Water Resources Section 6060 Broadway Denver, CO 80216

January 14, 2019

Ms. Linda Bassi, Chief Stream and Lake Protection Section Colorado Water Conservation Board 1313 Sherman Street, Suite 721 Denver CO 80203

Subject:

Instream Flow Recommendations for Streams in Water Division 2, Huerfano County; Baker and Bonnett Creeks, to be Presented at the January 28-29, 2019

CWCB Meeting

Dear Ms. Bassi:

The information contained in and referred to in this letter forms the scientific and biological basis for instream flow (ISF) recommendations for Baker and Bonnett Creeks in Water Division 2. These flow recommendations will be presented for consideration by the Colorado Water Conservation Board (CWCB or Board) at their January 2019 regular meeting. The field investigations relating to these ISF recommendations were conducted by US Forest Service (USFS) personnel in 1992 and by Division of Wildlife (DOW) personnel in 2006. Supplementary information was collected by Colorado Parks and Wildlife (CPW) personnel in 2016. These stream reaches were first presented to the Board in 2009. At the January 2009 meeting, the Board declared its intent to appropriate on these streams, Cucharas Creek, Chaparral Creek, Dodgeton Creek, and two segments of the Huerfano River. Because of opposition from Huerfano County Water Conservancy District and other interests, the ISF appropriations were put on hold to allow the opposing parties to complete a study establishing their water needs and file for necessary additional water rights. A stipulation was signed by the parties that postponed a formal hearing of the appropriations. Per the terms of the stipulation, the Board took action to move forward the Huerfano River and Cucharas Creek appropriations in 2010 and the Dodgeton Creek and Chaparral Creek appropriations in 2011. The opposers requested the Baker Creek appropriation be made after January 2013. The postponement period has concluded, and it is now CPW staff's opinion that the information contained in this letter is sufficient to recommend ISF appropriations on Baker and Bonnett Creeks to the Board and to specifically address the findings required in Rule 5(i) of the Instream Flow Program Rules.

CPW participates in the ISF Program and develops instream flow recommendations for the Board's consideration in an effort to address CPW's legislative declarations "... that the wildlife and their environment are to be protected, preserved, enhanced, and managed for the use, benefit, and enjoyment of the people of this state and its visitors ... and that, to carry out such program and policy, there shall be a continuous operation of planning, acquisition, and development of wildlife habitats and facilities for wildlife-related opportunities" (See §33-1-101 (1) C.R.S.), and "... that the natural, scenic, scientific, and outdoor recreation areas ... protected, preserved, enhanced and managed for the use, benefit, and enjoyment of the people of this state and (its) visitors ... and that, to carry out such program and policy, there shall be a continuous operation of acquisition, development, and management of ... lands, waters, and facilities." (See §33-10-101 (1) C.R.S.).

In addition to these broad statutory guidelines, CPW's current strategic planning document (CPW Strategic Plan, 2015) explains current agency goals to, "[c]onserve wildlife and habitat to ensure healthy sustainable populations and ecosystems." In order to, "protect and enhance water resources for fish and wildlife populations," by pursuing, "partnerships and agreements to enhance instream flows, protect reservoir levels, and influence water management activities," and to, "[a]dvocate for water quality and quantities to conserve aquatic resources." In addition to the CPW strategic plan, the agency's fish and wildlife conservation activities are also directed by the State Wildlife Action Plan (2002, Revised 2015). The goals and priorities from these documents direct CPW to advocate for the preservation of the state's fish and wildlife resources and natural environment, and therefore link CPW's mission to the goals and priorities of CWCB's ISF/NLL Program.

Recommended Segments

CPW is proposing ISF recommendations on Baker Creek from its headwaters to the USFS boundary and on Bonnett Creek from its headwaters to the confluence with the Cucharas River.

Natural Environment

As stated above, Baker and Bonnett Creeks were first proposed by DOW in 2009. DOW's interest was based on the fact that the streams contain suitable habitat for brook trout and observations by CPW staff indicate the stream supports brook trout. CPW is of the opinion that there are flow dependent natural environments in Baker and Bonnett Creeks that can be preserved to a reasonable degree by ISF appropriations.

Flows Necessary to Preserve the Natural Environment

In 2006 and 2016, CPW (DOW) personnel collected stream cross-section data to be used as input into the R2CROSS model. Initial biological instream flow recommendations were developed utilizing the standard application of the R2CROSS methodology (Espegren 1996). R2CROSS uses field data that has been collected in a riffle habitat types; riffles are typically the limiting habitat type in streams during low flow events. The field data includes a survey of stream channel geometry, a longitudinal slope of the water surface, and a streamflow measurement at the designated cross-section. After processing this data with R2CROSS, winter and summer flow recommendations were developed utilizing the standard R2CROSS criteria described in Nehring

(1979) and Espergren (1996); the R2CROSS hydraulic criteria of interest are average depth, average velocity, and wetted perimeter. Maintaining these hydraulic parameters at adequate levels across riffle habitat types will also maintain aquatic habitat in pools and runs for most life stages of fish and aquatic invertebrates (Nehring 1979).

Cross-section data sets were collected on the reaches identified above. The field data sheets and resulting R2CROSS outputs are attached. The results of the R2CROSS analysis are summarized on the attached recommendation summary reports. R2CROSS biological recommendations were further refined with a preliminary water availability analysis. CPW conducted a preliminary evaluation of the hydrology in these streams to determine if water is physically available for an ISF appropriation. Representative hydrographs for each of these reaches are based on USGS StreamStats, a software product that estimates mean monthly flow statistics. Winter water availability reduced the baseflow recommendations on both reaches. CPW determined that the reduced winter flow rates should be sufficient for overwintering fish. Final detailed water availability analyses will be performed by CWCB staff and presented in the Executive Summaries provided to the Board prior to the January 2019 meeting.

The proposed flow recommendations below should be sufficient to preserve the natural environment to a reasonable degree:

- Baker Creek
 - o 2.1 cfs is recommended from May 1 through June 30;
 - 1.4 cfs is recommended from July 1 through August 31;
 - o 0.5 cfs is recommended from September 1 through March 31;
 - o 1.0 cfs is recommended April 1 through April 30.
- Bonnett Creek
 - 1.0 cfs is recommended from April 1 through June 30;
 - o 0.6 cfs is recommended from July 1 through August 31;
 - o 0.4 cfs is recommended from September 1 through March 31.

As stated above, the purpose of this letter is to formally transmit these ISF recommendations from CPW to CWCB for the Board's consideration for the 2019 appropriation year. Please refer to the attached recommendation summary reports and supporting documentation for additional information. If CWCB staff has any further questions or needs clarification regarding these flow recommendations, please contact us.

CPW personnel will be present at the January 2019 CWCB meeting to answer any questions that the Board might have regarding these flow recommendations. We appreciate your consideration.

Sincerely,

Katie Birch

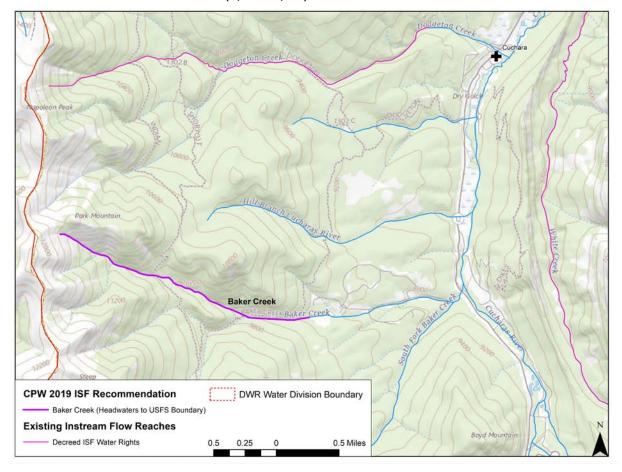
CPW Instream Flow Program Coordinator

Attachments (as stated)

Stream: Baker Creek

Colorado Parks and Wildlife Recommendation Summary

Water Division: 2 Water District: 16 CPW Watercode: 29101


Segment: Headwaters to USFS Boundary

Upper Terminus: Headwaters 13S 485496.58 4134666.58 UTM

Lower Terminus: USFS Boundary 13S 488637.74 4133589.16 UTM

ISF Recommendation: 2.1 cfs (5/1 to 6/30)

1.4 cfs (7/1 to 8/31) 0.5 cfs (9/1 to 3/31) 1.0 cfs (4/1 to 4/30)

Introduction

The information contained in this report and the associated supporting documents form the basis for the instream flow recommendation to be considered by the Colorado Water Conservation Board (Board). It is Colorado Parks and Wildlife (CPW) staff's opinion that the information contained in this report is sufficient for the Board's staff to begin the investigations required to support the findings required in Rule 5(i) of the Instream Flow Rules.

CPW is sending this instream flow recommendation to the Board to meet CPW's legislative declaration, "... that the wildlife and their environment are to be protected, preserved, enhanced, and managed for the use, benefit, and enjoyment of the people of this state and its visitors ... and that, to carry out such program and policy, there shall be a continuous operation of planning, acquisition, and development of wildlife habitats and facilities for wildlife-related opportunities" (See §33-1-101 (1) C.R.S., and, "... that the natural, scenic, scientific, and outdoor recreation areas of this state are to be protected, preserved, enhanced and managed for the use, benefit, and enjoyment of the people of this state and visitors of this state... and that to carry such program and policy there shall be a continuous operation of acquisition, development, and management of outdoor recreation lands, waters, and facilities (C.R.S. §33-10-101 (1))."

In addition to these broad statutory guidelines, CPW's current strategic planning document (CPW Strategic Plan, 2015) explains current agency goals to, "[c]onserve wildlife and habitat to ensure healthy sustainable populations and ecosystems." In order to, "protect and enhance water resources for fish and wildlife populations," by pursuing, "partnerships and agreements to enhance instream flows, protect reservoir levels, and influence water management activities," and to, "[a]dvocate for water quality and quantities to conserve aquatic resources." In addition to the CPW strategic plan, the agency's fish and wildlife conservation activities are also directed by the State Wildlife Action Plan (2002, Revised 2015). The goals and priorities from these documents direct CPW to advocate for the preservation of the state's fish and wildlife resources and natural environment, and therefore link CPW's mission to the goals and priorities of CWCB's ISF/NLL Program.

Instream Flow Recommendation

The subject of this report is a segment of Baker Creek beginning at its headwaters and extending downstream to the US Forest Service (USFS) Boundary. The proposed segment is located southwest of the Town of Cuchara. The recommendation for this segment is discussed below. The entire reach is located on public lands managed by the USFS in the Pike and San Isabel National Forests.

		Total Length	Land Ownership			
Upper Terminus	Lower Terminus	(miles)	% Private	% Public		
Headwaters	USFS Boundary	2.1	0%	100%		

Natural Environment

Baker Creek is a first order, high-gradient stream, with a somewhat confined channel. Substrate

ranges from boulder to cobble. There is some large wood in the channel adding channel complexity. Observations by CPW staff indicate the stream environment of Baker Creek supports brook trout (Salvelinus fontinalis).

Biological Flow Quantification Methodology

CPW staff used the R2CROSS methodology to quantify the amount of water required to preserve the natural environment to a reasonable degree. The R2CROSS method requires that stream discharge and channel profile data be collected in a riffle stream habitat type. Riffles are most easily visualized, as the stream habitat types that would dry up first should streamflow cease. This type of hydraulic data collection consists of setting up a transect, surveying the stream channel geometry, and measuring the stream discharge. Copies of field data collected for this proposed segment are included as an attachment.

Field data is processed in the R2CROSS model to develop these initial recommendations. The recommendations are designed to address the unique biological requirements of each stream without regard to water availability. The R2CROSS method utilizes three hydraulic parameters, average depth, percent wetted perimeter, and average velocity to develop biologic instream flow recommendations. CPW has determined that maintaining these three hydraulic parameters at adequate levels across riffle habitat types, aquatic habitat in pools and runs will also be maintained for most life stages of fish and aquatic invertebrates (Nehring 1979; Espegren 1996).

Results

In 2006 and 2016, stream cross-section information, flow data, and natural environment observations were collected by CPW (DOW) staff to quantify the instream flow needs for this reach of the Baker Creek using R2CROSS.

For this segment of stream, three data sets were collected with the results shown in Table 1 above. Table 1 shows who collected the data (Party), the date the data was collected, the measured discharge at the time of the survey (Q), the accuracy range of the predicted flows based on Manning's equation (240% and 40% of Q), the hydraulic equation that was used, and the corresponding summer flow recommendation meeting all 3 hydraulic criteria and the winter flow recommendation meeting 2 of 3 hydraulic criteria.

Table 1. Results of R2CROSS transect measurements and the resulting flow recommendations.

	Party	Date	Q measured	40%-250%	Hydraulic	Flow Meeting	Flow Meeting
		Measured			Equation	Two Criteria	Three Criteria
1	DOW	5/11/2006	1.46 cfs	0.6 – 3.6 cfs	Manning's	0.6 cfs	2.1 cfs
2	CPW	11/21/2016	0.74 cfs	0.3 – 1.9 cfs	Manning's	1.2 cfs	Out of Confidence Interval
				Mean		0.9 cfs	2.1 cfs

CPW's initial recommendation is 2.1 cfs, summer, and 0.9 cfs, winter, based on 2006 and 2016 data collection efforts. This recommendation is based on the physical and biological data collected to date and does not incorporate any water availability constraints.

Hydrologic Data

CPW staff conducted a preliminary evaluation of the stream hydrology to determine if water was physically available for an instream flow appropriation. The hydrograph below is based on US Geological Survey (USGS) StreamStats, a software product that estimates mean monthly flow statistics for the contributing basin. Figure 1 below displays the StreamStats hydrograph, the initial R2CROSS recommendations, and the proposed ISF recommendations refined by water availability.

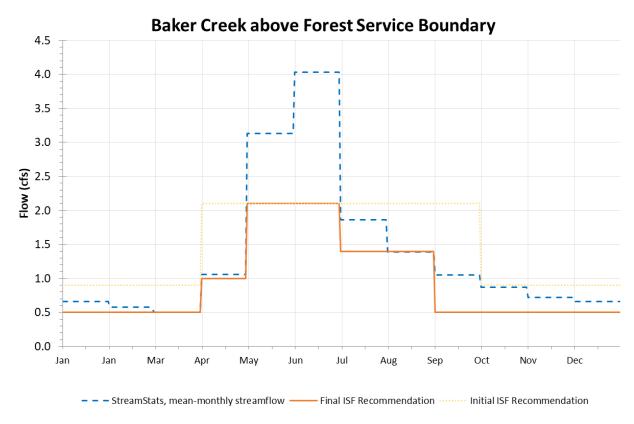


Figure 1. Hydrograph showing the USGS StreamStats monthly mean flow estimates for Baker Creek above the USFS boundary, and initial and adjusted CPW winter and summer seasonal recommended flows.

Recommended Flow Rates

After incorporating the preliminary water availability information, the original instream flow recommendation was modified. During the baseflow period, the proposed winter flow recommendation was reduced from 0.9 cfs to 0.5 cfs. This reduced base flow rate is needed for fish overwintering and will maintain velocities that prevent freezing and achieve adequate depths at microhabitats across the reach — preserving habitat availability within the wetted channel. The proposed summer flows will preserve the natural environment by achieving all three instream flow criteria during the snowmelt runoff period. Because this period is limited from May to the end of June, CPW recommends protection of the rising and receding limbs of the hydrograph on either

end of runoff. This combination will support fish spawning, development, and rearing. The proposed flows below are sufficient to preserve the natural environment to a reasonable degree in this reach of Baker Creek:

- 2.1 cfs is recommended from May 1 through June 30;
- 1.4 cfs is recommended from July 1 through August 31;
- 0.5 cfs is recommended from September 1 through March 31;
- 1.0 cfs is recommended April 1 through April 30.

If additional water is determined to be available in further investigations, the CPW would recommend appropriating the additional water up to the initial, biological recommended flow amounts to preserve the natural environment to a reasonable degree.

Existing Water Right Information

CPW staff has analyzed the water rights tabulation and consulted with the Division of Water Resources (DWR) Water Commissioner to identify any potential water availability problems due to existing diversions. Records indicate that there are no existing water rights located within this reach of Baker Creek. There is an existing water right downstream of the proposed ISF reach, CS&WD BAKER CREEK INTAKE (ID: 1600707). This water right is for Cuchara's municipal water system.

CPW and CWCB staff have met with the Cucharas Collaborative and Huerfano County Water Conservancy District water users; they have been made aware of these proposed ISF recommendations and have expressed no major issues or concerns.

FIELD DATA FOR INSTREAM FLOW DETERMINATIONS

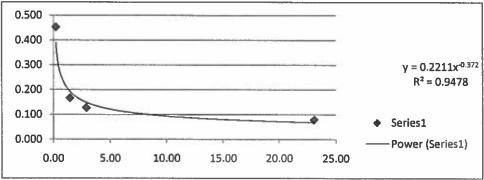
LOCATION INFORMATION

CONSERVATION BOARD ESCATION INTO CHIRALTON																			
STREAM NAME:	Bo	Kes		Cr	·ee	6		Ų.								С	ROSS-S	ECTION	N NO.:5
CROSS-SECTION LOCATION:	@	SK	= 4	me	2														
WP#Z	2 3	37 2	20	56	7		10	75	0	7	20	1.6					_		
DATE:5 11 06 OBSE	DATE: 5/1/06 OBSERVERS: Uppendel																		
LEGAL SECTION: NE SECTION: 17 TOWNSHIP: 3 NS RANGE: 69 EW M.																			
COUNTY; HURTON WATERSHED: WATER DIVISION: DOW WATER CODE:																			
USGS:																			
MAP(S): USFS:	<u></u>																		
SUPPLEMENTAL DATA																			
SAG TAPE SECTION SAME AS DISCHARGE SECTION:																			
METER NUMBER:		DATE RATE	D:			Г										T		3.6	
CHANNEL BED MATERIAL SIZE	RANGE:					CALIE	/SPIN:	BUOTO		SEC		EIGHT			R OF P	HOTOG	TENSI	-	(bs
		1.						rnore	JUNATI	IS IAND									
CHANNEL PROFILE DATA																			
STATION	DIST	ANCE (IT	0		ROD	READ	ING (It)						(8) [215	`		1	LEGEND:
Tape @ Stake LB	0	0.0		+				_	- 3		_		\dashv	7				- Str	ake 🕱
▼ Tape © Stake RB	0	0.0		—					K			2						Sta	ition (1)
1 WS @ Tape LB/RB	0	0.0		╀					E T C				<u> </u>		\rightarrow			Ph	ioto (1)-
2 WS Upstream	12	<u>.O</u>		↓_	7	7,4	5	_	⁺ _									\vdash	
③ WS Downstream	<u> </u>	.5				1,Z	0	4				. /	′ (§	n 1	0			Direc	ction of Flow
SLOPE 1.75/	15.5	= 0.	. []	<u> 29</u>						-		Ø		<i>L</i>	B				<u> </u>
				AQ	UAT	IC S	AMF	LIN	G SI	JMM	ARY								
STREAM ELECTROFISHED: Y	ES/NO	DISTANCE	ELECI	TROFISI	HED _	ft		F	ISH CA	UGHT	YES/NO)		WATER	CHEM	HSTRY :	SAMPL	ED: YES	S/NO
		LENGTH-	· FREQ	UENCY	DISTR	IBUTIO	ON BY	NE-IN	CH SIZ	E GROI	UPS (1.	0-1.9, 2	2.0-2,9,	ETC.)					
SPECIES (FILL IN)			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	>15	TOTAL
									20						111				
												_	_		-			\vdash	
AQUATIC INSECTS IN STREAM	AQUATIC INSECTS IN STREAM SECTION BY COMMON OR SCIENTIFIC ORDER NAME:																		
COMMENTS																			
		5.					2												
											_								

25	/
23/6	}


DISCHARGE/CROSS SECTION NOTES

STREAM NAME:	Ba	Ker	CK			C	ROSS-S	ECTION	NO. 5	DATE /11/0	SHEET	OF_
BEGINNING OF M			ATER LOOKING DO	OWNSTREAM:	LEFT / RIG	HT Gag	e Readi	ing:		IME / 9,0		
Stake (S) Grassline (G) Waterline (W) Rock (R)	Distance From Initial Point (f1)	Width (ft)	Total Vertical Depth From Tape/Inst (ft)	Water Depth (ft)	Depth of Obser- vation (ft)	Revolutio		Time (sec)	At Point	Mean in Vertical	Area (ft ²)	Discharge (cfs)
Top Stake	1.0		7,15				_					
60	2.0		8,40			,						
	4.0		8,70									
WL	4.7		9.05	,25					.36		,	
	5.3	m - m (m)		635	. =		278		-,81			- 1
	5,6			,45	·	5			1,79			
	6.7			,45	, -	~	. 1	*2 h	2,10			, 1
	6.8			.40		10			1.32			
	7.1		= =	,40		W			.90			
	7.7 8.0			10			L		,32			
	8.0	A 20 -	103		we see							
	8.3	- CO - D -		.05		94 ⁴		Territoria.	,01	- · -	-	
WL	9.0		9.05	0	r	0 2000		6.7	8			
	10,0		8.70					(h	<u>4</u>			
6 L	14.0		7.80									
3/100	18,0		7.80		51 551	-		-11		97		
	-				= *-				,			
	,				=							
				,								
									. h			
			7 %			,						
			,	٠		N w		<u>. </u>				7,411
							-					
TOTALS:	1,0											1,46
End of Measu	rement Ti	me: 19:30	Gage Reading	2' (1	CALCULA	TIONS PEAF	DRMED	BY:	1	CALCULATIONS	CHECKED BY	1146


Ď	
Site	Baker Creek
Date	5/11/2006
Location	37 20 56.7 105 07 24.6
Area	1.14
Width	3.90
D84 @ Riffle	0.53
Slope	0.1 <u>1/2</u> 9
Gravity	32.20
Depth (Max)	0.45
Depth (Mean)	0.29
WP	4.08
Hydraulic Radius	0.28
Relative Roughness	0.53
Shear Velocity	1.01
Q	1.46
v	1.28
Manning's n	0.1669
V Friction Factor	1.27
Q Friction Factor	1.45
D84 calculation mm	161
D84 calculation	0.53
R2X D84 Calculation	0.61
D84 calculation mm	186
Difference	25

	0.2	50%
Bank Full	Ave. Depth	WP
5.31	0.58	1.56
0.53	0.53	0.53
0.11	0.11	0.11
32.2	32.2	33.2
	0.2	
9.38		4.69
0.57	0.20	0.33
1.44	0.85	1.11
4.34	0.38	1.86
0.079	0.453	0.128
4.34	0.38	1.86
23.06	0.22	2.90

Q_Depth = 0.22 0.61 = Hey
Q_WP = 2.90 0.85 = Bathurst
Q_Velocity = 1.12

Q 1.0 v 1.12 Manning's n 0.212 Q 1.0 n 1.12

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

LOCATION INFORMATION

STREAM NAME: XS LOCATION: XS NUMBER:	Baker Creek at Ski Area 05/11/06 - 05	
DATE: OBSERVERS:	11-May-06 Uppendahl	
1/4 SEC: SECTION: TWP: RANGE: PM:	NE 17 31 S 69 W 0.75	* ** **
COUNTY: WATERSHED: DIVISION: DOW CODE:	HUERFANO CUCHARAS 2 0	RIVER
USGS MAP: USFS MAP:	CUCHARAS 0	PASS
SUPPLEMENTAL DATA	-	*** NOTE *** Leave TAPE WT and TENSION at defaults for data collected
TAPE WT: TENSION:	0.0106 99999	with a survey level and rod
CHANNEL PROFILE DATA	<u>4</u>	
SLOPE:	0.11290323	
INPUT DATA CHECKED B	Y;	DATE
ASSIGNED TO:		DATE

STREAM NAME: XS LOCATION: XS NUMBER: Baker Creek at Ski Area 05/11/06 - 05

DATA POINTS=

24

VALUES COMPUTED FROM RAW FIELD DATA

FEATURE		VERT	WATER		WETTED	WATER	AREA	Q	% C
	DIST	DEPTH	DEPTH	VEL	PERIM.	DEPTH	(Am)	(Qm)	CELL
TOP WS	0.00	7.15			0.00		0.00	0.00	0.0%
101 445	1.00	7.95			0.00		0.00	0.00	0.0%
GL	2.00	8.40			0.00		0.00		
GL	3.00	8.70			0.00		0.00	0.00	0.0%
	4.00	8.75			0.00		0.00	0.00	0.0%
WL	4.70	9.05	0.00	0.00	0.00		0.00	0.00	0.0%
WL	5.00	9.30				0.05		0.00	0.0%
		9.40	0.25	0.36	0.39	0.25	0.08	0.03	1.9%
	5.30		0.35	0.81	0.32	0.35	0.11	0.09	5.8%
	5.60	9.50	0.45	1.79	0.32	0.45	0.14	0.24	16.6%
	5.90	9.50	0.45	2.20	0.30	0.45	0.14	0.30	20.4%
	6.20	9.50	0.45	2.10	0.30	0.45	0.14	0.28	19.5%
	6.50	9.45	0.40	1.68	0.30	0.40	0.12	0.20	13.8%
	6.80	9.45	0.40	1.32	0.30	0.40	0.12	0.16	10.9%
	7.10	9.45	0.40	0.90	0.30	0.40	0.12	0.11	7.4%
	7.40	9.35	0.30	0.30	0.32	0.30	0.09	0.03	1.9%
	7.70	9.25	0.20	0.32	0.32	0.20	0.06	0.02	1.3%
	8.00	9.15	0.10	0.26	0.32	0.10	0.03	0.01	0.5%
	8.30	9.10	0.05	0.01	0.30	0.05	0.02	0.00	0.0%
WL	8.60	9.05	0.00	0.00	0.30		0.00	0.00	0.0%
	9.00	8.95			0.00		0.00	0.00	0.0%
	10.00	8.70			0.00		0.00	0.00	0.0%
GL	11.00	8.40			0.00		0.00	0.00	0.0%
	14.00	7.80			0.00		0.00	0.00	0.0%
TOP WS	18.00	6.60			0.00		0.00	0.00	0.0%
TO	TALS				4.08	0.45	1.14	1.40	400.00
101	1 VEQ				4,00	0.45 (Max.)	1.14	1.46	100.0%

Manning's n = Hydraulic Radius=

0.1669 0.27913361 STREAM NAME: XS LOCATION:

Baker Creek at Ski Area

XS NUMBER:

05/11/06 - 05

WATER LINE COMPARISON TABLE

	WATER	MEAS	COMP	AREA
_	LINE	AREA	AREA	ERROR
			221123	
		1.14	1.14	0.0%
	8.80	1.14	2.31	102.9%
	8.82	1.14	2.20	93.4%
	8.84	1.14	2.10	84.1%
	8.86	1,14	2.00	75.0%
	8.88	1.14	1.89	66.2%
	8.90	1.14	1.80	57.6%
	8.92	1.14	1.70	49.2%
	8.94	1.14	1.61	41.0%
	8.96	1.14	1.52	33.0%
	8.98	1.14	1.43	25.3%
	9.00	1.14	1.34	17.8%
	9.01	1,14	1.30	14.1%
	9.02	1.14	1.26	10.5%
	9.03	1.14	1.22	7.0%
	9.04	1.14	1.18	3.4%
	9.05	1.14	1.14	0.0%
	9.06	1.14	1.10	-3.4%
	9.07	1.14	1.06	-6.7%
	9.08	1.14	1.03	-10.0%
	9.09	1.14	0.99	-13.2%
	9.10	1.14	0.95	-16.3%
	9.12	1.14	0.88	-22.4%
	9.14	1.14	0.82	-28.2%
	9.16	1,14	0.75	-33.8%
	9.18	1.14	0.69	-39.3%
	9.20	1.14	0.63	-44.5%
	9.22	1.14	0.57	-49.7%
	9.24	1.14	0.52	-54.7%
	9.26	1.14	0.46	-59.5%
	9.28	1.14	0.41	-64.2%
123	9.30	1.14	0.36	-68.7%

WATERLINE AT ZERO AREA ERROR =

9.050

STREAM NAME: XS LOCATION:

Baker Creek at Ski Area

XS NUMBER:

05/11/06 - 05

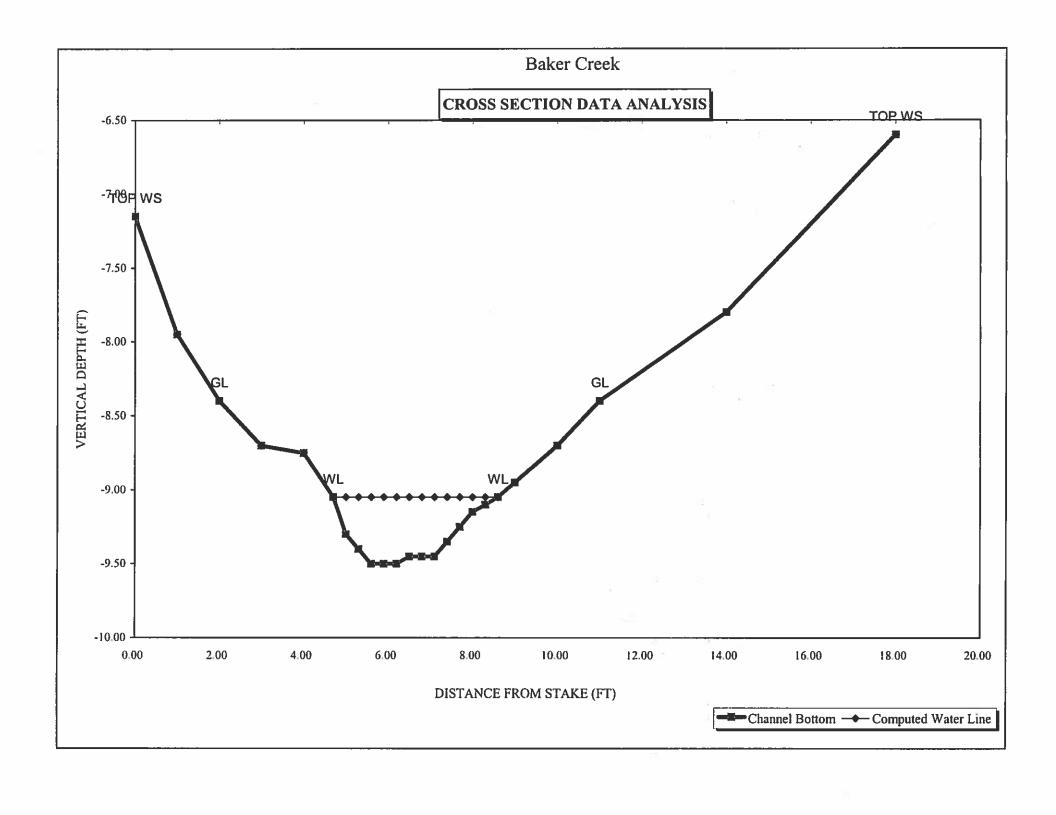
GL = lowest Grassline elevation corrected for sag

STAGING TABLE

"WL" = Waterline corrected for variations in field measured water surface elevations and sag

	DIST TO	TOP	AVG.	MAX.		WETTED	PERCENT	HYDR		AVG.
	WATER	WIDTH	DEPTH	DEPTH	AREA	PERIM.	WET PERIM	RADIUS	FLOW	VELOCITY
-	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC)
GL.	8.40	9.00	0.59	1.10	5.31	9.38	100.0%	0.57	10.89	2.05
	8.45	8.67	0.56	1.05	4.87	9.03	96.3%	0.54	9.66	1.98
	8.50	8.33	0.53	1.00	4.45	8.68	92.6%	0.51	8.52	1,92
	8.55	8.00	0.51	0.95	4.04	8.33	88.9%	0.48	7.46	1.85
	8,60	7.67	0.48	0.90	3.65	7.99	85.2%	0.46	6.47	1.77
	8.65	7.33	0.45	0.85	3.27	7.64	81.4%	0.43	5.57	1.70
	8.70	7.00	0.42	0.80	2.91	7.29	77.7%	0.40	4.73	1.62
	8.75	5.80	0.45	0.75	2.59	6.08	64.9%	0.43	4.40	1.70
	8.80	5.48	0.42	0.70	2.31	5.75	61,3%	0.40	3.77	1.63
	8.85	5.17	0.40	0.65	2.05	5.42	57.8%	0.38	3.20	1,56
	8.90	4.85	0.37	0.60	1.80	5.08	54.2%	0.35	2.69	1.49
	8.95	4.53	0.34	0.55	1.56	4.75	50.7%	0.33	2.22	1.42
	9.00	4.22	0.32	0.50	1.34	4.42	47.1%	0.30	1.82	1.35
"WL"	9.05	3.90	0.29	0.45	1.14	4,08	43.5%	0.28	1.46	1.28
	9,10	3.54	0.27	0.40	0.95	3.70	39.5%	0.26	1,16	1.21
	9.15	3.18	0.25	0.35	0.79	3.32	35 4%	0.24	0.90	1.14
	9.20	2.97	0.21	0.30	0.63	3.08	32.9%	0.21	0.66	1.047
	9.25	2.76	0.18	0.25	0.49	2.85	30.4%	0.17	0.45	0.92
	9.30	2.55	0.14	0.20	0.36	2.61	27.8%	0.14	0.28	0.79
	9.35	2.25	0.10	0.15	0.24	2.29	24.5%	0.10	0.16	0.66
	9.40	1.95	0.07	0.10	0.13	1.98	21.1%	0.07	0.06	0.49
	9.45	1.05	0.04	0.05	0.04	1.06	11.3%	0.04	0.01	0.34

3/3 = 2.1 2/3 - 0.6 9010P = 2.20


Constant Manning's n

STREAM NAME: XS LOCATION: XS NUMBER:

Baker Creek at Ski Area 05/11/06 - 05

SUMMARY SHEET

MEASURED FLOW (Qm)=	1.46		RECOMMENDED INS	
CALCULATED FLOW (Qc)=	1.46			
(Qm-Qc)/Qm * 100 =	0.0	%	FLOW (CFS)	PERIOD
MEASURED WATERLINE (WLm)=	9.05	ft		=======================================
CALCULATED WATERLINE (WLc)=	9.05	ft		61 91 65
(WLm-WLc)/WLm * 100 =	0.0			
· · · · · · · · · · · · · · · · · · ·	_,_			
MAX MEASURED DEPTH (Dm)=	0.45	ft		
MAX CALCULATED DEPTH (Dc)=	0.45			45
(Dm-Dc)/Dm * 100	0.0			
(Bill-Be)/Bill 100	0.0	/0	7.5 Table 1.5 Ta	
MEAN VELOCITY=	1 29	ft/sec		A 322
MANNING'S N=	0.167	10.260		
		fa 7fa		
SLOPE=	0.11290323	IVπ		
.4 * Qm =	0.6			
2.5 ° Qm=	3.6	cfs		
	1 800 000 1 20		277	
	· · · · · · ·	<u> </u>		
RECOMMENDATION BY:		AGENCY		DATE:
CWCB REVIEW BY:				DATE:

STREAM NAME: XS LOCATION:

Baker Creek at Ski Area

XS NUMBER:

05/11/06 - 05

Thome-Zevenbergen D84 Correction Applied

Estimated D84 =

0.85

GL = lowest Grassline elevation corrected for sag

STAGING TABLE

WL = Waterline corrected for variations in field measured water surface elevations and sag

	DIST TO	TO	Р	AVG.	MAX.		WETTED	PERCENT	HYDR		AVG	i.
	WATER	WIE		DEPTH	DEPTH	AREA	PERIM.	WET PERIM	RADIUS	FLOW	VELO	
_	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/S	EC)
GL*	8.40		9.00	0.59	1.10	5.31	9.38	100.0%	0.57	23.01		4.33
	8.45		8.67	0,56	1.05	4.87	9.03	96.3%	0.54	19.41		3.98
	8.50		8.33	0.53	1.00	4.45	8.68	92.6%	0.51	16.22	3.	3.65
	8.55		8.00	0.51	0.95	4.04	8.33	88.9%	0.48	13.41		3.32
	8.60		7.67	0.48	0.90	3.65	7.99	85.2%	0.46	10.96		3.00
	8.65		7.33	0.45	0.85	3.27	7.64	81.4%	0.43	8.84		2.70
	8.70		7.00	0.42	0.80	2,91	7.29	77.7%	0.40	7.02		2.41
	8.75	200	5.80	0.45	0.75	2.59	6.08	64.9%	0.43	6.95		2,68
	8.80		5.48	0.42	0.70	2.31	5.75	61.3%	0.40	5.59		2.42
	8.85		5.17	0.40	0.65	2.05	5.42	57.8%	0.38	4.43		2.16
	8.90		4.85	0.37	0.60	1.80	5.08	54.2%	0.35	3.46	100	1.93
	8.95		4.53	0.34	0.55	1.56	4.75	€0.7%	0.33	2.65		1.70
	9.00	100	4.22	0.32	0.50	1.34	4.42	47.1%	0.30	1.99		1.48
WL*	9.05		3.90	0.29	0.45	1.14	4.08	43.5%	0,28	1.46		1.28
	9.10		3.54	0.27	0.40	0.95	3.70	39.5%	0.26	1.06		1.11
	9.15		3.18	0.25	0.35	0.79	3.32	35.4%	0.24	0.75		0.95
	9.20		2.97	0.21	0.30	0.63	3.08	32.9%	0.21	0.48		0.76
	9.25		2.76	0.18	0.25	0.49	2.85	30.4%	0.17	0.28		0.58
	9.30		2.55	0.14	0.20	0.36	2.61	27.8%	0.14	0.15		0.43
	9.35		2.25	0.10	0.15	0.24	2.29	24.5%	0.10	0.07		0.30
	9.40		1.95	0.07	0.10	0.13	1.98	21.1%	0.07	0.03		0.19
	9.45		1.05	0.04	0.05	0.04	1.06	11.3%	0.04	0.00		0.08

					VERT	WATER				Tape to
	Data Input & Proofing	GL=1	FEATURE	DIST	DEPTH	DEPTH	VEL	Α	Q	Water
					Total Da	ta Points = 24				
STREAM NAME:	Baker Creek		TOP WS	0.00	7.15			0.00	0.00	0.00
	at Ski Area			1.00	7.95			0.00	0.00	0.00
	05/11/06 - 05	1	GL	2.00	8.40			0.00	0.00	0.00
				3.00	8.70			0.00	0.00	0.00
OBSERVERS:	Uppendahl			4.00	8.75			0.00	0.00	0.00
			WL	4.70	9.05	0.00	0.00	0.00	0.00	0.00
1/4 SEC:	NE			5.00	9.30	0.25	0.36	80.0	0.03	9.05
SECTION:				5.30	9.40	0.35	0.81	0.11	0.09	9.05
TWP:				5.60	9.50	0.45	1.79	0.14	0.24	9.05
RANGE:				5.90	9.50	0.45	2.20	0.14	0.30	9.05
PM:	6:00 PM			6.20	9.50	0.45	2.10	0.14	0.28	9.05
				6.50	9.45	0.40	1.68	0.12	0.20	9.05
	HUERFANO			6.80	9.45	0.40	1.32	0.12	0.16	9.05
WATERSHED:	CUCHARAS RIVER			7.10	9.45	0.40	0.90	0.12	0.11	9.05
DIVISION:	2			7.40	9.35	0.30	0.30	0.09	0.03	9.05
DOW CODE:	CHOULADA C DA CO		100	7.70	9.25	0.20	0.32	0.06	0.02	9.05
USGS MAP: USFS MAP:	CUCHARAS PASS			8.00	9.15	0.10	0.26	0.03	0.01	9.05
USES MAE			🤄 WL	8.30	9.10	0.05	0.01	0.02	0.00	9.05
TAPE WT:	0.0106 Level and Rod Survey V Ibs / ft		AAL	8 60	9.05	0.00	0.00	0.00	0.00	0.00
TENSION:				9.00	8.95 8.70			0.00	0.00	0.00
TENSION.	33333 IDS	4	GL.	11.00	8.40			0.00	0.00	0.00
SLOPE:	0.112903226 ft / ft	2.0	GL	14.00	7.80			0.00 0.00	0.00	0.00
02012	0.112303220 It7 It		TOP WS	18.00	6.60			0.00	0.00	0.00
			301 113	10.00	0.00			0.00	0.00	0.00
CHECKED BY	:DATE									
ASSIGNED TO	D:DATE		2. 8							

Totals 1.14 1.46

FIELD DATA FOR **INSTREAM FLOW DETERMINATIONS**

CONSERVATION BOARD LOCATION INFORMATION																			
STREAM NAME:	Bul	SK.	- (10	r p	kz	6 1											ECTION	NO: APDEX
CROSS-SECTION LOCATION:	Bak	ise p	Cre	y tr	Z	ab	عارات	5	3.5	مسوره	C.ON	e 5	0-455	SCATI	cl	B0-	ind	ovy	,
			WHE					·						-			·		=
11/21/10			7 7	<u> </u>	5														=
LEGAL % SECT DESCRIPTION			ECTION:			- 1	WNSH			N/	s	RANGE	:			W_	M:		
COUNTY: for Con Co		WATERSHE	ED: شام ما	015	R	ار المر _ا حو	5	WA	rea DIV	ISION:	2			(ATER C	ODE:		
MAP(S): USGS: USFS:	37.	3426	83	-lo	5.12	277	102			(1)									
	- 1				SUF	PLE	ME	IATI	L DA	TA							-		
SAG TAPE SECTION SAME AS DISCHARGE SECTION:	YES/NC) М	ETER TY	PE:															
METER NUMBER:		DATE RAT	ED:			CALIE	S/SPIN:	5		ec	TAPE W	FIGHT		lb	s/loot	TAPE	TENS	ON:	lba
CHANNEL BED MATERIAL SIZE	E RANGE:			· · · ·		JONEIL		PHOTO			N YES		Ī	NUMBE					
CHANNEL PROFILE DATA																			
1 12	DIS	STANCE ,		_				-											EGEND:
X Tape @ Stake LB	FROM TAPE (1) HOU READING (I			NG (II)	-	<u> </u>						>			-				
Tape @ Stake RB	Stake RB 0.0			-									100	ike 🛞 _					
1 WS @ Tape LB/RB		0.0		UB	v.31	1 9	KB 1.29	((1)		TAPE		(5))			tion 1
2 WS Upstream	6-1	170	f+		9/	25	•		1									-	
3 WS Downstream		18,0			9:1	94		_[]_	۸.		87		police					tion of Flow
SLOPE D,39	/15 =	0.02	Ų,					┵		*	on	Ja	4'5	police	m				
			9	AQ	TAU	IC S	AMF	PLIN	G SI	JMM	ARY		12					11	
STREAM ELECTROFISHED: Y	ES/NO	DISTANC	E ELECT	AOFIS	HED _	1t		F	ISH CA	UGHT:	YES/NC)		WATER	CHEM	IISTRY :	SAMPL	ED: YES	S/NO
		LENGTI	H · FREQ	UENC	DISTR	RIBUTIO	ON BY	DNE-IN	CH SIZ	E GRO	UPS (1.0	0-1.9, 2	2.0-2.9,	ETC.)	8				
SPECIES (FILL IN)			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	>15	TOTAL
			+				- 4	<u> </u>	Ξ									=	- 22
			+		-		-	_					п	\vdash	-				
			+			-						_	-						
AQUATIC INSECTS IN STREAM	A SECTION B	Y COMMON	OR SCI	ENTIFI	C ORDE	ER NAM	E	9)											
1																			
		: Im				CC	OMM	ENT	S							8			
*							100	Swill	11										-
A				-	100							:-							
							Test 3	100	**			Test		- 1		- 7			

					VERT	WATER				Tape to
	Data Input & Proofing	GL=1	FEATURE	DIST	DEPTH	DEPTH	VEL	Α	Q	Water
					Total Da	nta Points = 28				
STREAM NAMÉ:	Baker Creek	1	S/GL	0.00	8.20			0.00	0.00	0.00
XS LOCATION:	Abv. Ski area @ USFS boundary			1.00	8.70			0.00	0.00	0.00
XS NUMBER:	1			1.50	9.00			0.00	0.00	0,00
DATE:	11/21/2016		WL	1,80	9.31	0.00	0.00	0.00	0.00	0.00
OBSERVERS:	Cody Tyler and Jay Skinner			2.20	9,60	0.25	1.29	0.10	0.13	9.35
				2.60	9.60	0.25	0,92	0.10	0.09	9.35
	37.348683, -105.127762			3.00	9.55	0.20	0.83	0.08	0.07	9,35
SECTION:				3.40	9,50	0.25	0.68	0.10	0.07	9.25
TWP:				3.80	9,50	0.20	0,61	0.08	0.05	9.30
RANGE:				4.20	9.50	0.15	0.36	0.06	0.02	9.35
PM:				4.60	9.50	0.15 0.20	0.61 0.76	0.06 0.08	0.04 0.06	9.35 9.30
COLINITY	Name of the last o			5.00 5.40	9.50 9.45	0.20	0.76	0.08	0.05	9.25
	Huerfano Cucharas River			5.80	9.50	0.20	0.42	0.06	0.03	9.35
WATERSHED: DIVISION:				6.20	9.45	0.15	0.66	0.06	0.04	9.30
DOW CODE:				6.60	9.50	0.20	0.87	0.08	0.07	9.30
USGS MAP:	28101			7.00	9.45	0.15	0.30	0.06	0.02	9.30
USFS MAP:				7.40	9.40	0.10	0.13	0.04	0.01	9.30
0010111111	Level and Rod Survey ▼			7.80	9.45	0.15	0.16	0.06	0.01	9.30
TAPE WT:	10.0106 Level and Rod Sulvey Ubs /	ft		8.20	9.40	0.05	0.02	0.02	0.00	9.35
TENSION:	99999 lbs			8.60	9,45	0.15	0.00	0.06	0.00	9.30
				9.00	9.45	0.10	0.00	0.04	0.00	9.35
SLOPE:	0.026 ft / ft			9.40	9.40	0.10	0.00	0.06	0.00	9.30
			WL	10.20	9.29	0.00	0.00	0.00	0.00	0.00
				11.00	9.10			0.00	0.00	0.00
CHECKED BY:	:DATE			12.00				0.00	0.00	0.00
		99	0.01	13.50	8.60			0.00	0.00	0.00
ASSIGNED TO):DATE	. 1	S/GL	14.50	8.00			0.00	0.00	0.00

Totals 1.28 0.74

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

LOCATION INFORMATION

STREAM NAME: XS LOCATION: XS NUMBER:	Baker Creek Abv. Ski area 1	aker Creek bv. Ski area @ USFS boundary						
DATE: OBSERVERS:	21-Nov-16 Cody Tyler and Jay Skinner							
1/4 SEC: SECTION: TWP: RANGE: PM:	37.348683, -105.127762 0 0 0 0							
COUNTY: WATERSHED: DIVISION: DOW CODE:	Huerfano Cucharas Riv 2 29101	er						
USGS MAP: USFS MAP:	0 0							
SUPPLEMENTAL DATA	-00	*** NOTE ***						
TAPE WT: TENSION:	0.0106 99999	Leave TAPE WT and TENSION at defaults for data collected with a survey level and rod						
CHANNEL PROFILE DATA	<u> </u>							
SLOPE:	0.026							
INPUT DATA CHECKED B	Y:	DATE						
ASSIGNED TO:		DATE						

STREAM NAME:

Baker Creek

XS LOCATION: XS NUMBER:

Abv. Ski area @ USFS boundary

DATA POINTS=

28

VALUES COMPUTED FROM RAW FIELD DATA

FEATURE	DIST	VERT	WATER DEPTH	VEL	WETTED PERIM.	WATER DEPTH	AREA (Am)	Q (Qm)	% Q CELL
	DIST	DEPTH	DEFIN	VEL	P EINIM.	DEFIN	(200)	((2111)	OLL
S/GL	0.00	8.20			0.00		0.00	0.00	0.0%
	1.00	8.70			0.00		0.00	0.00	0.0%
	1.50	9.00			0.00		0.00	0.00	0.0%
WL	1.80	9.31	0.00	0.00	0.00		0.00	0.00	0.0%
	2.20	9.60	0.25	1,29	0.49	0.25	0.10	0.13	17.4%
	2.60	9.60	0.25	0.92	0.40	0.25	0.10	0.09	12.4%
	3.00	9.55	0.20	0.83	0.40	0.20	0.08	0.07	9.0%
	3.40	9.50	0.25	0.68	0.40	0.25	0.10	0.07	9.2%
	3.80	9.50	0.20	0.61	0.40	0.20	80.0	0.05	6.6%
	4.20	9.50	0.15	0.36	0.40	0.15	0.06	0.02	2.9%
	4.60	9.50	0.15	0.61	0.40	0.15	0.06	0.04	4.9%
	5.00	9.50	0.20	0.76	0.40	0.20	0.08	0.06	8.2%
	5.40	9.45	0.20	0.61	0.40	0.20	0.08	0.05	6.6%
	5.80	9.50	0.15	0.42	0.40	0.15	0.06	0.03	3.4%
	6.20	9.45	0.15	0.66	0.40	0.15	0.06	0.04	5.4%
	6.60	9.50	0.20	0.87	0.40	0.20	0.08	0.07	9.4%
	7.00	9.45	0.15	0.30	0.40	0.15	0.06	0.02	2,4%
	7.40	9.40	0.10	0.13	0.40	0.10	0.04	0.01	0.7%
	7.80	9.45	0.15	0.16	0.40	0.15	0.06	0.01	1.3%
	8.20	9.40	0.05	0.02	0.40	0.05	0.02	0.00	0.1%
	8.60	9.45	0.15	0.00	0.40	0.15	0.06	0.00	0.0%
	9.00	9.45	0.10	0.00	0.40	0.10	0.04	0.00	0.0%
	9.40	9.40	0.10	0.00	0.40	0.10	0.06	0.00	0.09
WL	10.20	9.29	0.00	0.00	0,81		0.00	0.00	0.0%
	11.00	9.10			0.00		0.00	0.00	0.0%
	12.00	8.80			0.00		0.00	0.00	0.09
	13.50	8.60			0.00		0.00	0.00	0.0%
S/GL	14.50	8.00			0.00		0.00	0.00	0.0%
	OTALS				8.54	0.25	1.28	0.74	100.09
	U IALS				0.54	(Max.)	1.20	0.77	100.07

Manning's n = Hydraulic Radius=

0.1170 0.1499014 STREAM NAME:

Baker Creek

XS LOCATION:

Abv. Ski area @ USFS boundary

XS NUMBER:

- 1

WATER LINE COMPARISON TABLE

1414.770	11510	20110	1051
WATER	MEAS	COMP	AREA
LINE	AREA	AREA	ERROR
		4.40	
	1.28	1.40	9.3%
9.05	1.28	3.65	185.2%
9.07	1.28	3.46	170.3%
9.09	1.28	3.27	155.4%
9.11	1.28	3.08	140.7%
9.13	1.28	2.90	126.2%
9,15	1.28	2.71	111.8%
9.17	1.28	2.53	97.6%
9.19	1.28	2.35	83.6%
9.21	1.28	2.17	69.7%
9.23	1.28	2.00	56.0%
9.25	1.28	1.82	42.4%
9.26	1.28	1.74	35.7%
9.27	1.28	1.65	29.0%
9.28	1.28	1.57	22.4%
9.29	1.28	1.48	15.8%
9,30	1.28	1.40	9.3%
9,31	1.28	1.32	2.8%
9.32	1.28	1.23	-3.6%
9.33	1.28	1.15	-10.0%
9.34	1.28	1.07	-16.3%
9.35	1.28	0.99	-22.5%
9.37	1.28	0.84	-34.7%
9.39	1.28	0.68	-46.7%
9.41	1.28	0.53	-58.2%
9.43	1.28	0.40	-68.6%
9.45	1.28	0.29	-77.7%
9.47	1.28	0.19	-84.9%
9.49	1.28	0.12	-90.8%
9.51	1.28	0.07	-94.2%
9.53	1.28	0.05	-96.0%
9.55	1.28	0.03	-97.5%

WATERLINE AT ZERO AREA ERROR =

9.314

STREAM NAME.

9.56

0.73

0.03

0.04

0.02

0.75

5.0%

0.03

Baker Creek

Abv. Ski area @ USFS boundary

XS NUMBER:

Constant Manning's n

0.00

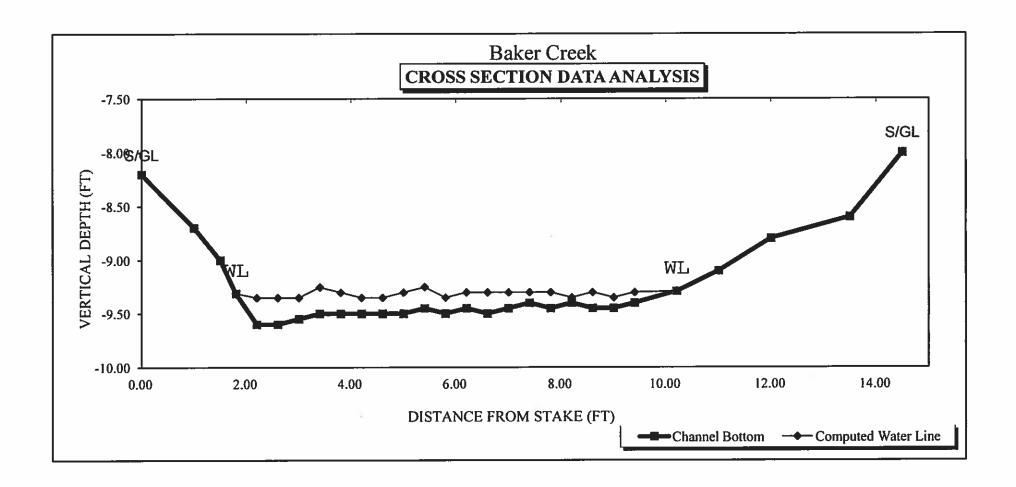
0.18

GL = lowest Grassline elevation corrected for sag

STAGING TABLE *WL* = Waterline corrected for variations in field measured water surface elevations and sag

_	DIST TO	TOP	AVG.	MAX.		WETTED	PERCENT	HYDR		AVG.
	WATER	WIDTH	DEPTH	DEPTH	AREA	PERIM.	WET PERIM	RADIUS	FLOW	VELOCITY
-	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC)
•	8.20	14.17	0.98	1.40	13,93	14.83	177.0%	0.94	27.36	1.96
	8.31	13.75	0.90	1.29	12.33	14.35	96.8%	0.66	22.83	1,85
	8.36	13.58	0.86	1.24	11.65	14.14	95.4%	0.82	20.97	1.80
	8.41	13,38	0.82	1.19	10.98	13.93	94,0%	0.79	19.17	1.75
	8.46	13.20	0.78	1,14	10.31	13.72	92.5%	0.75	17.45	1.69
	8.51	13.01	0.74	1.09	9.66	13.51	91.1%	0.71	15,81	1.64
	8.56	12.83	0.70	1.04	9.01	13.31	89.7%	0.68	14.23	1.58
	8.61	12.56	0.67	0.99	8.37	13.02	87.8%	0.64	12.78	1,53
	8.66	12.09	0.64	0.94	7.76	12.53	84.5%	0.62	11.54	1.49
	8.71	11.62	0.62	0.89	7.17	12.04	81.2%	0.60	10.38	1.45
	8.76	11.16	0.59	0.84	6.60	11,56	78.0%	0.57	9.29	1.41
	8.81	10.76	0.56	0.79	6.05	11,15	75.2%	0.54	8.24	1,36
	8.86	10.51	0.52	0.74	5.52	10.68	73.3%	0.51	7,19	1,30
	8.91	10.26	0.49	0.69	5.00	10.61	71.5%	0.47	6.20	1.24
	8.96	10.01	0.45	0.64	4.49	10.33	69.7%	0.43	5.28	1.17
	9.01	9.77	0.41	0.59	4.00	10.07	67.9%	0.40	4.42	1.11
	9.06	9.56	0.37	0.54	3.51	9.83	66.3%	0.36	3.62	1.03
	9.11	9.33	0.33	0.49	3.04	9.57	64.5%	0.32	2.90	0.95
	9.16	9.07	0.28	0.44	2.58	9.29	62.6%	0.28	2.25	0.87
	9.21	8.81	0.24	0.39	2.13	9.00	60.7%	0.24	1.67	0.78
	9.26	8.55	0.20	0.34	1.70	8.71	58.8%	0.20	1,17	0.69
/L°	9.31	8.22	0.16	0.29	1.28	8.35	56.3%	0.15	0.75	0.59
	9.36	7.78	0,11 -	0.24	0.88	7.90	/53.3%	0.11	0.42	0.47
	9.41	6.88	0.07	0.19	0.50	6.98	47.0%	0.07	0.18	0.36
	9.46	4.41	0.05	0.14	0.22	4.48	30.2%	0.05	0.06	0.27
	9.51	1.20	0.06	0.09	0.07	1.24	8.3%	0.06	0.02	0.30

STREAM NAME:


Baker Creek

XS LOCATION: XS NUMBER: Abv. Ski area @ USFS boundary

1

SUMMARY SHEET

MEASURED FLOW (Qm)=	0.74	cfs		RECOMMENDED INS	TREAM FLOW:
CALCULATED FLOW (Qc)=	0.75	cfs		************	
(Qm-Qc)/Qm * 100 =	-1.5	%			
(a.,, a.,, a.,,				FLOW (CFS)	PERIOD
MEASURED WATERLINE (WLm)=	9.30	ft		========	2222222
CALCULATED WATERLINE (WLc)=	9.31				
(WLm-WLc)/WLm * 100 =	-0.2				
(veneracoparent 100 -	-912	,,		-	
MAX MEASURED DEPTH (Dm)=	0.25	n			
MAX CALCULATED DEPTH (Dc)=	0.29				_
(Dm-Dc)/Dm * 100	-14.3				
(DIII-DC)/DIII 100	-14.3	70			
MEAN VELOCITY=	0.50	ft/sec			
MANNING'S N=	0.117	10000			
SLOPE=	0.026	64 784			
SLUPE=	0.026	tost			
.4 * Qm =	0.3	cfs			
2.5 * Om=	1.8				
7,000,000					
	3-1	1221-1-12			
			0.000	-	
RECOMMENDATION BY:		AGENO	CY		DATE:
01100 DE UENT DV					DATE

Starting Edge was incorrectly keyed into FlowTracker, the notes have been annotated with the correction.
-Brian Epstein

Discharge Measurement Summary

Date Generated: Wed Jul 24 2013

File Information

Mounting Correction

File Name BAKERLT.001.WAD Start Date and Time 2010/10/26 11:14:36

Site Details
Site Name
Operator(s)

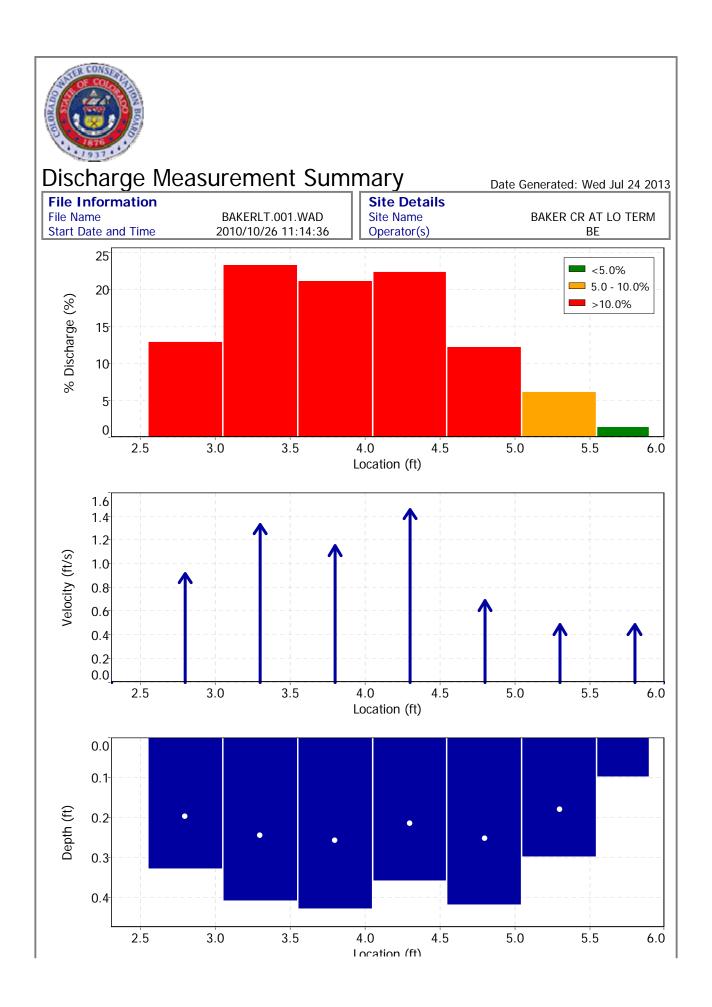
BAKER CR AT LO TERM BE

System Information
Sensor Type FlowTracker
Serial # P2354
CPU Firmware Version 3.7
Software Ver 2.30

Units (English Units)
Distance ft
Velocity ft/s
Area ft^2
Discharge cfs

Discharge Uncertainty								
Category	ISO	Stats						
Accuracy	1.0%	1.0%						
Depth	0.6%	5.3%						
Velocity	1.2%	10.6%						
Width	0.2%	0.2%						
Method	3.2%	-						
# Stations	6.6%	-						
Overall	7.6%	11.9%						

Summary


Averaging Int. 40 # Stations Start Edge REW LEW 3.700 **Total Width** Mean SNR 36.0 dB **Total Area** 1.160 Mean Temp 32.09 °F Mean Depth 0.314 Disch. Equation Mid-Section Mean Velocity 1.0079 **Total Discharge** 1.1692

0.0%

Me	Measurement Results											
St	Clock	Loc	Method	Depth	%Dep	MeasD	Vel	CorrFact	MeanV	Area	Flow	%Q
0	11:14	2.30	None	0.000	0.0	0.0	0.0000	1.00	0.0000	0.000	0.0000	0.0
1	11:14	2.80	0.6	0.330	0.6	0.132	0.9196	1.00	0.9196	0.165	0.1518	13.0
2	11:15	3.30	0.6	0.410	0.6	0.164	1.3333	1.00	1.3333	0.205	0.2734	23.4
3	11:16	3.80	0.6	0.430	0.6	0.172	1.1526	1.00	1.1526	0.215	0.2479	21.2
4	11:18	4.30	0.6	0.360	0.6	0.144	1.4587	1.00	1.4587	0.180	0.2625	22.4
5	11:19	4.80	0.6	0.420	0.6	0.168	0.6854	1.00	0.6854	0.210	0.1439	12.3
6	11:22	5.30	0.6	0.300	0.6	0.120	<i>-0.4856</i>	-1.00	0.4856	0.150	0.0728	6.2
7	11:22	5.80	None	0.100	0.0	0.0	0.0000	1.00	0.4856	0.035	0.0170	1.5
8	11:22	6.00	None	0.000	0.0	0.0	0.0000	1.00	0.0000	0.000	0.0000	0.0
D	and it alies indicate a OC marriage Cap the Quality Countries and this group to marriage											

Rows in italics indicate a QC warning. See the Quality Control page of this report for more information.

Page 1 of 5 7/24/2013

Page 2 of 5 7/24/2013

Date Generated: Wed Jul 24 2013

File Information

File Name BAKERLT.001.WAD Start Date and Time 2010/10/26 11:14:36

Site Details
Site Name
Operator(s)

BAKER CR AT LO TERM

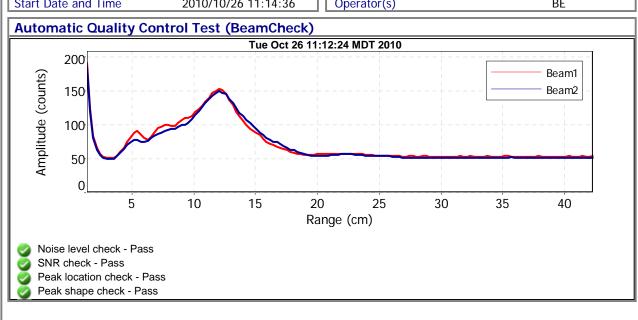
BE

Quality Control									
St	Loc	%Dep	Message						
6	5.30	0.6	High angle: -177						

Page 4 of 5 7/24/2013

Date Generated: Wed Jul 24 2013

File Information


File Name Start Date and Time

BAKERLT.001.WAD 2010/10/26 11:14:36

Site Details Site Name Operator(s)

BAKER CR AT LO TERM

BE

Page 5 of 5 7/24/2013

Date Generated: Fri Nov 21 2014

File Information

File Name BKRCRLTQ.001.WAD 2014/08/07 13:16:48 Start Date and Time

Site Details Site Name

Operator(s)

BAKER CR NR PROP LT BJE

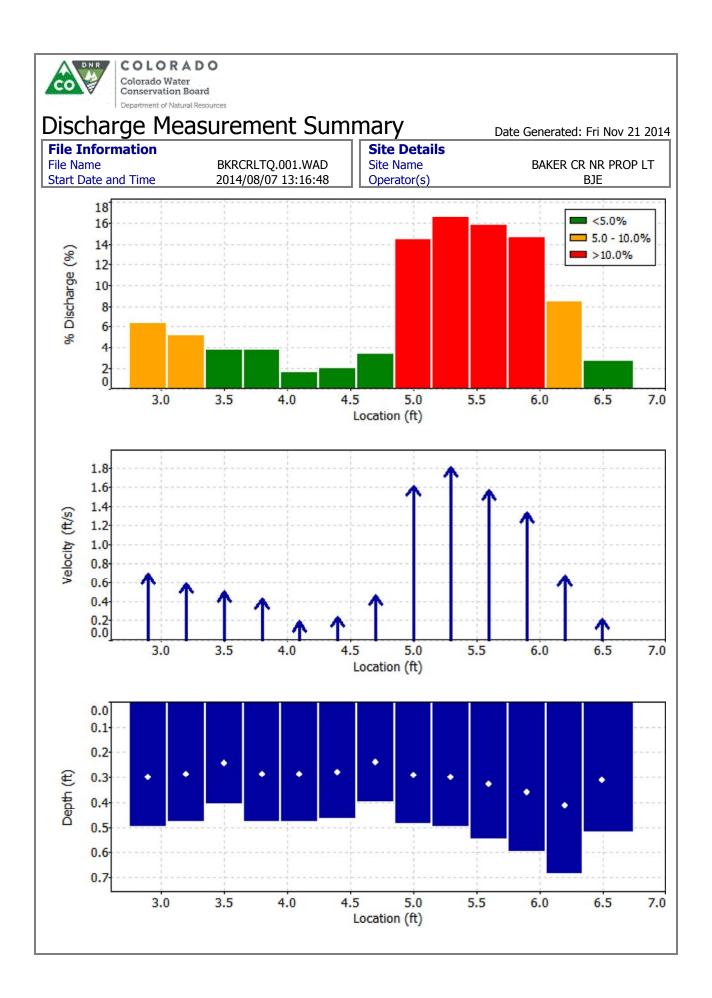
System Information Sensor Type

FlowTracker Serial # P2355 **CPU Firmware Version** 3.9 Software Ver 2.30 0.0% **Mounting Correction**

Units (English Units) Distance ft Velocity ft/s ft^2 Area Discharge cfs

Discharge Uncertainty Category **Stats** Accuracy 1.0% 0.5% 2.9% Depth Velocity 1.7% 6.5% Width 0.2% 0.2% Method 2.6% 3.3% # Stations 4.7% 7.2% **Overall**

Summary


40 # Stations 15 Averaging Int. Start Edge REW 4.400 **Total Width** Mean SNR 41.5 dB **Total Area** 2.023 Mean Temp 49.59 °F Mean Depth 0.460 Disch. Equation Mid-Section Mean Velocity 0.8038 **Total Discharge** 1.6259

ı	Supplemental Data							
ı	# Time	Location	Gauge Height	Rated Flow	Comments			
ı	1 Thu Aug 7 13:22:16 MDT 2014	4.099			VERY LIGHT RAIN STRT			

Me	Measurement Results											
St	Clock	Loc	Method	Depth	%Dep	MeasD	Vel	CorrFact	MeanV	Area	Flow	% Q
0	13:16	2.60	None	0.000	0.0	0.0	0.0000	1.00	0.0000	0.000	0.0000	0.0
1	13:16	2.90	0.6	0.500	0.6	0.200	0.6936	1.00	0.6936	0.150	0.1040	6.4
2	13:17	3.20	0.6	0.480	0.6	0.192	0.5928	1.00	0.5928	0.144	0.0853	5.2
3	13:18	3.50	0.6	0.410	0.6	0.164	0.5079	1.00	0.5079	0.123	0.0625	3.8
4	13:20	3.80	0.6	0.480	0.6	0.192	0.4347	1.00	0.4347	0.144	0.0626	3.8
5	13:22	4.10	0.6	0.480	0.6	0.192	0.1923	1.00	0.1923	0.144	0.0277	1.7
6	13:23	4.40	0.6	0.470	0.6	0.188	0.2411	1.00	0.2411	0.141	0.0340	2.1
7	13:24	4.70	0.6	0.400	0.6	0.160	0.4715	1.00	0.4715	0.120	0.0565	3.5
8	13:25	5.00	0.6	0.490	0.6	0.196	1.6145	1.00	1.6145	0.147	0.2373	14.6
9	13:27	5.30	0.6	0.500	0.6	0.200	1.8120	1.00	1.8120	0.150	0.2717	16.7
10	13:28	5.60	0.6	0.550	0.6	0.220	1.5705	1.00	1.5705	0.165	0.2590	<i>15.9</i>
11	13:29	5.90	0.6	0.600	0.6	0.240	1.3366	1.00	1.3366	0.180	0.2405	14.8
12	13:30	6.20	0.6	0.690	0.6	0.276	0.6749	1.00	0.6749	0.207	0.1396	8.6
13	13:31	6.50	0.6	0.520	0.6	0.208	0.2172	1.00	0.2172	0.208	0.0453	2.8
14	13:31	7.00	None	0.000	0.0	0.0	0.0000	1.00	0.0000	0.000	0.0000	0.0

Rows in italics indicate a QC warning. See the Quality Control page of this report for more information.

Page 1 of 4 11/21/2014

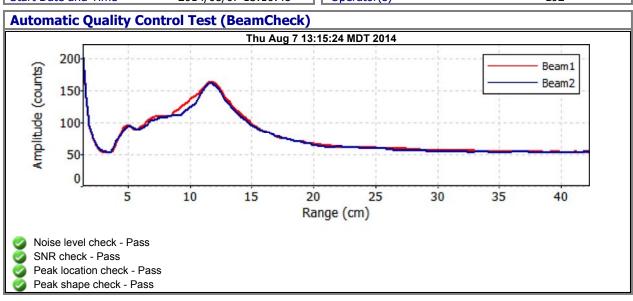
Page 2 of 4 11/21/2014

Date Generated: Fri Nov 21 2014

File Information		Site Details	
File Name	BKRCRLTQ.001.WAD	Site Name	BAKER CR NR PROP LT
Start Date and Time	2014/08/07 13:16:48	Operator(s)	BJE

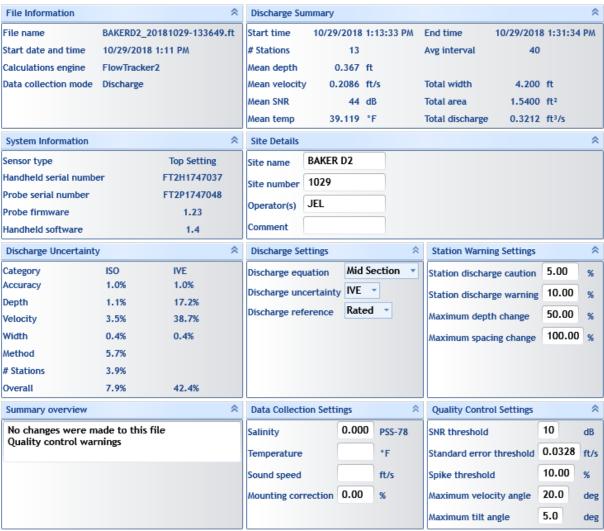
Quality Control						
St	Loc	%Dep	Message			
5	4.10	0.6	High angle: 27			
6	4.40	0.6	High angle: 26			
7	4.70	0.6	High angle: 21			
10	5.60	0.6	High standard error: 0.081			

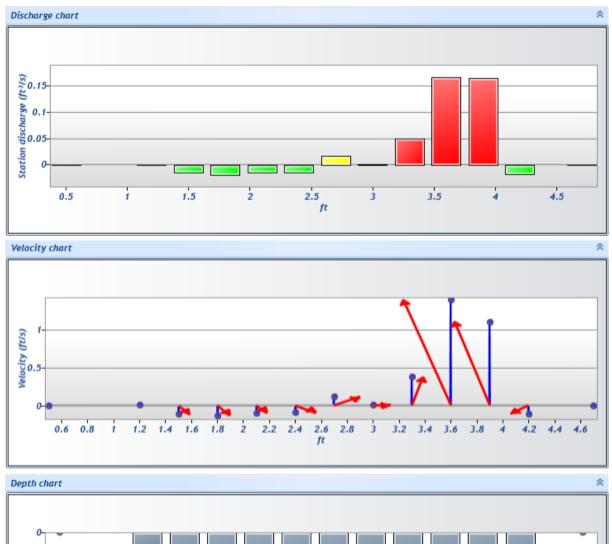
Page 3 of 4 11/21/2014

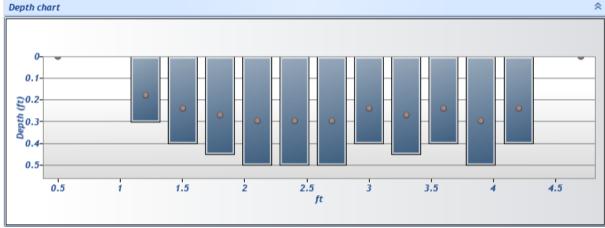

Date Generated: Fri Nov 21 2014

File Information

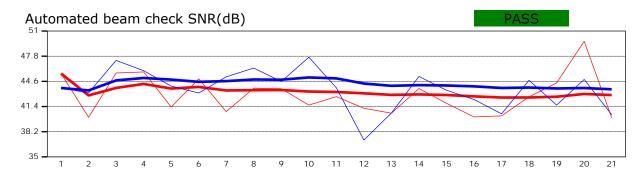
File Name BKRCRLTQ.001.WAD Start Date and Time BKRCRLTQ.013:16:48

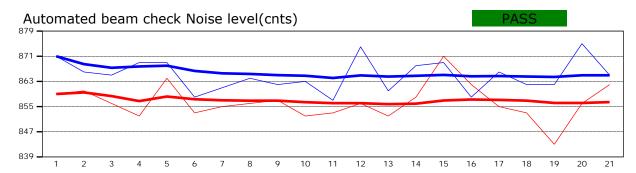

Site Details

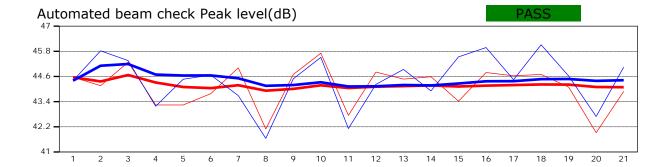

Site Name BAKER CR NR PROP LT Operator(s) BJE

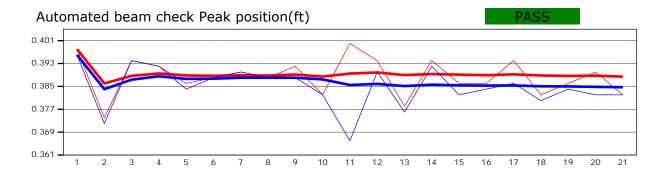


Page 4 of 4 11/21/2014





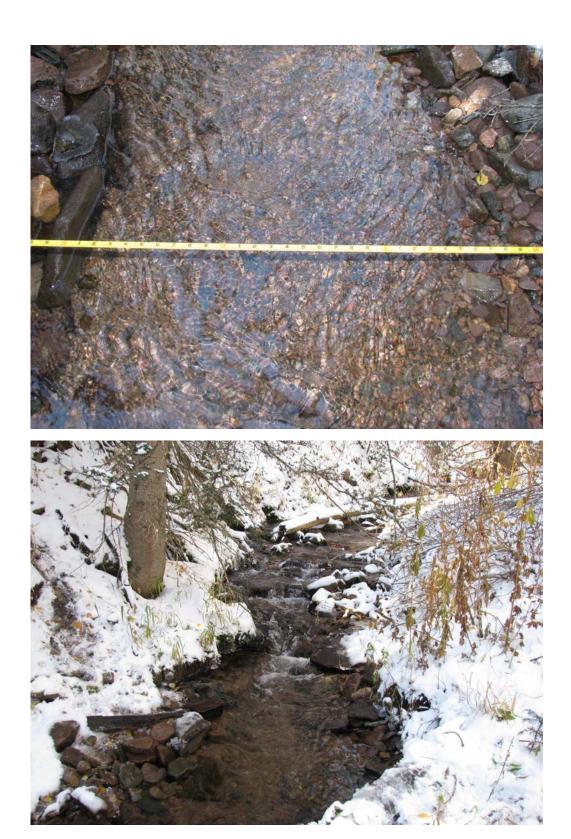

	ırement													
St#	Time	Location (ft)	Method	Depth (ft)	%Depth	Measure d Depth (ft)	Samples	Velocity (ft/s)	Correct ion	Mean Velocity (ft/s)	Area (ft²)	Flow (ft³/s)	%Q	
0	1:13 PM	0.500	None	0.000	0.0000	0.000	0	0.0000	1.0000	0.0003	0.0000	0.0000	0.00	1
1	1:14 PM	1.200	0.6	0.300	0.6000	0.180	80	0.0003	1.0000	0.0003	0.1500	0.0001	0.02	1
2	1:15 PM	1.500	0.6	0.400	0.6000	0.240	80	-0.1200	1.0000	-0.1200	0.1200	-0.0144	-4.48	4
3	1:18 PM	1.800	0.6	0.450	0.6000	0.270	80	-0.1394	1.0000	-0.1394	0.1350	-0.0188	-5.86	1
4	1:19 PM	2.100	0.6	0.500	0.6000	0.300	80	-0.1012	1.0000	-0.1012	0.1500	-0.0152	-4.73	1
5	1:21 PM	2.400	0.6	0.500	0.6000	0.300	80	-0.0976	1.0000	-0.0976	0.1500	-0.0146	-4.56	1
6	1:22 PM	2.700	0.6	0.500	0.6000	0.300	80	0.1177	1.0000	0.1177	0.1500	0.0177	5.50	4
7	1:24 PM	3.000	0.6	0.400	0.6000	0.240	80	0.0083	1.0000	0.0083	0.1200	0.0010	0.31	1
8	1:25 PM	3.300	0.6	0.450	0.6000	0.270	80	0.3734	1.0000	0.3734	0.1350	0.0504	15.70	1
9	1:27 PM	3.600	0.6	0.400	0.6000	0.240	80	1.3952	1.0000	1.3952	0.1200	0.1674	52.13	1
10	1:28 PM	3.900	0.6	0.500	0.6000	0.300	80	1.1053	1.0000	1.1053	0.1500	0.1658	51.62	1
11	1:30 PM	4.200	0.6	0.400	0.6000	0.240	80	-0.1133	1.0000	-0.1133	0.1600	-0.0181	-5.64	1
12	1:31 PM	4.700	None	0.000	0.0000	0.000	0	0.0000	1.0000	-0.1133	0.0000	0.0000	0.00	1

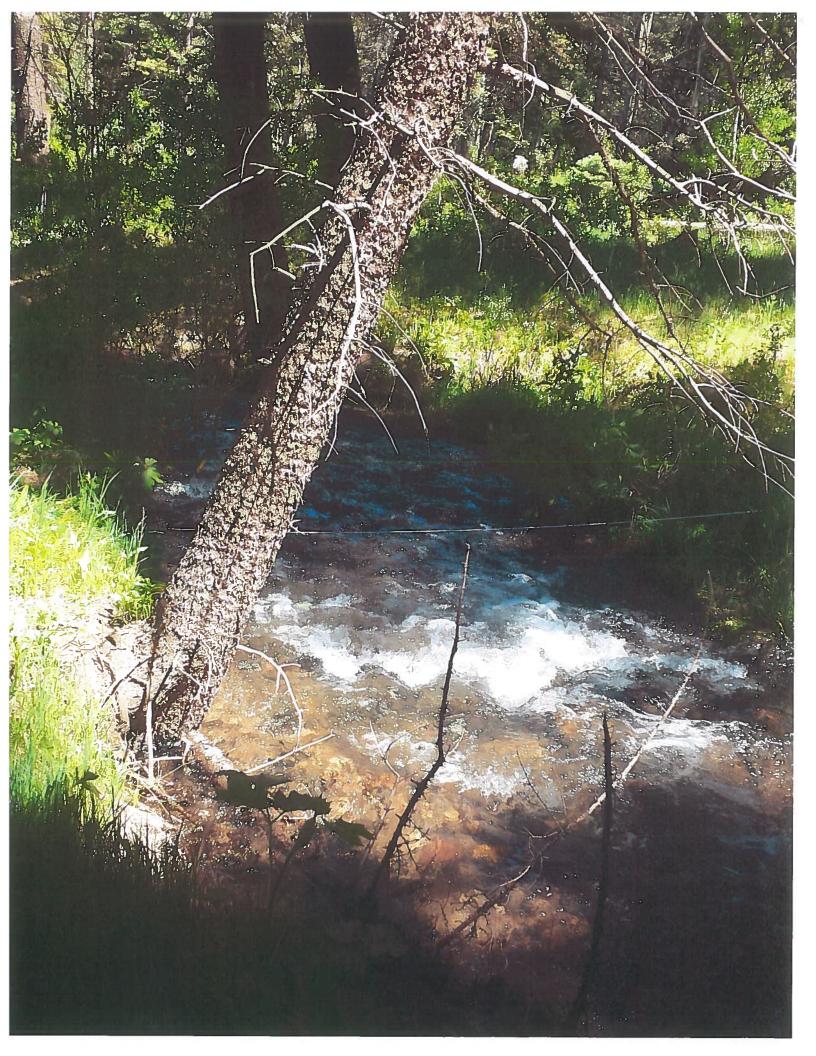

Quality control warnings							
St#	Time	Location (ft)	Method	Depth (ft)	%Depth	Measure d Depth (ft)	Warnings
1	1:14 PM	1.200	0.6	0.300	0.6000	0.180	SNR Threshold Variation
2	1:15 PM	1.500	0.6	0.400	0.6000	0.240	Boundary Interference, Velocity Angle > QC
3	1:18 PM	1.800	0.6	0.450	0.6000	0.270	Boundary Interference, Velocity Angle > QC
4	1:19 PM	2.100	0.6	0.500	0.6000	0.300	Velocity Angle > QC
5	1:21 PM	2.400	0.6	0.500	0.6000	0.300	Velocity Angle > QC
6	1:22 PM	2.700	0.6	0.500	0.6000	0.300	Velocity Angle > QC
8	1:25 PM	3.300	0.6	0.450	0.6000	0.270	High Stn % Discharge
9	1:27 PM	3.600	0.6	0.400	0.6000	0.240	Standard Error > QC, High Stn % Discharge
10	1:28 PM	3.900	0.6	0.500	0.6000	0.300	Standard Error > QC, High Stn % Discharge
11	1:30 PM	4.200	0.6	0.400	0.6000	0.240	Velocity Angle > QC

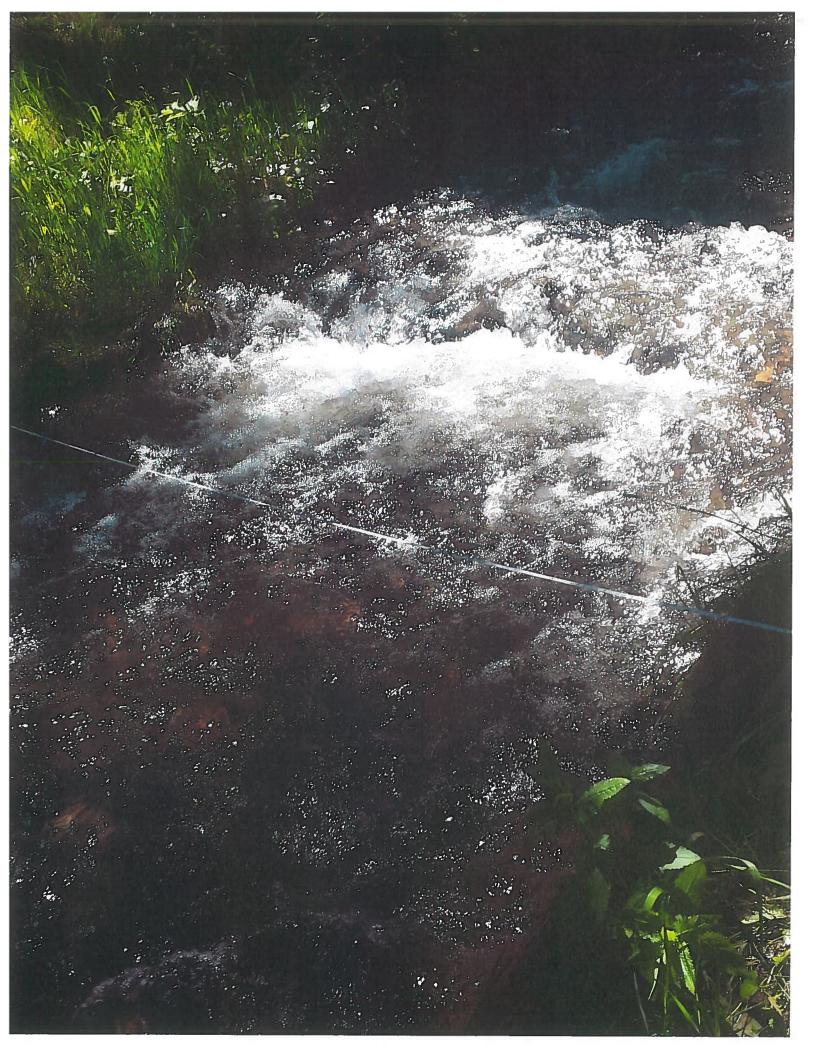
Automated beam check Start time 10/29/2018 1:12:58 PM

Automated beam check Quality control warnings

No quality control warnings






Baker Creek At Ski Area

