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Background:   
Snow data collection is essential to understanding water supply. Currently, water 
supply forecasts rely primarily on the NRCS SNOTEL network for snow depth and snow 
water equivalent (SWE) data. These SNOTEL stations are staples in water forecasting, 
but are only able to collect data at their installation locations. Even with 
interpolation, estimations of snowpack at higher elevations can lead to inaccurate 
forecasting.  
 
The Snow Data LiDAR Program utilizes LiDAR equipped planes to collect high resolution 
snow depth data over large areas. Ideally, flights are conducted during peak SWE, the 
melt period, and when the snow has melted. CWCB began partnering with NASA’s 
Aerial Snow Observatory (ASO) program in 2015 to help fill SWE data gaps. To date, 
CWCB has partnered on flights in the Rio Grande and Gunnison Basins and anticipates 
funding via the Projects Bill in Fiscal Year 2020/2021. 
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Snow cover and its melt dominate regional climate and water resources inmany of the world's mountainous re-
gions. Snowmelt timing and magnitude in mountains are controlled predominantly by absorption of solar radi-
ation and the distribution of snowwater equivalent (SWE), and yet both of these are very poorly known even in
the best-instrumented mountain regions of the globe. Here we describe and present results from the Airborne
Snow Observatory (ASO), a coupled imaging spectrometer and scanning lidar, combined with distributed
snow modeling, developed for the measurement of snow spectral albedo/broadband albedo and snow depth/
SWE. Snow density is simulated over the domain to convert snow depth to SWE. The result presented in this
paper is the first operational application of remotely sensed snow albedo and depth/SWE to quantify the volume
ofwater stored in the seasonal snow cover. Theweekly values of SWE volume provided by the ASO program rep-
resent a critical increase in the information available to hydrologic scientists and resourcemanagers inmountain
regions.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Snow cover and its melt dominate sources in many of the world's
mountainous regions, and in adjacent areas dependent on river flows
originating from mountain basins. In the western United States, snow-
melt runoff dominates the surface water hydrology, providing N75% of
the total freshwater (Bales et al., 2006). However, the region faces sig-
nificant water resource challenges due to the intersection of increasing
demand from population growth and changes in runoff volume and
timing due to climate change (Christensen et al., 2004; Christensen
and Lettenmaier, 2007).

Observations indicate an ongoing reduction in the seasonal duration
of mountain snowpacks (Hamlet et al., 2005; Mote et al., 2005; Hamlet
nter).
et al., 2007; Clow, 2010), a trend likely to continue under unimpeded
warming associated with climate change (Christensen and Lettenmaier,
2007; Deems et al., 2013b). Moreover, increasing temperatures in desert
systems will increase dust loading to mountain snow cover (Munson et
al., 2011), thus reducing the snow cover albedo and accelerating snow-
melt runoff (Painter et al., 2007; Painter et al., 2010; Skiles et al., 2012).

The two most critical properties for understanding timing and mag-
nitude of snowmelt runoff are the spatial distributions of snow albedo
and snow water equivalent (SWE) (Blöschl, 1991; Kirnbauer et al.,
1994). Despite the importance of these properties in controlling volume
and timing of runoff, themountain snowpack remains poorly quantified
around the globe (Bales et al., 2006) (Barnett et al., 2005), leaving runoff
and climate models poorly constrained and our physical understanding
of mountain snowmelt driven systems incomplete.

In the western US, we have relatively sparse measurements of
SWE, mostly at lower and middle elevations and only a few per basin
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(Bales et al., 2006). These measurements are used as indices for runoff
estimates but, as point indicators for ameasure that varieswidely across
the landscape from zero to N5 m, they do not provide a direct estimate
of the total water volume stored in the seasonal snow-covered moun-
tain basins, nor are they sufficient to support physically-based hydro-
logic models. Moreover, with rising snow line elevations under
climate change, these index sites will more frequently melt out earlier
and thus lose their utility (Nolin and Daly, 2006). Albedo is even more
drastically under sampled. Only six sites have ongoing, multi-year mea-
surements of snow albedo in the western US (Bales et al., 2006; Painter
et al., 2012).

Recognizing the void in knowledge of the mountain snowpack, we
developed the Airborne Snow Observatory (ASO), a coupled scanning
lidar system and imaging spectrometer, to quantify snow depth, SWE,
and snow albedo, to offer unprecedented knowledge of snowproperties
and distribution for cryospheric science, and to provide spatially com-
prehensive, robust inputs to water management models and systems
of the future. Our overarching objectivewas to generate comprehensive
time-seriesmaps of coincident SWEand albedo over largemountain ba-
sins. To do this, we combined approximately weekly repeat lidar and
spectrometer over-flights with snow density fields simulated by an en-
ergy balance snow model and constrained by in situ measurements, to
convert the lidar-derived snow depths to distributed retrieval of SWE.
ASO weekly over-flights were initiated in mid-winter, prior to peak
SWE, and continuing throughout the melt season. These data provide
a reliable estimate of total snow accumulation and ablation, and its spa-
tial distribution during the snow season.

The ASO data set represents the first quantitative estimate of the dy-
namics of the volume and distribution, both spatial and temporal, of the
seasonal snow cover in a mountain watershed. The ASO program is not
only changing how science views mountain snowpack and hydrology,
but is defining a new paradigm for water management that can be ap-
plied in snow-fed regions around the world. Here we describe the ASO
in terms of its legacy from other systems, physical motivation for and
description of instrumentation, algorithms, data processing, and a case
study of the ASO in operation in the Tuolumne River Basin, California.

2. Background

2.1. Snow albedo

Albedo is defined as the percent of incident solarflux that is reflected
by a surface. Albedo can be either broadband (integrated across wave-
lengths) or spectral (integrated over multiple narrow wavelength
ranges) (Schaepman-Strub et al., 2006). With an imaging spectrometer,
radiances in discrete bands across the complete spectrum (usually ei-
ther 350–1050 nm (VNIR) or 350–2500 nm (VSWIR)) are sampled
and then, through atmospheric correction and topographic correction,
both the spectral hemispherical-directional reflectance factor (HDRF)
and spectral albedo are retrieved (Green et al., 1998; Painter et al.,
2013).

While imaging spectroscopy has long been used for retrieving snow
properties (Painter et al., 1998; Nolin and Dozier, 2000; Painter et al.,
2001; Painter et al., 2003; Painter and Dozier, 2004a; Green et al.,
2006; Dozier et al., 2009; Painter et al., 2013), these papers have de-
scribed what are very few acquisitions and have instead been primarily
descriptions of technology/algorithm development and demonstration.
Never have we had a time series of imaging spectrometer retrievals of
albedo sufficient to constrain snowmelt models or to provide a quanti-
tative understanding of the temporal variation of the spatial distribution
of snow albedo. Mountain snowmelt is dominated by net shortwave ra-
diation, itself controlled by snow albedo (Marks and Dozier, 1992;
Oerlemans, 2000; Painter et al., 2015). Subsequently this lack of quanti-
tative, spatially explicit and multi temporal albedo data to inform and
constrain models has hampered efforts to reduce uncertainty in snow-
melt simulations or to make models resilient to changing climate or
snow impurity conditions (Blöschl, 1991; Kirnbauer et al., 1994;
Painter et al., 2010; Bryant et al., 2013; Deems et al., 2013b; Sproles et
al., 2013).

Imaging spectrometer retrievals givemore accurate albedo determi-
nations than domultispectral retrievals because of their comprehensive
sampling of the radiance spectrum, such as the b1% broadband albedo
uncertainties described in Painter et al. (2013). The standard snow albe-
do product distributed by the National Snow and Ice Data Center Dis-
tributed Active Archive Center (NSIDC DAAC) is embedded in the
MOD10A1/MYD10A1 product suite. While on the Greenland Ice Sheet,
the albedo product has uncertainties of 7–8% (Stroeve et al., 2005), in
Arctic tundra regions the uncertainties of ~5% (Wang et al., 2012), and
in mountain settings uncertainties of 5–15% (Sorman et al., 2007), all
of these well outside of the 2% albedo requirement discussed below.

2.2. Snow water equivalent

Retrieving SWE from remote sensing has long been considered the
so-called “Holy Grail” of snow hydrology (Dozier, 2011). Nearly every
part of the electromagnetic spectrum has been explored for SWE re-
trievals – microwave (passive and active), gamma, and even optical in
the case of thin snow (Dozier et al., 1981) – and yet reliable success
has been largely elusive.

Given the sensitivity ofmicrowave radiation to SWE in ideal settings,
much effort has been put toward passive microwave and radar tech-
niques. For several decades, SWE has been retrieved from passive mi-
crowave sensors (e.g. the Special Sensor Microwave Radiometer
(SSMR), SSM/I, AMSR-E) but with great uncertainties and only on rela-
tively homogenous and low-slope terrain with SWE b ~150mm(Chang
et al., 1996; Luojus et al., 2013). For a snowpack with a density of
300 kg m−3, this 150 mm saturation equates to a snow depth of
0.45 m, which represents a very shallow depth for mountain snow-
packs, where depths can reach to N10 m. GlobSNOW, considered the
best current retrieval algorithm for SWE globally, only infers retrieves
SWE for regions outside of mountains (standard deviation of topogra-
phy within an EASE-Grid cell must be b200 m) due to the complexity
of the signal with myriad terrain facets soil moisture, ground ice and
standing water, or liquid water or ice lenses in the snowpack (Takala
et al., 2011; Luojus et al., 2013).

Radar retrievals have shown potential for direct and inferred re-
trievals of SWE (Shi and Dozier, 2000b; Shi and Dozier, 2000a; Yueh
et al., 2009). For mountain snow cover, radar retrievals have particular
sensitivities to grain size stratigraphy, liquid water in the snowpack ab-
sorbing the radar signal, and terrain layover. Moreover, considerable
mid-latitude snow lies below timberline and, as such, multiple scatter-
ing by trees and the absorption of the radar signal by canopy water oc-
cludes retrievals in this critical elevation range. Perhaps the most
important period for assimilation of SWE information for hydrologic
modeling is when the snowpack is wet. Therefore, the combination of
loss of signal due to snow wetness and vegetation canopy, along with
layover in complex terrain, makes radar suboptimal for remote sensing
of mountain SWE.

Snow water equivalent is mapped operationally by the National
Weather Service National Operational Hydrologic Remote Sensing
Center (NOHRSC) with a data assimilation model leveraging multiple
data sources including airborne passive gamma radiation surveys
(Peck et al., 1980; http://www.nohrsc.noaa.gov/snowsurvey/). Terres-
trial gamma emission from radioisotopes in the soil column is attenuat-
ed by water of any phase. Gamma retrievals conducted prior to snow
accumulation in the fall provide a background emission value at pre-
snow soil moisture levels, and again during the snow-covered season,
the difference used to produce a single mean areal SWE estimate from
the integral of the flight line (Carroll, 2001). This integrated estimate,
while being spatially explicit along a flight line and for a particular
drainage, is challenged by complex terrain and vegetation cover, and
lacks the spatial extent and detail to determine a true basin-wide spatial
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distribution. Furthermore, the Gamma SWE signal can be confounded
by changes in soil or vegetation water content that occur after the
snow-free flight. However, the NOHRSC program is targeted at the con-
tinental scale, incorporating the gamma SWE retrievals along with an
array of satellite SCA and in situ snow and meteorological observations
into a model assimilation scheme to estimate SWE and snow cover
properties (SNODAS). This operational service provides a benchmark
upon which finer-scale snow mapping efforts such as ASO can build
by adding basin- to slope-scale snow cover information within the
broader context. This higher resolution information could be incorpo-
rated into amodeling system such as NOHRSC SNODAS via assimilation.

Recent studies have demonstrated the suitability and accuracy of
airborne and terrestrial lidar data for differential (or geodetic) mapping
of snow depth in mountainous terrain (Hopkinson et al., 2004; Deems
et al., 2006; Trujillo et al., 2007; Prokop, 2008; Mott et al., 2011;
Deems et al., 2013a; Deems et al., 2015). The lidar system measures
range-to-target for each emitted laser pulse, with each target location
geolocated when combined with platform positioning and attitude
data, creating a point cloud of elevation measurements. Differencing
snow-free from snow-covered surface elevation data sets allows a
straightforward, robust calculation of snow depth. Snow depth varia-
tions comprise the majority of the spatial variation in SWE, as snow
density variation is more conservative (Fig. 1) (Sturm et al., 2010).
Snow depth measurements can then be combined with simulations of
snow density distributions to obtain SWE values for the full lidar data
extent, much like the estimates of ice sheet mass fluxes from ICESat-1
and other altimetry missions (Bamber and Rivera, 2007). By differenc-
ing two direct elevation measurements we avoid the issues of snow
wetness, snow layer and grain size stratigraphy, canopy occlusion, lay-
over, and surface roughness that complicate retrieval of SWE from
other remote sensing techniques.

3. System description

The Airborne Snow Observatory draws on a heritage of precursor
airborne imaging spectrometer/scanning lidar systems developed for
next generation ecosystem science and mapping. The current AToMS
configuration of the Carnegie AirborneObservatory, aswell as its prede-
cessor systems, have made breakthrough discoveries in tropical forest
ecology using this integrated concept (Asner et al., 2012; Asner et al.,
2013). Similarly, the National Ecological Observatory Network is active-
ly developing and deploying a triplet of similar systems for their
Fig. 1. Typical seasonal time series of the coefficient of variation of SWE, depth, and
density, demonstrating that the greatest variation in SWE comes from the variation in
depth. The coefficients of variation are calculated regionally using daily SWE and depth
data from eight SNOTEL sites throughout the eastern Sierra Nevada in California. The
data shown is from the 2009 water year, however all years from 2003 to 2010 show a
similar pattern.
Airborne Observation Platforms, an integral element of their multi-dis-
cipline, multi-decade, continental-scale ecological measurement cam-
paign (Kampe et al., 2010).

The Airborne Snow Observatory is the first such system designed
specifically for snow and water resources monitoring and research.
The time-critical nature of the snow data coupled with the relatively
large and complicated mountain areas that need to be measured, drive
the system to high altitude flight, wide swaths, and optimized process-
ing. The resulting ASO system is unique in two aspects: (a) the joint in-
version of the active lidar and passive imaging spectrometer data
coupled to an energy balance snowmodel for full SWE and snow albedo
retrievals and (b) the sub-24-hour latency for full product generation
and delivery.

3.1. Imaging spectrometer

ASO uses an itres CASI 1500 imaging spectrometer to retrieve spec-
tral albedo and spectrally-integrated albedo across the majority of the
significant solar irradiance at Earth's surface. These retrievals allow dis-
crimination of the impacts on albedos of changes in snow surface grain
size and radiative forcing by dust, black carbon, and organic material.
ASO's spectrometermeasures reflected radiance at ~10 nm spectral res-
olution across the wavelength range 380–1050 nm. The CASI 1500 has
an instantaneous field of view (IFOV) of 0.49 mrad and an angular un-
certainty of 0.0024 mrad (itres Research Limited, www.itres.com). The
dynamic range is covered with 14-bit and signal to noise ratio of 300–
600 across the visible wavelengths, and 500 in the near-infrared down
to 100 near 1050 nm. The instrument field of view is ±20° (Fig. 2)
and ASO uses integration times of 12–14 ms over snow to balance re-
duction of saturation on steep illuminated peaks and deep shadowed
valleys.

3.2. Scanning lidar

ASO uses a Riegl Q1560 airborne laser scanner (ALS) tomeasure sur-
face elevations from which we calculate snow depths. The Q1560 uses
dual 1064 nm wavelength lasers, each with a 60° scan angle (±30°
across nadir), and with a 14° angle relative to the cross-track axis, pro-
ducing an up to 8° fore/aft look angle (off-nadir in the along track direc-
tion) (Fig. 2). We use a 1064 nm wavelength system because of its
Fig. 2. Scan configuration of ASO scanning lidar (Riegl Q1560) in color and imaging
spectrometer (Itres CASI-1500) in grayscale.

http://www.itres.com


Fig. 3.Orthorectification of ASOdata. (A) timing calibration throughwiggle testing over an
airport runway. (B) Alignment of spectrometer data with topography.
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relatively small laser penetration depth in snow and relatively high
snow reflectance at that wavelength, as well as greater penetration
through vegetation canopies (Deems et al., 2013a).

The scan system parameters provide an effective field of view of 58°.
The laser pulse repetition rate (PRR) ranges from 100 to 800 kHz with
an effective measurement rate of up to 532 kHz with the 60° scan
angle. The laser beam divergence is ≤0.25 mrad, which at nadir and
5000 m range is ≤ 1.25 m. The angle measurement resolution is
0.001°. The nominal maximum range according to manufacturer for
surfaces with reflectance ≥ 60%, such as that of fine-grained snow, is
5800m for PRR of 200 kHz. However, ASO test flights have found strong
consistent returns from N8000 m (not presented here). The scanning
lidar has a pointing uncertainty of 0.001°. With the inertial measure-
ment unit (IMU) aircraft attitude uncertainty of 0.011°, the functional
angular uncertainty of the aircraft-lidar system is 0.012°.

The high PRR can result in emission of a laser pulse prior to detection
of a return signal from the prior pulse, known as “Multiple Time-
Around” (MTA), resulting in range ambiguity. The maximum unambig-
uous range Ru is a function of the PRR and the speed of light c:

Ru ¼ c � PRR−1

2
mð Þ ð1Þ

and multiples of Ru are termed MTA zones. The Q1560 uses a novel
method to resolve range ambiguities, whereby a high frequency, ran-
dom time “jitter” is applied to the PRR, and when consecutive returns
from a single scan line are compared, the standard deviation of eleva-
tions is minimized when the returns are assigned to the proper MTA
zone (Rieger and Ullrich, 2011). This automated procedure allows the
use of high PRR at flight altitudes (AGL)much greater than Ru, and pro-
duces high ground point densities from high altitudes where the scan
swath is wide, optimizing survey efficiency.

3.3. Inertial measurement unit

Accurate ray tracing and the resulting data co-registration and align-
ment of the lidar and imaging spectrometer data are fundamentally crit-
ical in the ASO system, its processing software, and its science
objectives. The required level of geolocation accuracy is achieved
through the use of a single lidar-integrated Trimble Applanix POS/AV
510GPS and InertialMeasurementUnit (IMU). The IMUhas angular un-
certainties of 0.005°, 0.005° and 0.008° in roll, pitch, and true heading
after post processing, and a resultant attitude uncertainty of 0.011°.
The GPS/IMU is mounted internally in the scanning lidar, simplifying
lever armmeasurement and boresighting. Postprocessing of the rawpo-
sition and attitude data stream includes differential correction of the
GPS positions using ground GPS base station data or broadcast correc-
tions from the Trimble RTX service (http://www.trimble.com/
positioning-services/centerpoint-RTX.aspx), resulting in a Smoothed
Best Estimate of Trajectory (SBET) file.

4. Fusion of spectrometer and lidar data

The accurate geolocation of both the lidar and imaging spectrometer
data sets is critical to achieving the registration necessary for the suc-
cessful joint inversion of the two data sets in the processing phase.
The lidar and spectrometer are mounted to a rigid Payload Integration
Mount (PIM), and thus the lever arm offsets between the spectrometer
and the lidar-integrated GPS/IMU are easily modeled and maintained.
The PIM provides a single rigid platform that defines the body frame
of the navigation solution, mounted over the nadir-looking port of the
ASO aircraft. With the rigid PIM and the accurate GPS/IMU we have
the time sync, position, and attitude information needed to geolocate
and register the two data streams, forming the basis of the critical
data integration and fusion.
We process the GPS/IMU and lidar data according to the
manufacturer's protocol, using available base station records or Trimble
CenterPoint RTX real-time broadcast for differential position correction.
Once the lidar data are georeferenced, the derived digital surfacemodel
(DSM) is combined with the position/attitude data (SBET file) to
orthorectify the imaging spectrometer data (Fig. 3), leveraging the coin-
cident and highest-resolution surface model for imaging spectrometer
ray tracing and rendering. The separately recorded imaging spectrome-
ter data are linked to the SBET data set via time stamps on each spec-
trometer image cube frame, adjusted for any time biases derived from
in-flight calibration experiments.

We perform camera calibration and time synchronization experi-
ments in flight to fully characterize the look directions of each imaging
spectrometer pixel allowing us to correct time bias, if any, between the
lidar and imaging spectrometer data streams. Using a nonlinear inver-
sion that is fed with control points picked frommatching lidar intensity
and spectrometer image features, we solve for the three direction co-
sines of each imaging spectrometer cross track pixel. The retrieved accu-
racy is typically sub-pixel. Using sharp aircraft roll excursions to distort
a linear ground feature, we solve for the time bias achieving precision
approaching a microsecond.

Fig. 3A shows the before and after imagery for a successful test for
time synchronization. Fig. 3B shows matched imagery subsets of lidar
intensity and imaging spectrometer radiance, after camera modeling,
to achieve sub-pixel co-alignment. The critical ASO fusion of the dispa-
rate data types rests sequentially on the accuracy and precision of the
GPS/IMU data, the processed lidar returns, the rigidity of the payload in-
tegration mount, and finally the stability of the imaging spectrometer
time bias and camera calibration. ASO end-to-end performance shows

http://www.trimble.com/positioning-services/centerpoint-RTX.aspx
http://www.trimble.com/positioning-services/centerpoint-RTX.aspx


143T.H. Painter et al. / Remote Sensing of Environment 184 (2016) 139–152
that all links in this mission-critical chain are maintaining stability and
uniformity.

5. Science and operation implementation

Given the rapidly changing nature of snow cover presence, depth,
and surface properties that modulate its melt, ASO flies target basins
on aweekly basis frommidwinter through complete snowmelt. The pri-
mary data product from the ASO imaging spectrometer is snow albedo
and from the ASO lidar is snow depth, which we combine withmodeled
snow density to infer SWE. Supplementary products include fractional
snow covered area, snow surface grain size, dust/black carbon radiative
forcing, and land surface classification.

5.1. Flight operations

In the flight planning process, constant altitude flight lines are
drawn to provide 15–20% overlap for the 40° FOV spectrometer over
the highest terrain (the region with the least overlap) within the
swath of each line (Fig. 4). Whenever possible, the direction of flight
lines are planned to optimize flying in or near the solar principal plane
to avoid snow forward scattering peaks (Painter and Dozier, 2004a;
Painter and Dozier, 2004b).

5.2. Scanning lidar workflow and products

The scanning lidar data are converted from raw data to
georeferenced point clouds, then to raster and finally used in the calcu-
lation of snow depth. Through assimilation of distributed snow density
information, the snow depth data are then converted to SWE.

5.2.1. Elevation point clouds and gridded products
Processing from raw flight data to geolocated point cloud is handled

by vendor-specific software (Riegl RiPROCESS). The return energy
waveforms recorded by the sensor are converted to discrete returns
via a Gaussian deconvolution algorithm (Riegl RiANALYZE; Wagner et
al., 2006). In this processing step, which is accomplished in parallel
using GPU processing, returns are also assigned to the proper MTA
zone (Rieger and Ullrich, 2011), a into a scanner-oriented coordinate
system, corrections for atmospheric conditions are applied, and an ini-
tial classification into vegetation/non-vegetation is conducted using a
Fig. 4. Example ASO acquisition footprints over the Merced Basin, CA for May 3, 2015.
Actual flight lines trajectories with lidar overlap expressed in transparent green. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
decision tree split on target number and pulse width. The resulting
point cloud is then converted into a global coordinate system by apply-
ing a transformation that includes the corrected trajectory and platform
orientation information from the integrated GPS/IMU (Riegl RiWORLD).
Next, a manual geometric transformation converts the return records
from the range/scan angle domain examination of overlapping data
from adjacent and crossing flight lines is performed to ensure no sys-
tematic offsets or errors are present – none have been encountered
to-date, however any between-line offsets would be corrected using
the Scandata Adjustment tool in RiPROCESS, a plane- and point-
matching algorithm used for boresight calibration. The final point
cloud is written to LAS-format binary files for use in further
postprocessing steps.

Several intermediate lidar products are next generated from the
point elevation data, which allow characterization of the data set and
survey parameters (Fig. 5). Point density, number of returns per pulse,
and return intensity grids are all used for qualitative data consistency
checks.

To identify ground points in forested areas, points tagged as “last re-
turn” are classified using the Multiscale Curvature Classification (MCC)
algorithm (Evans and Hudak, 2007). TheMCC algorithm applies succes-
sive curvature interpolation thresholds to iteratively classify points
Fig. 5. ASO lidar acquisitions in distillation to raster for Tuolumne River Basin, CA for April
7, 2014. (A) Point density. (B) Number of returns per pulse. (C) Backscatter return
intensity.



Fig. 7. The ASO LIDAR and spectrometer (CASI) pipelines, shown on the left and right,
respectively.
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above each spline-interpolated surface as “not ground”. The remaining
points, classified as “ground”, are then interpolated to a DTM
representing the snow-free or snow-covered surface in the forested
areas (Fig. 6).

In parallel, a DSM is produced from the mean of all first returns in
each cell; this elevation grid, representing the solar-reflecting surface
is used for ray-tracing in the spectrometer processing chain (see
Section 5.3.1). The two separate gridded surfaces produced from first
returns and from the MCC-classified point cloud elevation measure-
ments, respectively, are then subjected to a void-filling routine – any
data voids within the basin are filled starting with a 3 × 3 search win-
dow and increasing on odd integers (5,7,9,11,13) up to 15 × 15 pixel
search window fromwhich the mean elevation in the relevant window
is used to fill voids (Fig. 6). Any remaining voids alongwith the broader
areas outside the basin boundary are backfilled using the National Ele-
vation Dataset (NED) for snow-free conditions and the most recent
ASO DSM for snow-on conditions. NED data are adjusted vertically to
convert from geoidal/orthometric to ellipsoidal as the ASO standard.
The resulting void-filled and backfilled snow-off DTMs are then used
as the reference for differencing from the snow-on DTMs to produce
gridded snow depths.

5.2.2. Snow depth
Snow depth maps are a core component of the ASO processing (Fig.

7, Table 1). Our operational efforts to date use the straightforward ap-
proach of subtracting snow-off gridded surfaces from snow-on gridded
surfaces. Our survey domains are characterized by areas of forest cover
as well as extremely rugged topography, which complicate snow depth
retrieval via simple surface subtraction. Even small errors or variations
in locations can give erroneous snow depth in locations like the Sierra
Nevada with steep, nearly vertical terrain and tall narrow trees.

To minimize the impacts of terrain- and forest-induced errors, we
create two separate sets of snow-on and snow-off gridded surfaces
from first returns only (i.e. no above-ground returns) and from MCC-
classified ground points, as described above. From these, we build two
gridded snow depth sets. We then employ a suite of masks using the
spectrometer data and the lidar return-per-pulse grids to define com-
plementary areas dominated by single returns (devoid of trees and veg-
etation) and areas with vegetation spectral signatures and multiple
discrete returns per lidar pulse (where trees are present). A final com-
posite snow depth grid is generated from merging the single return
Fig. 6. Topographic data from ASO for Uncompahgre Basin, CO. (Left) Basin digital surface mod
differences (bare areas) and the MCC differences (treed areas) based
on these masks.

Short vegetation such as grasses and shrubs tend not to have multi-
ple lidar returns due to beam divergence from the altitudes at which
ASO flies. Therefore, the ground return is largely unambiguous and as
such, the overburden of snow in winter/spring results in generally ro-
bust retrievals of snow depth. However, shrubs can create cavities in
the snow column and as such create a snow depth scenario that the
lidar cannot detect. Further work investigating the impact of such sce-
narios and how geographically relevant they are would be helpful.

5.2.3. Snow water equivalent
From snow depth, we then can calculate SWE through a pixel-wise

product of the ASO determined snow depth, z (m), and a spatially-dis-
tributed snow density, ρsnow (kg m−3), estimated using a snowpack
evolution model and in-situ data (Fig. 8). SWE is often expressed in
el. (A1) Zoom window of DSM. (A2) Zoom window of digital terrain model (bare earth).



Table 1
Core product suite of the Airborne Snow Observatory.

ASO product type Spatial representation

Snow depth Raster: 1.5, 3.0, 50.0 m
Snow water equivalent Raster: 50 m

Hydrologic response units
Basin integrated
Subbasin integrated
Elevation bands

Snow albedo Raster: 1.5, 3.0, 50.0 m
Hydrologic response units

Grain size and radiative forcing by impurities Raster: 1.5, 3.0, 50.0 m
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either of two units: kgm−2 orm. The former gives themass ofwater per
unit area and is determined by:

SWE ¼ z � ρsnow kg m−2
� �

ð2Þ

The latter is determined by dividing the former by the density of
water (1000 kg m−3) to provide SWE (m) as the depth of water if the
snowpack is melted completely:

SWE ¼ z � ρsnow

ρwater
mð Þ ð3Þ

5.2.3.1. Snow density modeling. Pixel-wise simulated snow densities that
are availablewithin 24 h of the lidar/spectrometer acquisitions are a key
component of the snow depth to SWE conversion calculations in Eqs.
(2) and (3). Although basin and regional-scale SWEdistribution is large-
ly controlled by snow depth variability (Jonas et al., 2009, Fig. 1), the
spatial, seasonal and inter-annual dynamics of snow density can be
non-trivial (Sturm and Holmgren, 1998; Bormann et al., 2013) and
must be incorporated into the conversion to reduce uncertainty in the
final SWE product.

We employ a raster-distributed physically-based energy-balance
model, iSnobal (Marks, 1999), that explicitly simulates snow density
to provide pixel-wise snowdensity estimates in near-real time through-
out the season (Fig. 8B). Physics-based numerical snow models (e.g.
SNTHERM (Jordan, 1991), SHAW (Flerchinger et al., 1994), UEB
Fig. 8. USDA – ARS snow model iSnobal forcing data parameters, state variables, and
energy and mass flux outputs.
(Tarboton et al., 1995; Tarboten and Luce, 1996), and SNOWPACK
(Bartelt and Lehning, 2002)) such as iSnobal are a logical choice for pro-
viding the distributed snow density estimates required to support the
production of ASO SWE products as they a) capture important physical
processes for snow density; b) may be incrementally advanced in near-
real time at basin-scales through the length of the snowmelt season, and
c) can be made available at fine spatial and temporal resolutions.

In particular, iSnobal is ideal for this application as it is numerically
efficient, representing the snowcover as a two-layer system, a thin ac-
tive layer (10–25 cm) representing interaction of the snow cover with
the atmosphere, and a variable-thickness secondary layer representing
the rest of the snowcover. The model is forced with net solar rather
than incoming solar radiation, in anticipation of being able to derive al-
bedo from remote sensing data. Snow depth and density are state vari-
ables, making iSnobal ideal for integration with ASO products (see Figs.
8–9). It is noteworthy that iSnobal is one of the few energy balance snow
models where snow density is a standard output. Though the model
was developed N25 years ago, it was designed specifically for integra-
tion with remotely sensed data (Marks and Dozier, 1992), capable of
updating and restarting as a new state condition is derived from remote
sensing. ASO output products – spectral albedo and snow depth – are
essentially the first remotely sensed products to be available for this
purpose.

iSnobal calculates snowdensity using time-based algorithms that ac-
count for snow aging, mechanical compaction, the impact of liquid
water with adjustments for new snow deposition. Previous applications
of iSnobal have shown that the model is highly successful when mea-
sured and simulated SWE are compared across a wide range of scales
and mountain environments (Link and Marks, 1999; Marks et al.,
2002; Garen and Marks, 2005; Reba et al., 2011; Nayak et al., 2012;
Kumar et al., 2013; Kormos et al., 2014; Rasouli et al., 2015). TheASO ap-
plication is the first in which simulated snowdensity from iSnobal is the
principal model output. Though the existing density algorithm is rela-
tively simplistic, it produces reasonable results that are within 5–8% of
measured values (see Fig. 15). However, we are working on improving
the model density function to better represent the effects of snow
depth, and expect to have an updated version within the next year.

Despite the very high spatial resolution of the lidar-derived snow
depth data (3 m), the snow model is simulated at a coarser resolution
(50 m) to reduce compute time and accommodate the quick data turn-
around. TheASO snowdepths are thereforefirst aggregated to 50m res-
olution to match the snow model output prior to the conversion from
depth to SWE. The limiting forcing data parameter for the iSnobal
modeling is producing an estimate of precipitation distribution and
phase. Integration of the ASO snow depth product into the iSnobal
modeling data stream is planned for this year, and should largely elim-
inate this issue. Finally, modeled snow densities from iSnobal are ad-
justed to correct for elevation bias and then constrained by in-situ
observations prior to the SWE calculation (Eq. 3), we discuss this pro-
cess in more detail in Section 5.

5.3. Imaging spectrometer products

The main imaging spectrometer product for ASO is the snow albedo
(Fig. 9). However, several intermediate and final products are also pro-
duced anddelivered. Among these are spectral radiance, hemispherical-
directional reflectance factor, spectral albedo, snow surface grain radius,
and radiative forcing by light absorbing impurities.

5.3.1. Orthorectification
Orthorectification for science data is best understood as two distinct

and wholly separate steps: ray tracing and rendering. Ray tracing in-
volves developing and utilizing the parameters of the individual look di-
rection of each datum to recover the x,y,z locations of its intersection
with the ground surface. Rendering, by contrast, involves resampling
or modeling the data to be presented or used in a regular grid despite



Fig. 9. ASO product suite for Tuolumne River Basin, April 7, 2014. (A) Snow depth map. (B) Snow density map with in-situ sampling locations (n = 180) The snow density observations
were obtained during 2013 during four field campaigns spanning 5.5 weeks from 25th March to 3rd May. (C) Snow water equivalent. (D) Snow albedo.
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the inherently irregular nature of the actual ground points acquired in
flight. ASO uses ray tracing and rendering software specifically tailored
to the unique nature of both the lidar and the imaging spectrometer im-
ages. For each data type, we create products using both the native for-
mat (non-rendered) and the gridded data sets, as required by the
science processing data flow.

The first return gridded surface (Section 5.2.1) is used as a digital
surfacemodel ontowhich the imaging spectrometer data are ray traced.
The imaging spectrometer data are ray traced pixel by pixel using the
time/position/attitude data along with the calibrated camera model
and time bias calibration. Each geolocated spectral sample is recorded
in a binary file, as well as ten angular and distance metrics associated
with the to-sun and to-sensor vectors for each observed spectrum.
The rendered imaging spectrometer data are registered to the lidar
DSMusing a sample and line lookup table that specifieswhich spectrum
from the non-rendered data cube occupies each DSM grid cell.

5.3.2. Spectral radiance
We calculate spectral radiance for the CASI 1500 data using the itres

proprietary calibration software radcorr, giving 72 spectral bands from
380 to 1050nm in units of μWcm−2 sr−1 nm−1. This step is constrained
by the most recent calibration file of the CASI 1500 spectrometer (Fig.
7).

5.3.3. Snow spectral and broadband albedo
We retrieve snow spectral and broadband albedowith the algorithm

suite described in Painter et al. (2013) (Fig. 10). These algorithms use
the local illumination and view geometries from the coincident DSM
to determine the mapping of each radiance spectrum to its associated
spectral albedo (Richter and Schläpfer, 2011), based onmodeling of sin-
gle scattering by ice particles fromMie theory (Mie, 1908) andmultiple
scattering from the discrete ordinates solution to the radiative transfer
equation (Stamnes et al., 1988; Painter et al., 2003; Painter et al.,
2013). The uncertainty in broadband albedo with the NASA Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) is b0.5% (Painter et al.,
2013). The uncertainties with the ASO spectrometer are assumed to
be similar, but will be evaluated during field campaigns in spring 2016.
5.3.4. Snow surface grain size
Snow surface grain size is an important indicator of snowmetamor-

phism and also provides a foundation from which to determine radia-
tive forcing. With ASO, we use the grain radius retrieval described in
Painter et al. (2013), which has grain diameter uncertainties of 20 to
50 μmacross typical grain size range. This algorithmuses the ice absorp-
tion feature that has maximum absorption at 1030 nm. Uncertainties in
these retrievals will also be further evaluated during ASO field cam-
paigns in spring 2016.
5.3.5. Radiative forcing by light absorbing impurities
Radiative forcing by dust and carbonaceous particles is also retrieved

during processing using the algorithmdescribed in Painter et al. (2013).
Thismodel first determines the spectral albedo differences between the
spectral albedo from ASO observations and the associated clean snow
spectral albedo with the same grain radius, as determined above. In
the reflectance calculation with ATCOR-4, direct, diffuse, and total spec-
tral irradiances are calculated for clear-sky conditions under which ASO
usually operates. We then band-wise multiply the spectral albedo dif-
ference by the calculated spectral irradiances and sum these for the in-
stantaneous radiative forcing by dust and black carbon. The retrieval has
a nominal uncertainty of 2.1 ± 5.1 W m−2 (Painter et al., 2013).



Fig. 10. Example ASO spectrometer products for Tuolumne River Basin, CA for April 7, 2014. (A) Natural color composite (R:652 nm, G: 557 nm, B: 461 nm) with transect indicated. (B)
Broadband albedo along the transect indicated in (A). (C) Basin scale grainsize map. (D) Basin scale radiative forcing map.
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5.4. Data system

Driven by the water management thread of the ASO program, data
processing has a requirement of sub-24 hour latency for product turn-
around and delivery. Because of the large data volumes produced, it is
not possible to push the raw data via Internet to JPL in a timely fashion.
Therefore, we are compelled to site the computing capacity at a location
near the operations airport.

The ASO Mobile Compute System (MCS) is an end-to-end deployed
data processing system replete with data systems software including:
the Apache Object Oriented Data Technology (OODT) (Mattmann et
al., 2006; Mattmann, 2009) data processing framework and the Apache
Tika content detection and analysis toolkit (Mattmann and Zitting,
2011). Apache OODTprovides filemanagement, workflow and resource
management, and an automated remote data acquisition system, auto-
mated file crawler, and science algorithm integration system. The
Apache Tika toolkit allows automatic file identification, language detec-
tion and text/metadata extraction from any type of file.
6. Results

ASOwas first fully deployed at the approximate time of peak SWE in
early spring 2013 covering the Tuolumne River Basin in Yosemite Na-
tional Park, California, a snowmelt-dominated basin above the
O'Shaughnessy Dam on Hetch Hetchy Reservoir. This reservoir provides
fresh water supply and hydropower for the City and County of San
Francisco and other Bay Area municipalities. ASO has thus far acquired
complete coverage of the Tuolumne River Basin beginning at roughly
the time of peak SWE in early spring of 2013 and 2014, and beginning
in mid-February of 2015 through meltout. Below we demonstrate re-
sults from 2014 – in that year, ASO acquired data 11 times over the
Tuolumne Basin from 23 March to 5 June, covering the period from
maximum snow accumulation until near complete melt out.

6.1. Retrievals

The core products, along with the snow density map, for the Tuol-
umne Basin on 7 April 2014 are shown in Fig. 9. The spatial maps of
snow depth show complex spatial variability across the Tuolumne
basin that is not simply correlated with elevation (Fig. 8A). The mean
snowline elevation was approximately 2120 m for this acquisition
with 69% of the basin covered in snow N0.1 m deep. As expected, shal-
low snow cover (b0.5 m) is observed at low elevations near the
snowline, but shallow snow is also common along exposed ridgelines
at high elevation (N3400 m). There is a prominent high accumulation
zone in the southeast corner of the basin, with snow depths N2 m.

From the product of the snowdepth and the snowdensityfields (Fig.
8A and B), the spatial patterns in the SWEmap (Fig. 8C) generally reflect
the overall spatial pattern in snow depth. As discussed above (Fig. 1),
the incorporation of spatial fields of snow density adds modest addi-
tional spatial complexity to the highly variable snowdepth field. The co-
incident broadband albedo field (Fig. 8D) shows highest albedos in the
higher elevations but with sensitivities to aspect, and decreasing albedo
with decreasing elevation. These coincidentmappings of SWE and albe-
do provide the first constraints for hydrologic modeling that can allow
quantitative understanding of timing and magnitude of snowmelt
runoff.

6.2. Post-processing

The ASO system provides a wide range of products with varying
complexity to support water science and water applications. This in-
cludes fully distributed 3 m spatial resolution snow depth products all



Fig. 12. ASO report on integration of basin SWE from 50 m SWE distribution data for
Tuolumne River Basin, April 7, 2014.
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the way to complete integration of basin snow water volume. These
products were developed in consultation with partner water managers
and are provided within 24 h of the ASO acquisition.

There are three main distillations of the ASO products that are dis-
tributed to current stakeholder partners: (i) fully distributed products
and maps, (ii) semi-integrated products and maps as averaged per hy-
drologic-response unit (or modeling unit), sub-basin, or elevation
bands, and (iii) basin-integrated products that aggregate the spatial
fields to the simplest form. Of the fully distributed products, we distrib-
ute snow albedo and snow depth at 3 m spatial resolution and snow al-
bedo and SWEat 50m spatial resolution. Ancillary products such as land
surface classificationmaps (delineating soil, vegetation, snowandwater
body) and snow depth change between each acquisition are also rou-
tinely produced.

With ASO acquisitions before and after snowfall events, we can also
perform the first available quantitative analyses of snowfall dynamics,
for example investigating orographic and convective dynamics in the
context of mesoscale weather modeling. Moreover, the snowfall prod-
uctswill allowassessment of spatial precipitation estimates such as pro-
duced by the Precipitation Regression on Independent Slopes Model
(PRISM; (Daly et al., 1994; Daly et al., 2008) or extrapolated from in
situ measurements.

6.3. Spatial integrations

With the complete coverage of entire basins, ASO allows quantifica-
tion of time series of basin SWE (Fig. 11). Many of the product deliver-
ables are basin-integrated products that are summarized in the form
of a SWE report (Fig. 12), in a format modeled after current operational
products produced by other agencies. The SWE report provides the
overall summary of the snow-covered area, percentage of snow cover
extent in the basin, and estimated snow water content (in both acre-
feet and cubic meters) along with several other basin-integrated statis-
tics. The snow-free gridded elevation data are then used to summarize
the SWE estimates in a similar way to the SWE report but for pre-spec-
ified elevation bands (e.g. every 1000 ft elevation interval) or for the
case of the Tuolumne basin, high, mid and low elevation bands that
have been historically used in water management (Fig. 13). The suite
of products available to water managers is tuned through consultation
and can be readily modified to suit the needs of stakeholders in specific
basins.

For the Tuolumne basin, the water managers also use the Precipita-
tion Runoff Modeling System (PRMS) to forecast inflows into the reser-
voir (Leavesley and Stannard, 1995). The PRMS relies on hydrologic
response units (HRU) to disaggregate the basin into areas of coherent
hydrologic function. To facilitate direct incorporation of the ASO SWE
products into the forecasting system, both the spatially distributed
SWE and snow albedo estimates are zonally averaged for each of the
280 HRU's in the Tuolumne PRMS model. The HRU-integrated SWE
Fig. 11. Time series of the 2013–2015 basin-integrated snow water equivalent in the
Tuolumne River Basin, in units of acre-ft, used by water managers.
information is provided to the water managers as both a map (Fig. 14)
and a data table for each metric. PRMS modeling with assimilated ASO
data will be presented in subsequent manuscripts.
7. Validation

Here we present limited validation results for the principal ASO
products, spectral albedo, snow depth, and SWE. Subsequent manu-
scripts currently in preparation will cover the broader set of validation
activities.

The snow depth estimates generally have mean absolute errors of
b8 cm, with bias b1 cm when compared with manually measured
depths at the 15 × 15m scale (Fig. 15). When coarsened from 3m spa-
tial resolution to 50 m, the error is reduced by 1/√16.7 to b2 cm. These
accuracies exceed the laser system specifications, and are as good or
better than those reported elsewhere in the literature. While field vali-
dation surveys in steep and forested terrain have yet to be analyzed, the
twin laser instrument and the 50% swath overlap provided by the CASI-
constrained flight plan provide redundant measurements and multiple
incidence angles within individual grid cells, and therefore should
maintain normal error distributions from GPS-INS-induced horizontal
and vertical errors and impart little biaswhen aggregated to the gridded
data sets. Still, field validation and geometric analyses for complex ter-
rain are needed going forward to have a more comprehensive under-
standing of the ASO snow depth uncertainties.

Snow density estimates from the model are compared throughout
the season with all available snow course, in situ, and ASO field cam-
paign measurements to confirm coherence between the model and
Fig. 13. ASO report on distribution of SWE by elevation band that are distributed to water
managers.



Fig. 14. PRMS hydrologic response unit (HRU) representation of ASO snow water
equivalent for April 7, 2014.
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the observations for each acquisition. The snow density fields from
iSnobal for all three years of ASO operation are currently being evaluat-
ed in detail including propagation of uncertainty to basin SWE volumes.
However, preliminary results based on in-situ pit and Federal Sampler
measurements confirm that the modeled density errors are relatively
small - on the order of 12–30 kgm−3 (3–8%) (Fig. 16). The data present-
ed in Fig. 16 is derived from 180 sampling locations (shown in Fig. 9b),
which range in elevation from 1980 to 3200 m, comprise of both ex-
posed and vegetated site types (45 and 55% respectively) and reflect a
range of solar exposure conditions. These snow density measurements
were obtained during four field campaigns in the spring of 2013. From
this breadth of data, themodeled density errors arewithin the expected
measurement uncertainty (estimated at 11%, Conger and McClung,
2009) aswell as the discrepancy of scale that is inherent when compar-
ing point measurements to spatial fields.
Fig. 15. Snow depth validation over a relatively flat but densely sampled area near Tioga
Pass (n = 80 in-situ measurements). Each blue marker represents mean snow depths
over a 15 × 15 m area, the red marker is the overall mean snow depth (with an overall
bias of b 1cm) and the grey bars show one standard deviation of the distribution. Refer
to Fig. 14 for the location of Tioga Pass. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
Based on these preliminary snowdensity evaluation results, ASO op-
eration typically applies two post-processing steps to the spatially dis-
tributed snow densities from iSnobal prior to conversion of snow
depth to SWE. First, themodeled snowdensities are corrected for an ob-
served elevation bias, as shown by the linear error structure in Fig. 16a.
The correction typically increases snow densities at high elevations
(N2600 m) and reduces snow densities at lower elevations. Second,
the bias-adjusted snow densities are further shifted in the z-direction
to better suit in-situ observations. For example, if themean snow densi-
ty from the in-situmeasurements is 400 kgm−3 and themeanmodeled
snow density at collocated pixels is 480 kg m−3 then the z-adjustment
will act to reduce the modeled snow densities by a static value of
~80 kg m−3. Generally the z-adjustment is much lower than
100 kg m−3 or b12%. Detailed impacts of these adjustments on basin-
wide SWE will be addressed in future publications.

The uncertainties in SWE come from the combined uncertainties in
snow depth and snow density. Our best understanding thus far is that
snow depth uncertainty at the 3 m resolution is unbiased with RMSE
of 0.08 m, resulting in depth uncertainty of b0.02 m at 50 m resolution.
With the snow density uncertainties of 13–30 kgm−3 described above,
we can estimate scenarios of SWE uncertainty. For a snowpack of 0.5 m
depth and 100 kgm−3, the SWEuncertainty is about 1 cm relative to the
5 cm actual. For a snowpack of 4.5 m depth and 450 kg m−3, the SWE
uncertainty is 10 cm relative to the 203 cm actual. Without bias, the in-
tegration of SWE to basin scale at 1100 km2 would have uncertainty at
markedly b1 mm or 1.1 M m3 (b1000 acre-ft). Validation of and im-
provements in snow density modeling will be important in realizing
such accuracies and providing comprehensive error estimates for ASO
data products.

8. Conclusions

Though great strides have been made in our understanding of snow
physical properties, snowhydrology, and glaciology, our ability to quan-
tify the spatial distributions of snowmass and snowproperties has, until
now, been relatively simplistic, relying on assumed lapse rates, relation-
shipswith terrain variables, and sparse observations. Accordingly, oper-
ational estimates and forecasts of runoff and water availability have
necessarily relied on indexed relationships that are calibrated to obser-
vations from prior years. Thesemethods are vulnerable to unusual con-
ditions – conditions not represented well in the period of record – in an
increasingly variable hydroclimate and in a water resource environ-
ment that is subject to increasing demands and tightening supplies.
New quantitative snow measuring capabilities are of critical
importance.

While ASO data are currently available through thewebsite at the Jet
Propulsion Laboratory (aso.jpl.nasa.gov), more extensive archival and
distribution is coming. As of writing, the ASO team is working with
the National Snow and Ice Data Center Distributed Active Archive Cen-
ter (NSIDC-DAAC) at the University of Colorado, Boulder to establish
the hosting and archival of ASO data there. This partnership will allow
more robust archival and user services to the global community, partic-
ularly as the program grows.

The Airborne Snow Observatory is taking important steps toward
meeting these scientific and operational needs. By making relatively
straightforward and direct measurement of snow depth at high resolu-
tion, ASO captures the primary source of spatial variability in snowmass
inmountainwatersheds, and by integrationwith snowdensity observa-
tions and modeling, the first basin-wide, repeat estimates of SWE have
beenmade available. ASO also quantifies the primary snowproperty de-
terminant of snowmelt rate, the snow albedo. TheASO computing infra-
structure importantly provides the capacity to deliver high quality data
products to water management partners on operationally relevant time
scales of b24 h. Together, the ASO approach provides a pathway to ad-
vance hydrologic science in snow-dominated regions, and to enable
the next generation of resilient and adaptive water management.



Fig. 16. Validation and demonstration of snow density post-processing with (A) modeled snow density errors and linear elevation-dependent error structure, (B) bias-corrected snow
density errors, (C) modeled snow density dynamic range colored by elevation band and (D) bias-corrected snow density dynamic range. These data were derived from a comparison
with n = 180 in-situ measurements (Fig. 8).
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California’s History of Leadership in Snow Monitoring

RISING TO NEW CHALLENGES
FOR CALIFORNIA’S SNOW FORECASTING PROGRAM

In 1929, the State of California initiated a novel water supply forecasting program that 
relied on measurements of snow in select locations to predict spring and summer 
runoff into the state’s reservoirs. This investment was motivated by the “Tahoe Water 
War,” where the forecasting techniques helped end the long-standing litigation over 
operation of Lake Tahoe by reducing errors and professional judgment in reservoir 
operations. Today, this forecasting technique has matured into an indispensable tool 
for balancing the operations at California’s major reservoirs for the benefit of our 
economy, environment, and public safety. The snow program currently includes 359 
monitoring locations that span the watersheds of the Sierra Nevada and Trinity Alps.

The Airborne Snow Observatory (ASO) is an 
aerial snow monitoring tool that provides 
precise measurements of depth for every 
square meter of snow in the watershed.  
Combined with the conventional surveys, 
ASO provides a complete and near-
perfect picture of snow water content 
that is robust against climate change.

WHY UPGRADE A WORKING PROGRAM? 
Conventional snow surveys have served an indispensable role in California water 

management for almost a century, but the state has also changed dramatically over the 
same period. The demand for water has grown along with the population, which has doubled 

in the past 40 years alone. We have altered our landscape, with urban and suburban growth 
replacing floodplains. Changes in social values have required that reservoirs be operated 

not just for people, but also for downstream species and habitat. With the implementation 
of the Sustainable Groundwater Management Act, highly precise infrastructure operations 

will be required to maximize groundwater recharge. Finally, the climate appears to be 
changing in ways that further strain the state’s water resources and how we manage them. 

As a result of these changes, mistakes in water management have become more expensive 
than ever. The conventional snow survey and forecast methods rely heavily on professional 

judgment and extrapolation with a large margin for error because they use a few point locations 
to estimate water held in tens of thousands of square miles of snow cover. In the past, water 

managers have hedged imperfections in the surveys by over- or under-estimating water forecasts 
to avoid flood damage or shorting deliveries. These once-acceptable practices have begun to 

pose problems for meeting demands of our urban, agricultural, and environmental water users.

CALIFORNIA’S OPPORTUNITY TO LEAD 
Hydrologists and water managers at state, regional, and local levels agree that ASO offers an 
unparalleled opportunity to improve the management of our shared resources, but California’s 
ability to adopt this technology and harness its benefits on a wide scale is uncertain.

At present, NASA and research funding for ASO surveys has ended. A growing coalition 
of local and regional water users with a strong belief in the value of the technology has 
emerged to provide gap funding through the 2019 snow season for ASO surveys of the 
Tuolumne, San Joaquin, and Kings river basins. This same water-user coalition intends 
to broadcast the successes experienced by the ASO program and explore opportunities 
to leverage the range of benefits ASO could provide if implemented statewide.

PARALLEL MISSIONS: ASO WOULD ADVANCE SEVERAL CALIFORNIA GOALS 

Data gathered through ASO can be applied to far more than just runoff forecasts and would complement existing 
State-led activities or reduce costs of surveys conducted for other reasons, including:

“Having used this technology, it is 
hard to imagine a future without it.”

Dave Rizzardo, Chief of Snow Surveys 
and Water Supply Forecasting, 

Department of Water Resources

“What you’ve done is created new reservoir space 
and water supply without any impacts to the 
current physical or environmental paradigms.” 

Wes Monier, Chief Hydrologist, 
 Turlock Irrigation District 

“ASO provides invaluable information that 
is not otherwise available, most importantly 
information about the rate of melt that 
provides a real opportunity to optimize 
reservoir operations for water supply, flood 
control, and instream requirements.” 

 Steve Haugen, Watermaster, 
Kings River Water Association

“Advanced observing systems 
are critical elements needed 
to support integrated 
water management in 
the 21st Century.” 

 Mike Anderson, 
State Climatologist, 

Department of Water Resources 

Central Valley Flood 
Protection Plan 
ASO helps achieve the Central 
Valley Flood Protection Plan’s goal 
to implement flood management 
solutions that use an Integrated 
Water Management (IWM) 
approach before focusing on 
“harder” engineering solutions. 
IWM is a proven solution that 
enhances system understanding 
by reducing labor costs, avoids 
implementation of localized 
solutions, and minimizes unintended 
consequences to nearby regions.

California’s Open and 
Transparent Water Data 
Act (AB 1755) 
ASO propels California towards 
achieving the Legislature’s vision 
of AB 1755. This law positions 
California to lead the nation in 
fostering public investment to 
demystify the complexity of water 
and ecological resources. The 
terabytes of information collected 
through ASO will be the underpinning 
of accessible, discoverable, 
and usable data that will foster 
entrepreneurship, innovation and 
scientific discovery by the public.

Integrated Regional 
Water Management 
ASO is a critical link between 
Regional Water Management 
Planning Act of 2002 and the 
Sustainable Groundwater 
Management Act of 2014 (SGMA). 
Development and renewal of 
Integrated Regional Water 
Management (IWRM) plans is 
expected to escalate in response 
to SGMA. Accurate and timely 
snowpack data builds relevancy 
for future IRWM planning efforts.

Efforts to Modernize 
Advanced Observation 
Systems 
For more than a decade, 
advanced observation systems 
have been implemented by 
DWR to address conventional 
snowpack measurement systems, 
particularly in-situ monitoring at 
high elevations. ASO fills these 
challenges and supports DWR’s 
evolution in a warming world.

Download a PDF of 
this brochure, here: 
http://bit.ly/California-ASO

http://bit.ly/California-ASO
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THE AIRBORNE SNOW 
OBSERVATORY TECHNOLOGY 
ASO technology was developed at the NASA Jet Propulsion Laboratory 
to map the snow water equivalent (i.e. the volume of water stored 
as snow) and snow albedo (i.e. the reflection of incoming radiation) 
completely and accurately across mountain basins. ASO measures 
snow depth and snow reflectivity using plane-mounted light detection 
and ranging (LiDAR) technology. LiDAR is similar to radar but relies 
on near-infrared light to measure the distance of objects. Because 
the measurements are being taken continuously overhead through 
a wide geographic area, ASO is similar to putting a snow depth 
sensor in every square meter of snow in the mountains. When data 
obtained through the ASO surveys are combined with computer-
based snowmelt models, they can provide runoff forecasts for up to 
10 days in the future for entire seasons for any point on a river.

MEASURING SNOW FROM THE AIR: 
HOW ASO WORKS

Aircraft flies over snow-free mountains and 
uses laser pulses to measure reflected light 

bouncing back from the surface.

Laser pulses shot 
toward ground.

Laser pulses shot 
toward ground.

Laser light reflected 
measures distance 

and is used to 
create a map of 

the surface.

Laser light reflected 
measures distance 
and is compared to 

summer survey data 
to show snow depth.

Aircraft flies over same area to measure reflected 
laser light bouncing from snow on surface.

SU
M

M
ER

Ba
re

 E
ar

th
 S

ur
ve

y
Sn

ow
-O

n 
Su

rv
ey

W
IN

TE
R

BENEFITS 
FROM ASO 
No matter what type of 
hydrologic year California 
is experiencing – wet, 
normal, or dry – in addition 
to water supply and flood 
forecasting, ASO is useful 
for assessing many on-
the-ground conditions that 
support forest health, fire 
management and recreation.

2018 Estimated Snow Cover
High

Conventional Snow Monitoring
Wilderness Area
Active Surveys
ASO Summer Survey Complete

HIGH SIERRA 
SURVEY PROGRAM

ASO Summer Survey Needed

Low

This figure compares point locations for conventional snow 
monitoring versus the snow coverage that exists in the Sierra 
Nevada and Trinity Alps which could be fully mapped by ASO.
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THE PROOF
Remarkable Accuracy

ASO performance at Hetch Hetchy: near perfect predictions over 5 years

Flood Management 
Throughout the year, and especially in the winter and spring, flood managers 
apply their professional judgment to information about snow and runoff 
in upper watersheds to determine when and how much flood space will 
be needed in reservoirs to protect public safety. By providing more precise 
and accurate data, ASO helps eliminate this “guessing game” and: 

• Prevents over-releasing water from reservoirs, 
impacting water supply storage

• Reduces property loss because large-scale runoff events 
with potential for flooding will be easier to anticipate

• Avoids false alarms to the downstream public

Water Management 
Water supply allocations are frequently delayed as water managers 
cast dubious eyes on conventional snow pack measurements. 
Highly precise and accurate ASO data can allow for:

• Earlier and larger groundwater recharge deliveries in wet years 
• Avoided losses from overly conservative forecasts in dry years 
• More balance among competing demands at 

reservoirs during the refill season
• Earlier and more confident management decisions for 

allocating and managing environmental flows 

Additional and Indirect Benefits 
Data from ASO can also provide value to California through: 

• Improved runoff forecasts that can help with detection 
of hydropower generation opportunities  

• Snow assessments that could assist in supporting 
ski area management, Caltrans efforts, park 
maintenance, and avalanche risk assessments  

• Imagery of forests that can improve forest and fuel management, 
and surveys of tree mortality and ecosystem health 

• Imagery of the terrain, including seismic fault systems, 
that can help identify and assess landslide risk
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Moving from Pixels to a Full Screen

ASO data (orange) reveals significantly more snow remains in 
the higher elevations much later into the year than conventional 
data collection methods (blue) were previously able to accurately 
quantify. ASO’s methods give greater confidence in making 
decisions, such as allocations in drought years such as 2014. 
The same holds in wet years with flood management.

From very wet to very 
dry years, ASO’s data 
prediction and collection 
remains highly and 
reliably accurate across 
all climate conditions

ASO square footage 
measurements

R2 = 0.98734
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In 1929, the State of California initiated a novel water supply forecasting program that 
relied on measurements of snow in select locations to predict spring and summer 
runoff into the state’s reservoirs. This investment was motivated by the “Tahoe Water 
War,” where the forecasting techniques helped end the long-standing litigation over 
operation of Lake Tahoe by reducing errors and professional judgment in reservoir 
operations. Today, this forecasting technique has matured into an indispensable tool 
for balancing the operations at California’s major reservoirs for the benefit of our 
economy, environment, and public safety. The snow program currently includes 359 
monitoring locations that span the watersheds of the Sierra Nevada and Trinity Alps.

The Airborne Snow Observatory (ASO) is an 
aerial snow monitoring tool that provides 
precise measurements of depth for every 
square meter of snow in the watershed.  
Combined with the conventional surveys, 
ASO provides a complete and near-
perfect picture of snow water content 
that is robust against climate change.

WHY UPGRADE A WORKING PROGRAM? 
Conventional snow surveys have served an indispensable role in California water 

management for almost a century, but the state has also changed dramatically over the 
same period. The demand for water has grown along with the population, which has doubled 

in the past 40 years alone. We have altered our landscape, with urban and suburban growth 
replacing floodplains. Changes in social values have required that reservoirs be operated 

not just for people, but also for downstream species and habitat. With the implementation 
of the Sustainable Groundwater Management Act, highly precise infrastructure operations 

will be required to maximize groundwater recharge. Finally, the climate appears to be 
changing in ways that further strain the state’s water resources and how we manage them. 

As a result of these changes, mistakes in water management have become more expensive 
than ever. The conventional snow survey and forecast methods rely heavily on professional 

judgment and extrapolation with a large margin for error because they use a few point locations 
to estimate water held in tens of thousands of square miles of snow cover. In the past, water 

managers have hedged imperfections in the surveys by over- or under-estimating water forecasts 
to avoid flood damage or shorting deliveries. These once-acceptable practices have begun to 

pose problems for meeting demands of our urban, agricultural, and environmental water users.

CALIFORNIA’S OPPORTUNITY TO LEAD 
Hydrologists and water managers at state, regional, and local levels agree that ASO offers an 
unparalleled opportunity to improve the management of our shared resources, but California’s 
ability to adopt this technology and harness its benefits on a wide scale is uncertain.

At present, NASA and research funding for ASO surveys has ended. A growing coalition 
of local and regional water users with a strong belief in the value of the technology has 
emerged to provide gap funding through the 2019 snow season for ASO surveys of the 
Tuolumne, San Joaquin, and Kings river basins. This same water-user coalition intends 
to broadcast the successes experienced by the ASO program and explore opportunities 
to leverage the range of benefits ASO could provide if implemented statewide.

PARALLEL MISSIONS: ASO WOULD ADVANCE SEVERAL CALIFORNIA GOALS 

Data gathered through ASO can be applied to far more than just runoff forecasts and would complement existing 
State-led activities or reduce costs of surveys conducted for other reasons, including:

“Having used this technology, it is 
hard to imagine a future without it.”

Dave Rizzardo, Chief of Snow Surveys 
and Water Supply Forecasting, 

Department of Water Resources

“What you’ve done is created new reservoir space 
and water supply without any impacts to the 
current physical or environmental paradigms.” 

Wes Monier, Chief Hydrologist, 
 Turlock Irrigation District 

“ASO provides invaluable information that 
is not otherwise available, most importantly 
information about the rate of melt that 
provides a real opportunity to optimize 
reservoir operations for water supply, flood 
control, and instream requirements.” 

 Steve Haugen, Watermaster, 
Kings River Water Association

“Advanced observing systems 
are critical elements needed 
to support integrated 
water management in 
the 21st Century.” 

 Mike Anderson, 
State Climatologist, 

Department of Water Resources 

Central Valley Flood 
Protection Plan 
ASO helps achieve the Central 
Valley Flood Protection Plan’s goal 
to implement flood management 
solutions that use an Integrated 
Water Management (IWM) 
approach before focusing on 
“harder” engineering solutions. 
IWM is a proven solution that 
enhances system understanding 
by reducing labor costs, avoids 
implementation of localized 
solutions, and minimizes unintended 
consequences to nearby regions.

California’s Open and 
Transparent Water Data 
Act (AB 1755) 
ASO propels California towards 
achieving the Legislature’s vision 
of AB 1755. This law positions 
California to lead the nation in 
fostering public investment to 
demystify the complexity of water 
and ecological resources. The 
terabytes of information collected 
through ASO will be the underpinning 
of accessible, discoverable, 
and usable data that will foster 
entrepreneurship, innovation and 
scientific discovery by the public.

Integrated Regional 
Water Management 
ASO is a critical link between 
Regional Water Management 
Planning Act of 2002 and the 
Sustainable Groundwater 
Management Act of 2014 (SGMA). 
Development and renewal of 
Integrated Regional Water 
Management (IWRM) plans is 
expected to escalate in response 
to SGMA. Accurate and timely 
snowpack data builds relevancy 
for future IRWM planning efforts.

Efforts to Modernize 
Advanced Observation 
Systems 
For more than a decade, 
advanced observation systems 
have been implemented by 
DWR to address conventional 
snowpack measurement systems, 
particularly in-situ monitoring at 
high elevations. ASO fills these 
challenges and supports DWR’s 
evolution in a warming world.

Download a PDF of 
this brochure, here: 
http://bit.ly/California-ASO
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