SWSI Update Dashboard Wireframe Addenda (ver. 1) Prepared for CWCB by RS21 April 8, 2019

Appendix A:

The following pages pull material from the originally proposed data visualization story list (Excel spreadsheet, sent by CWCB to RS21 in January 2019) and categorize the various story components into the proposed wireframe "Story Tabs." Additional notes and comments from other supporting materials are **noted in blue**.

Client Name: CWCB

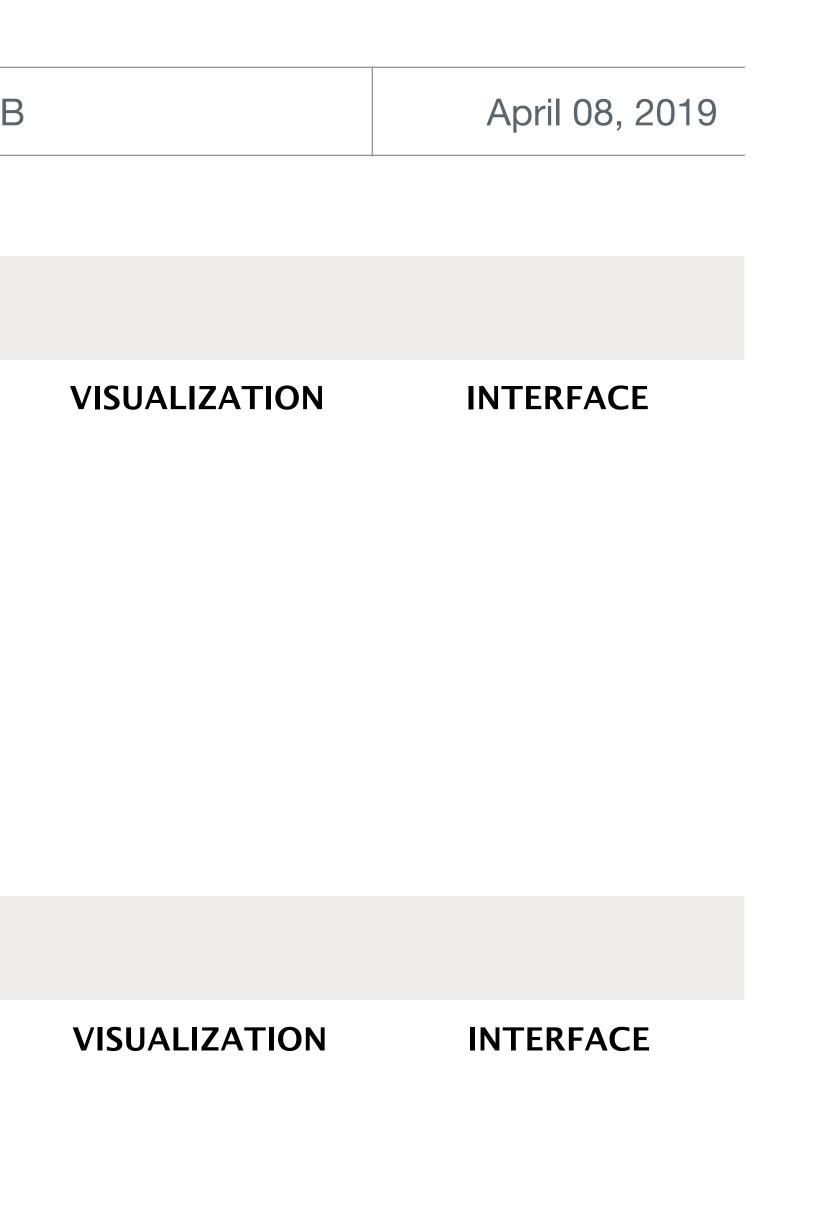
April 08, 2019

Content Breakdown: SWSI Overview Page, Methodology Page

SWSI Overview Page

PRIMARY TOPIC	STORY	DESIRED IMPACT	SCALE
Whole Shebang	Basins and BRTs (and IBCC?)	Explain the 9 BRTs and 8 basins	State Level
Whole Shebang	SWSI 2010 and SWSI Now – The GAP	Explain the history of SWSI; where we've been and where we're at.	State Level
Whole Shebang	Water Plan Goals	Explain the objective measures in the water plan	State Level
Whole Shebang	What is Scenario Planning	Explain scenario planning, TAGs and CWP	State Level
Whole Shebang	What is the Water Plan	Provide background on the Water Plan	State Level

Methodology Page


PRIMARY TOPIC	STORY	DESIRED IMPACT
Whole Shebang	Modeling Key Decisions	Explain modeling, decisions that were
Whole Shebang	Prior Appropriation	Explain (briefly) CC

Dashboard Introduction Tab

PRIMARY TOPIC	STORY	DESIRED IMPACT	SCALE
Compacts	Colorado Compact	How the Colorado Compact works	State Level
Compacts	Number of Compacts	Show the 9 compacts and 2 decrees by basin	
Whole Shebang	How everything fits together	Explain how things are interconnected; values	State Level

ge, and Dashboard Intro Tab	Client Name:	CWCB

y, development across basins and key are made in the models. CO water law

VISUALIZATION

SCALE

State Level

Map with names

INTERFACE Call-out Clickable Map

Content Breakdown: Gaps and Growth Factors

Dashboard Gaps Tab

PRIMARY TOPIC	STORY	DESIRED IMPACT	SCALE
AG	Efficiency	Where Ag is more and less efficient	County Level
AG	Shortages / Gap	How Short SWSI shows Ag vs. Historical Shortage?	?
M&I	Conservation	Show gpcd; show how Denver Metro is more efficient (and has been)?	Basin level?
M&I	Shortages / Gap	Were M&I may be hardest hit?	County?
M&I	Water Loss	Areas with highest water loss?	City level
TMD	Amount & Future	Show the number of TMDs and highlight the conceptual framework.	State Level
TMD	Shortage / Gap	What is the TMD Gap	State Level
MISSING E&R DAT	A — HOW TO DISPLAY?		

Dashboard Growth Factors Tab

PRIMARY TOPIC	STORY	DESIRED IMPACT	SCALE
AG	Buy & Dry	Show where buy and dry is likely to occur due to urbanization.	County Level
Population	Population Shifts	Show shifts across Urban, Rural and Mtn Communities	County Level
Population	Total Growth	Show how much Colorado is expected to grow.	County Level
Population	Urbanization	Urbanization/assumptions in each scenario	County Level

Client	Name:	CWCB
--------	-------	------

April 08, 2019

VISUALIZATION

Heat Map

Graph?

Map with numbers?

Heat Map

Graph?

—

Heat Map

INTERFACE Clickable Map Static Map Static Map

Clickable Map Static Graph Call out Static Map

VISUALIZATION

Heat Map

Heat Map

Heat Map

Heat Map

INTERFACE

Clickable Map

Clickable Map

Clickable Map

Clickable Map

Content Breakdown: Climate/Storage

Dashboard Climate/Storage Tab

PRIMARY TOPIC	STORY	DESIRED IMPACT
Climate	Paleo Comparison	Show why paleohyo make the best sens
Climate	Timing & Storage	Show shift in in runoff?
Climate	ET Rates	Shifts in evapotran needed to meet thi
Storage	Development	Storage across the developed?
Storage	Storage E&R Benefits	How storage can he
Storage	Storage Volume	How small storage Mead
Storage	Tanking Res for M&I	How you can drop a but decrease resilie
Whole Shebang	How does storage work in CO?	Explain the need for storage

Aquifers and groundwater vs surface water storage?

Why we need storage? Wet and dry years? Runoff?

	Client Name: CWCB
-	SCALE
ydrology does not always nse to forecast the future.	Basin Level
	State Level?
nspiration (ET) rates? Demand nis shift?	Basin Level?
e state and what could be	Basin Level?
nelp E&R (rafting; fish; etc).	Basin Level
e is compared to Lake	State
a reservoir for consumptive uses ience to long-term drought.	State
for	State Level

April	08,	2019
-------	-----	------

VISUALIZATION	INTERFACE
Graph	Static Graph
Graph?	Static Graph
Map with numbers	Static Map
Heat Map	Clickable Map
_	Call-out
Graph	Static Graph
Graph	

Content Breakdown: Solutions/Integration

Dashboard S	Solutions Tab	
PRIMARY TOPIC	STORY	

Where projects are at

DESIRED IMPACT

Show were existing projects are located.

XGAME - GetJoin BRT - Plan ProjectsInvolved

Projects (IPPs)

Show how you can get involved and work to start a project in your area.

"Driven by geography; Basins.

EX: Ag downstream of municipal needs water....part of the conservation story....map of where some of the water demands occur..."

Could include links to

- Basin Roundtable Page

- BIPs
- IPP project map
- CWCB Funded Projects

- SWSI/Water Plan Communications Tool Kit

Client Name:	CWCB

State + Basin

SCALE

Map Level

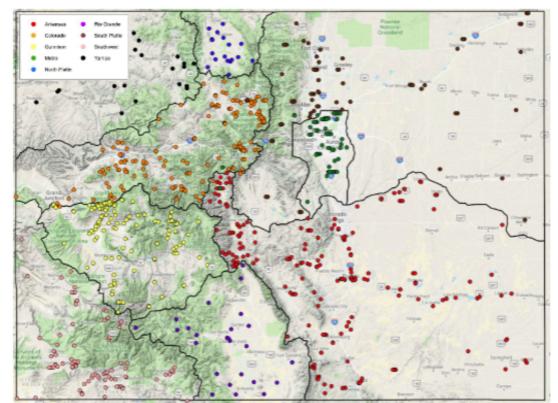


Figure 5. Statewide map of IPPs shown with basin boundaries.

VISUALIZATION

Pins in a map

INTERFACE Clickable Map

Appendix B:

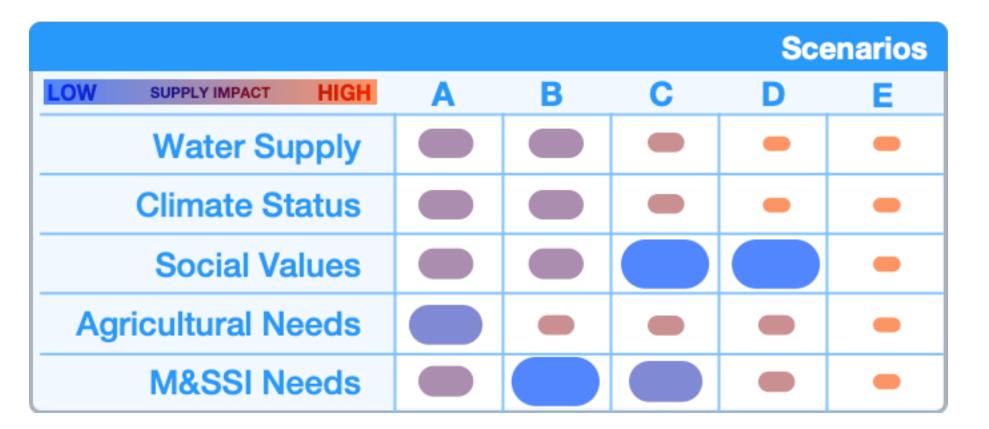
The following notes/questions indicate areas of the wireframes where we still feel like there are content/functionality challenges left to resolve.

Client	Name:	CWCB
--------	-------	------

April 08, 2019

Screen 1: Questions

1) What should we show as a default view? If no scenario is seelected, do we have a default visual to display on the map? Does the introduction need a map view?

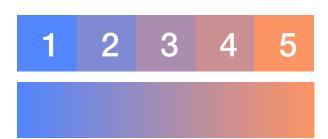

2) What is the critical information we need to communicate about the scenarios? Should scenario information be persistent (i.e. always visible) or should it be referenced through a separate view/modal? Is there a need for cross-scenario comparison, or would an in-depth view of scenario assumptions be more appropriate?

3) What is CWCB's preferred strategy for encoding positive/negative value statements within these visualizations? For example, high "needs" implies less available water, whereas high "social values" leads to more available water. Using the same encoding scheme would cause conflicting visuals.

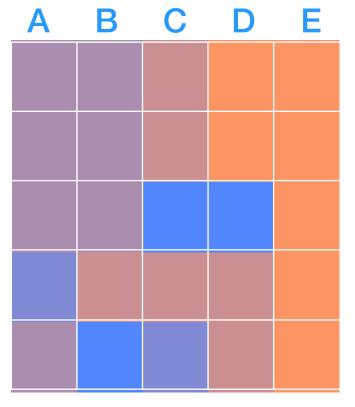
Baseline	A	1	В	С	D	E
Scenario D: A	daptiv	e Inn	ovatio	on		
Economy/Population		HIGH*	New Water	Efficiencies	⊢ 0≫ 1	HIGH
Urban Land Use	I ■<0 —I	DENSE	Social/Envi	ronmental Values	s 0>0 1	HIGH
Climate Status/Water Supply	I ●<⊖ I	HOT/DRY	Regulatory	Constraints		INCREASED
Energy Water Needs	I ●<⊖ I	LOW	M&I Water	Demands		HIGH
Agricultural Conditions	⊢ ⊖≫ I	S. HIGH		*.	denotes adjus	sted value
Agricultural contations		orman			denotes adjus	sted value

Option 1: Provide detailed scenario information

Persistent scenario selection panel will allow visitors to the site to learn more about all of the various assumptions associated with each scenario, but limits ability to compare assumptions between scenarios.



Option 2: Provide high-level scenario comparison


Persistent scenario selection panel will allow visitors to the site to compare general scenario assumptions, but will require additional details to be provided at other locations within the site (either on a separate page or through a conceal/reveal pattern).

Agri

April 08, 2019

Water Supply Climate Status Social Values Agricultural Needs M&SSI Needs

	Α	B	С	D	E
Water Supply		<u> </u>		—	
Climate Status			•		
Social Values					
ricultural Needs		•	•	•	
M&SSI Needs				•	

Screen 2: Questions

 Do we have geospatial information associated with each story to be displayed in the story tab?

2) Does each story correlate with a scenario, or do we have stories to display that are not associated with the model output scenarios?

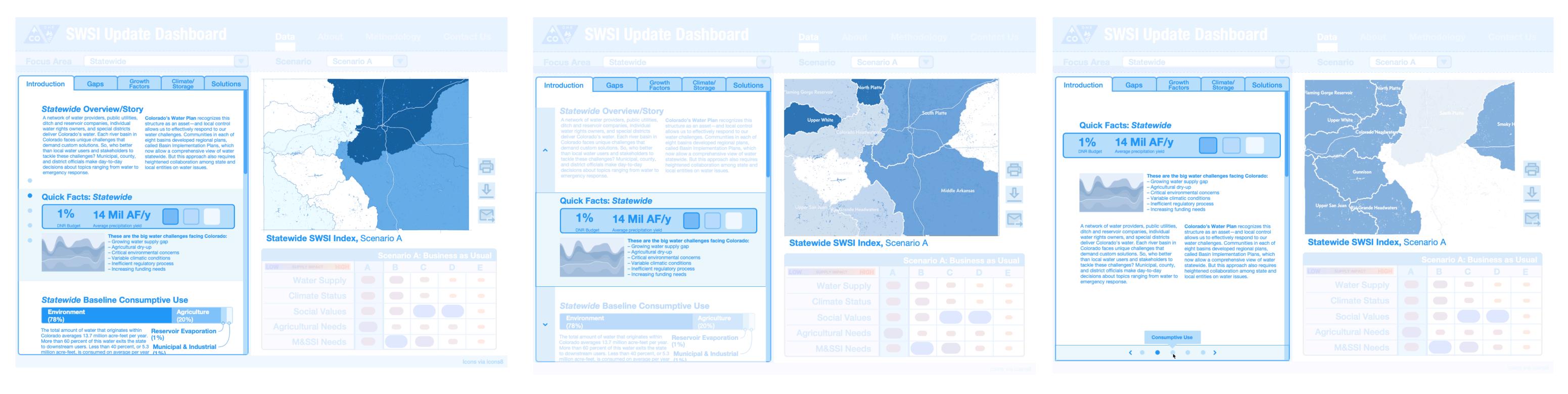
|--|

April 08, 2019

Screen 3: Questions

1) Do we have data to display on a map beyond a basin level? If not, is it useful to have the map zoom to the basin level (potentially allowing for city/ infrastructure location POIs) or should sector selection be fixed at the statewide view (potentially allowing for cross-basin comparison).

	Client Name: CWCB
--	-------------------


April 08, 2019

Dashboard Screen 4 Notes: Pagination Options for Story Tabs

Challenge: Multiple stories/map display

Unless we choose to highlight one specific map view tied to each tab within the screen, there is a significant challenge in identifying which "heatmap" or other series of map layers should be displayed on the screen at any given time. In order to address this challenge, one possible solution is to use some sort of paginated layout within the story tabs. However, this solution presents a number of additional challenges, particularly in terms of overall complexity and a challenge for future responsive design opportunities.

Option 1: Dot pagination with active element highlighting

Highlight active story elements using dot scroll/paginating. Active story element will correlate with active map display, if any.

Page x of xi

Client Name:	CWCB

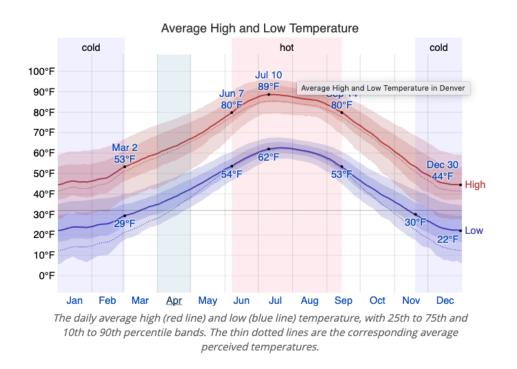
Option 2: Carousel with active element highlighting

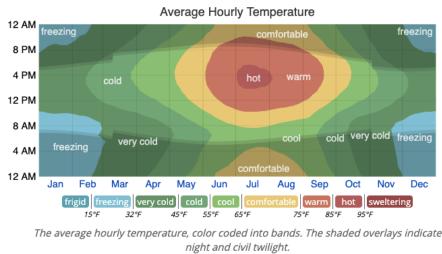
Highlight active story elements using a carousel format. Active story element will correlate with active map display, if any.

Option 3: Horizontal dot pagination with tooltips

Active story elements displayed on a single page, progress through story using horizontal dot pagination. For navigating between pages, tooltip will provide page information on hover. Active page story will correlate with active map display, if any.

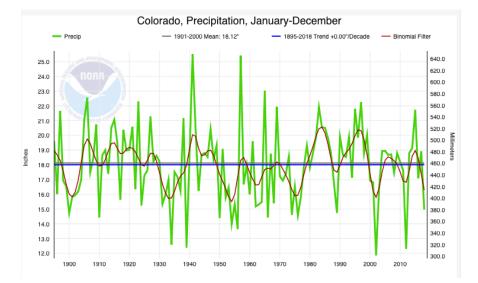
April 08, 2019


Dashboard Notes: Visualization Options for Story Tabs

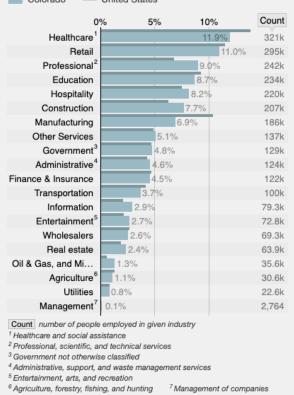

Challenge: Determining ideal visualization

Given the number of proposed stories across a wide variety of subject areas, determining appropriate visualization formats for each story will be paramount. Below are a number of examples of key story elements that we believe could serve the larger narrative, displayed in different ways.

For more information, *Flowing Data's* Nathan Yau wrote about this phenomenon on his website at: https://flowingdata.com/2017/01/24/onedataset-visualized-25-ways/

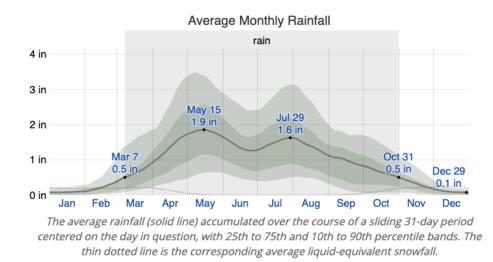

Average temperature

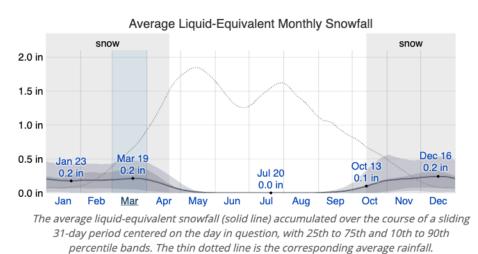
https://weatherspark.com/y/3709/Average-Weather-in-Denver-Colorado-United-States-Year-Round


Time series of average precip for each month

https://www.ncdc.noaa.gov/cag/statewide/time-series

Major industries

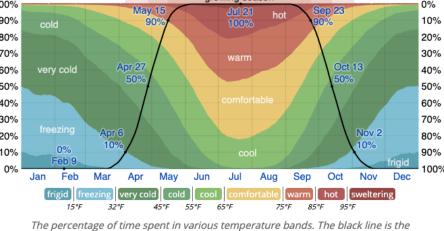

Percentage of the civilian employed population aged 16 and older. Scope: population of the United States and Colorad Colorado United States



Administrative	Education	Mana		ge Manufacturing			
		Healthcare	il & Gas and	d Other Services	Professional		
Agriculture							
Construction	Entertainment						
	Finance & Insurance	Hospitality	Real estate		Transportation		
			Retail				
	Government				Utilities		
		Information				Wholesalers	
		momation					

https://statisticalatlas.com/state/Colorado/Industries

Average annual precipitation



https://weatherspark.com/y/3709/Average-Weather-in-Denver-Colorado-United-States-Year-Round

Growing season

Time Spent in Various Temperature Bands and the Growing Season

percentage chance that a given day is within the growing season.


https://weatherspark.com/y/3709/Average-Weatherin-Denver-Colorado-United-States-Year-Round

Landuse breakdown (percent Ag, M+I. other...)

Population

Historical population

Historical population of Colorado state for period 1860-2015 ^[1], ^[2], ^[3]:

Population: percent urban/rural

86.2% urban

https://www.icip.iastate.edu/ tables/population/urban-pctstates

