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Key Terminology 
Ablation The process by which snow or ice changes state from solid to liquor or gas through 

melting, evaporation or sublimation. 

Acre-Foot (AF) A unit of measurement for water volume, typically used in the agricultural industry. 
An Acre-Foot is defined as the amount of water required to cover an acre of land at 
a depth of 1 foot.  An Acre-Foot is equivalent to 325,851 gallons. 

Arid Region of land or climate having little or no rain, generally characterized as, too dry 
or barren to support vegetation. Semi-arid is characterized as dry but having slightly 
more rain than an arid region or climate. 

Asset A physical thing like a building, farm, bridge, head of cattle, etc that has economic 
value to its owner. Under a variety of circumstances, the value of an asset can be 
impacted by external events like natural hazards. 

Basin An area of land that drains all the streams and rainfall to a common outlet such as 
the outflow of a reservoir or point along a stream channel. 

Climate The long term average weather conditions prevailing over an area. Estimates of 
climate conditions are typically developed using many years of weather 
observations. 

Climate Change A change in global or regional climate patterns, in particular a change apparent from 
the mid to late 20th century onwards and attributed largely to the increased levels 
of atmospheric carbon dioxide produced by the use of fossil fuels. Climate change 
and Global Warming are two terms that refer to the same phenomenon and its 
study. 

Consumptive Use That part of water withdrawn that is evaporated or transpired by plants, 
incorporated into products or crops, consumed by humans or livestock, or 
otherwise removed from the immediate water environment. 

Cost The dollar value associated with a particular condition or event. Specifically, this is 
the monetary estimate of historical damages or projected future damages. 

Cubic feet per second (cfs) A unit of measurement of fluid flow, in streams and rivers, for example. 
It is equal to volume of water one foot high and one foot wide flowing a distance of 
one foot in one second. 

Damages The physical and functional impairment of an asset due to an external event, like the 
disasters studied in this project. Damages are often quantified in terms of reduced 
economic output or cost associated with returning the asset to its undamaged 
condition. 

Downscale Reduce in size, scale or extent. For GCMs, this means using mathematical 
techniques to develop results for smaller geographical areas  

Drought A meteorological drought is defined as an extended period of below-average 
precipitation for a region. Drought definitions can also recognize drought as causing 
a water shortage to a particular human activity or environmental (e.g. water supply, 
agriculture, stream fisheries, forest health). An agricultural drought refers to 
situations in which soil moisture and irrigation supplies are insufficient to meet the 
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needs of the crops growing in the area. A hydrologic drought effectively reduces 
stream flows, reservoirs, lakes and groundwater to below-normal levels. A 
socioeconomic drought is when water shortages begin to effect people and their 
lives in terms of water supply, loss of hydropower production, loss of fisheries, 
agricultural production losses and foot shortages. 

Evaporation The process of liquid water becoming water vapor, including vaporization from 
water surfaces, land surfaces, and snow fields, but not from leaf surfaces (see 
transpiration). Evapotranspiration is the sum of evaporation and transpiration. 

Exposure The people, livelihoods, habitats, species, infrastructure, or economic, social, or 
cultural assets that could be adversely affected by a stressor (Sayers et al., 2016). 

Expected Annual Damages The average yearly cost of natural hazards, annualized 2035-2065. 
Detailed project explanation here. 

Flood An overflow of water onto lands that are used or usable by man and not normally 
covered by water. Floods have two essential characteristics: 1) The inundation of 
land is temporary and 2) the land is adjacent to and inundated by overflow from a 
river, or lake. 100 Year Flood is a flood level with a 1 percent chance of being 
equaled or exceeded in any given year. Flood Plain is a strip of relatively flat and 
normally dry land alongside a stream, river, or lake that is covered by water during a 
flood. Flood Stage is the elevation at which overflow of the natural banks of a 
stream or body of water begins in the reach or area in which the elevation is 
measured. 

Fire Suppression An umbrella term covering a wide range of methods used by firefighters and other 
emergency response agencies to reduce the heat output from a fire through 
restriction and reduction of the flame area. 

Freeboard Freeboard is a factor of safety usually expressed in feet above a flood level for 
purposes of floodplain management. "Freeboard" tends to compensate for the 
many unknown factors that could contribute to flood heights greater than the 
height calculated for a selected size flood and floodway conditions, such as wave 
action, bridge openings, and the hydrological effect of urbanization of the 
watershed. 

Gaging Station A site on a stream, lake, reservoir, or other water body where observations and 
hydrologic data are obtained.  

General Circulation Model (GCM)  Also known colloquially as Global Climate Models, GCMs are 
numerical models representing physical processes in the atmosphere, ocean, 
cryosphere and land surface. GCMs are used to provide globally- and regionally-
averaged estimates of the climate response to increased greenhouse gas emissions. 
(IPCC) 

Hazard (analysis) An assessment of the probability and severity of flood, drought, and wildfire 
stressors. 

Hazard (natural) Historical or future flood, drought, and wildfire events that lead to adverse 
consequences for social, economic, and or natural systems. 

Headwater(s) (1) the source and upper reaches of a stream; also the upper reaches of a reservoir. 
(2) the water upstream from a structure or point on a stream. (3) the small streams 

https://storymaps.arcgis.com/stories/7878c89c592e4a78b45f03b4b696ccac
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that come together to form a river. Also may be thought of as any and all parts of a 
river basin except the mainstem of the river and key tributaries. 

Impacts The consequences or effects of a hazard on the environment, economy, and human 
health. 

Infrastructure The basic physical and organizational structures and facilities (e.g. buildings, roads, 
power supplies) needed for the operation of a society or enterprise. Critical 
Infrastructure is a terms used by governments to describe assets that are essential 
for the function of society and the economy (i.e. hospitals, power plants, emergency 
response facilities). Grey Infrastructure refers to the human-engineered 
infrastructure for water resources such as water and wastewater treatments plants, 
pipelines, and reservoirs. 

Inundation When water covers an area of the land that is not typically covered. This can be 
caused by natural hazards, or by manmade structures as in the case of certain types 
of irrigated agriculture 

Irrigation The controlled application of water for agricultural purposes through manmade 
systems to supply water requirements not satisfied by rainfall. 

Livestock water use Water used for livestock watering, feed lots, dairy operations, fish farming, and 
other on-farm needs. 

Losses Impacts that refer to a complete loss of something that cannot be recovered (e.g. 
human and animal life). 

Meteorological Relating to the branch of science concerned with the processes and phenomena of 
the atmosphere, especially as a means of observing and forecasting the weather. 

Montane Zone of semi-arid foothills to low mountain areas with ponderosa pine intermixed 
with grasses and shrubs. Taller and more densely spaced conifers can often be 
found on north-facing slopes. 

Projection An estimate or forecast of a future situation or trend based on a study of present 
ones. 

Peak flow The maximum instantaneous discharge of a stream or river at a given location 
during a defined time interval. 

Region An area or division having definable characteristics but not always fixed boundaries. 
The Colorado regions were derived by a compilation of a number of classification 
schemes including Climate Change in Colorado (Lukas et al., 2014), NOAA’s climate 
divisions, watershed boundaries, EPA level III Ecoregions, the Colorado State Hazard 
Mitigation Plan (Colorado DPS, 2018) and Colorado Resiliency Framework. 

Resiliency The ability of social, economic and environmental systems to cope with flood, 
drought, and wildfire risks, limiting the significance of any associated harmful 
consequences should they occur, and having the capacity to adapt in a way that 
reduces future risks. 

Risk An assessment of where populations, infrastructure, and critical facilities are 
vulnerable to hazards, and to what extent injuries or damage may occur (FEMA, 
2015). 
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Runoff That part of the precipitation, snow melt, or irrigation water that appears in 
uncontrolled surface streams, rivers, drains or sewers.  

Scenario A baseline state or future projection of one or both of (a) climate conditions or (b) 
the human population occupancy and distribution on the environment. 

Sectors Categories of the environment and society that represent systems that may be 
impacted by natural hazards (e.g. infrastructure, economy, public health, 
agriculture, recreation & tourism, and environment). 

Sensitivity The propensity of a particular receptor/asset to experience harm as a result of a 
given hazard. 

Snowmaking The manmade production of snow from liquid water; usually used to cover ski 
slopes. 

Technical Update Abbreviated reference to the Analysis and Technical Update to the Colorado Water 
Plan. 

Today’s Economy/Today’s Dollars An estimate of the value of an asset taking account the 
cumulative inflation between when the value was measured and present day.  

Transpiration The process by which water that is absorbed by plants, usually through the roots, is 
evaporated into the atmosphere from the plan surface, such as leaf pores. See 
evapotranspiration. 

Vulnerability The propensity or predisposition of a given receptor (or group of receptors) to be 
adversely affected by a hazard. Vulnerability encompasses a variety of concepts and 
elements including sensitivity to harm, exposure, and value (the value society places 
on the harm caused). 

Watershed The land area that drains water to a particular stream, river, or lake. Watersheds are 
typically land features that can be identified by tracing a line along the highest 
elevations between two areas on a map, often a ridge. Large watersheds can 
contains thousands of smaller watersheds (eg, the Mississippi River watershed 
spans most of the central continental United States). 

Water Plan  Abbreviated reference to the Colorado Water Plan (also referred to as the Colorado 
Water Plan). 

Wildfire A large destructive fire that spreads quickly over woodland or brush, often in rural 
or less-developed areas. 
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1 Introduction 
As a semi-arid, headwater state with terrain ranging from the High Plains to Rocky Mountains, 
Colorado is exposed to major economic impacts from floods, droughts, and wildfires. Recent 
events such as the 2013 flood, the 2002 drought, and 2012 wildfire season are examples of the 
physical magnitude and economic damages such hazards can exact. These extreme events are 
becoming more severe and potentially more frequent as global climate dynamics change 
regional patterns (Gonzalez et al., 2018).  
 
Researchers expect floods to increase in severity, droughts to deepen and become more 
spatially expansive, and wildfire seasons to become longer with more acres burned in a 
warming climate (Wehner, Arnold, Knutson, Kunkel, & LeGrande, 2017). In addition, Colorado’s 
growing population is projected to reach between 7.7 and 9.3 million by 2050 (CWCB, 2019 
2(2)). With more residents comes greater natural hazard exposure if floodplain margins become 
developed, agricultural land shrinks, and the number of people in the wildland urban interface 
increases. 
 
The first step to understanding and preparing for these events is to assess the possible risks—
both now and in the future. This is done by quantifying the difference in economic costs 
between historic relationships and modeled future scenarios. Tasked by the Colorado 
Department of Public Safety to perform such an analysis, the objective of this project is to 
estimate the expected costs of floods, droughts, and wildfires to a selection of economic 
sectors under historic and future climate and population scenarios.  
 
These sectors varied by the hazard being examined. For flooding, we evaluated impacts to 
buildings and bridges. For drought, we examined agricultural—crops and cattle—and outdoor 
recreation—skiing and rafting—impacts. For wildfire, we again analyzed buildings and also 
computed the cost of suppression, which is the amount the state spends to fight and extinguish 
ongoing fires. In total, we analyzed eight sectors, all of which have experienced observed 
economic damages in the tens of millions to billions of dollars due to natural hazards.  
 
While we did not quantify the following items as part of this project, we recognize that climate 
change will have serious impacts beyond economic costs, including injury and loss of life, harm 
to mental health and wellness, and significant adverse effects on Colorado’s ecosystems and 
biodiversity. 
 
In this document, we first outline how we developed and applied the climate (Sect. 2) and 
population scenarios (Sect. 3) in our analysis. After that, we provide information on how we 
combined the scenarios and quantified expected annual damages (i.e., economic cost) for the 
various sectors (Sect. 4). The remaining pages are dedicated to detailed descriptions of the 
input data and methodologic approaches for each hazard and the related sectors (Sects. 5, 6, 
and 7).   
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2 Climate Scenarios 
2.1 Overview 
A key goal of this project is estimating the current and future costs of flood, drought and 
wildfire for the state of Colorado. As such, each hazard considers three climate scenarios, as 
shown in Figure 2-1.: one current scenario, and two realizations of climate change in 2050. 
 

 
Figure 2-1. Conceptual diagram showing current climate (left) and our two 2050 climate change scenarios, Moderate and More 

Severe. 

To develop these scenarios, we used historical meteorological data sets, as well as climate-
adjusted meteorological data. Following the approach developed for the 2015 Colorado Water 
Plan, the two future projections (i.e., Moderate and More Severe) are representative of two 
potential 2050 conditions that differ in their relative severity in the context of a large ensemble 
of projected future conditions. For drought and wildfire, our climate scenarios are identical to 
the two scenarios considered in the 2015 Colorado Water Plan. While the technical details of 
scenario development are documented by Harding (2015) and the 2019 Analysis and Technical 
Update to the Colorado Water Plan Volume 2, Section 14 (CWCB, 2019 2(14)), we summarize 
the development below.  
 
Due to inherent differences in the physical processes driving the three hazards, our approach to 
flood hazard modeling employed a different climate scenario development approach, while still 
using the Moderate and More Severe nomenclature. Fundamentally, the climate scenarios with 
heightened drought or wildfire risk may not be those with heightened flood risk. The scenarios 
driving our flood models are based on ensembles extracted from downscaled hydrology data 
representing two different warming scenarios (Reclamation, 2014).  
 
2.2 Technical Details of Scenario Development 
In this project, climate change is generally enacted as a scalar adjustment applied to historic 
observations and model outputs. Below, we provide brief information on how we developed 
and applied the climate scenarios. The hazard-specific discussions contain further details on 
how climate scenarios were applied to the specific sectors. For tabularized info on the climate 
change scenarios, please see Appendix A—Climate Scenario Tables. 
 
 
2.2.1 Flood 
To calculate future damages due to Moderate climate change, we followed the methods 
described by Wobus, Gutmann, et al. (2017), using downscaled hydrologic projections 
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(Reclamation, 2014) to estimate the change in frequency of flood events that have an average 
100-year recurrence interval in today’s climate.1 From the Reclamation (2014) dataset, we 
extracted annual maximum flow projections from approximately 1600 river reaches throughout 
the state of Colorado over the time period of 2000-2100. These projections are available from 
58 different downscaled climate model runs from the Coupled Model Intercomparison Project 
(CMIP) Phase 5, commonly known as CMIP5 (Taylor, Stouffer, & Meehl, 2012). From these 
projections, we selected an ensemble of models that represents approximately 2°C (3.6°F) of 
summer warming in Colorado by 2050 relative to present day for our “Moderate” future 
scenario.  
 
From this full suite of downscaled hydrology outputs, we constructed an ensemble annual 
maximum flow time series for the baseline at each river reach and used a generalized extreme 
value fit to this ensemble to estimate the magnitude of the 100-year flood. We then developed 
a new annual maximum time series from the future ensemble and estimated the frequency of 
flows exceeding the baseline 100-year event in the future (Figure 2-2).  
 

 
Figure 2-2. Example of current (black) and future (blue) magnitude frequency curves for a single modeled stream reach. In this 

example, the baseline 100-year (1% probability) event of ~450 m3s-1 becomes an approximately 50-year (2% annual probability) 
event in the future, as illustrated by the red arrow.  

Basic physical principles dictate that a warmer atmosphere can hold more water; this is widely 
recognized to result in an increase in potential precipitation of 7% per 1°C. This increase in 
rainfall potential is referred to as “Clausius-Clapeyron scaling,” and background on this topic is 
described in detail in Mahoney et al. (2018). For the More Severe climate scenario, we assumed 

 
1 Throughout this report, we use recurrence interval (years) and annual exceedance probability (percent) 
interchangeably. In this context, a 100-year flood has a 1% annual exceedance probability (i.e., it has a 1 in 100 
chance of occurring in a given year). 
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that summertime temperatures in Colorado increase by approximately 3°C (5.4°F) in 2050, at 
the upper end of projections from a 52-model ensemble comparing the 30 years centered on 
2019 to the 30 years centered on 2050. We used the same baseline magnitude-frequency curve 
for each river reach as in the Moderate climate change scenario described above using the 
downscaled hydrology data. We then assumed that each flood event increases in magnitude 
according to the Clausius-Clapeyron relationship (i.e., 7% per 1°C of warming). We thus shifted 
the flood magnitude-frequency curve upwards by 21% and calculated the change in frequency 
of the 100-year event based on this shift.  
 
The future climate projections generate changes in the frequency of flooding of all magnitudes. 
For example, in the result shown in Figure 2-2, the data for that site indicates an approximate 
doubling in the frequency of the 100-year event for the climate scenario shown. As summarized 
in Section 5, we aggregated all of the data for each county to calculate an average change 
factor for that county. This change in the frequency of flooding translates directly into a change 
in damages from flood hazards: if all damaging flood events become twice as frequent in the 
future, so too do the economic costs of flooding.  
 
2.2.2 Drought and Wildfire 
For drought and wildfire, we use hydrologic projections developed for Colorado River Water 
Availability Study, Phase 2 (CRWAS-II) (Harding, 2015). As a first step, we accessed an ensemble 
of hydrologic projections for the United States from the same dataset as the flood hazard 
(Reclamation, 2014).These projections were generated by the Variable Infiltration Capacity 
(VIC) hydrologic model (Liang, Lettenmaier, Wood, & Burges, 1994) forced with climate 
projections from CMIP Phases 3 and 5 (Meehl et al., 2007; Taylor et al., 2012). Each projection 
represents a realization of how climate change may alter key elements of the hydrologic cycle. 
The ensemble (i.e., the total set of projections considered) comprises 209 hydrologic 
projections: 112 from CMIP3 and 97 from CMIP5. To note, while using the same dataset as 
flood, the final ensemble for drought and wildfire is different. 
 
Following CRWAS-II (Harding, 2015), we categorize hydrologic projections according to the 
balance between water supply and demand simulated for the state of Colorado. Specifically, we 
calculate statewide average runoff and consumptive irrigation requirement (CIR, the depth of 
water required to satisfy the gap between potential and actual evapotranspiration) anomalies 
between a baseline (1970 – 1999) and future period (2035-2064) for each hydrologic 
projection. When plotted on a range-normalized axis, the relationship between runoff and CIR 
anomalies emerging from the ensemble of hydrologic projections is approximately linear and 
represents a gradient of water supply stress conditions (Figure 2-3., blue points). When runoff is 
high, CIR is low, and the system is minimally stressed (upper right quadrant of Figure 2-3.). 
Conversely, when runoff is low, CIR is high, and the system is maximally stressed (lower left 
quadrant of Figure 2-3.). 
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Figure 2-3. A linear relationship emerges between state-averaged normalized consumptive irrigation requirement (CIR) and 
normalized runoff anomalies in the 209 hydrologic projections (blue points). Two clusters of 10 projections (black circles) are 
identified surrounding key percentiles of the CIR/runoff domain. Our climate scenarios are based on the climate projections 

forcing either cluster of hydrologic projections. 

Our climate scenarios were developed from clusters of hydrologic projections in the CIR/runoff 
space (Figure 2-3.). We identified two clusters of projections, each associated with one of our 
climate scenarios, as identified by black circles in Figure 2-3.. The Moderate cluster is derived 
from the 10 projections nearest to the 50th percentile of normalized runoff anomaly and 50th 
percentile of normalized CIR anomaly. The More Severe cluster is derived from the 10 
projections nearest to the 25th percentile of normalized runoff anomaly and 75th percentile of 
normalized CIR anomaly. From these clusters, we developed monthly temperature offsets and 
precipitation change factors that represent the average difference between 2050 climate and 
current climate. 
 
We then applied these monthly temperature offsets and precipitation change factors to 
historical gridded meteorological data products to create climate-adjusted datasets for each 
2050 scenario. Statewide annual average temperature offsets projected by the Moderate and 
More Severe scenarios are +2.1°C and +2.3°C, respectively for drought. For the wildfire model, 
the baseline period was 1988 to 2017 to be consistent with previous modeling efforts by the 
Colorado State Forest Service (CSFS) (see Section 7.1.3.5 for more details). As a result, 
statewide annual average temperature offsets projected by the Moderate and More Severe 
scenarios for wildfire are slightly lower at +1.5°C and +1.7°C, respectively. In all cases, 
temperature offsets are greater in summer and autumn months than winter and spring 
months. Statewide average annual precipitation change factors for the Moderate and More 
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Severe scenarios are +5% and -1% respectively. Both scenarios project precipitation declines 
during spring and summer months, with slight increases during winter months. Overall, both 
scenarios simulate year-round warming by 2050, however the directionality and magnitude of 
precipitation changes are contrasting between scenarios.   
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3 Population Scenarios 
3.1 Overview 
We use population scenarios in line with 2050 projections from the Analysis and Technical 
Update to the Colorado Water Plan, herein “Technical Update”. We consider current 
population and three future population scenarios in 2050: Low Growth, Medium Growth and 
High Growth (Figure 3-1).  
 

 
Figure 3-1. Population scenarios used in this project. 

The Medium Growth scenario matches the state’s official projection for 2050. The Low Growth 
and High Growth population scenarios represent the 10th and 90th percentile of plausible 
population projections, respectively. The following section details the selected scenarios, but 
further information on future population projections can be found in the Technical Update 
(CWCB, 2019 2(2)). For tabularized info on the population growth scenarios, please see 
Appendix B—Population Scenario Table. 
 
3.2 Technical Details of Scenario Development 
The Colorado Water Plan developed five narrative planning scenarios that could be used for 
identifying future water needs around the state in 2050. The 2019 Technical Update translated 
these narrative scenarios into quantitative population data. In the context of that report, each 
scenario represents a combination of both climate and population change. For this project, we 
adjusted climate and population independently, and combined those adjustments to develop a 
complete permutation set. That is, we consider only climate change, only population growth, 
and all combinations thereof. Thus, while we use the population projections from the Technical 
Update, we use a different naming convention to avoid confusion with the hybrid climate-
population scenarios. Details are as follows: 
 

• Low Growth: Identified in the Technical Update as “Weak Economy,” this scenario 
assumes an economic slowdown and a reduction of migration to Colorado relative to 
historical rates.  

• Medium Growth: The “Business as Usual” scenario from the Technical Update assumes 
‘median’ or Colorado State Demography Office’s standard population growth projection.  

• High Growth: The “Hot Growth” scenario from the Technical Update assumes a 
booming economy and high rates of migration to Colorado relative to the other 
scenarios. 
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3.3 Applying the Population Scenarios 
The population scenarios on their own only provide information about magnitude of change in 
the number of Colorado residents by 2050. For each sector, we used available literature, 
published relationships, and ancillary data in order to convert the population increase into a 
meaningful change in hazard exposure. In general, we followed two approaches: 1) spatially 
explicit changes in land use calculated from gridded data products and 2) scaling participation 
rates from the number of new Colorado residents. We provide brief information below for each 
hazard, with further details provided in the sector technical approach sections. 
  
3.3.1 Using ICLUS Data to Track Land Use Change with Population Growth 
For hazard/sector combinations where spatially explicit future land use was required, we 
matched land use projections from the US Environmental Protection Agency’s Integrated 
Climate and Land-Use Scenario (ICLUS) Version 2 project (U.S. Environmental Protection 
Agency, 2017) to associated changes in county-level population from the growth scenarios. 
ICLUS is a modeling framework that produces maps on 
a 295 ft. (90 m) grid of current and future land use in 
19 different categories (Figure 3-2). ICLUS maps show 
how development may look under various future 
scenarios. For this project we used geospatial data 
from ICLUS in several ways to provide information on 
how county-level changes in population translate into 
changes in exposure to flood, drought and wildfire.  
 
The first step for each sector that uses ICLUS data was 
to identify current and future and land use maps. For 
current data, we used the ICLUS 2010 layer. For future 
scenarios, we matched each of the county-level 
population projections in the Technical Update to the population of the ICLUS scenario and year 
(2020–2100) that was closest to the projection. As some ICLUS areas consist of multiple 
counties (micro or metro areas), we summed the Colorado Water Plan county population 
estimates across counties before selecting the best match. We then used the selected future 
ICLUS scenario/year layer as a representation of the spatial distribution of land use associated 
with the projected population from each future scenario.  
 
For flood and wildfire, we used ICLUS to track changes in the number and value of exposed 
buildings in conjunction with building replacement costs from the Federal Emergency 
Management Agency’s Hazus dataset (Federal Emergency Management Agency, 2015). 
Importantly, these data do not correspond to building value (i.e., the price you would pay to 
purchase it), but rather the cost of materials and labor to repair and replace a damaged 
structure. To connect each ICLUS land use type to a building replacement cost from Hazus, we 
spatially overlaid the two datasets. We then calculated the areal fraction of each land use 
category from the ICLUS 2010 layer within every Hazus census block. We then multiplied the 
resultant values by the total replacement cost of buildings within a given census block to get 
the area-weighted replacement cost value for every ICLUS category in that block. Next, we 

Figure 3-2. Land use classes used in ICLUS Version 2. 
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averaged building replacement cost per ICLUS category in every Colorado county. We then 
assigned the per-category values to the ICLUS land use layer to create a new grid of building 
replacement costs for the current population scenario.  
 
For the 2050 population growth scenarios, we tracked changes to the ICLUS land use pixel 
values and assigned a new building replacement cost whenever a given grid cell changed from 
one category to another. For example, if one grid cell changed from cropland in the current 
scenario to suburban in the future, then we would change the cropland building replacement 
cost to the suburban building replacement cost for that county. It is important to note that the 
building replacement cost for a given land use type does not change in value from current to 
future scenarios. Instead, all changes to building replacement costs within a county are caused 
by ICLUS pixels changing from one land use type to another. If the land use type does not 
change, then there is no change in building replacement cost. In general, population growth 
tended to increase the value of structures exposed to flood and wildfire as development 
intensifies in the 2050 scenarios. 
 
The sections below explain in further detail how we integrated ICLUS and other datasets into 
our population change scenarios. More information can also be found in the text for each 
sector in Sections 5,6, and 7. 
 
3.3.2 Flood 
For the buildings sector, we used geospatial data from ICLUS to provide information on how 
county-level changes in population would lead to increased development in and near mapped 
floodplains. Across all counties, we assumed that local regulations will prevent development 
within mapped 100-year floodplains, but that future development will be unrestricted in the 
zone between the 100-year and 500-year floodplains. Thus, we calculated the change in 
building replacement cost between the 100 and 500-year floodplains for each population 
growth scenario. There was insufficient information on how bridge size and location would be 
affected by growth, so we did not apply population scenarios to these estimates. 
 
3.3.3 Drought 
The multiple drought sectors required different approaches when taking population change 
into account. For the crops sector, we used the associated change in irrigated acres for each 
population scenario from the Technical Update in order to estimate future production (CWCB, 
2019 2(3)). For cattle, we scaled total pasture and grassland per county by the ICLUS-estimated 
change in pasture and grazing land use pixel types. For the two recreation sectors, changes in 
population were used to increase the total baseline and annual user days based on historic 
rates of Colorado residents participating in rafting and skiing. Increasing user days had the 
effect of producing larger swings between drought and non-drought years. In other words, the 
good years, with long ski and rafting seasons, became better and the bad years, with short ski 
and rafting seasons, became worse relative to the new baseline.  
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3.3.4 Wildfire 
We used ICLUS for the two wildfire sectors through two primary pathways: changes in building 
replacement cost and change in the number of buildings. For the buildings sector, we calculated 
new building replacement costs as we did above based on changes to ICLUS land use types. We 
also used various ICLUS land use types to mask heavily urban areas from potential wildfire 
hazards, as was done in the Colorado Wildfire Risk Assessment (CO-WRA) 2017 Update 
(Colorado State Forest Service, 2018). For the suppression sector, we created a baseline count 
of the number of buildings per land use type based on ICLUS data and Microsoft’s building 
footprint database (Microsoft, 2018). Similar to how we calculated changes in building 
replacement costs, we updated building counts for the population growth scenarios based on 
changes in ICLUS land use type. 
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4 Combining Scenarios and Computing Expected Annual Damages 
 
4.1 Climate-Population Scenario Combinations 
We analyzed the three climate and four population scenarios both independently as well as in 
all possible arrangements, giving a total of twelve unique climate-population combinations 
(Figure 4-1.). The following section defines expected annual damages (i.e., the economic cost 
given for each hazard sector climate-population scenario combination) and how we calculated 
them for each hazard. These are the results presented in the online interactive visualization 
dashboards. 

 
Figure 4-1. Scenario matrix showing the possible combinations of the three climate scenarios and four population scenarios. 

4.2 Computing Expected Annual Damages 
Results in the online interactive visualization tool are displayed as expected annual damages, 
which are a function of the hazard magnitude, probability, and exposed assets. Often climate 
change impacts are presented as the damage caused by a single event with an associated 
probability. For example, flood damages are typically given in reference to the 100-year event, 
which has a 1% annual probability of occurring. Thus, if total damages for the 100-year event 
were estimated at $1,000,000, the expected annual damage from events of that size would be 
$10,000 (1% of $1,000,000). While useful, this approach overlooks the economic impact of 
hazards of lower and higher probabilities. In this sense, a 500-year flood event would be rare, 
but it still contributes to expected annual damages as a function of the magnitude of the 
damage it inflicts and its probability of occurring (0.2%).  
 
In order to take all relevant, calculable damages into account, we treat expected annual 
damages as an integration of hazard magnitudes and probabilities: 
 

𝐸𝐸𝐸𝐸𝐸𝐸 =  �𝐸𝐸𝑑𝑑𝐸𝐸𝐸𝐸𝑑𝑑 
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where 𝐸𝐸𝐸𝐸𝐸𝐸 is expected annual damages (US dollars), 𝐸𝐸 is damages (US dollars), and 𝐸𝐸𝐸𝐸𝑑𝑑 is the 
annual exceedance probability. Performing this integration allows to compute the area under 
the damage-probability curve (Figure 4-2.) and make a more complete estimate of expected 
annual damages. One item to keep in mind is that this does not mean that each year will 
produce the same damages from natural hazards. Rather, some years will have high damages, 
while others will have minimal damages, but overall there is an average monetary impact one 
should expect to incur over time. 
 

 
Figure 4-2. A conceptual figure showing hazard damage decreasing as its probability increase. In this project, expected annual 
damages are treated as an integration of the hazard damage magnitudes and their associated probabilities. In a hypothetical 

scenario, the area under the dashed blue curve is smaller relative to the area under the dotted blue curve, showing conceptually 
how hazard damages and probability, as well as the resultant expected annual damages, are affected by climate change. 

Additionally, we perform these calculations for the current climate and population scenario 
along with all combinations of future climate change and population growth scenarios (Figure 
4-2.). We expect, in general, that: climate change will increase the frequency and intensity of 
flood, drought, and wildfire; population growth will increase hazard exposure; and the two 
combined will lead to greater expected annual damages. 
 
4.3 Adjusting to 2019 US Dollars 
The economic data used in this project were sourced from various reports and databases 
covering a range of years. To give all expected annual damages a common frame of reference, 
we adjusted the final value based from the source year of the economic data to 2019 US dollars 
using the Consumer Price Index (CPI) from the US Bureau of Labor statistics: 
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𝐸𝐸𝐸𝐸𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝐸𝐸𝐸𝐸𝐸𝐸𝑓𝑓
𝐶𝐶𝑑𝑑𝐶𝐶2019
𝐶𝐶𝑑𝑑𝐶𝐶𝑓𝑓

 

 
where 𝐸𝐸𝐸𝐸𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  is the value displayed in the online visualizations (2019 US dollars), 𝐸𝐸𝐸𝐸𝐸𝐸𝑓𝑓  is the 
value calculated in dollars from year 𝑖𝑖, 𝐶𝐶𝑑𝑑𝐶𝐶2019 is the 2019 CPI, and 𝐶𝐶𝑑𝑑𝐶𝐶𝑓𝑓 is the CPI from year 𝑖𝑖. 
 
4.4 Today’s Economy, Tomorrow’s Climate and Population  
Our approach considers how 2050 climate and population projections may affect Colorado’s 
economy given current conditions. We do not project changing economic parameters, such as 
supply, demand, prices, or technology, out to 2050.  
 
Critically, our analyses do not consider how asset prices (e.g., housing replacement values, crop 
prices, lift ticket costs, etc.) may change in the future. Instead, we assume that current asset 
prices remain constant (today’s economy, tomorrow’s climate and population). We operate 
under this assumption for two reasons. First, it is difficult to project price changes over decadal 
timescales. Macroeconomic forces controlling prices are stochastic and extremely difficult to 
predict. For example, commodity prices are subject to supply/demand, domestic governance, 
international relations, and other factors. Second, by holding asset prices constant, we can 
isolate the effects of climate change and population growth on hazard impacts. 
 
Additionally, this analysis does not apply discount rates when calculating 2050 expected annual 
damages. Our analyses also do not include an assessment of the level and timing of expenses 
associated with adaptive or mitigation measures.  Rather, our methods are aimed at assessing 
potential impacts of flood, drought, and wildfire assuming no adaptive or mitigative efforts are 
taken. Should future work look to more directly address the efficacy of adaptation and 
mitigation, then discounting would be particularly relevant for evaluating the balance between 
costs and benefits of those actions.  
  



FACE:Hazards Technical Report 14 

5 Technical Approach: Flood 
 
5.1 Flood Technical Approach: Buildings 
 
5.1.1 Overview 
Although flood damage can affect many different parts of the Colorado economy, we focused 
our flood damages analysis on losses to buildings and bridges, as these have historically been 
two of the largest sources of monetary damages from flooding. Below, we summarize the 
methods used for tabulating building losses in the baseline and future scenarios. The outputs of 
this analysis are changes in expected annual damages to buildings due to flooding. 
 
5.1.2 Data and Inputs 
We extracted baseline building damages by county from the planning-level loss estimates 
described in the Colorado Flood Hazard Mitigation Plan (FHMP; CWCB, 2013). Those planning-
level estimates were derived using a modeled 100-year floodplain for the entire state, 
combined with data from the national building stock inventory at a census block level. Flood 
depths for the modeled 100-year event were combined with depth-damage functions and 
building stock values to calculate baseline loss estimates by county under current conditions. 
 
5.1.2.1 Statewide Hazus-MH Inferred 100-year Floodplain and Census Data 
The FHMP baseline loss values used an inferred 100-year floodplain from Hazus-MH that 
characterizes exposure across the entire state. The Hazus-MH software uses USGS gage data 
along with available digital elevation models (DEMs) to develop statewide flood polygons and 
depth grids for the 100-year floodplain. These depth grids are then combined with census-level 
data on building stock inventories and depth-damage functions within Hazus-MH software to 
calculate building and content losses from the 100-year flood statewide. Further details on the 
Hazus-MH derived floodplain can be found in the Flood Hazard Mitigation Plan (CWCB, 2013). 
 
5.1.2.2 RiskMAP depth grids for 10 through 500-year events 
The state of Colorado does not consistently have floodplains mapped at multiple recurrence 
intervals (i.e. 5, 10, 25, 50 and 500-year flood). However, there are seven counties in Colorado 
in which there are detailed RiskMAP studies that delineate the depth and extent of 10-year 
through 500-year recurrence interval floodplains on the major rivers passing through them: 
Boulder, Jefferson, Larimer, Logan, Morgan, Sedgwick and Washington. We used the depth 
grids from these counties to estimate the ratio between expected annual damages (from all 
flood events) and the damages expected from just 100-year events as compiled in the FHMP.  
 
5.1.2.3 Building footprints attributed with replacement cost and first floor elevation 
We used the Microsoft building footprint dataset (Microsoft, 2018), attributed with 
replacement costs and first floor elevation from census block data, to feed into calculations of 
expected annual damage for multi-recurrence interval floodplains.  
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5.1.2.4 Climate Data and Scenarios 
We used downscaled hydrologic projections from a joint project between US Bureau of 
Reclamation, the National Center for Atmospheric Research (NCAR), the US Army Corps of 
Engineers, and others (Reclamation, 2014) to estimate the change in frequency of historical 
100-year flood events by mid-century. These data were available as annual maximum flow time 
series at approximately 1600 unique river reaches across the State of Colorado.  
 
5.1.2.5 Future Land Use Data for the Population Scenarios 
The ICLUS data discretizes current and future land uses into 19 unique categories on a ~300 ft 
(90 m) grid (U.S. Environmental Protection Agency, 2017). As summarized in Sections 3.3.1 and 
3.3.2, we used the ICLUS data to calculate the change in building value between the 100 and 
500-year floodplains for each population growth scenario, and compared this to the total 
change in building value per county to estimate what fraction of new building value occurs 
within flood hazard zones in each county. We used these data to calculate a state-wide scalar to 
adjust the total population change in each county to reflect changes in building exposure to 
flooding under each climate change scenario.   
 
 
5.1.3 Model Approach/Methods 
 
5.1.3.1 Translating Hazus-MH damages to Baseline Expected Annual Damages 
The results from the FHMP provide a planning-level summary of the total building loss that 
would be estimated to result from a 100-year event, by county. Since these events have a 1% 
probability of occurring in any given year, the expected damages from these events alone, in 
any given year, is 1% of this value. However, previous work has shown that the expected annual 
damages from a full range of potential flood events is substantially larger than the expected 
damages from the 100-year event alone (e.g., C. Wobus et al., 2019).  
 
Because the state of Colorado does not consistently have floodplains mapped at multiple 
recurrence intervals, we used the seven counties where we did have multi-recurrence interval 
flood mapping, along with building footprints within those counties, to calculate the ratio of 
EAD to expected damages from 100-year events alone. To do this, we overlaid building 
footprints onto RiskMAP depth grids for those counties where data were available, and we 
assigned a flood depth to each building footprint for each recurrence interval. We then used 
the depth-damage functions compiled in Hazus to estimate the dollar damages to each 
property for each recurrence interval. We aggregated these damages up to the county level for 
all recurrence interval events and compared the expected annual damage to the damages from 
100-year events alone for each county. From this analysis, we found that the EAD from all 
events is on average a factor of 2.5 higher than the expected value of 100-year damages alone. 
In other words, on average the baseline EAD can be derived by multiplying the total estimated 
losses from 100-year events, as described in the FHMP, by 0.025 (1% probability of a 100-year 
event times a factor of 2.5 to translate from 100-year expected damages to total EAD).  
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5.1.3.2 Applying the Climate Change Scenarios 
 
The majority of damaging flood events in Colorado occur between spring and fall (CWCB, 2013), 
so we used projected summertime temperatures to scale our flood damage projections. The 
average summertime temperature increase in Colorado is projected to be between 
approximately 1-3°C by 2050, depending on the emissions scenario. As detailed in Sect. 2.2.1, 
we selected an ensemble of model outputs representing approximately 2°C of summertime 
(May-September) warming by 2050  as our “moderate” scenario. We then extracted the annual 
maximum flow time series from this ensemble for each modeled river reach across the state, 
for a baseline period centered on 2019 (2009-2028) and a future period centered on 2050 
(2040-2059). The choice of 2019 as our baseline means that this ensemble already includes 
some climate warming compared to the late 20th century; however, this choice was made to 
avoid artifacts in the downscaled hydrology data, as described in Wobus et al. (2017).  
 
We used the baseline and future ensembles to calculate the parameters of an extreme value 
distribution, from which we calculated the 10-year through 200-year flow events in the baseline 
period, and the corresponding return period for each of those flow events in the future period 
(Figure 5-1.). The output from this analysis is a change factor on the frequency of the current 
100-year event for each river reach in the state. We then calculated a flow-weighted average 
change factor for each county to estimate the change in the future probability of the current 
100-year event. We assumed that the future ratio of EAD to expected 100-year damages 
remains the same (e.g., EAD is 2.5 times the expected 100-year damage). 
 

 
Figure 5-1. Example of changes in flow magnitude (vertical shifts in flow/RI curve) being translated to changes in flow frequency 

(e.g., horizontal shifts in flow/RI curve: in this example baseline 100 year event becomes ~45 year event under the moderate 
climate scenario and ~30 year event under the more severe scenario). 
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The benefit of the Reclamation (2014) dataset is that this product summarizes data from 
climate modeling output that is run through a hydrologic model. Thus, it includes, in a 
simplified way, both the spatial variability in projected changes in rainfall, as well as the 
relevant hydrologic processes that drive inland flooding (e.g., evapotranspiration, soil moisture, 
snowpack, and other land surface processes). However, this data product also requires multiple 
simplifying assumptions regarding atmospheric processes, as the data driving this model are 
ultimately compiled only at a global climate model grid cell resolution (Reclamation, 2014). 
Thus, while these outputs account for the land surface processes that create flooding, they are 
likely to under-represent the atmospheric processes that drive extreme precipitation.   
 
A simpler approach is to assume that all of the extreme events that cause flooding will change 
in proportion to the increase in rainfall potential created by increased moisture holding 
capacity of the atmosphere. This increase in rainfall potential is referred to as “Clausius-
Clapeyron scaling,” and results in an increase in precipitation of 7% per 1°C. Mahoney et al. 
(2018) present a summary of the recent literature regarding the scaling of extreme 
precipitation according to the Clausius-Clapeyron relationship. As a check on the USBR-derived 
results, we assumed that every event on each  magnitude-frequency curve increases in 
proportion to Clausius-Clapeyron scaling for a 2°C warmer atmosphere (i.e., each event 
increases in magnitude by 14%) and re-calculated the change in frequency of the 100-year 
event that results. These events were also aggregated by county using a flow-weighted 
averaging approach and compared to the state-wide results from the USBR analysis. At a state-
wide scale, the USBR and Clausius-Clapeyron derived climate change scenarios generated very 
similar results, lending support to the use of the simpler Clausius-Clapeyron scaling for the 
More Severe scenario, as described below.  
 
The More Severe climate scenario followed the Clausius-Clapeyron approach described above; 
specifically, we constructed a baseline magnitude-frequency curve for each river reach in the 
state using the downscaled hydrology data, we applied a change factor to the magnitude of 
each event, and we calculated the change in frequency of the 100-year event based on these 
calculations. The main difference in this approach is that we assumed a higher degree of 
summertime warming – 3°C rather than 2°C – and applied Clausius-Clapeyron scaling of 7% per 
degree to this higher warming amount, resulting in an increase of 21% for all return interval 
events.  
 
5.1.3.3 Applying the Population Scenarios 
In order to account for population change, we used the ICLUS (Sect. 3.3.1) change in land use 
for the Low, Medium, and High Growth scenarios. In this context, ICLUS allowed us to calculate 
how changes in floodplain development might influence flood risk in the future. For the future 
population scenarios, we assumed that growth remains restricted within all 100-year 
floodplains across the state, so that no future development occurs in these floodplains unless it 
is designed to withstand a 100-year flood event.  We thus focused on future development 
between the 100-year and 500-year floodplain boundaries and its influence on future flood risk. 
To do this, we overlaid ICLUS land use data with mapped floodplains throughout the state to 
represent the fraction of the development in each county that occurs inside versus outside of 



FACE:Hazards Technical Report 18 

flood hazard zones. We then selected 100-year and 500-year floodplain maps from each 
watershed in the state where both sets of maps were available. We overlaid these maps with 
the gridded building replacement cost data described in Sect. 3.3.1 to calculate the fractional 
change in the total value of buildings within the 100 and 500-year floodplains between the 
current and each future population scenario. 
 
5.1.4 Model Outputs 
The ultimate product created by the steps outlined in this document is a per-county expected 
annual damage for each combination of the three climate and four population scenarios (i.e., 
each county has 12 unique expected annual damage values). These are the data that can be 
found in the interactive online visualization tool.  
 
5.1.5 Assumptions and Limitations 
 
We developed our flood modeling approach to leverage available datasets across the state, 
while also expanding on the previous flood hazard work that was focused on risks around 100-
year floodplains (CWCB, 2013). Both the baseline analysis described in CWCB (2013) and the 
methods we used to extend these analyses introduce some limitations into the analysis, as 
summarized below. 
 

• The county-scale damages from 100-year floods as described in the state Flood 
Hazard Mitigation Plan are based on a generalized flow model, intersecting with 
buildings at a census block level. The limitations introduced from this analysis are 
described more fully in CWCB (2013). 

• There are only seven locations in the state where we were able to gather depth grids 
from multi-return interval events. We used those seven locations to overlay flood 
depths with building footprints and calculate EAD from a full range of floods in order 
to arrive at an average factor of 2.5 relating EAD to 100-year damages. However, 
there is likely to be considerable uncertainty around this scalar due to the small 
sample size.    

• The projected changes in flood damages under future climate change scenarios do 
not account for local-scale adaptations that could potentially limit damages in the 
future.  
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5.2 Flood Technical Approach: Bridges 
 
5.2.1 Overview 
As a state crisscrossed by rivers, bridges represent a valuable lifeline for many Colorado 
residents. Recent events, such as the 2013 flood, have highlighted how sensitive this 
infrastructure is to damage during high flows. Once impaired, bridge repairs and replacements 
can be extremely expensive. During the 2013 event alone Colorado Department of 
Transportation (CDOT) bridge costs exceeded $300M, with some repairs approaching $1000 per 
square foot of bridge deck area. With flood magnitudes and frequencies expected to increase in 
a warming world, it stands to reason that bridge repair and replacement costs will rise over the 
coming years. In the following sections, we describe how we used available data from the 2013 
flood to quantify the cost of bridge repairs due to historic and future flooding. 
 
5.2.2 Data and Inputs 
 
5.2.2.1 National Bridge Inventory and Related Geospatial Data 
The National Bridge Inventory (Federal Highway Administration, 2019) includes data on the 
location, size, condition, and other parameters on more than 8000 bridges across Colorado. For 
this work, we analyzed only CDOT-owned bridges that were built over waterways (i.e., we did 
not include bridges over roadways and railways because they are not exposed to flood risk). We 
combined these bridge data with streamlines from the National Hydrography Dataset (United 
States Geological Survey, 2019) and roadway information from OpenStreetMap 
(OpenStreetMap Contributors, 2019). 
 
5.2.2.2 2013 Bridge Damage and Streamflow Data 
CDOT provided a list of damaged bridges and their repair costs from the 2013 flood event 
(Colorado Department of Transportation, 2019). We used this information in conjunction with 
annual exceedance probability estimates (i.e., the probability of a given flow value being 
exceeded in a year) on various river reaches from Table 1 in Gochis et al. (2015). 
 
5.2.2.3 Climate Data and Scenarios 
The bridges sector uses the same climate data and methods as described in Sects. 2.2.1 and 
5.1.3.2. 
 
5.2.3 Model Approach/Methods 
The general approach for this sector was to first relate the probability of damage and cost of 
repair for various annual exceedance probabilities for damaged and undamaged bridges 
crossing river reaches with flow estimates in Gochis et al. (2015). Then, we used these 
relationships to estimate statewide bridge damages. 
 
5.2.3.1 Calculating Damage Probabilities and Repair Costs from 2013 Flood Event 
The first step was to link damaged and undamaged CDOT bridges to river reaches where annual 
exceedance probability estimates were available. For this step, we only included bridges that 
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crossed the streamline of the reach of interest (i.e., CDOT bridges that crossed nearby 
tributaries without flow estimates were not included). We counted bridges matching these 
criteria, classifying whether they were damaged or not. We then aggregated the damaged and 
undamaged bridge counts by annual exceedance probability to calculate the probability of 
damage at the 0.2%, 1%, and 4% levels. We found that the probability of damage decreased 
with increasing annual exceedance probabilities (Figure 5-2). 
 

  
Figure 5-2. Relationship between annual exceedance probability and damage probability. Points are from CDOT observed 

damages and the solid curve is fit to those data with an exponential linear model. 

We next calculated repair costs in terms of dollars per square foot for the damaged bridges at 
the three annual exceedance probability levels. For this we binned all bridge repair costs by 
their associated annual exceedance probability. Next, we summed the total deck area of CDOT-
reported damaged bridges per annual exceedance probability bin using bridge size data from 
the National Bridge Inventory. We then divided the total repair cost by total bridge area for the 
0.2%, 1%, and 4% annual exceedance probability bins. Similar to the damage probability curve, 
we found that repair costs decreased with increasing annual exceedance probability (Figure 5-; 
i.e., more frequent and less intense events have lower costs). We next computed a conditional 
repair cost as a function of the probability of damage and repair cost per annual exceedance 
probability level (Figure 5-3). 
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Figure 5-. Repair costs plotted against annual exceedance probability. Points are from CDOT observed damages and the solid 
curve is fit to those data with a 2nd-order polynomial linear model. Repair costs go to zero at annual exceedance probability = 

4.6%. 

 
Figure 5-3. Conditional repair cost (i.e., repair cost times damage probability) plotted against annual exceedance probability. 

5.2.3.2 Calculating Expected Annual Damages 
We then computed the expected annual damage value for all CDOT-owned bridges over 
waterways in the National Bridge Inventory. Here, the expected annual damage is a function of 
a bridge’s deck size, the annual exceedance probability, and the conditional repair cost. In this 
context, a high conditional repair cost has a low probability of occurring and a low conditional 
repair cost has a high probability. The final expected annual damage is an integration of all such 
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probabilities and magnitudes. To get county-level damages, we then summed the expected 
annual damages for all bridges within a given county. 
 
5.2.3.3 Accounting for Climate Change 
To account for the effect of increasing flood frequencies due to climate change, we used the 
approach outlined in Sect. 5.1.3.2 for the Moderate and More Severe climate scenarios. In this 
case, we repeated Section 5.2.3.2 with new annual exceedance probabilities. We did not 
perform any adjustments based on future population due to a lack of data on the relationship 
between population growth and changes to the number, size, and design criteria of bridges. 
Thus, the values given for a population scenario are equal to those for the associated climate 
scenario. 
 
5.2.4 Model Outputs 
The ultimate product created by the steps outlined in this document is a per-county expected 
annual damage for each combination of the three climate scenarios. These are the data that 
can be found in the interactive online visualization tool. In addition to this product is a series of 
intermediate model outputs listed below: 
 

1. Number of damaged and undamaged bridges per reach and return period from the 
2013 flood event 

2. Bridge-level EADs for historic and future climate conditions 
 
5.2.5 Assumptions and Limitations 

• For this analysis, we were limited to the bridge damage data from CDOT during the 
2013 flood event as they had complete documentation of the location of damaged 
bridges as well as the costs of repairs. We then extrapolated our findings to the rest 
of the state, but the limited CDOT data may not be representative of other locations. 

• The estimation of flood annual exceedance probabilities is inherently uncertain, 
particularly for extreme events. Thus, our relating of damage probabilities and repair 
costs to annual exceedance probabilities is affected by those uncertainties. 

• We could not estimate the effects of population growth because of a lack of 
information relating increased population to the size, location, and design criteria of 
bridges. 

  



FACE:Hazards Technical Report 23 

6 Technical Approach: Drought 
 
6.1 Drought Technical Approach: Crops 
 
6.1.1 Overview 
Crop growth in Colorado is inherently water limited. As such, prolonged periods of abnormally 
dry conditions, or droughts, can reduce yields and production (e.g. Zipper et al., 2016). This 
analysis has two objectives. First, we aim to quantify the impact of historical drought on 
Colorado’s crop production. Second, we seek to project the impact of future droughts on 
Colorado’s crop production, considering climate change and population growth scenarios.  
 
To accomplish these goals, we develop an empirical model of county-level production of major 
commodity crops (corn, wheat, hay, and sorghum) as a function of drought indicator metrics 
and meteorological data. The model is calibrated against historical data across a large 
geographic domain of 14 western US states.   
 
6.1.2 Data and Inputs 
 
6.1.2.1 Climate Data and Scenarios 
For the crops sector, we use precipitation and air temperature, in addition to derived drought 
metrics, as predictor variables in the empirical modeling framework. These data are extracted 
from a historical (1949 – 2014) meteorological data product (Maurer, Wood, Adam, 
Lettenmaier, & Nijssen, 2002), with a 1/8° spatial resolution and daily temporal resolution. 
These Baseline data are then adjusted for the Moderate and More Severe scenarios as noted in 
Section 2.2.2. 
 
6.1.2.2 Agricultural Data 
Agricultural data are needed for model calibration and interpretation. We retrieved crop 
production and price data from the USDA National Agricultural Statistics Service (NASS) (U.S. 
Department of Agriculture, 2020). Specifically, we obtained annual county-level corn, wheat, 
hay and sorghum production data between 1975 and 2018 for all western US states (AZ, CA, 
CO, ID, KS, MT, NE, NV, OK, OR, TX, UT, WA, and WY). In this context, production is a measure of 
a county’s total agricultural output, measured in either bushels or tons depending on the crop. 
 
Commodity prices typically exhibit strong inter- and intra-annual variability, responding strongly 
to factors influencing supply and demand in markets that can be global and local. Moreover, 
global commodity prices are typically insensitive to supply in Colorado. To avoid the influence 
of price volatility, we used 2011 commodity “base” prices (U.S. Department of Agriculture, 
2020). The “base” price establishes the commodity price against which further price 
movements are compared. In this way, we isolate the influence of climate on agricultural 
production and revenue, independent of macroeconomic influences. We adjusted 2011 prices 
(Table 6-1.) for inflation to 2019 nominal dollars using the consumer price index (BLS, 2020). 
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Table 6-1. 2011 commodity base prices. Data source: USDA NASS 

Commodity Price Unit  
Corn 6.02 $/BU 
Wheat 7.44 $/BU 
Hay 159.00 $/ton 
Sorghum 10.70 $/CWT 

 
6.1.3 Model Approach/Methods 
 
6.1.3.1 Annual Aridity Bins 
A key predictor variable in our model is the number of months in a year assigned to each of four 
different aridity bins. To quantify monthly aridity, we used the self-calibrated Palmer Drought 
Severity Index (scPDSI) (Wells, Goddard, & Hayes, 2004). This is a relative measure of aridity 
derived from monthly average temperature and precipitation data. Negative values of scPDSI 
indicate drier than normal conditions, whereas positive values indicate wetter than normal 
conditions.  
 
We calculated monthly scPDSI for each 1/8° grid cell of the meteorological data product (1949 – 
2014) using the “scPDSI” package (Zhong, Chen, Wang, & Lai, 2018) for the R scripting language 
(R Core Team, 2019). For future climate scenarios, we calculated scPDSI from climate-adjusted 
temperature and precipitation data, after a spin up period over one iteration of the historical 
data (1949 – 2014). The spin up period is necessary to establish “normal” climatic conditions, 
because scPDSI is a relative measure of aridity. We aggregated data to the county-scale by 
taking the mean scPDSI of all 1/8° grid cells located within a county.  
 
We categorized monthly scPDSI values into several aridity bins (Table 6-2.). That is, for each 
county and year, we enumerated the number of months in each scPDSI bin. For example, 
during a particularly dry year, a county might record 4 months in bin 1 (very dry conditions), 6 
months in bin 2 (dry conditions), and 2 months in bin 3 (wet conditions), and no months in bin 4 
(very wet conditions). Annual bin counts were used as predictor variables in our empirical 
model of crop production.   
 

Table 6-2. Aridity bins based on monthly scPDSI. 

Aridity bin scPDSI range Description 
1 scPDSI < -3 Very dry 
2 -3 < scPDSI < -1 Dry 
3 1 < scPDSI < 3 Wet 
4 3 < scPDSI Very wet 

 
6.1.3.2 Fixed effects model of crop production 
We used an empirical model to estimate the impact of drought and meteorological conditions 
on annual crop production. The spatial domain of the model includes all counties of western US 
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states, and the temporal domain spans from 1975–2018.  The model is formally considered a 
two-way fixed effects model (Equation 6-1).  
 

ln�𝑌𝑌𝑓𝑓𝑖𝑖
𝑗𝑗� = �𝛽𝛽𝑘𝑘𝐵𝐵𝑖𝑖𝑛𝑛𝑓𝑓𝑖𝑖𝑘𝑘

4 

𝑘𝑘=1

+ βX𝑋𝑋𝑓𝑓𝑖𝑖 + 𝛼𝛼𝑓𝑓 + 𝛾𝛾𝑖𝑖 + ϵit
j  

Equation 6-1 

Where 𝑌𝑌𝑓𝑓𝑖𝑖
𝑗𝑗 is the production of commodity j in county i in year t. 𝐵𝐵𝑖𝑖𝑛𝑛𝑓𝑓𝑖𝑖𝑘𝑘  denotes the number of 

months within the kth aridity bin (Table 6-2.) in county i during year t. 𝑋𝑋𝑓𝑓𝑖𝑖 is a vector of average 
temperature, total precipitation, average temperature squared, and total precipitation squared  
in county i during year t. A spatial fixed effects parameter, 𝛼𝛼𝑓𝑓, controls for temporally invariant 
differences between counties affecting crop production (e.g. soil quality and the size of the 
agricultural industry). While irrigation was not explicitly accounted for in this model, its effect 
on crop production is implicitly captured by spatial fixed effects parameter. Additionally, a 
temporal fixed effects parameter, 𝛾𝛾𝑖𝑖, accounts for spatially homogenous year-to-year 
differences affecting crop production (e.g. macro-economic trends). Model coefficients 𝛽𝛽𝑘𝑘 and 
βX describe the effects of aridity bins and meteorological conditions on crop production 
respectively. By computing log production, model coefficients are interpreted as the 
proportional change in production from a unit change in the respective response variable. 
Model parameters were estimated with the “plm” package (Croissant & Millo, 2008) in R, a set 
of functions for linear modeling with panel data.  
6.1.3.3 Estimating revenue anomalies 
To estimate the impact of drought conditions on crop revenue, we multiplied annual 
production anomalies by adjusted base unit commodity prices. The first step in this process is 
to estimate the annual effects of drought on crop production in each of Colorado’s counties. 
Annual effects quantify the proportional change in production due to drought conditions. For 
example, an annual effect of -0.1 on sorghum production in county i during year t would 
suggest that climatic conditions caused annual sorghum production to be 10% lower than 
normal. Annual effects are estimated by evaluating Equation 6-1 with intercept terms set to 
zero, leaving only the proportional influence of the climatic predictor variables on production. 
 
Next, we estimated production anomalies by multiplying annual effects for crop j in county i by 
the baseline production rates. Baseline production rates were set equal to the mean annual 
commodity production rates in a county from 1990–2018, which was evaluated directly from 
NASS data. Finally, we estimated revenue anomalies by multiplying production anomalies by 
base unit commodity prices.  
 
6.1.3.4 Accounting for population growth 
Urbanization is likely to decrease the amount of agricultural acreage in rotation, in part because 
water resources will be transferred away from agricultural producers to meet the domestic 
needs of new residents and the footprint of urban areas will encroach on current agricultural 
lands. We account for this concept by using 2050 projections of irrigated land changes for three 
population growth scenarios in the Technical Update (CWCB, 2019 2(3)). We assume 
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production decreases proportionally with acreage reductions, thereby causing a uniform 
decrease in crop production from historical baseline levels.    
 
The 2019 Technical Update presented year 2050 projections for urbanization of irrigated 
acreage for five economic planning scenarios (CWCB, 2019 2(3)). We disaggregated basin-scale 
projected changes in irrigated acreage to the county-level for three future growth scenarios: 
“weak economy”, “business as usual”, and “hot growth”. These scenarios map directly to the 
Low, Medium, and High Growth population scenarios used in this project. Because the 
Technical Update does not project changes in non-irrigated acreage, we assumed that percent 
reductions in total acreage will be equal to percent reductions in irrigated acreage.   
 
Additionally, population growth in Colorado is likely to increase demand for locally grown crops 
as consumer preferences are becoming more geared to local choices. While this is an important 
consideration for the future of agricultural production in Colorado, we did not account for this 
in our models. Also, our models did not account for future changes in technology that change 
increase crop yields (e.g. genetic modifications, harvesting or planting technology, etc.). Rather, 
our models assume that today’s agricultural technologies remain static into the future (2050). 
 
6.1.3.5 Model Outputs 
Model outputs have an annual timestep and county-scale spatial resolution. Our model directly 
calculates the annual effect of climate conditions on crop production, as explained above. From 
this, we approximate annual production and revenue anomalies. Outputs are generated for all 
arrangements of climate and population change scenarios (Figure 4-1.). County-level annual 
revenue anomalies are synthesized in terms of expected annual damages, which describe the 
likely impacts of the average drought condition on a county’s crop production. Expected annual 
damage integrates revenue losses across all drought events and is therefore a probabilistic 
index of drought risk.  
 
6.1.4 Assumptions and Limitations 

• The model does not consider changes in agricultural technology. For example, 
engineering advancements may develop drought resistant crop strains or advances in 
irrigation efficiency that can improve crop yields during drought years. The model 
assumes today’s technology, under tomorrows climate and population.  

• The model does not account for potential changes in crop production due to carbon 
dioxide fertilization. The empirical nature of our model is not suited to capture 
biophysical dynamics such as carbon fertilization. This assumption may result in over 
projections of negative production anomalies due to drought by 2050.  

• The model does not account for changing crop demand. As Colorado’s population 
grows, it is likely that in-state crop demand will also grow. While important, this is not 
considered by our model, which is focused on production.  

• We assume that future changes in non-irrigated acreage are equal to changes in 
irrigated acreage due to population growth. Changes in irrigated acreage are likely to be 
larger than non-irrigated acreage because some land will be taken out of rotation simply 
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from the acquisition of water rights for other uses. This is sometimes called “buy and 
dry”. 

• The model does not differentiate between irrigated and non-irrigated crop production. 
This is due to the paucity of irrigation-specific historical crop production data. However, 
because the model is trained on historical crop production data, the effects of irrigation 
are implicitly captured in the spatial- and temporal-fixed effect parameters.  
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6.2 Drought Technical Approach: Cattle 
6.2.1 Overview 
Contributing $4.0B in annual revenue (U.S. Department of Agriculture, 2020), the cattle 
industry is critically important to Colorado’s economy and the makeup of rural communities. At 
nearly $2B annually, feed costs for the state’s 2.85M cattle comprise a large percentage of 
industry costs (U.S. Department of Agriculture, 2020). Therefore, any event that raises feed 
costs will inherently have a negative effect Colorado’s cattle industry.  
 
As a semi-arid state, Colorado is uniquely exposed to the threats of drought, with two severe, 
spatially extensive droughts occurring in the past 20 years alone. In both cases, the onset of 
drought corresponded with a sharp increase in feed costs. According to data from the United 
States Department of Agriculture’s (USDA) Economic Research Service (ERS), feed costs 
increased by $165M from 2001 to 2002 and by $408M from 2010 to 2011 (U.S. Department of 
Agriculture, 2019). Although such increases can occur for market-related reasons and 
macroeconomic trends, they are mostly ascribable to increased demand and reduced 
production during drought (e.g., Countryman, Paarlberg, & Lee, 2016) 
 
In this context, increased feed costs are a direct, first-order impact of drought, an effect that is 
magnified when drought is spatially extensive and commodity prices are elevated. In Colorado, 
purchasing extra feed to account for reduced range and pasture productivity is an integral 
component of drought adaptation decision-making (Rojas-Downing, Nejadhashemi, Harrigan, & 
Woznicki, 2017) as the majority of ranches are dryland operations. Without irrigation 
capabilities, one key question when drought strikes is: “How much extra feed do I need to 
purchase for my herd?” Although many ranchers will sell or move cattle during drought, 
increased feed costs are often their largest expense. 
 
For the cattle sector, we use a combination of land cover data, remote sensing observations, 
drought severity metrics, and population growth data to estimate increased feed costs due to 
drought across Colorado. 
 
6.2.2 Data and Inputs 
 
6.2.2.1 Land Cover Data  
In our analysis, we focused only on areas in Colorado classified as either pasture or grassland by 
the National Land Cover Dataset (NLCD; Yang et al., 2018). The NLCD maps land cover across 
the United States at a 98.4 ft. (30 m) spatial resolution in 20 unique categories. In this work, we 
selected grid cells with a value of 71 (grassland) or 81 (pasture). These were further filtered to 
only areas below an average elevation of 10,830 ft. (3300 m) to remove alpine meadows from 
the analysis. 
 
Additional land cover data for the population growth scenarios were derived from the EPA’s 
ICLUS dataset (Sect. 3.3.1). Specifically, we focused on changes to grazing (ICLUS code 5) and 
pasture (ICLUS code 6) area per county for Low, Medium, and High Growth. 
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6.2.2.2 Satellite Remote Sensing  
For this work, we used data from the Moderate Resolution Imaging Spectroradiometer 
(MODIS), a sensor mounted to NASA’s Terra and Aqua satellites, to evaluate how pasture and 
grassland vegetation responds to drought in our study area. In this context, the normalized 
difference vegetation index (NDVI) is a useful proxy for vegetation greenness and productivity. 
Specifically, we utilized the MODIS MCD43A4_NDVI product in Google Earth Engine (GEE; 
Gorelick et al., 2017). It is produced as a 16-day average on a 1640 ft. (500 m) grid spacing using 
the following equation: 
 

𝑁𝑁𝐸𝐸𝑁𝑁𝐶𝐶 =  
𝑁𝑁𝐶𝐶𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑑𝑑
𝑁𝑁𝐶𝐶𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑑𝑑

 

 
Where NDVI is a dimensionless value between -1 and 1 (1 = maximum greenness/productivity), 
and NIR and Red are the reflectance values in the near infrared and red wavelengths, 
respectively. For the MCD43A4_NDVI product, NIR corresponds to MODIS band 2 (841–876 nm) 
and Red corresponds to band 1 (620–670 nm). We took the annual maximum NDVI value for 
each pixel to create an annual composite could be used to estimate productivity.  
 
6.2.2.3 Climate Data and Scenarios 
In order to extend the productivity analysis back in time before the MODIS satellite record (pre-
2000) and into future climate scenarios, we accessed high-resolution climate data from which 
we could compute an scPDSI time series. For details on these data and methods, please see 
Sects. 6.1.2.1 and 6.1.3.1.  
 
6.2.2.4 Agricultural Data 
Typical cattle forage has a lower energy content than most feed grains, making it necessary to 
relate the caloric content per mass of forage to the same for corn, the most commonly used 
feed grain. For this, we used Table 4 from Nutrition and Feeding of the Cow-Calf Herd: Essential 
Nutrients, Feed Classification and Nutrient Content of Feeds (Hall, Seay, & Baker, 2009). We also 
required information on the cost per unit of corn to compute feed cost anomalies during 
drought. We used the 2019 average per-bushel price of corn from the USDA. As a feed grain, a 
bushel of corn weighs 56 lbs. (25.6 kg) with a 2019 average price of $3.75 (U.S. Department of 
Agriculture, 2020). Supplementary information on Colorado’s cattle industry came from the 
USDA’s NASS. 
 
6.2.3 Model Approach/Methods 
 
6.2.3.1 County-level scPDSI 
We aggregated grid-cell scPDSI (Sect. 6.1.3.1) values to the county level to get a monthly 
average scPDSI for each county. For this sector, we also averaged the county-level scPDSI values 
from April–October to isolate scPDSI during the growing season. 
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6.2.3.2 Calculating Land Surface Productivity with Remote Sensing and Climate Data 
From 2000–2014, we computed the maximum annual NDVI for each MODIS grid cell in 
Colorado using GEE. Next, we masked these values to include only those corresponding to 
pasture and grassland cells from the NLCD. Then we took a county-level average of all cells 
matching these criteria to create an annual time series of county-averaged maximum NDVI 
across Colorado.  
 
We next joined the NDVI data to county-level growing season scPDSI from 2000–2014. For each 
county, we then created a linear regression model that would estimate NDVI based on scPDSI: 
 

𝑁𝑁𝐸𝐸𝑁𝑁𝐶𝐶𝑒𝑒𝑒𝑒𝑖𝑖 = 𝛽𝛽 +  𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝐸𝐸𝛼𝛼𝐶𝐶 
 
where 𝑁𝑁𝐸𝐸𝑁𝑁𝐶𝐶𝑒𝑒𝑒𝑒𝑖𝑖 is the NDVI value estimated by the model, 𝛽𝛽 is the y-intercept, 𝛼𝛼 is the slope of 
the relationship, and 𝛼𝛼𝛼𝛼𝑑𝑑𝐸𝐸𝛼𝛼𝐶𝐶 is the county-level growing season scPDSI. In essence, this model 
relates vegetation greenness (NDVI) to drought severity (scPDSI), which allows us to compute 
past and future productivity as a function of our previously calculated scPDSI values at the 
county level across Colorado. On average, scPDSI explained 39.4% of the variance in NDVI, with 
75.5% of counties expressing statistically significant relationships (at the 95% level) between 
the two variables. 
 
6.2.3.3 Calculating Baseline Land Surface Productivity and Anomalies 
We then applied the linear model from the previous section to the historic scPDSI time series 
for each county to get estimated values of annual maximum NDVI from 1949–2014. In order to 
convert these values to land surface productivity, we used the equation from Thoma et al. 
(2002): 
 

𝐿𝐿𝐵𝐵𝐿𝐿 = −2739 +  25.0𝑁𝑁𝐸𝐸𝑁𝑁𝐶𝐶𝑒𝑒𝑒𝑒𝑖𝑖 
 
where 𝐿𝐿𝐵𝐵𝐿𝐿 is live biomass (kg ha-1). This gave us a time series for each county of 66 annual 
productivity estimates, the average of which we considered to be baseline productivity (𝐿𝐿𝐵𝐵𝐿𝐿������). 
We then calculated the annual productivity anomaly as the difference between 𝐿𝐿𝐵𝐵𝐿𝐿������ and the 
estimated 𝐿𝐿𝐵𝐵𝐿𝐿 for that year. If the productivity anomaly were negative (i.e., 𝐿𝐿𝐵𝐵𝐿𝐿 is less than 
the 𝐿𝐿𝐵𝐵𝐿𝐿������), then we assumed extra feed would need to be purchased. 
 
6.2.3.4 Estimating Historic Feed Costs from Reduced Productivity 
Once we had our annual time series of productivity anomalies, we needed to estimate the cost 
of extra feed purchases. First, we converted the productivity anomaly in kg ha-1 to a total 
amount of biomass (kg) by multiplying the anomaly by the total area of pasture and grassland 
(Sect. 6.2.2.1) in that county. We then multiplied the average energy ratio between pasture 
forage and feed corn (0.73) by the total biomass to estimate the total weight of corn that would 
need to be purchased to meet the energy deficit caused by drought-induced productivity 
losses. Finally, we divided this value by the weight per bushel of corn and multiplied the 
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resultant value by the 2019 average corn price per bushel to get a county-level feed cost for 
years where productivity was below the baseline. 
 
6.2.3.5 Calculating Expected Annual Damages  
We then used the time series of extra feed costs to calculate an expected annual damage for 
drought years, where the expected annual damage is a function of the probability of a given 
productivity anomaly occurring and its magnitude in terms in feed costs. In this context, a high 
feed cost value has a low probability of occurring and a low feed cost has a high probability. The 
final expected annual damage is an integration of all such probabilities and magnitudes (Sect. 
4.2). 
 
6.2.3.6 Accounting for Climate and Population Change 
After computing expected annual damages for current climate and population levels, we 
followed the steps above taking both climate change and population growth into account. For 
climate change, we recomputed the scPDSI time series after adjusting the air temperature and 
precipitation by the scalars for the Moderate and More Severe climate change scenarios (Sect. 
2.2.2). We next made new time series of 𝑁𝑁𝐸𝐸𝑁𝑁𝐶𝐶𝑒𝑒𝑒𝑒𝑖𝑖 by plugging the Moderate and More Severe 
scPDSI values into the linear model created from the MODIS NDVI and Baseline climate data. 
Once we had new 𝑁𝑁𝐸𝐸𝑁𝑁𝐶𝐶𝑒𝑒𝑒𝑒𝑖𝑖 values, we followed the steps in Sects. 6.2.3.3–6.2.3.5 to get 
expected annual damages for the Moderate and More Severe scenarios. 
 
Finally, we adjusted the expected annual damages for three future population scenarios: Low, 
Medium, and High Growth. We did this by multiplying the NLCD pasture and grassland area in 
each county by the relative change in ICLUS pasture and grazing land from the current to future 
scenarios. We recomputed baseline productivity, 𝐿𝐿𝐵𝐵𝐿𝐿������, taking the new land area into account 
under the assumption that this would represent a new normal in future scenarios (i.e., less land 
available for cattle, fewer cattle to feed). We then reran productivity anomalies with the new 
land area and baseline productivity values, along with Sects. 6.2.3.4 and 6.2.3.5 to get adjusted 
expected annual damages for the population scenarios. In contrast to most other sectors, the 
reduced pasture area tended to slightly lower expected annual damages. 
 
6.2.4 Model Outputs 
The ultimate product created by the steps outlined in this document is a per-county expected 
annual damage for each combination of the three climate and four population scenarios (i.e., 
each county has 12 unique expected annual damage values). These are the data that can be 
found in the interactive online visualization tool. In addition to this product is a series of 
intermediate model outputs listed below: 
 

1. County-level monthly scPDSI time series (1949–2014) for historic and future climatic 
conditions 

2. Spatially continuous raster maps of annual maximum NDVI across Colorado 
3. Annual time series (2000–2014) of maximum county-averaged NDVI for pasture and 

grassland grid cells 
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4. County-level time series of estimated annual maximum NDVI as a function of growing 
season scPDSI for historic and future climatic conditions 

5. County-level time series (1949–2014) of estimated productivity and productivity 
anomalies for historic and future climatic conditions 

6. County-level time series (1949–2014) of feed costs for historic and future climatic 
conditions 

 
6.2.5 Assumptions and Limitations 

• The model does not consider changes in agricultural technology. For example, 
engineering advancements may develop drought resistant forage strains or improved 
harvesting and storage techniques. The model assumes today’s technology, under 
tomorrows climate and population.  

• The model does not account for potential changes in forage production due to carbon 
dioxide fertilization. 

• Ranchers have many options when it comes to responding to drought. Increased feed 
purchasing is just one response to keep herd sizes at or near pre-drought levels. 

• There is uncertainty in both our estimates of productivity from NDVI and our 
calculations of NDVI from scPDSI. These propagate into uncertainty in the final expected 
annual damages.  



FACE:Hazards Technical Report 33 

6.3 Drought Technical Approach: Skiing 
 
6.3.1 Overview 
According to the 2019 Colorado Statewide Comprehensive Outdoor Recreation Plan, the ski 
industry provides the highest level of statewide outdoor recreation spending while ranking 7th 
in terms of annual user days by residents (Colorado Parks and Wildlife, 2018). In this report, a 
user day is a single daily visit by one person (i.e., if one person skied 10 days at Colorado ski 
areas, they would account for 10 user days). Between winters 2006–2007 and 2015–2016, 
Colorado resorts averaged 12.2M user days per year. In terms of trips, those made for skiing 
comprised 4% of visitor volumes, while producing 13% of all expenditures (Longwoods 
International, 2019). Depending on the source, skiing and other snow sports add $1.5B to $3.8B 
in economic value to the state annually (Awuku-Budu & Franks, 2019; Hagenstad, Burakowski, 
& Hill, 2018). Other studies estimate skiing and snowboarding related spending to be between 
$2.5B and $9.3B (Colorado Parks and Wildlife, 2018; Longwoods International, 2019). Although 
the total numbers vary, they tell the same story: the ski industry is a substantial contributor to 
Colorado’s recreation economy. 
 
Looming large over the ski industry is how changes to climate will affect annual skiing visits in 
Colorado and, as a result, annual revenue. Previous research has documented the warming-
driven threats faced by the ski industry due to its inherent temperature sensitivity (Burakowski 
& Magnusson, 2012; Hagenstad et al., 2018; D. Scott & McBoyle, 2007; D. Scott, McBoyle, 
Minogue, & Mills, 2006; Steiger, Scott, Abegg, Pons, & Aall, 2019; Cameron Wobus, Small, et al., 
2017). These reports have found, in general, as air temperature increases, the amount of 
precipitation falling as snow declines, which tends to shorten ski seasons and reduce visitor 
volumes. However, snowy areas of the US have not responded equally to rising air 
temperatures, nor are they expected to with future warming. There is therefore a need to make 
a detailed analysis of how Colorado user days have responded historically to snow levels and 
project how they may do so in the future. 
 
To do so requires an approach that can simulate snow accumulation and melt at Colorado ski 
resorts under both historic and future climatic conditions. In this sense, a snow model forced by 
readily available air temperature and precipitation data offers a promising path forward. 
However, a model cannot be used on its own, as an effective model must be validated against 
reliable observed data to demonstrate its accuracy. In the context of snow, this means 
automated in situ snowpack measurements from the Snowpack Telemetry (SNOTEL) network 
from the Natural Resources Conservation Service and remotely sensed snow cover duration 
data from satellite-borne sensors. 
 
In addition to climate change, it is important to consider potential future population increases 
in Colorado. The state forecasts 2050 populations to be between 7.7M and 9.3M residents, a 
43.5% to 74.0% increase over 2014 levels. Thus, a complete analysis of future changes to the 
Colorado ski industry requires an in-depth accounting of user days and their sensitivity to 
climate, an estimate of the ski-related expenditures tied to each user day, an evaluation of the 
frequency with which Colorado residents ski, and future climate and population projections. For 
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this work, we rely on ski resort snow simulations, satellite snow cover data, as well as various 
user and economic statistics to quantify the cost of reduced skier user days under historic and 
future drought conditions. 
 
6.3.2 Data and Inputs 
 
6.3.2.1 Climate Data and Scenarios 
To force our snow model, we used daily air temperature and precipitation from the Maurer et 
al. (2002) dataset as described in Sect. 6.1.2.1. Monthly temperature offsets and precipitation 
change factors are then applied to historical meteorological data (Sect. 2.2.2) to approximate 
2050 climate conditions.  
 
6.3.2.2 Satellite Remote Sensing  
Similar to the NDVI metric used in Sect. 6.2.2.2, we computed the annual normalized difference 
snow index (NDSI) from MODIS to determine whether an area of land is snow covered or not. 
Specifically, we utilized the MOD10A1.006 Terra snow cover product in Google Earth Engine 
(GEE; Gorelick et al., 2017) using the SnowCloud processing framework (Sproles, Crumley, 
Nolin, Mar, & Moreno, 2018). MOD10A1.006 is a daily product on a 1640 ft. (500 m) grid that 
calculates snow cover presence/absence using the following equation: 
 

𝑁𝑁𝐸𝐸𝛼𝛼𝐶𝐶 =  
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝑛𝑛 − 𝛼𝛼𝑆𝑆𝐶𝐶𝑁𝑁1
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝑛𝑛 + 𝛼𝛼𝑆𝑆𝐶𝐶𝑁𝑁1

 

 
Where NDSI is a dimensionless value between -1 and 1 (1 = maximum snow likelihood), and 
Green and SWIR1 are the reflectance values in the green and shortwave infrared wavelengths, 
respectively. For MOD10A1.006, Green corresponds to MODIS band 4 (545–565 nm) and SWIR1 
corresponds to band 6 (1628–1652 nm). In SnowCloud, NDSI values >= 0.4 are indicative of 
snow cover, with values < 0.4 corresponding to no snow cover. For each water year (Oct. 1 to 
Sept. 30), we computed the snow cover duration for each MODIS grid cell in Colorado based on 
the number of days a pixel was identified as having snow cover. 
 
6.3.2.3 Ski Resort Data 
Colorado skier user day data are derived from Wobus et al. (2017) for the 2007–2016 seasons 
and from Shelesky (2016) for the 2001–2006 seasons. The latter manuscript also included per-
resort user day data for the 1994–2004 ski seasons from Colorado Ski Country USA. In order to 
allocate the total user days into Colorado residents and non-residents, we used the reported 
split of 5.6M resident user days to 7.0M non-resident user days from information on the 2015 
Colorado Ski Country USA economic impact report (Colorado Ski Country USA, 2015). We also 
used ski area shapefiles from the US Forest Service (2009) when analyzing snow cover duration 
(Sect. 6.3.2.2 above) at the resorts in our analysis. Published lift capacities came from 
Skicentral.com. 
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6.3.2.4 Skiing Expenditures 
Depending on the data source, the total annual economic impact of the ski industry in Colorado 
varies by several billion dollars. In an unpublished 2015 report, Colorado Ski Country USA 
calculates a $4.8B annual impact from the ski industry. The US Bureau of Economic Analysis 
estimates that skiing and snowboarding produce an annual impact of ~$3B for the United 
States as a whole, with $1.5B of economic impact from all snowsports in Colorado (Awuku-
Budu & Franks, 2019). Similarly, a 2018 Protect Our Winters (POW) report estimates 
snowsports-related economic contributions in Colorado amount to $2.6B annually (Hagenstad 
et al., 2018). In these widely circulated reports, economic impact includes not only direct ski 
visit expenditures, but all also indirect and induced effects. Many such studies rely on the 
IMPLAN input-output model that uses region- and industry-specific multipliers to arrive at a 
final impact dollar amount. The structure of these models and their multipliers are often 
proprietary, which limits reproducibility and a robust quantification of direct expenditures. 
However, Table 6-3. below provides an estimate of per-user economic impact calculated by 
dividing total economic impact by annual user days. 
 
An alternative approach that limits assumptions on economic processes and indirect/induced 
effects is to examine direct per-user-day expenditures. Published values for such expenditures 
also vary, depending on the report’s source (Table 6-3.). Highlighting the inherent uncertainties 
of quantifying expenditures and total impact is the fact that the per-user-day expenditures from 
these sources are similar to those values calculated by diving total economic impact by user 
days as noted in the above paragraph. On the low side, the POW report indicates users spend 
$159.34 per day, while, on the high side, the Statewide Comprehensive Outdoor Recreation 
Plan puts that figure at up to $387.67. The Colorado Travel Year 2018 and The Economic 
Contributions of Outdoor Recreation reports put daily expenditures within the range of the low 
and high values. Overall, the various reports give an average daily expenditure of $286.73 with 
a standard error of ±$40.53 in 2019 US dollars. 
 

Table 6-3. Economic impact plus user day and equipment expenditures estimate by various sources for the ski industry. 

Economic 
impact (109 

USD) 

Expenditures per user day (USD) Equipment 
expenditures 

(USD) 

Source 

4.8* 398.93† NA (Colorado Ski Country USA, 
2015) 

1.5* 124.54† NA (Awuku-Budu & Franks, 2019) 
NA 243.00–387.67 603 (Colorado Parks and Wildlife, 

2018) 
2.6* 159.34 NA (Hagenstad et al., 2018) 
NA 249.00 NA (Longwoods International, 2019) 
NA 233.00–383.00 ≥300.00+ (Outdoor Industry Association, 

2017) 
* Economic impact includes direct, indirect, and induced effects 
† Computed by dividing cited economic impact by average annual skier user days (includes direct and induced 
impacts) 
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6.3.3 Model Approach/Methods 
 
6.3.3.1 Modeling Snow Cover at Colorado Ski Resorts 
We simulated snow accumulation and ablation at Colorado ski resorts with SNOW-17, a widely 
used model developed by the National Weather Service (Anderson, 2006). SNOW-17 is a 
temperature index model that is forced with daily precipitation and air temperature data, while 
otherwise data-intensive energy balance terms are simplified in terms of air temperature only 
(Hock, 2003). Before running the ski resort models, we first needed to calibrate model 
parameters in order to ensure we were accurately simulating the evolution of snow 
accumulation and melt at each site. Previous research has shown snow models exhibit spatially 
variable performance, meaning it is not appropriate to directly transfer model parameters from 
one location to another (Etchevers et al., 2004; Rutter et al., 2009). As a relatively simple model 
that relies on precise parameterization, this is especially true for SNOW-17. 
 
To do this we located the nearest SNOTEL site to each resort. We then forced SNOW-17 with 
SNOTEL-observed daily air temperature and precipitation, and calibrated the model using a 
shuffled complex evolution algorithm (Duan, 1993). In this framework, the model is run a large 
number of times with changing parameter values in order to find the near-optimal parameter 
set that minimizes the root mean squared error between daily observed SNOTEL snow water 
equivalent (SWE, the liquid depth of water that would remain if all snow were melted) and 
model simulated SWE.  
 
We then built two models at each ski resort using the calibrated parameters from the nearest 
optimized SNOTEL model. One model represented the base elevation and another the summit, 
locations chosen to bracket the range of snow conditions at a given ski resort. In order to force 
these models, we extracted a time series of daily air temperature and precipitation from the 
nearest climate data grid cell (Sect. 6.3.2.1). These time series were then adjusted for elevation 
using monthly lapse rates (i.e., the change in air temperature and precipitation with elevation) 
from Wobus et al. (2017). We then ran the base and summit models at each ski resort using the 
daily elevation-corrected climate data. The key output we utilized from these simulations was 
the season lengths as discussed below. 
 
6.3.3.2 Relating Modeled Season Length to Observed User Days 
Previous research has related ski area user days to season length due to the sensitivity of 
visitation rates to snow conditions (Hagenstad et al., 2018; Cameron Wobus, Small, et al., 
2017). Hagenstad et al. (2018) defined the season as number of days with snow depth > 100 
mm, while Wobus et al. (2017) defined it to be from the day with either 450 accumulated hours 
of snowmaking temperatures or 100 mm of natural SWE accumulation at the base of each 
resort to the day when summit SWE fell below 100 mm. For this work we defined season length 
based on our snow model output so we could estimate user days for both historic and future 
scenarios. Due to uncertainty in model output and the a priori season length definitions, we 
optimized our season length parameters based on the MODIS-derived snow cover duration 
data.  
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For each ski resort shapefile, we aggregated the MODIS-derived snow cover duration for every 
water year between 2001–2016. We then took a statewide average of these values to get an 
annual snow cover duration estimate for Colorado ski areas. We found that statewide snow 
cover duration explained 49% of the variance in user days (Figure 6-1.), suggesting that 
visitation to Colorado ski areas scales with the length of the snow season. Overall, each lost day 
of MODIS-derived snow cover corresponded to a loss of 27,700 user days. 
 

 
Figure 6-1. Annual user days predicted by MODIS-derived statewide average snow cover duration at Colorado ski resorts. The 
solid line is the line of best fit computed by ordinary least squares regression (r2 = 0.49, p-value < 0.005) and the gray shading 

represents the uncertainty of the fit. 

Based on this information, we used the MODIS data to determine the best threshold for the 
number of snowmaking days (defined to be days with mean air temperature < 32°F) to 
determine season opening date. Here, we optimized our modeled season lengths aggregated to 
the state level to best match the MODIS-derived snow cover duration over the period of 
overlapping simulated and satellite data: 2001–2014. Based on this analysis, we used 29 d of air 
temperatures below freezing at the resort base to signify the season start date. We then used 
the Wobus et al. (2017) 100 mm summit SWE threshold to identify the end of the season. This 
combination produced a reasonable fit to the statewide MODIS data (Figure 6-2.).  
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Figure 6-2. Observed MODIS-derived statewide average snow cover duration plotted against modeled statewide average season 

length. The solid line is the line of best fit computed by ordinary least squares regression (r2 = 0.70, p-value < 0.0005) and the 
gray shading represents the uncertainty of the fit. The dashed line is the 1:1 line. 

We next joined the optimized modeled season lengths to the observed user days from 2001–
2014. Overall, this produced a similar relationship to the MODIS data, where user days 
decreased with shorter modeled season lengths (Figure 6-3.). We then performed a linear 
regression on the two variables so that we could estimate user days as a function of modeled 
season length for both historic and future climate scenarios: 
 

𝑈𝑈𝛼𝛼𝑅𝑅𝐺𝐺𝐸𝐸𝐷𝐷𝐷𝐷𝛼𝛼𝑒𝑒𝑒𝑒𝑖𝑖 = 𝛽𝛽 +  𝛼𝛼𝐿𝐿𝑒𝑒𝑒𝑒𝑓𝑓 
 
where 𝑈𝑈𝛼𝛼𝑅𝑅𝐺𝐺𝐸𝐸𝐷𝐷𝐷𝐷𝛼𝛼𝑒𝑒𝑒𝑒𝑖𝑖 is estimated user days, 𝛽𝛽 is the y-intercept, 𝛼𝛼 is the slope of the 
relationship, and 𝐿𝐿𝑒𝑒𝑒𝑒𝑓𝑓 is statewide average modeled season length (d). This relationship was 
slightly more sensitive than the MODIS-based relationship, with each lost snow cover day 
corresponding to a loss of 29,000 user days under current population conditions. 
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Figure 6-3. Observed annual user days plotted against modeled statewide average season length. The solid line is the line of best 
fit computed by ordinary least squares regression (r2 = 0.42, p-value < 0.05) and the gray shading represents the uncertainty of 

the fit. 

To note, we use season length as a proxy for snowiness. In some cases, the modeled season 
length is longer than the period for which the resort can operate due to lease terms with the US 
Forest Service. Our assumption is that as snowiness decreases in the future, skier user days will 
decline. 
 
6.3.3.3 Estimating Baseline User Days and Revenue Anomalies 
Once we had developed an optimized rule for season start date, we applied it to each of our 
resort base models. We then computed season length for each resort and year as the 
difference between the start and end dates, which was the date when summit SWE melted 
below 100 mm. We then computed a statewide average for each year to get an annual time 
series of season length. We next applied the linear regression model to these data to estimate 
annual user days as a function of statewide season length. In order to convert user days to 
revenue, we multiplied the estimated user days by the average daily expenditure of $286.73 
(Sect. 6.3.2.4). From this time series of revenue, we compute baseline revenue, 𝑁𝑁�, as the 
average annual revenue. We then calculated the annual revenue anomaly as the difference 
between 𝑁𝑁� and the 𝑁𝑁 for each year. If the revenue anomaly were negative (i.e., 𝑁𝑁 is less than 
the baseline), then we assumed this to be an economic damage due to below-normal snow 
conditions (i.e. drought). 
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6.3.3.4 Calculating Expected Annual Damages  
We then used the time series of revenue losses to calculate an expected annual damage for 
drought years, which occur when modeled season length and user days are below average. 
Here, the expected annual damage is a function of the probability of a given revenue anomaly 
occurring and its magnitude in terms in lost revenue. The final expected annual damage is an 
integration of all such probabilities and magnitudes (Sect. 4.2).  
 
6.3.3.5 Disaggregating to the County Level Using Lift Capacity 
We then took the statewide expected annual damage value and disaggregated it to the county 
level based on published lift capacity. We assumed resorts with larger lift capacities would have 
greater annual user days, which was supported by the limited per-resort user day data from 
Shelesky (2016). For this step we summed the uphill lift capacity for all resorts in a given 
county. These values were then used to create a county-level weighting term and calculate 
county EAD: 
 

𝐸𝐸𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑖𝑖𝑐𝑐 =
𝐿𝐿𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑖𝑖𝑐𝑐
∑𝐿𝐿𝐶𝐶

𝐸𝐸𝐸𝐸𝐸𝐸 

 
where 𝐸𝐸𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑖𝑖𝑐𝑐  is county-level EAD, 𝐿𝐿𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑖𝑖𝑐𝑐 is county total lift capacity, and ∑𝐿𝐿𝐶𝐶 is 
statewide total lift capacity. 
 
6.3.3.6 Accounting for Climate and Population Change 
After computing historic expected annual damages (i.e., current climate, current population), 
we followed the steps above taking both climate change and population growth into account. 
For climate change, we reran the base and summit resort models after adjusting the daily air 
temperature and precipitation by the scale factors for the Moderate and More Severe climate 
change scenarios. We next made new time series of 𝑈𝑈𝛼𝛼𝑅𝑅𝐺𝐺𝐸𝐸𝐷𝐷𝐷𝐷𝛼𝛼𝑒𝑒𝑒𝑒𝑖𝑖 by plugging the Moderate 
and More Severe statewide modeled season lengths into the linear model created from the 
Baseline climate data. Once we had new 𝑈𝑈𝛼𝛼𝑅𝑅𝐺𝐺𝐸𝐸𝐷𝐷𝐷𝐷𝛼𝛼𝑒𝑒𝑒𝑒𝑖𝑖 values, we followed the steps in Sects. 
6.3.3.3–6.3.3.5 to get expected annual damages for the Moderate and More Severe scenarios. 
To note, 𝑁𝑁� stayed constant across the climate scenarios in order to compute the costs of 
climate change relative to historic conditions. 
 
Finally, we adjusted the expected annual damages for the three future population scenarios: 
Low, Medium, and High Growth. We did this by updating annual user days based on the historic 
skiing rate of Coloradans and the number of new residents. According to Colorado Ski Country 
USA, 44.4% of annual resort user days are from Colorado residents (Colorado Ski Country USA, 
2015). Given a lack of other data, we assumed the percentage of user days coming from 
Colorado residents stayed constant from year to year. This means for each ski season we can 
compute the rate of user days from Colorado residents per person. For example, if the 
estimated resident user days for a single year were equal to the baseline population, we would 
assume, on average, each Coloradan skis one time. We thus add to 𝑈𝑈𝛼𝛼𝑅𝑅𝐺𝐺𝐸𝐸𝐷𝐷𝐷𝐷𝛼𝛼𝑒𝑒𝑒𝑒𝑖𝑖 a new number 
of skiers calculated from the skiing rate and population increase. To use the previous example, 
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if the rate were 1 user day per Colorado resident, we would add a number of user days equal to 
the projected population increase. From this new user day number, we then recompute annual 
revenue values. In this case, we calculate a new 𝑁𝑁� for each population scenario in order to 
isolate the effect of climate change on skiing revenue losses under different statewide 
populations. In general, this had the effect of making “good” years better and “bad” years 
worse relative to the recomputed baseline (i.e., total revenue goes up, but damages increase 
due to larger negative swings in drought years). We then rerun the steps in Sects. 6.3.3.4–
6.3.3.5 to estimate 𝐸𝐸𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑖𝑖𝑐𝑐  for the population scenarios. 
 
6.3.4 Model Outputs 
The ultimate product created by the steps outlined in this document is a per-county expected 
annual damage for each combination of the three climate and four population scenarios (i.e., 
each county has 12 unique expected annual damage values). These are the data that can be 
found in the interactive online visualization tool. In addition to this product is a series of 
intermediate model outputs listed below: 
 

1. Spatially continuous raster maps of annual snow cover duration across Colorado (2001–
2016) 

2. Snow model output for all resort base and summit elevations for historic and future 
climatic conditions 

3. Annual time series of resort and statewide season lengths (1949–2014) for historic and 
future climatic conditions 

4. Annual time series of statewide user days (1949–2014) for historic and future climatic 
conditions 

5. Annual time series of statewide revenue and revenue anomalies (1949–2014) for 
historic and future climatic conditions 

 
6.3.5 Assumptions and Limitations 

• We assume the SNOW-17 model can be used to represent future snow conditions. 
• For all scenarios, we keep per-user-day expenditures constant, even though lift tickets 

are likely to become more expensive in the future. We also do not simulate the effects 
of supply and demand on future prices. 

• We assume that Colorado’s transportation infrastructure and the ski resorts themselves 
will be able to handle population growth and increased ski visitation. This will likely 
require expansion on both accounts. 

• We do not consider additional snow management techniques (e.g., snow harvesting) 
besides snowmaking. We also do not include any potential future improvements in 
snowmaking technology.  
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6.4 Drought Technical Approach: Rafting 
 
6.4.1  Overview 
Colorado’s commercial rafting industry is critically dependent on river flows. During periods of 
hydrologic drought, below average flows truncate the rafting season, limiting visitation, and 
incurring economic impacts compared to higher or average flow years in the counties with 
access to popular river reaches. Although Colorado’s commercial rafting industry is relatively 
small (~$177 M statewide economic impact in 2018), it is a key part of Colorado’s warm 
weather recreational portfolio, particularly in counties with popular river reaches (e.g. Chaffee 
County, home to popular stretches of the Upper Arkansas River). Moreover, the rafting industry 
is a quantifiable indicator of the greater private river recreation economy. For this section, our 
objective is to quantify the effect of drought on Colorado’s commercial rafting industry.  
 
6.4.2 Data and Inputs 
Industry economic data are used to model the financial effects of historical droughts, state and 
federally curated streamflow data are used to assess boating conditions, and climate data are 
used to drive hydrologic models that predict natural flows. Below is a detailed description of 
the data and data products used in this study. 
 
6.4.2.1 Industry Economic Data 
Industry economic data were provided by The Colorado River Outfitters Association (CROA), 
who releases annual user day reports for major recreational rivers in Colorado (CROA, 2018). 
This dataset is assembled by documenting user day allocations from commercial outfitter 
permits issued by state and federal agencies. Additionally, CROA estimates statewide annual 
economic impact as the product of user days, user direct expenditures, and an economic 
multiplier accounting for secondary impacts. For example, the total number of user days 
reported in 2018 was 520,217 and the average user direct expenditure was $132.65. Assuming 
a secondary impact multiplier of 2.56, CROA estimates the statewide economic impact of the 
commercial rafting industry in 2018 to be $176.7 M (CROA, 2018). We rely on CROA data for 
user days and economic impact estimates.  
 
6.4.2.2 American Whitewater Runnable Ranges 
American Whitewater is a non-profit river conservation and boating advocacy organization. 
American Whitewater reports the range of runnable flows for many popular river segments in 
the US.  The runnable flow range denotes the range of flows within which whitewater boating 
conditions are suitable. We collected data on the runnable ranges from American Whitewater’s 
website for segments on rivers for which CROA collects and reports user day information 
(Appendix C—River Reach Info).   
 
6.4.2.3 Streamflow Data 
Streamflow data are used to assess historical whitewater rafting conditions. We identified all 
gauges in the state used by American Whitewater to assess flow conditions on the rivers for 
which industry economic data were available. In total, daily average streamflow archives were 
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obtained from 51 USGS and DWR gauges. Colorado Decision Support System’s TSTool was used 
to access and process gauge data.  
 
6.4.2.4 Climate Data and Scenarios 
This analysis relies on the same Maurer et al. (2002) gridded climate data and future scalars as 
described in Sect. 6.1.2.1. and 2.2.2.  
 
6.4.3 Model Approach/Methods 
Our analytical approach is distilled into five steps. First, we analyze historical river flow and 
industry economic data to develop a linear model capable of estimating user days as a function 
of flow-based metrics. Second, we use a physically based hydrologic model to simulate 
historical natural flows. Third, the regression model (step 1) is used to estimate statewide user 
days and economic impact as a function of simulated natural flows. Here, annual damage is 
defined as negative economic impact anomalies relative to historical average conditions. 
Fourth, statewide damages are disaggregated to the county-scale using market share and river 
length as scaling variables. Finally, steps two through four are repeated under a variety of 
climate change and population growth scenarios.  
 
6.4.3.1 Streamflow-User Day Relationship 
We developed a linear regression model to represent the relationship between streamflow and 
user days. Specifically, our model computed statewide total annual user days as a function of 
statewide average annual boatable days. Annual boatable days is the number days in a year 
that flows are within American Whitewater’s runnable range (Appendix C—River Reach Info). 
Annual boatable days were counted for every reach during all years between 1998–2018 and 
the statewide annual averages were calculated.   
 
A strong relationship emerges between annual average boatable days and statewide total user 
days (Figure 6-4, R2 = 0.79, p-value < 0.05). The data reveal a direct relationship, whereby user 
days increase with boatable days. The slope of the relationship is 2925 user days/boatable day, 
suggesting that the loss of a single boatable day results in a statewide loss of 2925 user days. 
During known drought years, such as 2012 and 2002, boatable days and user days were well 
below average. This relationship underpins the conceptual model of our technical approach, 
namely that drought years reduce the number boatable days, and thereby the number of user 
days.   
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Figure 6-4. Positive linear relationship between boatable days and user days. This relationship provides insight into how drought 

affects the commercial rafting industry: During drought years boatable days and user days are lower than average (e.g. 2012, 
highlighted in red). R2 = 0.79, p-value < 0.05 

6.4.3.2 Simulating natural flows 
A hydrological model simulated natural flows at each of the gauges listed in Appendix C—River 
Reach Info. This approach allowed us to 1) extend the duration of historical hydrologic records, 
and 2) project changes in streamflow timing and magnitude associated with various climate 
scenarios. We used the Variable Infiltration Capacity (VIC) model, which is a semi-distributed 
(gridded) regional-scale physical hydrology model (Liang et al., 1994). VIC is forced with a time 
series of meteorological variables and produces a time series of hydrologic output, including 
runoff, for each grid cell.  
 
We took simulated runoff directly from the VIC models developed as parts of the CRWAS-II 
project (Harding, 2015). These models were developed to assess the sensitivity of natural flows 
to various climate scenarios. The temporal domain of the models extends from 1949 – 2014 
with a daily timestep. The spatial domain of the model envelops the entire state with a 1/8° 
spatial resolution.   
 
Drawing from the CRWAS-II simulations, monthly runoff was estimated at gauges in Appendix 
C—River Reach Info by taking the area weighted sum of daily runoff over all model grid cells 
within the contributing area. To estimate daily flows, we converted monthly runoff to a 
volumetric flow rate and interpolated to a daily timestep. This abstraction bypasses the use of a 
routing model, though may obscure boatable day estimates by fewer than 10 days (the 
relatively short timescales of flood wave propagation).  
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6.4.3.3  Computing statewide expected annual damage 
We estimated statewide annual average boatable days from VIC-simulated natural flows for 
1949–2014, using American Whitewater runnable ranges. The regression model was used to 
estimate potential statewide total user days from simulated boatable days, yielding a 65-year 
time series of estimated user days. We transformed annual user days into annual economic 
impact, using CROA-reported 2018 per-user direct expenditures and secondary economic 
impact factor of 2.56 (Figure 6-5). It is important to note that the model is not necessarily 
estimating economic impact of the commercial rafting industry in historical years, such as 1949 
when the industry was either very small or nonexistent. Rather, the model is estimating what 
the economic impact of the industry would be under today’s economic conditions, given 
historical flow conditions. See Section 4.4 for more discussion on this concept.  
 

 
Figure 6-5. Economic impact is estimated over a 65-year period. The red dashed line indicates the 65-year average economic 

impact. Annual damages were quantified as negative economic impact anomalies relative to the average.  

Finally, damages were quantified as negative economic impact anomalies relative to the 
average, similar to the method used in Sect. 6.3.3.4. In other words, years in which the black 
line drops below the red line in Figure 6-5 are years in which a drought-induced damage was 
incurred. The magnitude of the damage is equal to the difference between annual realized 
economic impact and the 65-year average economic impact.  
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Discrete annual damage estimates were synthesized in terms of expected annual damages, a 
function of the probability a drought occurring and its associated damage magnitude. In this 
context, large annual damages have a low probability of occurring and small annual damages 
have a higher probability of occurring. The expected annual damage is an integration of all such 
probabilities and magnitudes:  
 

𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑖𝑖𝑓𝑓𝑖𝑖𝑒𝑒 =  �𝐸𝐸𝑑𝑑𝑑𝑑 

 
where EAD is the statewide expected annual damage, 𝐸𝐸 is a vector of discrete annual damages, 
and 𝑑𝑑 is the probability of annual damage occurrence.  
 
6.4.3.4 Disaggregating to the county scale 
We disaggregated statewide expected annual damages to the county level by using river 
market share and river length as scaling parameters:  
 

𝐸𝐸𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑖𝑖𝑐𝑐
𝑗𝑗 = ��𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑖𝑖𝑓𝑓𝑖𝑖𝑒𝑒 ∗ 𝛼𝛼𝑓𝑓 ∗ 𝐿𝐿𝑓𝑓

𝑗𝑗�
𝑓𝑓

𝑓𝑓=1

  

 
where 𝐸𝐸𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑖𝑖𝑐𝑐

𝑗𝑗  is the expected annual damage in county j, n is the number of commercial 
rafting rivers flowing through county j, 𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑖𝑖𝑓𝑓𝑖𝑖𝑒𝑒 is the statewide expected annual damage, 𝛼𝛼𝑓𝑓 is 
the 2018 market share of river i, and 𝐿𝐿𝑓𝑓  is the length of river i in county j. We determined river 
market share, 𝛼𝛼𝑓𝑓, as the ratio user days for river i to statewide total user days reported by CROA 
(2018). 
 
6.4.3.5 Considering climate change and population growth scenarios.  
To account for the impact of climate change on commercial rafting risk, we repeated steps two 
through four above using climate adjusted meteorological data for the Moderate and More 
Severe 2050 climate scenarios. For population change, we applied the same approach as in the 
skiing analysis (Sect. 6.3.3.6) wherein we computed new user days and new baseline economic 
impacts for each scenario. 
 
6.4.4 Model Outputs 
The ultimate products generated by this workflow are county-level expected annual damage 
estimates for 12 permutations of climate and population scenarios. These results are presented 
in the interactive online visualization tool. In addition to this product is a series of intermediate 
model outputs listed below:  
 

1. Historical annual boatable day series for all river segments listed in Appendix C—River 
Reach Info 

2. A linear regression model relating statewide average boatable days to statewide total 
user days. 
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3. Monthly natural flow simulations (1949-2014) at all gauges listed in Table 1 for Baseline, 
Moderate, and More Severe climate scenarios.  

4. Simulated statewide economic impact (1949 – 2014) for Baseline, Moderate, and More 
Sever climate scenarios. 

 
6.4.5 Assumptions and Limitations 

• We assume that the state’s commercial rafting outfitters can expand capacity to 
accommodate new users as the population grows.  

• We did not use a hydraulic routing model to simulate the downstream propagation of 
simulated flows. This likely causes errors in annual boatable day estimates, though the 
errors should be small (fewer than 10 days), because the timescales of wave 
propagation are short, relative to the duration of the rafting season.  

• River management is not accounted for when simulating future flows. Diversions and 
reservoir management can affect boating conditions for better or worse. On one hand, 
reservoir releases can prop up instream flows during dry years. On the other hand, 
reservoir management can lower instream flows.  
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7 Technical Approach: Wildfire 
 
7.1 Wildfire Technical Approach: Buildings 
 
7.1.1 Overview 
The number of wildfires in Colorado more than doubled from 457 in the 1960s to 1,300 in the 
1990s, doubling again from the 1990s to the 2000s (Morgan, 2019). Since 2000 Colorado has 
had 6 years with wildfire property damage greater than $10 million and 3 years above $100 
million, with total statewide damages over $1.5 billion (National Centers for Environmental 
Information, 2020). These tallies include insured losses from major fires, such as Missionary 
Ridge in 2002 (insured losses of $17.7 million), Hayman in 2002 ($39 million), Fourmile Canyon 
in 2010 ($230 million), and Waldo Canyon in 2012 ($460 million) (Denver Post, 2016). As a 
warming climate provides more favorable wildfire conditions, the wildfire season is projected 
to increase in duration (Abatzoglou & Williams, 2016), which may increase the risk of wildfire 
property damage and loss. Here we present the methods for quantifying current and future 
wildfire damages to buildings in Colorado using an advanced, high-resolution wildfire model. 
 
7.1.2 Data and Inputs 
Figure 7-1 shows the general workflow for this project. The first step was to retrieve all input 
data needed to perform the fire analysis, including digital elevation models, vegetation data 
(surface fuels and canopy characteristics), and historical climate data.  
 

 
Figure 7-1: Conceptual wildfire modeling workflow. 
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7.1.2.1 Historical Climate Data 
For the current climate scenario, we used the North American Regional Reanalysis (NARR) 
gridded climate product (Mesinger et al., 2006) for the period 1988–2017. NARR assimilates a 
wide range of observational data to produce a long-term gridded dataset of various 
meteorological variables. We downscaled air temperature (at 2 m), relative humidity (at 2 m), 
and wind speed and direction (at 10 m) from the native 32-km grid resolution to the 30 m grid 
resolution of the wildfire model. These data were then grouped into four categories by 
percentile: Extreme (97th), High (90th), Moderate (50th), and Low (25th). For more information 
on how weather percentiles are incorporated into the wildfire model, please see the 2017 
Colorado Wildfire Risk Assessment (CO-WRA) Update for more information (Colorado State 
Forest Service, 2018). 
 
7.1.2.2 Vegetation and Fuels Data 
In addition to the climate data, key inputs for the wildfire model include vegetation and surface 
fuels datasets developed by the Colorado State Forest Service and Technosylva Inc. for the 2017 
CO-WRA Update (Colorado State Forest Service, 2018). The vegetation dataset describes the 
land use type (developed, agriculture, shrubland, conifer, etc.), while the fuels dataset 
describes the characteristics of surface fuel (based on the Scott and Burgan (2005) fuel family) 
and canopy fuels (canopy cover, canopy height, canopy base height, and canopy bulk density).  
 
7.1.2.3 Fuel Moisture 
Fuel moisture describes the water content of vegetation as a percent of dry mass and it is 
seasonal in nature, increasing during the early growing season and then decreasing during late 
summer, fall, and winter. In this project, fuel moisture is broken out by fuel type: herbaceous, 
woody, and canopy foliar. Herbaceous fuels are annual or perennial and have soft, non-woody 
tissue (e.g., grasses). Woody fuels include deciduous trees and shrubs that annually shed their 
leaves as well as evergreens that maintain the majority of their foliage. Canopy foliar fuels 
moisture is specific to tree crowns. Fuel moisture content varies from as low as 30% to as high 
as 300%, where fuels that reach 30% are considered dead and have their own classification 
scheme (National Wildfire Coordinating Group, n.d.). To note, fuel moisture content can exceed 
100% because it is the percent of water mass relative to dry mass (i.e., the mass of water can 
exceed dry mass during wet conditions). How fuel moisture content is related to fuel type and 
weather percentile is provided in Table 7-1 below. 
 

Table 7-1. Fuel moisture content from the Colorado Wildfire Risk Assessment (Colorado State Forest Service, 2018). 

 Fuel Moisture Content (%) 
Fuel Type Extreme 

(97th percentile) 
High 

(90th percentile) 
Moderate  

(50th percentile) 
Low  

(25th percentile) 
Herbaceous 30 39 66 102 
Woody 70 76 86 102 
Foliar 90 90 100 110 
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7.1.3 Model Approach/Methods 
Wildfire risk was calculated according to the methods outlined in A Wildfire Risk Assessment 
Framework for Land and Resource Management (J. H. Scott, Thompson, & Calkin, 2013), which 
also align with those methods used in the 2017 CO-WRA Update (Colorado State Forest Service, 
2018). Fire simulations were performed with Technosylva’s Wildfire Analyst™ software (WFA, 
Ramirez et al., 2011), which provides real-time analysis of wildfire behavior and simulates the 
spread of wildfires. 
 
For the building sector, we computed wildfire risk as the product of hazard and vulnerability, 
where the hazard is the product of modeled burn probability and intensity, and vulnerability is 
determined by asset exposure and its susceptibility to fire. The burn probability and intensity 
(flame length) are direct outputs from the wildfire model. Asset exposure is determined using 
building replacement costs from the Hazus building stock inventory (Federal Emergency 
Management Agency, 2015), similar to our approach for flooding. The asset susceptibility was 
calculated using a predefined relationship between intensity (flame length) and building 
damage. Details on these processes are included in the sections below. 
 
The practical implication of this wildfire risk framework is that counties with more buildings 
(more exposure) and a high wildfire hazard (higher probability of wildfire) will have the highest 
wildfire risk, as measured in dollars. Conversely, counties with fewer buildings (lower exposure) 
and a low wildfire hazard (lower probability of wildfire) will have lower wildfire risk in dollars. It 
should also be noted that counties with high wildfire hazard and lower exposure (e.g., Rio 
Blanco) may have similar risk (in dollars) to counties with low wildfire hazard and higher 
exposure (e.g., Adams). 
 
7.1.3.1 Modeling Wildfire Hazard 
To be consistent with the 2017 CO-WRA Update, we modeled wildfire hazard in WFA using 
meteorological, surface fuel, vegetation, land cover, and historical fire ignition datasets. One 
key model output is annual burn probability, calculated in WFA by performing 2.3 million 
Monte Carlo simulations of burn ignitions every 500 meters across Colorado, resulting in a 
mean ignition density of 8.68 fires/km2. The final burn probability value is the number of times 
a grid cell ignited divided by the number of Monte Carlo simulations, weighted by the spatial 
distribution of historical fires in Colorado from 1992 to 2015 (Short, 2017). In this way, we take 
into account both the probability of ignition and potential spread of fires. Final output is a 30 m 
raster grid with values from 0 to 1 representing annual burn probabilities (Figure 7-2). 
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Figure 7-2. Burn probability map centered over Boulder County. 

Another output from WFA is flame length, which represents wildfire intensity (severity) and is a 
function of fuels, weather and topography. The flame length model output is binned into six 
classes: 0-2 ft, 2-4 ft, 4-6 ft, 6-8 ft, 8-12 ft, and 12+ feet, each of which has its own raster. The 
flame length rasters express the probability of occurrence of a specific flame length class, all of 
which sum to 1 for each grid cell. The set of six flame length rasters for Boulder County are 
shown in Figure 7-3. Note that the lowest flame lengths (0-2 feet) are most probable, as 
represented by dark red colors, in the higher elevations below treeline and in the plains in the 
eastern part of the county. The highest flame lengths (12+ feet) are most probable in the 
montane zone, which has significant wildland urban interface development. Note that in the 
alpine zone (above 11,500 ft.) flame length data do not exist, indicating the model does not 
simulate fires in this region due to its vegetation and meteorological conditions. 
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Figure 7-3. Flame length rasters for Boulder County. Flame lengths are binned into six groups (0-2 ft, 2-4 ft., 4-6 ft., 6-8 ft., 8-12 
ft., 12+ ft.) and a flame length probability is assigned to each group, such that the total probability sums to 1 for every grid cell.  

7.1.3.2 Computing Wildfire Vulnerability  
In this project, we determined wildfire vulnerability as a function of building replacement cost 
and a damage response function that relates conditional flame length to a percent damage 
level. For building replacement cost we used the same Hazus (Federal Emergency Management 
Agency, 2015) and ICLUS (U.S. Environmental Protection Agency, 2017) datasets as in the 
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buildings sector for flooding Sect. 5.1.3.3. Example building replacement costs are displayed in 
Figure 7-4 below.  
 

 
Figure 7-4: Building replacement values for Boulder County.  

Our damage response function relates each flame length bin to a building damage level. Unlike 
the flood hazard, where there are numerous sources of depth-damage functions relating 
building damage to depth of flooding, there are few published wildfire damage response 
functions. As a result, we based our function on previous work from Alcasena et al. (2017), 
Scott et al. (2013), and expert opinions from multiple wildfire agencies including the Colorado 
State Forest Service, the Colorado Division of Fire Prevention and Control, the Colorado Springs 
Fire Department, Durango Fire Protection District, and Anchor Point Group, among others. The 
wildfire damage response function for this project is provided below in Table 7-2.  
 

Table 7-2. Flame length damage response function. Building damage percentages correspond to the percent of the building 
replacement costs incurred per flame length bin, where 0% equals no cost and 100% equals total replacement cost. 

Flame Length Bin Flame Length Building 
Damage  

0-2 ft 0% 
2-4 ft 25% 
4-6 ft 50% 
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6-8 ft 75% 
8-12 ft 100% 
12+ ft 100% 

 
7.1.3.3 Calculating Wildfire Damages 
Wildfire damages are conceptually represented as the intersection of wildfire hazard (burn 
probability and intensity) and asset vulnerability (building replacement costs) as shown in 
Figure 7-5, where darker orange and red colors represent greater damages. While most of the 
building value is in the urban core of the city (see lighter green and yellow colors in Figure 7-4), 
these developed areas lack the fuels necessary for wildfire, thus their hazard is zero (see gaps in 
the orange-shaded burn probabilities depicted in Figure 7-2). The coincidence of wildfire hazard 
and asset vulnerability is typically the wildland-urban interface, commonly referred to as the 
WUI.  
 

 
Figure 7-5. Wildfire damages for Boulder County. 
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For this project, we calculated wildfire damages at each grid cell as the product of wildfire 
hazard and vulnerability:  

𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑅𝑅 = 𝐶𝐶𝐶𝐶𝛼𝛼𝐶𝐶 ∗  𝐵𝐵𝑑𝑑 ∗  �𝐹𝐹𝐿𝐿𝑑𝑑𝑓𝑓 ∗ 𝐹𝐹𝐿𝐿𝐵𝐵𝐸𝐸𝑓𝑓

6

𝑓𝑓=1

 

 
where 𝐶𝐶𝐶𝐶𝛼𝛼𝐶𝐶 is the building replacement cost for a given grid cell, 𝐵𝐵𝑑𝑑 is the annual burn 
probability for a given grid cell, 𝐹𝐹𝐿𝐿𝑑𝑑 is the flame length probability for a given grid cell (Figure 
7-3) and flame length bin 𝑖𝑖, and 𝐹𝐹𝐿𝐿𝐵𝐵𝐸𝐸 is the flame length building damage percent (Table 7-2), 
per flame length bin 𝑖𝑖. We then aggregated the grid cell damages to the county level. 
 
7.1.3.4 Bias-Correcting Wildfire Building Damages  
To ensure our modeled damages were commensurate with observed values, we bias-corrected 
county-level damages. To do this, we first summed the modeled county values to the state level 
and compared this to the average of observed insured property losses from 2010–2019 
(National Centers for Environmental Information, 2020): 
 

𝐶𝐶𝐶𝐶𝛼𝛼𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝐶𝐶𝐶𝐶𝛼𝛼𝐶𝐶𝑐𝑐𝑜𝑜𝑒𝑒����������
𝐶𝐶𝐶𝐶𝛼𝛼𝐶𝐶𝑚𝑚𝑐𝑐𝑜𝑜

 

 
where 𝐶𝐶𝐶𝐶𝛼𝛼𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the statewide bias-correction factor, 𝐶𝐶𝐶𝐶𝛼𝛼𝐶𝐶𝑐𝑐𝑜𝑜𝑒𝑒���������� is the 10-year average annual 
observed statewide building damage and 𝐶𝐶𝐶𝐶𝛼𝛼𝐶𝐶𝑚𝑚𝑐𝑐𝑜𝑜 is the annual modeled statewide building 
damage. We then multiplied each county’s modeled damage by 𝐶𝐶𝐶𝐶𝛼𝛼𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 to get a final, bias-
corrected damage value. 
 
7.1.3.5 Applying Climate Change Scenarios 
To estimate future wildfire risk due to climate change, we adjusted air temperature and live 
fuel moisture content (LFMC) in WFA based on output from the previously developed Moderate 
and More Severe climate scenarios (2.2.2). Further details on the changes made to both 
variables are described below. 
 
First, we developed monthly air temperature offsets, which we calculated as the difference 
between future projections (2035–2064) and simulated historical conditions (1988–2017). One 
key difference between wildfire and drought in this project and between wildfire and the 
CRWAS-II project is the historical period of record. Drought and CRWAS-II used a 30-year 
window from 1970–1999, while the wildfire model used a 30-year window from 1988–2017. 
The air temperature offsets for the two climate change scenarios are provided below in Table 
7-3. 
 

Table 7-3 Monthly air temperature offsets used in the wildfire future climate scenarios. 

 Air Temperature Offset (˚C) 
Month Moderate  More Severe 
January 0.90 1.34 
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February 1.08 1.42 
March  1.23 1.49 
April 1.26 1.53 
May 1.59 1.96 
June 1.54 1.92 
July 1.47 2.00 
August 1.91 2.04 
September 1.72 1.93 
October 1.85 1.61 
November 1.46 1.48 
December 1.42 1.17 

 
Next, we adjusted future LFMC values by developing a relationship between the Standardized 
Precipitation Evapotranspiration Index (SPEI) and observed LFMC. SPEI, a drought indicator that 
combines air temperature, precipitation, and evapotranspiration, was computed using the 
“SPEI” R Package (Beguería & Vicente-Serrano, 2017). We calculated SPEI from 1949–2014 at a 
1/8° spatial resolution for the entire state of Colorado using the Maurer et al. (2002) dataset we 
used in the drought sectors. To get monthly evapotranspiration estimates, we ran the Variable 
Infiltration Capacity (VIC) macroscale hydrologic model (Liang et al., 1994) with the Maurer et 
al. (2002) data. Monthly potential evapotranspiration was calculated with the Penman-
Monteith routine embedded in the VIC model. Because SPEI is a relative index describing 
departures in the water balance from “normal” conditions, a 65-year spin up period was used 
to orient the algorithm to “normal” conditions.  
 
Once we had a historic time series of SPEI, we related the drought indicator to measurements 
of LFMC taken across the state. Here, we used a 12-month SPEI smoothing window, which we 
found to correlate well with woody and canopy foliar LFMC measurements from the National 
Fuel Moisture Database. We took this relationship and applied it to the climate change 
scenarios in order to perturb future LFMC values as described in the next paragraph. 
 
For this, we first computed SPEI for the two climate change scenarios by rerunning the SPEI 
algorithm with updated air temperature and precipitation from the Maurer et al. (2002) dataset 
and evapotranspiration from VIC. We then used the new SPEI time series to estimate future 
LFMC. We found an average decrease in LFMC by 12.4% for the Moderate climate scenario and 
21% for the More Severe scenario. We then reran WFA using the modified air temperature and 
adjusted LFMC.  
 
7.1.3.6 Applying Population Change Scenarios 
We used ICLUS (Sects. 3.3.1 and 3.3.4) in two ways to evaluate the effect of population growth 
on wildfire risk. First, we masked out new areas of land that changed from undeveloped 
(grassland, for instance) to developed. This was consistent with the methods used in CO-WRA, 
where the developed urban core of cities and towns was excluded from the risk analysis 
because annual burn probabilities in these areas were set to 0. Second, we used ICLUS to 
project future building replacement costs in 2050 by applying the approach outlined in 3.3.1. 
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Additionally, the fuels dataset was not explicitly modeled to project the progression of fuels for 
2050 conditions (e.g., a possible future transition from grass to shrub).  
 
7.1.4 Model Outputs 
The model outputs created by the wildfire buildings damage analysis are as follows for each 
current and future climate and population scenario: 

1. 1 burn probability raster 
2. 1 set of 6 flame length probability rasters 
3. 1 wildfire hazard raster  
4. 1 wildfire building damage raster in dollars 

 
7.1.5 Assumptions and Limitations 

• We have assumed a damage response function relating flame length to building damage 
using professional judgement from Colorado wildfire experts. 

• We have assumed significant change under future climate change through air 
temperature and LFMC. There is high certainty in the scientific community regarding 
future increases in air temperature  Future changes in LFMC is less studied as it is a 
derivative data product; however fuel moisture content is expected to decrease due to 
future climate change (Liu, 2017). Other researchers note that adjusting fuel drying is 
likely the best way to forecast future climate change effects on wildfire (Macias Fauria, 
Michaletz, & Johnson, 2011). 

• Building replacement values are based on the Hazus 2.2 dataset, which uses 2010 
census data. This dataset has been attributed to a 10-meter gridded data product for 
this project; however, its native resolution is the census block.  

• The damages for future population scenarios are dependent upon the underlying 
modeling decisions made in the development of the EPA ICLUS dataset.  

• This method assumes that all buildings (all building values) are impacted equally within 
the 10-meter grid (i.e., a 2-4 ft flame length damages all buildings within the cell by 
25%). 
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7.2 Wildfire Technical Approach: Suppression Costs 
 
7.2.1 Overview 
In addition to exacting a large toll on buildings and livelihoods in the wildland urban interface, 
wildfires require significant financial resources to suppress. At the federal level, recent years 
have seen total suppression costs balloon over $2 billion (National Interagency Fire Center, 
2019) as wildfires increase in frequency and severity (Abatzoglou & Williams, 2016). In 
Colorado, state suppression costs have exceeded $40 million during the worst fire years of the 
past decade (Colorado Division of Fire Prevention and Control, 2018). Previous research 
indicates that suppression costs scale with fire size as well as the number of buildings within 
and near the fire perimeter (Gude, Jones, Rasker, & Greenwood, 2013). Therefore, future 
wildfire suppression costs may rise in Colorado as the climate warms and the wildland urban 
interface expands. In this document we describe how we used observed and modeled data to 
quantify the cost of wildfire suppression under historic and future climatic conditions. 
 
7.2.2 Data and Inputs 
 
7.2.2.1 Observed Wildfire Perimeters 
The Geospatial Multi-Agency Coordination (GeoMAC) program produces maps of wildfire burn 
perimeters from 2000–present (GeoMAC, 2019). The perimeter shapefile includes such 
information as wildfire name, unique ID, year, burn area, and other parameters. 
 
7.2.2.2 Wildfire Suppression Costs 
We accessed Colorado wildfire suppression costs from a variety of sources. These are detailed 
in Appendix D—Historic Colorado Wildfire Suppression Costs. Additionally, the Colorado 
Division of Fire Prevention and Control has published the state’s total direct wildfire 
suppression costs from 2010–2018 (Colorado Division of Fire Prevention and Control, 2018).  
 
7.2.2.3 Wildfire Burn Probability Maps 
We used the Technosylva burn probability maps for historic and future climate as detailed in 
Sect. 7.1.3.1. 
 
7.2.2.4 Building Footprints and Land Use 
We converted the Microsoft building footprint database (Sect. 5.1.2.3) to points to tally the 
number of buildings within and near wildfire perimeters. In order to estimate future changes to 
the number of buildings in Colorado, we used the ICLUS dataset described in Sect. 5.1.2.5.   
 
7.2.2.5 Climate Data and Scenarios 
This section uses the same climate data and scenarios as described in Sects. 2.2.2 and 7.1.3.5). 
 
7.2.3 Model Approach/Methods 
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7.2.3.1 Relating Historic Fire Size and Building Counts to Total Suppression Cost 
We associated each wildfire in our suppression cost database (Appendix D—Historic Colorado 
Wildfire Suppression Costs) to a matching GeoMAC wildfire perimeter based on the fire name, 
year, and location. We then created a 6 mi. buffer around each fire and computed the number 
of buildings within the original fire perimeter and the buffer zone. Next, we created a multiple 
linear regression model to estimate suppression cost as a function of wildfire size and number 
of buildings within the buffered perimeter: 
 

𝐶𝐶𝐶𝐶𝛼𝛼𝐶𝐶𝑒𝑒𝑒𝑒𝑖𝑖 = 𝛼𝛼1𝐸𝐸𝑓𝑓𝑓𝑓𝑐𝑐𝑒𝑒 + 𝛼𝛼2𝑛𝑛𝑜𝑜𝑐𝑐𝑓𝑓𝑓𝑓𝑜𝑜𝑓𝑓𝑓𝑓𝑏𝑏𝑒𝑒 
 
where 𝐶𝐶𝐶𝐶𝛼𝛼𝐶𝐶𝑒𝑒𝑒𝑒𝑖𝑖 is the estimated suppression cost, 𝛼𝛼1 and 𝛼𝛼2 are the regression slopes, 𝐸𝐸𝑓𝑓𝑓𝑓𝑐𝑐𝑒𝑒 is 
the area of the fire, and 𝑛𝑛𝑜𝑜𝑐𝑐𝑓𝑓𝑓𝑓𝑜𝑜𝑓𝑓𝑓𝑓𝑏𝑏𝑒𝑒 is the number of buildings within the buffered perimeter. 
The regression y-intercept was forced to 0. This model explained 69% of the variance in 
suppression costs, with a p-value < 0.0005. The model estimated an increase of $87,000 in 
suppression costs for every extra 1 km2 burned and $110 for every extra building within the 
buffered perimeter (Figure 7-6.). 
 

 
Figure 7-6. Suppression cost (in millions of dollars) plotted against burned area for major Colorado wildfires. Point size 
represents the number of buildings within the buffered perimeter and the blue line is a linear regression fit to the data. 

 
7.2.3.2 Computing Suppression Costs 
We then computed suppression costs using the Technosylva baseline burn probability raster 
(Sect. 7.1.3.1), building footprint data, and the multiple linear regression model described in 
Sect. 7.2.3.1 above. We first aggregated the burn probability data from its native 98.4 ft. (30 m) 
grid spacing to 6 mi. (9.7 km) to match the resolution of the buffer to assess threatened 
buildings. Next, we calculated the area burned per grid cell as the burn probability times grid 
cell area. We then ran the multiple linear regression model using the area burned and building 
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count within the grid cell for all those with a baseline burn probability greater than 0.2%, which 
was done to eliminate urban and alpine areas with negligible burn probabilities.   
 
7.2.3.3 Bias-Correcting and Aggregating Suppression Costs to the County Level  
We next aggregated all grid cell values to the county level to get an annual estimated 
suppression cost for each county in Colorado. However, the multiple linear regression model 
was built with suppression costs figures that included both state and federal responsibility. This 
meant modeled suppression costs were higher than what the state costs would be in an 
average year, which necessitated a bias-correction protocol. To do this, we multiplied each 
county-level estimated suppression cost value by a bias-correction term computed from 
observed statewide suppression costs and statewide total modeled costs: 
 

𝐶𝐶𝐶𝐶𝛼𝛼𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐶𝐶𝐶𝐶𝛼𝛼𝐶𝐶𝑒𝑒𝑒𝑒𝑖𝑖
𝐶𝐶𝐶𝐶𝛼𝛼𝐶𝐶𝑐𝑐𝑜𝑜𝑒𝑒����������
∑𝐶𝐶𝐶𝐶𝛼𝛼𝐶𝐶𝑒𝑒𝑒𝑒𝑖𝑖

 

 
where 𝐶𝐶𝐶𝐶𝛼𝛼𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the bias-corrected county-level suppression cost, 𝐶𝐶𝐶𝐶𝛼𝛼𝐶𝐶𝑒𝑒𝑒𝑒𝑖𝑖 is the county-level 
estimated suppression cost, 𝐶𝐶𝐶𝐶𝛼𝛼𝐶𝐶𝑐𝑐𝑜𝑜𝑒𝑒���������� is the average annual observed statewide suppression cost 
and ∑𝐶𝐶𝐶𝐶𝛼𝛼𝐶𝐶𝑒𝑒𝑒𝑒𝑖𝑖 is the sum of all county-level estimated suppression costs. 
 
7.2.3.4 Accounting for Climate and Population Change 
To account for the effect of increasing wildfire frequency due to climate change, we used the 
approach outlined in Sect. 7.1.3.5 for the Moderate and More Severe climate scenarios. In this 
case, we used the burn probability rasters for the two new climate scenarios and repeated the 
steps in Sects. 7.2.3.2 and 7.2.3.3. The only modification is we used the same bias-correction 
term as computed in the baseline. 
 
For the population scenarios, we modified the number of buildings per aggregated burn 
probability grid cell by tracking the change in ICLUS-reported land use. For each ICLUS category, 
we computed the average number of buildings per grid cell type from the baseline ICLUS raster 
and the building footprint dataset. We then tracked the change in each cell from the baseline to 
the new population scenario and added buildings where necessary as development continued 
in the wildland urban interface. We then reran the steps in Sects. 7.2.3.2 and 7.2.3.3 with 
Baseline, Moderate, and More Severe burn probability rasters for each population scenario. As 
stated in the paragraph above, we did not change the bias-correction term.  
 
7.2.4 Model Outputs 
The ultimate product created by the steps outlined in this document is a per-county wildfire 
suppression cost for each combination of the three climate and four population scenarios (i.e., 
each county has 12 unique values). These are the data that can be found in the interactive 
online visualization tool. In addition to this product is a series of intermediate model outputs 
listed below: 
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1. Table of historic total suppression costs and related GeoMAC data for major wildfires 
from 2000–2018 

2. Gridded maps of annual suppression costs for each combination of the climate and 
population scenarios 

 
7.2.5 Assumptions and Limitations 

• The modeled burn probability and observed suppression costs cover two different time 
periods. We use the latter to bias-correct suppression costs estimated from the former. 

• ICLUS-derived changes in the number of buildings per county may not represent the 
proper locations and intensity of future development due to population growth. We 
additionally do not account for any adaptation measures that can improve the fire 
safety of buildings and development. 
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9 Appendix A—Climate Scenario Tables 
 

Table 9-1. Descriptions of Current Climate, Moderate Future Climate, and More Severe Future Climate scenarios for the three 
natural hazards. 

 

Table 9-2. Variables and outputs used in generating and applying the climate scenarios to the different sectors. 

 
  

Current
Climate

Moderate 
Future Climate

More Severe
Future Climate

Flood

Calculate current magnitudes of 10-year 
through 200-year flood events from 
downscaled hydrology (Reclamation, 2013), 
and assign these flood magnitudes to state-
wide floodplain maps. Time period = 2009-
2028 (20-year window centered on 2019)

Calculate changes in frequency of current 
flood events from downscaled hydrology 
using 10-model ensemble representing 2°C 
summertime warming at 2050. Time period 
= 2040-2059 (20-year window centered on 
2050)

Calculate changes in frequency of current 
flood events assuming 3°C summertime 
warming in 2050, and 7% per °C increase in 
extreme flood events

Wildfire

Gridded historical climate (air temperature, 
relative humidity, wind) using National 
Centers for Environmental Prediction (NCEP) 
gridded reanalysis data (North American 
Regional Reanalysis (NARR)). 
Time period = 1988-2017. 

Adjusted air temperature using monthly 
anomalies from CRWAS II "Center" scenario 
ensemble. Adjusted live fuel moisture 
content (LFMC) using the standardized 
precipitation evapotranspiration index 
(SPEI), which is adjusted with future 
precipitation and evaporation.  Time period 
= 2035-2064 (30-year window centered on 
2050)

Adjusted air temperature using monthly 
anomalies from CRWAS II "7525" scenario 
ensemble. Adjusted LFMC using SPEI drought 
index, which is adjusted with precipitation 
and evaporation. Time period = 2035-2064 
(30-year window centered on 2050).

Adjusted temperature and precipitation, 
using a model ensemble consistent with the 
Colorado River Water Availability Study 
Phase II (CRWAS II) "Center" scenario 
(Harding et al., 2015). This corresponds to 
an average annual air temperature increase 
of 2.1°C and a 5% gain in annual 
precipitation. Time period = 2035-2064 (30-
year window centered on 2050)

Adjusted temperature and precipitation, 
using a model ensemble consistent with 
CRWAS II "7525" scenario (Harding et al., 
2015). This corresponds to an average 
annual air temperature increase of 2.3°C 
and a 1% loss in annual precipitation. Time 
period = 2035-2064 (30-year window 
centered on 2050).

Drought
Gridded historical temperature and 
precipitation (Maurer et al., 2002). Time 
period = 1949–2014

Climate Model Variables Derived Variables Model Outputs

Flood Precipitation, Temperature
Modeled streamflow, extreme 
precipitation

Changes in frequency of historical flood 
events

Agriculture:
Precipitation, Temperature

Agriculture: Evapotranspiration 
(plant consumptive irrigation 
requirement, or CIR); Palmer drought 
severity index (PDSI); satellite-derived 
vegetation greenness

Agriculture:
Changes in crop yields; changes in feed 
costs

Skiing:
Precipitation, Temperature

Skiing:
Winter snowpack

Skiing:
Changes in snow season length

Rafting:
Precipitation, Temperature

Rafting:
Monthly river runoff 

Rafting:
Changes in boatable days

Wildfire Precipitation, Temperature 

Standardized Precipitation 
Evapotranspiration Index (SPEI), Live 
Fuel Moisture Content (LFMC)

Changes in burn probability and flame 
length probability distributions

Drought
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10 Appendix B—Population Scenario Table 
 

Table 10-1. Descriptions of the population growth scenarios along with how they affect various relevant variables for the 
different hazards and sectors. 

 
  

Current
Popluation

Low Growth
Future

Medium Growth
Future

High Growth
Future

Hazus Datasets

Flood
Statewide Totals
2015 Population: 5.45M
Hazus Building Inventory Replacement 
Value: $574B

2050 Statewide Totals
Population: 7.68M
Hazus Building Inventory Replacement 
Value: $871B

2050 Statewide Totals
Population: 8.46M
Hazus Building Inventory Replacement 
Value: $962B

2050 Statewide Totals
Population: 9.31M
Hazus Building Inventory Replacement 
Value: $1062B

Wildfire

Statewide Totals
2015 Population: 5.45M

Building Inventory:
# of Structures: 2.1M
Hazus Replacement Value: $574B

2050 Statewide Totals
Population: 7.68M

Building Inventory:
# of Structures: 3.2M
Hazus Replacement Value: $871B

2050 Statewide Totals
Population: 8.46M

Building Inventory:
# of Structures: 3.4M
Hazus Replacement Value: $962B

2050 Statewide Totals
Population: 9.31M

Building Inventory:
# of Structures: 3.7M
Hazus Replacement Value: $1062B

Building replacement values from the Hazus (v2.2) 2010 dataset at the census block level. Valuations were provided in 2014 dollars and adjusted to 2019 dollars 
using the consumer price index (CPI). Building categories include residential, commercial, industrial, and other (religious, government, education) buildings. Future 

projections of replacement cost are based on spatial buildout distribution from the Integrated Climate and Land Use Scenarios (ICLUS v2).

Drought

Statewide Totals
Acres of Irrigated Cropland: 2.70M
Acres of Pasture/Grassland: 20.0M
Baseline Annual Ski User Days: 11.5M
Baseline Annual Rafting 
User Days: 515k

2050 Statewide Totals
Acres of Irrigated Cropland: 2.45M
Acres of Pasture/Grassland: 19.7M
Baseline Annual Ski User Days: 13.8M
Baseline Annual Rafting 
User Days: 739k

2050 Statewide Totals
Acres of Irrigated Cropland: 2.34M
Acres of Pasture/Grassland: 19.4M
Baseline Annual Ski User Days: 15.3M
Baseline Annual Rafting 
User Days: 895k

2050 Statewide Totals
Acres of Irrigated Cropland: 2.45M
Acres of Pasture/Grassland: 19.5M
Baseline Annual Ski User Days: 14.5M
Baseline Annual Rafting
User Days: 814k
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11 Appendix C—River Reach Info 
Table 11-1. Reference gauges and runnable ranges for American Whitewater segments comprising CROA-reported rivers.  

River for which 
CROA reports 
user days 

American Whitewater segment 
name 

Reference streamflow gauge used to assess segment 
boating conditions 

Runnable 
range 
(lower) 
cfs 

Runnable 
range 
(upper) 
cfs 

Animas – 
Upper 

Silverton to Tacoma USGS 09359020 ANIMAS RIVER BELOW SILVERTON, 
CO 

300 2000 

Animas - Upper Tacoma to Rockwood Rail Yard USGS 09359500 ANIMAS RIVER AT TALL TIMBER 
RESORT ABOVE TACOMA,CO 

300 3000 

Animas - Upper Bakers Bridge to Trimble Lane USGS 09361500 ANIMAS RIVER AT DURANGO, CO 500 4000 

Animas - Upper Trimble Lake to 32nd Street Park USGS 09361500 ANIMAS RIVER AT DURANGO, CO 500 4000 

Animas 32nd Street Park to Purple Cliffs USGS 09361500 ANIMAS RIVER AT DURANGO, CO 1000 6000 

Animas Purple Cliffs to State Line USGS 09361500 ANIMAS RIVER AT DURANGO, CO 500 6000 

Arkansas The Numbers DWR (ARKGRNCO) 200 5000 

Arkansas Railroad Bridge Launch to Buena 
Vista 

DWR (ARKGRNCO) 200 5000 

Arkansas Buena Vista to Fisherman's 
Bridge 

USGS 07091200 ARKANSAS RIVER NEAR NATHROP, CO 300 5000 

Arkansas Fisherman's Bridge to Stone 
Bridge Access 

USGS 07091200 ARKANSAS RIVER NEAR NATHROP, CO 300 5000 

Arkansas Stone Bridge to Salida USGS 07091200 ARKANSAS RIVER NEAR NATHROP, CO 300 5000 

Arkansas Salida to Rincon USGS 07091200 ARKANSAS RIVER NEAR NATHROP, CO 300 5000 

Arkansas Rincon to Pinnacle Rock USGS 07094500 ARKANSAS RIVER AT PARKDALE, CO 300 5000 

Arkansas Pinnacle Rock to Parkdale Launch USGS 07094500 ARKANSAS RIVER AT PARKDALE, CO 300 5000 

Arkansas Pinnacle Rock to Canon City 
(Royal Gorge) 

DWR (ARKWELCO) 150 7000 

Blue Blue River Campground to 
Columbine Landing 

USGS 09050700 BLUE RIVER BELOW DILLON, CO 200 2000 

Clear Creek Kermit's to Green Bay Rock USGS 06716500 CLEAR CREEK NEAR LAWSON, CO 199 1000 

Colorado - 
Glenwood 

Glenwood USGS 09070500 COLORADO RIVER NEAR DOTSERO, 
CO 

900 5000 

Colorado - 
Upper 

Gore Canyon USGS 09058000 COLORADO RIVER NEAR 
KREMMLING, CO 

700 2500 

Colorado - 
Horsethief - 
Ruby 

Ruby Horsethief USGS 09163500 COLORADO RIVER NEAR COLORADO-
UTAH STATE LINE 

2500 50000 

Colorado - 
Westwater 

Westwater USGS 09163500 COLORADO RIVER NEAR COLORADO-
UTAH STATE LINE 

2000 30000 

Dolores Rico to Big Rock USGS 09166500 DOLORES RIVER AT DOLORES, CO 200 3000 

Dolores West Fork to McPhee Res USGS 09165000 DOLORES RIVER BELOW RICO, CO 400 3000 

Dolores McPhee to Dove Creek Pump 
Station 

DOLORES RIVER BELOW MCPHEE RESERVOIR 
(DOLBMCCO) 

700 5000 

Dolores Slickrock to Bedrock USGS 09168730 DOLORES RIVER NEAR SLICK ROCK, 
CO 

800 5000 

Dolores Bedrock to Gateway USGS 09171100 DOLORES RIVER NEAR BEDROCK, CO 800 5000 

Dolores Gateway to Colorado River USGS 09180000 DOLORES RIVER NEAR CISCO, UT 800 5000 

Eagle - Upper Camp Hale to Red Cliff USGS 09063000 EAGLE RIVER AT RED CLIFF, CO 200 1000 

Eagle - Upper Gilman Gorge USGS 09064600 EAGLE RIVER NEAR MINTURN, CO 275 2000 
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Eagle - Upper Minturn Town Run USGS 09064600 EAGLE RIVER NEAR MINTURN, CO 100 2000 

Eagle - Upper Dowd Chute USGS 09064600 EAGLE RIVER NEAR MINTURN, CO 250 4000 

Eagle - Lower River Run to Edwards USGS 394220106431500 EAGLE RIVER BELOW MILK 
CREEK NEAR WOLCOTT, CO 

1000 3000 

Eagle - Lower Edwards to Eagle USGS 394220106431500 EAGLE RIVER BELOW MILK 
CREEK NEAR WOLCOTT, CO 

700 5000 

Eagle - Lower Eagle to Gypsum USGS 394220106431500 EAGLE RIVER BELOW MILK 
CREEK NEAR WOLCOTT, CO 

200 7000 

Eagle - Lower Gypsum to Dotsoro USGS 09070000 EAGLE RIVER BELOW GYPSUM, CO 100 8000 

Gore Creek - 
Vail 

East Vail Exit to Vail USGS 09066325 GORE CREEK ABV RED SANDSTONE 
CREEK AT VAIL, CO 

300 2000 

Gore Creek - 
Vail 

Vail to Eagle River USGS 09066510 GORE CREEK AT MOUTH NEAR 
MINTURN, CO 

150 500 

Green/Yampa Flaming Gorge to Lodore USGS 09234500 GREEN RIVER NEAR GREENDALE, UT 200 5000 

Green/Yampa Lodore to Echo Park USGS 09234500 GREEN RIVER NEAR GREENDALE, UT 1100 20000 

Green/Yampa Echo Park to Split Mountain USGS 09261000 GREEN RIVER NEAR JENSEN, UT 200 20000 

Green/Yampa River Park to Transit Center USGS 09239500 YAMPA RIVER AT STEAMBOAT 
SPRINGS, CO 

700 5000 

Green/Yampa Transit Center to Pump Station USGS 09244490 YAMPA RIVER ABOVE ELKHEAD 
CREEK NEAR HAYDEN, CO 

500 5000 

Green/Yampa Little Yampa Canyon USGS 09247600 YAMPA RIVER BELOW CRAIG, CO 1100 10000 

Green/Yampa 85 Rd to Deer Lodge Park Rd USGS 09251000 YAMPA RIVER NEAR MAYBELL, CO 700 5000 

Green/Yampa Deerlodge Park to Echo Park USGS 09260050 YAMPA RIVER AT DEERLODGE PARK, 
CO 

1300 25000 

Gunnison - 
Upper (Town 
Run) 

Almont to Blue Mesa USGS 09114500 GUNNISON RIVER NEAR GUNNISON, 
CO 

500 3000 

Gunnison 
Gorge 

Chrystal Dam to Chukar Trail USGS 09128000 GUNNISON RIVER BELOW GUNNISON 
TUNNEL, CO 

600 3000 

Gunnison 
Gorge 

Chukar to N. Fork USGS 09128000 GUNNISON RIVER BELOW GUNNISON 
TUNNEL, CO 

280 15000 

Gunnison - 
Escelante 

Delta to Whitewater USGS 09144250 GUNNISON RIVER AT DELTA, CO 800 20000 

Gunnison - 
Forks to Austin 

Forks to Austin USGS 09144250 GUNNISON RIVER AT DELTA, CO 800 20000 

Gunnison Lake 
Fork 

Lake City Town Run USGS 09124500 LAKE FORK AT GATEVIEW, CO 300 2000 

North Platte State Line to French Creek USGS 06620000 NORTH PLATTE RIVER NEAR 
NORTHGATE, CO 

400 3000 

Piedra Upper Piedra CG to 1st Fork 
Bridge 

USGS 09349800 PIEDRA RIVER NEAR ARBOLES, CO 550 4000 

Piedra 1st Fork Bridge to Lower Piedge 
CG 

USGS 09349800 PIEDRA RIVER NEAR ARBOLES, CO 400 3500 

Piedra Lower Piedre CG to Navajo 
Reservoir 

USGS 09349800 PIEDRA RIVER NEAR ARBOLES, CO 400 4000 

Poudre Big South Campground to Tunnel 
Picnic Ground 

DWR CACHE LA POUDRE AT CANYON MOUTH NEAR 
FORT COLLINS (CLAFTCCO) 

300 900 

Poudre Home Moraine to Indian 
Meadows Bridge 

DWR CACHE LA POUDRE AT CANYON MOUTH NEAR 
FORT COLLINS (CLAFTCCO) 

600 3000 

Poudre Indian Meadows Bridge to 
Narrows Picnic Ground 

DWR CACHE LA POUDRE AT CANYON MOUTH NEAR 
FORT COLLINS (CLAFTCCO) 

650 3000 

Poudre Narrows Picnic Ground to 
Steven's Gulch Access 

DWR CACHE LA POUDRE AT CANYON MOUTH NEAR 
FORT COLLINS (CLAFTCCO) 

150 1300 
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Poudre Stevens Gulch to Mishawaka DWR CACHE LA POUDRE AT CANYON MOUTH NEAR 
FORT COLLINS (CLAFTCCO) 

300 3000 

Poudre Mishiwaka to Poudre Park DWR CACHE LA POUDRE AT CANYON MOUTH NEAR 
FORT COLLINS (CLAFTCCO) 

250 3000 

Poudre Poudre Park Picnic Ground to 
below Pine View Falls 

DWR CACHE LA POUDRE AT CANYON MOUTH NEAR 
FORT COLLINS (CLAFTCCO) 

250 2500 

Poudre Pineview Falls to Bridges Take-
out 

DWR CACHE LA POUDRE AT CANYON MOUTH NEAR 
FORT COLLINS (CLAFTCCO) 

250 3000 

Poudre Below Filter Plant to Picnic Rock 
Access 

DWR CACHE LA POUDRE AT CANYON MOUTH NEAR 
FORT COLLINS (CLAFTCCO) 

300 2500 

Rio Grande Wagon Wheel Gap to South Fork DWR (RIOWAGCO) 100 5500 

Rio Grande South Fork to Del Norte DWR (RIODELCO) 100 9000 

Rio Grande Alamosa to Lasauses DWR (RIOALACO) 100 4500 

Roaring Fork - 
Above Basalt 

Weller Lake to Difficult CG USGS 09073300 ROARING FORK RIVER AB DIFFICULT C 
NR ASPEN, CO 

100 1000 

Roaring Fork - 
Above Basalt 

Slaughterhouse USGS 09076300 ROARING FORK RIVER BLW MAROON 
CREEK NR ASPEN, CO 

635 2700 

Roaring Fork - 
Above Basalt 

Upper Woody Creek Bridge to 
Lower Woods Creek Bridge 

USGS 09076300 ROARING FORK RIVER BLW MAROON 
CREEK NR ASPEN, CO 

200 1400 

Roaring Fork - 
Above Basalt 

Lower Woody Creek Bridge to 
rte. 82 Bridge 

USGS 09076300 ROARING FORK RIVER BLW MAROON 
CREEK NR ASPEN, CO 

200 1400 

Roaring Fork - 
Below Basalt 

Basalt to Carbondale USGS 09081000 ROARING FORK RIVER NEAR EMMA, 
CO 

200 1500 

Roaring Fork - 
Below Basalt 

Black Bridge to Veltus Park USGS 09085000 ROARING FORK RIVER AT GLENWOOD 
SPRINGS, CO 

200 10000 

San Juan - 
Pagosa 

Riverside Campground to 
Yamaguchi Park 

USGS 09342500 SAN JUAN RIVER AT PAGOSA 
SPRINGS, CO 

200 2000 

San Juan - 
Pagosa 

Pagosa Springs to Trujillo Rd USGS 09342500 SAN JUAN RIVER AT PAGOSA 
SPRINGS, CO 

400 2500 

San Miguel Bilk Creek to Down Valley Park USGS 09172500 SAN MIGUEL RIVER NEAR 
PLACERVILLE, CO 

500 5000 

San Miguel Down Valley Park to Specie Creek USGS 09172500 SAN MIGUEL RIVER NEAR 
PLACERVILLE, CO 

500 5000 

San Miguel Specie Creek to Beaver Creek USGS 09172500 SAN MIGUEL RIVER NEAR 
PLACERVILLE, CO 

500 5000 

San Miguel Beaver Creek to Pinon Bridge USGS 09174600 SAN MIGUEL RIVER AT BROOKS 
BRIDGE NEAR NUCLA CO 

600 5000 

San Miguel Pinon Bridge to Naturita USGS 09174600 SAN MIGUEL RIVER AT BROOKS 
BRIDGE NEAR NUCLA CO 

600 5000 

San Miguel Naturita to Dolores confluence USGS 09177000 SAN MIGUEL RIVER AT URAVAN, CO 600 5000 

Taylor Bridge to Pieplant Ranch USGS 09107000 TAYLOR RIVER AT TAYLOR PARK, CO 500 1000 

Taylor Taylor Park Reservoir to Almont USGS 09110000 TAYLOR RIVER AT ALMONT, CO 400 3000 
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12 Appendix D—Historic Colorado Wildfire Suppression Costs 
 
Table 12-1. Historic Colorado wildfire suppression costs used to optimize the model in Sect. 7.2.3.1. Entries in the table below are 
ordered by fire size and are derived from multiple sources as noted (Brown & Blevins, 2018; Colorado Division of Fire Prevention 
and Control, 2013; Denver Post, 2016; Mitchell, 2018; National Park Service, 2013; Romeo, 2019). Suppression costs are given in 

nominal dollars for the year in which the fire took place.  

Year Fire Name Size (acres) 

Suppression 
Cost  

($ million) Source 

2002 Hayman Fire 137760 39 Colorado Division of Fire Prevention and 
Control (2013) 

2013 West Fork Complex fire 109049 2.2 Denver Post (2016) 

2018 Spring Creek 108045 31.98 Brown and Blevins (2018) 

2012 High Park Fire 87250 39.2 Colorado Division of Fire Prevention and 
Control (2013) 

2002 Missionary Ridge 71739 40 Colorado Division of Fire Prevention and 
Control (2013) 

2018 “416” and Burro Fire 
Complex 57000 40 Romeo (2019) 

2018 Badger Hole 50671 0.166 Brown and Blevins (2018) 

2008 Bridger Fire 45800 2.7 Colorado Division of Fire Prevention and 
Control (2013) 

2011 Bear Springs/Callie Marie 
Fires 44662 2.5 Colorado Division of Fire Prevention and 

Control (2013) 
2018 MM 117 42795 0.9 Brown and Blevins (2018) 

2018 Bull Draw 36549 12.1 Brown and Blevins (2018) 

2002 Trinidad Complex 33000 2.18 Colorado Division of Fire Prevention and 
Control (2013) 

2002 Mount Zirkel Complex 31016 13.3 Colorado Division of Fire Prevention and 
Control (2013) 

2018 Stateline 28105 2.3 Brown and Blevins (2018) 

2012 Little Sand 24900 1.25 Colorado Division of Fire Prevention and 
Control (2013) 

2000 Bircher 23607 5 Colorado Division of Fire Prevention and 
Control (2013) 

2018 Silver Creek 20120 25.32 Brown and Blevins (2018) 

2018 Divide 19955 0.82 Brown and Blevins (2018) 

2012 Waldo Canyon 18247 15.3 Colorado Division of Fire Prevention and 
Control (2013) 

2013 Black Forest 14280 8.5 Mitchell (2018) 

2011 Ft. Lyons Fires 14000 0.302 Colorado Division of Fire Prevention and 
Control (2013) 

2006 Mato Vega Fire 13820 3.1 Colorado Division of Fire Prevention and 
Control (2013) 

2011 Shell Complex 13312 1.1 Colorado Division of Fire Prevention and 
Control (2013) 

2018 Weston Pass 13023 9.65 Brown and Blevins (2018) 
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2018 Lake Christine 12588 17.4 Brown and Blevins (2018) 

2002 Coal Seam 12200 7.25 Colorado Division of Fire Prevention and 
Control (2013) 

2005 Mason Fire 11357 3.8 Colorado Division of Fire Prevention and 
Control (2013) 

2002 Spring Creek 11000 7 Colorado Division of Fire Prevention and 
Control (2013) 

2000 Hi Meadow  10800 4.5 Colorado Division of Fire Prevention and 
Control (2013) 

2000 Bobcat Fire 10559 3.3 Colorado Division of Fire Prevention and 
Control (2013) 

2002 Million 9346 9.8 Colorado Division of Fire Prevention and 
Control (2013) 

2004 Picnic Rock Fire 8908 2.3 Colorado Division of Fire Prevention and 
Control (2013) 

2004 Greasewood  7815 1.093 Colorado Division of Fire Prevention and 
Control (2013) 

2012 Hewlett 7685 2.9 Colorado Division of Fire Prevention and 
Control (2013) 

2010 Fourmile Canyon  6388 10 Denver Post (2016) 

2012 Sunrise Mine  6017 1.2 Denver Post (2016) 

2018 Cabin Lake 5975 13.15 Brown and Blevins (2018) 

2018 Red Canyon 5722 3.98 Brown and Blevins (2018) 

2002 Bear 4800 1 Denver Post (2016) 

2012 Lower North Fork 4500 6.6 Colorado Division of Fire Prevention and 
Control (2013) 

2002 Big Elk 4413 4 Mitchell (2018) 

2002 Schoonover 3860 2.4 Denver Post (2016) 

2012 Fern Lake 3500 6 National Park Service (2013) 

2011 Crystal 3000 3 Mitchell (2018) 

2002 Snaking 2590 2.6 Denver Post (2016) 

2018 2018 RBC Complex  1438 3.16 Brown and Blevins (2018) 

2018 Chateau 1423 2.78 Brown and Blevins (2018) 

2018 Sulphur 977 1.39 Brown and Blevins (2018) 

2018 Skunk Creek 620 0.8 Brown and Blevins (2018) 

2018 Upper Mailbox 474 0.75 Brown and Blevins (2018) 

2018 Buffalo Mountain 91 2.45 Brown and Blevins (2018) 
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