Design Report Swede Lake Dam Rehabilitation Boulder County, Colorado

Water Division 1, Water District 5, C-2064 DAMID:050304

Prepared for:

Boulder Country Parks and Open Space 5201 St Vrain Road

Longmont, Colorado 80503

Prepared by:

1600 Specht Point Road, Suite 209 Fort Collins, Colorado 80525 (970) 488-3111 Fax (970) 488-3112

Project No. 110480

EXECUTIVE SUMMARY

Construction for the Swede Lake Dam Rehabilitation project began in August 2017. The scope of work included: 1) Mitigate seepage through embankment. 2) Repair primary outlet structure. 3) Repair irrigation outlet structure. 4) Repair and replace embankment erosion. 5) Remove sediment from Swede Lake. 6) Repair emergency spillway. 7) Repair spillway ditch. 8) Add erosion control where damaged or missing. 9) Revegetate disturbed areas.

Construction experienced delays from a necessary change in scope of work. After excavation and further examination of the existing embankment, EA observed that the conditions of the existing embankment were unacceptable due to volume of roots and, in some locations, poor soil condition. It was determined that the embankment should be completely removed and replaced, rather than repaired. Apart from this change, only minor field adjustments were needed. Work was substantially completed in March 2018.

Based on our observation and testing throughout the project, the work was conducted in accordance with the approved plans and specifications. Changes to the original plans and issues addressed during construction are described in this report and are shown on the "As-Constructed" drawings.

TABLE OF CONTENTS

1.0	INT	RODUCTION	1
2.0	DES	IGN CHANGES	1
3.0	CON	NSTRUCTION	1
	3.1	Clay Excavation	2
	3.2	Tree Removal and Root Chasing	2
	3.3	Outlet Excavation and Installation	2
	3.4	Emergency Spillway	2
	3.5	Tower Installation	2
	3.6	Complete Removal and Replacement of Dam Embankment	3
	3.7	Riprap and Bedding	3
	3.8	Toe Drain	3
4.0	MAT	ΓERIALS TESTING	3
5.0	STA	NDARD OF CARE	4

LIST OF APPENDICES

Appendix A Weather Conditions

Appendix B Construction Photographs

Appendix C Materials Testing

Appendix D Structural Design Letter

1.0 INTRODUCTION

Swede Lake is located in Section 14, Township 2 North, Range 70 West of the 6th Principal Meridian, in Boulder County, Colorado. The project site is located approximately one mile west of the intersection of Pike Road and North 75th Street in rural Boulder County, Colorado. Swede Lake is the largest of three small reservoirs north of Pike Road and northwest of Lagerman Reservoir in unincorporated Boulder County, Colorado. The dam and reservoir lie within an ephemeral drainage with a small drainage area. The reservoir is filled by local irrigation ditches.

Swede Lake has a maximum vertical height of 14.2 feet, a crest length of 1,506 feet, and a crest width of approximately 12 feet. The upstream slope is 2.5H:1V, and the downstream slope is 2.5H:1V.

The proposed scope of work included: 1) Mitigate seepage through embankment. 2) Repair primary outlet structure. 3) Repair irrigation outlet structure. 4) Repair and replace embankment erosion. 5) Remove sediment from Swede Lake. 6) Repair emergency spillway. 7) Repair spillway ditch. 8) Add erosion control where damaged or missing. 9) Revegetate disturbed areas.

This report summarizes the design changes, construction observations, and field testing results for the project.

2.0 DESIGN CHANGES

One change order was submitted to the SEO requesting the complete replacement of the dam embankment. It was determined that the existing embankment was inadequate due to the extent of roots through the embankment and the damage caused by the roots. Also, the sand blanket was removed from the design. The only reason the blanket was included in the original design was due to the uncertainty of potential roots in the embankment, which is now removed. The Change Order Requested dated October 4, 2017 outlines the changes to the original Construction Drawings. No changes to the Construction Specifications were required.

3.0 CONSTRUCTION

The contractor for this project was CAP Excavating and Demolition, out of Lyons, Colorado. Engineering Analytics, Inc. (EA) provided construction oversight throughout the construction phase of the project and provided oversite testing for backfill, bedding, and concrete. Construction at Swede Lake Dam began in August 2017 and was completed in March 2018. The construction progressed without major delays. After the decision was made to completely replace the dam embankment, the construction schedule was revised to construct the outlet works while the new embankment was being designed and approved. There were only a couple of weeks during this process where the contractor was slow on work. The weather conditions for the site during the construction phase are summarized in Appendix A.

The construction milestones are summarized in the following paragraphs. The construction photographs are presented in Appendix B.

3.1 Clay Excavation

The clay material used for the Swede Lake Dam embankment was excavated from the reservoir, 200 feet away from the toe of the dam. Prior to excavation, a dozer was used to strip the top 1 to 2 feet to access usable clay material. Clay was excavated using a loader and two haul trucks. The clay material was stockpiled at the original stock pile location just west of the staging area. Photo 1 shows the excavation of clay in the reservoir bottom.

3.2 Tree Removal and Root Chasing

Over 80 trees were removed from the dam or the immediate area surrounding the dam. Some trees were salvaged and used on another project. The trees were removed down to their root ball, and any remaining roots were chased down to ½ inch in diameter. As can be seen in the photos in Appendix B, there was a large volume of roots within the embankment. Also, some large roots (2 inches or greater) went all the way through the dam embankment. Photos 2-4 show the roots within the existing embankment.

3.3 Outlet Excavation and Installation

The two outlet locations were excavated according to the excavation detail on the drawings. The foundation of the outlet was excavated until good material was found, and then was filled with clay and compacted to meet grade, in accordance to the specifications. Photo 5 shows the excavation for the primary outlet pipe.

The base of the outlet easements and the outlet structures were formed and poured first. Then the two outlet pipes were place and anchored to the base using metal belts and spacers between the pipe and base. The remainder of the outlet pipe encasement was formed and poured with battered sides. After the concrete set, the excavation was backfilled with compacted clay and the pipes were pressure tested. Both the primary outlet and the irrigation outlet passed the pressure tests. Photo 6 shows the formwork for the base of the outlet pipe encasement. Photos 9 and 10 show the outlet pipes strapped to the base of the encasement. Photo 11 shows the formwork of the irrigation outlet pipe before the remainder of the encasement was poured.

3.4 Emergency Spillway

The cutoff wall was constructed per the drawings and specifications. Both sides of the cutoff wall were filled and compacted simultaneously. A spillway channel was constructed and armored with bedding. Riprap was placed just downstream of the cutoff wall, along the outside of the channel's bend. Photos 12 and 14 show the construction of the emergency spillway cutoff wall.

3.5 Tower Installation

The outlet towers were formed and poured according to the Construction Drawings and Specifications. The towers were constructed with two separate pours – one for the base and one

for the walls. Lids with hatches were placed on top of the towers. Photos 7 and 8 show the heavy-duty sluice gates for the outlet works. Photo 13 shows the construction of the primary outlet tower.

3.6 Complete Removal and Replacement of Dam Embankment

The embankment required complete removal and replacement. The Contractor excavated the existing embankment and segregated out material with large quantities of roots for disposal in the reservoir bottom. Approved material was moisture conditioned and placed in the new embankment.

Prior to placing the new embankment, the Engineer inspected and approved the foundation. Material used for the embankment came from either the clay borrow from the far end of the reservoir or from the reusable material from the existing embankment. The material was moisturized and placed in lifts between about 8 and 12 inches of loose material. The material was compacted to 95% compaction or greater using a sheepsfoot roller.

3.7 Riprap and Bedding

Existing riprap was removed and sorted through. The unwanted debris was separated and disposed of. The riprap was evaluated, and the portion that pasted visual inspection was reused later in the project. The contractor placed 24-inch layer of riprap on top a 6-inch layer of bedding. Existing riprap that could be salvaged and reused was mixed in with imported Class 12 ($D_{50} = 12$ ") riprap. Photo 15 shows the placement of bedding and riprap on the dam embankment.

3.8 Toe Drain

The toe drain was installed with the use of a box being pulled along the embankment. No. 8 Gavel was placed in the trench, then the box was placed on the gravel. C33 sand was placed in the box along with the toe drain. The box was then pulled across the embankment. The top gravel layer was placed on top of the sand, and the drain was covered with 2 feet of embankment. The sand, gavel, and embankment cover were all compacted according to the specifications.

4.0 MATERIALS TESTING

Quality assurance testing was conducted on the project as work progressed. Appendix C of this report provides a summary of all testing conducted. The summary includes gradations for the riprap bedding, proctor density curves for the backfill, moisture and density tests for the backfill, and concrete test data. As the tests indicate, the materials used during construction meet the project requirements except for some of the concrete strength tests. The 28-day strength of the concrete placed in the vault structure at Station 4+00 on November 20, 2017 required structural calculations to check that the structure still met design requirements. EA addressed the concrete strength with calculations in a technical letter dated January 8, 2018, which is included in Appendix D. It was concluded that the structures pass the structural design criteria with the low break strengths.

5.0 STANDARD OF CARE

The information contained in this report represents our findings at the time and location as indicated in this report. The methods utilized are in accordance with currently accepted engineering and testing procedures and other than this, no warranty, either expressed or implied, is intended.

APPENDIX A WEATHER CONDITIONS

Lemoore (Abandoned) Willett A

② 2:21 PM MDT on April 13, 2018 (GMT -0600)

Today

Forecast

Weather History for KLMO - August, 2017

Sunday			Monday			Tuesday		Wedneso	day		Thursday		Friday		Saturday	
						1	×į	2			3		4	1/1/1	5	<i></i>
						Actual: Average:	91° 57° 0.00 in - - - in	Actual: Average:	90° 54° 0.00 in - - - in	•••	Actual: Average:	69° 57° 0.10 in - - - in	Actual: Average:	90° 54° 0.03 in - - - in	Actual: Average:	85° 57° 0.27 in - - - in
6		*	7		////	8	<i>[11]</i>	9		<i> </i>	10	<i>(</i> /	11	[////	12	<i></i>
Actual: Average:	74° 54° 0.00 in - - - in		Actual: Average:	64° 58° 0.31 in - - - in		Actual: Average:	77° 57° 0.00 in - - - in	Actual: Average:	78° 56° 0.01 in - - - in		Actual: Average:	78° 55° 0.09 in - - - in	Actual: Average:	80° 57° 0.00 in - - - in	Actual: Average:	82° 55° 0.00 in - - - in
13		<i>/////</i>	14		////	15	<i>[11]</i>	16		<i>(1/1/1</i>	17	***	18	***	19	*
octual: overage:	88° 57° 0.00 in - - - in	•••	Actual: Average:	92° 56° 0.00 in - - - in	.,,	Actual: Average:	84° 56° 0.02 in - - - in	Actual: Average:	78° 58° 0.01 in - - - in	•••	Actual: Average:	90° 51° 0.00 in - - - in	Actual: Average:	89° 52° 0.00 in - - - in	Actual: Average:	98° 53° 0.00 in - - - in
20		***	21		***	22	<i>[11]</i>	23		////	24	*	25	Ä	26	×.
ctual: verage:	90° 57° 0.00 in - - - in	•	Actual: Average:	90° 55° 0.00 in - - - in		Actual: Average:	83° 55° 0.00 in - - - in	Actual: Average:	91° 57° 0.00 in - - - in	•••	Actual: Average:	89° 54° 0.00 in - - - in	Actual: Average:	91° 49° 0.00 in - - - in	Actual: Average:	96° 54° 0.00 in - - - in
27		***	28		***	29	×į	30			31	<i>(</i> /	2///			
ctual: verage:	88° 59° 0.00 in - - - in	*	Actual: Average:	91° 54° 0.00 in - - - in	•	Actual: Average:	92° 53° 0.00 in - - - in	Actual: Average:	90° 54° 0.00 in - - - in	*	Actual: Average:	88° 54° 0.00 in - - - in				
ılendar Leger	nd															

Lemoore (Abandoned) Willett A

② 2:21 PM MDT on April 13, 2018 (GMT -0600)

☐ Today ☐ Forecast

Weather History for KLMO - September, 2017

Sunday			Monday			Tuesday			Wednesday			Thursday			Friday			Saturday		
															1 Actual: Average:	90° 59° 0.00 in - -		2 Actual: Average:	91° 54° 0.00 in - - - in	**
3		**	4			5			6		**	7	3		8		~	9		**
Actual: Average:	99° 52° 0.00 in - - - in		Actual: Average:	90° 55° 0.00 in - - - in		Actual: Average:	72° 51° 0.00 in - - - in		Actual: Average:	81° 46° 0.00 in - - - in		Actual: Average:	85° 47° 0.00 in - - - in		Actual: Average:	86° 50° 0.00 in - - - in		Actual: Average:	93° 53° 0.00 in - - - in	
10			11			12		**	13		////	14	2		15	Ó	`'///	16		////
Actual: Average:	92° 53° 0.00 in - - - in		Actual: Average:	87° 59° 0.00 in - - - in		Actual: Average:	93° 52° 0.00 in - - - in		Actual: Average:	88° 55° 0.01 in - - - in		Actual: Average:	90° 57° 0.00 in - - - in		Actual: Average:	84° 50° 0.11 in - - - in		Actual: Average:	66° 48° 0.01 in - - - in	
17			18		*	19		**	20		*	21			22	ć		23		
Actual: Average:	76° 45° 0.00 in - - - in		Actual: Average:	84° 44° 0.00 in - - - in		Actual: Average:	88° 48° 0.00 in - - - in		Actual: Average:	77° 40° 0.00 in - - - in		Actual: Average:	90° 40° 0.00 in - - - in		Actual: Average:	74° 44° 0.00 in - - - in		Actual: Average:	56° 47° 0.60 in - - - in	
24		////	25			26		<i> </i>	27		////	28		<i> </i>	29	2		30		////
Actual: Average:	52° 47° 0.03 in - - - in		Actual: Average:	57° 43° 0.00 in - - - in		Actual: Average:	65° 46° 0.01 in - - - in		Actual: Average:	55° 51° 0.02 in - - - in		Actual: Average:	59° 51° 0.26 in - - - in		Actual: Average:	62° 44° 0.00 in - - - in	_	Actual: Average:	71° 40° 0.01 in - - - in	

Calendar Legend

Lemoore (Abandoned) Willett A

② 2:20 PM MDT on April 13, 2018 (GMT -0600)

☐ Today ☐ Forecast

Weather History for KLMO - October, 2017

Sunday			Monday			Tuesday			Wednesday			Thursday			Friday			Saturday		
1			2			3	(*	4			5			6			7		
Actual:	70° 50° 0.00 in		Actual:	50° 39° 0.52 in		Actual:	58° 34° MM in	*	Actual:	69° 40° 0.00 in		Actual:	68° 43° 0.00 in		Actual:	72° 48° 0.00 in		Actual:	77° 40° 0.00 in	•
Average:	- - - in		Average:	- - -in		Average:	- - - in		Average:	- - - in		Average:	- - - in		Average:	- - - in		Average:	- - - in	
8		***	9		***	10			11		**	12		**	13		**	14		**
Actual:	65° 37° MM in		Actual:	43° 31° MM in		Actual:	60° 26° 0.00 in		Actual:	72° 30° 0.00 in		Actual:	79° 34° 0.00 in		Actual:	65° 35° 0.00 in		Actual:	64° 32° 0.00 in	
Average:	- - - in		Average:	- - - in		Average:	- - - in		Average:	- - -in		Average:	- - - in		Average:	- - - in		Average:	- - - in	
15		**	16		**	17			18		**	19		**	20		**	21		////
Actual:	62° 28° 0.00 in		Actual:	79° 32° 0.00 in		Actual:	81° 31° 0.00 in		Actual:	79° 41° 0.00 in		Actual:	74° 32° 0.00 in		Actual:	80° 39° 0.00 in		Actual:	63° 33° 0.00 in	
Average:	- - - in		Average:	- - - in		Average:	- - - in		Average:	- - - in		Average:	- - - in		Average:	- - - in		Average:	- - - in	
22		**	23			24			25		***	26		***	27			28		
Actual:	72° 29° 0.00 in		Actual:	65° 36° 0.00 in		Actual:	64° 29° 0.00 in		Actual:	84° 34° 0.00 in		Actual:	66° 33° MM in		Actual:	46° 22° 0.00 in		Actual:	63° 37° 0.00 in	
Average:	- - - in		Average:	- - - in		Average:	- - - in		Average:	- - - in		Average:	- - - in		Average:	- - - in		Average:	- - - in	
29			30		***	31	(一												
Actual:	77° 34°		Actual:	43° 32°	·	Actual:	61° 28°	* 1 CHAP												

Calendar Legend

0.00 in

-|-

Average:

Hail Flurries

Average:

Mostly Cloudy

MM in -|-- in

Average:

MM in

Lemoore (Abandoned) Willett A

② 2:15 PM MDT on April 13, 2018 (GMT -0600)

☐ Today ☐

Forecast

Weather History for KLMO - November, 2017

Average: - in		Saturday			Friday			Thursday			Wednesda		у	Tuesday		Monday			Sunday
Actual: 48° 35° 28° Actual: 43° 34° Actual: 48° 29° Actual: 48° 28° Actual: 48° 29° Actual: 48° 28° Actual: 48° 28° Actual: 48° 29° Actual: 48° 28° Actual: 54° 22°	72° 31° 0.00 in - -	Actual:	33°) in	0.00 in - -	Actual:		0.00 in - -	Actual:	**	0.00 in - -									
Actual: 48° 35°	- 111	11		- 111	10	*	- 111	9	**	- 111	8			7		6	<i>////</i>		5
Actual: 55° 26°	62° 30° 0.00 in - -		in	0.00 in - -			0.00 in - -			0.03 in - -			MM in - -	Actual:	43° 34° MM in - -		•	0.09 in - -	
Actual: 55° 26°		18	1111		17	**		16	**		15	**		14	*	13	**		12
Actual: 56° 19°	52° 25° 0.00 in - - - in		in in	0.07 in - -		·	0.00 in - -			0.00 in - -			0.00 in - -		0.00 in - -		•	0.00 in - -	
Actual: 56° 19°		25	**		24	**		23	***		22	////		21	3	20	**		19
Actual: 68° 32° Actual: 78° 41° Actual: 49° 27° Actual: 67° 23° Actual: 54° 22°	63° 32° 0.00 in - - - in		in	0.00 in - -		Ť	0.00 in - -		·	0.00 in - -		20	0.00 in - -		0.00 in - -			0.00 in - -	
						***		30			29			28		27			26
0.00 in 0.00 i							0.00 in			0.00 in		70	0.00 in		0.00 in		0	0.00 in	

Calendar Legend

Lemoore (Abandoned) Willett A

⊙ 2:21 PM MDT on April 13, 2018 (GMT -0600)

☐ Today ☐ Forecast

Weather History for KLMO - December, 2017

Sunday			Monday			Tuesday			Wednesday			Thursday		Friday			Saturday		
														1 Actual: Average:	60° 26° 0.00 in - - - in	*	2 Actual: Average:	63° 32° 0.00 in - - - in	
3		*	4		*	5		**	6		*	7	ž.	8	***		9		***
Actual:	62° 30° 0.00 in		Actual:	45° 19° 0.00 in		Actual:	48° 12° 0.00 in	,	Actual:	43° 19° 0.00 in		Actual:	38° 10° 0.00 in	Actual:	63° 24° 0.00 in		Actual:	64° 21° 0.00 in	•
Average:	- - - in		Average:	- - - in		Average:	- - - in		Average:	- - - in		Average:	- - - in	Average:	- - - in		Average:	- - - in	
10		**	11		*	12		*	13			14	*:*	15	*		16		
Actual:	61° 19° 0.00 in	•	Actual:	59° 22° 0.00 in	•	Actual:	66° 23° 0.00 in	•	Actual:	56° 35° MM in	•	Actual:	45° 19° MM in	Actual:	65° 16° 0.00 in	•	Actual:	58° 33° 0.00 in	
Average:	- - - in		Average:	- - - in		Average:	- - - in		Average:	- - -in		Average:	- - - in	Average:	- - - in		Average:	- - - in	
17			18		**	19		**	20		**	21	*:*	22	*	*	23		
Actual:	42° 21° MM in		Actual:	54° 17° 0.00 in		Actual:	51° 23° 0.00 in		Actual:	67° 23° 0.00 in		Actual:	36° 7° MM in	Actual:	40° 3° MM in		Actual:	34° 10° MM in	
Average:	- - - in		Average:	- - - in		Average:	- - - in		Average:	- - - in		Average:	- - - in	Average:	- - -in		Average:	- - - in	
24		* *	25		***	26		***	27		***	28	*	29	*	*	30		
Actual:	28° -3° MM in		Actual:	27° 11° MM in		Actual:	14° 6° MM in		Actual:	55° 0° MM in		Actual:	50° 23° 0.00 in	Actual:	67° 16° MM in		Actual:	24° 13° MM in	
Average:	- - - in		Average:	- - - in		Average:	- - -in		Average:	- - - in		Average:	- - - in	Average:	- - - in		Average:	- - - in	
31		***																	
Actual:	27° 15° MM in	***																	
Average:	- - - in																		
alendar Legend	t		1																
Sunny				Mostly Cloudy	,		₩ Pa	artly Clou	ıdy		_ c	oudy	Ra	n	*:	Sno	ow		

Hail Flurrie

Lemoore (Abandoned) Willett A

② 2:22 PM MDT on April 13, 2018 (GMT -0600)

Today

Forecast

Weather History for KLMO - January, 2018

Sunday			Monday			Tuesday			Wednesday			Thursday			Friday			Saturday		
			1		***	2			3			4	3		5			6		
			Actual: Average:	30° 11° MM in - - - in		Actual: Average:	46° 8° 0.00 in - - - in		Actual: Average:	52° 14° 0.00 in - - - in	•	Actual: Average:	54° 23° 0.00 in - - - in		Actual: Average:	53° 21° 0.00 in - - - in	•	Actual: Average:	54° 24° 0.00 in - - - in	
7			8		**	9			10			11	*		12			13		
Actual: Average:	54° 26° 0.00 in - - - in		Actual: Average:	48° 20° 0.00 in - - - in		Actual: Average:	69° 33° 0.00 in - - - in		Actual: Average:	52° 25° 0.00 in - - - in		Actual: Average:	47° 17° 0.00 in - - - in		Actual: Average:	48° 23° 0.00 in - - - in		Actual: Average:	50° 17° 0.00 in - - - in	
14			15		***	16		*	17		**	18	2		19		***	20		***
Actual: Average:	52° 20° 0.00 in - - - in		Actual: Average:	31° 4° MM in - - - in	• . 3 74	Actual: Average:	35° -3° 0.01 in - - - in		Actual: Average:	55° 8° 0.00 in - - - in	•	Actual: Average:	61° 18° 0.00 in - - - in	•	Actual: Average:	74° 32° 0.00 in - - - in		Actual: Average:	50° 24° MM in - - - in	• . 1.745
21		•	22		***	23		*	24			25	3		26		***	27		
Actual: Average:	32° 23° MM in - - - in		Actual: Average:	49° 7° 0.11 in - - - in		Actual: Average:	42° 15° 0.00 in - - - in		Actual: Average:	52° 12° 0.00 in - - - in	•	Actual: Average:	46° 21° 0.00 in - - - in	•	Actual: Average:	42° 24° 0.00 in - - - in		Actual: Average:	42° 21° 0.00 in - - - in	
28		**	29		***	30			31											
Actual: Average:	56° 18° 0.00 in - - - in	* *	Actual: Average:	60° 21° 0.00 in - - - in	***	Actual: Average:	66° 29° 0.00 in - - - in	¥ *	Actual: Average:	58° 23° 0.00 in - - - in										
Calendar Legen	d																			
Sunny				Mostly Cloud	у		Pa	artly Clou	ıdy		CI	loudy		Rain			Sr Sr	now		

Hail Flurries

Lemoore (Abandoned) Willett A, CO fillett A

② 2:22 PM MDT on April 13, 2018 (GMT -0600)

☐ Today ☐ Forecast

Weather History for KLMO - February, 2018

Sunday			Monday			Tuesday			Wednesday			Thursday		Friday			Saturday		
												1 Actual: Average:	33° 25° MM in - -	2 Actual: Average:	44° 24° 0.00 in - - - in		3 Actual: Average:	62° 29° 0.00 in - - - in	
4 Actual: Average:	52° 16° MM in - - - in	* *	5 Actual: Average:	59° 22° MM in - - - in	***	6 Actual: Average:	51° 25° 0.00 in - -		7 Actual: 51° 0.0 Average: - - in		,	8 Actual: Average:	61° 27° 0.00 in - -	9 Actual: Average:		***	10 Actual: Average:	20° 3° MM in - -	*:*
11 Actual: Average:	36° 2° MM in - - - in	*: *	12 Actual: Average:	25° 17° MM in - - - in	***	13 Actual: Average:	60° 13° 0.00 in - - - in					15 Actual: Average:	54° 23° MM in - -	16 Actual: Average:	44° 23° 0.00 in - - - in	*	17 Actual: Average:	59° 37° 0.00 in - - - in	**
18 Actual: Average:	68° 25° MM in - - - in	***	19 Actual: Average:	23° 5° MM in - - - in	*.*	20 Actual: Average:	18° -9° MM in - -		21 Actual: 28 MM Average: - - ir	•	,	22 Actual: Average:	34° 6° 0.00 in - - - in	23 Actual: Average:	36° 8° MM in - - - in	*.*	24 Actual: Average:	39° 8° 0.07 in - - - in	
25 Actual: Average:	45° 25° 0.00 in - - - in	*	26 Actual: Average:	53° 21° 0.00 in - - - in	*	27 Actual: Average:	55° 23° 0.00 in - - - in	*	28 Actual: 53° 0.0 Average: - - in										
Calendar Leger Sunny Clear	у			Mostly Cloudy			Partly	Cloud	dy		Clo		Rain			⊖ Sn			
Hail F	lurries		1111	Thunderstorms	6		Hazy Fog				Sle	et	'?' dei	notes ce of		⊕ Un	known		

Lemoore (Abandoned) Willett A

② 2:22 PM MDT on April 13, 2018 (GMT -0600)

Today

Forecast

Weather History for KLMO - March, 2018

Sunday			Monday			Tuesday			Wednesday			Thursday			Friday			Saturday		
												1 Actual: Average:	52° 22° 0.00 in - - - in		2 Actual: Average:	72° 28° 0.00 in - - - in		Actual: Average:	70° 27° 0.00 in - - - in	*
4 Actual: Average:	69° 26° 0.00 in - - - in	*	5 Actual: Average:	44° 29° 0.00 in - - - in	*	6 Actual: Average:	51° 20° 0.00 in - - - in	**	7 Actual: Average:	55° 16° 0.00 in - - - in	*	8 Actual: Average:	67° 22° 0.00 in - - - in	*	9 Actual: Average:	68° 43° 0.00 in - - - in	*	10 Actual: Average:	57° 25° 0.00 in - - - in	*
11 Actual: Average:	54° 17° 0.00 in - - - in	*	12 Actual: Average:	59° 19° 0.00 in - - - in	*	13 Actual: Average:		*	14 Actual: Average:	70° 25° 0.00 in - - - in	*	15 Actual: Average:	67° 29° 0.14 in - - - in	<i> </i> - -	16 Actual: Average:	57° 33° 0.00 in - - - in	*	17 Actual: Average:	64° 26° 0.00 in - - - in	*
18 Actual: Average:	59° 28° MM in - - - in	***	19 Actual: Average:	50° 30° 0.00 in - - - in	<i> </i>	20 Actual: Average:	56° 26° 0.00 in - -	*	21 Actual: Average:	64° 26° 0.00 in - - - in	*	22 Actual: Average:	78° 35° 0.00 in - - - in	*	23 Actual: Average:	71° 48° 0.00 in - - - in	////	24 Actual: Average:	68° 31° 0.00 in - - - in	*
25 Actual: Average:	64° 30° 0.02 in - - - in		26 Actual: Average:	53° 34° MM in - - - in	*:*	27 Actual: Average:	53° 31° MM in - - - in	****	28 Actual: Average:	48° 30° MM in - - - in	***	29 Actual: Average:	51° 25° 0.00 in - - - in		30 Actual: Average:	66° 27° 0.00 in - - - in	*	31 Actual: Average:	60° 32° 0.00 in - - - in	

Calendar Legend

APPENDIX B CONSTRUCTION PHOTOGRAPHS

Photo 01 (08-04-2017) Excavation of clay

Photo 02 (08-22-2017) Roots in embankment by primary spillway (1)

Photo 03 (08-22-2017) Roots in embankment by primary spillway (2)

Photo 04 (08-25-2017) Roots in north dam embankment

Photo 05 (09-20-2017) Outlet excavation

Photo 07 (10-24-2017) 15-inch heavy duty slide gate

Photo 08 (10-24-2017) 24-inch heavy duty slide gate

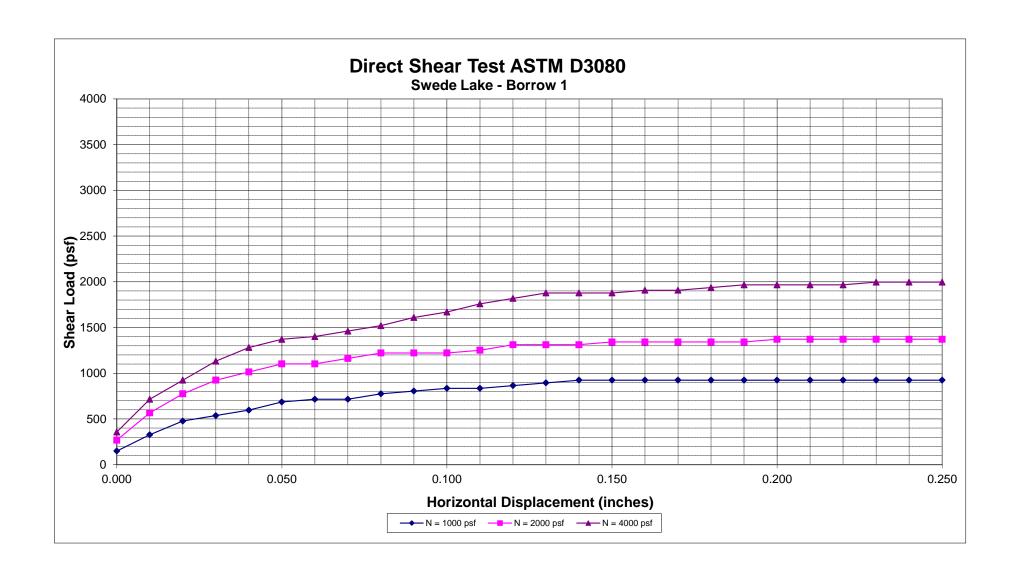
Photo 09 (10-24-2017) Irrigation PIP anchored to base of encasement

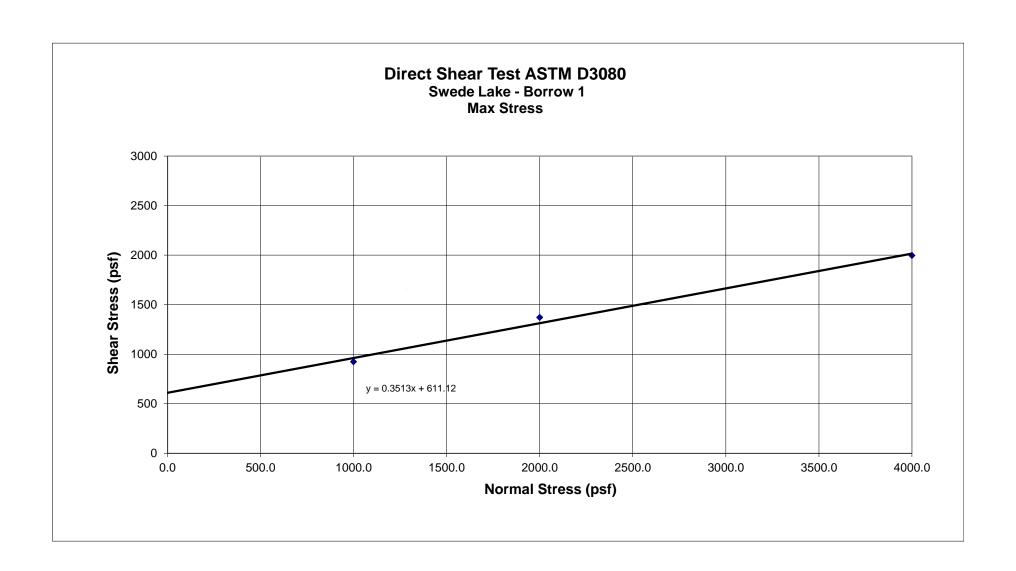
Photo 11 (11-03-2017) Irrigation outlet ecasement rebar and formwork

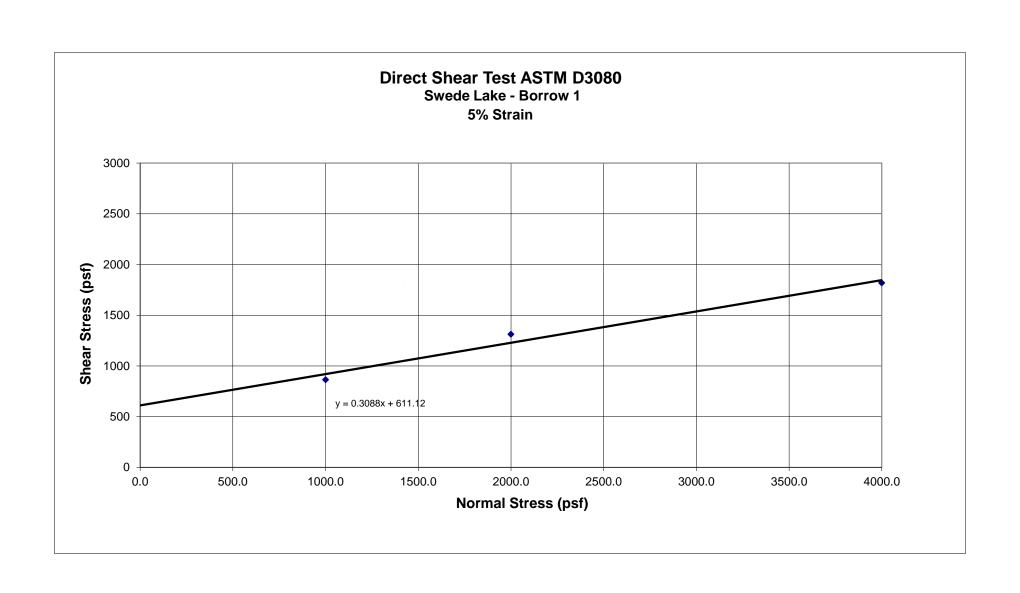
Photo 12 (11-20-2017) Spillway grade beam reinforcement

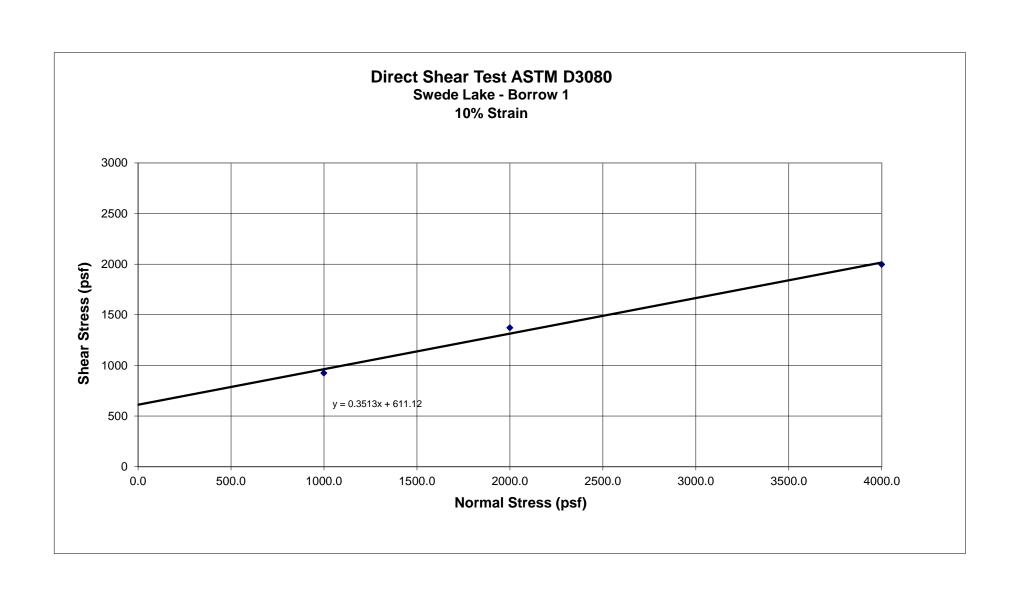
Photo 13 (11-21-2017) Northeast wingwall foundation after form removal

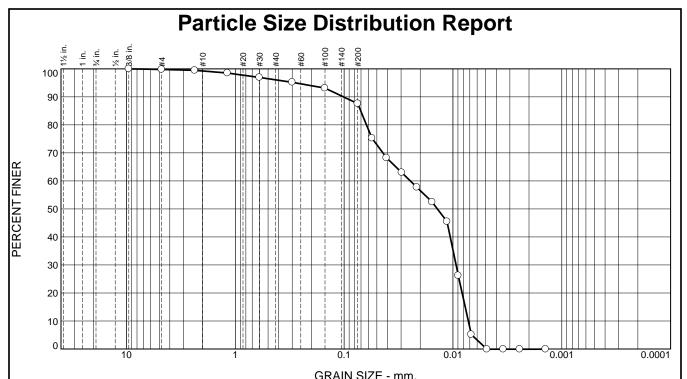
Photo 14 (12-14-2017) Spillway grade control beam backfill


Photo 15 (01-02-2018) Bedding and riprap on upstream face


APPENDIX C MATERIALS TESTING


			GINEERING ANA				
	CO		ED DRAINED DI		R TEST		
		Swe	ede Lake	Borrow 1			
		f		==			
Sample Data:				PEAK	SHEAR LOAD	SHEAR LOAD	
Bulk Unit Weight (pcf):	118.4		NORMAL	SHEAR	AT 5%	AT 10%	
Dry Unit Weight (pcf):	101.5		LOAD	LOAD	STRAIN	STRAIN	
moisture content (%):	14.4		(psf)	(psf)	(psf)	(psf)	
sample mass (grams):	187.6						
sample diameter (inch):	2.48		4000.0	004	005	004	
sample height (inch):	1.25		1000.0	924	865	924	
sample area (sq inch):	4.83		2000.0	1371	1312	1371	
shear rate (inch per min.)	: 0.002500		4000.0	1997	1818	1997	
NORMAL	SHEAR	SHEAR	HORIZ	HORIZ		HORIZ	SHEAR
LOAD	LOAD	LOAD	DIAL	DISP		DISP	LOAD
(psf)	(lbs)	(psf)	0.001(inch)	(inch)		(inch)	(psf)
1000	<u>0</u>	0	<u>660</u>	0.000		0.000	0
1000	<u>5</u>	149	<u>670</u>	0.010		0.010	149
1000	<u>11</u>	328	<u>680</u>	0.020		0.020	328
1000	<u>16</u>	477	<u>690</u>	0.030		0.030	477
1000	<u>18</u>	537	700	0.040		0.040	537
1000	20	596	710	0.050		0.050	596
1000	23	686	720	0.060		0.060	686
1000	24	715	730	0.070		0.070	715
1000	24	715	740	0.080		0.080	715
1000	26	775	750	0.000		0.090	775
1000	<u>27</u>	805	<u>760</u>	0.100		0.100	805
1000	<u>28</u>	835	<u>770</u>	0.110		0.110	835
1000	<u>28</u>	835	<u>780</u>	0.120		0.120	835
1000	<u>29</u>	865	<u>790</u>	0.130		0.130	865
1000	<u>30</u>	894	<u>800</u>	0.140		0.140	894
1000	<u>31</u>	924	<u>810</u>	0.150		0.150	924
1000	<u>31</u>	924	<u>820</u>	0.160		0.160	924
1000	<u>31</u>	924	<u>830</u>	0.170		0.170	924
1000	<u>31</u>	924	<u>840</u>	0.180		0.180	924
1000	<u>31</u>	924	<u>850</u>	0.190		0.190	924
1000	<u>31</u>	924	<u>860</u>	0.200		0.200	924
1000	<u>31</u>	924	<u>870</u>	0.210		0.210	924
1000	<u>31</u>	924	<u>880</u>	0.220		0.220	924
1000	<u>31</u>	924	<u>890</u>	0.230		0.230	924
1000	<u>31</u>	924	900	0.240		0.240	924
1000	<u>31</u>	924	<u>910</u>	0.250		0.250	924
1000	<u>31</u>	924	920	0.260		0.260	924
1000	<u>31</u>	924	<u>930</u>	0.270		0.270	924
	1						


				IRECT SHEAR TE			
		Swe	ede Lake	Borrow 1	0		
NORMAL	SHEAR	SHEAR	HORIZ	HORIZ		HORIZ	SHEAR
LOAD	LOAD	LOAD	DIAL	DISP		DISP	LOAD
(psf)	(lbs)	(psf)	0.001(inch)	(inch)		(inch)	(psf)
2,000	0	0	660	0.000		0.000	0
2,000	9	268	670	0.010		0.010	268
2,000	<u>19</u>	566	680	0.020		0.020	566
2,000	26	775	690	0.030		0.030	775
2,000	31	924	700	0.040		0.040	924
2,000	34	1014	710	0.050		0.050	1014
2,000	37	1103	720	0.060		0.060	1103
2,000	37	1103	730	0.070		0.070	1103
2,000	39	1163	740	0.080		0.080	1163
2,000	41	1222	750	0.090		0.090	1222
2,000	41	1222	760	0.100		0.100	1222
2,000	41	1222	770	0.110		0.110	1222
2,000	42	1252	780	0.120		0.120	1252
2,000	44	1312	790	0.130		0.130	1312
2,000	44	1312	800	0.140		0.140	1312
2,000	44	1312	810	0.150		0.150	1312
2,000	45	1341	820	0.160		0.160	1341
2,000	45	1341	830	0.170		0.170	1341
2,000	<u>45</u>	1341	<u>840</u>	0.180		0.180	1341
2,000	<u>45</u>	1341	<u>850</u>	0.190		0.190	1341
2,000	<u>45</u>	1341	<u>860</u>	0.200		0.200	1341
2,000	<u>46</u>	1371	<u>870</u>	0.210		0.210	1371
2,000	46	1371	880	0.220		0.220	1371
2,000	46	1371	890	0.230		0.230	1371
2,000	<u>46</u>	1371	900	0.240		0.240	1371
2,000	<u>46</u>	1371	<u>910</u>	0.250		0.250	1371
2,000	46	1371	920	0.260		0.260	1371
2,000	46	1371	930	0.270		0.270	1371


				IRECT SHEAR TES			
		Swede Lake		Borrow 1	0		
NORMAL	SHEAR	SHEAR	HORIZ	HORIZ		HORIZ	SHEAR
LOAD	LOAD	LOAD	DIAL	DISP		DISP	LOAD
(psf)	(lbs)	(psf)	0.001(inch)	(inch)		(inch)	(psf)
4,000	0	0	660	0.000		0.000	0
4,000	12	358	670	0.010		0.010	358
4,000	24	715	680	0.020		0.020	715
4,000	31	924	690	0.030		0.030	924
4,000	38	1133	700	0.040		0.040	1133
4,000	43	1282	710	0.050		0.050	1282
4,000	46	1371	720	0.060		0.060	1371
4,000	47	1401	730	0.070		0.070	1401
4,000	49	1461	740	0.080		0.080	1461
4,000	51	1520	750	0.090		0.090	1520
4,000	54	1610	760	0.100		0.100	1610
4,000	<u>56</u>	1669	770	0.110		0.110	1669
4,000	<u>59</u>	1759	780	0.120		0.120	1759
4,000	61	1818	790	0.130		0.130	1818
4,000	<u>63</u>	1878	800	0.140		0.140	1878
4,000	<u>63</u>	1878	<u>810</u>	0.150		0.150	1878
4,000	<u>63</u>	1878	820	0.160		0.160	1878
4,000	64	1908	830	0.170		0.170	1908
4,000	<u>64</u>	1908	840	0.180		0.180	1908
4,000	<u>65</u>	1938	<u>850</u>	0.190		0.190	1938
4,000	<u>66</u>	1967	<u>860</u>	0.200		0.200	1967
4,000	<u>66</u>	1967	<u>870</u>	0.210		0.210	1967
4,000	<u>66</u>	1967	880	0.220		0.220	1967
4,000	66	1967	890	0.230		0.230	1967
4,000	<u>67</u>	1997	900	0.240		0.240	1997
4,000	<u>67</u>	1997	<u>910</u>	0.250		0.250	1997
4,000	67	1997	920	0.260		0.260	1997
4,000	67	1997	930	0.270		0.270	1997

	OTO (III OIZE IIIIII:							
% +3"	% Gravel		% Sand			% Fines		
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	0.0	0.2	0.6	3.1	8.5	87.3	0.3	

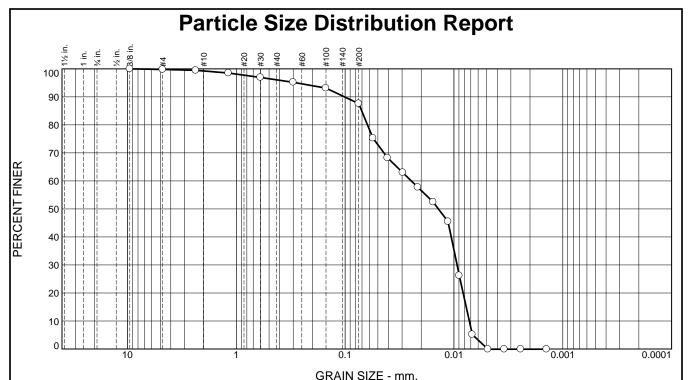
TEST RESULTS (AASHTO T 27)					
Opening	Percent	Spec.*	Pass?		
Size	Finer	(Percent)	(X=Fail)		
3/8	100.0				
#4	99.8				
#8	99.5				
#16	98.5				
#30	96.9				
#50	95.2				
#100	93.1				
#200	87.6				
0.0555 mm.	75.2				
0.0407 mm.	68.2				
0.0296 mm.	63.0				
0.0215 mm.	57.7				
0.0156 mm.	52.5				
0.0113 mm.	45.5				
0.0089 mm.	26.2				
0.0068 mm.	5.2				
0.0049 mm.					
0.0034 mm.					
0.0024 mm.					
0.0014 mm.					

Material Description Atterberg Limits (ASTM D 4318) PL= **Classification** USCS (D 2487)= AASHTO (M 145)= Coefficients **D₉₀=** 0.1015 **D₅₀=** 0.0139 **D₁₀=** 0.0072 D₈₅= 0.0704 D₃₀= 0.0094 C_u= 3.41 **D₆₀=** 0.0247 **D₁₅=** 0.0077 **C_c=** 0.49 Remarks Date Received: 8/14/17 **Date Tested:** 8/17/17 Tested By: KG Checked By: KG Title:

Date Sampled: 8/14/17

(no specification provided)

Source of Sample: Borrow 1


Sample Number: 1

ENIGNEERING ANALYTICS, INC.

Client: Boulder County Parks & open Space

Project: Swede Lake

Project No: 110480 Figure

	OT VIII VOILE TIIIII							
% +3"	% Gravel		% Sand			% Fines		
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	0.0	0.2	0.6	3.1	8.5	87.3	0.3	

TEST RESULTS (AASHTO T 27)						
Opening	Percent	Spec.*	Pass?			
Size	Finer	(Percent)	(X=Fail)			
3/8	100.0					
#4	99.8					
#8	99.5					
#16	98.5					
#30	96.9					
#50	95.2					
#100	93.1					
#200	87.6					
0.0555 mm.	75.2					
0.0407 mm.	68.2					
0.0296 mm.	63.0					
0.0215 mm.	57.7					
0.0156 mm.	52.5					
0.0113 mm.	45.5					
0.0089 mm.	26.2					
0.0068 mm.	5.2					
0.0049 mm.						
0.0034 mm.						
0.0024 mm.						
0.0014 mm.						

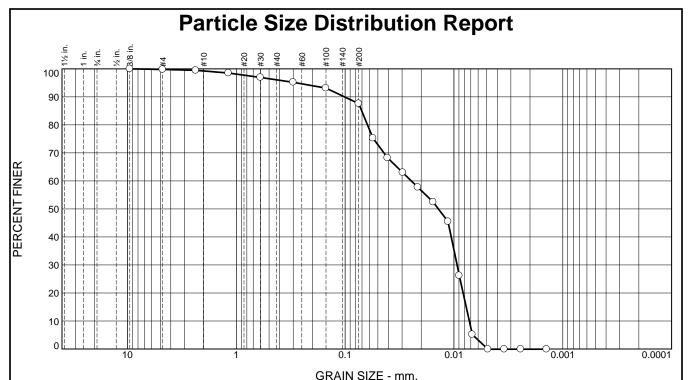
Material Description Clay Atterberg Limits (ASTM D 4318) **PL=** 15 LL= 42 Classification USCS (D 2487)= CL **AASHTO** (M 145)= A-7-6(24)Coefficients **D₆₀=** 0.0247 **D₁₅=** 0.0077 **C_c=** 0.49 **D₉₀=** 0.1015 **D₅₀=** 0.0139 **D₁₀=** 0.0072 D₈₅= 0.0704 D₃₀= 0.0094 C_u= 3.41 Remarks Date Received: 8/14/17 **Date Tested:** 8/17/17 Tested By: KG Checked By: KG

(no specification provided)

Source of Sample: Borrow 1

Sample Number: 1

Client: Boulder County Parks & Open Space


Title:

Project: Swede Lake

Project No: 110480 Figure

Date Sampled: 8/14/17

ENIGNEERING ANALYTICS, INC.

					010 1111	<u> </u>	
% +3"	" % Gravel			% Sand		% Fines	
% +3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	0.2	0.6	3.1	8.5	87.3	0.3

TEST RESULTS (AASHTO T 27)							
Opening	Percent	Spec.*	Pass?				
Size	Finer	(Percent)	(X=Fail)				
3/8	100.0						
#4	99.8						
#8	99.5						
#16	98.5						
#30	96.9						
#50	95.2						
#100	93.1						
#200	87.6						
0.0555 mm.	75.2						
0.0407 mm.	68.2						
0.0296 mm.	63.0						
0.0215 mm.	57.7						
0.0156 mm.	52.5						
0.0113 mm.	45.5						
0.0089 mm.	26.2						
0.0068 mm.	5.2						
0.0049 mm.							
0.0034 mm.							
0.0024 mm.							
0.0014 mm.							

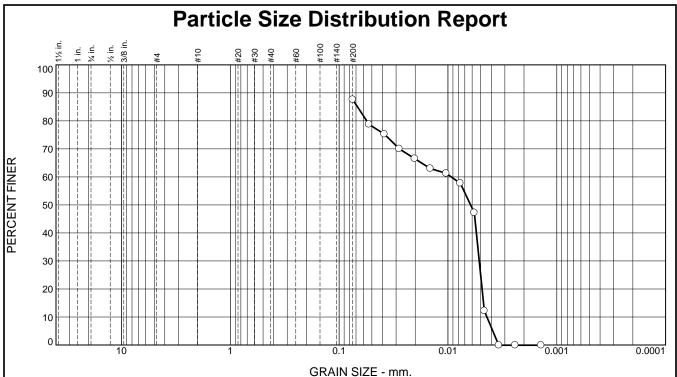
Material Description Clay Atterberg Limits (ASTM D 4318) **PL=** 15 LL= 42 Classification USCS (D 2487)= CL **AASHTO** (M 145)= A-7-6(24)Coefficients **D₆₀=** 0.0247 **D₁₅=** 0.0077 **C_c=** 0.49 **D₉₀=** 0.1015 **D₅₀=** 0.0139 **D₁₀=** 0.0072 D₈₅= 0.0704 D₃₀= 0.0094 C_u= 3.41 Remarks Date Received: 8/14/17 **Date Tested:** 8/17/17 Tested By: KG Checked By: KG

(no specification provided)

Source of Sample: Borrow 1

Sample Number: 1

Client: Boulder County Parks & Open Space


Title:

Project: Swede Lake

Project No: 110480 Figure

Date Sampled: 8/14/17

ENIGNEERING ANALYTICS, INC.

					010 1111	O:EE :::::::	
0/ .2"	% Gravel			% Sand		% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
						62.8	24.8

TEST RESULTS							
Opening	Percent	Spec.*	Pass?				
Size	Finer	(Percent)	(X=Fail)				
#200	87.6						
0.0532 mm.	78.8						
0.0384 mm.	75.3						
0.0280 mm.	70.0						
0.0202 mm.	66.5						
0.0145 mm.	63.0						
0.0104 mm.	61.3						
0.0077 mm.	57.7						
0.0057 mm.	47.2						
0.0046 mm.	12.2						
0.0034 mm.							
0.0024 mm.							
0.0014 mm.							
*							

	02.0	,		24.0	
Clay	/	Material	Descripti	on	
PL=	Atter	berg Limi LL= 40		D 4318) Pl= 25	
USC	CS (D 2487)=		ification AASHTO	(M 145)=	
D ₉₀ D ₅₀ D ₁₀	= 0.0062 = 0.0044	$D_{85} = 0.0$	ficients 678 052	D₆₀= 0.0093 D₁₅= 0.0047 C_c= 0.65	
		Re	marks		
	Received:		Date T	ested:	
CI	hecked By: _ Title: _				

* (no specification provided)

Source of Sample: Borrow 3 Sample Number: 1

Date Sampled:

ENIGNEERING ANALYTICS, INC.

Client: Boulder County Parks & Open Space

Project: Swede Lake

Project No: 110480 Figure

Curve No.: 1

Project No.: 110480 **Date:** 9/18/2017

Project: Swede Lake

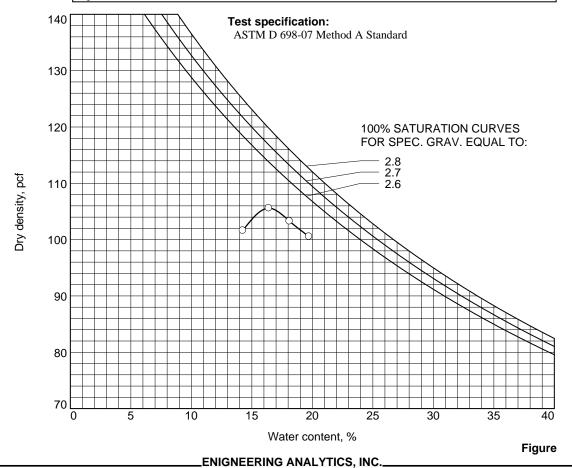
Client: Boulder County Parks & Open Space

Source of Sample: Borrow 1

Sample Number: 1

Remarks:

MATERIAL DESCRIPTION


Description: Clay

Classifications - USCS: CL AASHTO: A-7-6(24)

Nat. Moist. = Sp.G. =

TEST RESULTS

Maximum dry density = 105.6 pcf Optimum moisture = 16.4 %

Tested By: KG

Curve No.: 2

Project No.: 110480 **Date:** 9/19/2017

Project: Swede Lake

Client: Boulder County Parks & Open Space

Source of Sample: Borrow 3

Sample Number: 1

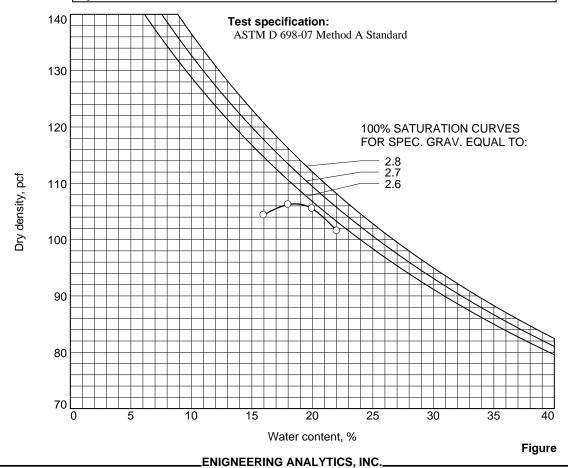
Remarks:

MATERIAL DESCRIPTION

Description: Clay

Classifications - USCS: AASHTO:

Nat. Moist. = Sp.G. =


Liquid Limit = 40 Plasticity Index = 25

%<No.10 = %<No.40 =

%<No.60 = %<No.200 = 87.6 %

TEST RESULTS

Maximum dry density = 106.4 pcf Optimum moisture = 18.6 %

Tested By: KG

Curve No.: 3

Project No.: 110480 **Date:** 10/20/2017

Project: Swede Lake

Client: Boulder County Parks & Open Space

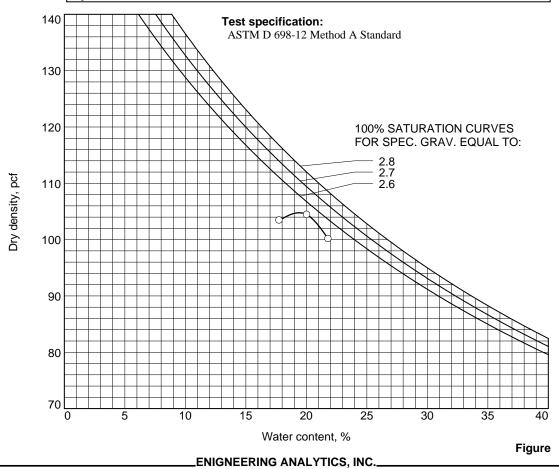
Source of Sample: Borrow 4

Sample Number: 1

Remarks:

MATERIAL DESCRIPTION

Description: Clay


Classifications - USCS: AASHTO:

Nat. Moist. = Sp.G. =

Liquid Limit = Plasticity Index = %<No.10 = %<No.40 = %<No.200 =

TEST RESULTS

Maximum dry density = 104.8 pcf Optimum moisture = 19.4 %

Tested By: KG Checked By: KG

Curve No.: 4

Project No.: 110480 **Date:** 10/30/17

Project: Swede Lake

Client: Boulder County Parks & Open Space

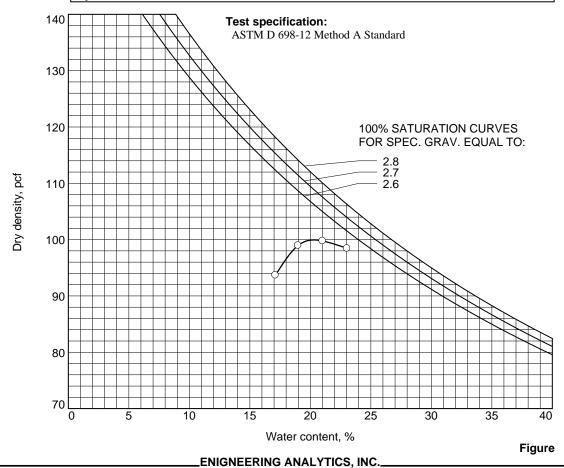
Source of Sample: Borrow 5

Sample Number: 1

Remarks:

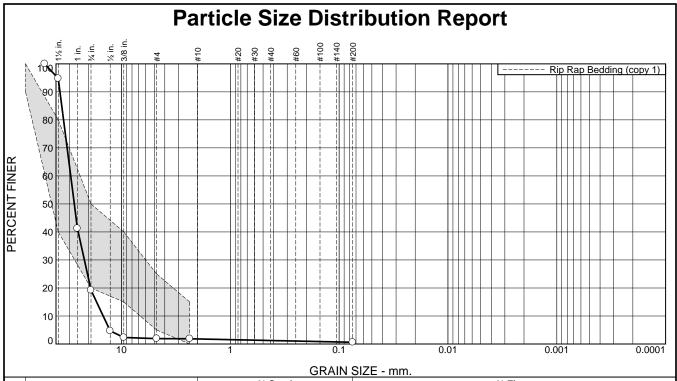
MATERIAL DESCRIPTION

Description: Silty Clay


Classifications - USCS: AASHTO:

Nat. Moist. = Sp.G. =

Liquid Limit = Plasticity Index = %<No.10 = %<No.40 = %<No.200 =


TEST RESULTS

Maximum dry density = 99.9 pcf Optimum moisture = 20.3 %

Tested By: KG

SUMMAR	SUMMARY OF LABORATORY TEST RESULTS								
JOB NAME:		Swed	de Lake	JOB NUMBER:	<u>110480</u>	DATE:	9/27/2017		
Depth (ft.)	Sample Type	Moisture (%)	Falling Head Permeability	Atterbergs LL / PL / PI	Grain Size Analysis	Percent Passing No. 200 (%)	Hydrometer	D698 Standard Proctor	
Borrow 1									
	BKT		3.60E-07	42 / 15 / 27	(1)	87.2	(1)	105.6 @ 16.4%	
Borrow 2									
	BKT			33 / 18 / 15		79.1			
Borrow 3	Borrow 3								
	BKT	·		40 / 15 / 25	_	87.6	(1)	106.4 @ 18.6%	
*LL = Liquid L	imit PL =	Plastic Lir	mit PI = Plasticity Index	N.P. = Non Pla	stic	(1) = See Attached			

٥,	. 2"	9/ Crovel	% Sand		% Fines	
ľ	% +3"	% Gravel	Coarse	Fine	Silt	Clay
(0.0	98.2	0.6	0.6	0.6	
г						

TEST RESULTS (AASHTO T 27)							
Opening	Percent	Spec.*	Pass?				
Size	Finer	(Percent)	(X=Fail)				
2'	100.0						
1-1/2"	94.8	40.0 - 80.0	X				
1"	41.2						
3/4"	19.2	20.0 - 50.0	X				
1/2"	4.7						
3/8"	2.3	15.0 - 40.0	X				
#4	1.9	5.0 - 25.0	X				
#8	1.9	0.0 - 15.0					
#200	0.6						
*							

	Material Descrip	<u>tion</u>
Bedding Material		
Δ++	erberg Limits (AST	M D 4318)
PL=	II =	PI=
. =-		
	Classification	
USCS (D 2487)=	GP AASHTO) (M 145)=
	Coefficients	
D₉₀= 36.7456	D ₈₅ = 35.3803	D₆₀= 29.2783
D₉₀= 36.7456 D₅₀= 27.1431 D₁₀= 14.7256	D₃₀= 21.9317 C_u= 1.99	D₁₅= 16.9321
D ₁₀ = 14./256	C _u = 1.99	C _C = 1.12
	Remarks	
Date Received:	12/15/17 Date	Tested: 12/20/2017
		12/20/2017
Tested By:	KG	
Checked By:	KG	
Title:		
Title.		

Date Sampled: 12/15/17

Source of Sample: Bedding Material Sample Number: 1

ENIGNEERING ANALYTICS, INC.

Client: Boulder County Parks & Open Space

Project: Swede Lake

Project No: 110480 Figure

^{*} Rip Rap Bedding (copy 1)

% +3"		% Gravel	% Sand		% Fines	
	+3		Coarse	Fine	Silt	Clay
0	.0	98.6	0.5	0.5	0.4	

TEST RESULTS (AASHTO T 27)							
Opening	Percent	Spec.*	Pass?				
Size	Finer	(Percent)	(X=Fail)				
2"	100.0						
1-1/2"	82.5	40.0 - 80.0	X				
1"	36.8						
3/4"	18.8	20.0 - 50.0	X				
1/2"	4.7						
3/8"	2.2	15.0 - 40.0	X				
#4	1.5	5.0 - 25.0	X				
#8	1.4	0.0 - 15.0					
#200	0.4						

Date Sampled: 12/21/17

Source of Sample: Bedding Material

Sample Number: 2

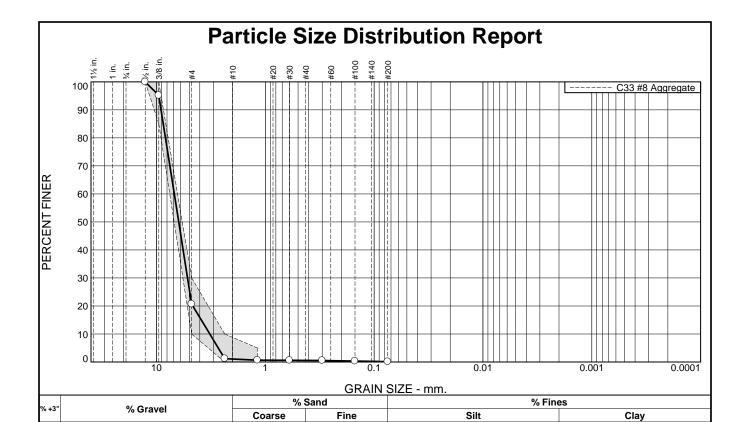
ENIGNEERING ANALYTICS, INC.

Client: Boulder County Parks & Open Space

Project: Swede Lake

Project No: 110480 Figure

^{*} Rip Rap Bedding (copy 1)


Relative Density Testing

Project: _	Swede Lake	Date:	10/27/2017
Material:	Sand	Description:	Sand
Tested By: <u>I</u>	KG TEST	PROCEDURE:	ASTM 4253 & D4254
NOTE: Smith	n Geotechnical standard bucket: vol. = 0.50 ft3, Diam = 1		
	and de	eath 9.125 = 0.760	'

<u>Der</u>	<u>nsity</u>			<u>Left</u>		<u>Right</u>	
Empty Bucket	21.20	lb					
			Initial dial reading: L	0	_in	0 in	
Bucket+ Loose Soil	68.30	lb	Compacted dial reading: L	1.985	in R	1.985 in	
WT of soil:	47.10	lb	Change in Height: F	1.99	in B	1.99 in	
Volume at start:	0.50	ft3	Average:	1.99	in	0.17 ft	
			3				

Change in Volume: 0.11	ft3 [(change in ht)*Area of cylinder(0.66]
Compacted Volume: 0.39	ft3 [(Volume at start-(change in vol.)]
Minimum unit wt y: 93.9	pcf [(wt of soil)/Volume at start]
Maximum unit wt y: 119.9	pcf [(wt of soil)/(compacted volume)]
70% unit wt <i>y</i> : 112.1	pcf [ymin + 0.7*(ymax-ymax)]

Relative Density	Dry Ur	nit Weight	Relative Density	Dry Unit W	eight
55% unit wt	108.2	pcf	71% unit wt	112.4	pcf
56% unit wt	108.5	pcf	72% unit wt	112.6	pcf
57% unit wt	108.7	pcf	73% unit wt	112.9	pcf
58% unit wt	109.0	pcf	74% unit wt	113.2	pcf
59% unit wt	109.3	pcf	75% unit wt	113.4	pcf
60% unit wt	109.5	pcf	76% unit wt	113.7	pcf
61% unit wt	109.8	pcf	77% unit wt	113.9	pcf
62% unit wt	110.0	pcf	78% unit wt	114.2	pcf
63% unit wt	110.3	pcf	79% unit wt	114.5	pcf
64% unit wt	110.6	pcf	80% unit wt	114.7	pcf
65% unit wt	110.8	pcf	81% unit wt	115.0	pcf
66% unit wt	111.1	pcf	82% unit wt	115.3	pcf
67% unit wt	111.3	pcf	83% unit wt	115.5	pcf
68% unit wt	111.6	pcf	84% unit wt	115.8	pcf
69% unit wt	111.9	pcf	85% unit wt	116.0	pcf
70% unit wt	112.1	pcf		•	

0.5

7	TEST RESULTS	(AASHTO T 27)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
1/2	100.0	100.0	
3/8	95.2	85.0 - 100.0	
#4	20.7	10.0 - 30.0	
#8	1.2	0.0 - 10.0	
#16	0.7	0.0 - 5.0	
#30	0.6		
#50	0.5		
#100	0.3		
#200	0.1		
	Aggregate		

0.5

98.9

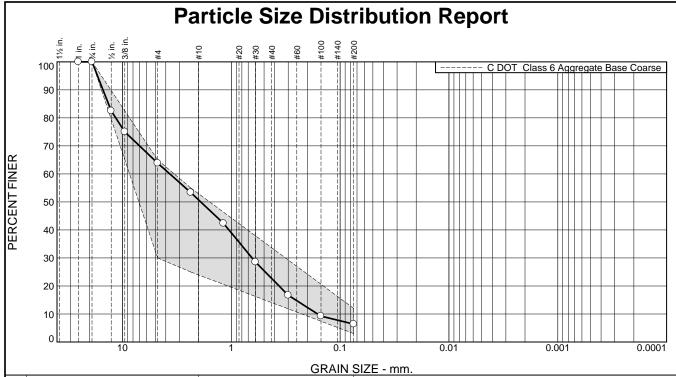
Material Description #8 Aggregate Atterberg Limits (ASTM D 4318) PL= USCS (D 2487)= GP Classification AASHTO AASHTO (M 145)= Coefficients **D₉₀=** 9.0768 **D₅₀=** 6.2468 **D₁₀=** 3.2366 D₆₀= 6.8585 D₁₅= 3.8737 C_c= 1.21 D₈₅= 8.6626 D₃₀= 5.1823 C_u= 2.12 Remarks Date Received: 1/5/18 **Date Tested:** 1/10/2018 Tested By: KG Checked By: KG Title:

Date Sampled: 1/5/18

0.1

C33 #8 Aggregate

Source of Sample: #8 Aggregate Sample Number: 1


0.0

ENIGNEERING ANALYTICS, INC.

Client: Boulder County Parks & Open Space

Project: Swede Lake

Project No: 110480 **Figure**

% +3"	% Gravel	%:	Sand	% Fines				
% +3	% Gravei	Coarse	Fine	Silt	Clay			
0.0	49.3	28.0 16.3		6.4				

TEST RESULTS (AASHTO T 27)												
Opening	Percent	Spec.*	Pass?									
Size	Finer	(Percent)	(X=Fail)									
1	100.0											
3/4	100.0	100.0										
1/2	82.5											
3/8	75.0											
#4	63.8	30.0 - 65.0										
#8	53.4	25.0 - 55.0										
#16	42.4											
#30	28.6											
#50	16.7											
#100	9.2											
#200	6.4	3.0 - 12.0										
*		_										

Class 6	Material Descrip	tion
A 44	wh a way I invite /ACT	M D 4040)
PL=	rberg Limits (ASTI LL=	PI=
USCS (D 2487)=	Classification AASHTO	<u>1</u> 0 (M 145)=
D₉₀= 15.1056 D₅₀= 1.9090 D₁₀= 0.1609	Coefficients D ₈₅ = 13.4512 D ₃₀ = 0.6439 C _u = 22.84	D ₆₀ = 3.6740 D ₁₅ = 0.2562 C _c = 0.70
	Remarks	
Date Received: 2	2/09/18 Date	Tested: 2/14/2018
Tested By: E	KG	
Checked By: I	KG .	
Title:		

Source of Sample: Class 6 Sample Number: 1

Client: Boulder County Parks & Open Space

Project: Swede Lake

Project No: 110480

Figure

Date Sampled: 2/09/18

ENIGNEERING ANALYTICS, INC.

^{*} C DOT Class 6 Aggregate Base Coarse

PROJECT: Swede Lake
JOB NO.: 110480

PLACEMENT DATE: 10/18/2017

CLIENT: Boulder County (BCPOS)

CONTRACTOR: CAP Excavation

SUPPLIER: Bestway

MIX CODE: 45VND01E4G

SPECIFIED STRENGTH: 4,500 psi

TESTED BY: DCH

	CYLINDER NUMBER	SLUMP (INCH)	AIR (%)	AIR TEMP (°F)	CONCRETE TEMP (°F)	WATER ADDED (GAL)	DATE TESTED	TEST AGE (DAYS)	MAX APPLIED LOAD (LBS)	COMPRESSIVE STRENGTH (PSI)	TYPE OF FAILURE	PLACEMENT LOCATION
BATCH # 20051938 TRUCK # 1303 TIME 3:43 PM		3.50	6.0	87	77	10	10/26/17 11/16/17 11/16/17	7 28 28	49,820 56,490 56,760	3,965 4,495 4,517	5 3 3	Primary outlet, bottom 6", base of outlet structure
BATCH # 20051950 TRUCK # 1504 TIME 4:16 PM		3.50	5.5	90	79	3 gal after						Primary outlet, bottom 6", base of outlet structure
BATCH # 20051960 TRUCK # 0715 TIME 4:39 PM	1-2 A 1-2 B 1-2 C 1-2 D	5.00	5.5	75	78	3 gal before	10/26/17 11/16/17 11/16/17	7 28 28	41,710 46,080 47,220	3,319 3,667 3,757	3 3 3	Bottom 6" of irrigation outlet
BATCH # TRUCK # TIME										Pomarks:		

TYPE OF FAILURE

4-inch Diameter Cylinders Unless Noted Otherwise

Remarks:

1 CONE

All samples prepared and tested in accordance with the following ASTM standards: Sampling C172; Curing C31; Slump C143; Air C231; Temperature C1064; Compression C39

PROJECT: Swede Lake JOB NO.: 110480

PLACEMENT DATE: 10/18/2017 CLIENT: Boulder County (BCPOS)

CONTRACTOR: CAP Excavation

SUPPLIER: Bestway

MIX CODE: 45VND01E4G

SPECIFIED STRENGTH: 4,500 psi

TESTED BY: DCH

	CYLINDER NUMBER	SLUMP (INCH)	AIR (%)	AIR TEMP (°F)	CONCRETE TEMP (°F)	WATER ADDED (GAL)	DATE TESTED	TEST AGE (DAYS)	MAX APPLIED LOAD (LBS)	COMPRESSIVE STRENGTH (PSI)	TYPE OF FAILURE	PLACEMENT LOCATION
BATCH # 20057120 TRUCK # 613 TIME 2:45 PM 3:05 PM		4.00	4.0 5.3	55	76 76	11 before 12						Primary outlet pipe encasement
BATCH # 20057141 TRUCK # 1313 TIME 3:25 PM	2-1 A 2-1 B 2-1 C 2-1 D	4.25	6.0	55	70	10 before	11/10/17 12/4/18 12/4/18	7 28 28	45,680 57,990 60,530	3,634 4,615 4,817	3 3 3	
BATCH # 20057154 TRUCK # 714 TIME 3:40 PM		3.25	5.0	58	71							
BATCH # 20057169 TRUCK # 1717 TIME 4:30 PM	2-2 A 2-2 B 2-2 C 2-2 D	3.50	3.5 5.6	55	67	5	11/10/17 12/4/18 12/4/18	7 28 28	44,710 58,460 55,750	3,558 4,652 4,436	3 3 3	Farmer's irrigation outlet

TYPE OF FAILURE

4-inch Diameter Cylinders Unless Noted Otherwise

Remarks:

All samples prepared and tested in accordance with the following ASTM standards: Sampling C172; Curing C31; Slump C143; Air C231; Temperature C1064; Compression C39

PROJECT: Swede Lake JOB NO.: 110480 PLACEMENT DATE: 11/20/2017

CLIENT: Boulder County

CONTRACTOR: CAP

MIX CODE: CD4995 SPECIFIED STRENGTH: 4,500 TESTED BY: EAH

psi

SUPPLIER: Martin Marietta

	CYLINDER NUMBER	SLUMP (INCH)	AIR (%)	AIR TEMP (°F)	CONCRETE TEMP (°F)	WATER ADDED (GAL)	DATE TESTED	TEST AGE (DAYS)	MAX APPLIED LOAD (LBS)	COMPRESSIVE STRENGTH (PSI)	TYPE OF FAILURE	PLACEMENT LOCATION
BATCH # 46332331 TRUCK # 8906 TIME 2:15 PM	3-1 A 3-1 B 3-1 C 3-1 D	5.00 4.00	5.5	67	71	0	11/27/17 12/18/17 12/18/17	7 28 28	45,680 62,180 56,620	3,635 4,948 4,505	3 3 3	Grade control beam spillway
BATCH # 35054319 TRUCK # 1619 TIME 2:45 PM	3-2 A 3-2 B 3-2 C 3-2 D	4.00	6.0	67	78	0	11/27/17 12/18/17 12/18/17	7 28 28	47,590 61,570 66,780	3,787 4,900 5,314	3 3 3	NE & SE wingwall foundations at approx. STA 9+00
BATCH# TRUCK# TIME												
BATCH # TRUCK #												

CONE

CONE

SHEAR

4-inch Diameter Cylinders Unless Noted Otherwise

All samples prepared and tested in accordance with the following ASTM standards: Sampling C172; Curing C31; Slump C143; Air C231; Temperature C1064; Compression C39

Remarks:

Initial check test had 5" slump. Retested in miiddle 1/3 of land out of pump house and got a 4" slump result.

PROJECT: Swede Lake
JOB NO.: 110480

PLACEMENT DATE: 11/20/2017

CLIENT: Boulder County

CONTRACTOR: CAP

SUPPLIER: Martin Marietta

MIX CODE: CD4995

SPECIFIED STRENGTH: 4,500 psi

TESTED BY: EAH

	CYLINDER	NUMBER	SLUMP (INCH)	AIR (%)	AIR TEMP (°F)	CONCRETE TEMP (°F)	WATER ADDED (GAL)	DATE TESTED	TEST AGE (DAYS)	MAX APPLIED LOAD (LBS)	COMPRESSIVE STRENGTH (PSI)	TYPE OF FAILURE	PLACEMENT LOCATION
BATCH # 46332 TRUCK # 15.10 TIME 10:10	7 4- AM 4- 4-	-1 A -1 B -1 C -1 D -1 E		8.7	59	70		12/4/17 12/26/17 12/26/17 1/22/18 12/7/17	7 28 28 63 10	28,606 40,450 41,090 42,710 33,890	2,275 3,219 3,270 3,399 2,697	3 3 3 3	Spillway wall/drop structure at STA 4+00. *
BATCH # 4.63E TRUCK # 030 TIME 10:30	9 4- 4- AM 4- 4-	-2 A -2 B -2 C -2 D -2 E -2 F	4.50	7.4	59	68	10	12/4/17 12/26/17 12/26/17 1/22/18 12/7/17	7 28 28 63 10	38,600 48,480 48,330 54,490 40,780	3,072 3,858 3,846 4,336 3,245	3 5 5 3 3	Vault structure at STA 4+00
BATCH # 46332 TRUCK # 170 TIME 11:00)1	ţ	5.00	7.4	59	70							**
BATCH # 46332 TRUCK # 172 TIME 12:50	·1						6				Domarko		

TYPE OF FAILURE

1 2 CONE SPLIT CONE

3 SPLIT 4 5 SHEAR EDGE

SHEAR

6 CONE SHEAR 4-inch Diameter Cylinders Unless Noted Otherwise

All samples prepared and tested in accordance with the following ASTM standards: Sampling C172; Curing C31; Slump C143; Air C231; Temperature C1064; Compression C39

Remarks:

*Rejected due to high air content

**Visual check only

PROJECT: Swede Lake JOB NO.: 110480 PLACEMENT DATE: 11/20/2017

CLIENT: Boulder County

CONTRACTOR: CAP

SUPPLIER: Martin Marietta

MIX CODE: CD4995 SPECIFIED STRENGTH: 4,500

TESTED BY: EAH

	CYLINDER NUMBER	SLUMP (INCH)	AIR (%)	AIR TEMP (°F)	CONCRETE TEMP (°F)	WATER ADDED (GAL)	DATE TESTED	TEST AGE (DAYS)	MAX APPLIED LOAD (LBS)	COMPRESSIVE STRENGTH (PSI)	TYPE OF FAILURE	PLACEMENT LOCATION
BATCH # 35054767 TRUCK # 0703 TIME 1:40 PM	5-1 A 5-1 B 5-1 C 5-1 D 5-1 E 5-1 F	3.75	5.5	47	73		12/12/17 1/3/18 1/3/18	7 28 28	56,300 70,090 72,460	4,480 5,572 5,764	3	Wing walls and outlet structure at STA 9+00
BATCH # 35054768 TRUCK # 8620 TIME 2:05 PM		3.00	5.2	46	70							
BATCH # 35054773 TRUCK # 8601 TIME 2:25 PM		4.00	5.9	44	70	8						
BATCH # 35054777 TRUCK # 8687 TIME 3:00 PM		3.50	5	44	71	8				Remarks:		Measuring weirs and headwall at STA 9+00; pipe encasement at STA 4+00; *

CONE

CONE

4-inch Diameter Cylinders Unless Noted Otherwise

All samples prepared and tested in accordance with the following ASTM standards: Sampling C172; Curing C31; Slump C143; Air C231; Temperature C1064; Compression C39

Remarks:

*8 gallons were added after initial test.

psi

REPORT OF CON	CRETE (СОМР	RESSI\	/E STF	RENGTI	H TESTS						Engineering Analytics, Inc.
PROJECT: JOB NO.: PLACEMENT DATE: CLIENT: CONTRACTOR:	110480 11/20/201 Boulder C	7				SUPPLIER: Martin Marietta MIX CODE: CD4995 SPECIFIED STRENGTH: 4,500 psi TESTED BY: EAH						
	CYLINDER NUMBER	SLUMP (INCH)	AIR (%)	AIR TEMP (°F)	CONCRETE TEMP (°F)	WATER ADDED (GAL)	DATE TESTED	TEST AGE (DAYS)	MAX APPLIED LOAD (LBS)	COMPRESSIVE STRENGTH (PSI)	TYPE OF FAILURE	PLACEMENT LOCATION
BATCH # 35054779 TRUCK # 8671 TIME 3:20 PM	5-2 A 5-2 B 5-2 C 5-2 D 5-2 E	3.25	5.6	44	72		12/12/17 1/3/18 1/3/18	7 28 28	59,300 75,440 74,520	4,719 6,003 5,928	3 3 3	Measuring weirs and headwall at STA 9+00; pipe encasement at STA 4+00
BATCH # TRUCK #												
BATCH # TRUCK #												
BATCH # TRUCK # TIME												
TYP	E OF FAILURI	E /		$\overline{}$	All sample	meter Cylinder s prepared an STM standard	d tested in acc	cordance w	ith the	Remarks: Observed use of co		orator during/after placement.

6 CONE SHEAR

Slump C143; Air C231; Temperature C1064; Compression C39

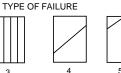
CAP Excavation

Swede Lake Dam PROJECT: JOB NO.: 110480 PLACEMENT DATE: 12/12/2017 CLIENT: BCPOS

CONTRACTOR:

SUPPLIER: Best Way Concrete MIX CODE: 45VN01E4G SPECIFIED STRENGTH: 4,500 TESTED BY: Tyler Davis

	CYLINDER NUMBER	SLUMP (INCH)	AIR (%)	AIR TEMP (°F)	CONCRETE TEMP (°F)	WATER ADDED (GAL)	DATE TESTED	TEST AGE (DAYS)	MAX APPLIED LOAD (LBS)	COMPRESSIVE STRENGTH (PSI)	TYPE OF FAILURE	PLACEMENT LOCATION	REMARKS
BATCH # 20067737 TRUCK # 1107 TIME 12:45 PM	6-1 A 6-1 B	3.25	6.3	58	80	0	12/19/17 1/9/18 1/9/18	7 28 28	52,850 60,520 65,100	4,206 4,816 5,181	3	Outlet Structure. Outlet pipe tie- in encasements to structure	
BATCH # TRUCK # TIME													
BATCH # TRUCK # TIME													
BATCH # TRUCK # TIME													
BATCH # TRUCK # TIME	-												



SHEAR EDGE SHEAR

SHEAR

4-inch Diameter Cylinders Unless Noted Otherwise

All samples prepared and tested in accordance with the following ASTM standards: Sampling C172; Curing C31; Slump C143; Air C231; Temperature C1064; Compression C39

ASTM D 2922-Density ASTM D3017-Moisture

MOISTURE-DENSITY RELATIONSHIPS

ASTM D 4253 & 4254

Curve	Maximum Dry	Optimum
No.	Density (pcf)	Moisture (%)
1	105.6	16.4
2	106.4	18.6

PROJECT: Swede Lake

JOB NO: 110480

CLIENT: Boulder County

CONTRACTOR: CAP

ENGINEER: Clint Brown

TESTED BY: Walter Kramb

NOTES: 1) First lift of fill

2) Compacted subgrade

Test				%	Densit	y (pcf)	%	Required	Curve
No.	Date	Location	Elevation	Moist	Moist	Dry	Compaction	Compaction	No.
1	9/22/2017	Outlet breach, station 0+50	5118.5	18.4	128.0	108.1	100+	95	2
2	9/22/2017	Outlet breach, station 0+20	5118	16.4	129.5	111.2	100+	95	2
3	9/22/2017	Outlet breach, station 0+20	5119.0	19.2	123.4	103.5	97	95	2
4	9/22/2017	Outlet breach, station 0+80	5119.0	19.4	121.9	102.1	96	95	2
5	9/22/2017	Outlet breach, station 0+40	5119.5	19.3	122.8	102.6	97	95	2
6	9/22/2017	Outlet breach, station 0+50	5120.0	17.9	125.3	106.2	100	95	2

ASTM D 2922-Density ASTM D3017-Moisture

MOISTURE-DENSITY RELATIONSHIPS

ASTM D 4253 & 4254

Curve	Maximum Dry	Optimum
No.	Density (pcf)	Moisture (%)
1	105.6	16.4
2	106.4	18.6

PROJECT:	Swede Lake
JOB NO:	110480

CLIENT: Boulder County Parks & Open Space

CONTRACTOR: CAP Excavating & Construction

ENGINEER: Clint Brown
TESTED BY: Dylan Hoehn

Test				%	Densit	y (pcf)	%	Required	Curve
No.	Date	Location	Elevation	Moist	Moist	Dry	Compaction	Compaction	No.
7	9/27/2017	Outlet breach, sta 0+40 right side of fill	5121.5	18.1	127.7	108.2	100+	95	1
8	9/27/2017	Outlet breach sta 0+50 right side of fill	5121.0	17.6	128.9	109.7	100+	95	1
9	9/27/2017	Outlet breach sta 0+40 right side of fill	5120.5	15.3	126.2	109.5	100+	95	1

ASTM D 2922-Density ASTM D3017-Moisture

MOISTURE-DENSITY RELATIONSHIPS

ASTM D 4253 & 4254

Curve	Maximum Dry	Optimum
No.	Density (pcf)	Moisture (%)
1	105.6	16.4
2	106.4	18.6

PROJECT: Swede Lake
JOB NO: 110480

CLIENT: Boulder County Parks & Open Space

CONTRACTOR: CAP Excavating & Construction

ENGINEER: Clint Brown
TESTED BY: Dylan Hoehn

Test				%	Densit	y (pcf)	%	Required	Curve
No.	Date	Location	Elevation	Moist	Moist	Dry	Compaction	Compaction	No.
10	10/26/2017	STA 1+25 (Ref. sheet 6)	5132.0	17.9	124.4	105.6	99	95	2
11	10/26/2017	STA 2+25	5132.0	19.2	120.9	101.4	95	95	2
12	10/26/2017	STA 1+00	5132.5	18.3	127.1	107.4	100+	95	2
13	10/26/2017	STA 1+50	5133.0	18.4	104.4	123.6	98	95	2

ASTM D 2922-Density ASTM D3017-Moisture

MOISTURE-DENSITY RELATIONSHIPS

ASTM D 4253 & 4254

Curve	Maximum Dry	Optimum
No.	Density (pcf)	Moisture (%)
1	105.6	16.4
2	106.4	18.6

PROJECT:	Swede Lake
IOR NO:	110480

CLIENT: Boulder County Parks & Open Space

CONTRACTOR: CAP Excavating & Construction

ENGINEER: Clint Brown
TESTED BY: Dylan Hoehn

Test				%	Densit	y (pcf)	%	Required	Curve
No.	Date	Location	Elevation	Moist	Moist	Dry	Compaction	Compaction	No.
14	10/27/2017	STA 2+50 (Ref.sheet 6)	5133.0	17.5	129.1	109.9	100+	95	2
15	10/27/2017	STA 1+70 (Ref. sheet 6)	5134.0	17.9	128.1	108.6	100+	95	2
16	10/27/2017	STA 2+05 (Ref. sheet 6)	5134.5	19.9	122.4	102.1	96	95	2

ASTM D 2922-Density ASTM D3017-Moisture

MOISTURE-DENSITY RELATIONSHIPS

ASTM D 4253 & 4254

Curve No.	Maximum Dry Density (pcf)	Optimum Moisture (%)
1	105.6	16.4
2	106.4	18.6

PROJECT: Swede Lake

JOB NO: 110480

CLIENT: Boulder County Parks & Open Space

CONTRACTOR: CAP Excavating & Construction

ENGINEER: Clint Brown
TESTED BY: Dylan Hoehn

Test				%	Densit	y (pcf)	%	Required	Curve
No.	Date	Location	Elevation	Moist	Moist	Dry	Compaction	Compaction	No.
17	11/1/2017	STA 5+25 (Ref.sheet 6)	5125.5	19.6	127.8	107.1	100+	95	2
18	11/1/2017	STA 6+50 (Ref. sheet 6)	5126	18.0	127.9	108.0	100+	95	2
19	11/1/2017	STA 7+50 (Ref. sheet 6)	5126	18.3	127.2	107.5	100+	95	2
20	11/1/2017	STA 7+20 (Ref. sheet 6)	5125.5	17.0	126.5	108.1	100+	95	2
21	11/1/2017	STA 6+50 (Ref. sheet 6)	5126.5	18.3	125.6	106.1	100	95	2
22	11/1/2017	STA 4+80 (Ref. sheet 6)	5126.0	19.4	124.9	104.7	98	95	2
23	11/1/2017	STA 7+30 (Ref. sheet 6)	5126.5	18.9	124.0	104.3	98	95	2
24	11/1/2017	STA 5+25 (Ref. sheet 6)	5127.0	18.0	125.1	106.0	100	95	2
25	11/1/2017	STA 6+30 (Ref. sheet 6)	5127	20.0	126.0	105.0	99	95	2
26	11/1/2017	STA 7+60 (Ref. sheet 6)	5127.5	17.5	127.3	108.7	100+	95	2

ASTM D 2922-Density ASTM D3017-Moisture

MOISTURE-DENSITY RELATIONSHIPS

ASTM D 4253 & 4254

Curve	Maximum Dry	Optimum
No.	Density (pcf)	Moisture (%)
1	105.6	16.4
2	106.4	18.6

PROJECT: Swede Lake

JOB NO: 110480

CLIENT: Boulder County Parks & Open Space

CONTRACTOR: CAP Excavating & Construction

ENGINEER: Clint Brown
TESTED BY: Dylan Hoehn

Test				%	Densit	y (pcf)	%	Required	Curve
No.	Date	Location	Elevation	Moist	Moist	Dry	Compaction	Compaction	No.
27	11/1/2017	STA 4+70 (Ref.sheet 6)	5128.0	17.8	125.5	106.5	100+	95	2
28	11/1/2017	STA 6+55 (Ref. sheet 6)	5128	18.9	125.9	105.9	100	95	2
29	11/1/2017	STA 7+75 (Ref. sheet 6)	5128.58	18.3	127.9	108.1	100+	95	2
30	11/1/2017	STA 5+10 (Ref. sheet 6)	5129	18.5	127.1	107.3	100+	95	2
31	11/1/2017	STA 6+40 (Ref. sheet 6)	5129	20.6	125.4	104.0	98	95	2
32	11/1/2017	STA 7+40 (Ref. sheet 6)	5129.5	17.4	125.7	107.1	100+	95	2
33	11/1/2017	STA 5+20 (Ref. sheet 6)	5130	17.7	125.7	106.8	100+	95	2
34	11/1/2017	STA 5+00 (Ref. sheet 6)	5130.5	18.4	124.6	105.3	99	95	2
				_					

ASTM D 2922-Density ASTM D3017-Moisture

MOISTURE-DENSITY RELATIONSHIPS

ASTM D 4253 & 4254

Curve	Maximum Dry	Optimum
No.	Density (pcf)	Moisture (%)
1	105.6	16.4
2	106.4	18.6

PROJECT:	Swede Lake
JOB NO:	110480

CLIENT: Boulder County Parks & Open Space
CONTRACTOR: CAP Excavating & Construction

ENGINEER: Clint Brown
TESTED BY: Dylan Hoehn

Test				%	Densit	y (pcf)	%	Required	Curve
No.	Date	Location	Elevation	Moist	Moist	Dry	Compaction	Compaction	No.
35	11/2/2017	STA 5+60 (Ref.sheet 6)	5131.5	18.1	126.7	107.3	100+	95	2
				_	_				

ASTM D 2922-Density ASTM D3017-Moisture

MOISTURE-DENSITY RELATIONSHIPS

ASTM D 4253 & 4254

Curve	Maximum Dry	Optimum
No.	Density (pcf)	Moisture (%)
1	105.6	16.4
2	106.4	18.6

PROJECT: Swede Lake

JOB NO: 110480

CLIENT: Boulder County Parks & Open Space

CONTRACTOR: CAP Excavating & Construction

ENGINEER: Clint Brown
TESTED BY: Dylan Hoehn

Test				%	Densit	y (pcf)	%	Required	Curve
No.	Date	Location	Elevation	Moist	Moist	Dry	Compaction	Compaction	No.
36	11/2/2017	Embankment STA 7+50	5130.5	18.5	125.7	106.1	99	95	2
37	11/3/2017	Embankment STA 6+50	5131.5	23.4	124.0	101.5	95	95	2
37R	11/3/2017	Embankment STA 6+50 move 10'	5131.5	20.5	125.9	104.4	98	95	2
38	11/3/2017	Embankment STA 5+00	5131.4	20.4	125.9	104.5	98	95	2
39	11/3/2017	SKIP							
40	11/3/2017	Embankment STA 4+50	3132.0	18.1	126.2	106.8	100	95	2
41	11/3/2017	Embankment STA 7+00	3133.5	22.9	120.9	98.4	92	95	2

ASTM D 2922-Density ASTM D3017-Moisture

MOISTURE-DENSITY RELATIONSHIPS

ASTM D 4253 & 4254

Curve	Maximum Dry	Optimum
No.	Density (pcf)	Moisture (%)
1	105.6	16.4
2	106.4	18.6

PROJECT: Swede Lake

JOB NO: 110480

CLIENT: Boulder County Parks & Open Space

CONTRACTOR: CAP Excavating & Construction

ENGINEER: Clint Brown
TESTED BY: Dylan Hoehn

			%	Densit	y (pcf)	%	Required	Curve
Date	Location	Elevation	Moist	Moist	Dry	Compaction	Compaction	No.
11/5/2017	STA 7+00 Retest of test No. 41 (Ref. sheet 6)	5132	17.9	124.4	105.5	99	95	2
11/5/2017	STA 6+50	5133	17.9	126.0	106.9	100+	95	2
11/5/2017	STA 5+70	5133	17.8	125.8	106.8	100+	95	2
11/5/2017	STA 4+90, Need to Retest	5133.5	23.8	122.6	99.0	92	95	2
11/5/2017	STA 6+10, Need to Retest	5133.5	25.9	119.0	94.5	89	95	2
11/5/2017	STA 9+75	5124.5	17.2	125.2	106.8	100+	95	2
11/5/2017	STA 10+30	5124.5	18.1	120.1	101.7	95	95	2
11/5/2017	STA 11+50	5124.5	18.9	121.2	101.9	95	95	2
	11/5/2017 11/5/2017 11/5/2017 11/5/2017 11/5/2017 11/5/2017	11/5/2017 STA 7+00 Retest of test No. 41 (Ref. sheet 6) 11/5/2017 STA 6+50 11/5/2017 STA 5+70 11/5/2017 STA 4+90, Need to Retest 11/5/2017 STA 6+10, Need to Retest 11/5/2017 STA 9+75	11/5/2017 STA 7+00 Retest of test No. 41 (Ref. sheet 6) 5132 11/5/2017 STA 6+50 5133 11/5/2017 STA 5+70 5133 11/5/2017 STA 4+90, Need to Retest 5133.5 11/5/2017 STA 6+10, Need to Retest 5133.5 11/5/2017 STA 9+75 5124.5 11/5/2017 STA 10+30 5124.5	Date Location Elevation Moist 11/5/2017 STA 7+00 Retest of test No. 41 (Ref. sheet 6) 5132 17.9 11/5/2017 STA 6+50 5133 17.9 11/5/2017 STA 5+70 5133 17.8 11/5/2017 STA 4+90, Need to Retest 5133.5 23.8 11/5/2017 STA 6+10, Need to Retest 5133.5 25.9 11/5/2017 STA 9+75 5124.5 17.2 11/5/2017 STA 10+30 5124.5 18.1	Date Location Elevation Moist 11/5/2017 STA 7+00 Retest of test No. 41 (Ref. sheet 6) 5132 17.9 124.4 11/5/2017 STA 6+50 5133 17.9 126.0 11/5/2017 STA 5+70 5133 17.8 125.8 11/5/2017 STA 4+90, Need to Retest 5133.5 23.8 122.6 11/5/2017 STA 6+10, Need to Retest 5133.5 25.9 119.0 11/5/2017 STA 9+75 5124.5 17.2 125.2 11/5/2017 STA 10+30 5124.5 18.1 120.1	Date Location Elevation Moist Dry 11/5/2017 STA 7+00 Retest of test No. 41 (Ref. sheet 6) 5132 17.9 124.4 105.5 11/5/2017 STA 6+50 5133 17.9 126.0 106.9 11/5/2017 STA 5+70 5133 17.8 125.8 106.8 11/5/2017 STA 4+90, Need to Retest 5133.5 23.8 122.6 99.0 11/5/2017 STA 6+10, Need to Retest 5133.5 25.9 119.0 94.5 11/5/2017 STA 9+75 5124.5 17.2 125.2 106.8 11/5/2017 STA 10+30 5124.5 18.1 120.1 101.7	Date Location Elevation Moist Dry Compaction 11/5/2017 STA 7+00 Retest of test No. 41 (Ref. sheet 6) 5132 17.9 124.4 105.5 99 11/5/2017 STA 6+50 5133 17.9 126.0 106.9 100+ 11/5/2017 STA 5+70 5133 17.8 125.8 106.8 100+ 11/5/2017 STA 4+90, Need to Retest 5133.5 23.8 122.6 99.0 92 11/5/2017 STA 6+10, Need to Retest 5133.5 25.9 119.0 94.5 89 11/5/2017 STA 9+75 5124.5 17.2 125.2 106.8 100+ 11/5/2017 STA 10+30 5124.5 18.1 120.1 101.7 95	Date Location Elevation Moist Dry Compaction Compaction 11/5/2017 STA 7+00 Retest of test No. 41 (Ref. sheet 6) 5132 17.9 124.4 105.5 99 95 11/5/2017 STA 6+50 5133 17.9 126.0 106.9 100+ 95 11/5/2017 STA 5+70 5133 17.8 125.8 106.8 100+ 95 11/5/2017 STA 4+90, Need to Retest 5133.5 23.8 122.6 99.0 92 95 11/5/2017 STA 6+10, Need to Retest 5133.5 25.9 119.0 94.5 89 95 11/5/2017 STA 9+75 5124.5 17.2 125.2 106.8 100+ 95 11/5/2017 STA 10+30 5124.5 18.1 120.1 101.7 95 95

ASTM D 2922-Density ASTM D3017-Moisture

MOISTURE-DENSITY RELATIONSHIPS

ASTM D 4253 & 4254

Curve	Maximum Dry	Optimum Moisture
No.	Density (pcf)	(%)
1	105.6	16.4%
2	106.4	18.6%
4	99.9	20.3%

PROJECT: Swede Lake

JOB NO: 110480

CLIENT: Boulder County

CONTRACTOR: CAP

ENGINEER: Engineering Analytics, Inc.

TESTED BY: EAH

NOTES: Test No. 50 and 51 will be retested at a later date

*Indicates failure to meet moisture specifications

**Indicates approval by Engineer

Test No.	Date	Location	Elevation	% Moist	Densit Moist	y (pcf) Dry	% Compaction	Required Compaction	Curve No.
*50		STA 9+60 (Ref. sheet 6)	5125.5	14.60%	123.8	108.0	100+%	95%	2
*51	11/9/2017	STA 10+85 (Ref. sheet 6)	5125.5	14.90%	123.1	107.1	100+%	95%	2
									·

ASTM D 2922-Density ASTM D3017-Moisture

MOISTURE-DENSITY RELATIONSHIPS

ASTM D 4253 & 4254

Curve	Maximum Dry	Optimum Moisture
No.	Density (pcf)	(%)
1	105.6	16.4%
2	106.4	18.6%
4	99.9	20.3%

PROJECT: Swede Lake

JOB NO: 110480

CLIENT: Boulder County

CONTRACTOR: CAP

ENGINEER: Engineering Analytics, Inc.

TESTED BY: EAH

NOTES:

*Indicates failure to meet specifications

**Indicates approval by Engineer

					Density (pcf)		%	Required	
Test No.	Date	Location	Elevation	% Moist	Moist	Dry	Compaction	Compaction	Curve No.
52	11/10/2017	Retest of No. 50, STA 9+60 (Ref. sheet 6)	5125.5	17.00%	126.7	108.3	100+%	95%	2
53	11/10/2017	Retest of No. 51, STA 10+85 (Ref. sheet 6)	5125.5	17.40%	126.1	107.4	100+%	95%	2
54	11/10/2017	STA 12+90	5125.5	18.30%	126.8	107.2	100+%	95%	2
55	11/10/2017	STA 14+00	5128.5	16.70%	125.7	107.7	100+%	95%	2
56	11/10/2017	STA 15+25	5130.5	19.20%	116.2	97.5	98%	95%	4
57	11/10/2017	STA 12+00	5125.5	17.70%	126.4	107.4	100+%	95%	2
58	11/10/2017	STA 9+75	5126.3	21.30%	121.4	100.1	100+%	95%	4
59	11/10/2017	STA 13+53	5127.0	20.60%	121.2	100.5	100+%	95%	4
60	11/10/2017	STA 14+50	5128.3	18.20%	126.9	107.4	100+%	95%	2
61	11/10/2017	STA 15+25	5131.3	20.30%	120.8	100.4	100+%	95%	4

ASTM D 2922-Density ASTM D3017-Moisture

MOISTURE-DENSITY RELATIONSHIPS

ASTM D 4253 & 4254

Curve	Maximum Dry	Optimum Moisture
No.	Density (pcf)	(%)
1	105.6	16.4%
2	106.4	18.6%
4	99.9	20.3%

PROJECT: Swede Lake

JOB NO: 110480

CLIENT: Boulder County

CONTRACTOR: CAP

ENGINEER: Engineering Analytics, Inc.

TESTED BY: EAH

			-		
	N	<i>'</i> 1	"	P. C.	•
ı		.,		1717	

*Indicates failure to meet moisture specifications

**Indicates approval by Engineer

					Densit	y (pcf)	%	Required	
Test No.	Date	Location	Elevation	% Moist	Moist	Dry	Compaction	Compaction	Curve No.
62	11/10/2017	STA 11+00 (Ref. sheet 6)	5126.5	22.30%	121.2	99.1	99%	95%	4
63	11/10/2017	STA 12+30	5126.5	17.50%	126.9	108.0	100+%	95%	2
**64	11/10/2017	STA 13+70	5128.0	22.60%	123.8	101.0	100+%	95%	4
65	11/10/2017	STA 14+90	5130.3	20.60%	127.2	105.5	99%	95%	4

ASTM D 2922-Density ASTM D3017-Moisture

MOISTURE-DENSITY RELATIONSHIPS

ASTM D 4253 & 4254

Curve	Maximum Dry	Optimum Moisture
No.	Density (pcf)	(%)
1	105.6	16.4%
2	106.4	18.6%
4	99.9	20.3%

PROJECT: Swede Lake

JOB NO: 110480

CLIENT: Boulder County

CONTRACTOR: CAP

ENGINEER: Engineering Analytics, Inc.

TESTED BY: EAH

NOTES:

*Indicates failure to meet moisture specifications

**Indicates approval by Engineer

					Densit	y (pcf)	%	Required	
Test No.	Date	Location	Elevation	% Moist	Moist	Dry	Compaction	Compaction	Curve No.
66	11/11/2017	STA 10+30 (Ref. sheet 6)	5127.0	16.60%	118.2	101.4	95%	95%	2
67	11/11/2017	STA 11+60 (Ref. sheet 6)	5127.3	16.70%	126.0	108.0	100+%	95%	2
68	11/11/2017	STA 13+20 (Ref. sheet 6)	5128.8	16.80%	125.8	107.7	100+%	95%	2
69	11/11/2017	STA 14+40 (Ref. sheet 6)	5131.0	21.10%	121.2	100.1	100+%	95%	4
70	11/11/2017	STA 15+30 (Ref. sheet 6)	5132.0	20.00%	121.1	100.9	100+%	95%	4
71	11/11/2017	STA 9+65 (Ref. sheet 6)	5127.5	17.00%	126.2	107.9	100+%	95%	2
72	11/11/2017	STA 11+10 (Ref. sheet 6)	5128.0	16.80%	124.6	106.7	100+%	95%	2
**73	11/11/2017	STA 12+30 (Ref. sheet 6)	5128.0	22.90%	124.1	101.0	100+%	95%	4
74	11/11/2017	STA 13+55 (Ref. sheet 6)	5129.5	21.40%	121.5	100.1	100+%	95%	4
75	11/11/2017	STA 14+50 (Ref. sheet 6)	5132	21.70%	122.1	100.3	100+%	95%	4

ASTM D 2922-Density ASTM D3017-Moisture

MOISTURE-DENSITY RELATIONSHIPS

ASTM D 4253 & 4254

Curve	Maximum Dry	Optimum Moisture
No.	Density (pcf)	(%)
1	105.6	16.4%
2	106.4	18.6%
4	99.9	20.3%

PROJECT: Swede Lake

JOB NO: 110480

CLIENT: Boulder County

CONTRACTOR: CAP

ENGINEER: Engineering Analytics, Inc.

TESTED BY: EAH

NOTES:

*Indicates failure to meet moisture specifications

**Indicates approval by Engineer

					Densit	y (pcf)	%	Required	
Test No.	Date	Location	Elevation	% Moist	Moist	Dry	Compaction	Compaction	Curve No.
76	11/11/2017	STA 10+50 (Ref. sheet 6)	5128.7	17.80%	125.9	106.9	100+%	95%	2
77	11/11/2017	STA 12+20 (Ref. sheet 6)	5128.7	22.20%	123.4	101.0	100+%	95%	4
78	11/11/2017	STA 13+40 (Ref. sheet 6)	5130.3	22.20%	123.8	101.3	100+%	95%	4
79	11/11/2017	STA 14+50 (Ref. sheet 6)	5133.0	21.80%	123.1	101.1	100+%	95%	4
80	11/11/2017	STA 15+30 (Ref. sheet 6)	5133.7	20.10%	122.5	102.0	100+%	95%	4
81	11/11/2017	STA 10+00 (Ref. sheet 6)	5129.5	21.40%	122.7	101.1	100+%	95%	4
**82	11/11/2017	STA 11+30 (Ref. sheet 6)	5129.5	22.50%	123.2	100.6	100+%	95%	4
83	11/11/2017	STA 10+85 (Ref. sheet 6)	5130.5	21.30%	121.4	100.1	100+%	95%	4
84	11/11/2017	STA 12+05 (Ref. sheet 6)	5130.0	20.60%	120.2	99.7	100%	95%	4
85	11/11/2017	STA 13+05 (Ref. sheet 6)	5131.0	18.70%	124.9	105.2	99%	95%	2

ASTM D 2922-Density ASTM D3017-Moisture

MOISTURE-DENSITY RELATIONSHIPS

ASTM D 4253 & 4254

Curve	Maximum Dry	Optimum Moisture
No.	Density (pcf)	(%)
1	105.6	16.4%
2	106.4	18.6%
4	99.9	20.3%

PROJECT: Swede Lake

JOB NO: 110480

CLIENT: Boulder County

CONTRACTOR: CAP

ENGINEER: Engineering Analytics, Inc.

TESTED BY: EAH

NOTES:

*Indicates failure to meet specifications

**Indicates approval by Engineer

					Densit	y (pcf)	%	Required	
Test No.	Date	Location	Elevation	% Moist	Moist	Dry	Compaction	Compaction	Curve No.
86	11/13/2017	STA 10+15 (Ref. sheet 6)	5131.0	20.00%	127.4	106.2	100%	95%	2
87	11/13/2017	STA 11+10 (Ref. sheet 6)	5131.0	18.60%	126.9	107.0	100+%	95%	2
88	11/13/2017	STA 12+05 (Ref. sheet 6)	5131.0	18.40%	126.5	106.8	100+%	95%	2
89	11/13/2017	STA 13+25 (Ref. sheet 6)	5131.5	16.70%	125.1	107.2	100+%	95%	2
90	11/13/2017	STA 14+20 (Ref. sheet 6)	5133.5	16.60%	125.1	107.3	100+%	95%	2
91	11/13/2017	STA 15+15 (Ref. sheet 6)	5134.3	17.10%	125.4	107.1	100+%	95%	2
92	11/13/2017	STA 10+05 (Ref. sheet 6)	5131.5	18.00%	122.8	104.1	98%	95%	2
93	11/13/2017	STA 11+40 (Ref. sheet 6)	5131.5	20.70%	121.2	100.4	100+%	95%	4
94	11/13/2017	STA 12+60 (Ref. sheet 6)	5132.0	19.00%	126.7	106.5	100+%	95%	2
95	11/13/2017	STA 13+95 (Ref. sheet 6)	5132.5	19.60%	127.5	106.6	100+%	95%	2

ASTM D 2922-Density ASTM D3017-Moisture

MOISTURE-DENSITY RELATIONSHIPS

ASTM D 4253 & 4254

Curve	Maximum Dry	Optimum Moisture
No.	Density (pcf)	(%)
1	105.6	16.4%
2	106.4	18.6%
4	99.9	20.3%

PROJECT: Swede Lake

JOB NO: 110480

CLIENT: Boulder County

CONTRACTOR: CAP

ENGINEER: Engineering Analytics, Inc.

TESTED BY: EAH

NOTES:

*Indicates failure to meet specifications

**Indicates approval by Engineer

					Density (pcf)		%	Required	
Test No.	Date	Location	Elevation	% Moist	Moist	Dry	Compaction	Compaction	Curve No.
96	11/13/2017	STA 9+90 (Ref. sheet 6)	5132.0	18.90%	122.6	103.1	97%	95%	2
97	11/14/2017	STA 11+15 (Ref. sheet 6)	5132.7	21.80%	121.9	100.1	100+%	95%	4
98	11/14/2017	STA 12+05 (Ref. sheet 6)	5133.0	19.00%	126.7	106.5	100+%	95%	2
99	11/14/2017	STA 13+30 (Ref. sheet 6)	5134.0	22.10%	123.3	101.0	100+%	95%	4
100	11/14/2017	STA 14+00 (Ref. sheet 6)	5135.0	21.00%	121.8	100.7	100+%	95%	4
101	11/14/2017	STA 15+20 (Ref. sheet 6)	5132.7	17.70%	125.9	107.0	100+%	95%	2
102	11/14/2017	STA 10+15 (Ref. sheet 6)	5133.0	16.90%	125.6	107.4	100+%	95%	2
103	11/14/2017	STA 11+40 (Ref. sheet 6)	5133.3	17.30%	125.5	107.0	100+%	95%	2
104	11/14/2017	STA 12+50 (Ref. sheet 6)	5133.5	17.10%	125.9	107.5	100+%	95%	2
105	11/14/2017	STA 13+80 (Ref. sheet 6)	5135.0	18.40%	127.2	107.4	97%	95%	2

ASTM D 2922-Density ASTM D3017-Moisture

MOISTURE-DENSITY RELATIONSHIPS

ASTM D 4253 & 4254

Curve	Maximum Dry	Optimum Moisture
No.	Density (pcf)	(%)
1	105.6	16.4%
2	106.4	18.6%
4	99.9	20.3%

PROJECT: Swede Lake

JOB NO: 110480

CLIENT: Boulder County

CONTRACTOR: CAP

ENGINEER: Engineering Analytics, Inc.

TESTED BY: EAH

NOTES:

*Indicates failure to meet specifications

**Indicates approval by Engineer

					Density (pcf)		%	Required	
Test No.	Date	Location	Elevation	% Moist	Moist	Dry	Compaction	Compaction	Curve No.
106	11/14/2017	STA 15+00 (Ref. sheet 6)	5135.0	21.30%	117.7	97.0	97%	95%	4
107	11/15/2017	STA 10+50 (Ref. sheet 6)	5133.3	16.70%	125.3	107.4	100+%	95%	2
108	11/15/2017	STA 12+25 (Ref. sheet 6)	5134.0	17.40%	126.3	107.6	100+%	95%	2
109	11/15/2017	STA 14+50 (Ref. sheet 6)	5135.0	18.00%	125.9	106.7	100+%	95%	2
110	11/15/2017	STA 10+00 (Ref. sheet 6)	5133.8	19.40%	128.1	107.3	100+%	95%	2
111	11/15/2017	STA 12+20 (Ref. sheet 6)	5134.5	18.40%	123.8	104.6	98%	95%	2
112	11/15/2017	STA 10+25 (Ref. sheet 6)	5134.5	18.20%	127.5	107.9	100+%	95%	2
113	11/15/2017	STA 11+25 (Ref. sheet 6)	5134.5	17.70%	127.1	108.0	100+%	95%	2
114	11/15/2017	STA 13+00 (Ref. sheet 6)	5134.0	18.80%	127.0	106.9	100+%	95%	2
115	11/15/2017	STA 14+15 (Ref. sheet 6)	5135.3	17.40%	126.6	107.8	100+%	95%	2

ASTM D 2922-Density ASTM D3017-Moisture

MOISTURE-DENSITY RELATIONSHIPS

ASTM D 4253 & 4254

Curve	Maximum Dry	Optimum Moisture
No.	Density (pcf)	(%)
1	105.6	16.4%
2	106.4	18.6%
4	99.9	20.3%

PROJECT: Swede Lake

JOB NO: 110480

CLIENT: Boulder County

CONTRACTOR: CAP

ENGINEER: Engineering Analytics, Inc.

TESTED BY: EAH

NOTES:

*Indicates failure to meet moisture specifications

**Indicates approval by Engineer

					Densit	y (pcf)	%	Required	
Test No.	Date	Location	Elevation	% Moist	Moist	Dry	Compaction	Compaction	Curve No.
*116	11/15/2017	STA 10+30 (Ref. sheet 6)	5135.0	16.20%	125.6	108.1	100+%	95%	2
117	11/15/2017	STA 12+00 (Ref. sheet 6)	5135.0	19.00%	125.7	105.6	99%	95%	2
118	11/15/2017	STA 13+00 (Ref. sheet 6)	5135.0	17.00%	125.9	107.6	100+%	95%	2
119	11/15/2017	STA 14+00 (Ref. sheet 6)	5135.7	22.10%	122.2	100.1	100+%	95%	4
120	11/15/2017	STA 10+30 (Ref. sheet 6) (Retest of Test No. 116)	5135.0	18.20%	126.4	106.9	100+%	95%	2

ASTM D 2922-Density ASTM D3017-Moisture

MOISTURE-DENSITY RELATIONSHIPS

ASTM D 4253 & 4254

Curve	Maximum Dry	Optimum Moisture
No.	Density (pcf)	(%)
1	105.6	16.4%
2	106.4	18.6%
4	99.9	20.3%

PROJECT: Swede Lake

JOB NO: 110480

CLIENT: Boulder County

CONTRACTOR: CAP

ENGINEER: Engineering Analytics, Inc.

TESTED BY: EAH

NOTES:

*Indicates failure to meet moisture specifications

**Indicates approval by Engineer

					Density (pcf)		%	Required	
Test No.	Date	Location	Elevation	% Moist	Moist	Dry	Compaction	Compaction	Curve No.
121	11/16/2017	STA 10+50 (Ref. sheet 6)	5136.0	20.50%	127.9	106.1	100%	95%	2
122	11/16/2017	STA 11+40 (Ref. sheet 6)	5136.0	18.80%	125.9	106.0	100%	95%	2
123	11/16/2017	STA 12+50 (Ref. sheet 6)	5136.0	20.50%	124.6	103.4	97%	95%	2
124	11/16/2017	STA 13+50 (Ref. sheet 6)	5136.0	17.40%	126.0	107.3	100+%	95%	2
125	11/16/2017	STA 14+50 (Ref. sheet 6)	5136.0	17.60%	125.8	107.0	100+%	95%	2
126	11/16/2017	STA 15+25 (Ref. sheet 6)	5136.0	16.80%	126.1	108.0	100+%	95%	2
**127	11/16/2017	STA 7+50 (Ref. sheet 6)	5133.5	23.20%	121.0	98.2	98%	95%	4
**128	11/16/2017	STA 6+10 (Ref. sheet 6) (Retest of Test No. 46)	5133.5	20.70%	126.0	104.4	98%	95%	2
129	11/16/2017	STA 4+90 (Ref. sheet 6) (Retest of Test No. 46)	5133.5	19.40%	124.8	104.5	98%	95%	2
130	11/16/2017	STA 5+10 (Ref. sheet 6)	5134.5	19.50%	124.3	104.0	98%	95%	2

ASTM D 2922-Density ASTM D3017-Moisture

MOISTURE-DENSITY RELATIONSHIPS

ASTM D 4253 & 4254

Curve	Maximum Dry	Optimum Moisture
No.	Density (pcf)	(%)
1	105.6	16.4%
2	106.4	18.6%
4	99.9	20.3%

PROJECT:	Swede Lake
JOB NO:	110480

CLIENT: Boulder County

CONTRACTOR: CAP

ENGINEER: Engineering Analytics, Inc.

TESTED BY: EAH

NOTES:	
*Indicates failure to meet specifications	

**Indicates approval by Engineer

					Densit	y (pcf)	%	Required	
Test No.	Date	Location	Elevation	% Moist	Moist	Dry	Compaction	Compaction	Curve No.
131	11/16/2017	STA 6+25 (Ref. sheet 6)	5134.5	22.10%	121.1	99.2	99%	95%	4
132	11/16/2017	STA 7+40 (Ref. sheet 6)	5134.5	16.80%	125.4	107.4	100+%	95%	2
133	11/16/2017	STA 5+75 (Ref. sheet 6)	5135.3	20.00%	122.6	102.2	100+%	95%	4
134	11/16/2017	STA 4+85 (Ref. sheet 6)	5135.3	18.90%	115.6	97.2	97%	95%	4

ASTM D 2922-Density ASTM D3017-Moisture

MOISTURE-DENSITY RELATIONSHIPS

ASTM D 4253 & 4254

Curve	Maximum Dry	Optimum Moisture
No.	Density (pcf)	(%)
1	105.6	16.4%
2	106.4	18.6%
4	99.9	20.3%

PROJECT: Swede Lake

JOB NO: 110480

CLIENT: Boulder County

CONTRACTOR: CAP

ENGINEER: Engineering Analytics, Inc.

TESTED BY: EAH

NOTES:

*Indicates failure to meet specifications

**Indicates approval by Engineer

					Densit	y (pcf)	%	Required	
Test No.	Date	Location	Elevation	% Moist	Moist	Dry	Compaction	Compaction	Curve No.
135	11/17/2017	STA 5+00 (Ref. sheet 6)	5136.0	17.80%	125.1	106.2	100%	95%	2
136	11/17/2017	STA 6+15 (Ref. sheet 6)	5136.0	17.70%	126.3	107.3	100+%	95%	2
137	11/17/2017	STA 7+00 (Ref. sheet 6)	5136.0	18.00%	127.3	107.9	100+%	95%	2
138	11/17/2017	STA 7+60 (Ref. sheet 6)	5135.5	19.50%	126.0	105.4	99%	95%	2
139	11/17/2017	STA 2+50 (Ref. sheet 6)	5135.3	21.00%	121.1	100.1	100+%	95%	4
140	11/17/2017	STA 1+50 (Ref. sheet 6)	5135.5	19.00%	125.4	105.4	99%	95%	2
141	11/17/2017	STA 1+40 (Ref. sheet 6)	5136.0	18.10%	127.1	107.6	100+%	95%	2
142	11/17/2017	STA 2+75 (Ref. sheet 6)	5136.0	18.00%	127.2	107.8	100+%	95%	2

ASTM D 2922-Density ASTM D3017-Moisture

MOISTURE-DENSITY RELATIONSHIPS

ASTM D 4253 & 4254

Curve	Maximum Dry	Optimum Moisture
No.	Density (pcf)	(%)
1	105.6	16.4%
2	106.4	18.6%
4	99.9	20.3%

PROJECT: Swede Lake

JOB NO: 110480

CLIENT: Boulder County

CONTRACTOR: CAP

ENGINEER: Engineering Analytics, Inc.

TESTED BY: EAH

NOTES:

*Indicates failure to meet specifications

**Indicates approval by Engineer

					Densit	y (pcf)	%	Required	
Test No.	Date	Location	Elevation	% Moist	Moist	Dry	Compaction	Compaction	Curve No.
143	11/20/2017	STA 4+35 (Ref. sheet 6)	5126.0	20.50%	127.0	105.4	99%	95%	2
144	11/20/2017	STA 4+40 (Ref. sheet 6)	5128.0	19.40%	127.6	106.9	100+%	95%	2
145	11/20/2017	STA 4+30 (Ref. sheet 6)	5130.0	19.80%	124.8	104.2	98%	95%	2
146	11/20/2017	STA 4+40 (Ref. sheet 6)	5132.0	20.00%	127.9	106.6	100+%	95%	2
147	11/20/2017	STA 9+20 (Ref. sheet 6)	5126.5	19.20%	126.2	105.9	100%	95%	2
148	11/20/2017	STA 9+35 (Ref. sheet 6)	5127.5	19.60%	128.2	107.2	100+%	95%	2

ASTM D 2922-Density ASTM D3017-Moisture

MOISTURE-DENSITY RELATIONSHIPS

ASTM D 4253 & 4254

Curve	Maximum Dry	Optimum Moisture
No.	Density (pcf)	(%)
1	105.6	16.4%
2	106.4	18.6%
4	99.9	20.3%

PROJECT: Swede Lake

JOB NO: 110480

CLIENT: Boulder County

CONTRACTOR: CAP

ENGINEER: Engineering Analytics, Inc.

TESTED BY: Emmett Hite

NOTES: Test 154 - Location received extra passes with sheep's foot compactor after

testing. Test 152 failed to meet expectations. Its retest is shown in Test 158.

					Density (pcf)		%	Required	
Test No.	Date	Location	Elevation	% Moist	Moist	Dry	Compaction	Compaction	Curve No.
149	12/11/2017	Irrigation structure backfill, STA 0+50 (Ref. sheet 17), west side of pipe	5123.0	14.0%	121.0	106.1	100%	95%	2
150	12/11/2017	Irrigation structure backfill, STA 1+00 (Ref. sheet 17), west side of pipe	5123.0	19.5%	121.9	102.0	96%	95%	2
151	12/11/2017	Irrigation structure backfill, STA 1+05 (Ref. sheet 17), east side of pipe	5123.0	18.1%	123.8	104.8	99%	95%	2
152	12/11/2017	Irrigation structure backfill, STA 0+50 (Ref. sheet 17), east side of pipe	5123.0	15.4%	122.9	106.5	100+%	95%	2
153	12/11/2017	Irrigation structure backfill, STA 0+80 (Ref. sheet 17), west side of pipe	5123.5	18.7%	124.9	105.2	99%	95%	2
154	12/11/2017	Irrigation structure backfill, STA 0+80 (Ref. sheet 17), east side of pipe	5123.5	18.3%	119.6	101.1	95%	95%	2
155	12/11/2017	Irrigation structure backfill, STA1+10 (Ref. sheet 17), west side of pipe	5124.5	16.7%	125.1	107.2	100+%	95%	2
156	12/11/2017	Irrigation structure backfill, STA 1+12 (Ref. sheet 17), east side of pipe	5124.5	18.0%	123.1	104.3	98%	95%	2
157	12/11/2017	Irrigation structure backfill, STA 0+50 (Ref. sheet 17), west side of pipe (Retest of Test 149)	5123.0	16.9%	125.1	107.0	100+%	95%	2
158	12/11/2017	Irrigation structure backfill, STA 0+50 (Ref. sheet 17), east side of pipe (Retest of Test 152)	5123.0	17.0%	125.1	106.9	100+%	95%	2

ASTM D 2922-Density ASTM D3017-Moisture

MOISTURE-DENSITY RELATIONSHIPS

ASTM D 4253 & 4254

Curve	Maximum Dry	Optimum Moisture
No.	Density (pcf)	(%)
1	105.6	16.4%
2	106.4	18.6%
4	99.9	20.3%

Datum:

PROJECT:	Swede Lake
JOB NO:	110480

CLIENT: Boulder County

CONTRACTOR: CAP

ENGINEER: Engineering Analytics, Inc.

TESTED BY: Emmett Hite & Tyler Davis

NOTES:	8" Depth

					Densit	y (pcf)	%	Required	
Test No.	Date	Location	Elevation	% Moist	Moist	Dry	Compaction	Compaction	Curve No.
159	1 12/12/2017	Irrigation structure backfill, outlet towers STA 0+40 (Ref. sheet 17), west side of pipe	~5142.0	17.9%	125.2	106.2	100%	95%	2
160	1 12/12/2017	Irrigation structure backfill, outlet towers STA 0+40 (Ref. sheet 17), east side of pipe	5124.0	20.4%	123.0	102.2	96%	95%	2
161	1 12/12/2017	Irrigation structure backfill, outlet towers (Ref. sheet 17), east side of pipe	5125.0	18.7%	130.8	110.2	100+%	95%	2
162	12/13/2017	Irrigation structure backfill, outlet towers STA 0+60 (Ref. sheet 17), west side of pipe	5126.3	18.4%	130.2	110.0	100+%	95%	2
163	1 12/13/2017	Irrigation structure backfill, outlet towers STA 0+50 (Ref. sheet 17), east side of pipe	5127.0	16.6%	125.8	107.9	100+%	95%	2
164	1 1 2/ 1 3/ 201 /	Irrigation structure backfill, outlet towers STA 0+40 (Ref. sheet 17), west side of pipe	5127.0	16.7%	125.3	107.4	100+%	95%	2
165	1 12/13/2017	Irrigation structure backfill, outlet towers STA 0+60 (Ref. sheet 17), east side of pipe	5127.7	17.2%	126.2	107.7	100+%	95%	2
166		Irrigation structure backfill, outlet towers STA 0+50 (Ref. sheet 17), west side of pipe	5132.0	20.1%	129.1	107.5	100+%	95%	2
167		Irrigation structure backfill, outlet towers STA 0+60 (Ref. sheet 17), east side of pipe	5132.7	17.9%	128.5	109.0	100+%	95%	2
168	1 1 2/ 1 3/ 201 /	Irrigation structure backfill, outlet towers STA 0+55 (Ref. sheet 17), west side of pipe	5133.3	18.3%	128.0	108.2	100+%	95%	2

ASTM D 2922-Density ASTM D3017-Moisture

MOISTURE-DENSITY RELATIONSHIPS

ASTM D 4253 & 4254

Curve	Maximum Dry	Optimum Moisture
No.	Density (pcf)	(%)
1	105.6	16.4%
2	106.4	18.6%
4	99.9	20.3%

PROJECT: Swede Lake

JOB NO: 110480

CLIENT: Boulder County

CONTRACTOR: CAP

ENGINEER: Engineering Analytics, Inc.

TESTED BY: Emmett Hite

NOTES: Test 169 approved by engineer. Test 175 failed to meet specification. Its retest is shown at Test 176

					Densit	y (pcf)	%	Required	
Test No.	Date	Location	Elevation	% Moist	Moist	Dry	Compaction	Compaction	Curve No.
169	12/14/2017	Spillway grade control beam backfill (Ref. sheet 14) STA -0+04 (South side of beam)	5131.5	23.3%	123.1	99.8	100%	95%	4
170	12/14/2017	Spillway grade control beam backfill (Ref. sheet 14) STA 0+04 (North side of beam)	5132.0	20.9%	122.4	101.2	100+%	95%	4
171	12/14/2017	Spillway grade control beam backfill (Ref. sheet 14) STA -0+05 (South side of beam)	5133.0	21.2%	121.4	100.2	100+%	95%	4
172	12/15/2017	Irrigation structure backfill (Ref. sheet 17) STA 0+55 (East side of pipe)	5134.5	20.3%	124.1	103.2	100+%	95%	4
173	12/15/2017	Irrigation structure backfill (Ref. sheet 17) STA 0+60 (West side of pipe)	5135.5	20.0%	123.5	102.9	100+%	95%	4
174	12/15/2017	Irrigation structure backfill (Ref. sheet 17) STA 0+65 (East side of pipe)	5136.0	21.6%	125.4	103.1	100+%	95%	4
175	12/18/2017	Outlet structure backfill (Ref. sheet 11) STA 0+30 (North side of pipe)	5122.0	16.7%	116.6	99.9	94%	95%	2
176	12/18/2017	Outlet structure backfill (Ref. sheet 11) STA 0+30 (North side of pipe) **Retest of Test 175**	5122.0	18.3%	121.3	102.5	96%	95%	2
177	12/18/2017	Outlet structure backfill (Ref. sheet 11) STA 0+50 (North side of pipe)	5123.5	16.8%	123.6	105.8	99%	95%	2
178	12/18/2017	Outlet structure backfill (Ref. sheet 11) STA 0+55 (South side of pipe)	5122.7	16.6%	126.7	108.7	100+%	95%	2

ASTM D 2922-Density ASTM D3017-Moisture

MOISTURE-DENSITY RELATIONSHIPS

ASTM D 4253 & 4254

Curve	Maximum Dry	Optimum Moisture
No.	Density (pcf)	(%)
1	105.6	16.4%
2	106.4	18.6%
4	99.9	20.3%

Datum:

PROJECT:	Swede Lake
JOB NO:	110480

CLIENT: Boulder County

CONTRACTOR: CAP

ENGINEER: Engineering Analytics, Inc.

TESTED BY: Tyler Davis

NOTES:	Approximate embankment STA 9+00 outlet pipe stationing noted for tests

					Densit	y (pcf)	%	Required	
Test No.	Date	Location	Elevation	% Moist	Moist	Dry	Compaction	Compaction	Curve No.
189	12/20/2017	Outlet structure backfill, STA 0+50 (Ref. sheet 11) North of outlet structure	5134.5	18.4%	127.3	107.5	100+%	95%	2
190	12/20/2017	Outlet structure backfill, STA 0+45 (Ref. sheet 11) South of outlet structure	5134.5	19.7%	127.1	106.2	100%	95%	2
191	12/20/2017	Outlet structure backfill, STA 0+30 (Ref. sheet 11) At outlet structure	5134.5	18.4%	125.7	106.2	100%	95%	2
192	12/20/2017	Outlet structure backfill, STA 0+40 (Ref. sheet 11) South of outlet structure	5135.3	18.9%	127.1	106.9	100+%	95%	2
193	12/20/2017	Outlet structure backfill, STA 0+30 (Ref. sheet 11) At outlet structure	5135.3	19.5%	115.3	96.5	91%	95%	2
194	12/20/2017	Outlet structure backfill, STA 0+50 (Ref. sheet 11) North of outlet structure	5136.0	18.4%	128.6	108.6	102%	95%	2
195	12/20/2017	Outlet structure backfill, STA 0+30 (Ref. sheet 11) At outlet structure **Retest of 193**	5135.3	20.5%	122.1	101.3	95%	95%	2
196	12/20/2017	Outlet structure backfill, STA 0+50 (Ref. sheet 11) South of outlet structure	5136.0	20.4%	127.7	106.1	100%	95%	2

ASTM D 2922-Density ASTM D3017-Moisture

MOISTURE-DENSITY RELATIONSHIPS

ASTM D 4253 & 4254

Curve	Maximum Dry	Optimum Moisture
No.	Density (pcf)	(%)
RD-1	110.8-113.4	

Datum:

PROJECT:	Swede Lake
JOB NO:	110480

CLIENT: Boulder County

CONTRACTOR: CAP

ENGINEER: Engineering Analytics, Inc.

TESTED BY: LCB

NOTES:	Approximate embankment STA 9+00 outlet pipe stationing noted for tests	

					Densit	y (pcf)	%	Required	
Test No.	Date	Location	Elevation	% Moist	Moist	Dry	Compaction	Compaction	Curve No.
197	1/16/2018	MH-5 Toe drain	5120.5	10.7%	123.1	111.2	67%	65-75%	RD-1
198	1/17/2018	MH-5 Toe drain + 25'	5120.5	13.5%	125.8	110.8	65%	65-75%	RD-1

ASTM D 2922-Density ASTM D3017-Moisture

MOISTURE-DENSITY RELATIONSHIPS

ASTM D 4253 & 4254

Curve	Maximum Dry	Optimum Moisture
No.	Density (pcf)	(%)
RD-1	110.8-113.4	

Datum:

PROJECT:	Swede Lake
JOB NO:	110480
JOB NO.	110400

CLIENT: Boulder County

CONTRACTOR: CAP

ENGINEER: Engineering Analytics, Inc.

TESTED BY: EAH

NOTES:	Approximate embankment STA 9+00 outlet pipe stationing noted for tests	

					Densit	y (pcf)	%	Required	
Test No.	Date	Location	Elevation	% Moist	Moist	Dry	Compaction	Compaction	Curve No.
199	1/25/2018	MH-2 Toe drain + 16' W	5124.3	9.9%	124.5	113.3	74%	65-75%	RD-1

ASTM D 2922-Density ASTM D3017-Moisture

MOISTURE-DENSITY RELATIONSHIPS

ASTM D 4253 & 4254

Curve No.	Maximum Dry	Optimum Moisture
110.	Density (pcf)	(%)
RD-1	110.8-113.4	

	PROJECT: Swede Lake
	JOB NO: 110480
CLIENT:	Boulder County
CONTRACTOR:	CAP
ENGINEER:	Engineering Analytics, Inc.

TESTED BY: EAH

NOTES: Approximate embankment STA 9+00 outlet pipe stationing noted for tests

Datum: Density (pcf) Required Test No. % Moist Moist Dry Compaction Compaction Location Date Elevation Curve No. 2/8/2018 Toe drain, 120' S of MH-7 between MH-7 and MH-8 200 5126.0 10.0% 124.1 112.8 75% 65-75% RD-1

ASTM D 2922-Density ASTM D3017-Moisture

MOISTURE-DENSITY RELATIONSHIPS

ASTM D 4253 & 4254

Curve	Maximum Dry	Optimum Moisture
No.	Density (pcf)	(%)
2	106.4	18.6%
4	99.9	20.3%

PROJECT:	Swede Lake
JOB NO:	110480

CLIENT: Boulder County

CONTRACTOR: CAP

ENGINEER: Engineering Analytics, Inc.

TESTED BY: EAH

NOTES:	Approximate embankment STA 9+00 outlet pipe stationing noted for tests							

					Density (pcf)		%	Required	
Test No.	Date	Location	Elevation	% Moist	Moist	Dry	Compaction	Compaction	Curve No.
201	2/17/2018	Toe drain, STA 10+10 (Ref sheet 6)	5129.0	17.1%	125.2	106.9	100+%	95%	3
202	2/17/2018	Toe drain, STA 9+35 (Ref sheet 6)	5129.0	18.9%	127.2	107.0	100+%	95%	3
203	2/17/2018	Toe drain, STA 11+70 (Ref sheet 6)	5129.0	17.8%	124.3	105.5	99%	95%	3
204	2/17/2018	Toe drain, STA 13+20 (Ref sheet 6)	5130.0	16.8%	126.1	108.0	100+%	95%	3
205	2/17/2018	Toe drain, STA 14+60 (Ref sheet 6)	5131.0	17.0%	125.0	106.8	100+%	95%	3
206	2/17/2018	Toe drain, STA 10+15 (Ref sheet 6)	5130.0	18.6%	126.8	106.9	100+%	95%	3
207	2/17/2018	Toe drain, STA 9+50 (Ref sheet 6)	5130.0	17.9%	126.4	107.2	100+%	95%	3

ASTM D 2922-Density ASTM D3017-Moisture

MOISTURE-DENSITY RELATIONSHIPS

ASTM D 4253 & 4254

Curve	Maximum Dry	Optimum Moisture
No.	Density (pcf)	(%)
2	106.4	18.6%
4	99.9	20.3%

PROJECT:	Swede Lake
JOB NO:	110480

CLIENT: Boulder County

CONTRACTOR: CAP

ENGINEER: Engineering Analytics, Inc.

TESTED BY: EAH

NOTES:	Approximate embankment STA 9+00 outlet pipe stationing noted for tests							

					Density (pcf)		%	Required	
Test No.	Date	Location	Elevation	% Moist	Moist	Dry	Compaction	Compaction	Curve No.
208	2/26/2018	Toe drain backfill, STA 7+50	5128.3	18.2%	123.5	104.5	98%	95%	2
209	2/26/2018	Toe drain backfill, STA 6+25	5128.5	17.4%	125.6	107.0	100+%	95%	2
210	2/26/2018	Toe drain backfill, STA 5+00	5128.7	20.5%	122.8	101.9	96%	95%	2
211	2/26/2018	Toe drain backfill, STA 4+00	5129.7	17.6%	126.1	107.2	100+%	95%	2
212	2/26/2018	Toe drain backfill, STA 3+00	5131.0	16.9%	122.0	104.4	98%	95%	2
213	2/26/2018	Toe drain backfill, STA 1+75	5131.0	16.7%	118.7	101.7	96%	95%	2

APPENDIX D STRUCTURAL DESIGN LETTER

January 8, 2018 Project No. 110480

Mr. Tim Zych Project Manager Boulder County Parks and Open Space 5201 Saint Vrain Rd. Longmont, CO, 80503

Subject:

Swede Dam, Dam ID: 050304

Construction File No.: C-2064 Water Division 1, Water District 5

Evaluation of Structural Integrity of the Irrigation Tower

Dear Mr. Zych

During the construction of the irrigation tower, concrete tests and cylinders were taken per usual. The cylinders were low on the 28-day strength test. The two samples tested at 3,858 and 3,846 psi rather than the required 4,500 psi according to the Construction Specifications. The structural calculations on the irrigation tower were redone, and it was determined that the tower is structurally sound with a concrete strength of 3,846 psi. See the attached documents for structural calculations.

Engineering Analytics, Inc.

DESIGN OF CONCRETE BEAMS				ACI	350-06		Page			
PROJECT: Swede Lake		<u>ME</u>	MEMBER I.D.:		Irrigation Outlet					
INPUT VALUES										
f'c =	3846 psi	b =	12	in	Ult L.F	₹. =	1.6001	Calculated		
fy =	60000 psi	D =	12	in	Env. E	хр.	None	Quadratic C	Coefficients	
Es=	29000 ksi	$d_{cvr} =$	2.65	in	One V	Vay Me	mber	а	45884.1883	
Mo =	3.07 k-ft	L.F.	1.60		$S_d = \phi$	fy/γfs =	1.00	b	-542250	
Mu =	4.91 k-ft	= rvo ek	0	in <	(0 for :	slabs)		С	65520	
CALCULATED	VALUES	(se	ee ACI 35	50-06 Sec	tion 10	.5 for A	s _{min})			
Ec =	3573 ksi				ı					
n =	8.1					QTY	SIZE	Area	As pro	
d =	9.0375 in						<i>u</i> 4	0.00	0.00	
$B_1 =$	0.85	!2	(m = : : =	f O o ====\		1	#4 -	0.20	0.20	
$\rho_{min(MOR)}$ =		$_{\text{nin}}$ = 0.36 in ²	(max o	ਰ ∠ eqns)		1	#5	0.31	0.31	
$\rho_{\text{min(ACI)}} =$	0.0033	4 oo 4 in ²				1	#6 	0.44	0.44	
ρ_{max} =	0.0174 As _m	_{ax} = 1.884 in ²				1	#7	0.60	0.60	
ρ_{bal} =	0.0274					1	#8	0.79	0.79	
						1	#9	1.00	1.00	
ρ_{req} =	0.0011 As _{re}	$_{eq} = 0.122 \text{ in}^2$				1	#10	1.27	1.27	
=	$0.04~\rho_{bal}$				•					
	(1.33*As _{red}	_i) = 0.16 ^{in²}		As _{min} =	0.16	in²	(min of A	s _{min} or 1.33	*As _{req})	
Г	As = 0.	.16 in²				<u>'</u>				
> N	linimum steel c	ontrols - Use	Asmin or	provide 1	.33(As	req) pe	r ACI 10.	.5		
REBAR SPACE				ACI 350-	06 RE	BAR SF	PACING			
ACI 318-05 Cra			4)			_				
	elected Bar Size	#5		s _{max} =	12.0	in		OK		
	ty of bars used									
Calced		$r = 0.31 \text{ in}^2$		CRACK			and Danid	_!		
Values	Clear Cove	r = 2.65 in	OV	ACI 350-					0.0.4.4.0	
		.31 in ²	ok					0 Section 10		
		3%)71 k-ft		β = Expos	1.35			Section 10. Stress, fs	0.4.4	
		.47 in		Norm			0.0	ksi	OK	
		.97		Seve			7.0	ksi	OK	
fs = Mo/[As*(•	3.5 ksi		Actual Bar Stress =				ksi		
l T	s = 12.0 in				ess Ratio			Concrete Stress		
_	$s_{max} = 1$	8.0 in		Normal	0.	68	fc =	736.0	psi	
#5@12 in	12 inch deep	beam is:	OK	Severe	0.	79	fc,all =	1731	psi	

CLIENT: BCPOS

PROJECT: Swede Lake

DETAIL: Irrigation Outlet Structure

JOB NO: 110480 DATE: 1/8/2018

COMPUTED BY: DCH

PAGE: 1 of 1

DATE CHECKED: 1/8/2018

CHECKED BY: LCB

Given: Retained Wall Height, H = 13.75 ft

Construction Load Height, $H_{const} := 2$ ft

Unit Weight of Soil, $\gamma = 130$ lbs/ft3

Strength Reduction Factor, $\phi = 0.75$

Compressive Strength of Concrete, $f'_c = 3846$ psi

Construction Load, $L_{const} = 130$ lb/ft2

Earth Loading Factor of Safety, $FS_{Earth} := 1.6$

Width of Vault Gate l = 6 ft

Calculate the maximum Shear Load

Retained Wall Height at a, accounting for pipe and concrete encasement on east wall

$$H_a := H + H_{const} = 15.75$$
 ft

$$V_0 \coloneqq 0.5 \cdot \gamma \cdot H \cdot \frac{l}{2} = 2.68 \cdot 10^3 \quad \frac{lbs}{ft}$$

$$V_u \coloneqq FS_{Earth} \cdot V_0 = 4.29 \cdot 10^3 \frac{lbs}{ft}$$

$$d = 12 - 2.625 = 9.375$$
 inches

$$\phi V_{na} = 2 \cdot \phi \cdot 12 \cdot d \cdot \sqrt{f'_c} = 1.05 \cdot 10^4 \frac{lbs}{ft}$$

Thus, wall thickness of (D) D = 2.625 + d = 12 in. will not require stirrups.