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This purpose of this literature review is to collect background information to assist in the 
selection of membrane brine minimization/zero liquid discharge (ZLD) technologies for pilot 
testing in Colorado. The lead author of the literature review was Arturo Burbano with assistance 
from Philip Brandhuber.  
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EXECUTIVE SUMMARY 
Increasing demands for potable water in Colorado and other arid locations in the United 

States have forced drinking water utilities to consider using water from lower quality sources. 
These lower quality sources may include brackish groundwater or surface water sources 
impacted by industrial or municipal discharges. Lower quality sources require the use of 
advanced treatment technologies such as reverse osmosis (RO) or nanofiltration (NF) 
membranes to treat the water to a level suitable for human consumption. At present, drinking 
water utilities have been reluctant to undertake RO or NF membrane projects due to the 
uncertainty surrounding the availability of feasible disposal options for the concentrate. 
Wastewater utilities in turn have been reluctant to accept membrane concentrate for treatment in 
their plants. 

 
 Zero liquid discharge (ZLD) is a sustainable disposal option that may represent a long-

term solution to concentrate disposal for water utilities that need membrane treatment to produce 
safe drinking water. It may also help alleviate the pressure wastewater treatment plants are under 
to accept membrane concentrate streams. The primary barrier to implementing ZLD in Colorado 
is the lack of cost and performance data developed for drinking water systems under conditions 
unique to Colorado. A pilot test demonstrating ZLD will help address the technical and financial 
uncertainties which currently hinder its implementation.  
 

 In order to assist in the selection of appropriate ZLD technologies for pilot testing at two 
sites in Colorado, a comprehensive literature review of existing ZLD technologies was 
performed. This literature review begins with a brief overview of existing concentrate disposal 
options followed by an in-depth literature review that examines various ZLD technologies that 
could be evaluated by pilot test. The categories of ZLD options considered by this literature 
review include: 
 
 Intermediate Treatment 
 Thermal-Based Technologies 
 Pressure Driven Membrane Technologies 
 Electric Potential Driven Membrane Technologies 
 Alternative Technologies 

 
Existing concentrate disposal options that potentially can be implemented in Colorado 

include surface and sewer discharge, deep-well injection, evaporation ponds and land application. 
Like many other location in the United States however, environmental concerns, high cost or 
hydrogeologic conditions limit the applicability of these options for the disposal of concentrate 
from large capacity membrane plants.  

 
Intermediate treatment is used to remove sparingly soluble salts from treated water to 

increase recovery. As the name implies, these technologies are used in between the primary RO 
step and the final brine minimization technology. The intermediate step can be accomplished 
with multiple technologies including lime softeners, pellet softeners (also known as fluidized bed 
crystallizers), nanofiltration, and activated alumina. 
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CHAPTER 1.0  
 

INTRODUCTION 
 

Increasing demands for potable water in Colorado and other arid locations in the United 
States have forced drinking water utilities to consider using water from lower quality sources. 
These lower quality sources may include brackish groundwater or surface water sources 
impacted by industrial or municipal discharges. Lower quality sources require the use of 
advanced treatment technologies such as reverse osmosis (RO) or nanofiltration (NF) 
membranes to treat the water to a level suitable for human consumption. At present, drinking 
water utilities have been reluctant to undertake RO or NF membrane projects due to the 
uncertainty surrounding the availability of feasible disposal options for the concentrate. 
Wastewater utilities in turn have been reluctant to accept membrane concentrate for treatment in 
their plants. 
 

 Zero liquid discharge (ZLD) is a sustainable disposal option that may represent a long-
term solution to concentrate disposal for water utilities that need membrane treatment to produce 
safe drinking water. It may also help alleviate the pressure wastewater treatment plants are under 
to accept membrane concentrate streams. The primary barrier to implementing ZLD in Colorado 
is the lack of cost and performance data developed for drinking water systems under conditions 
unique to Colorado. A pilot test demonstrating ZLD will help address the technical and financial 
uncertainties which currently hinder its implementation.  

 
Pilot testing will occur at two existing RO plants, one in Brighton, Colorado and another 

in La Junta, Colorado. The Brighton plant treats groundwater adjacent to the South Platte River 
and has an average concentrate TDS of 4,260 mg/L. Based on RO modeling of the existing brine, 
the constituents that will limit the recovery of Brighton’s concentrate are silica and calcium 
phosphate.  

 
The La Junta plant treats groundwater adjacent to the Arkansas River and has an average 

concentrate TDS of 7,420 mg/L. Based on RO modeling of the existing brine, the constituent that 
will limit the recovery of La Junta’s concentrate is calcium sulfate. 

 
This literature review begins with a brief overview of available concentrate disposal 

options followed by an in depth literature review that examines the various high recovery and 
ZLD technologies currently available for application at these two pilot sites. The various 
categories of ZLD options include: 
 
 Intermediate Treatment 
 Thermal-Based Technologies 
 Pressure Driven Membrane Technologies 
 Electric Potential Driven Membrane Technologies  
 Alternative Technologies (e.g., forward osmosis, membrane distillation, etc.) 



1-2 
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CHAPTER 2.0  
 

CONCENTRATE DISPOSAL OPTIONS 
 

Existing disposal options for concentrate are primarily surface water discharge, deep well 
injection, evaporation ponds and land application (Mickley, 2004). Disposal of concentrate is site 
specific and the availability of any option depends on the concentrate quality and quantity. Thus, 
improvement by removing pollutants of environmental concern may facilitate implementation of 
some disposal options (Nederlof et al., 2005).  
 
2.1 Surface Water and Sewer Discharge 

Disposal to surface waters includes discharge to rivers, bays, tidal lakes, brackish canals, 
or oceans (Bergman, 2007). In the United States, approximately 50% of the existing plants use 
surface water discharge (Howe, 2004). Economically, ocean disposal is limited to coastal 
treatment plants with available access. Truesdall et al. (1995) reported that several regulators 
who responded to a survey on disposal methods noted that surface water discharge permits were 
becoming more difficult to obtain and the monitoring requirements were becoming more costly. 
Faced with extensive and costly permit reviews, some plants have avoided surface water 
discharge in favor of other options (Skehan and Kwiatkowski, 2000). 
 
The major costs associated with surface water discharge are (Jordalh, 2006): 
 
 Engineering costs associated with obtaining discharge permits as well as ongoing water 

quality testing for compliance and renewal. 

 Design and construction costs for post-treatment, conveyance, and outfall structure as well as 
associated operation and maintenance (O&M) costs. 

 Land acquisition costs. 

The 2007 Report to the Colorado Water Quality Control Commission reported that in 
order to dispose of RO/NF concentrate into a surface water, the receiving waterbody plus 
concentrate must be capable of meeting all water quality goals during low flow conditions. This 
only occurs when a sufficient low flow is available and/or there are minimal upstream 
concentrations of contaminants. As a result, surface water discharge in Colorado is not a long 
term solution for the disposal of RO concentrate. 

 
Dilution or blending of high ionic strength residuals with other wastewaters is another 

option. In addition, concentrate blended with industrial or municipal wastewaters can undergo 
further treatment or be disposed of by release to publicly owned treatment works (POTW) 
(Glueckstern and Priel, 1997; Sethi et al., 2005). The dilution available from the POTW might 
assist in reducing the contaminant concentrations in the RO/NF waste stream to acceptable 
levels. This concentrate flow may constitute a new source to the POTW, if not already 
historically accepted. As such, in order to protect beneficial uses of the receiving waterbody, the 
Colorado Water Quality Control Division could modify the permit to require an assessment of 
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Evaporation ponds require impervious liners of clay or synthetic membranes to limit 
potential contamination of underlying potable water aquifers (Ahmed, 2000; Ahmed et al., 
2001). Disadvantages include large land requirements and compatible weather patterns, 
expensive liners, odors, impacts to wildlife (especially birds), and the potential for seepage. The 
primary environmental concern associated with evaporation ponds is leakage. All current 
installations are lined with polyethylene or various other polymeric sheets (Glater and Cohen, 
2003). To prevent leaks and provide leakage monitoring, polymeric sheets are double lined and 
leakage sensing probes are installed between layers of pond lining. Design of evaporation ponds 
is based on the concentrate flow and the estimated brine evaporation rate; solids are usually not 
removed from the pond. Due to land area requirements, this option may be limited to smaller 
facilities (Membrane Treatment Workgroup, 2007). 
 
2.4 Land Application 

Land application methods for concentrate disposal consist mainly of disposal to creeks and 
ponds. Percolation ponds or rapid infiltration basins are a viable disposal alternative where the 
waste will not significantly affect the quality of the groundwater in the receiving area. This 
option may be employed for discharge over shallow brackish aquifers, usually in areas which 
border estuaries or tidal creeks (Acquaviva et al., 1997). Application rates are generally high, in 
the range of 4-80 inches per week (Jordahl, 2006) and are usually applicable for low TDS waters 
because infiltration is not capable of removing many salts. 
 
2.5 Conclusion 

Due to the current regulatory environment, cost of land and hydrogeologic conditions, 
disposing of concentrate without further treatment or volume reduction is of limited feasiblity in 
Colorado. The following chapter discusses a number of options for reducing the volume of 
concentrate to the point where disposal (likely through the use of evaporation ponds) becomes 
feasible. 
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CHAPTER 3.0 

 

BRINE VOLUME MINIMIZATION AND 
ZLD TECHNOLOGIES  

 
3.1 Intermediate Treatment 

Intermediate treatment is used to remove sparingly soluble salts that inhibit the recovery of 
concentrate. As the name implies, these technologies are used in-between the primary RO step 
and the final brine minimization technology. The intermediate step can be accomplished with 
multiple technologies including lime softeners, pellet softeners (also known as fluidized bed 
crystallizers), nanofiltration, and activated alumina, all of which are discussed in more depth 
below. 
 
3.1.1 Lime Softening 

In lime softening, lime slurry is added to the brine to raise the pH and precipitate calcium 
carbonate and magnesium hydroxide. Calcium is removed as calcium carbonate while silica is 
removed by co-precipitation with magnesium hydroxide (Gabelich et al., 2011). Metals (such as 
barium) are also removed by co-precipitation (Gabelich et al., 2011). Lime softening has been 
primarily used in the industrial sector as an intermediate treatment followed by a secondary RO 
system (Subramani et al., 2011). The advantage of using a lime softening system for intermediate 
treatment is primarily due to the high removal rates of scale forming ions. Drawbacks include 
large sludge volumes and difficulties achieving accurate control of pH conditions in the 
contactor. 
 
3.1.2 Pellet Softening 

In the case of pellet softening, sodium hydroxide is added to the brine and fed to a reactor 
system consisting of sand pellets. Calcium carbonate precipitation occurs on the sand particles 
which act as seed crystals. Saturated calcium carbonate crystals are removed from the bottom 
and can be used as a saleable product.  
 

In a pilot-study, energy savings and costs associated from using a pellet reactor to treat 
brackish water RO concentrate were determined to be 50% lower than disposing brine directly to 
an evaporation pond (Bond and Veerapaneni, 2008). In this study, the primary RO was operated 
at 85% recovery. The concentrate from the primary RO was passed through a pellet reactor and 
NaOH and Na2Al2O4 were added to the bottom of the reactor. The reactor was loaded with quartz 
or garnet sand to a fixed bed height of 400 to 500 mm. The pellet reactor was used to remove 
calcium and silica from the primary RO concentrate. The pellets in the reactor were used as 
nucleation sites for CaCO3 crystals to grow on. When the pellet size increased due to growth of 
crystals, spent pellets were removed from the bottom and fresh sand was added from the top. The 
pellet rector system was backwashed on a daily basis. The effluent from the reactor was 
discharged to the secondary RO. Costs and energy estimates were made by assuming discharge 
of secondary RO concentrate to a brine concentrator and finally to evaporation ponds. Results 
from the study indicated that the cost of desalination and energy consumption to achieve ZLD 
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tube wall to the thin brine film on the inside of the tube (Mickley, 2006). Following heat-
exchange, this stream can be used further by returning it upstream to the membrane treatment 
process. A schematic of brine concentrator is provided by Mackey and Seacord, 2008.  
 

Brine concentrators are oftentimes designed to operate in a slurry mode where calcium 
sulfate is added to the recycle to provide nucleation sites for the precipitation of scale to prevent 
scaling of heat transfer surface. Some important issues associated with brine concentrator are as 
follows (Mickley, 2006). 
 
 Brine concentrators are typically capable of concentrating brine by as much as 40 to one 

without any scaling problems, where the waste stream from the concentrator is typically 
2-10% of the feed water flow. 

 The TDS of the reject stream can be as high as 250,000 mg/L. 
 Concentrators can produce high quality water (TDS less than 10 mg/L). 
 Typical brine concentrator capacity ranges from 10 to 700 gpm. 

There are about 75 brine concentrators in operation worldwide and approximately 10 of 
these systems are used for RO concentrate management in industrial plants (Mickley, 2006). 
Brine concentrator recovery depends on the feed water quality, but typically ranges from 90-98% 
of the feed concentrate stream. Brine concentrators are energy-intensive, requiring approximately 
70-100 kWh of energy per 1,000 gallons concentrate treated.  

 
As part of the Las Vegas Valley Shallow Groundwater Study performed by Black and 

Veatch, an economic evaluation on RO concentrate disposal to evaporation pond, compared to 
brine concentrator coupled with evaporation pond was conducted. That study (Stanford et al., 
2010), found that just the land cost (344 acres) associated with disposal through evaporation 
ponds alone cost $11.29 per 1,000 gallons. A brine concentrator coupled with a crystallizer 
would cost $4.15/kgal while a brine concentrator with evaporation ponds was the most economic 
option at $3.1/ kgal (Stanford, et al., 2010). 

 
3.2.2 Brine Crystallizers 

Brine crystallizers are typically vertical cylindrical vessels with heat input from vapor 
compressors or an available stream supply. A schematic of brine crystallizer is provided by 
Mackey and Seacord, 2008. Feed brine is mixed with recirculating brine and pumped to a shell-
and-tube heat exchanger where the brine is heated by vapor from the compressor, and as water 
evaporates, salts precipitate out of the concentrated solution. Brine crystallizers are oftentimes 
employed with brine concentrators. Crystallizers typically require approximately 200-250 kWh 
of energy per 1,000 gal treated brine, which is approximately three times the energy required by 
brine concentrators (Mickley et al., 2006).  
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3.2.4 Salinity Gradient Solar Pond – Brine Concentrator and Recovery System  
Salinity gradient solar ponds (SGSP) allow for the storage of brine in a manner that also 

provides storage for waste heat. The waste heat can then be used to provide energy for various 
applications, including operation of the desalination systems. An example of SGSP coupled with 
desalination system for ZLD application is shown in Figure 3-2. The brine from the RO system 
is treated using a second stage thermal desalination process. The brine from the thermal 
desalination system is then fed into the third stage brine concentrator and recovery system 
(BCRS). The salt slurry from the BCRS is then fed to SGSP. The hot brine from the ponds can 
use a thermal source to evaporate the water to be desalted at low pressure in an evaporator 
(Kalagirou, 2005).  
 

 
 

Figure 3-2. Schematic of Zero Liquid Discharge System Using Salinity Gradient Solar Pond 
and Brine Concentrator and Recovery System. 

Adapted from Lu et al., 2001.  
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3.2.5 Spray Dryers  
Spray dryers are comprised of a vertical drying chamber and a centrifugal atomizer 

through which the concentrate slurry is sprayed (Mackey and Seacord, 2008). The dry solids 
are blown by hot air through a bag filter, where they are collected. The moist air is exhausted 
out the top of the bag and the solids are collected in a hopper below. Associated equipment for 
the spray dryer include conveyance pipe to the dryer, an atomizer, spray drying chamber, a bag 
filter and a solids storage chamber (Mackey and Seacord, 2008). Spray dryers are typically 
more economical to operate than brine crystallizers at flow rates below 10 gpm (Mickley, 
2006). Advantages of a spray dryer include: concentration of slurries to solids waste, feasible 
in areas where other low cost options are not available and a small footprint. Disadvantages of 
a spray dryer for concentrate management are the high capital costs and high energy 
requirements (> 200 kWh/1000 gal) (Mackey and Seacord, 2008).  
 
3.2.6 Evaporative Reduction and Solidification (EVRAS)  

The EVRAS process is an evaporative system similar to a cooling tower that relies on 
water temperature, surface area and airflow (RPSEA, 2009). The EVRAS is a patented 
technology provided by Intevras Technologies, LLC, a Texas based privately held company. A 
schematic of the technology is available from Intevras, 2011). The technology is used for brine 
treatment and utilizes low-grade waste heat to concentrate and/or crystallize large volume of 
brine streams. EVRAS is an evaporative system and fresh water is not recovered. Without waste 
heat available onsite, the process is energy intensive. The EVRAS system has primarily been 
used in industrial applications with limited applications in the municipal sector. The advantages 
of the system include (RPSEA, 2009):  
 
 Use of low temperature waste heat 
 TDS insensitive 
 Corrosion resistant and minimal scaling problems 
 Simplicity in operation and minimal maintenance 
 No blow-down or discharge 

 
3.2.7 Comparison of Thermal-Based Technologies 

A comparison of thermal-based technologies is listed in Table 3-1. All the thermal-based 
technologies are energy intensive. Reducing RO brine volume will be critical for reducing the 
costs of using thermal-based technologies. Technologies for reducing the brine volume are 
discussed in detail in the next two sections.  
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Spray Dryers All water is 
evaporated and 
hence "lost" to 
atmosphere.  

> 200 kWh/1,000 
gal 

 Cheaper to 
operate than brine 
crystallizers at 
flow rates below 
10 gpm.  

High capital 
costs.  

    Feasible in 
locations where 
low-cost options 
are not available 
for brine treatment.  

High energy 
consumption.  

Evaporative 
Reduction and 
Solidification 
(EVRAS) 

All water is 
evaporated and 
hence "lost" to 
atmosphere.  

Data not 
available. Energy 
consumption will 
be lower when 
waste heat is 
available.  

 Process is 
insensitive to 
TDS of brine to 
be treated.  

Primarily been 
used for 
industrial water 
treatment. 
Limited full-
scale 
applications for 
municipal water 
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       Corrosion 
resistant and 
minimum scaling 
problem.  
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3.3.3 Seeded Slurry Precipitation and Recycle (SPARRO) 
The seeded slurry precipitation and recycle RO technology uses crystals to precipitate 

scaling compounds (Juby and Schutte, 2000). A schematic of the SPARRO process is shown in 
Figure 3-7. Seed crystals are introduced in a tubular RO membrane to precipitate scaling 
compounds on the seeds. A slurry of seed crystals are circulated within the RO system. The seed 
crystals serve as nucleation sites instead of the membrane surface. The SPARRO process is 
primarily used to precipitate calcium sulfate and other calcium salts and silicates that begin to 
precipitate when the solubility limits are exceeded. Gypsum crystals are used to precipitate 
calcium sulfate. The feed water to be desalted is mixed with a stream of recycle concentrate 
containing seed crystals and fed to the RO process. The concentrate with seed crystals is 
processed in a cyclone separator to separate the crystals (Juby and Schutte, 2000). The combined 
recovery of the process has been reported to be greater than 90% (Sethi et al., 2006). The 
SPARRO technology has been reported to have relatively low energy costs. Drawbacks of the 
technology include the use of tubular RO membranes, footprint and additional chemicals (Sethi 
et al., 2006).  
 

 
 

Figure 3-7. Schematic of SPARRO Process. 
Adapted from Juby and Schutte, 2000. 

 

  

Cyclone
Separator

Permeate

1st Stage 
Tubular RO

2nd Stage 
Tubular RO

Brine

Reaction
Tank

Recycled Brine
With Seed Crystals

Feed Water

Underflow

Overflow



3-14 

3.3.4 H
H

degasific
feed wate
brackish 
primary R
secondary
due to ion

 
T

resins to 
and pH is
the secon
is also inc
water wit

 
T

water wit
the techn
calcium c
process in
treatment
al., 2009)
 

 

 

Feed
Water

High-Efficie
HERO is a pa

ation step to
er (Mukhopa
water treatm
RO, intermed
y RO (Jun et
n exchange p

The brine from
remove diva
s raised abov
ndary RO at h
creased at hi
th high silica

The combined
th typical tar

nology includ
carbonate sca
nclude dealin
t, production
).  

Lim

ency Rever
atented techn
 remove carb

adhyay, 1999
ment, the proc
diate ion exc
t al., 2004). T
pretreatment 

m the primar
alent ions (su
ve 10 to allow
high pH resu
igh pH and a
a concentrati

d recovery o
rget recovery
de the use of 
aling, higher
ng with a pro

n of sludge fr

F

 

Solids

e Softening

Ion Ex

Optional Recyc

rse Osmosi
nology and co
bon dioxide 
9). A schema
cess combine
change treatm
The seconda
and high pH

ry RO is trea
uch as calcium
w operation o
ults in higher
allows the RO
ons. 

f the process
y rates of app
f well-establis
r rejection of
oprietary tech
rom the chem

Figure 3-8. Sch
Adapted f

xchange

cle

is (HERO)
onsists of a h
and caustic a

atic of the HE
es a dual RO
ment of prim
ary RO system
H operation.

ated using we
m). The carb
of the second
r rejection of
O system to o

s is estimated
proximately 9
shed unit pro
f ions and les
hnology, add

mical treatme

ematic of HERO
from Jun et al., 2

Primary RO

Brine

hardness and
addition to in
ERO process

O system with
mary RO brin

m operates a

eakly acidic 
bon dioxide f
dary RO at h
f the membra
operate at hi

d to be greate
95% (Sethi e
ocesses, negl
ss frequent cl
ditional chem
ent process a

O Process. 
2004. 

O

Degasificatio

Ca

d alkalinity re
ncrease the p
s is shown in
h chemical p

ne, and high p
as a “high eff

cationic (WA
from the brin
high recoveri
anes. The sol
igh recoverie

er than 90% 
et al., 2009). 
ligible poten
leaning. Lim

mical and ion
and higher fo

on

Conce
or Tre

austic (pH > 10)

emoval step,
pH of the RO
n Figure 3-8.
pretreatment 
pH operation
ficiency” sys

AC) exchang
ne is remove
ies. Operatio
lubility of sil
es on brackis

for brackish
Advantages

ntial of silica 
mitations of th
n exchange 
ootprint (Seth

Permea

Secondary

ntrate to Dispo
atment 

)

 

, a 
O 
 For 
of 

n of 
stem 

ge 
ed 
on of 
lica 

sh 

h 
s of 
or 
he 

hi et 

 

ate

y RO

osal



Demonstration of Membrane Zero Liquid Discharge for Drinking Water Systems  3-15  

3.3.5 High-Efficiency Electro-Pressure Membrane (HEEPM) 
HEEPM is a patented technology consisting of an ED stack design and spiral wound RO 

system (EET, 2011). A schematic of HEEPM is shown in Figure 3-9. The ED design 
significantly reduces the energy requirement and allows processing to high salinities. Salinities 
in excess of 200,000 mg/L have been achieved (EET, 2011). In this configuration, both ED and 
RO are used taking feed from the same working tank. The product water from the ED stack and 
RO concentrate are returned back to the working tank. The final system waste is from the ED 
stack and the product water is from the RO system. The processing arrangement minimizes ED 
membrane area relative to ED-only systems while maximizing recovery relative to RO-only 
systems (Mickley, 2008). 

 
The HEEPM system is applicable to batch, semibatch, or continuous flow arrangements. 

The advantages are high for batch processing, where the arrangement allows for maintaining a 
lower feed concentration to the RO system while the batch volume is being reduced due to the 
treatment (Mickley, 2008). The purpose of the ED stack is to keep the RO feed TDS at a 
relatively constant level over the high recovery processing time. The combination of ED and RO 
has been shown to be cost effective (Mickley, 2008).  
 

 
Figure 3-9. Schematic of HEEPM Technology. 

Adapted from Mickley, 2008.  

Note:  
1. Raw water 2. Treated water from 

pretreatment step 
3. Feed to ED unit 4. Feed to RO unit 

5. Product stream from 
HEEP unit 

6. Concentrate from 
RO unit 

7. Waste stream from 
HEEP 

8. Product stream from 
RO unit 
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(New Logic Research, 2011). The result is that colloidal fouling and polarization of the 
membrane due to concentration of rejected materials are greatly reduced. 

 
The basic components of the VSEP system are a drive system, membrane module, torsion 

spring and vibration control system. The system can be fitted with various types of membranes 
including microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis 
(RO). Unlike traditional membrane systems which are configured as hollowed fiber (MF/UF) or 
spiral wound (NF/RO) VSEP membranes are stacked vertically in a “plate and frame” 
configuration. Similar to conventional RO systems, VSEP can be operated in two stage 
configuration to increase recovery (New Logic Research, 2011).  
 

Initial applications of the VSEP process have been limited to mainly chemical processing 
and industrial use; however, several recent studies have evaluated the technology’s ability to 
reduce RO concentrate volume. A study was conducted at the Big Bear Area Regional 
Wastewater Agency (BBARWA) located in Big Bear Valley, CA (Lozier, et al., 2006) to 
compare various brine treatment technologies (including VSEP) to reduce the volume of brine 
produced from a proposed 1.2 MGD WTP employing RO. This study included a short term pilot 
study of a two-stage VSEP system and the authors reported the system operated with estimated 
cleaning frequencies of two times per week while operating at a recovery of 85% and feed TDS 
concentration of approximately 2,800 mg/L. The flux rate for these tests was not reported. The 
study also showed the VSEP achieved the following rejection of dissolved and organic 
contaminants: TDS (93%), sulfate (99%), TN (83%), TOC (91%) and boron (56%). Lastly, the 
authors emphasized that additional water quality analysis would be necessary to determine if 
VSEP permeate or blend of VSEP permeate with RO permeate could meet California 
Department of Health Services (CDPH) groundwater discharge requirements. 
 

In another study, VSEP was assessed for brine treatment at an existing water treatment 
plant in California (Johnson, 2006). This study utilized a two-stage VSEP system configured 
with “tight” NF membranes to treat brine from a brackish groundwater membrane plant. The 
authors reported the VSEP system achieved 98% feed water recovery while operation in batch-
mode. During operation the membrane flux ranged from an initial value of 144.5 gfd to ending 
value of 11.47 gfd with average flux of 65.2 gfd. The flux decreased as the concentration of 
dissolved solids increased in the VSEP concentrate.  
 

Another study performed by MWH used VSEP for treating primary RO concentrate 
(MWH, 2008). A schematic of the treatment scheme is shown in Figure 3-11. The primary RO 
was operated at a recovery of 75% and was used to treat brackish groundwater with a TDS of 
about 1200 mg/L. The VSEP system was operated at 75% recovery and overall recovery of the 
RO-VSEP system was about 94%. Due to high silica concentration in the RO concentrate, pH 
adjustment by addition of acid was performed as pretreatment for the VSEP unit. A range of 
initial flux ranging from 30 gfd to 65 gfd was used for the study. The flux decreased linearly 
with time due to accumulation of barium sulfate and silica colloids on the VSEP membrane. 
Chemical cleaning frequency was estimated to be about three to four times per week. Cost 
estimates developed from pilot study information described above show the capital and O&M 
costs of a 160,000 gpd VSEP system operating on RO brine at 85% feed water recovery to be 
$2,087,000 and $279,000/yr, respectively. Details of the cost estimate are provided by Lozier et 
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Figure 3-12. Schematic of DT Filtration Module used for Concentrate Volume Minimization. 

From Subramani et al., 2011.  

 
3.3.10 Comparison of Membrane-Based Technologies 

A comparison of membrane-based technologies for brine volume minimization is 
provided in Table 3-2. Dual RO with pellet softener is a promising technology for reducing the 
concentration of calcium in the brine thus reducing the scaling potential of calcium sulfate 
resulting in enhanced recovery (applicable for La Junta, Colorado). The advantage of using 
pellet-based reactors for brine softening over chemical softening techniques is the production of 
saleable salt products such as calcium carbonate or magnesium hydroxide. The SPARRO process 
is also applicable when calcium sulfate supersaturation is an issue in the brine but the technology 
has been tested primarily at the pilot-scale and full-scale applications are limited. Membrane-
based technologies such as HERO, HEEPM, ARROW, and OPUS have been proven to result in 
high feed water recoveries but are patented and consist of numerous processes resulting in high 
costs. 

Table 3-2. Comparison of Membrane-Based Technologies for Brine Management.  

Technology Recovery 
Energy 

Consumption Cost Advantages Limitations 

Dual RO with 
Intermediate 
Chemical 
Demineralization  

Overall recovery 
is expected to 
vary from 
90-98% for 
brackish water 
treatment. The 
recovery of 
primary RO will 
be 60-85%. The 
recovery of 
secondary RO is 
expected to vary 
from 50-80%.  

Data not 
available. Energy 
consumption 
expected to 
higher than 
brackish water 
RO treatment due 
to chemical 
precipitation and 
secondary RO.  

 Combination of 
well developed 
and established 
technologies.  

Increased chemical 
dosage and sludge 
disposal required. 

Caustic

Spiral NF

DT NF

Spiral RO

Treated Water

Reject Water

Pretreated 
Produced 
Water

Brine

Permeate

Brine



3-20 

Technolog

  

Dual RO with
Pellet Softene
(PS) or Fluidi
Bed Crystalliz
(FBC) 

 

  

Dual RO with
Intermediate 
Biological 
Reduction (IB

 

gy Rec

  

h 
er 
zed 
zer 

Overall
is expec
vary fro
98% fo
water tr
The rec
primary
be 60-8
recover
seconda
expecte
from 50
 

  

h 

BR) 

Overall
is expec
vary fro
98% fo
water tr
The rec
primary
be 60-8
recover
seconda
expecte
from 50
 

covery 

  

l recovery 
cted to 
om 90-
r brackish 
reatment. 
covery of 
y RO will 
85%. The 
ry of 
ary RO is 
ed to vary 
0-80%.  

D
av
co
ex
hi
br
R
to
re
se

 

  

l recovery 
cted to 
om 90-
r brackish 
reatment. 
covery of 
y RO will 
85%. The 
ry of 
ary RO is 
ed to vary 
0-80%.  

D
av
co
ex
hi
br
R
to
re
se

 

Energy 
Consumption

Data not 
vailable. Energ
onsumption 
xpected to 
igher than 
rackish water 

RO treatment du
o fluidized 
eactor and 
econdary RO. 

Data not 
vailable. Energ
onsumption 
xpected to 
igher than 
rackish water 

RO treatment du
o biological 
eactor and 
econdary RO. 

n Co

 

gy 

ue 

 

 

 

gy 

ue 

 

 

ost 

Go
of c
brin
of s
gyp
bar
the
to i
rec
Co
we
and
tec

Go
of c
brin
of s
gyp
bar
the
to i
rec
Pro
sal
Go
of c
brin
of s
gyp
sec
inc

 

Advantages 

ood for remova
calcium from 
ne. Prevention
saturation of 
psum, calcite, 
rite and silica i
e secondary RO
increase 

covery.  
ombination of 
ell developed 
d established 
chnologies.  

ood for remova
calcium from 
ne. Prevention
saturation of 
psum, calcite, 
rite and silica i
e secondary RO
increase 

covery.  
oduction of 
eable salts.  

ood for remova
calcium from 
ne. Prevention
saturation of 
psum in the 
condary RO to 
crease recovery

Limita

al 

n 

in 
O 

Primarily 
used for in
water trea
Limited fu
application
municipal
treatment.

Increased 
dosage an
disposal re

al 

n 

in 
O 

Primarily 
used for in
water trea
Limited fu
application
municipal
treatment.

  

al 

n 

y.  

Increased 
dosage an
disposal re

Primarily 
used for in
water trea
Limited fu
application
municipal
treatment.

 

ations 

been 
ndustrial 
atment. 
ull-scale 
ns for 
l water 
  

chemical 
d sludge 
equired. 

been 
ndustrial 
atment. 
ull-scale 
ns for 
l water 
  

chemical 
d sludge 
equired. 

been 
ndustrial 
atment. 
ull-scale 
ns for 
l water 
  



Demonstration of Membrane Zero Liquid Discharge for Drinking Water Systems  3-21  

Technology Recovery 
Energy 

Consumption Cost Advantages Limitations 

     Process 
performance is 
dependent on 
acclimation of 
sulfate reducing 
bacteria.  

         Pilot-scale data is 
not available.  

Seeded Slurry 
Precipitation and 
Recycle 
(SPARRO) 

Expected 
recovery vary 
between 
90-95%.  

Data not 
available. Energy 
consumption 
expected to 
higher than 
brackish water 
RO treatment due 
to use of tubular 
membranes and 
high cross flow 
velocity.  

 Good for removal 
of calcium from 
brine. Prevention 
of saturation of 
gypsum in the 
secondary RO to 
increase recovery.  

Primarily been 
used for industrial 
water treatment. 
Limited full-scale 
applications for 
municipal water 
treatment.  

High Efficiency 
RO (HERO) 

Expected 
recovery vary 
between 
90-98%.  

11-19 kWh/1,000 
gal 

 Combination of 
well developed 
and established 
technologies.  

Patented 
technology.  

     Prevention of 
saturation of 
gypsum, calcite, 
barite and silica 
in the  RO to 
increase recovery.  

Primarily been 
used for industrial 
water treatment. 
Limited full-scale 
applications for 
municipal water 
treatment.  

         High capital and 
O&M cost. 

High Efficiency 
Electro-Pressure 
Membrane 
(HEEPM) 

Expected 
recovery vary 
between 
95-99%.  

Data not 
available. Energy 
consumption 
expected to 
higher than 
brackish water 
RO treatment due 
to use of 
electrodialysis 
and RO.  

 Combination of 
well developed 
and established 
technologies.  

Patented 
technology.  

    Lower membrane 
area requirement 
for ED process.  

Primarily been 
used for industrial 
water treatment. 
Limited full-scale 
applications for 
municipal water 
treatment.  

  
 

       High capital and 
O&M cost. 
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Technology Recovery 
Energy 

Consumption Cost Advantages Limitations 

Dist Tube (DT) 
Filtration 

Expected 
recovery greater 
than 93% in 
combination 
with primary 
RO.  

Data not 
available. Energy 
consumption 
expected to 
higher than 
brackish water 
RO treatment due 
DT applied 
pressure.  

 Effective for 
operation of 
water with high 
suspended solids 
and organics 
content.  

Patented 
technology.  

      Primarily been 
used for industrial 
water treatment. 
Limited full-scale 
applications for 
municipal water 
treatment.  

         High capital and 
O&M cost.  

 
3.4 Electric Potential Driven Membrane Technologies  

Electric potential driven technologies use cathodes and anodes to draw ions across ion-
exchange membranes, removing ions from the feed stream. This differs from RO membranes 
which remove water from the feed stream, causing both ionic and non-ionic species to 
concentrate on the concentrate side of the membrane. With electric potential driven technologies, 
non-ionic species such as silica are not concentrated and their scaling potential is reduced.  
 
3.4.1 Electrodialysis (ED) and Electrodialysis Reversal (EDR) 

Electrodialysis (ED) uses an electrical potential to attract dissolved ions through ion-
exchange membranes that are virtually impermeable to water; in this process, desalination occurs 
by the movement of anions and cations, not the water, across the membrane (Malmrose et al., 
2004). Cations are attracted to the negative cathode and pass through the cation transfer 
membranes only. Meanwhile, anions are attracted towards the positive anode and pass through 
anion transfer membranes only. The membranes are periodically cleaned by either CIP or 
disassembling the stack. These membranes are made of ion-exchange resins woven into sheet 
form and reinforced with synthetic fiber cloth and are resistant to chlorine, acid, and base 
degradation. Electrodialysis reversal (EDR) is similar to ED, however scaling potential is further 
reduced by reversing the DC voltage three to four times per hour. 
 

Because non-ionic precipitates (e.g., silica) are not concentrated during the ED/EDR 
process, they can be more effective than pressure driven membranes for waters with high silica 
content. An EDR pilot-scale facility in Buckey, AZ treated RO concentrate with TDS of 8,000 
mg/L to improve the overall recovery (RO+EDR) to approximately 97% (Reahl, 2006); other 
reports indicate combined recoveries in the range of 95-98%. EDR processes can typically 
increase TDS to approximately 80,000 mg/L (Dalan, 2000). There are few full-scale applications 
of EDR processes for concentrate treatment from brackish water RO process. Reahl (1990) 
described three RO-EDR plants: 
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anion exchange membrane. One resulting brine stream would contain sodium sulfate and the 
other would contain calcium chloride, which are substantially more soluble than calcium sulfate. 
The solubility of sodium sulfate (Na2SO4) formed in the EDM system is 15-35 times more 
soluble than calcium sulfate. Thus, by utilizing EDM for RO brine treatment, the feed water 
recovery of the system can be enhanced significantly.  

 

 

Figure 3-13. Membrane Arrangement and Transport of Ions in Electrodialysis Metathesis. 
“A” represents anion exchange and “C” represents cation exchange membranes. 

Adapted from Davis and Rayman, 2008.  
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Figure 3-15. EDM Recovery Versus Raw Water TDS. 

Adapted from Bond and Veerapaneni, 2007.  

 
Figure 3-16. Comparison of EDM Treatment Costs with Thermal Processes. 

Adapted from Bond et al., 2011.  
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3.5 Alternative Technologies  

Technologies that are currently under development are categorized as alternative 
technologies and are described in the following sub-sections.  
 
3.5.1 Forward Osmosis (FO) 

Forward osmosis (FO) is the net movement of water across a selectively permeable 
membrane driven by a difference in osmotic pressure across the membrane (Cath et al., 2006). 
A schematic of the FO process is shown in Figure 3-17. When solutions of different solute 
concentrations are separated by a semi-permeable membrane, the solvent (i.e., water) will move 
across the membrane from the lower solute concentration side to the higher concentration solute 
side (i.e., “draw solution”). The driving force for this movement is the osmotic pressure gradient 
across the membrane caused by the differences in solute concentrations. 

 
The main advantage of using FO in water treatment is lower energy consumption because 

no external pressure is required. The FO process may also demonstrate a lower membrane-
fouling propensity than pressure-driven membrane processes. The main challenges, however, 
exist in the manufacture of high performance FO membranes and the selection of easily 
separable draw solutions with a high osmotic pressure (Cath et al., 2006). In addition, the water 
flux in FO process is often much lower than the flux expected from the bulk osmotic pressure 
difference and membrane permeability. This is often attributed to concentration polarization 
(CP), especially internal CP (McGutcheon et al., 2006). Consequently, the hydraulic 
configurations of forward osmosis process need to be optimized to minimize CP and membrane 
fouling. 

 
Forward osmosis has been studied for a variety of applications such as volume 

minimization of sanitary landfill leachate (York et al., 1999), concentration of fruit juices 
(Petrotos et al., 1998), desalting (McGinnis, 2002; Cath et al., 2005; McCutcheon, et al., 2005; 
McCutcheon et al., 2006) and emergency water supply equipment (Cohen, 2004)). MWH 
recently completed a proof of concept study to assess the feasibility of using FO for concentrate 
volume minimization (Adham et al., 2007). One of the main issues to be resolved with FO is the 
development of a membrane suitable for this application; conventional membrane support layers 
result in high resistance and contribute to fouling/cleaning issues. To date there are no full scale 
facilities using FO for concentrate volume minimization.  
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The hydrophobic membrane allows water vapor to penetrate through while repelling the liquid 
water (Sirkar and Li, 2003). Diffusion of water vapor evaporated from the hot brine at the brine-
membrane interface takes place through the gas-filled hydrophobic membrane pores; the water 
vapor is condensed in the cold distillate membrane interface. The driving gradient for vapor 
production has been enhanced by heating the feed water and hence increasing the vapor pressure 
(Sethi et al., 2006).  

 
MD is advantageous because it can be coupled with low grade heat sources such as solar, 

waste heat, or geothermal energy. In addition, MD performance is only weakly influenced by the 
concentration polarization phenomena, so high concentration values (up to saturation) can be fed 
into the process. Integrated systems of RO/MD, where MD is used to treat the concentrate from 
RO membranes, have been studied (Criscuoli and Drioli, 1999). Polymers such as polypropylene 
(PP), polytetrafluoroethylene (PTFE), and polyvinylidenefluoride (PVDF) are commonly 
employed in the preparation of membranes for MD applications (Curcio and Drioli, 2005). 
Fouling of MD membranes is due to biological activity, particulates and colloids, or precipitation 
of concentrated salts. 

 
By coupling RO and MD, the overall recovery factor can be increased to near 90% in 

some cases. A detailed energetic and exergetic analysis carried out on an integrated NF/RO/MD 
system (Criscuoli and Drioli, 1999) showed that 13 kWh/m3 are required to drive the plant, but 
this value decreases to 2.6 kWh/m3 if low grade thermal energy is available. The combined use 
of a gas-liquid membrane contactor, a conventional precipitator, and a membrane crystallizer 
was successfully applied to NF concentrate treatment in a study by Drioli et al. (2004). Calcium 
carbonate was removed up to 89%; 35.5 kg of NaCl and 8.4 kg MgSO4. 7H2O per cubic meter of 
NF retentate were obtained. In addition, the amount of water condensed in the distillate side at 
the membrane crystallizer allowed to increase the NF recovery factor from 64-95%. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-18. Schematic of Membrane Distillation of Process. 
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3.5.5 Dewvaporation (DV) 
Dewvaporation is a process where brackish water is evaporated by heated air and 

subsequently deposits fresh water as dew on the opposite site of a heat transfer wall. The energy 
needed for evaporation is supplied by the energy released from dew formation. Dewvaporation 
employs an innovative heat-driven process using air as a carrier gas and operation at atmospheric 
pressure throughout the housing which is typically a tower structure (Hamieh et al., 2001). An 
advantage to this process is that scaling in minimized because evaporation occurs at the air-
liquid interface and not at the heat transfer wall. Non-traditional heat sources include solar and 
waste heat.  

 
Reported recoveries for dewvaporation range from 82-85% for brackish water applications 

(Sethi et al., 2006). This technology is still in development, but it is expected to find application 
with small-scale systems. A 10,000-gpd dewvaporation pilot unit treating RO concentrate 
generated from a wastewater treatment plant is being planned at Phoenix, Arizona (Jordahl, 2006) 
with the intention of treating RO concentrate TDS from 5,000-200,000 mg/L thereby reducing the 
brine volume production to approximately 2% (i.e., 98% overall recovery). To date there is no 
reported full-scale application of the dewvaporation process. The reported operating cost of the 
dewvaporation is $3.5/1000 gallons when using natural gas as heat source and $12/1000 gallons 
when using vapor compression evaporators as the heat source (Jordahl, 2006). 
 
3.5.6 Eutectic Freeze Crystallization  

Desalination by freezing is categorized as a crystallization processes. While desalination 
by freezing has been proposed as a method for several decades, only demonstration projects have 
been built to date (Qiblawey, 2008). Freezing is a separation process related to the solid-liquid 
phase change phenomenon. When the temperature of saline water is reduced to its freezing point, 
ice crystals of pure water are formed within the salt solution. These ice crystals can be washed 
and re-melted to obtain pure water. In a direct freezing process, the refrigerant is mixed directly 
with the brine. In an indirect process, the refrigerant is separated from the brine by a heat transfer 
surface. The process is essentially a conventional compressor-driven refrigeration cycle with the 
evaporator serving as the ice freezer, and the condenser as the ice melter. Eutectic freeze 
crystallization is an extension of the freeze crystallization process and utilizes the density 
differences between the ice and the salt produced to ensure effective separation (Randall et al., 
2011). The process is operated at the eutectic point, where both ice and salt crystallize. The 
process is capable of producing potable water as well as pure salt with lower energy 
consumption than evaporative crystallization (Randall et al., 2011). Using the eutectic freeze 
crystallization process for treating RO brine, 97% conversion of concentrate as pure water was 
achievable with pure calcium sulfate and sodium sulfate salt products (Randall et al., 2011).  
 
3.5.7 Comparison of Alternative Technologies 

Comparison of alternative technologies is provided in Table 3-4. Although the 
technologies shown promise for brine management, they are in their developmental stages and 
more data on pilot-scale operation is necessary.  
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Technology Recovery 
Energy 

Consumption Cost Advantages Limitations 
Dew-
vaporation 

Expected 
recovery greater 
than 80% when 
used alone for 
brackish water 
treatment. 

Data not 
available.  

Natural gas: 
$3.5/1000 
gallons  
Vapor 
compression 
evaporators: 
$12/1000 
gallons 
(Jordahl, 
2006). 

No applied pressure 
requirement.  

Emerging 
technology.  

         Limited full-scale 
applications for 
municipal water 
treatment.  

Eutectic 
Freeze 
Crystal-
lization 

Expected 
recovery greater 
than 97%. 

Data not 
available.  

 No applied pressure 
requirement.  

Emerging 
technology.  

         Limited full-scale 
applications for 
municipal water 
treatment.  
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CHAPTER 4.0 

 

SUMMARY OF FINDINGS 
 

A literature review was performed to evaluate brine volume minimization and zero liquid 
technologies. Technologies were categorized as thermal-based, membrane-based, electric 
potential driven and alternative. The summary of the findings is provided below:  
 
 Thermal-based technologies reviewed were brine concentrators, brine crystallizers, wind 

aided intensified evaporation, salinity gradient solar pond – brine concentrator and recovery 
system, spray dryers and evaporative reduction and solidification. Except for evaporative 
reduction and solidification, all other thermal-based technologies have been used for 
municipal water treatment.  
 

 Thermal-based technologies have been primarily used for complete ZLD treatment. Capital 
costs, energy and footprint requirements must be considered while selecting a thermal-based 
technology. Reducing RO brine volume will be critical for reducing the costs of thermal-
based technologies.  
 

 Membrane-based technologies reviewed were dual RO with intermediate demineralization 
using chemical softening and pellet softener, dual RO with intermediate biological reduction, 
SPARRO, HERO, HEEPM, ARROW, OPUS, VSEP, and DT filtration.  
 
o Dual RO with pellet softener is a promising technology for reducing the concentration of 

calcium in the brine and thereby reducing the scaling potential of calcium sulfate 
resulting in enhanced recovery. Pellets softener is also effective in reducing the 
concentration of silica. Based on the water quality obtained on the RO brine from 
Brighton, barium sulfate and silica were found to be limiting the recovery of the RO 
process. For the La Junta plant, calcium sulfate was determined to limiting the feed water 
recovery. Thus, application of a pellet softener followed by a secondary RO system could 
be a promising option to evaluate at Brighton and La Junta.  
 

o The SPARRO process is also applicable when calcium sulfate supersaturation is an issue 
in the brine but the technology has been tested primarily at the pilot-scale and full-scale 
applications are limited. Membrane-based technologies such as HERO, HEEPM, 
ARROW, and OPUS have been proven to result in high feed water recoveries but are 
patented and consist of numerous processes resulting in high costs. 

 
 Electric potential driven technologies reviewed were ED, EDR, and EDM. EDM has been 

proven to be a promising technology to treat brine when calcium sulfate supersaturation is an 
issue. Thus, EDM would be a promising candidate to evaluate at La Junta plant where 
calcium sulfate is limiting the feed water recovery. For EDM, the costs depend on the TDS of 
the brine to be treated. Based on the water quality (TDS) of RO brine at Brighton and La 
Junta the use of EDM would be applicable for both sites for RO brine management.  
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