

Page 1| 320 East Vine Drive, Suite 203, Fort Collins, CO 80524 | 970-286-7439 | openwaterfoundation.org

Memorandum

To: Brian Macpherson (Colorado Water Conservation Board),
 Carolyn Kemp (CWCB),

Mary Halstead (Colorado Division of Water Resources)
From: Steve Malers (Open Water Foundation, OWF)
Subject: Notes on PACSM
Date: April 1, 2019

Contents
Introduction .. 1

Background ... 2

Technical Notes ... 2

Programming Language .. 2

Operational Environment ... 2

Component Libraries Used ... 2

License and Open Source Considerations ... 2

Supported Operating Systems .. 3

Development Environment ... 3

Software Testing ... 3

Software Performance Optimization .. 3

Development Team ... 3

Summary of Review Comments for “Independent Review of PACSM and Options for Further

Development”, March 2012 ... 4

Introduction

This memorandum provides notes about PACSM (Platte and Colorado Simulation Model), including
programming language, development environment, and development team, in order to provide
perspective for whether StateMod should be converted to a different language. These notes are based
on a conversation between Steve Malers of the Open Water Foundation and Steve McWilliams of
Denver Water on March 18 and 19, 2019.

Additionally, the document “Independent Review of PACSM and Options for Further Development” by
Dr. Willem A Schreüder was reviewed, with a summary of important points.

Page 2| 320 East Vine Drive, Suite 203, Fort Collins, CO 80524 | 970-286-7439 | openwaterfoundation.org

Background

PACSM is the basin simulation model used by Denver Water to simulate operations of raw water
systems, as input for planning and operations. It was developed by enhancing the BESTSM model
(similar to StateMod), specifically to model the Denver Water system.

Technical Notes

The following are notes on specific technical topics.

Programming Language

PACSM is coded in Fortran, with original Fortran 77 code being updated to more recent versions for
some syntax elements (for example use of IMPLICIT NONE, renaming variables to be more clear,
removing most GOTO statements, and responding to compiler warnings), with work occurring around
2013. The following are important considerations:

 The model has generic rules (similar to StateMod) and 2-3 operating rules that are specific to
Denver Water.

 The timestep is daily and the standard dataset has a 61-year period of record.

 The model does not re-operate (based on Steve McWilliams’ description).

Operational Environment

The model input is primarily comma-separated-value (CSV) files that are created from a Microsoft
Access database. There are approximately a dozen output files, of which 2-3 are binary files and the rest
are CSV text. Postprocessors include programs written in VBA for Excel. A C# program creates monthly
summaries that are used for decision-making. Previously the environment included MapInfo for
geographic information system (GIS). An attempt was made to move to Esri ArcMap postprocessor but
this was abandoned. Now the post-processor is C# and focuses on standard reports. Users don’t
typically see model input files and instead interact with Microsoft Access tables.

User and development documentation exist but “are lacking”

Component Libraries Used

The model is Fortran code. Libraries used in pre- and post-processors were not discussed.

License and Open Source Considerations

The PACSM software is used only by Denver Water with customization for their use. The code is not
available outside of Denver Water. Denver Water uses disclaimer and non-disclosure agreements as
needed to share modeling datasets and results.

Page 3| 320 East Vine Drive, Suite 203, Fort Collins, CO 80524 | 970-286-7439 | openwaterfoundation.org

Supported Operating Systems

The model runs on Windows 10.

Development Environment

The development environment uses:

 Commercial Microsoft Visual Studio 2010 and commercial Intel Fortran compiler

 Version control:
o Dated folders
o No version control system such as GitHub

Software Testing

Software testing is implemented as follows:

 5 datasets are run, which exercise features that “touch every file”.

 Batch scripts have been developed to run the model and compare output files.

 Custom programs have been written to compare binary output files.

 The open source winmerge software (http://winmerge.org/) is used to perform differences.

Software Performance Optimization

The following are changes that were made to optimize the code:

 Array loop index order was changed to follow best practices for Fortran code optimization.

 Return flow math was updated to skip processing zero return value (perhaps avoiding
input/output performance hit).

 The run time has been reduced from 7 minutes to ~1 minute (this may not be accurately
recorded from the conversation – seems low).

 Denver Water has a “tree ring” dataset run and the run environment executes multiple runs at
the same time.

Development Team

The modeling team consists of:

 A manager.

 Four people that focus on running the model and interpreting results - ~90% of their days.

 Steve McWilliams is the only programmer. 95% of his time is focused on maintaining the
software.

http://winmerge.org/

Page 4| 320 East Vine Drive, Suite 203, Fort Collins, CO 80524 | 970-286-7439 | openwaterfoundation.org

Summary of Review Comments for “Independent Review of PACSM and Options

for Further Development”, March 2012

The following are Steve Malers’ review comments on this memo. Note that the recent conversation
with Steve McWilliams provided more recent information, such as the move away from MapInfo in
recent years. Recent information is largely consistent with the 2012 memo.

1. Executive Summary:
a. The point is made that if Denver Water were to adopt a third party tool such as

StateMod, this might be cumbersome because adding features may be difficult.
Comment: Hopefully the OpenCDSS effort has removed barriers to this option, but
coordination and skilled developers would be important.

b. The point is made that if it is necessary to replace or update the PacsmGUI and
PacsmMap that it may be necessary to use other technologies such as Qt. Comment:
Qt is certainly a popular library for user interface (UI) development, in particular for C++
and Python languages. Other tools such as GIS, can be used; however, integration can
be difficult and trade-offs must be considered. The StateMod GUI has not been actively
maintained and the choice of language should consider selecting a language that is
appropriate for UI. OWF has developed user interfaces in various technologies including
Java, Python (Qt), and web technologies, and .NET is also an option.

2. “The Future of Fortran”:
a. The point is made that projects such as CDSS will result in “an adequate pool” of Fortran

programmers. Comment: This has clearly not been the case for CDSS given the
challenge of finding Fortran programmers for StateMod.

b. The point is made that a rewrite of a Fortran program in an object-oriented language
would be a complete rewrite and not justified. Comment: Many programs have
undergone major rewrites in order to implement new technologies and improved
design. Such investment may be needed periodically to allow for innovation more
nimble and efficient maintenance. In the case of PACSM, the decision has apparently
been made to employ a full-time programmer and it is likely that such a person could
update the code to a different (e.g., object-oriented) language as part of their duties,
perhaps within a year of effort. To some degree, modernizing the language and using
an object-oriented design reduces the risks for future maintenance because more
developers will be available for the programming language.

3. “Language Standard and Style Guidelines”:
a. A recommendation was made to remove tab characters from code. Comment:

StateMod has some of the same issues and such aspects of the Fortran language are at
times an irritation and at other times a bug. For example, improper formatting of code
can cause truncation of code on right-most part of lines, resulting in bugs. Such things
should be eliminated through compiler options, and are in most cases not an issue with
other languages.

b. A recommendation is made to remove GOTO statements to improve logic. Comment:
This is also a valid comment for StateMod, with a code search listing over 2500 instances
of GOTO. Such logic can be difficult for new developers to understand, although many
cases may simply by to jump to the end of a function if an error in input is detected.

c. A recommendation is made to use modules to replace common blocks. Comment: This
is a good recommendation and can make the code more modular. StateMod suffers

Page 5| 320 East Vine Drive, Suite 203, Fort Collins, CO 80524 | 970-286-7439 | openwaterfoundation.org

from some inherent design considerations that increase the chances of bugs, such as
global common blocks.

d. A recommendation is made to use consistent code formatting, indentation, variable
formatting, etc. Comment: This is of course a good recommendation and new
programmers will likely be tempted to make the code more understandable. Such
cleanup would be a part of object-oriented migration.

e. A recommendation is made to remove unused variables, dead code, etc. Comment:
Such issues are easily detectable using a modern compiler and integrated development
environment (IDE) and changes should occur as part of normal coding. Migrating
StateMod to gfortran should point out issues that can be resolved and using additional
compiler options can point out further issues for cleanup.

f. Comment: In addition to the above, improvements to StateMod recommended by OWF
are to use parameter statements (or equivalent) to isolate constants such as array
dimensions and rename subroutines and functions to be more understandable, such as
including operating rule and descriptive name in the subroutine name and
corresponding source code file.

g. Comment: The PACSM model dataset appears to be simpler than the complex CDSS
datasets and discussion of performance using different technologies needs to compare
examples of code for the same input and logic (as much as possible).

4. “Review of Modeling Environment”
a. Comment: Use of PACSM’s pre and post processors is equivalent in many ways to the

data-centered use of data management interface (DMI) software such as StateDMI and
TSTool. TSTool has been enhanced in recent years to write to Excel and StateDMI has
also recently been enhanced to include such features (to support new web service
integration). Additional visualization can occur and (re)implementation of StateMod
GUI could provide useful functionality. Consideration of the full modeling environment
is a consideration for whether a new language for StateMod is chosen because the
language impacts how much integration can occur with other tools.

b. PACSM uses Microsoft Access for data processing. Comment: This technology provides
useful features but is also limiting in that the resulting code is not very transparent given
that it is packaged with the database. Using Access does not appear to be a
consideration for CDSS, although use of a database to manage and process model
output is something that could be considered in the future.

c. The point is made that adopting a more integrated language that supports user
interface development (such as C++ for RiverWare) might result in a better product.
Comment: This is also a consideration for StateMod. The use of Fortran for
computation code limits options for implementing an integrated user interface.

5. “Refactoring the Environment in ArcGIS”
a. The points are made that Esri changes its approach, that Python is typically used to

program GIS environments, and PyQt could be used. Comment: Both open source QGIS
and Esri ArcGIS Pro provide (and recommend) Python libraries to create custom GIS
interfaces. OWF has developed the open source GeoProcessor using a design that
supports QGIS PyQGIS and ArcGIS Prop ArcPy Python libraries. If StateMod were coded
in Python, then integration with GIS for map-based interfaces would be simpler,
although the developer would need to have skills to use the development libraries.

6. “Refactoring the Environment in Qt”
a. The recommendation is made to consider Qt for user interface, but recognizes the effort

to implement. Comment: There is no getting around learning a technology when it is

Page 6| 320 East Vine Drive, Suite 203, Fort Collins, CO 80524 | 970-286-7439 | openwaterfoundation.org

chosen for a solution and often the effort of implementing a technology takes longer
than expected. OWF’s approach has been to learn multiple technologies so that an
understanding of technologies is considered in design, and experience can be leveraged
in programming projects. Qt provides standard user interface tools for C++ (for example
used in RiverWare) and Python (used in QGIS) and Qt would be a good choice for UI if
those languages are chosen. OWF is using Qt in the open source GeoProcessor
software. The adoption of any technology requires planning to ensure that staff are
available to support the technology over time.

7. “Review of Alternate Modeling Programs”
a. Comment: A list of models is presented and compared. It is likely that each of these

models is experiencing similar issues with maintenance, with various choices of
technologies resulting in different levels of risk in being able support the software. OWF
has interviewed the developers of RiverWare and MODSIM to gain perspective of
challenges for those tools and has provided the State with summary memos. A common
problem is that programmers that are not computer science graduates (or don’t have
significant experience with coding from different perspectives) may “brute force” their
way through coding, resulting in code that is not as easy to maintain. In contrast, a
computer science graduate requires time and guidance to understand water resources
concepts in order to write code that is understandable and not too abstract. This
balance is the challenge that all model programming teams face, with different degrees
of success.

b. There is discussion about the integration of GUI and simulation code for MODSIM and
RiverWare that makes it appear that GUI is tightly linked to simulation code. Comment:
GUI and simulation code can actually be integrated in a way that allows for batch
execution without accessing GUI code, or use GUI code as needed, such as producing
output graph products. These design considerations could be easily handled if
StateMod were translated to a different language.

A general comment about the 2012 memo and the decision of whether to update StateMod code to
another language is whether to move StateMod to an object-oriented design and corresponding
language. Moving from a procedural language to object-oriented language is a major paradigm shift.
Making this change can result in improved software quality that is easier to maintain. And, adopting an
object-oriented language will transform StateMod code into a form that can be understood by any
programmer that understands object-oriented concepts. Said differently, using a non-object-oriented
language and software design will limit options to find programmers and will result in software that is
more difficult to maintain. OWF is currently working on a project to evaluate alternative languages for
StateMod and each supports object-oriented design: Java, C#, Python, and new versions of Fortran
(2003, 2008, etc.). A migration to object-oriented design is highly recommended, regardless of
language. If this decision is made, then secondary criteria should be considered, such as support for
user interface, performance, availability and efficiency of programmers, and integration with other
components. Fortran has fewer options for UI and integration, although some options are available.

