

November 26, 2019

Ms. Linda Bassi Mr. Jeff Baessler Colorado Water Conservation Board 1313 Sherman Street Denver, CO 80203

Dear Ms. Bassi and Mr. Baessler,

High Country Conservation Advocates (HCCA) submits this instream flow recommendation for Spring Creek, located in Gunnison County, Water Division 4.

HCCA's mission is to protect the health and natural beauty of the land, rivers, and wildlife in and around Gunnison County. Many of our members live and work here and enjoy recreational opportunities and a quality of life that is preserved by our valley's wildlife, habitat, and water resources. HCCA's 27 year old water program has a long history of protecting waters in the Upper Gunnison Basin and in developing an environmental voice within key regional and state forums. In recent years, HCCA has partnered with the Bureau of Land Management to support instream flow proposals on the Slate River and Oh-Be-Joyful Creek. In 2016 HCCA submitted proposals to protect updated instream flows for Coal Creek and Brush Creek. HCCA partnered with Western Resource Advocates in 2017 to submit an instream flow proposal on Dutchman Creek. In 2018 we submitted an instream flow proposal to protect Gold Creek.

The headwaters of Spring Creek originate on United States Forest Service (USFS) lands in Gunnison County. The headwaters of the creek start in the mountains above the Spring Creek reservoir. Below the reservoir the creek continues through a range of diverse riparian zones, from a mixed pine forest near the headwaters, scree slopes and canyon in the central part, beaver ponds and willows and alders in the middle segment, and housing and campgrounds near the creek's confluence with the Taylor River. The Spring Creek system hosts a diverse fishery. Fish sampling conducted by Colorado Parks and Wildlife (CPW) has recorded populations of brown and rainbow trout. When conducting field work the team observed robust macroinvertebrate and fish communities at both R2Cross assessment locations.

Spring Creek has three existing instream flow rights. This proposal introduces proposed increases on the lowermost Spring Creek instream flow reach. This segment begins at the confluence of Spring Creek and Rocky Brook Creek and continues to the confluence with the Taylor River (approximately 11.3 miles). The existing instream flow on this segment is 7.5 cfs year-round, with an appropriation date of 5/4/1984.

This proposal seeks to improve instream flow protections while dividing the segment into two separate reaches to create different winter and summer instream flow rates on each segment. HCCA has arrived at flow recommendations that would reasonably protect the health of the Spring Creek natural environment. In considering this application, the Colorado Water Conservation Board (CWCB) has an opportunity to protect an important stream ecosystem.

Enclosed you will find copies of data sheets from Colorado Parks and Wildlife reflecting the Spring Creek aquatic environment. We have attached R2CROSS modeling runs, stream photos, and maps of the relevant reach. If you have any further questions regarding this recommendation, please feel free to contact Julie Nania at (509) 999-0012.

HCCA thanks CPW and the CWCB for their support in developing this recommendation.

Sincerely,

Julie Nania

High Country Conservation Advocates

Water Director

Julie V Mania

Enclosure

ENCLOSURE - INSTREAM FLOW RECOMMENDATIONS FOR SPRING CREEK

Below is a description of the proposed instream flow. Additional details can be found in Attachments A-H.

Location

Spring Creek is located within the Rocky Brook-Spring Creek and Bear Creek-Spring Creek watershed (HUCs: 140200010111 and 140200010113) in Gunnison County, Water Division 4. The headwaters of Spring Creek originate above the Spring Creek Reservoir, near Italian Mountain, American Flag Mountain, and Forest Hill. Below the reservoir the creek runs in a general south-southwest direction until it joins the Taylor River. The Spring Creek watershed is 68.7 square miles and can be located on the following United States Geologic Survey quad maps: USGS Cement Mountain, Almont, Italian Creek quad maps. These maps are attached as Attachment H.

Table 1. Land Status for the existing instream flow right and the proposed instream flow segments.

Instream	Upper	Lower	Total	Land Ow	nership
Flow Reach	Terminus	Terminus	Length (miles)	Private (%)	Public (%)
Spring Creek (Appropriation Date 5/4/1984)	Confluence of Rocky Brook and Spring Creek	Confluence of Taylor River and Spring Creek	11.3	Riparian Corridor 16% Watershed Composition 7%	Riparian Corridor 84% USFS Watershed Composition 93% USFS
Upper Spring Creek (proposed)	Confluence of Rocky Brook and Spring Creek	Confluence of Bear Creek and Spring Creek	3.0	Riparian Corridor 1% Watershed Composition 1%	Riparian Corridor 99% USFS Watershed Composition 99% USFS
Lower Spring Creek (proposed)	Confluence of Bear Creek and Spring Creek	Confluence of Taylor River and Spring Creek	8.3	Riparian Corridor 22% Watershed Composition 7%	Riparian Corridor 78% USFS Watershed Composition 93% USFS

The Spring Creek watershed is 93% public land managed by the United States Forest Service (USFS). The riparian corridor of the proposed Upper Spring Creek segment is nearly all public land managed by the USFS. The riparian corridor of the proposed Lower Spring Creek segment is approximately 78% public land managed by the USFS.

Existing Instream Flow Right

Location	Appropriation Date	Segment	Flow (cfs)
Spring Creek (WDID 5901510)	5/4/1984	Confluence of Rocky Brook and Spring Creek to confluence with the Taylor River	7.5 cfs

Currently, the existing instream flow right for this reach of Spring Creek is a year-round rate of 7.5 cfs, with an appropriation date of 5/4/1984 (Case Number 4-84CW368, WDID 590510). This proposal seeks to add additional protections for Spring Creek from the confluence with Rocky Brook Creek to the confluence with the Taylor River as supported by modern minimum instream flow assessment methodology. It includes the following proposed changes:

- Define two segments on Spring Creek below the Spring Creek reservoir (based on watershed area and inflow). Proposed segments are as follows:
 - Upper Spring Creek: Spring Creek from the confluence with Rocky Brook to the confluence with Bear Creek.
 - Lower Spring Creek: Spring Creek from the confluence with Bear Creek to the confluence with the Taylor River.
- Create a summer ISF rate for Upper Spring Creek; where the existing ISF right would remain as the winter ISF rate.
- Create a summer ISF rate for Lower Spring Creek; where the existing ISF right would remain as the winter ISF rate.

HCCA intends to work with the Natural Streams and Lakes Protection Unit to determine whether there is sufficient water legally available on these segments to provide for these increases.

Water Availability

Physical Availability

There is no stream gage on Spring Creek. To assess physical availability HCCA relied on R2Cross assessments and StreamStats. StreamStats is an online program developed by the USGS in collaboration with the CWCB. StreamStats uses a regionally specific regression

equation based on nearby active and historical stream gages to estimate stream flows at user-selected locations.

The R2Cross results from 2018 support a summer instream flow of 14 cfs on Upper Spring Creek. StreamStats reports a mean monthly flow of 158 cfs for June and a mean monthly flow of 15 cfs for September (See Attachment F).

The R2Cross results from 2018 support a summer instream flow of 21 cfs on Lower Spring Creek. StreamStats reports a mean monthly flow of 228 cfs for June and a mean monthly flow of 22.5 cfs for September (See Attachment F).

Legal Availability

Diversions on Spring Creek are shown on the attached maps (Attachments A, B, and C). Attachment E identifies major water rights on Spring Creek that may impact water availability and provides CDSS records of all water rights on Spring Creek.

HCCA will work with the Natural Streams and Lake Protection Unit to verify whether or not there is sufficient water legally available to create a new instream flow protection on Upper Spring Creek, from Rocky Brook to Bear Creek, and Lower Spring Creek, from Bear Creek to the confluence with the Taylor River. If there is not sufficient legally available water in the Lower Spring Creek segment, the terminus of the segment will be revised (e.g., to end at the Spring Creek Irrigation Ditch headgate).

Biological Summary

Spring Creek is a coldwater stream located in Gunnison County, Colorado. The stream substrate ranges from small gravels to large boulders; with ample woody debris in the canyon sections of the stream. There is a mixture of riffles, small pools, and beaver ponds that provide quality habitat for fish and other aquatic life. At certain points Spring Creek drops steeply in elevation and the creek cuts down to the bedrock.

The Spring Creek ecosystem supports a healthy aquatic community. Sampling conducted by Colorado Parks and Wildlife in 2017 identified a healthy brown trout and rainbow trout population above the reservoir. Results from the stream sampling from 1981-2017 are included as Attachment D. The proponent and Alpine Environmental Consultants observed an abundance of fish of multiple size classes during field reconnaissance and sampling in 2018. Field technicians found an abundance of macroinvertebrates during pebble counts at both locations.

In addition to supporting a healthy aquatic ecosystem, flows in Spring Creek support a robust riparian area. Below the reservoir is a braided wetland complex that funnels into Spring Creek. Numerous springs and seeps contribute to the creek at various locations below the reservoir. Spring Creek continues to travel south-southwest through meadows

before beginning to drop more steeply over scree and through a narrow canyon. It is primarily pine/spruce forest near this segment of the creek. This steep pool drop system continues for several miles. The canyon opens up near the confluence with the Taylor River. Along the banks of the lower segment are pines, willows and alders. On the lower segment there is a USFS campground and numerous residential buildings. The riparian zone is in good condition and provides shade and cover for the extant fish community.

R2Cross Analysis

HCCA relied on the expertise of Alpine Environmental Consultants to interpret output from the R2Cross model and develop an instream flow recommendation that will protect Spring Creek's natural environment to a reasonable degree.

Alpine Environmental Consultants completed two R2Cross field surveys on September 28, 2018 (see maps in Attachments A, B, and C). R2Cross analysis and interpretation were completed following fieldwork. These data were used to create the instream flow recommendations for Spring Creek that are included in Table 2. R2Cross outputs are attached for review (Attachment E).

Based the R2Cross results (Table 2; and Attachment E), 14 cfs is recommended to satisfy the protection of biotic resources during summer months on Upper Spring Creek. This flow satisfies all three of the required hydrologic criteria. There is no proposed change for the winter instream flow; the existing ISF rate of 7.5 cfs is sufficient.

Based the R2Cross results (Table 2; and Attachment E), 21 cfs is recommended to satisfy the protection of biotic resources during summer months, from April 1 to July 31 on Lower Spring Creek. This flow satisfies all three of the required hydrologic criteria. There is no proposed change for the winter instream flow; the existing ISF rate of 7.5 cfs is sufficient.

Table 2. R2Cross analysis summary and instream flow recommendations.

Cross Section (Date & Location)	Discharge1		Winter Flow Recommendation (cfs)	Summer Flow Recommendation ³ (cfs)	
Upper Spring Creek (9/28/18)	6.30	26.5	7.5 (no proposed change to existing ISF)	143,4	
Lower Spring Creek (9/28/18)	22.07	42.0	7.5 (no proposed change to existing ISF)	21 ^{5,6}	

- 1) Flow was measured in late September of 2018 near the end of an exceptionally dry water year.
- 2) The bankfull top width was used to determine the average depth criterion.
- 3) The proposed dates for the summer flow are April 1 to September 30 for Upper Spring Creek.
- 4) The R2Cross output was 13.54 cfs. The result was rounded to 14 cfs per ISF recommendation guidelines.
- 5) The proposed dates for the summer flow are April 1 to July 31 for Lower Spring Creek.
- 6) The R2Cross output was 20.81 cfs. The result was rounded to 21 cfs per ISF recommendation guidelines.

Rationale for Instream Flow Increase

HCCA supports an increase to the existing summer instream flow rate to protect the Spring Creek riparian area.

The proposed increases to the existing instream flow will improve the quality of the aquatic habitat during the summer, a critical time for fish growth, survival, and reproduction. On the Upper Spring Creek segment, the proposed increase will increase the average water depth by approximately 0.21 feet to an average depth of 0.7 feet. The percent wetted perimeter will also increase. Together, these conditions will improve habitat connectivity including access to pools and other areas that provide critical refuge to fish during the summer months.

On the Lower Spring Creek segment, the proposed increase will increase the average water depth by approximately 0.3 feet to an average depth of 0.54 feet. The average velocity will increase from approximately 0.7 feet per second to 1.0 foot per second. The proposed increase will assure the average velocity criteria is met on Lower Spring Creek.

Photographs

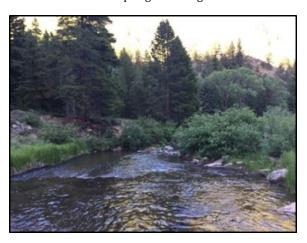
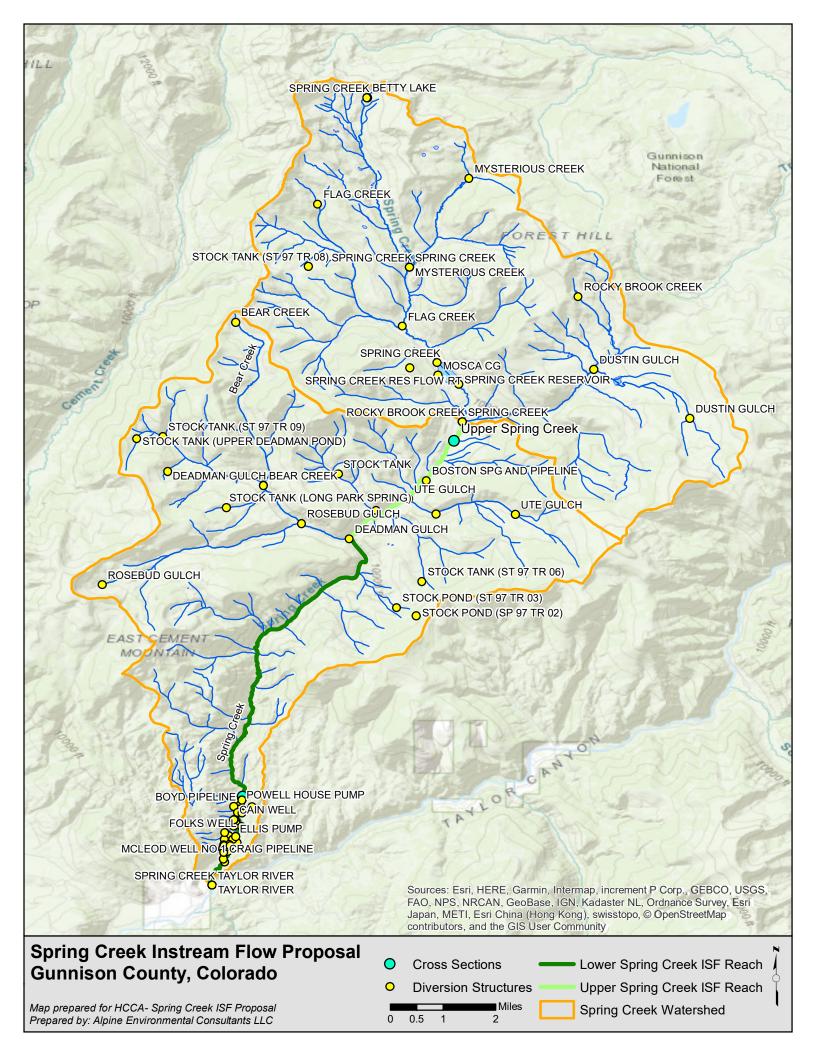
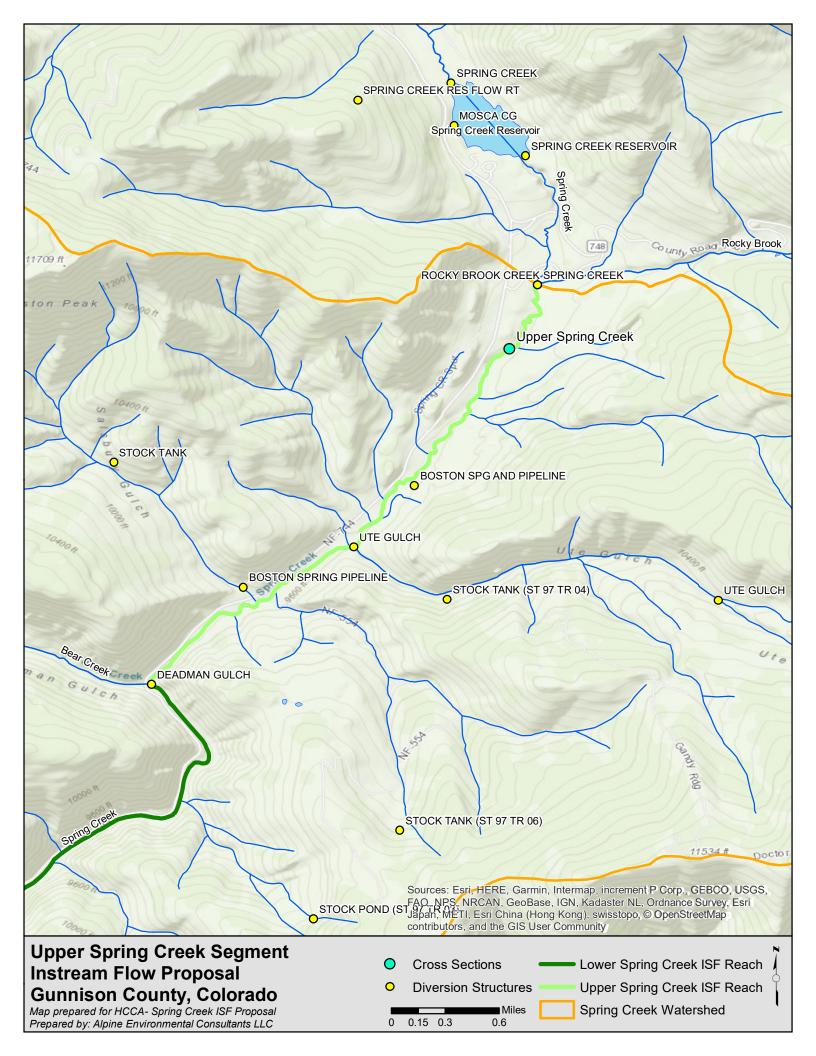

Photo 1. Spring Creek downstream of the Upper Spring Creek R2Cross location; this area is near the upper termini of the Upper Spring Creek segment.

Photo 2. Spring Creek between the two R2Cross locations; this area is near the upper portion of the Lower Spring Creek segment.

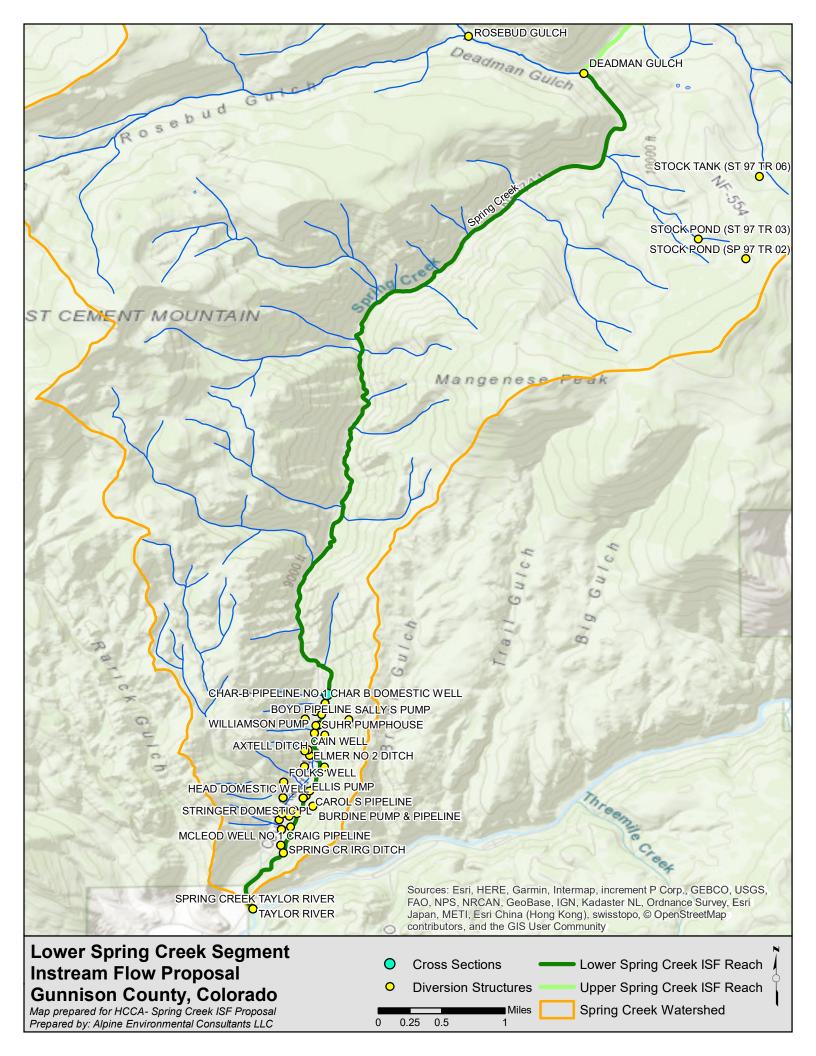
Photo 3. Spring Creek near the USFS Campground near the end of the Lower Spring Creek segment.


Relationship to Existing State Policy

HCCA is proposing this instream flow to the CWCB in furtherance of the State of Colorado's policy "that the wildlife and their environment are to be protected, preserved enhanced, and managed for the use, benefit, and enjoyment of the people of this state and its visitors... and that, to carry out such program and policy, there shall be a continuous operation of planning, acquisition, and development of wildlife habitats and facilities for wildlife-related opportunities." C.R.S. 33-1-101(1).


Attachments:

- A Spring Creek Watershed Map
- B Upper Spring Creek Map
- C Lower Spring Creek Map
- D- Biological Data
- E R2Cross Analysis
- F Stream Stats and Water Availability Analysis
- G USGS Topographic Quadrangle Maps


Attachment A- Spring Creek Watershed Map

Attachment B- Upper Spring Creek Map

Attachment C- Lower Spring Creek Map

Attachment D- Biological Data

Requestee: Julie Nania

Affiliation: High Country Conservation Advocates

Appoved By:

where County='Gunnison' and WaterName like '%Spring Cr%' and WaterType='Stream'; 3 records from private property were removed from dataset

<u>Details:</u> all data in the database (except for 3 surveys on private property).

Date Extracted: Thursday, September 13, 2018

Data Request Disclaimer

Colorado Parks and Wildlife ("CPW") collects aquatic data from both internal sources and a variety of external governmental and non-governmental agencies. CPW provides this data, upon request, solely as a public service. As a significant proportion of this data comes from an outside agency, over which CPW lacks the ability to verify the protocols and data collection procedures, CPW makes no warranty, representation, or guarantee as to the content, accuracy or completeness of any of the data provided. CPW makes this data available on an "as is" basis and explicitly disclaims any representations and warranties, including, without limitation, the implied warranties of merchantability and fitness for a particular purpose. The CPW shall assume no liability for: 1. any errors, omissions, or inaccuracies in the data provided, regardless how it was caused; or, 2. any decision made or action taken or not taken by anyone using or relying upon data provided.

Use of Data

CPW may require a user of this data to terminate any and all display, distribution or other use of any or all of the data for any reason including, without limitation, violation of these Terms of Use.

<u>CalYear</u>	SurveyID Region	<u>Drainage</u>	<u>WaterType</u>	WaterId WaterName	<u>StationID</u>	<u>Station</u>
2001	7543 Southwest	Gunnison River	Stream	43264 Spring Creek #	2 5387	GU1361
2001	7543 Southwest	Gunnison River	Stream	43264 Spring Creek #	2 5387	GU1361
1980	8591 Southwest	Gunnison River	Stream	43264 Spring Creek #	2 5306	GU2015
2011	27468 Southwest	Gunnison River	Stream	43264 Spring Creek #	2 33983	GU4143
2006	31499 Southwest	Gunnison River	Stream	43252 Spring Creek #	11194	GU3136
2006	31499 Southwest	Gunnison River	Stream	43252 Spring Creek #	11194	GU3136
2006	31631 Southwest	Gunnison River	Stream	43252 Spring Creek #	11193	GU3135
2006	31631 Southwest	Gunnison River	Stream	43252 Spring Creek #	11193	GU3135
2006	32388 Southwest	Gunnison River	Stream	43252 Spring Creek #	11195	GU3137
2006	32388 Southwest	Gunnison River	Stream	43252 Spring Creek #	11195	GU3137
1973	48244 Southwest	Gunnison River	Stream	43252 Spring Creek #	11194	GU3136
1973	48244 Southwest	Gunnison River	Stream	43252 Spring Creek #	11194	GU3136
1973	48244 Southwest	Gunnison River	Stream	43252 Spring Creek #	11194	GU3136
1981	48245 Southwest	Gunnison River	Stream	43252 Spring Creek #	11195	GU3137
1981	48245 Southwest	Gunnison River	Stream	43252 Spring Creek #	11195	GU3137
1986	48246 Southwest	Gunnison River	Stream	43252 Spring Creek #	11195	GU3137
1986	48246 Southwest	Gunnison River	Stream	43252 Spring Creek #	11195	GU3137
2017	56707 Southwest	Gunnison River	Stream	43264 Spring Creek #	2 33983	GU4143
2017	56707 Southwest	Gunnison River	Stream	43264 Spring Creek #	2 33983	GU4143
2017	56707 Southwest	Gunnison River	Stream	43264 Spring Creek #	2 33983	GU4143
1976	48842 Southwest	Gunnison River	Stream	37988 Spring Creek	32280	GU3653
1978	49036 Southwest	Gunnison River	Stream	38513 Spring Creek	32462	GU3741
1979	49867 Southwest	Gunnison River	Stream	38724 Spring Creek	32737	GU3869
1976	48297 Southwest	Gunnison River	Stream	41739 Mountain Spri	ng Creek 31821	GU3464
1976	48427 Southwest	Gunnison River	Stream	48923 Spring Creek (Upper) 31922	GU3543

SiteName	Location	Elevation	Lat	Lon	UTMX	UTMY
@ CNFL W/ MYSTERIOUS CRK	ABV Mysterious Creek	10253	38.8935	-106.7210	350765	4306371
@ CNFL W/ MYSTERIOUS CRK	ABV Mysterious Creek	10253	38.8935	-106.7210	350765	4306371
@ SPRING CRK RESERVOIR	ABV Spring Creek Reservoir	9924	38.8673	-106.7130	351365	4303446
	600 M above conf. with Flag Creek	10076	38.8821	-106.7210	350746	4305105
At Spring Creek Campground	At Spring Creek Campground	8545	38.7505	-106.7670	346486	4290570
At Spring Creek Campground	At Spring Creek Campground	8545	38.7505	-106.7670	346486	4290570
200 M BLW Salsbury Gulch, BLW Reservoir	120 m BLW Spring Creek Reservoir	9876	38.8598	-106.7060	351985	4302601
200 M BLW Salsbury Gulch, BLW Reservoir	120 m BLW Spring Creek Reservoir	9876	38.8598	-106.7060	351985	4302601
200 M BLW Salsbury Gulch	200 M BLW Salsbury Gulch	9516	38.8244	-106.7300	349812	4298708
200 M BLW Salsbury Gulch	200 M BLW Salsbury Gulch	9516	38.8244	-106.7300	349812	4298708
At Spring Creek Campground	At Spring Creek Campground	8545	38.7505	-106.7670	346486	4290570
At Spring Creek Campground	At Spring Creek Campground	8545	38.7505	-106.7670	346486	4290570
At Spring Creek Campground	At Spring Creek Campground	8545	38.7505	-106.7670	346486	4290570
200 M BLW Salsbury Gulch	200 M BLW Salsbury Gulch	9516	38.8244	-106.7300	349812	4298708
200 M BLW Salsbury Gulch	200 M BLW Salsbury Gulch	9516	38.8244	-106.7300	349812	4298708
200 M BLW Salsbury Gulch	200 M BLW Salsbury Gulch	9516	38.8244	-106.7300	349812	4298708
200 M BLW Salsbury Gulch	200 M BLW Salsbury Gulch	9516	38.8244	-106.7300	349812	4298708
	600 M above conf. with Flag Creek	10076	38.8821	-106.7210	350746	4305105
	600 M above conf. with Flag Creek	10076	38.8821	-106.7210	350746	4305105
	600 M above conf. with Flag Creek	10076	38.8821	-106.7210	350746	4305105
	JUST ABV CONFLUENCE W/ TOMICHI CK #3	9533	38.5328	-106.4010	377901	4265861
	JUST ABV CONFLUENCE W/ N BAINARD CK	7881	39.1466	-107.4760	285992	4335967
	JUST ABV CONFLUENCE W/ HOT SPRINGS CK	8947	38.5131	-106.5080	368568	4263823
	JUST ABV CONFLUENCE W/ TOMICHI CK #3	8839	38.4824	-106.4190	376260	4260292
	JUST ABV CONFLUENCE W/ EAST MUDDY CK	7155	39.1099	-107.4140	291300	4331742

HUC12	County	<u>AreaBio</u>	<u>SampleDate</u>	Survey_Purpose		<u>Protocol</u>	<u>Gear</u>
140200010110	GUNNISON	Dan Brauch	4-Sep-2001			TWO-PASS REMOVAL	NOT LISTED
140200010110	GUNNISON	Dan Brauch	4-Sep-2001			TWO-PASS REMOVAL	NOT LISTED
140200010110	GUNNISON	Dan Brauch	7-Aug-1980	Standard Survey or	Population Estimate	PRESENCE/ABSENCE	BPEF
140200010110	GUNNISON	Dan Brauch	20-Oct-2011			TWO-PASS REMOVAL	NOT LISTED
140200010111	GUNNISON	Dan Brauch	6-Sep-2006			TWO-PASS REMOVAL	BKEF
140200010111	GUNNISON	Dan Brauch	6-Sep-2006			TWO-PASS REMOVAL	BKEF
140200010110	GUNNISON	Dan Brauch	6-Sep-2006			TWO-PASS REMOVAL	BKEF
140200010110	GUNNISON	Dan Brauch	6-Sep-2006			TWO-PASS REMOVAL	BKEF
140200010111	GUNNISON	Dan Brauch	6-Sep-2006			TWO-PASS REMOVAL	BKEF
140200010111	GUNNISON	Dan Brauch	6-Sep-2006			TWO-PASS REMOVAL	BKEF
140200010111	GUNNISON	Dan Brauch	24-Oct-1973	Standard Survey or	Population Estimate	PRESENCE/ABSENCE	EF
140200010111	GUNNISON	Dan Brauch	24-Oct-1973	Standard Survey or	Population Estimate	PRESENCE/ABSENCE	EF
140200010111	GUNNISON	Dan Brauch	24-Oct-1973	Standard Survey or	Population Estimate	PRESENCE/ABSENCE	EF
140200010111	GUNNISON	Dan Brauch	16-Dec-1981	Standard Survey or	Population Estimate	TWO-PASS REMOVAL	BKEF
140200010111	GUNNISON	Dan Brauch	16-Dec-1981	Standard Survey or	Population Estimate	TWO-PASS REMOVAL	BKEF
140200010111	GUNNISON	Dan Brauch	16-Oct-1986	Standard Survey or	Population Estimate	PRESENCE/ABSENCE	BKEF
140200010111	GUNNISON	Dan Brauch	16-Oct-1986	Standard Survey or	Population Estimate	PRESENCE/ABSENCE	BKEF
140200010110	GUNNISON	Dan Brauch	30-Aug-2017	Standard Survey or	Population Estimate	TWO-PASS REMOVAL	BPEF
140200010110	GUNNISON	Dan Brauch	30-Aug-2017	Standard Survey or	Population Estimate	TWO-PASS REMOVAL	BPEF
140200010110	GUNNISON	Dan Brauch	30-Aug-2017	Standard Survey or	Population Estimate	TWO-PASS REMOVAL	BPEF
140200030101	GUNNISON	Dan Brauch	12-Aug-1976	Standard Survey or	Population Estimate	PRESENCE/ABSENCE	VISUAL
140200040201	GUNNISON	Eric Gardunio	31-Aug-1978	Standard Survey or	Population Estimate	PRESENCE/ABSENCE	VISUAL
140200030404	GUNNISON	Dan Brauch	23-Aug-1979	Standard Survey or	Population Estimate	PRESENCE/ABSENCE	VISUAL
140200030105	GUNNISON	Dan Brauch	12-Aug-1976	Standard Survey or	Population Estimate	PRESENCE/ABSENCE	VISUAL
140200040204	GUNNISON	Eric Gardunio	13-Jul-1976	Standard Survey or	Population Estimate	PRESENCE/ABSENCE	VISUAL

<u>NumNets</u>	NumPasses	NumAnglers	StationLength	StationAsMiles	StationAsKilometers	<u>AvgWidth</u>	StationAsAcres	StationAsHectares
		2	500	0.094697	0.1524	8	0.091827	0.037161
		2	500	0.094697	0.1524	8	0.091827	0.037161
			250	0.047348	0.0762	6.5	0.037305	0.015097
		2	308	0.058333	0.093878	12.2	0.086263	0.034909
		2	340	0.064394	0.103632	30	0.23416	0.094761
		2	340	0.064394	0.103632	30	0.23416	0.094761
		2	380	0.07197	0.115824	10	0.087236	0.035303
		2	380	0.07197	0.115824	10	0.087236	0.035303
		2	540	0.102273	0.164592	22	0.272727	0.110369
		2	540	0.102273	0.164592	22	0.272727	0.110369
			1000	0.189394	0.3048			
			1000	0.189394	0.3048			
			1000	0.189394	0.3048			
		2	525	0.099432	0.16002	15	0.180785	0.073161
		2	525	0.099432	0.16002	15	0.180785	0.073161
			489	0.092614	0.149047	21.69	0.24349	0.098537
			489	0.092614	0.149047	21.69	0.24349	0.098537
		2	311	0.058902	0.094793	13.72	0.097955	0.039641
		2	311	0.058902	0.094793	13.72	0.097955	0.039641
		2	311	0.058902	0.094793	13.72	0.097955	0.039641
						1		
						1		
						3		

TotalCatch	TotalWeight	ElecEffort	GillEffort	TrapEffor	t SeinEffort	<u>TotalEffort</u>	EffortMetric	Species	D SpeciesCode
42	1674					2	PASS		52 CRN
42	1674					2	PASS	-	L23 LOC
2		0		0	0	C	Nets	-	L23 LOC
75	5286					2	PASS	-	L23 LOC
563	22152.96316	2				2	PASS	-	L23 LOC
563	22152.96316	2				2	PASS	-	L81 RBT
669	24998.31277	2				2	PASS	-	L23 LOC
669	24998.31277	2				2	PASS	-	L81 RBT
444	46295	2				2	PASS	-	L23 LOC
444	46295	2				2	PASS	-	L81 RBT
282	15588					1	PASS	-	L23 LOC
282	15588					1	PASS	-	L81 RBT
282	15588					1	PASS	3	312 QQQ
257	7271	. 2				2	PASS	-	L23 LOC
257	7271	. 2				2	PASS	2	232 SRN
102	9507					1	PASS	-	L23 LOC
102	9507					1	PASS	-	L81 RBT
100	5577					2	PASS		52 CRN
100	5577					2	PASS	-	L23 LOC
100	5577					2	PASS	-	L81 RBT
0						1	PASS		XXX
0						1	PASS		XXX
0						1	. PASS		XXX
0						1	. PASS		XXX
0						1	PASS		XXX

<u>CommonName</u>	Species Method	SpeciesCatch	Threshold	NumBlwThreshold	PercentCatch	<u>FirstCatch</u>	<u>SecondCatch</u>
COLORADO RIVER CUTTHROAT	Seber Lecren	22	100	7	52.38	18	4
BROWN TROUT	Seber Lecren	20	120	13	47.62	18	2
BROWN TROUT	Counts	2	120	2	100	2	
BROWN TROUT	Seber Lecren	75	120	17	100	66	9
BROWN TROUT	Seber Lecren	542	120	262	96.27	393	149
RAINBOW TROUT	Seber Lecren	21	200	2	3.73	19	2
BROWN TROUT	Seber Lecren	662	120	324	98.95	581	81
RAINBOW TROUT	Seber Lecren	7	200	2	1.05	6	1
BROWN TROUT	Seber Lecren	379	120	76	85.36	299	80
RAINBOW TROUT	Seber Lecren	65	200	2	14.64	63	2
BROWN TROUT	Counts	186	120	0	65.96	186	
RAINBOW TROUT	Counts	2	200	0	0.71	2	
Unidentified Fish/Generalized Gro	ນ Counts	94		0	33.33	94	
BROWN TROUT	Seber Lecren	255	120	136	99.22	141	114
SNAKE RIVER CUTTHROAT	Counts	2	150	0	0.78	1	1
BROWN TROUT	Counts	95	120	12	93.14	95	
RAINBOW TROUT	Counts	7	200	1	6.86	7	
COLORADO RIVER CUTTHROAT	Seber Lecren	6	100	0	6	5	1
BROWN TROUT	Seber Lecren	93	120	25	93	76	17
RAINBOW TROUT	Counts	1	200	1	1	1	
No Fish Caught	Counts	0		0			
No Fish Caught	Counts	0		0			
No Fish Caught	Counts	0		0			
No Fish Caught	Counts	0		0			
No Fish Caught	Counts	0		0			

ThirdCatch	AdditionalCatch	Marked	Recaptured	Captured	SpeciesWeight	Weighed	WeightCalcd	FirstWeight	SecondWeight
					1180	15	0	1105	75
					768	7	0	726	42
						0	0		
					5314	58	0	5189	125
					18875.96316	280	0	16117.9632	2758
					3720	19	0	3425	295
					24232.45995	338	0	23160.544	1071.915945
					1452	5	0	1208	244
					34165	303	0	29687	4478
					12582	63	0	12244	338
					15189	0	185		
					481	0	2		
						0	0		
						0	119		
					124	0	2		
					8798	0	83		
					709	0	6		
					531	6	0	449	82
					5287	68	0	4530	757
					6	0	0	6	
						0	0		
						0	0		
						0	0		
						0	0		
						0	0		

ThirdWeight	MarkedWeight	RecapturedWeight	CapturedWeight	MeanWeight	WeightRange	<u>AvgWr</u>	Measured	MeanLength
				75.6	7 20 - 225	121.5	5 22	147.09
				7	7 43 - 183	111.86	5 20	125.6
							2	90
				91.1	4 20 - 250	96.34	75	175.36
				66.3	8 15 - 392	90.96	5 542	124.13
				187.7	4 96 - 320	82.57	7 21	258
				69.8	8 14 - 1162	97.97	662	126.13
				275.	8 194 - 383	85.49	7	256.86
				111.7	7 18 - 603	99.83	379	181.56
				197.	3 88 - 340	87.19	65	262.29
				81.6	6 22 - 714		185	185.21
				240.	5 143 - 338		2	267
				60.0	6 22 - 178		255	118.27
				6	2 49 - 75		2	190.5
				10	6 19 - 321		95	188.32
				118.1	7 95 - 186		7	210
				88.	5 26 - 198	100.37	7 6	198.17
				74.2	1 16 - 258	93.26	93	161.06
							1	95

LengthRange	ProbabilityOfCapture	<u>PopulationEstimate</u>	POP_Variance	LOWER_POP_CI	UPPER_POP_CI	EstimatedSpeciesWeight
43 - 275	0.7778	23.1429	2.968763015	19.7658	26.52	2023
80 - 257	0.8889	20.25	0.395507813	19.0174	21.4826	1723
80 - 100		2				
58 - 292	0.8636	76.4211	2.506886841	73.3178	79.5244	6585
45 - 347	0.6209	632.9877	524.3214424	588.1075	677.8679	32726
192 - 308	0.8947	21.2353	0.363070366	20.0543	22.4163	3255
50 - 453	0.8606	675.122	23.45850194	665.6289	684.6151	45321
132 - 335	0.8333	7.2	0.4032	5.9554	8.4446	1650
49 - 366	0.7324	408.2237	94.27251672	389.1933	427.2541	42289
193 - 312	0.9683	65.0656	0.074530684	64.5305	65.6007	11182
127 - 406		186				
229 - 305		2				
		94				
51 - 254	0.1915	736.3333	123974.6959	46.2165	1426.4501	
178 - 203	0	2				
50 - 310		95				
190 - 250		7				
138 - 274	0.8	6.25	0.5859375	4.7497	7.7503	533
85 - 297	0.7763	97.8983	12.81149848	90.8828	104.9138	6436
95 - 95	0	1				
		0				
		0				
		0				
		0				
		0				

<u>Numb</u>	<u>erPerAcre</u>	<u>PoundsPerAcre</u>	<u>NumberPerMile</u>	<u>PoundsPerMile</u>	<u>NumberPerHectare</u>	<u>kilogramsPerHectare</u>	<u>NumberPerkilometer</u>
	252.0272	48.5691	244.3889	47.0971	622.7739	54.4388	151.8563
	220.5234	41.3665	213.8399	40.1128	544.9261	46.3658	132.874
	53.6121		42.2404		132.4767		26.2467
	885.9082	168.2928	1310.0835	248.8718	2189.1518	188.6333	814.047
	2703.2273	308.1162	9829.9174	1120.4224	6679.8335	345.353	6108.0332
	90.6871	30.6459	329.7714	111.4397	224.0932	34.3496	204.9106
	7739.0298	1145.3494	9380.603	1388.2965	19123.6439	1283.7719	5828.861
	82.5347	41.6987	100.0417	50.5437	203.9487	46.7382	62.1633
	1496.8217	341.8484	3991.51	911.5924	3698.717	383.1601	2480.2159
	238.5741	90.3911	636.1953	241.042	589.5279	101.3147	395.3145
			982.0797	176.8033			610.2362
			10.56				6.5617
			496.3198				308.399
	4072.9778		7405.3956		10064.5604		4601.5079
	11.0629		20.1142		27.337		12.4984
	390.1598		1025.7628		964.1049		637.3828
	28.7486		75.5825		71.0393		46.9651
	63.8048	11.996	106.1085	19.9495	157.665	13.4457	65.9331
	999.4212	144.8517	1662.0539	240.8908	2469.6224	162.3572	1032.7587
	10.2088		16.9774		25.2264		10.5493

kilogramsPerkilometer	<u>CPUE</u>	<u>WPUE</u>	<u>PSD</u>	<u>SRSD</u>	QRSD	<u>PRSD</u>	MRSD	<u>TRSD</u>	<u>DataSource</u>	<u>SciColl</u>
13.2743	3		0.00:00	100					Species Conservation	
11.3058	3		04:48.0	83.33	16.67				Species Conservation	
									Species Conservation	
70.1442	2		43:12.0	74.47	25.53				Species Conservation	11AQ0950
315.7905	5		28:48.0	70.73	25.61	3-Jan-00			Species Conservation	
31.4092	2		0.00:00	100					Species Conservation	
391.292	2		09:36.0	73.16	25.26	1-Jan-00	0.53		Species Conservation	
14.2458	3		0.00:00	100					Species Conservation	
256.9323	3		16:48.0	62.03	35.34	2-Jan-00			Species Conservation	
67.9377	7		0.00:00	100					Species Conservation	
49.8319	·		50:24.0	88.34	9.82	1-Jan-00	0.61		Species Conservation	
			0.00:00	100					Species Conservation	
									Species Conservation	
			57:36.0	92.21	7.79				Species Conservation	
			0.00:00	100					Species Conservation	
			02:24.0	65.79	#####	1-Jan-00			Species Conservation	
			0.00:00	100					Species Conservation	
5.6228	3		0.00:00	100					Southwest Region Fisheries Mar	brauchd
67.8953	3		50:24.0	79.59	20.41				Southwest Region Fisheries Mar	brauchd
									Southwest Region Fisheries Mar	brauchd
									Species Conservation	
									Species Conservation	
									Species Conservation	
									Species Conservation	
									Species Conservation	

Surveyors

BRAUCH, HEDEAN

BRAUCH, HEDEAN

COHEN, ALLEN

M Dare, M Carrillo, M Tracy, D Swift

Thompson, Brauch et al.

Thompson, Brauch et al.

Thompson, Brauch, et. al.

Thompson, Brauch, et. al.

Thompson, Brauch, et. al.

Thompson, Brauch, et. al.

SHERMAN

SHERMAN

SHERMAN

HENRY, WEILER, TRAINEES, USFS EMPLOYEES

HENRY, WEILER, TRAINEES, USFS EMPLOYEES

KEHMEIER, HENRY, SHIRLEY, McCLELLAND, BERRY

KEHMEIER, HENRY, SHIRLEY, McCLELLAND, BERRY

Brauch, Samuelson, Foster

Brauch, Samuelson, Foster

Brauch, Samuelson, Foster

SMITH, WEILER

SMITH, WEILER

WEILER

SMITH, WEILER

SMITH, WEILER

Comments

CRN have spots on head; CRN; 20 CRN caudal fin clips taken for genetic analysis CRN have spots on head; CRN; 20 CRN caudal fin clips taken for genetic analysis SAW SEVERAL FISH THAT WERE NOT NETTED.

No notes recorded

4 electrodes

4 electrodes

SR GPP 2.5, 3 electrodes

SR GPP 2.5, 3 electrodes

SR GPP 2.5, 4 electrodes

SR GPP 2.5, 4 electrodes

QQQ = FISH TAKEN BUT NOT MEASURED. ONLY LISTED AS "FISH" NO MORE SPECIFIC SPECIES INFO.

QQQ = FISH TAKEN BUT NOT MEASURED. ONLY LISTED AS "FISH" NO MORE SPECIFIC SPECIES INFO.

QQQ = FISH TAKEN BUT NOT MEASURED. ONLY LISTED AS "FISH" NO MORE SPECIFIC SPECIES INFO.

--

Part of statewide BKD sampling

Part of statewide BKD sampling

Part of statewide BKD sampling

NO FISH SAMPLING, WATER QUALITY ONLY. FLOW < 0.1 cfs.

DRY AT TIME OF SURVEY.

DRY AT TIME OF SURVEY.

NO FISH SAMPLING, WATER QUALITY ONLY. FLOW < 0.1 cfs.

NO FISH SAMPLING, WATER QUALITY ONLY. WATER DIVERTED 1.6 MILES FROM CONFLUENCE WITH EAST MUDDY CREEK. WCO REPORTS BRK IN BEAVER

TableLastUpdated

- 4-Sep-2018

Attachment E- R2CROSS Analysis

R2Cross RESULTS

Stream Name: Spring Creek

Stream Locations: Spring Creek downstream of reservoir

Fieldwork Date: 09/28/2018

Cross-section: upper **Observers:** JN, AJB

Coordinate System: UTM Zone 13

X (easting): 351755 Y (northing): 4301038 Date Processed: 11/26/2019

Slope: 0.0094

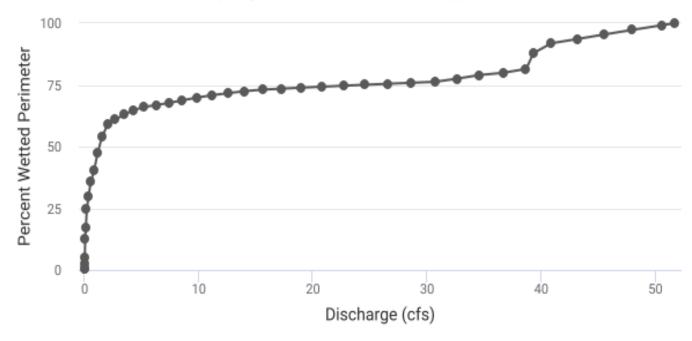
Computation method: Manning's n

R2Cross data filename: Upper Spring Creek 9-28-18 R2CROSS Standard erams input.xlsx

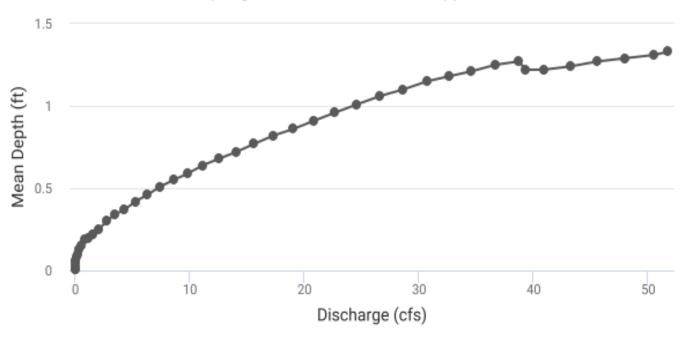
R2Cross version: 1.0.10

LOCATION

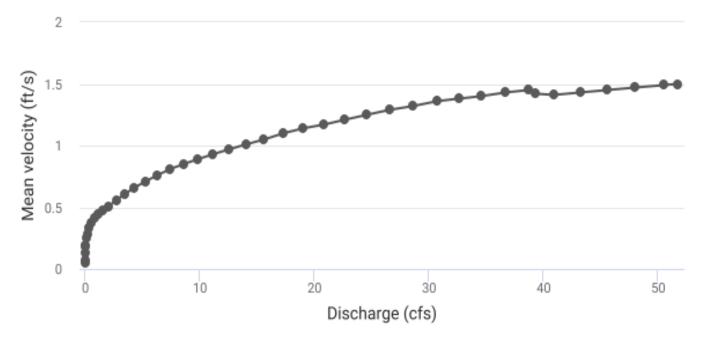
ANALYSIS RESULTS


Habitat Criteria Results

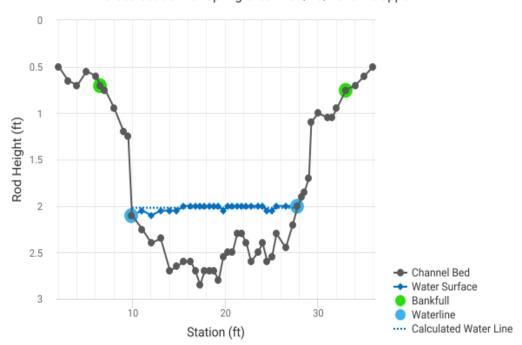
Bankfull top width (ft) = 26.0


	Habitat Criteria	Discharge (cfs) Meeting Criteria
Mean Depth (ft) **	0.26	2.15
Percent Wetted Perimeter (%) **	50.0	1.28
Mean Velocity (ft/s)	1.0	13.54

^{**}Values highlighted in yellow indicate that the discharge is less than 40% of measured Q or greater than 250% of measured Q.


Spring Creek - 09/28/2018 XS upper

STAGING TABLE

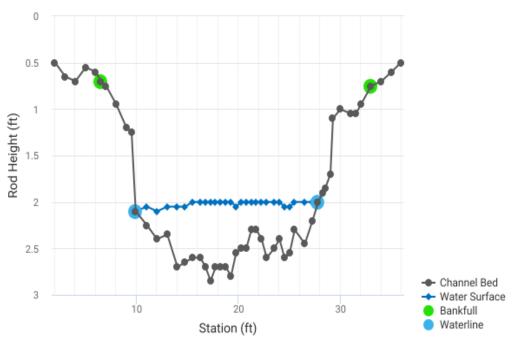

Feature	Distance to Water (ft)	Top Width (ft)	Mean Depth (ft)	Maximum Depth (ft)	Area (SQ ft)	Wetted Perimeter (ft)	Percent Wetted Perimeter	Hydraulic Radius (ft)	Mean Velocity (ft/s)	Discharge (cfs)
Bankfull ———	0.75	26.0	1.33	2.1	34.48	27.57	100.00%	1.25	1.5	51.76
	0.77	25.77	1.31	2.08	33.88	27.33	99.14%	1.24	1.49	50.56
	0.82	25.27	1.29	2.03	32.61	26.82	97.29%	1.22	1.47	48.02
	0.87	24.77	1.27	1.98	31.35	26.31	95.44%	1.19	1.45	45.57
	0.92	24.27	1.24	1.93	30.13	25.8	93.59%	1.17	1.43	43.2
	0.97	23.79	1.22	1.88	28.93	25.32	91.83%	1.14	1.41	40.88
	1.02	22.7	1.22	1.83	27.76	24.21	87.83%	1.15	1.42	39.31
	1.07	20.96	1.27	1.78	26.67	22.46	81.45%	1.19	1.45	38.68
	1.12	20.55	1.25	1.73	25.64	22.02	79.88%	1.16	1.43	36.68
	1.17	20.33	1.21	1.68	24.61	21.76	78.94%	1.13	1.4	34.55
	1.22	19.97	1.18	1.63	23.61	21.36	77.49%	1.1	1.38	32.62
	1.27	19.67	1.15	1.58	22.62	21.02	76.23%	1.08	1.36	30.72
	1.32	19.62	1.1	1.53	21.64	20.91	75.83%	1.03	1.32	28.62
	1.37	19.58	1.06	1.48	20.66	20.8	75.43%	0.99	1.29	26.59
	1.42	19.53	1.01	1.43	19.68	20.69	75.04%	0.95	1.25	24.61
	1.47	19.49	0.96	1.38	18.7	20.58	74.64%	0.91	1.21	22.69
	1.52	19.45	0.91	1.33	17.73	20.47	74.24%	0.87	1.17	20.83
	1.57	19.4	0.86	1.28	16.76	20.36	73.85%	0.82	1.14	19.03
	1.62	19.36	0.82	1.23	15.79	20.25	73.45%	0.78	1.1	17.3
	1.67	19.31	0.77	1.18	14.82	20.14	73.05%	0.74	1.05	15.62
	1.72	19.2	0.72	1.13	13.86	19.97	72.45%	0.69	1.01	14.04
	1.77	19.01	0.68	1.08	12.9	19.75	71.62%	0.65	0.97	12.56
	1.82	18.82	0.64	1.03	11.96	19.52	70.79%	0.61	0.93	11.15
	1.87	18.59	0.59	0.98	11.02	19.25	69.82%	0.57	0.89	9.83
	1.92	18.33	0.55	0.93	10.1	18.95	68.74%	0.53	0.85	8.58

	1.97	18.08	0.51	0.88	9.19	18.66	67.70%	0.49	0.81	7.41
Waterline	2.02	17.87	0.46	0.83	8.29	18.42	66.81%	0.45	0.76	6.3
	2.07	17.71	0.42	0.78	7.4	18.22	66.08%	0.41	0.71	5.25
	2.12	17.39	0.37	0.73	6.52	17.87	64.81%	0.36	0.66	4.31
	2.17	16.89	0.34	0.68	5.66	17.35	62.94%	0.33	0.61	3.47
	2.22	16.38	0.3	0.63	4.83	16.83	61.05%	0.29	0.56	2.72
	2.27	15.88	0.25	0.58	4.03	16.32	59.19%	0.25	0.51	2.05
	2.32	14.52	0.22	0.53	3.26	14.93	54.17%	0.22	0.47	1.53
	2.37	12.69	0.2	0.48	2.57	13.06	47.39%	0.2	0.44	1.13
	2.42	10.76	0.19	0.43	1.99	11.07	40.17%	0.18	0.41	0.82
	2.47	9.64	0.15	0.38	1.49	9.89	35.86%	0.15	0.37	0.54
	2.52	8.04	0.13	0.33	1.04	8.24	29.88%	0.13	0.33	0.34
	2.57	6.67	0.1	0.28	0.67	6.82	24.75%	0.1	0.28	0.19
	2.62	4.61	0.08	0.23	0.39	4.73	17.15%	0.08	0.25	0.1
	2.67	3.37	0.06	0.18	0.19	3.46	12.54%	0.06	0.19	0.04
	2.72	1.38	0.05	0.13	0.07	1.45	5.24%	0.05	0.18	0.01
	2.77	0.7	0.03	0.08	0.02	0.73	2.65%	0.03	0.13	0.0
	2.82	0.18	0.01	0.03	0.0	0.19	0.68%	0.01	0.07	0.0
	2.83	0.1	0.01	0.02	0.0	0.1	0.38%	0.01	0.05	0.0

MODEL SUMMARY

Measured Flow (Qm) =	6.3
Calculated Flow (Qc) =	6.3
(Qm-Qc)/Qm * 100 =	0.06%
Measured Waterline (WLm) =	2.05
Calculated Waterline (WLc) =	2.02
(WLm-WLc)/WLm * 100 =	1.31%
Max Measured Depth (Dm) =	0.85
Max Calculated Depth (Dc) =	0.83
(Dm-Dc)/Dm * 100 =	2.73%
Mean Velocity =	0.76
Manning's n =	0.111
0.4 * Qm =	2.52
2.5 * Qm =	15.75

Cross-section for Spring Creek - 09/28/2018 XS upper



FIELD DATA

2 0.5 0 3 0.65 0 4 0.7 0 5 0.55 0 6 0.6 0 Bankfull 6.5 0.7 0 7 0.75 0 8 0.95 0 9 1.2 0 9.5 1.25 0 Waterline 9.9 2.1 0 11 2.25 0.2 12 2.4 0.3 13 2.35 0.3 14 2.7 0.65 14.75 2.65 0.6	0
4 0.7 0 5 0.55 0 6 0.6 0 Bankfull 6.5 0.7 0 7 0.75 0 8 0.95 0 9 1.2 0 9.5 1.25 0 Waterline 9.9 2.1 0 11 2.25 0.2 12 2.4 0.3 13 2.35 0.3 14 2.7 0.65 14.75 2.65 0.6	
5 0.55 0 6 0.6 0 Bankfull 6.5 0.7 0 7 0.75 0 8 0.95 0 9 1.2 0 9.5 1.25 0 Waterline 9.9 2.1 0 11 2.25 0.2 12 2.4 0.3 13 2.35 0.3 14 2.7 0.65 14.75 2.65 0.6	0
6 0.6 0 Bankfull 6.5 0.7 0 7 0.75 0 8 0.95 0 9 1.2 0 9.5 1.25 0 Waterline 9.9 2.1 0 11 2.25 0.2 12 2.4 0.3 13 2.35 0.3 14 2.7 0.65 14.75 2.65 0.6	0
Bankfull 6.5 0.7 0 7 0.75 0 8 0.95 0 9 1.2 0 9.5 1.25 0 Waterline 9.9 2.1 0 11 2.25 0.2 12 2.4 0.3 13 2.35 0.3 14 2.7 0.65 14.75 2.65 0.6	0
7 0.75 0 8 0.95 0 9 1.2 0 9.5 1.25 0 Waterline 9.9 2.1 0 11 2.25 0.2 12 2.4 0.3 13 2.35 0.3 14 2.7 0.65 14.75 2.65 0.6	0
8 0.95 0 9 1.2 0 9.5 1.25 0 Waterline 9.9 2.1 0 11 2.25 0.2 12 2.4 0.3 13 2.35 0.3 14 2.7 0.65 14.75 2.65 0.6	0
9 1.2 0 9.5 1.25 0 Waterline 9.9 2.1 0 11 2.25 0.2 12 2.4 0.3 13 2.35 0.3 14 2.7 0.65 14.75 2.65 0.6	0
9.5 1.25 0 Waterline 9.9 2.1 0 11 2.25 0.2 12 2.4 0.3 13 2.35 0.3 14 2.7 0.65 14.75 2.65 0.6	0
Waterline 9.9 2.1 0 11 2.25 0.2 12 2.4 0.3 13 2.35 0.3 14 2.7 0.65 14.75 2.65 0.6	0
11 2.25 0.2 12 2.4 0.3 13 2.35 0.3 14 2.7 0.65 14.75 2.65 0.6	0
12 2.4 0.3 13 2.35 0.3 14 2.7 0.65 14.75 2.65 0.6	0
13 2.35 0.3 14 2.7 0.65 14.75 2.65 0.6	0.13
14 2.7 0.65 14.75 2.65 0.6	0.09
14.75 2.65 0.6	0.28
	0.49
15.5 2.6 0.6	0.63
	0.47
16.25 2.6 0.6	1.05
16.75 2.7 0.7	0.67
17.25 2.85 0.85	1.18
17.75 2.7 0.7	1.37
18.25 2.7 0.7	1.15
18.75 2.7 0.7	1.24
19.25 2.8 0.8	0.71
19.75 2.55 0.5	1
20.25 2.5 0.5	1.18
20.75 2.5 0.5	1.04
21.25 2.3 0.3	0.98
21.75 2.3 0.3	0.84
22.25 2.4 0.4	

	22.75	2.6	0.6	0.61
	23.5	2.5	0.5	1.13
	24	2.4	0.4	1.52
	24.5	2.6	0.55	0.56
	25	2.55	0.5	0.95
	25.5	2.3	0.3	0.49
	26.5	2.45	0.45	0.01
	27.25	2.2	0.2	0.28
Waterline	27.8	2	0	0
	28.25	1.9	0	0
	28.5	1.85	0	0
	29	1.7	0	0
	29.25	1.1	0	0
	30	1	0	0
	31	1.05	0	0
	31.5	1.05	0	0
	32	0.95	0	0
Bankfull	33	0.75	0	0
	34	0.7	0	0
	35	0.6	0	0
	35.9	0.5	0	0

Cross-section for Spring Creek - 09/28/2018 XS upper

COMPUTED FROM MEASURED FIELD DATA

Wetted Perimeter (ft)	Water Depth (ft)	Area (SQ ft)		Percent Discharge
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
1.11	0.2	0.21	0.03	0.43
1.01	0.3	0.3	0.03	0.43
1	0.3	0.3	0.08	1.33
1.06	0.65	0.57	0.28	4.42
0.75	0.6	0.45	0.28	4.5
0.75	0.6	0.45	0.21	3.36
0.75	0.6	0.38	0.39	6.25
0.51	0.7	0.35	0.23	3.72
0.52	0.85	0.42	0.5	7.96
0.52	0.7	0.35	0.48	7.61
0.5	0.7	0.35	0.4	6.39
0.5	0.7	0.35	0.43	6.89
0.51	0.8	0.4	0.28	4.51
0.56	0.5	0.25	0.25	3.97
0.5	0.5	0.25	0.29	4.68
0.5	0.5	0.25	0.26	4.13
0.54	0.3	0.15	0.15	2.33
0.5	0.3	0.15	0.13	2
0.51	0.4	0.2	0.15	2.41

0.54	0.6	0.38	0.23	3.63
0.76	0.5	0.31	0.35	5.61
0.51	0.4	0.2	0.3	4.83
0.54	0.55	0.28	0.15	2.44
0.5	0.5	0.25	0.24	3.77
0.56	0.3	0.23	0.11	1.75
1.01	0.45	0.39	0	0.06
0.79	0.2	0.13	0.04	0.58
0.59	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

DISCLAIMER

"The Colorado Water Conservation Board makes no representations about the use of the software contained in the R2Cross platform for any purpose besides that for which it was designed. To the maximum extent permitted by applicable law, all information, modeling results, and software are provided "as is" without warranty or condition of any kind, including all implied warranties or conditions of merchantability, or fitness for a particular purpose. The user assumes all responsibility for the accuracy and suitability of this program for a specific application. In no event shall the Colorado Water Conservation Board or any state agency, official or employee be liable for any direct, indirect, punitive, incidental, special, consequential damages or any damages whatsoever including, without limitation, damages for loss of use, data, profits, or savings arising from the implementation, reliance on, or use of or inability to use the R2Cross platform.

R2Cross RESULTS

Stream Name: Lower Spring Creek

Stream Locations: Spring Creek at Campground

Fieldwork Date: 09/28/2018

Cross-section: Lower **Observers:** AJB, JN

Coordinate System: UTM Zone 13

X (easting): 346489 Y (northing): 4290199 Date Processed: 11/26/2019

Slope: 0.0156

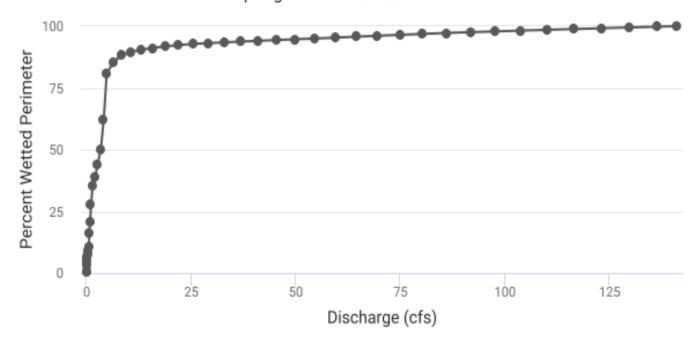
Computation method: Manning's n

R2Cross data filename: Lower Spring Creek 9-28-18 Standard R2CROSS erams input.xlsx

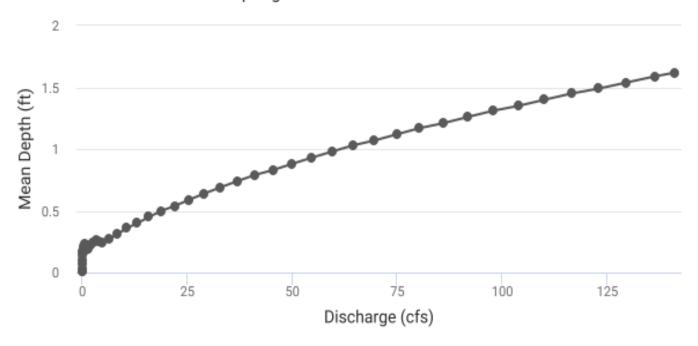
R2Cross version: 1.0.10

LOCATION

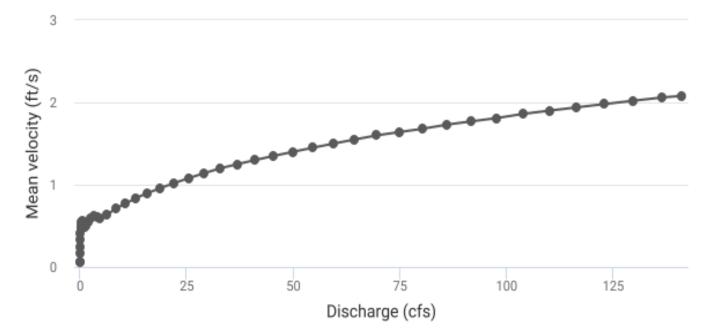
ANALYSIS RESULTS


Habitat Criteria Results

Bankfull top width (ft) = 41.92

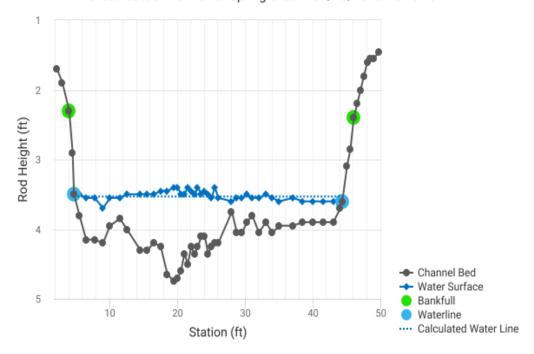

	Habitat Criteria	Discharge (cfs) Meeting Criteria
Mean Depth (ft)	0.42	14.13
Percent Wetted Perimeter (%) **	50.53	3.15
Mean Velocity (ft/s)	1.0	20.81

^{**}Values highlighted in yellow indicate that the discharge is less than 40% of measured Q or greater than 250% of measured Q.


Lower Spring Creek - 09/28/2018 XS Lower

Lower Spring Creek - 09/28/2018 XS Lower

STAGING TABLE

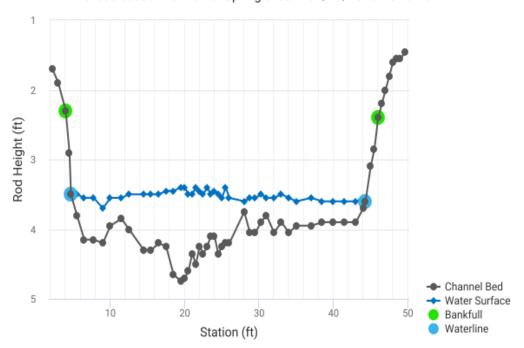

Feature	Distance to Water (ft)	Top Width (ft)	Mean Depth (ft)	Maximum Depth (ft)	Area (SQ ft)	Wetted Perimeter (ft)	Percent Wetted Perimeter	Hydraulic Radius (ft)	Mean Velocity (ft/s)	Discharge (cfs)
Bankfull	2.4	41.92	1.62	2.35	67.79	43.74	100.00%	1.55	2.08	141.22
	2.43	41.85	1.59	2.32	66.36	43.64	99.78%	1.52	2.06	136.49
	2.48	41.75	1.54	2.27	64.27	43.5	99.46%	1.48	2.02	129.68
	2.53	41.66	1.49	2.22	62.19	43.36	99.14%	1.43	1.98	123.01
	2.58	41.56	1.45	2.17	60.11	43.22	98.82%	1.39	1.94	116.48
	2.63	41.46	1.4	2.12	58.03	43.08	98.50%	1.35	1.9	110.09
	2.68	41.36	1.35	2.07	55.96	42.94	98.18%	1.3	1.86	103.85
	2.73	41.27	1.31	2.02	53.9	42.8	97.86%	1.26	1.81	97.75
	2.78	41.17	1.26	1.97	51.83	42.66	97.54%	1.22	1.77	91.8
	2.83	41.07	1.21	1.92	49.78	42.52	97.22%	1.17	1.73	86.0
	2.88	40.94	1.17	1.87	47.73	42.36	96.85%	1.13	1.68	80.38
	2.93	40.82	1.12	1.82	45.68	42.19	96.46%	1.08	1.64	74.93
	2.98	40.7	1.07	1.77	43.65	42.02	96.09%	1.04	1.6	69.62
	3.03	40.59	1.03	1.72	41.61	41.86	95.71%	0.99	1.55	64.47
	3.08	40.47	0.98	1.67	39.59	41.69	95.33%	0.95	1.5	59.48
	3.13	40.37	0.93	1.62	37.57	41.55	95.00%	0.9	1.45	54.63
	3.18	40.29	0.88	1.57	35.55	41.41	94.68%	0.86	1.4	49.94
	3.23	40.2	0.83	1.52	33.54	41.27	94.36%	0.81	1.35	45.42
	3.28	40.11	0.79	1.47	31.53	41.13	94.05%	0.77	1.3	41.07
	3.33	40.03	0.74	1.42	29.53	40.99	93.73%	0.72	1.25	36.9
	3.38	39.94	0.69	1.37	27.53	40.85	93.41%	0.67	1.2	32.9
	3.43	39.85	0.64	1.32	25.53	40.72	93.09%	0.63	1.14	29.09
	3.48	39.77	0.59	1.27	23.54	40.58	92.78%	0.58	1.08	25.47
Waterline	3.53	39.6	0.54	1.22	21.56	40.38	92.32%	0.53	1.02	22.06
	3.58	39.4	0.5	1.17	19.58	40.15	91.80%	0.49	0.96	18.87

3.63	39.14	0.45	1.12	17.62	39.87	91.16%	0.44	0.9	15.9
3.68	38.86	0.4	1.07	15.67	39.57	90.48%	0.4	0.84	13.14
3.73	38.51	0.36	1.02	13.73	39.2	89.64%	0.35	0.77	10.61
3.78	37.88	0.31	0.97	11.82	38.56	88.16%	0.31	0.71	8.36
3.83	36.76	0.27	0.92	9.95	37.39	85.50%	0.27	0.64	6.4
3.88	34.7	0.24	0.87	8.16	35.3	80.71%	0.23	0.59	4.78
3.93	26.58	0.25	0.82	6.66	27.13	62.03%	0.25	0.61	4.06
3.98	21.45	0.26	0.77	5.48	21.95	50.18%	0.25	0.62	3.38
4.03	18.81	0.24	0.72	4.48	19.25	44.02%	0.23	0.59	2.63
4.08	16.61	0.22	0.67	3.61	17.02	38.90%	0.21	0.55	2.0
4.13	15.03	0.19	0.62	2.82	15.4	35.21%	0.18	0.5	1.42
4.18	11.86	0.18	0.57	2.16	12.19	27.87%	0.18	0.49	1.06
4.23	8.86	0.19	0.52	1.64	9.16	20.95%	0.18	0.49	0.81
4.28	6.73	0.19	0.47	1.25	6.99	15.98%	0.18	0.49	0.62
4.33	4.39	0.23	0.42	0.99	4.6	10.51%	0.22	0.56	0.55
4.38	3.71	0.21	0.37	0.79	3.88	8.87%	0.2	0.54	0.43
4.43	3.22	0.19	0.32	0.62	3.35	7.65%	0.18	0.5	0.31
4.48	2.73	0.17	0.27	0.47	2.81	6.43%	0.17	0.47	0.22
4.53	2.42	0.14	0.22	0.34	2.48	5.66%	0.14	0.41	0.14
4.58	2.2	0.1	0.17	0.22	2.23	5.10%	0.1	0.34	0.08
4.63	1.87	0.07	0.12	0.12	1.89	4.31%	0.06	0.25	0.03
4.68	1.24	0.03	0.07	0.04	1.25	2.85%	0.03	0.16	0.01
4.73	0.32	0.01	0.02	0.0	0.32	0.73%	0.01	0.06	0.0
4.74	0.3	0.01	0.01	0.0	0.3	0.69%	0.01	0.06	0.0

MODEL SUMMARY

Measured Flow (Qm) =	22.07
Calculated Flow (Qc) =	22.06
(Qm-Qc)/Qm * 100 =	0.02%
Measured Waterline (WLm) =	3.55
Calculated Waterline (WLc) =	3.53
(WLm-WLc)/WLm * 100 =	0.45%
Max Measured Depth (Dm) =	1.35
Max Calculated Depth (Dc) =	1.22
(Dm-Dc)/Dm * 100 =	9.93%
Mean Velocity =	1.02
Manning's n =	0.119
0.4 * Qm =	8.83
2.5 * Qm =	55.17

Cross-section for Lower Spring Creek - 09/28/2018 XS Lower



FIELD DATA

Feature	Station (ft)	Rod Height (ft)	Water depth (ft)	Velocity (ft/s)
	2.2	1.7	0	0
	3	1.9	0	0
Bankfull	4	2.3	0	0
	4.5	2.9	0	0
Waterline	4.7	3.5	0	0
	5.5	3.8	0.3	0.01
	6.5	4.15	0.6	0.29
	7.75	4.15	0.6	-0.04
	9	4.2	0.5	0.52
	10	3.95	0.4	1.16
	11.5	3.85	0.3	0.43
	12.5	4	0.5	1.13
	14.5	4.3	0.8	0.34
	15.5	4.3	0.8	0.67
	16.5	4.2	0.7	0.88
	17.5	4.25	0.8	1.89
	18.5	4.65	1.2	0.61
	19.5	4.75	1.35	1.88
	20	4.7	1.3	1.15
	20.5	4.6	1.1	0.73
	21	4.35	0.85	1.41
	21.5	4.5	1.1	1.85
	22	4.25	0.8	2.88
	22.5	4.35	0.85	0.51
	23	4.25	0.85	1.41
	23.5	4.1	0.6	1.97
	24	4.1	0.65	2.34
	24.5	4.35	0.85	1.96
	25	4.25	0.7	1.67
	25.5	4.2	0.8	0.56

	26	4.2	0.65	0.36
	28	3.75	0.15	2.31
	28.75	4.05	0.5	1.77
	29.5	4.05	0.5	1.25
	30.25	3.9	0.4	2.27
	31	3.8	0.25	1.81
	32	4.05	0.5	0.71
	33	3.9	0.4	1.21
	34	4.05	0.5	-0.18
	35	3.95	0.35	0.31
	37	3.95	0.4	1.16
	38.5	3.9	0.3	0.95
	40	3.9	0.3	1.58
	41.5	3.9	0.3	0.65
	43	3.9	0.3	1.09
	44	3.7	0.15	0.44
Waterline	44.3	3.6	0	0
	45	3.1	0	0
	45.5	2.85	0	0
Bankfull	46	2.4	0	0
	46.5	2.2	0	0
	47	2	0	0
	47.5	1.8	0	0
	48	1.6	0	0
	48.5	1.55	0	0
	49	1.55	0	0
	49.7	1.45	0	0

Cross-section for Lower Spring Creek - 09/28/2018 XS Lower

COMPUTED FROM MEASURED FIELD DATA

Wetted Perimeter (ft)	Water Depth (ft)	Area (SQ ft)	Discharge (cfs)	Percent Discharge
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0.85	0.3	0.27	0	0.01
1.06	0.6	0.68	0.2	0.89
1.25	0.6	0.75	-0.03	-0.14
1.25	0.5	0.56	0.29	1.32
1.03	0.4	0.5	0.58	2.63
1.5	0.3	0.38	0.16	0.73
1.01	0.5	0.75	0.85	3.84
2.02	0.8	1.2	0.41	1.85
1	0.8	0.8	0.54	2.43
1	0.7	0.7	0.62	2.79
1	0.8	0.8	1.51	6.85
1.08	1.2	1.2	0.73	3.32
1	1.35	1.01	1.9	8.62
0.5	1.3	0.65	0.75	3.39
0.51	1.1	0.55	0.4	1.82
0.56	0.85	0.42	0.6	2.71
0.52	1.1	0.55	1.02	4.61
0.56	0.8	0.4	1.15	5.22
0.51	0.85	0.42	0.22	0.98
0.51	0.85	0.42	0.6	2.71
0.52	0.6	0.3	0.59	2.68
0.5	0.65	0.33	0.76	3.45
0.56	0.85	0.42	0.83	3.77
0.51	0.7	0.35	0.58	2.65
0.5	0.8	0.4	0.22	1.01

0.5	0.65	0.81	0.29	1.32
2.05	0.15	0.21	0.48	2.16
0.81	0.5	0.38	0.66	3.01
0.75	0.5	0.38	0.47	2.12
0.76	0.4	0.3	0.68	3.09
0.76	0.25	0.22	0.4	1.79
1.03	0.5	0.5	0.35	1.61
1.01	0.4	0.4	0.48	2.19
1.01	0.5	0.5	-0.09	-0.41
1	0.35	0.53	0.16	0.74
2	0.4	0.7	0.81	3.68
1.5	0.3	0.45	0.43	1.94
1.5	0.3	0.45	0.71	3.22
1.5	0.3	0.45	0.29	1.32
1.5	0.3	0.38	0.41	1.85
1.02	0.15	0.1	0.04	0.19
0.32	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

DISCLAIMER

"The Colorado Water Conservation Board makes no representations about the use of the software contained in the R2Cross platform for any purpose besides that for which it was designed. To the maximum extent permitted by applicable law, all information, modeling results, and software are provided "as is" without warranty or condition of any kind, including all implied warranties or conditions of merchantability, or fitness for a particular purpose. The user assumes all responsibility for the accuracy and suitability of this program for a specific application. In no event shall the Colorado Water Conservation Board or any state agency, official or employee be liable for any direct, indirect, punitive, incidental, special, consequential damages or any damages whatsoever including, without limitation, damages for loss of use, data, profits, or savings arising from the implementation, reliance on, or use of or inability to use the R2Cross platform.

FIELD DATA FOR **INSTREAM FLOW DETERMINATIONS**

CONSERVATION BOAR				_OCA	(IIIO	14 114	-01	INIT	ION	•								
STREAM NAME: CEMEN	+ Creek (VI	PPER')												C	ROSS-S	ECTION	NO.:
CROSS-SECTION LOCATION:	Cement Creek	50f	eet	VPS	reav	nof	fine	il Ce	men	t G	eek	road	cra	ssino	i- Ne	arth	e Sta	art
of Upper		c tro	ail-C	USE	tro	ai #	612)		- Steel of the				,)			1
DATE: 9-26-18 OBS	ERVERS: ATB (Flo	w)	IN		ble	(oun	+ 4		be)									
LEGAL % SEC DESCRIPTION	2.20	ECTION	l:		TC	WNSH			N/	s	RANGE	:		E	/W	PM:		
GUNNISON	East R						WA	TER DIV	ISION					DOW W	ATER (ODE.		
	dinates record		n J	V's (àPS.	. Sa	ved	as	loca	tion	000	ì						
				SUF	PLE	ME	ITA	L DA	TA									
SAG TAPE SECTION SAME AS DISCHARGE SECTION:	YES (NO M	ETER TY	PE:	tach	FH	950)	7					-					
METER NUMBER: AEC	DATE RAT	ED:	AV	•	CALIE	/SPIN		NA.	ес	TAPE W	EIGHT.	N	A II	os/foot	TAP	TENS	ON:_/	V-A lbs
CHANNEL BED MATERIAL SIZ	ZE RANGE: S. See pebble C	ount					РНОТО	GRAPI	IS TAK	EN YES	/NO		NUMBI	ER OF F	ното	SRAPH	5;	
07.700	DISTANCE		T	CHA		-	ROF	ILE	DAT	A *	See			09 0	nre	vers		LEGEND:
STATION Tape @ Stake LB	FROM TAPE		+	ROC	READI	NG (H)	\dashv				L	EW &					-	LEGEND,
Tape @ Stake RB	0.0 41,3			<u> </u>	HEIDON - HIV			-				T			***************************************		1	ake 🕱
1 WS @ Tape LB/RB	0.0		37	13/16	37	15/16		Flo	W	45>		TAPE				4		ation (1) noto (1)-
2 WS Upstream	10'		3	41/8"	/10	716		Н		,						V		
3 WS Downstream	10.			7 1/6	/10	•		-		-			4				Dire	ction of Flov
SLOPE 0.24	41/20' = 0.0	122	4				1				R	EW C						
	2/17/5 1		AC	TAU	IC S	AMF	LIN	G SI	JMN	ARY								
STREAM ELECTROFISHED:	YES/NO DISTANC	E ELEC	TROFIS	HED _	ft		F	ISH CA	UGHT	YES/N)		WATE	RCHEN	HISTRY	SAMPL	ED: YE	S/NO
	LENGT	- FREC	UENC	Y DISTE	IBUTIO	N BY	NEIN	CH SIZ	E GRO	UPS (1.	0-1.9, 2	.0-2.9,	ETC.)					
SPECIES (FILL IN)		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	>15	TOTAL
,		-		_						_								
		-	_	-													1	

COMMENTS

Saw a 6"+ trout during survey

Site selection in Cement Creek is generally challenging. Step-pool sequences, beaver complexes, braiding, and coarse woody debric are common. The habitat is excellent, riparian grea is generally natural and undisturbed throughout Coment Creek materished except in Select areas near road and or trail crossings. Recreational use near cross-section

AQUATIC INSECTS IN STREAM SECTION BY COMMON OR SCIENTIFIC ORDER NAME.

Photos:			
# 1 2	2 time 13:10 13:16	description. View of x-section from road	View Upstream
3	15.16	View from RB to LB from uphill of Stake	across
3	13:19	View from LB to RB from ds side of x-section near stake.	across
4.	13:19	Upstream view ~ 100' us from X-Section → Step-Pool, large boulders & bedrock characterist	Upstream ic of many parts of Coment Creek
5.	13:20	View of cross-section 250' upstream.	Downstream.

Flow File: CEM_1

DISCHARGE/CROSS SECTION NOTES

TREAM NAME:	Comen	+ Creek	4				CROS	S-SECTION	NO /		DATE 9/26/1	SHEET	2 or 3
EGINNING OF M			ATER LOOKING	DOWNSTREAM:	LEFT/ RIG	нт (Gage Re	ading:	NA	1t	TIME 13:53		
	* Distance	Width /	* Total	* Water	Depth/	Revol	utions	\ /	١	/elocit	y (ft/sec)		
Stake (S) Grassline (G) Waterline (W) Rock (R)	From Initial Point (ft)	(R)	Vertical Depth From Tape/inst Cov (ft)	Depth (ft)	Depth of Obser- vation (it)			Time (sec)	Po		Mean in * Vertical	Area (It ²)	Discharge (cfs)
8	1,25		1.9	Ø									
	2.25		1.9	Ø									
(bankfill)	2,5		1.9	Ø.							75		
	3.5		1.95	0									
	4,5		1,95	9			41 /2		-				
	5.5		2.05	Ø				-	-				
	6.5		2.1	9			- 1						
	7.5		21	0									
	8.5		2,2	0									
	9,5		2,35	0									
	10		2.45	0									
	10.5	1 -	2.45	0									
	U		2.9	0	Altr				1		フー		
W	11.25		3.05	0							+		
	12		3.2	0.15							0,23		
	13,5		3,25	0.2							0.45		
	14.5		3.3	0.22							0.51		
	15,5		3.2	0.22							0.26		
	16.75		3.2	0.15							0,05		
	18		3,15	0.1							0.22		
	19		3.15	0.1							0.23		
	20		3.1	0.05							TSTM	=30 av	rage.
	21.25		3.2	0.15							0.37		
	22		3.25	0.2							0.82		
	23		3.3	0.25							0.76		
	23.75		3,35	0.3							1.03		
	24,5		3.35	0.3							0.53		
	25		3.3	0,25							0.71		
	35,5		3.3	0.25							0.74		
	26	<u> </u>	3.35	0.3		-			-		1.69		
	26.5	-	3,4	0.35		-			1		2,05		
	27		3.45	0.4	-	+			-		1.78	-	-
	27.5		3.45	0,4	-	-		-	-			meas 2	4
	28	-	3,4	0.35		-		-	-		2.33	1011	
	28,5		3.5	0.35		-			-		0.61	OK	
	29.5		3.4	0,4							0.33		1
	30		3.7	0.6		1	***************************************				0.01	eddy	
	31		3,55	0.5		1					0.6	day	
	32		3.5	0,4							0.62		
	32,75		3,55	0.45							1.07		
	33.20		3,55	0,45		1					0.45		
TOTALS				1.7									T

4.28 ft/s

DISCHARGE/CROSS SECTION NOTES

Distance From Initial Point (tt) 34 35 36 37 37.25 38.5 39.75 40 40.25 41.0	EDGE OF WOOD AT STA	Total Vertical Depth From Tape/Inst (ft) 3,5 3,3 3,25 3,1 4,5 3,4 2,85	Water Depth (ft) O 4 O 2 O 2	Depth of Observation (ft)	Revolutions	Time (sec)	1t	TIME ty (ft/sec) Mean in Vertical O.O.Q. O.10 O.12	Area (ft ²)	Discharg (cfs)
From Initial Point (tt) 34 35 36 37 37,25 38,5 39,35 39,75 40 40,25 40,55 41,0	Width	Vertical Depth From Tape/Inst (ft) 3,5 3,5 3,25 3,1 3,5 3,1 3,5 3,1 3,7 3,7 3,7 3,7	0, 4 0, 2	Depthy of Observation (ft)	Revolutions	Time (sec)	1	Mean in Vertical O.O.Q. O.10 O.12	Area (ft ²)	
From Initial Point (tt) 34 35 36 37 37,25 38,5 39,35 39,75 40 40,25 40,55 41,0		Vertical Depth From Tape/Inst (ft) 3,5 3,5 3,25 3,1 3,5 3,1 3,5 3,1 3,7 3,7 3,7 3,7	0, 4 0, 2	Observation (tt)		Time (sec)	1	Mean in Vertical O.O.Q. O.10 O.12	Area (ft ²)	
35 36 37 39.25 38.5 39 39.75 40 40.25 40.5 41.0		3.5 3.3 3.25 3.1 3.5 3.4 3.4	0,4					0.10		
36 37 37.25 38.5 38.5 39.75 40 40.25 40.5 41.0		3.5 3.3 3.25 3.1 3.5 3.4 3.4	0,4					0.10		
36 37 37.25 38.5 38.5 39.75 40 40.25 40.5 41.0		3.3 3.25 3.1 5.5 3.4 3.4	0,2					0.12		
38.5 39.3 39.75 40 40.25 40.5 41.0		3,25 3,1 3,5 3,4 3,4	015					-		
38.5 39.3 39.75 40 40.25 40.5 41.0		3.1 3.5 3.4 3.4						0.04		
38.5 39.3 39.75 40 40.25 40.5 41.0		3.4								
39,5 39,75 40,25 40,25 40,5 41.0		3.4								
39,5 39,75 40,25 40,25 40,5 41.0		3.4	1							
39,75 40 40,25 40,5 41.0				- 4						
39.75 10 40.25 40.5 41.0										
10 40,25 40,5 41.0		211						5 -		
40.25 40.5 41.0		1.75								
41.0		1.5								
41.0		1,25								
		0.9								
41.75		0.35								-
41170		0100								
	1.50									1
				 						-
			1							+
				 						1
				1						-
			1							-
									-	
									-	-
										_
										1
		-								
	-	-	-							

		nent Time	nent Time Gage Readu		nent Time Gage Reading # CALCULA	CALCULATIONS REPEOPLE	CALCIII ATIONS PEDEODNED BY	CALCIII ATIONS DEDECORNED BY	CALCILI ATIONS PEDEODMED BY	CALCULATIONS PERFORMED BY

Riffle Pebble Count Actual Measurements (mm)

		400	Br.				
1 651	26	23L	51	78L	76	94E	1 1 2
2 35L	27	GYL	52	180 F	77	132E	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 40 L	28	40L	53	125L	78	105LBU	9
4 50E	29	GAL	54	36L	79	971	
5 55BL	30	241	55	283L	80	103LBug	101
6 102	31	366	56	TYL	81	BAL	102
7 624	32	481	57	331-	82	53L	103
8 29BL	33	22L	58	73L	83	100EBUg	104
9 35 E	34	DAL	59	FAL	84	241	105
10 182	35	57L	60	193E	85	74E	106
11 73L	36	33L	61	330E	86	AL	107
12 53L	37	641	62	300E	87	82L	108
13 67-1	38	316	63	Sal	88	13 L	109
14 452	39	3/L	64	95L	89	39L	110
15 802	40	351	65	327E	90	294	111
16 / 0	41	GYL	66	150 L Bank	91	16	112
17 35 4	42	581	67	33L	92	43L	113
18 /90 E	43	85E	68	2406	93	148L	114
19 O2L	44	381	69	63L	94	18L Rak	115
20 294	45	97L	70	190E	95	132L	
21 554	46	33L	71	IOSE	96	141	
22 YOL	47	50L	72	50L	97	129L	
23 35 _	48	184	73	EBIO	98	53/	
24 43 E	49	75L	74	12 L	99	32-	1 - 13
25 39L	50	123L	75	93E	100	73 L 54	7

^{**}Please be sure to measure at least 100 pebbles (10 in 10 transects or 5 in 20 transects-depending on stream size, for accurate distributional representation.**

EMBEDDEDNESS:

If intermediate particle axis is less than 32 mm chose the nearest cobble for embeddedness. If no cobble >32 mm is present without taking a step, record 100% embedded.

	R	andom p	oebble f	or Perc	ent Em	bedded	lness (d	one per tr	ransect	:)
5	7	10	9	3	8	5	2	1	7	#
			100	3.4						D(e)/ D(t)

B2

1545

FIELD DATA FOR INSTREAM FLOW DETERMINATIONS

COLORADO WATER	RD				LOC	ATIC	I NC	NFO	RMA	TIO	N							- W	OF WIL
STREAM NAME: CAN	nent (NPPK	/														CROSS	SECTIO	N NO.:
CROSS-SECTION LOCATIO		Cemen		cek	(up-	Vall	eu f	ron	Wn	alroo	1 tva	ilhe	ad)-						
										100	1100		-						
DATE: 10/5/19 OF	SERVERS:	shley	Ber	nb.	ene	K	Tu	lie	1/2	nia		1	/						
DESCRIPTION	ECTION:	V	SECTIO	N:		ī	OWNS	HIP:		-	/8	RANG	E:		-	E/W	РМ:		
COUNTY: Gumis	on	WATERSH		st Ri	126			W	ATER D	IVISION	4				DOW	WATER	CODE:		
	ement	mtn																	
USFS:					Mission and						-		-						
					SU	PPL	EME	NTA	L D	ATA									
SAG TAPE SECTION SAME DISCHARGE SECTION:	AS YES/N	IO M	ETER T	YPE:	fach	FH	950	,	Amenania									Marie Control	
METER NUMBER: AEC		DATE RAT	ED:	AN	inch.		B/SPIN		NA							T			
CHANNEL BED MATERIAL S Fines to be	SIZE RANGE:	-	- Louis - Loui			TOALI	D/SPIN			HS TAK		WEIGHT		_	ER OF	PHOTO	E TENS		lbs
Times to be	0019 242-				44				-	-		SINO							
					CH	NNA	EL F	ROF	FILE	DAT	A								
STATION	D	STANCE OM TAPE	(ft)		RO	D READ	ING (f	1)	T				FEW ST	A				T	LEGEND
Tape @ Stake LB		0.0							_				\$ V						
Tape & Stake RB		0.0							SK	12	1.							1	ake 🛞
WS @ Tape LB/RB		0.0 41/2/	493/8	4	41/8"	144	3/8"		S K FI	0W 7	7		TAPE		4				ation (1)
2 WS Upstream	154t			L	13"				H				_					L ^P	hoto ()-
3 WS Downstream	ISPL			5	1.75				-			*******						Dire	ction of Flor
SLOPE 0.0 24	3												10	RAW					-
0-72916	ft/30ft_	1		AC	TAU	IC S	AMI	PLIN	GS	JMN	ARV	,				w/a-w			
STREAM ELECTROFISHED	YES/NO	DISTANC	E EI EC		The same of the same of												-		
				the same					-	UGHT				-	RCHE	MISTRY	SAMPL	ED: YE	S/NO
SPECIES (FILL IN)		LENGTH	1	2	3	4	5	DNE-IN	7	E GRO				T		1			
							-	l °	-	8	9	10	11	12	13	14	15	>15	TOTAL
AQUATIC INSECTS IN STREAM	AM SECTION B	Y COMMON	OR SCI	ENTIFE	ORDE	BNAM	<u> </u>												
									_										
														-					
S C .							MM	ENT	S										
Saw fish whi	le compl	eting	Cros	5-1	sect	on.													
	-									-									

11 ft

DISCHARGE/CROSS SECTION NOTES

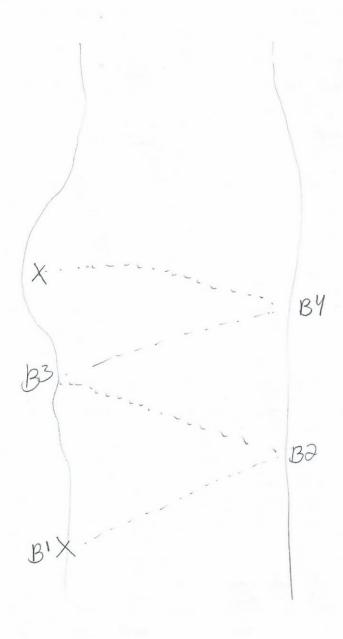
STREAM NAME:	Cem	ent	Creek			CRO	SS-SECTION	NO 2	DATE 10/4/	19 SHEE	7.20F
BEGINNING OF	- Company of the Comp		VATER LOOKING		LEFT	HT Gage F	Reading:	1t	TIME /28	10	
Stake (S) Grassline (G) Waterline (W) Rock (R)	Distance From Initiat Point (ft)	Width (ft)	Total Vertical Depth From Tape/inst (ft)	Water Depth (ft)	Depth of Obser- vation (ft)	Revolutions	Time (sec)	Veloc At Point	Mean in Vertical	Area (ft²)	Dischar (cfs)
5	1.75		1.35	1	113						
	2.5		1,3								
- Miles	3		1035							 	_
	3,5		1,45							-	
	4		1.5							 	
	4,5		1.45								—
	5		1 /								-
	5,5		106								-
	210		16								
	6		1.7								
	6,5		1.75								-
6	7		1.85								
	7.5		2.0								
	8		2.2					11.5			
	8.5		2.4				1	- Heiter			
	9		2.95							 	-
	9,5		3,3		1		1			 	-
	10		3.6								-
	10,5		3.7				+		-	-	
	11		3.7								-
11/	11.4		3.9								-
VV	12.5		1101	03					0.514		
	14		401	0.3					0.34		
			4.2	0,4					0.73		
	15.5		4.0	0.25					0.62		
	165		3.95	0.2					0.43		
	18		4.1	0.4					0.56	,	
	19		4.2	0.5					0.71		
	20		4.15	0.55					2.82		
	21		4.	0.3	(rcck)				2.71		
	22		401	0.35					1048		
	23		4.15	0.4					1.30		
	24		3.85	0.2(Rac	0				1078		
-	25		4025	0.5					1.05		
	25,75		4.45	0.55					1.84		
	26.5		4.15	0.4					0.35	eddy	-
	27.5		4.3	005					0.09	colds	
	29		4.25	0.45					0.91	and of	
	30		404	0.6					0.96		
	3		4.25	0.35	(Rock)				1.78		
	32.25		404	0.6					1.84		
	33		4.35	0.55				-	2.67		-
	33,75		4.4	0.6					1.50		
	35.25		3.95	0.3	(rack)				1.12		-
TOTALS									1010		
End of Measur		ne				IONS PERFORM			CALCULATIONS		

Cema (filename)

DISCHARGE/CROSS SECTION NOTES DATE SHEET 3 OF 3 CROSS-SECTION NO. 10/4/18 STREAM NAME: ement TIME 12: 0 EDGE OF WATER LOOKING DOWNSTREAM: (0.0 AT STAKE) LEFT / RIGHT Gage Reading: BEGINNING OF MEASUREMENT Velocity (ft/sec) Revolutions Depth Water Depth (ft) Discharge Total Distance Width (ft) of Observation (ft) Area (ft²) Stake (S) Grassline (G) Waterline (W) Rock (R) Vertical Depth From Mean in (cfs) From Initia: Point (ft) Time (sec.) Vertical Point Tape/inst (ft) 0,78 309 rock 0.3 37 38 39.75 39.9 3.35 40.5 3.05 41.0 2.95 41.5 42.0 43 43,5 ,25 44 445 45 46.5 47 104 47.5 48 48,5 0.95 19,5 50 0,25 5075 TOTALS CALCULATIONS PERFORMED BY CALCULATIONS CHECKED BY End of Measurement Time Gage Reading

Cement Crklower

Riffle Pebble Count Actual Measurements (mm)


B1 48L	26	871 B	51	634	76	740E		
2 391	27	160 4	52	305E	77	fines		
3 585 1	28	56L	53	472	78	fines		
4 771	29	704	54	190)E	79	fines		
5/15E	B 30	1824	55	fines	880	Fines	101	7
6 78L	31	771	56	5% E	81	255E	102	1
7 435 E	32	67	57	SSLB	82	fines	103	
8 76L	33	900	58	ZOSE	83	Fines	104	
9 622	34	FIE	59	43-	84	fings	105	
10 7/	35	245=	60	fines	85	165E	106	
11 235	36	452	P61	435E	86	fines	107	
12 43 L	B37	155 E	62	Fines	87	560E	108	
13 1204	_ ¹³ 38	35L	63	90L	88	904	109	
14 980	39	110-	64	355E	89	230E	110	
15 974	40	434	65	39L	90	375E	111	
16 /254	B 41	841	66	58L	91	4251	112	
17 276	42	74LB	67	93L	92	265E	113	
18 765	43	163	68	1352	93	95L	114	
19 209	44	2100	69	170LB	94	185E	115	
20 1346	45	1246	70	tines	95	65-18		
21 1956	46	215E	71	658E	96	fines		7/8 in
22 106	47	335E	72	122LB	97	17-6		
23 /40	48	1951	73	34L	98	725 E		
24 212	49	1152	74	300E	99	255 L		
25 759	E 50	3651	75	220 =	100	365E		

^{**}Please be sure to measure at least 100 pebbles (10 in 10 transects or 5 in 20 transects-depending on stream size, for accurate distributional representation.**

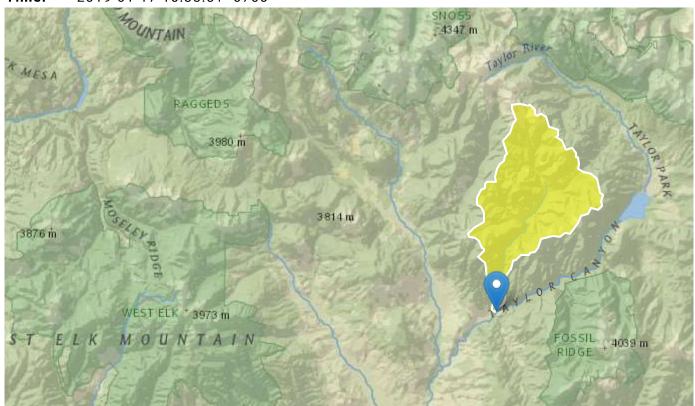
EMBEDDEDNESS:

If intermediate particle axis is less than 32 mm chose the nearest cobble for embeddedness. If no cobble >32 mm is present without taking a step, record 100% embedded.

	R	Random pebble for Percent Embeddedness (one per transect)								
5	7	10	9	3	8	5	2	1	7	#
								Sec.		D(e)/ D(t)

Attachment F- StreamStats and Water Availability Analysis

1/17/2019 StreamStats


Spring Creek StreamStats Report

Region ID: CO

Workspace ID: CO20190117173839824000

Clicked Point (Latitude, Longitude): 38.72310, -106.77496

Time: 2019-01-17 10:38:51 -0700

Basin Characteris	STICS		
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	68.7	square
PRECIP	Mean Annual Precipitation	25.66	inches
ELEV	Mean Basin Elevation	10717	feet
BSLDEM10M	Mean basin slope computed from 10 m DEM	32.5	percen
CSL1085LFP	Change in elevation divided by length between points 10 and 85 percent of distance along the longest flow path to the basin divide, LFP from 2D grid	142	feet pe
EL7500	Percent of area above 7500 ft	100	percer

1/17/2019 StreamStats

Parameter Code	Parameter Description	Value	Unit
ELEVMAX	Maximum basin elevation	13300	feet
I24H100Y	Maximum 24-hour precipitation that occurs on average once in 100 years	2.97	inches
I24H2Y	Maximum 24-hour precipitation that occurs on average once in 2 years - Equivalent to precipitation intensity index	1.4	inches
I6H100Y	6-hour precipitation that is expected to occur on average once in 100 years	1.73	inches
I6H2Y	Maximum 6-hour precipitation that occurs on average once in 2 years	0.84	inche
LAT_OUT	Latitude of Basin Outlet	38.723103	degre
LC11BARE	Percentage of barren from NLCD 2011 class 31	3	perce
LC11CRPHAY	Percentage of cultivated crops and hay, classes 81 and 82, from NLCD 2011	0	perce
LC11DEV	Percentage of developed (urban) land from NLCD 2011 classes 21-24	0	perce
LC11FOREST	Percentage of forest from NLCD 2011 classes 41-43	68.2	perce
LC11GRASS	Percent of area covered by grassland/herbaceous using 2011 NLCD	25.4	perce
LC11IMP	Average percentage of impervious area determined from NLCD 2011 impervious dataset	1.2	perce
LC11SHRUB	Percent of area covered by shrubland using 2011 NLCD	0.4	perce
LC11SNOIC	Percent snow and ice from NLCD 2011 class 12	0	perce
LC11WATER	Percent of open water, class 11, from NLCD 2011	0.2	perce
LC11WETLND	Percentage of wetlands, classes 90 and 95, from NLCD 2011	2.7	perce
LFPLENGTH	Length of longest flow path	20.1	miles
LONG_OUT	Longitude of Basin Outlet	-106.774907	degre
MINBELEV	Minimum basin elevation	8330	feet
OUTLETELEV	Elevation of the stream outlet in thousands of feet above NAVD88.	8326	feet
RCN	Runoff-curve number as defined by NRCS (http://policy.nrcs.usda.gov/OpenNonWebContent.aspx? content=17758.wba)	98	dimer

1/17/2019 StreamStats

Parameter Code	Parameter Description	Value	Unit
RUNCO_CO	Soil runoff coefficient as defined by Verdin and Gross (2017)	0.41	dimens
SSURGOA	Percentage of area of Hydrologic Soil Type A from SSURGO	0	percent
SSURGOB	Percentage of area of Hydrologic Soil Type B from SSURGO	0	percent
SSURGOC	Percentage of area of Hydrologic Soil Type C from SSURGO	0	percent
SSURGOD	Percentage of area of Hydrologic Soil Type D from SSURGO	0	percent
STATSCLAY	Percentage of clay soils from STATSGO	15.51	percent
STORNHD	Percent storage (wetlands and waterbodies) determined from 1:24K NHD	0.2	percent
TOC	Time of concentration in hours	1.62	hours

 $Flow-Duration\ Statistics\ Parameters\ [{\it Mountain\ Region\ Flow\ Duration}]$

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	68.7	square miles	1	1060
PRECIP	Mean Annual Precipitation	25.66	inches	18	47

Flow-Duration Statistics Flow Report [Mountain Region Flow Duration]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
10 Percent Duration	133	ft^3/s	45
25 Percent Duration	40.7	ft^3/s	55
50 Percent Duration	16.2	ft^3/s	55
75 Percent Duration	9.51	ft^3/s	64
90 Percent Duration	6.33	ft^3/s	85

Flow-Duration Statistics Citations

Capesius, J.P., and Stephens, V. C.,2009, Regional Regression Equations for Estimation of Natural Streamflow Statistics in Colorado: U. S. Geological Survey Scientific Investigations Report 2009-5136, 32 p.

(http://pubs.usgs.gov/sir/2009/5136/http://pubs.usgs.gov/sir/2009/5136/)

Flood-Volume Statistics Parameters [Mountain Region Max Flow]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	68.7	square miles	1	1060
PRECIP	Mean Annual Precipitation	25.66	inches	18	47

Flood-Volume Statistics Flow Report [Mountain Region Max Flow]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
7 Day 2 Year Maximum	280	ft^3/s	46
7 Day 10 Year Maximum	490	ft^3/s	35
7 Day 50 Year Maximum	682	ft^3/s	31

Flood-Volume Statistics Citations

Capesius, J.P., and Stephens, V. C.,2009, Regional Regression Equations for Estimation of Natural Streamflow Statistics in Colorado: U. S. Geological Survey Scientific Investigations Report 2009-5136, 32 p.

(http://pubs.usgs.gov/sir/2009/5136/http://pubs.usgs.gov/sir/2009/5136/)

Monthly Flow Statistics Parameters [Mountain Region Mean Flow]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	68.7	square miles	1	1060
PRECIP	Mean Annual Precipitation	25.66	inches	18	47

Monthly Flow Statistics Flow Report [Mountain Region Mean Flow]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
January Mean Flow	11	ft^3/s	50

Statistic	Value	Unit	SEp
February Mean Flow	10.3	ft^3/s	51
March Mean Flow	12	ft^3/s	49
April Mean Flow	28.5	ft^3/s	44
May Mean Flow	143	ft^3/s	46
June Mean Flow	228	ft^3/s	46
July Mean Flow	76.9	ft^3/s	76
August Mean Flow	33.3	ft^3/s	80
September Mean Flow	22.5	ft^3/s	59
October Mean Flow	19.2	ft^3/s	45
November Mean Flow	14.7	ft^3/s	46
December Mean Flow	12	ft^3/s	47

Monthly Flow Statistics Citations

Capesius, J.P., and Stephens, V. C.,2009, Regional Regression Equations for Estimation of Natural Streamflow Statistics in Colorado: U. S. Geological Survey Scientific Investigations Report 2009-5136, 32 p.

(http://pubs.usgs.gov/sir/2009/5136/http://pubs.usgs.gov/sir/2009/5136/)

Annual Flow Statistics Parameters [Mountain Region Mean Flow]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	68.7	square miles	1	1060
PRECIP	Mean Annual Precipitation	25.66	inches	18	47

Annual Flow Statistics Flow Report [Mountain Region Mean Flow]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
Mean Annual Flow	52	ft^3/s	33

Annual Flow Statistics Citations

Capesius, J.P., and Stephens, V. C.,2009, Regional Regression Equations for Estimation of Natural Streamflow Statistics in Colorado: U. S. Geological Survey Scientific Investigations

Report 2009-5136, 32 p.

(http://pubs.usgs.gov/sir/2009/5136/http://pubs.usgs.gov/sir/2009/5136/)

Low-Flow Statistics Parameters [Mountain Region Min Flow]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	68.7	square miles	1	1060
PRECIP	Mean Annual Precipitation	25.66	inches	18	47
ELEV	Mean Basin Elevation	10717	feet	8600	12000

Low-Flow Statistics Flow Report [Mountain Region Min Flow]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
7 Day 2 Year Low Flow	7.37	ft^3/s	89
7 Day 10 Year Low Flow	4.28	ft^3/s	153
7 Day 50 Year Low Flow	3.61	ft^3/s	126

Low-Flow Statistics Citations

Capesius, J.P., and Stephens, V. C.,2009, Regional Regression Equations for Estimation of Natural Streamflow Statistics in Colorado: U. S. Geological Survey Scientific Investigations Report 2009-5136, 32 p.

(http://pubs.usgs.gov/sir/2009/5136/http://pubs.usgs.gov/sir/2009/5136/)

Peak-Flow Statistics Parameters [Mountain Region Peak Flow]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	68.7	square miles	1	1060
BSLDEM10M	Mean Basin Slope from 10m DEM	32.5	percent	7.6	60.2
PRECIP	Mean Annual Precipitation	25.66	inches	18	47

Peak-Flow Statistics Flow Report [Mountain Region Peak Flow]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

6/7

Statistic	Value	Unit	SEp
2 Year Peak Flood	397	ft^3/s	49
5 Year Peak Flood	567	ft^3/s	44
10 Year Peak Flood	685	ft^3/s	41
25 Year Peak Flood	802	ft^3/s	40
50 Year Peak Flood	962	ft^3/s	39
100 Year Peak Flood	1080	ft^3/s	36
200 Year Peak Flood	1170	ft^3/s	36
500 Year Peak Flood	1360	ft^3/s	33

Peak-Flow Statistics Citations

Capesius, J.P., and Stephens, V. C.,2009, Regional Regression Equations for Estimation of Natural Streamflow Statistics in Colorado: U. S. Geological Survey Scientific Investigations Report 2009-5136, 32 p.

(http://pubs.usgs.gov/sir/2009/5136/http://pubs.usgs.gov/sir/2009/5136/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.3.0

WDID	Structure Name	Structure Type	Water Source
	ALPINE RESORT WELL NO1&2	Well	GROUNDWATER: SPRING CREEK
	CAIN WELL	Well	GROUNDWATER: SPRING CREEK
5905037	CHAR B DOMESTIC WELL	Well	GROUNDWATER: SPRING CREEK
5905309	FOLKS WELL	Well	GROUNDWATER: SPRING CREEK
5905087	HEAD DOMESTIC WELL	Well	GROUNDWATER: SPRING CREEK
5905137	MCLEOD WELL NO 1	Well	GROUNDWATER: SPRING CREEK
5905035	SPRING CR RESORT WELL #1	Well	GROUNDWATER: SPRING CREEK
5905144	SPRING CR RESORT WELL #2	Well	GROUNDWATER: SPRING CREEK
5905191	SPRING CR RESORT WELL #3	Well	GROUNDWATER: SPRING CREEK
5905210	SPRING CR RESORT WELL #4	Well	GROUNDWATER: SPRING CREEK
5905214	SPRING CR RESORT WELL #5	Well	GROUNDWATER: SPRING CREEK
5905218	SPRING CR RESORT WELL #6	Well	GROUNDWATER: SPRING CREEK
5905220	SPRING CR RESORT WELL #7	Well	GROUNDWATER: SPRING CREEK
	WM.O.LEACH NO 1 WELL	Well	GROUNDWATER: SPRING CREEK
	BARTLETT DITCH NO 2	Ditch	GROUSE SPRING CREEK
	CRYSTAL DITCH NO 2	Ditch	LITTLE SPRING CREEK
	CRYSTAL DITCH NO 2	Ditch	LITTLE SPRING CREEK
	DEEP SPRING DOM PL	Pipeline	LITTLE SPRING CREEK
	DEEP SPRING DOM PL	Pipeline	LITTLE SPRING CREEK
	AXTELL DITCH	Ditch	SPRING CREEK
	BEAVER LAKE	Reservoir	SPRING CREEK
	BETTY LAKE	Reservoir	SPRING CREEK
	BEUTEN DITCH	Ditch	SPRING CREEK
	BEVER HIDE DITCH	Ditch	SPRING CREEK
	BEVER HIDE DITCH	Ditch	SPRING CREEK
	BEVER HIDE DITCH	Ditch	SPRING CREEK
	BIG SPRING DITCH	Ditch	SPRING CREEK
	BLACK SAGE	Spring	SPRING CREEK
	BLACK SAGE BLACK SAGE DITCH	Spring Ditch	SPRING CREEK SPRING CREEK
	BLACK SAGE DITCH BLACK SAGE DITCH	Ditch	SPRING CREEK
	BLACK SAGE DITCH BLACK SAGE DITCH	Ditch	SPRING CREEK
	BOSTON SPG AND PIPELINE	Spring	SPRING CREEK
	BOSTON SPRING PIPELINE	Spring	SPRING CREEK
	BOYD PIPELINE	Spring	SPRING CREEK
	BURDINE PUMP & PIPELINE	Pump	SPRING CREEK
	CAROL'S PIPELINE	Pump	SPRING CREEK
	CHAR-B PIPELINE NO 1	Seep	SPRING CREEK
	CHAR-B PIPELINE NO 2	Spring	SPRING CREEK
	COYOTE DITCH	Ditch	SPRING CREEK
	CRAIG PIPELINE	Pipeline	SPRING CREEK
	DAWSON RDGE	Reservoir	SPRING CREEK
	DAWSON RDGE	Reservoir	SPRING CREEK
	DEADMAN GULCH	Minimum Flow	SPRING CREEK
	DOWNING DITCH	Ditch	SPRING CREEK
	DUSTIN GULCH	Minimum Flow	SPRING CREEK
		L	<u> </u>

WDID	Structure Name	Structure Type	Water Source
5901285	ELLIS PUMP	Pump	SPRING CREEK
5900714	ELMER NO 2 DITCH	Ditch	SPRING CREEK
5900714	ELMER NO 2 DITCH	Ditch	SPRING CREEK
5900714	ELMER NO 2 DITCH	Ditch	SPRING CREEK
5901535	FLAG CREEK	Minimum Flow	SPRING CREEK
2800575	GULCH NO 1 NO 2 DITCHES	Ditch	SPRING CREEK
5900937	HAGAR DITCH & WATER SYS	Ditch	SPRING CREEK
5901219	HANSEN SPRING CREEK PL	Spring	SPRING CREEK
5900943	HEAD DOMESTIC PIPELINE	Pipeline	SPRING CREEK
5903712	HORSETHIEF LAKE	Reservoir	SPRING CREEK
5903712	HORSETHIEF LAKE	Reservoir	SPRING CREEK
2801642	HUPP LOWER SPRING	Spring	SPRING CREEK
2801644	HUPP UPPER SPRING	Spring	SPRING CREEK
5901299	JOHN ROBINSON PUMP	Pump	SPRING CREEK
4003883	KATHY'S RESERVOIR NO. 1	Reservoir	SPRING CREEK
4003123	LARSON LAKE	Reservoir	SPRING CREEK
	MYSTERIOUS CREEK	Minimum Flow	SPRING CREEK
	N BLACK SAGE	Spring	SPRING CREEK
2807406	N BLACK SAGE	Spring	SPRING CREEK
2800864	PILONI SPRING NO 4 PL	Spring	SPRING CREEK
2800868	PILONI SPRING NO 5 DITCH	Spring	SPRING CREEK
	POWELL HOUSE PUMP	Pump	SPRING CREEK
	RINGLER PUMP & PL	Pump	SPRING CREEK
	ROCKY BROOK CREEK	Minimum Flow	SPRING CREEK
	ROSEBUD GULCH	Minimum Flow	SPRING CREEK
	SALLY'S PUMP	Pump	SPRING CREEK
	SEC 13 POND	Reservoir	SPRING CREEK
	SEC 13 POND	Reservoir	SPRING CREEK
	SHARPS DOM SPRING & PL	Spring	SPRING CREEK
	SPEARS DITCH WATER SYS	Ditch	SPRING CREEK
	SPRING CR IRG DITCH	Ditch	SPRING CREEK
	SPRING CR IRG DITCH	Ditch	SPRING CREEK
	SPRING CR IRG DITCH	Ditch	SPRING CREEK
	SPRING CR IRG DITCH	Ditch	SPRING CREEK
	SPRING CREEK	Minimum Flow	SPRING CREEK
	SPRING CREEK	Minimum Flow	SPRING CREEK
	SPRING CREEK	Minimum Flow	SPRING CREEK
	SPRING CREEK	Minimum Flow	SPRING CREEK
	SPRING CREEK RES FLOW RT	Reservoir	SPRING CREEK
	SPRING CREEK RESERVOIR	Reservoir	SPRING CREEK
	SPRING CREEK RESERVOIR	Reservoir	SPRING CREEK
	STOCK POND (ST 97 TR 03)	Spring	SPRING CREEK
	STOCK POND (ST 97 TR 03)	Spring	SPRING CREEK
	STOCK TANK	Spring	SPRING CREEK
	STOCK TANK (LONG DARK SPRING)	Spring	SPRING CREEK
590/321	STOCK TANK (LONG PARK SPRING)	Spring	SPRING CREEK

WDID	Structure Name	Structure Type	Water Source
5907321	STOCK TANK (LONG PARK SPRING)	Spring	SPRING CREEK
5907322	STOCK TANK (LOWER DEADMAN SPRING)	Spring	SPRING CREEK
5907322	STOCK TANK (LOWER DEADMAN SPRING)	Spring	SPRING CREEK
5907143	STOCK TANK (ST 97 TR 04)	Spring	SPRING CREEK
5907143	STOCK TANK (ST 97 TR 04)	Spring	SPRING CREEK
5907145	STOCK TANK (ST 97 TR 06)	Spring	SPRING CREEK
5907145	STOCK TANK (ST 97 TR 06)	Spring	SPRING CREEK
5907148	STOCK TANK (ST 97 TR 09)	Spring	SPRING CREEK
5907148	STOCK TANK (ST 97 TR 09)	Spring	SPRING CREEK
5907323	STOCK TANK (UPPER DEADMAN POND)	Reservoir	SPRING CREEK
5907323	STOCK TANK (UPPER DEADMAN POND)	Reservoir	SPRING CREEK
5901337	STRINGER DOMESTIC PL	Pump	SPRING CREEK
5901304	SUHR PUMPHOUSE	Pump	SPRING CREEK
2800910	TOMICHI DOME SP NO 11 D	Ditch	SPRING CREEK
2800910	TOMICHI DOME SP NO 11 D	Ditch	SPRING CREEK
2803630	TOMICHI DOME SP NO4 POND	Reservoir	SPRING CREEK
2803630	TOMICHI DOME SP NO4 POND	Reservoir	SPRING CREEK
2803631	TOMICHI DOME SP NO5 POND	Spring	SPRING CREEK
2803631	TOMICHI DOME SP NO5 POND	Spring	SPRING CREEK
2803633	TOMICHI DOME SP NO6 POND	Spring	SPRING CREEK
2803633	TOMICHI DOME SP NO6 POND	Spring	SPRING CREEK
2803634	TOMICHI DOME SP NO7 POND	Spring	SPRING CREEK
2803634	TOMICHI DOME SP NO7 POND	Spring	SPRING CREEK
2803635	TOMICHI DOME SP NO8 POND	Spring	SPRING CREEK
2803635	TOMICHI DOME SP NO8 POND	Spring	SPRING CREEK
2801643	TONI SPRING	Spring	SPRING CREEK
2807407	U BLACK SAGE	Spring	SPRING CREEK
2807407	U BLACK SAGE	Spring	SPRING CREEK
5901560	UTE GULCH	Minimum Flow	SPRING CREEK
4001798	VOLK DITCH	Ditch	SPRING CREEK
5901886	WILLIAMSON PUMP	Pump	SPRING CREEK
4001224	WRAY DITCH	Ditch	SPRING CREEK
4001224	WRAY DITCH	Ditch	SPRING CREEK
5901190	WRIGHT WATKINS PIPELINE	Pipeline	SPRING CREEK
5901262	ZABEL PUMPSITE SP CR STR	Pump	SPRING CREEK

GNIS ID	Stream Mile	Div	WD	County	Adjudication Date	Previous Adj Date
188820		4		GUNNISON	12/31/1972 0:00	,
188820		4		GUNNISON	12/31/1982 0:00	
188820		4		GUNNISON	12/31/1972 0:00	12/31/1971 0:00
188820		4		GUNNISON	12/31/1984 0:00	12/31/1983 0:00
188820		4		GUNNISON	12/31/1974 0:00	, - ,
188820		4		GUNNISON	12/31/1973 0:00	
188820		4		GUNNISON	12/31/1999 0:00	12/31/1998 0:00
188820		4		GUNNISON	12/31/1999 0:00	12/31/1998 0:00
188820		4		GUNNISON	12/31/1999 0:00	12/31/1998 0:00
188820		4		GUNNISON	12/31/1999 0:00	12/31/1998 0:00
188820		4		GUNNISON	12/31/1999 0:00	12/31/1998 0:00
188820		4		GUNNISON	12/31/1999 0:00	12/31/1998 0:00
188820		4		GUNNISON	12/31/1999 0:00	12/31/1998 0:00
188820		4		GUNNISON	12/31/1986 0:00	, ,
186384	1.77	4	40	GUNNISON	12/31/2006 0:00	12/31/2005 0:00
400003	0	4	40	GUNNISON	5/28/1937 0:00	2/10/1930 0:00
400003	0	4	40	GUNNISON	3/20/1954 0:00	5/28/1937 0:00
400003	0.26	4	40	GUNNISON	8/11/1969 0:00	1/31/1964 0:00
400003	0.26	4	40	GUNNISON	12/31/1992 0:00	12/31/1991 0:00
188820	1.39	4	59	GUNNISON	4/28/1932 0:00	7/6/1931 0:00
175506	1.88	4	40	GUNNISON	12/31/2005 0:00	12/31/2004 0:00
188820	18.6	4	59	GUNNISON	12/31/1977 0:00	12/31/1976 0:00
175171	1.48	4	40	GUNNISON	8/28/1920 0:00	2/27/1918 0:00
175506	2.01	4	40	GUNNISON	5/28/1937 0:00	2/10/1930 0:00
175506	2.01	4	40	GUNNISON	5/28/1937 0:00	2/10/1930 0:00
175506	2.01	4	40	GUNNISON	12/31/2005 0:00	12/31/2004 0:00
189039	0.15	4	28	GUNNISON	9/3/1918 0:00	11/30/1915 0:00
189039		4	28	GUNNISON	12/31/1972 0:00	
189039		4		GUNNISON	12/31/1972 0:00	12/31/1971 0:00
175171	1.91	4	40	GUNNISON	6/23/1914 0:00	3/20/1908 0:00
175171	1.91	4	40	GUNNISON	8/28/1920 0:00	2/27/1918 0:00
175171	1.91	4	40	GUNNISON	3/20/1954 0:00	5/28/1937 0:00
188820		4	59	GUNNISON	12/31/2004 0:00	12/31/2003 0:00
188820		4	59	GUNNISON	12/31/1973 0:00	12/31/1972 0:00
188820		4	59	GUNNISON	12/31/1982 0:00	12/31/1981 0:00
188820	0.97	4	$\overline{}$	GUNNISON	12/31/1995 0:00	12/31/1994 0:00
188820	1.09	4	59	GUNNISON	12/31/2016 0:00	12/31/2015 0:00
188820		4	59	GUNNISON	10/28/1965 0:00	1/27/1961 0:00
188820		4	59	GUNNISON	10/28/1965 0:00	1/27/1961 0:00
175506	1.36	4		GUNNISON	5/28/1937 0:00	2/10/1930 0:00
188820	0.63	4		GUNNISON	12/31/1993 0:00	12/31/1992 0:00
189039	3.63	4	_	GUNNISON	12/31/1972 0:00	
189039	3.63	4		GUNNISON	12/31/1972 0:00	12/31/1971 0:00
188820	8.21	4		GUNNISON	12/31/1987 0:00	12/31/1986 0:00
175506	2.16	4		GUNNISON	5/28/1937 0:00	2/10/1930 0:00
188820	11.79	4	59	GUNNISON	12/31/1984 0:00	12/31/1983 0:00

GNIS ID	Stream Mile	Div	WD	County	Adjudication Date	Previous Adj Date
188820	1.05	4		GUNNISON	12/31/2003 0:00	12/31/2002 0:00
188820	1.46	4		GUNNISON	10/25/1921 0:00	9/14/1906 0:00
188820	1.46	4		GUNNISON	4/28/1932 0:00	7/6/1931 0:00
188820	1.46	4		GUNNISON	4/29/1941 0:00	12/18/1933 0:00
188820	16.54	4		GUNNISON	12/31/1984 0:00	12/31/1983 0:00
189039	2.85	4		GUNNISON	9/3/1918 0:00	11/30/1915 0:00
188820	2.83	4		GUNNISON	12/31/1972 0:00	12/31/1971 0:00
188820	т	4		GUNNISON	12/31/1979 0:00	12/31/1971 0:00
188820	1.03	4		GUNNISON	12/31/1974 0:00	12/31/1978 0:00
188820	12.98	4		GUNNISON	12/31/1973 0:00	12/31/1973 0:00
188820	12.98	4		GUNNISON	12/31/1977 0:00	12/31/1976 0:00
189039	12.96	4		GUNNISON	12/31/1977 0:00	12/31/1976 0:00
189039		4		GUNNISON	12/31/2001 0:00	12/31/2000 0:00
188820	1.65	4		GUNNISON	12/31/2001 0:00	12/31/2000 0:00
	1.65	4			12/31/2003 0:00	· · ·
175506	1.75	4		GUNNISON		12/31/2004 0:00 12/31/2004 0:00
175506	1.68			GUNNISON GUNNISON	12/31/2005 0:00 12/31/1984 0:00	12/31/2004 0:00
188820	16.81	4			• •	12/31/1983 0:00
189039		4		GUNNISON GUNNISON	12/31/1972 0:00	12/21/1071 0:00
189039		4			12/31/1972 0:00	12/31/1971 0:00
189039		4		GUNNISON	12/31/1972 0:00	12/31/1971 0:00
189039	4.72	4		GUNNISON	12/31/1972 0:00	12/31/1971 0:00
188820	1.73	4		GUNNISON	12/31/2003 0:00	12/31/2002 0:00
188820	1.25	4		GUNNISON	12/31/1994 0:00	12/31/1993 0:00
188820	12.98	4		GUNNISON	12/31/1984 0:00	12/31/1983 0:00
188820	5.33	4		GUNNISON	12/31/1987 0:00	12/31/1986 0:00
188820	1.76	4		GUNNISON	12/31/2003 0:00	12/31/2002 0:00
189039	2.65	4		GUNNISON	12/31/1972 0:00	42/24/4074 0 00
189039	2.65	4		GUNNISON	12/31/1972 0:00	12/31/1971 0:00
188820	4.2	4		GUNNISON	12/31/1972 0:00	12/31/1971 0:00
188820	1.3			GUNNISON	12/31/1973 0:00	12/31/1972 0:00
188820	0.57	4		GUNNISON	10/25/1921 0:00	9/14/1906 0:00
188820	0.57	4		GUNNISON	4/28/1932 0:00	7/6/1931 0:00
188820	0.57	4		GUNNISON	4/29/1941 0:00	12/18/1933 0:00
188820	0.57	4		GUNNISON	12/31/2008 0:00	12/31/2007 0:00
189039	3.95	4		GUNNISON	12/31/1980 0:00	12/31/1979 0:00
188820	18.6	-		GUNNISON	12/31/1983 0:00	12/31/1982 0:00
188820	14.99			GUNNISON	12/31/1984 0:00	12/31/1983 0:00
188820	11.35	4		GUNNISON	12/31/1984 0:00	12/31/1983 0:00
188820	12.79	4		GUNNISON	10/28/1965 0:00	1/27/1961 0:00
188820	12.19	4		GUNNISON	1/27/1961 0:00	6/20/1957 0:00
188820	12.19	4		GUNNISON	10/28/1965 0:00	1/27/1961 0:00
188820		4		GUNNISON	12/31/1972 0:00	10/0:/:==:-
188820		4		GUNNISON	12/31/1972 0:00	12/31/1971 0:00
188820		4		GUNNISON	12/31/1972 0:00	
188820		4		GUNNISON	12/31/1972 0:00	12/31/1971 0:00
188820		4	59	GUNNISON	12/31/1972 0:00	

GNIS ID	Stream Mile	Div	WD	County	Adjudication Date	Previous Adj Date
188820		4	59	GUNNISON	12/31/1972 0:00	12/31/1971 0:00
188820		4	59	GUNNISON	12/31/1972 0:00	
188820		4	59	GUNNISON	12/31/1972 0:00	12/31/1971 0:00
188820		4	59	GUNNISON	12/31/1972 0:00	
188820		4	59	GUNNISON	12/31/1972 0:00	12/31/1971 0:00
188820		4	59	GUNNISON	12/31/1972 0:00	
188820		4	59	GUNNISON	12/31/1972 0:00	12/31/1971 0:00
188820		4	59	GUNNISON	12/31/1972 0:00	
188820		4	59	GUNNISON	12/31/1972 0:00	12/31/1971 0:00
188820	8.21	4	59	GUNNISON	12/31/1972 0:00	
188820	8.21	4	59	GUNNISON	12/31/1972 0:00	12/31/1971 0:00
188820	1.03	4	59	GUNNISON	4/28/1932 0:00	7/6/1931 0:00
188820	1.64	4	59	GUNNISON	12/31/2003 0:00	12/31/2002 0:00
189039	1.72	4	28	GUNNISON	12/31/1972 0:00	12/31/1971 0:00
189039	1.72	4	28	GUNNISON	12/31/1972 0:00	12/31/1971 0:00
189039	1.51	4	28	GUNNISON	12/31/1972 0:00	12/31/1971 0:00
189039	1.51	4	28	GUNNISON	12/31/1972 0:00	12/31/1971 0:00
189039		4	28	GUNNISON	12/31/1972 0:00	12/31/1971 0:00
189039		4	28	GUNNISON	12/31/1972 0:00	12/31/1971 0:00
189039		4	28	GUNNISON	12/31/1972 0:00	12/31/1971 0:00
189039		4	28	GUNNISON	12/31/1972 0:00	12/31/1971 0:00
189039		4	28	GUNNISON	12/31/1972 0:00	12/31/1971 0:00
189039		4	28	GUNNISON	12/31/1972 0:00	12/31/1971 0:00
189039		4	28	GUNNISON	12/31/1972 0:00	12/31/1971 0:00
189039		4	28	GUNNISON	12/31/1972 0:00	12/31/1971 0:00
189039		4	28	GUNNISON	12/14/2001 0:00	12/31/2000 0:00
189039		4	28	GUNNISON	12/31/1972 0:00	
189039		4	28	GUNNISON	12/31/1972 0:00	12/31/1971 0:00
188820	10.06	4	59	GUNNISON	12/31/1984 0:00	12/31/1983 0:00
175506		4	40	GUNNISON	12/31/1975 0:00	12/31/1974 0:00
188820	1.58	4	59	GUNNISON	12/31/2002 0:00	12/31/2001 0:00
175171	0.16	4	40	GUNNISON	5/28/1937 0:00	2/10/1930 0:00
175171	0.16	4	40	GUNNISON	12/31/2005 0:00	12/31/2004 0:00
188820	1.74	4	59	GUNNISON	12/31/1972 0:00	12/31/1971 0:00
188820	1.83	4	59	GUNNISON	12/31/1985 0:00	12/31/1984 0:00

Appropriation Date	Priority Admin No	Order No	Priority No	Associated Case Numbers
5/1/1968 0:00	-		,	W1085
4/16/1979 0:00		0		82CW0299
4/20/1968 0:00		0		W1084
8/26/1981 0:00				83CW0264
12/5/1968 0:00		0		W2336
6/15/1964 0:00		0		W1980
3/5/1999 0:00				99CW0145, 07CW0051
3/5/1999 0:00	54485	0		99CW0145, 07CW0051
3/5/1999 0:00	54485	0		99CW0145
3/5/1999 0:00	54485	0		99CW0145
6/5/1999 0:00	54577	0		99CW0145
3/5/1999 0:00	54485	0		99CW0145, 07CW0051
3/5/1999 0:00	54485	0		13CW3046, 99CW0145
11/13/1980 0:00	47799	0		86CW0078
10/13/2005 0:00	56978.56899	0		16CW0018, 06CW0042
9/1/1933 0:00	30559	0	H158	CA2563
4/1/1949 0:00	36250	0	J331	CA3503
7/1/1966 0:00	42550	0	L82	CA5873
6/1/1971 0:00	51864.44346	0		05CW0257, 92CW0038
9/1/1922 0:00	29771.26541	0		CA1934, 82CW0236
12/29/2005 0:00	56976	0		15CW3006, 05CW0257
3/9/1977 0:00	46454	0		W3338
6/1/1913 0:00	24894.23162	0	B41	CA1424
9/1/1919 0:00	29260.25445	0	H-115	04CW0190, CA2563
6/30/1922 0:00	29260.26478	0	H130	CA2563
6/1/1983 0:00	56613.48729	0		05CW0029
8/1/1901 0:00	24074.1884	0	157	CA1602
6/13/1905 0:00		0		W0425
4/30/1974 0:00				W0425
5/30/1908 0:00	21334	0	A100	CA0617
6/15/1909 0:00	24894.21715	0	B33	CA1424
5/30/1908 0:00	31924.21334	0	J125	CA3503, 06CW0159
9/1/1940 0:00				04CW0137
9/1/1967 0:00				W2086
7/1/1962 0:00				82CW0317
8/25/1994 0:00				95CW0095
7/1/2001 0:00				16CW3056
6/15/1960 0:00			632	CA5782
9/1/1964 0:00				W0096, CA5782
6/1/1917 0:00			H108	CA2563
5/15/1992 0:00				98CW0079, 93CW0083
6/13/1905 0:00				W0425
4/30/1974 0:00				W0425
10/2/1987 0:00				87CW0263
9/15/1915 0:00			H102	04CW0190, CA2563
5/4/1984 0:00	49067	0		84CW0370

Appropriation Date	Priority Admin No	Order No	Priority No	Associated Case Numbers
6/30/1988 0:00			,	03CW0227
5/10/1915 0:00	23870	0	213	CA1635, 84CW0147
3/28/1932 0:00	30037	0		CA1934
5/10/1915 0:00	30667.2387	0	432	CA2021
5/4/1984 0:00	49067	0		84CW0367
12/31/1895 12:00:00 AM	24074.16801	0	154	CA1602
5/1/1946 0:00	44559.35184	0		W0909
6/1/1947 0:00	47116.3558	0		79CW0100
6/1/1974 0:00	45442	0		W2337
6/1/1910 0:00	44925.22066	0		W1995
5/12/1976 0:00	46386.46153	0		W3374
6/30/1979 0:00	55152.47297	0		00CW0129
6/30/1979 0:00	55152.47297	0		00CW0129
5/1/1930 0:00	55882.2934	0		03CW0188
3/1/2005 0:00	56673	0		12CW0003, 18CW0028, 05CW0029
7/1/1966 0:00	56613.4255	0		05CW0257
5/4/1984 0:00	49067	0		84CW0366
6/13/1905 0:00	20252	0		W0425
4/30/1974 0:00	45410	0		W0425
5/1/1927 0:00	44559.28244	0		W1616
5/1/1922 0:00	44559.26418	0		W1617
9/1/1955 0:00	55882.38594	0		03CW0207
5/16/1994 0:00	52731	0		94CW0068
5/4/1984 0:00	49067	0		84CW0369
10/2/1987 0:00	50313	0		87CW0262
5/1/1976 0:00	55882.46142	0		03CW0193
6/13/1905 0:00	20252	0		W0425
4/30/1974 0:00				W0425
10/23/1971 0:00	44559.4449			W0454
6/1/1935 0:00	44925.31197	0		W1917
6/1/1891 12:00:00 AM	20710.15127	0	186	CA1635, 84CW0237
3/28/1932 0:00	30037	0	271	CA1934
6/15/1882 12:00:00 AM	30667.11854		303	CA2021, 84CW0237
12/1/2007 0:00	57708.57678			08CW0180
3/17/1980 0:00				80CW0116
7/7/1983 0:00		0		83CW0209
5/4/1984 0:00		0		84CW0365
5/4/1984 0:00				84CW0368
9/13/1956 0:00			618	CA5782
8/4/1959 0:00				CA5782, CA5590
9/13/1956 0:00			617	CA5782
5/12/1905 0:00				W0425
4/30/1974 0:00	45410			W0425
5/12/1905 0:00				W0425
4/30/1974 0:00				W0425
5/12/1905 0:00	20220	0		W0425

Appropriation Date	Priority Admin No	Order No	Priority No	Associated Case Numbers
4/30/1974 0:00	45410	0		W0425
5/12/1905 0:00	20220	0		W0425
4/30/1974 0:00	45410	0		W0425
5/12/1905 0:00	20220	0		W0425
4/30/1974 0:00	45410	0		W0425
5/12/1905 0:00	20220	0		W0425
4/30/1974 0:00	45410	0		W0425
5/12/1905 0:00	20220	0		W0425
4/30/1974 0:00	45410	0		W0425
5/12/1905 0:00	20220	0		W0425
4/30/1974 0:00	45410	0		W0425
9/1/1922 0:00	29771.26541	0		82CW0236
5/1/1948 0:00	55882.35915	0		03CW0182
5/15/1900 0:00	44559.18397	0		W1630
12/29/1972 0:00	44923	0		W1630, 80CW0216
5/15/1900 0:00	44559.18397	0		W1623
12/29/1972 0:00	44923	0		W1623, 80CW0209
5/15/1900 0:00	44559.18397	0		W1624
12/29/1972 0:00	44923	0		W1624, 80CW0210
5/15/1900 0:00	44559.18397	0		W1625
12/29/1972 0:00	44923	0		W1625, 80CW0211
5/15/1900 0:00	44559.18397	0		W1626
12/29/1972 0:00	44923	0		W1626, 80CW0212
5/15/1900 0:00	44559.18397	0		W1627
12/29/1972 0:00	44923	0		W1627, 80CW0213
6/30/1979 0:00	55152.47297	0		00CW0129
6/13/1905 0:00	20252	0		W0425
4/30/1974 0:00	45410	0		W0425
5/4/1984 0:00	49067	0		84CW0371
7/15/1975 0:00	45851	0		80CW0005, W2656
1/1/1965 0:00	55517.42004	0		02CW0161
5/1/1908 0:00	29260.21305	0	H69	CA2563
6/1/1940 0:00	56613.33024	0		05CW0122
6/1/1950 0:00	44559.36676	0		W1251
7/31/1970 0:00	49308.44041	0		85CW0219

Decreed Use(s)	Net Absolute	Net Conditional	Net APEX Absolute	Net APEX Conditional	Decreed Units
38		0	0		С
8		0	0	0	
38	0.044	0	0		C
8		0	0	0	C
8	0.033	0	0	0	C
8	0.031	0	0		C
18	0.033			0	
18	0.033	0	0		C
18		0.033		0	C
			0		C
18		0.033	0		
18		0.033	0	0	C
18	0.033	0	0	0	C
18		0	0		C
8	0.01	0	0	0	С
89	0.1	0	0		С
1	4	0	0	0	С
1	2	0	0	0	С
1468	0.034	0	0	0	
389	0	0	0		
1	1.45	0	0		С
3A	3	0	0		Α
М	14	0	0	0	
1	0.75	0	0	0	
1	1.875	0	0	0	С
1	2.25	0	0		С
689	1.875	0	0		
1	1.6	0	0	0	С
F	0.001	0	0	0	С
79	0	0	0		С
1	2	0	0	0	С
1	1	0	0		С
89	1	0	0		С
89	0.033	0	0		С
8	0	0	0	0	С
8	0.022	0	0	0	
1	0.05	0	0	0	С
1	0.044	0	0	0	С
8	0.34	0	0	0	С
18	0.34	0	0		С
1	6	0	0		
1	0.033		0		С
F	0.1	0	0		A
79		0	0		A
M	2.5	0	0		С
		0	0		C
1	6	l U	U	U	C

Decreed Use(s)	Net Absolute	Net Conditonal	Net APEX Absolute	Net APEX Conditional	Decreed Units
1		0	0	0	
1A	1.875	0	0	0	
1		0	0		С
	+	0	0	0	
M	1.5	0	0	0	
1		0	0	0	
		0	0	0	
	+	0	0		С
8	+	0	0	0	
569		0			A
	+		0	0	
M 78	5 0.0036	0	0	0	-
		0	0		
78		0	0	0	
3		0	0	0	-
689A	43.8	0	0		A
56		0	0	0	
M	1	0	0	0	
F	0.001	0	0	0	
79		0	0	0	
g		0	0		С
19	 	0	0	0	
8		0	0		С
1		0	0	0	
M	1	0	0	0	
М	2.5	0	0		С
8		0	0	0	
F	0.1	0	0		Α
79	+	0	0	0	-
8		0	0		С
8				0	С
1A	10	0			С
1	+	0			С
1A	33.2	0			С
56		0	0		С
М	1.5	0	0	0	
М	2	0	0	0	
М	3	0			С
М	7.5	0			С
6	+	0			С
189		0	0		Α
56Q	885.5	0	0		Α
F	0.001	0	0	0	
79		0	0		С
F	0.001	0	0		С
79	0	0	0		С
F	0.001	0	0	0	С

Decreed Use(s)	Net Absolute	Net Conditonal	Net APEX Absolute	Net APEX Conditional	Decreed Units
79	0	0	0	0	С
F	0.001	0	0	0	С
79	0	0	0	0	С
F	0.001	0	0	0	С
79	0	0	0	0	С
F	0.001	0	0	0	С
79	0	0	0	0	С
F	0.001	0	0	0	С
79	0	0	0	0	С
F	0.001	0	0	0	С
79	0	0	0	0	С
1	0.045	0	0	0	С
1	0.022	0	0	0	С
19	1	0	0	0	С
8	0	0	0	0	С
9	0.03	0	0	0	С
18	0	0	0	0	С
9	0.03	0	0	0	С
18	0	0	0	0	С
9	0.03	0	0	0	С
18	0	0	0	0	С
19	0.03	0	0	0	С
18	0	0	0	0	С
9	0.03	0	0	0	С
18	0	0	0	0	С
79	0.0078	0	0	0	С
F	0.001	0	0	0	С
79	0	0	0	0	С
М	1	0	0	0	С
189	3.5	0	0		С
8	0.03	0	0	0	С
1	0.66	0	0		С
1	1	0	0	0	С
178	0.026	0	0		С
78	0.033	0	0	0	С

Seas	onal Limits
Yes	
Yes Yes	
Yes	
Yes	
Voc	

Seas	onal Limits
Yes	

Seasonal Limits
Yes

Comments
PMT NO 105960
FINIT INO 103300
PERMIT 122297
TEMPIT 122237
YEAR ROUND DOM USE, IRRG 500 SQ FT., YEAR ROUND DOM USE, IRRG 500 SQ FT.
YEAR ROUND DOM USE; IRRG 500 SQ FT, YEAR ROUND DOM USE; IRRG 500 SQ FT
YEAR ROUND DOM USE; IRRG OF 500 SQ FT
YEAR ROUND DOME USE; IRRG OF 500 SQ FT
YEAR ROUND DOM USE; IRRG OF 500 SQ FT
YEAR ROUND DOM USE; IRRG OF 500 SQ FT, YEAR ROUND DOM USE; IRRG OF 500 SQ FT
YEAR ROUND DOM USE; IRRG 500 SQ FT, YEAR ROUND DOM USE; IRRG 500 SQ FT(MAY1-SEPT 30)
DOMESTIC IN 3 DWELLINGS; PROTECTED BY BARTLETT P/A., STOCK USE ABSOLUTE, DOMESTIC REMAINS CONDITI
. P1451 , CASE #13CW3019 CHANGES PLACE OF USE ON JACOBS RANCH, SEE STIP.
P2190
DEEP SPG SEP AREA. P3141
AKA DEEP SPRING DOMESTIC PIPELINE EXT., NEW USE, LDS CHURCH CAMP USE PROTECTED BY BEAVER LAKE
P205 DCR IN ERROR TO LOC, TT STRINGER DOM PL; 22.5 -20GPM-IRR, 2.5GPM-DOM, ABND TO OFFSET INJURY BY
PROTECTS LDS CAMP USE OF DEEP SPRING DOMESTIC PL, PROTECTS LDS CAMP USE OF DEEP SPRING DOMESTIC F
CWCB MIN LAKE LEVEL; DECREED LOCATION INCORRECT
. P775
P1401;, P1401, CA 5/7/1948 P3383; ., TRANSFER TO COYOTE NO 2 DITCH ID 2148
. P1418
PROTECTED BY AUGMENTATION RELEASES FROM KATHY'S RES 1&2;
P169
USFS RESERVED RIGHT
P402
P766
RESTRICTED TO 1.00C IN CONJ. WITH HOMESTEAD D. P1929, RESTRICTED TO 1.00C IN CONJ. WITH HOMESTEAD D
CANCELLED BY THE COURT 8/11/80
SPRING CR P1060
SPRING CR COND DCR P1114
. P1390
USFS RESERVED RIGHT
CWCB MIN STR FLO BEAR CK TO SPRING CK 1.7 MI
P1385, P1385, CA 5/3/1948 P3408, TRANSFER TO COYOTE NO 2 ID #2148
CWCB MIN STR FLO HDWTRS TO ROCKY BROOK CK 2 MI

Comments
IRRIGATES 1/4 A
P138, P138, USE ADDED, AUG USE ADDED; RPL HARMEL RESORT P/A
TF SPRING CR IRG D P206
P 460 2.0 CFS, DPN 271
CWCB MIN STR FLO HDWTRS TO SPRING CK 2.8 MI
LEGAL DESCRIPTION APPARENTLY IN ERROR P166
LEGAL DESCRIPTION APPARENTLY IN ERROR P100
LOT 4 EUBANK ACRES
PRIVATE FIING ON LAKE LEVEL
CWCB MINIMUM LAKE LEVEL
1.64GPM
2.43GPM
RPL FOR LAMPTON P/A, USES FOR STOCK, FISH AND DOMESTIC REMAIN CONDITIONAL, RPL FOR LAMPTON P/A
EVAP REPLACED BY BEAVER LAKE
CWCB MIN STR FLO HDWTRS TO SPRING CK 2 MI
USFS RESERVED RIGHT
FOR USE IN ONE SINGLE FAMILY DWELLING
CWCB MIN STR FLO HDWTRS TO SPRING CK 4 MI
CWCB MIN STR FLO HDWTRS TO DEADMAN GULCH 3.3 MI;1CFS NOV1-MAR31
USFS RESERVED RIGHT
DAZAL ZA ALT DT TAVLOR RIPELINE LICE ADDED. ALIC ADDED. DDI TAVLOR DIVER DANCU DIA AA GZAF IDC CEAC Z
P124; .34 ALT PT TAYLOR PIPELINE, USE ADDED, AUG ADDED; RPL TAYLOR RIVER RANCH P/A; 44.92AF/IRG SEAS, 3
ELMER ENLARGEMENT P205, TT ELMER NO. 2 DITCH P205
SPRING CR P301; 1.12CFS ALT PT TO TAYLOR PIPELINE, USE ADDED, AUG ADDED; RPL TAYLOR RIVER RANCH P/A; 4
FILL AND MAINTAIN LEVELS IN PONDS A-F; PROT WILDER ON THE TAYLOR P/A CWCB MIN STR FL HDWTRS DOWNSTREAM 3.9 MI.
CWCB MIN STR FLO HDWTRS TO MYSTERIOUS CK 3.5MI
CWCB MIN STR FLO MYSTERIOUS CK TO SPRING CK RES 2 MI
CWCB MIN STR FLO ROCKY BROOK CK TO TAYLOR RIVER 10.6 MI
DIRECT FLOW SPRING CR EVAPORATION+AREATION P1011
SPRING CR P885, MADE ABSOLUTE 6-23-1961 P1009
TOTAL STORAGE 1631.9 AF P1009
USFS RESERVED RIGHT
USFS RESERVED RIGHT
USFS RESERVED RIGHT

Comments
USFS RESERVED RIGHT
TF AXTELL DITCH 20GPM IRR 2.5GPM DOM (85CW238)
IRRIGATES 0.25A
SEE STIPULATION IN DECREE, 1.00 CFS IS ABSOLUTE FOR STOCK & IRRIGATION
3.375GPM
USFS RESERVED RIGHT
OSI S NESERVES MOTI
CWCB MIN STR FLO HDWTRS TO SPRING CK 1.7 MI
W2656 FILED 7/22/1975, .10CFS OF TOTAL FOR DOM USE REF W 2656
, ,,
P1336
WRAY DITCH ENLARGEMENT IRRIGATES SAME ACREAGE

Q10	Q40	Q160	Section	Township	Range	РМ	Distance E/W	Direction I	Distance N/S	Direction N/S
NE		NW		15.0 S	84.0 W		,		,	, .
SW	SE	SW		15.0 S	84.0 W					
NE	NE	SW		15.0 S	84.0 W					
SE	NW	NW		15.0 S	84.0 W					
NW	SE	NW		15.0 S	84.0 W					
SE		SW		15.0 S		S				
SE	SW	NW		15.0 S	84.0 W		962	\\/	2213	N
SE	SW	NW		15.0 S	84.0 W		897		2553	
NE		SW		15.0 S	84.0 W		057	VV	2555	
-		SW		15.0 S	84.0 W					
NE		SW	<u> </u>	15.0 S	84.0 W					
SE	SW	NW		15.0 S	84.0 W		1225	١٨/	2387	N
-	SE	NW		15.0 S	84.0 W		1223	**	2307	
NE	SE	SW		15.0 S	84.0 W					
DNAL		SW		13.0 S	88.0 W					
NE	NE	SW		12.0 S	89.0 W		2549	\/\	2316	ς
NE	NE	SW		12.0 S	89.0 W		2549		2316	
NE	NE	NE	<u> </u>	12.0 S	89.0 W		477		40	
NE	NE	NE		12.0 S	89.0 W		477		40	
SW	SE	SW		15.0 S	84.0 W		4//	L	40	IV.
1	NE	NE		12.0 S	89.0 W					
NW	SE	NW		13.0 S	84.0 W					
NW		SW		11.0 S	90.0 W		511	۱۸/	1287	c
SW	SW	NW		12.0 S	89.0 W		543		2060	
SW	SW	NW		12.0 S		S	543		2060	
SW	SW	NW		12.0 S	89.0 W		543		2060	
SW	NW	SE		49.0 N	4.0 E	N	343	VV	2000	IV .
NE		NW		49.0 N	5.0 E	N				
NE		NW		49.0 N	5.0 E	N				
INL		NW		11.0 S	90.0 W					
	SE	NW		11.0 S	90.0 W					
. P19		NW		11.0 S	90.0 W	_				
SE	SW	NW		14.0 S	83.0 W		962	١٨/	2343	N
NE	NE	NW		14.0 S	84.0 W		302	V V	2343	IV
SW		SW		15.0 S	84.0 W					
300	SE	NW		15.0 S	84.0 W	_				
	SE	NW		15.0 S	84.0 W		3406	F	3907	ς
NE	NE	SW		15.0 S	84.0 W		3400	<u> </u>	3907	5
SW	NE	NE		15.0 S	84.0 W					
NW		SE		12.0 S	89.0 W		2419	F	2010	c
SE		SW		15.0 S	84.0 W		2419	<u> </u>	2010	3
	NW			49.0 N	4.5 E	N				
		NE		49.0 N 49.0 N	4.5 E	N				
NW	NE	SE		14.0 S	4.5 E 84.0 W					
NE		NW		12.0 S	89.0 W	_	1040	١٨/	1477	N
SW		NW		14.0 S	83.0 W		1040	V V	14//	IN
344	INVV	INVV	11	14.03	os.u W	اد				

Q10	Q40	Q160	Section	Township	Range	РМ	Distance E/W	Direction	Distance N/S	Direction N/S
	SE	NW		15.0 S	84.0 W		1737		1540	
SW	SE	SW		15.0 S	84.0 W					
SW	SE	SW		15.0 S	84.0 W					
SW	SE	SW		15.0 S	84.0 W					
NW	SW	NE		13.0 S	84.0 W					
NW	NW	NE		49.0 N	4.5 E	N				
NE	SW	NW		15.0 S	84.0 W					
		NW		15.0 S	84.0 W					
NW	SE	NW		15.0 S	84.0 W					
	SE	NE		13.0 S	83.0 W	S				
	SE	NE	28	13.0 S	83.0 W	S				
SE	SE	NW		49.0 N	4.5 E	N				
SW	SW	NE		49.0 N	4.5 E	N				
SE	NE	SW		15.0 S	-	S	2080	w	1406	S
	SE	NW		12.0 S	89.0 W	S				
	NW	NE	9	12.0 S	89.0 W	S				
SW	NE	SE		13.0 S	83.0 W					
NW	SE	SW	18	49.0 N	5.0 E	N				
NW	SE	SW	18	49.0 N	5.0 E	N				
NW	SE	NE	13	49.0 N	4.0 E	N				
	SW	SW	12	49.0 N	4.0 E	N				
SE	NE	SW	15	15.0 S	84.0 W	S	2175	w	1850	S
NW	NE	NW	22	15.0 S	84.0 W	S				
NW	SE	SW	28	13.0 S	83.0 W	S				
NW	NE	SW	29	14.0 S	84.0 W	S				
SW	NW	SE	15	15.0 S	84.0 W	S	2166	E	1655	S
SE	NW	SE	13	49.0 N	4.5 E	N				
SE	NW	SE	13	49.0 N	4.5 E	N				
NE	NE	SE	15	15.0 S	84.0 W					
NE	NE	NW	22	15.0 S	84.0 W	S				
ADJ	SW	SW	22	15.0 S	84.0 W	S				
	SW	SW	22	15.0 S	84.0 W	S				
4.92	SW	SW	22	15.0 S	84.0 W	S				
	SW	SW	22	15.0 S	84.0 W	S				
SE	NE	SE	25	49.0 N	4.0 E	N				
NW	SE	NW		13.0 S	84.0 W					
SE	SE	NE		13.0 S	84.0 W					
NE	SW	NE		14.0 S	83.0 W					
NE	SE	NE		14.0 S	84.0 W					
		SE		14.0 S	83.0 W					
		SE		14.0 S	83.0 W					
SE	SW	SE		14.0 S	84.0 W					
SE	SW	SE		14.0 S	84.0 W					
	SE	NE		14.0 S	84.0 W					
	SE	NE		14.0 S	84.0 W	-				
NE	NW	NW	22	14.0 S	84.0 W	S				

Q10	Q40	Q160	Section	Township	Range	РМ	Distance E/W	Direction I	Distance N/S	Direction N/S
NE	NW	NW	22	14.0 S	84.0 W	S				
NW	SE	NW	16	14.0 S	84.0 W	S				
NW	SE	NW	16	14.0 S	84.0 W	S				
NW	NE	NW	19	14.0 S	83.0 W	S				
NW	NE	NW	19	14.0 S	83.0 W	S				
SW	SW	NW	30	14.0 S	83.0 W	S				
SW	SW	NW	30	14.0 S	83.0 W	S				
SW	NE	SW	9	14.0 S	84.0 W	S				
SW	NE	SW	9	14.0 S	84.0 W	S				
NW	SE	SE	8	14.0 S	84.0 W	S				
NW	SE	SE	8	14.0 S	84.0 W	S				
NW	SE	NW	22	15.0 S	84.0 W	S				
SE	NE	SW	15	15.0 S	84.0 W	S	1993	W	1388	S
NE	SW	SW	13	49.0 N	4.0 E	N				
NE	SW	SW	13	49.0 N	4.0 E	N				
SW	SW	NW	23	49.0 N	4.0 E	N				
SW	SW	NW	23	49.0 N	4.0 E	N				
NW	SW	NW	23	49.0 N	4.0 E	N				
NW	SW	NW	23	49.0 N	4.0 E	N				
NE	SW	NE	23	49.0 N	4.0 E	N				
NE	SW	NE	23	49.0 N	4.0 E	N				
NW	SW	SE	14	49.0 N	4.0 E	N				
NW	SW	SE	14	49.0 N	4.0 E	N				
SE	NW	NE	23	49.0 N	4.0 E	N				
SE	NW	NE	23	49.0 N	4.0 E	N				
SE	NE	NW	12	49.0 N	4.5 E	N				
NE	SW	NE	19	49.0 N	5.0 E	N				
NE	SW	NE	19	49.0 N	5.0 E	N				
NE	NE	NW		14.0 S	83.0 W					
NE	NE	SW	9	12.0 S	89.0 W	S	2201	W	2060	S
SW	SE	SW	15	15.0 S	84.0 W	S	1940	W	1065	S
NE	NW	SE	11	11.0 S	90.0 W	S	1816	Е	1540	S
NE	NW	SE	11	11.0 S	90.0 W	S	1816	Е	1540	S
	NE	SW	15	15.0 S	84.0 W	S				
NE	NE	SW	15	15.0 S	84.0 W	S				

UTM x	UTM y	Latitude	Longitude	Location Accuracy	Modified
346020.5	4288939.5	38.735719		Spotted from quarters	5/4/2006 15:06
346249.9	4289532	38.741096	-106.769084	Spotted from quarters	5/4/2006 14:57
346464.1	4290129.6	38.746516	-106.766753	Spotted from quarters	5/4/2006 14:48
346031.8	4289139	38.737518	-106.771504	Spotted from quarters	5/4/2006 15:01
346220.4	4288932	38.735686	-106.769289	Spotted from quarters	5/4/2006 15:03
345986.7	4288341	38.730322	-106.771845	Spotted from quarters	5/4/2006 15:13
346003	4288765	38.734144	-106.771752	GPS	12/13/2007 15:15
345977	4288662	38.733212	-106.772028	GPS	12/13/2007 15:17
345997.9	4288540.5	38.732121	-106.771761	Spotted from quarters	12/22/2014 9:18
346092	4288571	38.732412	-106.770686	Per Decree	12/22/2014 9:20
345997.9	4288540.5	38.732121	-106.771761	Spotted from quarters	12/22/2014 9:20
346080	4288709	38.733653	-106.770854	GPS	12/13/2007 15:21
346130	4288781	38.73431	-106.770295	Per Decree	12/22/2014 9:15
346453.9	4289726.5	38.742883		Spotted from quarters	5/4/2006 14:53
304451	4308837	38.906666	-107.255202	GPS	2/6/2017 15:05
297328	4322477	39.027863	-107.341328	GPS	2/15/2018 9:12
297328	4322477	39.027863	-107.341328	GPS	2/15/2018 9:12
298049	4323345	39.035846	-107.333263	GPS	2/2/2015 5:36
298049	4323345				2/2/2015 5:36
346294.5	4289473.5				5/4/2006 14:56
297939	4323271	39.035154	-107.334511		2/10/2016 11:50
349858	4311560	38.940133			2/12/2013 10:37
292188	4333431	39.125279	-107.404005		2/15/2018 8:03
298344	4322721	39.030295	-107.329673		2/15/2018 8:42
298344	4322721	39.030295	-107.329673		2/15/2018 8:42
298344	4322721	39.030295	-107.329673		2/15/2018 8:42
367757	4262753	38.503333	-106.516615		3/27/2006 14:04
372922	4261907	38.496463		User supplied	12/18/2008 11:24
372922	4261907			User supplied	12/18/2008 11:24
292543			-107.400048		2/15/2018 8:46
292543	4333907	39.129649			2/15/2018 8:46
292543	4333907	39.129649			2/15/2018 8:46
351058	4299816		-106.716004		5/4/2006 14:27
349843.3	4298926.7	38.826337		Spotted from quarters	5/4/2006 14:44
346259.8	4289935.6	38.744733		Spotted from quarters	5/4/2006 14:52
346315	4288828.5			Spotted from quarters	5/4/2006 15:02
346286	4289020		-106.768565		7/11/2017 13:53
346464.1	4290129.6	38.746516		Spotted from quarters	5/4/2006 14:47
347079.4	4290708.1	38.751833		Spotted from quarters	5/4/2006 14:48
297432	4322381	39.027023	-107.340099		2/15/2018 9:09
345986.7	4288341	38.730322		Spotted from quarters	5/4/2006 15:14
371897	4260232	38.481226		User supplied	12/18/2008 11:07
371897 347162	4260232	38.481226		User supplied	12/18/2008 11:07 3/15/2013 14:18
298500	4299750 4322895	38.833292 39.031898	-106.760857 -107.327923	-	2/20/2018 8:58
					3/15/2013 13:53
357396	4301605	38.851719	-106.643381	ngitizea	3/13/2013 13:53

UTM x	UTM y	Latitude	Longitude	Location Accuracy	Modified
346251	4288961	38.735953	-106.768944	GPS	5/4/2006 15:04
346279.5	4289546.5	38.741231	-106.768746	GPS	1/23/2007 10:50
346279.5	4289546.5	38.741231	-106.768746	GPS	1/23/2007 10:50
346279.5	4289546.5	38.741231	-106.768746	GPS	1/23/2007 10:50
348624	4308320	38.910738	-106.745908	Digitized	3/20/2013 15:10
372036	4261924	38.496489	-106.467405	GPS	3/29/2006 8:58
346020.5	4288939.5	38.735719	-106.77159	Spotted from quarters	5/4/2006 15:06
346125.4	4289037.5	38.73662	-106.770405	Spotted from quarters	5/4/2006 14:59
346220.4	4288932	38.735686	-106.769289	Spotted from quarters	5/4/2006 15:04
355702	4305941	38.8905	-106.663806	Digitized	1/28/2014 10:20
355702	4305941	38.8905	-106.663806	Digitized	1/28/2014 10:20
372455.6		38.520835	-106.463086	Spotted from quarters	3/30/2006 16:28
372625.6	4264620.6	38.520868	-106.461137	Spotted from quarters	3/30/2006 16:29
346393.5	4289855	38.74403	-106.767504	Spotted from section lines	5/4/2006 14:51
298686	4321118	39.015947	-107.325262		10/24/2018 10:23
297587	4323199	39.034424	-107.338553	Per Decree	1/27/2016 8:46
352251	4309039	38.917832	-106.704248		3/15/2013 14:05
373169	4262309	38.50012	-106.454486	User supplied	12/18/2008 11:11
373169	4262309	38.50012		User supplied	12/18/2008 11:11
371418.5	4263264.5	38.508477		Spotted from quarters	4/6/2006 11:33
370323.2	4264013.6	38.515067		Spotted from quarters	1/1/1986 0:00
346425.4	4289989.1	38.745243		Spotted from section lines	5/4/2006 14:52
346242	4289331.5	38.739288		Spotted from quarters	5/4/2006 15:00
354794	4305376		-106.674152		3/15/2013 13:59
343245	4296782	38.80587	-106.805289	_	3/15/2013 14:49
346695.7	4289920	38.744668		Spotted from section lines	5/4/2006 14:46
372230	4262564	38.502283		User supplied	12/18/2008 10:59
372230	4262564	38.502283		User supplied	12/18/2008 10:59
347261.7	4290098.1			Spotted from quarters	5/4/2006 14:49
346440.9				Spotted from quarters	5/4/2006 15:00
346009.5	4288241.5	38.72943			12/20/2013 10:45
346009.5	4288241.5				12/20/2013 10:45
346009.5	4288241.5	38.72943			12/20/2013 10:45
346009.5	4288241.5	38.72943			12/20/2013 10:45
371434	4259658	38.475988	-106.47389		1/14/2013 8:56
349882	4311551	38.940056			3/15/2013 15:14
350779	4306348		-106.720635	•	3/15/2013 15:17
351954	4301596		-106.706068		3/15/2013 14:24
350727.7	4303275.2	38.865657 38.861175		Spotted from quarters	5/4/2006 14:39
351892.6 351892.6	4302755.7 4302755.7	38.861175	-106.707025 -106.707025		5/4/2006 14:39 5/4/2006 14:39
351892.6	4302755.7	38.861175		User supplied	2/10/2009 15:57
350278	4295946			User supplied	2/10/2009 15:57
350278	4300063.5	38.799563		Spotted from quarters	12/7/2010 14:39
348957.6	4300063.5	38.836426		Spotted from quarters	12/7/2010 14:39
346264	4299080	38.827101		User supplied	8/19/2010 14:39
340204	4299080	30.8Z/1UI	-100.//1048	losei suhhiiea	0/ 13/ 5010 11:30

UTM x	UTM у	Latitude	Longitude	Location Accuracy	Modified
346264	4299080	38.827101	-106.771048	User supplied	8/19/2010 11:36
344881	4300220	38.837126	-106.78723	User supplied	8/19/2010 11:41
344881	4300220	38.837126	-106.78723	User supplied	8/19/2010 11:41
351270	4298789	38.825339	-106.71334	User supplied	2/10/2009 14:55
351270	4298789	38.825339	-106.71334	User supplied	2/10/2009 14:55
350899	4296729	38.806721	-106.717167	User supplied	2/10/2009 15:03
350899	4296729	38.806721	-106.717167	User supplied	2/10/2009 15:03
344785	4301290	38.846747	-106.788577	User supplied	2/10/2009 15:45
344785	4301290	38.846747	-106.788577	User supplied	2/10/2009 15:45
344157	4301230	38.846095	-106.795797	User supplied	8/19/2010 11:45
344157	4301230	38.846095	-106.795797	User supplied	8/19/2010 11:45
346220.4	4288932	38.735686	-106.769289	Spotted from quarters	5/4/2006 15:03
346366.9	4289850.5	38.743985	-106.767809	Spotted from section lines	5/4/2006 14:51
370384	4262491	38.501359	-106.486448	Spotted from quarters	4/7/2006 8:43
370384	4262491	38.501359	-106.486448	Spotted from quarters	4/7/2006 8:43
368596.3	4261553	38.492646	-106.506767	Spotted from quarters	4/7/2006 8:48
368596.3	4261553	38.492646	-106.506767	Spotted from quarters	4/7/2006 8:48
368595.1	4261755	38.494466	-106.506819	Spotted from quarters	4/7/2006 8:49
368595.1	4261755	38.494466	-106.506819	Spotted from quarters	4/7/2006 8:49
369570.4	4261721	38.494303	-106.495632	Spotted from quarters	4/7/2006 8:50
369570.4	4261721	38.494303	-106.495632	Spotted from quarters	4/7/2006 8:50
369385.8	4262529.5	38.50156	-106.497899	Spotted from quarters	4/7/2006 8:51
369385.8	4262529.5	38.50156	-106.497899	Spotted from quarters	4/7/2006 8:51
369573.6	4261919.5	38.496092	-106.495633	Spotted from quarters	4/7/2006 8:51
369573.6	4261919.5	38.496092	-106.495633	Spotted from quarters	4/7/2006 8:51
372464	4265020.1	38.524444	-106.463063	Spotted from quarters	4/7/2006 8:54
373797	4261496	38.492885	-106.44714	User supplied	12/18/2008 11:15
373797	4261496	38.492885	-106.44714	User supplied	12/18/2008 11:15
353169	4298746	38.825271	-106.691464		3/15/2013 14:10
297220	4322402	39.027163	-107.342553	GPS	1/18/2019 10:09
346348.6	4289752.6	38.7431	-106.767997	Spotted from section lines	5/4/2006 14:58
291438	4331898	39.111298	-107.412203	GPS	2/23/2018 9:48
291438	4331898	39.111298	-107.412203	GPS	2/23/2018 9:48
346362	4290032.1	38.74562	-106.767905	Spotted from quarters	5/4/2006 14:46
346464.1	4290129.6	38.746516	-106.766753	Spotted from quarters	5/4/2006 14:51

More Information
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/534191
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/534649
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/534208
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/534521
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/534267
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/534335
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/534206
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/534342
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/534393
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/534414
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/534419
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/534423
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/534425
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/534674
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/607607
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/755153
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/755154
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/495188
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/495189
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/532014
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/497461
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/533998
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/755110
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/755130
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/755131
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/755132
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/465935
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/468115
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/468116
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/755139
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/755140
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/755141 https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/532633
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/532650
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/533347
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/533636
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/686550
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/532693
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/532694
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/755150
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/533608
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/468109
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/468110
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/533544
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/755669
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/533438
, ,,

More Information
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/533233
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/532569
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/532570
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/532571
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/533495
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/466069
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/532819
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/533156
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/532827
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/533973
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/533974
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/467108
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/467110
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/533247
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/875632
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/497462
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/533449
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/468111
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/468112
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/466569
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/466573
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/533225
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/533620
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/533457
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/533543
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/533248
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/468105
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/468106
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/533035
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/533058
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/532486
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/532487
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/532488
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/532489
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/466852
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/533477
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/533466
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/533467
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/533692
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/533914
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/533915
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/535201
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/535202
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/535521
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/535522
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/535493

More Information
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/535494
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/535495
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/535496
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/535189
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/535190
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/535193
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/535194
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/535199
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/535200
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/535497
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/535498
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/533287
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/533252
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/466622
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/466623
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/467186
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/467187
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/467188
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/467189
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/467191
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/467192
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/467193
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/467194
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/467195
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/467196
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/467109
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/468113
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/468114
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/533517
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/883171
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/533837
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/756502
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/756503
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/533116
https://dnrweb.state.co.us/CDSS/WaterRights/NetAmounts/Details/533208

Frein St. Lein

In accordance with sections 37-92-401(1)(a) and (a.5), C.R.S., the state and division engineers "maintain a tabulation in order of seniority of all decreed water rights and conditional water rights in his or her division". The tabulations "set forth the priority and amount thereof as established by court decrees" and "include judgments and decrees determining, changing, or otherwise affecting water rights and conditional water rights, which judgments and decrees have been entered more than six months before the date of review." The tabulation is continuously updated electronically and is subject to change without notice.

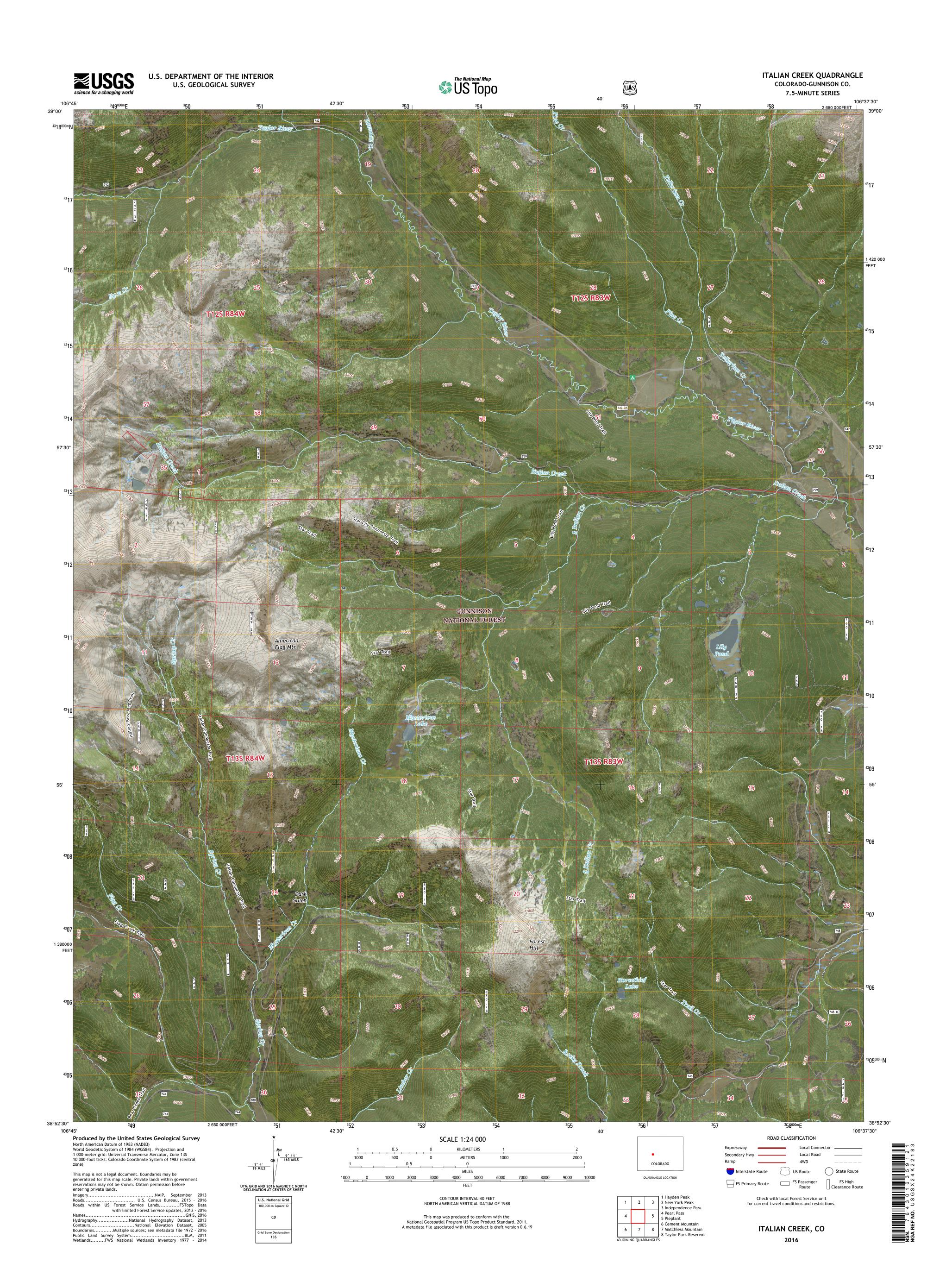
This report satisfies the requirements of section 37-92-401(2)(a), C.R.S., which requires the state and division engineer to "make a copy of the tabulation available for inspection in their offices at any time during regular office hours, as well as on the state engineer's website" and to "provide a copy of the tabulation for a fee as set forth in section 24-72-205 (5)."

This report shows the current net amount of water rights based on all tabulated actions of the courts. Pursuant to section 37-92-401(3), "Any person wishing to object to the manner in which a water right or conditional water right is listed in the tabulation or to the omission of a water right or conditional water right from the tabulation...must file a statement of objection in writing with the division engineer."

Respectfully,

KEVIN REIN, P.E.

State Engineer/Director

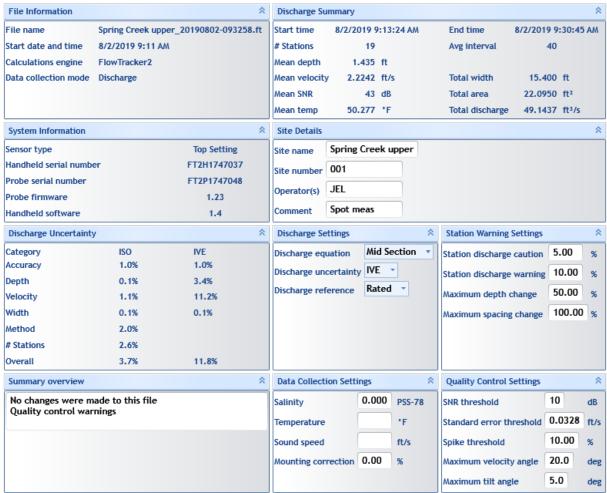

Name of Structure	Structure Type	Water Source	PLSS Location	Adj Date	Prev Adj Date	Appro Date	Admin No	О#	Priority Date	Decreed Uses *	Net Abs	Net Cond	Net APEX Abs	Net APEX Cond	Decreed Units	Seasonal Limit	WDID
SPRING CR IRG DITCH	Ditch	SPRING CREEK [00188820]	SW SW 22 84.0W 15.0S S	10/25/1921	9/14/1906	6/1/1891	20710.15127	0	9/14/1906	1A	10.0000	0	0	0	С	No	5900679
SPRING CR IRG DITCH	Ditch	SPRING CREEK [00188820]	SW SW 22 84.0W 15.0S S	10/25/1921	9/14/1906	6/1/1891	20710.15127	0	9/14/1906	1A	10.0000	0	0	0	С	No	5900679
SPRING CR IRG DITCH	Ditch	SPRING CREEK [00188820]	SW SW 22 84.0W 15.0S S	4/29/1941	12/18/1933	6/15/1882	30667.11854	0	12/18/1933	1A	33.2000	0	0	0	С	No	5900679
SPRING CR IRG DITCH	Ditch	SPRING CREEK [00188820]	SW SW 22 84.0W 15.0S S	4/29/1941	12/18/1933	6/15/1882	30667.11854	0	12/18/1933	1A	33.2000	0	0	0	С	No	5900679
SPRING CR IRG DITCH	Ditch	SPRING CREEK [00188820]	SW SW 22 84.0W 15.0S S	12/31/2008	12/31/2007	12/1/2007	57708.57678	0	12/31/2007	56	30.0000	0	0	0	С	No	5900679
SPRING CR IRG DITCH	Ditch	SPRING CREEK [00188820]	SW SW 22 84.0W 15.0S S	12/31/2008	12/31/2007	12/1/2007	57708.57678	0	12/31/2007	56	30.0000	0	0	0	С	No	5900679

NOTE

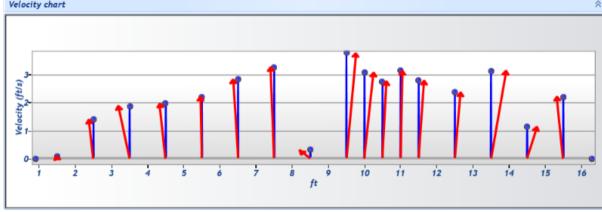
* Use Codes: 0 - storage, 1 - irrigation, 2 - municipal, 3 - commercial, 4- industrial, 5- recreation, 6 - fishery, 7 - fire, 8 - domestic, 9 - stock, A - augmentation, B - export from basin, C - cumulative accretion to river, D - cumulative depletion from river, E - evaporation, F - federal reserve, G - geothermal, H - household use only, K - snow making, M - minimum flow, N - net effect of river, P - power generation, Q - other, R - recharge, S - export from state, T - transmountain export, W - wildlife, X - all beneficial use

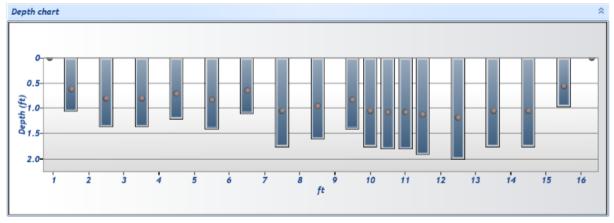
If seasonal limit is indicated, decreed amount may differ from amount shown.

Attachment G- USGS Topographic Quadrangle Maps

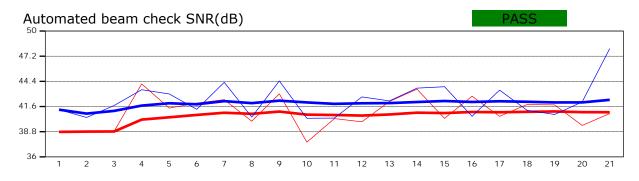

Discharge Measurment Field Visit Data Report (Filters: Name begins with spring; Processing Status = Moving Forward;)

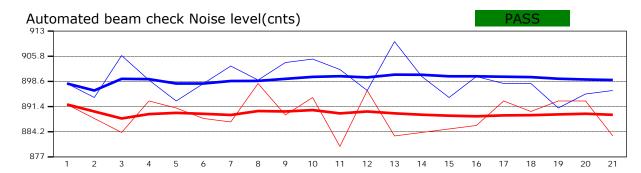
		CWCB Case					Flow Amount			
Div	Name	Number	Segment ID	Meas. Date	UTM	Location	(cfs)	Meas #	Rating	Station ID
4	Spring Creek		20/4/A-003	08/02/2019	UTMx: 349688 UTMv: 4298707	Spring Creek 0.5 miles US of LT	49.1437	1	F	
4	Spring Creek		20/4/A-003	10/17/2019		Spring Creek 0.5 miles US of LT	22.83	2	G	

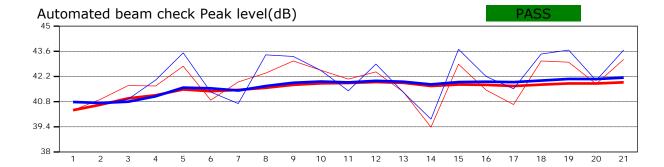

Thursday, December 12, 2019

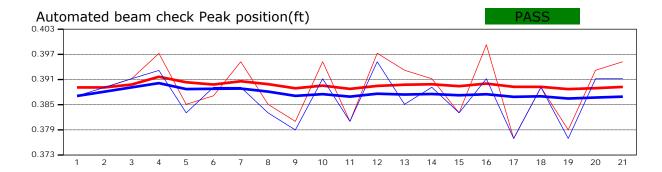


Discharge Measurement Summary

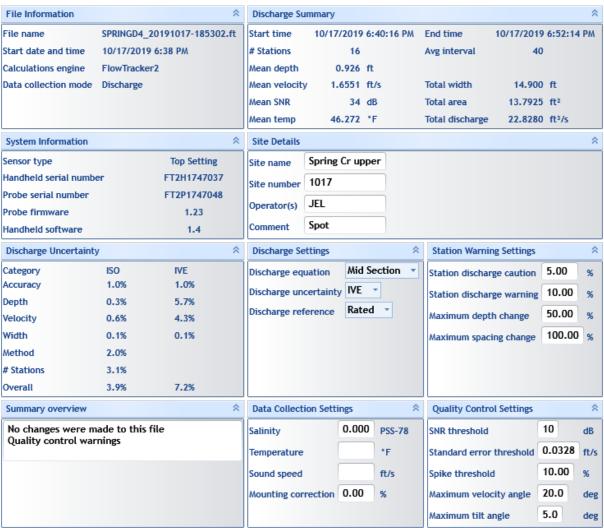


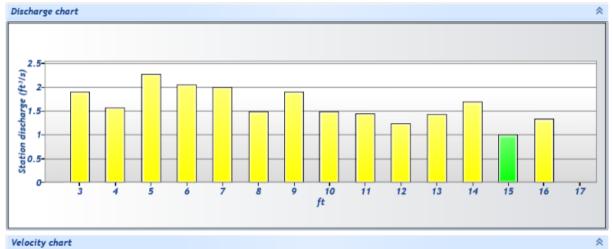


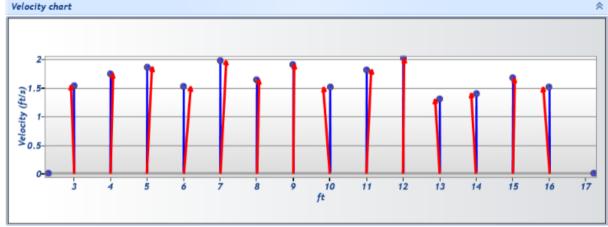

St#	Time	Location (ft)	Method	Depth (ft)	%Depth	Measure d Depth (ft)	Samples	Velocity (ft/s)	Correct ion	Mean Velocity (ft/s)	Area (ft²)	Flow (ft³/s)	%Q	
)	9:13 AM	0.900	None	0.000	0.0000	0.000	0	0.0000	1.0000	0.0835	0.0000	0.0000	0.00	4
1	9:13 AM	1.500	0.6	1.050	0.6000	0.630	45	0.0835	1.0000	0.0835	0.8400	0.0702	0.14	4
2	9:15 AM	2.500	0.6	1.350	0.6000	0.810	51	1.3904	1.0000	1.3904	1.3500	1.8770	3.82	4
3	9:16 AM	3.500	0.6	1.350	0.6000	0.810	45	1.8754	1.0000	1.8754	1.3500	2.5317	5.15	4
4	9:17 AM	4.500	0.6	1.200	0.6000	0.720	43	1.9716	1.0000	1.9716	1.2000	2.3659	4.81	4
5	9:17 AM	5.500	0.6	1.400	0.6000	0.840	42	2.1994	1.0000	2.1994	1.4000	3.0792	6.27	4
6	9:18 AM	6.500	0.6	1.100	0.6000	0.660	57	2.8277	1.0000	2.8277	1.1000	3.1104	6.33	4
7	9:20 AM	7.500	0.6	1.750	0.6000	1.050	50	3.2514	1.0000	3.2514	1.7500	5.6900	11.58	4
8	9:21 AM	8.500	0.6	1.600	0.6000	0.960	80	0.3165	1.0000	0.3165	1.6000	0.5064	1.03	4
9	9:22 AM	9.500	0.6	1.400	0.6000	0.840	44	3.7612	1.0000	3.7612	1.0500	3.9492	8.04	4
10	9:29 AM	10.000	0.6	1.750	0.6000	1.050	43	3.0719	1.0000	3.0719	0.8750	2.6879	5.47	4
11	9:23 AM	10.500	0.6	1.800	0.6000	1.080	42	2.7583	1.0000	2.7583	0.9000	2.4825	5.05	4
12	9:30 AM	11.000	0.6	1.800	0.6000	1.080	46	3.1287	1.0000	3.1287	0.9000	2.8158	5.73	4
13	9:24 AM	11.500	0.6	1.900	0.6000	1.140	52	2.7840	1.0000	2.7840	1.4250	3.9672	8.07	4
14	9:25 AM	12.500	0.6	2.000	0.6000	1.200	50	2.3533	1.0000	2.3533	2.0000	4.7067	9.58	4
15	9:26 AM	13.500	0.6	1.750	0.6000	1.050	46	3.1215	1.0000	3.1215	1.7500	5.4626	11.12	4
16	9:27 AM	14.500	0.6	1.750	0.6000	1.050	46	1.1217	1.0000	1.1217	1.7500	1.9630	3.99	4
17	9:28 AM	15.500	0.6	0.950	0.6000	0.570	46	2.1964	1.0000	2.1964	0.8550	1.8779	3.82	4
18	9:29 AM	16.300	None	0.000	0.0000	0.000	0	0.0000	1.0000	2.1964	0.0000	0.0000	0.00	4

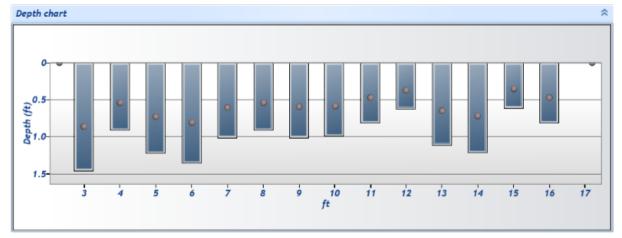

St#	Time	Location (ft)	Method	Depth (ft)	%Depth	Measure d Depth (ft)	Warnings	
1	9:13 AM	1.500	0.6	1.050	0.6000	0.630	Large SNR Variation	
2	9:15 AM	2.500	0.6	1.350	0.6000	0.810	Standard Error > QC	
3	9:16 AM	3.500	0.6	1.350	0.6000	0.810	Standard Error > QC	
4	9:17 AM	4.500	0.6	1.200	0.6000	0.720	Standard Error > QC	
5	9:17 AM	5.500	0.6	1.400	0.6000	0.840	Standard Error > QC	
6	9:18 AM	6.500	0.6	1.100	0.6000	0.660	Standard Error > QC	
7	9:20 AM	7.500	0.6	1.750	0.6000	1.050	Standard Error > QC, High Stn % Discharge	
8	9:21 AM	8.500	0.6	1.600	0.6000	0.960	Standard Error > QC, Velocity Angle > QC	
9	9:22 AM	9.500	0.6	1.400	0.6000	0.840	Standard Error > QC	
10	9:29 AM	10.000	0.6	1.750	0.6000	1.050	Standard Error > QC	
11	9:23 AM	10.500	0.6	1.800	0.6000	1.080	Standard Error > QC	
12	9:30 AM	11.000	0.6	1.800	0.6000	1.080	Standard Error > QC	
13	9:24 AM	11.500	0.6	1.900	0.6000	1.140	Standard Error > QC	
14	9:25 AM	12.500	0.6	2.000	0.6000	1.200	Standard Error > QC	
15	9:26 AM	13.500	0.6	1.750	0.6000	1.050	Standard Error > QC, High Stn % Discharge	
16	9:27 AM	14.500	0.6	1.750	0.6000	1.050	Standard Error > QC	
17	9:28 AM	15.500	0.6	0.950	0.6000	0.570	Standard Error > QC	
18	9:29 AM	16.300	None	0.000	0.0000	0.000	Water Depth > QC	

Automated beam check Start time 8/2/2019 9:12:59 AM

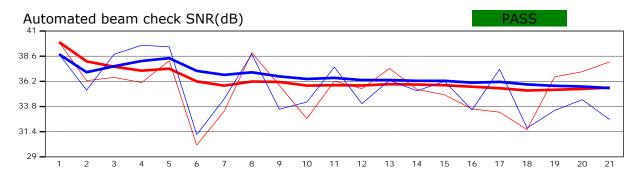


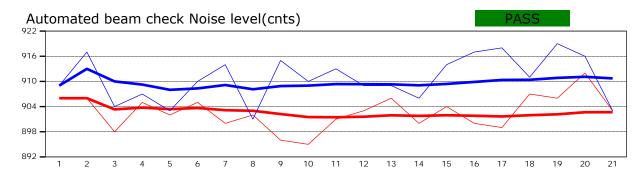

Automated beam check Quality control warnings

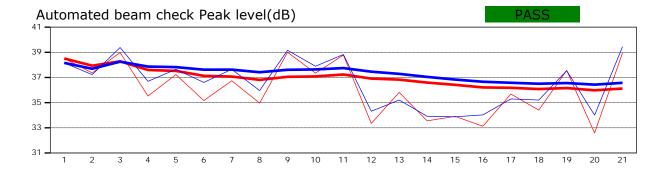

No quality control warnings

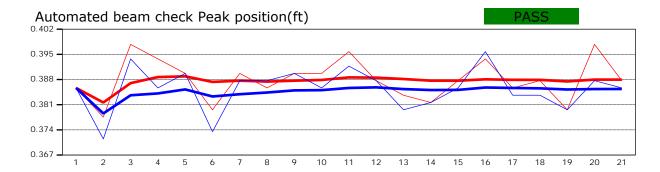


Discharge Measurement Summary






St#	Time	Location (ft)	Method	Depth (ft)	%Depth	Measure d Depth (ft)	Samples	Velocity (ft/s)	Correct ion	Mean Velocity (ft/s)	Area (ft²)	Flow (ft³/s)	%Q	
0	6:40 PM	2.300	None	0.000	0.0000	0.000	0	0.0000	1.0000	1.5456	0.0000	0.0000	0.00	4
1	6:40 PM	3.000	0.6	1.450	0.6000	0.870	50	1.5456	1.0000	1.5456	1.2325	1.9049	8.34	4
2	6:41 PM	4.000	0.6	0.900	0.6000	0.540	42	1.7482	1.0000	1.7482	0.9000	1.5734	6.89	4
3	6:42 PM	5.000	0.6	1.220	0.6000	0.732	80	1.8607	1.0000	1.8607	1.2200	2.2701	9.94	4
4	6:43 PM	6.000	0.6	1.350	0.6000	0.810	43	1.5227	1.0000	1.5227	1.3500	2.0557	9.01	4
5	6:44 PM	7.000	0.6	1.010	0.6000	0.606	42	1.9798	1.0000	1.9798	1.0100	1.9996	8.76	4
6	6:45 PM	8.000	0.6	0.900	0.6000	0.540	59	1.6479	1.0000	1.6479	0.9000	1.4831	6.50	4
7	6:46 PM	9.000	0.6	1.000	0.6000	0.600	43	1.9042	1.0000	1.9042	1.0000	1.9042	8.34	4
8	6:46 PM	10.000	0.6	0.980	0.6000	0.588	47	1.5135	1.0000	1.5135	0.9800	1.4833	6.50	4
9	6:47 PM	11.000	0.6	0.800	0.6000	0.480	43	1.8160	1.0000	1.8160	0.8000	1.4528	6.36	4
10	6:48 PM	12.000	0.6	0.620	0.6000	0.372	44	2.0138	1.0000	2.0138	0.6200	1.2485	5.47	4
11	6:49 PM	13.000	0.6	1.100	0.6000	0.660	44	1.3058	1.0000	1.3058	1.1000	1.4364	6.29	4
12	6:49 PM	14.000	0.6	1.200	0.6000	0.720	44	1.4019	1.0000	1.4019	1.2000	1.6823	7.37	4
13	6:50 PM	15.000	0.6	0.600	0.6000	0.360	42	1.6726	1.0000	1.6726	0.6000	1.0036	4.40	4
14	6:51 PM	16.000	0.6	0.800	0.6000	0.480	59	1.5115	1.0000	1.5115	0.8800	1.3301	5.83	4
15	6:52 PM	17.200	None	0.000	0.0000	0.000	0	0.0000	1.0000	1.5115	0.0000	0.0000	0.00	4


Qualit	ty control	warnings					*
St#	Time	Location (ft)	Method	Depth (ft)	%Depth	Measure d Depth (ft)	Warnings
1	6:40 PM	3.000	0.6	1.450	0.6000	0.870	Water Depth > QC
4	6:43 PM	6.000	0.6	1.350	0.6000	0.810	Standard Error > QC
5	6:44 PM	7.000	0.6	1.010	0.6000	0.606	Standard Error > QC
6	6:45 PM	8.000	0.6	0.900	0.6000	0.540	Standard Error > QC
7	6:46 PM	9.000	0.6	1.000	0.6000	0.600	Standard Error > QC
8	6:46 PM	10.000	0.6	0.980	0.6000	0.588	Standard Error > QC
9	6:47 PM	11.000	0.6	0.800	0.6000	0.480	Standard Error > QC
11	6:49 PM	13.000	0.6	1.100	0.6000	0.660	Standard Error > QC
12	6:49 PM	14.000	0.6	1.200	0.6000	0.720	Standard Error > QC
14	6:51 PM	16.000	0.6	0.800	0.6000	0.480	Standard Error > QC
15	6:52 PM	17.200	None	0.000	0.0000	0.000	Water Depth > QC

Automated beam check Start time 10/17/2019 6:39:52 PM

Automated beam check Quality control warnings

No quality control warnings

