cdot \text{ft}^3$						
Wall Footin	g Volume	2:	V _{wf.1} :	$V_{wf.1} := 2 \cdot (40 \text{ft} \cdot B \cdot t_{base}) = 1280.00 \cdot \text{ft}^3$						
			V _{wf.2} :	$V_{wf.2} := 2 \cdot (26 \text{ft} \cdot \text{B} \cdot \text{t}_{base}) = 832.00 \cdot \text{ft}^3$						
Slab Volum		V _{sl.1} :=	$V_{sl.1} := 40 \text{ft} \cdot t_{slab.1} \cdot \frac{30.36 \text{ft} + 25 \text{ft}}{2} = 1237.94 \cdot \text{ft}^3$							
			V _{sl.2} :=	= 25ft∙26ft∙	$t_{slab.2} = 1300.00$	$\cdot ft^3$				
End Sill:			V _{es.1} :=	$V_{es.1} := 7.65 \text{ft}^2 \cdot 32 \text{ft} = 244.80 \cdot \text{ft}^3$						
Baffle Piers: $V_{bp.1} := 2(7.78 \text{ft}^2 \cdot 2.25 \text{ft}) + 5(7.78 \text{ft}^2 \cdot 2.25 \text{ft})$						$ft^2 \cdot 2.5 ft = 132.26 \cdot ft^3$				
Chute Block	KS:		V _{cb.1} :	$V_{cb.1} := 2(3.36ft^2 \cdot 2.25ft) + 7(3.36ft^2 \cdot 1.83ft) = 58.16 \cdot ft^3$						

Client			Blue Lake Reserv	oir Compa	Page					
Project		Project	Upper Black Cree	ek Reservoi	r	Pg. Rev.				
GFI	\mathcal{D}	Ву	C. Diebold	Chk.	M. Provencher	Арр.	C. Masching			
	■ Consultants Date		04/24/2020	Date	04/24/2020	Date	04/24/2020			
Project No.	180183	4	Document No.	N/A						
Subject	Design	of Spillway	 Sliding Stability 	Analysis						
Calculate vertical l	oads - co	ontinued								
Total Volume (in	nclined p	oortion):	V _{conc} .	inc ^{:= V} tw.	$1 + V_{tw.2} + V_{wf.1}$	$+ V_{sl.1} + V_{sl.1}$	cb.1			
	$V_{conc.inc} = 3561.95 \cdot ft^3$									
Structure weight (inclined portion): $W_{conc.inc} := V_{conc.inc} \cdot \gamma_{conc} = 534.29 \cdot kip$										
Total Volume (stilling basin): $V_{conc.still} := V_{tw.3} + V_{wf.2} + V_{sl.2} + V_{bp.1} + V_{es.1}$										
			V _{conc} .	still = 3354	$.06 \cdot \text{ft}^3$					
Structure weigh	ht (stillin	g basin):	W _{conc}	.still := V _{co}	$nc.still \cdot \gamma_{conc} = 5$	03.11 · kip				
Volume of soil (over foo	ting:								
Wall footing	;:		V _{s.wf.}	L := 2 · (40f	\cdot Heel \cdot 8.5ft) = 20	40.00∙ft ³				
			V _{s.wf.2}	<u>2</u> := 2 ⋅ (26f	\cdot Heel \cdot 8.0ft) = 12	48.00 · ft ³				
Total Volume (ii	nclined p	oortion):	V _{soil.ir}	$V_{soil.inc} := V_{s.wf.1} = 2040.00 \cdot ft^3$						
Soil weight (inc	clined po	ortion):	W _{soil.i}	$W_{soil.inc} := V_{soil.inc} \cdot \gamma_{fill} = 265.20 \cdot kip$						
Total Volume (s	stilling ba	asin):	V _{soil.s}	$V_{soil.still} := V_{s.wf.2} = 1248.00 \cdot ft^3$						
Soil weight (sti	lling bas	in):	W _{soil.s}	$W_{soil.still} := V_{soil.still} \cdot \gamma_{fill} = 162.24 \cdot kip$						
Calculate driving for	orces									
Summation of	vertical l	oads:	V _{sum.} i	nc := W _{cor}	nc.inc ^{+ W} soil.inc ⁼	= 799.49∙k	ip			
			V _{sum.}	_{still} := W _{co}	nc.still ^{+ W} soil.stil	= 665.35∙	kip			
Seismic load:			H _{d.inc}	:= k _h ∙V _{sur}	n.inc = 397.51·kip	1				
			^H d.stil	$H_{d.still} := k_h \cdot V_{sum.still} = 330.81 \cdot kip$						

	\bigcirc	Client	Blue Lake Reserv	oir Compa	Page				
	\bigcirc	Project	Upper Black Cree	k Reservoi	Pg. Rev.				
GEI Consultants		Ву	C. Diebold	Chk. M. Provencher		Арр.	C. Masching		
		Date	04/24/2020	Date	04/24/2020	Date	04/24/2020		
Project No.	1801834		Document No.	N/A					
Subject	Design of Spillway - Sliding Stability Analysis								

Calculate resisting forces

Passive earth pressure:

Resistance to bottom of downstream shear key under chute slab:

$$\mathsf{F}_{\mathsf{F}.\mathsf{T1}} \coloneqq 3 \cdot \left[0.5 \cdot k_p \cdot \gamma_{\mathsf{fill}} \cdot \left(t_{\mathsf{slab.1}} + \mathsf{d}_{\mathsf{key}.\mathsf{slab}} \right)^2 \right] \cdot 32 \mathsf{ft} = 317.47 \cdot \mathsf{kip}$$

Resistance to bottom of shear key at stilling basin:

$$\mathsf{F}_{\mathsf{F},\mathsf{T2}} \coloneqq \mathsf{0.5} \cdot \mathsf{k}_{\mathsf{p}} \cdot \gamma_{\mathsf{fill}} \cdot \left(\mathsf{t}_{\mathsf{slab.2}} + \mathsf{d}_{\mathsf{key.still}} \right)^2 \cdot \mathsf{32ft} = \mathsf{156.00} \cdot \mathsf{kip}$$

Calculate factor of safety against sliding

Factor of safety:
$$FS_{sl} = \frac{\left[\left(V_{sum.inc} \cdot \cos(\theta) - H_{d.inc} \cdot \sin(\theta)\right) + V_{sum.still}\right] \cdot \delta}{H_{d.inc} \cdot \cos(\theta) + V_{sum.inc} \cdot \sin(\theta) - \left(F_{F.T1}\right) \cdot \cos(\theta) + H_{d.still} - F_{F.T2}} = 1.4$$

> 1.3 for seismic load, therefore okay

Sponsor / Owner:

[Please describe ownership of the reservoir. Type of corporate entity. Source of revenue. Ability to take on debt.]

Blue Lake Reservoir Company is a Non-Profit corporation established under the Colorado Non-Profit Corporation Act and Article 42 of title 7. This Corporation shall have perpetual existence. At this time it does not have any source of revenue and its object is to receive and hold title to the reservoir and its Water rights and be separate from Summit Trust. Summit Trust provide funds to this company for all Dam and Reservoir needs.

(Provided by: David Knowlton, Blue Lake Reservoir Company)

Water Rights:

[Please describe water rights associate with the reservoir.]

All Water and Water Rights associated with, appurtenant to or historically used in connection with reservoir, including but not limited to the decree entered by Summit County District Court on March 10, 1952, in case No. 1806, which adjudicated the Reservoir for 139.81 acre feet for propagation and culture of fish, resort, boating, domestic, and Power purposes with a priority date of August 10, 1940, Reservoir Priority No. 79, the decree entered by the Federal District Court for the District of Colorado in Case 1806 which made 139.81 acre feet of the Reservoir final and Absolute, and then in 2009 the decree entered by the District Court Water Division 5 Case No. 06CW99 which changed 288.53 AF of Water Rights from the Lower Black Creek Reservoir to the Reservoir to match the actual Storage Capacity of the Reservoir of which is now the total of 428 acre feet that is final and absolute.

(Provided by: David Knowlton, Blue Lake Reservoir Company)

Permits:

[Please list all permits and approvals necessary prior to construction.]

At this point once NWP is received from the Corps you should be set for environmental permits – but I believe SHPO review is currently holding up the Corps' issuance of the NWP. I'll send an email to the Corps today to see if they've heard anything.

The only County permit that may be required is for stormwater control during construction, typically something the contractor acquires before construction starts. (Provided by: Sarah Skigen-Caird, GEI Consultants)